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Preface

This book regroups the articles that were presented at the ninth international
Conference on the Simulation of Adaptive Behavior (SAB 2006) held at the Ital-
ian National Research Council, Rome, on September 25-29, 2006. The objective
of the biennial SAB conference is to bring together researchers in computer sci-
ence, artificial intelligence, alife, complex systems, robotics, neurosciences, ethol-
ogy, evolutionary biology, and related fields so as to further our understanding
of the behaviors and underlying mechanisms that allow natural and artificial
animals to adapt and survive in uncertain environments.

Adaptive behavior research is distinguished by its focus on the modelling
and creation of complete animal-like systems, which—however simple at the
moment—may be one of the best routes to understanding intelligence in nat-
ural and artificial systems. The conference is part of a long series that started
with the first SAB conference, which was held in Paris in September 1990, and
was followed by conferences in Honolulu 1992, Brighton 1994, Cape Cod 1996,
Zurich 1998, Paris 2000, Edinburgh 2002, and Los Angeles 2004. In 1992, the
MIT Press introduced the quarterly journal Adaptive Behavior now published by
SAGE Publications. The establishment of the International Society for Adaptive
Behavior (ISAB) in 1995 further underlined the emergence of adaptive behavior
as a fully fledged scientific discipline. The present proceedings are a comprehen-
sive and up-to-date resource of the latest progress in this exciting field.

The 35 papers and 35 poster summaries published here were selected from
140 submissions after a two-pass review process designed to ensure high and
consistent overall quality. The articles cover all main areas in animats research,
including perception and motor control, action selection, motivation and emo-
tion, internal models and representation, collective behavior, language evolution,
evolution and learning. The authors focus on well-defined models, computer sim-
ulations or robotic models, that help to characterize and compare various organi-
zational principles, architectures, and adaptation processes capable of inducing
adaptive behavior in real animals or synthetic agents, the animats. We hope that
these articles will provide stimulating reading material, with a good overview of
the latest developments in this exciting field.

The conference and its proceedings would not exist without the substantial
help of a wide range of people. Foremost, we would like to thank the members of
the Program Committee, who thoughtfully reviewed all the submissions and pro-
vided detailed suggestions on how to improve the articles. We are also indebted
to our sponsors.

The enthusiasm and hard work of numerous individuals were essential to
the conference’s success. Above all, we would like to acknowledge the significant
contributions of Diana Giorgini, Gisella Pellegrini, and all the members of the
Laboratory of Autonomous Robots and Artificial Life, ISTC-CNR, Rome, for
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their help with the local arrangements. Finally, once again, we would like to
warmly thank Jean Solé for the artistic conception of the SAB 2006 poster and
the proceedings cover.

We invite readers to enjoy and profit from the papers in this book, and look
forward for the next SAB conference in 2008.

September 2006 Stefano Nolfi
Program Chair

SAB 2006
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Jean-Marc Amé, Jesus Millor, José Halloy, Grégory Sempo,
Jean-Louis Deneubourg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

Economic Optimisation in Honeybees: Adaptive Behaviour
of a Superorganism

Ronald Thenius, Thomas Schmickl, Karl Crailsheim . . . . . . . . . . . . . . . . 725

Cumulative Cultural Evolution: Can We Ever Learn More?
Paul Vogt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738

Agents Adopting Agriculture: Modeling the Agricultural Transition
Elske van der Vaart, Bart de Boer, Albert Hankel,
Bart Verheij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750

Adaptive Behavior in Language and Communication

Noisy Preferential Attachment and Language Evolution
Samarth Swarup, Les Gasser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

The Emergence of Communication by Evolving Dynamical Systems
Steffen Wischmann, Frank Pasemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

Origins of Communication in Evolving Robots
Davide Marocco, Stefano Nolfi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789

The Complexity of Finding an Optimal Policy for Language Convergence
Kiran Lakkaraju, Les Gasser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804



Table of Contents XV

Applied Adaptive Behavior

Behavioral Analysis of Mobile Robot Trajectories Using a Point
Distribution Model

Pierre Roduit, Alcherio Martinoli, Jacques Jacot . . . . . . . . . . . . . . . . . . . 819

Simbad: An Autonomous Robot Simulation Package for Education
and Research

Louis Hugues, Nicolas Bredeche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

Comparing Robot Controllers Through System Identification
Ulrich Nehmzow, Otar Akanyeti, Roberto Iglesias Rodriguez,
Theocharis Kyriacou, Stephen A. Billings . . . . . . . . . . . . . . . . . . . . . . . . . 843

Adaptive Fuzzy Sliding Mode Controller for the Snorkel Underwater
Vehicle

Eduardo Sebastián . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867



The Animat Approach to Adaptive Behaviour



S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 3 – 16, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Emotions as a Bridge to the Environment: On the Role 
of Body in Organisms and Robots 

Carlos Herrera Pérez1, David C. Moffat2, and Tom Ziemke1 

1 University of Skövde 
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SE-541 28 Skövde, Sweden 
{carlos.herrera, tom.ziemke}@his.se 
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Abstract. Adaptive agents exhibit tightly coupled interactions between nervous 
system, body and environment. Parisi recently suggested that the current focus 
on sensorimotor interaction between agent and environment needs to be 
complemented by an "internal robotics", i.e. modeling of the interaction 
between internal physiology and nervous system in, for example, emotional 
mechanisms. The dynamical systems notion of “collective variables” can help 
understanding such interactions. In emotions physiological states are key 
parameters that trace the global dynamic concern relevance of the situation. 
Such variables may be key, in adaptive systems, to monitoring and controlling 
the agent’s interaction with the external environment. We show in a simple 
robotic simulation that the neural controller can self-organize to exploit the 
dynamical regularities traced by these variables. We conclude this can prove to 
be a useful technique in robots and animats, towards evolving emotion-based 
adaptive behaviors. 

1   Introduction 

The dynamical systems (DS) approach to cognition and adaptive behavior (e.g. [1, 2, 
3]) is based on the hypothesis that an autonomous agent’s adaptation to the 
environment, through ontogeny and phylogeny, results in a tightly coupled dynamical 
system. A natural agent’s body and its biological niche form an inextricable whole. 
Nervous systems control and integrate bodies in their niche producing a rich range of 
adaptive behaviors. For the advocates of this approach, the mind, once considered a 
private and independent control realm, emerges from this system as a whole, and is 
extended in time and space to reach as far as cognition can go (e.g. [1]). Hence, we 
are not dealing with a closed system whose activity can be reduced to the mapping of 
sensory inputs to motor outputs. In natural agents, nervous system, body and 
environment are not three components that interact in a synchronic way. In order to 
understand adaptive behavior, it may be necessary to consider brain, body and 
environment as tightly coupled parts of a whole [4], even if the exact mechanisms of 
integration in the dynamic process of interaction are at least partly unknown. The 
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complexity of a dynamical system, such as one that includes a nervous system, a 
complex physiology and an unpredictable environment, makes the problem of 
mathematically formalising the system more or less intractable. Nevertheless, 
dynamical system ideas, presented conceptually, offer a range of tools available to the 
theorist that aims to understand adaptive processes as they unfold in time [5]. 

Natural adaptation is the result of a self-organising process. It is therefore 
commonly assumed that artificial adaptation should also be based on principles of 
self-organisation, such as artificial evolution and neural computing. However, can DS 
enlighten how self-organisation may be induced in animats?  

Parisi [6] recently suggested an “internal robotics”, i.e. an integral approach that 
takes into consideration the essential role of the organism’s body (physiology) and its 
dynamic, largely holistic, relationship with the nervous system. This approach can be 
complemented with attention to the nervous system / environment relationship and the 
body / environment interaction. The study of the relationship between nervous system 
and rest of the body may enlighten, as Parisi argues [6], the emergence of the private 
aspects of the mind, in particular emotion. 

Emotion, in turn, is among the essential provisions of natural agents for their 
flexible adaptation to uncertain environments (e.g. [7 , 8, 9, 10]) and may be usefully 
integrated into the mechanisms underlying adaptive behaviour in animats (e.g. [11, 
12, 13, 14]). In the following sections we will try to integrate Parisi’s proposal for an 
“internal robotics”, with concepts from DS and emotion theory to provide a simple 
model of the mechanisms underlying the appraisal process; and discuss how these 
mechanisms can be understood in DS terms and modelled in animats.  

2   Internal Robotics and Emotion 

In recent years there has been a decisive turn towards aspects of situatedness and 
embodiment in cognitive science and AI (e.g. [1, 15, 16, 17]). Much recent robotics 
research has focused on the sensorimotor interaction between control systems, their 
robotic bodies and their external environment. For example, it has been demonstrated 
that control may be highly distributed and, for instance, morphology plays an active 
role in control [16]. Furthermore, Parisi ([6] p. 325) has recently argued that “to 
understand the behavior of organisms more adequately we also need to reproduce in 
robots the inside of the body of organisms and to study the interactions of the robot's 
control system with what is inside the body”. Parisi coins the term internal robotics to 
denote the interactions between the control system (neural) and the rest of the body 
(Figure 1).  

Parisi sees in these forms of interaction the distinction between cognition and 
emotion: “The cognitive components of behavior emerge from the interactions of the 
nervous system with the external environment, whereas its emotional or affective 
components emerge from the interactions of the nervous system with the rest of the 
body” ([6] p. 332). The role of physiological mechanisms in the generation of 
emotional processes is supported by much research on emotion (e.g. James, Damasio, 
Frijda), and, with the exception cognitive theories of emotion (e.g. [18]), most 
approaches to emotion in psychology, philosophy, cognitive science or psychiatry 
generally take into account the physiological substrate (e.g. [7, 8, 9, 10]). 
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Fig. 1. Internal robotics [6]: The nervous system is in constant interaction with the rest of the 
body. The body, through mostly chemical channels, produces diffuse effects on the neural 
system.  

The association of emotion with the interaction between nervous system and the 
rest of the body is consistent with Damasio’s theory of feeling. In short feeling is 
associated with neural patterns that emerge from changes in the body as mapped in 
the brain [10]. Damasio argues that some brain structures are dedicated to process 
such changes, either as a perceptual or simulative mechanism, and such structures are 
integral parts of the emotion process. Damasio distinguishes between feeling and 
emotion [10]. Whilst feeling springs from the relationship between the nervous 
system and the rest of the body, other aspects of emotion emerge from the interaction 
between nervous system, body and environment, as, for instance, appraisal of certain 
aspects of the environment and the modification of relational behavior. Emotions may 
be experienced literally ‘in the flesh’, but they are relational in the sense that they 
‘connect’ agent and environment. Emotional experience can be awareness of 
autonomic arousal, but also awareness of “action tendency” and/or “situational 
meaning structure” [7]. Emotion and affect are therefore modes of interaction of the 
nervous system with the environment, an interaction that is mediated by the body.  

Conceptually, it could be argued that interaction with the body is de facto 
interaction with the environment, as body and environment are tightly coupled. 
Feedback from the body into the neural system is not only an internal signal, but it is 
to a certain extent significant of the relationship of the agent to the environment. Such 
feedback is the origins of embodied appraisals - perceptions of the body, but, through 
the body, they also allow us to literally perceive danger, loss, and other matters of 
concern (e.g. [19]). In the rest of the paper we try to unveil the mechanism for such 
phenomenon and, following Lewis [5], how it may be modelled using a DS approach. 

3   A Dynamical Systems Approach to Emotion 

There are several reasons why DS are the most appropriate methodology to study 
emotions [5]. Intuitively, emotions are dynamic and strongly rely on holistic and 
relational properties. As discussed in the previous section and consistent with much of 
emotion theory (e.g. [7, 8]) the thesis of situatedness states that emotions are 
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relational phenomena, changes in the ongoing relationship with the environment. For 
Frijda ([7] p. 466), emotions can be defined as changes in disposition towards some 
aspects of the world. Readiness change comes in different forms: (a) readiness for 
action as such (activation), (b) cognitive readiness (attention arousal), (c) readiness 
for modifying relationships with the environment (action tendencies), (d) readiness 
for specific concern-satisfying activities (desires and enjoyments). 

Change in readiness is a dynamic process that involves the articulation of many 
physiological and neural systems. This change in readiness is motivated by the 
relational status towards the environment in reference to some of the agent’s 
“concerns”. Concerns are those conditions essential for the well-being of the agent. It 
is important to note that a concern need not be represented by the agent; and neither is 
explicit reasoning necessary for appraisal of concern-relevance. The basic process of 
response to concern-relevance and readiness generation is called “primary appraisal”. 
Where appraisal involves cognitive articulation, such as “situational meaning 
structures” [7] or “coping potential” [8], we call the process “secondary appraisal”. 
Together, these phenomena offer an example of grounded cognition, and DS models 
may help bridging the gap between emotion and cognition. 

Much of emotion theory has focused in clarifying the relationship between emotion 
and cognition. In the cognitivist paradigm, they are considered independent processes, 
and therefore much of the discussion is about what comes first. Appraisal theories 
argue that emotions involve an implicit evaluation of the relation with the 
environment. Post-cognitive theories take this evaluation to be explicit and best 
described in information processing terms. Perceptual theories stress how emotions 
(and the physiological changes associated) shape our perceptions and subsequent 
cognition of the world. Models of the emotion process, mainly focused on cognitive 
aspects, are normally linear. Emotional phenomena, nevertheless, are not a linear 
succession of events. Cognition, behavior, physiological and neural patterns are all 
participants of emotion, and their interactions are continuous and dynamic.  

There has been great discontent in emotion theory with the lack of tools to describe 
emotional phenomena in non-linear terms [20]. Scherer [21] has suggested that 
emotion can be defined as an episode of temporary synchronization of all major 
systems of organismic functioning represented by five components (cognition, 
physiological regulation, motivation, motor expression, and monitoring/ feeling). 
Lazarus argues that an approach to synthesizing the causal roles between different 
aspects of emotion requires a “multivariate system, which consists of a number of 
causal antecedents, mediating processes, immediate emotional effects, and long-term 
effects, all acting interdependently” ([8] p. 208).  

Therefore emotion theory, although largely focused on cognitive phenomena, 
seems to suggest that DS are the proper framework for the study of emotional 
phenomena. Lewis ([5], p. 169) argues in detail that DS offer a way to bridge the 
cognitive level of analysis with phenomena at other levels. “DS principles stipulate 
higher-order wholes emerging from lower-order constituents through bidirectional 
causal processes – offering a common language for psychological and neurobiological 
models.” The DS approach offers a range of notions, such as trigger, self-
amplification, self-stabilization phases, which Lewis uses to study “neural structures 
and functions involved in appraisal and emotion, as well as DS mechanisms of 
integration by which they interact. These mechanisms include nested feedback 
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interactions, global effects of neuro-modulation, vertical integration, action-
monitoring, and synaptic plasticity, and they are modeled in terms of both functional 
integration and temporal synchronization.” ([5], p. 169).  

Lewis’ model of the appraisal process attempts to link higher-order psychological 
phenomena with neurological elements. The neural dimension forms the system’s 
state space, and certain neural structures form wholes that are associated to 
psychological phenomena. The goal is to have a simplified system that allows us to 
trace the dynamic patterns present in the system. The need for reduced dimensionality 
in the system has two reasons: (1) high dimensionality becomes intractable, (2) not all 
variables are significant for certain overall dynamics. Main tools for the DS reduction 
are the consideration of “collective variables” and “control parameters”. Collective 
variables or ‘order parameters’, are numerically measured quantities that supervene 
on the behavior of a system’s lower-level constituents [2]. In other words, a collective 
variable is a quantitative measurement that allows us to distinguish qualitative 
changes in the overall dynamics.  

Mathematical analysis can identify control parameters, which ‘lead the system 
through different patterns, but that (unlike order parameters) are not typically 
dependent on the patterns themselves’ ([2], p. 16). The property of being independent 
allows DS to mathematically study bifurcations, but the concept of control derives 
from the fact that control parameters can be changed independently, to a certain 
extent, of the overall patterns. The physiological system, therefore, is a control 
parameter that is dependent on the mechanisms of the physiological system. The 
relevance of these concepts for emotion modeling can nevertheless go beyond tools 
for reducing dimensionality in analysis. In the next section we present the idea that 
the nervous system may establish a body-mediated adaptive relationship with the 
environment through attunement to some order parameters within the agent’s 
physiology, that reflect concern-relevance of situations. The fact that the body 
dynamics may provide sufficient information to track overall relational properties 
would allow a nervous system to: (1) appraise concern relevance (embodied 
appraisal), (3) generate action readiness through change in control parameters, (3) 
generate action tendency through sensory-motor coordination given a state of action 
readiness.  

4   Embodied Appraisal and Response 

Our thesis is that emotions are embodied appraisals which actively use proprioceptive 
feedback to generate perceptions of subject-related features of the environment [22]. 
The thesis is twofold. On the one hand body states are indicators of salience in a 
situation, that is, collective variables. On the other hand, they affect behavior 
dynamics is a distributed way, possibly provoking change in the stability of the 
system; that is, they are control parameters. 

According to Prinz [19], emotions are perceptions of the body, but, through the 
body, they also allow us to literally perceive matters of concern. “Perceptions of 
changes in our somatic condition … are also appraisals … as any representation of an 
organism-environment relation that bears on well-being” [19]. Our interest is to show 
that the body may be considered an indicator of salient environmental states, or, more 
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precisely, agent/environment relational dynamics. For Prinz this is possible for body 
parameters “by figuring into the right causal relations” [19].  

What do these causal relations consist of? They are complex patterns of interaction 
between the nervous system, the body and the world, which ultimately may be 
described as a dynamical system. We know from emotion theory that some body 
states guard some special relation to certain overall patterns, such that they are 
indicators of concern-relevance - this relationship is defined in DS theory as a 
collective variable. The “right causal relation” that allows to carry an evaluation based 
on physiological feedback is thus that certain physiological patterns are collective 
variables of concern-related global states. Or, given that physiology and nervous 
system are tightly coupled, it would be more precise to say that physiology provides 
the nervous system with patterns that allow appraisal and response to concern relevant 
situations. 

Certainly physiological changes, such as hormonal, visceral or muscular, allow us 
to trace the relational aspects of the interaction with the environment. The role of 
neuro-biology of emotion is to unveil the relationship between physiological states 
and possible emotions. The fact that there is not a one-to-one or linear correlation – an 
argument classically used to deny the relevance of physiological states – makes DS 
models a form of analysis that may reveal the intrinsic dynamics of emotion [5]. 

The first part of our thesis is that some form of processing is based on the 
dynamical correlation between body states and concern-relevance. Through some 
stable interaction, the neural system is capable of processing physiological together 
with sensory information and memory, so to be able to trace some global feature of 
the relationship. For example, in the case of fear in humans, we can argue that the 
amygdala circuitry is essential for such processing. In this case, physiology acts as a 
collective variable. In James-Lange theory, we would say that we feel something is 
wrong when some physiological indicator goes beyond some point.  

The story is nevertheless not so simple, as the nervous system is capable of 
effecting control over physiological parameters, and participates in the process from 
the beginning. We cannot understand the relevance of physiological parameters if 
they are not related to the neural mechanisms that produce them. In other words, 
physiological parameters are active control parameters at the disposition of the 
nervous system. Therefore the “right causal relations” are complex dynamic 
interactions (nervous, physiological and environmental), in which physiology acts as 
a control parameter at the service of the nervous system to (1) appraise concern 
relevant global features  of the situation, and (2) guide the behavior of the system.  

As discussed above, DS description always depends on the level of analysis we 
adopt, in the order and control parameters we find or choose [2]. But the relevance of 
collective variables for the study of emotion goes beyond analytical tools. If some 
physiological states or patterns allow the nervous system to process concern-
relevance, the use of such processing for cognitive and behavior generation might be 
an essential adaptive component for the agent in question. As Schachter and Singer 
[24] demonstrated, a change in physiological activity may be sufficient for some form 
of appraisal. But physiological variables may not only allow the agent to appraise, but 
are parameters under the control of the nervous system, and changes in physiological 
parameters subsequently change the cognitive-behavioral relationship with the 
environment. 
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The active role of feeling as a form of monitoring physiological processes (for 
example as body maps, [10]), a process that also results in the generation of action 
readiness, can be therefore understood with the background of DS theory. The basic 
relationships and dynamical connections between nervous system, body and world in 
emotion are as follows: (1) Physiological parameters are collective variables of 
agent/environment relationship (concern-relevant situations).  (2) Physiological 
variables are also control parameters under the control of the nervous system (change 
in action readiness). (3) Quantitative change in physiological variables (activation) is 
followed by qualitative change in relationship and activity of the nervous system 
(change in action tendency).  

Emotions, being perceptual, are not only an appraisal system, but a coordinated 
system of response. Physiology does not only reflect global dynamics, but is an active 
participant of them. Physiological activation is therefore the product of not only 
interaction with the environment, but the interaction with the nervous system. The 
evolution of physiological variables is “created by the coordination between the parts, 
but in turn influences the behavior of the parts” ([2], p. 16).  

5   Implementing Primary Appraisal 

In this section we introduce the experimental approach taken. We should note that we 
are here not trying to model some complex mechanisms that resemble human or 
animal emotion systems. What we are trying is to design for the emergence of 
phenomena that are called emotional, that means, our aim is to produce a coupled 
agent-environment interaction in which we can observe the essential features of 
emotion at the level of primary appraisal: concern, concern-relevance and appraisal, 
action readiness and action tendency. Whether specific mechanisms allow the 
emergence of such phenomena depends ultimately on environmental coupling. 

Our hypothesis is that emotional phenomena can be achieved by a system with the 
means to process information coming from the rest of the body, used to trace and 
exploit overall relational dynamics. This approach also may prove a powerful tool for 
the generation of adaptive flexible behavior in robots, although this issue is out of the 
scope of this paper. In [25] we define a measure of behavior flexibility based on DS 
concepts, and evaluate the following experiments.  

A robotic implementation, also, provides a concrete set of phenomena for the 
demonstration and investigation of the principles exposed. So, on one hand theory of 
emotional phenomena motivate and justify the model, and on the other the model and 
resulting behavior validate the theory. In summary, the following sections explore 
how the principle that through the processing of collective physiological the agent has 
the means to (a) appraise the concern-relevance of the situation, and (b) control action 
readiness. 

5.1   The Model 

Following the internal robotics approach, the model illustrated in Figure 2 is intended 
to represent the relationships between nervous system, body and world. Some aspects 
of the relationship to the environment are concern-relevant. A number of collective 
 



10 C.H. Pérez, D.C. Moffat, and T. Ziemke 

 
 

Fig. 2. Model for a dynamical appraisal system of embodied interaction 

variables in the body allow us to trace the dynamics of concern-relevant situations. 
Such collective variables are computed by a complex non-linear physiological system, 
which serves as an input to the nervous system, in the form of neurally processed 
body maps (feeling), and as modulator of the activity of the nervous system. This 
activation is integrated with current cognitive, perceptual and sensory-motor 
processes. The nervous system also participates in the homeostatic balance in the 
body, and therefore the collective variables are to a certain extent control variables. A 
change in these control variables produces a change in action readiness, reflected in 
the dynamic relationship towards concern-relevant aspects of the situation. Sensory-
motor activity (relationship of the nervous system to the environment), in conjunction 
with further nervous processing (secondary appraisal), produce a change in action 
tendency. A behavior, embodying this tendency, is the result of this process. 

Secondary appraisal, the process by which the system is able to appraise some 
relevant dimensions (a situational meaning structure, in Frijda’s terms), results from a 
deeper integration of perceptual, behavioral and cognitive abilities, and it is beyond 
the scope of this paper. When we speak of emotion, we are therefore constrained  
to the phenomenon of primary appraisal, the appraisal of relevance in the situation 
and the generation of action readiness. 

5.2   Experimental Setup 

We apply a evolutionary robotics approach to the implementation of this model, 
evolving connection weights in the neural controllers of simulated Khepera robots, 
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thus exploiting the principles of self-organization. A prey/predator scenario partly 
replicates Nolfi and Floreano’s experiments reported in [26]. Two Khepera robots, 
equipped with infrared sensors, are placed in random positions. The predator, which 
also has a camera, is rewarded for catching the prey, which in turn is rewarded for 
avoiding the predator. Both robots are controlled by a feedforward network that takes 
as inputs sensory values and produces as output activation of the motors. 

In the Khepera robotic platform, we do not find a complex physiology containing 
suitable collective variables. To circumvent this, we manually define a recursive 
function that simulates, or stands in for, the activity of a simple physiological system. 
The output of this function is intended to be a collective variable of the interaction, 
i.e. produce a function that allows us to trace concern-relevant situations, and may 
have an effect on the generation of behavior. In order to achieve this, we will feed it 
to the neural controller as an extra input. We will refer to this function as CVS 
(collective variable simulator). 

It is worth noting that this initial experimental setup makes (at least) two 
oversimplifications that further experiments should avoid. First, we have approached 
the question of the robot’s “attunement” to the dynamics by using a manual shortcut, 
the definition of a CVS. It would be interesting, in later experiments, to let the CVS 
and CVS-based behavior-generating system to co-evolve or co-develop, therefore 
investigating the role evolution and learning may play in emotional attunement. This 
would involve research into the capacities of neural networks to learn patterns of 
concern-relevance, and the problems of time integration. Second, we have considered 
the physiological system only in its relationship to the nervous system, and not in its 
relation to body dynamics. This allowed us to functionally replace the physiological 
system by a CVS. More complex robotic physiologies, exploring relationships 
between body states (such as energy but also other related to the system functioning) 
and their relationship to sensors, motors, and nervous system should be investigated.  

5.3   Definition of the Collective Variable 

We now need to find a way to define the CVS. We must first pay attention to what 
situations we want to trace. What emotions are concern-relevant in the prey/predator 
scenario? If we focus on the prey, we can argue that the situations that are concern-
relevant for the prey are those in which there is danger of being caught by the 
predator, and if some emotion springs from such situations, it should be fear. So, what 
we need to ask is what situations are especially dangerous for the prey. In order to 
solve this problem we attend to Nolfi and Floreano’s experiments and analyze the 
scenario to see if we can extrapolate, to the new scenario, some parameter that allows 
us to trace such situations. Despite several possible strategies of approach and 
avoidance, given the fastest abilities of the prey, the problem is mostly near walls. 
Analysis of sample evolved individuals shows that the prey, if no walls interfere, can 
produce optimal escape behaviors. Danger is present when the prey is caught between 
the predator and walls.  

We therefore suppose this fact may be extrapolated to other prey/predator 
instances, and we define a CVS that allows us to trace such situations. If we consider 
that, if a robot is near a wall and a predator, the sum of the activation of all sensors 
will be larger than when only predator or walls are present. We therefore define a 
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recursive function to which we add, each cycle, the sum of the activation of the 
sensors, and is multiplied by a decay factor (1). 

t E = ( 2/)E
8..1

i1-t 
=

+

i

S  (1) 

Et is the activation of the additional neuron, Et-1 represents at any time the 
activation in the previous time cycle, and Σ S represents the sum of all 8 infrared 
sensors values. This function can be considered a non-realistic simulation of a system 
that secretes a hormone in direct relationship to the level of sensory activation, 
producing an activation level. The hormone which is absorbed at a linear rate, and its 
level influences the system by being fed back in to the neural controller as an extra 
input. Essentially, this architecture is equivalent to a simple feedforward network to 
which we add an internal neuron with a recurrent connection (see Fig.  3). The only 
difference is that weights between sensors and the internal neuron, and the neuron’s 
recurrent connection, have been fixed. 

 
Fig. 3. Neural network controllers. A simple feedforward network (left), a feedforward network 
with an extra neuron computing the collective variable (center) and the equivalent recurrent 
network with an internal node (right).  

We then start an evolution process in which the weights are evolved. If, as we 
assumed, the collective variable will be significant of a class of situations (danger), 
then the robot controller can be expected to use it a resource for the evolution of 
adaptive emotional behavior. In the next section we evaluate the results. 

5.4   Results 

As with other experiments in co-evolution, the evolutionary process does not 
converge to an optimal performance level. Performance of prey and predator are co-
dependent, are performance cycles can be normally observed in these cases.  It is 
possible to analyze cross generational strategies and fitness. Due to limited space, we 
will only analyze the behavior of a single generation (generation 100). In this analysis 
we will verify whether: (a) the simulated function is a collective variable, that is, it 
allows us to track situations in which the prey is between wall and predator, (b) the 
collective function influences the neural controller so as to generate an action 
tendency that changes the relationship to the environment so that concern is safeguard 
(i.e. does the prey escape?) 

Fig. 4 shows the value of the CVS throughout an interaction in which two 
dangerous situations are present (points 1 and 3). We can trace the concern-relevance 
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Fig. 4. Interaction between prey and predator. Left: screenshot from simulator. Right: value of 
collective variable allows to trace the dynamics of interaction. 

                      
Fig. 5. Left: Escape behavior. Right: values for the connections between sensors (including 
extra neuron, marked as activation unit) and motors. A square placed in line with IR-i and 
above motor-x represents the weight of the connection between the unit associated to such IR 
sensor and the one connected to that motor. The size of the square represents the amount of the 
weight, while the color represents either positive (grey) or negative (black) value. 

of the situations (danger) by looking at the graph representing the activation of the 
collective function over time. In other words, the value of the CVS allows us to track 
the dynamics of the interaction. The predator’s (black robot, discontinuous trace) 
approach is reflected as a change in the CVS (1). An escape tendency is generated 
(continuous trace). A straight, forward movement, at a high speed, allows the prey to 
avoid crashing against predator or wall, stopping when sufficient distance to the 
predator is gained (point 2, which can be observed as a cross in the trace of the prey). 

To analyze the generation of this tendency, we can look more closely at the 
behavior (Fig. 5, left) and the evolved weights of the neural connections in the control 
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system (Fig. 5, right). The robot relies mostly on one side to produce escape 
behaviors. Such movements are backwards and therefore are ruled by negative 
activation. When the emotion unit is highly activated, the right motor activation is 
compensated to give a movement in a straight trajectory. Therefore the activation unit 
provokes a negative activation of the left motor and a positive activation of the right 
motor, balancing out the activation of other sensors to produce straightforward fast 
motion. 

In terms of emotion theory, we can conclude that the prey is capable of appraising 
concern-relevant situations, by means of attunement through an appropriate collective 
variable represented by a simulated physiological function. Such appraisal involves 
the generation of an action tendency whose function is to resolve the concern-relevant 
situation, producing a fast escape behavior. 

6   Discussion 

Animal and human agents demonstrate a tight coupling to the environment by means 
of emotion, an amalgam of processes subject to a variety of dynamic interactions. The 
DS approach to cognition offers a number of relevant notions that overcome the 
limitations of linear causal models, inappropriate to describe the dynamics of 
emotional phenomena (cf. [5]). The concept of collective or global variables, 
fundamental for dimensional reduction for the analysis of complex systems, may also 
help enlighten the organizational principles underlying emotional phenomena.  

In this paper we have argued that the appraisal process and the generation of action 
tendencies are based on the interaction of the nervous system with the agent’s body. 
The hypothesis is that concern-relevance is a relational property of the agent-
environment interaction, which can be traced by collective variables found in the 
body. The nervous system is capable of processing such collective variables; therefore 
also able to appraise the dynamics these variables allow tracing. In turn, these 
collective variables are also control parameters of the interaction: a change in the 
activation of the physiological functions picked up by these variables produces a 
change in the interaction with the environment. 

It is therefore necessary to pursue an understanding of the processes that fall under 
Parisi’s  label of “internal robotics”, the relationship between the nervous system and 
the rest of the body, as significant of the larger relationship between body and 
environment. The simple fact that an agent’s control system may have access to these 
internal variables, which are collective variables of some relational aspects of the 
situation, may provide the means for monitoring and controlling the agent’s 
interaction with the external environment, producing adaptive behavior. 

The simple robotic implementation reported here illustrates the basic notions of 
this DS approach to emotion. The evolutionary process allows the robot to exploit a 
collective variable input to the network to generate suitable action tendencies. This 
model has some obvious limitations that derive from the fact that the physiological 
functions present in a natural agent are here highly abstracted and only the suggested 
input to the neural system (the collective variable itself) is simulated. Further 
development should also model the underlying physiology that ‘computes’ such 
variables, and, as their natural counterparts, configures action readiness by affecting 
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the nervous, sensory and motor systems. It should also be important to achieve the 
attunement of the agent to concern-relevant situations through self-organization, 
possibly through evolution and/or learning. 

A further development of the model may show different possibilities in the 
utilization of feedback from the body in the generation of adaptive behavior, thus 
enhancing our understanding of situated activity. 
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Abstract. We describe some simple simulations showing two possible adaptive 
advantages of the ability to predict the consequences of one’s actions: predicted 
inputs can replace missing inputs and predicted success vs. failure can help de-
ciding whether to actually executing a planned action or not. The neural net-
works controlling the organisms’ behaviour include distinct modules whose 
connection weights are all genetically inherited and evolved using a genetic al-
gorithm except those of the predictive module which are learned during life. 

1   Introduction 

Organisms respond to current sensory input from the environment with movements 
that change the environment or their body’s physical relation to the environment. 
These changes at least partially determine the successive inputs that the environment 
sends to the organism’s sensory organs but this causal relation is ignored by purely 
reactive organisms which only respond to current input. In contrast, more complex 
organisms can predict what the next sensory input from the environment is going to 
be, given the current sensory input and the movement with which they plan to respond 
to this sensory input. (For possible neural structures underlying the ability to predict 
in primates, see [1], [2], [3].) What are the adaptive advantage(s) of this predictive 
ability? What can organisms with a predictive ability do that organisms without this 
ability cannot do? 

The possible adaptive advantages of being able to predict the sensory conse-
quences of one’s movements have already been discussed in the literature. For exam-
ple, Clark et Grush [4] propose that responding to the predicted proprioceptive input 
resulting from one’s movements may allow organisms to move faster because they 
don’t have to wait for the actual proprioceptive input. In this paper we describe some 
simple simulations that address this question by demonstrating two possible roles of 
the ability to predict: predicted inputs can replace missing inputs from the environ-
ment and predictions of success or failure can help the individual to take decisions. If 
any thing prevents some critical input from reaching the organism’s sensors, the or-
ganism can still behave appropriately by responding to a predicted input that replaces 
the missing input. If an organism can predict whether or not a planned response will 
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produce some desired result, the organism can decide to actually execute the response 
in case of predicted success and avoid executing the response in case of predicted 
failure. In Sections 2 and 3 we describe some simulations using the first scenario and 
the second scenario, respectively. In Section 4 we draw some brief conclusions. 

2   Predicted Inputs Replace Missing Inputs 

To survive and reproduce an organism must reach (and eat) the food elements that are 
randomly distributed in the environment. At any given time the organism’s sensory 
organs encode the position of the single nearest food element and the organism must 
respond by turning towards and approaching the food element. The organism’s behav-
iour is controlled by a sensory-motor neural network with one input unit encoding the 
location of the food element which is currently nearest to the organism, one output 
unit encoding the movement with which the organism responds to the sensory input, 
and two internal units (Figure 1a). An initial population of organisms is generated by 
assigning random connection weights to the neural network that controls each organ-
ism’s behaviour and a genetic algorithm is used to evolve in a succession of genera-
tions networks which have the appropriate connection weights that allow them to per-
form the task. 
 

 
 

Fig. 1. (a) Sensory-motor network (or module) (thick arrows). (b) Predictive module (thin ar-
rows). (c) Same/different module (broken arrows). (d) Implementation module (dotted arrows).  

Now imagine that for a variety of reasons (failures of attention on the part of the 
organism, something going across between the food and the organism, etc.) in some 
cycles the input from the nearest food element is replaced by some other, irrelevant, 
input. We simulate all these different circumstances by assigning a randomly gener-
ated activation level to the neural network’s input unit in a certain percentage of in-
put/output cycles. If the organism’s neural network is a simple network mapping sen-
sory input into motor output, in these ‘blind’ cycles the organism is lost. The input 
which replaces the input from food is randomly generated but the organism has no 
way of knowing this and it responds to the randomly generated input as it were input 
from food. We expect that in these circumstances the organism’s overall behaviour 
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will be significantly less effective. But consider a somewhat more complex organism 
with a neural network composed of two sub-networks or modules: the module that we 
have already described which maps sensory input into motor output and a new mod-
ule that predicts what the next sensory input will be, given the current sensory input 
and the planned movement with which the organism will respond to the current input 
(Figure 1b). This predictive module has one input unit encoding the current sensory 
input from the environment and another input unit encoding the planned motor re-
sponse of the organism to the current sensory input, two internal units, and one output 
unit encoding the predicted sensory input from the environment that will appear in the 
next cycle, i.e., after the planned movement is physically executed. (For other simula-
tions using this neural model of the ability to predict, see [5], [6]; for other models of 
learning to predict, see [7], [8]; Ackley and Littman’s [9] work on evolved reinforce-
ment-producing neural networks that guide learning is also relevant here.) 

While the network’s entire architecture is fixed and the connection weights of the 
sensory-motor module evolve and are genetically inherited, the connection weights of 
the predictive module are learned during life. (The weights of both modules could 
evolve and be genetically inherited but learning to make predictions during life tends 
to increase the flexibility of one’s predictive abilities.) The predictive module’s 
weights are randomly generated at birth and, early in its life, each individual organism 
learns to predict the next sensory input using the backpropagation procedure. In each 
input/output cycle the predicted input is compared with the actual input (which func-
tions as teaching input) and the discrepancy between the two (error) is used to gradu-
ally change the predictive module’s connection weights in such a way that after a cer-
tain number of learning cycles the predictive module is able to make correct 
predictions. 

How is this predictive ability used? When a ‘blind’ cycle occurs, the organism re-
places the missing input from food with the predicted input and responds to the pre-
dicted input rather than to the randomly generated input. We assume that early in life 
the organism has learned to generate correct predictions, which implies that the miss-
ing input and the predicted input are more or less the same. Therefore, the organism 
can respond to the predicted input as it would have responded to the actual input from 
food, with similar results. We expect that an organism endowed with this predictive 
ability will behave more or less as effectively in the world with ‘blind’ cycles as in 
the world without ‘blind’ cycles. 

How can the organism know when the current input originating in the environment 
is from food and therefore is the input to which it should respond, and when the input 
is not from food but from some other source and therefore it should respond to the 
predicted input rather than to the input originating in the environment? We imagine 
that the organism’s neural network includes two additional modules: a same/different 
module and an implementation module. The same/different module judges whether 
the current input from the environment is the same or different with respect to the 
predicted input. If the two are the same, this means that the current input is from food 
and the sensory-motor module should respond to the actual input from the environ-
ment. If the current input and the predicted input are different, this means that the cur-
rent input is from some other sources and the sensory-motor module should respond 
to the predicted input rather than to the current input from the environment. The im-
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plementation module implements this judgment by telling the sensory-motor module 
which input to use. We will now describe these two modules. 

The same/different module (Figure 1c) has one input unit encoding the current in-
put from the environment and one input unit encoding the predicted input which was 
the output of the predictive module in the preceding cycle. In response to these two 
inputs the same/different module generates an output that encodes a judgment as to 
whether the two inputs are the same or different. (This same/different task can be in-
terpreted as a continuous XOR task.) 

The implementation module (Figure 1d) relays this same/different judgment to the 
sensory-motor module. To make it possible for the predicted input, rather than the ac-
tual input from the environment, to control the organism’s behaviour, the output unit 
of the predictive module, which encodes the predicted input, has connections linking 
it to the two internal units of the sensory-motor module. Through these connections 
the predicted input can determine the organism’s behaviour by replacing the actual 
input from the environment. The implementation module has an input unit encoding 
the judgment “same or different” of the same/different module and this unit sends 
connections to both the input unit of the sensory-motor module and the output unit of 
the predictive module (Figure 1d). In this way the implementation module can evolve 
weights for these two connections that tend to inhibit the output unit of the predictive 
module (encoding the predicted input) when the judgment is “same” (the current input 
is from food) and to inhibit the input unit of the sensory-motor module (encoding the 
actual input from the environment) when the judgment is “different” (the current in-
put is randomly generated). 

In the simulations that we will describe the connection weights of the sensory-
motor module, those of the judgment module, and those of the implementation mod-
ule, are all genetically inherited and they are developed using a genetic algorithm. 
Only the connection weights of the predictive module are learned during life using the 
backpropagation procedure. 

The simulation scenario is the following. We start with a population of 100 indi-
viduals whose behaviour is controlled by a neural network with random connection 
weights. The total duration of an individual’s life consists of 3500 input/output cycles 
of the individual’s neural network. These 3500 cycles are divided up into 70 episodes 
of 50 cycles each and, at the beginning of each episode, the individual is placed all 
alone in a bidimensional continuous environment of 100x100 spatial units, in a ran-
domly chosen position and with a randomly chosen orientation. (The division of life 
into separate episodes was introduced to increase variability.) The environment con-
tains 20 randomly distributed food elements. When the individual happens to be 
within 2 spatial units from a food element, the individual eats the food element. The 
food element disappears, the individual’s fitness is increased by one unit, and a new 
food element is introduced in a randomly selected location in the environment, so that 
the total number of food elements is always 20. 

An individual has a facing direction and a visual field of 180 degrees. The neural 
network controlling the individual’s behaviour has one input unit, two internal units, 
and one output unit. The input unit encodes the location of the nearest food element in 
the individual’s visual field as a continuous value ranging from 0.2 to 0.8, with a 
value of 0.5 when the food is right in front of the organism, a value of 0.2 when the 
food is 90 degrees to the right, and a value of 0.8 when the food is 90 degrees to the 
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left. The distance of the food is not encoded and the organism can see a food element 
whatever the distance. The input unit sends one connection to each of two internal 
units and the two internal units send their connections to the single output unit (Figure 
1a). The output unit encodes the individual’s movements, and more specifically the 
individual’s turning to either left or right. The output unit’s activation value is con-
tinuously mapped into the interval between 0.2 and 0.8, with 0.2 encoding a maximal 
right turn of 90 degrees, 0.8 a maximal left turn of 90 degrees, and 0.5 the preserva-
tion of the current facing direction. In all cycles, after the turning movement has been 
executed, the individual moves forward 0.5 spatial units in the new facing direction.  

At the end of life each individual is assigned a fitness which corresponds to the 
number of food element eaten by the individual and the 10 individuals with the high-
est fitness generate 10 offspring each. An individual has a genotype which encodes 
the connection weights of the individual’s neural network as real numbers and each 
offspring inherits a copy of its single parent’s genotype. The value of each connection 
weight is mutated with a probability of 20% and the mutation consists in adding to or 
subtracting from the weight’s current value a number randomly selected between 0 
and 1. The 10x10=100 offspring constitute the second generation. All simulations last 
for 1000 generations and all simulations are replicated 10 times.  

2.1   Simulation 1 

Simulation 1 is a baseline simulation in which a population of organisms possessing 
only a sensory-motor module evolves in two different types of environments: an envi-
ronment without periodic random inputs and an environment with periodic random 
inputs. We expect that the population that evolves in the second environment will 
have a significantly worse performance than the population that evolves in the first 
environment. 
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Fig. 2. Average fitness of a population living in an environment in which all inputs are from 
food and a population living in an environment in which inputs from food are replaced by ran-
dom inputs 30% of the times 
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In the first environment an individual receives input from the nearest food element 
in all cycles. In the second environment in each cycle there is a 30% probability that 
the input from food will be replaced by a random input. Therefore, in the cycles in 
which the input from food is missing and is replaced by a random input, the organism 
will respond in a way which will tend to reduce its fitness. 

The results show that, in fact, the average fitness of the population living in an en-
vironment where all inputs are from food is higher than that of the population living 
in the environment where some inputs can be random (Figure 2). 

2.2   Simulation 2 

In this and the following simulations the population lives in an environment where some 
inputs can be random. However, the organisms’ neural network is more complex than 
that of Simulation 1. In Simulation 2 the organism’s neural network includes a predic-
tive module in addition to the sensory-motor module and each individual learns early in 
its life how to predict correctly the next sensory input given the current input and the 
planned response to the current input. In Simulation 2 it is the researcher who, in the cy-
cles with random input, substitutes the current input with the predicted input. 

The results of the simulation show that the organisms are very fast at learning to pre-
dict correctly the next sensory input from food given the current input from food and the 
turning movement with which the organism plans to respond to the current input. The 
prediction error goes to almost zero after only four episodes of an individual’s life, 
which means that during most of its life an organism is able to generate correct predic-
tions of the next input from food. Since in the cycles in which the input from food is 
missing the researcher replaces the random input with the predicted input, this has the 
consequence that random inputs cannot disrupt the organism’s performance. In fact, the 
results of the simulation indicate that the performance of these organisms in an envi-
ronment where some inputs are random tends to be as good as the performance of the 
organisms living in an environment without random inputs (Figure 3). 
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Fig. 3. Average fitness of a population living in an environment with 30% random inputs 
when the organisms learn early in life to predict the correct input from food and the random 
input is replaced by the predicted input from food. The two curves of Figure 1 are also 
shown for comparison. 
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2.3   Simulation 3 

In Simulation 2 the organisms learn to predict the next input from food but it is the re-
searcher who substitutes random inputs with predicted inputs. In Simulation 3 we add 
a same/different module to the organisms’ neural network which gives the organisms 
more autonomy. The same/different module judges whether the input from the envi-
ronment is “same or different” with respect to the predicted input, allowing the organ-
ism to know if the current input from the environment is from food or random. The 
connection weights of the same/different module are also encoded in the inherited 
genotype and they evolve together with the connection weights of the sensory-motor 
module. However in Simulation 3 it is still the researcher who, if the same/different 
module’s output is “same”, causes the sensory-motor network to respond to the input 
from the environment, whereas if the judgment module’s output is “different”, he or 
she substitutes in the sensory-motor module the actual input from the environment 
with the predicted input generated as output by the predictive module. 

The results of the simulation show that the genetic algorithm is able to develop ap-
propriate connection weights for the same/different module, allowing the organism to 
decide most of the time correctly whether the predicted input and the actual input are 
the same or different. The researcher replaces the input from the environment with the 
predicted input if the judgment is “different” and it allows the sensory-motor module 
to respond to the input from the environment if the judgment is “same”. Since the 
evolved weights of the same/different module are not perfect, the organisms’ per-
formance tend to be less good than that of the organisms living in the environment 
without random inputs but significantly better than the performance of the purely sen-
sory-motor organisms living in the environment with random inputs (Figure 4). 
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Fig. 4. Average fitness of a population living in an environment with 30% random inputs when 
the organisms learn early in life to predict the correct input from food and are able to judge if 
the input from the environment is “same” or “different” with respect to the predicted input. If 
the judgment is “same”, the researcher will cause the organisms to respond to the input from 
the environment, whereas if the judgement is “different”, the researcher causes the organisms to 
respond to the predicted input rather than to the input from the environment. The two curves of 
Figure 1 are also shown for comparison. 
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2.4   Simulation 4 

This is the final simulation in which, unlike the preceding simulations, the researcher 
has no role in determining the organism’s behaviour, the organisms are completely 
autonomous, and every aspect of their behaviour emerges spontaneously through evo-
lution and learning. The implementation module is added to the organisms’ neural 
network and the genetic algorithm is responsible for all the connection weights of 
their network, except those of the predictive network which are learned during the in-
dividual’s life and therefore are not genetically inherited. 

The results of the simulation show that it is possible to develop completely 
autonomous organisms that know when it is appropriate to respond to the input from 
the environment and when it is appropriate to ignore the input from the environment 
and respond to the predicted input. After a certain number of generations the imple-
mentation module develops the appropriate connection weights that allow the imple-
mentation module to inhibit the actual input from the environment and to cause the 
predicted input to determine the organism’s behaviour in the cycles in which the input 
from the environment is random and therefore is different from the predicted input. 
On the other hand, when the input from the environment is from food and therefore is 
the same as the predicted input, the implementation module’s connection weights al-
low the module to inhibit the predicted input and to leave to the actual input from the 
environment control on the organism’s behaviour. These entirely autonomous organ-
isms also perform significantly better than the purely sensory-motor organisms living 
in the environment with random inputs (Figure 5). 

 

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

Generation

A
ve

ra
ge

 f
itn

es
s

no random input                            
with 30% random input                      
implementation module with 30% random input

 
 

Fig. 5. Average fitness of a population living in an environment with 30% random inputs 
when the organisms learn early in life to predict the correct input from food and they are able 
both to judge if the input from the environment is “same” or “different” with respect to the 
predicted input and to use this judgment to decide whether to respond to the actual input 
from the environment or to the predicted input. The two curves of Figure 1 are also shown 
for comparison. 
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We have also done a control simulation aimed at clarifying a question which inevi-
tably arises with organisms that are able to predict the next input from the environ-
ment and to respond to this input rather than to the actual input from the environment. 
If the organisms’ predictions are generally correct, why should the organisms ever 
want to respond to inputs from the environment instead of simply responding to pre-
dicted inputs? An organism which can predict correctly the next sensory input from 
the environment which will result from its actions, might pay attention and respond 
only to the very first input from the environment and then ignore all subsequent in-
puts, always responding to the predicted inputs rather than to the actual inputs. Such 
an organism would live in a mental world rather than in the real world but its per-
formance in the real world would be as successful as that of an organism responding 
to the real world.  

This is not very plausible, however. Real organisms cannot live entirely in their 
mental (predicted) world, completely ignoring the inputs from the external environ-
ment. The reason is not only that the real world is much more variable and unpredict-
able than their mental (simulated) world but also that their prediction abilities are not 
perfect. In fact, even in our very simple and predictable world it is not possible for our 
simple organisms to always live in their mental world, ignoring the real world. Even 
if their predictions are generally correct, they are not completely correct - as indicated 
by the fact that the error in the backpropagation learning procedure never goes exactly 
to zero - and the errors of successive predictions tend to be cumulative. To demon-
strate this point we have run another simulation in which the organisms are allowed to 
receive an input from the environment (from food) only in the single first cycle of 
each episode and they respond to the predicted inputs in all subsequent cycles of the 
episode. The results show that the average fitness at the end of the simulation is less 
than 200 points compared to almost 600 points of the population in which the organ-
isms have access to the actual input from the environment in more than two/thirds of 
the input/output cycles (Figure 2). 

3   Predicted Success or Failure Help to Take Decisions 

In our second scenario, to survive and reproduce an organism has to throw a stone 
towards a prey animal in such a way that the stone reaches and hits the prey. Stones 
can be of 10 different weights and the prey can be at 10 different distances. Therefore, 
in any given occasion to hit the prey the organism has to throw the stone with the 
force appropriate to the weight of the stone currently in its hand and to the current dis-
tance of the prey. The organism’s behaviour is controlled by a sensory-motor neural 
network (Figure 6a) with one input unit discretely encoding the weight of the stone 
(10 numbers equally spaced between 0.1 and 1.0), another input unit discretely encod-
ing the distance of the prey (10 numbers between 0.1 and 1.0), and one output unit 
continuously encoding the force of the throwing behaviour (between 0.1 and 1). An 
output value which is less than 0.1 is interpreted as a refusal to throw the stone in that 
trial. A table defines the “physics” of the situation by specifying, for each pair of 
stone weights and throwing forces, the distance covered by the stone. The prey is con-
sidered as hit by the stone if the stone falls within a threshold distance from the prey. 
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The network’s connection weights are genetically inherited and are evolved using a 
genetic algorithm with the same parameter values of our preceding simulations. We 
compare this simulation with another simulation in which the organism’s neural net-
work includes a predictive module and an implementation module (Figure 6b). The 
predictive module generates a yes/no prediction as to whether or not the planned force 
with which the stone will be thrown will allow the stone to actually hit the prey. The 
implementation module relays this prediction/judgment to the sensory-motor module, 
inhibiting the throwing behaviour if the prediction is “failure” and allowing its physi-
cal execution if the prediction is “success”. This more complex neural network repre-
sents an advantage for the organism if executing physical movements implies an ex-
penditure of both time and energy for the organism. By not executing throwing 
behaviours that would result in failures, the organism will spare both time and energy 
(and perhaps avoid the flight of the prey) and therefore would increase its fitness. To 
implement this idea an individual’s fitness is decreased by a fixed quantity for each 
physically executed throw. 

The results of the simulation show that this is actually the case. Compared with or-
ganisms with a simple sensory-motor network, organisms with added predictive and 
implementation modules reach a higher fitness at the end of the simulation (5000 gen-
erations) (Figure 7).  

As in the preceding simulations, both the weights of the sensory-motor module and 
the single weight of the implementation module are genetically inherited and they 
evolve in a succession of generations, whereas the weights of the predictive module 
are learned during life. 
 

 
Fig. 6. (a) Sensory-motor module (thick arrows). One input unit encodes the weight of the stone 
currently in the organism’s hand, another input unit encodes the distance of the prey, and the 
output unit encodes the force with which the stone will be thrown. (b) Predictive module (thin 
arrows) and implementation module (dotted arrows). The predictive module has three input 
units, respectively encoding the stone’s weight, the distance of the prey, and the force of the 
planned throwing behaviour. The module’s output unit encodes a yes/no prediction on the suc-
cess or failure of the throwing behaviour. The implementation module is made up of a single 
connection linking the output unit of the predictive module to the output unit of the sensory-
motor module. The implementation module inhibits the throwing behaviour if the prediction is 
“failure” and it releases the execution of the behaviour if the prediction is “success”. 
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Fig. 7. Average fitness (number of successful throws) across 5000 generations for a population 
without an ability to predict if a planned throw will be a success or a failure, a population which 
learns this ability during life, and a population in which the ability to predict is learned during a 
period of life in which the individual’s fitness is not being measured (infancy) 

The model that we have described may also suggest a possible evolutionary expla-
nation for the emergence of “infancy”. The interpretation of infancy as a “safe” period 
of learning has been proposed and discussed in variety of context and by many au-
thors, e.g., in evolutionary psychology [11], attachment theory [12], and in Hurford’s 
[13] model of early language learning periods. In the present context infancy can be 
defined as the initial period of an individual’s life in which the fitness of the individ-
ual is not being evaluated by the selection mechanism because the individual is pro-
vided with the needed resources by other individuals (parents) so that the individual is 
free to learn some abilities (e.g., the ability to make predictions) that will be useful 
when the individual becomes an adult and its behaviour will be crucial for the indi-
vidual’s survival and reproduction. To test this model we have compared two simula-
tions. In one simulation an individual’s fitness is measured since the individual’s 
birth, and therefore it includes the period of the individual’s life in which the individ-
ual has not yet learned to make correct predictions and therefore cannot exploit the 
fitness advantages of being able to predict (not executing throws that would result in 
failures). In other words, there is no infancy. Individuals are born as adults in the 
sense that no one takes care of them and their fitness is evaluated from birth. In the 
other simulation we add infancy. The individual learns to predict during a number of 
additional input/output cycles that precede its regular life as an adult. The individual’s 
fitness is measured only when the individual becomes an adult and it already knows 
how to correctly predict the consequences of its actions. The results of the new simu-
lation, also shown in Figure 7, demonstrate that learning useful abilities during a pe-
riod in which other individuals provide the individual with the needed resources, i.e., 
during infancy, leads to a higher fitness. This may be an important selective pressure 
for the emergence of infancy. 
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4   Discussion 

Complex organisms may be able to predict what sensory input will result from their 
planned but still non executed motor responses to the current sensory input. Why 
should organisms develop this capacity? What might be its adaptive value? In this pa-
per we have described some simple simulations aimed at providing some answers to 
these questions. The ability to predict the next sensory input might allow an organism 
to replace a missing input with the predicted input. If for some reason the appropriate 
input from the environment is missing (due to obstacles, distractions, or other rea-
sons), the organism can respond to the predicted input which corresponds to the miss-
ing input. Another adaptive advantage of the ability to predict is to be able to judge 
whether or not a planned action will produce the expected result enabling the individ-
ual to avoid physically executing expensive actions whose predicted result is not the 
desired one. Given these, and other (see, e.g., [9]), advantages of being able to predict 
the results of one’s actions we can expect that organisms possessing the appropriate 
prerequisites, such as the ancestors of humans, will evolve neural architectures (such 
as the very simplified architecture of Figure 1) that make it possible for them to pre-
dict the results of their actions and to use their predictions to generate more effective 
behavior. The pressures for evolving an ability to predict may have also been pres-
sures for the emergence of infancy as the initial period of an individual’s life espe-
cially dedicated to learning to predict. 
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Abstract. This paper describes research on the design of a robot vision
system that is able to develop its capabilities to perceive objects and
cognise some fundamental relations between objects. Through a devel-
opmental approach, our robot vision system is adaptive to environmental
changes and follows autonomous self development. The system can de-
velop its vision gradually from motion detection, to analysis of static
features of objects, to object individuation, to identifying object unity,
to tracking objects and finally to understanding some fundamental object
relations.

1 Introduction

In recent years, more and more attention has been directed to research into de-
velopmental robotics, an intersection of robotics and developmental psychology.
On one hand, researchers in robotics attempt to build cognitive systems and
adaptive behaviours with inspirations from infant development [4], [11], [15],
[20]. On the other hand, psychologists tend to embody ideas about infant cogni-
tive development into artificial agents or robots, in attempts to acquire insights
into models and mechanisms of infant development [16], [18].

Studies in infant development reveal a rich source of information about how
infants start cognitive development from some basic reflexes; how they gradually
achieve different stages of sensorimotor competencies; and how representational
abilities emerge by the end of sensorimotor development [6], [17]. Developmental
approaches are inspired, by the way that infants develop cognition gradually, to
build robots that are beyond task-specific goals [21] and able to handle general
complexity [14]. Infant achievement in sensorimotor development also encourages
researchers to build robots that are capable of infant-like competences such as
saccading, visually guided reaching, visual manipulation [1], [13], [5].

Perceptual development is tightly linked with cognitive development in in-
fants. It is regarded that perception is the necessary starting point for higher
level, more clearly cognitive operations, such as reasoning, inferring, and prob-
lem solving [6]. However, robotic researchers have not given much attention to
perceptual development in infants. Mostly, perception is investigated in terms
of its interaction with action and how interaction helps cognitive development
[12]. But perception, in its own right, has an important developmental role in
infancy and can shed light on building advanced perceptive robots.

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 31–39, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



32 X. Zhang and M.H. Lee

Visual perception is often considered the most important sensory channel
because of its acuteness and amount of information handled. From birth, infants
develop their visual perception from the stage of being unable to separate the
object from the background, to the stage of being able to perceive objects as
units, and then to the stage of being able to reason about objects [6], [10]. It
would be interesting to build a robotic perception system that is able to develop
its perceptual ability gradually in its environment. This perceptual development
could give the robot a high degree of adaptability and autonomy.

In this paper, we present a robot vision system that develops its vision to
individuate objects, identify object unity, track objects and understand some
fundamental object relations. The next section explains the research problem,
followed by the architecture of the vision system, and the experimental results.
In the discussion we address some essential issues that we observed about the
development process.

2 Research Problem

Our current research is investigating the design of a robot vision system that is
able to develop its capabilities to perceive objects and cognise some fundamental
relations between objects. A major purpose is to understand more about how
to build robot vision systems that can develop their perception and cognition.
Within such development in a vision system, we wish to learn: where the de-
velopment should be initiated; where and how capabilities extend from lower to
higher degrees; how successful are the different degrees; and in what order or
sequence should the development pass through.

3 Architecture of the Vision System

Our vision system consists of several modules, each of which can work inde-
pendently either on desired input information or on results generated by other
relevant modules. The modules include: motion, shape, colour, experiential pat-
tern, correlation, tracking, and consequence understanding.

The motion module uses an optical flow technique [7] to detect the motion of
moving objects in the environment. From a sequence of picture captured from
a camera, this module can also detect optical flow fields and locate a region
occupied by an object.

The shape module and colour module, respectively, can extract boundary
features [8] and a colour distribution pattern [19] of a region when they are
provided with rough information about the position and edges of the region.

The experiential pattern module can use knowledge of shape [8] and colour
[19] to identify unknown objects. Essentially, this module can dilate, contract
and rotate the known shapes of previously observed objects to match newly
extracted shapes and see if there is any match. It is also capable of matching
colour patterns.
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The correlation module can correlate different features together when those
colour or/and shape features are found from the same region or from regions
where there are consistent optical flow.

The tracking module can observe and record trajectories of object movement
in chain code format. The consequence-understanding module can correlate ob-
ject movements, in terms of spatiotemporal aspects. When the occurrence of an
object movement is spatially and temporally close enough to the end of another
object movement, the consequence-understanding module will try to establish
relations between objects and their movements. In the experiments, we can see
an example of this correlation.

4 Hypothetical Development Process

Motion is found as the most salient cue to infant attention. In about 2 months
from newborn, infants are able to segregate moving objects from the background,
while they can not segregate static objects from the background [2]. A further
development after this stage, is that infants start to segregate static objects from
background. But those objects must have similar features, such as colour, shape,
to the moving objects that have been observed before [2]. Then, after this stage,
the infant visual perception will advance to segregate static objects well from the
background, and perceive object unity while objects are occluded [10], [9]. The
perception and cognition on relations between objects starts to develop after
objects can be perceived as units by infants.

So, firstly, the vision system learns to individuate and segregate objects. When
an object is moving in the environment, the motion module detects the optical
flow in the images. Therefore, the boundary region of an object in the image can
be found. In the sense of perception, the object is individuated, but only when
the object is moving.

From the regional information provided from motion, the shape and colour
modules can extract the boundary and colour distribution features of the object.
After this, even when the object is not moving or is in a different orientation
from before, the experiential modules can use the previously extracted boundary
and colour features to locate the object. The experiential module can dilate,
contract or rotate previously known boundaries to match the regions segmented
from images and tell if there are any other objects similar to those that have
been known before. By this stage, the vision system is able to individuate objects
even when the object is static.

Secondly, the vision system is presented with the object unity problem. An ob-
ject is partly occluded by a cover in the environment and the task is to tell whether
unoccluded parts, which are visible to the vision system, belong to a single object
or several different objects. For instance, a known object is occluded by a cover,
and the vision system can only see the head and tail of the object. Initially, the
object is moving left and right behind the cover. Two regions with optical flow are
detected and the shape and colour features are correlated together because the two
regions are in consistent motion. Then, the experiential module compares features
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of the perceived tail and head to features of the object, which have been extracted
previously. When the experiential module finds a match of the tail and head, the
robot vision system can tell that the tail and head are parts of a unity, the object.
Here, it is the consistent motion that provided the initial cue to unity and it is the
experienced knowledge of objects that confirmed the unity.

Finally, the vision system develops a cause-and-effect understanding of ob-
jects. An object A is moving towards another object B and when A bumps B,
A stops and B starts to move in the same direction as A moved. The tracking
module can track and record the moving trajectories. Because of the temporal
continuity and spatial contact between the movements of A and B, the conse-
quence module can correlate these two movements together and record them as
a cause-and-effect movement pair.

5 Experiments

Following the implementation of the vision system, some experiments have been
performed to show the results of development. Firstly, the vision system observed
a moving glue stick and generated a rough contour of the glue stick from optical
flow. The optical flow is salient enough to give a good approximation of the shape
of the stick. To compare, direct segmentation has also been applied to the same
images in attempt to obtain the region of the glue stick. Fig. 1 shows the result
derived from optical flow and the region obtained from direct segmentation. As
seen, the region gained from direct segmentation misses some area of the glue
stick. Fig. 2 gives a quantified comparison of the missing areas lost during motion
and direct segmentation.

When given a good approximation of the outline of an object in the image, the
vision system could perceive shape and colour features and save these features as
models of objects, which were used later to individuate static objects. At this stage,
the experiential module could individuate static objects from each other as well

Fig. 1. Regions of a moving object. The left is derived from optical flow and the right
is obtained from direct segmentation.
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Fig. 2. A comparison of missing area errors by motion and direct segmentation. The
rates are calculated by dividing whole object areas by the missing area. As shown in
the figure, regions derived from motion tend to have little and stable rates of missing
areas.

Distance
of Con-
tour
Moments

Colour
Histogram
Intersec-
tion

Red
train

0.0886 0.9244

Green
train

0.0014 0.9775

Red
sign

0.1140 0.9422

Fig. 3. On the left is an image with 3 objects. The middle is the resulting image in
which the region corresponding to the green train is the most prominent. On the right
is a table of comparison results between the green train, respectively, and models of red
train, green train and red sign. The smaller the Distance of Contour Moments, the more
similar the two objects are. The greater the value of Colour Histogram Intersection,
the more similar the two objects are. As shown in the table, the green train, with the
smallest contour moments and the greatest intersection value, is picked up from the
other two objects.

from the background. But at early stages of its development, only objects with
same or similar features of shape or colour can be well individuated. Fig. 3 shows
an image with 3 objects, a red train, a green train and a red sign, and the results
of individuating the green train out from the background and the other 2 objects.

Next the vision system was tested on some occlusion images. A glue stick was
occluded by a lid with only its head and tail visible. When the glue stick was sliding
left and right, the optical flow of its head and tail was consistent. Then the experi-
ential module was triggered to perform matching on the visible head and tail, and
models built from previous perception development. Fig. 4 gives the results.
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Fig. 4. From left, the first image is a glue stick occluded by a lid; the second image has
the optical flow fields of the head and tail; the third image is the best found matching
contour; the fourth is the matching result

Fig. 5. The left image shows the trajectory of the milk train, without collision. The
middle image gives the collide-and-launch event. The right image shows the end po-
sitions of both trains.

When the perception of the vision system has reached a fine level of individua-
tion, the development advances toward cognition of object relations, in particular
developing a cause-and-effect understanding of objects. In experiments, the vi-
sion system first observed a milk train moving from left to right and associated
the movement trajectory with the milk train. Then in a later event, a red train
was placed on the trajectory of the milk train. During the next movement, the
milk train collided with the red train, the milk train stopped at the colliding
point and the red train was launched to move in the same trajectory and stops
on the right side.

The vision system first learned the trajectory of the milk train and then
learned the collide-and-launch event. In the events, the two movements of the
two trains were observed and recorded separately. But as there exists a tight
spatiotemporal continuity between the two moments, the consequence module
linked them together. As a result, the vision system is able to predict the end
position of the trajectories of trains, shown in Fig. 5, judging from the relevant
positions of the milk train and the red train.
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6 Discussions

6.1 From Motion to Static Features

The first point arising from our work is that motion is a better starting point,
than static features of objects, for the development of visual perception and
cognition. A major reason is that motion is a more salient feature than static
features such as boundary or colour or other features [2], [3]. Once the object
is moving, its motion can make the object stand out of the environment and
separate it from other objects. In contrast, the static features of an object tend to
mingle with features of the environment and other objects. Using static features
it is not easy to segregate one object from others, unless the vision system has
been given prior knowledge about the objects and environment.

Prior knowledge for development of perception and cognition is another crucial
issue. From the perspective of development, the starting point is biased towards lit-
tle or no prior knowledge.To start developmentwithmotion, the vision systemonly
needs todetectmotionof objects, irrespective of static features of objects.However,
to start development with static features of objects, the vision system either needs
much prior knowledge, which is less adaptive, or needs to try every possible object
shape in every possible region, which requires enormous computation.

Adaptability is another advantage brought by little or no prior knowledge. The
world of robots is complex and adaptation is important for a robot to survive
in the changing world. With motion, the attention of the vision system can be
led to new objects and start to develop knowledge about new objects, including
features and relations with other object. In this way the vision system can always
further develop its perception and cognition of the world as the world changes.
However, if the development starts from static features, it is not so easy to adapt
to new changes. In this case, specific and relevant knowledge has to be built into
the vision system prior to the development process. When the world changes,
e.g. the appearance of completely novel objects, it may entail more knowledge
from external sources, usually the system programmer has to re-build the system
again to add on more knowledge. Re-building is not appropriate for adaptability.

In sum, the dynamical aspects of vision, in particular object motion detec-
tion, seems to enable vision systems to better develop perceptual and cognitive
capabilities from little or no prior knowledge.

6.2 From Partial to Holistic

Perceptual and cognitive development in infants is a matter of gradual and
cumulative gains in competence [9], [22]. This should also apply to any process
of development in artificial vision systems. Initially, our vision system develops
its perceptions using one or more aspects of objects, e.g. motion, boundary shape
and colour, and then moves on to correlate these aspects together as a synthesis
of the whole object. Also, it is only after the stage of object individuation when
the vision system can start to perceive and cognise relations between objects.
From the interactions between objects, and objects and the environment, the
vision system starts to cognise more and more aspects of its world as a whole.
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The perception of objects progresses from individual aspects to multiple aspects
of objects, and to the whole of objects. This way of progressing is a natural choice in
the casewhen the perceptual developmentbegins frommotion.Then the vision sys-
tem transits its perception from motion to other aspects such as shape and colour
features of objects. These individual aspects are correlated together, according to
certain mechanisms, to represent the perceived object as a whole. This correlation
enables the vision system to search for and locate previously perceived objects and
lays the foundation for further cognitive development.

It is after the individuation of objects that the vision system is able to perceive
and cognise relations of objects. In the cognitive development on trajectories,
starting and ending positions of object movements, objects need to be regarded
as individuals rather than regions in an image. Object individuation is the second
big turning point, after motion, for the progress of development. After this,
development can advance to a higher level of cognition: object relations.

6.3 Passive but Not Active

Essentially, our vision system develops passively. The focus of the described re-
search is development in the robot vision system. The origins of the research
comes from studies on perceptual development of infants who are normally
younger than 4 months. They are so young that their motor systems do not
have many interactions that directly contribute to their visual development.
However, infants can still develop their vision to a surprisingly high degree of
perceptive ability [6]. Hence, for our study, active sensing is not necessary for
exploring the parameters of development of our vision system.

7 Conclusion

The research described has investigated how to build a robot vision system that
is able to develop its perception and cognition of objects. Motion is advocated
to be the starting point for development in an autonomous and adaptive robot
vision system. The development gradually and cumulatively advances from single
and simple aspects to multiple and complex aspects of objects and to relations
of objects.
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Abstract. The properties of visually guided flight speed and height control 
were investigated by training honeybees (Apis mellifera L.) to fly through a 
tunnel in which the visual cues in the lateral and ventral visual fields could be 
varied by changing the patterns on the walls and floor of the tunnel. The results 
show that honeybees regulate their flight speed by keeping the velocity of the 
image of the environment in their eye constant. The results also show that 
honeybees use visual information from the ground to control their height above 
the ground. The findings of this study reveal that the mechanisms of flight 
speed and height control in the honeybee are perfectly adapted for extracting 
information from a complex visual environment using simple sensors and 
computations. Consequently, the techniques of visual guidance that are reported 
here suggest insect-inspired strategies for the control of aircraft flight. 

1   Introduction 

Although the brain of a honeybee comprises less than one million neurons, it is able 
to process with extraordinary accuracy the complex sensory information necessary for 
a variety of orientation and navigation tasks. Honeybees employ a range of 
computationally simple techniques to aid flight control and navigation in order to 
overcome the limitations of their small brain. 

Honeybees rely heavily on information from the visual system to navigate. 
However, information about the 3-D structure of the world is generally required for 
collision-free flight.  Despite the perceptual limitations of immobile eyes, fixed focus 
optics, low spatial resolution and a lack of stereo vision, honeybees are able to acquire 
extract range information from cues based on image motion. During flight, the image 
of the environment moves across the retina, creating a pattern of apparent image 
motion called optic flow [1].  Properties of optic flow, such as the direction and 
velocity of certain objects in the visual scene, are useful cues for detecting course 
deviations or the proximity of objects in the environment. Honeybees are known to 
use information that has been extracted from optic flow to stabilize flight, estimate the 
range of objects, negotiate narrow gaps and estimate the distance flown to a food 
source [2], [3].   

Previous studies have indicated that flying insects use visual cues to regulate flight 
speed (tethered bees: [4]; freely flying fruit flies, David [5]). A study by Srinivasan  



 Visual Control of Flight Speed and Height in the Honeybee 41 

et al. [2] found that bees flying though a tapered tunnel slowed down as the distance 
between the walls narrowed, and sped up as it widened. This result suggested that the 
bees were adjusting their flight speed so as to hold constant the velocity of the image 
generated by the patterns on the walls of the tunnel on their eyes.  

In the current study, we present, in part, findings from earlier experiments that 
tested directly and rigorously the hypothesis that honeybees control their flight speed 
by maintaining a constant rate of image motion (Baird et al. [6]). The purpose of 
presenting this data here (as Experiments 1 and 2) is to provide a context for novel 
data (Experiments 3 and 4) that investigate whether flying honeybees use visual cues 
to control both their flight speed and their height above the ground.  

2   General Experimental Procedures 

The experiments were carried out in an All Weather Bee Flight Facility at the 
Australian National University’s Research School of Biological Sciences. The 
temperature inside the facility was maintained at 24 ± 5 °C during the day and 17 ± 3 
°C at night. A beehive mounted on the wall of the facility supplied the bees (Apis 
mellifera L.) used in the experiments. 

2.1   Experimental Setup  

All of the experiments were conducted in a rectangular tunnel that had clear 
Perspex walls, which allowed bees flying through the tunnel to view a variety of 
stationary or moving visual patterns (see below). The tunnel was 320 cm long, 20 
cm high and 22 cm wide. A clear Perspex ceiling permitted observation and filming 
of the bees as they flew in the tunnel (Fig. 1). For each experiment, up to 20 bees 
were individually marked and trained to fly through the tunnel to a feeder 
containing sugar solution placed at the far end of the tunnel. In Experiments 1 and 
2, flights to the feeder were filmed at 25 frames per second in the central segment 
of the tunnel by a digital video camera positioned 2.5 m above the tunnel floor (Fig. 
1). Due to the limitations of this camera set up, it was necessary to leave the floor of 
the tunnel blank in Experiments 1 and 2 so that the bees could be easily 
distinguished from the background.   

In Experiments 3 and 4, two cameras were mounted 125 cm above the tunnel floor 
(Fig. 1.) and positioned such that they had parallel views of the tunnel. Flights of bees 
were captured directly into a computer from each camera simultaneously via a capture 
card at 30 frames per second. By tracking the position of the bee in both camera views 
it was possible, through triangulation, to calculate the three-dimensional position of a 
bee flying in the tunnel.  All of the patterns that were used in these two experiments 
consisted of dark red-and-white elements because it was necessary to have patterns 
with a high contrast but it was not possible to track the positions of the bees against 
the black areas of a black-and-white pattern. The red color in the patterns was 
considered to be a suitable substitute for black as bees do not posses red color 
receptors and therefore, they would perceive the red parts of the patterns as a dark 
shade of grey.  
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Fig. 1. Illustration of tunnel coordinates and camera position. Flight speed was calculated as the 
projection of the flight vector along the x axis. Height was measured along the z axis.  

2.2   Analysis of Flight Trajectories 

An automated tracking program was developed, using Matlab, to track individual bees 
and analyze the recordings of flights obtained in each experiment. For each flight, the 
program identified the position of the bee in consecutive frames. The position of the 
bee was defined in relation to the tunnel co-ordinates x, y and z, where x denotes axial 
direction, y the transverse direction and z the vertical direction (Fig. 1). In 
Experiments 1 and 2, only x and y could be measured, as the system used a single 
camera (rather than a stereo pair). In these experiments, z was assumed to be constant. 

The camera configuration that was used in Experiments 3 and 4 allowed the 
measurement of the position of the bee in x, y and z coordinates. To do this, the 
position of the bees in x and y pixel coordinates from each camera view were entered 
into a database in which the three-dimensional coordinates of the bee’s position were 
calculated using a triangulation algorithm. 

To generate values of flight speed, the data was analyzed to calculate the 
component of the flight velocity in the axial (x) direction (Vx). Preliminary analysis 
revealed that the lateral component of flight velocity (Vy) was much smaller in 
magnitude compared to that of the axial component (Vx). Given this, it follows that Vx 
provides a good approximation of the actual magnitude of the flight speed. To 
generate values of height in Experiments 3 and 4, the average z position of each flight 
was calculated using the z coordinates of the bee’s three-dimensional position. 

2.3   Statistical Analysis 

Statistical models accounting for multiple levels of variation were developed to assess 
whether covariates such as treatment (e.g. different patterns), time, temperature, light 
intensity or humidity affected bee flight speed, and to eliminate their effects. To 
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account for the two principal levels of variation in the study -- variation between bees 
and variation within bees -- linear mixed models [7] were used, with bee identity as a 
random effect. For further details of the statistical analysis used see Baird et al. [6].  

3   Optic Flow Cues in the Lateral Visual Field Affect Flight Speed 

Experiment 1 was designed to examine the contribution of optic flow cues (i.e. cues 
that generate image motion in the eye of a honeybee) in the lateral visual field to the 
control of flight speed. The influence of optic flow cues was examined by recording 
flight speeds when the tunnel walls were lined with two different types of stationary 
pattern: chequerboard and axial stripes. The chequerboard pattern consisted of 
alternating black and white checks of 3 x 3 cm. The axial pattern consisted of 
alternating black and white, horizontally oriented stripes, each with a width of 4 cm. 
The chequerboard pattern was used in this experiment because the alternating black 
and white checks would provide strong image motion cues to a bee flying along the 
tunnel. The axial pattern, on the other hand, was used to create a condition in which 
the optic flow cues were very weak. This is because flight in the direction of the 
stripes would produce very little apparent motion of the images of the walls on the 
retina. In this experiment, the floor of the tunnel was blank white with no discernable 
optic flow cues. 

The results of Experiment 1 are shown in Fig. 2. Interestingly, when optic flow 
cues are weak (when the tunnel is lined with axial stripes), bees fly considerably 
faster than when optic flow cues are strong (when the tunnel is lined with a 
chequerboard pattern). When the tunnel walls were lined with a chequerboard pattern, 
the mean flight speed was 54 cm s-1 but when the tunnel walls were lined with axial 
stripes, the bees flew significantly faster at a mean flight speed of 97 cm s-1 (two sided 
t-test, t109 = 8.67, p < 0.0001).  

Experiment 2 was designed to examine the effect on flight speed of image motion 
in the lateral visual field. In this experiment, a motorized conveyor belt was placed 
along the length of the tunnel on each side. Each belt was white in color and carried a 
pattern of randomly positioned black dots, 2 cm in diameter, on its surface. The 
conveyor belt system allowed the pattern to be moved toward or away from the closed 
end of the tunnel, at a range of speeds. The influence of image motion was examined 
by recording flight speeds when the patterns on the walls of the tunnel were moving at 
six pattern velocities in each direction, and for one condition in which the pattern was 
static. When the pattern was moved in the direction of flight to the feeder, the highest 
pattern speed was limited by the maximum speed of the motor. The speeds used for 
pattern motion in this direction were 15, 22, 30, 37, 45 and 52 cm s-1 (these velocities 
were regarded as positive).When the pattern was moved against the direction of flight 
to the feeder, at high pattern speeds, the bees were unable to enter the tunnel. The 
maximum speed used in this condition was therefore limited to the highest speed at 
which the bees could enter the tunnel and fly to the feeder. The speeds tested in this 
condition were 6, 12, 18, 24, 30 and 36 cm s-1 (these velocities were regarded as 
negative). 

The results of Experiment 2 showing the dependence of flight speed on pattern 
velocity are shown in Fig. 2. The results indicate that when the pattern is moved in the 
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direction of flight (decreasing the velocity of the perceived image motion) flight 
speed increases (as indicated by the data points on the right hand side of the graph). 
When the pattern is moved against the direction of flight (increasing the velocity of 
the perceived image motion) flight speed decreases (as indicated by the data points on 
the left hand side of the graph. 

If bees regulate their flight speed by keeping the rate of optic flow (i.e. the velocity of 
the image on the eye constant), flight speed should vary linearly with pattern velocity 
and the change of flight speed should be equal to the change of pattern velocity. Thus, 
the equation for the hypothesized flight speed adjustment takes the form: 

y = mx + c (1) 

where c is the flight speed when the pattern is static, x is the pattern velocity and, if 
the bees maintain a constant rate of optic flow in the eye, m = 1. This calculation 
assumes that at zero pattern velocity, flight speed is set to achieve the desired optic 
flow. 

An analysis of the data indicates that a model which includes three lines of 
different slopes provides a good approximation of the effect of large positive pattern 
velocities, large negative pattern velocities and small positive and negative pattern 
 

 

Fig. 2. (A) Experiment 1 – effect of optic flow cues in the lateral visual field on flight speed. 
Comparison of mean flight speeds when the walls of the tunnel are lined with a chequerboard 
pattern (producing strong optic flow cues) or axial stripes (producing weak optic flow cues). 
(B) Experiment 2 – effect of pattern motion on flight speed. The graph shows mean axial 
flight speed (Vx) when the pattern on the walls was static (0 pattern velocity), moved in the 
direction of flight (positive pattern velocity values) or against the direction of flight 
(negative pattern velocity values). The black circles represent Vx values for various pattern 
speeds. The dashed line represents a model of the flight speed data for large negative pattern 
velocities; the slope of this line is slightly smaller than 1. The solid line represents a model 
of the flight speed data for the positive and negative pattern velocities near zero. The slope of 
this line is not significantly different from zero. The dotted line represents a model of the 
flight speed data for large positive pattern velocities. For positive pattern velocities, the slope 
of the regression line was slightly greater than 1. The equations for each regression are 
shown. The error bars represent the standard error of the mean, n denotes the number of 
flights and b denotes the number of bees. 
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velocities (including zero pattern velocity) on flight speed. To fit this model, the 
pattern velocities were classified into three categories: high positive, near zero and 
high negative. A separate line was fitted within each class. For details of the 
development of the model, please see Baird et al. [6].  

For large positive pattern velocities, the model revealed a slope of m = 1.36 (dotted 
line, Fig. 2). There is some evidence that this slope is significantly greater than 1 
(two-sided t-test, t189 = 1.86, p = 0.06). This result suggests that when the pattern is 
moved in the direction of flight the bees respond by increasing their flight speed by 
slightly larger amount. Thus, when the pattern moved in the direction of flight, the 
bees were, to a small extent, over compensating for the changes in pattern speed and, 
as a result, experiencing a slightly decreased rate of optic flow. 

For large negative pattern velocities, the slope of the model was m = 0.68 (dashed 
line, Fig. 2). There is some evidence that this slope is significantly different from 1 
(two-sided t-test, t189 = 1.78, p = 0.08). Thus, when the pattern moved against the 
direction of flight, the bees were not making a complete adjustment of flight speed to 
counter the changes in pattern speed: they were experiencing a slightly increased rate 
of optic flow. 

For small pattern velocities about zero, the slope of the model was m = 0.27 (solid 
line, Fig. 2). This slope is not significantly different from zero (two-sided t-test, t189 = 
0.63, p = 0.53). Thus, at low pattern speeds, the bees were not adjusting their flight 
speed to compensate for the small changes in the rate of optic flow. 

4   Optic Flow Cues in the Ventral Visual Field Affect Flight Speed 
and Height 

Experiment 3 was designed to investigate the contribution of optic flow cues in the 
ventral visual field to the control of flight speed and height. The influence of optic 
flow cues was examined by recording the flight speed and height of bees when the 
tunnel floor was lined with two different types of pattern: chequerboard and axial 
stripes. The chequerboard pattern consisted of alternating red-and-white checks of 3 x 
3 cm2. The axial pattern consisted of alternating red-and-white stripes 4 cm in width, 
oriented along the longitudinal axis of the tunnel. In both Experiment 3 and 4, the 
walls of the tunnel were lined with a chequerboard pattern of 3 x 3 cm so that there 
would be strong optic flow cues in the lateral regions of the bee’s visual filed The aim 
of this arrangement was to ensure that any changes in flight speed or height were a 
result of the changes in the patterns placed on the floor of the tunnel.  

The results are shown in Fig. 3. When the tunnel floor was lined with an axial 
pattern, the bees flew at a mean flight speed of 60 cm s-1 and a mean height of 14 cm. 
When the tunnel floor was lined with a chequerboard pattern, the mean flight speed 
was 44 cm s-1 and the mean height was 19 cm. The data indicate that bees fly 
significantly faster (t81 = 4.06, p < 0.001) and lower (t81 = 3.85, p < 0.001) when the 
optic flow cues in the ventral visual field are weak (axial stripe patterns) than when 
the optic flow cues in the ventral visual field are strong (chequerboard pattern). This 
suggests that the mechanisms that mediate flight speed and height control in the 
honeybee are influenced by optic flow cues in the ventral region of the visual field 
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Fig. 3. Experiment 3 – effect of optic flow in the ventral visual field on flight speed and height. 
(A) Comparison of mean flight speeds when the floor of the tunnel is lined with either a 
chequerboard pattern (strong optic flow cues) or axial stripes (weak optic flow cues). (B) 
Comparison of height when the floor of the tunnel is lined with either a chequerboard pattern or 
axial stripes. Other details are as in Fig. 2. 

even when the optic flow cues in the lateral region of the visual field are strong. 
Interestingly, flight speed is slightly lower when the floor is blank, than when it is 
lined with axial stripes. This could be an effect of the visual phenomenon known as 
“contrast adaptation”, as discussed in [6]. 

Experiment 4 was designed to investigate whether the flight speed and height of 
bees is affected by changes in the spatial frequency (the number of changes in 
contrast over a given distance) of the pattern in the ventral visual field. Flight speed 
and height were measured when the tunnel floor was lined with chequerboard patterns 
of various check sizes: 1.5 x 1.5 cm, 3 x 3 cm and 6 x 6 cm. For a bee flying along the 
 

 

Fig. 4. Experiment 4 – effect of pattern texture in the ventral visual field on flight speed and 
height. Comparison of mean flight speed (A) and mean distance from the floor of the tunnel (B) 
when the floor of the tunnel is lined with chequerboard patterns with check sizes of 1.5 x 1.5 
cm, 3 x 3 cm and 6 x 6 cm. Other details are as in Fig. 2. 
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midline of the tunnel, the dominant spatial frequency of the checks on the floor of the 
tunnel as seen by the ventral field of the eye would be 0.06 cycles deg-1, 0.03 cycles 
deg-1 and 0.01 cycles deg-1, respectively.  

The results are shown in Fig. 4. The data indicate that neither the speed nor the 
height of flight is significantly influenced by changes in the spatial frequency of 
patterns in the ventral visual field. The average flight speed of bees was 45.5 cm s-1 
with 3 x 3 cm checks, 43.5 cm s-1 with 1.5 x 1.5 cm checks (t130 = 0.89, p = 0.37 when 
compared with the 3 x 3 cm checks) and 43.8 cm s-1 with 6 x 6 cm checks (t130 = 0.75, 
p = 0.46 when compared with the 3 x 3 cm checks). The average flight height was 
14.4 cm with 3 x 3 cm checks, 14.8 cm with 1.5 x 1.5 cm checks (t130 = 0.58, p = 0.56 
when compared with the 3 x 3 cm checks) and 15.2 cm with 6 x 6 cm checks (t130 = 
1.26, p = 0.21 when compared with the 3 x 3 cm checks). Therefore, the mechanisms 
that mediate control of flight speed control and height appear to be relatively robust to 
variations in the spatial frequency of patterns in the ventral visual field. 

5   Discussion 

The results shown here clearly demonstrate that flight speed and height control in the 
honeybee are regulated using optic flow. In different visual environments, flight speed 
is regulated so as to hold constant the speed of the image on the retina. This finding 
supports the hypothesis first proposed by Srinivasan et al. [2] that honeybees use the 
rate of optic flow to regulate their flight speed. In addition, this study has shown for 
the first time that height control in the honeybee is mediated by optic flow cues in the 
ventral region of the visual field. Earlier work in fruit flies [5], moths [8] and beetles 
[9] has shown that the flight speed of insects following odor plumes at different 
heights increases with their distance from the ground. From this work however, it is 
not possible to determine whether visual cues in the ventral region of the visual field 
influence the height at which an insect flies, as all of the insects in these experiments 
were following odor plumes at a set height. By using freely flying honeybees it was 
possible, in the present study, to test directly whether the properties of the optic flow 
on the ground influence height and flight speed. Until now, no study has demonstrated 
that flight height in insects can be influenced by the properties of visual features on 
the ground.  

5.1   Flight Speed Control 

Experiment 1 demonstrates that optic flow cues play an important role in the 
regulation of flight speed. When optic flow cues are weak, (when the walls are lined 
with an axial stripe pattern), bees fly much faster than when optic flow cues are strong 
(when the walls are lined with a chequerboard pattern). The reason for the difference 
in flight speed between these two conditions is likely to be related to the fact that, as 
the axial pattern carries no strong horizontal optic flow cues, it elicits weak image 
motion signals, thus causing the bees to fly faster. Interestingly, flight speed also 
increases when the optic flow cues on the floor of the tunnel are weak, even though 
the walls provide strong optic flow cues, as shown in Experiment 3. This indicates 
that the visual information in the ventral region of the bee’s eye is important for the 
regulation of flight speed. These results are consistent with those of Barron and 
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Srinivasan [10] who found that when the walls and floor of a tunnel are lined with 
axial stripes, bees fly three times faster than when the tunnel is lined with a 
chequerboard pattern.  

Interestingly, flight speeds are lower (60 cm s-1) when the floor of the tunnel carries 
an axial pattern and the walls a chequerboard pattern, than when the walls carry axial 
patterns and the  floor is blank (97 cm s-1). Similarly, bees fly slower (44 cm s-1) when 
the chequerboard pattern covers all three surfaces of the tunnel, as compared to when 
it lines only the walls (54 cm s-1). These observations suggest that the mechanism of 
flight speed control averages the perceived velocity of image motion from the lateral 
as well as the ventral regions of the visual field.  

The hypothesis that flight speed in honeybees is regulated by optic flow was tested 
directly and rigorously in Experiment 2. Here we found that the bees adjusted their 
flight speed so as to hold the speed of the image on the retina constant. When the 
patterns on the walls of the tunnel were moved in the direction of flight, the bees 
increased their flight speed by an amount that was slightly greater than the speed of 
the pattern. When the patterns on the walls of the tunnel were moved against the 
direction of flight, the bees decreased their flight speed by an amount that is slightly 
lower than the speed of the pattern. When the patterns on the walls of the tunnel are 
moved at slow speeds either with, or against the direction of flight, there is no 
associated change in flight speed. This result indicates that the system that mediates 
flight speed control only responds to changes in the velocity of the image of the visual 
environment that exceed a certain threshold. This threshold is estimated to lie between 
10 and 15 deg s-1. Once the deviation in perceived image velocity exceeds this 
threshold, flight speed is adjusted so as to return the deviation to a level that is below 
threshold.  

In Experiment 4 we showed that the flight speed of honeybees is not affected by 
changes in the spatial frequency of the image in the ventral visual field. This result is 
consistent with the findings of our earlier work [6] which showed that the flight speed 
of bees was not affected by changes in the spatial frequency pf patterns in the lateral 
visual field.  

We have shown here that honeybees control their flight speed by holding the rate 
of image motion across their eyes constant. What are the consequences of maintaining 
a constant image velocity during flight? One outcome would be that, because 
perceived image velocity is related to the distance of the viewer from the substrate, 
flight speed is adjusted according to the proximity of objects and surfaces in the 
environment. For example, flight speed would tend to be high when flying in an open 
field and low during a flight through dense vegetation. Thus, maintaining a constant 
image velocity in the eye would ensure that the speed of flight is automatically 
adjusted to a level that is safe and appropriate to the environment. Our findings also 
suggest that the visual pathways that control flight speed are capable of measuring 
and regulating the velocity of the images of the walls, largely independently of the 
spatial structure of the environment. 

5.2   Height Control 

Maintaining a constant ground speed may affect the height at which bees fly, but it is 
not possible to extract absolute height information solely from the rate of optic flow. 
This is because the perceived velocity of motion of the image of the ground will 
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depend on the speed, as well as the height, of flight. A given ground image velocity 
can be achieved by slow flight at a low altitude or faster flight at a higher altitude. So, 
what cues do honeybees use to control the height at which they fly above the ground? 
In this study we attempt to address this question by investigating whether honeybees 
rely on optic flow in the ventral region of the visual field to regulate their height, and 
whether flight height is influenced by the texture of the visual environment.  

The data from Experiment 3 suggest that flight height is influenced by optic flow 
cues in the ventral region of the visual field. Bees fly at a lower height when the 
pattern on the floor of the tunnel carries weak optic flow cues (axial stripes), than 
when it provides strong optic flow cues (chequerboard pattern). This finding is 
interesting because it suggests that the system that mediates height control relies on 
optic flow cues in the ventral region of the visual field, even when there are strong 
vertical optic flow cues in the lateral region of the visual field (as provided by the 
chequerboard pattern on the walls of the tunnel). This result makes sense, because it is 
only optic flow cues in the ventral field of view that can provide useful information 
on flight height. Optic flow cues in the lateral visual fields will depend primarily on 
the distances to objects in the lateral field, which is irrelevant to the estimation of 
height above the ground. 

The results of Experiment 4 indicate that the mechanisms that mediate height 
control are not sensitive to the spatial texture of the environment in the ventral field. 
This is consistent with the properties of the system that mediates flight control. This 
finding makes sense from a real world perspective where the texture of the ground 
can vary substantially, thus making it desirable to have a system for controlling flight 
height that is robust to variations in the visual texture of the ground. 

The findings from this study, as well as those from our previous investigation [6] 
suggest that the mechanisms of flight speed and height control in the visual pathway 
of the honeybee measure and regulate the velocity of the images in both the lateral 
and ventral regions of the visual field and that these mechanisms are insensitive to the 
contrast or the spatial texture of the visual environment. The advantages of a system 
that relies on the measurement of image velocity to control flight speed and height are 
that these behaviors will be regulated according to the proximity of objects in the 
environment rather than their visual features. Similar properties have been observed 
in the visual pathways that mediate other flight behaviors such as the centering 
response [11] and the visual odometer [12]. The movement-detecting mechanisms 
that mediate the behaviors discussed above seem to have properties that are rather 
different from those of the well-studied optomotor response in insects. The optomotor 
response is a behavior in which a flying insect generates motions to compensate for 
unwanted body rotations by measuring the associated rotations of the image in the eye 
[13]. The movement-detecting mechanism that mediates the optomotor response 
appears to be sensitive to changes in the contrast, spatial frequency and temporal 
frequency of the moving image. As a result, this system does not seem to encode 
image velocity in a manner that is robust to variations in these parameters. The visual 
pathways that control flight speed and height, mediate the centering response and 
generate the odometric signal have properties that are different from the pathway that 
drives the optomotor response. There is extensive literature on the anatomy and 
physiology of movement-detecting neurons whose response properties reflect the 
characteristics of the optomotor response [reviewed by 14]. However, there is 
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relatively little evidence for the existence of motion-sensitive neurons whose response 
properties reflect the properties of the system that mediates flight speed and height 
control, the centering response and the visual odometer. The movement-detecting 
mechanisms that underlie these behaviors must have the capacity to measure image 
velocity independently of contrast and spatial texture. There is some evidence that 
velocity-tuned neurons exist in the visual systems of insects but it is not clear whether 
these neurons participate in the behaviors discussed above [15]. 

5.3   Implications and Applications of the Present Findings 

The groundspeed of a flying agent is determined by many parameters. Pilots of 
modern aircraft rely on the measurement of multiple parameters including thrust, 
local airspeed and global position, to calculate and regulate their groundspeed. The 
honeybee, on the other hand, appears to use only a single measurement from the 
external environment (namely the measurement of image velocity) to regulate 
groundspeed. Although this strategy will not achieve a constant groundspeed -- the 
groundspeed will depend upon the distances to objects and surfaces in the lateral 
fields of view -- it will ensure that the groundspeed is automatically adjusted to suit 
the environment through which the flight occurs. Thus, groundspeed will be high in 
an open environment and slow in a densely cluttered environment. 

The present study was conducted in a controlled environment with no interference 
from air currents. How would this system of flight control respond in the natural 
environment, where winds are commonly prevalent? In a strong head wind, it would 
be difficult for bees to maintain a constant groundspeed and therefore, their preferred 
image velocity. To compensate, bees would have to fly closer to the ground, thus 
restoring the image speed to its original value.  Interestingly, a reduction of altitude 
would be likely to reduce the velocity of the headwind that the bee experiences, thus 
enhancing the bee’s ability to compensate for the headwind, decreasing the required 
thrust and reducing the energy expended for the flight [16], [17].  On the other hand, a 
strong tailwind would cause the bee to fly higher, in attempting to regulate the image 
velocity. This in turn would enable the bee to catch a stronger tailwind, thus 
increasing groundspeed, decreasing the required thrust and again reducing energy 
consumption. 

Our findings in relation to the control of flight speed and height in honeybees 
suggest insect-inspired strategies for the control of aircraft flight. In the design of 
guidance systems for autonomous aerial vehicles, there is a growing need to avoid 
sensors that are heavy or expensive, and which use active devices such as radar, sonar 
or lasers [18], [19]. The techniques of visual guidance that are employed by flying 
insects, such as those reported here, suggest  relatively light, inexpensive and 
computationally simple ways of achieving some of the desired functions like control 
of flight speed, and terrain following. 
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Abstract. This work is about the relevance of Gibson’s concept of affordances 
[1] for visual perception in interactive and autonomous robotic systems. In 
extension to existing functional views on visual feature representations, we 
identify the importance of learning in perceptual cueing for the anticipation of 
opportunities for interaction of robotic agents. We investigate how the 
originally defined representational concept for the perception of affordances - in 
terms of using either optical flow or heuristically determined 3D features of 
perceptual entities - should be generalized to using arbitrary visual feature 
representations. In this context we demonstrate the learning of causal 
relationships between visual cues and predictable interactions, using both 3D 
and 2D information. In addition, we emphasize a new framework for cueing 
and recognition of affordance-like visual entities that could play an important 
role in future robot control architectures. We argue that affordance-like 
perception should enable systems to react to environment stimuli both more 
efficient and autonomous, and provide a potential to plan on the basis of 
responses to more complex perceptual configurations. We verify the concept 
with a concrete implementation applying state-of-the-art visual descriptors and 
regions of interest that were extracted from a simulated robot scenario and 
prove that these features were successfully selected for their relevance in 
predicting opportunities of robot interaction. 

1   Introduction 

The concept of affordances has been coined by J.J. Gibson [1] in his seminal work on 
the ecological approach to visual perception: “The affordances of the environment are 
what it offers the animal, what it provides or furnishes, either for good or ill … 
something that refers both to the environment and the animal in a way that no existing 
term does. It implies the complementarity of the animal and the environment.” In the 
context of ecological perception, visual perception would enable agents to experience 
in a direct way the opportunities for action. However, Gibson remained unclear about 
how this concept could be used in a technical system. Neisser [2] replied to Gibson’s 
concept of direct perception with the notion of a perception-action cycle that shows 
the reciprocal relationship of the knowledge (i.e., a schema) about the environment 
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directing exploration of the environment (i.e., action), which samples the information 
available for pick up in the environment, which then modifies the knowledge, and so 
on. This cycle describes how knowledge, perception, action, and the environment all 
interact in order to achieve goals.  

Our work on affordance-like perception is in the context of technical, i.e., robotic 
systems, based on a notion of affordances that ‘fulfill the purpose of efficient 
prediction of interaction opportunities’. We extend Gibson’s ecological approach 
under acknowledgment of Neisser’s understanding that visual feature representation 
on various hierarchies of abstraction are mandatory to appropriately respond to 
environmental stimuli. We provide a refined concept of affordance perception by 
proposing (i) an interaction component (affordance recognition: recognizing relevant 
events in interaction via perceptual entities) and (ii) a predictive aspect (affordance 
cueing: predicting interaction via perceptual entities). This innovative conceptual step 
enables firstly to investigate the functional components of perception that make up 
affordance-based prediction, and secondly to lay a basis to identify the interrelation 
between predictive features and predicted event via machine learning technology.  

The outline of this paper is as follows. Section 2 describes the relevance of 
affordance-like representations in robot perception and argues for the importance to 
learn the features of perceptual entities. Section 3 focuses on the issues of affordance 
recognition, in contrast to the predictive aspect of affordance-like representations in 
affordance cueing presented in Section 4. Section 5 illustrates the experimental results 
that strongly support the proposed hypothesis on the relevance of generalized features 
that must be learned for successful affordance-like perception in robot control 
systems. Section 6 concludes with an outlook on future work. 

2   Affordance Perception and Learning 

Affordance-like perception aims at supporting control schemata for perception-action 
processing in the context of rapid and simplified access to agent-environment 
interactions. In this Section we argue that previous research has not yet tackled the 
relevance of learning in cue selection, and present a framework on functional 
components that enables to identify relevant visual features. 

2.1   Related Work 

Previous research on affordance-like perception focused on heuristic definition of 
simple feature-function relations to facilitate sensor-motor associations in robotic 
agents. Human cognition embodies visual stimuli and motor interactions in common 
neural circuitry (Faillenot et al.[3]). Accordingly, the affordance-based context in 
spatio-temporal observations and sensor-motor behaviours has been outlined in a 
model of cortical involvement in grasping by Fagg and Arbib [4], highlighting the 
relevance of vision for motor interaction. Reaching and grasping involves visuomotor 
coordination that benefits from an affordance-like mapping from visual to haptic 
perceptual categories (Wheeler et al.[5]). Within this context, the MIT humanoid 
robot Cog was involved in object poking and proding experiments that investigate the 
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emergence of affordance categories to choose actions with the aim to make objects 
roll in a specific way (Fitzpatrick et al.[6]). The research of Stoytchev [7] analysed 
affordances on an object level, investigating new concepts of object-hood in a sense 
of how perceptions of objects are connected with visual events that arise from action 
consequences related to the object itself. Although this work innovatively 
demonstrated the relation between affordance triggers and meaningful robot 
behaviours, these experiments involve computer vision still on a low level, and do not 
consider complex sensor-motor representation of an agent interaction in less 
constrained, even natural environments. In addition, they are restricted to using vision 
rather than exploiting the multi-modal sensing that robots may perform. In the 
biologically motivated cognitive framework of Cos-Aguilera et al. [15], object based 
affordances are set in the context of motivation driven behaviour selection. In contrast 
to our work, they do not learn visual feature extraction in a purposive manner (Section 
2.2) but rather match sensory input with stored object features in a classical sense [16] 
and then associate object identities with appropriate interaction patterns. 

Affordance based visual object representations are per se function based 
representations. In contrast to classical object representations, functional object 
representations (Stark and Bowyer [8], Rivlin et al. [9]) use a set of primitives 
(relative orientation, stability, proximity, etc.) that define specific functional 
properties, essentially containing face and vertex information. These primitives are 
subsumed to define surfaces and from the functional properties, such as 'is sit-able' or 
'provides stable support'. Bogoni and Bajcsy [10] have extended this representation 
from an active perception perspective, relating observability to interaction with the 
object, understanding functionality as the applicability of an object for the fulfillment 
of some purpose. However, so far function based representations were basically 
defined by the engineer, while it is particularly important for affordance based 
representations to learn the structure and the features themselves from experience 
(Section 4). 
 

 

Fig. 1. Concept of affordance perception, depicting the key components of affordance cueing 
and recognition embedded within an agent’s perception-action cycle (most left). While 
affordance cueing (left) provides a prediction on future opportunities of interaction on the basis 
of feature interpretation, affordance recognition (right) identifies the convergence of a 
perceptual patterns in a sensory-motor behavior towards the outcome of the overall process. 
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2.2   Predictive Features in Affordance Based Perception 

Fig. 1 depicts the innovative concept of feature based affordance perception presented 
in this paper. We identify first the functional component of affordance recognition, 
i.e., the recognition of the affordance related visual event that characterizes a relevant 
interaction, e.g., the capability of lifting (lift-ability) an object using an appropriate 
robotic actuator. The recognition of this event should be performed in identifying a 
process of evaluating spatio-temporal information that leads to a final state. This final 
state should be unique in perceptual feature/state space, i.e., it should be characterized 
by the observation of specific feature attributes that are abstracted from the stream of 
sensory-motor information. 

The second functional component of affordance cueing encompasses the key idea 
on affordance based perception, i.e., the prediction aspect on estimating the 
opportunity for interaction from the incoming sensory processing stream. In 
particular, this component is embedded in the perception-action cycle of the robotic 
agent. The agent is receiving sensory information in order to build upon arbitrary 
levels of feature abstractions, for the purpose of recognition of perceptual entities. In 
contrast to classical feature and object recognition, this kind of recognition is 
purposive in the sense of selecting exactly those features that efficiently support the 
evaluation of identifying an affordance, i.e., the perceptual entities that possess the 
capability to predict an event of affordance recognition in the feature time series that 
is immediately following the cueing stage of affordance based perception. The 
outcome of affordance cueing is in general a probability distribution PA on all possible 
affordances (Section 4.1), providing evidence for a most confident affordance cue by 
delivering a hypothesis that favors the future occurrence of a particular affordance 
recognition event. This cue is functional in the sense of associating to the related 
feature representation a specific utility with respect to the capabilities of the agent and 
the opportunities provided by the environment, thus representing predictive features 
in the affordance based perception system. 

The relevance of attention in affordance based perception has first been mentioned 
by developmental psychologist E.J. Gibson [11] who recognized that attention 
strategies are learned by the early infant to purposively select relevant stimuli and 
processes in interaction with the environment. In this context we propose to 
understand affordance cues and affordance hypotheses as fundamental part in human 
attentive perception, claiming that – in analogy – purposive, affordance based 
attention could play a similar role in machine perception as well.  

There are affordances that are explicitly innate to the agent through evolutionary 
development and there are affordances that have to be learned [1]. Learning chains of 
affordance driven actions can lead to learning new, more complex affordances. This 
can be done, e.g., by imitation, whereby it is reasonable to imitate goals and sub goals 
instead of actions [12]. In the context of the proposed framework on affordance based 
perception (Fig. 1), learning should play a crucial role in determining predictive 
features. In contrast to previous work on functional feature and object representations 
[8, 9], we stress the fact that functional representations must necessarily contain 
purposive features, i.e., represent perceptual entities that refer to interaction patterns 
and thus must be selected from an existing pool of generic feature representations.  
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Feature selection (and, in a more general sense, feature extraction) must be 
performed in a machine learning process and therefore avoid heuristic engineering 
which is always rooted in a human kind understanding of the underlying process, a 
methodology which is necessarily both, firstly, error prone due to failing insight into 
statistical dependencies and, secondly, highly impractical for autonomous mobile 
systems. Our work highlights the process of learning visual predictive cues which to 
our understanding represents one of the key innovative issues in autonomous learning 
for affordance based perception.  

3   Affordance Recognition 

By affordance recognition we particularly refer to the process of identifying the 
relevant interaction events from perception that actually ‘motivate’ an agent to 
develop/learn perceptual cues for early prediction. In early infant development, the 
monitoring of affordances such as ‘grasp-ability’ of objects or ‘pass-ability’ of terrain 
[1] must be crucial to obtain an early as possible classification of the environment so 
that interaction behaviors can be initiated as fast and as robust as possible. In analogy, 
autonomous robotic systems should possess a high degree of flexibility and therefore 
be capable of perceiving affordances and therefore select appropriate functional 
modules as early as possible with respect to the goals of the robotic system. In this 
sense, goals and affordances are intimately related and make up a fully purposive 
perception system. 

Fig. 2 illustrates the various stages within the affordance based perception process, 
in particular affordance recognition, for the example of the affordance ‘fill-able’ in 
the context of the opportunities for interaction with a coffee cup. 

 

 
(a) (b) (c)  

Fig. 2. Affordance recognition (Section 3) in affordance based perception for the example of 
the affordance fill-able with respect to the impact of selecting appropriate features. The 
seemingly simple interaction of filling up a coffee cup can be partitioned into various stages in 
affordance based perception, such as, (a) affordance cueing by predictive features that refer to a 
fill-able object, (b) identifying perceptual entities that represent the process of the affordance 
related interaction (e.g., flow of coffee), and (c) recognizing the final state by detecting 
perceptual entities that represent the outcome of interaction (e.g., level of coffee in cup).  

Fig. 2(a) schematically illustrates the detection of perceptual entities that would 
provide affordance cues in terms of verifying the occurrence of a cup that is related to 
the prediction of being fill-able in general. Fig. 2(b) shows in analogy entities that 
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would underlie the process of interaction of an agent with the cup by actually filling it 
up. Finally, Fig. 2(c) represents the entities corresponding to the final state of the 
interaction with the outcome of a successfully filled coffee cup. These figures 
illustrate that affordance cueing and affordance recognition must be conceptually 
separated and would involve different perceptual entities in general. While affordance 
recognition actually involves the recognition of the interaction process and its 
associated final state, affordance cueing will be solely determined by the capability to 
reliably predict this future event in a statistical sense. 

4   Visual Cueing of Affordances 

4.1   Feature Based Cueing for the Prediction of Affordances 

Early awareness of opportunities for interaction is highly relevant for autonomous 
robotic systems. Visual features are among the ones among multiple modalities from 
sensory processing that operate perception via optical rays and therefore support early 
awareness from rather remote locations. Although the necessity of affordance 
perception from 3D information recovery, such as optical flow, has been stressed in 
previous work [1], we do not restrict ourselves to any specific cue modality and 
intend to generalize towards the use of arbitrary features that can be derived from 
visual information, restricting only on the constraint that they enable reliable 
prediction of the opportunity for interaction processes from an early point in time. 

The outcome of the affordance cueing system is in general expected to be – given a 
perceptual entity in the form of a multimodal feature vector - a probability distribution 
over affordance hypotheses,  

),|( tA FAPP =                                                    (1) 

with affordance hypothesis set A, and feature vector Ft at time t. It is then appropriate 
to select an affordance hypothesis Amax(PA(·)=PAmax(·)), with Maximum A Posteriori 
(MAP) confidence support for further processing.  

From the viewpoint of a technical system using computer vision for digital image 
interpretation, we particularly think that complex features, e.g., local descriptors, such 
as the Scale Invariant Feature Transform (SIFT [13]), could support well the 
construction of higher levels of abstraction in visual feature representations. SIFT 
features are derived from local gradient patterns, and provide rotation, translation and 
– to some degree – viewpoint and illumination tolerant recognition of local visual 
information, and are therefore well suited for application in real world scenarios for 
autonomous robotic systems. Among other cues, such as color, shape, and 3D 
information, we are therefore interested to investigate the benefit of using visual 2D 
patterns for their use in affordance cueing. 

Fig. 3 shows the application of local (SIFT) descriptors for the characterization of 
regions of interest in the field of view. For this purpose, we first segment the color 
based visual information within the image, and then associate integrated descriptor 
responses sampled within the regions to the region feature vector. The integration is 
performed via a histogram on SIFT descriptors that are labeled with ‘rectangular’  
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(a)  (b)  

Fig. 3. Categories of local descriptor classes supporting affordance cueing. Classes of SIFT 
descriptors [13] occurring on (a) rectangular (favored by descriptors represented by squares) 
and (b) circular (favored by descriptors represented by circles) region boundaries, respectively. 
It should be noted that the descriptor classes support the classification of segmented regions. 
These classes are mandatory to discern affordance cues from 2D features. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Cue-feature value matrix depicting attribute values of 2D features (color G/green, R/red, 
M/magenta, etc., or SIFT category R/rectangular, C/circular, etc.) ) and interaction results (left 
column) in dependence on various types of visual regions (top row). From this we conclude a 
suitable feature value configuration (i.e., SIFT categories to discriminate lift-able/non lift-able 
predictions) to support the hypothesis on lift-able object information.  

 
(a) and ‘circular’ (b) attributes, respectively. The labeling is derived from a k-means 
based unsupervised clustering over all descriptors sampled in the experiments, then 
by selecting cluster prototypes (centers) that are relevant for the characterization of 
corresponding rectangular/circular shaped regions, and finally by determining 
histograms of relevant cluster prototypes that are typical in a supervised learning step 
(using a C4.5 decision tree [14]). 

Fig. 4 shows a sample cue-feature value matrix (in the context of the experiments, 
see Section V) that visualizes dependencies between feature attributes of the region 
information and a potential association to results of the affordance recognition 
process. We can easily see that the SIFT category information (rectangular=R and 
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circular=C region characterization) together with a geometric feature (top=T region, 
i.e., representing a region that is located on top of another region) provides the 
discriminative feature that would allow to predict the future outcome (e.g., lift-
able/non lift-able) of the affordance recognizer. The latter therefore represents the 
identification of the affordance and thereby the nature of the interaction process (and 
its final state) itself. 

4.2   Learning of Relevant Feature Cues from Decision Trees 

The importance of machine learning methodologies for the selection of affordance 
relevant features has already been argued in Section 2.2. The key idea about our idea 
of applying learning for feature selection is based on the characterization of extracted 
perceptual entities, i.e., segmented regions in the image, via a feature vector 
representation. Each region that would be part of the final state within the affordance 
recognition process can be labeled with the corresponding affordance classifications. 
The regions can be back-tracked using standard visual tracking functionality to earlier 
stages in the affordance perception process. The classification label together with the 
feature attributed vectors of the region characterization build up a training set that can 
be input to a supervised machine learning methodology (using a C4.5 DT [14]). 

5   Experimental Results 

The experiments were performed in a simulator environment with the purpose of 
providing a proof of concept of successful learning of predictive 2D affordance cues, 
and characterizing affordance recognition processes.  

The scenario for the experiments (Fig. 5) encompassed a mobile robotic system 
(Kurt2, Fraunhofer AIS, Germany), equipped with a camera stereo pair and a 
magnetizing effector, and some can-like objects with various top surfaces, colors and 
shapes. The purpose of the magnetizing effector was to prove the nature of the 
individual objects by lowering its rope-end effector down to the top surface of the 
object, trying to magnetize the object (only the body, not the top surface of the can are 
magnetizable) and then to lift the object. Test objects with well magnetizable 
geometry (with slab like top surfaces, in contrast to those with spherical top surface) 
are subject to a lifting interaction, while the others were not able to be lifted from the 
ground. This interaction process was visualized for several test objects and sampled in 
a sequence of 250 image frames. These image frames were referenced with 
multimodal sensor information (e.g., size of magnetizing and motor current of the 
robot, respectively). 

5.1   Simulation 

The scenario is split up into two phases (a) a cueing phase, i.e., the robot is moving to 
the object, and (b) a recognition phase, i.e., the robot tries to lift an object like shown 
in Fig. 5. In both phases parts of the objects are described by their regions and any 
region has different features like color, center of mass, top/bottom location and the 
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Fig. 5. Scenario of affordance based robot simulation experiments (Section 3). Birds view 
illustrating robot Kurt2 within a scene of objects of colored cans, using a magnetic effector at 
the end of a rope for interaction with the scene, described in more detail in Section V. The 
lower left/right corner shows the field of view of the left and right camera, respectively. 

 

Fig. 6. Example of an affordance recognition process (here referring to ‘lift-able’): The upper 
image shows the right camera views of the robot while trying to lift a test object by means of a 
magnetizing effector at the lower end of a rope. The diagrams visualize the observation of robot 
relevant sensor information (e.g., status of gripper, magnet [on/off] and various features of test 
objects within the focus of attention. Using this sensor/feature information, the relevant 
channels to discriminate regions of interest that are associated to lift-able and non-lift-able 
objects are identified (highlighted by ellipsoids). 
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shape description (rectangular, circular) already described in Section IV. Those 
features are extracted from the robot camera imagery. Additional information, such 
as, effector position are provided by the robot. Regions are the entities used in the 
experiment, no explicit object model is generated for the can-like objects. 

5.2   Affordance Recognition 

The recognition of an affordance is crucial for verifying a hypothesis about an 
affordance A associated with a entity E. These entities are extracted out of the 
images as follows. Firstly, a watershed algorithm is used to segment regions of 
similar color together. After merging of smaller parts, every entity is represented by 
the average color value, the position in the image and the relation to adjacent 
regions (top/bottom). This information is also used for tracking entities over time. 
To verify whether or not an entity becomes ‘lift-able’, the magnetizable effector of 
the robot is lowered until the top region of the object under investigation is reached, 
the magnet is switched on and the effector is lifted up. Fig. 6 shows the features of the 
effector (position and magnet status) over time (diagram of gripper features). If the 
entity is lift-able (Fig. 6, right column), a common motion between effector and 
region can be recognized. Additionally the magnet has to be switched on and the 
effector has to be placed in the center of the top region. These rules build up  
the affordance recognizer looking for lift-able entities in the recognition phase of the 
experiment. 

5.3   Affordance Cueing 

Cueing and recognition can require extraction of different kinds of features. Section 
IV already emphasized the need for some structural description of the top region, to 
separate the unequal shape of the top regions. In order to get structural information 
about an entity a histogram over prototypical SIFT descrptors is used to discriminate 
between circular and rectangular regions. 
 
Classification of Relevant Descriptors. All local SIFT descriptors extracted in the 
region of the entities are clustered using the k-means (k = 100) method. For each 
specific entity, we generate a histogram over cluster prototypes, using a NN-approach 
to get the cluster label for each SIFT descriptor in that region. In a supervised learning 
step, every histogram is labeled whether it is or isn’t associated with a rectangular or 
circular entity. A C4.5 decision tree of size 27 is then able to distinguish between 
these two classes. The error rate on a test set with 353 samples is ~ 1.4%. Table 1 
shows the resulting confusion matrix for the test set. 

Table 1. Confusion matrix for C4.5 based structure classification 

Classified as  
Rect. Circ.  
256 1 Rect. 
4 92 Circ. 

Class 
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Decision Tree Used for Affordance Cueing. The objects tested for the affordance 
‘lift-able’ in the recognition phase are members of the training set. The outcome of 
the recognition provides the class label (‘lift-able’ or ‘non lift-able’). The bottom 
region of the object is marked ‘unknown’ because this entity is not tested directly. As 
mentioned earlier, there exists no object model yet, therefore only entities exist in the 
system. Backtracking the object’s entities over time allows additional training 
samples to be used with little more memory effort to remember the data. In our 
experiment 30 frames are used from the beginning of the affordance recognition back, 
that means a recall of ~2.5 seconds from the past (12 fps are captured by the robot 
during simulation). The entity representation for the cueing phase contains the 
following features: (a) average color value of the region in the image, (b) top/bottom 
information, (c) the result of the structure classification, (d) the size of the segmented 
region. Fig. 7 depicts the structure of the decision tree. It is important to note that as a 
result from learning, the relevant attributes in the cueing process are on top of the 
tree, these are ‘top’/’bottom’ and ‘circ’/’rect’ here. The size attribute is located on the 
lowest level and only useful to separate 6 non lift-able samples from 474 lift-able 
ones. The error rate on the test set, containing the remaining entities which where not 
used for training, is 1.6%. Table 2 shows the confusion matrix for these data. 
 

tb = bottom: unknown (1086.0)  
tb = top:
 |   structure = circ: non lift-able (552.0)
 |   structure = rect:
 |   |   size > 1426 : lift-able (402.0)
 |   |   size <= 1426 :
 |   |   |   size <= 1410 : lift-able (72.0)
 |   |   |   size > 1410 : non lift-able (6.0)

 

Fig. 7. Structure of the C4.5 decision tree that maps attributes of the affordance feature vector 
f(A,t) to affordance capabilities (lift-able, non lift-able unknown). The number of samples that 
support the corresponding hypothesis are denoted in brackets. 

Table 2. Confusion matrix for C4.5 based descriptor classification 

Classified as 

lift-able non lift-
able 

unknown 

 

95 11 0 lift-able 

3 319 0 non lift-
able 

0 0 471 unknown 

class 

6   Conclusions 

This work presented the perceptual cueing to opportunities for interaction of robotic 
agents in a general sense, in extension to the classical functional view on feature 
representations. The new framework for cueing and recognition of affordance-like 



 Visual Learning of Affordance Based Cues 63 

visual entities is verified with a concrete implementation using state-of-the-art visual 
descriptors on a simulated robot scenario and proved that features are successfully 
selected that are relevant for prediction towards affordance-like control in interaction. 
The simulation was chosen in a realistic way so that major elements of a real world 
scenario, such as shadow events, noise in the segmentation, etc., characterized the 
results and thus enable a fundamental verification of the theoretical assumptions.   

Future work will focus on extending the feature based representations towards 
object based prediction of affordance-based interaction, routing in the work on the 
visual descriptor information presented here, and demonstrating the generality of the 
concept. Furthermore, we think that the presented machine learning component 
implemented by a decision tree can be enhanced by using reinforcement learning 
methodology to learn relevant events in state space for cueing to the opportunities for 
interaction. 
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Abstract. Lizards, such as Mabuya macularia or Gecko gecko, have
a relatively simple peripheral auditory system structured as a pressure
difference receiver with a strong broadband directional sensitivity. In
this paper we take a lumped-parameter model of the lizard auditory
system, convert the model into a set of digital filters implemented on a
TDT StingRay digital signal processing module carried by a small mobile
robot, and evaluate the performance of the robotic model in a phono-
taxis task. The complete system shows a strong directional sensitivity for
sound frequencies between 1350–1850 Hz and is successful at phonotaxis
within this range. The performance of and assumptions underlying the
model are also discussed.

1 Introduction and Related Work

Lizards, such asMabuyamacularia orGecko gecko, have a relatively simple periph-
eral auditory system [1,2] — see the schematic diagram in figure 1. A tympanum on
each side of the head connects via wide internal tubes to the central cavity, which
also vents to the nasal passages. Sound impinging on the left ear, for instance, is
thereby able to travel internally to the right side and affect the vibration of the right
tympanum as well as cause vibration of the left tympanum. Because the internal
and external sound waves arrive on opposite sides of the tympani, their contribu-
tions subtract and the resulting motion of each tympanum is generated by the dif-
ference of the instantaneous sound pressures. Recent experiments have shown that
the acoustical interaction converts the ear to a pressure difference receiverwith the
highest directionality reported for any vertebrate [3].

Pressure difference receiver ears have been quite widely studied both theoret-
ically and experimentally. They occur not only in lizards [3], but also in crick-
ets [4,5], frogs and birds [1,6]. The principal effect of the system is to convert
small, hard-to-sense differences of time-of-arrival of a sound — which encode the
direction from which the sound appears to originate — into substantial, easier-
to-sense, differences in the perceived amplitude of the sound at the two ears. In
simplistic terms, the sound appears louder on the side facing the source, and
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Fig. 1. Schematic Diagram of Lizard
Ear Structure from [2], redrawn and al-
tered: TM is the tympanal membrane,
ETtheEustachian tubes,MECthemid-
dle ear cavity, C the cochlea, RW the
round window and OW the oval window
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Fig. 2. Lumped-Parameter Circuit
Model of Lizard Ears: sound pressure
P{1,2} is represented by voltage in-
puts Vn while tympanal motion maps
to current i{1,2}. Further details in
section 2.

quieter on the far side. (This is not actually as obvious as it appears. Since the
auditory systems in question are smaller in size than the sound wavelength, the
physical amplitude of the sound at the two ears is therefore essentially the same:
the sound easily diffracts around the animal’s head and body.)

The cricket system has been extensively studied and also modelled using
robotic modelling techniques. Webb and her collaborators have investigated the
basic mechanisms underlying cricket phonotaxis using a model of the cricket pe-
ripheral auditory system constructed with electronic hardware [7]. In this device,
the acoustic ports on the cricket body (of which there are four significant ones)
are modelled using small capacitative microphones carefully placed so that their
physical separation matches that of the cricket’s ports. Programmable broad-
band amplifiers and delays model the internal connecting tubes which join the
acoustic ports. Transduction at the tympani is represented using a broadband
conversion to amplitude of a weighted sum of contributions from the delayed
acoustic signals. The resulting amplitude envelope can be digitised, if desired,
and passed to a model of the cricket’s internal neural structures and processes
(see, for instance, [8,9]). The device can operate in two- or four-port mode and
has generally been used for modelling the narrowband phenomenon of cricket
phonotaxis, where female crickets travel toward a male using the male’s calling
song as a guide.

The lizard auditory system has a number of differences from that of the cricket,
which make it an interesting system to model in its own right. First, the lizard
has only two significant acoustic apertures (the two tympani) [3] whereas the
cricket has four. Second, the lizard receiver demonstrates a strong directionality
over a relatively wide range of frequencies whereas cricket directional hearing is
restricted to a narrow frequency band, as shown by biophysical and behavioural
experiments [4,5].
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The neural processing of directional information in lizards is not well-studied,
but binaural interaction (contralateral inhibition and excitation) has recently
been found at the level of the first auditory nuclei in the brain stem. Also, sound
localization behavior (interception of calling crickets [10]) has only been reported
in one lizard species. However, sound localization is fundamentally useful for any
auditory system.

The rest of the paper describes work modelling the lizard peripheral auditory
system. In section 2, a simple theoretical model [11] of the lizard auditory system
is presented and analysed. This results in a description of the auditory system as
a set of coupled filters, which can be implemented using a digital signal processing
unit carried by a small mobile robot: the equipment and setup is described in
section 3.

Using the robotic model, a number of experiments have been carried out
to determine the performance of the auditory model. These are described in
section 4 and their implications discussed in section 5.

2 Theoretical Model of the Lizard Peripheral Auditory
System

In this paper, we take a lumped-parameter approach to modelling the lizard
auditory apparatus, quite closely following [3,11]: we model the components of
the auditory system — tympani, tubes and cavities — in terms of their total
effect rather than their precise physical structure. (An alternative approach in
which the detailed spatial properties of a bat’s external ear are modelled by
numerical simulation can be seen, for example, in [12].)

Given this lumped-parameter strategy, the standard model of the pressure-
difference receiver auditory system reduces to the equivalent electrical circuit
shown in figure 2. The sound pressure sources P1 and P2 at the left and right
ears are modelled by voltage signals V1 and V2. Tympanal motion is mod-
elled by the currents i1 and i2. In general, the relationship between an elec-
trical voltage and a current is determined by an impedance: the model com-
prises three impedances — Zr represents the total effect of tympanal mass and
stiffness and the tubes connecting the spaces behind the tympani to the cen-
tral cavity, which is represented by the impedance Zv. (Note that all these
parameters, at any given frequency, are complex numbers so that the ampli-
tude and phase of the signal can be represented simultaneously by the single
value.)

The Zr impedance appears twice, since we assume for modelling that the
auditory system is symmetrical (we discuss this assumption later). The sound
pressure at the central point is represented by the voltage signal V3 which drives
an associated current i3 through the Zv impedance (modelling the movement
of air as the pressure in the central cavity changes). The values of the complex
impedances Zr and Zv are in general dependent on the frequency of the sound
presented to the model.
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Using Kirchoff’s rules and Ohm’s law, the behaviour of the circuit model can
be described by four equations.

V3 = i3Zv i3 = i1 + i2
V1 − V3 = i1Zr V2 − V3 = i2Zr

(1)

With a little gentle algebra, we eliminate V3 and i3 and express the two currents
(the model outputs) in terms of the voltages (the inputs), discovering that the
auditory system can be represented using two equations thus,

i1 = GI · V1 + GC · V2
i2 = GC · V1 + GI · V2

(2)

where
GI =

Zr + Zv

Zr (Zr + 2Zv)
and GC = − Zv

Zr (Zr + 2Zv)
(3)

are a pair of frequency-dependent gain factors (recall that the impedances Zr and
Zv depend on frequency; this dependence is suppressed in the above equations,
for clarity). In other words, the auditory model comprises two filters: GI models
the effect of ipsilateral sound pressure on motion of the tympanum; and GC

represents the effect of contralateral sound pressure on tympanal motion.
How can we now determine the direction to a sound source? Consider figure 3,

in which a sound from a source at A propagates to ears at B and C. The distance
travelled by the sound to the two ears differs depending on the angle θ between
straight ahead and the source direction, the extra distance being illustrated by
the line BD in the figure. Recall that the physical amplitude of the sound at
the two ears is essentially the same because of diffraction effects: thus the sound
pressure signals V1 and V2 for the two ears have the same amplitude, but differ
in phase.

As mentioned above, the key idea is that the perceived loudness of the sound
(i.e. the magnitude of the tympanal motion) on the side closest to the source
should be greater than on the opposite side. Consider therefore the magnitude
ratio of the two currents i1 and i2 which represent the tympanal motion at the
two ears. ∣∣∣∣ i1i2

∣∣∣∣ =
∣∣∣∣GI · V1 + GC · V2

GC · V1 + GI · V2

∣∣∣∣ =

∣∣∣∣∣GI + GC · V2
V1

GC + GI · V2
V1

∣∣∣∣∣ (4)

Since V1 and V2 have the same amplitude, their ratio depends only on the relative
phase of the two signals. Thus the current magnitude ratio depends on the two
frequency-dependent filter gains and the relative phase of V1 and V2, this last
encoding the arrival direction of the sound.

Given appropriate measurements from an animal [3], we can determine GI

and GC in equation 3 as a function of frequency, and compute the behaviour of
the model system. Figure 4 shows the magnitude ratio of the currents at the two
ears for frequencies (y-axis) between 0 and 5 kHz when the sound source is at
bearings (x-axis) between [−π, π] radians with respect to the forward direction.
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Brighter colours (greys) indicate a larger ratio. Clearly, the system is strongly
directional around 1600 Hz; but it is also quite directional in the band from
approximately 1200–2100 Hz.

To summarise, we have now seen how a lumped-parameter model of the pe-
ripheral auditory system, in the form of an electrical circuit analogue, leads to
a representation of the system as a pair of frequency-dependent gains, or filters,
that relate ipsi- and contra-lateral sound pressure to tympanal motion. Using
numerical measurements from the lizard, the filters can be defined and their be-
haviour computed. The system demonstrates a significant broadband directional
response. The next question is whether a similar broadband directionality can
be demonstrated in a robotic model of the system.

3 A Robotic Model of the Lizard Auditory System

In this paper, a robotic model system is described. The system comprises two
microphones which were used to simulate the lizard’s ears. The signals from
the microphones were preamplified and input to a small, portable, digital signal
processor (StingRay, Tucker-Davis Technologies, Florida, USA). The StingRay
implemented the ear model and generated 2-bit control signals which selected
between three behaviours (forward, left-turn and right-turn) programmed in an
RCX processor brick (LEGO).

3.1 Robotic Model System

Figure 5 is the block diagram of the robotic model system. The microphones
transduce sound and send analog signals to the preamplifiers. The preamplifiers
match the signal to the input range of the StingRay, which processes the amplifier
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Fig. 5. The block diagram of the
robotic model system

Fig. 6. A photograph of the robotic
model system

output signals according to the ear model and outputs a two-bit binary signal.
This signal was passed through an interface-decode circuit connected to one of
the analog sensor ports on an RCX processor brick that controlled the motors
of the robot. The ear model could then select between up to 4 pre-programmed
motor behaviours (‘go-forward’, ‘turn-left’ and ‘turn-right’ are used here). Figure
6 is a photograph of the robotic model system.

3.2 StingRay DSP System

In the system, the StingRay was used to implement the ear model and generated
the robot control signal. The StingRay DSP was programmed using a graphical
programming system (RPvds) developed by Tucker-Davis Technologies.

Figure 7 shows the program implementing the ear model on the StingRay. In
the figure, there are two A/D converters in column 1. They are used to capture
the analog signals output by the microphone preamplifiers and change them into
digital ones. In column 2 there is a FIR filter which is used to compensate the
two microphones (see discussion). A short delay is used to compensate the delay
caused by the FIR filter. Four IIR filters are shown in column 3. These filter two
microphone signals in two channels, corresponding to the left and right sides of
the auditory system. The outputs of the two ‘Sum’ nodes are the signal of the
two channels, representing the left and right tympanal movements.

In column 4 there are two copies of ‘Absval’ and ‘Smooth’ which calculate the
signal power in each channel and two copies of ‘Log10’ and ‘ScaleAdd’which change
the power into dB and calculate the power ratio. The output of the ‘Sum’ node is
that ratio. The circuit in column 5 uses the ratio value to determine the selected
behaviour, which is encoded into a two-bit binary signal. This means up to four
distinct control signals could be sent to the robot. In the experiment, three of them
were used to control the robot to turn right, turn left and go forward.

The circuit at the top of the figure, part 6, is used to cut noise. When the
signal from one microphone is strong enough, the circuit in column 5 is enabled.
If not, the output of that circuit is the signal that instructs the robot to go
forward.
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Fig. 7. The circuit loaded into StingRay

4 Experiments and Results

The robotic model has been evaluated in a number of experiments to assess its
performance. We were interested in 3 factors: first, does the model work at all,
that is, can the robot approach a loudspeaker emitting a suitable sound; second,
over what range of frequencies does it work; and third, does the performance
depend on the frequency within the operating range.

4.1 General Methods

The same basic design was used to investigate the three questions just listed.
A loudspeaker was set on the floor of a room whose walls were lined with 2 cm
deep anechoic tiles. The layout was as follows: the robot was 2 metres in front
of the loudspeaker and started 1 metre to the left or right of the centre line,
travelling directly toward the centre line — thus it must react if it is to reach
the loudspeaker. The speaker emitted a continuous sound, whose amplitude was
set to be 85.5 dB SPL at 2.2 metres directly in front of the speaker using a
calibrated microphone. The robot moved at a speed of 11.8 cm/s.

Ten trials were performed from each starting position. The outcome of each
trial was categorised as a hit if the robot hit the loudspeaker, a near if the
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robot passed within 20 cm of the speaker, and a miss if neither these conditions
held. The robot was stopped when it hit or passed the speaker or reached the
boundary of the experimental arena. For recording the actual tracks taken, the
robot drew with a pen on a sheet of white-coated hardboard, and the track data
was measured manually from the drawn trace.

4.2 Does the Robotic Model Approach Sounds?

Table 1 gives the experimental results for 10 trials over the frequency range 1000–
2200 Hz. From the table, it is clear that the robot works very consistently over
the range 1350–1750 Hz. All 10 trials from both sides hit the speaker. This means
in this broad range of frequencies the robot could find the speaker consistently
and well.

Table 1. Experiment results for 10 approach trials from left and right at frequencies
from 1000–2200 Hz (see text for details)

right left

frequency(Hz) hit near miss hit near miss

1000 0 0 10 6 2 2

1050 0 0 10 3 3 4

1100 0 0 10 4 6 0

1150 0 0 10 4 3 3

1200 10 0 0 4 1 5

1250 9 1 0 3 3 4

1300 6 4 0 0 3 7

1350 10 0 0 10 0 0

1400 10 0 0 10 0 0

1450 10 0 0 10 10 0

1500 10 0 0 10 0 0

1550 10 0 0 10 0 0

1600 10 0 0 10 0 0

right left

frequency(Hz) hit near miss hit near miss

1650 10 0 0 10 0 0

1700 10 0 0 10 0 0

1750 10 0 0 10 0 0

1800 7 3 0 6 2 2

1850 9 1 0 5 3 2

1900 3 4 3 1 7 2

1950 9 1 0 0 0 10

2000 9 1 0 0 0 10

2050 6 4 0 0 0 10

2100 8 1 1 0 0 10

2150 2 5 3 0 0 10

2200 0 2 8 0 0 10

4.3 What Is the Working Range of Frequencies?

Having demonstrated that the robot is able to approach the loudspeaker suc-
cessfully for a broad range of frequencies, but appears to work better at some
frequencies than others, it is natural to ask what is the useful range of frequen-
cies for the model. This depends on the experimenter’s definition of ‘success’;
for this paper we define successful operation to mean that the robot hits the
loudspeaker in at least 5 of the 10 trials. Thus the near and miss tracks count
as failures.

Determining Operating Limits. To estimate the operating limits of the
model, the robot was run for 10 trials from the left and from the right with
frequencies in the ranges 1000–1400 Hz and 1700–2200 Hz, spaced at 50 Hz, for
left and right sides. The results in table 1 indicate that the model was successful
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in the range 1350–1850 Hz. The robot was more sensitive when stimulated from
the left side at low frequencies but more sensitive to stimulation from the right
side at high frequencies. As seen in the table, the robot had very stable perfor-
mance in the 1350–1750 Hz range, and still worked at 1800 and 1850 Hz with
degraded performance (near and miss trials).

In the experiment, the model was very sensitive to the power of the sound in
the ranges 1200–1300 Hz and 1800–2000 Hz. If the power were changed a little,
the experiment result was very different especially at high frequencies.

Track Directness Comparisons. An alternative method of comparing the
performance of the model at different frequencies is to use a ‘directness’ statistic
[9]. The track followed by the robot is measured from the hardboard sheet and
segmented at turns into a set of n vectors of lengths li. For each segment its
heading θi relative to the loudspeaker is determined. An average vector is then
calculated by averaging the segments (each in its individual loudspeaker-relative
frame of reference)

vavg =
1∑n
1 li

(
n∑
1

licosθi , −
n∑
1

lisinθi

)
(5)

and this average is plotted on a polar plot. If the robot moves directly from
starting point to loudspeaker, the average vector will have length 1 and direction
0. (Note that this differs from the calculation described in [9] only in omitting
the rescaling by the ratio of minimal to actual path time.)

The resulting polar plots for the model for left and right sides at frequencies of
1650 Hz (theoretical best frequency), 1400 Hz and 1900 Hz, are given in figure 8.

Table 2. Mann-Whitney U value for track directness comparisons (see text)

U(p) 1650Hz-R 1400Hz-R 1900Hz-R 1400Hz-L 1650Hz-L

1650Hz-R

1400Hz-R 14 (0.0026)

1900Hz-R 13 (0.0019) 34 (0.1237)

1400Hz-L 0 (0.0000) 2 (0.0000) 15 (0.0034)

1650Hz-L 0 (0.0000) 0 (0.0000) 4 (0.0001) 10 (0.0008)

1900Hz-L 0 (0.0000) 0 (0.0000) 0 (0.0000) 0 (0.0000) 0 (0.0000)

To test how well the model works at different frequencies, the ‘Directness’
is examined statistically. The distances from the points shown in figure 8 with
‘+’ to the ideal one (0,1) are used as the populations and the Mann-Whitney
U-test is used to test these data. u1 = u2 = 10. The statistic result is shown in
table 2 ordered from left to right. For example, when the frequency of the sound
was 1650 Hz and the robot started from right front of the loudspeaker (denoted
‘1650 Hz-R’), the statistic result is the best.
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Fig. 8. ‘Directness’ (see text) plots for the robot tracks

For fixed frequency, the right side is always better than the left side. At
1650 Hz, compare the right and the left sides — (U = 0, p ≈ 0). This means
these two groups of data are apparently different and the right side is better
than the left. The same result may be found at 1400 Hz, (U = 2, p ≈ 0) and
1900 Hz (U = 0, p ≈ 0). So the model is more directional from the right side
than the left side.

For the right side, the model works best at 1650 Hz. Compared to 1400 Hz
(U = 14, p < 0.0026) and 1900 Hz (U = 13, p < 0.0019), the model is more
directional at 1650 Hz. But comparing 1400 Hz and 1900 Hz (U = 34, p < 0.1237)
shows no significant difference, so the directness is similar in these two cases.

For the left side, the model works best at 1400 Hz, better than both 1650 Hz
(U = 10, p < 0.0008) and 1900 Hz (U = 0, p ≈ 0). Tracks for 1650 Hz are more
directional than those for 1900 Hz (U = 0, p ≈ 0).

5 Discussion and Conclusions

The results presented demonstrate that the robotic model of the lizard auditory
system exhibits the behaviour predicted from the theoretical analysis on which
it is based. The system as described exhibits successful and reliable phonotaxis
behaviour over a frequency range of approximately 1350–1850 Hz.
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However, this successful behaviour is contingent on the robotic model meeting
the expectation of symmetry built into the theory. In the first tests of the model,
a strong bias to one side was observed which was traced to a difference in the
frequency-response characteristics of the two miniature microphones used. It was
necessary to correct for this difference using a digital filter computed from the
ratio of the microphone spectra, since the difference in average group delay of
the uncorrected microphones was about 0.2rad which corresponded to a source
azimuth error of 56◦ at 1000 Hz and 15◦ at 2000 Hz.

This strong dependence of the model on the symmetry of the physical system
is not surprising, given the modelling assumptions. However, symmetry will not
hold in general for the robotic model nor will it for the lizard. How then does the
lizard compensate for this? We offer two suggestions, to be studied in further work:
perhaps differences between the two ears are minimised during the development of
the lizard ear, or, more likely, the lizard learns to compensate for the asymmetry
in the subsequent neural processing of the tympanal motion signals.

Implementation of the lumped-parameter model as a set of digital filters is
an interesting alternative to the representation technique of broadband delay
lines used for the cricket auditory system [7]. The filters implement appropri-
ate delays through their group delay properties, but unlike the broadband ar-
rangement, they allow the delays to vary depending on frequency. The delay-
based model accounts for the length of the interconnecting tubes but not the
frequency-dependent properties of the tympani and cavity. Furthermore, imple-
menting the model as software means that these frequency-dependent effects are
programmable in the model: more possibilities for varying the signal-processing
properties are available for manipulation. For a narrowband signal, the two im-
plementations are exactly equivalent; for a broadband signal, the software im-
plementation is more flexible.

The model developed makes it possible to investigate a number of questions.
Apart from the key question of symmetry, one could study the relationship
between model parameters and observed behaviour. How much does error in
parameter values affect the performance? Are the parameters measured in the
animal ‘optimal’ in any sense, or are better parameter choices available? (This
gives an indication of how much the evolution of the physical structure may
be constrained by other factors than directional hearing performance.) What
kinds of neural processing models are possible based on the pre-processing done
by the peripheral auditory model? For instance, multiple frequency-band neural
models, or models that attempt to learn the mapping between tympanal response
and sound source direction in the absence of perfect system symmetry are both
interesting. These, and other questions, will be topics for future work with the
robotic model.
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Abstract. The rat has a sophisticated tactile sensory system centred
around the facial whiskers. During normal behaviour, rats sweep their
longer whiskers (macrovibrissae) through the environment to obtain
large-scale information, whilst gathering small-scale information with
the sensory apparatus around their snout. The macrovibrissae are ac-
tively and differentially controlled. Using high-speed video recording, we
have observed that temporal and spatial parameters of whisking pat-
tern generation are modulated to match environmental features such as
the position and orientation of nearby surfaces. Whisking is also closely
co-ordinated with head and body movements, allowing the animal to lo-
cate and orient to interesting stimuli detected through whisker contact.
In this paper, we present a hybrid (spiking-neuron/arithmetic) model
of the neural systems underlying these observed adaptive sensorimotor
behaviours, and demonstrate its performance in a simulated robot with
rat-like morphology. We also report progress towards embedding these
control systems in a physical robot with biomimetic whiskers.

1 Introduction

The rat possesses an impressively acute tactile sensory system, the sensors of
which include large mobile whiskers on either side of the snout [1]. Tactile infor-
mation is gathered by sweeping these whiskers forwards and backwards at 5-25
Hz, and there is now strong evidence that this behavior is generated by output
from a ‘whisking pattern generator’ (WPG) located in the rat hindbrain [2]. In-
terestingly, the parameters of whisking appear to be controlled independently on
each side of the snout in response to changes in the environment and/or the mo-
tivation of the animal [3,4,5,6], presumably to optimise perception. Furthermore,
studies have long shown that rodents orient their snout towards novel stimuli,
apparently to bring more rostral sensory apparatus (small immobile whiskers,
teeth, tongue, lips and nose) to bear on items of possible interest. Computational
modelling of these aspects of sensorimotor co-ordination in the rat’s tactile per-
ception system is the focus of this study.

Using high-speed video recording [7] we have observed patterns of asymmet-
rical contact with walls and objects suggesting that rats regulate their whisker
movements so as to control the nature of these contacts. Specifically, the whiskers
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Fig. 1. Still from high-speed video of genetically-blind rat encountering obstacle uni-
laterally. Ipsi-/contra-lateral whiskers are retracted/protracted in response.

appear to be actively moved forwards to meet more rostral objects (‘maximal
contact’), and, at the same time, actively restrained from pushing unduly against
more caudal objects (‘minimal impingement’). This control strategy is intuitively
satisfying as it would tend to maximize the number of contact/detach events be-
tween the whiskers and the environment that have been found to lead to robust
sensory responses (known as ‘ON’ and ‘OFF’ responses) in the primary afferent
nerves [8]. Whilst maximizing the rate of information collection, this scheme
would also minimize the distortion that could arise through overdriving the sen-
sory apparatus (since the whisker deflections generated by such events will tend
to be small). This interpretation is consistent with previous observations of rat
whisking behaviour (though see [4,5] for further discussion).

The minimal impingement element of this hypothesized control strategy can
be implemented through negative feedback that inhibits protraction (forward
motion) of the whiskers when contact occurs. Direct projections from trigem-
inal sensory nuclei to the facial motor nucleus, both located in the hindbrain,
have been identified [9,10] that could provide a substrate for negative feedback
in the form of a simple, closed sensorimotor loop (see [11] for further func-
tional anatomical information). Maximal contact, on the other hand, requires
knowledge of something located outside the range of the normal whisker sweep.
In the genetically blind animals that we study it is thus only observed in re-
sponse to contact events from earlier whisks, or to contact events on the oppo-
site side of the snout (see [12] for evidence of increased protraction given prior
knowledge of rostrally-located items). The pose depicted in Figure 1 is typical,
with the whiskers ipsilateral to an obstacle swept back, and those contralat-
eral swept forward. Memory for past sensory events most likely requires cortical
pathways, therefore, whilst hindbrain, contralateral positive feedback could pro-
vide the substrate for a reactive maximal contact control pathway, some cortical
modulation of the WPG is presumably required when memory is involved. In
the current study we therefore investigate direct, contralateral positive feedback
only.
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Accurate orienting of the head/snout to a point of whisker contact requires
more advanced circuitry than that proposed for hindbrain feedback control. The
midbrain superior colliculus (SC) is known to be essential for the expression of
orienting responses to somatosensory stimuli [13], and projections from trigem-
inal sensory neurons to SC have been identified repeatedly, e.g. [14]. We chose,
therefore, to model a sensorimotor loop through SC to mediate orienting. SC is
known to use a retino-centric coordinate system, which we approximate as head-
centric – what remains, then, is to specify the nature of the transform from the
whisker-centric encoding in trigeminal to a head-centric reference frame. Two
strategies for instantiating this transformation have been proposed: temporal
decoding using neuronal phase-locked loops, and spatial decoding, through the
integration of information from contact receptors with that from whisking an-
gle/phase receptors [15]. We chose the latter, for its simplicity.

Below, we present a simulated mechanical environment (‘WhiskerWorld’)
which we use for testing our control models. We also outline our earlier model of
whisker sensory transduction [16] which is used to generate biologically accurate
spiking input signals for the new models studied here (Section 2). We then de-
tail a hybrid (spiking/non-spiking) computational simulation model of the above
aspects of active perception in rat (Section 3), and illustrate its performance in
WhiskerWorld (Section 4). We conclude by outlining the proposed embodiment
of these computational features in a mobile robot (Section 5).

2 Simulated Environment

Our model environment consists of a two-dimensional simulation of mechanical
interactions between six inflexible whiskers and assorted circular obstacles (Fig-
ure 7). The whiskers are carried three on each side of the snout of a simulated
robot platform with complete freedom of mobility in the plane. The positions of
the whisker bases are computed from the location of the platform and its neck
angle. For each whisker we also specify its length, the more rostral whiskers be-
ing shorter, and the positive acute angle it makes with the symmetry axis of the
head, θ1...6. One simulated muscle drives each row of whiskers to protract (there
is evidence of row-based motor circuits in the rat [17]), whilst intrinisic elastic
forces drive them to retract [3]. Interactions with the immobile elastic obsta-
cles also drive the whiskers as appropriate. Whiskers that temporarily intersect
obstacles are considered ‘deflected’, to a degree and direction, x, concomitant
with the intersection and its location along the whisker. The control loops to be
discussed (a) drive the simulated protraction muscles such that maximal contact
and minimal impingement are elicited, and (b) drive the wheels and neck of the
mobile platform such that the robot’s ‘foveal zone’ (indicated in Figure 7) is
brought to bear on obstacles in a biologically convincing movement.

When a model whisker makes contact with an object the resulting deflection
x is input to a simulation of the mechanical properties of the rat whisker fol-
licle [16]. The output of this mechanical model is used to generate spike trains
in model sensory neurons whose response properties were derived from an ex-
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Fig. 2. Two whisks with a unilateral whisker-field obstruction recorded in Whisker-
World with no sensorimotor feedback. θ2 is the angle of the obstructed whisker, θ5

the angle of the corresponding unobstructed whisker on the other side of the snout;
with an obstacle present (solid) and without (dotted). x2 is the deflection of the ob-
structed whisker. Right-hand panels show responses of SA, RA, and angle neurons to
the obstructed whisks, where each dot represents a spike.

tensive review of relevant electrophysiological studies. Each simulated whisker
drives 20 ‘slowly-adapting’ (SA) and 20 ‘rapidly-adapting’ (RA) neurons that
together encode the deflection of the whisker. Additionally, 16 model neurons
encode the whisker angle θ in analogy to the ‘angle/phase’ afferents recently dis-
covered in the rat [15]. During a typical obstructed (and unmodulated) whisk,
θ decreases (with protraction) until contact occurs, θ is then arrested whilst x
displays a pulse resulting from the deflection of the whisker against the obstacle,
finally the whisker detaches from the obstacle and θ increases as it falls back
to its rest position. This sequence is illustrated in the left panels of Figure 2.
In the right panels of that figure are shown typical responses of model sensory
neurons to the signals on the left. The RA cells are all similar (save for some
structural noise) except each responds most strongly to a different direction of
whisker deflection. The neuron with index 0 is tuned to deflection in the pos-
itive x direction, and the remainder are uniformly spaced around the circle in
x/y (although we do not simulate deflections in the y direction, that is, into
the simulated plane, here). The cells that respond most strongly to a positive x
deflection (around index 0) spike one to five times in response to contact (the
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ON response); those that respond most strongly to negative x deflection (around
index 10) respond similarly to detach (the OFF response). However, all RA cells
in this example express ON and OFF responses to the substantial deflection
signals. The response of the SA cells is similar, except that they show continued
responses (with firing rates as high as 400Hz) throughout the deflection period.
The angle cells encode θ in a distributed way: the cells have preferred values of
θ linearly related to their index, and respond more strongly as θ approaches this
value. The cells used here do not respond at all during retraction (as was found
for a majority of angle/phase cells in [15]).

3 Simulated Control Loop Models

3.1 Whisking Pattern Generator and Pattern Modulation

The core of the whisking pattern generator (WPG) is a self-resetting integrator
(Figure 3) built from two spiking neuron populations. Activity in an ‘integrator’
population builds up spontaneously over time, then, at some threshold, excita-
tory drive from these cells to a ‘reset’ population causes the latter to become
active; the integrator neurons are quickly silenced by inhibition from the reset
population; activity in the reset population then dies away, and the cycle begins
again. This core generator, which runs at around 5Hz in all simulations, provides
excitation to two ‘output-buffer’ populations of spiking cells that are subject to
diffuse modulation from all SA cells and are thus the site of modulation by
sensory signals. Specifically, the SAs provide ipsilateral inhibition and contralat-
eral excitation to output-buffer neurons, implementing, respectively, the required
negative and positive feedback. As implemented, this modulation is linear, so ex-
citation tends to raise the set-point of the output activity whilst inhibition tends
to reduce and delay output activity (see insets in figure). Activity in each out-
put population is converted to a scalar rate by driving a leaky integrator (time
constant 10ms) with the sum of all cell spikes. The resulting two signals are
then used as muscle drive forces in the physical simulation. Note that whilst the
pattern generators for the two sides are coupled in phase throughout, the whisk
patterns they generate are able to differ in set-point and amplitude.

3.2 Coincidence Detector and Orienting Behaviour

The coincidence detector (CD) consists of 6 banks of 16 spiking cells each, with
the mth cell in the nth bank receiving excitation from all RA cells, and from
the mth angle cell, associated with the nth whisker. Since we do not deal with
deflections out of the simulation plane in the current model, there is no need
to distinguish which RA cells from the whisker were stimulated. This connec-
tivity is sufficient to perform coincidence detection, but is not robust against
noisy inputs, generating both false positives and false negatives. The addition of
strong surround inhibitory connections within each cell bank greatly improves
noise resistance. Specifically, we used inhibition with relative strength given by
the inverted Gaussian w = 1 − exp(−(θi − θj)2/Δθ2), with θi,j the preferred
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Fig. 3. (Left) Core generator consists of two reciprocally connected cell populations
(‘integrator’ and ‘reset’). (Right) Output populations driven by core generator also
accept modulation from sensory afferents (SAs). Each population consists of 40 cells.

Fig. 4. Summary of connectivity between one whisker follicle and one bank of the coin-
cidence detector. Red represents excitatory afferents, whilst blue represents recurrent
surround inhibition, with strength related to separation in θ.

angles of connected cells, and Δθ a parameter. The connectivity is illustrated in
Figure 4.

The CD operates as follows. Activity in the RA cells serving the nth whisker
coincident with activity in the angle cells serving the nth whisker and tuned
to around θ = θ0, results in activity in the nth bank of the CD, in the cells
corresponding to those angle cells. This activity rapidly and effectively silences
sub-threshold activity in other cells in the bank, leaving a well-defined locus of
activity in one or a few cells. The identity of these active cells encodes the location
at which a whisker contacted the environment in a head-centric coordinate frame.
The direction of whisker-sweep (forwards/backwards) is encoded by the identity
of the cells within a bank, and in the transverse direction (left/right) by the
identity of the bank, though the latter is encoded more indirectly since there is no
guarantee that contact occurred at the whisker tip, or that multiple whiskers will
not encounter the same or different obstacles. Having implemented a transform
from whisker-centric to head-centric contact data, it is straightforward, then, to
assign each of the 96 cells in the CD to a region in the simulation plane, relative
to the head, wherein contact will typically lead to activity in that cell. These
locations are illustrated in the head-centric representation of Figure 5.
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Fig. 5. Typical contact regions for each cell in the CD mapped on to a head-centric
coordinate system. Active (filled) regions represent activity recorded concurrently with
the last panel of Figure 7.

Orienting itself is implemented arithmetically. Around the point of maximum
protraction, the reset population of the WPG pulses briefly. If any single CD
cell has over-threshold activity at that time, an average is taken across the
assigned locations of each over-threshold cell, and that location is deemed ‘in-
teresting’. A path-following algorithm then moves the neck and wheels of the
mobile platform such that the foveal zone of the robot follows a direct path to
the interesting location, using the neck as much as possible, and moving the
wheels only as much as necessary. This algorithm is satisfying, firstly because
the calculations are simple (neck follows nose, tail follows neck) and secondly
because animals display this ‘recruitment’ of joints as a movement progresses
[18]. Forcing the foveal point to follow a path that loops backwards somewhat
(to form a slight ‘U’) is an alternative strategy that might reduce the incidence
of collisions.

4 Performance of the Simulated Model

We repeated the simulation reported in Figure 2, incorporating feedback modu-
lation of the WPG (see Figure 6). The effect of the modulation on the whisking
range of whisker 2 (ipsilateral) can be seen as it works more towards the back of
the head (θ2 increases). Furthermore, the protraction force applied to the ipsilat-
eral whiskers ceases soon after contact occurs, so that both contacts are briefer
and cleaner than those returned without feedback. The RA cells for whisker
2 now clearly show ON and OFF responses, and nothing else – the spurious
additional responses seen in Figure 2 are absent. The SA cells show a much
briefer response than before, as a result of the briefer contact – their overall
response profile is thus quite similar to that of the RA cells. The response of the
angle cells is largely unchanged. The contralateral whiskers (represented here
by whisker 5) are swept substantially further forward than in the unobstructed
reference plot (θ5 decreases), illustrating the effect of the contralateral positive
feedback. The contralateral whisk amplitude is also reduced, since the mechan-
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Fig. 6. Two whisks with unilateral whisker-field obstruction recorded in WhiskerWorld
with sensorimotor feedback. Panels are exactly as for Figure 2.

ical advantage of the muscles is less at this whisking angle – see [3] for a fuller
description of the whisking mechanics on which our simulation is based, along
with the analogous biological result of amplitude reduction during forward-swept
whisking.

Next, we repeated the same simulation, incorporating the CD and orienting
response. Soon after contact with the obstacle, the simulated robot ‘foveates’ to
the point of contact, as shown in Figure 7. At t = 0, the robot is in its initial
state. At t = 65ms, the ipsilateral output population of the WPG has been
silenced by negative feedback and the ipsilateral whiskers have reached peak
protraction. At t = 110ms, orienting has just begun with a neck movement; the
movement is still almost entirely of the neck until t = 165ms when the body
begins to be recruited. At t = 300ms the orienting movement is complete, the
second whisk is at around full protraction, and the forward-most contralateral
whisker contacts the obstacle, thus illustrating the functional justification for
their forward sweep. Note that the orient is specifically to the point of contact,
rather than to the nearest face of the obstacle (say). This illustrates both the
high resolution of the system despite the paucity of cells involved, and that
this whisker sensory system detects surfaces rather than objects. The perfor-
mance of the WPG and afferents during this orienting movement is similar to
that shown in Figure 6, except that the second contact occurs on a different
whisker.
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5 Towards a Robot Implementation

The control models detailed above will soon be implemented on a mobile robot
platform so that we can investigate their performance in a noisy real-world envi-
ronment. The physical platform will have a mechanical architecture as shown in
Figure 7 (the simulation is modelled on the robot design), driven by two of three
omni-directional wheels and with a driven neck joint, and is intended to coarsely
reflect the morphology of the rat. The six artificial whiskers are of moulded glass
fibre, 100-200mm long, and weigh around half a gram. Additional whisker rows
can be stacked vertically in the future to more closely emulate the array of vib-
rissae of the rat mystacial pad. All whiskers share the same taper profile, so
the base diameter (1-2mm) is proportional to the length. At the base of each
whisker, four strain gauges are mounted longitudinally at ninety-degree inter-
vals, and wired into 2 half-bridge configurations. Each opposing pair measure the
strain in opposite faces of the whisker, so that the bridge outputs are monotonic
(almost linear) with the deflection of the whisker in each dimension (x, studied
in simulation above, and y, up and down). This transduction configuration has
proven to have very low noise (better than 60dB SNR) and is extremely sensi-
tive to mechanical deflections in the whisker shaft at any point along its length.
The whiskers are driven using a biomimetic system of ‘shape metal alloy’ wire
(BioMetal c©) to provide a protraction force analogous to that of muscles, with
retraction driven by a spring analogous to the elasticity of the facial tissues. θ
is measured directly using an optical quadrature shaft encoder mounted onto
the whisker spindle. Full details of the whiskers and whisker drive mechanism
(Figure 8) are given in [19]. The x/y deflection signals are passed to the follicle
model [16]: a reduced form of the mechanical part of this model is embedded in
a DSP processor, whilst nearly 400 primary afferent models are embedded us-

Fig. 7. Simulated evironment: non-interacting robot platform carries six whiskers
which interact mechanically with environmental obstacles; dotted circle in front of
snout indicates ‘foveal zone’. Each panel represents the situation at the time shown
during an orient-to-stimulus behaviour.
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Fig. 8. Developing hardware: carrier (mechanically analogous to follicle) bears whisker
with bonded strain gauges (contact receptors), biowire (marked with black square,
muscles), return spring (tissue elasticity), and shaft encoder (angle receptors)

ing a custom built FPGA module, employing a pipelined parallel computation
architecture to achieve real time perfomance. The output from this, a wide bus
of individual bit streams carrying the spike/no-spike state of each afferent, is
distributed to an array of further FPGA modules housing the models discussed
above. This neural processing system will share space onboard the robot with an
x86-based PC, which will house the remainder of the software system. The PC
will also log software and hardware states during short experiments – in this way
we hope to perform ‘virtual electrophysiology’ on the robot, realising previously
reported biological experiments in silico for direct comparison.

6 Discussion

We have demonstrated a simple spiking-neuron model of whisking motor pat-
tern generation that incorporates sensorimotor feedback. We have shown that
the model adaptively modulates whisking to suit the environment, and we have
illustrated how two types of feedback have the potential to improve the per-
formance of the sensory system in gathering information: ipsilateral negative
feedback by ensuring clean stereotypical contacts, contralateral positive feed-
back by generating contacts that would not otherwise have occurred. The pat-
tern generator presented here is constrained to generate synchronous whisking –
whiskers on each side of the snout move in phase – and our model of sensorimo-
tor modulation does not directly affect pattern generation, only its efferent copy.
Asynchronous whisking has been previously observed, though only rarely. In our
own behavioural work, however, we have formed the impression that asynchrony
is frequently triggered by obstacle contact, with synchrony recovering once the
rat moves away from the contacted surface. In ongoing work, we are exploring
the possibility that loosely-coupled bilateral whisking pattern generators, modu-
lated by sensory input in a similar way to that described above, could reproduce
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this coupling between asymmetry and asynchrony in an emergent fashion. In the
current paper, we have also described a model of orient-to-stimulus behaviour im-
plemented using a mixture of spiking-neuron computation and arithmetic tech-
niques, and have illustrated how this can be used to bring ‘foveal’ sensors to
bear on a whisker contact point. This model required that a whisker-centric
to head-centric coordinate transform be applied to the raw sensory data. We
have demonstrated how a previously discussed algorithm (detection of activity
coincidence between contact and angle afferents) can be implemented for this
purpose using a network of spiking neurons. Taken together, these simulations
show that sensorimotor coordination alone can explain several major aspects
of the observed investigative whisking behaviour of rats. In the future, we will
extend our model to cover signal propagation into thalamus [20] and beyond.

We have outlined our continuing progress towards the incorporation of these
simulated models in the control system of a mobile robot platform. In the future,
we will report on the performance of this embedded implementation. There have
been several previous artificial whisker implementations [21,22,23,24] that have
concentrated onwhat canbe achieved functionallywith ‘bio-inspired’whiskers and
whisker arrays, and have shown interesting results in relation to texture and shape
discrimination and learning. In most of this existing work the whiskers have been
actuated using unmodulated, symmetrical whisking patterns. In contrast, the fo-
cus of our research has been to analyse, using high-speed video recording, the ‘ac-
tive whisking’ strategies of freely moving rats and to design an artificial system
capable of replicating them. In this endeavour, our system aims to remain faithful
to the biology wherever possible. In particular, our whiskers are tapered, length-
scaled through the row, and measure deflections in two dimensions, and the mor-
phology of the robot/simulation well reflects that of the animal. We have carefully
examined signal transduction in the rat whisker follicle, and have designed our ar-
tificial transduction system to mimic this. Processing elsewhere in the model ar-
chitecture is also largely neural, and modeled where possible on identified neural
substrates. With this approach, we hope to maintain a direct correspondence be-
tween the animal and the engineered system, facilitating knowledge transfer be-
tween biology and engineering and vice versa.
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Abstract. While there is a trend in current robotics towards more bi-
ologically inspired actuators, most work emphasizes the elastic property
of muscles and tendons. Although elasticity plays a major role in many
forms of movements, particularly walking and running, other features of
animal muscles might also affect or even dominate movement dynamics.
In this paper we use the Hill-type muscle model, common in biomechan-
ics, to investigate the relationship between muscle dynamics and con-
trol signals in simple goal-directed movements. We find that the various
non-linearities of the model lead to desirable properties with regard to
controllability, such as increased stability and robustness to noise, inde-
pendence of position and stiffness, or near linearity in search space. We
conclude that in our attempt to create robots exhibiting the same flexi-
bility and robustness as animals we have to seek a balance between the
complexity of actuators and the extent to which their natural dynamics
can be exploited in a given task.

1 Introduction

It is not unreasonable to assume that the qualitative properties found in the ma-
jority of animal muscles have been selected for by evolution for their adaptive
advantage with respect to the generation of movement. The benefits of elasticity
for instance have been recognized for a while and robotic systems have been built
that incorporate springs in order to gain higher force fidelity, low impedance, low
friction, good force control bandwidth or energy conservation [9]. More generally,
the concept of ‘preflexes’ [5] summarizes the idea that the intrinsic dynamics of a
musculoskeletal system alone can be sufficient for self-stabilization [11] and that
they could be tuned such that higher level motor control becomes easier because
joint level dynamics don’t have to be accounted for. One of the tenets of the
embodied approach to behavior, Pfeifer’s notion of ‘morphological computation’
[7], also expresses the idea that materials can sometimes take over some of the
processes normally attributed to control mechanisms. In view of this embod-
ied perspective, in this paper we propose to investigate the different qualitative
properties of muscles and their effect on motor control. We are interested in the
question to what extent it would be useful to deal with the complexities of biolog-
ical muscles and whether it makes the task of designing robotic control systems
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easier or harder. Specifically, we use a simulation of an antagonistic muscle pair
acting on a hinge-joint to ask how the non-linear visco-elastic properties of mus-
cle affect stability, how they allow for fast but appropriately damped movements
and how they relate to control signals.

2 Muscle Model

Muscles are different from any current robotic actuator in many ways. Not con-
sidering effects such as hysteresis, the instantaneous force a muscle produces is a
complex non-linear function not only of its activation but also of its length and
velocity. In biomechanics, the most commonly used model of skeletal muscle is
the so-called Hill-type model [12]. Its basic configuration (fig.1) uses dimension-
less constitutive relationships to describe the muscle’s visco-elastic properties.
Specifically, it consists of a contractile element (CE) producing force as a func-
tion of length and velocity; a parallel elastic element (PE) exponentially resist-
ing stretch beyond resting length; and a series elastic element (SE), the tendon.
Figure 2 depicts the non-linear nature of these elements. As is shown, active force

CE

PE

SE

Fig. 1. Schematic of antagonistic muscle pair acting on hinge-joint

production (Fa) peaks at an optimal length of L0, and decreases to either side.
Passive tension (Fp) is the result of an exponential spring with a slack length
also around L0. The dependence of muscle force on velocity (Fv) is described by
Hill’s relationship. If a muscle is shortening, its force generation ability drops as
velocity increases and reaches zero at velocity vmax (heavier loads can be lifted
less rapidly). If it is lengthening in contrast, force increases when compared to
the maximum in statics FM

0 .
The overall force output of the muscle model is specified by

FM = aFM
0 Fv(vM )Fa(LM ) + Fp(LM ) (1)

where activation a scales both Fa and Fv, which themselves combine in a multi-
plicative way. The term activation refers to the low-pass filtered (neural) input
to the muscle and describes its slow activation dynamics. FM

0 is the muscle’s
maximal force at zero velocity.

The result of eqn.(1) is a normalized force-length-velocity surface scaled by
activation as depicted in figure 3. Any movement in this picture corresponds to a
‘walk’ on that surface. Already complex, in any realistic scenario muscle length,
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Fig. 2. Dimensionless muscle force as a function of length (left) and velocity (right).
The former is the sum of a passive exponential-to-linear elasticity resisting lengthening
of the muscle (dash-dotted) and a quadratic function with a maximum at resting length
describing the active generation of force (dotted).

velocity and force would probably feed back into the control signal, thereby
creating a continuously changing surface. The complete system simulated in the
following experiments consists of two antagonistic muscles around a single hinge-
joint. Its dynamics are completely determined by the torque produced at the joint
through the muscles, as well as the physical properties of the limbs that the joint
connects (such as inertia). For simplicity and because we’re mainly interested
in the effects of the various non-linearities of the muscle model on its dynamics
we have made several abstractions. Moment arms of the muscles relative to the
joint they actuate are assumed to be constant; gravity in some experiments is
zero, which allows us to remove static parts from the control signals and focus
on the dynamics instead; no tendon is present. The latter can be justified in
elbow movements for example, where the ratio of tendon to muscle lengths is
such that tendons have only minimal effect [12]. 1

2.1 Muscle Dynamics

With regards to the behavior of the muscle model several observations can be
made from fig.2 and 3. Firstly, in Hill’s force-velocity relationship the slope, that
is the rate of change of force, is highest around zero velocity. Hence muscles have
the desirable property of being damped the most at rest, while being less damped
when moving fast. The slope, and thus damping, will also increase with the level
of activation. The same holds for the active force-length relation, hence stiffness
will increase with activation as well. It should be noted that the parallel elasticity
(the ‘spring’) of two antagonistic muscles could in principle provide for stability
if those muscles were arranged such that over most of the joint’s workspace their
lengths would be greater than the spring’s slack length. Obviously though, this

1 Because we’re only interested in qualitative results here, and not particularly sim-
ulations of human movements, details about the implementation of the non-linear
functions as well as values for the muscle specific parameters F0, L0 and vmax and
limb dimensions are ommitted.
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Fig. 3. Force-length-velocity surfaces resulting from eqn.1 for activations of 0.0, 0.25,
0.5 and 1.0. Horizontal axes correspond to normalized length (length divided by resting
length) and normalized velocity (velocity divided by maximum velocity).

would make movements rather inefficient because the system would always pull
against the opposing muscle’s resistance. Indeed, in nature many muscles seem
to operate mostly on the ascending limb of the force length curve [3,6], indicating
lengths being in a range where the passive elasticity won’t dominate the muscle’s
dynamics. Stability therefore must have a different origin.

Control of position and stiffness. Figure 4 shows how the force-length relation-
ship of two antagonistic muscles interact to create an equilibrium position (EP).
The muscles are arranged symmetrically and such that their length, measured
over the range of joint positions θ, varies between 0.6 and 1.1. Because the resting
positions of both muscles are shifted towards the joint extremes, no elastic resist-
ing forces are created in the midrange. Hence, without activation the system is
truly passive and and does not behave like a spring. Activation however creates
a stable equilibrium position. While increased co-contraction stiffens the joint
at the EP, differential activation will shift its position. The model thus allows
for independent control of joint position and stiffness. Note that if the two mus-
cles were springs whose force production depended linearly on displacement and
whose resting length was shifted by activation, no increase in stiffness would
result from co-activation. The net force produced would only depend on the
individual spring stiffnesses and the amount of perturbation from equilibrium.
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Fig. 4. Force-length relationships of an antagonistic muscle pair. Intersections cor-
respond to the systems equilibrium point (EP). Shifts from the EP will be resisted
by a net force equal to the difference between the two curves (vertical line). While
co-activation doesn’t change the EP, the slope of both force-length curves increases,
corresponding to increased stiffness of the joint. A change in the difference between
activations will move the EP position.

Rejection of perturbations. From the model it is easily predicted that the vis-
cous element will enhance the system’s stability with respect to perturbations.
This effect is illustrated in fig.5, where transient loads are applied to the joint
at increasing levels of co-activation. Not surprisingly, the model including vis-
cosity shows damping without oscillations and resistance to loads that increases
with co-contraction. This rejection of perturbations results from an interplay of
both the Fv as well as Fa relationships. While co-contraction creates the EP
and stiffens the joint as described above, the steeper slopes in Fv increase its
viscosity. Hence the net rejecting force will generally be comprised of a dynamic
Fv contribution as well as a static Fa element.

Fast movements. A desirable feature of muscle models including Hill’s viscos-
ity term is that they allow for the generation of movements that are fast but
appropriately damped so as not to produce significant overshoot. This can be
demonstrated for example within the context of the equilibrium point hypothesis
(EP-hypothesis) [2]. The general idea is that the neuro-musculoskeletal system
creates an equilibrium point that can be shifted using central commands in a sim-
ple, e.g. linear, fashion without needing to take into account the actual dynamics.
Specifically, in the λ-formulation of the EP-hypothesis, central commands are
believed to set the reflex threshold for motoneuron recruitement, such that mus-
cles are activated proportionally to the amount of muscle stretch beyond the
setpoint. In this formulation, muscle activation a is described by:

a = [L − λ + μv]+ (2)

where λ is the commanded reflex threshold, v the muscle’s velocity and μ the
gain of reflex damping. Figure 6 presents a trajectory for the antagonistic muscle
pair controlled using this proportional-derivative mechanism (PD). Note that for
both, step and ramp shaped commands, the muscle’s non-linear relations and
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Fig. 6. Trajectories over time of muscles and joint controlled by λ-model. Indices in
legend indicate agonist (1) and antagonist (2). Top: input signal λ and resulting acti-
vations. Second row: values of Fa and Fv. Third plot: force output of muscles as well as
net force. Bottom: joint position and velocity. Commanded reflex thresholds λ change
in form of a ramp at time t=100 and as step-functions of different amplitudes at t=300
and t=500. The system starts with initial co-activation of 0.2.

low-pass characteristic combine to sculpt a bi-phasic force trajectory with one
peak for acceleration and another for deceleration of the joint. While a pure PD
controller would only produce net breaking forces in the case of overshoot, here
the breaking starts significantly before overshoot occurs. It is thus fair to say
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that the muscle model can generate complex trajectories from simple control
signals that produce fast but smooth shifts in joint position (similar results with
a different model are presented in [4]).

3 Control Signal Optimization

The gain in stability described above also has interesting consequences for the
optimization of control signals. To illustrate this point we implemented a simple
control strategy that activates each of the two muscles using a square pulse of a
given amplitude (a1, a2) and duration (d1, d2). A fifth parameter (t2) specifies the
time between the onset of agonist activation (fixed) and that of the antagonist.
This allows us to look at the space created by evaluating all possible strategies
against an optimality criterion, hereafter called the fitness landscape.

Flexibility. Figure 7 shows a fitness landscape in which the criterion consisted
of reaching and stopping at a target position of 45◦ flexion (starting from 0◦) at
any point during a 2 second trial. In order to show the whole search space we
somewhat arbitrarily fixed the amplitudes a1 and a2 to values of 0.2. Several in-
teresting observations can be made from this case of unconstrained goal-directed
movement. Firstly, the region of good performance spans a considerable range
in each of the three remaining dimensions. One can pick almost any value for
one of the parameters and will find a combination for the other two that pro-
duces a good strategy. In other words, there is a continuum of valid strategies
all of which will move the joint towards the desired position, but each having
different kinetic or kinematic properties. Movements will differ in terms of ve-
locity, stiffness or energy required. In fact, the point marked B corresponds to
the fastest movement in this space, while point C marks the one using least
energy (measured as the integral over muscle activation). Thus, compared to
the stereotypical behavior of e.g. a PD controller, by using this model one gains
immense flexibility with respect to details of a movement, while introducing
only few parameters to be chosen (by either a controller or a more constrained
optimization procedure). Secondly, although the model is highly non-linear in
all its properties, good performance within the fitness landscape is found along
rather linear regions. This simple relationship between parameters should make
it easy to create a controller that finds and moves along the range of all optimal
strategies.

Robustness. In terms of control signal optimization the viscous property of the
Hill-type muscle model also shows as increased robustness to noise or increased
‘searchability’ of the fitness landscape, a property of interest for evolutionary
robotics for instance. Fig.8 compares the fitness landscapes of the muscle model
with and without the viscosity term for an opimization that maximizes velocity
while minimizing overshoot. The slices shown were produced by finding for each
model the global peak in the 5-dimensional parameter space (a1, a2, d1, d2, t2)
and subsequently fixing two of them (amplitudes a1, a2) to the found values. The
resulting slices show the fitness landscape around the optimum in the remaining
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Fig. 8. Slices through peaks of fitness landscapes for maximizing velocity while mini-
mizing overshoot. Top row includes viscosity, bottom row does not.

three dimensions. As can easily be seen, without viscosity the regions of good
fitness become much more narrow. For the optimization procedure this means
increased difficulty of finding the global optimum. It can also be interpreted
though as robustness to noise in the control signal. In the viscous model a slight
perturbation away from the optimum will still produce relatively good results,
while in the non-viscuous case performance is easily lost completely. Intuitively
this is easy to understand. In the non-viscous case, the antagonist activation has
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to be precisely timed and scaled such that at the target position forces cancel
out exactly and the joint comes to a stop. Any remaining forces not counteracted
completely by the antagonist will move the joint away from the target. In the
viscous model however, because of its damping effect, small remaining forces will
fade quickly and the joint will come to a stop near the target position.

Efficiency. Motorized actuators have to be powered throughout a movement.
Even compliant actuators will have to make motors move to simulate a zero force
trajectory, i.e. a purely passive swing. Muscles, however, allow for more efficient
movement through bi/tri-phasic pulse patterns. Minimal muscle activations are
sufficient to accelerate and decelerate the joint towards a desired position. This
is possible, however, only because antagonistic muscles don’t work like springs.
That is, in their passive state they don’t have to work against each other’s
resistance. Figure 9 is an example of control signals optimized for minimal energy
use. Clearly, throughout a large part of the movement neither muscle produces
any force and the joint is passively swinging towards its desired position.

Multijoint movement. The movements and control signals presented so far are
clearly oversimplified when compared to natural movements involving many in-
teracting joints. It is striking though that simple square pulses, appropriately
scaled and timed, allow for well-behaved movement trajectories when combined
with non-linear muscle properties. In order to investigate if the increased ro-
bustness and flexibility also translates to more complex scenarios we used the
same approach of control signal optimization to generate motions of two joints
(elbow and shoulder). We also enabled gravity and included a static part in the
control signals that could compensate for its effect. Figure 10 presents optimized
trajectories in two different conditions. The elbow joint is always required to flex
to a position of 45◦. However, in scenario 1 the shoulder moves in the opposite
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maximizing velocity while minimizing energy. First two columns correspond to scenario
1 (synergistic), the columns on the right to scenario 2. Top: activations, middle: muscle
forces, bottom: position and velocity.

direction while in scenario 2 it moves in the same direction. Both cases were
easily evolved and produced trajectories whose final positions corresponded to
the desired targets. The figure shows that in the first case the velocity pro-
files resemble smooth bell-shapes, while they are more jerky in the second case.
The reason for this effect are the interaction torques arising from the mechan-
ical coupling of the two joints. In the first scenario movement of the shoulder
creates interaction torques in the elbow that are ‘synergistic’, i.e. support the
intended movement, while in the second case the torques counteract movement
in the desired direction. It is thus obvious that the simple open-loop control
used here is insufficient in some circumstances. In fact, it is one of the big open
questions in motor control whether the (human) central nervous system uses
an internal model of the body to calculate control signals that account for its
dynamics or if a well-designed neuro-musculoskeletal system itself could perform
the neccessary ‘morphological computations’. Independent of the case of human
movements, both a feedback controller such as the λ-model as well as appropri-
ate open-loop signals created using internal models could generate the desired
movements. While the former stands out for its simplicity, the latter more easily
could exploit interaction torques rather than resist them. In both cases though
a muscle’s intrinsic stability should be beneficial.
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4 Conclusion

As shown above, the non-linear behavior of an antagonistic muscle pair produces
many desirable properties with respect to embodied motor control; properties
which at first could seem surprising, given the complexity of the model. It allows
for independent control of position and stiffness; its flexibility allows for a con-
tinuum of control strategies differing in various kinematic and kinetic features;
it creates ‘nice’ search spaces for the optimization of control signals; non-linear
damping allows for fast movements with precise breaking; it can produce effi-
cient movements by using only phasic activation; and simple control signals can
create complex but well behaved trajectories. In addition, the global dynamics
of the system can be tuned with only few parameters that describe the shape
of the muscle’s length and velocity dependence as well as their geometry. We
thus argue that versions of the Hill-type or similar muscle models strike an ideal
‘ecological balance’ [8]. Robots equipped with similar actuators should be able
to trade an increase in the complexity of morphology for a reduction in the com-
plexity of the control system. Several attempts exist at building such muscle-like
actuators for robots and prostheses. Most prominent are series elastic actuators
[9], McKibben-style pneumatic actuators [10] and electroactive polymer actua-
tors [1]. More research seems necessary though to achieve the right combination
of viscoelastic properties in an efficient package applicable to multiarticulate
robots.

The fact that hill-type muscle models are generic in the sense of needing only
few parameters to implement particular types of muscles make them particularly
interesting for evolutionary robotics. In fact, if one is looking at more complex
motor behaviors such as multijoint reaching or walking, it is not only possible
but necessary to co-evolve or co-adapt muscle morphology, skeletal geometry
and the control system. Only then is it possible to tune the system’s dynamics
to be appropriate for a given task.

We’d like to emphasize that the experiments presented herein are not meant
to be models of how animals actually control their movements. In particular,
we do not make any claim about the relative importance of the brain or the
musculoskeletal system in motor control, but emphasize that the latter exhibits
intrinsic dynamics which, unless entirely suppressed by the brain, do play a
role in natural movements. The forms of control have been chosen only for their
simplicity to show the dynamics of the muscle model in the most general context.
However, in ongoing work we are concerned with neural control in more realistic
tasks. To this end we are evolving dynamical neural ‘reflex’ networks that try to
exploit the natural dynamics of the musculoskeletal system in order to simplify
control as seen from higher levels. It can be shown that the right muscle model
coupled to a controller in a closed loop can function as a source of force, as
a spring, a servo of position or velocity or combinations of these. We believe
that well-designed neuro-musculoskeletal systems enable higher levels to set up
the right global dynamics for the task at hand, effectively choosing between
different modes of control, such that subsequent control signals can make use of
the particularities of task, environment and body.
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Abstract. In this paper, we purpose to reveal effective design components for 
morphological functionality and reality constraints by analyzing simple loco-
motors in both virtual and real worlds. Firstly, we assumed that human experi-
ences and techniques contained important design components so that we con-
ducted edutainment course to acquire locomotors, which were heuristically de-
signed. Then, we analyzed two remarkable locomotors in both virtual and real 
worlds. As a result, we have known that symmetrical design played an impor-
tant role on dynamically stable locomotion because its design enabled to exploit 
its own dynamics as passive dynamics and also widened its controllability. Ad-
dition to it, the locomotors in both virtual and real worlds demonstrated similar 
characteristics. 

1   Introduction 

In the field of conventional legged robotics, implementation of control is main focus 
for achieving dynamically stable locomotion so that many types of gait control and 
balance control are theorized and applied to legged robots [6]. Common characteris-
tics of these legged robots are made of rectangular-solid materials in mechanism, 
actuated with many high-drive electrical motors, and controlled with high-speed in-
formation processing. Then, with these configurations, these legged robots are able to 
keep its balance (balance control) and their gaits are basically generated in the same 
methodology as robot arm manipulators: stance legs are regarded fixed links and 
swing legs are regarded as effecters during one step motion. By iteration of the ma-
nipulation, the robots achieve legged locomotion. 

Meanwhile, there have been designed dynamically stable legged robots with bio-
logically inspired knowledge such as anatomy, physiology, and neuroscience [1,9]. 
For example, passive dynamic walker [3] is a robot, which does not have  any motors 
and any sensors but well-designed for bipedal locomotion - straight legs, curved feet 
with passive hip joints and latch knee joints as human body components. Then, the 
robot achieves dynamically stable bipedal locomotion on a specific incline by driving 
force from not motor actuation but gravity through its own morphology. Thus, it is 
known that morphological characteristics help to exploit its own physics and contrib-
ute achieving dynamically stable locomotion and it can be regarded as morphological 
functionality in embodied artificial intelligence [5].  
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Especially in evolutionary robotics, there have been some works to reveal morpho-
logical functionality. The researchers assumed that morphological functionality is 
emerged by interdependence between morphology and controller and, then, use simu-
lations of evolutionary processes to perform coupled optimization of both the mor-
phologies and controllers of simulated robots (evolutionary designs). One of the most 
successful of these applications was the work of Sims [7], in which artificial creatures 
were automatically designed in a three-dimensional physics simulation. The simula-
tion generated a variety of locomotive creatures with unique morphologies and gaits, 
some of which have no analogy in the biological world. This suggested that the inter-
dependence between morphology and control plays an important role in dynamically 
stable locomotion.  

However, evolutionary design suffers from unknown design components: coupled 
evolution is conducted only in simulation and how to best represent morphology, 
controller, environment, and fitness function is not clear yet; differences between 
virtual and real worlds have not been shortened so that results in virtual world are not 
always transferable to the real world, especially in the case of dynamic systems, al-
though work is focusing on this problem. Therefore, the work of Lipson [4], who 
demonstrated automated manufacture of evolved simulated robots, has not focused on 
dynamical stability and, then, the evolutionary design system including reality con-
strain generated only static locomotion. Thus, designing reality constrain should be 
important factor to design dynamical stable locomotion in real world. 

Which/What Reality Constraints are Effec-

Evolutionary 
Design 

Dynamic Stable  
Locomotion in real world 

Design Components
- Morphology 
- Controller 
- Environment 
- Fitness Function ?

 

Fig. 1. Conceptual figure of evolutionary process. We have not known design components to 
achieve dynamic locomotion in real world. 

In our research, we purpose to implement evolutionary design system, which 
generates legged locomotors (locomotive robots), in three dimensional simulation 
and those locomotors should have morphological functionality to achieve dynami-
cally stable locomotion and, moreover, be effective design to real world. Therefore, 
in this paper, we mainly focus to reveal effective design components to reality con-
straints as shown in fig.1. We propose to extract design components from human 
experiences and techniques (heuristic design) and evaluate those design components 
in order to reduce reality gaps in both virtual and real world. Concretely, we con-
ducted edutainment (educational entertainment) course to acquire variety of unique 
locomotors (diverse heuristic design) and analyzed two remarkable locomotors in 
both virtual and real world, in terms of morphological functionality and reality 
constraints.  
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Firstly, we explain our edutainment. Then, we investigate morphology and control-
ler of two-link models on locomotion, which are designed in the edutainment course, 
in three-dimensional simulation. Finally, we conclude this paper. 

2   Robot Edutainment as Diverse Heuristic Design 

We conducted robot edutainment course to acquire variety of unique locomotors (di-
verse heuristic design) for the purpose of investigation of design components on those 
locomotors. This robot edutainment course is conducted for 20 students in master 
course at engineering department and aimed at teaching importance of morphological 
functionality. Main characteristic of this course is that students are able to design both 
mechanism and controller of robots. So, students designed their own locomotors in 
rapid proto-typing method and implement its control algorithm based on sample pro-
grams, which we provided. 

    
   (a)          (b)  

Fig. 2. Edutainment tools. (a) controller (b) plastic-bottle robot arm. 

2.1   Electric Circuit: Simple Oscillation Controller 

Electric circuit Controllers are built on microchip H8/3664 (16MHz) and function to 
control three RC-servo motors, to read two light sensors and two touch sensors, to 
communicate with a computer through serial port (fig.3). The following oscillation 
algorithm for RC servo motors is downloaded as sample program: motor axis moves to 
two different angle-position alternately at an certain cycle. We instructed students to 
modify the angle-positions and the cycle to their own locomotors. The students could 
also use light detect sensor, however, we do not describe the sensor in this paper. 

   

Fig. 3. Robot Controller (left) and RC servo motor (right) 
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Table 1. Specification of Standard RC Servo Motor GWS S03T/2B 

 Torque Speed Spec. 
6.0V 8.0kg-cm 0.27sec/60° 

Weight 46 g 
Size 39.5 × 20.0 × 39.6mm 

2.2   Rapid Proto-typing Method: Plastic Bottles Based Robots 

In the robot edutainment course, we applied rapid proto-typing method: plastic bottles 
are used as body parts, RC-servo motors as actuated joints, and those are connected 
with hot glue. The advantage of this method is easy-assembling, easy-modifying, and 
economizing machining time so that students are able to build robots without any 
technical difficulties. As disadvantage, those robots do not move precisely comparing 
to metal materials. However, it is enough to realize desired behaviors so that we apply 
this method to build proto-type robots.  

 
         (a)   (b)        (c)  

Fig. 4. Material for robot structure. (a) plastic bottle (b) hot glue gun (c) example of connection 
between plastic bottles and RC servo motor. 

2.3   1 Meter Race for Evaluation of Morphological Functionality 

This robot edutainment course purposes to design locomotors to exploit its own dynam-
ics through morphology as passive dynamic walkers. Therefore, students are allowed to 
use only one or two RC servo-motors as design condition and implement autonomous 
control program freely to design robots. Moreover, all the locomotors are measured time 
for 1 meter forward locomotion (fig.5) to evaluate their locomotion ability because we 
assumed that faster locomotors exploit more morphological functionalities. 

 
Fig. 5. Competition regulation. Locomotors, which are designed by students, travel 1 meter and 
traveling time is recoded. 
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2.4   Results: Locomotors Designed by Students 

Locomotors designed by students as shown in fig.6, were qualitatively categorized 
into three types at the criteria of locomotion pattern: shuffling, kicking-ground, and 
falling-over. Shuffling type moved forward by a high-frequently motor oscillation - 
approximately 4Hz. We assumed that the locomotion is generated by friction forces at 
contact points. Kicking Ground (KG) type moved forward by directly kicking the 
ground with its rear leg. Falling-Over (FO) type moved forward by falling over after 
its fore leg was lifted up. In short, the FO type changes its body shape and, then, ex-
ploits gravity to fall over to forward. 

Table 2 indicates the results of 1 meter race. The shuffling type moved much 
slower than other types and was difficult to move straight forward so that they nor-
mally could not reach the goal. Meanwhile, the best KG type and FO type reached 1 
meter at approximately 10 seconds (fig.7). As for morphological functionality, we 
assumed that the shuffling type contacted the ground all the time and its crawling 
locomotion was interfered by its floor condition. Meanwhile, the KG and FO types 
have legged morphology that utilize actuation force to driving force more efficiently 
than the shuffling time (we do describe on the KG and FO type in next section). 

 

Fig. 6. Locomotors designed by students 

Table 2. Ranking of locomotors designed by students 

Ranking Traveling Time for 1 meter Locomotion Type 
1 7.4 sec Kicking Ground 
2 8.1 sec Falling Over (Legged) 
3 11.0 sec Kicking Ground (Legged) 
4 90 sec Falling Over 
5 - 20 More than 5 min  / No goal Others 

3   Investigation of Two Remarkable Locomotors in Real World 

In this section, we analyze on locomotion characteristic of two remarkable locomotors 
as shown in fig.7, which acquired in the robot edutainment course as heuristic design. 
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In order to investigate effective design components for morphological functionality 
and reality constraints, we analyze the locomotors in both virtual and world. Firstly, 
we observed their ground contact information during locomotion in real world, which 
represents their gaits. Secondly, those robots are modeled and simulated in three-
dimensional world and, then, their ground reaction force and center of gravity on z 
axis, which represents characteristic of rhythmic movement, are recorded and  
analyzed. 

Length*Width*Height
=0.30m*0.25m*0.20m
Weight = 3 kg

Length*Width*Height
=0.30m*0.25m*0.20m
Weight = 3 kg    

Length*Width*Height
=0.35m*0.30m*0.25m
Weight = 3.5 kg

Length*Width*Height
=0.35m*0.30m*0.25m
Weight = 3.5 kg  

 (a) KG type    (b) FO type 

Fig. 7. Two remarkable locomotors. (a) kicking ground type (b) falling over type. 

3.1   Analysis of Locomotors in Real World 

In the previous section, we categorized that the KG type moves forward by kicking 
the ground (fig.8a) and the FO type moves forward by falling-over (fig.8b).  

   
  (a) KG type    (b) FO type 

Fig. 8. Locomotion scene of two locomotors. (a) kicking ground type (b) falling over type. 

So, we quantitatively analyzed the locomotion by recording ground contact in-
formation. As results, we have macroscopically seen similar gaits between the KG 
type and the FO type: their rear legs were all the time on the ground and their fore 
legs are taken off the ground for approximately 0.5 second when the types opened 
their legs (fig.9a). However, they have microscopically indicated difference charac-
teristics. In the case of the KG type, the fore leg took the ground off approx. 0.2 sec 
before and approx. 0.2 sec after the KG type started opening its legs (fig.9b). We 
assumed that the center of gravity (CoG) should be on the rear leg at the time for 
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0.2 sec and, then, the rear leg kick the ground for 0.2 sec. On the contrary, in the 
case of the FO type, the fore leg took the ground off 0.1 sec after the legs started 
opening. It seems that the fore leg was lifted up for 0.1 sec and, then, the rear leg 
fell over forward for 0.2 sec. Thus, the ground contact information implies their 
locomotive patterns. However, with the analysis of the real robots, it is difficult to 
reveal internal states such as ground reaction force, which possibly indicates exploi-
tation of its own physics. Therefore, we modeled the KG and FO types for analysis 
of their locomotive patterns. 

    
  (a) KG type    (b) FO type 

Fig. 9. Locomotion gaits of two locomotors. (a) kicking ground type (b) falling over type. 

4   Investigation of Two Remarkable Locomotors in Virtual World 

In this section, we modeled the locomotors and simulated in three-dimensional world 
(implemented with three-dimensional library – Open Dynamic Engine [8]) in order to 
observe their internal states. 

4.1   Analysis of Locomotors on Gaits 

Fig. 10 shows the modeled KG type and FO type in simulation. These simulated 
models are slightly different design from the real locomotors because of simplifica-
tion of analysis and, then, have the same morphological setup: the locomotors are 
made of two links as mechanical parts and one ball as weight of controller unit. In 
short, the two locomotors completely consists of the same properties, however, parts 
assembly is different as shown in fig.10. Moreover, we implement that motors in the 
simulation are actuated at rotational speed /2[rad/s], which is similar to real RC 
servo motors as reality constraints.  

The morphological and control parameters are searched heuristically because these 
are simple models so that it is not necessary to apply evolutionary design to search 
optimal locomotion. Fig.11 shows locomotion scenes of the simulated models, which 
are similar to locomotion patterns of the real locomotors. We observed their ground 
contact information including ground reaction force (GRF). 
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  (a) KG type    (b) FO type
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Mass: 0.5kg at 0.35m on F-leg
Angle: PI/4 rad
F-leg: 0.65*0.1*0.1m, 0.5kg
R-leg: 0.35*0.1*0.1m, 0.5kg  

Angle
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Fig. 10. Simplified locomotor. The locomotors are built with the same morphological parts.  
(a) kicking ground type (b) falling over type. 

   
  (a) KG type    (b) FO type 

Fig. 11. Locomotion scene of two locomotors. (a) kicking ground type (b) falling over type. 

The fig.12 and fig.13 indicates the following states of the KG type: the CoG was 
on the rear leg (GRF at the foreleg gradually decreased and GRF at the rear leg 
gradually increased), the rear leg started kicking the ground (GRF at the rear leg 
shows its peak and decreased and, then, GRF at the rear leg is zero for 0.1 sec), stayed 
in the air (GRF at both legs are zero for 0.05 sec), the fore leg landed (GRF at the fore 
leg is peak) for one locomotion cycle.  Meanwhile, the FO type is similar to crawling 
because the rear leg keeps relatively constant GRF and even the fore leg keeps con-
stant GRF except its landing peak. 

  
  (a) KG type    (b) FO type 

Fig. 12. Gait and ground reaction force of two locomotors. (a) kicking ground type (b) falling 
over type. 
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4.2   Analysis of Locomotors on Plot Phase of CoG-Z 

Fig.13 and fig.14 shows plot phase of center of gravity on z axis (CoG-Z) of two 
locomotors. The difference is that fig.13 is actuated at /2[rad/s] rotational speed, 
fig.14 is  [rad/s] rotational speed. The remarkable points are that the faster actuation 
forms more smooth limit cycle, which means less poles and become hemi-sphere 
shape. In other words, the faster actuation realizes more dynamical stability. Thus, the 
characteristics indicate the rotational speed relates to dynamical stability. 

  
  (a) KG type    (b) FO type 

Fig. 13. Phase plot of center of gravity on z axis (CoG-Z) of two locomotors. (a) kicking 
ground type (b) falling over type. 

 
  (a) KG type    (b) FO type 

Fig. 14. Phase plot of center of gravity on z axis (CoG-Z) of two locomotors in the case of 
applying double rotational speed. (a) kicking ground type (b) falling over type. 

4.3   Analysis of Locomotors on Control Parameters and Distance Traveled 

So far, we have shown internal states during locomotion. In this section, we purpose 
to reveal their morphological characteristics so that we have measured distance trav-
eled forward at some ranges in amplitude and frequency as control parameters. Fig.15 
shows results: both types showed similar wave-type solution space. This is because 
the maximum speed of motors is /2 [rad/sec] and, for that reason, the rotational di-
rection switches before the motor reaches the desired angle-position. Therefore, the 
area at less than 1.5 [sec] on cycle axis is independent from amplitude. As for the best 
control parameters, both types traveled forward the most at approx. 0.5 [sec] on cycle 
axis, traveled forward most. Meanwhile, the area where is more than 2 [sec]  on cycle 
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axis and more than 3 /8 [rad] on amplitude axis, shows different characteristic. This 
indicates that the KO type achieves moving forward by direct kicking the ground, 
therefore, it can kick the ground at both fast and slow cycle. Oppositely, the FO type 
moves forward by lifting the fore leg up so that the lift-up motion requires fast cycle 
because the fore leg is not lifted up and it does not move forward if the cycle is slow. 
Thus, the KG type morphologically achieves static locomotion and has more control-
lability than the FO type. Meanwhile, the FO type requires morphologically requires 
appropriate speed to achieve locomotion. 

    
 (a) KG type    (b) FO type 

Fig. 15. Control parameters space to two locomotors. (a) kicking ground type (b) falling over 
type. 

5   Investigation of Same Length Type Locomotor 

In the previous section, we analyzed two types of two-link locomotors. However as 
for two-link model, there is another type, which is the same length (SL) type. In order 
to cover all the two-link morphology, we also investigated the SL type. 

5.1   Analysis of SL Type Locomotor on Plot Phase of CoG-Z and Gait 

Firstly, we have measured distance traveled forward of the SL type at some ranges in 
amplitude and frequency. As a result, it indicated hill type, which is completely dif-
ferent solution space from the KG and FO type. Moreover, the SL traveled forward 5 
meters at one peak on the solution space where is 1 [sec] on cycle axis and /4 [rad] 
on amplitude axis. The remarkable point is that the locomotion speed is slower than 
KG and FO type but it achieved longer distance traveled. We qualitatively assume 
that the SL type exploits pitch oscillation as passive dynamics. Addition to it, it seems 
that the SL type has better controllability than other types because the hill-type indi-
cates widely stable control area. 

Secondly, we have observed its GRF at remarkable control parameters. Then, the 
SL type has shown symmetrical characteristics in its gaits at a specific control pa-
rameters as shown in fig17b: the locomotor starts iteration of switching swing leg and 
support leg at one spot in simulation and its GRF is similar to M letter shape, which 
represents human walking gait [2]. We assume that this locomotion is close to bipedal 
locomotion and utilizing pitching oscillation indicates exploiting its own physics 
through morphology. It seems that three-link morphology can control its pitching 
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oscillation better so that the three link locomotors should be more appropriate design 
for passive dynamics. 

Therefore, it clarifies that the interdependence between symmetrical design as 
morphology and appropriate control parameters achieves smooth transition as dy-
namical locomotion and better locomotion ability. We also design plastic-bottle robot 
in real world as shown in fig.18. As a result, the locomotor showed the pitching oscil-
lation movement similar to the result of simulation. 

Rear Leg Fore Leg

Motor

Mass: 0.5kg 
at 0.05m behind motor

F-leg: 0.50*0.1*0.1m, 0.5kg
R-leg: 0.50*0.1*0.1m, 0.5kg  

Angle
Rear Leg Fore Leg

Motor

Mass: 0.5kg 
at 0.05m behind motor

F-leg: 0.50*0.1*0.1m, 0.5kg
R-leg: 0.50*0.1*0.1m, 0.5kg  

Angle

 

 

Fig. 16. Qualitative analysis on locomotion pattern of two locomotors. (a) kicking ground type 
(b) falling over type. 

 

Fig. 17. Control parameters space to SL type locomotor 

   
  (a) Gait A type    (b) Gait B type 

Fig. 18. Gait and ground reaction force of two locomotors. (a) Gait A type (b) Gait B tye. 

Gait A Gait B
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Fig. 19. Locomotion scene and ground contact information of the SL type in real world. (a) 
Locomotion scene (b) Ground contact information. 

6   Conclusion 

In this paper, we investigated reality constraints and morphological functionality for 
dynamically stable locomotion. At first, variety of locomotors was heuristically de-
signed in edutainment course and two remarkable locomotors were analyzed in both 
virtual and real worlds. As results, the modeled locomotors have shown two different 
gaits: hopping and crawling. Furthermore, we have designed the third locomotor: the 
locomotor exploits its own dynamics - pitching oscillation (passive dynamics); its 
ground reaction force is similar to M letter shape, which is characterized human dy-
namic walking; the symmetrical design realizes better smooth controllability because 
of hill-type control solution space; the locomotors in virtual and real worlds demon-
strates similar locomotion characteristic. Thus, we found design components for real-
ity constraints and morphological functionality for dynamic stable locomotion. 
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Abstract. In this paper we present a distributed control architecture for a simu-
lated hexapod robot with twelve degrees of freedom consisting of six homoge-
neous neural modules controlling the six corresponding legs that only have ac-
cess to local sensory information and that coordinate by exchanging signals that 
diffuse in space like gaseous neuro-trasmitters. The free parameters of the neu-
ral modules are evolved and are selected on the basis of the distance travelled 
by the robot. Obtained results indicate how the six neural controllers are able to 
coordinate so to produce an effective walking behaviour and to adapt on the fly 
by selecting the gait that is most appropriate to the current robot/environmental 
circumstances. The analysis of the evolved neural controllers indicates that the 
six neural controllers synchronize and converge on an appropriate gait on the 
basis of extremely simple control mechanisms and that the effects of the physi-
cal interaction with the environment are exploited to coordinate and to converge 
on a tripod or tetrapod gait on the basis of the current circumstances. 

1   Introduction 

In this paper we describe a method for developing the control system for a simulated 
hexapod robot with twelve degrees of freedom that has to exhibit a walking behav-
iour. The architecture proposed is fully distributed and consists of six identical neural 
modules in which each module is located in the corresponding leg and in which neu-
ral modules coordinate by producing and detecting signals that diffuse in space like 
gaseous neuro-trasmitters.  

This implies that as in other related models [1],[2] leg coordination does not arise 
from a centralized gait generator, but rather from the interactions between the neural 
modules controlling the corresponding legs. More precisely, leg coordination is medi-
ated by the physical robot/environment interaction and by the signals produced by 
neural modules located nearby. However, contrary to the other models referenced 
above, each neural module influences and is influenced by the neural modules located 
nearby in the same way (i.e. the control system is constituted by a set of identical neu-
ral modules). 

In more general terms, we assume that the control system of our robot is composed 
by a number of homogeneous neural modules that, each separately, exhibit a limit cy-
cle (i.e. a periodic behaviour). Our problem, therefore, is that to define the rules that 
determine the conditions in which signals are produced and the way in which detected 
signals affect nearby neural modules so that the resulting closed loop system exhibits 
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a coordinated limit cycle behaviour that allow the robot to walk effectively (for a re-
lated approach see [3]). This problem have been attacked by using a self-organized 
technique based on artificial evolution [4] in which the free parameters of the neural 
modules are encoded in a population of evolving genotypes, and variations introduced 
through genetic operators are retained or discarded on the basis of the overall  
behaviour exhibited by the neural modules embodied in the robot and tested in the 
environment. 

The goal of this paper is not to understand the biological basis of locomotion 
control in natural organisms but rather to build real-time walking machines. In par-
ticular, we are interested in investigating whether robots that have a modular struc-
ture (i.e. that are constituted by repeated homologous body elements) can exhibit 
coherent and effective behaviour on the basis of modular control systems (i.e. on 
the basis of distributed control system in which repeated parts of the robots body 
are controlled by corresponding repeated control units). Progresses toward this ob-
jective, in fact,  might have a significant impact on robotics with particular refer-
ence to self-reconfigurable robotics [5], [6] and evolutionary robotics techniques 
that allow to co-evolve and co-adapt the robots’ control system and body structure 
[7], [8], [9], [10]. 

2   The Experimental Setup 

In this section we describe the simulated hexapod robot used in the experiments, its 
control system, and the evolutionary algorithm used to set the free parameters of the 
robot’s control system. The characteristics of the simulated robot are identical to that 
described in a previous work [11]. In this paper, however, we present an extended 
version of the control system and new experimental results that show, in particular, 
how evolved robots are able to adapt their gait on the fly on the basis of the current 
circumstances. 

2.1 The Hexapod Robot 

The simulated robot (Fig. 1) consists of a main body (with a length of 20 cm, a width 
of 4 cm, and a height of 1.5 cm) and 6 legs. 

 

Fig. 1. The simulated hexapod robot. The grey circles shown on the bottom-right side of the 
picture indicate the position of the joints, while the grey arrows indicate their rotational axis. 
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Each leg consists of two segments (a “femur” and a “tibia” with a length of 1.5 and 
4.5 cm respectively) and has two motors controlling two corresponding joints (the 
body-femur and the femur-tibia joints). The femur and the body-femur joint allow the 
robot to raise its central body from the ground and to move the tibia up and down. 
The body-femur joint is a motorized hinge joint with rotational axis parallel to the x-
axis that can rotate from - π/16 to + π/16 rad. The femur-tibia joint allows it to move 
the tibia forward or backward. It is a motorized hinge joint that rotates from - π/8 to + 
π/8 rad with respect to its own axis (i.e. an axis  rotated of π/4 rad with respect to yz-
plane). The motors controlling the joints can apply a maximum torque of 0.03Nm at 
maximum speed of 3100 rpm in both directions. For each leg, two simulated position 
sensors detect the current angular position of the corresponding joint. The total weight 
of the simulated robot is 387g. Gravity force is –9.8 m/sec2. The environment consists 
of a flat surface. The robot and the robot/environment interaction were simulated by 
using the VortexTM toolkit (Critical Mass Labs, Canada), that allows to realistically 
simulate the dynamics and collisions of rigid bodies in 3D. 

2.2   The Control System 

The robot is controlled by a distributed control system consisting of six homogeneous 
neural modules, located at the junction between the main body and the legs, that con-
trol the six corresponding legs (Fig. 2).  

 

Fig. 2. The robot and its control system consisting of 6 neural modules. L1, L2, and L3 indicate 
the front, middle and rear leg located on the left side of the robot. R1, R2, and R3 indicate the 
front, middle and rear leg located on the right side of the robot. The grey circle represent a pos-
sible range of diffusion of the signal produced by one neural module (i.e. the neural module 
controlling the L3 leg). 

The six neural modules are identical (i.e. have the same architecture and the same 
free parameters) and have access to local sensory information only. More specifically, 
each neural module has access to the current angular position and controls the fre-
quency of oscillation of the two joints of the corresponding leg. Neural modules 
communicate between themselves by producing signals and by detecting the signals 
produced by other neural controllers located within a given Euclidean distance. Sig-
nals thus are similar to gaseous neuro-transmitters such as nitric oxide that are re-
leased by neurons and affect other neurons located nearby in a diffuse manner (see 
[12], [13], [14]). Signal transmission is instantaneous. 
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Each of the twelve motors neurons produces a sinusoidal oscillatory movement 
with a variable frequency of the corresponding joint, within the joint’s limits. More 
specifically, the current desired position of a corresponding joint is computed accord-
ing to the following equation:  

pos(t) = sin (V(t) ⋅ t + ϕ) (1) 

where pos(t) indicates the desired angular position of the joint at time t, V(t) (that 
ranges between 7 and 14 Hz) indicates the current frequency of the oscillator, and ϕ 
indicates the starting position of the joint. The output of the neurons is normalized 
within the range of movement of the corresponding joint and is used to encode the de-
sired position of the corresponding joint. More precisely, motors are activated so as to 
reach a speed proportional to the difference between the current and the desired posi-
tion of the joint (maximum motor speed is 3100 rpm, maximum torque is 0.03Nm). 
We decided to use an high frequency range ([7, 14] Hz) and to update the state of the 
sensors and motors at an high rate (every 1.5 ms) to avoid instabilities arising from 
the calculation of the dynamic of the robot/environmental interaction and to reduce 
the time required to test individuals’ behaviour in simulation.   

Each neural module has six input neurons directly connected to six output neurons 
(Fig. 3). 

 

Fig. 3. The topology of each neural module. The six input neurons indicated in the bottom part 
of the picture encode the current angular position of the two joints of a leg and signal A, B, C 
and D (see text). The six output neurons are indicated in the top part of the picture. The first 
two modulate the frequency of oscillation of the two corresponding motorized joints and the 
others four determine whether or not the signal A, B, C and D are produced.  

The input neurons encode the current angular positions of the two joints of the cor-
responding leg (normalized in the range [0.0, 1.0]) and whether signals, produced by 
other neural modules, are detected. Each neural module can produce four different 
signals (A, B, C and D) that diffuse and can be detected up to a certain distance (Da, 
Db, Dc and Dd,, in the case of signal A, B, C and D, respectively). The intensity of the 
detected signal is linearly dependent from the distance of emitting neural module, and 
vary within 0 (when distance from emitting neuron is D) and 1.0 (when distance from 
emitting neuron is 0). Furthermore, detected signal is linearly proportional to the 
number of neural modules that are currently producing the corresponding signal lo-
cated within the corresponding maximum diffusion distance.  

The activation of output neurons is computed by using a standard logistic function. 
The first two output neurons determine how the frequency of oscillation of the two 
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corresponding joints varies. More specifically, each time step (i.e. each 1.5ms), the 
frequency of oscillation of a joint can vary by an amount whose range is [-1.4Hz, 
+1.4Hz] according to the following equation: 
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Where Val indicates the initial value of frequency of a joint that is randomly set 
within the range, Out indicates the output of the corresponding motor neuron, and 
V(t) indicates the current frequency, V(t-1) indicates the frequency at the previous 
time step. Frequency is bounded in the range [7Hz, 14Hz], i.e. variations that exceed 
the limits are discarded. This means that each leg oscillates at a given frequency 
(within a range) and that each neural module can accelerate or decelerate the fre-
quency of oscillation of the corresponding leg by a fixed amount each time step. The 
other four output neurons determine whether or not signal A, B, C and D are pro-
duced. More specifically, signal A, B, C and D are produced when the output of the 
corresponding output neuron exceeds the corresponding threshold (T

a
, T

b
, T

c
 and T

d
 in 

the case of signal A, B, C and D, respectively). 

2.3   The Evolutionary Algorithm 

The free parameters of the neural modules are evolved through an evolutionary algo-
rithm. Robots were selected for the ability to walk along a straight direction as far as 
possible. Each robot was allowed to "live" for 5 trials, each lasting 3000 ms (i.e. 2000 
time steps of 1.5 ms). The state of the sensor and motor neurons, the torque applied to 
the motors, and the dynamics of robot/environment interaction are updated each time 
step (i.e. each 1.5 ms). At the beginning of each trial: the main body of the robot is 
placed at a height of 3.68 cm with respect to the ground plane (i.e the whole robot 
floats in the air at 0.5 cm from the ground). The initial position of the twelve joints 
and the initial desired velocity of each corresponding motor is set randomly within the 
corresponding range. The fitness of each robot is computed by measuring the Euclid-
ean distance between the initial and final position of the centre of mass of the robot 
during each trial. The total fitness is computed by averaging the distance travelled 
during each trial. 

The initial population consisted of 100 randomly generated genotypes that encoded 
the connection weights and the biases of a neural module, the maximum distance of 
diffusion of the four signals (D

a
, D

b
, D

c
 and D

d
), and the thresholds that determine 

when signals are produced (T
a
, T

b
, T

c
 and T

d
). Each parameter is encoded as real num-

ber. Connection weights and biases, diffusion distances of signals, and thresholds that 
determine signal emission are normalized within the following ranges: [-15.0, +15.0], 
[0.0, 10.0], [0, 1.0], respectively. Each genotype is translated into 6 identical neural 
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modules that are embodied in the robot and evaluated as described above. The 20 best 
genotypes of each generation were allowed to reproduce by generating five copies 
each, with 3% of their genotype value replaced with a new randomly selected value 
(within the corresponding range). The evolutionary process lasted 300 generations 
(i.e. the process of testing, selecting and reproducing robots is iterated 300 times). The 
experiment was replicated 10 times starting from different, randomly generated,  
genotypes.  

3   Obtained Results 

By analysing the results of the evolutionary experiments we observed that  
evolved robots display an ability to walk effectively, in all replications of the ex-
periment. In particular, evolved robots display an ability to quickly coordinate the 
phases and the frequency of oscillation of their twelve motorized joints by converg-
ing toward a tripod gait independently from the initial position of the joints (see 
Fig. 4).  

 

 

Fig. 4. Average distance travelled by the best robot of each replication in a normal and in a 
test condition (grey and black histograms respectively) in which the robot is loaded with an 
additional weight corresponding to 1.5 times the robot’s body weight. Average results for 
100 trials each lasting 3sec. The robots of all replications display a tripod gait when tested in 
a normal condition. In the test condition, the robots of replication S1, S5, S6, S7, and S10 
display a tetrapod gait. The robots of the other replications, instead, by not being able to se-
lect an appropriate gait when loaded with additional weight, display lower performance in 
this condition.  

Surprisingly, we observed that evolved robots generalize their ability to walk in 
situation in which they have to carry a weight equal to 1.5 of robots’ body weight (see 
Fig. 4). Interestingly, in some of the replications, evolved robots converge on a tripod 
gait (when they are not loaded with additional weight) and on tetrapod gait (when 
they are loaded with the additional weight, see Fig. 5).  

This implies that evolved robots, as real insects, select a tripod gait in normal con-
ditions and a tetrapod gait when they are loaded with additional weight. 
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Fig. 5. A typical behaviour exhibited by an evolved robot of one of the best replications during 
two trials in which the robot is tested in a normal condition or in a test condition in which it is 
loaded with an additional weight (top and bottom figures, respectively).  At the beginning of 
the trial the position of the joints and frequency of oscillation are randomly initialised within 
limits. The black lines indicate the phases in which the tibia of the corresponding leg touch the 
ground. Legs are labelled with L for left and R for right and numbered from 1 to 3 starting from 
the front of the insect. The horizontal axis indicates time in milliseconds. Gaits remain stable 
after 2400 ms (results not shown for space reasons). Please notice that these pictures do not in-
dicate the trajectories of the robot in space but only the phase in time during which the legs 
touch the ground. 

The ability to converge on a tripod or a tetrapod gait in the two circumstances 
play a functional role since the tripod gait is faster when the weight of the robot is 
not too high but is ineffective when the robot is loaded with additional weight. In-
deed, as shown in Fig.4, the robots that are not able to switch to a tetrapod gait 
when they are loaded with additional weight display significantly worse  
performance. This can be explained by considering that in the tripod and in the 
tetrapod gait robots are supported by at least three or four legs, respectively. In the 
tetrapod gait therefore, the robot can exploit the power produced by four legs  
rather than three legs at the same time. In the tripod gait, in fact, the front and rear 
leg of one side and the middle leg of the other side perform they swing  
movement at the same time and the three other legs are in anti-phase. In the 
tetrapod gait, instead, a “wave” of swing movements passes along the body from 
rear to front.  

The dynamical behaviour produced by the walking robots does not only result from 
the interaction between the six neural modules that control the six corresponding legs 
but also from the dynamics originating from the interaction between the robot body 
and the environment. Indeed, the way in which the actual position of the joints varies 
in time (Fig. 7) is influenced not only from the variation of the desired joint position 
(Fig. 6) but also from the forces arising from the collision between the legs and the 
ground. These forces are influenced by several factors such us the actual orientation 
of the robot with respect to the ground, the total weight of the robot, the current veloc-
ity of the robot, the characteristics of the ground, etc. 
 



120 M. Mazzapioda and S. Nolfi 

 

 

Fig. 6. Desired angular position of the twelve joints during the same trials shown in Figure 5 
(top: data for the test in a normal condition, bottom: data for the test with additional weight). 
Each line indicates the desired angular position of the joints of the leg indicated with a dark line 
in the right part of the Figure. Full lines and dotted lines indicate the position of the body-femur 
and femur-tibia joints, respectively. High values indicate positions in which the femur is ele-
vated with respect to the main body and positions in which the tibia is oriented toward the front 
of the robot.  

The results described above refer to robots that have been evolved in a normal 
condition (in which they were never loaded with additional weight) and have been 
tested in a normal and over-weight condition (in which in half of the trials they were 
loaded with additional weight and in half of the trials they were not). By evolving and 
testing the robots in a normal and over-weighted condition we observed that evolved 
robots displayed lower performance on the average (with a loss of about 20% with re-
spect to the results shown above). Moreover, in this new experiment evolved robots 
always displayed tetrapod gaits and were not able to adapt their gait on the fly so to 
select a tripod gait when tested in normal conditions. This results can be explained by 
considering that in the latter experiment evolving robot converge on a local minima, 
i.e. a simple solution that allow them to reach good but sub-optimal performance on 
the basis of simple control mechanisms. This hypothesis is also supported by the 
analysis reported in the next sections that suggest how tetrapod gait tend to easily 
emerge as a result of the effects of the collisions with the ground without necessarily 
requiring control mechanisms that allow the legs to effectively coordinate and syn-
chronize through signals. 
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Fig. 7. Actual angular position of the twelve joints during the same trials shown in Fig. 5 and 6 
(top: data for the test in a normal condition, bottom: data for the test with additional weight). 
Each line indicates the actual position of the joints of the leg indicated with a dark line in the 
right part of the Figure. Full lines and dotted lines indicate the position of the body-femur and 
femur-tibia joints, respectively. High values indicate positions in which the femur is elevated 
with respect to the main body and positions in which the tibia is oriented toward the front of the 
robot. 

In another replication of the experiment we verified that the role of space in modu-
lating the effect of signals was really necessary to achieve effective results. More pre-
cisely, by running a replication of the experiment in which the signals produced by 
each module affected all other modules in the same way (independently from the dis-
tance between modules) we observed that evolved robots displayed significantly 
lower performance and were never able to converge on stable gaits.  

4   Analysis of the Mechanisms That Lead to Leg Coordination and 
Gait Selection 

To understand the mechanisms that lead to the synchronization of the twelve joints, 
we analysed the behaviour of each neural module and the interaction between differ-
ent neural modules mediated by signals (i.e. the conditions in which signals are pro-
duced and the effects of signals detected). Here we report the analysis conducted in 
the case of the evolved individuals already described in Figure 5-7. The analysis con-
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ducted on individuals of other replications showed qualitatively similar, although in 
some case slightly more complex, strategies. We will first described how the six legs 
converge toward a tripod gait in the normal condition and then how they converge on 
a tetrapod gait when the robot is loaded with additional weight. 

As could be expected, the synchronization between the two joints of each leg is 
achieved within each single neural controller. More specifically: (a) the body-femur 
joint decelerates when it is elevated and the tibia is oriented toward the rear, and (b) 
the femur-tibia joint decelerates when the body-femur joint is lowered and the tibia is 
oriented toward the rear of the robot. Deceleration results both as the effect of output 
of the corresponding neural module and as a result of the effect of collisions. The 
combination of these two mechanisms leads to a stable state, that correspond to stable 
phase observed after coordination, in which the protraction movement of the tibia is 
performed when the body-femur joint is elevated the retraction movement is per-
formed when the body-femur joint is lowered.   

4.1   Analysis of the Mechanisms That Lead to a Tripod Gait 

Although neural modules can produce and detect up to four different signals, the 
evolved individual shown in Fig. 5-7 only produces one of the four signals: signal B. 
In the other replications of the experiment, evolved robots use 1 or 2 signals. Interest-
ing however, significantly lower performance have been observed in other experi-
ments in which neural modules were allowed to produce and detect only two signals 
(result not shown). This suggest that the possibility of using many signals plays a cru-
cial role during the first evolutionary phases despite only 1-2 signals are exploited by 
evolved individuals.  

Since the maximum distance of diffusion of signals is 7.81 cm, in the case of the 
robot shown in Fig. 5-7, the signal produced by each leg affects the contra-lateral leg 
of the same segment, the previous and succeeding legs of the same segment, and the 
previous and succeeding legs of the contra-lateral segment (when present). Since the 
amount of the signal detected is proportional to the distance (4.0cm, 6.6cm, and 
7.71cm respectively) the impact of produced signal is larger on the contra-lateral leg 
of the same segment, smaller but still significant on the previous and succeeding legs 
of the same segment, and almost negligible on the previous and succeeding legs of the 
contra-lateral segment. If we ignore the negligible effect on previous and succeeding 
legs of the contra-lateral segment, this means that the signal produced by a leg of one 
group ([L1,L3,R2] or [R1,R3,L2]) affects only the legs of the other group that should 
be in anti-phase in a tripod gait. The legs that are affected by a signal are 2 out of 3 
legs in the case of legs [L1,L3,R1,R3] and 3 out of 3 legs in the case of legs [L2,R2]. 

To explain how the six legs coordinate we should explain why uncoordinated states 
are unstable and lead to coordinated phases (through relative acceleration/deceleration 
of the joints) and why coordinated states are stable. 

The latter aspect can be explained by considering that, during coordinated phases, 
legs belonging to the two groups (A and B) are in phase within the group and in anti-
phase between groups. Legs of group A produces a signal when their tibia are ori-
ented toward the rear and their femurs are elevated (i.e. at the starting of the protrac-
tion phase) and they reduce their velocity only when their tibia are oriented toward 
the rear and they detect a signal produced by legs of group B. Since the legs of the 
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two groups are in anti-phase and the signals are produced in an alternate way by the 
legs of the two groups, in coordinated phases signals do not produce accelera-
tion/deceleration effects. 

To explain the former aspect (i.e. why uncoordinated phases are instable) let us 
consider the case in which the legs of groups A and B, during a retraction phase, have 
both their tibia oriented toward the rear but the legs of group A are slightly advanced 
with respect to the legs of group B. Since the interval in which legs emit the signal is 
larger than the interval in which the legs decelerate when they detect a signal, the de-
celeration effect of the legs of the group A on the legs of the group B is longer than 
viceversa. This implies that phase distance between the legs of the two groups tend to 
increase when they are in phase or almost in phase until the legs of the two groups 
reach the stable state described in the previous paragraph. 

4.2   Analysis of the Mechanisms That Lead to a Tetrapod Gait 

To understand the mechanisms that allow robots to switch from a tripod to a tetrapod 
gait when loaded with additional weight we should consider that the additional weight 
increases the intensity of friction in particular on the femur joints that are no longer 
able to reach their extreme posterior position (Fig. 7, bottom). Since legs emit the sig-
nal when the femur is elevated, this implies that the overall speed of the legs tend to 
decrease due to the fact that signals are produced for a longer time period.  

Another factor to be considered is that when the body of the robot is not perfectly 
aligned with respect to the ground plane, different legs are subjected to stronger of 
weaker friction forces. For example, when the body of the robot is inclined toward the 
front, with respect to the rostro-caudal axis, the frontal legs are subjected to a stronger 
friction and, as a consequence, these legs produce signals for a longer time period.  

The legs that are particularly stressed (due to current inclination of the body and to 
the fact that are performing a retraction movement) tend to slow down nearby legs 
that are also performing a retraction movement. This implies that legs that are under 
stress tend to recruit to their phase nearby legs. The final result is that the legs of the 
same side and of adjacent segments do not move in perfect anti-phase, as in the tripod 
gait, but with a partially overlapping phase. 

5   Conclusions 

In this paper we present a distributed control architecture for a simulated hexapod ro-
bot with twelve degrees of freedom consisting of six homogeneous neural modules 
controlling the six corresponding legs that only have access to local sensory informa-
tion and that interact by producing and detecting signals that diffuse in space.  

The free parameters of the homogeneous neural modules, that regulate the fre-
quency of oscillation of the corresponding leg and the signals that are emitted on the 
basis of the current position of the leg and of the signals detected have been set 
through an evolutionary method in which variation of the free parameters are retained 
or discarded on the basis of the global behavior exhibited by the robot in the environ-
ment. This method allows evolving robots to select solutions that exploit properties 
emerging from the interaction between the neural modules and between the robot and 
the environment.   
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The analysis of the evolved neural controllers indicates that the six homogeneous 
neural controllers converge on an appropriate gait on the basis of extremely simple 
control mechanisms. In some of the replications, in particular, coordination and gait 
selection is achieved on the basis of a single signal. This implies that a single rule 
(that accelerates or decelerates the frequency of oscillation of nearby legs depending 
on the state of the leg that detect the signal) is sufficient to converge on an a stable 
and effective gait.  

Finally, we observed that evolved robots generalize their ability to produce an ef-
fective walking behaviour also when they are loaded with additional weight by dis-
playing an ability to select a tripod or a tetrapod gait in the normal condition and in 
test conditions in which they are loaded with an additional weight, respectively. 
Overall, the obtained results suggest that an hexapod robot can be controlled on the 
basis of fully homogeneous distributed control system in which the interaction be-
tween neural modules is only regulated by the distribution in space.  
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Abstract. Algorithms for control of a six legged insectomorphic robot
able to overcome a sequence of high obstacles are developed. The se-
quence of obstacles includes vertical upright cylindrical column, shelf
with a horizontal supporting plate standing right up to the column, nar-
row horizontal beam, connecting the shelf with the same another one
on the supporting plate level, vertical right corner (corner of a building).
The robot doesn’t have the special contact equipment in its feet (vacuum
suckers). Developed algorithms were worked-out by means of computer
simulation of robot’s 3D-dynamics.

1 Introduction

The ability of a walker to overcome a terrain with a conglomeration of obstacles
can be formed by teaching the robot to overcome isolated obstacles as well as
reasonable combinations of obstacles step by step. This approach to training
is widely used in a sport like mountain climbing, competitions of firemen and
so on. Some examples of overcoming a terrain with small roughness are given
in [1]. Overcoming isolated obstacles by means of walker’s jump is considered
in [2,3]. Also machines with vacuum suckers are developed intensively as they
allow moving along vertical walls [4,5]. The requirement of static stability is
unimportant for this machines. But they need complicated devices for creating
vacuum. It seems that in some particular cases walking machines could move
along vertical constructions of significant height simply using Coulomb friction
forces as animals does it. Methods for overcoming of vertical column by means of
friction forces are presented in [6]. The design of insectomorphic walker motion
for surmount combination of two obstacles was presented in [9,10]. This combi-
nation consisted of a vertical column, a lofty horizontal shelf edged by a vertical
wall (a precipice), two lofty shelves connected by a narrow horizontal beam. In
this paper the next step of designing robot’s motion is presented for amount its
ability to overcome the combination of the previous obstacles with the vertical
right angle (angle of a building).
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2 Robot’s Kinematics

The robot consist of parallelepiped-shaped rigid body with dimensions a — side
of the body (length), b — front or rear edge (width), c — height. Six identical
insectomorphic legs are symmetrically attached to the sides of the body. Points
in which the legs are attached (legs attachment points) are located uniformly
along the sides. Each leg consists of two links: hip, length l1 and shank, length
l2 (Fig. 1).

Fig. 1. Robot and the sequence of obstacles

The body and the links of the legs have some volume and mass by gravity. The
position of a leg is determined by three joint angles, two of which (αi, βi) defines
the position of a hip relatively to the body, and thrid (γi) — of a shank relatively
to the hip. Thus, the total degrees of freedom of the robot is 24. The joint angles
of the leg numbered i can be found unambiguously of vector ri, directed from
the attachment point to the foot on the assumption of an orientation of the
knee. By default the knee is oriented so that if the foot moves forward the knee
moves forward. Joint angles are determined by the inversion of the following
correlations:

rxi = xi − pxi = [(−1)il1 sinβi − l2 sin(βi + γi)] sin αi,
ryi = yi − pyi = [(−1)il1 sin βi − l2 sin(βi + γi)] cosαi,
rzi = zi − pzi = [(−1)i+1l1 cosβi + l2 cos(βi + γi)],

where (xi, yi, zi) — coordinates of the i-th foot, (pxi, , pyi, pzi) — coordinates
of the i-th attachment point in the body reference frame.

Dimensions of the robot meet the following condition:

a : b : c : l1 : l2 : r = 1 : 0.5 : 0.1 : 0.5 : 0.33 : 0.4,

where r — radius of the column.
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3 Servo-Control System

We assume that robot is equipped with the electromechanical drives in the joints
and has full access to the following information: the geometry of the obstacles,
own position relatively to the obstacles, joint angles and velocities. The pro-
grammed values of the joint angles are generated by the algorithm of control.
The algorithm is not strictly fixed, the information about the actual robot con-
figuration during the motion essentially used. For realization of programmed
values of joint angles the servo-control method is used [7]. Required motion gen-
erates as a servo-constraint, which robot will be aimed to realize by setting the
control voltage on the drives. Transient process for elimination the difference
between the programmed and the actual values of an angles is realized by the
linear regulator:

M = U − ceϕ̇, U0 = −χ1(ϕ −ϕ0)− χ2ϕ̇, U =
{

sign(U0)Umax, |U0| > Umax,
U0, |U0| � Umax,

where M — control joint torque, U — the moment due to voltage on the drive,
χ1 > 0, χ2 > 0 — coefficients of amplification, providing the speed and the
quality of the transient process, ce — coefficient due to the self-induction, ϕ0 =
ϕ0(t) — programmed value of some angle, ϕ, ϕ̇ — its actual value and velocity.

4 Interaction with a Supporting Surface

The robot can contact with a supporting surface only by feet. The model for
reaction of the surface has the following form:

F = Fτ + N, F′ = cn(rT − rC) − dnεvC , N = n(F′ · n),

F′
τ = F′ − N, Fτ =

{
F′

τ , F ′
τ/N < kf ,

F′
τNkf/F ′

τ , F ′
τ/N � kf ,

where Fτ — tangential component of the reaction, N — its normal component,
F′ — elastic-viscous force of interaction, cn — coefficient of the elastic part, rT

— radius-vector of the initial point of interaction with a surface, rC — current
position of a foot during the contact, dn — constant coefficient, ε > 0 — the
quantity of the deepening of a foot into a surface.

5 Motion Design

Legs transfers are realized on the base of the plane step cycles (Fig. 2) [8].
During the transfer the feet are in the planes C′

ix
′
iy

′
i, and

ρi = ri(t1) − ri(t0), C′
ix

′
i||ρi, C′

iy
′
i||ρi × (ei × ρi), rCi = (ri(t0) + ri(t1))/2,

x′
i = −dx cosϕ, y′

i = (dy + ys) sin ϕ − ys, ys = |AD|, ϕ = ϕ(t), x∗ = |CB|,

where ri, ri(t1) — radii-vectors of initial and final foot positions respectively, ei

— unit vector of the orientation of the step cycle plane.
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D ϕ0 C′
i dx x′

i

dy

y′
i

Fig. 2. Step cycle

Described above method for trajectory design is used on the regular gaits. In
irregular cases there are additional smoothing elements near the beginning and
the end of the transfer:

ri(t) = (1 − λ)ri(t0) + λri(t1) + k̂(y′ + ys)
ρi × ((ei/|ei|) × ρi)

|ρi × ((ei/|ei|) × ρi) | ,

where 0 � λ � 1, k̂ — coefficient of stretching. Function λ(t) has the special
form [9].

5.1 Climbing a Vertical Corner

Consider the problem of climbing from a horizontal plane to a vertical two-
sided corner that has the opening angle equal to π/2. Initially the robot is
located on a horizontal plane. The robot has to move to the corner, gripe it
symmetrically relative to the bisector plane of the corner by legs from two sides,
and continue the motion in the upward direction. Then the robot has to climb on
the horizontal top of the corner. The total motion pattern in upward direction
is determined by the gallop gait. Theoretical analysis shows that realization of
such kind of motion is impossible with friction coefficient less than or equal to
1 [10]. Together with this, the results of computer simulation have shown that
the friction coefficient 1.1 turns out to be sufficient for execution of the posed
motion problem.

Let us take an absolute right Cartesian coordinate system Oξηζ. The initial
O placed on a horizontal supporting plane along the bisector of the corner, and
has the distance to the vertex equal to r. The Oζ axis is directed upward. The
bisector plane of the vertical two-sided angle coincides with the plane Oηζ.

For a robot, the algorithm for climbing the corner is performed in several
stages. For the stage with the number n, we take tn−1, and tn are the mo-
ments of its beginning and end, respectively, tn+1 = tn + t∗. Denote by ri(tk) =
(rξi(tk), rηi(tk), rζi(tk)) and pi(tk) = (pξi(tk), pηi(tk), pζi(tk)) the absolute
radii-vectors of the feet and the attachment points with the number i at the
time instance tk. The computation of the programmed joint angles based on
these data is performed as in [9,10].
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At the initial instant t0, the body is oriented along the axis Oη:

pi(t0) =
(
(−1)ib/2, ηf + a�(6 − i)/2�/2, ζf

)
.

Here and in what follows, �. . . � is the integer part of the number in the brackets,
ξf = 0, ηf , ζf are the absolute coordinates of the front point of the body. The legs
are at the initial position of the gallop gait. Let xf be half the width of the robot
track, and x∗ be the length of the supporting part of the step cycle.

The body motion is constructed so that the point of the front side of the body
moves in the upward direction, and the point of the back side is forced to move
horizontally. Let τ = t − t0. Then, the motion law of the front point of the body
for the first, second, and third stages is expressed by the formula ζf = ζf (t0)+ζs,
where

ζs =
{

ζ′s, ζ′s < a,
a, ζ′s � a,

ζ′s = vs
x∗

t∗

⎧⎨⎩
τ, 0 < τ � 1.5t∗,
1.5t∗, 1.5t∗ < τ < 2t∗,
τ − 0.5t∗, τ � 2t∗,

ηs =
√

a2 − ζ2
s .

(1)
Stage 1: (0 � τ < t∗). The dimensionless coefficient vs specifies the velocity

of body motion. In the computations, we took vs = 4.4. Stage 2 corresponds to
the time t∗ � τ < 2t∗. It is clear that, in the second part of this stage, the body
is motionless, and, at the third stage, the motion of the body continues.

The motion law of the points at which the legs are fixed at stages 1–3 has the
form

pi(t) = (pξi(tn−1), pη6(tn−1) + ηs�(6 − i)/2�/2, pζ1 + ζs�(i − 1)/2�/2).

The front legs at the first stage are moved on the supporting two-sided corner,
and the radii–vectors of their supporting points are

ri(t1) = ((−1)ixf , 0, ζ2), ζ2 = ζf (t0) + a − 5x∗, i = 5, 6,

Stage 2: (t∗ � τ < 2t∗). The front side of the body continues to move in the
upward direction as was described above up to the time instant t0 + 1.5t∗. The
back legs are moved in the forward direction on the horizontal plane. Note that

ri(t2) = (rξi(t1), rηi(t1) − 4.75x∗, rζi(t1)), i = 1, 2.

Stage 3: The body continues to move according to formula (1). The middle
legs are moved on the corner at the supporting points, and the radii-vectors are

ri(t3) = ((−1)ixf , 0, ζ1), i = 3, 4,

where ζ1 = ζ2 − 0.7a + x∗. The source motion parameters are chosen so that
ζ1 > 0 and the corresponding supporting points are located as low on the angle
as possible, but well out from the middle legs.

Stage 4: By the moment of the beginning of this stage, the body has already
been moved to a vertical position. The front legs are moved in the upward
direction to the supporting points

ri(t4) = (rξi(t3), rηi(t3) + 9x∗, rζi(t3), i = 5, 6.
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This increases the arm between the middle and front supporting points to
provide the motion of the back legs.

Stage 5: This stage is the most difficult from the standpoint of maintaining
equilibrium. To prepare it, the velocity of body motion is chosen so that, by the
moment of the beginning of the fifth stage, the body is in a vertical position,
the back legs remain in the initial position on the horizontal plane locating at a
position that is sufficiently close to the corner, and the front and middle feet are
established on the edges of the corner at points that are substantially distant
each from other in height. This provides a sufficiently large arm to compensate
the moment of the gravitational force by the support reactions. The back legs
are moved onto the corner at the supporting point

ri(t5) = ((−1)ixf , 0, ζ0), ζ0 = ζf (t0) − 3x∗, i = 1, 2.

The legs are carried in all stages according to plane step cycles. At stages 1–4
and 6–8, the ordinate axes of step cycles are parallel to the axis Oξ, and, at
stage 5, they are specified by unit direction vectors

ei = ((−1)i, 0, 0.9)/|ei|.

At stages 6–8, the robot is steered to the initial position for moving upward
on the angle. In the course of motion, it is provided that the position of the body
relative to the corner is leveled by the formula

pηi(t) = [ηf − pηi(tk−1)](t − tk−1)/t∗ + pηi(tk−1)

simultaneously with the motion of the body upward

pζi(t) = x∗(t − tk−1)/t∗ + pζi(tk−1).

Stage 6: The middle legs are carried to the supporting points with ζ-coord-
inates rζi(t6) = rζ5(t5) − a/2 − 5x∗, i = 3, 4.

Stages 7 and 8: At stage 7, the front legs are carried, and, at stage 8, the back
legs are moved

rζi(tn) = rζi(tn−1) + 2x∗, i =
{

5, 6, n = 7,
1, 2, n = 8.

After the end of stage 8, the robot moves upward with a modified gallop gait.
The schedule of movements of the front and back legs is the same as in the
standard gallop gait [7]. The middle legs change their position with a rate two
times greater than the front and back ones so that their supporting points will
be close to the supporting points of the next carried pair of legs. This reduces
the load on the supporting legs.

5.2 Climbing on the Corner’s Horizontal Top

The maneuver start when the ζ-coordinate of the planned position of the front
feet is greater than h − ε, where h is the height of the corner, ε prevent the legs
from touching the strict edge, on which the outer normal is ambiguous.
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Stages 1-4: On the first four stages the position of the robot transforms into
the initial position of the modified gallop gait. Positions of feet are moved equally
down relatively to the edge. Thus the independence of the subsequent maneuver
from the initial position of stage 1 is achieved. At the initial moment of time the
difference δ = rζ5(t0) − (h − δkx∗), δk < 2 is determined. The planned points of
feet have the form rζi(tn) = rζi(tn−1) − δ, with the corresponding modification
for the additional middle legs transfer. The body moves so that at the end of
stage 4 its center goes down by δ.

Stages 5, 6: First, the front legs are moved above the top of the corner:

ri(t5) = (rξi(t4) + 0.05aμξi, rηi(t4) + 0.05aμηi, h + 0.1a), i = 5, 6,

second, they are moved on the top’s surface:

ri(t6) = (rξi(t5) − 0.01aμξi, rηi(t5) − 0.01aμηi, h), i = 5, 6.

Here μi — outer normal to the side of the corner.
Stages 7, 8: On those stages the body moves up by 3x∗ (on each stage) and

the feet are moved up: middle by 2x∗, stage 7 (Fig. 3), rear by 7x∗, stage 8.

Fig. 3. Final position of stage 7

Stage 9: The body moves up by 2.5x∗, the middle legs are moved to

ri(t9) = ri(t8) + (0.05aμξ,7−i, 0.05aμη,7−i, 2.5x∗), i = 3, 4,

located nearer to the body to gain the possibility of supporting polygon on the
subsequent stages.

Stage 10: The body moves up by 2.5x∗, front legs are moved on the top farther
from the sides of the corner (Fig. 4). On that stage ei = (0, 0, 1).

ri(t10) = (rξi(t9) − 0.1aμξi, rηi(t9) − 0.1aμηi, h), i = 5, 6.
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Fig. 4. Final position of stage 10

Stages 11, 12: One those stages the body moves from the vertical position to
the horizontal one. Trajectory of motion body’s center C is the arc of an ellipse:

ξC = 0, ηC =pη3(t10) cos τ, ζC =pζ3(t10)+(h+ζf/1.5−pζ3(t10)) sin τ, τ =(π/2)λ,

where ζf is ζ-component of the front point of the body on the initial position
on the horizontal plane.

Absolute coordinates of the attachment points has the form

pi(t) = (pξi(t10), ηC − pxi sin τ, ζC + pxi cos τ).

The rear legs are moved to the points (Fig. 5)

ri(t11) = ri(t10) + (0.05aμξ,3−i, 0.05aμη,3−i, 8x∗), i = 1, 2.

On the stage 12 the programmed motions are not assigned, but the initial
position of the next stage is fixed.

Stages 13, 14: As on stages 5, 6 middle legs are moved to the top of the corner.
Stage 15: The body moves up to the level h + ζf + 0.1a, to avoid the mutual

intersection of the legs, rear legs are moved to the points

ri(t15) = (pξi)(t14) + (−1)i0.01a, pηi(t14), rζi(t14)), i = 1, 2.

As a result, the rear legs become straight and vertical. It’s required to avoid
the degeneration of the joint angles. On this stage ei = (0, 1, 0).

Stage 16: Rear legs are moved to the narrow track:

ri(t16) = ((−1)ib/4, rηi(t15), h), i = 1, 2.

At this stage the orientation of the knees on this stage is inverse relatively to
the default orientation, i.e. if a foot moves forward the knee moves backward, as
on motion along the horizontal beam.

Stage 17: The rear legs are moved to the top (Fig. 6), ei = (0, 0, 1):

ri(t17) = (rξi(t16), rηi(t16) − 0.3a, h), i = 1, 2.
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Fig. 5. Final positions of stages 11 and 15

Fig. 6. Robot on the top of the corner

Thus, all six legs are placed on the top of the corner, and several gallop steps
of front and middle legs (with the corresponding motion of the body to gain
the static stability) may be performed. After that, the rear legs can be moved
back to the wide track, and the robot will come to the comfortable position to
perform future tasks.

6 Motion on a Horizontal Beam

6.1 Motion Design

Consider an obstacle composed by two parallel shelves of the same height with a
horizontal top area. These top areas are connected at the same level by a narrow
beam that is perpendicular to the vertical walls of the shelves. Suppose that, at
the initial moment, the robot has a symmetric pose on one of the shelves before
its edge, and the planes of the legs are perpendicular to the longitudinal axis of
the body. The robot has to go from one shelf to another along the beam. The
center O of the right absolute coordinate system Oξηζ is placed on the projection
of the middle line of the beam on the supporting horizontal plane. The axis Oη is
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parallel to the middle line, and the axis Oζ is directed upward. The assumption
that the beam is narrow means that, in the motion on the beam, the transversal
size is approximately equal to the margin of static stability that is necessary
for maintaining the robot balance using only the support reactions. Therefore,
to provide robot balance on the beam, additional facilities for controlling its
configuration are applied. The front and back legs are still applied to provide
the support of the robot on the surface, and the middle legs work as a flywheel
in order to provide the robot stability when the conditions of static stability are
violated. We first consider the construction of the motion of the front and back
pairs of legs.

Since the beam width is supposed to be considerably smaller than the body
width, the tracks are to be under the robot body in the course of motion. For a
small distance between the tracks, because of the danger of mutual intersection
of symmetric legs, it is advisable to admit that the knees move in the direction
opposite to the direction of movement of the feet.

The motion is executed according to the following stages: (1) the robot con-
figuration is changed for the motion with a narrow track; (2) the robot goes on
the beam with a four-legged diagonal gait to the another shelf; (3) the robot
configuration is changed in the reverse way in order to go with a wide track.

Stage 1: The narrow track is determined by the beam width. The legs in
triples are sequentially carried on a narrow track using step cycles whose plane
is perpendicular to the longitudinal axis of the body. After that, the middle
legs are straightened and steered to the horizontal position in order to have the
opportunity to provide balance by them. After that, up to the termination of
the motion on the beam, we set α3 = α4 = 0.

Stage 2: In the motion on the beam, the body moves in the forward direction
only on the intervals when the front and back legs stand still. The legs are carried
by a diagonal gait in pairs (1, 6) and (2, 5). At the initial time instant of the
motion on the beam, the projection of the center of mass on the beam surface
is at the point of intersection of the segments that connect the pairs of feet
(1, 6) and (2, 5). When the pair (1, 6) is carried in the forward direction, only
two legs provide the support, and there is no static stability. When this pair of
legs has been carried, the body moves so that its center reaches the point of
intersection of the segment that joins the supporting points of the pair (1, 6)
and the longitudinal axis of the beam. Then, the pair (2, 5) is carried to the
supporting points symmetrical to the supporting points of the pair (1, 6). Next,
the whole process is repeated, but it is started from the pair (2, 5).

6.2 Motion Stabilization Under a Violation of Static Stability

When the diagonal pair of legs is supporting, the body is a physical pendulum
fixed on the axis that passes through the supporting points and located at the
upper unstable equilibrium position. To stabilize this position, we can apply the
theorem on variation of the angular momentum, and, as a flywheel, we use the
middle legs that execute a coordinated rotation in the plane perpendicular to
the longitudinal body axis. As the measure of deflection of the body from the
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Fig. 7. Balance on the beam

vertical axis, we can take the projection ξc of the robot center mass on the axis
Oξ. The control torque Mβ

3 relative to the angle β3 is performed by the formula

Mβ
3 = −(c1ξc + c2ξ̇c)/2 − Mg, Mg = (m1 + m2)glc sin β3,

where Mg is the moment of the gravitational force of the third leg relative to
the attachment point; lc is the distance from this point to the center of mass of
the straightened leg; and ci, i = 1, . . . , 6 are the feedback gains.

The motion of the fourth leg relative to the body is skew-symmetric to the
motion of the third leg, and the control moment is

Mβ
4 = c3(β4 − β3) − c4β̇4.

The values of the angles γ3 = 0, γ4 = π correspond to the straightened legs.
The angular velocity of the middle legs accumulating in the loss of static

stability is eliminated in the course of joint standing of the front and back legs.
It is worth noting that the middle legs are controlled to return them into the
horizontal position with zero angular velocities in accordance with the formula

Mβ
3 = c5(β3 − π/2) − c6β̇3 − Mg.

In the same way, the fourth leg tracks the motion of the third leg in the skew-
symmetric manner.

As in [9,10], computer simulation of 3D-dynamics of the robot was fulfilled
by means of the program complex Universal mechanism [11].

7 Conclusions

The results of computer simulation were obtained with using a specially designed
virtual environment that allows to experiment with a model of robot dynamics
in the same way as it can be done in physical experiments.

In the problem of a robot climbing a corner with the help of dry-friction forces
with the opening angle π/2 it was shown that there exists a motion that solves
the problem under the friction coefficient 1.1.

In the problem of a six-legged robot walking on a narrow horizontal beam, a
control for the flapping motion of the middle legs was found so that it provides
the dynamic stability without violation of kinematics and design constraints.
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In this paper the solution of the existence problem for required motions with
realizable friction coefficients was received. Results of the computer simulation
show that robot is not sensitive to the reasonable random initial conditions
and minor errors of program trajectories. Influence of measurement noise and
variation of environments will be investigated at the next stage of the work.
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Abstract. Dynamical systems have been increasingly studied in the last
decade for designing locomotion controllers. They offer several advan-
tages over previous solutions like synchronization, smooth transitions
under parameter variation, and robustness. In this paper, we present an
adaptive locomotion controller for four-legged robots. The controller is
composed of a set of coupled nonlinear dynamical systems. Using our
controller the robot is capable of adapting its locomotion to the phys-
ical properties of the robot, in particular its resonant frequency. Our
approach aims at developing an on-line learning system that attempts
to minimize the energy necessary for the gait. We have implemented the
model both in a simulated physical environment (Webots) and on a Sony
Aibo robot. We present a series of experiments which demonstrate how
the controller can tune its frequency to the resonant frequency of the
robot, and modify it when the weight of the robot is changed.

1 Introduction

Nonlinear dynamics is ubiquitous in the physical and in the biological world.
Nonlinear dynamics theory has provided us with new tools to understand com-
plex phenomena that were difficult to explain before. It can be used to model
competition in predator-prey systems, emergent behavior in collective systems,
growth of biological organisms, the production of rhythmic patterns in the heart
[10] and in the spinal cord for locomotion [9,7], to name a few examples.

In this article, we explore how a nonlinear dynamical system implemented as
a system of coupled oscillators can be designed (1) to control walking gaits of
compliant four-legged robots, and (2) to continuously tune important parameters
such as the frequency of oscillations to (possibly time-varying) properties of the
body. In particular, we aim at designing adaptive controllers in which the adap-
tive process is embedded in the dynamical system (i.e. expressed as differential
equations) rather than in a separate learning or optimization algorithm.

To produce locomotion, a controller must be capable of generating a rhythmic
and coordinated behavior. Nonlinear dynamical systems such as systems of cou-
pled oscillators present several advantages over alternative approaches (e.g. gait

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 138–149, 2006.
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tables or sine-based trajectory generators) to generate gaits for a robot. They
allow to harmoniously interact with the environment, they can create limit cycle
behavior, they allow smooth modulations of the trajectories, and they make the
emergence of new behaviors possible. Moreover, some dynamical systems, like
Adaptive Frequency Oscillators (AFOs) [5,15] are interesting because of their
adaptive properties.

The controller we propose is suitable for robots with compliant (i.e. elastic)
components. It adapts the walking frequency to resonant frequencies of the robot
in order to minimize the amount of energy required to move forward. Hopf
oscillators and adaptive frequency oscillators are used as building blocks in the
controller. Adaptation is embedded in the dynamical systems, and no external
optimization is required. Moreover, adaptation is not a batch process, and the
controller adapts its parameters online using proprioceptive signals.

The robot locomotion is based on two different kinds of joints: knees - pas-
sively controlled by springs, and hips - actively controlled by servos. The robot
swings on the knees behaving like an inverted pendulum. A Hopf oscillator [11]
controls each hip. Each of these oscillators is coupled to the other hips for inter-
limbs gait coordination. Moreover, each hip is coupled in phase to the relative
knee. This movement coordination permits to recycle the potential energy of the
knee springs to push the robot forward. Furthermore, an Adaptive Frequency
Oscillator (AFO) tunes its frequency to the knee oscillations, and this frequency
is used for the hip oscillators. This controller has two feedback loops: one per-
mits phase synchronization to proprioceptor signals and the second frequency
adaptation.

In the rest of the article, we describe our implementation of this system for a
simulated and a real Aibo robot (Section 2). Experiments in simulation (Section
3) and in the real world (Section 4) demonstrate how the system is capable of
producing efficient walking gaits that are tuned to the resonant frequency of the
robot, and that are continuously adjusted to changing body properties.

2 Adaptive Four Legged Locomotion Model

In this section we describe the main elements of our model. First, we explain what
properties make a good locomotion controller and our approach to building one.
Second, we describe the mechanical specifications the robot shall satisfy. Third,
we introduce our CPG (Central Pattern Generator), a central component in our
locomotion model. Eventually, we elaborate on the adaptive equations, which
evolve the walking frequency parameter depending on the physical properties of
the robot.

2.1 Mechanical Model

We propose a locomotion controller for four legged robots. Every limb has two
joints: the upper one (hip) and the lower one (knee). Every hip is actively con-
trolled and is composed of: a servo (actuator), and an encoder (angle sensor).
Every lower joint is passively controlled and is composed of: a spring-damper



140 G. Brambilla, J. Buchli, and A.J. Ijspeert

system (actuator), and an encoder (angle sensor). The controller receives infor-
mation from the knee and only controls the hip angle to produce locomotion.
The body behaves like an inverted pendulum. Our controller does not explicitely
deal with: inertial forces, moments of inertia, static and dynamic forces, and con-
tact ground areas. We will call this mechanical framework ”elastic locomotion
framework.” The ideas introduced by Blickhan [2] and by Fukuoka [8] inspired
this framework.

Our controller reproduces a walking gait. Walking is easy to implement in this
framework, and seems to be the most energy efficient gait compared to trot and
gallop [12]. For reasons of stability the terminal limbs are oriented in forward
direction, as in Figure 1. In fact, if the limbs were turned backwards, the four
legged robot would tumble and fall during the swing phase. A spring-damper
rotational system produces in the knee torques proportional to two components:
the angle (γ, i.e. the spring torque) and the the angular velocity (γ̇, i.e. the
viscous damping force): T = kγ − dγ̇, where k and d are positive spring and
damper coefficients.

2.2 Approach to Learning

A good controller to be used in the elastic locomotion framework allows to recycle
the potential energy stored in the knee spring during the step cycle, converting
it into kinetic energy. Our challenge was to build and tune a controller for a
general four legged robot without specific body information, that satisfies the
following properties: (1a) knees and hips should move at the same frequency
and with a constant phase shift; (1b) the four hips move with a fixed phase
shift depending on the gait; and (1c) the knee resonant frequency depends on
the weight of the robot as well as on the constant of the knee spring (k). The
weight can change during the robot life, and the controller should be able to
adapt to it. Our approach is based on nonlinear dynamical systems. There are
two kinds of dynamical systems of interest to us: (2a) Hopf oscillators [11,16],
which are interesting because of their limit cycle behavior with the possibility
of phase synchronization; and (2b) ”Adaptive Frequency Oscillators” (AFOs)
[5,15], which are capable of synchronizing their frequency and phase to an ex-
ternal oscillating signal. In earlier contributions [6] it has been shown that such
systems in a feedback loop with the mechanical system can indeed adapt to the
resonant frequency of the body. Thus, our controller should satisfy constraints
(1a), (1b), and (1c) using dynamical system (2a) and (2b) as building blocks.

2.3 CPG with Feedback

Our controller is composed of a fully connected network of four oscillators in-
spired by animal CPGs [4] (see Figure 1). A continuous arrow means that the
signal of the source oscillator at time t is rotated by means of a rotational matrix
(R) and summed to the differential equations of the target oscillator. The phase
shifts (ρji) introduced by the rotation matrix are constant and correspond to
the one specified by the walking gait. The coupling values are as in Table 1.
Each connection adds a perturbation to the target oscillator that contributes to
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the amplification of the signal. We have used a fully connected network because
it permits to have a very stable CPG system. In such an architecture, any per-
turbation is quickly absorbed by the system, and, moreover, we have a reduced
influence of the noise. A discontinuous arrow also adds a perturbation, but this
time the source is the knee angle value, and it is rotated by a constant angle
(ξ). Eqs. 1–2 describe each oscillator in the network. x, y are the state variables
describing the oscillator, μ is a parameter which determines the amplitude of os-
cillations, k is a damping constant, ω is the intrinsic frequency of the oscillator,
and a is a global coupling constant, finally to keep the expressions shorter we
use r2

i = x2
i + y2

i .

ẋi = (μ − kr2
i )xi + ωyi + a

∑
∀j∈I∧j 	=i

Rx(ρji, xj(t), yj(t)) + cRx(ξ, si(t), 0) (1)

ẏi = (μ − kr2
i )yi − ωxi + a

∑
∀j∈I∧j 	=i

Ry(ρji, xj(t), yj(t)) + cRy(ξ, si(t), 0) (2)

[
Rx(α, x, y)
Ry(α, x, y)

]
=
[
xcos(α) − ysin(α)
xsin(α) + ycos(α)

]
I = {LF, RF, LH, RH}

Fig. 1. (Left) Feedback system. In the figure each oscillator corresponds to one of the
four hips. The arrows identify the phase coupling. (Right) Aibo limbs orientation in
the absence of external forces, we have chosen an angle of 30 deg for the knee, and an
angle of 0 deg for the hips.

2.4 Adaptive CPG

We have defined a mechanical framework and a walking controller in the previous
section. Now we want to reduce the number of parameters to make the CPG
frequency adaptive. As explained in Section 2.2, we aim at making the walking
frequency adaptive to the resonant properties of the body. As input we use the
knee angles. Hence, we compute the signal of the knee angle for every leg. The
signal is periodic (but not sinusoidal) and has a similar shape in all legs. The
four legs create similar oscillatory signals shifted by a constant phase difference
defined by the hip oscillator connections. However the signals slightly differ from
the specified phase and shape of the signal. We have to find a means to extract
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Table 1. Default parameter values, inter-limbs coupling phase difference, upper limb
joints moving range on Aibo platform

parameter value

μ 0 (bifurcation point)
k 0.15
ω 8 [rad/s]
a 1
c 5
ξ 0.2 [rad]

ρ LF RF LH RH

LF 0 −π − 3
2π −π

2

RF π 0 −π
2

π
2

LH 3
2π π

2 0 π

RH π
2 −π

2 −π 0

MIN ANGLE MAX ANGLE

Front limbs 0.0 [rad] 0.6 [rad]

Hind limbs -0.1 [rad] 0.3 [rad]

the frequency information of these signals despite these differences. This can be
achieved with an adaptive frequency oscillator (AFO) [5,15]:

ẋ = (μ − kr2)x + ωly + c
∑

∀j∈I Rx(βj , sj(t), 0)
ẏ = (μ − kr2)y − ωlx
ω̇l = cη y

r

∑
∀j∈I Rx(βj , sj(t), 0)

(3)

The AFO (Eq. 3) has three state variables. Compared to a Hopf oscillator, it has
one additional state variable used for frequency adaptation and one additional
parameter used for learning. The state variable x will synchronize to the input
signal. Again, the variable ωl stands for the frequency [in rad/s]. Due to the
additional differential equation the frequency will adapt to one of the frequencies
of the input signal (see [15] for further discussion). The parameter η represents
the learning rate: a too high learning rate influences the stability of variable
ωl, and a too low learning rate does not permit the adaptation process. In our
experiment, we have varied η between 1 and 10.

As a first step, we have tested an intermediate solution where the controller
”learns” the main knee oscillation frequency (”Open Loop” solution). Our
system rotates (β ={0,−π,− 3

2π,−π
2 }) and sums the knee signals (sj) so that

the walking frequency becomes the most powerful frequency component1. This
signal is used to perturb a frequency adaptive oscillator (Eq. 3). As a result,
the oscillator smoothly learns the input frequency and maintains it, reaching a
steady state. After a few seconds of transition the dynamical system adjusts its
frequency and phase to the one coming from the perturbation signal. We will
discuss results showing this properties in Section 3.1.

1 If we sum the signals without rotating them, as the shapes of the signals are com-
parable and shifted among each other by about 90 deg, they are going to anni-
hilate each other (see Figures 3 and 5). In the following section we propose the
experimental results obtained with both ”un-rotated” (β ={0,0,0,0}) and ”rotated”
(β ={0,−π,− 3

2π,−π
2 }) solutions, to support the choice of the ”rotated” solution.
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Fig. 2. Closed loop adaptive walking feedback system. In the figure the CPG presented
in Section 2.3 is integrated with the AFO and the CPG becomes adaptive.

Eventually, we have rendered the controller adaptive (”Closed Loop” so-
lution), as one can see in Figure 2. We have used the value of the state variable
ωl instead of the parameter ω in the CPG of the walking controller (explained
in Section 2.3) making the system adaptive. These ideas permit a smooth adap-
tation of the walking frequency to the frequencies of the knee. Furthermore, the
dynamic formulation of the adaptation by means of dynamical systems allows to
adapt the frequency in the case of changes of the body properties or changes in
the environment (e.g. ground friction) during the robot life. The online adapta-
tion process also introduces a new feedback loop in the dynamical system. This
feedback loop is nonlinear and it is not clear from the outset that it will work.
It can however be expected from previous results in simulation [5,6] and has
recently been treated analytically [3]. Even more, the presented experimental
results show how well and stable this solution works.

3 Experimental Results (Simulation)

Webots [13] is an integrated environment for robot simulation, and the physics
is simulated using the ODE Library [14]. The robot platform chosen is a Sony
Aibo2. Aibo has advantages and drawbacks. The advantages are that one can
find a detailed model of Aibo in the Webots environment, and can test the
controller on a real Aibo robot. However, Aibo is not an optimal platform for
our ”Elastic Locomotion Framework” because the robot legs do not have a real
spring-damper system. Two different strategies have been applied to solve this
problem: in the simulation, a knee is controlled by a simulated spring, and, hence,
it is the most accurate model of a spring using the Webots simulator. In the real
Aibo robot springs are simulated using a PID and an active spring law control
to simulate the spring behavior.

All differential equations in our controller are numerically integrated using the
Runge-Kutta method with a fixed time integration step. The simulator integrates
2 Sony AIBO by Sony Corporation. “Aibo” is a registered trademark of Sony Corpo-

ration.
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Fig. 3. In the first figure, a set of open-loop experiments (over the same signal) shows
the adaptivity properties of an AFO dynamical system (η = 1). Here the perturbing
signal is un-rotated in the left figure and rotated in the right one (Webots). The small
graphs are the power spectral density of the un-rotated and rotated signals.

all the equations at every iteration, using a time step of 0.008 [s] of the virtual
simulation time.

3.1 Open Loop Results

First, we have successfully tested our CPG network, using the default parameters
shown in Table 1. Then, we have applied our adaptive component, Equation 3,
and plotted the learning curve of the knee signal starting from a range of initial
frequency values. In Figure 3, we plot an example of frequency learning using
as a perturbing signal the un-rotated (left) and the rotated (right) sum of the
knee angles. Comparing the graphs in Figure 3 with the Fourier spectrum (on
the right), one can see that the AFO converges to the higher power frequency
component and reaches a steady state. Furthermore, rotation provides a wider
basin of attraction.

3.2 Closed Loop Results

Second, we have substituted the parameter ω of the hip oscillators with the
AFO variable ωl. Consequently, the CPG parameter ω (walking frequency) has
become adaptive and equal to ωl. This new feature introduces new feedback in
the walking controller, as described in Section 2.4. In this system, eventually,
knee angles are used for tuning the walking phase and frequency. Moreover,
the Hopf oscillators as well as the AFO work at the bifurcation point (μ = 0),
which means that in the absence of a stimulus they will not oscillate. Hence,
in order to create a locomotion process, at the begin the spring system must
be stressed enough in order to create a chain reaction of oscillating stimuli, and
must be strong enough to maintain the oscillation without stopping it. To make
this possible, it is necessary that one chooses spring-damping parameters that
allow the signal to oscillate a few times (in experiments 3 or 4) before being
damped out. In other words, the damping parameter d of the knee must be high
enough to avoid instability in the dynamics of the spring-mass system, but small
enough to permit oscillations. It is expected that every instance implementing
the ”elastic locomotion framework” has this basic behavior.
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Fig. 4. (Left) closed loop frequency adaptation with different initial frequency but
same initial condition (η = 1). The controller converges if the initial frequency is
close to the asymptotic one (Webots). (Right) closed loop frequency adaptation with
different robot weights but same initial conditions (η = 1)(Webots). The two bottom
small plot show the average error (see text for definition) between the solution of our

controller and the spring-mass oscillating law
√

k
m

.

We present two experiments: the first is a set of adaptation processes, and
the second shows the relation between four different experiments with the same
initial conditions but different robot weights.

The first plot (Figure 4 left) shows a series of experiments with the same initial
conditions (environment, robot) but different initial frequency ω0={0.95, 1.11,
1.27, 1.90, 2.38}, in order to demonstrate how the final frequency purely comes
from the adaptive process. Furthermore, in the plot the variable ωl converges
to the same asymptotic value. In the plot, the first experiment (ω0 = 0.95Hz)
shows that an initial condition too far from the one at the steady state will never
converge. Moreover, one can see how in every experiment in the first few seconds
the frequency drops because while the CPG synchronizes the movements of the
four legs, the AFO is perturbed by the signal coming from the knees, and this
signal is not yet stabilized. After these few seconds the variable ωl converges.
Moreover, the AFO initial conditions give to the dynamical system an initial
moving input. As the oscillators parameter μ is equal to zero, without an initial
input the system remains inactive. Hence, the initial conditions must bring the
AFO to oscillate enough in order to maintain the initial oscillation of the overall
system. The two small graphs at the bottom of Figure 4 show the reduction of
the difference between the walking frequency and the frequency of the spring-

mass oscillating law
√

k
m . Where the error is defined as e(t) = σ(S(t)); S(t) =∑

i

∑
j aij ; aij = ωi(t)

ωj(t)
−
√

mj

mi
where mi or mj stands for the mass, ωi or ωj stands

for the frequency of experiment i or j, and σ stands for standard deviation.
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The second plot (Figure 4 right) shows four experiments using the same con-
troller as in the previous experiment (Figure 4 left), with the following initial
conditions: (1) the robot has an initial frequency of 1.1 Hz. (2) In each of the four
experiments the robot has a different weight (a) 0.6kg, (b) 0.9kg, (c) 1.2kg, (d)
1.5kg. The plot shows how a higher weight leads to a lower walking frequency.
This behavior respects the spring-mass law where the resonant frequency can

be calculated as
√

k
m . These results lead to two conclusions: the robot behaves

like a spring-mass system, and it adapts its walking frequency to the resonant
frequency of the knee. This second experiment shows an interesting property of
our system: online adaptation to the physical properties of the robot. In other
words, the robot is able to adapt its walking following the weight change during
life (for ex. payload change).

Integrating the torque on the angle of the four hips and summing the four val-
ues, we have computed the energy consumed by the robot. Then, to obtain the
efficiency, we have divided the energy over the distance covered by the robot. We
have proved in simulation that this adaptation permits to save energy (in com-
parison to non-adaptive CPG) when loading a payload of 0.6 Kg of about 15%
(data not shown). Our adaptive system does not maximize the walking speed
but seems to find a more efficient walking frequency. The frequency found seems
to optimize the conversion of the spring potential energy into kinetic energy
to propel the robot forward. Our adaptive system can help make the walking
locomotion more efficient. This is in line with earlier findings in simulations[6].

4 Experimental Results (Real World)

In this section, we show the experimental results on the Aibo robot. As outlined
in Section 3, the Aibo is not the optimal platform to implement the ”elastic lo-
comotion framework,” since it has activated knee joints, it does not have passive
springs in the knee joints. In order to simulate the spring law in the knee joints,
we have added controllers for the those joints such that the to a large extent the
knees behave like a spring, and thus the robot corresponds to the requirements
as stated in the ”elastic locomotion framework”. As in the case of the simulation,
the equations are numerically integrated with a Runge-Kutta algorithm with a
fixed time step of 0.008 [s]. The design of Aibo controller also takes care of fur-
ther implementation problems occurring when simulating a spring law such as
encoder resolution and accuracy, mechanical gear backlash, digital system delay,
system identification and other problems (cf. [1] for more details). In the follow-
ing two sections we have repeated the two simulation experiments on real world
Aibo.

4.1 Open Loop Results

As in the simulation, we have successfully tested our CPG network, using the
default parameters shown in Table 1. Then, we have applied our adaptive com-
ponent, Eq 3, and plotted the results in Figure 5. When the AFO is perturbed
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Fig. 5. This experiment is equal to the ones in Figure 3, but on a real AIBO robot. Here
the perturbing signal is the un-rotated (left) sum of knees and the rotated one (right).
The plot shows how the noise introduced by a real environment produces unstable
solutions, in case of un-rotated signal, and very stable solutions in the case of rotated
signal (η = 1). The small graphs are the power spectral density of the un-rotated and
rotated signals.

using the rotated sum of the knee signals it quickly converges to a steady state, it
also happened when the initial conditions are not close to the steady state. The
rotated solution, using Aibo real world robot signal, seems to have maintained
the convergence properties shown in the simulation results (Figure 3).

4.2 Closed Loop Results

In the first experiment the initial frequency is ω0 = 0. The plot, in Figure 6,
shows how in this case using a higher learning parameter η = 10 the robot can
learn to walk from scratch. In this case, a (randomly applied) hand-made stress
on the knee joints provides the initial input to walking. Aibo quickly reaches a
steady state frequency.

The second experiment, as described in Section 3.2, involves the parameter
adaptation in case of different weights. In this case, we have simulated a real pay-
load change application. The robot starts its life (weight 1.68 [Kg]), (1) adapts its

Fig. 6. The figure on the left shows how AIBO learns the walking frequency from
scratch (ω0 = 0) because of the learning parameter η = 10. On the right there are a
series of snapshot during the initial step of Aibo in simulation (from 1 to 12) and in
the real world (from 13 to 18). (cf. movies [1])
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Fig. 7. (left) This figure is the same experiment of Figure 4 (left) but in this case using
Aibo real robot. In this case AIBO uses a learning parameter η = 3. (right) This plot
shows the variable ωl and demonstrates the adaptability of our controller in a simple
load transport application (η = 10, plotted is the running average of the frequency:
ωl,p(t) = 1

50

∑50
i=0(ωl(t − i)) where dt = 0.008[s], further details are given in the text).

walk, then (2) once a steady state has been reached, (3) one can load a payload
weight (0.4 [Kg]) on the robot saddle, (4) the controller reaches a new steady
state adapting the frequency to the new weight, (5) in the end we unload the
payload, and (6) the robot returns to a frequency close to the initial one, see
Figure 7. This experiment resumes well the interesting autonomous adaptation
provided by our controller.

5 Conclusion

In biology, adaptation and memory are major properties of living systems. The
main ideas presented in this article are to develop a walking controller where
learning is embedded in the dynamics and not an offline optimization process.

The simulated and the real robot have different properties, but thanks to the
feedback loop introduced, the controller adapts well its behavior. This demon-
strates that the controller is flexible and not designed to work on a specific
mechanical system. Moreover, since the robot is autonomous, the controller per-
mits to adapt the walk using proprioceptive signals. Bio-mechanics suggests that
the gait of dogs and other quadrupeds can be compared to our elastic locomotion
framework. Moreover, the building blocks as well as the entire controller may
possibly find implementations in neuro-biological models. We have not dealt with
problems such as direction modulation, discontinuous terrain management, and
other classical locomotion issues. But we believe that our model is open and
flexible enough to be adapted to address these tasks.

We have tested the controller both in computer simulations and on a real robot
with successful results in both cases. Furthermore, the frequency adaptation was
shown to be useful to provide an efficient gait capable of recycling the energy.
Hence, the controller was proved useful for quadruped transportation system
applications.
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Differentialsystems. Ber. Math.-Phys., Sächs. Akad. d. Wissenschaften, Leipzig,
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Abstract. This paper describes a model for six-legged robot turning
control based upon the stick insect (Carausius morosus). Ethological
observations were made on freely walking stick insects turning towards
a visual target. It was found that there is a tendency for the prothorax
to move directly towards the object while the rear of the body mainly
rotates. The front legs are proposed to shape most of the body trajectory,
affecting the other thoracic segments such that it is not necessary to
calculate individual leg trajectories for the middle or rear legs. A 3D
dynamical robot simulation proved able to replicate complicated insect
leg trajectories by means of this simple principle.

1 Introduction

Implementing robotic models based on biological systems is a challenging goal.
One characteristic of biological systems is redundancy — for example, stick
insects can be modelled with three degrees of freedom (DOF) on each leg, for a
total of 18 DOF, to move the body into a position represented by at most 6 DOF.
This provides the system with a vast repertoire of movements, which could help
solve complex navigational problems, but having so many degrees of freedom
poses problems for designing a controller. Decentralising the walking controller
into 6 coupled oscillators [1] following a small number of coordination rules [2]
has been shown to reduce the dimensionality of the problem. Having only one
type of leg controller copied across the body reduces the controller complexity.
However, it is also known that the legs on different thoracic segments (i.e. the
front, middle and hind legs) can behave differently in similar situations [3].

A non-trivial problem even for movement on flat surfaces is how insects man-
age to turn in such a way that almost all body trajectories are possible. Collab-
oration of all legs for turning has been suggested for the cockroach [4]; however,
difference in walking dynamics and morphologies between insect species might
result in different leg roles. Modulation of leg coordination and leg trajectories
during turns has previously been analysed using the insect’s response to a con-
tinuous visual flow [5]. In that experiment, insects were fixed on top of a movable
ball in the middle of a rotating visual scene. The leg trajectories during turns
varied considerably depending on the thoracic segment. It was suggested [5] that
the front legs respond first to the visual stimulus, and this might trigger the re-
sponse of the other legs. Furthermore, it is not clear to what extent the precise

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 150–161, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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trajectories have to be calculated by each leg and how each thoracic segment
might interpret signals locally or from the brain. Neurophysiological information
on leg control in the stick insect is largely limited to mechanisms in the middle
leg [6].

We are particularly interested in the body trajectory and the different roles
of legs on different thoracic segments when the insect decides to turn towards
a fixed target. Hence, it was crucial to have experiments with insects walk-
ing freely. We observed the turning response of insects presented with an at-
tractive visual target. We show that the front legs play an important role in
turning and are responsible for shaping most of the body trajectory. This is
demonstrated using a 3-dimensional dynamic simulation of insect walking. We
found that if each front leg can follow trajectories at the desired angle, the
only requirement for the middle and hind legs is to change the degree to which
they respond to external forces. This approach is sufficient to replicate the ob-
served insect behaviour for turning, while limiting the complexity of the walking
controller.

2 Experiment

Adult stick insects (Carausius morosus) reared at our institute were placed in
an arena (67cm by 177cm) with white walls (50 cm tall) around it to eliminate
external visual stimuli. Stick insects are known to be attracted to bush-shaped
objects and to be strongly stimulated by vertical edges [7]. The visual target
consisted of a black bar, 4.5 cm wide and 60 cm tall. Insects were first allowed
to walk continuously for about one minute before introducing the visual target.
The target was placed within the insect’s visual field in a different direction to its
current heading. It would reliably respond by turning to walk in this direction.
Just before the insect reached it, the target was quickly removed vertically and
then placed in a different position, no more than 30 cm away, inducing another
turn. This could be repeated around 10 times before the insect changed its
attention to the walls or ceased walking.

Trajectories were recorded with a moving video camera1 at a height of about
30 cm. Sequences were analysed with visual tracking software developed specifi-
cally for this task. A typical segment trajectory after processing a video sequence
is shown in figure 1. Three marks on the body and one on each tarsus (foot)
were followed.

Insects were sometimes attracted to the walls of the arena despite these being
white and smooth. The analysis did not include sequences where insects hesitated
between the black bar and walls, or when the response caused by the black
bar was clearly weak. The first response to presentation of the object was also
eliminated as these were less consistent. A total of 24 turns were combined for
the analysis. The turns were normalised to start in direction zero, turn to a
target angle of ‘one’, and to take the same time to complete. The average time
to complete a turn was 60 frames (2.4 seconds).
1 DCR-TRVHE with a resolution of 720x576 at 25fps.
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Walking direction

Prothorax

Metathorax

Fig. 1. Representative example of the paths stick insects follow when attracted to a
black vertical bar. A zoomed section when turning is shown on the right, this represents
a typical turn as analysed in section 2.1. Here, the prothorax direction suddenly changes
almost 90 degrees.

A smoothing procedure had to be carried out for studying changes in body
direction because of the limitations on camera movement compensation and
image resolution, and the oscillation of the insect’s body. The variables studied
are shown in figure 4: the body angle θB at time t; and the direction of movement
of the prothorax θP and metathorax θM at time t, calculated with respect to a
point in time n frames ahead of the current position, typically 20 frames ahead.
This lag removed noise and intrinsic oscillations of the stick insect, but also
tended to smooth fast changes in angle, particularly affecting θP .

2.1 Results

Figure 2 shows, in the upper three plots, the direction followed by the prothorax,
metathorax and body during a turn. For comparison, the means are plotted on
one graph on the lower left. Despite the smoothing, it can still be clearly seen
that at the beginning of the turn, the prothorax θP changes direction within
just a few time steps, and very early during the turn is pointing towards the
target. It tends to overshoot the target during the second phase of the turn,
particularly in turns larger than 70 degrees, in which the speed of the back of
the body is very slow and tends to rotate on the spot. It was also noticed that on
certain occasions both front legs were lifted off the ground for a small period of
time. During this time, the body’s forward speed was almost zero, but rotation
continued, resulting in a sharp curved trajectory at the beginning of the turn.

The metathorax, on the other hand, follows a smoother transition, similar to
that of the body itself. The speed for this part of the body is low compared
to the prothorax. In some cases, the prothorax can move twice the speed of
the metathorax, as seen on the lower middle plot in figure 2. During the initial
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Fig. 2. Ethological results. Bottom left figure shows with a solid line the mean direction
of the Prothorax θP ; Metathorax θM with a dotted line; and the body θB with a dashed
line. Top left shows progress of θB in more detail, deviation standard is shown by the
arrows. The top middle is that of the prothorax θP and the top right is the metathorax
direction θM . The bottom middle shows the relative speed of the prothorax with respect
to the metathorax (vP −vM )/(vM ). The bottom right shows changes in speed for the
prothorax (◦) and metathorax (∗) relative to their velocity before the turn.

transition of the turn, the back legs are decelerated by the change in front leg
direction; after one third of the turn they start accelerating again. On the bottom
right plot in figure 2 it is shown that on average the speed of the metathorax is
reduced by 40% at the slowest point, whereas the prothorax is only affected by
a speed reduction of 15%.

The point of rotation for the body was calculated at each moment during the
sequence, for rotations larger than 1 degree. Figure 3 shows a normalized graph
of rotation positions weighted by the angle turned. Most rotations accumulated
between the mesothorax and the metathorax, but there are trends to either side
and towards the mesothorax. Having a rotation point close to the metathorax is
in agreement with results shown for the speed of this segment, as vT = rdθ.

These data suggest that the specific movements of the stick insect’s legs during
turns results in the prothoracic segment following mostly straight lines, pointing
most of the time towards the target, whereas the mesothorax and metathorax
tend to follow curves, with a rotation point close to the metathorax. This can
also be seen in figures 1 and 8. The individual leg trajectories for achieving the
body trajectories described in this section vary considerably on different thoracic
segments. Moreover, individual leg speeds on either side of the turn vary greatly.
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Fig. 3. A cumulative plot of the point of rotation during turns. The three black dots
represent the three thoracic segments.

The problem we address in the following sections is how this complex pattern of
leg behaviour might be achieved with a simple control model.

2.2 Body Trajectory Analysis

Typically, turning in six-legged robots is controlled by simple techniques, similar
to wheeled robots, that cause a difference in speed on either side, which deter-
mines a point of rotation. If w is the distance between wheels, vo is the outer
speed to the turn and vi is the inner speed, the point of rotation is given by
R = vo w/(vo −vi). The closer this point of rotation is to the center of the robot,
the sharper the turn. For legged robots there are alternative options to control
this difference in speed, for instance, increasing frequency between step phases on
one side. However, we are motivated to produce trajectories like those described
in section 2.1, and describing this motion in terms of rotations does not fit nat-
urally. Introducing the target angle error, φ, into body bearing directly θB = kφ
would produce curves in most cases even if the point of rotation is moved very
close to the body. Therefore, the point of rotation for the stick insect is not a
feasible variable to control; instead it is more likely to be a secondary effect of a
controller causing the front of the body to follow straight lines.

Assuming the height of the body does not change, the insect body has only
three DOF and moves in a 2D plane, i.e., body velocity Ḃ can be described as
Ḃ(Ḃx, Ḃy, θ̇B), or assuming constant speed in polar coordinates, Ḃ(θ̇η, θ̇B). If
all leg positions were accurately calculated to control only these two variables,
the problem of turning to visual targets would still have an infinite number of
solutions. A point trajectory and rotation in the body will give us that of the
rest of body. Therefore, we focused on describing the trajectory of the prothorax
because it represents the most salient feature of stick insect turns; that is, tends
to follow straight lines trajectories, i.e. θ̇η = 0 for the prothorax.

Of the kinematical models describing straight lines we tested, the best describ-
ing body trajectories of section 2.1 is shown by equations (1), where η is the rela-
tive distance to the point of rotation R along the body, being 1 for the prothorax
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Fig. 4. The angle between the target and the body direction φ is shown on the left.
As seen on the right hand side figure, prothorax and metathorax were considered
just between coxae on that segment. All θ angles are in global coordinates for easy
comparison, however, the simulation only requires to know φ, as θη = θP - θB = φ. Δt
was 1/25 seconds.

and 0 for the point of rotation. The left hand side of figure (4) shows these vari-
ables with respect to the target. For the prothorax η = 1, therefore, the direction
is always that of the target given its current position, θP = θη+θB = φ+θB = θT .
This is in agreement with results shown in section 2.1 where the prothorax main-
tains direction towards the target most of the time.

θη = arctan (tan (φ)/η)

θ̇B = |vP | sin (φ)/R (1)

Transforming this model of body motion into leg trajectoriesv, is fairly straight-
forward: if L is the distance from the coxa to the tarsus, then it follows that
v(θ̇B, θη) = [−Ly, Lx]θ̇B − θη. However, this equation for v implies that all legs
in a kinematic model need to calculate at each point how much the body needs
to rotate, and the rear legs need to know their relative position to the point of
rotation. Furthermore, the rear leg direction will depend not only on φ, but on
arctan (tan (φ)/η). Alternatively, implemented in a dynamic model, the equations
in (1) could be executed independently. The prothorax could follow trajectories ac-
cording to φ = θη(η = 1), while the back of the body could account for the rotation
θ̇B. Moreover, given sufficient flexibility of different joints in the rear legs, rotation
could be a passive result of the trajectory of the prothorax. This further simplifies
calculations for leg trajectories in the prothorax, because if they no longer need to
compute θ̇B, the equation v for front leg trajectories becomes simply v = −φ as
seen in figure 4. In the next section we test the effectiveness of this simple method
to control turning using a dynamic robot simulation.

3 Model

Simulation of the robot was programmed using ODE2 libraries. Although the
robot is based on the stick insect, the simulation does not exactly represent the
2 Open Dynamic Engine. http://ode.org/
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insect in scale or thorax morphology. Instead, the mass of body and leg segments
were increased; and the centre of gravity was moved forward (by removing the
back end of the body). This was because we wanted a controller that could be
used on a real robot, and it is currently not plausible to replicate in any real
robot the mass of the stick insect, nor the way the clawed tarsi are used by
stick insects to grasp the ground to compensate for their centre of gravity being
behind the metathorax. Figure 5 shows on the left the 3D model of the stick
insect based robot and on the right the geometry of the leg. The angles controlled
are α for rostral caudal movements; β for moving the leg up and down; and γ
for movements towards and away from the body.

Fig. 5. The stick insect based robot created using ODE libraries is shown on the left.
The right hand side shows the leg geometry.

Based on the results presented in section 2.1, it is assumed that the insect is
able to sense the angular error between a visual target and its current heading.
However, no visual processing was implemented, instead only the bearing of the
body was controlled. This is equivalent to object targeting only if the body tra-
jectory is exactly so as to have the prothorax follow a straight line. Fortunately,
as previously shown in section 2.2, this is what the insect appears to be doing.

3.1 Inter–leg Co–ordination of Swing and Stance Phases

Body motion is determined by the complex interaction of forces produced by six
legs alternating in stance. The problem is to control the sequence and direction
of leg stance movements to get co-ordinated turns, but without using a cen-
tralised motion planner. Our walking controller is partly based on the WalkNet
model[8], but with differences that implement the ideas presented in section 2.2.
In WalkNet, there is no centralised control of gaits; instead transitions between
leg phases (stance and swing) result from simple excitatory and inhibitory rules
between adjacent legs. We used rules 1-3 and 5b from [8]: Rule 1, a leg swinging
inhibits transition to swing in the anterior leg; Rule 2, a leg starting stance excites
the anterior leg; Rule 3, a leg excites the caudal leg proportional to its distance
travelled. Rules 2 and 3 are also implemented between contralateral legs. Rule
5b prolongs stance according to the load that leg is supporting. Additionally, we
excited a leg when load was low.
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3.2 Single Leg Stance Control

Using a decentralised architecture allows us to have legs following independent
leg trajectories. We observed that the leg trajectories that change the most dur-
ing turns are those of the middle and hind legs on the inner side. Their movement
could be due to pulling from the front legs, but the variety of movements and
directions for front legs could not be explained purely in terms of external forces.
This implies they have to be responsible for their own movements. Therefore,
in order to keep θη in equation (1), our model for single legs requires control of
the movement direction during stance. However, having the legs moving inde-
pendently can obviously lead to interaction problems. Furthermore, if we follow
the approach suggested in section 2.2, it would be useful to have leg trajectories
responding passively to other thoracic segments.

Thus, our model controls leg trajectories during stance by combining a veloc-
ity controller for each leg, which calculates joint velocities for a desired direction
and speed, with a feedforward joint controller as proposed by [9]. The basic idea
of the feedforward controller is that following the pulling of other legs will pro-
duce an emergent balance across all the joints. This method works particularly
well for kinematic models, but is prone to follow all external forces, including
gravity; the weight and internal forces to which the robot in our realistic dy-
namical simulation is subject to can cause further problems for this approach.
By combining it with direct velocity control, these problems can be reduced.

For the velocity controller, equation 2 gives joint velocities, Ȧ = [α̇ β̇ γ̇]
′
, where

T (α, β, γ) is the tarsus position, J is the Jacobian matrix and v is the desired
velocity of the tarsus. The height of the body (to compensate for gravity) was
controlled locally as in [10] and the speed of all legs was kept constant for all
experiments. Therefore the only free parameter was the direction of the leg, θL

in the ‘x–y’ plane. For the front legs, θL was always that of the direction of the
target, i.e. θL = θφ. For the middle and hind legs this was always set to θL = 0,
i.e. without the front leg influence they would always walk forward. The three
leg segments always stay in the same plane, as shown in figure (5), which allows
us to solve equation (2) without further parameters.

Ȧ = [α̇ β̇ γ̇]
′
= [J(T (α, β, γ))]−1v(θL, speed). (2)

The final angular joint velocity was a linear combination between the angular
velocity calculated in equation (2) and a feedforward controller that adjusted
the joint velocity proportionally to the position error caused by external forces.
Therefore, this single leg controller was capable of following given directions,
but at the same time it tended to follow external forces. How much it followed
external forces was controlled by a subordination parameter s(sα, sβ , sγ) for
each thoracic segment. For the front legs s = 0, i.e. they follow a straight
line toward the target under velocity control alone. For the middle and rear
legs, it was found (through empirical testing) necessary to have one set of val-
ues for target angles below 60 degrees (sMeta = [0.10, 0.01, 0.15] and sMeso =
[0.40, 0.01, 0.20]) and another for larger angles (sMeta = [0.15, 0.01, 0.35] and
sMeso = [0.50, 0.01, 0.50]).
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3.3 Results

The robot model was made to turn at angles from 20 to 90 degrees by increments
of 10 and due to the symmetry of the system all turns were made to the same
side. Because gait coordination is probabilistic, and every time a different pattern
was found, three runs were taken for each angle, for a total of 24 turns. Runs
were stopped once the body angle was within 5 degrees of the target and the
metathorax was aligned with the prothorax in the same direction.

Results from the simulation were analysed using the same approach as for the
insect and are shown in figure 6. It can be seen that the prothorax, as for the
insect results, tries to achieve the target orientation very early during the turn
and maintains it until the metathorax and body are facing in the same direction.
Overshooting of the prothorax is more evident for the simulation, meaning that it
has more curvature in its turns than the insect. The behaviour of the metathorax
direction and body angle are similar to the insect behaviour. However, note that
the metathorax for the robot model takes longer to respond to the turn.

Speeds of the prothorax and metathorax are shown on the right hand side in
figure 6. It can be seen that the velocity of the rear of the body is automati-
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Fig. 6. Simulation results. Bottom left figure shows with a solid line the mean direction
of the Prothorax θP ; Metathorax θM with a dotted line; and the body θB with a dashed
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prothorax (◦) and metathorax (∗) relative to their velocity before the turn.
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Fig. 7. Cumulative plot of the point of rotation for the simulated turns. The three
black dots represent the main thoracic segments.

cally decreased with respect to the prothorax without explicitly controlling it.
However, the maximum difference in speed is only 50%, whereas for the insect
it can reach values higher than 100%. The simulation was found, like the insect,
to recover its original speed before finishing the turn.

The accumulated rotation points of the simulation are shown in figure 7. The
rotationpeak for the simulation is also foundbetween the hind andmiddle segment,
however, it is clearly located away to one side of the body. If rotation is not so
close to the metathorax, the speed of the segment does not decrease as much, as
verified by figure 6. However, the opposite could also be the case, i.e., because the
metathorax does not decrease in speed, rotation is moved away to one side.

4 Discussion

We were able to reproduce naturalistic insect body and leg trajectories during
turns with a very simple control principal: that front leg stance trajectories
are directed straight at the target. All the remaining complex pattern of leg
movements, and consequent body rotation and speed changes, emerged through
decentralised interaction between the legs. A typical simulation turn path is
compared to one of the insect in figure 8. The prothorax follows a straight line
just as the insect does for a similar angle. Note that calibration was different for
each thoracic segment, but was identical for either side of the robot. In spite of
this, the inner leg trajectories change abruptly, just as happens with the stick
insect, whereas the outer leg trajectories are smoothly curved.

Statistics of the body while turning were also similar to those of the insect, as
shown in section 3.3; particularly those of the prothorax, metathorax and body
direction. However, there is still some underlying difference in the metathorax
and mesothorax. The main difference is the point where the body tends to rotate
most. As seen in figure 7, rotation is away from the body axis. Another difference
is shown in figure 8, where the insect the hind leg seems to be arrested at that
point, whereas for our simulation it is the middle leg 3. Having the inner hind
leg moving at a very low speed moves rotation further back. However, it is not
3 Similar results for inset leg trajectories while turning are also shown in [5].
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Fig. 8. Comparison between simulation, the 2 plots on the left, and an insect, the two
plots on the right. Leg trajectories relative to the body show only the first third of the
turn in both cases. Dark regions indicate stance and light is swing.

clear if this should be explicitly controlled or might, like body rotation, be a
secondary effect that we have not entirely captured.

The role of front legs during horizontal forward walking is known to be less
important than rear legs. For our simulation, there was no feedforward for front
legs, sP ro = 0; however, this value should be increased as turns finish. Similarly,
only two sets of subordination values were used for the mesothorax and metatho-
rax, depending on how big the angular error to the target was. This proved to be
sufficient for replicating body trajectories. However, a more plausible approach
might be to have this parameter modulated in a continuous fashion [11]. We
found it was not necessary to change the speed and direction of the velocity
control of these legs to get successful turning trajectories. However, allowing
velocity to be influenced in some way by the turning information, for example,
reducing the speed (as for the hind leg mentioned above) might create a closer
match to the exact leg trajectories seen in the insect i.e. these legs could play a
more active role in turning.

Future work could address the several ways in which the simulation differed
from the stick insect. The direct introduction of the heading error angle was
an oversimplification of the information the stick insect would receive from its
visual system about the direction of the visual target as it turned. Not having
tarsi in the simulation makes the robot slip when the feedforward controller is not
properly set. This implies having very different values of subordination between
systems with and without tarsi. The main difference is that our simulation tends
to produce shorter stance trajectories. However, it is important to note that
having tarsi is not a requirement for producing similar body trajectories.

Acknowledgement. This project was sponsored by CONACYT México.
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Abstract. Within median and/or paired fin (MPF) propulsion, many fish 
routinely use the long-based undulatory fins as the sole means of locomotion. In 
this paper, the long-based undulatory fin of an Amiiform fish“G. niloticus”was 
investigated. We brought forward a simplified physical model and a kinematic 
model to simulate the undulations of the long-based dorsal fin. Further, the 
equilibrium equations of the undulatory fin were obtained by applying the 
membrane theory of thin shells in which the geometrical non-linearity of the 
structure is taken into account. Last, we apply the derived kinematic model and 
equilibrium equations of the undulatory fin to analyze the thrust and propulsive 
efficiency varying with the aspect ratio of the fin and the maximum swing 
amplitude. 

1   Introduction 

Animal systems hold the promise of acting as models for robotic systems with 
improved performance in the aquatic realm. The morphology and behavior of animals 
have been copied for development of various technologies [1,2]. Among swimming 
modes of fish, an estimated 15% of the fish families use Median and/or Paired Fin 
(MPF) locomotion as their routine propulsive means. Within MPF propulsion, many 
fish such as knifefish, triggerfish and bowfin, routinely use the long-based undulatory 
fins as the sole means of locomotion, as well as for manuevering and stabilization. 
The elongate ribbon-like fins undulating has high performance swimming, precise 
maneuvering and low speed stability, which not only adapt to cruising swimming in 
calm waters, but also slow swimming, turning manoeuvres and rapid acceleration 
from stationary in structurally complex surroundings such as turbulent waters and 
seashore areas [3,4]. Therefore, the study of the propulsion mode concerning long-
based undulatory fins may provide inspiration for the design of next generation 
autonomous underwater vehicles (AUVs) with remotely operated vehicles (ROVs) 
capabilities. 

As one of the most characteristic representatives utilizing the long-based 
undulatory fins for swimming, Amiiform fish swim by undulations of a long-based 
dorsal fin, and hold the body axis straight in many cases when swimming. They are 
able to swim as well as backwards as they do forwards, by reversing the direction of 
waveform propagation on their long-based dorsal fin. The long-based fin consists of 
many fin-rays and a flexible membrane connecting them together. Fish have extensive 
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muscular control over fin-rays. The fish’s precise maneuvering stems from the fact 
that the long-based fin is a propulsor having a high number of actively controlled 
inputs. By properly coordinating these inputs, exquisite control of the thrust vector is 
possible [5,6]. 

In order to investigate the undulatory dorsal fin propulsion and its potential for 
providing alternative approaches for future underwater vehicle design, the long-based 
undulatory fin of an Amiiform fish“Gymnarchus niloticus”was studied. We have 
quantificationally investigated the cruising swimming of G. niloticus by employing a 
high-speed digital video and the image-measure technology, and brought forward a 
simplified physical model and kinematic model to simulate the undulations of the 
long-based dorsal fin. The aim of the research is twofold. First, we aim at establishing 
the dynamic equations of the long-based fin motion and analyzing the propulsive 
performance of the locomotive means. Second, we aim at offering a kinematic model 
to develop control algorithms for undulatory motions. 

2   The Simplified Physical Model of the Long-Based Fin 

G. niloticus is a large aggressive freshwater electric eel distributing tropical Africa 
and Nile(fig.1). Maximum length of the fish is 1.5 m, usually below 0.9 m. The fish 
has a streamlined body, tapering to a posterior point. Swimming is accomplished by 
means of wavelike motion along the long-based dorsal fin, while the body axis is held 
straight in many cases when swimming. The anal and caudal fins have missed, while 
the dorsal fin extends along most of the body length and exhibits a large number of 
fin-rays (up to 183-230)[7]. The depth of the fin is almost constant except the original 
segment. Locomotor waves may pass in either direction along the dorsal fin, and may 
show widely varying amplitude and frequency, particularly during turning or braking. 

 
 
 
 
 
 
 

Fig. 1. Silhouette of G. niloticus during steadily swimming 

The long-based fin system consists of the muscles, fin-rays and a flexible 
membrane connecting them together. A set of muscles for each fin-ray provide the 
later with two degrees-of-freedom movement capability. Fish can reduce the influence 
of the exterior fluid around the body and inner elasticity of the fin during swimming 
by actively modulating the amplitude and frequency of the fin-rays swaying [8]. For 
mathematical convenience, the long-based fin is simplified a system that makes up of 
N  equal thin rods and a rectangular elasticmembrane connecting them toge- 
ther. Figure 2 shows the structure of the simplified physical model. Two consecutive  
rods and the membrane between them form a fin cell. All fin-rays are collocated at  
regular intervals along the spine, connecting with the spine by a simple 
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Fig. 2. The structure of the simplified physical model of the long-based fin. finL denotes the 

length of the fin, rayL  is the highness of the fin-ray, and rayS  is the space between consecutive 

fin-rays. 

supported means. Fin-rays can swing to the lateral directions about the spine by the 
action of power forces. The bottom edge of the membrane is fixed on the spine, and 
the lateral edges are simply supported by fin-rays. 

3   Analysis and Modeling of the Long-Based Fin Undulating 

3.1   Analysis of the Long-Based Dorsal Fin Undulating 

Figure 3 images show the body position and dorsal fin’s waves at the same intervals 
during a specimen steadily swimming [9]. The fin-rays periodically wiggle around the 
spine, and drive the membrane waving with the same frequency during the long-based 
fin undulating. Since there is a phase lag between the consecutive fin-rays, the 
membrane twists and distorts along the chord of the membrane by the fin-rays powers 
and the fluid forces. The torsion angles and distortions periodically vary with the 
time, and augment along the spread of the membrane, 0  at the base and maximum at 
the edge of the membrane.  

The shape along the spread of the membrane varies with the time during 
swimming. G. niloticus keeps the long-based fin a plane during suspending in the 
calm water. The membrane arches from the outer edge downwards to the spine 
during the fin cell swings downwards to the lateral. The arch curvature reaches its 
peak at the maximum angular deflection for the fin cell. During the fin cell swings 
from the lateral upwards to the middle, the membrane basically maintains arch, and 
the arch curvature gradually minishes until the membrane wiggles to the top. The half 
cycle of the membrane cell oscillating is done. The fin cell does the other half cycle 
during oscillating on the reversed side of the body. The process of oscillating and the 
shape of the fin cell are mirror-image symmetrical with the half cycle done. Then the 
membrane cell begins next a cycle, swings in cycles. 
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Fig. 3. Images show body position and dorsal fin’s waves at regular intervals during steadily 
swimming (From [9]) 

3.2   Modeling for the Fin-Rays Swaying 

During cruising, fish’s muscular systems control the individual fin-rays periodically 
swaying around the spinal column, and the dorsal fin takes the shape of an analogous 
sine wave. Thus, a simple model imitating fin-rays locomotion is that the angular 
velocities of the fin-rays vary sinusiodally. Assume that every fin-ray swings with a 
common frequency and a constant phase lag between consecutive fin-rays, then the 
simplified model may be described as: 

ψφφ −+= ))1(2sin( lag
i
0

i iftA   ,  Ni ,,1=                           (1) 

Where iφ  is the angular deflection for the ith fin-ray. i
0A is the maximum angular 

deflection for the ith fin-ray. f  is the swing frequency for the fin-rays. lagφ  is the 

phase lag angle between consecutive fin-rays. The angular ψ marks the offset of 

swimming paths for the body, and is set to 0=ψ  for locomotion in a straight line. 

Propagation direction for the wave depends on the sign of the phase lag parameter, 
and is from the body head to the tail for 0lag <φ . The condition Nn⋅±= 2lagφ
yields (exactly) n  equal wavelength of the propulsive wave across the undul- 
ating fin. 

3.3   Kinematic Modeling for the Fin Cell  

We use a Cartesian coordinate system xyzo −  to describe undulatory moti-ons of the 

long-based fin (as Fig.4 shown). The coordinate origin o  is at the tip of the body. 
The x -axis is along the base line and points to the head. The y -axis is parallel to the 

rest fin and points to the outer edge of the fin. The fin-rays rotate about the x -axis in 
the plane paralleled with the yz -plane and cause the membrane between consecutive 

fin-rays to make a lateral movement.  
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ï

Fig. 4. Sketch of the curved surface of the fin cell at time t during the long-based fin undulating  

The ith fin cell consists of the ith fin-ray, ( 1+i )th fin-ray and the membrane 

between them. The position of the ith fin-ray at the x -axis is ix . The fin-rays 
oscillating and the fluid loading cause the membrane to form a curved surface. 
Assume that the fin cell forms a ruled surface at time t , and then the curved surface of 
the fin cell may be described as follows: 

)}(sin  )(cos {)( iiii uvuvxubvurr θθ+==  ,   i),( Dvu ∈                       (2) 
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≤≤
≤≤−= +

ray

1iiii
i

0

,)(
:

Lv

xxxbxxu
D  

Where u and v are the parameter variables of the curved surface. ir denotes the 
position vector concerning any surface point ),( vuP  on condition that the membrane 

is acted on by outside forces at time t .The rulings are parallel to the yz -plane and 

form an angle )(uθ with the xy -plane. the unit tangent vector of the ruling through the 

point u is )}(sin  )(cos 0{ uu θθ . 

We use i
p

~r and i
prΔ to describe the curved surface deformation of the membrane 

during the long-based fin undulating. When the membrane surface is a plane, that is to 
say, when the membrane has no distortion at time t , the position vector concerning 
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the point ),( vuP  is i
p

~r . The deformation displacement with regard to the 

point ),( vuP is i
prΔ at time t . Expressions 3~4 correspond to i

p
~r and i

prΔ , respectively. 
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In the orthogonal curvilinear coordinate system uvo − , the unit tangential 

vectors and unit surface normal vector are i
eur i

evr and i
enr , respectively. The 

component parts of i
pr and i

prΔ along the curvilinear coordinates and normal 

direction of the surface can be obtained as follows: 
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Where )( i
0

i
0

i
0

wvu  is the component parts of the position vector at time t. 

)( i
1

i
1

i
1

wvu is the component parts of the deformation displacement at time t. 

4   Dynamic Analysis of the Long-Based Fin  

4.1   The Stress-Strain Relations for a Membrane 

The geometry of the membrane between consecutive fin-rays is such that its thickness 
dimension is much smaller than its in-surface dimensions. Thus, the kinematic 
deformation of the membrane in thickness direction can be omitted, and the kinematic 
deformation of the membrane is approximate to that of the middle surface. We apply 
the thin-shell theory to analyze the membrane dynamics by adopting some 
assumptions as follows [10]:  points initially located along straight fibers in the 
through-the-thickness direction remain along straight fibers;  the principal stain in 
the direction vertical to middle surface is most small andïa negligible quantity in 
comparison with unity;  the principal stain in the surface parallel to the middle 
surface is far less than that in the vertical plane, and the deformation caused by the 
principal stain in the surface parallel to the middle surface may also be omitted; 
body forces and surface forces can be transformed the loading acted on the middle 
surface. Since membranes have negligible bending stiffness and cannot sustain 
compressive stresses, a further assumption is that all cross sections of the membrane 
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have no blending moment and twisting moment. According to above assumptions, 
components of the tangential strain with regard to point ),( vuP at time t are given by: 
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Where i
1

ε and i
2ε  are components of strain along u -line and v -line. iω is shear strain 

which corresponds to angle varieties between u -line and v -line. iA and iB are Lame 

modulus. i
1

R and i
2

R are curvature radius along curvilinear coordinates concerning the 

normal section. Suppose that the membrane is homogenous, isotropic and linearly 
elastic. The stress-strain relations on the membrane are therefore given by:  
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Where i
1

N and i
2

N are components of stress along curvilinear coordinates, iS is shear 

stress in the middle surface, E is Yong’s Elastic Modulus, μ is Poisson ratio, and 

h is the thickness of the membrane. 

4.2   Differential Equations of Motion for the Membrane in Curvilinear 
Coordinates 

We consider the dynamic balance for a differential element of the membrane using 
the theory of a flexible thin shell. The forces acting on a differential element include 

the elastic forces ( i
1

N , i
2

N and iS ), fluid loading force ( iq ) and turning inertia force 

(
2

i
p

2
ii

m t∂
∂ r

dudvBhAρ ). mρ is the density of the membrane. The equations of motion 

for a membrane in the curvilinear coordinates are written by: 
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Where uq , vq and wq are the components of iq in the curvilinear coordinates. The 

integrated loading forces )( i
z

i
y

i
x

i QQQQ with the Descarts coordinates for the ith 

fin cell membrane is given by: 
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4.3   Boundary Conditions on the Membrane 

The stresses and displacement of deformation for the membrane should meet the 
boundary conditions as follows: 

Along the fixed edge (spine) of the membrane, 0i
1

=u and 0i
1

=v  for 0=v .   

Along the simply-supported edges (fin-rays) of the membrane, 0i
1

=N  and 

0i
1

=v  for 0=u or i1i φφ −= +u .   

Along the free edge of the membrane, 0i
2

=N and 0i =S  for rayLv = .                               

4.4   Analysis of the Forces on the Fin-Rays 

Assume that the fin-rays are rigid and have no elastic deformation during rotating. 

The forces acting on the ith fin-ray are membrane tensions ( iT and i~
T ), resultant 

force ( i
0q ) of power force and fluid loading force, and turning inertia force 

(
2

i
p

2
i2

0m t∂
∂ r

Bdπρ ). iT is caused by the ith fin cell membrane, i~
T is caused by the 

( 1−i )th fin cell membrane, 0mρ is the density of the fin-rays, and d is the radius of 

the cross section of the fin-rays. The differential equations of motion for fin-rays in 
curvilinear coordinates are given by: 
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Where 0uq , 0vq and 0wq are the components of i
0q in the curvilinear coordinates, 

i
uT , i

vT  and i
wT  the components of iT in the curvilinear coordinates, and 

i
u

~
T , i

v

~
T and i

w

~
T the components of i~

T in the curvilinear coordinates. i~
T is 0 for 1=i  

and iT is 0 for Ni = . 

The integrated loading forces )( i
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i
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i
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0 QQQQ for the ith fin-ray is given by: 
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The integrated force Q acting on the long-based fin is therefore given by: 
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5   Numerical Calculation and Analysis 

Configuration parameters of the long-based fin, characteristic parameters of fin 
material and movement parameters of the fin may influence the dynamic performance 
of the fin to a certain extent. In this section, we apply the derived the kinematic model 
and equilibrium equations of the undulatory fin to analyze the thrust and propulsive 
efficiency varying with the aspect ratio ( 1g ) of the fin and the maximum swing 

amplitude ( 0A ). Assume the parameters of the rectangle fin as follow: 

)N/m(10 26=E , 4.0=μ , mm1.0=h , 3
m kg/m950=ρ , 3

0m kg/m7900=ρ ,

mm2.0=d , the length of the membrane is 17mm=L , the frequency of the 
oscillating membrane Hz1=f , the deflexion angle of the spine 0=α , the obliquity 

of the fin-ray 2πβ = .  

 

Fig. 5(a) Thrusts xQ varying with different the aspect ratio ( 1g ) of the fin and time t 
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Fig. 5(b) The ratio QxQ varying with different the aspect ratio ( 1g ) of the fin and time t 

 

Fig. 6(a) Thrusts xQ varying with the maximum swing amplitude ( 0A ) and time t 

 

Fig. 6(b) The ratio QxQ varying with the maximum swing amplitude ( 0A ) and time t 
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As shown in fig.5, the thrust ( xQ ) produced by the long-based fin swaying 

increases non-proportionally with the aspect ratio increasing, and the increasing 

extent decreases with 1g  augmentation. The ratio ( QxQ ) of the thrust produced by 

the fin swaying to the loading force acting on the fin decreases non-proportionally 
with the aspect ratio increasing, and the decreasing extent decreases with 1g  

augmentation. Fig.6 shows that xQ increases basically proportionally with 0A  

increasing and QxQ also decreases basically proportionally at the same time. Fig.5 

and fig.6 indicate that 1g and 0A  augmentation may conduce to increase the thrust, 

but may decrease the propulsive efficiency. 

6   Conclusion 

For the long-based dorsal fin of G. niloticus, a simplified physical model was brought 
forward in this paper, which makes up of N  equal thin rods and a rectangular 
elasticmembrane connecting them together. With light mass, small stiffness and low 
natural vibration frequency, the membranes of the long-based fin are sensitive to the 
hydrodynamic action. Generally, fluid loading may induce large displacement and 
acceleration of the membranes, which may result in the change of the local flow field 
around the fin. Therefore, the long-based fin undulating should be analyzed on the 
basis of considering the fluid-structure interaction. In this paper, a kinematic model 
on the long-based undulatory fin was established. The equilibrium equations of the 
undulatory fin are obtained by applying the membrane theory of thin shells in which 
the geometrical non-linearity of the structure is taken into account. We will use the 
present simplified physical model and kinematic model to simulate undulating of the 
long-based dorsal fin of G. niloticus and analyze the dynamic effects of the long-
based fin undulating in future work. 
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Abstract. This paper proposes an environmental adaptation mecha-
nism for a biped walking robot control on up/down slopes. In order
to cope with a variety of environments, the proposed locomotion control
system has dual adaptation loops. The first adaptation loop is a phase en-
trainment attribute of coupled nonlinear oscillators that directly encode
the locomotion cycle, and it corresponds to a kind of feedback adaptation
against perturbative changes. In contrast, the second one is elicitation of
sensorimotor constraints, that is kinematic parameters constrain limbs
trajectories (e.g. length of stride) according to the environmental state.
Thus it can be considered as a kind of feedforward adaptation. In this
paper, the validity of the proposed adaptation mechanisms can be eval-
uated through a physical simulations of a biped walking robot.

1 Introduction

Due to the remarkable progress of resent robot technology (RT), a number of
biped walking robots, such as ASIMO and so forth have been developed[1]. The
control methods for these biped walking robots are basically tracing desired mo-
tion trajectories with considering ZMP (zero moment point) criterion. Therefore
they have been strictly/carefully designed to demonstrate skillful motions with
great knowledge about the environments where the robots will be situated, and
in many cases, autonomous adaptation functions have not been considered yet.

As a substitute for the approach, much attention has been recently focused
on dynamics-based control such as PDW (passive dynamic walking)[2,3,4,5],
and/or biologically-inspired approach like CPG (central pattern generator) based
control[6,7,8,9,10]. In particular, the dynamics-based biped control has been in-
tensively studied and there exist many real robot demonstrations. In those stud-
ies, it has reported that a robust locomotion can be realized by coupling the

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 174–184, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Walking experiment of young monkey. Adaptation to inclination changes[11].
Reprinted with permission.

parametric modulator
& learning module

pattern generator
(CPG)

dynamics of
body and environments

kinematic constraints

motion patterns
sensory feedbacks

(somatic, visual, ...)

anticipatory adaptation

reactive adaptation

Fig. 2. Proposed dual adaptation loops model for motor control

dynamics of physical body and control inputs (i.e. outputs of CPG model) based
on sensory feedbacks. This concept is sometimes called “global entrainment[6]”.

In contrast, it has been generally clarified that there are a variety of adapta-
tion loops in animals motor control systems, and thanks to the spatiotemporal
redundancy for adaptation, we can adapt to a broad range of environments.

According to recent physiological study[11], well-trained monkey can walk on
a moving treadmill even if its elevation angle are arbitrarily changed(Fig.1). It is
considered that the monkey can generate suitable force to control its posture and
walking pattern by using both of feedback and feedforward adaptation strategies.

From developmental system’s point of view, a sophisticated motor control
should be regulated based on feedforward adaptation since sensory feedback
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somatosensory information time-series

anticipatory adaptation
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phase

desired angles

torque
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phase

walking
pattern

walking
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Fig. 3. An implementation of the proposed dual adaptation loops model

can not avoid dead time for observation. On the contrary, in the early stage of
developmental process, feedback adaptation should be dominant. The roles of
feedforward and feedback adaptation loops in motor control is well summarized
in [12,13].

Based on the above, we had proposed a reactive and anticipatory adapta-
tion model for environmental cognition and motor adaptation[14]. As shown in
Fig.2, it basically consists of three components, parametric modulator, pattern
generator, and the dynamics of body (e.g. musculo-skeletal system) and external
environments.

2 Method

In this section, we explain the implementation of the proposed method. As shown
in Fig.3, the proposed control system is basically composed of a coupled phase
oscillators, trajectory generator, evaluation module, and learning module.

2.1 Phase Oscillator-Based Walking Control

As has been noted, the proposed method has dual adaptation loops for a biped
walking control. First, we account for the basic control system denoted in the
left hand side of Fig.3. The basic frequency of locomotion (i.e. walking speed)
is governed by coupled phase oscillators depicted as CPG which are assigned
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Fig. 4. Desired trajectory for a biped locomotion

to left and right leg, respectively. The dynamics of these oscillators are given by
the following differential equation,

φ̇i = ωi + K

N∑
k=1

sin (φk − φi) + Γi , (1)

where φ is the phase of the oscillator, ω is a angle velocity, and K is the in-
teraction gain among neighbor oscillators. In addition, Γ represents the phase
resetting term given by,

Γi =
(
φ̂touch

i (t) − φtouch
i (t)

)
δ
(
t − ttouch

)
. (2)

where φ̂touch indicates desired phase of swinging leg in which it has just touch on
the ground, and φtouch corresponds to the actual phase of the leg. In addition, δ (·)
denotes the Dirac’s delta function. The phase resetting method has been widely
adopted in legged robots control studies for keeping stable locomotion[9,10].

According to the phase of each oscillator, subsequent Trajectory generator
determines the position of the heel based on the kinematics (See Fig.4). Due to this,
kinematic parameters for each leg should be constrained.

Based on the desired trajectories, each actuated joints are servo controlled
with torque τi.

τi = KPi

(
θ̂i − θi

)
+ KDi

(
ˆ̇θi − θ̇i

)
. (3)

where θ̂ and ˆ̇
θ are desired, and θ and θ̇ are actual trajectories of angle and

angle velocity, respectively. Furthermore, KP and KD are the feedback gain
parameters.

2.2 Elicitation of Sensorimotor Constraints

Although adaptation by phase entrainment and phase resetting method is robust,
these are available with respect to a limited perturbation. Thus in the outside of
the available regions (i.e. unexperienced situations), other adaptation algorithm
is necessary.
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In this study, we propose actively changing the kinematic parameters such as
“length of stride” and “inclination angle” based on the state evaluation module.

The elicitation of the previously-experienced sensorimotor constraints is exe-
cuted by the case-based reasoning method[15]. For this aim, the once optimized
kinematic parameters have to be stored by correlating with the corresponding
sensorimotor information. As illustrated in the right hand side of Fig.3, state
evaluation module monitors somatosensory, phase, and walking pattern infor-
mation at any time. Thus in the module, code book vectors (i.e. reference vec-
tors) for the case-based reasoning are maintained using LVQ (learning vector
quantization) algorithm[15].

3 Simulations

3.1 Simulation Setting

To verify the feasibility of the proposed method, it was applied to a biped walking
robot control in a physical simulator which is developed using an open source
physics engine, ODE[16].

Fig.5 depicts schematic model of a biped walking robot and our developed
simulator. As shown in the left figure, the biped only has lower body with seven
DOF in pitch direction (i.e. hip, knee, ankle joints). Therefore it is constrained
to move in sagittal plane. And the detail parameters of each body part are listed
in Table. 1.

3.2 On-Line Optimization of Kinematic Parameters

In the proposed adaptation method for biped walking robot control, the two
kinematic parameters, pi = [li, θi]T , here l and θ are the length of stride and

Z

XY

Fig. 5. Simulated biped walking robot and developed simulator
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Table 1. Parameters of biped

Body Mass Width Height Depth
Part [Kg] [m] [m] [m]
FOOT 0.10 0.07 0.02 0.13
SHANK 0.18 0.05 0.12 0.05
THIGH 0.30 0.06 0.14 0.06
HIP 0.36 0.15 0.04 0.10
BODY 1.84 0.16 0.12 0.12

estimated inclination angle respectively, have to be optimized for realizing natu-
ral (i.e. swing less) locomotion. In addition, the kinematic parameters that once
optimized have to be stored in dynamical memory by correlating with the corre-
sponding sensorimotor information. These parameters are called sensorimotor
constraints in this paper.

Obviously, the sensorimotor constraints have to be optimized through dy-
namic interaction with the situated environments. Due to this, we tried to opti-
mize these parameters in on-line under various kinds of environments using the
following updating laws.

E(t) =
∫ 2T

xZMP (t)dt , (4)

li(t + 1) = li(t) − Kc · sgn

(
E(t) − E(t − 1)

li(t)

)
, (5)

sgn(x) =
{

1 (x > 0)
−1 (x < 0) ,

θi(t + 1) = θi(t) +

(
K · 1

T

∫ T

θincl(t)dt − δoffset

)
. (6)

where E(t) indicates the performance of the biped locomotion, which is calcu-
lated from the x component of the ZMP (i.e. pitch angle). The equation (5)
represents the updating law of the stride l(t), and sgn(·) denotes the a sign
function. Moreover, the equation (6) also represents the updating law for the
estimated inclination angle θ(t).

Fig.6 represents the transitions of evaluation E(t) (dashed line) measured
from integration of swinging in a walking period (i.e. lower is better), and the
optimized length of stride l(t) (solid line). The result shows that the stride can
be optimized in on-line.

On the other hand, Fig.7 demonstrates that transitions of body inclination
angle (solid line) and the estimated slope angle (dashed line). Owing to wrong
estimation, in early stage of iteration, the body inclination has been swinging.
As the estimation becomes optimal, the swinging range is converged.
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Fig. 6. Result of on-line optimization of a kinematic parameter (length of stride)
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Fig. 7. Result of on-line estimation of slope angle

3.3 Adaptive Locomotion by Eliciting Sensorimotor Constraints

In order to evaluate the feasibility of the proposed feedforward adaptation
method, i.e. eliciting sensorimotor constraints according to the situation, simu-
lation has been executed.

Fig.8 shows (a) snapshots and (b) stick pictures of locomotion of biped walking
robot on up slope, the elevation angle is gradually increased.

Fig.9 illustrates trajectory of COG (center of gravity) of the biped walking
robot. As can be seen from the figure, walking pattern (i.e. dashed line) was
changed when the biped walked into the 6.0[deg] slope. In other words, the biped
robot can adapt the 3.0 [deg] slope only with the phase entrainment/resetting
(i.e. feedback) adaptation. From the trajectory of Y component of the ZMP
(Fig.10), we can see that the biped demonstrates backward inclining locomotion
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(a) Snapshots
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Fig. 8. Locomotion of biped walking robot on up slope with different angles. First, the
robot is situated on a flat surface, the elevation angle of the slope gradually scarped
(i.e. 0.0, 3.0, and 6.0[deg]).

on 3.0 [deg] slope, since it depends on phase resetting. In contrast, on 6.0 [deg]
slope, its posture is recovered because appropriate kinematic constraints has
been elicited.

3.4 Adaptive Locomotion on Down Slope

Similarly, walking experiment on down slope has been attempted. In this ex-
periment, the slope angle was changed from flat surface to down slope (angle is
-4.0[deg]).
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Fig. 10. Trajectory of ZMP

We can see (a) the snapshots and (b) stick pictures of locomotion on the down
slope from the Fig.11.

4 Discussions

In this paper, we proposed an environmental adaptation method for a biped
walking robot control. There are dual loops in the proposed adaptation mecha-
nism, one is based on phase entrainment ability of pattern generators, and the
other is feedforward elicitation of sensorimotor constraints.

As can be seen in Fig.8 and Fig.11, the robot with the proposed adaptation
loops can walk continuously in spite of slope elevation angle are changed. In
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(a) Snapshots
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Fig. 11. Locomotion of biped walking robot on down slope

addition, we confirmed that the robot can continue to walk even though it is
situated on the slope with unexperienced angles.
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Abstract. The present study describes experiments on a ball handling
behavior learning that is realized by a small humanoid robot with a
dynamic neural network model, the recurrent neural network with para-
metric bias (RNNPB). The present experiments show that after the robot
learned different types of behaviors through direct human teaching, the
robot was able to switch between two types of behaviors based on the
ball motion dynamics. We analyzed the parametric bias (PB) space to
show that each of the multiple dynamic structures acquired in the RN-
NPB corresponds with taught multiple behavior patterns and that the
behaviors can be switched by adjusting the PB values.

1 Introduction

The learning of object handling behavior by robots is a difficult problem be-
cause the motor trajectories required to achieve adequate handling behaviors
can be diverse as a result of the various types of situations that may be encoun-
tered. Even when manipulating the same object, the motor time-development
differs widely depending on how the robot and the object are situated in the
workspace. The present study shows that a dynamic neural network model is
effective in learning and generating such diverse and situational behaviors for
object handling.

The learning of object handling by robots has been investigated in a substan-
tial number of studies. Recently, Bianco and Nolfi [1] showed that a simulated
robot arm can acquire an object grasping behavior by evolving neural controllers.
By evolving simple sensory-motor maps in layered networks, rather complex
grasping behavior is generated dynamically, even with a significant range of
perturbations in the position and direction of the object. However, their evo-
lutionary approach may be difficult to apply to a real robot task because it

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 185–196, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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requires a substantial number of trials, which real robot situations cannot easily
accommodate.

In some reinforcement learning studies, behavior schemes are learned by com-
bining predefined behavior primitives. For instance, for an object handling task,
a robot learns to select from among predefined behavior primitives, such as ap-
proaching, grabbing, carrying and releasing an object, as appropriate for each
step. However, this approach can hardly be applied to a dynamic object han-
dling behavior such as object grasping [1] and juggling [2] because it is difficult
to manually divide the dynamic behavior scheme into a set of discrete behav-
ior primitives. On the other hand, some researchers [3,4] proposed models that
can learn various behavioral skills from continuous sensory-motor flow without
possessing any predefined behavior primitives. Recently, some of the authors pro-
posed a neural network scheme, called the RNN with Parametric Bias (RNNPB)
[5,6], and applied it to the task of object manipulation by an arm-type robot [5].
However, the task was quite simple because the object was manipulated only
in a two-dimensional workspace and the interaction dynamics between the arm
and the object were quite limited.

In the present study, complex tasks of ball manipulations utilizing a humanoid
robot are considered. In order to let the robot acquire these task skills, an imita-
tion learning framework is introduced in order to avoid an unrealistic number of
trial and error instances, which is often observed when applying reinforcement
learning and genetic algorithms to complex behavior tasks. In the present imita-
tion learning method, the manipulation of objects is taught directly by humans
who guide the movements of the robot by grasping its arms. After repeated guid-
ance and corresponding neuronal learning, the robot becomes able to generate
the taught behavioral patterns with generalization.

One specific goal of the present study is to show possible neuronal mech-
anisms that enable the robot to generate behavior adaptively corresponding
to various situational changes of the robot and the object. For this purpose,
reflex-type behavior generation for acquiring a simple sensory-motor mapping
may not be sufficient because the recognition of situational changes in our
task may require contextual information processing. In order to recognize the
current situation in a contextual manner may require certain internal mod-
els. Here, the internal model does not refer to the global model of the task,
but rather to the capability to anticipate encountering sensory flow in the fu-
ture by regressing the current and past sensory-motor flows in a contextual
manner.

In the present study, our previously described scheme of the RNNPB [5,7] is
utilized as one possible neuronal network model to implement context switch-
ing. The ultimate challenge of the present study is to clarify the essential mech-
anism of context switching for the task of object handling from the dynamic
systems perspectives [8,9]. The dynamic structures that appear in the tight
coupling among the body, the object and the internal neuronal processes will
be explained by means of attractor dynamics and their parameter bifurcation
characteristics.
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2 Model and Algorithm

2.1 Architecture

The RNNPB model has the same architecture as the conventional Jordan-type
RNN model [10] except for the PB nodes in the input layer.

Figure 1 shows the network architecture. For the normal input and output
nodes, both open-loop and closed-loop operations are performed simultaneously.
In the open-loop operation, outputs of the network (ŝt+1, m̂t+1) are calculated
as the result of prediction from the current inputs (st, mt). In the closed-loop
operation, copies of the previous prediction outputs (ŝt−1, m̂t−1) are copied to
the current inputs, and outputs are then calculated based on the feedback. This
feedback enables look-ahead prediction (rehearsal process) for an arbitrary num-
ber of future steps without perceiving the actual inputs.

Fig. 1. Configuration of the RNNPB (a) in the learning phase and (b) in the interaction
phase. In both phases, each normal input is calculated according to the weighted sum
between current inputs and copies of previous prediction outputs. However, in the
interaction phase in particular, motor inputs m∗

t are determined only from previous
prediction outputs.

In the learning phase, the closed-loop operation is needed in order to enable
the RNNPB to learn the memory structure by which the RNNPB can regenerate
learned patterns autonomously. However, learning by the closed-loop operation
only tends to be unstable. Therefore, we combined two types of operations for
the learning of the RNNPB. In addition, in the interaction phase, both types of
operations are combined to achieve both robustness against noise and flexibility
to situational changes in the generation of learned behaviors. The combination
of the open-loop and the closed-loop operations is calculated by the weighted
sum for current inputs and previous prediction outputs, as follows:

(s∗t , m
∗
t ) = α(st, mt) + (1 − α)(ŝt−1, m̂t−1) . (1)
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The parameter α determines the influence ratio of each operation on the actual
inputs (s∗t , m

∗
t ).

Both the input and output layers contain context nodes, ct. The output of
the context nodes is copied to the context nodes in the input layer. The internal
state is recursively computed for future steps utilizing the recurrent feedback
loop for the context nodes. The input layer contains PB nodes, pt. The PB
nodes are additional network variables that can be manipulated to learn and
generate diverse behavior patterns.

The common structural properties of the training data sequences are acquired
as connection weights using the back propagation through time (BPTT) algo-
rithm [11]. On the other hand, the specific properties of each individual time
sequence are simultaneously encoded as PB values. Therefore, the modulation
of the PB values shifts the modes of the behavior pattern. In the processes of
learning and recognition, the PB values are iteratively computed utilizing the
error between the target sensory-motor sequence and the predicted sequence.

2.2 Learning Process

The learning algorithm for the parametric bias vectors is a variant of the BPTT
algorithm. The step length of a sequence is denoted by l. For each of the sensory-
motor outputs, the back-propagated errors with respect to the PB nodes are
accumulated and used to update the PB values. The update equations for the
ith unit of the PB at t in the sequence are as follows:

δρt = kbp

t+l/2∑
t−l/2

δbp
t + knb(ρt+1 − 2ρt + ρt−1) . (2)

Δρt = εδρt . (3)
pt = sigmoid(ρt/ζ) . (4)

The term δρt is the local gradient to update the interval values of the PB
ρt, which is obtained from the sum of the following two terms, as shown in (2).
The first term represents the delta error, δbp

t , back-propagated from the output
nodes to the PB nodes and is integrated over the period from steps t − l/2 to
t + l/2 (0 ≤ t − l/2 and t − l/2 < l). Integrating the delta error prevents local
fluctuations in the temporal PB values. The second term is a low-pass filter that
inhibits frequent and rapid change of the PB values. The terms kbp and knb are
the coefficient parameters of the above two terms.

The term Δρt is the differential of the internal value ρt, which is calculated
using the local gradient δρt and the learning rate ε, as shown in (3). The current
PB values pt are then obtained from the sigmoidal outputs of the internal values
ρt, as shown in (4), where ζ is the slope parameter of the sigmoid function.

2.3 Generation of Behaviors

The inverse computation of the PB values is performed during on-line operations
of the robots even after the learning process is terminated. When the dynamic
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characteristics of ongoing sensory flow is alternated from one mode to another,
the prediction error with the current PB values increases. The PB value is then
updated in the direction of minimizing the prediction error. The obtained PB
value sequences are used as the inputs of the PB nodes for the next sensory-
motor sequence prediction process, which results in the update of generated
motor patterns based on the current sensory inputs. This parallel mechanism
of the inverse computation of the PB by means of the regression of the past
sensory flow and the forward computation of motor flow in the future based on
the current PB is essential for generating situated behaviors [5,7].

3 Robot System Configuration

The robot task of object handling involves two-arm ball handling. The ball is
visually identified by color segmentation. The robot acquires an adequate behav-
ior scheme by learning a set of sensory-motor sequences obtained through direct
human teaching. During behavior learning, the target sequence to be learned is
the paired trajectory of the sensory and motor values. The sensory information
is obtained for both arm movement and object movement. The arm movement
is the trajectory of the joint angles as measured by encoders in both arms.
The object movement is obtained from the 3-D positions of the center of color-
segmented regions of the objects. On the other hand, the motor values are the
trajectories of the reference joint angles of the robot’s arms. In the present ex-
periments, the target reference trajectory is simply obtained as a copy of the
measured arm movement during direct teaching by human supporters. A set of
these paired sequences is learned by the RNNPB off-line. In the generation mode,
the robot attempts to generate suitable behaviors depending upon the situation
by predicting incoming sensory sequences. In this phase, the robot perceives the
sensory input and generates its corresponding motor output while adapting the
PB values by regression.

4 Dynamic Generation of Ball Handling Behaviors

4.1 Learning of Behaviors from Human Direct Teaching

In the present experiment, the robot learns two different types of ball handling be-
haviors.One type is ’rolling a ball’, in which the robot swings both arms alternately
to roll a ball on a table from left to right and vice versa. The other type is ’lifting a
ball’, which involves bringing the robot’s hands together to grasp and lift vertically
a ball that is located on a table and then releasing the ball.

This task is performed by a small humanoid robot that is seated on a chair
and that handles the ball on a table. The ball is 6 cm in diameter. The table
is 45 cm square and is equipped with guides (height: 1 cm, width: 3 cm) to
prevent the ball from falling from the table. The table is inclined approximately
4 degrees on the near side so that the ball returns to the reachable area even if
pushed away. The robot perceives the ball with a camera attached to its head
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and handles the ball with both of its arms. The RNNPB in the robot receives
two types of information. One is the current ball position obtained by the robot
vision system in Cartesian coordinates in the task workspace, where the size of
the segmented color region of the ball indicates the distance from the camera.
The other type of information is the encoder value for each of the joint angles
(shoulder pitch, shoulder roll, shoulder yaw, and elbow pitch) of both arms at
the current time step. The RNNPB outputs two types of information. One is
the motor commands in terms of the reference values of all joint angles of the
next time step, and the other is the prediction of the ball position in the next
time step. (Note that the reference value and encoder value for each joint can
be different because of the position error by the PID control in the robot.)

In the learning phase, the robot learns two different ball handling behaviors
from human direct teaching. In the teaching process, a human user grasps the
robot’s arms and guides them to perform the target ball handling behaviors using
an actual ball while the servo gain of the robot arms is set to approximately zero.
In the present study, the reference trajectory is simply obtained as a copy of
the measured arm movement in the direct teaching by the human trainer. The
training data for the RNNPB were recorded with a time interval of 50 msec,
which is as same frequency as the calculation interval of the RNNPB. For the
ball rolling behavior, two cycles of the behavior, starting from the right and left
sides (three samples each), were recorded. For the ball-lifting task, one cycle of
the behavior (six samples) was recorded. The sequence length of the trajectories
is approximately 120 steps (6 sec) for the ball rolling task and approximately 90
steps (4.5 sec) for the ball lifting task. It is important to note that during the
teaching process these two behaviors are taught as separate sequences. Thus,
the robot never learns the transition between these two behaviors.

A set of these paired sequences is learned by the RNNPB off-line. For the
learning of the forward model of the behavior sequences, we employed an RNNPB
having 19 input nodes and 19 prediction output nodes. In addition, the RNNPB
has 50 hidden nodes, 70 context nodes, and two parametric bias nodes. The
above numbers of hidden and context nodes were determined by a parametric
study using a PC cluster system. In the present study, we examined only the
RNNPB with two parametric bias nodes for analysis. The other parameters
were heuristically determined as follows: kbp: 0.4, knb:0.4, ε:0.1, and ζ: 0.03. In
addition, in the learning phase, α is set to 0.16 for motor inputs and 0.3 for
sensory inputs, and in the interaction phase, α is set to 0.0 for motor inputs,
0.08 for joint angle sensory inputs, and 1.0 for ball position inputs.

For the learning sample set, the learning is iterated for 50,000 steps, starting
from an initial random set of synaptic weights. In order to avoid over-fitting to
noisy data, we introduced a small artificial random noise to the output of the
RNNPB in the learning process. The final root-mean-square error of the output
nodes was less than 0.0003.

Subsequently, in the interaction phase, the RNNPB in the robot receives the
current ball position and the current encoder values for all of the joint angles as
inputs and generates its corresponding motor commands and the prediction of the
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ball position in the next time step as outputs in an online manner. For the online
recognition process (PB regression by utilizing the prediction error), 50 instances
of forward- and back-propagation iteration were conducted using a window length
of 30 steps of the immediate past to determine the PB at each following time step.
Along with this update of the PB, the motor references for the following step are
also computed by means of forward computation using the window.

4.2 Dynamic Generation and Switching of Learned Behaviors

After the learning, we examined how well the robot with the trained RNNPB
could generate two different learned ball handling behaviors. In addition, we
observed how well the ongoing behavior could be switched depending on the
situational differences between the robot and the ball.

Figure 2(a) shows snapshots of the ball rolling behavior generated by the
robot. When the ball was rolling from the front of the robot to the left side,
the robot hit the ball using its right hand. The ball then rolled to the left and
the robot hit the ball with its left hand. This rolling ball behavior was stably
repeated several times. Figure 2(b) shows snapshots of the ball lifting behavior
generated by the robot after the ball rolling behavior. When the human trainer
stopped the ball in front of the robot, after a short time, the robot began to grasp
the ball with both arms without any irregular movements and then lifted the
ball to a specified height. The robot then released the ball, which fell in front
of the robot. The robot then began to grasp the ball again. This ball lifting
behavior was also autonomously repeated several times.

(a) (b)

Fig. 2. Snapshots of (a) the ’rolling a ball’ behavior and (b) the ’lifting a ball’ behavior

Figure 3 shows the time course of the entire interaction and the parametric
bias values of the RNNPB. In Fig. 3, the plots at the top and in the second row
show the actual ball positions and those predicted by the RNNPB. The third-
row plot shows the robot joint angle generated by the RNNPB. (Out of a total
of eight DOFs, only two DOFs are plotted.) The plot at the bottom shows the
parametric bias of the RNNPB.

We observed the transient status, in which two different behaviors were
switched (from rolling to lifting) as a result of PB online adaptation accord-
ing to the sensory input variation. In this case, the ball position was changed
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Fig. 3. Dynamic generation and switching of two learned behaviors for the ball handling
task. The plot in the top row represents the measured position of the ball. The plots in
the second and the third rows represent the predicted ball position and the robot joint
angles generated by the RNNPB. The plot in the bottom row represents the parametric
bias of the RNNPB.

intentionally by a human. At approximately 200 steps, the ball was stopped in
front of the body. This resulted in the reduction of one of the PB values. From
approximately 340 steps, the ball lifting behavior was generated according to
the PB values.

In the present experiment, we observed that the learned ball handling behav-
iors were well generated through interaction between the RNNPB dynamics and
the ball movement dynamics. Remember that the actual ball movement does not
necessarily duplicate exactly the learned ball movement. Even under such noisy
conditions, the learned behaviors were stably generated. The system seems to
maintain a certain robustness against unknown irregularities. We speculate that
such robustness originated from the characteristics of the attractor dynamics
that emerged from the coupling between the RNNPB dynamics and the ball
movement dynamics. The behavior switching, which the robot did not learn,
was also observed to be performed smoothly. (Remember that in the learning
process, these two behaviors were trained as separate patterns.) Novel behaviors
in terms of behavior transitions were generated spontaneously utilizing emergent
dynamic structures self-organized in the system.

4.3 Analysis of the Memory Structure of the RNNPB

To clarify the relationship between the memory structure organized in the RN-
NPB and the behavior appeared in the previous robot experiment, we analyzed
the structure of the PB space and then examined the behavior dynamics em-
bedded therein.
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Fig. 4. Prediction error distribution in the PB space. Only the area in which the
prediction error is less than 0.00011 is shown. The contour on the right-hand side
indicates the area to realize ball-rolling behavior, and the contour on the left-hand side
indicates the area to realize the ball lifting behavior.

First, to visualize the memory structure of learned behaviors in the RNNPB,
we calculated the distribution of the prediction error for the ball movements of
the two learned ball handling behaviors over the entire PB space. Each point in
the PB space was set in the RNNPB as a constant value. As a result, the RNNPB
predicted the ball movements without PB adaptation in the simulation. Both
ball rolling and ball lifting were shown independently, and the prediction error
was calculated for each sequence.

Figure 4 shows a contour map of the prediction error obtained by the above cal-
culation over the two-dimensional PB space. Two of the error distributions were
overlaid to show the distribution of the smaller prediction error value. Figure 4
shows that there are two continuous bowl-shaped error distributions and that two
minimum values exist for each structure. In addition, there is a boundary of two
structures in the regionwherePB1 is approximately 0.70 andPB2 is approximately
0.95. By relating the PB trajectory shown in Fig. 3 to this contour map, we spec-
ulate that continuous variation of the PB values between the two different regions
in the PB space contributed to the smooth behavior switching.

Next, in order to examine the behavior dynamics embedded in the PB space,
we chose three typical PB vectors from the distribution map and examined how
well the RNNPB with these vectors could perceive the ball movements of each be-
havior and generate its prediction and its corresponding arm movements in the
off-line simulation. The PB vectors chosen to correspond to each behaviors are as
follows: (PB1: 0.99, PB2: 0.99) for the ball rolling task, (PB1: 0.59, PB2: 0.97) for
the ball lifting task and (PB1: 0.73, PB2: 0.96) for the intermediate behavior. The
ball movements of two learned behaviors were shown to the RNNPB with each PB
vector, and the RNNPB then predicted the ball movement and generated its cor-
responding arm movement without PB adaptation. Figure 5 shows the ball move-
mentpredicted and the armmovement generatedby theRNNPBwith three typical
PB vectors (a), (b), and (c) for ball rolling, and Fig. 6 shows that for ball lifting.

In these two figures, we found that the RNNPB with the intermediate PB
value performed as well as the RNNPB with the proper PB, as compared to the
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Fig. 5. Ball rolling behavior for constant PBs by the RNNPB that learned two different
types of ball handling behaviors. Each of the plots labeled (a), (b) and (c) indicates
the result that was acquired from the constant PB selected from the PB space, where
the prediction error corresponds with rolling, intermediate, and lifting behaviors re-
spectively. The plots in the top, second, and bottom rows represent the target velocity
of the ball calculated from the teaching data, the predicted velocity of the ball calcu-
lated from the data generated by the RNNPB, and the joint angles generated by the
RNNPB, respectively.

Fig. 6. Ball lifting behavior for constant PBs. The meanings of the labels under the
plots are the same as those described in Fig. 5.
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RNNPB with the opposite PB for both ball rolling and ball lifting. This indicates
that two different behavior dynamics were incorporated in the single dynamic
structure, which was represented by constant PB values at the boundary region.

5 Discussion

In order to learn multiple behaviors as switching dynamics, two distinct types
of learning scheme have been proposed. One is the local representation scheme
such as MOSAIC [3] and Mixture of RNN experts [4]. The other scheme is
the distributed representation scheme such as RNNPB. RNNPB has remarkable
generalization capability on learning multiple dynamic patterns since each pat-
tern is embedded in shared structures of distributed representation rather than
memorized independently [12,6,13].

However, RNNPB has a difficulty in increasing number of training patterns.
Because the weight matrix which covers most of the memory resources in RN-
NPB participates in representing the common structures among memorized pat-
terns and only a few PB values represent the difference in contrast to the fact
that as the number of training patterns increases, the common structures among
them tend to decrease and their difference tends to increase. We consider that
the scalability problem of RNNPB is due to the inappropriate balance between
the two types of memory resources.

One possible solution for this problem is to adjust each of the capacity among
the two types of memory resources depending on a training set. However, it is
difficult to estimate how much the common structures could be extracted before
learning. The other possible direction is to extract the ”local” common struc-
tures rather than the ”global” common structures among the training patterns.
In this direction, we consider how to combine both of the distributed and lo-
cal representation scheme. One possibility is to extend the current model to
have multiple RNNPB modules with a gating function. In this model, each of
the modules affords distributed representation by having associated PB units.
Therefore the ”local” common structure can be represented in each module and
it is easy to increase the number of memorized patterns by simply adding local
modules as necessary, because there is little memory interference between the
different independent modules. The characteristics of the local representation
scheme can also contribute to the additional learning performance.

6 Summary

The present experiments involving a humanoid robot revealed that diverse ball
handling behaviors can emerged as the result of mutual entrainment between
the internal dynamics of the RNNPB and the external dynamics of the environ-
ment. As a result of the present experiments, the following four objectives were
accomplished.

First, various behavior schemes were self-organized from continuous sensory-
motor flow without any predefined behavior primitives. Second, learned behav-
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iors were generated dynamically through the interaction between the internal
memory dynamics and the external dynamics. Third, dynamic switching was
achieved between multiple learned behaviors according to the external dynam-
ics. Fourth, a novel behavior pattern was generated in the behavior transition
phase without any explicit sensory-motor pattern teaching.

Thepresent study reveals that the present learningmechanismenables the robot
to learn new goal-directed behavior from the direct teaching of the trainer and to
generate appropriate learned behavior according to environmental changes. Such
learning function and adaptive behavior are essential for realizing entertainment
robots that will provide long-term interaction with users. In the future, we expect
these functions to be utilized to realize robots that share experiences with human
users and that learn new tasks from their own experiences.
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Abstract. Theoretical approaches to the problem of action selection in
autonomous agents often contrast centralised and distributed selection
schemes. Here we describe a neural substrate for distributed action selec-
tion in the vertebrate brain-stem, the medial reticular formation (mRF),
which may form a evolutionary precursor to centralised schemes found
in the higher brain. We evaluate its competence as a selection device for
robot control in a simulated resource co-ordination task, and use a ge-
netic algorithm to evolve the mRF’s inputs and internal structure. Some
configurations of the mRF could sufficiently co-ordinate actions to max-
imise the robot’s energy, but this is critically dependent on a high rate
of energy acquisition, which leaves an animal (or agent) susceptible to
food shortages. Thus, the inflexibility of the mRF as a distributed se-
lection mechanism may have provided impetus for the evolution of more
complex, centralised, selection mechanisms in the brain.

1 Introduction

A generally effective strategy for designing controllers of autonomous agents is to
reverse-engineer biological systems that have evolved as solutions to the control
problems. One such problem is action selection: a mortal agent must continuously
choose and co-ordinate behaviors appropriate to both its context and its current
internal state if it is to survive. Animals necessarily embody successful solutions
to the action selection problem. Thus, it is natural to look at what parts of the
central nervous system — the neural substrate — have evolved to carry out the
action selection process.

Recent proposals for the neural substrate of the vertebrate action selection
system have focussed on the basal ganglia - a set of fore- and mid-brain nuclei
whose input, output, and inter-connections seem to be consistent with a central
(as opposed to distributed) resource switching device [1,2]. Decerebrate animals,
altricial (helpless at birth) neonates, and lateral hypothalamic rats do not have
fully intact or functioning basal ganglia, but are capable of expressing sponta-
neous behaviors and co-ordinated and appropriate responses to stimuli. During

� This research was supported by the EPSRC (GR/R95722/01), a Wellcome Trust
VIP Award, and the European Union Framework 6 ICEA project.

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 199–210, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



200 M. Humphries and T. Prescott

decerebration the entire brain anterior to the superior colliculus is removed leav-
ing only the hindbrain intact. Yet, the chronic decerebrate rat can, for example,
spontaneously locomote, orient correctly to sounds, groom, perform co-ordinated
feeding actions, and discriminate food types [3,4]. Such animals clearly have some
form of intact system for simple action selection. We have recently argued that,
of the potential candidate structures left intact in the brainstem of decerebrate
animals, the medial reticular formation (mRF) is the most likely substrate of a
generalised (if limited) action selection mechanism [5,6,7].

We first evaluated the single existing computational model of RF function —
a landmark model proposed by Warren McCulloch and colleagues [8] — in both
simulation and embodied form (on a version of the same task used here) [5].
However, inevitably, given its age, several aspects of the model were incorrect or
implausible, or omitted features known from more modern studies of the mRF.
We thus turned to reviewing the modern literature on the mRF, and found that
the organisation of the mRF’s inputs and outputs, and the functional properties
of its cells, are all consistent with the action selection proposal [7]. We began
addressing the question of how the mRF represents and resolves the competition
between actions by synthesising the neurobiological data to determine the mRF’s
internal structure [9] — see Fig. 1. The mRF is made up of stacked cell clusters,
each cluster a mix of projection and inter-neurons. The projection neurons are
excitatory, project a long axon to the motor centres in the brainstem and spine,
and contact cells in other clusters via collaterals from that long axon. The inter-
neurons are inhibitory, and project only within their own cluster. We outlined a
novel quantitative anatomical model that generated networks with this structure
and we found that the networks had small-world properties [9].

Potential configurations of the mRF as an action selection system were ex-
plored by simulation of a new computational model whose connectivity was
based on the anatomical model [6,7]. We found that a sub-action configuration
most effectively supports selection: the projection neurons of each cluster repre-
sents a component of an action, and a coherent behavioural response is created
by clusters recruiting other clusters which represent compatible components (in
addition, incompatible components are suppressed by inhibition of their repre-
senting clusters, which occurs via activation of that cluster’s inter-neurons).

The neurobiological and simulation data indicate that the mRF is a dis-
tributed selection mechanism, from which the selection of actions is an emergent
phenomenon. This can be contrasted with the basal ganglia, which are a cen-
tralised control structure, selecting actions on the basis of inputs from multiple
command systems. It thus appears that evolution has seen fit to produce both
forms of selection structure that are often counter-posed in theoretical discus-
sions [10]. In this paper we extend the assessment of the mRF’s capabilities as
an action selection mechanism by testing our new computational model of the
mRF in an embodied form. The aim of this work was to determine whether or
not the mRF was capable of carrying out action selection independently from
other neural systems that may be involved in the intact animal, and to shed
some light on the complexity of task that the mRF could cope with.



Distributed Action Selection by a Brainstem Neural Substrate 201

Fig. 1. Anatomy of the vertebrate medial reticular formation (mRF). Directional ar-
rows apply to both panels. (a) The relative locations of major nuclei and structures
including the basal ganglia (hashed) and the medial reticular formation (RF) shown on
a cartoon sagittal section of rat brain. The dashed lines show the location of the com-
mon decerebration lines — all the brain rostral to the line is removed, leaving hindbrain
and spine intact. GP: globus pallidus. SN: substantia nigra. STN: subthalamic nucleus.
SC: superior colliculus. (b) The proposed mRF organisation: it comprises stacked clus-
ters (3 shown) containing projection neurons (open circles) and inter-neurons (filled
circles); cluster limits (grey ovals) are defined by the initial collaterals from the projec-
tion neuron axons. The projection neurons receive input from both other clusters (solid
black lines) and passing fibre systems (dashed black line). The inter-neurons project
within their parent cluster. Reproduced from [7].

2 Methods

We begin by describing the computational model of the mRF, which forms the
basis for the robot controller, then describe the task on which the robot is evalu-
ated, the input and output of the controller, and the form of the genetic algorithm
used to evolve the mRF.

2.1 A Population-Level Model of the mRF

We do not have sufficient space to fully describe the anatomical model which
provides the connectivity data for the computational model — see [9]. It is
sufficient to note that the model has six parameters: the number of clusters
Nc; the number of neurons per cluster n; a proportion ρ of those are projection
neurons, the rest are inter-neurons; the probability of a projection neuron sending
a connection to another cluster P (c); the probability of that connection then
contacting any neuron in that cluster P (p); and the probability of an inter-neuron
contacting any other neuron in its own cluster P (l). Each of these parameters
were limited to a range of values sourced from the neurobiological data: the
specific values used in this paper are thought to be the most realistic. There are
six sub-actions within the task to represent, hence Nc = 6; the other parameters
were set to: n = 50, ρ = 0.7, P (c) = 0.25, P (p) = 0.1, and P (l) = 0.1 (see [9]
for further details). The result of creating a particular instance of this model is
a network of linked nodes.
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We use a population-level computational model of the mRF. In this approach,
populations of neurons are treated as a statistical ensemble, assuming function-
ally meaningful sub-groups of neurons cannot be further distinguished. Thus, the
model is a set of simplified ordinary differential equations describing the change
in the normalised mean firing rate of each population over time. Given the pro-
posed cluster structure, and the hypothesis of projection neurons encoding the
action representation, the most natural division of the mRF is into separate
populations of projection and inter-neurons for each cluster. The computational
model thus has two vectors encapsulating its behaviour: the projection neuron
activity c and the inter-neuron activity i. Each vector element is a population:
ck is the normalised mean firing rate of the kth cluster’s projection neuron popu-
lation, and ik is the normalised mean firing rate of the kth cluster’s inter-neuron
population. These activities evolve according to the differential equations given
in [6,7]. Input to the model is described by vector u, where each element uk is
the scalar summation of all external input to cluster k from sensory and inter-
nal monitoring systems, and which thus represents the salience of that cluster’s
represented sub-action.

The connections between the populations are defined by the underlying net-
work generated by the anatomical model: variables Ajk and Cjk are the mean
number of contacts from cluster j to, respectively, the projection and inter-
neurons of cluster k; bk and dk are the mean number of contacts from inter-
neurons in the current cluster k to, respectively, the projection and inter-neurons
in that same cluster. Figure 2 shows a schematic of the mRF population-level
model, which further explains its structure, and details of the parameters which
are optimised by a genetic algorithm (see below).

2.2 The Energy Task

We have previously evaluated bio-mimetic computational models on an energy-
based task [11,5]. In those evaluations, fixed action patterns were selected by
the models: for example, avoiding an obstacle was a complete pattern in which
the robot reversed, turned, then moved ahead in a different direction. However,
as our simulations have shown that the mRF is most likely to represent compo-
nents of actions [6], we here decompose the action patterns into their constituent
parts.

The form of the task is as described in [5]: a mobile robot explores an arena
with a grey coloured floor (representing neutral) upon which are laid two white
and two black tiles. The robot controller has six state variables: the states of
the left and right bumpers, BL and BR; the values of the bright and dark
infra-red floor sensors LB and LD; potential energy PE (which is recharged
on black tiles); and energy E (which is recharged on white tiles by consum-
ing potential energy). Both the internal variables PE and E were limited to the
range [0,1].

The change δPE in potential energy when recharging on a black tile for Teat
seconds is

δPE = Erate Teat LD . (1)
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Fig. 2. Schematic of the population-level mRF model. Two clusters are shown; only
the first cluster’s (c1) inputs and outputs are depicted. The state variables from the
robot are weighted and summed to produce a scalar input signal that represents the
urgency of request for the sub-action represented by the cluster. (In the GA, the weights
are evolved to obtain the optimal balance of sensory input signals required for that
sub-action.) The internal structural parameters A, b, C , d are initially derived from
the anatomical model — forming the initial population — and are then evolved as
well. The mean excitatory weight w̄e is constant, and the mean inhibitory weight w̄i

is computed for each model (see text). These values represent the average synaptic
efficacy between neurons. Thus, the emphasis is on evolving the structural properties
of the mRF.

The increase in energy δE and decrease in potential energy δP−
E when recharging

from stored potential energy on a white tile for Tdigest seconds is

δE = Erate Tdigest LB, δP−
E = −Erate Tdigest LB . (2)

The initial experiments set the acquisition (and conversion) rate Erate = 0.027,
following our prior work [11,5].

In the original version of the task, the robot had four actions available to it:
Wander: a random walk in the environment, formed by forward movement at
a fixed speed followed by a turn of a randomly selected angle; Avoid Obstacles:
reverse movement, followed by a turn away from the object; Reload On Dark:
stop on a black tile and charge potential energy; Reload On Light: stop on a
white tile and charge energy by consuming potential energy.

We decomposed these into the following six sub-actions: move forward, move
backward, turn left, turn right, recharge potential energy, and recharge energy.
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Hence the mRF model used had six clusters, one per sub-action. This decom-
position is based on studies of the mRF’s control of movement: for example,
in the lamprey there are separate mRF neuron sub-populations whose activity
drives moving forward, moving backward, and turning [12]. The recharging sub-
actions are distinct from the original fixed actions of reloading, as they do not
include commands to stop movement: the model must co-ordinate the stopping
of movement with the selection of recharging at the appropriate time.

All robot simulations were performed in Webots 4 (Cyberbotics). One robot
simulation time-step is one second. At the beginning of each run the robot was
initialised with E = 1 and PE = 0.5 and placed at a particular location in the
arena. Regardless of the action(s) selected, energy E is depleted at a constant
rate of Emet = 0.002 unit/s, corresponding to a fixed metabolic rate. Therefore,
if no recharging of energy occurred then the minimum survival time was 500
seconds.

At each time-step, the instantiated mRF computational model receives inputs
computed as described below, and is run until it reaches equilibrium, or until t =
0.5s, whichever occurs first. The model was solved in discrete-time, using a zero-
order hold approximation, with a time-step of 0.001s. Each run is initialised with
the final state of the previous run, so that the model’s dynamics are effectively
continuous. Its output is then converted into the activity of the corresponding
spinal motor centres. The behavioural vector of the robot is then computed
by aggregating these signals. We describe each of these processes in turn: a
schematic of the controller is given in Fig. 3b.

2.3 mRF Input

Our previous robot work based on the energy task used complex salience equa-
tions: computed levels of urgency of each action, based on functions of each
sensory variable. However, mRF inputs are mostly directly from sensory and
internal monitoring systems, so there is little scope for complex neural process-
ing of those signals. We thus assume that the kth cluster’s input uk is given
by a summed weighted input of the robot’s sensory variables, energy variables,
and the inverse of the latter (information on falling energy levels, or at least
the volume of used gut capacity, is available to the mRF [4]). These inputs are
shown in Fig. 2. The resulting total is re-scaled so that uk ∈ [−0.5, 1], following
neurobiological data on the input to the mRF: see [6,7] for more detail.

2.4 Interpreting mRF Output

The mRF has direct control over vertebrate central pattern generators (CPGs),
the circuits which drive limb and jaw movements [13]. Increasing activation of
reticulo-spinal neurons causes the onset of and then increasingly rapid locomo-
tion [12], which corresponds to the onset of oscillations and their increasing
frequency within the locomotor CPG. Simulations have explained the seemingly
paradoxical result that some increases in activation can terminate locomotion:
given sufficient input, the oscillations terminate and a stable state is resumed
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Fig. 3. (a) Activity in the spinal motor plants is a non-linear function of mRF drive.
Two transfer functions, based on neurobiological data, are evaluated in this paper:
“dual” (dashed line) and “triangle” (solid line), which give non-zero output between
two thresholds (θL and θU). (b) Cartoon schematic of the robot controller. Sensory
variables are weighted and summed, the total then input to the mRF computational
model (projection neuron populations, white circles; inter-neuron populations, black
circles). The output of each cluster is filtered through the spinal transfer function,
then aggregated to produce a motor vector. This then drives the wheels and sets the
rate of change for both energy and potential energy.

[14]. There thus appears to be separate thresholds for the onset and termina-
tion of activity in the CPG. It is not clear whether the increasing reticulo-spinal
activity causes a continuous increase in CPG activity until a sudden, discontin-
uous, stop, or whether it causes an increase to some maximum followed by a
decrease (see Fig 3a) — both will be examined.

The output vector c of the mRF computational model is thus converted to a
spinal-command vector by mk = M(ck), where M is one of the output transfer
functions, “dual” or “triangle”, shown in Fig. 3a. Lower and upper thresholds
for M were set at θL = 0.1 and θU = 0.8 for the results reported below. The
spinal-command vector then gates the contribution sk of each sub-action to the
final behaviour vector b: each sub-action contribution being either the requested
drive of the robot’s wheels, or the requested quantity of energy and/or potential
energy to change, as detailed in Table 1. The final behaviour vector thus has
four elements: the first and second elements are the motor speed sent to the left
and right wheels respectively, the third element is the quantity to update E, and
the fourth element is the quantity to update PE.

2.5 Form of the Genetic Algorithm

We detail the features of the genetic algorithm (GA) used to search the space of
mRF models. Following our previous work, we define our fitness function as the
mean E over a fixed time window of 2500 seconds after the minimum survival
period had elapsed [5]. (We do not use survival time as this is unbounded —
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Table 1. Behavioural contributions of each sub-action: the first two elements are the
requested motor commands sent to the left and right wheels of the robot; the second
two are the requested changes in energy and potential energy, whose values are given
by (1)-(2). The motor speeds for the turn sub-actions are the values necessary to turn
the robot 180o in one time-step.

Sub-action Vector s

Move forward [80 80 0 0]
Move backward [-40 -40 0 0]
Turn left [10.5 -10.5 0 0]
Turn right [-10.5 10.5 0 0]
Recharge potential energy [0 0 0 δPE]
Recharge energy [0 0 δE δP −

E ]

the robot may never expire). Our resulting fitness function naturally falls in the
range [0,1], with 1 indicating maximum fitness.

An initial population of 200 chromosomes was created: 200 mRF anatomical
models were instantiated with the parameters given above, and the connection
matrices derived from them; the sensory input weights were randomly chosen
from the interval [-0.5,1]. Every subsequent chromosome population had 50 mem-
bers. Each chromosome of a population was converted into the set of connection
matrices, and the resulting mRF model evaluated on the energy task. The pop-
ulation was then ranked by fitness level, and the best 20 chromosomes retained.
From this remaining population, 30 pairs of chromosomes were randomly chosen
for mating: from each pair, a new chromosome is created by conjoining the two
chromosomes at a randomly chosen split point. Thus, a new population of 50
chromosomes results (20 parents, 30 offspring). The new population is subjected
to mutation, where each element is changed to another value within its preset
interval (defined below) with a probability of 0.05. The top chromosome of the
parent population is never mutated, so that the most fit parent is always re-
tained intact (elitism). Once all pairings and mutations have been carried out,
the resulting population is again evaluated on the energy task. This process was
iterated until the termination condition was reached, that the top chromosome
was unchanged for 20 consecutive generations.

The models were encoded as a real-valued chromosome of 120 elements, broken
down into: 48 input weights (8 sensory inputs × 6 clusters); 60 inter-cluster
connections (total number of non-zero elements in A and C); and 12 intra-
cluster elements (total number of elements in b and d). The intervals over which
each element could be mutated were limited as follows. We used an interval of
[-0.5,1] for the sensory weights. Each element of A, b, C, d was limited in the
interval [0,3×E(x)] where E(x) is the expected value of each element, given the
connection probabilities used in the underlying anatomical model.

The mean connection weights w̄e and w̄i were not optimised, to reduce the
number of free parameters. We set excitatory weight w̄e = 0.2, as before [7].
Previously, we set inhibitory weight by w̄i = −w̄e × Ne/Ni, where Ne and Ni
are the total number of excitatory and inhibitory connections in the network
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(see [7] for explanation): here we sum together the elements of A and C to
compute Ne, and sum together the elements of b and d to compute Ni.

3 Results

3.1 Assessment of the Fitness Landscape

To assess the fitness landscape to be explored by the GA, we performed a se-
ries of Monte Carlo simulations: 1500 mRF models were instantiated, using the
anatomical model parameter values given above, and each was assessed for its
fitness as a controller for the robot. We thus hoped to gain some insight into the
distribution of fitness over all possible models.

Three random searches were conducted: for the first we used the “dual” trans-
fer function; for the second we increased the rate of energy acquisition by an order
of magnitude so that Erate = 0.27 (we ran this search because, when observing
robot behaviour on individual model trials, we noted that the rates of recharging
energy and potential energy were, consistently, roughly 10% of those used in the
previous work [11,5], due to the gating of the sub-actions by the mRF output);
for the third we retained the same increased Erate, but used the “triangle” trans-
fer function. For each search we computed the empirical cumulative distribution
function (EDF) 1 of model fitness, shown in Fig. 4 as a function of fitness error
(i.e. 1-fitness).

The first search found a maximum fitness of 0.165 and its EDF shows that
most models had a fitness close to zero, and were therefore not surviving long
beyond the minimum survival period. For the second search, the resulting fitness
distribution had a markedly increased maximum of 0.518, but again the EDF
shows that most models had low fitness. For the third random search, the fitness
distribution had a further increased maximum of 0.897; however, the EDF again
shows that the overwhelming dominance of low-fitness models remained. From
these random search results we concluded that, though infrequent, there were
forms of the model that a GA-based search could potentially find and optimise.

3.2 Increasing Energy Acquisition Rates Increases Fitness

We confirmed the first random-search results by conducting a series of GA-
based searches with the original acquisition rate (Erate = 0.027) and “dual”
transfer function: altering numerous parameters of the GA search (the initial
population, the retained population, the number of offspring), or features of the
underlying model (using un-scaled salience inputs, using hand-coded sensory-
input weights, changing the transfer function thresholds), never resulted in a
maximum fitness that markedly exceeded that of the random-search by the time
the search terminated.
1 An empirical cumulative distribution function is an estimate of the underlying cu-

mulative distribution function, each probability estimated by P (x) = (number of
observations ≤ x) / (total number of observations).
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Fig. 4. Distributions of model fitness over a large random sample of all possible models
in three different set-ups of the robot task. The distributions are shown as EDFs (see
text), plotted on log-log axes as a function of fitness error (1 - fitness), to allow plotting
of zero fitness on the log-scale. Increasing Erate increased maximum fitness, but the
distribution was always dominated by low fitness models.

Subsequent GA-based searches using the increased energy acquisition rate of
Erate = 0.27 confirmed the results of the other random-searches: for both “dual”
and “triangle” transfer functions the maximum fitness was considerably increased
following the increase in Erate. Indeed, the maximum fitness achieved during the
searches either exceeded (“dual”, fitness = 0.714) or equalled (“triangle”, fitness
= 0.883) that found by the corresponding random search. The mean fitness of each
population did not increase over the course of the generations (Fig. 5a), consistent
with the dominance of low-fitness models in the random searches.

3.3 Dependence of Fitness on the Rate of Energy Acquisition

We then assessed the dependency of the performance of the GA-based search
on the value of Erate. A search was run using the GA set-up described in Sect.
2.5, and models with the “dual” transfer function, for each step increase of 0.027
from the initial value of Erate = 0.027 up to Erate = 0.27 — there were thus 10
searches. A linear regression showed a significant increase in maximum fitness
(r = 0.8426, p < 0.01, n = 9; one outlier), and a significant increase in final
generation mean fitness (r = 0.725, p < 0.05, n = 10) as a function of increasing
Erate (Fig. 5b). However, the increase in mean fitness was not of the same order
of magnitude as the increase in maximum fitness, indicating that the majority
of the population remained at low fitness regardless of Erate.

4 Discussion

The complexity of the task seems to be a difficult one for the mRF models to solve,
given the low fitness of the vast majority, but we have shown that mRF structures
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Fig. 5. (a) A small but high-fitness set of mRF models can evolve over time given
a sufficiently high energy acquisition rate (Erate = 0.27), using either the ‘dual’ or
‘triangle’ output functions. However, there is little increase in fitness of the majority of
the population. (b) The effect of increasing Erate on the maximum and mean fitness of
the GA-based model search. Increasing Erate is significantly correlated with an increase
in both the maximum fitness and the final generation’s mean fitness. Mean fitness did
not show the same order of magnitude increase as maximum fitness.

can select action components sufficiently well to co-ordinate energy gathering and
acquisition. We should not be surprised that mRF models with high evolutionary
fitness were difficult to find: our previous similar evaluations of bio-mimetic models
were based on fixed action patterns, whose salience was a complex function of sen-
sory variables; the necessity of creating emergent actions from components, based
only on direct sensory input, makes the task far more difficult for the mRF model.
Indeed, if most structural configurations of the mRF could support efficient action
selection, then why would more complex neural systems have evolved to deal with
the same problem, rather than co-opting the existing solution? Nevertheless, it is
testament to the potential computational power of even the most “basic” of brain
structures that the mRF model was successful at all.

The success of the mRF as an action selection system is dependent on the
energy acquisition rate (it may equivalently be dependent on the metabolic rate
Emet, which will be explored in future work). Interestingly, an increase in Erate
did not result in a correspondingly large general increase in model fitness: it
appears that it only promoted the models which had the potential to successfully
co-ordinate the robot’s behaviour (Fig. 5b).

The use of a fixed acquisition rate seems valid: data from studies of decere-
brate rats suggests that they are unable to adaptively alter their rate of food
acquisition during periods of food deprivation [4]. This, in turn, suggests that a
brain-stem dominant animal may be susceptible to fluctuations in food supply,
and indeed may be inflexible in its response to other environmental changes:
future work will test this idea more rigorously.

The results of this work neatly parallel the evolution of the vertebrate brain:
some ancient species, such as the lamprey, have their motor behaviour domi-
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nated by the reticulo-spinal system. Thus, the mRF seems to be a sufficient con-
trol system in some ecological niches. Yet most modern vertebrates have more
complex neural systems that combine to control their behaviours. Studying the
integration of these more complex, centralised, systems with the lower-level, dis-
tributed, mRF system may provide further insight into potential designs for
control architectures of autonomous agents.
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Abstract. We present a schema-based agent architecture which is in-
spired by an ethological model of the praying mantis. It includes an inner
state, perceptual and motor schemas, several routines, a fovea and a mo-
tor. We describe the design and implementation of the architecture and
we use it for comparing two models: the former uses reactive, stimulus-
response schemas; the latter involves also forward models, which are used
by the schemas for generating predictions. Our results show an advantage
in using anticipatory components inside the schemas1.

1 Introduction

Schemas [1] are basic functional units, permitting to investigate animal behavior
without explicit assumptions about the physiological and neurophysiological re-
alization and localization of the functions2. The model we propose is inspired by
an ethological model of the praying mantis described in [2] but it is focused on
anticipatory capabilities. It includes two kinds of schemas: perceptual schemas
and motor schemas. Some schemas also are closely related (e.g. detect predator
and escape): we call them coupled perceptual-motor schemas. In the rest of
the paper we will call schemas the functional units, and behaviors the functions
they realize, since many schemas can realize the same behavior.

Schema based design has three advantages: (1) it permits to integrate many
competing behaviors in a coherent whole. While the animal has a large reper-
toire of behaviors (realized by its schemas), only few of them are useful in a given
context. For this reason, the activity level of the schema represents its relevance
[1,8,18]. The activity level of a perceptual schema represents a confidence level
that a certain entity, encoded in the schema, is or is expected to be present. The
activity level of a motor schema represents a confidence level that the behavior
encoded in the schema is both applicable and useful in the current situation.
(2) it affords distributed control: there is not a central executor, but the be-
havior of the animal emerges from the competition and cooperation of all the
active schemas. (3) it permits to integrate in an unique framework data-driven,

1 This work is supported by the EU project MindRACES, FP6-511931.
2 For an hypothesis of implementation of the schemas in the nervous system, see the

notion of command neurons in neuroethology [17] or [1].

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 211–223, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. The Components of the Mantis Architecture

bottom-up processes, such as the influence of stimuli on the behavior; and
hypothesis-driven, top-down processes, such as forming, maintaining and testing
a coherent interpretation of the stimuli.

In the rest of the paper we present our schema based agent model and we test
it in a simulated environment, with two goals: (1) to evaluate its adaptivity in
a dynamic environment, i.e. its capability to select the appropriate schemas for
satisfying its drives; (2) to compare anticipatory vs. reactive strategies.

Fig. 1 shows the main components of the model: the Inner State (the drives);
the Behavior Repertoire (Perceptual and Motor Schemas); the Routines
(Visual, Motor and Proprioceptive Routines); the Actuators (the Fovea and
Motor Controllers), that we introduce in the next Section.

1.1 Functional Principles of the Architecture

According to the previous definition, schemas are concurrent processes, each one
encapsulating the procedures to realize a behavior. In order to be effective and
adaptive, the agent has to adopt the most relevant schemas: in our implemen-
tation, this depends on schemas activity level. In our parallel architecture the
activity level of each component (including schemas) determines the priority of
its thread of execution; activity level thus represents the “power and influence”
of a schema even in computational terms. As we will see, a more active per-
ceptual schema can process the visual input more quickly and a more active
motor schema can send more commands to the motor controller. Routines have
a variable priority, too, reflecting their relevance for the schemas which exploit
them: for example, in some situations color-detectors can be very relevant and
size-detectors can be less. The activity level of schemas is set according to three
parameters: absolute relevance, contextual relevance and predictive success.
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The absolute relevance represents how much a schema is relevant by default;
for example, detect predator is more relevant in absolute than avoid obstacle for a
living creature, even if sometimes the latter is more contextually relevant. If the
animal has a repertoire of schemas for the same behavior (e.g. many specialized
detect prey schemas, e.g. for gray or red, big or small preys), some of them are
more relevant in absolute, e.g. because gray preys are more common. Ceteris
paribus, more absolutely relevant schemas have higher activation levels.

The contextual relevance represents how much the schema is relevant in the
current situation. If a prey is detected and the mantis is hungry, chase is very
relevant; but it is much less relevant if there is no prey or if the mantis is not
hungry. The contextual relevance is not centrally calculated, but emerges from
the dynamics of the components of the distributed architecture, in two ways.
The first way is preconditions matching; for example, chase has as a precondition
the presence of a prey (or, to be more precise, an high activity level of detect
prey). Preconditions are not necessary but facilitating conditions: they have
fuzzy values, so they can match even partially and provide graded reinforce (the
more the match, the more activation is gained by the schema). The second way
is exploiting the links between the components, affording spreading activation.
Our design methodology includes both pre-designed links (stroke edges in Fig. 1)
and evolved ones. Thanks to the pre-designed links, drives spread activation to
related perceptual and motor schemas (e.g. hunger to detect prey), and coupled
perceptual-motor schemas (e.g. detect prey and chase) spread activation to each
other. As an emergent result of the dynamics involving both kinds of links, the
most relevant schemas become more active in a context-sensitive way.

The predictive success also regulates schemas activation. As we will see, the
schemas incorporate a predictive component (a forward model) which generates
expectations; schemas generating accurate expectations gain activation. The ra-
tionale behind this principle is that schemas which predict well are “well at-
tuned” with the current situation; for example, if detect prey is activated by
error by a big, gray entity (assuming that some preys are gray in the environ-
ment), the schema will try to track the prey (by moving the fovea) according to
its forward model, i.e. as a moving object. If the object is not a prey but, say,
a stone, its tracking activity will fail (because the entity does not move). The
detect prey schema is not well attuned with the environment, while the detect
obstacle is: in fact, its forward model predicts a static object. While in the be-
ginning detect obstacle could be not very active, as long as its forward model
predicts well it becomes more and more active and overwhelms detect prey3.

Schemas activation is also regulated by a general architectural principle. There
is a limited amount of activation (i.e. computational resources) shared by all the
components. All the components thus compete for limited resources and active
schemas prevent other ones to gain more activation4.

3 In the current implementation expectations are treated as preconditions only in the
next schema cycle; if partially matched, they provide it graded activation.

4 This is similar to having lateral inhibition between the competing components, but
the total amount of activation can be manipulated (for example by the drives).
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2 The Four Components of the Mantis Model

Here we introduce the four components of the mantis model: the Inner State,
the Schemas, the Routines and the Actuators.

2.1 The Inner State

The inner state includes four drives: hunger, fear, sex drive and fatigue, which
have inhibitory links (dashed edges in Fig. 1). All the drives except fear are reg-
ulated by an endogenous factor, a “biological clock”, creating an habit system:
the mantis routinely needs food and repair and spreads activation to the related
schemas for fulfilling these needs (stroke edges in Fig. 1); of course schemas can
operate only if there are appropriate environmental conditions. The drives also
receive exogenous influences, i.e. the activity level of the related schemas; for
example, if detect predator is very active, fear grows up. There is thus an acti-
vation loop between internal drives and schemas. In the current implementation
the mantis do not starve and is not really harmed by predators; on the contrary,
fatigue has a real effect: it diminishes the overall amount of activation available.

2.2 The Schemas

The schemas (perceptual and motor) are the main components of the model. As
shown in Fig. 1, many schemas realize the same behavior; as an example, there
are detect prey schemas specialized for gray or red preys, or for big or small ones.

The Perceptual Schemas. The model includes five kinds of perceptual
schemas: detect prey, detect predator, detect mate, detect hiding place, detect
obstacle. Each perceptual schema has three components: a detector, a controller
and a forward model. The main role of the detector is to acquire relevant in-
put (preconditions) from the the fovea. The main role of the controller is to
send motor commands to the fovea: in this way the mantis is able to orient
its attention. Perceptual schemas are not passive data processing structure, but
active ways for “navigating” the visual field [19]. The main role of the forward
model is anticipate visual stimuli, i.e. the activation level of appropriate visual
routines.

The perceptual schemas become more active if the kind of stimuli they process
are indeed present in the environment. In our implementation, the detector has
(graded) preconditions which are associated to visual routines; when the relevant
visual routines are active, the schema gains activation. For example, in the mantis
environment preys are gray; if the gray-detector visual routine is very active, the
detect prey schema gains activation, too. The perceptual schemas also run their
forward models: schemas which predict well gain activation.

The perceptual schemas receive activation from the inner states, too; a fearful
mantis will search for predators even in absence of real danger. An “hallucina-
tory” phenomenon is in play: when a mantis is fearful, predators appear closer,
moving entities appear to be predators (and get it even more fearful). In the long
run hallucinations are ruled out: since the perceptual schemas also feedback on
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the inner states, the lack of dangerous signs (and the predictive errors of detect
predator) will make the mantis less fearful.

Active perceptual schemas have two ways to induce top-down pressures.
Firstly, they send motor commands to the fovea, orienting it toward relevant
entities; more active schemas send commands with higher fire rate. By orienting
the fovea, the schemas are able to partially determine their next input (they
have an active vision, [19]). In an anticipatory framework, this functionality is
mainly used to test the predictions of the forward models: for example, tracking
a moving object is a way to acquire new stimuli in order to test the expecta-
tions. For this reason, the schemas orient the fovea towards the more informative
points, i.e. those able to determine whether or not their predictions are correct.
Secondly, they spread activation to the related visual routines. For example, de-
tect prey schema activates the gray-detector visual routine, even in absence of
real stimuli. This induces an “hallucinated” state (like a fake gray entity) which
is close to visual imagery in [16]). As in the previous case, without real stimuli
the hallucinated state lasts shortly.

As an effect of top-down pressures, the same stimulus is interpreted in different
ways depending on the active perceptual schemas. For example, if a prey and
an obstacle have the same color (say gray) and the gray-detector is very active,
both detect prey and detect obstacle detect it. However, the more active schema
detects it faster and takes controls of the fovea: if detect prey is more active, it
is likely that the fovea will try to track it as a moving object (the detect obstacle
schema, on the contrary, would have monitored it as a static object). Of course,
more active perceptual schemas activate more their related motor schema, too.

The Motor Schemas. The model includes six motor schemas: stay in path
(the default behavior), chase, escape, mate, hide, avoid obstacle. They have three
components: a detector, which sets the value of the preconditions by monitoring
the state of the perceptual schemas (e.g. detect prey is very active); a controller
(an inverse model), which send commands to the motor (e.g. move left); and a
forward model. The motor schemas receive activation from the related percep-
tual schemas in the form of matched preconditions: a very active detect prey
activates chase (which learns to interpret it as: “there is a prey”). The motor
schemas receive also activation from the inner states: a fearful mantis activates
its motor routines for escaping even in absence of real danger; as in the case of
perceptual routines, they can only remain active if the right stimuli are in place.
The main role of the controller is to send commands to the motor. The main
role of the forward model is to produce expectations about perceptual stimuli
(to be matched with sensed stimuli, including vision and proprioception).

Coupled Perceptual-Motor Schemas. Fig. 2 shows the pseudo-closed loop
between controllers and forward models in a coupled perceptual-motor schema.
The controllers send a control signal to the actuators, which integrate them and
act accordingly; on the same time, an efference copy of the (final) command
signal is sent to the forward models of all the schemas, which compute the next
expected input. The dashed lines indicate that a feedback signal is received (via
visual or proprioceptive routines); the dashed circles indicate that there is a
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Fig. 2. A coupled perceptual-motor schema: Detect Prey and Chase

comparison between the actual input stimulus and the expected stimulus. The
degree of (mis)match between actual and expected stimulus has two functions:
(1) Adjustment of Control : the predicted signal can compensate time delays, filter
or replace missing or unreliable stimuli; see [7] for a comparison with Kalman
filtering; (2) Schema Selection: schemas which predict well gain activation.

Patterns of Actions. Some schemas include many concatenated actions (in a
way similar to [4]); e.g. detect prey and chase have the following structure:

DETECT PREY: IF red AND moving THEN find_prey
(loop) ELSE IF prey_found THEN maintain_prey

ELSE IF prey_lost THEN re_find_prey
ELSE IF prey_maintained THEN maintain_prey

CHASE: IF prey_found THEN approach_prey
(loop) ELSE IF prey_close THEN grab_prey

ELSE IF prey_in_contact THEN eat_prey

Schemas are always-looping procedures; for each cycle, depending on precondi-
tions, an action is selected. This means that actions can be executed in different
sequences, in parallel and also skipped: for example, re find prey is only needed
when a prey is lost. Coupled perceptual-motor schema can realize complex strate-
gies by coordinating their patterns of actions. Fig. 3 illustrates the example of
a chasing behavior involving two schemas, detect prey and chase.

In the beginning, only detect prey is active, because some of its preconditions
are true (e.g. the visual routines red-detector and movement-detector are highly
active). Detect prey both activates its first action (find prey, which sends com-
mands to the fovea) and spreads activation to chase. The first applicable action
of chase (approach prey) can only start when find prey succeeds; subsequently,
the actions of the two schemas continue in a coordinated way: as long as the per-
ceptual schema succeeds in finding and maintaining the prey, the motor schema
tries to reach, grab and eat it.

Interaction-Oriented Representations. It is worth noting that inside the
forward models schemas process information in an interaction-oriented format,
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Fig. 3. Complex patterns of actions within a coupled perceptual-motor schema

and the mantis only has deictic representations. For example, detect prey is only
able to represent “the prey I am looking at”. However, even without storing extra
information, the architecture implements a certain kind of object permanence.
Since schemas activation decay gracefully, it is highly probable that schemas
which where very active remain quite active even if the stimulus disappears for
a while. This effect is magnified by the presence of drives, which have a stabi-
lizing effect on behavior: since they continue to fuel schemas for a given span
of time, drives can be seen as task-specific memories, introducing commit-
ment without central control. Moreover, since schemas act according to their
predictive models, they remain attuned with relevant entities by actively search-
ing them. For example, during a successful chase detect prey and chase gain
activation thanks to the success of their predictions. On the contrary, failure in
finding, maintaining or reaching a prey weakens the schemas and eventually the
chase ends, if another behavior becomes more active. This example shows how, in
stable enough environments, deictic representations and agent-environment en-
gagement based on predictions can realize (at least a limited version of) complex
functionalities such as maintaining objects permanence.

2.3 The Routines

The perceptual schemas do not receive raw input from the fovea: a number of
preprocessing units, the visual routines, filter fovea information (although with
different priority). In the current implementation there are several routines of
each kind, such as color-detectors specialized for detecting different colors, as well
as for colors, sizes, shapes and for detecting and tracking moving entities. The
activation level of the visual routine directly encodes the presence of absence
of associate entities; for example, an active red-detector encodes directly the
presence of red entities as provided by the 3D engine, without learning. In a
similar way there are motor routines, commanding the fovea and the motors,
and proprioceptive routines, providing feedback information from the motors.

2.4 The Actuators: Motor and Fovea Controllers

The actuators receive commands from the motor routines and perform command
fusion. Differently from many systems in literature (see [5] for a review), in
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which many schemas can be partially active at once but only one is selected for
commanding the actuators, in this model each active schema sends its motor
command. Since we adopted a parallel architecture in which schemas can have
different priority, commands are sent asynchronously and with different fire rates.
Fire rate encodes relevance: more active (and thus more relevant) schemas are
able to send more commands to the actuators and to influence it more.

Command Fusion. As already discussed, selection is needed both for adopting
the most appropriate schema(s) for realizing the same behavior, and for adopting
the most appropriate behavior. As an example of the first case, consider that
there can be many detect prey schemas which are specialized e.g. for small and
quick ones or for very big and red ones; in order to realize prey detection, often
many detect prey schemas are needed, as in the “mixture of experts” model [13].
The case is similar for motor schemas. As an example of the second case, consider
that the agent has a repertoire of behaviors and has to arbitrate between them
(e.g. chase vs. escape), as long as it can not fulfill all them together.

In both cases, the fuzzy based command fusion mechanism we adopted [15]
produces the course of actions accounting for more drives and stimuli. Strictly
speaking, there is no actual “selection” since all the active schemas send their
commands to the actuators, although with different fire rate; the course of action
results from the graded contribute of all the active schemas. For example, a
detect prey behavior is often realized not by a single detect prey schema, but
integrating the graded contribute of many ones. The rationale is that exemplars
of preys do not fall into clear cut categories (which prototypes are encoded in the
schemas), such as “quick” or “slow” so it is often necessary to fuse the commands
of the two schemas specialized for quick and slow preys. As an example, consider
that a moving prey can match the preconditions of both schemas, although with
different degrees of matching; thus, the degree influence they have on the fovea
depends on the degree of membership of the prey to their prototype (expressed
in fuzzy terms in the current implementation).

Mixed courses of actions can also emerge from the contribute of schemas
realizing different behaviors. As an example, Fig. 4 shows the activation levels
of two schemas, stay in path (black boxes) and avoid obstacle (white boxes),
during obstacle avoidance. Both schemas are involved, with different priorities
over time, as long as they can both be satisfied together. Note that the trajectory
and the turning points are not preplanned but dynamically emerge depending
on the size of the obstacle and the initial direction of the agent.

Exploitation also happens when the results of a schema are exploited by an-
other behavior. For example, a mantis which is escaping can activate an hide
schema as a part of the escaping strategy; the latter schema is not selected per
se, but activated and exploited by the former behavior.

Constructive Perception. As discussed in the introduction, schemas permit
to model both bottom-up and top-down phenomena, for example in perception.
A classic experiment [25] shows that human attention varies with the nature of
the task. When there is not an explicit task specification, bottom-up processes
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Fig. 4. Evolution over time of the activation of the schemas during obstacle avoidance

are mainly responsible for determining the salience of objects in the scene [12].
On the contrary, if there is an explicit task specification, top-down and volitional
processes frame the scene and drive attention to the task-specific relevant objects
in the scene [9]. We call this process constructive perception.

In this framework perception is distinct from sensing: the active perceptual
schemas represent multiple concurrent perceptual hypotheses which compete for
being accepted ; they are prioritized according to the accuracy of their precon-
ditions and predictions, i.e. how much their requirements are compatible with
the actual perception. Schemas also actively drive perceptual exploration of the
environment by orienting the fovea. The constructive process does not only in-
fluence stimuli categorization (such as prey vs. obstacle), but also behavior selec-
tion. An example of goal oriented constructive perception can clarify the point:
if the mantis is not hungry and is escaping, it can approach a prey as an ob-
stacle and activate avoid obstacle. Constructive perception is thus the abductive
process of producing and testing hypotheses: the most active schemas drive sub-
sequent actions (i.e. chase a prey or avoid an obstacle), active perception (where
to orient the fovea) and visual imagery (to which visual routines give priority).
Indeed, information is selected and it serves to confirm or disconfirm the running
hypotheses, not to mirror the environment.

As discussed above, the behavioral and perceptual spaces of the mantis are
also shaped by its internal drives. Drives provide activation to the behaviors,
which can thus perform more epistemic actions, predict more often and influence
more the fovea. An hungry mantis is much more likely to interpret ambiguous
evidences as food; more precisely, an hungry mantis puts much more resources
in classifying an evidence either as food or not food (instead of e.g. shelter or
not shelter) even if the affordances of the object are the same.

3 Implementation and Testing

We implemented the mantis model by using the cognitive modeling framework
AKIRA [11,21], and the 3-D engine Irrlicht [10], having realistic physics. Our
aim is to investigate if our architecture fulfills adaptively its drives in a dynamic
environment. We followed the above described architectural design, inspired by
the ethological model reported in [2]; we also set up two learning phases. In the
former the components of each schema, controllers (inverse models) and forward
models, and the parameters such as the schemas absolute relevance or the weight
of the edges, were first learned individually in a simple environment having a
limited number of features (e.g. only preys or predators). In the latter all the
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schemas were integrated in an unique architecture. Since the framework puts
schemas in competition, adding new behaviors did not waste the performance of
old ones; the challenge is now to coordinate them in a complex environment. In
this phase the inverse and forward models did not learn any more, but schemas
which were active in the same span of time evolved energetic links (in addition
to those shown in Fig. 1) with hebbian learning [15]. Schemas which were not
active in a given context learned to spread energy to more successful ones, too,
with a mechanism described in [20]. The rationale is that the energy has to be
conveyed in a context-sensitive way from less to more relevant schemas5.

Each schema is implemented by using a single thread which activation is
set according to the principles explained above: absolute relevance (learned in
the first phase), spreading activation (via edges learned in both phases) and
degree of match of its preconditions and expectations. All the representational
elements (activation, preconditions and expectations) have fuzzy values: in this
way it is possible to compare all them and obtain graded results. For example,
a very active internal drive (hunger) provides high match with the quite hungry
precondition of detect prey. Or a poorly active detect movement routine provides
low match for the expectation prey moving produced by the forward model of
detect prey. Drives, inverse and forward models were implemented by using both
Fuzzy Cognitive Maps and Neural Networks [15], with minor differences. Drives
values vary according to their links, their “biological clock” and the input they
receive from the active schemas. In turn, the values of the drives become input
for the schemas, as described above. Even the motor commands have the form
of fuzzy statements such as turn left and a fuzzy controller is responsible for
command fusion, as in [20]. A motor routine (compensation) compensates the
movements of the agent, permitting to maintain the right orientation of the fovea
during movement.

Related Literature. Similar models in literature are MOSAIC [24] and HAM-
MER [6], implementing coupled inverse and forward models for motor control
and basing schema selection on predictive success; schema architectures [1,2]
and the “mixture of experts” model [13]. However, we use a parallel architecture
in which computational resources (such as speed) encode “responsibility”; com-
mand fusion is asynchronous and based on fuzzy logic. Our model also includes
hebbian learning and spreading activation between the schemas.

Anticipatory vs. Reactive Systems. We compared the performance of two
variants of the mantis model (MANTIS and MANTIS-R) in a complex environ-
ment including obstacles, preys, predators and hiding places. The first model
(MANTIS) is the one we have described throughout the paper. The second
model (MANTIS-R) lacks the forward models. Obviously, in this case predictive
success can not be used for allocating activation; only absolute and contextual

5 The main reason of having two phases is that it is very complex to learn many
behaviors together. For example, the prediction error of the forward model can be
interpreted either as scarce relevance of the schema or as poorly accurate forward
model. Learning each forward model individually permits to disambiguate this signal.
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relevance are used. Some anticipatory capabilities are however implicitly present
in MANTIS-R, too: for example, a perceptual schema spreading activation to
a visual routine implicitly assumes that its results will be useful; and this pre-
diction is grounded on the history of their past interactions. However, endowing
schemas with a predictive component (a forward model) which produces explicit
expectations (as in MANTIS) permits also to use predictive error for action
control and schema selection.

The two agents dwell separately in the same environment with the same inner
states. Drives satisfaction was used as success metric: each agent had to satisfy
its drives, i.e. to keep their values close to zero. Moving increases fatigue, while
resting in hiding places lowers it; eating preys lowers hunger ; the presence of
close predators increases fear, while their absence lowers it; mating lowers sex
drive. Four analysis of variance (ANOVA) with mean fatigue, fear, hunger and
sex drive satisfaction (calculated as 1 − mean drive value, in 100 real-time,
3-minutes simulations) as dependent variables were carried out.

Table 1. MANTIS vs. MANTIS-R (mean satisfaction)

DRIVE MANTIS MANTIS-R
Fatigue 0,845 0,657
Fear 0,812 0,665
Hunger 0,758 0,703
Sex Drive 0,891 0,793
Average 0,826 0,704

Tab. 1 shows the results. The main effect is significant for all drives (F (1, 99) =
130, 53; p <, 00001 for fatigue; F (1, 99) = 68, 01; p <, 00001 for fear ; F (1, 99) =
24, 82; p <, 00001 for hunger ; F (1, 99) = 50, 65; p <, 00001 for sex drive): in all
cases, MANTIS satisfies its drives better than MANTIS-R. Our results indicate
that in a scenario involving multiple entities and drives it is advantageous to
exploit anticipatory representations, and this advantage overwhelms the cost to
maintain and to run them in real time. However, our results can be considered
preliminary: further investigation is needed for understanding at which level of
environmental complexity anticipatory strategies become advantageous.

4 Conclusions and Further Work

We have presented a schema based agent architecture; illustrated its components
and its action selection strategy; tested its behavior in a complex environment,
also comparing it with a simpler model only having implicit anticipatory capa-
bilities in an adaptive drives satisfaction task. Our results show that there is a
significant advantages in using explicit expectations, produced online by forward
models, for action control and schemas selection. Recently many authors [3,7,24]
have provided evidences for a crucial role of anticipations and forward models
in these and other cognitive functions, which we are now investigating.
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In our architecture the top-down influences introduced by drives follow the
ideomotor principle [14], arguing that action planning takes place in terms of
anticipated features of the intended goal. For example, the drive hunger endoge-
nously activates related perceptual and motor schemas (detect prey and chase),
which in turn pre-activate visual and motor routines related to preys and pray-
chasing. In [20] we have also show that this mechanism can also realize more
complex goal states such as search the red prey. We are now investigating how to
extend this principle to realize decoupled, off-line processing, such as planning
by off-line producing, evaluating and comparing hypothetical, alternative goal
states and courses of events, even if new and never experimented before.

In our architecture an high activation level of a perceptual schema represents
the (actual or expected) presence of related entities, and motor schemas can
exploit this information; in a similar way, active visual routines are exploited
as preconditions by the perceptual schemas. We are now investigating how to
extend this principle to schemas organized hierarchically; [20] describes the pre-
liminary implementation of a layered architecture including feature-specific and
increasingly complex concept-specific schemas, in which the activity of schemas
in the lower layers is interpreted as an information by schemas in the higher
layers, and in which complex schemas exploit simpler ones which realize some
of their preconditions or expectations. Schemas in the higher layers are special-
ized for satisfying the drives of the agent; on the contrary, [22], also based on
[13], shows that if hierarchical systems are evolved for a single task they do not
specialize in a feature- or concept-specific way.
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Abstract. The current research provides results from three experiments
on the ability of a mobile robot to acquire new behaviors based on the
integration of guidance from a human user and its own internal repre-
sentation of the resulting perceptual and motor events. The robot learns
to associate perceptual state changes with the conditional initiation and
cessation of primitive motor behaviors. After several training trials, the
system learns to ignore irrelevant perceptual factors, resulting in a ro-
bust representation of complex behaviors that require conditional exe-
cution based on dynamically changing perceptual states. Three experi-
ments demonstrate the robustness of this approach in learning composite
perceptual-motor behavioral sequences of varying complexity.

1 Introduction

The current research explores mechanisms that allow autonomous systems to
acquire complex composed behaviors through a combination of interaction with
the sensory-motor environment, and a human teacher. We have previously de-
veloped a system that allows the user to use spoken language to teach the AIBO
ERS1 robot the association between a name and a single behavior in the robot’s
repertoire (Dominey et al. 2005 [3]). More recently, we have extended this so
that the system can associate a sequence of commands with a new name in a
macro-like capability.

The limitations of this approach result from the fact that all of the motor
events in the sequence are self contained events whose terminations are not
directly linked to perceptual states of the system. We can thus teach the robot
to walk to the ball and stop, but if we then test the system with different initial
conditions the system will mechanistically reproduce the exact motor sequence,
and thus fail to generalize to the new conditions.

Nicolescu & Mataric (2001, 2003) [5] [6] developed a method for accommo-
dating these problems with a formalized representation of the relations between
pre-conditions and post-conditions of different behaviors. They demonstrate how
pre- and post-condition relations between the successive behaviors can be ex-
tracted, generalized over multiple training trials, and finally used by the robot
1 http://www.sony.net/Products/aibo

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 224–235, 2006.
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to autonomously execute the acquired behavior. A similar approach to learn-
ing generalized behavioral sequences by a bimanual humanoid robot has been
developed by Zöllner et al. (2004) [10]. Billard and Mataric have also demon-
strated how related approaches can be used for teaching through demonstration
and imitation (2001) [1]. Kaplan et al. (2002) [4] used a progressive shaping ap-
proach, and Saunders et al. (2006) [7] use a related method in which behavior
components are successively developed in a hierarchy of increasing complexity.

The current research builds upon these approaches in several important ways.
First we enrich the set of sensory and motor primitives, that are available to
be used in defining new behaviors (defined in Tab. 1). Second, we enrich the
human-robot interaction domain via spoken language and thus allow for guiding
the training demonstrations with spoken language commands, as well as naming
multiple newly acquired behaviors in an ever increasing repertoire. Third, we
ensure real-time processing for both the parsing of the continuous valued sensor
readings into discrete parameterized form, as well as the generalization of the
most recent history record with the previously generalized sequence. This ensures
that the demonstration, test, correction cycle takes place in a smooth manner
with no off-line processing required.

Before going into the technical details we provide a simple example scenario
with AIBO entertainment robot (Sony) that is our platform for these studies.
In this case the user will teach the robot a form of collision avoidance through
demonstration.

1. The user initiates the learning by commanding the robot with a spoken
command ”turn around” that does not correspond to a primitive command
nor to a previously learned command.

2. The robot thus has no knowledge of what to do, and awaits further instruc-
tions.

3. The user commands the robot to ”march forward” and the robot starts
walking.

4. The user sees that the robot is approaching a wall, and tells the robot to
stop.

5. He then tells the robot to turn right. Behind and to the right of the robot
is the red ball.

6. When the robot has turned away from the wall and is facing the ball the
user tells it to stop turning, and then tells it that the learned behavior
demonstration is over.

Now let us consider the demonstration in terms of the commands that were
issued by the user, and executed by the robot, and the preconditions that could
subsequently be used to trigger these commands. The robot was commanded
to ”turn around.” Because it had no representation for this action, it awaited
further commands. The robot was then commanded to walk. Before it collided
with the wall the robot was commanded to stop walking. It was then commanded
to turn right, and to stop when it was in front of the red ball. Now consider the
perceptual conditions that preceded each of these commands, which could be
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used in a future automatic execution phase to successively trigger the successive
commands. The pertinent precondition to start walking was that the command
to ”turn around” had been issued. The pertinent precondition to stop walking
was the detection of an obstacle in the ”near” range by the distance sensor in
the robots face. The pertinent preconditions for subsequently turning right are
that the robot is near something, and that it has stopped walking.

The goal then is for the system to encode the temporal sequence of all rela-
tions (which include user commands, exteroception and proprioception values)
in a demonstration run, and then to determine what are the pertinent precon-
ditions for each commanded action relation. Likewise, it may be the case that
perceptual relations were observed during the demonstration that were not per-
tinent to the behavior that the human intended to teach the robot. The system
must thus also be able to identify such ”distractor” perceptions that occurred in
a demonstration, and to eliminate these relations from the generalized represen-
tation of the behavioral sequence. The following sections will define the system
architecture and its functioning that meet these requirements.

2 Perceptual Motor Learning Architecture - PML

2.1 Platform

The robot platform that we employ is the Sony AIBO ERS7, running the URBI2

operating and control system. URBI provides a systematic access to both the
entire set of onboard sensors (including vision of the red ball and other ob-
jects, sensitivity to presses of the several buttons on the robot’s back and head,
joint angles, position-orientation sensors etc.), and to movement commands for
walking, turning, backing up etc.

A central aspect of the PML system (Fig. 1) is that there is a single coherent
temporal representation of all perceptual and motor relations. That is, both the
commands issued by the user, as well as the sensory values from the propioceptors
(e.g. selected joint angles) and exteroceptors (vision, distance sensors) are to be
represented in a single temporal sequence of Boolean values. This transformation
of continuous sensor values from a world model into a symbolic representation of
logical predicates in a situation model corresponds to a form of conceptualization
(Siskind 2001 [8], Steels & Baillie 2003 [9], Dominey & Boucher 2005 [2]).

Concretely, during the experiments, the ”situation modeler” sends messages
to the model whenever the robot detects a new event, i.e. a sensorimotor rela-
tion change (RC) (fig. 1.B). These Boolean relation change RC values (see Tab.
1) are communicated in an XML format. Based on the received RCs the model
generates the world vectors (WVs) that are the vectors of all relation values. The
WVs and RCs are stored in a chronological History that can be compared with
a sensori-motor memory. For greater clarity, the History and its subsequences
can be represented as directed acyclic graphs (Sect. 2.2) or as chronongrams
(Sect. 2.3). During the first learning trial of a complex behavior, the user guides

2 http://www.urbiforge.com
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Fig. 1. System Architecture: The User Interface sends action command messages to the
robot (A). The primitive actions are of the type command, and are implemented in the
robot. Actions to be learned are of the type complex and are represented as sequences.
The Situation Modeler sends RCs to the History (B) whenever the robot observes
any change in a relation. When the behavior to be learned is completed (complex
relation deactivated) the Generalizer extracts the last sequence from the History (D)
and compares it with the corresponding sequence in the repertoire (F). The resulting
generalized sequence replaces the previous one in the repertoire (E). When the user
executes a learned behavior (complex relation activated) the Applicator executes (G). It
retrieves the corresponding sequence in the repertoire (C) and sends the corresponding
commands (H) if their preconditions are met.

Table 1. Actionnal and perceptual relations

Relation type Meaning
Action: When the
relation is true, the
command or the
complex is going
on. E.g. in Fig. 9,
the robot is walk-
ing WV(3-4), is
tracking WV(2-5)
and is approaching
WV(1-6).

Command
March(robot,front) Walking forward
March(robot,back) Walking backward
Rotate(robot,left) Turning left
Rotate(robot,right) Turning right
Track(robot,ball) Tracking ball with head

Complex
Approach(robot,ball) Approaching the ball
Align right(robot,ball) Aligning to the ball
Turn around(robot) Turning around an obstacle

Perception: When
the relation is true,
the robot is perceiv-
ing. E.g. in Fig. 9, the
robot is near some-
thing WV(4-6) and
always see the ball.

Exteroception
See(robot,ball) The robot is seeing the ball
Near(robot,thing) The robot is close to an object

Proprioception
Neck(robot,left) neck/head turned left (± 10o)
Neck(robot,right) neck/head turned right (± 10o)
Neck(robot,center) neck/head turned center (± 10o)
Touch(robot,shoulders) shoulder button pressed
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the robot through each step (fig. 1.A). When the complex command is issued,
the Applicator is activated (fig. 1.G) but has no sequence to apply (fig. 1.C).
Once the first learning trial is completed, the Generalizer extracts the sequence
(fig. 1.D) from the History to include it in the sequence repertoire (fig. 1.E).
For the next learning trial, the Applicator now finds the corresponding sequence
in the repertoire (fig. 1.C) and attempts to apply it. Thus, while reading the
sequence, when the preconditions for an action are met, the Applicator issues
the appropriate command (fig. 1.H). After the second learning trial, the Gen-
eralizer extracts the just executed sequence from the History and compares it
with the corresponding sequence in the repertoire (fig. 1.E). Sect. 2.2 and Sect.
2.3 respectively explain the roles of the Applicator and the Generalizer.

2.2 Generalization

The Generalizer performs generalization on a complex behavior that has just
been executed and the existing generalized sequence for that behavior (respec-
tively the sequence extracted from the History Fig. 1.D and the existing sequence

Fig. 2. Two complex behavior learning trials. The first trial yields 4 RC nodes and
5 WV arcs, RC(0-3){a} and WV(0-4){a} respectively. The second trial is identified
by {b}.

Fig. 3. WV-RC Fusion & deletion: RC’(0){a,b}=RC(0){a}=RC(0){b}
RC’(1){a,b}=RC(1){a}=RC(1){b} RC’(2){a,b}=RC(2){a}=RC(2){b}
RC’(3){a,b}=RC(3){a}=RC(2){b} WV’(0){a,b}=WV(0){a}=WV(0){b}
WV’(1){a,b}=WV(1){a}=WV(1){b}

in the repertoire Fig. 1.F). Fig. 2 represents these as graphs. Generalization
serves to determine which are the pertinent components in this command se-
quence pair. For this we apply two operations. The first is to merge identical
WVs and RCs and remove superfluous loops (Fig. 3). The second operation
determines the sufficient conditions for sending a command or receiving a per-
ception (Fig. 4 and Fig. 5). This requires comaring the WVs preceding a given
RC and identifying relations whose values can indifferently be true or false.
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Fig. 4. Relation variability: The rectangles of 3 slots correspond to three arbitrary
relations making up a WV. F and T correspond to False and True relations, respectively.
We see that WV(3){a} and WV(2){b} lead to the same RC’(3){a,b}.

Fig. 5. Vectorial generalization: The new generalized vectorWV’(2){a,b} is equal to
vect gene(WV(3){a},WV(2){b}). If the value of a given relation in the WV can be
either True or False, this is designated by an X.

2.3 Application

After an initial nave learning (where the user leads the robot through each stage)
the user can then ask the robot to perform the learned behavior. This process of
re-execution of a learned sequence (stored in the generalized sequence repertoire)
is called ”application”. During generalized sequence application, if the robot is

Fig. 6. Perceptive RC reception: If the current (WV(1), RC(1)) pair of the generalized
sequence matches with the last (WV(t1), RC(t1)) pair of the History then the read-
ing index is incremented. Concretely, the robot waits to be in the same state (WV(1)
matches (WV(t1)) and to perceive the same state change (RC(1) = RC(t1)) in order
to proceed to the next step.
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in identical conditions (same WVs) then it can execute the next action in the
sequence (sending a command Fig. 8). However, if not, the robot waits for these
conditions (receipt of an appropriate RC Fig. 6) and thus remains static. The
user can thus force the execution by explicitly commanding the robot if necessary
(reception of an action RC Fig. 7).

Fig. 7. Command RC reception: The reading head is positioned on the pair (WV(0),
RC(0)) though the received command RC(t1) matches the next command in the se-
quence RC(2). The user has thus forced the robot. To continue the sequence execution
correctly, the reading head is repositioned after the command matching that in the
History.

Fig. 8. Command RC emission: If the last History vector (WV(t0)) matches the current
sequence vector (WV(2)) and RC(2) is a command, then the reading head is advanced.
This incrementing occurs, of course, after the command is sent to the robot by the
model.

3 Experimental Results

We can now present generalization results from three experiments that test the
ability of the system to learn generalized representation of three distinct complex
sensory-motor behaviors. In all cases, the human instructs the robot the first run
through, and then the robot begins to generalize and attempts to execute the
generalized sequence, with the intervention of the user when necessary.
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3.1 “Approach” Behavior

The first experiment tests the ability of the system to learn to terminate an
ongoing motor behavior based on a change in a perceptual state that occurs
as a function of the execution of that behavior. This is a basic function of the
generalized learning capability that allows the system to acquire behaviors that
depend on generalized sensory-motor correlations, rather than on exact identical
initial conditions.

For the behavior in question, the user places the red ball in front of the AIBO.
The user then commands the AIBO to perform the complex action approach.
At this time there is no Generalized Sequence stored for this behavior and so
the AIBO does nothing. The user then commands the AIBO to visually track
or look at the ball, and then to start walking. When the AIBO gets close to the
ball, the user commands the AIBO to stop walking.

Fig. 9. Chronogram of World Vectors and Relation Change states generated after two
learning trials of the complex behavior approach(robot, ball). Note that distances
along the horizontal time axis do not correspond to actual durations, though temporal
order is accurately indicated. The user issues the approach command. This establishes
the necessary preconditions to automatically initiate tracking the ball, which then estab-
lishes the preconditions to initiate the march command. The robot proceeds in this man-
ner until the perceptual relation near changes to true. This establishes the preconditions
for issuing the command to stop marching, and to stop tracking. At this point the learned
behavior has successfully been performed in a fully autonomous mode by the system.

The crucial point is that there is a direct relation between the initial distance
from the AIBO to the ball, and the distance that the AIBO walks before the user
commands it to stop. The desired generalization is that whatever this distance
is, on future trials, the AIBO will learn when to stop. Inspection of Fig. 9 reveals
that prior to the command to stop walking (top trace command march(robot,
front) goes to False or zero) the value of the perceptual relation near(robot,
thing) has changed to true. That is, the proximity sensor value has reached a
threshold indicating that the robot is now in physical proximity with an object.
This physical proximity detection - which occurred because the robot walked
sufficiently close to the ball independent of how far it was initially - can thus
serve as the perceptual signal to stop walking. Thus, the human subject puts the
robot through the action, and the robot learns to link what it perceives with the
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required issuing of commands to initiate and terminate motor functions. A cru-
cial aspect of this adaptive behavior mechanism is that the robot is continuously
testing its ”hypothesis” - the current Generalized Sequence for the command
in question - and relying both on regularities in the stream of relations coming
from the perceptual environment, and relations coming from commands issued
by the human in order to correct or shape the ongoing behavior that is being
learned.

3.2 “Align” Behavior

The second experiment also tests the ability of the system to learn to terminate
an ongoing motor behavior based on a change in a perceptual state that occurs
as a function of the execution of that behavior in a different context. In this
case, the AIBO is to search for the ball, orient its head to the ball, and then -
maintaining this orientation -turn its body so that the neck is straight, and the
AIBO body is aligned with the ball. In this configuration, when the AIBO starts
to walk, it will be pointed in the direction of the ball.

For this behavior the ball is placed a few meters away from the AIBO, away
from the direction in which it is currently looking. In the current example this
will be to the right of the AIBO. The user starts by invoking the command
align right. In the first demonstration, there is no Generalized sequence, and
so the system waits for instructions. The user then commands the robot to track
or locate and look at the ball. Once this is achieved, the user then commands
the robot to rotate its body towards the right, while continuing to fixate the
ball, thus bringing the body into alignment with the head. When this alignment
is achieved, the user commands the robot to stop turning. The goal here is that
in the general case, independent of how far the ball initially is to the right, the
robot will turn, and stop turning when it is aligned with the ball.

Examination of Fig. 10 indicates that just prior to the changing of command
rotate(robot, right) to false, there is a pair of state changes in which the
value of the proprioceptive relation neck(robot, center) becomes true, and
then the value of the proprioceptive relation neck(robot, right) becomes false.

Fig. 10. Chronogram of World Vectors and Relation Change states in learning and
generalizing the complex behavior align right(robot, ball). generalized sequence
after 6 learning trials. See text.
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Though not clearly indicated on the chronogram these two events occurred with
a very short separating interval (<1 second). The next event is the user issuing
the command to stop turning. Again, the crucial issue will be to automatically
establish the link between the sending of the command to stop turning and
the perceptual events corresponding to the centering of the head and neck with
the body. If we compare the first history with the last generalied sequence, we
can observe that there is a substantial shortening of the sequence is due to the
fusion and deletion generalization (Fig. 3). The ”X”s distributed throughout
correspond to vectorial generalization illustrated in Fig. 5. The presence of an
”X” indicates that the particular relation value can be either true or false at
that point, and the generalized sequence can still proceed. This corresponds to
relations whose values are not pertinent at the given time for the passage from
the previous to the subsequent State.

Experiments 3.1 and 3.2 thus demonstrate that the generalization method is
capable of determining the pertinent perceptual relation changes that trigger the
onset and offset of motor commands. This provides generalized sequences that
are sensory-motor programs that can be autonomously executed by the robot
with a good deal of invariance to modifications in initial conditions.

3.3 “Turn Around” Behavior

The third and final experiment tests the ability of the system to learn to
coordinate the initiation and termination of two distinct behaviors based on
a succession of changes in perceptual states that occur as a function of the
execution of these behaviors. In this case, the AIBO is to start walking and then
stop when it detects a potential collision. It should then begin turning to the
right, and stop turning when it sees the red ball.

Fig. 11 illustrates the generalized sequence for this behavior after 5 interactive
training demonstrations. Examination of this generalized sequence provides a
clear way to understand the successive elements of the behavior that were used
to each this complex behavior. To begin training this behavior, the AIBO is
placed a few meters from a wall, with the red ball placed about 1 meter to the
right of the future collision point. The user starts by invoking the command
turn around. In the first demonstration, there is no Generalized sequence, and
so the system waits for instructions. The user then commands the robot to center
its head/neck in the forward direction. Once this is achieved, the user then
commands the robot to begin to march forward. When the user sees that the
robot is getting close to the wall, the user commands the robot to stop marching.
Again, the goal here is that in the general case, independent of how far the robot
initially is from an obstacle, the robot will stop walking when it comes within
some threshold distance of that object.

In Fig. 11 this corresponds to the State change in which the perceptual rela-
tion near(robot, thing) becomes true. Indeed, this occurs just before the user-
issued command to stop marching. Thus in the generalized sequence, this state
change must precede the self generated command to stop marching. After this
command, the next event is the user issuing the command to begin turning right.
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Fig. 11. Chronogram of World Vectors and Relation Change states after generalizing
the complex behavior ”turn around”; generalized sequence after 5 learning trials

Again, a crucial issue will be to automatically establish the link between the send-
ing of this command to turn right, and the enabling pre-conditions. The robot
continues turning right until the next sequence of relation events which are the
value of near(robot, thing) changing to false, followed by the relation see(robot,
ball) changing to true. Fig. 11 thus represents the combined sequence of percep-
tual events and command events that define the Generalized Sequence for the com-
plex behavior turn around. This generalized sequence is used by the system as a
behavioral program that allows the successive selection of the appropriate motor
behaviors based on the combination of perceptual and motor relations that define
the preconditions for these successive motor commands.

4 Discussion

The current research provides new results from experiments with a robotic sys-
tem that can acquire an open set of new behaviors through interaction with the
sensory-motor milieu and a human teacher. Part of the novelty of the system is
that it combines perception and action into a coherent representation in terms of
a temporal sequence of perception and action state changes. This combined se-
quence is then the object of a generalization process whereby, through multiple
demonstrations of a given behavior to be learned, the system extracts the mini-
mal pertinent description of the relevant actions and their required preconditions.
This resulting generalized sequence is thus an integrated sensory-motor program
that the system can execute autonomously. In three experiments based on com-
plex behaviors of varying complexity, we have demonstrated that the system in-
deed learns to generalize the behavioral sensory-motor sequences, and that it can
perform this for arbitrary combinations of its base set of sensory and motor rela-
tions (illustrated in Tab. 1). Another novel aspect of the current approach is that
it is not at all tied to the specifics of the robot platform used. It only requires
that the robot has the equivalent of the situation modeler which provides logical
predicate values for different sensor and motor command status values. Indeed,
part of the long term aim of this research is to demonstrate that this Generalized
Sequencing Model can easily adapt to a variety of robot platforms.
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This provides the basis for an interesting set of extensions. In this context we
are currently extending the system to allow embedding of these complex behav-
iors to create hierarchical complex sequences. A second line of extension is related
to the command of the system via spoken language. In the current context, user
commands can be issued via a console interface and by spoken language using the
CSLU RAD system in which single spoken commands are recognized and used to
send the appropriate URBI command to the robot. Our future work in this area
will allow the use of predicate-argument commands (such as ”get the X” where X
can take different arguments like ball, bone, etc.) and corresponding grammatical
constructions, rather than single words. We have begun to investigate this use of
grammatical constructions in Dominey & Boucher 2005 [2], and Dominey et al.
2005 [3].
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Abstract. The problem we address is adaptive obstacle navigation for 
autonomous robotic agents in an unknown or dynamically changing 
environment with a 2-D travel surface without the use of a global map.  Two 
well known but hitherto apparently antithetical approaches to the problem, 
potential fields and BUG algorithms, are synthesised here.  The best of both 
approaches is attempted by combining a Mind’s Eye with dynamic potential 
fields and BUG-like travel modes. The resulting approach, using only sensed 
goal directions and obstacle distances relative to the robot, is compatible with a 
wide variety of robots and provides robust BUG-like guarantees for successful 
navigation of obstacles.  Simulation experiments are reported for both near-
sighted (POTBUG) and far-sighted (POTSMOOTH) robots.  The results are 
shown to support the theoretical design's intentions that the guarantees persist in 
the face of significant sensor perturbation and that they may also be attained 
with smoother paths than existing BUG paths. 

1   Introduction 

1.1   The Problem 

The general problem we address is how to get a robot to navigate from A to B where 
there are intervening obstacles. 

In static and familiar environments, a path between a particular A and B that 
circumvents obstacles may be known before travel commences. If not, a global map 
showing the location of intervening obstacles may allow a path between A and B to 
be computed [1].  Knowledge of a connecting path coupled with knowledge of a 
reliable mapping of robotic action into motion then enables a sequence of actions 
moving the robot from A to B to be readily computed. 

However, such knowledge may not be available for autonomous robots working in 
unknown or dynamically changing environments. An important consequence is that 
the unknown throws up unexpected aspects of the environment resulting in 
perturbation of the robot motion. The motion task then is a challenging one of finding 
a route based on more limited knowledge through adaptive behaviour. A common 
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scenario is where knowledge is restricted to goal direction and local obstacle data 
provided through sensors. This scenario in autonomous obstacle navigation is 
addressed here for a 2-D travel surface. 

1.2   Existing Approaches 

There are numerous techniques for robotic navigation in 2-D space that do not rely on 
the existence of a global map providing a priori knowledge of the environment. They 
feature varying levels of pre-planning, reactivity and world modelling and differ with 
respect to their computational expense and success. Major general approaches as 
described in [2] are: 

• BUG based algorithms (e.g. [3], [4]) which provide geometrical paths connecting 
to the goal. For other non-heuristic algorithms, see [5]. 

• Methods which develop a discrete model of the environment that may, for 
example, be searched via an A* algorithm to establish an optimal connection from 
start to goal. Overviews can be found in [6] and [7]. 

• Potential field based systems in which the motion of a robotic agent is directed by 
a combination of repulsive obstacle potential and attractive goal potential [8]. 
Overviews can be found in [6] and [7]. 

We focus here on the two approaches in the above that employ a direct travel path 
without search, i.e. potential fields and BUG algorithms. 

1.2.1   Potential Field Based Navigation 
The potential field approach views the robot as analogous to a charged particle 
attracted to the goal and repelled by the obstacles [8]. These virtual forces are used to 
guide the robot in navigating its environment. By converting sensor information 
found in the field into a combination of attractive and repulsive potential, motion may 
be generated towards the goal through the direction of the potential field gradients. 
The goal distance and the inverse of the local obstacle distance are commonly taken 
to represent the degree of attractive goal potential and repulsive obstacle potential 
respectively at each location. Provided the goal is reasonably clear of obstacles, it is 
identifiable as a unique location of lowest combined potential. The combined 
potentials may be visualised abstractly as a surface of varying height over the travel 
environment. Standardly, the locally steepest gradient downwards on the potential 
surface points the way to the goal so that travel proceeds like a ball rolling to the 
bottom of a hill. Such an approach offers the possibility of robust travel since 
increasing error between actual and intended motion will result in steeper gradients 
coming into play to guide the motion back on course. The underlying potential field 
framework also offers compatibility with a wide range of robot designs and a 
relatively seamless integration with robot features such as finite size and sensor-based 
perception. 

While there has been substantial enthusiasm for the potential field approach in 
robotics [7], [9], progress has been blocked by the commonality of features such as 
the well known Local Minimum Problem [10]. In the latter case, obstacles containing 
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common shapes of many varieties such as C shapes cause the robot to become stuck 
upon entering the convex inside of a region bordering the obstacle, e.g. the inside of 
the C. The robot cannot escape the region except by temporarily going further away 
from the goal, which would entail going upwards in potential against the downward 
flow in the static field.  The behaviour is equivalent to a ball getting stuck in a local 
pit part way down the hill. 

1.2.2   BUG Algorithms 
There are many algorithm variants belonging to the BUG family of algorithms 
beyond those initially developed in [3], [4], that also provide a guarantee for their 
geometric paths to reach a realisable goal. The family commonly assumes a point 
robot analogous to a bug which proceeds directly towards the goal when it can, and 
steadily goes forwards along intervening obstacle boundaries until the boundaries can 
be left to carry on directly towards the goal. 

The guarantee comes about because, in 2-D, going forwards along an obstacle 
boundary after hitting the obstacle always eventually results in a point being reached 
where the obstacle can be left safely.  That is, the boundary traversed is left 
permanently with no danger of an infinite loop developing in the path through 
returning to the point.  If leaving takes place at such a point, the obstacle is then only 
a temporary diversion.  As the travel between obstacles always reduces the distance to 
the goal and the number and size of obstacles are finite, reaching a realisable goal is 
guaranteed. There are many BUG algorithms, each with different conditions for 
leaving an obstacle safely enough to preserve the guarantee, but all have the above 
basic modus operandi.  Our own method has its own improvements for leaving safely. 

The BUG algorithms also have their drawbacks though. The earlier versions were 
relatively inefficient in the degree to which they went round obstacles before leaving 
them.  Subsequent variants attempt to reduce the inefficiency of their predecessors’ 
paths so they leave an obstacle earlier, e.g. [11]. More recently DistBUG [12] and 3D 
Bug [13] feature a more prevalent use of real sensor data.   

However, a central issue is that while providing a theoretically sound geometric 
path for a point robot, they require extra support, that is unspecified in detail, to 
realise their paths. There is no specification in BUG’s path planner for how to follow 
an obstacle edge or how to cope with a finite sized robot or with perturbation of the 
robot’s perception and action. In robotics, it is not trivial to provide such support 
given the uncertain nature of a robot’s environment and idiosyncrasies of the robot 
itself. BUG paths are also inherently inefficient by closely clinging to the obstacle 
boundaries. There is no opportunity to curve a smoother course to go round obstacles 
at a greater distance from the obstacles, in the way natural agents with extended 
sensing such as vision can do. 

In this paper, we aim to provide the best of both approaches, i.e. to provide robust 
and smooth paths through a potential field approach that has a more integral 
specification than BUG, but also to provide BUG-like guarantees of reaching 
realisable goals. 
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2   Previous Work on Overcoming Local Minima  
Using Potential Fields 

The local minimum problem has been a serious problem for potential field methods. 
While there have been attempts to overcome this problem in a variety of ways [6], 
[7], [14], [15], none of the attempts have been seen to be an outright solution. 
Obstacle avoidance on its own using potential fields does not guarantee 
convergence to the goal.  Franceschini et al [16] show that robots become stuck in 
local minima or wander aimlessly without a target.  As described earlier, the use of 
a target induces local minima in common convex shapes for a static field.  Varying 
a potential field dynamically during the behaviour may move the process on from 
local minima in a static field [17], but then introduces cyclic paths for various 
common convex obstacle shapes due to being attracted back onto a previously 
visited obstacle edge. BUG algorithms provide theoretical guarantees that obstacle 
edges are not returned to as described above.  A potential field approach thus needs 
to provide more practical guarantees equivalent to BUG if success is to be assured 
on a universal basis. 

Forward chaining is a technique recently developed by one of the authors [2] that 
aims to provide smooth plasticity and persistence for robotic agent navigation towards 
a goal. It is a relatively inexpensive dynamic potential field based approach capable in 
principle of traversing static local minima in combined obstacle and goal potential. 
Smooth adaptation of the robot’s travel path while maintaining persistence towards a 
goal is provided by the use of intermediate subgoal attractors that dynamically form 
temporary stepping stones connecting to the goal. Other work which has made use of 
subgoals in order to address the local minimum problem for potential fields can be 
found in [18], [19], [20] and more recently in robotics in [21]. 

A subgoal as an individual acts as an attractor on a combined subgoal and obstacle 
potential surface just like the goal acts as an attractor on the combined goal and 
obstacle potential surface in traditional static potential field methods. The difference 
is to repeatedly replace the subgoal with one further forwards to generate a simple and 
dynamically changing potential surface.  The dynamics carries the robot position 
within a moving dip that corresponds to the moving attractor basin at each stage of the 
process. That is, each new subgoal generates a different potential surface containing a 
single global minimum forwards of the previous location that is readily approachable 
through gradient descent from the current robot position. A suitable sequence of 
subgoals, set to track the goal and nearby obstacle edges in a forward direction as they 
are sensed, allows the robot to travel from start to goal without getting stuck in static 
local minima short of the goal. 

Forward chaining has been shown in [2] to reach the goal successfully for a 
variety of obstacle courses including local minima for the traditional static method. 
However, the design was limited in being for a point robot, in its obstacle leaving 
condition restricting the type of obstacle course navigable, and by not using direct 
or perturbable sensor information. We now cater for these features in the present 
paper. 
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3   A Mind's Eye Approach to Providing a Goal Reachability 
Guarantee Using Dynamic Potential Fields 

In this section we present POTBUG and POTSMOOTH flavours for Forward 
Chaining robots that have evolved to remove the limitations outlined above, and 
extend the goal reachability guarantee to arbitrary obstacle shapes by chaining 
subgoals along BUG-like paths. 

3.1   Sensor and Subgoal Based Potential Evaluation 

In the following sections, range sensors are used to repeatedly establish obstacle 
distances and directions relative to the robot throughout the behaviour. The direction 
to the goal is also repeatedly established through sensor readings and is not blocked 
by obstacles at any time. Repeated estimates of the distance to the goal are established 
by triangulation. 

The sensor readings are used to construct a varying potential field relative to the 
robot's current position and orientation. The obstacle potential function has an infinite 
value on the edge of an obstacle and falls off to a value of 0 over a finite fall-off range 
from the obstacle. The obstacle potential function is given by 

( )
>

≤≤⋅=
−−

sd

sded
dU

i

i
ds

i
i

i

 ,                   0

0 ,   /1 )/(1

Obstacle

22

 (1) 

where di is the sensed distance of the robot from an edge point i of an obstacle, and s 
is the fall-off range which is generally set to be 3r, where r is the robot radius.  [For 
the given fall-off function to have a monotonic decrease in gradient size, s ≤ 1.  
Consequently, as s = 3r, the robot radius needs to be expressed in terms of units that 
result in such a fall-off range.]  Setting the fall-off range in terms of the robot radius 
will be shown to be important for making the robot navigation suitable for its size. 

Sensor readings of obstacle distances di are taken in various forwards linear 
directions that impact on obstacles within sensor range.  The potential function used 
to model subgoals as attractors for the robot is a quadratic bowl in terms of the 
distance da to that attractor 

( ) 2
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The combined obstacle and attractor potential may then be calculated as: 
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The robot uses the equivalent of a mind's eye to focus attention on a circle set 
concentrically around itself with a radius that is the distance of the nearest sensed 
obstacle point, or the sensor range itself if no obstacles are sensed, or the goal if this is 
within sensor range with no obstacles inbetween.  The mind's eye is used by the robot 
to monitor and position the subgoal on the forwards  semi-circle either  relative  to the 
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Fig. 1. Summation of obstacle potential and subgoal potential to form combined potential. The 
distance d from the obstacle increases from left to right. 

goal or to any intervening obstacles.  The robot performs steepest descent down the 
dip of the combined obstacle and subgoal potential surface at each stage. 

3.2   Subgoal Setting and Reachability Guarantee 

Each subgoal is set forward in free space using the sensors to ensure there are no 
obstacles between the current robot position and the subgoal. In the absence of any 
sensed obstructions, subgoals are set on the forward semi-circle in the goal direction 
so as to pull the robot along a straight line to the goal. In the presence of sensed 
obstructions, subgoals are set on the forward semi circle at a safe yet close distance 
from the obstacle edge to pull the robot around the obstacle. By selecting positions 
that have a summed obstacle potential value of B=UObst(2r), where r is the robot 
radius, we effectively set a safe distance corresponding to 2r from a single obstacle 
sensor sample, and slightly more for multiple sensed obstacle points.  The robot uses 
its mind's eye to set subgoals targeting an obstacle potential contour of this B-value, a 
B-contour, surrounding obstacles.  

For each subgoal the combined subgoal and obstacle potential surface is the 
summation of monotonically changing functions and a quadratic bowl. Starting at an 
obstacle edge, the combined potential decreases monotonically until the minimum of 
the subgoal function is reached (Fig. 1).  After this point, the obstacle function 
gradients continue to decrease monotonically in size towards zero while the subgoal 
function gradient now becomes positive and increases monotonically.  The combined 
potential will therefore eventually start to turn and rise (monotonically).  A single 
global minimum attractor on the combined surface occurs when the subgoal’s positive 
function gradient matches the obstacle functions' negative total gradient, see Fig. 1. 
This always occurs between 2r and the edge of the fall-off range, 3r, from a single 
obstacle sample point. Consequently the simple nature of the obstacle and subgoal 
surfaces ensure that monotonic descent towards the minimum is always possible with 
the global minimum basin containing the current robot position at each stage. 

3.3   Subgoal Chaining Around Obstacles 

The targeting of a B-contour will set a subgoal steadily to the left or right of the 
current robot trajectory when approaching an obstacle to make the robot turn to fall 
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Fig. 2. (a) A subgoal setting SG on the forward half of potential circle (forward semi-circle) at 
the most forward intersection with a potential value of B (compare with I). (b) The robot body 
(inner circle) turns when targeting SG for subsequent travel towards the minimum on subgoal 
and obstacle surface. (c) Continued movement towards successive subgoals set on the B-contour 
pulls robot centre into and along the BC-band of obstacle potential. 

into line along the obstacle edge as depicted in Fig. 2. The most forward B-contour 
intersection with the forwards semi-circle is chosen as the subgoal. In the pathological 
case when multiple intersections are exactly equally forward, one of them is chosen at 
random. Subgoals are continually set and replaced forwards of the robot along the B-
contour of potential thus pulling the robot forwards towards the minimum on the 
combined subgoal and obstacle potential surface. This minimum lies in a BC-band of 
potential where C=UObst(3r) as described earlier. The A-contour is associated with a 
potential value of A=UObst(r) and represents a boundary of safety which is not crossed 
by the edge robot during travel. 

We deem passages between obstacles to be too narrow for safe navigation when there 
is significantly less than a robot width either side of the robot.  The setting of the obstacle 
potential fall-off range to 3r is sufficient to achieve occlusion of such passages without 
losing the ability to navigate other passages. Occlusion will occur for some passages that 
are less than 6r, and all those less than 4r, wide when the B-contour flows past the 
passage.  The sets of obstacles surrounded by a BC-band can be treated as though they 
are just one virtual obstacle since the passages between them are unsafe to navigate. 

The safe leaving of a BC-band to go to the goal or another obstacle requires 
satisfaction of the condition of being clear to leave with no immediate obstruction in 
the goal direction.  If a BC-band has had to be followed to any extent, it is also 
required that finite progress has been made towards the goal since the first point on 
the band, the hit point, was reached by the robot. The progress ensures that in theory 
each traversed part of a BC-band is left permanently to go to another one nearer the 
goal. In this way, the chain connects to the goal with a BUG-like guarantee. 

3.4   Modes of Operation 

The robots chain their subgoals to reach the goal through three main modes of 
operation, two of which are much like those found in BUG. The two similar modes are 
free which entails moving directly towards the goal when there are no obstructions in 
the way, and engaged, when having to circumnavigate an obstacle to any extent until 
safe to leave. The third mode is a transitional approach mode following free mode. 
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Once an obstacle has been detected and deemed to be an obstruction on the way to the 
goal, the robot enters the approach mode.  In this mode, it approaches the B-contour 
surrounding the obstacle to establish a hit point in the BC-band, turning while it does 
so.  When the robot achieves this hit point, if it is then at a corner of the obstacle edge 
and is clear to leave immediately towards the goal it does so.  Otherwise it enters the 
engaged mode in which it follows the BC-band further round the obstacle boundaries. 
This carries on until it is deemed safe to leave the BC-band and recommence travel 
towards the goal again in free mode. The process terminates at any stage if the robot 
centre comes within 2r of the goal where r is the robot’s radius. 

3.5   Travel Algorithm 

The top level algorithm may be described as follows: 

1. Initialise 
 1.1 set the sensor range and the radius of the robot 

2. while (not reached goal) 

 2.1 scan for goal, rotate robot to face goal, scan for obstacles 

 2.2 while (no obstruction in goal direction on forwards semi-circle arc of 
   width 2r and not reached goal, free mode) 
  2.2.1 make a move (towards goal) 
  end while 

 2.3 while (hit point not flagged and not reached goal, approach mode) 
  2.3.1 if the robot’s position w.r.t. obstacle is deemed a hit point,  
   then flag hit point reached and record robot’s current distance to  
    goal as hit point distance 
   else make a move (towards B-contour) 

  2.3.2  if (hit point flagged and not reached goal and  
   clear to leave obstacle) 

   then safe to leave obstacle, make a move (towards goal) 
  end while 

 2.4 while (not safe to leave obstacle and not reached goal, engaged mode) 
  2.4.1 make a move (along B-contour) 
  2.4.2 if (not reached goal and progress attained and clear to leave  
   obstacle) 
   then safe to leave obstacle 
  end while 
 end while 

make a move procedure 
1.  set the radius of the forwards semi-circle to minimum of  
 (sensed distance to obstacles, sensor range, distance to goal) 
2.  set subgoal on semi-circle towards goal or towards or along B-contour 
3.  make a step down the subgoal obstacle potential surface through  
 robot motion 
4.  test for goal reached 



 POTBUG: A Mind’s Eye Approach to Providing BUG-Like Guarantees 247 

3.6   POTBUG and POTSMOOTH 

The POTBUG robot has a near-sighted mind's eye due to the sensor range being 4r. In 
the POTSMOOTH robot, the only difference is that the sensor range is extended. 
With a more far-sighted mind’s eye, the robot is able to detect obstacles at a greater 
distance and turn earlier. The earlier turning makes for a smoother path around the 
obstacle with less of an abrupt turn near to the obstacle.  This generates paths 
qualitatively different to straight BUG-like paths in their approach to obstacles.  For 
both flavours, the algorithm's targeting of the desired B-contour ensures that, while 
turning, the robot continues to move closer to the desired sensed obstacle edge to 
register a hit point. 

3.7   Example Run 

Fig. 3. shows the POTBUG and POTSMOOTH robots on an obstacle course 
containing a variety of shapes that present local minima for static potential field 
methods. The local minima are overcome by the robots and the goal is reached.  

The jagged edged rectangle demonstrates how, in contrast to BUG, summation of 
potential is able to smooth the robot’s perception of an obstacle edge to allow for a 
smooth plastic path around an obstacle and persistent travel further towards the goal. 
The POTSMOOTH robot has a less BUG-like travel path due to turning earlier than 
POTBUG using its extended sensor range. 

S1

S2

G1

G2

 

Fig. 3. POTBUG (dashed path from start S1 to goal G1) and POTSMOOTH (continuous path 
from start S2 to goal G2) on a difficult obstacle course with multiple local minima and a jagged 
edged rectangle 

 

Fig. 4. Test arena for simulation experiments containing 3 chevron shapes with a typical 
POTBUG path (without sensor perturbation) 
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4   Simulation Experiments 

In the following we present simulation experiments conducted on POTBUG and 
POTSMOOTH robots. The test arena for the experiments is an obstacle course 
containing 3 chevron-shaped obstacles (see Fig. 4). All the above tests are run on a set 
of 241 pairs of initial and goal positions thoroughly distributed throughout the test 
arena and with intervening obstacles.  The robot radius and the sensor range are the 
only variables used to parameterise the robot, besides the degrees of perturbation 
experimented with.  All robots have 30 sensors. 

Table 1.  Average ratio of unperturbed to perturbed path curvature (RPC) and length (RPL) 

    gp    
 % 0 5 10 20 30 40 
 0 1.00 1.00 2.30 1.01 3.66 1.01 6.88 1.08 10.92 1.17 16.41 1.35 

 5 1.07 1.00 2.43 1.02 3.73 1.01 7.03 1.08 10.93 1.19 16.43 1.37 

op 10 1.21 1.00 2.51 1.01 3.84 1.02 7.22 1.09 10.90 1.16 16.20 1.35 

 20 1.67 1.01 2.94 1.01 4.31 1.03 7.60 1.09 11.44 1.18 17.11 1.35 

 30 2.18 1.02 3.34 1.03 4.65 1.04 7.81 1.07 11.79 1.19 17.65 1.37 

 40 2.75 1.03 3.87 1.04 5.08 1.04 8.26 1.08 12.57 1.21 18.78 1.45 

  RPC RPL RPC RPL RPC RPL RPC RPL RPC RPL RPC RPL 

4.1   Robust Smoothness (POTBUG) 

Robustness here consists of smoothly maintaining plasticity and persistence of the 
travel path in the face of unreliable sensor readings. BUG on its own has no integrated 
method for addressing this issue. By contrast, adaptation of robot motion through the 
corrective potential field gradients allows the POTBUG robot to smoothly get back on 
course if the intended path is not realised at any stage. 

The extent of successful adaptation possible may be tested through introducing 
perturbation repeatedly into the sensed distance to any detected object and sensed 
direction to the goal. The experimental aim is to show the extent to which relatively 
inaccurately sensed obstacles and goals leads to failures or departures from the path 
produced with relatively accurate sensing. Such robust smoothness may be quantified 
by comparing the ratio of overall curvature (RPC) and path length (RPL) of a 
POTBUG forward chaining path under various degrees of perturbation to the 
unperturbed counterparts for the tested pairs of initial and goal positions. The sensor 
range is small (4r). 

A random percentage of the sensed obstacle distance and the sensed goal direction 
and distance is added to or subtracted from unperturbed sensor readings within a 
maximum given by each value of op and gp respectively in Table 1. In the 
unperturbed case there were no failures.  In the perturbed cases, there was at most 1% 
failure.  Table 1 shows that there is a broad trend of RPC and RPL increasing with 
increasing perturbation.  RPL increases by a relatively much smaller amount 
compared to RPC for up to 40% random perturbation in both individual obstacle and 
goal sensors. This is in line with our visual inspection of typical travel paths that 
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shows a slightly drunken walk around, but close to, the true goal directions and B-C 
bands.  There is considerable individual fluctuation about the mean curvature in the 
perturbed cases, most probably due to each transition moving the robot from side to 
side.  The standard deviations are on average 86% of the mean.  The path length for 
individual cases is again much less variable with standard deviations that are on 
average 13% of the mean. 

Beyond the 40% random perturbation shown in Table 1, the goal is still achieved 
with the path length and curvature continuing to increase relative to the unperturbed 
case.  The high degree of success in attaining the goal in the face of perturbation is 
quite possibly due to the recalibrating nature of the potential used.  More specifically, 
the random effects of the goal and obstacle sensor perturbation tend to cancel out with 
repeated triangulation and polling of multiple obstacle sensors respectively. 

4.2   Extended Smoothness (POTSMOOTH) 

The empirical aim in this section is to investigate the extent to which the undulatory 
smoothness of travel paths may be enhanced by extending the sensor range.  We 
extend the range from 4r to 12r in 4 steps of 2r to try out various types of 
POTSMOOTH robot and evaluate the ratios of path length and curvature for each 
range relative to those for the 4r counterpart set the same initial and goal positions.  
The sensors are unperturbed for this experiment. 

Table 2 shows the path length and curvature decreasing as the sensor range is 
extended. There were no failures. This is consistent with our visual inspection of 
typical travel paths that shows the travel path curving earlier but still reliably joining 
the B-contour further to the right or left of the last goal direction taken in the free 
travel mode. There is consequently much less time spent in closely following the 
obstacle boundaries as was shown in Fig 3. 

Table 2.  Average ratio of path curvature (RPC) and path length (RPL) for sensor range (SR) 
compared to path curvature and path length for sensor range 4r 

SR 4r 6r 8r 10r 12r 
RPC 1.000 0.975 0.955 0.946 0.932 
RPL 1.000 0.995 0.992 0.989 0.986 

5   Conclusion  

A dynamic potential field method has been shown by design and empirically to 
achieve effective guarantees for goal realisability in the face of intervening obstacles.  
This was done by setting achievable and continually replaced subgoal attractors in the 
robot mind’s eye as targets and descending towards them using potential field 
gradients.  BUG-like travel modes were found to guarantee dynamically emerging 
connections of the subgoal chains to the goal based solely on significantly perturbable 
sensor readings without the aid of a global map or other prior knowledge. 

The POTBUG and POTSMOOTH flavours of robot were developed with small and 
extended sensor ranges respectively. POTBUG’s adaptive resilience to unreliable sensor 
readings and POTSMOOTH’s adaptive smoothing of the global travel path have been 
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empirically tested in simulations and found to be reliable to significant degrees.  The initial 
results are promising for offering a relatively seamless integration with real world robotics 
and the implementation of the algorithms in physical robots is currently underway. 

The authors thank G. W. Lucas for support through the Rossum Project Simulator. 
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Abstract. Several models have been proposed for visual homing in in-
sects. These work well in small-scale environments but performance usu-
ally degrades significantly when the scale of the environment is increased.
We address this problem by extending one such algorithm, the average
landmark vector (ALV) model, by using a novel approach to waypoint
selection during the construction of multi-leg routes for visual homing.
The algorithm, guided by observations of insect behaviour, identifies lo-
cations on the boundaries between visual locales and uses them as way-
points. Using this approach, a simulated agent is shown to be capable
of significantly better autonomous exploration and navigation through
large-scale environments than the standard ALV homing algorithm.

1 Introduction

Many models of insect navigation have been devised which reproduce the ani-
mal’s visual homing capabilities in simple environments [1]. However, they do
not cope well with large-scale environments containing several visual locales, or
areas, without significantly increasing computational and storage demands. In
this context, large-scale environments are defined as those in which the visual
input at any location does not define the entire environment - as in most natu-
ral settings. Whether a scene is cluttered (e.g. dense woodland) or sparse (e.g.
desert) there will be objects at a variety of spatial frequencies and distances
which will not all be visible at any one time. This means that a single room
with no features of a size less than the agent’s visual acuity is not a large-scale
environment, whereas an environment containing objects far enough away that
they cannot be resolved by the agent is large-scale. The scale of the environment
can therefore be varied by changing the size of objects whilst keeping the size of
the environment and the visual acuity of the agent fixed.

Importantly, as an agent passes though large-scale environments landmarks
will enter and exit its visual field. They therefore present difficulties for nav-
igation as visual landmarks which define the goal location may not be visible
from other locations. If a subset of visual landmarks remains visible through-
out the environment, navigation methods relying on this subset can be used. In
large-scale environments, however, this feature set will change as landmarks exit
or enter view and a new visual locale is entered. The navigational information
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from the previous locale will very likely be useless in navigating from the cur-
rent locale to the goal and navigation methods relying on this information will
fail. In addition, navigation strategies will fail if distinct locations are visually
indistinguishable, with the probability of such perceptual aliasing increasing in
large-scale environments.

If a navigation algorithm is to function robustly in the real world, it must
account for the problems arising from large-scale environments. To date, a major
focus of biomimetic strategies capable of dealing with such environments has
been on constructing databases or graphs that associate a given location with
a navigational action (reviewed in [2]). On recognising the current location, an
agent selects the associated action that leads to the next goal location. This
approach replaces local navigation with a recognition-triggered response and
enables navigation through large-scale environments. As visual input is only used
to evaluate whether the agent has reached a goal location, landmarks which exit
and enter the agent’s perceptual field have no effect on navigation.

While they work in certain situations, associative databases have several se-
rious shortcomings. If a location is incorrectly identified the error is not evident
until the agent fails to find the next goal location. To compound matters, the
agent does not know whether its failure to reach the goal was due to incorrect
identification of the previous location or for some other reason. Thus, for clar-
ification, the agent must attempt to return to the last known location. These
problems arise from the ballistic nature of the navigational action stored in
associative databases. A compass direction or vector (compass direction and
distance) provide no feedback until followed to completion - the cost of ignoring
available navigation cues between goals.

We have attempted to overcome the problems presented by large-scale envi-
ronments by augmenting the average landmark vector (ALV) model [3] in two
ways. We use a novel approach to waypoint selection during the construction of
multi-leg routes for visual homing. The method recognises entry into a new visual
locale and incorporates this information in the automatic creation of a series of
intermediate goals, or waypoints, between which local navigation methods can
be used. Navigation along the whole route is accomplished by navigating to each
waypoint in turn. In this way, the larger visual environment becomes segmented
into areas where a subset of visual features remain in view as the individual
moves. Waypoints are only selected when required by the agent, resulting in the
minimum number for successful navigation being used. The model also makes
use of path integration information to ‘scaffold’ the visual learning of the route.
The resulting algorithm achieves high performance despite very low computa-
tional and storage requirements. A comparative study of the ALV and augmented
models was carried out in a series of environments of gradually increasing scale
with the augmented model demonstrably superior in all instances.

Our aim was to produce a robust visual navigation system for autonomous
robotics which is based on biological observation and attempts biological plau-
sibility. The advantage of this constraint is twofold: it provides a successful and
efficient model on which to base our algorithm and it retains the possibility of
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generating biological hypotheses from the work. To this end, in the algorithm
presented we have reduced the level of computation, duration of route learn-
ing, and storage requirement found in current biomimetic models of navigation
in large-scale environments. We have also taken note of the fact that ants and
bees integrate several navigational cues (vision, compass, odometery, olfactory)
during the trajectory between two locations of interest [4,5,6,7].

The paper proceeds as follows. Section 2 details key components of current
insect visual navigation models and describes the ALV model. Our augmented
algorithm is described in Section 3. The experimental setup used to evaluate
the algorithm is described in Section 4 and Section 5 presents the experimental
results. Lastly future directions for the work and conclusions are discussed.

2 Models of Insect Navigation

The visual navigation algorithm presented in Section 3 incorporates two ex-
tensively researched aspects of insect navigation - path integration and visual
homing. Brief details of these processes are given here as background before the
ALV model is described.

Path integration (PI), or dead-reckoning [8], is a pervasive strategy in nature,
occurring in both vertebrate and invertebrate species. PI enables an individual,
who may have travelled a tortuous outbound journey, to return to the starting
location via a direct route. In its simplest form, direction and distance to home
are continually integrated as the individual moves, creating a ‘home vector’ which
can be followed to return to the starting location. PI is a continuous iterative
estimate, and is therefore susceptible to cumulative error. To mitigate this, both
bees [9] and ants [6,10] use visual information for homing within an area local to
a target location. PI can provide an initial means of navigating a path, enabling
the ‘scaffolding’ of more reliable visual learning of the route [5]. It is used in this
context in the algorithm presented here.

Several models of insect visual homing use a comparative process to match the
current view to that expected at the target location (see [1] for an overview). The
basic model works by storing a (possibly parameterised) view at a location of
interest. As an individual returns to that location the stored image is repeatedly
compared with the current visual input, with a close match indicating that the
individual has returned to the location where the view was stored. Several models
extend this simple comparison procedure to produce the direction of movement
that will increase similarity between views and thus guide the individual to the
location of the original view. One such example is the ALV model [3], a highly
parsimonious simplification of the ‘snapshot’ model proposed by Cartwright and
Collett to describe navigation behaviour in bees [9].

The primary difference between the snapshot model and the ALV model is the
visual information stored at the location of interest. The snapshot model stores
a rather unprocessed image which is later compared to the current retinal image
to produce a movement direction. The ALV model, however, processes the visual
image into an abstract representation of the view - a single two-component vector
- before it is stored. To calculate this vector, features (landmarks) are selected
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from a 360 degree panoramic view1, each represented as the unit vector from
the individual to the landmark. By averaging these individual landmark vectors
a single vector (the ALV) that characterises the visual scene at a particular
location is derived.

As an individual moves, landmark positions change relative to the individ-
ual and the ALV changes accordingly. To return to a location of interest, an
individual compares the stored ALV from that location to the current ALV. It
then moves so that the subsequent ALV is closer to the stored one. Since the
difference between the ALVs gives the approximate direction of goal, iteration
of this process brings the individual to the goal [3].

The ALV model is very cheap in terms of computation and memory, and has
been shown to be effective for visual navigation in both computer simulation
[12,3] and on autonomous mobile robots [13]. It works well in simplified small-
scale environments in which the task is to home to a single location following a
displacement. In such environments, however, all visual features are within the
visual field of the agent. This is not the case in large-scale environments and we
later show that the ALV fails in such situations.

3 The Augmented Navigational Algorithm

The augmented navigational algorithm developed in this research preserves the
attractive qualities of the ALV method (very low computational and memory
requirements) while adding capabilities that allow large-scale environments to
be handled. The behavioural scenario used to evaluate the algorithm is food
foraging from a nest (home) to which the agent must return. The algorithm
contains three components: foraging, visual route learning and visual navigation.
The foraging component is little more than random search. Initially, the agent
is set to foraging from the nest location where the agent wanders randomly
in directions sequentially chosen from a gaussian distribution about its current
heading (σ = 0.2). While foraging, a global vector to the nest is maintained by
the agent through path integration, as proposed for Cataglyphid ants [5]. This
home vector is later used to return to the nest after food is found.

On locating food, the agent starts the process of visually learning the nest-
bound route. The agent first stores its global home vector and starts on its nest-
bound trajectory. During the inbound journey, the ALV (discussed in Section
2) is calculated at each time-step and compared to that of the previous time-
step. When the ALV changes significantly, defined as an object appearing or
disappearing from the visual array, the agent is deemed to have moved into a
new visual locale and the previous ALV is stored. In this manner an ordered
series of ALVs is accumulated - each representing a significant discontinuity in
the ALV space. When the agent reaches the nest, the series is terminated with
the current ALV.
1 Prerequisites for the ALV are a 360o visual system and an ability to align views with

an external reference (eg a compass direction). Ants and bees have near spherical
vision and both gain compass information from (at least) celestial cues [11].
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Outbound trajectories proceed in much the same manner as inbound route
learning. The global vector previously stored at the food location is now used
to determine the goal direction back to the food object. En route, continuity
of the ALV is monitored and the ordered series of vectors is terminated with
the ALV at the food object. After completion of one direct inbound and one
direct outbound trip, inbound and outbound routes are stored as two series of
waypoints (represented by the ALVs). The agent then enters the final behavioural
component of visual navigation between nest and food regions. When leaving the
food for the second time, the agent uses the standard ALV algorithm to home
to the first location represented in the series of ALV’s compiled in the previous
inbound trajectory. As the agent approaches this location the difference between
the current ALV and goal ALV approaches zero. At this point, the agent sets
the next ALV in the series as the goal and repeats the process until it reaches
home. The algorithm is summarised in Figure 1.
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Fig. 1. Simplified flow diagram of the navigation algorithm. There are three primary
behavioural components: foraging, route learning and visual navigation.

4 Computer Simulation: The Experimental Setup

Navigational runs were performed in a two dimensional computer simulated
environment. The environment contained three object types - landmarks, nest
and food. The landmarks are black cylinders as used in both simulated and real
ant visual navigation experiments [6,4,7]. Nest and food regions were circular
areas detectable only upon entry and therefore not used in navigation. The
environment was 1000×1000 units and unless stated otherwise, object diameters
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were randomly selected in the range 30-95 units while nest and food are 20 units
in diameter (Figure 2). 25 objects are placed randomly within each environment
together with a randomly positioned nest and food item. However, to avoid
the biologically implausible scenario of nest or food being on the edge of the
environment and thus having no objects ‘behind’ them, they are constrained to
lie within the central 500×500 area of the arena. We also ensured that nest and
food do not overlap and that no object is placed over nest or food.
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Fig. 2. Plan view of the computer simulated environment with nest and food regions
denoted by N and F respectively. Inset: an enlargement to indicate agent dimensions.

The agent is circular with wheels tangential to its body. Movement is resolved
into translation and rotation dependent upon the distance travelled by each
wheel. A wheelbase of 10 units, and wheel circumference of 4 units (diameter =
4/π) characterise both maximum speed and rate of turn. Motor output is in
the range [−1.0, 1.0] and represents the percentage of wheel rotation for a given
time-step, with a maximum wheel travel of ±100% of wheel circumference (i.e.
±4 units). Motor output is calculated as the cosine of the angular difference
between current heading and goal heading - skewed by 0.25π and −0.25π for
right and left motors respectively 2. The motor output equation produces turn-
ing proportional to the angular difference of the current and goal headings
(Figure 3). Large angular differences produce a three point turn; with smaller
angular differences, output converges to produce straight line travel.

Agents cannot move through landmarks and must perform rudimentary ob-
stacle avoidance. This is implemented by a ring of simulated infra-red proximity
sensors which go high when either a landmark or the edge of the simulation area
is within 5 units. A vector opposite to the direction of the detected object is then
added to the movement vector calculated from visual input. As well as obstacle
avoidance, this procedure constrains the agent to the simulation area.

To produce a large-scale environment for the agent to navigate within, visual
acuity of the agent is limited to 4o per sensor, with visual information collected
by 90 sensors, creating a 360 degree panoramic view. If an object covers more
2 The skew value (±0.25) was arbitrarily chosen to produce a reasonable turning rate

proportional to angular difference of the current and goal headings.
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Fig. 3. Graph of the angular difference between the agent’s current heading and its
goal heading (θ) versus motor output values. The right motor output is cos(θ + 0.25π)
and left motor output is cos(θ − 0.25π). (a) Shows an agent with initial heading (i),
the goal heading (ii), and their angular difference (θ). Forward motion of the right
wheel, and backward motion of the left results from the situation depicted.

0° 360°

(a)

(b)

100° 260°

Fig. 4. Translation of environment to visual input: a Three dimensional view from
agent’s centre. Here a 40 degree subset of sensors is represented. Sensor arcs containing
(visually) any portion of a landmark are set high (black). b The one dimensional
visual array corresponding to the above view. Sensor states are transferred to a one-
dimensional array with objects appearing as black segments.

than 50% of a sensor, the corresponding portion of the visual array is set to
high (Figure 4). This means that the visual range of the agent is determined by
the size of objects. The resulting visual input represents landmarks with black
segments within a one dimensional array. At any one time, the agent was unable
to see all landmarks within the environment. Landmarks would exit and enter
from view as the agent moved through the environment.

5 Experimental Results

In this section we present the results of a comparison of the ALV and augmented
ALV algorithms over a range of large-scale environments. A typical run of the
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navigational algorithm in the simulated environment is then looked at in detail
before discussing situations in which it fails.

5.1 Comparison of Algorithms in Large-Scale Environments

For a thorough exploration of the effect of scale on the performance of the
algorithms, we ran the ALV and augmented ALV on environments where all
objects had equal diameter and then incrementally decreased this parameter. As
discussed in the introduction, reducing the size of all objects while keeping other
factors fixed increases the ‘scale’ of the environment. Positions of objects, nest
and food were randomly selected and fixed while experiments were performed
for each object radius in the range 10-40. This procedure was repeated 30 times,
giving a total of 30 random environments for each object diameter value. As the
environments were entirely random, the results include pathological examples
where the task was impossible, such as when objects significantly obstructed
movement towards nest or food or when there were sections of the environment
where no objects are visible. The algorithm performance would be improved if
such environments were excluded or if the algorithm was augmented to deal with
these occurrences. The ALV homing algorithm was tested by providing the agent
with a single ALV (stored at the nest location) to navigate through a large-scale
environment. The augmented algorithm was run as described in Section 3.
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Fig. 5. Comparison of ALV (dashed line) and augmented ALV (solid line) on random
large-scale environments with objects of fixed diameter

The percentage of trials in which the agent successfully returned to the nest
using each algorithm are shown in Figure 5. As can be seen, the standard ALV
model fails to cope with almost all environments and only returns home 9 times.
The cases where it succeeds are not dependent on object diameter, but rather
are fortunate cases where food and nest fall within the same visual locale. The
augmented ALV performs significantly better over the entire range of diameters
tested. For larger objects this translates into fairly consistent success with the
agent returning to the nest in the majority of the trials. Failures are due to
the problem of mistaken context discussed in the next section, and encountering
visual locales not experienced during the single learning journey due to noise in
the agent’s trajectory. This occurs more frequently when there are many small
visual locales.
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5.2 Single Run

In this section we examine a single run of the augmented ALV algorithm in de-
tail. The run begins by placing the agent at the nest location. The agent starts its
outbound foraging journey on a random bearing. Foraging continues until a food
location is discovered, atwhich point the agent navigates nestward by path integra-
tion. The agent’s current ALV is monitored as it proceeds toward the nest. When
a significant difference between the current and previous ALV is detected, the lo-
cation is identified as a boundary between visual locales and selected as a route
waypoint. In Figure 6(a) centre, four peaks clearly differentiate from the baseline
and indicate visual locale boundaries. The causes of significant differences in ALV
are illustrated by the traces of visual input over time (Figure 6(a) right) which de-
pict landmarks entering and exiting perceptible range. Once the agent has reached
the nest, it starts the outbound journey to the food by path integration. In the same
way as in the nestbound journey, waypoints are selected (Figure 6(b)).

On returning to the food for the second time, the agent begins the nest-
bound journey by visually navigating to the first waypoint along the route to
the nest. In comparing agent and waypoint ALVs, the agent is provided with
both the direction to the goal, and a measure of current visual similarity to the
goal location. When a significant difference between the agent ALV and way-
point ALV is detected, the agent moves a short distance in the direction of its
global vector, visual navigation recommences, and the next waypoint is sought
(Figure 7 centre). When the new goal becomes the next waypoint location, a
jump in difference between the agent and waypoint ALVs is observed. This dif-
ference is again reduced as the agent approaches the waypoint.

Following the selection of waypoints during the inaugural inbound and out-
bound journeys, the sequence of waypoint seek-advance-seek continues until in-
terrupted. The agent shuttles between nest and food, via the agent selected
waypoints.
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Fig. 6. Initial trips during which the route was learnt and visual navigation waypoints
selected; (a) inbound trajectory, (b) outbound trajectory. left: Overhead view of en-
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difference between ALV at t and t-1. right: Trace of the 360 degree retinal image over
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the set threshold, and the goal is advanced to the next waypoint (arrows). right: The
retinal image used to produce ALVs at selected waypoints.

Agents did mistake context if they failed to recognise they were sufficiently
close to the waypoint to advance to the next ALV in the series. Although infre-
quent, these situations cause the algorithm to fail. This confusion is caused by
the angle at which the agent approaches the visual locale boundary. In Section
6 we discuss ways of addressing this problem.

While the augmented algorithm performs well in may large-scale environments,
it can be seen from Figure 5 that it does degrade as the object size decreases, al-
though it is still much superior to the performance of the ALV. The reason for this
degradation is that with smaller objects, there is an increased probability of the bi-
ologically implausible situation of areas where there are no visual landmarks. This
necessarily results in failure of the algorithms. In addition, when there are fewer
objects in view, the possibility of perceptual aliasing is greatly increased.

Such failures are to be expected; our intention was not to produce perfect
navigation in these simulated environments, but rather to develop a strategy
which addressed the shortcomings of the ALV. We are satisfied that our results
demonstrate that we have a basic strategy that can be applied to navigation in
large-scale environments. From this point, rather than tweaking this particular
model to tune it to the environments used, improved algorithms will be built
from this general strategy, via modifications as discussed in the next section.

6 Conclusions and Future Directions

Our navigational algorithm enables successful autonomous exploration of large-
scale environments, and efficient selection of waypoints to connect separate vi-
sual locales. Several advantages are gained over current navigation models pro-
posed for robotic platforms: multi-legged routes can be traversed entirely by
non-ballistic navigation methods; continuous sensory feedback guides the agent
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to the next waypoint; and unlike ballistic navigation methods, errors can be
detected as soon as they occur.

We included amongst the goals for this work the possibility of biological hypoth-
esis generation. To this end, we have taken a model proposed for insect visual nav-
igation, and extended it to a form that remains biologically plausible in its com-
plexity. Although we have purposefully developed a model that operates at a low
level of computation, higher level processes such as topological mapping and route
planning could be added to the navigational algorithm presented here.

While the results reported here were achieved in simulation, we are currently
transferring the algorithm onto a real robot platform. The transfer requires the
algorithm to cope with sensory input noise not present in the simulated environ-
ment. The main problem is in the noise in visual input and in object segmentation
in particular, though compass readings and physical interaction also contribute
to the noise experienced by the robot. While the algorithm performs well in
hand-picked ‘un-noisy’ conditions, we are currently augmenting the visual pro-
cessing of the robot to aid object segmentation and recognition. In particular,
we will use higher order object features such as centre-of-mass as well as edge
information.

A second area of development is the identification and correction of mistaken
context. As mentioned in Section 5.2, the algorithmwill fail when an agent does not
recognise it has crossed into an adjacent visual locale. The agent continues to use
the visual information for a locale it is not in, and spurious movement vectors are
produced. By comparing the ALV movement vector (Section 2.3) to the movement
vector suggested by path integration, an indication of error can be obtained. If the
movement vectors diverge substantially, a navigational error has occurred and cor-
rective behaviour can take place at the point of divergence3. In some situations the
conflict could be caused by detours around obstructions, or changes in a dynamic
visual environment. In these situations, replacing, adding or deleting waypoints
could adapt a previously learned route. Recent work in these directions has been
successful. Finally, future plans include extension of the navigational algorithm to
accept visual input in three-dimensions. Landmarks would not be restricted to a
two-dimensional plane about the robot, which should improve accuracy and effi-
ciency as well as freeing the robot to traverse uneven ground.
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Abstract. Active vision may be useful to perform landmark-based nav-
igation where landmark relationship requires active scanning of the envi-
ronment. In this article we explore this hypothesis by evolving the neural
system controlling vision and behavior of a mobile robot equipped with a
pan/tilt camera so that it can discriminate visual patterns and arrive at
the goal zone. The experimental setup employed in this article requires
the robot to actively move its gaze direction and integrate information
over time in order to accomplish the task. We show that the evolved robot
can detect separate features in a sequential manner and discriminate the
spatial relationships. An intriguing hypothesis on landmark-based navi-
gation in insects derives from the present results.

1 Introduction

Active vision emphasizes the role of vision as a sense for robots and other real-
time perception-action systems [1,2,3,4]. It picks out the properties of images
which are necessary to perform its assigned tasks, and ignores the rest. In this
context, there is no clear need for the sort of detailed reconstructions of the
visible world that have been an accepted, traditional goal of machine vision [5].

Active vision may be useful to perform landmark-based navigation where
landmark relationship requires active scanning of the environment. In this arti-
cle we explore this hypothesis by evolving the neural system controlling vision
and behavior of a mobile robot equipped with a pan/tilt camera so that it can
discriminate visual patterns and arrive at the goal zone.

The experimental setup employed in this article has a notable characteris-
tic: the visual landmarks are identical if the elevation of a robot’s camera is
fixed with the body. In that case, the robot could be unable to discriminate
one from the other1. It needs to actively move its gaze direction and integrate
information over time in order to differentiate these patterns. The sequential
detection of spatially separate visual landmarks has been largely neglected in
the literature. Instead most machine vision systems process an entire image of
their large visual field every time step.
1 The use of a panoramic camera which provides larger field of view is discussed in

section 4.
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We show that the best evolved robots successfully perform the task by using
an effective scanning strategy. The evolved active scanning trajectory covers
only a small region of the entire visual field and, more importantly, consists of a
sequence of feature-driven, anticipatory, and context-dependent gaze movements.
We address the advantages of the present method and neural architecture in
terms of algorithmic, computational and memory resources.

The rest of this paper is organized as follows: the next section details the
experimental setup, i.e. the environment, the simulated robot and the task for
the robot. The neural network embedded in the robot and the genetic algorithm
for developing the synaptic weights in the neural network are also described.
Results and the analysis of the best evolved individual are described in Section 3.
Finally an intriguing hypothesis on landmark-based navigation deriving from the
present results and conclusions are discussed in Section 4 and 5 respectively.

2 Methods

The neural control system of a mobile robot equipped with a pan/tilt camera
is evolved by means of a genetic algorithm to perform goal-directed navigation
in an enclosed space using only visual information (Fig. 1). The evolutionary
algorithm evaluates each neural controller with random mutations until an evo-
lutionary stable control strategy is found [6]. In order to collect data from several
independent runs and perform rigorous statistical analysis, we used fast, physics
based simulations of the robot and its environment (Fig. 1).

Fig. 1. Left: The original six-wheeled robot Koala equipped with a pan/tilt camera.
Right: The robot’s perspective in a simulated environment. The robot can access the
world with 5 by 5 retina at the center of the image.

We simulated the robot and the environment using physics-based Vortex li-
braries2. The robot has six wheels, but only the central wheel on each side is
motorized. The robot base is 30cm(W)×32cm(L)×20cm(H). The pan and tilt
angles of the camera are controlled by two separate and independent motors.

2 http://www.cm-labs.com
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2.1 Experiment and Task

Figure 2 shows the experimental setup where each of two facing white walls
has two squares placed at different heights. The task of the robot is to visually
discriminate one wall from the other in order to arrive at the goal zone at the end
of each trial. There is no other identification of the goal than the visual patterns.
Importantly this experimental setup is designed such that it does not allow the
visual field of the robot to cover both of the two black squares at any given
moment. Therefore the robot cannot discriminate the two walls by keeping the
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Fig. 2. The arena (200cm×600cm) and two visual patterns used in the simulation.
The visual field of the robot can not cover both of the two black squares at any given
moment. The difference of the two walls resides in the spatial relationship of the two
squares (right). The position and direction of the robot are randomized at the beginning
of each test.

vertical angle of the camera constant because both walls have an identical black
square in the same height. The difference of the two walls resides in the spatial
relationship of the two squares (Fig. 2, right). The robot needs to discriminate
one pattern from the other by using active, sequential scanning of the two black
squares of each pattern and integrating the information over time.

2.2 Neural Architecture and Genetic Algorithm

The neural network is characterized by a feedforward architecture with evolv-
able thresholds and discrete-time, fully recurrent connections at the associative
layer (Fig. 3). A set of visual neurons, arranged on a grid, with non-overlapping
receptive fields receives information about the gray level of the corresponding
pixels in the image provided by the camera on the robot. The receptive field of
each unit covers a square area of 48 by 48 pixels in the image. We can think of
the total area spanned by all receptive fields (240 by 240 pixels) as the surface of
an artificial retina. The activation of a visual neuron, scaled between 0 and 1, is
given by the average gray level of all pixels spanned by its own receptive field or
by the gray level of a single pixel located within the receptive field. The choice
between these two activation methods, or filtering strategies, can be dynami-
cally changed by one output neuron at each time step. An object detector unit
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Fig. 3. The neural architecture is composed of a grid of visual neurons with non-
overlapping receptive fields whose activation is given by the gray level of the corre-
sponding pixels in the image; an object detector unit that is activated when any visual
neuron is strongly activated; a hidden unit with incoming synapses from visual neu-
rons; a set of proprioceptive neurons that provide information about the movement
of the camera with respect to the chassis of the robot; a set of output neurons that
determine at each sensory motor cycle the filtering used by visual neurons, the new pan
and tilt speeds of the camera and the rotational speeds of the two wheels of the robot;
a set of associative neurons with recurrent connections. Solid arrows between layers
represent fully connected synaptic weights. Dashed arrow represents a predetermined
(non-evolvable) OR filter (see main text for more detail).

is activated when any visual neuron is strongly activated. Therefore the synaptic
weights incoming into this unit can be seen as a predetermined (non-evolvable)
OR filter. Two proprioceptive units provide input information about the mea-
sured horizontal (pan) and vertical (tilt) angles of the camera. These values are
in the interval [−100, 100] and [−25, 25] degrees for pan and tilt, respectively.
Each value is scaled in the interval [−1, 1] so that activation 0 corresponds to 0
degrees (camera pointing forward parallel to the floor). A set of memory units
store the values of the associative neurons at the previous sensory motor cycle
step and send them back to the associative units through a set of connections,
which effectively act as recurrent connections among associative units [7]. The
bias unit has a constant value of −1 and its outgoing connections represent the
adaptive thresholds of associative, hidden and output neurons [8].

Associative, hidden and output neurons use the sigmoid activation function
f(x) = 1/(1 + exp(−x)) in the range [0, 1], where x is the weighted sum of
all inputs. Output neurons encode the motor commands of the active vision
system and of the robot for each sensory motor cycle. One neuron determines
the filtering strategy used to set the activation values of visual neurons for the
next sensory motor cycle. Two neurons control the movement of the camera,
encoded as speeds relative to the current position. The remaining two neurons
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encode the direction and rotational speeds of the left and right motored wheels of
the robot. Activation values above and below 0.5 stand for forward and backward
rotational speeds respectively.

The present neural architecture has been incrementally developed based on
our previous investigations [9,10]. The object detector unit incorporated in the
architecture is explicitly designed to simplify the biological visual system ca-
pable of monitoring for change in the visual environment3. The hidden neuron
is incorporated to equalize the contributions of the visual neurons, the object
detector unit and the proprioceptive units to the activations of the associative
neurons. The roles of the hidden and object detector units are further analyzed
in section 3.

The neural network has 106 evolvable connections that are individually en-
coded on five bits in the genetic string (total length=530 bits). A population of
100 genomes is randomly initialized by the computer. Each individual genome
is then decoded into the connection weights of the neural network and tested on
the robot while its fitness is computed. The best 20% of the population (those
with the highest fitness values) are reproduced, while the remaining 80% are dis-
carded. Equal number of copies of the selected individuals are made to create a
new population of the same size. The new genomes are randomly paired, crossed
over with probability 0.1 per pair and mutated with probability 0.01 per bit.
Crossover consists in swapping genetic material between two strings around a
randomly chosen point. Mutation consists in toggling the value of a bit. Finally
two copies of the best genomes of the previous generation are inserted in the
new population at the places of the randomly chosen genomes (elitism) in order
to improve the stability of the evolutionary process.

The fitness function was designed to select robots for their ability to arrive
at the goal zone at the end of each life. Each individual is tested for six trials,
each trial lasting for 300 sensory motor cycles. A trial can be truncated earlier
if the operating system detects an imminent collision into the walls. The fitness
criterion F is composed as follows:

F = Fspeed(Sleft, Sright) + Fgoal (1)

where Fspeed(Sleft, Sright) is a function of the measured speeds of the left Sleft

and right Sright wheels and Fgoal is a reward given if the robot reaches the goal
at the end of its life4. More specifically Fspeed(Sleft, Sright) is defined as follows:

Fspeed(Sleft, Sright) =
1

ET

E∑
e=0

T ′∑
t=0

f(Sleft, Sright, t) (2)

f(Sleft, Sright, t) = (St
left + St

right)(1 −
√

|St
left − St

right|/2Smax) (3)

3 In our preliminary studies it seemed difficult to develop the visual system capable of
significantly responding to the black squares detected at any location of the retina.

4 One might think that the first term Fspeed(Sleft, Sright) is not necessary, but in
our preliminary study the fitness value remained zero without Fspeed(Sleft, Sright),
meaning that evolution could not find the solution.
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where Sleft and Sright are in the range [−8, 8] cm/sec and f(Sleft, Sright, t) = 0
if Sleft or Sright is smaller than 0 (backward rotation); E is the number of
trials (six in these experiments), T is the maximum number of sensory motor
cycles per trial (300 in these experiments), T ′ is the observed number of sensory
motor cycles; Fgoal is 10 if the robot reaches the goal area at the end of the
test, otherwise it is 0. The reward is given only if at least one lower square and
one upper square are detected before reaching the goal. This stronger constraint
on Fgoal is to prevent selecting ‘blind’ individuals which arrive at the goal by
chance without using visual patterns.

At the beginning of each trial the position and orientation of the robot are
randomized in the interval [−50, 50] and [−20, 20] for the longitudinal and short
axes respectively.

3 Results and Analysis

We performed six replications of the evolutionary run starting with different
initial populations. In all cases the fitness reached stable values in less than 30
generations (Fig. 4), and the fitness value of the best evolved individual ranged
from 40 to 60.
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Fig. 4. Evolution of neural controllers for the simple three dimensional landmark nav-
igation. Fitness values of the population average (thin line) and the best individual
(thick line) across 30 generations. Vertical bars show the standard deviation. The re-
sults are averaged over six evolutionary runs.

We analyzed the behavior of the best evolved individual which arrived at
the goal six times out of six trials. Figure 5 shows the scanning strategy, the
trajectory of the robot, the camera movement with respect to the chassis of the
robot and the activation of neuron 5 in the associative layer when the robot
started in the face of pattern A and B. For clarity we show only the activation of
neuron 5 because we found that it played the most significant role in the pattern
discrimination.

The behavioral strategy of the best evolved robot can be illustrated as follows:
1. The robot searches for a lower square by moving the camera left-downward
and turning its chassis counter-clockwise until it finds one; 2. Once it finds one,
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Fig. 5. From top to bottom, the best evolved robot scanning two black squares of each
pattern sequentially (gray squares depicting the trajectory of the retinal perimeter), the
trajectory of the robot, the camera movement with respect to the chassis of the robot
and the activation of neuron 5 in the associative layer during the behavior (shown only
for the first 200 sensory motor cycles) when the robot started in the face of pattern B
(left column) and A (right column).

it points the camera right-upward to find an upper square; 3. If it finds an upper
square after a short delay, it goes toward the goal while moving the camera left-
downward. If not, it moves the camera left-downward again while turning its
chassis counter-clockwise until it finds another lower square, and then goes back
to step 2. Thus the robot always searches for pattern B to go toward the goal.

We studied the role of the hidden and object detector neurons by lesioning
one at a time. Their operation was disrupted by clamping the activation value of
the neuron to a constant value of 0.5 during behavior. Figure 6 (left) shows that
both neurons significantly contribute to the successful performance. The best
evolved individual while the object detector neuron was lesioned arrived at the
goal zone five times out of 20 trials (10 in the face of pattern A plus 10 in the
face of pattern B, at the beginning). However these successes were achieved only
when the robot started facing pattern B. If the robot was facing pattern A it
went in the opposite direction of the goal. In other words, the robot always goes
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Fig. 6. The number of successful arrivals at the goal is counted in each condition out
of 20 trials. Left: Lesion test of the best evolved individual. Horizontal dotted line
shows the score of the intact best evolved individual. Right: Test of the best evolved
individual when upper squares are displaced. Horizontal dotted line shows the score
when upper squares are not displaced.

right in the face of both pattern A and B. This result suggests the crucial role
of the object detector neuron in the behavior selection or decision making. That
neuron significantly contributes to measuring the time interval between looking
right-upward and subsequent detection of an upper square. Without the object
detector neuron the robot can not measure the time interval and therefore can
not discriminate the patterns.

While the hidden neuron was lesioned, the best evolved individual never ar-
rived at the goal. This result suggests that the individual uses not solely the
temporal information given by the object detector neuron, but also the visual
information given through the hidden neuron.

One might think that the scanning strategy is reactive, i.e. the detection of a
lower or an upper square always activates a particular behavior, but it is not. For
example, in Fig. 5 (right) the lower square of pattern A was detected for the sec-
ond time in the left side of the robot around the 130th time step, but this event
did not affect the behavior of the robot going toward the goal. Therefore it seems
that the behavior had been ‘switched on’ before the event5. The decision might be
made when the upper square of pattern B was detected shortly after looking right-
upward. If an upper square is detected late after looking right-upward, the robot
does not go toward the goal, but resumes searching for a lower square.

This hypothesis was supported by another set of analyses where the upper
square in each pattern was horizontally shifted toward the center (Fig. 6, right).
The robot can not discriminate the two patterns any more if the upper square
is shifted more than 20 cm.

The importance of the proprioceptive inputs is validated by another set of evolu-
tionary runs without proprioceptive inputs (Fig. 7, left). Despite the shorter length
of the genetic string (total length=480 bits), the best evolved individuals in all six
evolutionary runs could reach the goal only three times out of six trials at max-

5 The stable activation of the neuron 5 around 0.7 (see Fig 5, bottom) seems to reflect
such a fixed behavior after the decision making.
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Fig. 7. Left: Evolution without proprioceptive inputs encoding pan and tilt movements.
Right: Evolution without the associative layer. Fitness values of the population average
(thin line) and the best individual (thick line) across 30 generations. Vertical bars
show the standard deviation. Averaged over six evolutionary runs. Horizontal dotted
line shows the averaged fitness value of the best evolved individual with the original
neural architecture (see Fig. 4).

imum. Their behavioral analysis shows that these individuals always go left (or
right depending on the evolutionary run) in the face of both pattern A and B. In
other words they do not differentiate one pattern from the other.

One more set of evolutionary runs with another neural architecture which has
fully recurrent connections at the output layer and does not have the associative
layer shows worse fitness values than those with the original neural architecture
(Fig. 7, right).

4 Discussion

We have shown that the evolved robot can detect two separate features in a sequen-
tial manner and discriminate the spatial relationships. If the system can perform
active vision and sequentially store the events of visual feature detection, we do
not need expensive computational power nor large memory storage capacity which
would be required to resort to image memorization and matching. Although it has
been shown that insects may indeed adopt such an image memorization andmatch-
ing strategy [11], it is tempting to speculate that their tiny brain with restricted
memory capacity may favor a more economical strategy as shown in this paper.

The evolved robot was able to effectively scan small regions of the broad visual
field in an anticipatory manner in order to sequentially detect separate features.
Such a characteristic of the evolved scanning strategy is in agreement with the ev-
idence shown in [12,13] that people direct their gaze to points of the scene where
information is to be extracted. Land et al. recorded human eye movements while
playing cricket and table tennis. The eyes are very active and their activity takes
roughly the same path as the ball. Contrary to popular belief, they do not follow
the ball, but work in an anticipatory way. For example, eyes anticipate the position
of the ball before it bounces, making saccades to positions where there is, as yet,
no visible stimulus. In this article we have shown a computational model capable
of an anticipatory “eye” movement in a freely moving behavioral system.
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In order to detect the spatially separate features, the evolved robot executes
a particular scanning sequence in front of the visual patterns. That is, after de-
tecting a lower square, the robot routinely directs its gaze right-upward. Such
a scanning sequence might be reminiscent of the human ‘scanpath’ during fa-
cial recognition [14,15]: Noton and Stark claimed that when a particular visual
pattern is viewed, a particular sequence of eye movements is executed and fur-
thermore that this sequence is important in accessing the visual memory for the
pattern. The evolved scanning strategy presented in this article is similar to the
‘scanpath’ in that the moving sequence is crucial to identify a particular pattern.
However, notice that the evolved scanning strategy is not for accessing the visual
memory, but rather is tightly coordinated with the behavior of the robot.

From an engineering point of view one may argue that a panoramic camera
could allow the robot to cover the entire visual field and discriminate the two
patterns. However this approach would be computationally expensive if the en-
tire image is to be uniformly processed in high resolution to extract tiny features
out of a vast visual field as we have shown in this article. Active vision applied
to an omnidirectional image is studied in a separate article [16].

Although the present neural architecture shown in Fig. 3 was investigated in
the lesion test and additional evolutionary runs with modified neural architec-
tures, further investigations must be done. We intend to identify the minimum
components necessary for the neural controller of the robot to detect spatially
separate features in the three dimensional visual environment.

5 Conclusions

In this paper we have shown that active vision may help not only to locate
important features of the environment, but also to capture spatial relationships
between those features that could provide behaviorally relevant information.

From these results it can be hypothesized that landmark-based navigation in
insects and robots could be mediated by similar mechanisms instead of resort-
ing to image memorization and matching [11]. We are currently exploring this
hypothesis with simulated and physical robots.
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Abstract. The contribution of this paper is that illustrates the use of
funneling actions in combination with local deictic reference frames for
forming consistent and useful large scale maps. These maps do not rely
on any geodetic sensors. Indications for the feasibility of such representa-
tions in humans, and other species, can be found in studies of spatial cog-
nition. However, such implementations or applications in robotics have
not been illustrated until now.

1 Introduction

The motivation for the research, which lead to this article, is the ability which
humans and other species posses to develop internal spatial representations of
their environment, and to use them for spatial reasoning and planning activity.
The existence of such internal maps was established by O’Keefe and Nadel [13]
with later developments leading to the work of Wills et al. [16]. This research
established that the hippocampi of rats, dogs, monkeys and humans are the basis
of spatial maps and reasoning.

After several attempts, neurophysiological studies have failed to identify any
form of organization based on topology, perceptual similarity, or metric infor-
mation in the spatial maps in the brain structures of rats, dogs and monkeys.
Therefore, it is now believed that no topological, perceptual similarity, or met-
ric organization is rendered on the maps’ anatomy. Nevertheless, as previously
mentioned, the existence of spatial maps has been well established. Further-
more, the same subjects – rats, monkeys, dogs and humans – are known not
to posses any sensors of geodetic1 orientation or position. It is also well known
that the navigation skills of using printed maps and magnetic compasses (and
later means such as astrolabe, GPS etc) are not innate competencies but rather
a later development in human history, which presumes presence of multitude
of competencies and tools: drawing maps, measuring distances, using magnetic
compass, and logical reasoning abilities. It is fair to assume that earlier humans
were able to find their way around before such developments; adequate proof for
1 The term geodetic is used throughout this article for referring to a point of space

in respect to a global geodetic reference frame such as used by GPS, magnetic com-
passes, and printed maps.
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this is that rats, dogs, monkeys and other species can develop internal maps and
they use them to find their way around, even though they do not possess skills
for creating or using compasses and printed maps.

This line of reasoning brings us to the conclusion that, in our quest to un-
derstand human spatial reasoning, we must depart from a starting point where
no global geodetic reference instruments (such as magnetic compass and printed
maps) are available. We know that it is possible to build reliable and useful large
scale maps without such tools because many species can do it; our problem is
that we do not understand the necessary mechanisms. This paper puts together
the necessary concepts and representations for achieving this end.

2 Funneling Actions

Funneling actions are particular types of activity which produce highly repeat-
able behavior and effects; that is, behavior that can be considered stereotypic.
Such actions are implemented as groups of competencies which converge the
robot’s state variables of interest to specific ranges of values. For instance if the
state variables of interest are the Cartesian coordinates (x, y, z) of the robot’s
position, in three-dimensional space, a corresponding funneling action will con-
verge these three variables to specific values within appropriate ranges. These
specified final values and ranges of the state variables essentially define what
the effect of the particular funneling action is. The trajectory by which the goal
values of the state variables are approached can vary and it is stipulated by the
behavior and the environment. Our everyday lives are abundant of such funnel-
ing actions, which simplify our operation because they produce repeatable and
convergent behavior.

To find examples where funneling actions are employed, you can observe peo-
ple’s paths in places where people aggregate. For instance people entering a
building or a bus. In those cases people are coming from variety of initial condi-
tions and they finally have similar spatial coordinates, bounded by well specified
ranges. This process requires a method for moving from the initial conditions to
the final ones. We argue that the employed method is behavioral funneling, or
in other words use of funneling actions.

Other not so conspicuous examples of behavioral funneling can be found
throughout various domains of human activity. For example, driving a bicycle

Fig. 1. Trajectory of five runs of a robot using a ‘corridor transversing’ competence.
The robot starts in the room and drives in the corridor.
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requires use of a multitude of behavioral funnels achieving motion within safe
ranges of speed, inclination, acceleration and posture. But you should not think
of funneling actions only as trajectories that resemble the shape of a funnel; fun-
neling action can also be walking straight on the pavement. Keeping oneself on
the pavement and walking on a constant direction is achieved with combination
of multiple cooperating funneling behaviors.

Behavioral funneling is achieved by the interaction of environmental con-
strains with the agent’s behavior. The environmental constraints allow only
particular trajectories and positions of the agent, likewise the agent’s structure
and behavior allow only particular trajectories and activities. The interaction
of those constrains stipulates the possible actions, positions and trajectories
of the agent in the specific environment. Environment, positions and trajec-
tories need not be referring only to spatial domains; it is possible for those
parameters to refer in general to any group of substrate, states, and processes
respectively.

The same principles can be employed in the domain of robotics. For example,
in industrial assembly robotics, a variant of funneling actions has been used
in order to limit the possible positions of an object on the workbench before
grasping it (see [5]). Equivalent funneling actions are exhibited in mobile robot
navigation when the trajectory of a robot converges to a certain region. Such
results can be obtained with competencies such as ‘wall following’ or ‘corridor
transversing’. An example of the spatial convergence as result of a ‘corridor
transversing’ competence can be seen in Figure 1. The concept of funneling
actions will be proved to be significant to spatial reasoning and navigation in
forthcoming sections.

As we defined previously, for an action to be a funneling one, the action
needs to have a highly repeatable effect and thus produce routine behavior.
Common characteristic in our implementations of funneling actions is that they
use exteroceptive feedback control for adjusting the robot’s trajectory or ac-
tivity. It is of significant importance that any ambiguities and uncertainties of
operating in the target environments are resolved within those funneling ac-
tions, because the mapping and spatial reasoning mechanisms, which will be
presented in section 4.2, do not accommodate stochastic behaviors (the in-
terested reader can refer to [11] for other work following the same philoso-
phy). This is a deliberate choice, strongly supported by neurophysiological re-
search which has shown that when animals are deprived of their reasoning fac-
ulties, they can still successfully walk, eat, drink etc [13]. Extrapolating this,
it is reasonable to assume that humans would also be able to walk, run, eat
etc if deprived of their reasoning faculties. Another reason for this choice is
the fact that several areas of the human brain (cerebellum, M1, SMA, hip-
pocampus and other areas depending on the task) are involved in motor plan-
ning, which controls balance, grasping, walking etc. For these reasons, we be-
lieve that significant effort should be devoted on building robust funneling
actions.
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2.1 How to Build Funneling Actions

Funneling actions can be preprogrammed or learned by experience. Given an
initial preprogrammed robot competence there are three learning methods which
can be used for deciding on whether this competence operates as a funneling
action or what needs to be adapted in order to turn it into a funneling action.
These three approaches can be followed individually or in combination:

– A competence can become a funneling one by adapting its parameters in or-
der to produce increasingly funneling behavior. For instance reinforcement-
learning methods can be used for learning a corridor transversing compe-
tence.

– By identifying a sensory condition which reliably predicts whether the agent
will end up to the expected place or somewhere else, the agent can learn
conditional changes in its behavior. For instance if the sensory condition in-
dicates divergence from the desired trajectory additional corrective behaviors
can be activated.

– Another technique is to identify the temporal part of a behavior which op-
erates as funnel and place a stopping condition before the robot’s trajectory
starts diverging. Then this first segment can be reliably used as a funnel.

These three methods can be applied during a development period, but after
that any destructive adaptation of the funneling actions must be stopped before
starting using them for learning maps and making plans based on them. In this
article we will not elaborate on those learning methods.

The controller which is going to employ these funneling actions — in our
case the mapping and planning mechanism described in section 4.2 — must
have some learning capacity for identifying if an action operates as a funneling
action in each specific circumstance. This is because we do not have a method to
warranty that an action, which has been proven to operate as funneling action in
a wide range of circumstances, will operate as funneling action in every possible
situation. Therefore, the controller should make sure that an action will operate
as a funneling one in the particular situation. For this reason the controller must
try the competence as it is, several times in the particular situation, and then
decide whether is repeatable enough so that it can be used as a funneling action
in the current situation.

For the implementation of the funneling actions — either being implemented
by hand or using learning — some principles must be followed, which have been
experimentally proven to lead to funneling behavior, as described in the sequel.
We shall mention that the method presented in this paper is in concord with the
views of behavior-based robotics and situated action research ( [3], [14]). It is
required that activity is situated in the agent’s environment and skill decompo-
sition and bottom-up building of the agent’s competencies have been empirically
proved to be successful in achieving situated behavior. However, having achieved
situated behavior the next step is to discern the next level of behavioral achieve-
ment; that is funneling behavior and how to achieve it. We present here some
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principles for building funneling actions which have been derived through per-
sonal experience and thus are prone to augmentation and improvement; however,
they constitute a working methodology. Funneling behavior can be achieved by
building competencies in one of the behavior-based methodologies but taking
into account few more constraints. These are:

– Build competence with stopping condition(s)
• develop multiple alternative sensing pathways
• develop multiple alternative reaction pathways
• consider as many as possible environment conditions

– Experimentally find and exploit environmental dynamics, which apply forces
to the agent. For example if it is a catamaran robot do not try to go against
rough water, but rather exploit existing forces.

– Try a particular behavior in a specific environment to conclude if it operates
as funneling action or not.

In section 4.2 the practical application of funneling actions is illustrated.

3 Local Deictic Frames of Reference

In this section, the concepts of deictic references and egocentric frames of ref-
erence will be introduced. ‘Deictic’ means pointing and ‘deictic references’ are
pointers to objects. An example of deictic reference is referring to an object by
pointing to it with your index finger, instead of referring to the object with a
unique name. Deictic expressions are highly dependant on context, unlike proper
nouns which refer to entities regardless of context. Examples of deictic references
include, “I am trying to kill the fly”, “...the bee that stung me”, “I kicked the
ball outside the field”. The introduction of deictic references in Artificial Intelli-
gence was made by Agre [1]. He used deictic operators for referring to objects.
The work of Ballard and Kaelbling on deictic references has explored the use of
deictic references as pointers, practically only as computational pointers (see for
instance [2] and [6]).

(a) Ideothetic refer-
ence to an object.

(b) Relative reference
to an object.

Fig. 2. Two kinds of egocentric reference frame
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Reasoning or talking about spatial relations between entities, requires the
use of appropriate deictic references to entities; these are ideothetic and relative
references (Figure 2). Both of them are deictic. Ideothetic references allow the
speaker to use spatial relational terms locating an object in respect to his current
position and orientation. Relative references allow the speaker to use spatial
relational terms locating an object in respect to another and his current position
and orientation. The next section will show how global map representations can
be developed using these local egocentric reference frames and the funneling
actions.

4 Developing Global Maps

In their research, Gillner and Mallot [8], discovered that while humans are capa-
ble of navigating around environments, when asked to draw a map of a familiar
environment – encompassing topological and metric information — their draw-
ings were largely inaccurate. Wang [15] was interested in the question “How peo-
ple learn the directional relationship between places that share no common land-
marks?” and found that people fail to learn the directional relationship between
a room and the outside world, when no common landmarks are visible from both
places. It seems that either humans do not use accurate global coordinate system
and/or our communication mechanisms are incapable of accessing such informa-
tion, if such information is stored in the human brain at all. The research stream of
hippocampal and brain research found no internal maps which are organizedbased
on topological or metric information (see for example [16]), rendering the second
hypothesis unlikely. This leads us to take the most promising hypothesis that hu-
mans do not use an accurate global geodetic coordinate system, and therefore it is
not necessary for rats, dogs, monkeys, or for robots. This leaves us with the ques-
tion “How can we build maps without explicitly preserving topological and metric
information?” and “Why should we? Are there any advantages?” The answer to
the second question is that it is highly likely that there are advantages in such an
implementation since several species are known to have evolved to this solution.
The answer to the former question will follow.

We should add here that humans and other animals do not possess sensors
which provide them with geodetic position and orientation information. Such
geodetic information can be possibly extracted by virtual sensors using as source,
for instance, dead reckoning. However, several experiments of Wang [15] vividly
indicate that this is not the case in humans.

4.1 Experiments on Building Maps

A simple learning mechanism has been developed for illustrating how funneling
actions together with local deictic frames of reference can be used for building
global maps. The task of the robot was to move around in a three-roomed en-
vironment (Fig. 4) and build an internal representation of its interaction with
the environment. Then this representation was used for planning paths in this
environment. Figure 3 depicts a multigraph representation which was constru-
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Fig. 3. Example of multigraph created while exploring a flat with three rooms. Each
disc represents one view of the environment. The different colors (and intensity) repre-
sent the recency of the view’s encounter. Only the first thirty-two actions are depicted,
due to the cluttered nature of drawing such data in 2D.

cted by the robot. The sensory perceptions of the robot are represented as discs;
each disc corresponding to one view in the environment. Each group of four discs
corresponds to a single place, where the robot rotates on the spot and captures
four snapshots, 90 degrees apart. Each of these four snapshots is connected to
its neighbors with the actions ‘turn left’ and ‘turn right’, which enable the robot
to change its point of view. The combination of views with these two actions
forms relative references on a frame of reference local to the place.

When the robot activates one of its actions interacts with the environment and
moves from one place to another or from one direction to another. If the robot
moves, its sensory perception (view) will commonly change. In Figure 3, the ar-
rows indicate which funneling actions can be initiated from the current place and
direction and what will be their result to the sensory perception (view) of the
robot. Essentially, funneling actions link the local frames of reference together
to a global frame of reference. The very nature of funneling activity is exploited
to connect those local frames of reference.

Experimental Setup. The experiments were conducted in an indoor experi-
mental arena (Fig. 4), which consists of three rooms connected with corridors.
The walls of each room are painted with a different color, the corridor entrances
are made of two blue circular pillars placed on the sides and the charging station
is a corner which is painted green in room of different color. Color and geometry
are the means for allowing distinguishing among different places due to the per-
ceptual capabilities that the robot is equipped with. A MagellanPro mobile robot
has been used during the experiments. A color camera and a LASER scanner
mounted on the robot are used, including ultrasonic SONAR distance sensors
and bumpers for navigation purposes.

Sensor Signals Processing. Sensor signals are the only means for the robot
autonomously to know the result of its actions. Therefore, special attention was
paid to the implementation of reliable sensing modules. To achieve this we use re-
dundant processing units estimating the same features with alternative methods.

First, we will describe the feature extraction units for the LASER scanner
(Fig. 5). Each scan dataset is a sequence of 180 radial distance measurements.
Initially, each scan dataset is preprocessed by three different units. The one is
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Fig. 4. Top view of the real world environment used for the experiments, in scale
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Fig. 5. Graphical representation of the features extraction units. The features extrac-
tors estimate the output values using two independent methods. The first is ANNs and
the second rule-based estimators, providing two independent values for each feature.

calculating a 180 points FFT so that we get a frequency distribution measure.
The second is differentiating the data sequence by calculating: ∀i ∈ {1..n −
1}, Di = di − di+1, where n = 180 elements of the dataset, di the ith element of
the dataset and D the differentiated sequence. The third preprocessing unit finds
the position of the two maximum and the two minimum elements of the dataset.
The position of these elements indicates the angular directions of the correspond-
ing measurements which are crucial for recognizing environmental features. In
the sequel the outputs of those three preprocessing units are used by eight other
processing units, four neural networks (ANN) and three rule-based processors.
For training those processing units training datasets have been constructed cor-
responding to the three high level questions: in room?, in corridor?, doorway?
and free space? The output of each processing unit is binary, signaling yes or no.
The classification accuracy of each of these classifiers is between 70% and 90%.
For obtaining more accurate classification we recorded the behavior of each of
the processing units in variety of environmental conditions and the results were
used for combining each pair of outputs with AND and OR logic operators to
obtain more accurate outputs. For example, it was observed that in the majority
of cases the robot was in a corridor only when both the ANN and the rule-based
classifiers were giving positive output therefore a conjunction of the two outputs
gave a better accuracy output.
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Fig. 6. Graphical representation of the features extraction units. The features extrac-
tors estimate the output values using two independent methods. The first is ANNs and
the second rule-based estimators, providing two independent values for each feature.

Alternative pathways for calculating features of the input data in different
ways provide different outputs due to the different approaches and performance
characteristics. This has the advantage of allowing to extract information that
would be elusive or ambiguous if a single method had been used.

The second sensor was a color camera, Fig. 6 depicts the processing of the
camera output signal. Initially, the camera output is digitized and takes the form
of a two dimensional matrix with each element having three values corresponding
to the red, green and blue percentages of that pixel. In the sequel this digitized
form is received from the two preprocessing units, one neural network and one
YUV-colourspace rule-based classifier. Both units read and classify each pixel of
the image matrix based on its color. Each classifier identifies six different color
classes, so each pixel is classified to one of these six colors. The color classified
images are then received by two other processing units, a doorway detector
and color-region detector. The doorway detector is searching in the image for
two parallel and vertical bars of the same color. This is done because in the
environments we use all doorways are made of two blue pillars. The second
detector searches for continuous regions of the same color. If an image region
with single color is larger than a threshold then it appears in the output.

Behavioral Modules. Motor actions are produced by behavioral modules.
Unreliable motor actions, of the kind ‘move forward 10cm’, that are usually em-
ployed in robotics research (see for example [9]) consign the mechanical and
electrical uncertainties to the reasoning architectural layers. At the reasoning
layers uncertainty is usually addressed with statistical methods which are com-
putationally expensive and limit the scaling capabilities of such mechanisms.

Carefully designed funneling actions with high repeatability will be reliably
resulting to the same effect whenever invoked and when failing will not cause
damage to the robot but safely will fail and report (cognizant failure [7]). After
all it is not disastrous to fail if the result is not fatal; how fatal the result might
be depends on how well the robot has been designed. Both failure and success
are useful sources of learning.

Special attention was paid for every target competence to have at least two
motor pathways driving the robot. This achieved behavioral redundancy so that
if one method was failing, the other still drives the robot towards the right
direction. Behavioral redundancy was used in order to increase the probability
that at least one pathway will drive the robot to an appropriate direction.

The behavioral repertoire of the robot was composed by five goal-directed
funneling actions (i.e. ‘go to charger’, ‘go through the deepest opening until you
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reach a room’, ‘find corridor and transverse it’, ‘turn to doorway’ and ‘turn to
blue color’).

4.2 Experimental Results

Initially, the robot was left to explore the environment by performing 100 actions
randomly selected from those of its behavioral repertoire. Subsequently, the map
representation was built off-line, using the acquired data.

Once trained, the mapping and planning mechanism was assessed by plan-
ning for five different, randomly selected tasks. For each task, the robot had to
move from a starting to a goal position and take a picture with its camera. We
performed 20 runs for each of the tasks. For planning paths, reaction–diffusion
dynamics are used to spread a marker through the representation until a com-
plete path from start to goal view is found.

The testing criterion was the success rate of the planner, which was defined
as the percentage of successful runs over the number of trials for each task. An
unsuccessful run occurs when the robot stops, not being able to make a plan
from the current position to the goal, or if the time used for accomplishing the
task exceeded five minutes. The success rate of each planner for five different
tasks is depicted in Fig. 7. The measured overall success rate is 96%.

Fig. 7. Experimental results for the mapping and planning mechanism operating in
the environment depicted in Fig. 4

These results confirm the hypotheses that: (1) deliberate planned actions for
navigation in global scale can result by the synergy of funneling actions, pursued
in respect to local egocentric frames of reference. And (2) deliberate planned
activity can be achieved using only egocentric short-range sensors.

Further experiments have been performed in an unmodified furnished flat
with three rooms, but the available space does not allow inclusion of these re-
sults which will be published in separate article. In that experiment different
sensory processing and funneling actions have been used. The achieved overall
performance was 93%.

5 Conclusion

Several researchers including Bugmann [4], Kuipers and Byun [10], Gillner and
Mallot [8], Matarić [12] have explored the use of graph representations for
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representing topological and metric information acquired during exploration of
the robot’s environment. To this end they employed magnetic compasses and
odometry for measuring the necessary quantities, in respect to a global geodetic
frame of reference.

The novelty of the presented article is that it explores an alternative way
to represent maps by using only local reference frames connected with funneling
actions. Humans and animals have been proved capable of spatial mapping, navi-
gating, planning, and reasoning without use of instruments that provide geodetic
information and without need for common landmarks being visible from the re-
lated places. The question that was raised was “How do they achieve it?” This
article provides an answer. The presented method was capable of successfully
planning and navigating among rooms which share no common landmarks even
though no explicit information about the topological or metric relation of the
places was stored. This provided an answer to the questions raised by the re-
search of Wang [15] and Wills et al. [16].

The mapping method which has been implemented in this article is designed
for illustrating that by using funneling actions even such a primitive mapping
mechanism can be successful. The reason for its success is that funneling ac-
tions produce highly repeatable behavior; therefore, the map does not need to
employ statistical models in order to accommodate behavioral uncertainty. The
presented mapping method is only an example; one can envisage that more ad-
vanced mechanisms, which might employ additional kinds of information, such
as topological and metric, will perform at least as well.

In conclusion, we emphasize the importance of funneling actions in navigation
and planning of paths. The results of Gillner and Mallot [8] illustrate that the
conscious mental representations of maps are often largely inaccurate. However,
they commonly suffice for planning and reaching one’s goal place. We argue that
this is not because these mental representations capture accurately enough the
whole information needed, but because they capture adequate amount of infor-
mation, while the rest of it is embedded in the funneling actions. For deciphering
this we must remind the reader that funneling actions are carefully designed (or
learned) to have highly repeatable effect, thus when the agent starts a funneling
action from a certain place and direction will quasi-deterministically end at a
specific place. Humans use funneling actions; therefore, even though their mental
representation captures only approximate and distorted directional and distance
relations among places; these pieces of information are adequate for initiating
a funneling action towards the appropriate direction. The initiated funneling
action will reliably lead the agent to the same place regardless of the fact that
the exact spatial relationships on our mental representation are mistaken, since
we do not move on the exact direction that the mental representation suggests
but on that manifested by the funneling action we use. The distorted mental
representation will persist as far as our distorted perception of our path remains
consistent with that of the mental representation. We therefore conclude that
the conscious mental representations are only tools for thought, for planning
ahead; they are not full and accurate representations of the environment. They
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are good enough for what is their role and their role is to plan routes for reaching
to places given constraints on the possible routes. These mental representations
alone do not suffice for driving the agent to his goal. They are the funneling ac-
tions which the agent employs that enable him to reach his goals. The feasibility
of this line of thinking was illustrated in this article by building robots which
can successfully drive to goals.
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Abstract. We present a navigation and planning system using vision
for extracting non predefined landmarks, a dead-reckoning system gen-
erating the integrated movement and a topological map. Localisation
and planning remain possible even if the map is partially unknown. An
omnidirectional camera gives a panoramic images from which unprede-
fined landmarks are extracted. The set of landmarks and their azimuths
relative to a fixed orientation defines a particular location without any
need of an external environment map. Transitions between two loca-
tions recognized at time t and t-1 are explicitly coded, and define spatio-
temporal transitions. These transitions are the sensory-motor unit chosen
to support planning. During exploration, a topological map (our cogni-
tive map) is learned on-line from these transitions without any carte-
sian coordinates nor occupancy grids. The edges of this map may be
modified in order to take into account dynamical changes of the envi-
ronment. The transitions are linked with the integrated movement used
for moving from one place to the others. When planning is required,
the activities of transitions coding for the required goal in the cognitive
map are enough to bias predicted transitions and to obtain the required
movement.

1 Introduction

Several biomimetic models allow to perform navigation tasks even without relying
on localisation neither on maps (see [1] for a review of several insects like strate-
gies). Nevertheless these models are constrained to use different ”routes” for each
goal to reach and can not exhibit some interesting behaviors like shortcut etc...
Hence, in most of bio-inspired models, like in [2,3], localisation is based on partic-
ular neurons found in the rat hippocampus (particularly CA3, CA1 and dentate
gyrus (DG), regions and also in the entorhinal cortex (EC)) named ”place cells”
(PC). A map of the environment may be built by linking these PC. One can refer
to [4,5] for a comparative review of localisation and mapping models. In our ”ro-
dent like” model, we also use place cells (layer modelling EC see section 4) that
learn patterns specific of a given location (spatial landmarks constellation, see sec-
tion 3), but we do not directly use them to plan or construct a map. We rather use
neurons (”transition cells”) that explicitly code for these spatio-temporal transi-
tions (in the layer modelling CA3/CA1). Details of their creation and arguments

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 286–297, 2006.
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in favor of such a coding are given in section 5. During exploration, these transition
cells are created and allow to learn a cognitive map whose construction is explained
in section 6. When a plan is needed, transitions are predicted and are then biased
via top-down information from the cognitive map (section 7).

Hence we propose here a unified neuronal framework based on an hippocampal
and prefrontal model where vision, place recognition and dead-reckoning are fully
integrated (see Fig. 2 for an overview of the architecture). All neurons activity
are analogous. There is no symbolic programming nor predefined object of high
cognitive level. No assumption are made about the structure of the environment.
We will conclude with improvements that may be proposed in our model.

2 Material and Methods

The robot is a koala platform (40*30cm) with six wheels. It has infrared sensors
for obstacle detection. A low level obstacle avoidance mechanism is implemented
(not described here). Images are taken by a panoramic camera at low resolution.
A rectangular image (1500 × 240 pixels) is obtained from the panoramic image
which is originally circular (640 × 480 pixels).

Since our robotic model is inspired from the animat approach [6], we use three
contradictory animal like motivations (eating, drinking, and resting). Each one
associated with a satisfaction level that decreases over time and increases when
the robot is on the proper source according to coupled differential equations [7].
When a level of satisfaction falls bellow a given threshold, the corresponding
motivation is triggered so that the robot has to reach a place allowing to sat-
isfy this need. Hence this place becomes the goal to reach. More sources can
be added and one can increase the number of sources associated with a given
motivation.

3 Autonomous Landmark Extraction and Recognition
Based on Characteristic Points

In order to reduce problems induced by luminance variability, we only use the
gradient image as input of the system. Next, curvature points (corresponding to
robust focal points) are detected by filtering this gradient image with a Difference
Of Gaussian. Two processes then occur in parallel: first a log-polar transform
of the local area extracted around each focal point is computed. Connection’s
weights of neurons are then modified to learn these small images. This allows to
improve the pattern recognition when small rotations and/or scale variations on
these small images occur [8,9]. These images are landmarks, and by extension, we
also name the coding neurons landmarks. Second, for each landmark, an angular
position relative to the north given by a compass is computed [10,11]. Thus, this
visual system provides both a what and a where information: the recognition
of a 32 × 32 pixels small images in log-polar coordinates, and the azimuth of
the corresponding focal point. What and where informations are then merged
in a product space leading to a spatial landmark constellation. The number of
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Fig. 1. Image taken from a panoramic camera. Below are 15 examples of 32 × 32 log-
polar transforms taken as landmarks and their corresponding position in the image.

landmarks needed is a tradeoff between the robustness of the algorithm and
the speed of the process. If all landmarks were fully recognized, only three of
them would be needed. But as some of them may not be recognized in case
of changing conditions like luminance or occlusion, taking a greater number is
enough to guarantee the robustness.

4 Autonomous Place Building

The spatial landmarks constellation resulting from the visual input treatement
characterizes one location. This constellation can thus be learned on a neuron of
EC (place recognition at time t see fig. 2). The neuron coding for this location is
called a “place cell” as the one found in the rat’s hippocampus [11] since these
cells fire when a rat is at a particular location in its environment. The activity
of a PC results from the computation of the distance between the learned and
the current local view. Thus, the activity of the kth PC can be expressed as
follows:

Pk =
1
lk

(
NL∑
i=1

ωik.fs(Li).gd(θL
ik − θi)

)
(1)

with lk =
∑NL

i=1 ωik the number of landmarks used for the kth PC, where ωik =
{0, 1} expresses the fact that landmark i has been used to encode PC k, with
NL the number of learned landmarks, Li the activity of the landmark i, fs(x)
the activation function of the neurons in the landmark recognition group, θL

ik the
learnt azimuth of the ith landmark for the kth PC, θi the azimuth of the current
local view interpreted as the landmark i. d is the angular diffusion parameter
which defines the shape of the function gd(x). The purpose of fs(x) and gd(x) is
to adapt respectively the dynamics of what and where groups of neurons. They
are defined as follow :
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gd(x) =
[
1 − |x|

d.π

]+
fs(x) = 1

1−s [x − s]+

where [x]+ = x if x > 0 , and 0 otherwise.
The s parameter rescales the activity of the landmark neuron over s between

0 and 1. The d parameter modulates the weight of the angular displacement.
Experimental place cell formation has also been tested in outdoor environ-

ments [12]. The result confirmed the mathematical model which predicts that
the size of the place field grows proportionaly with the landmark distance.

If the robot is at the exact position where the PC has learned, its activity is
maximal (equal to one). When the robot moves from this position, the activity of
this PC decreases. Hence the PC keeps a certain amount of activity around the
learned position that is named the place field of a PC. Consequently, we have to
use a rule that controls the recruitment of a new neuron to encode a new location.
This mechanism is performed autonomously, without any external signal, relying
only on the PC’s population activity. If the activities of all previously learned
place cells are below a given recognition threshold (R.T), then a new neuron
is recruited. At a given place, every existing place cell responds with an analog
recognition value that may be seen as the robot position probability. If at a given
place several PC respond with activities greater than the R.T, a competition
takes place so that the most activated one wins and codes the current location.
The density of locations learned depends on the level of this threshold, but also
on the robot position in the environment. Namely, more locations are learned
near walls or doors due to the fast changes in the angular position that can
occur near landmarks, or in the (dis)appearance of landmarks caused by these
obstacles. In other locations, small changes produce a small variation in the place
cell activity. When the environment has been entirely explored, and thus fully

Transition map

...

...

One to all links − Learning

One to one links − No learning

Azimuth

Landmark

Motor command

...
......

Landmark − azimuth

Place recognition t

Place recognition t−1

Place recognition t−1

Cognitive map
Place recognition t

Recognition transitions

...

...

...transitions
Motor

Fig. 2. Sketch of the model. From left to the right: merging landmarks and their
azimuth, then learning of the corresponding set on a place cell. Two successive place
cells define a transition cell. They are used to build up the cognitive map and are also
linked with the integrated movement performed.



290 N. Cuperlier et al.

covered by place cells, a PC responds specifically for each location (see Fig. 6).
Consequently the PC neural layer gives our robot a way to localize itself inside
the environment it has explored.

5 Autonomous Building of Transition Cells

A natural question is “why using transitions instead of places”? In order to
briefly answer this question, we have to focus first on how to plan using place
cells. Several bio-inspired approaches rely on place cells, but to better illustrate
our approach we will only describe briefly our past-model which allows to eas-
ily underline the problem. First a place cell may be linked with the movement
needed to reach a goal without any map. This sensory-motor association may be
generalized to the whole environment [7]. However, this simple reactive mecha-
nism is not enough in environments composed of several rooms, or when there
are contradictory motivations. A cognitive map will solve these drawbacks (see
section 6). Two different approaches of this cognitive map exploitation have been
proposed. First, the selection of the action in a place cell based model can be
realized by an external mechanism applied to the cognitive map: the gradient
algorithm. But, if this solution is enough for a navigation task, it might be
more difficult to find an external mechanism for more complex tasks like robot
arm control. Moreover from a biological point of view, using an external algo-
rithm ”looking for” the gradient of activity leads to the famous problem of the
homonculus: ”who is looking ?” Second, as a consequence, the action selection
mechanism has to be integrated. This can be performed by associating an action
with a place, thus defining a sensori-motor unit. But then, the choice of the
direction to follow may be ambiguous. Indeed, in some place, several actions can
be associated with the same place (see fig. 3) like in the T-maze example. In this
case, which movement should select the robot if it must go to C?

In order to solve this problem, we do not directly use PC for planning in
our model, but rather transitions between the two PC winning the recognition
competition: respectively at time t (in EC) and time t− 1 (in DG). Such spatio-
temporal transitions are explicitly coded on neurons called transition cells. The
idea of this coding has been inspired by a neurobiological model of timing and

A

B DC

Fig. 3. In this example, from place B the robot had learned during exploration that
it can go either to C by turning right or D by turning left. Both movements are thus
linked with place B.
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temporal sequences learning in the hippocampus [13]. Motivation from such a
coding comes from the fact that transitions are better suited for sensori-motor
association than places since only one direction can be linked with a transition:
the movement used to go from A to B with the transition cell AB (see fig. 2).

Before going further about transitions, note that as transitions link two suc-
cesively recognized PC, transitions like AA are also coded. These kind of tran-
sitions are the equivalent of PC in transition coding. No movements are linked
with these transition cells. We only associate a movement to a transition linking
two different PC. An internal signal is computed from the automatic detection
of a new wining PC at time t by temporal differences on EC. This signal is used
to trigger the sensori-motor association.

A relevant question is about the growth of the number of transition cells
created while exploring the environment. This number is intimately linked with
the number of place cells. This number of place cells created for a fixed R.T
value depends on the complexity of the environment. The degree of complexity
of an environment relies mainly on two factors: the number and the location of
its landmarks and the number of obstacles.

Thus we have performed several tests setting one of these parameters to un-
derline the impact of the second upon the ratio between created transition cells
over created place cells. Each simulation lasts 50000 cycles. This number has
been chosen high enough to ensure that the robot has learned a complete cog-
nitive map of the environment 1. The results of both tests shown here are the
average on ten simulation results. We have first studied the impact of obstacles
configuration in three environments of increasing complexity. Tests have been
performed for a single, a two and a four rooms environment. The number of
landmarks have been fixed at a high value. The ratio remains stable around the
mean value 5.45 for all environments once the cognitive map of the environment
is complete (see table 1). The second study shows how this ratio evolves for
an environment with the same complexity of obstacles but with simple to half
landmark number. These tests have been done on the two and four rooms envi-
ronment with the same experimental set-up than the previous study. The number
of landmarks increases the number of particular cases in which a landmark pre-
viously visible becomes invisible (or the reverse) and consequently decreases the
activity of all previously known place cells. This finally results in the creation
of a higher number of place cells. The results (see Table 2) show a stable ratio
of a mean value still around 5.35 for simple environments. This ratio does not
depend on the value of R.T (but the number of place cells increases with in-
creasing R.T). The stability of this ratio can be explained as follows: since the
number of a place cell’s neighbours is necessary limited and that a transition is
a link between ”adjacent” place cells, only a few transitions can be created from
a given place cell. To conclude, there is no combinatorial explosion of the num-
ber of created transitions. Thus, they can be memorized and used for planning
purpose.

1 We consider the cognitive map is complete when the robot becomes unable to detect
new places or new transitions.
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Table 1. Results of the experiments on the ratio of the number of place cells (nbPC)
created over the number of transitions created (nbT) according to the number of rooms
in the environment. Standard deviation is given into brackets. This ratio remains stable.
There are at most six times more transition cells than place cells. R.T is set at 0.97.

Param / Env One room Two rooms Four rooms
nbPC 133.8(2.85) 606.2(6.89) 643.7(9,88)
nbT 735.8(19.80) 3389.2(56.38) 3281,2(48,80)
ratio 5.49(0.06) 5.59(0.08) 5.09(0,04)

Table 2. Results of the experiments on the ratio of the number of place cells (nbPC)
created over the number of transitions created (nbT) according to the number and
configuration of landmarks in the environment: with two rooms (first column for many
landmarks and second column for few landmarks) and with four rooms (third column
for many landmarks and fourth column for few landmarks). Standard deviation is given
into brackets. This ratio remains stable. There are at most six times more transition
cells than place cells. R.T is set to 0.97.

Param / Env Two, many land. Two, few land. Four, many land. Four, few land.
nbPC 606.2(6.89) 364.3(5.75) 643.7(9,88) 295.5(4.94)
nbT 3389.2(56.38) 1951.2(35.30) 3281,2(48,80) 1591.8(26.64)
ratio 5.59(0.08) 5.35(0.03) 5.09(0,04) 5.38(0,05)

Now that we know the number of possible transitions starting from a given
place cell, we can use this information for modelling the transition layer. Tran-
sition cells building does not rely on a full ”matrix” coding the relationships
between successively reached places. This would be too memory consuming. In-
stead, we exploit the fact that a place cell has around 5 neighbours on average to
compress the structure merging these informations (see fig. 4). In order to cope
with extreme cases, we allow for a maximal number of 10 neighbours. Conse-
quently the number of neurons of this structure has decreased since we only take

... ...

...

Recognition/prediction
transitions (CA3)

  (DG)

  (EC)

PC t−1

PC t

Fig. 4. Transition cells population inputs from population of place cells at time t and
at time t − 1. In order to have a clear figure, only 3 possible transitions are shown on
the merging and compression group. For the same reason, connections from only one
neuron of PCt−1 are drawn.
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into account real possible transitions and not all the combination of place cells.
Each neuron of a given line receives projections both from population coding for
place cell at time t named PCt and from population coding place cell at time
t − 1 named PCt−1. Each transition neuron belongs to a particular neighbour-
hood supervised by a single PCt neuron (a line in the figure 4). No learning is
allowed on those links and their weights are not sufficient to trigger any activ-
ity on the associated transition neurons. Conversely, each transition neuron is
connected to all the PCt−1 neurons through conditional links. The activation of
PCt neurons increases the weights coming from the activated neuron in PCt−1,
when no transition neuron already corresponds to this conjunction. Once those
weigths are learned, in a prediction mode, the single activity of the correspond-
ing PCt−1 neuron allows the activity of the transition neuron even if no signal
comes from PCt.

6 Autonomous Cognitive Map Building

Experiments carried out on rats have led to the definition of cognitive maps
used for path planning [14]. Most of cognitive maps models are based on graphs
showing how to go from one place to an other [15,16,17,18,19,20,21]. They mainly
differ in the way they use the map in order to find the shortest path, in the way
they react to dynamical environment changes, and in the way they achieve con-
tradictory goal satisfactions. Other works use ruled-based algorithms, a classical
functional approach, that can exhibit the desired behaviors, we will not discuss
them in this paper, but one can refer to [22].

In our model, learning the cognitive map is performed continuously during
the exploration of the unknown environment (latent learning) by linking tran-
sition cells successively reached if no link was yet created between these two
transitions. Equation 2 shows the learning rule applied to the value of edge Wi,j

linking vertice j to i. G(j) is the activity of transition j. G(i) is the memory
term of G(i) that decreases with time. λ is a decay term that allows to forget
erroneous transition due to an uncomplete exploration. dR

dt is the variation of
the reinforcement. The edge value is increased if the edge is used, and decreased
if it is not. After some time, some edges are reinforced. These edges correspond
to paths that are often used. In particular, this is the case when some particular
locations have to be reached more often than others (see section 7) [7].

dWi,j

dt = −λ.Wi,j + (1 + dR
dt ).(1 − Wi,j).G(i).G(j) (2)

In the same time, if a source is present at the destination place the corre-
sponding transition is associated with a motivation neuron. After some time,
exploring the environment leads to the creation of the cognitive map. The pre-
frontal cortex is the place in our model where this cognitive map is coded. This
seems to be coherent with neurobiological data [23]. This topological map may
be seen as a graph where each vertices is a transition and where the edges code
for a path between two transitions. No position in a fixed reference is assigned
to the vertices of the graph and edges code for adjacence relation only.



294 N. Cuperlier et al.

7 Autonomous Planning Using the Cognitive Map

Some places are more important because they are goals that have to be reached
when necessary. When a goal has to be reached, the transitions leading to it are
activated. This activation is then diffused on the cognitive map graph, each node
taking the maximal incoming value which is the product between the weight on
the link and the activity of the node sending the link. After stabilization, this
diffusion process gives the shortest path between all nodes and the goal node.
This is a neural version of the Bellman-Ford algorithm 2[24,25] (see fig. 5).

Fig. 5. Diffusion of the activity on the graph corresponding to the cognitive map.
Diffusion is starting from the goal. Each vertice keeps the maximal activity coming
from its neighbors. Corresponding motor transitions (integrated movement) are then
biased by this activity.

Fig. 6. A simulated environment fully explored. Each region represents the place field
of a particular place cell. After a full exploration, the entire environment is covered by
the place cell population. The curve is an example of a planned path to reach a goal
place (presence of a source).
2 The Bellman-Ford algorithm allows to find the shortest path between any node and

a goal node of a weighted graph.
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When the robot is in a particular location A, all possible transitions beginning
with A are predicted and filtered from the n most activated place cells (similar to
the multiple hypothesis position tracking, described in [5], where several position
hypothesis can be used in constrast with a ’single’ position following). The top-
down effect of the cognitive map is to bias these predicted transitions such that
the ones chosen by the cognitive map have a higher value. This small bias is
enough to select/filter the appropriate transitions via a competition mechanism.
This results in a unique movement vector to apply to the robot motor command.
See fig. 6 for an illustration of a path followed.

8 Discussion

Exploration periods may be alternated with planning periods. The choice of
the behavior is obtained through the self-regulation of two control variables:
first the motivational information which allows to trigger a planning behavior,
and second, a detection signal triggering a period of exploration. This signal is
generated while a new transition is learned meaning that the planning behavior
leads the robot in a place still unknown (case of an incomplete map). Planning
then restarts as soon as the robot is able to predict transitions from the current
place.

Our model currently running on robots (Koala robots and Labo3 robots) has
interesting properties in terms of autonomous behavior. However, this autonomy
has some drawbacks:

– we are not able to build a cartesian map of the environment because all
locations learned are robot centered. However, the places in the cognitive
map and the direction used give a skeleton of the environment.

– we have no information about the exact size of the rooms or corridors. Again,
the cognitive map only gives a sketch of the environment.

– some parameters have to be set, in particular the recognition threshold (sec-
tion 4). The higher the threshold, the more places are created.

The transitions used in this model may also be the elementary block of a
sequence learning process. Thus, we are able to propose a unified vision of the
spatial (navigation) and temporal (memory) functions of the hippocampus [26].
However how to go from a graph of transitions to a sequence of transitions of any
length is still an open question. This will be part of the next step of the work. The
same scaling problem appears when one wants to code several different maps.
Each map should be linked with a kind of context signal (which floor or which
room) that should be able to ”reload” the previous learned map (or a part of it)
into the different neural structures used here. Again, models are available and
should be tested in simulation and on a robot.
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Abstract. We present a practical application of sensorimotor self-
simulation for a mobile robot. Using its self-simulation, the robot can rea-
son about its ability to perform tasks, despite having no model of many of
its internal processes and thus no way to create an a priori configuration
space inwhich to search.We suggest that this in-the-head rehearsal of tasks
is particularly useful when the tasks carry a high risk of robot “death”, as
it provides a source of negative feedback in perfect safety. This approach
is a useful complement to existing work using forward models for antici-
patory behaviour. A minimal system is shown to be effective in simulation
and real-world experiments. The virtues and limitations of the approach
are discussed and future work suggested.

1 Introduction: Let Your Hypotheses Die in Your Stead

To solve some problems, autonomous agents must plan ahead. One common
problem that requires planning is finding an efficient route between a set of
places in the world: the family of problems that includes the classical Traveling
Salesman Problem. Finding efficient routes between places of interest can clearly
be seen to be adaptive; for example a squirrel visiting nut caches or a female
lion patrolling and freshening her territorial urine marking sites can save time
and energy for other tasks if a good route is chosen.

Formally, planning is the process of finding continuous trajectories through
the agent’s configuration space between the start and goal states. Configura-
tion space is the set of all possible states that can be achieved by the system.
Conventional planning techniques construct a model of the configuration space:
either a static model such as a traversability map, or a generative model such as
a production system. In either type of model, all possible state transitions are
known.

Now suppose we have an intelligent agent, a robot, that contains some com-
ponents of unknown function. By definition, the agent can not have an a priori
model of its state evolution, due to the unknown internal states of the mysteri-
ous components, and their contribution to the system’s output. Thus it can not
construct an a priori model of configuration space. Such a system does not know
what it can do, so how can it plan its future actions?

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 298–309, 2006.
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One solution is to learn a model of the mysterious systems by running them
for a while and observing their inputs and outputs. Once a sufficiently good
input/output mapping model of the mystery system is constructed, the model
can be used to create a configuration space. The major flaw with this approach
is that it suffers from the general learning problem of being critically dependent
on the training data samples: the model can only be expected to be correct when
it operates in situations similar to those seen during learning. This is a serious
problem because there is a particular set of situations that are very important,
and can never be experienced in training: the situations that cause the robot to
be destroyed. Avoiding doom is a very important part of adaptive behaviour,
and it can not be learned by negative experience.

This risky-learning problem can be solved by learning in simulation instead
of the real world. It is often possible to construct a good a priori model of
the outcome of a robot’s motor actions in the world in terms of its new sensor
readings: a sensorimotor simulation. It is commonplace for real adaptive systems
to be usefully tested and trained in simulation. For example, commercial pilots
spend a considerable part of their training time in flight simulators. In addition
to routine flying, pilots can rehearse dangerous scenarios such as engine and
instrument failures in complete safety. While we should be mindful of the advice
of Brooks [1] about the limitations of world models, it is a fact that many robot
control programs have been developed, learned, or evolved in simulation and
successfully transferred to the real world with few or no changes, e.g.[2,3].

Thus a robot with unmodeled mystery components could employ a sensorimo-
tor simulation, observe its simulated actions and build a model of the mystery
components. The resulting model can be used to construct a configuration space
in which to plan.

But with the sensorimotor simulation in place, we have a simpler alternative.
Why model the mystery components at all? Instead we can just execute candi-
date plans in the simulation and evaluate the outcomes. The mystery components
just run as they would in the real world, remaining an unmodeled mystery, but
we can still observe their effects on the world. The only requirement is that the
sensorimotor simulation is a usefully good approximation of the robot’s interac-
tions with the real world.

Once we have taken this step, an appealing simplification presents itself. Why
have an explicit model of any part of the robot’s control system? If we have
an explicit model M of robot control code C that is intended to implement
process P , there is always a possibility of discrepancies between M , C, and P . An
unfortunately common situation is when the code C contains bugs which prevent
it from implementing the programmer’s intention P correctly. Model M derived
from P will probably not contain the same bugs, but may contain different
bugs of its own. Plans computed in a configuration space from M may not be
executable using C. But plans observed to work in a sensorimotor simulation in
which C runs directly are guaranteed to reflect the actual function of C, bugs
and all. Again, this is limited by the fidelity of the simulation, but only by the
fidelity of the simulation.
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Brooks’ aphorism “the world is its own best model” [1] is well known. We
propose the complementary idea: the agent is its own best model. More strongly,
we can say that an agent’s control software (or a provably correct transcoding
of that software) is the only reliable model of itself. Sometimes simulating the
agent’s interaction with the world is relatively easy if you choose the appropriate
level of abstraction [2].

This idea is appealing from an intuitive point of view. We can consciously ob-
serve the imagined results of our actions in the world, but we often do not have
conscious models of what we can do, or how we do it. Few people could write
down a correct dynamical systems or neurophysiological model of themselves
riding a bicycle, but most riders can imagine themselves cycling down the street
- even a street they have never seen. Similarly, most people can imagine swinging
a golf club to strike a ball, even if they have never held a club. This could be ex-
plained by the existence of a generalized model of our motor interactions with the
world, which can be used to rehearse novel situations. Intriguingly, there is evi-
dence that athletes can improve their performance at motor tasks by performing
such in-the-head rehearsal. The effect is more pronounced among individuals
who already have expert skills, suggesting that the fidelity of the in-the-head
model may be important in the successful transfer of imagined performance to
the real world [4,5].

In this way we relate sensorimotor self-simulation to the folk psychology no-
tion of imagination as a mechanism to consider the outcomes of our behaviour
without having to fully understand it, and without having to try everything
out for real. The relationship between imagination and simulation is concisely
expressed by Dawkins:

“We all know, from the inside, what it is like to run a simulation of
the world in our heads. We call it imagination and we use it all the time
to steer our decisions in wise and prudent directions” [6].

This informal idea is consistent with the emulation theory of representation,
developed by Rick Grush[7]. In this philosophical framework, phenomena exter-
nal to an agent are represented internally by processes rather than the symbol
systems of conventional cognitive science. This idea can be seen to underly this
paper and much of the related work.

We can also consider an executable plan as a statement of truth about what
the robot can do, and an untested plan as a hypothesis. In this sense we can view
the robot as a Popperian scientist seeking truth by eliminating bad hypotheses
through in-the-head experimentation:

“The scientist can annihilate his theory by his critique, without per-
ishing along with it. In science, we let our hypotheses die in our stead.”[8]

Interpreting this famous statement rather more literally than originally in-
tended, a robot can observe itself dying a thousand times in simulation as a
result of bad plans, and thus eliminate those plans without risking its neck in
the real world. The robot need have no model of itself beyond the immediate
sensory outcomes of its motor behaviour.
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In practical terms, the proposed model offers a method for allowing high-level
strategic or “cognitive” function to reason about the actions of other behaviour-
producing systems without understanding how they work. This could be a useful
engineering strategy for adding strategic layers on to existing behaviour-based
systems. It also may hint at how evolutionarily recent cognitive systems could
come to usefully exploit the functions of more ancient control systems in the
brains of animals. This approach may also be a useful principle for robustness:
if all system components are treated as if they are unknown, then the results of
internal failures will be immediately apparent in the simulation without needing
to update any internal model.

1.1 Related Work

In the 1960s, Jewett placed lesions in the brains of cats which eliminated the
inhibition of action commands during the REM sleep stages of dreaming, and
(in Jewett’s interpretation) allowed the cats to act out their dreams. The cats
displayed such behaviours as fighting, grooming, exploring, running away and
showing rage. Jewett concluded that dreams are rehearsal of vital survival activi-
ties that are likely to occur in real life [9]. In [10] rats were trained in a maze while
awake, and could be observed rehearsing the maze experiments while sleeping.

Several authors have described systems in which sensorimotor forward models
are able to predict how sensory information changes through sequences of motor
commands [11,12,13,14]. In contrast, this paper shows how the outcomes of plans
consisting of sequences of relatively high-level operations can be predicted. Our
“motor commands” are goto() operations that abstract away a powerful and
complex navigation system that is part of the agent, but completely unmodeled.

A framework that incorporates simulation to speed up learning in an evolu-
tionary experiment is presented in [15]. Their proposed method combines into a
single framework learning from reality and learning from simulation.

In this paper we present a practical application of sensorimotor self-simulation
for a mobile robot. Using self-simulation, the robot can reason about its ability
to perform tasks, despite having no model of many of its internal processes
and thus no way to create an a priori configuration space. This approach is
a useful complement to existing work using forward models for anticipatory
behaviour. A minimal system is shown to be effective in simulation and real-
world experiments. The virtues and limitations of the approach are discussed
and future work suggested.

2 The Application of Imagination

2.1 Task

A robot lives in an office-like environment. At some moment it is asked to visit
a set of places in the world. There is no preferred order of visits: the only re-
quirement is that all of them are visited in the shortest possible time. This task
is a variation of the Travelling Salesman Problem where the traversal cost on
the arcs connecting nodes is initially unknown.
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Start Naive Planner Trajectory {1, 2, 0} Trajectory {1, 0, 2}

(a) (b) (c) (d)

Fig. 1. (a) Starting state; (b) Naive shortest path, and two actual trajectories (c,d) of
robots guided by VFH

Figure 1 shows such a scenario. Image (a) shows a map containing the robot
start position and 3 goal locations. Image (b) shows the shortest path that visits
all goal points. Image (c) shows the path taken by the robot using VFH navigation
(described below) as it attempts to reach the locations in the order suggested by the
shortest path: {1, 2, 0}.Due to the dynamics ofVFH, the robot is fatally trapped. If
the goal locations are submitted to the robot in the order {1, 0, 2}, the robot easily
completes its task, reaching all locations by the path shown in Image (d). It is very
difficult to characterise the configuration space created by VFH in a traversibility
map. The system described below solves this problem.

2.2 Procedure

A typical lab robot R0, operates in world W0. At any time R0 can run a sensori-
motor simulator that models the interactions between a model robot Ri running
controller C in model world Wi over time S(Ri, Wi, t) ⇒ S(Ri, Wi, t + 1)|i > 0.
The real and simulated robots use the identical controller C. To decide which
order to visit the goal locations in reality, R0 uses its simulator to internally
rehearse all possible visit orders. If there are n possible plans, R0 runs n simu-
lations S(Rm, Wm, t)|m = 1, ..., n.

The simulation results are evaluated and the plan that caused the fastest
traversal in any simulation is selected as the plan for real-world execution.

A naive implementation will not scale well to large values of n, but the diffi-
culty of scaling is not unique to our approach as the Traveling Salesman Problem
is known to be NP complete, i.e. no scalable solution is known. A sophisti-
cated implementation could prune the space of simulations to improve perfor-
mance, and this method is ridiculously parallel (i.e. it parallelizes perfectly to n
processors).

One useful optimization is immediately apparent. If the simulations are real-
time, or a constant multiple of real time, we can evaluate plans trivially: run all
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the simulations in parallel, the first to finish must be the route that takes least
time to traverse, and all the others can be aborted without loss.

2.3 Control Architecture

Our control system makes extensive use of Player, a well-known Free Software
system for robot control over a network interface [16]. To greatly simplify the
robot controller, we use the VFH obstacle-avoidance algorithm [17] and the
Adaptive Monte Carlo Localization map-based localization algorithm [18] pro-
vided with Player. The Player server and its VFH and AMCL modules are
treated as “black boxes” of mysterious internal construction.

The robot controller C receives as input an ordered vector of places to visit
P = {p1, . . . , pn} and an initialized index i = 0 marking the current goal, the ith
member of P . pi = (xi, yi, r), where where xi and yi are Cartesian coordinates in
the plane. If the Cartesian distance from the robot to place (xi, yi) is less than
r then the robot is considered to have visited (xi, yi). The controller takes the
initial goal location p0 and submits it to Player’s VFH implementation as a goal
location. Player then attempts to drive the robot to that position while avoiding
obstacles. All locations are specified in the robot’s localization coordinate system,
as determined by the AMCL implementation. Player reports the current robot
pose back to the controller. When the robot visits its goal location, the location
index is incremented i = i+1 and the new goal location pi is submitted to VFH.
When the last goal location is reached, the task is complete and the robot stops.
A schematic of the controller is given in Figure 2.

The output from the “known”, i.e. non-blackbox part of the controller is
a sequence of commands of the form goto(x, y). The blackbox parts of the

Fig. 2. Control Architecture (left) and Imagination Engine (right)
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(a) (b)

Fig. 3. Pioneer robot in the Real World (a) and VFH trap: The robot’s goal is to reach
the small square outside the room (b)

controller attempt to achieve the current goal without crashing into obstacles
by reading from the range sensors and sending a stream of motor commands of
the form move(v, ω), where v is the desired forward velocity and ω is the desired
angular velocity. Though we as designers can state the purpose of these modules,
there is no way for the system to know what they do, and how they would effect
the robot’s configuration space.

In fact VFH has some dynamic properties that are crucial to a planning
system. It is an excellent local planner and obstacle-avoider, but as such it suffers
from local minima problems that cause it to make bad decisions under certain
conditions. Consider the situation presented in Figure 3: the robot is blocked
from reaching its goal by walls to the front and sides. If the side walls are long
enough, VFH is unable to escape from the “trap” and will instead make small
loops indefinitely, eventually exhausting the robot’s energy supply. Depending
on the task and the availability of human assistance, this may be a fatal error
that the robot should never experience for real.

We desire our robot system to be able to take into account the complex
dynamic properties of VFH when choosing the best route to take, with no a
priori model of VFH. The same argument applies to the dynamics of the AMCL
localization system, and the Player TCP server, the details of which we omit for
lack of space.

2.4 Sensorimotor Simulation Implementation

In the real robot, the move(v, ω) commands are converted by the robot’s em-
bedded computer into pulse-width modulated signals that drive amplifiers that
power the wheel motors. The physical motion of the wheels is reflected in sub-
sequent measurements taken by the robot’s physical sensors.

We can replace the physical part of the system with the well-known Stage
robot simulation engine [19]. Player using simulated Stage devices is known as
Player/Stage, and has been used in published experiments by many authors.
For convenience, we introduce the term Player/real to indicate a Player server
connected to real robot hardware. If reasonably careful in the assumptions made
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in the implementation of a robot controller, one can expect grossly similar robot
behaviour in Player/Stage and in Player/real. We have anecdotal evidence from
the community that Stage models real robots reasonably well. We present ex-
perimental evidence below that backs this up (Section2.6).

2.5 Experiment 1: Simulation Proof of Concept

In this proof of concept we work entirely in simulation, i.e. R0 and W0 are
simulated and model the real robot and world, butR0 is still unique in that only
it can spawn child simulations. R0 must choose the best order in which to visit
n locations, by observing the behaviour of R1 . . . Rn! simulated robots, one for
each possible route.

(a) (b)

Fig. 4. Simulated world maps showing robot start location and goal locations for (a)
Exp.1: with 3 locations, and (b) Exp.2 with 4 locations

Figure 4(a) shows the scenario of the first experiment. There are n = 3 places
to visit, so P = {p0, p1, p2}. To visit a place, the robot must come within r =
0.5m of the place. The world map is an approximation of our real robot arena,
and was automatically created with the pmap mapping utility1.

R0 spawns m = n! = 6 threads, each containing a complete simulation and
robot controller. The first thread in which a robot visits all locations is the winner
Rwin. The other threads are stopped and R0 executes the route taken by Rwin.

With small values of m, we can run all the simulation threads in real time
on a modest workstation. A more scalable solution would allow threads to be
spawned on multiple computers. On a machine with a single CPU there is little
advantage to be gained from multiple threads and instead we could explicitly
run each simulation in turn for a short time in a single thread, thus avoiding the
thread switching overhead.

Results. Figure 5 shows the progress in time of all 6 threads that execute all
possible routes. Plots of the route travelled by each simulated robot at 20-second
1 pmap was written by Andrew Howard and available from http://playerstage.

sourceforge.net.
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Route Time (seconds) Route Time (seconds)
20 40 51 20 40 51

{0,1,2} {0,2,1}

{1,0,2} {1,2,0}

{2,1,0}
Winner
{2,0,1}

Fig. 5. Multi-threaded example: 6 threads are generated, one for each possible route.
Route {2,0,1} is completed in 51 seconds, when this happens all the other threads are
stopped.

Fig. 6. The path taken by R0, having selected the winning route {2, 0, 1}

intervals. At 50 seconds the robot executing route {2, 0, 1} finishes and all the
other simulations are stopped. All routes except the winner and Route {0, 1, 2}
were in looping states (the fatal situations we want the real robot to avoid)
and were not chosen for execution. Route {0, 1, 2} appears to be on its way to
accomplishing the task, but it is taking a longer path than the winning route.
R0 now executes the winning route, and its path is shown in Figure 6.

2.6 Experiment 2: R0 in the Real World

In this experiment we use the real-world Pioneer 3DX robot shown in Figure 3
for R0 and increase the number of places to visit n = 4, located as shown in
Figure 4(b). There are now m = n! = 24 possible routes, and the robot’s onboard
computer could not run 24 simulations in real time, so we implemented a single-
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Route {3, 0, 1, 2} Route {3, 0, 2, 1} Route {0, 1, 2, 3} Route {3, 2, 1, 0} Route {3, 1, 2, 0}

Fig. 7. Simulation (top row) vs. Reality (bottom row)

threaded imagination. Figure 7 (top-row) shows the simulated robot path in 5
of the 24 possible routes.

Results. Route {3, 0, 1, 2} 7 (top-row, left-most plot) was the first to finish and
was selected for execution by the real robot. The path taken by the real-world
robot (as estimated by the AMCL localization system) is shown directly below,
in Figure 7(bottom-row, left-most plot). The real robot path is qualitatively
similar to the simulation path, and completes the task successfully.

In order to examine how closely the behvaiour of the Stage-simulated robots
predicts the real-world behaviour, we run four other possible routes on the real-
world R0. Compare the paths taken by the simulated robots in the top row of
Figure 7 with their real-world executions in the bottom row.

Route {3, 0, 1, 2} and Route {3, 0, 2, 1} are qualitatively similar in simulation
and reality. Unfortunately there is no standard metric for quantifying the simi-
larity of robot trajectories. Route {3, 1, 2, 0} did not finish but shows the same
behaviour in simulation and reality. Routes {0, 1, 2, 3} and {3, 2, 1, 0} finished in
reality but stayed in a cycle during simulation. Though the eventual outcome
in simulation and reality was different for these routes, they showed similar dy-
namics in that they spent most of their time stuck in a VFH trap. Note that
because neither of these routes was the winner, the divergence of simulated and
real behaviour did not effect the performance of the real-world robot.

3 Future Work

In the short term we plan to create more complex experiments that explore the
possibilites of this approach. Some ideas include:

– Optimized simulations: We can explore the use of heuristics and the reuse
of previous simulatons to speed up exploration of imagined worlds.
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– On-line world model aquisition: Requiring a complete world model for
simulation is a serious constraint. We seek to aquire world models on-line
and simulate using the latest models.

– Dynamic worlds: The worlds in this paper have been static apart from the
motion of the single robot. We seek to include models of other agents that
can effect the environment and behaviour of our robot.

– Concurrent imagination: While acting in the real world, a robot can still
imagine alternative scenarios, to anticipate its reaction to unexpected events.

– Recursive imagination: Currently only R0 can spawn simulations. There
may be utility in allowing simulated robots to spawn their own simulations,
creating a tree of imaginary robots, rooted at R0.

– Multiple objective optimization: In this paper we chose a simple task
with a single objective function. A natural progression of this problem is to
allow for multiple goals.

4 Conclusion

We have described a novel framework loosely analagous to imagination, in which
agents can use sensorimotor self-simulation to reason about their ability to per-
form tasks, despite having no model of most of their internal processes and
thus no way to create an a priori state-evolution model with which to search.
This in-the-head rehearsal of tasks is particularly useful when the tasks carry
a high risk of agent robot “death”, as it provides a source of negative feedback
in perfect safety. This approach is a useful complement to existing work using
forward models for anticipatory behaviour. A simple but useful implementation
was shown to be effective in simulation and real-world experiments, and future
directions outlined.
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Most valuable player: A robot device server for distributed control. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems. (2001) 1226–1231

17. Ulrich, I., Borenstein, J.: Vfh+: Local obstacle avoidance with look-ahead verifi-
cation. In: IEEE International Conference on Robotics and Automation (ICRA).
(2000)

18. Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte carlo localization: Efficient
position estimation for mobile robots. In: National Conference on Artificial Intel-
ligence (AAAI). (1999)

19. Vaughan, R.T., Gerkey, B.P., Howard, A.: On device abstractions for portable,
reusable robot code. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems, Las Vegas, Nevada, U.S.A (2003) 2121–2427 (Also Technical Report
CRES-03-009).



Learning and Adaptation



Stabilising Hebbian Learning with a Third
Factor in a Food Retrieval Task

Adedoyin Maria Thompson1, Bernd Porr1, and Florentin Wörgötter2

1 Department of Electronics & Electrical Engineering, University of Glasgow,
Glasgow, G12 8LT, Scotland, United Kingdom

{mariat, b.porr}@elec.gla.ac.uk
2 Bernstein Center of Computational Neuroscience,

University Göttingen, Germany
worgott@chaos.gwdg.de

Abstract. When neurons fire together they wire together. This is Don-
ald Hebb’s famous postulate. However, Hebbian learning is inherently
unstable because synaptic weights will self amplify themselves: the more
a synapse is able to drive a postsynaptic cell the more the synaptic weight
will grow. We present a new biologically realistic way how to stabilise
synaptic weights by introducing a third factor which switches on or off
learning so that self amplification is minimised. The third factor can be
identified by the activity of dopaminergic neurons in VTA which fire
when a reward has been encountered. This leads to a new interpretation
of the dopamine signal which goes beyond the classical prediction error
hypothesis. The model is tested by a real world task where a robot has
to find “food disks” in an environment.

1 Introduction

Hebbian learning [1] is the most prominent paradigm in correlation based learn-
ing: If pre- and postsynaptic activity coincides the weight of the synapse is
strengthened. However, Hebbian learning is inherently unstable because of its
autocorrelation term: Briefly, a changing weight will alter the output which will
lead to further weight change, and so on. In this study we present a novel learn-
ing rule which is an extension of our differential Hebbian learning [2] rule ISO-
learning [3] which minimises the destabilising autocorrelation term by switching
learning on when the autocorrelation term is minimal. This switching is per-
formed by a third factor which acts like a neuromodulator [4]. Consequently
we call this learning rule ISO3 learning because it is ISO learning with a third
factor. We will demonstrate the applicability of the rule with a robot that learns
to retrieve “food disks”.

2 Three Factor Learning

We are going to demonstrate in the open loop case how to minimise the destabil-
ising autocorrelation term of Hebbian learning. Fig. 1A shows the basic compo-
nents of the neural circuit. The learner consists of three inputs x0, x1 and r which

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 313–322, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. A) General form of the neural circuit in a generic environment. The inputs
x0, x1, r are filtered by standard resonators (h0, h1, hr which have frequency f and
quality Q as parameters) which smear out an input signal for about 1/f samples.
u0 and u1 are summed at v with weights ρ0 and ρ1. The number of filters in the x1

pathway can be extended to a filterbank with different resonators hk and corresponding
weights ρk which is indicated by the dotted lines. From the output of the filter hr the
derivative d/dt is taken and then rectified (> 0). The symbol ⊗ is a correlator and∑

is a summation node. B) Signals u0, u1 and their derivatives which illustrate how
learning works (see text for explanation). C) Comparing ISO and ISO3 learning rules.
System parameters: fh0,h1,hr = 0.1 and damping parameter Q = 0.51 was used to filter
inputs x0, x1 and relevance signal r. Learning rate was μ = 0.005 for ISO learning rule
and μ = 0.07 for ISO3 rule. Time difference between x1 and x0 was T = 10 (x1 always
precedes x0).

are filtered by low pass filters: u0 = x0 ∗ h0, u1 = x1 ∗ h1 and ur = Θ((r ∗ hr)′)
where Θ is a threshold for > 0 as depicted in Fig. 1. The low pass filters smear
out the input signals in time to generate appropriate motor responses. The cir-
cuit can easily be extended to a bank of filters with different resonators hj , j > 0
and individual weights ρj , j > 0 to generate complex shaped responses [5]. The
learning rule for the weight change d

dtρj is given as:

ρ′j = μurujv
′, j > 0 (1)

which is essentially ISO learning where we have added a third factor ur.
To get a better understanding how the third factor ur influences learning we

split Eq. 1 into a superposition of a cross-correlation ccj and an auto-correlation
acj , multiplied by the third-factor ur:

ρ′j =

⎛⎜⎜⎜⎜⎝ρ0uju
′
0︸ ︷︷ ︸

ccj

+ uj

N∑
k=1

u′
kρk︸ ︷︷ ︸

acj

⎞⎟⎟⎟⎟⎠ur (2)

= (ccj + acj)ur (3)

The cross-correlation ccj drives learning by relating different inputs with each
other so that, for example, in the case of simple conditioning the correlation of
the conditioned stimulus (CS) and the unconditioned stimulus (US). Here the
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unconditioned input is x0 which is smeared out in time by the filter h0 and
enters Eq. 2 in form of the signal u0. The conditioned input x1 enters Eq. 2
via a filterbank hj , j > 0 and generates a number of different temporal traces
uj which are then correlated with u0. Hence, the signals uj are cross-correlated
with the signal u0. The autocorrelation term acj is the unwanted contribution to
learning because it is correlating the conditioned responses (x1) with themselves
which lead to self-amplification of the corresponding weights.

To demonstrate how the third factor stabilises learning we generate artificially
input signals x0, x1, r to our open loop circuit which are delta pulses (pulses that
last for one unit step) that trigger damped filter responses (see Fig. 1B). It can
be clearly seen that the autocorrelation ac and cross correlation terms cc happen
at different moments in time. Consequently we can switch on learning when the
autocorrelation is minimal and the cross correlation is maximal. This can be
achieved by switching on the third factor ur at the same time as the signal x0
is triggered.

Fig. 1C shows the behaviour of ISO3 learning as compared to ISO-learning
for a relatively high learning rate. To test the effect of the autocorrelation we
switched off the signal x0 after step 4000 which effectively removes the cross
correlation. As shown in [3], at least for low learning rates in ISO-learning, the
weights should stabilise after x0 has been switched off. Instead, clearly one sees
that ISO-learning contains an instability, which leads to an upward bend. This
is different for ISO3 learning which does not contain this instability because
learning is switched off when self amplifying autocorrelation terms would desta-
bilise learning. ISO3 learning is also stable when there is a bank of filters in the
x1 pathway and/or when the filter functions are not orthogonal to each other
because the autocorrelation is zero at the moment the third factor ur is triggered.

In summary ISO3 learning uses the fact that auto- and cross correlation hap-
pen at different moments in time. Consequently we can stabilise differential Heb-
bian learning by switching learning on at the moment when the autocorrelation
term is minimal.

3 Closed Loop

The behavioural experiments of this section have two purposes: They will give the
signals x0, x1 and r a behavioural meaning as well as demonstrate the superiority
of ISO3 compared to ISO learning. We will present a task where a robot has to
learn to retrieve “food disks” [6,7]. This task will first be used for benchmarking
and will then be demonstrated in a real robot. The robot has to find “food
disks” from the distance. Initially the robot has only a pre-wired reflex which
enables it to react to “food disks” at close range only. During learning this reflex
reaction is correlated with distant stimuli which enable the robot to target “food
disks” from the distance. In the simulation, we use sound and vision for distant
and proximal stimuli which respectively replace the artificial input signals x1, x0
originally used in our open loop circuit. In the real robot experiment these two
signals x1, x0 will be generated from two different scanlines from a video camera
attached to the robot.
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3.1 Benchmark

Fig. 2A,B presents the task and circuit diagram where the simulated robot had
to learn to retrieve “food disks”. The reflex x0 is established by two light detec-
tors (LD) which draws the robot into the centre of the “food disks” (Fig. 2A1).
Learning uses the sound detectors (SD, Fig. 2A2) which feed into x1 to generate
an anticipatory reaction towards the “food disk”. The reflex reaction is established
by the difference of two light dependent resistors which cause a steering reaction
towards the white disk (Fig. 2B). Hence x0 is equal to zero if both LDs are not
stimulated or when they are stimulated at the same time which happens during a
straight encounterwith a disk. The latter situation occurs after successful learning.
The reflex has a constant weight ρ0 which always guarantees stable behaviour. The

Fig. 2. The robot simulation. A) The robot has two pairs of sensors: It has two light
sensors which detect the “food disk” only in their direct proximity. In addition it has
two sound detectors which are able to “hear” the food source from a distance. B) The
output v is the steering angle of the robot. The two light detectors (LD) establish the
reflex reaction (x0). The sound detectors (SD) establish the predictive loop (x1). The
weights ρ1 . . . ρN are variable and are changed either by ISO or ISO3 learning. The
signal r is generated by a third light sensor and is triggered as soon as the robot enters
the “food disk”. The robot has also a simple retraction mechanism when it collides
with a wall (“retraction”) which is not used for learning. The output v is the steering
angle of the robot. Filters are set to f0 = 0.01 for the reflex, fj = 0.1/j, j = 1 . . . 5 for
the filter bank where Q = 0.51. Reflex gain was ρ0 = 0.005. C) and D) plot the number
of contacts for both learning rules needed for successful learning against the learning
rate. In addition the number of failures against the learning rate are plotted.
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predictive signal x1 is generated by using two signals coming from the sound de-
tectors (SD). The signal is simply assumed to give the Euclidean distance from the
sound source. The difference of the signals from the left and the right microphone
is a measure of the azimuth of the sound source to the robot. Successful learning
leads to a turning reaction which balances both sound signals and results ideally
in a straight trajectory towards the target disk ending in a head-on contact.

We quantify successful and unsuccessful learning for increasing learning rates
μ. The learning rates have been chosen in a way that in both cases the contacts
for successful learning are the same to make the failures comparable. Learning was
considered successful when we received a sequence of five contacts with the disk
at a sub-threshold value of |x0| < 1.1. We recorded the actual number of contacts
until this criterion was reached. The simulations demonstrate clearly that ISO3
learning is much more stable than the Hebbian ISO learning. ISO3 learning can
therefore operate at more than ten times higher learning rates than ISO learning.

3.2 Real Robot

In this section we will demonstrate that ISO3-learning is also able to master
the task with the “food-disk” in a physically embodied agent [8]. It will also

Fig. 3. The real robot’s perspective showing two instances where the ”food disks”, rep-
resented by the white spheres lie in all scanlines at which the x1, x0 and the relevance
input signals are established to produce the input signals for the learning circuit. The
x1 and x0 signals are respectively triggered when the “food disk” appears in the upper
scanline, where objects are further away from the robot’s camera view and the lower
scanline at bottom of the video image, where objects are closer to the robot’s camera
view. The relevance signal is obtained from the same scanline as the x0 signal. When
the “food disk” appears in either scanlines for the respective x1, x0 and relevance sig-
nal, a positive negative or zero value is generated depending on what side of the robots
view the “food disks” lie. Parameters: frame rate was 25 frames/sec. The video image
f(x = [0 . . . 95], y = [0 . . . 64]) was evaluated at y = 53 for the reflex x0 and at y = 24
for the predictive signal x1. Reflex and predictive signal were calculated as a thresholded
(> 240) weighted sum: x0,1 =

∑95
x=0(x − 96/2)2Θ(f(x, y)). The reflex pathway was set

to: f0 = 0.01, Q = 0.51 with a reflex gain of ρ0 = 30.The relevance filter was set to
fr = 0.01, Q = 0.51. The predictive filters were set to f1, k = 0.1/k, k . . . 10, Q = 1. The
learning rate was μ = 0.0000035.
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be shown that ISO learning fails here completely because of its destabilising
autocorrelation terms which drive the weights either very quickly to infinity or,
alternatively, one has to run the robot for hours to see anticipatory behaviour
which is impractical.

As before, the task of the robot is to target a white disk or “food disks” from
a distance. As in the simulation the robot has a reflex reaction which pulls the
robot into the white disk just at the moment the robot drives over the disk
(Fig. 3). This reflex reaction is achieved by analysing the bottom scanline of
a camera with a fisheye lens mounted on the robot. The predictive pathway is
created in a similar way: A scanline which views the arena at a greater distance
from the robot (hence “in its future”) is fed into a bank of of ten filters. This
enables the robot to learn to drive towards the “food disk” (Fig. 3).

The reflex behaviour of the robot before learning is shown in Fig. 4A, where
the robot drives in a straight line and only makes a sharp bend when it encounters
the “food disk” in very close proximity. i.e. when the “food disks” appears in
the scanline that represents objects closest to the robot. Learning needs longer
in these real robot runs than in the simulation. After about 5 minutes, the robot

Fig. 4. Experiment with a real robot. A: start of the run at 00:12 mins, B: after 16:13
mins (92 contacts) weight change at a time step of approximately 24000, and C:after
24:10 mins (132 contacts) and the weight change at an approximate time step of 37000.
The arrows at A and B show the trace of the robot while driving into “food disks”
(white spheres). The weight development (ρj , j = 1 . . . 10) is shown in D. The film can
be viewed at http://www.berndporr.me.uk/films.
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starts exhibiting a learned behaviour. Successful learning can be shown in Fig. 4B
and C where the robot’s turning reaction sets in from a distance of about 40cm.
The robot has learned anticipatory behaviour.

The real robot is subject to complications which do not exist in the simulation.
The inertia of the robot, imperfections of the motors and noise from the camera
render learning more difficult than in the simulation. These elements contribute
to the fluctuations in the weight change in Fig. 4D. The weights however remain
stable. The two slightly large “jumps” (marked by circles) in the weight change
between time steps 18000 . . .20000 and 40000 . . .45000 have been caused by
typical problems which arise in real robots which have been mainly reflections
on the floor and also the erroneous detection of the hand of the operator which
caused weight changes. However, learning does not diverge and further learning
makes the weights decrease again which points to the fact that the reflex reaction
kicks in and corrects the slightly too strong steering reactions.

In order to fully appreciate the overall effects of the third factor, we have
ran a real robot experiment implementing ISO learning without the third-factor
by setting ur = 1 all the time in Eq. 1. The learning rate has been reduced so
that the weight development under ISO learning is comparable with ISO3 (see
Fig. 4D). The weight change generated from this experiment is shown in Fig. 5.
It can clearly be seen that ISO learning becomes unstable very quickly. Only
after 2500 frames the weights diverge which leads to random behaviour of the
robot so that the experiment was aborted.

In summary it can be concluded that ISO3 learning is much more stable than
ISO learning: While ISO3 learning learns fast and remains stable, ISO learning

Fig. 5. The weight development of the real robot experiment implementing ISO learn-
ing. Parameters: The reflex pathway was set to: f0 = 0.01, Q = 0.51 with a reflex gain
of ρ0 = 30. The predictive filters were set to fk, k = 0.1/k, k = 1 . . . 10, Q = 1 and the
learning rate was μ = 0.0000035.
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diverges very quickly. This shows that the elimination of the autocorrelation
term in ISO3 creates fast and reliable learning.

4 Discussion

In this work we have shown that a third factor is able to stabilise differential
Hebbian learning by switching it on when its autocorrelation term is minimal.

Our ISO3-learning rule seems to have similarities with reinforcement learning
(RL) which also employs a modulatory signal to select actions [9,10]. However,
there are important differences. RL is usually implemented as an actor/critic
architecture where the critic generates a delta error which tells the actor what
to do. In other words the delta error is a teaching signal which actively reinforces
or penalises actions. However, in ISO3 the signal ur does not evaluate actions.
ISO3 just switches learning on or off but does not force the system towards a
certain behaviour. This is an important difference between our ISO3 and RL:
The latter uses a global error signal to drive learning which tells the actor what
to learn whereas our ISO3 tells the actor when to learn and leaves the “what”
aspect to the actor itself. Learning of the actor in ISO3 is related to spike timing
dependent plasticity [11,12].

Dopamine as a crucial factor for long term potentiation (LTP) has been sug-
gested, for example, in [13,4] and been reviewed in [14,15]. Evidence suggests
that LTP not only needs coinciding pre- and postsynaptic activity [11,16] but
also dopamine transients as a third factor. Without dopamine no long term po-
tentiation seems to be possible [4]. The third factor of ISO3 can be related to
the dopaminergic neurons in the VTA (see Fig. 6) which respond strongly to
primary rewards [17]. The VTA in turn is driven by the lateral hypothalamus
(LH) which is the primary nucleus which becomes active while eating food. The
circuit of LH and VTA could have the task to switch on learning in a number of
brain areas like the prefrontal cortex, the hippocampus and the nucleus accum-

Fig. 6. Simplified diagram of the limbic system. NAcc=Nucleus Accumbens core,
HC=Hippocampus, PFC=prefrontal cortex, VP=ventral pallidum, VTA=ventral teg-
mental area, LH=lateral hypothalamus.
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bens which could act as a global signal for learning. In terms of behaviour the
nucleus accumbens plays here a central role because it transforms information
from the cortex and the hippocampus into motor commands. In our model the
learner in Fig 1 can be directly associated with the NAcc: Initially the NAcc
is pre-wired with certain behaviours which are then modified and superseded
by learned inputs from the cortex and hippocampus. Thus, learning takes place
on top of pre-wired behaviours. Consequently, models like the one developed
by Prescott et al. [18] which work with pre-wired behaviour could be upgraded
to accommodate learning so that anticipatory behaviour is generated. For the
actual learning this means that the dopamine signal does not choose the actions
in the striatum but that it rather tells it to learn at a certain moment in time.
The striatal neurons would learn locally by themselves with the help of spike
timing dependent plasticity and not by a dopaminergic error signal [19]

It is known that dopaminergic activity decreases at the primary reward and
builds up at the location of the conditioned stimulus [17]. This behaviour can be
re-interpreted if we accept that dopamine is telling the target structure when to
learn rather than what to learn: it helps to stabilise behaviour associated with
the primary reward because learning is switched off when the signal ur is no
longer happening at the moment the primary reward is experienced. Switching
on learning at the first conditioned stimulus preserves the behaviour which is
associated with the primary reward.

The applicability of ISO3 learning to other tasks depends on the availability
of a third factor. In the food retrieval task it is obvious that the third factor is
generated from the contact with food because it is a relevant event. Similarly a
relevant event can be found in avoidance tasks, for example collision avoidance.
However, the relevance is not tied to the primary trigger, for example food
or pain. In more general terms relevance could be derived from novelty which
triggers learning when unexpected events have happened which in turn switch
on learning to reduce uncertainty.
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Abstract. The idea that synaptic plasticity holds the key to the neural basis of 
learning and memory is now widely accepted in neuroscience. The precise 
mechanism of changes in synaptic strength has, however, remained elusive. 
Neurobiological research has led to the postulation of many models of plastic-
ity, and among the most contemporary are spike-timing dependent plasticity 
(STDP) and long-term potentiation (LTP). The STDP model is based on the ob-
servation of single, distinct pairs of pre- and post- synaptic spikes, but it is less 
clear how it evolves dynamically under the input of long trains of spikes, which 
characterise normal brain activity. This research explores the emergent proper-
ties of a spiking artificial neural network which incorporates both STDP and 
LTP. Previous findings are replicated in most instances, and some interesting 
additional observations are made. These highlight the profound influence which 
initial conditions and synaptic input have on the evolution of synaptic weights. 

1   Introduction 

The ability of the brain to translate ephemeral experience into enduring memories has 
long been attributed by neuroscientists to activity-dependent changes in synaptic effi-
cacy. One of the first to suggest a mechanism that could govern this plasticity was 
Donald Hebb, who hypothesised that ‘when an axon of cell A is near enough to excite 
a cell B, and repeatedly or persistently takes part in firing it, some growth process or 
metabolic change takes place … such that A’s efficiency as one of the cells firing B, 
is increased’ (Hebb, 1949). This concept of ‘Hebbian’ learning has become a main-
stay of neural theories of memory, but more precise rules of synaptic change have 
been difficult to elucidate.  

It has become clear, however, that there are certain features which are crucial to a 
successful model of plasticity (Roberts and Bell, 2002 ; Song, Miller and Abbott, 
2000 ; van Rossum, Bi and Turrigiano, 2000). It must generate a stable distribution of 
synaptic weights, and stimulate competition between inputs to a neuron, in order to 
account for the processes of activity-dependent development and forgetting, and to 
maximize the capacity for information storage (Miller, 1996). Pure Hebbian learning 
cannot achieve this, not least because it fails to make any mention of synaptic weak-
ening processes, but also because those inputs which correlate with post-synaptic fir-
ing are repeatedly strengthened, thus growing to infinitely high values. This creates an 
inherently unstable, bimodal distribution of synaptic weights. Earlier plasticity models 



324 D. Bush et al. 

have had to resort to a variety of means in order to solve this problem. Often these 
promoted competition through the use of global signalling mechanisms, such as limit-
ing the sum of strengths of pre-synaptic inputs to a cell, but the biophysical realism of 
such protocols can be questioned. The exact nature of the additional constraints used 
can also strongly influence the behaviour of the model (Miller and McKay, 1994). 

In considering the neural basis of memory, it is long-lasting alterations in synaptic 
strength that are of most interest. Experimental evidence for such changes was first 
found in the hippocampus – a region of the brain long identified with learning – when 
it was shown that repeated activation of excitatory synapses by high frequency spike 
trains caused an increase in synaptic strength which lasted for hours, or even days 
(Lomo and Bliss, 1973). This phenomena - known as long-term potentiation (LTP) - 
has since been the subject of a great deal of investigation, because it exhibits several 
features which make it an attractive candidate as a neural learning mechanism (see 
Malenka and Nicol, 1999, for a review). It is synapse specific, vastly increasing the 
potential storage capacity of individual neurons. It is also associative, in that the re-
peated stimulation of one set of synapses can simultaneously facilitate LTP at adja-
cent sets of synapses. This has often been viewed as analogous to the process of clas-
sical conditioning.  

The wealth of research into LTP has helped to inform and inspire new plasticity 
models which are more easily reconcilable with the tenets outlined earlier. The 
‘BCM’ model, named after its creators (Bienenstock, Cooper and Munro, 1982) and 
based on their consideration of input selectivity in the visual cortex, is a good exam-
ple. It is Hebbian, but achieves stability through the existence of a ‘threshold’ firing 
rate, a crossover point between depression and potentiation which is itself slowly 
modulated by post-synaptic activity. This makes the strengthening of a synapse more 
likely when average activity is low, and vice versa, thus generating competition be-
tween inputs.  

Another contemporary plasticity model, based on the more straightforward empiri-
cal observation of distinct pairs of pre- and post- synaptic action potentials (Roberts 
and Bell, 2002 ; Bi and Poo, 1998), has also generated a great deal of interest. It is 
known as spike timing dependent plasticity (STDP), because it dictates that the direc-
tion and degree of changes in synaptic efficacy are determined by the relative timing 
of pre- and post- synaptic spiking. Only pre-synaptic spikes which provoke post-
synaptic firing within a short temporal window potentiate a synapse, while those 
which arrive after post-synaptic firing cause depression. Those inputs with shorter la-
tencies or strong mutual correlations are thus favoured, at the expense of others.  

The most pertinent feature of STDP is that it implicitly generates competition be-
tween synapses, and experiments with artificial neural networks (ANNs) have shown 
that this precipitates inherently stable weight distributions. The shape of the resulting 
distribution is dependent on the exact nature of the STDP implementation, and the 
values of parameters used. Some researchers, for example, include the experimental 
observation that stronger synapses seem to undergo relatively less potentiation than 
weaker synapses, or an activity dependent scaling mechanism such as that outlined by 
the BCM model (van Rossum, Bi and Turrigiano, 2000). These features help to gen-
erate a weight distribution that more closely resembles the stable, unimodal, and posi-
tively skewed distribution found in vivo (see fig 1). Their omission tends to produce a 
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Fig. 1. Synaptic weight distribution found in vivo, taken from Bekkers et al., 1990 

bimodal distribution (Song, Miller and Abbott, 2000; Iglesias et al. 2005) more simi-
lar to that produced by pure Hebbian learning, but stabilised by innate competition 
and the inclusion of hard limits on the maximum achievable strength of a synapse. 

The analysis of STDP is based on isolated pairs of pre- and post- synaptic action 
potentials, while observations of LTP are mediated by the application of prolonged 
spike trains more characteristic of normal brain activity. It is not clear how the STDP 
model causes synaptic weights to develop with such input, which involves many pos-
sible spike pairings. We can presume that both forms of plasticity arise from the same 
underlying biophysical mechanisms, and some recent work has attempted to reconcile 
both models within a single theoretical framework (Izhikevich and Desai, 2003). By 
making a few biologically plausible assumptions, this research has demonstrated  that 
the parameters of STDP can be linked directly with the sliding threshold of the BCM 
model. 

This paper explores the emergent properties of an artificial neural network which 
implements spike timing dependent plasticity. The form of STDP used is compatible 
with the BCM model of long-term potentiation, and thus the value of the threshold fir-
ing rate can be directly manipulated. The effects this has on synaptic weight distribu-
tions and dynamics are examined. Size-dependent potentiation is also introduced into 
the model, and results obtained from the input of random uncorrelated or partially 
correlated spike trains are compared with those generated by the performance of two 
simple, embodied, sensorimotor tasks. The latter will have temporal patterns that are 
perhaps more representative of firing regimes found in vivo, and which STDP has 
previously been shown to make use of (Izhikevich, Gally and Edelman, 2004). 

2   Methods 

2.1   Neural Controller 

In the majority of tests, the neural network consists of 20 neurons, which are divided 
into 9 sensory, 9 intermediate and 2 motor neurons. During the phototaxis task, how-
ever, the network has only 2 sensory neurons, and thus a total of 13 neurons. The 
network is realistic of the mammalian cortex in that these are 80% excitatory and 20% 
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inhibitory, and that each has a randomly chosen axonal delay in the range [1ms, 
20ms]. Each neuron has 5 randomly assigned post-synaptic connections. Motor neu-
rons have no post-synaptic connections, and sensory neurons have no pre-synaptic 
connections.  

The neurons operate using the Izhikevich (2004) spiking model, which dynami-
cally calculates the membrane potential (v) and a membrane recovery variable (u), 
based on the values of four dimensionless constants (a,b,c and d) and a dimensionless 
applied current (I), according to the equations below. 

+←
←

+≥

−=′
+−++=′

duu

cv
v

ubvau

Iuvvv

  then  mV 30  if

)(

140504.0 2

 

(1) 

This model was chosen for two main reasons. Firstly, it uses very few floating point 
operations, and so is computationally advantageous. Secondly, it can exhibit firing 
patterns of all known types of cortical neurons, by variation of the parameters a - d. 
The values used for a standard excitatory neuron are [0.02,0.2,-65,6] respectively, and 
those for an inhibitory neuron are [0.02,0.25,-65,2]. 

In order to introduce neural noise into the system, one neuron is selected at random 
each time step, and a small current applied to it. A value of I=10 was used in most 
tests, although this was varied to assess the effects of neural noise. When distributed 
randomly over 20 neurons, an applied current of this size produces a spiking rate of 
approximately 3Hz per neuron.  

2.2   STDP 

Mathematically, with s = tpost - tpre being the time difference between pre- and post- 
synaptic spiking, the change in the weight of a synapse ( w) due to spike timing de-
pendent plasticity can be expressed as:- 
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The method of implementing this plasticity is outlined by Song et al (2000) and Di 
Paolo (2003). Two recording functions (P+ and P-) are kept for each synapse. These 
values decay exponentially according to the time constants of potentiation and depres-
sion, except when pre-synaptic spikes arrive or post-synaptic spikes are fired, in 
which case the values are reset to A+ or A- respectively. This means that only those 
spikes which are temporally adjacent affect the degree of synaptic weight change, and 
hence this is known as the ‘nearest neighbour’ model of STDP. Research has shown 
that this implementation allows the reconciliation of the BCM model with STDP (Iz-
hikevich and Desai, 2003). It also outlines a formula for the calculation of the thresh-
old firing rate, which is given by eqn. 3 below. The expressions A+ > |A-| and |A- -| > 
|A+ +| must be satisfied during experiments, to ensure that the threshold has a positive 
value at all times. 
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Previous research (Bi and Poo, 1998) has shown that an inverse exponential rela-
tionship between the level of potentiation and initial synaptic weight may also exist in 
vivo. The modified formula which governs increases in synaptic weight when such 
‘size dependent potentiation’ is examined is given in eqn. 4. It should be noted that 
there is no evidence for any such size-dependent effects in synaptic weakening. 

wij (t) = wij (t) + P+e− kwij  (4) 

2.3   Tasks 

The network was first examined using uncorrelated Poissonian spike trains of varying 
frequencies as input. In later experiments, correlated spike trains and two simple ro-
botics tasks were used to assess how temporal patterns and more widely varying spike 
frequencies may affect the behaviour of the network. The tasks chosen were a simple 
phototaxis exercise similar to that used by Di Paolo (2003), and a falling block task 
which has been employed previously by Goldenberg et al (2004). 

The correlated input was generated by creating a set number of Poissonian spike 
trains of a certain frequency, and distributing these amongst the 9 sensory neurons. 
Each time step, the spike trains were re-distributed amongst the inputs. The number of 
trains that exist thus determine the ‘strength’ of the correlation between inputs. 

In the ‘falling block’ task, an agent of radius 15 moves horizontally in an arena 
which is 400 units wide. The agent has 9 sensory neurons with a range of 205 units, 
which are distributed evenly over a visual angle of /6. These sensory neurons each 
have a randomly determined bias in the range [0.6:1.0] which is used to scale an ap-
plied current, relative to the distance of any object in their direct line of vision.  

Two blocks of radius 13 fall from a height of 198 at randomly assigned angles and 
from randomly assigned horizontal start positions, constrained only by the criteria that 
it must be possible for the agent to catch them both. The first object has a random ve-
locity in the range [0.03:0.04] and the second object in the range [0.01:0.02]. The 
agent’s horizontal velocity is determined by the sum of the two opposing motors out-
puts, its maximum velocity being set at 0.05 units/ms. The two motor neurons are 
leaky integrators, operating according to eqn 5 below, where tº  is the time at which a 
spike was last received. Each has a randomly assigned gain in the range [0.01:0.05] 
and a decay constant ( ) in the range [20ms : 40ms].  

τ/)( °−−= ttvev  (5) 

In the phototaxis task, an agent of radius 2 is placed at a random angle of orienta-
tion and randomly determined distance in the range [60 : 80] from a light source, in 
an arena of unlimited size. The agent has two sensory neurons, which are connected 
to light sensors separated by an angle of 2 /3 on the agents body, plus or minus a ran-
dom displacement of /36. These light sensors have an angle of acceptance of , and a 
randomly assigned bias in the range [10:50], which is used to scale the intensity of 
any light into an applied current. The intensity of the light source is assigned ran-
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domly in the range [3000:5000]. Two motors are placed diametrically opposite on the 
agents body, and driven in a forwards-only direction by the two motor neurons. The 
speed of each motor is limited at 0.5 units/ms, and thus this is also the maximum 
achievable forwards velocity of the agent. As before, the motor neurons are leaky in-
tegrators with gains in the range [0.01:0.5] and decay constants in the range 
[40ms:100ms]. It is important to note that the capacity of the network to learn how to 
perform this task is not being tested in this paper. The embodiment is needed only to 
provide realistic sensorimotor input, which has correlated temporal properties that are 
considered important in assessing the properties of the plasticity model and network.  

2.4   Stability 

After each 100ms of experimental time, a histogram of synaptic weights is generated. 
If the values in each bin (which are of size 1) do not vary by more than ±1 for 10 of 
the 100ms steps (i.e. 1 second), then the network is considered to have achieved a sta-
ble synaptic weight distribution. In order to test that this criteria was adequate, 30 
tests were performed, with random initial conditions and parameter values, and net-
work operation was continued for 100 seconds of simulated time after stability was 
flagged. In all cases, no further discernible change in the synaptic weight distribution 
occurred. In each experiment, 30 random incarnations of the neural network are cre-
ated, and each one is run twice, in each case until stability is achieved. Thus, the re-
sults presented in this paper are a conglomeration of 60 individual tests, or a total of 
5400 synaptic weights (3300 in the case of the phototaxis task). 

3   Results and Discussion 

3.1   Manipulation of Threshold Firing Rate 

Figure 2 represents a typical synaptic weight distribution generated when the network 
was operated with purely uncorrelated input at a rate of 30Hz, and the results replicate 
previous research findings (Song et al., 2000). The values of STDP parameters used 
in this case correspond to a threshold firing rate of approximately v=17Hz. The ef-
fects of moving the threshold firing rate (by varying any of the four main STDP pa-
rameters) are intuitive, and demonstrated by figures 3 (v=350Hz) and 4 (v=6.25 Hz). 
A higher threshold for long-term potentiation allows fewer synapses to reach the 
maximum possible strength, and a lower threshold has the reverse effect.  

However, results suggest that the relationship between weight distribution and 
STDP parameters is dictated by more complex factors than simply the position of the 
BCM threshold. Figure 5  shows a weight distribution for an identical threshold firing 
rate as 2 (v=17 Hz), but with different STDP values. The number of synapses which 
have been potentiated to saturation are fewer, and those which have been persistently 
depressed are larger, in frequency. The value of  | A+ + |  is identical in both cases, 
but the longer temporal window for potentiation that existed in fig. 5 clearly had a 
lower overall strengthening effect on weight values, compared with the higher degree 
of synaptic strengthening per spike which was present in the results for 2. Further in-
vestigation demonstrated that the ratio of A+ : A- is particularly important in determin-
ing the shape of the stable weight distribution. Results generated with identical values 
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of this ratio are consistently very similar, more so than results with equal values of the 
modification threshold.  

3.2   Firing Rates 

It is clear that the key to a good plasticity model, and one of the reasons why STDP is 
so highly regarded, is that it regulates network output in the face of wide fluctuations 
in input. In previous research (Song, Miller and Abbott, 2000) an increase in input fir-
ing rate has been observed to cause a decrease in the number of synapses saturating at 
the uppermost weight values, a finding that was replicated in these experiments. One 
may expect that fewer strong synapses would correlate with lower post-synaptic activ-
ity, but previous work has shown that the STDP model actually exhibits a ‘damping’ 
effect – increasing the input firing rate precipitating a much smaller increase in post-
synaptic firing rate. An analysis of firing rates in the intermediate, excitatory neurons 
during this investigation, however, led to a finding which, at least to some extent, 
contradicts this previous research (Song, Miller and Abbott, 2000). Figure 6 illustrates 
the correlation between input and intermediate firing rates for four different sets of 
STDP parameters.  

The data demonstrates that, if any relationship exists between these two variables, 
then it is very complex, and could depend on many factors. As the figure shows, in 
some cases there seems to be an inverse relationship between the two firing rates, 
while in others previous research has been replicated and a simple damping effect can 
be seen. Once again, it seems that the ratio of A+ : A- has a pronounced effect on post-
synaptic firing rates. In the data presented here, similar values of this ratio do seem to 
produce similar relationships between input and intermediate firing rates. Further in-
vestigation will be required to elucidate the nature of this relationship. 

3.3   Varying Network Input 

It is useful to make a comparison between the weight distributions arising from uncor-
related input, correlated input, and those generated by input from closed-loop sen-
sorimotor tasks. Figures 7 to 9 illustrate these results – in each case, identical parame-
ter values to figure 2 were used, but in each case the stable synaptic weight 
distributions are markedly different. 

 

Fig. 2. A+=0.16; A-=-0.1; + = 20ms;  - = 
40ms 

Fig. 3. A+=0.12; A-=-0.; + = 10ms;  - = 
40ms 
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Fig. 4. A+=0.18; A-=-0.; + = 20ms;  - = 
40ms 

Fig. 5. A+=0.12; A-=-0.1; + = 30ms;  
=40ms 

 

 

Fig. 6. – The relationship between input and intermediate firing rates  
          a - A+=0.2; A-=-0.1; + = 10ms;  -=40ms 

b - A+=0.2; A-=-0.1; + = 20ms;  -=40ms 
 c - A+=0.2; A-=-0.15; + = 20ms;  -=40ms 
 d - A+=0.2; A-=-0.15; + = 10ms;  -=40ms 

It seems that input in the sensorimotor tasks caused more synapses to adopt inter-
mediate weight values, rather than be pushed to the bounds. In the phototaxis task 
there are also a much greater frequency of synapses at maximum strength and fewer 
at zero weight, in contrast to the falling block task. Other results showed that distribu-
tions generated by input from the robotics tasks are generally much more consistent in 
shape. The effects of manipulating the threshold rate can still be seen, but rather than 
simply altering the size of the bimodal peaks (as seen in figures 2 – 4), it is the fre-
quency and distribution of the intermediate strength synapses that are most affected. 
Correlated input also produced a markedly different weight distribution, with much 
more similarly sized modal peaks and a more uniform intermediate distribution. As 
with uncorrelated input, the intermediate weight values are more sparsely populated. 
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Fig. 7. The falling block task          Fig. 8. The phototaxis task 

 

           Fig. 9. Correlated input             Fig. 10. Size dependent potentiation 

 
The variations in the size and shape of the distributions seen can be loosely ex-

plained by the slight differences in the nature of the input presented to the neural net-
work. However, the main issue is that these discrepancies support the intuitive hy-
pothesis that the nature of input to an ANN has a pronounced effect on the evolution 
of synaptic weights in that network. Much of the previous research in this area has 
made exclusive use of uncorrelated input, but results found here show that care must 
be taken in generalising from these findings. The development of a network directed 
by any plasticity model is at least partially defined by the nature of the input it re-
ceives – and there are gross differences between uncorrelated and more realistic sen-
sorimotor input. 

3.4   Size-Dependent Potentiation 

The introduction of size-dependent potentiation into the plasticity model also has a 
pronounced effect on synaptic weight distributions. Figure 10 (which was generated 
using a value of k=50 and identical parameter values to fig. 1) illustrates this, and 
more closely resembles results found in vivo. The peak at w=0 has been omitted, as 
these ‘silent’ synapses are not considered (and cannot be detected) when biological 
appraisals of weight distributions are made. It is interesting to note, however, that the 
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Fig. 11.     Fig. 12. 

 

                            Fig. 13.                                       Fig. 14. Changes in synaptic weight 

 
frequency of synapses found at the lower bound was generally consistent between ex-
periments with and without size-dependent potentiation. This implies that the larger 
number of synapses adopting intermediate weights was simply a product of the fact 
that fewer synapses were able to saturate to the upper bounds. By tuning the value of 
k appropriately, the hard limit on synaptic weights can be completely removed, giving 
a more biophysically realistic plasticity model, which in turn will generate a more 
biophysically realistic weight distribution. 

3.5   Effect of Initial Weight Values 

The results obtained also demonstrated that the initial synaptic weight values have 
some considerable influence on the appearance of the stable weight distribution. The 
spread of initial weights has little effect on the shape of the distribution, although it 
does make the network slower to converge to stability. Experiments in which initial 
weights were uniformly distributed from 0 to wmax took the most time to reach stabil-
ity, while those runs in which all weights were initially set at or near the maximum 
value were quick to converge. Uniform and Gaussian distributions produce very simi-
lar results, as do tests where all synapses begin with the exact same weight. The value 
of this weight, however, whether it be the point around which initial strengths are 
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(relatively narrowly) distributed, or that which all synapses originate with, does have 
a considerable effect on the shape of the final distribution. This is illustrated by fig-
ures 11 – 13. In these instances, synaptic weights were given a Gaussian distribution 
around values of 20, 25 and 30 respectively, with a standard deviation of 5. The dif-
ferences in the shape of the stable weight distributions are clear. 

It is interesting to note that the initial weight of a synapse bears no indication as to 
what its final weight value will be. In more simple Hebbian plasticity models, syn-
apses above a certain strength would immediately be correlated with post-synaptic fir-
ing, and thus persistently potentiated, while those below that strength were persis-
tently weakened. This implies that final weights could be predicted based on the 
initial configuration. With STDP, however, the competition generated between syn-
apses allows no such predictions to be made. Figure 14 illustrates the relationship be-
tween the initial and final weights of a synapse. Although there is a slight residual 
tendency for weights which are originally strong to remain so, and likewise, for those 
which begin as very weak to remain at zero, the only clear correlation is caused by the 
hard limits on synaptic weight. 

3.6   Conclusions 

The results obtained mostly support previous findings in this area. Manipulation of 
the BCM threshold firing rate directs synaptic weights in an intuitive manner. The 
STDP model has a strong regulatory effect on post-synaptic output, although in some 
cases it seems to reduce the intermediate firing rate in the face of an increased fre-
quency of input. The initial conditions of the network underlying the plasticity model, 
and the nature of input used, seem to have a pronounced effect on the direction in 
which it develops, which is to be expected from any dynamical system. Although 
STDP implicitly generates competition between synapses, the weight distribution it 
creates is still not representative of that found in vivo, unless additional experimental 
observations such as size-dependent potentiation are included. It is left to future work 
to elaborate on the results presented here, and to assess how beneficial the phenomena 
identified by this paper are to developing simple learning behaviour in ANNs. 
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Abstract. In this paper, we train a robot to learn online a task of obsta-
cles avoidance. The robot has at its disposal only its visual input from a
linear camera in an arena whose walls are composed of random black and
white stripes. The robot is controlled by a recurrent spiking neural net-
work (integrate and fire). The learning rule is the spike-time dependent
plasticity (STDP) and its counterpart – the so-called anti-STDP. Since
the task itself requires some temporal integration, the neural substrate
is the network’s own dynamics. The behaviors of avoidance we obtain
are homogenous and elegant. In addition, we observe the emergence of a
neural selectivity to the distance after the learning process.

1 Introduction

From a dynamical systems point of view, a behavior is a spatio-temporally struc-
tured relationship between an organism and its environment. The dynamical
loops generated by the input/output flow and by the neural system are coupled
together to produce a minimal cognition [1]. A non purely reactive architecture
is then obtained through neural dynamics. Consequently, learning a behavior
is a result from pairing (coupling) the dynamics of input/output loop with the
dynamics generated by the artificial brain.

However, even from that point of view, the problem still needs to be solved so
far. Many architectures proposed dynamical process for temporal series learn-
ing. Most of the time, the learning procedures are off-line and supervised (their
performances rely solely on a good foreseeing from the designer). An alternative
was found in the genetic algorithm [2,3,4]. Unfortunately, both approaches still
lack of on-line adaptation methods and offer no obvious path for enabling them.

These facts will be our starting point. A neural controller must exhibit enough
intrinsic features to encompass a wide range of dynamics. Learning will therefore
be a plasticity mechanism that allows us to put constraints on particular (and
interesting) dynamics depending on the experience of the agent. The mechanism
of plasticity is inspired from biology: Spike-Time Dependent Plasticity. Using an
over-simplistic scaling, we show that an agent can learn to avoid obstacles using
only its visual flow. This approach provides an elegant solution to a non-trivial
temporal task. We show also the emergence of a spiking selectivity to distance
from obstacles when this distance is not provided as such to the agent.

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 335–345, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Dynamics of Integrate and Fire Neurons

The following series of equations describe the discrete leaky integrate and fire
(I&F) model we use throughout this paper [5]. Each time a given neuron fires, a
synaptic pulse is transmitted to all the other neurons. This firing occurs whenever
the neuron potential V crosses a threshold θ from below. Just after the firing
occurs, the potential of the neuron is reset to 0. Between a reset and a spike,
the dynamics of the potential of a neuron (labelled i) is given by the following
(discrete) temporal equation :

Vi(t + 1) = γVi(t) +
N∑

n>0 j=1

Wijδ(t − T n
j ) + I(t) (1)

The first part of the right hand side of the equation describes the leak current
– γ is the decay rate (1 − γ is the leak – 0 ≤ γ ≤ 1). I(t) is an external input
current (up to some conductance constant). The Wij are the synaptic influences
(weights) and δ(x) = 1 whenever x = 0 and 0 otherwise (Kronecker symbol).
The T n

j are the times of firing of a neuron j and is a multiple of the sample
discretization time. The times of firing are formally defined for all neurons i
as Vi(T n

i ) ≥ θ and the n-th firing time recursively as :

T n
i = inf(t | t > T n−1

i + ri, Vi(t) ≥ θ) (2)

We set T 0
i = −∞ and ri is the refractory period of the neuron (which imposes

a maximal frequency). Once it has fired, the neuron’s potential is reset to zero.
Thus, when computing Vi(T n

i + 1) we set Vi(T n
i ) = 0 in equation (1).

Leaky integrate and fire neurons are known to be good approximates of bio-
logical neurons concerning spiking time distribution. Moreover, they are simple
enough and easy to handle when embedded in a robot.

Populations coding and mean field techniques showed that spiking neural
networks can display a broad variety of dynamics [6,7,8]. In simple case, suf-
ficient conditions for phase synchronization and its stability were proposed in
homogeneous networks [9,10]. In the precise case of integrate and fire neurons,
equilibrium criteria have been calculated for networks of irregular firing neurons
[11,12] and VLSI neurons [13,14].

Although not applicable directly to our problem, these works showed that, in
case of random networks, the parameters of the distribution of synaptic weights
can determine in which case the firing activity is conducted by the input (input
or noise drift) or by the internal coupling (internal drift) of the neurons. To
quantify this range of parameters, we described analytically the bifurcation map
of totally connected networks at the limit of no input drift [15] – the so–called
spontaneous mode. This bifurcation map allowed us to estimate rather precise
conditions for a purely internal regime to occur.

Consequently, these two types of drifts can impose quite different behaviors
to an agent controlled by such networks. Indeed, a network whose dynamics rely
solely on the input drift gives an agent with an input-led behavior: A reactive
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Fig. 1. Differences of behavior when given a sinusoidal input according to the size of
the coupling. The figures on the left are the temporal evolution of the average potential
(over all the neurons) of the network. On the right, there are the corresponding power
spectra in a log-log plot. Parameters: N = 100, θ = 1.0, γ = 0.99, Vrest = Vreset = 0.0,
r = 4. The input signal is I(t) = 0.2 × sin(t/1200) giving a frequency around 8.5 Hz.

architecture. The network serves as a temporally stable filter between sensors
and actuators. On the other hand, networks with an internal drifting mode
use only its own dynamical properties to compute the output. Then, the agent
experiences a stereo-typical (”autistic”) behavior. This is called an automatic
architecture. In that case, the internal dynamics dominates the flow of input
and is able to provide time-dependent responses.

This evolution from external to internal drift-led activity is shown on fig-
ure 1. We compute the average potential of an all-to-all coupled network of I&F
neurons when all neurons are submitted to a sinusoidal input. The weights are
chosen randomly following a centered normal law. In that case, the internal drift
increases with the standard deviation of the weight distribution [15].

The network response thus ranges from a passive filter (σ = 0.21 – carrying
the input frequency) to a signal that completely ignores the intrinsic frequencies
of the input (σ = 0.55). In the former case, the output will react on both the
spectral and tonic part of the input signal. In the latter case, however, the
network acknowledges only the tonic part. The intermediate value of coupling
seems to be a combination of both extreme cases. The network output depends
critically on both internal and external component. In robot control terms, this
kind of coupling allows both adaptivity to input variation and memory of past.
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Since we obviously cannot simply increase the weight connectivity, a learning
algorithm has therefore the task to make this coupling relevant for the situations
experience by the robot.

3 The Learning Rule

We describe in this section the learning algorithm we used as well as the method-
ology for applying this learning rule.

Recent neurobiology experiments have suggested that the relative timing of
pre- and post-synaptic potentials plays an important role in determining the
intensity as well as the sign of change of a synapse strength [16,17]. The intensity
of this Long Term Potentiation (and Depression) is directly dependent of the
relative timing – the spike delay between the post-synaptic and pre-synaptic
neurons. In addition, if this delay is high enough (order of tens of milliseconds)
no modification occurs. On the other hand, the modification is maximal when
the post-synaptic neuron fires just after (or just before) the pre-synaptic does.

As [16] put it, one can extract quite straightforwardly a very simple rule that
rests upon inter-spikes delays.This ”rule” is knownas Spike-TimeDependentPlas-
ticity (STDP). It has become a widespread implementation of Hebb’s initial intu-
ition on memory formation in the brain [18]. Therefore many STDP rules emerged
from experiments (see [17]), we decide to use a simple one – namely an additive
rule expressed as :

ΔWij = α(Wmax − |Wij |)h(Δij)

where Δij is the difference between the last firing dates of post-synaptic neuron i
and pre-synaptic j. h(t) is a function which depends on the axonal delay between
j and i. α is a learning parameter. The ”delay” function is chosen as :

h(t) =

⎧⎪⎪⎨⎪⎪⎩
T−t
T 0 < t < T
0 t = 0
0 t > T

−h(−t) t < 0

Here T is the time-out constant (i.e. the relative timing above which no modifi-
cation occurs). Figure 2 shows the learning function αh(Δij) (we chose T = 50
time steps).

In addition to classical Hebbian learning properties, STDP relies on a precise
temporal frame. Neurons trained with STDP act as coincidence detectors and
synapses of neurons that fire in a precise temporal manner will be modified in
order to reinforce that order. Moreover, STDP introduces competition between
Hebbian plasticity. As such, STDP seems a good candidate for temporal learning
and dynamical coupling [19].

However, a real application of this rule per se does not seem straightforward.
In order to see this, let’s evaluate the effect of the rule on two neurons and
introduce their crosscorrelation function :

Cij(τ) =
1
T

T∑
k=0

Si(k)Sj(k + τ) (3)
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Fig. 2. Schematic description of the learning rule

where T is a window time and Si(t) is 1 whenever neuron i fires at time t and
zero otherwise. We can then compute the evolution of the weights between the
two neurons according to the learning law. It yields :

ΔWij = T
∑
k≥1

[h(k) (Cij(k) − Cij(−k))] (4)

Due to the shape of h, the sum is, in fact, finite and there is no modification for
neurons strictly correlated (Cij(τ) = 0 for all τ = 0). Moreover, for uncorrelated
neurons E(Cij(−τ)) = E(Cij(−τ)) (i.e the correlation forward is equal to the
correlation backward), the average modification of weight is zero.

Finally, periodic neurons with a phase φ of half the common period (Cij(τ) = 0
for all τ = φ and Cij(φ) = Cij(−φ)) will have their weights unmodified. These
are the two fixed points of the learning rule. The speed of convergence depends
of |α| and the slope of h (that is T ). The sign of α determines the stability of
the fixed points. For α > 0, the strict correlation is stable and the dephasing of
half the period is unstable. This is strictly the opposite for α < 0 – the so–called
”anti–STDP” also observed in real (fish) brains [17].

However, in any case, if an unmodified learning process is maintained for too
long, synapses will eventually saturate, leading to a bimodal weight distribution
[20]. This situation is illustrated on figure 3–top where the evolution of the
average potential for various values of α is displayed .

Therefore, we are able to figure out the effect of the learning rule upon the
coupling of the network and consequently on the overall behavior of the robot.
Indeed, applying straightforwardly the learning rule with a constant learning
parameter α will increase the coupling of the network. In that case, the resulting
behavior for the robot will be ultimately a pure ”autistic” one, ignoring any
change in the input pattern.

This is not wanted. We need to introduce a mechanism that allows a regu-
lation in the weight modification. The idea will consist of using a combination
of both STDP and anti–STDP. Since the phase synchronization differs for the
laws we expect to maintain the network in the range of intermediate coupling.
As displayed on figure 3–bottom–left, we perform a flip experiment where the
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Fig. 3. Top: Evolution of the average potential for α ∈ {−0.1, −0.01, −0.001} (anti–
stdp) on the left and α ∈ {0.1, 0.01, 0.001}. Bottom: Evolution of the average potential
using, on the left, first STDP then anti-STDP (flip experiment) and, on the right,
switching between the two laws every 1000 time steps (switch experiment) |α| = 0.01
in both experiments.

network is submitted first to STDP (for 100 000 time steps) then to anti-STDP
(the remaining 100 000 time steps). This flipping of laws allows the network to
remain in a safe zone. However, as figure 3–bottom–right shows it, the contri-
bution of each of these two laws is not symmetrical. In the switch experiment
(a higher frequency flipping in fact), the network increases its coupling. In other
words, both laws couple the network and the STDP does it faster.

Such considerations will compel us to make careful decisions as when to apply
both laws.

4 The Experiment

We tested our approach on a task of obstacle avoidance with visual flow. The
robot has to avoid walls using only its camera information. More precisely, there
will be neither proximity sensors nor positioning device available for it. In ad-
dition, the environment will not allow the robot to extract any simple rule to
compute its exact position. Obviously in order to accomplish this difficult task,
the network must exhibit important internal loops since no static input provides
enough information by itself.

The simulated agent is round with a wheel at each side. It has two motors
that control each wheel separately, allowing differential propulsion. It is also
equipped with a linear camera of 64 pixels spanning 180 degrees (see figure 4–
bottom–right). It is positioned in an arena with black and white vertical stripes
of random size painted on the walls at irregular intervals (see figure 4–top). It
is similar to the environment described in [4]. To simplify, we tested also the
learning algorithm in an environment where the stripe sizes were equal.
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Fig. 4. Top: the environment. Bottom left: the neural architecture. Bottom right:
top view of the robot.

The controller of the robot is a spiking neural network with three layers of neu-
rons. The first and third serve as sensors and motor neurons respectively. More pre-
cisely, each of the 64 pixels of the linear camera is associated with a neuron. These
neurons are fed with an input current computed to give either 20Hz or 200Hz for
white and black pixel respectively. The current value I is calculated to provide the
neuron a desired period P . This is done using the formula : I = θ 1−γ

1−γP . We recall
that γ is the leak (decay rate) and θ the threshold. Both were constant throughout
experiments and identical for all neurons (Parameters : γ = 0.99 and θ = 1.0).

The 2 output neurons serve as motoneurons – one for each motor (left and
right). The motor speeds are computed as a linear function of the corresponding
neuron firing rate (over 20 time steps) in such a way that, if an output neuron
does not fire in this time window, the motor goes rearward.

The intermediate layer – the hidden layer – consists of all–to–all connected
100 neurons. Each input neuron has a connection to each hidden neurons and all
hidden neurons project to output neurons. There is no direct connection from
input to output layer (see figure 4–bottom–left).

All the weights of the three layers are chosen randomly according to a nor-
mal distribution. We chose the distribution parameters in order to obtain, when
given an average input (same number of black and white pixels), a balanced pro-
portion of spiking activity coming from the input and from the internal (hidden)
activity and an average behavior of near immobility. These parameters are the
equivalent for the robot of the intermediate value of coupling described in sec-
tion 2. (Parameters: μinput = 0.0, σinput = 0.05, μhidden = 0.0, σhidden = 0.09,
μoutput = 0.04 and σoutput = 0.04 where μ and σ are the mean and standard
deviation of the normal laws).

The robot has two contradictory goals – moving forward while detecting and
then avoiding the walls. In order to detect the walls, the robot has to move. It
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allows us to extract two ”physiological” relevant states for the agent: Moving and
colliding. We’ve decided to apply the learning rule only on those two situations.
In addition, as put in the previous section, these laws must be antagonistic
keeping in mind that one is stronger than the other. Consequently, we’ve decided
that when the robot moves in line, whether forward or rearward (i.e. when both
motors speed were equal) we apply anti–STDP. When the robot hit a wall, we
apply STDP. Indeed, since hitting a wall is a rarer event for the robot, we apply
the strongest law in that case. Note that both laws reinforce the internal drift
of the neural controller but with different phases. They are both learning rules.
The absolute value of the scaling factor was |α| = 0.001.

5 Results

We drew ten random robots and compared the performance with or without
learning for 100 000 time steps. The averaged number of collisions is shown in
figure 5.

In the learning experiment, the number of collisions experienced decreased
indicating an obstacle avoidance behavior. Moreover figures 6–left shows that
moving forward is not impeded and is even increasing for regular size stripes.
This means that the robots are not still and do not turn around themselves.
The obstacle avoidance behavior is then non trivial. Indeed, figure 7 shows the
trajectory of a typical individual after the learning process (with regular stripes).
One notes that the obstacle avoidance is not one hundred per cent perfect since
the agent actually collides with the wall (on the upper right). Nevertheless, the
remainder of the run is collision-free. We can notice that the agent actually
uses a temporal integration of the visual input to stay away from the walls.
The avoidance behavior consists of small rear and forward movements when
close to the obstacle. Away from the walls, however, the movement is faster and
smoother.

Fig. 5. Evolution of the number of collisions averaged over the ten robots. Experiment
without learning is displayed with a dashed line while experiment with learning is
displayed with a plain line. Left: with regular stripes. Right: with random stripes.
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Fig. 6. Left: The average number of time the two motors speed are equal and > 0 for
robots without learning (dashed line) and with learning (plain line). Right: average
number of collisions for various noise value β ∈ {1.0, 0.8, 0.5, 0.0}.

Fig. 7. The trajectory of a typical individual after the learning process. The black
rectangle is the arena, the dashed rectangle indicates the radius of the agent.

In order to test the robustness of the learning, we introduce noise in the camera
input. When computing the input current, let I(t) = βIsignal + (1 − β)Zt where
β is a noise factor and Zt a white noise. β = 1 corresponds to noise-free simula-
tion while when β = 0 the input is made only of noise. We tested the ten robots
after the learning process during 50 000 time steps for β ∈ {1.0, 0.8, 0.5, 0.0}. The
figure 6(right) shows the average performance in terms of collisions. As already
mentioned, even in the case β = 1, there are still some collisions but when β = 0.8
(that is 20% of the information is noise) the performance remains comparable.

These behaviors were homogeneous and depended only on the statistics of
the neural controller’s connectivity. They were not, moreover, dominated by
either extreme regimes. Consequently, the robots was neither reactive neither
automatic.

As a way to assess some properties of the resulting network, we recorded the
spiking activity Xt (number of hidden neurons that fire at time t) during the
evolution of the robot whose trajectory is shown in figure 7. We kept a trace
of this activity by setting : x̄(t) = (1 − ω)Xt + ωx̄(t − 1) (with ω = 0.99)
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Fig. 8. Distance/Spiking activity heightmap. Distance is expressed as a factor of the
agent radius and the spiking activity was scaled between maximum and minimum.

indicating that the higher the value of the trace the higher the past spiking
activity. We recorded also the distance to the nearest obstacle and draw the
bivariate heightmap of these two variables. This map is shown in figure 8. It
shows that the distance is correlated to the spiking activity. It implies that the
resulting neural network shows distance selectivity in its overall activity. It is an
emergent result from the learning algorithm since we do not provide the robot
with the distance and there is no such selectivity for untrained networks.

6 Discussion

In this article, we proposed that competing learning rules for competing dynam-
ics can be a powerful way to a develop neural architecture that learns a temporal
task. We are aware that, at first glance, this learning paradigm seems to be ad
hoc or rather over tuned. Indeed, empirical use of this Hebbian rule may not be
enough to extract more than simple behaviors. Orienting the learning toward
an observed behavior corresponding with our wishes is probably a much more
complicated task.

Nevertheless, to the best of our knowledge, this is the first scientific work where
a spiking neural network learns a navigation task while the robot interacts with
the environment. The results of this are homogeneous and depend only on the
statistics of the network. Moreover, the collision-free navigation itself indicates
non-trivial extraction via the learning process of the relevant features of the
robot/environment relationship.
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Abstract. We present a robot motivational system design framework.
The framework represents the underlying (possibly conflicting) goals of
the robot as a set of drives, while ensuring comparable drive levels and
providing a mechanism for drive priority adaptation during the robot’s
lifetime. The resulting drive reward signals are compatible with existing
reinforcement learning methods for balancing multiple reward functions.
We illustrate the framework with an experiment that demonstrates some
of its benefits.

1 Introduction

Autonomy is central to intelligence—an intelligent system that requires the exter-
nal specification of its goals is a tool, not an agent, because it fails the basic test of
agency. To be autonomous, an agent requires an internal motivational system that
appropriately values the actions available to it and generates its goals. In natural
agents this system is evolved, but in artificial agents we must design it.

Reinforcement learning [17] is a learning, planning, and action selection
paradigm based on maximising reward. Although it does not deal with the prob-
lem of designing the motivational system that generates those rewards, it is an
intuitively appealing model of motivation-based learning. The importance of
motivation to intelligent robot design was recognised early [7,3], and building
motivational systems based on reinforcement learning is still an area of active
research (e.g. [6]).

In this paper we attempt to bridge the gap between motivation and action
selection by outlining the properties that a motivational system should have, and
by introducing a design framework based on them. We illustrate our framework
with an experiment demonstrating its benefits.

2 Background

Reinforcement learning relies on the existence of a reward function that penalises
bad actions and reward good actions. If we are to use it as a method of action
selection for an autonomous robot, we require a reward generating mechanism
(or motivational system) that expresses the robot’s internal goals and motiva-
tions [3]. This mechanism will likely consist of multiple parts—real animals want

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 346–356, 2006.
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more than one thing, and autonomous robots are likely to have multiple (possibly
conflicting) simultaneously active concerns (at the very least, to keep running
and simultaneously complete whatever task it is that we designed them for).

This leads to the concept of a drive as the motivational unit underlying be-
havior, a module that expresses one of the robot’s purposes and produces moti-
vational force as a common currency [12] for use in action selection.

Two types of drive are present in the artificial intelligence literature. Systems
using homeostatic regulation [1] endow the agent with a set of internal physio-
logical variables, each with an optimal range. Actions that move a physiological
variable outside of this range are punished, and actions that move it toward this
range are rewarded. Systems using Hullian drives (e.g. [10,11]) maintain a set of
drives, each with a drive level that varies between totally unsatisfied and fully
satiated. Reward is generated by drive level difference, so actions that raise the
level are rewarded and those that lower it are punished.

In this paper we use Hullian rather than homeostatic drives because not all
drives are homeostatic, and any homeostatic drive can be simulated using a
pair of Hullian drives (one to penalise going above the ideal range, and one
to penalise going below). This increases the number of drives, but also adds
flexibility because the two directions can be handled separately.

3 Desirable Properties

An ideal robot motivational framework would possess the following properties:

1. A drive interface specification that provides a well defined and consistent
way of specifying drives.

2. A reward generating mechanism that allocates drive-specific reward to
actions given their effect on the drive, rooting action selection in the agent’s
motivational state.

3. A drive priority mechanism so that the agent can adjust the relative ur-
gency of each of its drives during its lifetime.

4. Numerically comparable rewards and priorities, so that drive rewards
can be used as a common currency when comparing and balancing the de-
mands of various drives.

5. An efficient action selection mechanism that balances the demands and
priorities of multiple drives.

The split between reward and priority is not self evident, but we treat them
separately because such a split is adaptive. Drives and their associated reward
mechanisms will in most cases be fixed by design or evolution, and be grounded
in the agent’s “physiology”. Priority, however, should be a property of the en-
vironment the agent finds itself in, reflected in its own history. Agents in an
environment where water is scarce but food is not should be able to learn to
value water over food (and therefore have a higher water drive priority). These
aspects of the environment are difficult to predict at design time and may change
during the agent’s lifetime.
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4 Overview

Figure 1 shows an overview of our motivational framework. The framework em-
ploys a collection of drives d1, ..., dn, where each drive di maintains a satiation
level σi and a priority level ρi. The priority level determines the shape of a pri-
ority curve, which translates satiation level to drive priority κi. For each time
step, the reward generated by the drive is obtained by multiplying the difference
in satiation between time steps by the drive priority, and the agent’s aim at any
given time is to maximize the sum of these rewards. A detailed description of
each of these elements is given the following sections.

d1 ρ1

r1

κ1

κn

ρ
n

dn

rn

σ1 σn

r

...

Σ

Fig. 1. An overview of our motivational framework. Each drive di maintains a satiation
level σi, and the reward signal it generates is the difference in σi from one point in time
to the next (shown in light gray) multiplied by a drive priority κi. Drive priority is deter-
mined by translating σi using a priority curve, the shape of which is determined by the
drive’s priority parameter ρi. The agent aims to maximise r = Σiri for action selection.

5 Representing Individual Drives

Each individual drive di consists of the following components:

1. A satiation level σi ∈ [0, 1], where at σi = 0 the drive is starved (and the
agent may cease functioning), and at σi = 1 the drive is satiated and should
have no effect on the agent’s behavior.

2. A drive process that updates σi according to the drive’s intended purpose.
3. A priority parameter ρi ∈ (0, 1), which reflects the agent’s long-term belief

about the difficulty of raising σi. A high value for ρi indicates that di is
difficult to satiate and should thus have a high priority, whereas a low value
indicates that it is easy to satiate and should thus have a low priority.
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Fig. 2. Satiation level modulated by sample priority parameters

4. A priority process that monitors di’s satiation history and slowly increases
or decreases ρi to reflect the drive’s long-term priority.

The priority parameter ρi is used to affect the shape of a priority curve that
determines the drive’s priority κi given its current satiation level, according to
the following equation:

κi = 1 − σ
tan ρiπ

2
i .

Thus ρi allows the agent to adjust its drive priorities without changing the
underlying drive process. Figure 2 shows sample priority curves for a few values
of ρi. A very high value of ρi means that the drive attains a high priority even
when σi is near 1 (satiation), but a low value of ρi means that the drive reaches
a high priority only when it is near 0 (starvation). As we would expect, drive
priority is 1 at σi = 0 and 0 at σi = 1 irrespective of ρi, and at ρi = 0.5 the
priority curve is a straight line.

When the agent performs an action, it results in a change in σi for drive di,
and that change multiplied by the priority level for the drive results in drive
reward ri:

ri(t + 1) = κi(t)[σi(t + 1) − σi(t)].

This results in two design problems per drive: defining a drive process that
expresses the drive’s intended purpose and defining an appropriate priority pro-
cess. The first will differ for each drive, but will in most cases be grounded in
the robot’s physical state. The second will likely be based on the drive’s satia-
tion level history over a long period of time. Section 7 employs a simple priority
adjustment heuristic, but in cases with more drives we expect more complex,
drive specific rules will be required.

6 Combining Drives for Action Selection

We are faced with an action selection problem over a state space comprising
both the internal state of the robot and the external state of the environment.
More specifically, we are trying to find a policy π:

π : (sE , sI) �→ a,
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where sE is an external state descriptor, sI = (σ1, ..., σn) is an internal state
descriptor, and a is an action. We omit the priority parameters, ρ1, ..., ρn, from
sI because we can consider them constant as they are expected to change slowly
over the lifetime of the agent. This means that π is nonstationary, but it will
only change gradually.

Learning this policy directly may be difficult because the resulting state space
may be much larger than sE , the state space of the problem the robot is solving.
Furthermore, this space has significant redundant structure: only (sE , a) is useful
in predicting s′E (sE at the next timestep), and since drive satiation levels do
not interact, (sE , a, σi) uniquely determines σ′

i and thus ri (and each satiation
level may only depend upon a subset of sE).

Unfortunately, it is easy to construct examples where varying just one drive
(e.g., by starving it) drastically changes the optimal policy for a given environ-
mental state. Therefore any individual drive’s value function or policy that is
not a function of both sE and all of sI must be an approximation.

There are two possible ways to exploit the structure of this state space. The
first is to attempt to learn π directly, using a function approximator specifically
designed to take advantage of this structure. Although learning would take place
over both sE and all of sI , if the function approximator is well designed then
the extra dimensions may not make the problem significantly harder.

Alternatively, if such a solution is not feasible, we can learn a value function
Qi for each drive simultaneously and independently (as a function of (sE , a, σi)
only), and combine them to form an overall value function Q. Several solutions
to this problem have been proposed in the literature. Of these, Sprague and Bal-
lard [16] show that using Sarsa (an on-policy reinforcement learning algorithm)
to learn each Qi and then setting Q(s, a) = ΣiQi(s, a) performs best. Using
an on-policy learning algorithm prevents each Qi from overestimation, since an
off-policy algorithm (like Q-learning) would compute each drive’s action values
assuming that their own optimal policies will be followed thereafter.

Using this method is equivalent to treating the values of the other drives as
hidden state, so the resulting state values for each drive will be the same as the
correct value state values for that drive at the expected value of each of the other
satiation levels.

7 Experiments

In this section we use Spier’s domain [14] to illustrate the benefits of the priority
aspects of our framework. An agent (of width 60 units) is placed in a 10, 000 ×
10, 000 toroidal grid containing two types of uniformly scattered resources (of
width 60 units). There are 14 of the first (dark) type of resource, but only 8 of the
second (lighter) type. The agent is able to perceive the proximity (scaled from 0
to 1) and angular distance (scaled from −1 to 1) of the nearest three of each type
of resource within a perceptual range of 1500 units, resulting in a sensor space
of twelve continuous variables. The agent can move forward ten units in the
direction it is facing or rotate in either direction by ten degrees, and has a high-
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Fig. 3. An example domain instance. The large circle indicates the agent’s perceptual
radius, so it can see one of each resource type.

level behavior for approaching and consuming each visible target. Consumed
resources are randomly replaced. Figure 3 shows an example instance.

The agents were given two drives (one for each resource type), each using
a satiation level penalty of 0.00015 for a movement and a satiation level gain
of 0.1 for each successful consumptive act. Each drive’s priority parameter and
satiation value was initially set to 0.5. Learning was by Sarsa(0) and gradient
descent using a linear function approximator (α = 0.01, γ = 0.9) representing
separate value functions for each drive, each over the twelve continuous-valued
sensory attributes plus one continuous satiation level. Actions were chosen from
the available high-level approach and consume behaviors. We randomly gener-
ated 50 sample environments, and ran three types of agents for 250 episodes of 10
consumptive acts each. The first type of agent used drive reduction as a reward,
the second used our framework but with fixed priority parameters (ρ = 0.5), and
the third moved each drive’s ρ value after each episode toward the ratio of the
two drives’ number of successful consumptive acts (using α = 0.1).

The results are shown in Figure 4. The agent that does not take priority into
consideration (Figure 4a) first satiates (at about episode 100) the drive associ-
ated with the plentiful resource, and only then (when further consumptive acts
on this resource create less reward because it is near satiation) makes progress
bringing its second drive towards satiation, although by the end of 250 episodes
the second drive has not reached 80% satiation. The agent using priority curves
(Figure 4b) allocates a higher reward to the lower drive—because it is higher on
the priority curve by virtue of its low satiation value—and therefore increases
both drives simultaneously, with the second drive reaching well over 80% satia-
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Fig. 4. Average (over 50 trials) drive satiation levels for two drives given an uneven
distribution of resources. The first graph (a) shows satiation for an agent using drive
difference directly as reward. The second (b) shows satiation for an agent with fixed
priority parameters, and the third (c) shows the same for an agent that adjusts each
drive’s priority parameter to match observed resource frequency. The final figure (d)
shows the third agent’s priority parameters changing over time.

tion by 250 episodes. This occurs even though both drives have the same priority
parameters. Finally, the agent with flexible ρ values (Figure 4c) is able to better
balance the two satiation levels, even though they cannot be made to match be-
cause of differences in resource frequency. It also reaches well over 80% satiation
by 250 episodes.
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Note that (as can be seen in Figure 4d) the final ρ values inversely reflect
the frequency of each resource, with the ρ value for the light (scarce) resource
converging to approximately double that of the dark (plentiful) one.

8 Related Work

The relevant work in motivational system design1 is primarily split into two
threads: research on motivational models based on drives and research on bal-
ancing multiple reward functions.

8.1 Motivational Models Based on Drives

Cañamero [4] introduced a motivational model using homeostatic drives where
each drive has an error signal (similar to a difference in satiation) which trans-
lated to an activation level (similar to a priority level), which could also be
increased by an incentive stimulus (the presence of a goal object) or an activa-
tion modifier. The behavior attached to the drive with the highest activation is
selected for execution. This system did not use learning for action-selection, but
Cos Aguilera, Cañamero and Hayes [5] built a similar system using a simpler
model and reinforcement learning with dominant-drive action selection.

Blumberg [2] described a behavior-based architecture that uses internal Hul-
lian drives, where action selection uses the behavior with the highest activa-
tion (internal motivation multiplied by incentive stimulus). Reward generated
by drive difference is used to associatively learn the value of incentive stimuli
using reinforcement learning, but not for action selection.

Spier and MacFarland [15] empirically compared five different models of
decision-making in a two-resource domain using Hullian drives. This work did
not use reinforcement learning (although some of the decision models are simi-
lar), and the resources were available in equal quantities so the notion of drive
priorities was absent.

Finally, Konidaris and Hayes [10,11] recently built a situated reinforcement
learning system based on Hullian drives similar to ours (but without a priority
mechanism), using a circadian switching mechanism for drive selection.

8.2 Balancing Multiple Reward Functions

To the best of our knowledge, Whitehead, Karlsson and Tenenberg [19] were
the earliest to recognise that a reinforcement learning robot might have multiple
goals expressed as separate reward functions and need to balance them. They
introduced the idea of reward functions that could be “switched off” and pro-
posed both setting Q to the highest individual Qi value and setting it to the sum
of the Qi values as modular action selection mechanisms. They pointed out that
these methods must respectively understimate and overestimate the monolithic
1 We note that a great deal of research exists on computational models of natural

motivational systems. Since this paper is concerned with motivational system design
rather than modelling, we refer the interested reader to Savage’s review [13].
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(true) value function, and that using the maximum Qi does not perform drive
balancing, while summing the Qi values may lead to actions where no drive re-
ceives a reward at all. However, their empirical results suggest that the difference
between either modular method and the monolithic method is small, and may
be more than made up for by the resulting increase in learning speed.

Sprague and Ballard [16] pointed out that these problems arise from using
off-policy methods, which compute each drive’s action values assuming that its
own optimal policies will be followed thereafter, and show improved performance
using Sarsa(0) (an on-policy learning algorithm). However, unlike Whitehead et
al. [19] they assume that each value function is always active, in which case their
method is not an approximation.

Humphrys [8] surveys several methods for balancing multiple reward functions,
placing them on a continuum from single-minded to cooperative, and introduced
W-learning, where agents explicitly learn a weight for each drive in each state ex-
pressing the extent to which that drive would suffer if its preference is not taken.

Although all of these papers are strongly related to this research, none of them
employed drive mechanisms. Thus they did not include satiation (beyond on or
off) or priority levels, and could not guarantee numerically comparable rewards.

9 Discussion

9.1 The Multiplicity of Drives

Even the most intuitive drives may not be atomic upon closer inspection. For
example, sodium-depleted rats displays an enhanced appetite for food containing
sodium [18], which suggests that they have a separate sodium seeking drive and
possibly other nutrient seeking drives, instead of a single hunger drive. However,
a system approaching the complexity of an animal will need to maintain so many
internal variables that creating and balancing separate drives for each of them
is not likely to be feasible.

One way to get around this would be for each drive to represent many internal
variables likely to be systematically reduced by the same activity (e.g., nutrient
levels are all modified by eating). The drive process could then modify what
changes its satiation level according to the system’s current needs (e.g., fruit
becomes more rewarding when the agent needs sugar). We could even view each
agent-level drive as composed of several subdrives, so that a hunger drive is
composed of a salt drive, a sugar drive, etc., each with a very small state space.

9.2 Motivational Systems as a Basis for Further Learning

Once the motivational system described in this paper is present in an agent, it
could also be used a way of focusing other types of learning. For example, Cos
Aguilera, Cañamero and Hayes [5] learn object affordances based on changes
in motivational state, where the effect of a behavior is quantified in terms of
its effect on the agent’s drives. Another example is provided by Konidaris and
Hayes [10], where a robot learns associations between reward and the sensations
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present at reward states to speed up reinforcement learning in novel environ-
ments. This results in guided (as opposed to blind) searches in new environments
[9], using a form of heuristic that can be learned autonomously. We expect that
robot control architectures based on a motivational system will provide further
opportunities for motivationally grounded learning.

9.3 Non-physiological Drives

When designing a sufficiently complex autonomous robot, we may wish to include
motivational aspects that do not involve “physiological” attributes. For example,
we may wish to motivate the robot to seek social interaction, or to avoid verbal
reprimand. Such motivations can be represented in our framework, and thus in-
tegrated and balanced against physiological factors, although their implementa-
tion may not be as natural as physiological drives. In such cases the drive satiation
level or priorities may be kept within a smaller range than usual so that the robot’s
“physiological” needs are never completely overridden for less immediate motiva-
tions. Alternatively, constraining drive priorities to a particular ordering may be
a useful way to build safety measures or sanity checks into the robot.

10 Summary

We have presented a robot motivational system framework that provides a sim-
ple interface specification for drives, a mechanism for reward generation that
guarantees numerically comparable rewards, and a natural method for adjust-
ing drive priorities. The resulting reward structure is compatible with existing
reinforcement learning methods for balancing multiple drives.
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Abstract. A central role in the development process of children is
played by self-exploratory activities. Through a playful interaction with
the surrounding environment, they test their own capabilities, explore
novel situations, and understand how their actions affect the world. Dur-
ing this kind of exploration, interesting situations may be discovered. By
learning to reach these situations, a child incrementally develops more
and more complex skills. Inspired by studies from psychology, neuro-
science, and machine learning, we designed SMILe (Self-Motivated In-
cremental Learning), a learning framework that allows artificial agents
to autonomously identify and learn a set of abilities useful to face sev-
eral different tasks, through an iterated three phase process: by means of
a random exploration of the environment (babbling phase), the agent
identifies interesting situations and generates an intrinsic motivation
(motivating phase) aimed at learning how to get into these situations
(skill acquisition phase). This process incrementally increases the skills
of the agent, so that new interesting configurations can be experienced.
We present results on two gridworld environments to show how SMILe
makes it possible to learn skills that enable the agent to perform well
and robustly in many different tasks.

1 Introduction

In this paper, we describe SMILe (Self-Motivated Incremental Learning), a learn-
ing framework leading an agent to incrementally learn general abilities through
a direct interaction with the environment guided by self-generated interest. This
approach integrates ideas coming from cognitive sciences and intrinsically moti-
vated reinforcement learning and defines a self-development process that enables
animats to autonomously operate in complex environments.

In recent years, studies on the inner mechanisms of human development, pur-
sued in many different areas (such as neuroscience, psychology, developmental
sciences, robotics, machine learning) converged to a new field, commonly referred
to as developmental robotics [7,20]. Traditionally, a designer must specifically pro-
gram the set of skills needed for an animat to accomplish a given task. Often,
these skills are tuned to perform a predefined task on a specific environment,

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 357–368, 2006.
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and the learned abilities can hardly be reused if the task or the environment
changes. On the other hand, developmental robotics tries to reproduce the basic
mechanisms at the basis of human and animal development processes so as to
propose frameworks in which the agent does not directly address any specific
problem, but develops a set of basic skills up to very general abilities that can
be used to solve many different tasks.

Because of the complexity of its goal, developmental robotics has many differ-
ent facets [7]. In this paper, we focus on a subset of them and we will consider the
developmental process as an incremental process where an agent organizes its
initial skills through spontaneous exploratory phases and self-motivated learning
activities. Self-motivated learning proved to be one of the most challenging as-
pects of development processes, as shown in [19,2,8]. One of the most promising
approaches is intrinsically motivated reinforcement learning [2], that enables an
agent to autonomously develop a hierarchy of skills through a process guided by
an intrinsic motivation, without any commitment to achieve a specific task.

The SMILe framework extends the intrinsically motivated reinforcement
learning model to a more general development process, in which the notion of
interest is not hardwired, but autonomously extracted from characteristics of the
environment. The learning process of each skill has been decomposed into three
phases (babbling, motivating and skill acquisition), that are endlessly iterated
to develop a hierarchy of abilities that can be exploited by animats to better
control the environment.

The rest of the paper is organized as follows. In the next section we give
a general description of SMILe and we introduce a novel framework for self-
motivated learning. Section 3 gives an overview of the implementation of the
framework using Reinforcement Learning (RL) techniques, and we provide a
general definition of the interest function. Section 4 provides some experimental
results on two gridworlds that simulate simple robotic environments, showing
how the acquired skills help the agent to reduce the learning time in many
different tasks. Finally, in the last section we discuss the results and propose
some possible future directions.

2 The Learning Process

As stated in [20], one of the most promising approaches to achieve the ambitious
goal of autonomy in artificial systems, is the definition of a suitable lifelong de-
velopment process. This consists of an open-ended learning process in which an
agent pursues self-motivated goals and develops highly reusable skills. Develop-
mental robotics has its main source of inspiration in studies from neuroscience
and psychology [7], that show how similar mechanisms could be traced in the
developmental process of children.

Many approaches in developmental robotics refer to the studies by Piaget [13],
and to his research on children’s early stages of development. Piaget showed that
childish development can be considered as an incremental process of acquisition
of new abilities in which children modulate the complexity of their activities in
association with the increasing complexity of their cognitive and morphological
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Fig. 1. The self-motivated developmental learning process of SMILe

structures. Another important contribution to the comprehension of the mech-
anisms attending human development comes from the research carried out by
Berlyne [3] about the notion of curiosity and its influence on behavior and the
rising of intrinsic motivation. Berlyne asserts that, in absence of a particular
aim, human behavior is partly determined by an innate will of exploring what is
perceived as interesting. Psychologists define curiosity as a form of motivation
that promotes exploratory behavior to learn more about a source of uncertainty.

In summary, life-long learning seems to be characterized by a progressive, self-
motivated development that leads to the incremental acquisition of more and
more complex skills. SMILe implements this concept into a simplified learning
process suitable for artificial systems, whose aim is to incrementally learn new
skills that could be potentially useful to face different tasks. Each skill is learned
by a self-motivated process that iterates on three main phases (see Fig. 1):

– Babbling: the agent playfully interacts with the environment to get aware of
the relationships between its actions and the environment dynamics.

– Motivating: the agent evaluates which is the most interesting situation it has
experienced during the exploration performed during the babbling phase.

– Skill acquisition: the agent learns the skill to reach the interesting situation.

2.1 Babbling Phase

One of the crucial activities in the development process of puppies and babies
is self-exploration [7]. Through self-explorative acts, they become aware of their
own capabilities with respect to the surrounding environment, understand the
consequences of the actions they have autonomously selected, and learn to con-
trol and exploit the dynamics of their bodies. In analogy to vocal babbling, this
experiential process has been called body babbling [10].

Moving from these observations, we introduced in SMILe, at the beginning
of each iteration, a babbling phase. The acquisition of a new skill starts with a
self-explorative phase in which the agent, for a certain time, randomly executes
its admissible actions. The choice of taking actions according to a uniform prob-
ability distribution over the action space, even if it is not fully compliant to body
babbling theory, is consistent with the fact that this exploration is completely
goal free, without any external motivation leading the agent behavior. The goal
of the babbling phase is to collect information about the environment dynamics
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that can be used in the next phase to determine whether there is any interesting
skill that is worth learning.

2.2 Motivating Phase

There is a huge body of evidence about the central role played by intrinsic
motivation in development process as the main driver of organisms behavior
when no extrinsic motivation is available. In this way, they may increase their
competence to control the environment, by acquiring a broad set of skills that can
be reused for different goals. Studies from psychology, like those of Piaget [13] and
Berlyne [3], and from neuroscience [5], suggest that intrinsic motivation may be
generated by several factors: surprise, incongruity, and novelty. All these factors
act together to determine an intrinsic interest associated to different situations.

Many studies [15,12] relate interest to the current knowledge of the observer
and its capability to predict the outcome of its interaction with the environment,
and propose particular quantitative definitions of novelty and surprise.

In SMILe, this second phase computes the interest function, which associates
an interest value to each state visited during the babbling phase. Despite previous
approaches, we propose a general methodology to define and compute interest
values for each state obtained by the propagation (through the estimated tran-
sition model of the environment) of a given local measure of interest (a formal
definition will be given in Section 3). Once the interest function has been com-
puted, SMILe determines the next goal by searching for the state associated to
the maximum interest. Learning to reach this state is the goal of the third phase.

It may happen that the agent has no strong motivation in learning to reach
a state rather than another. In this case, it makes no sense to spend time and
efforts in learning something that is not so interesting, but it is better to start
a new babbling phase in order to collect more experience that could allow to
discover new interesting situations (represented by the dashed line in Fig. 1).

2.3 Skill Acquisition Phase

During a development process an organism starts with very simple skills and
acquires more and more complex abilities. Each time a new skill is learned, it
may be used to simplify the learning of the following ones, thus progressively
increasing the complexity of the tasks that could be successfully faced.

Recently, the idea of hierarchically decomposing complex problems into sim-
pler sub-problems has been successfully exploited also in RL with the introduc-
tion of formalisms for managing temporally extended actions [1]. Several of these
approaches work with fixed hand-coded decompositions, even if some proposals
have been advanced to dynamically decompose a given goal into simpler sub-
goals [9,11]. Barto et al. [2] have proposed an intrinsically motivated approach
to generate the hierarchy of skills.

In SMILe, during the skill acquisition phase the agent learns, through an
intrinsic reward function, a skill that leads to the most interesting state identified
by the motivating phase. While learning the skill, the agent, in addition to its
basic actions, may benefit also from other previously acquired skills.
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After the acquisition of a new skill, the development process of SMILe starts
a new iteration activating a new babbling phase, in order to experience how the
new skill modifies the agent interaction with the environment. This leads to the
computation of a new interest function that defines a new learning goal, thus
obtaining an incremental learning process that continuously increases the agent
capabilities of controlling its environment.

3 SMILe

In this section we propose an implementation of the learning framework de-
scribed in Section 2. As already proved in many studies [2,21,19], Reinforcement
Learning (RL) is one of the most suitable frameworks to deal with learning
problems in developmental robotics. Furthermore, the incremental development
of simple skills into complex activities can be efficiently described using Hierar-
chical Reinforcement Learning (HRL) [1], as suggested in [2].

3.1 Formal Representation of Skills: The Option Framework

HRL problems are generally formalized using Semi-Markov Decision Process
(SMDP) models. In particular, in the option framework [1] an SMDP is defined
by tuple 〈S, O, P , R〉, where S is the set of states (i.e. perceptions), O is the set
of options (i.e. skills), P(s, o, s′) is the transition model, that is the probability
to get to state s′ taking option o is state s, and R(s) is the reward in state s. The
main difference between traditional RL approaches and intrinsically motivated
learning, concerns the source of reinforcement. While in the usual interaction
model the agent receives a reinforcement signal provided by an external critic,
we consider the reward as the result of an intrinsic motivation of the agent that
pursues self-generated goals according to the model proposed in [2].

Formally, a skill is represented as an option o, i.e. a tuple 〈πo, I, β〉, where
πo : S ×O → [0, 1] is the control policy that describes the probability to execute
an option when the agent is in a specific state, I ⊂ S is the set of states where
the option is defined and β(s) is the probability for an option to terminate at
state s. When the development process starts, the agent has an initial set of basic
options O0, at the k-th iteration, the set of options is incrementally modified
adding the option learned in the skill acquisition phase: Ok = Ok−1 ∪ {ok}.

3.2 Incremental Learning of Reusable Skills

In the following, we give a brief description of the implementation of the devel-
opment phases of SMILe, summarized in Algorithm 1 (for more details see [4]).

In the babbling phase, at each time instant the agent simply executes one
skill at random, choosing among the set of admissible skills Ok. The aim of this
phase is to build, at each iteration k, an estimate (even partial) P̂πk

R
(s, s′) of the

state transition probabilities when the random policy πk
R is used for a sufficient

number of steps. Since the state transition probabilities do not depend only on
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characteristics of the environment, but also on the abilities of the agent, when
a new skill is learned, the capabilities of the agent to control the environment
dynamics change and the state transition probabilities must be recomputed.

Through the playful exploration performed in the babbling phase, the agent
experiences several different situations. In the motivating phase, SMILe computes
the interest associated to each state on the basis of the information contained in
the estimated state transition probabilities P̂πk

R
(s, s′).

Although there are several characteristics of a model that could be used to
compute the local interest of a state, such as transition entropy and controllabil-
ity (details can be found in [14]), here we will focus on the following definition:

ρ(s) = (1 − pin(s)) − pin(s) (1 − pout(s)) , (1)

where pin(s) = 1
|S|
∑

s′∈S PπR(s′, s) and pout(s) =
∑

s′ 	=s PπR(s, s′). The first
term of Equation 1 is the probability of not moving into state s in one step
following the policy πR, given that the agent starts from a random state. To this
term, we subtract a second term that represents the probability to reach s in one
step starting from a random location and then to remain in s for another step.

Algorithm 1. The SMILe Algorithm
1: repeat
2: Babbling Phase
3: for all Babbling episodes do
4: for all Steps do
5: Given state s, choose action o at random over Ok

6: Take action o, observe state s′

7: Update state transition probability estimation P̂πk
R
(s, s′)

8: end for
9: end for

10: Motivating Phase
11: Given model P̂πk

R
(s, s′), compute local interest ρ(s)

12: Compute interest function I(s)
13: if no interesting state can be identified then
14: step back to the Babbling Phase
15: else
16: Extract subgoal s∗ = arg maxs I(s)
17: Create reward function R(s)
18: end if
19: Skill Acquisition Phase
20: for all Skill Acquisition episodes do
21: for all Steps do
22: Given state s, choose action o according to ε-greedy
23: Take action o, observe state s′ and reward r
24: Update state-action value function
25: end for
26: end for
27: until forever
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The intuition behind Equation 1 is that states that, under a random policy, are
difficult to be reached or that, once reached, can be easily left, are relevant as
subgoals for many complex tasks whose solution needs the agent to pass through
states that cannot be easily reached without a specific skill.

This measure defines the concept of interest of a state only on the basis of
information about its input and output transition probabilities, without taking
into account the characteristics of the surrounding states; for this reason we call
it local interest functions. Using the estimated state transition probabilities and
a local interest function, we define the global interest function with the following
Bellman-like equation:

Ik(s) = ρk(s) + γ
∑
s′∈S

P̂πk
R
(s, s′)Ik(s′). (2)

In this way, the interest of a state depends, not only on the characteristics
of its local transitions, but also on the interests of those states that may be
reached from it. The discount factor γ ∈ [0, 1) determines how much distant
states should influence the interest of the current state. To compute I(s) we can
use an iterative policy evaluation algorithm that uses Equation 2 as an update
rule [17]. The formulation of the interest function I(s) given in Equation 2 is
such that it can represent a large set of the aspects of the concept of interest
depending on the specific definition of local interest ρ(s) that is used.

Once Ik(s) has been computed, the agent self-determines its next goal by
choosing the most interesting state sk = arg maxs Ik(s), and produces an intrin-
sically motivated reward function that simply returns a positive reward when
the agent achieves state sk and null otherwise. It is possible to show that, using
the definition of local interest previously introduced, the acquisition of new skills
decreases the interest in goal states (boredom effect), thus preventing the agent
from choosing them again.

As stated in Section 2.2, after some iterations, the interest function tends to
flatten until no state with relevant interest can be identified in the motivating
phase. In this case, the agent has no advantage from learning to reach new
useless goals and the babbling phase is started again in order to either refine the
transition model estimation or adapt to changes in the environment dynamics [4].

After having identified the goal state sk and generated the intrinsically mo-
tivated reward function Rk(s), the agent starts the skill acquisition phase in
which it learns the policy of a new option ok whose goal is sk. The policy of
the new option is learned according to the option learning algorithm described
in [1]. At each time step, the action value function Q(s, o), that is the estimation
of the amount of reward the agent can obtain by taking option o in state s, is
updated according to the following update rule:

Q(s, o) ← (1 − α)Q(s, o) + α

[
r̃ + γi max

o′∈Ok−1
Q(s′, o′)

]
(3)

where α is a learning step size, i is the number of steps taken by option o to
meet its termination condition and r̃ is the reward accumulated from s to s′ in
i steps according to the reward function Rk(s).
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Once the skill acquisition is finished, the new option ok is created and added
to the set of options Ok−1. This new option is characterized by a deterministic
policy that can be directly derived from the action value function Q(s, o) by
choosing in each state s the option o that maximizes its value. The termination
condition β(s) is set to 1 for s = sk and to 0 elsewhere. For what concerns the
initial set, it can be limited to a subset of the state space S composed by the
states that have been most visited in the skill acquisition phase.

The incremental generation of new options makes the agent able to develop
a hierarchy of skills, where new options can reuse previously learned options to
achieve the goals extracted in the motivating phase.

4 Experiments

In this section, we provide experimental results obtained by SMILe in two differ-
ent environments. In the first problem, we show how SMILe learns general pur-
pose options that may be effectively reused for learning to reach a large number
of goals. The second experiment puts in evidence how the SMILe development
process can significantly reduce the learning times.

4.1 Four-Room Gridworld

The Four-Room (Fig. 2) environment [18] is a 10x10 grid with a set of walls
that delimit four rooms. The initial set of actions is A = {down, right, up, left}
and the starting state is the upper left corner. To introduce stochasticity in the
world dynamics, actions have a probability of 0.3 to fail. When an action fails
the agent moves to one of the adjacent states at random.

The development process of SMILe led to the identification of interesting
goals only in limited regions. The density plot in Fig. 3 shows the frequency
of subgoal identification for each state: the lighter the region the higher the
frequency of extraction. It is worth noting that, using the interest function
described in Section 3, SMILe finds the states in the middle of the rooms as
most interesting. Recalling the definition of local interest (Eq. 1), the expla-
nation of this result is that from these states the agent can easily reach all

S

Fig. 2. Four Rooms
world

Fig. 3. Density plot of
subgoal distribution in
Four Room world

Table 1. Average and maximum
number of learning steps in Four-
Rooms with random goal

Algorithm Mean Max
Q-Learning 1.293 · 104 3.569 · 104

Random 1.756 · 104 6.777 · 104

SMILe 0.957 · 104 2.044 · 104
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the other states in the room. The usefulness of the learned skills can be mea-
sured only by imposing many different external goals to the agent and by eval-
uating the global learning performance. Therefore, we have performed a com-
parison among Q-learning [17], Q-learning with four skills whose goals have
been chosen at random, and Q-learning with the four skills learned by SMILe,
over 1000 randomly extracted external goal states. Then, we have recorded the
sum of learning steps for each goal over the first 100 episodes. Table 1 reports
the number of steps in the average and in the worst case. As it can be no-
ticed, both the average and the maximum number of steps needed by SMILe
are less than those needed by the other two algorithms. This means that the
skills acquired by SMILe produced a relevant advantage when facing differ-
ent learning problems. Furthermore, since Q-Learning with skills for random
goals obtained the worst performance, the result of SMILe is not simply de-
termined by the use of the option framework, but it strongly depends on the
identification of interesting states that lead to the acquisition of general-purpose
skills.

4.2 Playworld Environment

The second experiment we discuss, is a version of the Playworld proposed in [16].
The Playworld is an abstraction of a real environment characterized by two
rooms with a door in between, two panels and a charger (see Fig. 4). The panels
are in the room at left: the light panel switches the light on and off, while the
door panel opens and closes the door. The animat perceives the light intensity,
whether the door is open or not, its charge level and its position (i.e., absolute
coordinates and orientation). The animat is initially placed at random in the
left room and the light is switched off. When in the dark, the animat may fail in
taking the selected action with a probability of 0.2, it cannot perceive the status
of the door, and the door panel is deactivated. Once the light is switched on,
actions always succeed, the animat can open the door, move to the other room
and charge. The animat can turn left, turn right, and move ahead.

The experiment consists of two main stages: intrinsically motivated incremen-
tal learning and extrinsically motivated learning. In the first stage the animat
explores the environment and develops new skills according to the process de-
scribed in Section 2. In the second stage, five different goals are imposed by an
external designer by providing an extrinsic reward function.

In the first stage, the salient events we can expect the animat to find are: light
on, light off, open door, close door, charge. The upper graph of Fig. 5 shows the
events occurred in the babbling phase at first iteration, when the agent succeeds
in switching the light on and off only a few times. The lower graph of Fig. 5
shows the changes in the babbling phase introduced by the skills learned after
five iterations. As it can be noticed, the skills developed in the previous iterations
bias the random exploration so that the animat succeeds in activating new and
more complex events (e.g., open the door and charge). This shows how SMILe
enables the animat to autonomously discover interesting configurations in the
environment and to develop new skills for achieving them.
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Fig. 4. The Playworld environment
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In the second stage, when the development process is over, we compare the
performance of an animat that exploits the new skills, to that of an animat using
Q-Learning with basic skills, on five different tasks:

Task1 : charge
Task2 : charge, move to upper left corner of right room
Task3 : charge, move to upper left corner of left room
Task4 : charge, move to left room and close the door
Task5 : charge, move to left room, close the door, switch the light off

While Task2 and Task3 are not strictly related to any salient event, the other
tasks require the animat to achieve configurations relevant in the Playworld
environment. In the comparison, we adopted the same learning parameters for
both Q-Learning and SMILe (learning rate α = 0.6, ε-greedy exploration with
ε = 0.2, discount factor γ = 0.95). Each 1,000 learning episodes, the extrinsic
reward function is changed according to the task that must be accomplished and
the learning animat should be able to adapt its policy to the new task without
restarting the learning from scratch.

Fig. 6 shows the number of steps per learning episode. The first 2,100 episodes,
labeled as Self-Development in the graph, represent the first stage of the experi-
ment in which the SMILe animat autonomously identifies six different interesting
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states, used as goals for learning six new skills. On the other hand, in the first
stage the Q-Learning animat does nothing, since no extrinsic reward is provided.
The second stage starts with the introduction of a positive extrinsic reward for
achieving the charger. While the Q-Learning animat can only use the basic skills,
the SMILe animat exploits the skills learned in the first stage and succeeds in
finding the optimal policy to reach the charger in less episodes than those needed
by Q-Learning. Similarly, SMILe succeeds in exploiting its skills even for chang-
ing tasks, while Q-Learning took more time to adapt to new extrinsic reward
functions. Furthermore, in Fig. 7 we compare the total number of steps for both
the algorithms and we report their difference. In the first stage, SMILe takes al-
most 250,000 steps to explore the environment and to learn the new skills, while
no steps are taken by the Q-Learning robot. Notwithstanding the initial loss, the
total number of steps needed by SMILe after the accomplishment of Task1 is
less than that of Q-Learning. The advantage of SMILe becomes even more rele-
vant at the end of the second stage when Q-Learning took almost twice as many
steps as SMILe. This comparison shows that SMILe, even though it requires po-
tentially expensive exploration of the environment, leads to the development of
useful skills that can be profitably reused in many different tasks. In particular,
the number of steps saved during the extrinsically motivated learning stage is
greater than those used in the first stage already in the first goal.

5 Conclusions

Hand-coded abilities, though useful in domains where tasks are fixed, proved to
be inadequate to enable artificial systems to solve even slightly different tasks in
uncertain environments. On the other hand, the capability to develop new skills
from basic abilities without any imposed goal, is what makes human beings and
animals able to reuse their skills in many complex tasks.

In this paper, we have presented SMILe, a self-development RL framework
that incrementally acquires more and more complex skills through an itera-
tive three phase learning process similar to those taken by children and animal
puppies in their early development stages. Experimental results show the effec-
tiveness of the skills learned by SMILe when operating in environments where
different tasks may arise, thus developing agents with a good degree of autonomy.

Currently, we are investigating the use of function approximation techniques
to scale to large, high dimensional domains. Future work includes the integration
of SMILe with developmental robotics approaches in real robotic tasks [6].
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Abstract. Jean is a model of early cognitive development based loosely on Pi-
aget’s theory of sensori-motor and pre-operational thought [1]. Like an infant,
Jean repeatedly executes schemas, gradually extending its schemas to accommo-
date new experiences. Jean’s environment is a simulated “playpen” in which Jean
and other objects move about and interact. Jean’s cognitive development depends
on several integrated functions: a simple perceptual system, an action-selection
system, a motivational system, a long-term memory, and learning methods. This
paper provides an overview of Jean’s architecture and schemas, and it focuses on
how Jean learns schemas and transfers them to new situations.

1 Introduction

Jean is both a synthesis of ideas about cognitive development and the foundations of
concepts, and an integrated software system that implements perception, action, learn-
ing and memory. Most of this paper is devoted to the Jean system, so let us begin with
the underlying ideas. From Piaget we borrow the ideas that children learn some of what
they know by repeatedly executing schemas, and executing schemas is in a sense re-
warding, and some new schemas are modifications or amalgamations of old ones [1].
The Image Schema theorists [2,3,4,5,6] promote the ideas that primitive schemas are
encodings or redescriptions of sensorimotor information; and these schemas are se-
mantically rich, general, and extend or transfer to new situations, some of which have
no salient sensorimotor aspects. Another idea, represented by various authors, is that
semantic distinctions sometimes depend on dynamics — how things change over time
— and so schemas should have a dynamical aspect [7,8,9,10].

Jean will test several conjectures about developmental AI: First, it will be possible to
provide a relatively small, core set of schemas and a general algorithm to learn others as
they are needed or indicated by experience. We are betting on a compositional account
of knowledge, in which newly learned schemas are assembled from previously learned
and appropriately modified components. Second, schemas will have to be more than
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the declarative, logical structures proposed by AI researchers over the decades; they
will have to include behavior-generating controllers, dynamic maps, deictic variable
bindings, and causal theories; these components will not all develop simultaneously.
Third, the generality of these schemas provides a basis for the effective transfer of
knowledge learned in one task to a new, related task.

2 The Image Schema Language

Image schemas are Jean’s elementary and innate representations, and much of Jean’s
design follows from these representation commitments, so we begin our description of
Jean with them. Image schemas are representations that are “close” to perceptual expe-
rience. Some authors present them as re-descriptions of experience [5]. Their popularity
is due to their supposed generality and naturalness: Many situations are naturally de-
scribed in terms of paths, up-down relations, part-whole relationships, bounded spaces,
and so on. Even non-physical ideas, such as following an argument, containing politi-
cal fallout, and feeling “up” or “down,” seem only a short step from image-schematic
foundations [2,3].

These ideas are attractive but vague, as we discovered when we tried to build a formal
Image Schema Language (ISL) [11]. We found it necessary to distinguish three kinds
of image schema. Static schemas describe unchanging arrangements of physical things;
dynamic schemas describe how the environment changes; and action schemas describe
intentional aspects of static and dynamic schemas. Thus, the action schema approach-
object includes a path (a static schema) but gives it the intentional gloss that it is the
path one intends to follow (or is following). Moving might be intentional or it might
simply be the result of force acting on an object. Both cases involve a path, but the
latter is described by a dynamic schema, not an action schema.

2.1 Static Schemas

As represented in ISL, static image schemas are objects, in the sense of the object-
oriented data model. Each schema has a set of operations that determine its capabilities.
For example, operations for a basic container schema include putting material into a
container and taking material out. Each schema also has a set of internal slots that
function as roles in a case grammar sense [12]. Slots permit image schemas to be related
to each other through their slot values. For example, the contents of a container can be
other image schemas.

To illustrate static schemas in ISL, it will be helpful to walk through an example,
which we take from our work on representing chess patterns. Consider a chess board
in which the Black queen has the White king in check. In image schema terms, we say
that there exists a path from the queen to the king. In ISL, we generate a path schema,
which contains a set of locations. Through a mechanism called interpretation, we can
substitute one kind of schema for (part of) another in ISL, which allows us to make the
locations along the paths be container schemas. Then, by setting the capacity of these
containers to one piece, we capture the idea that the location (interpreted as a container)
is “full” if it is occupied by a piece. A blocked path is then a path with at least one full
container/location.
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2.2 Dynamic and Action Schemas

If Jean lived in a chess game, we might choose to represent the dynamics of the en-
vironment as a sequence of static schemas, like fluents in the situation calculus: Some
schemas describe the environment until an instantaneous chess move happens, then oth-
ers do. Jean’s environment changes continuously, and there is much structure in how it
changes, so we have adopted the following representation for dynamic schemas and
action schemas: Both are finite state machines, the states of which are themselves com-
posed of image schemas. For example, to catch a simulated cat, Jean must sneak up on
the cat slowly and then, when it gets near the cat, Jean must pounce. As illustrated in
Figure 1, the action schema for catching a cat must have at least these two states (and
actually, a couple more). Each state contains several static and dynamic schemas. For
instance, state s3 of Figure 1 comprises an object schema that binds its deictic variable
to the cat, and a near-far schema that binds its two deictic variables to the robot (i.e.,
Jean) and the cat, respectively. The near-far schema also asserts that the cat is more than
six units away from the robot. s3 is associated with two action schemas, fast-approach-
object (F ) and slow-approach-object (S), represented as arcs leaving s3.

Composite action schemas like catching a cat are called gists because they involve
story-like sequences of actions and states and they abstract away many of the details of
particular instances.

In addition to the familiar, declarative components of schemas, dynamic and action
schemas contain dynamic maps, which describe continuous, smooth changes in state
variables. Dynamic maps have three functions: They let Jean estimate when changes
will occur, they tell Jean when its actions are, or are not, likely to achieve its goals,
and they help Jean find the boundaries between states. These functions are elaborated
in Section 4.

Action schemas also contain controllers that control behavior. For instance, Jean’s
schema for approaching binds its variables to the approaching object (typically Jean)
and the approached object, a map that shows how distance between the objects changes
over time, and a controller that makes Jean move toward the location of the object

Fig. 1. A learned composite action schema for catching a cat
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Fig. 2. The main functional components of Jean

it is approaching. Eventually, schemas will also be augmented with causal relations
(see Sec. 7).

3 The Architecture of Jean

The main functional components of Jean are illustrated in Figure 2. Over time, Jean
learns new schemas and gists, all represented in the Image Schema Language (ISL).
When Jean has a goal, such as catching a simulated cat, it retrieves an appropriate gist
and runs its controller, which means taking the actions that produce transitions between
states. The component of Jean that runs schemas is called the behavior generator. Ex-
ercising schemas produces sensory data, and lots of it. The job of the interpreter is
to retrieve and instantiate (i.e., bind the deictic variables of) schemas from the repos-
itory. Interpretation also updates conditional probabilities associated with state transi-
tions within gists. Jean will try to interpret the sensory data in terms of the schemas
in the gist it is running; for example, if it is trying to catch a cat, then it will prefer to
interpret the sensory data as matching the states in Figure 1. Sometimes, though, the fit
is poor, and another schema in the repository does a better job of explaining the sen-
sory data. And sometimes, it is necessary to construct a novel static, dynamic or action
schema, as described in the next section.

4 Learning: Experimental State Splitting

Jean learns new schemas in two ways, by composing schemas into gists and by differ-
entiating states in schemas. Both are accomplished by the Experimental State Splitting
(ESS) algorithm. The basic idea behind Experimental State Splitting (ESS) is simple.
The algorithm starts with a minimal state model of the world, in which it has only one
all-encompassing state. This model is modified as the agent explores its world, so that
it becomes more predictive of some measure of observed action outcomes.

For a general developmental account we want a general measure, not a task-specific
one. To accord with the idea that learning is itself rewarding, this measure might have
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something to do with the informativeness or novelty or predictability of states. In Jean,
the ESS algorithm uses a measure we call boundary entropy, which is the entropy of
the next state given the current state and an intended action. Initially, when there is only
one state in the model, the entropy will always be zero. One way to drive Jean toward
more states, and, thus toward states that have boundary entropy, is to have a goal state
in addition to the initial (non-goal) state. At any moment in time, the agent is in one of
these two states, and each state-action pair generates some probability distribution over
the set of possible next states. ESS calculates the entropy of this distribution and uses it
as a state splitting criterion.

In general, Jean is driven by ESS to modify its world model by augmenting existing
states with new states that reduce the boundary entropies of state-action pairs. This aug-
mentation is achieved by splitting an old state into two (or more) new states based on
distinguishing characteristics. For example, if an agent is navigating a city intersection, it
might decide that “green light” is an important characteristic because, where it observes
a green light, it is much less likely to be involved in crashes. Thus, its non-goal state
would be split into two states: (1) a green light is observed and its goal has not yet been
attained, and (2) neither a green light is observed nor its goal has been obtained. The state
machine thus grows over time as the agent adds more attributes to its state descriptions.

As Jean interacts with the world, it counts the transitions between the states via
particular actions. If the developing state machine model is Markov, then the model is a
Markov Decision Process (MDP), which Jean can solve for the optimal policy to reach
its goal state. In this way, the developing model can be used for planning. However, it
is worth pointing out that since Jean operates in a continuous environment using fairly
general action schemas, its world model is more like a semi-Markov Decision Process
(SMDP), where each action results in a transition between states after a certain amount
of time, and this time interval is drawn from some probability distribution.

If Jean lives always in one environment with one set of goals, then ESS will even-
tually produce optimal policies for the environment. However, the purpose of the Jean
project is not to produce optimal policies for each task and variant of Jean’s environ-
ment, but, rather, to explain how a relatively small set of policies may quickly accom-
modate (as Piaget called it) or transfer to new tasks and environments. Our approach
to this problem is to extract gists from policies. Gists are like policies, in that they tell
Jean what to do in different situations, but they are more general because they extract the
“usual storyline” or essential aspects of policies. We claim that these essential aspects
are typically the causal relationships that govern actions and effects in the environment.
If an agent can identify and learn these causal relationships, then it should have a very
good idea of how its actions affect the world and how act to achieve its goals, even in
novel situations. We will discuss gists and transfer further in Section 5.

4.1 An Example

Figure 1 illustrates a gist for approaching and contacting a simulated cat. In the scenario
in which this gist was learned, the cat is animate, capable of sitting still, walking or run-
ning away. The cat responds to Jean. In particular, if Jean moves toward the cat rapidly,
the cat will run away; if Jean approaches slowly, the cat will tend to keep doing what
it is doing. Because of these programmed behaviors, there is uncertainty in Jean’s rep-
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resentation of what the cat will do, but there is a general rule about how to catch the
cat, and it can be represented in a gist: The only way to catch the cat is to first get into
state s2 (Fig. 1), where the cat is nearby and not moving quickly, and then to move fast
toward the cat, reaching state s1. All other patterns of movement leave Jean in states s3
or s4. This corresponds to the strategy of slowly sneaking up to the cat and then quickly
pouncing on it to catch it.

To learn a gist like the one in Figure 1, Jean repeatedly retrieves action schemas from
its memory, runs the associated controllers, producing actions, specifically slow and fast
movement to a location; assesses the resulting states, and, if the transitions between states
are highly unpredictable, Jean splits states to make the resulting states more predictable.

In fact, the three states, s2, s3 and s4 were all originally one undifferentiated state
in which Jean moved either fast or slowly toward the cat. Jean’s learning history — the
distinctions it makes when it splits states — begins with a single, undifferentiated non-
goal state. Then, Jean learns that the type of object is an important predictor of whether
or not it can catch the object. Balls are easy to catch, whereas cats are hard to catch.
From here, ESS recognizes that distance also influences whether or not it can catch
a cat. Starting near the cat, a fast-approach-object (F ) action will often catch the cat,
whereas this action will not usually catch the cat from further away. Thus, ESS splits on
distance with a threshold of 6, where <= 6 is considered near, and > 6 is far. Finally,
ESS may notice that even when Jean is near the cat, sometimes it does not succeed in
catching the cat. This might be because the cat is already moving away from the agent
with some speed. Thus, ESS may do a final split based on the velocity of the cat. This
process leads to the states s2, s3, s4 and s5 that we see in Figure 1.

4.2 The Algorithm

We give a formal outline of the ESS algorithm in this section. We assume that agent
receives a set of schema features F t = {f1, . . . , fn} from the environment at every time
tick t; these features could be schema slots that represent sensor readings, for example.
We also assume that Jean is initialized with a goal state sg and a non-goal state s0. St is
the entire state space at time t. A is the set of all actions, and A(s) ⊂ A are the actions
that are valid for state s ∈ S. Typically A(s) should be much smaller than A. H(si, aj) is
the boundary entropy of a state-action pair (si, aj), where the next observation is one of
states in St. A small boundary entropy corresponds to a situation where executing action
aj from state si is highly predictive of the next observed state. Finally, p(si, aj , sk) is
the probability that taking action aj from state si will lead to state sk.

For simplicity, we will focus on the version of ESS that only splits states; an alter-
native version of ESS is also capable of splitting actions and learning specializations of
parametrized actions. The ESS algorithm follows:

– Initialize state space with two states, S0 = {s0, sg}.
– While ε-optimal policy not found:

• Gather experience for some time interval τ to estimate the transition probabil-
ities p(si, aj , sk).

• Find a schema feature f ∈ F , a threshold θ ∈ Θ, and a state si to split that max-
imizes the boundary entropy score reduction of the split: maxS,A,F,Θ H(si, ai)
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−min(H(sk1 , ai), H(sk2 , ai)), where sk1 and sk2 result from splitting si using
feature f and threshold θ: sk1 = {s ∈ si|f < θ} and sk2 = {s ∈ si|f ≥ θ}.

• Split si ∈ St into sk1 and sk2 , and replace si with new states in St+1.
• Re-solve for optimal plan according to p and St+1

The splitting procedure iterates through all state-action pairs, all of the schema fea-
tures F , and all possible thresholds in Θ and tests each such potential split by calcu-
lating the reduction in boundary entropy that results from that split. This is clearly an
expensive procedure. In future we will speed it up with heuristics that limit the Jean’s at-
tention to relevant features and state-action pairs. Heuristics to find potential thresholds
are discussed next.

4.3 Finding Splitting Thresholds, Learning New Dynamic Schemas, and Other
Criteria for Splitting

Given a candidate schema feature f for splitting, ESS must find a threshold on which
to split the state using that schema. To do this, Jean uses a simple heuristic: States
change when several state variables change more or less simultaneously. This heuristic
is illustrated in Figure 3. The upper two graphs show time series of five state variables:
headings for the robot and the cat (in radians), distance between the robot and the cat,
and their respective velocities. The bottom graph shows the number of state variables
that change value (by a set amount) at each tick. When more than a set number of state
variables change, Jean concludes that the state has changed. The value of the schema f
at the moment of the state change is likely to be a good threshold for splitting f . For
example, between time period 6.2 and 8, Jean is approaching the cat, and the heuristic
identifies this period as one state. Then, at time period 8, several indicators change at
once, and the heuristic indicates Jean is in a new state, one that corresponds to the cat
moving away from Jean. The regions between these changes become the dynamic maps
associated with dynamic and action schemas, and the active schemas in these regions
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are bundled together into composite dynamic and action schemas such as “s2: Object :
Cat ; Near-Far : Robot, Cat :Distance ≤ 6 ; Movement Cat : Velocity ≤ 5.”

This segmentation of the time series helps Jean learn new dynamic schemas. Seg-
ments correspond to dynamic maps in dynamic and action schemas. As long as Jean
is safely within a schema, state variables will change as the schema’s maps prescribe.
Over time, Jean builds up a statistical model of how state variables are expected to
change in a state. If the variance of this model is high, then it suggests the state is a
candidate for splitting.

Other useful indicators that states need to be split include rewards (and costs), and
repeatability or closure. Reward is fairly straightforward: we wish to split states so that
new states will better predict future rewards (rather than simply predicting future states).
Repeatability or closure refers to whether actions are easily repeated once executed. For
example, picking up and dropping a block onto a table is easily repeated because the
action leads to a state where it can immediately be repeated. Such “closed” actions
are more easily learned by children, thus we may want closure to be an indicator for
splitting actions.

5 Transferring Learning

Although ESS can learn policies for new situations from scratch, we are much more
interested in how previously learned policies can accommodate or transfer to new situ-
ations. We call transferrable policies gists, or generalized summaries of policies. Gists
capture the most relevant states and actions for accomplishing past goals. It follows
that gists may be transferred to situations where Jean has similar goals. Jean could, of
course, try to execute gists without modification in these situations. However, in situ-
ations that are not very similar, it may be more effective to execute a gist from which
state transition probabilities have been excised. The extra cost of relearning the prob-
abilities may be offset by the cost of negative transfer. Sometimes a learned gist can
actually inhibit learning of a new gist. For instance, having learned to drive in the U.S.
can interfere with learning to drive in the U.K. In cases like this, one wants to keep the
general structure of a gist because it describes the states and transitions that occur in
both situations, but learn new transition probabilities. By dropping transition probabil-
ities, we may have an easier time finding a policy in the new situation without being
burdened by the weight of past experiences.

6 Experiments

We tested Jean’s transfer of schemas between situations in a simulated 3-D physical
environment. Jean’s task is to catch a given target object as quickly as possible. The
targets, which we refer to as a “ball” and a “cat,” have different dynamics. The ball
moves ballistically when Jean makes contact with it (and may be moving at the start of a
learning episode), whereas the cat is self-moving and has a preference to not be caught
by Jean. In these experiments, the cat runs away if Jean is far away but approaching
quickly, or when Jean is very near. Thus, the best way to catch the cat is to sneak up
slowly and then quickly pounce upon it. In these experiments, Jean has four innate
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(not learned) action schemas: fast-approach, slow-approach, stop, and wander. In some
experiments there are obstacles, such as walls.

In each trial, Jean has a chance to complete its given task — catch a ball or catch a
cat — within a time limit. The time Jean requires to perform its task is the dependent
variable, and is expected to decrease as Jean learns to catch its targets. An experimental
condition includes 100 trials. The value of the dependent variable, time to catch the tar-
get, is smoothed over these trials using a smoothing window of 15 trials. Good learning
performance should corresponds to a line that slopes down from left (early trials) to
right (later trials).

To evaluate the effect of transfer, we follow an “B vs. A+B” protocol. A and B refer
to tasks across which we might observe transfer; for instance, A might be catching a
ball, and B, catching a cat. The protocol involves two conditions: The “B” condition
involves learning to perform a task, B, whereas the “A+B” condition involves learning
task B after learning to perform task A. If the gist for task A transfers, then it will
improve some aspect of performance on B, either the initial level of competence on B
(before learning) or the rate of learning to perform B.

Jean was tested on three tasks: A: Catch a ball in an unobstructed room; B: Catch a
cat in an unobstructed room; C: Catch a cat in a room with obstacles such as additional
walls. Here Jean must learn to avoid bumping into the walls while chasing the cat. We
constructed five experimental conditions:

B. Catch the cat without any prior training.
A+B. First learn to catch a ball, then learn to catch a cat.
C. Catch the cat in the obstructed room without any prior training.
B+C. First learn to catch a cat in an unobstructed room, then learn to do this in a
room with additional interior walls.
B+A. First learn to catch a cat in an unobstructed room, then learn to catch a ball
in the same room.

The data presented here are a representative sample of system performance in the
conditions in which we expect positive or negative transfer.1

Figure 4 shows Jean learning to catch a cat in an unobstructed room. The dotted line
represents Jean learning to catch a cat without any prior knowledge (i.e., condition B).
We see little improvement in the performancemeasure as Jean acquires more experience.
The bold line represents Jean’s performance on the catch-a-cat task after learning to catch
a ball. Clearly Jean is able to transfer some of its knowledge from catching a ball to the
task of catching a cat. In particular, it has already established a preference ordering on
its action schemas, whereby it prefers fast-approach and slow-approach over stop and
wander, since these result in shorter ball-catching times. Thus, in the A+B, condition,
Jean does not explore the stop and wander actions, but directly accommodates its ball-
catching gist to cat-catching. It is quickly able to identify the proper state to split (i.e.,
split based on the NEAR-FAR schema), and learns the optimal policy for catching a cat.
This is clearly represented by the large drop in catching time seen around time 20.

1 We are currently conducting tests for statistical significance, based on the methods of Piater
et al. for comparing learning curves [13]; these will be ready in time for the camera-ready
submission. These are particularly important since there is a high degree of variability inherent
in the simulation domain.
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Fig. 4. Graph showing average performance over repeated trials in the B versus A+B regimes.
Performance is measured as the time taken for the robot to catch the target object. If in some
trial the object is not caught within the time limit, then the time limit value is used as that trial’s
performance.
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Fig. 5. Graph showing average performance over repeated trials in the C versus B+C regimes

A similar benefit of prior learning is seen in Figure 5. Here, the dotted line shows
Jean’s performance while attempting to learn from scratch how to catch a cat in an
obstructed room (condition C). The bold-face line shows the performance given that
Jean has already learned how to catch a cat in an open room (condition B+C). The
transfer premium is due to Jean using its learned Task B gist to accomplish Task C
when the cat is not hiding behind a wall. Jean then only needs to learn to amend this
gist to deal with the situation in which the cat is hiding. There is more variability in the
C condition because random exploration, which is more prevalent in the C condition,
may cause the cat to run far away.
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Finally, in the B+A condition, we found an example of negative transfer (graph not
shown). Recall that transfer is not always beneficial when applied blindly. Here, Jean
first learns task B. It learns to sneak up to, and then pounce on, the cat. When Jean
directly applies this gist to task A, it results in a sub-optimal behavior, since one does not
need to sneak up to a ball. Depending on its exploration behavior, Jean might take a long
time to realize that its behavior is suboptimal. However, we can ameliorate this negative
transfer by modifying the knowledge being transferred. Instead of transferring a gist that
includes all states, actions, and transition probabilities, we can transfer only the state
descriptions, leaving out the transition probabilities that were observed when learning
the old task. This removes most of the negative transfer effect. Any remaining decrease
in performance simply results from the fact that the agent has a slightly larger state
space to explore. This transfer mechanism, where transition probabilities are dropped
but state description are retained, is used in the A+B and B+C conditions as well.

7 Future Work

We are currently extending this work in a variety of ways. We have implemented a dif-
ferent learning domain in a real-time 3-D strategy game, complete with terrain, natural
obstacles such as trees and water, and enemy units. We have observed some interesting
transfer between the simple robot-and-cat domain and this military domain. Sneaking
up to the cat is analogous to sneaking up on the enemy, for example. Future experiments
will explore learning in this new domain, and cross-domain transfer.

Another line of development for Jean is suggested by the word “experimental” in
Experimental State Splitting, and by the boxes labeled causal hypotheses and experi-
ment planner in Figure 2. State splitting finds factors that reduce the entropy of state
transitions, or conversely, increase the predictability of these transitions. Not all predic-
tive relations are causal. The counterfactual theory of causality says X causes Y iff X
precedes Y, and X and Y covary, and X is necessary to affect Y. The necessity condition
is framed as a counterfactual: ¬X → ¬Y . The problem with this theory is that it does
not distinguish true causes from mere conditions; for instance, a wire is necessary for
electricity to travel from a light switch to a light bulb, but we would not call a wire
the cause when we turn on the light. A heuristic to get around this is to assign counter-
factually necessary and proximal actions to X’s in causal models. Thus flipping a light
switch, being the most proximal action to illumination, and counterfactually necessary,
is a candidate cause. It is easy to find actions that are proximal to effects, and to for-
mulate counterfactuals relating these actions to effects. These counterfactuals serve as
causal hypotheses for Jean to try to refute. Jean will develop causal models of its action
schemas, and will learn not only what works, but why it works.
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Abstract. When monkeys tackle novel complex behavioral tasks by trial-and-
error they select actions from repertoires of sensorimotor primitives that allow 
them to search solutions in a space which is coarser than the space of fine 
movements. Neuroscientific findings suggested that upper-limb sensorimotor 
primitives might be encoded, in terms of the final goal-postures they pursue, in 
premotor cortex. A previous work by the authors reproduced these results in a 
model based on the idea that cortical pathways learn sensorimotor primitives 
while basal ganglia learn to assemble and trigger them to pursue complex re-
ward-based goals. This paper extends that model in several directions: a) it uses 
a Kohonen network to create a neural map with population encoding of postural 
primitives; b) it proposes an actor-critic reinforcement learning algorithm capa-
ble of learning to select those primitives in a biologically plausible fashion (i.e., 
through a dynamic competition between postures); c) it proposes a procedure to 
pre-train the actor to select promising primitives when tackling novel rein-
forcement learning tasks. Some tests (obtained with a task used for studying 
monkeys engaged in learning reaching-action sequences) show that the model is 
computationally sound and capable of learning to select sensorimotor primitives 
from the postures’ continuous space on the basis of their population encoding. 

1   Introduction 

This research is motivated by the idea that when humans and monkeys learn to solve 
complex tasks by trial-and-error they select and execute sensorimotor primitives (that 
is behavioral chunks that tend to achieve whole goals, cf. [2, 6, 7]) that have a coarse 
granularity with respect to the detailed commands sent to muscles. By using these 
primitives, they can learn to tackle complex tasks by assembling relatively few “be-
havioral chucks” instead of a multitude of fine muscular movements that would make 
the problems’ search space huge. The computational advantages of this strategy have 
been explored in reinforcement learning literature (see [4] for a review; note that 
                                                           
* This research has been supported by the project “MindRACES - From Reactive to Anticipa-

tory Cognitive Embodied Systems”, European Commission’s grant FP6-511931. 
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within this context sensorimotor primitives are called “macro actions” or “options”). 
This work is part of a research program directed to design, implement and test compu-
tational models that not only mimic animal’s behaviors organized on sensorimotor-
primitive repertoires, but also account for the neuroscientific evidence related to the 
brain’s mechanisms underlying them. With this regards, an increasing amount of 
empirical evidence is giving specific indications on how vertebrates’ brains encode 
repertoires of sensorimotor primitives and select and assemble them to flexibly pro-
duce complex behaviors. For example, it has been shown that when different areas of 
frogs’ spinal cord are electrically stimulated, their lower limbs tend to assume a dis-
crete number of particular postures in space independently of the initial configuration 
[6]. Moreover, recordings of neurons’ activity in premotor areas controlling arms in 
monkeys that freely move in ecological conditions showed that the biggest amount of 
variance of the neurons’ firing rate is explained by the final postures achieved by the 
limbs [1, 8]. Remarkably, other aspects of movement previously hypothesized to be 
encoded in premotor cortex, such as direction of movement, hand position, torques, 
and speed of motion, explained much less or none of the remaining variance.  

A general hypothesis on the brain’s architecture that might underlie reinforcement 
learning and behavior based on sensorimotor primitives has been proposed in [10] and 
has been used for building a modular reinforcement-learning model in [3]. According 
to this hypothesis sensorimotor primitives are acquired and executed by cortical path-
ways that involve sensory, associative, premotor, and motor cortex. These primitives 
are then assembled, selected and triggered to produce reinforcement-based complex 
behavior by basal ganglia (deep nuclei of vertebrates’ brain that receive input signals 
from virtually the whole cortex, send output signals mainly to pre-frontal, premotor 
and motor cortex [12], and play an important role in chunking and assembling motor 
primitives in order to accomplish complex reinforcement-based behaviors [7, 8, 11]). 
This hypothesis has been further investigated in [16] by building a biomimetic model 
that explicitly incorporates the aforementioned biological evidence reported in [1, 8]. 

As the model presented shares many features with the model reported in [16], first 
these features are reviewed and then the main novelties introduced here are high-
lighted. In both models sensorimotor primitives are neural schemes that allow the 
system to produce sequences of fine movements that lead the arm to assume particular 
final postures. Both models learn the primitives through a direct inverse modeling 
process [14] based on spontaneous random movements performed by the system. The 
latter aspect of the process is interesting as it is very similar to motor babbling ob-
served in infants [15] and might have functions similar to it. In both models, random 
movements are used for learning to associate limbs’ final postures with the move-
ments that led to them. Final postures are represented in a 2D neural map that mimics 
the function of premotor cortex reported in [1, 8]. Note that such final postures can be 
considered as the goals of the corresponding primitives, in fact: (a) the activations of 
the map’s units correlate with the final postures of primitives, but not with other as-
pects of them (e.g., initial and intermediate postures); (b) the activations take place 
before the corresponding final-posture states are achieved; (c) the activations drive the 
system to act in order to get in the states that they encode. The representation of 
primitives in terms of their goals in the map has the computational advantage of being 
(almost) local: this eases the selection of them by reinforcement-learning systems (see 
section 2). Both models assume that basal ganglia select primitives by fueling a  
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dynamic competition between their representations in the map: the representation that 
wins the competition triggers the execution of the corresponding primitive. In both 
models, the functionalities of basal ganglia are reproduced with an actor-critic rein-
forcement-learning model [23]. This model captures several anatomical and physio-
logical properties of basal ganglia [3, 10, 11]. The dynamic competition between 
goals is simulated through an accumulator model [24]. Accumulator models are 
among the best behavioral models of decision making and reaction times; moreover, 
the activation patterns of their units are similar to those of neurons of premotor cortex 
of monkeys engaged in action selection tasks [21, 22]. 

The first novelty of the model presented here is that, while in [16] the representa-
tions of the sensorimotor primitives’ goals in the 2D map were hand coded, they are 
now developed through a Kohonen network [13] which takes the arm’s angles as 
input. This has the advantage of leading the map’s units to cover the space of “legal” 
postures in a uniform fashion. Moreover, contrary to [16], the model is now capable 
of representing all possible postures of the arm in the continuous space of postures by 
representing them through a population encoding [18]. To this purpose, the previously 
used winner-take-all dynamic competition taking places within the accumulator 
model has been substituted with a many-winner dynamic competition. A second nov-
elty is the proposal of a modified version of the actor-critic reinforcement-learning 
algorithm capable of selecting postures on the basis of such population encoding (to 
the best of the authors’ knowledge, the learning rule used for training the actor is 
new). A third novelty is that the system performs a “pre-training” of the actor on the 
basis of the same motor babbling used for training the sensorimotor primitives. This 
pre-training allows the actor to learn to associate the perceived hand’s position with 
the posture that produces it, and so biases the actor to select sensorimotor primitives 
that drive the hand on salient points in space such as those occupied by objects. This 
greatly speeds up learning when the system tackles new reinforcement-learning tasks. 
The whole architecture is tested through a task similar to the one used in [19] to con-
duct physiological studies in monkeys engaged in reinforcement-learning action-
sequence tasks. 

The paper is organized as follows. Section 2 illustrates the architecture and func-
tioning of the model, and the task used to test it. Section 3 presents the results of the 
tests. Section 4 illustrates the strengths of the model, its limitations, and future work. 

2   Methods 

The Task. The model has been tested with a task similar to the one used by Hikosaka 
and coworkers [19] to carry out physiological studies of various brain’s districts (e.g., 
frontal cortex, basal ganglia, and cerebellum) of monkeys engaged in learning to 
perform sequences of reaching actions. In this task a monkey is set in front of a panel 
containing 16 LED buttons. These buttons are contained in 16 squares organized in a 
4×4 grid, each with sides measuring 5 cm (see Fig. 7). The task (see figure Fig. 1) is 
formed by “hypersets”, each composed of five “sets” organized in sequence. In each 
set, two buttons turn on and the monkey has to press each of them in a precise se-
quence, which has to be discovered by trial-and-error, in order to obtain a reward. In 
case of error, the task re-starts from the first set, while in case of success the task 
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continues with the second set, and so on, until it terminates with the fifth set. Here for 
simplicity: (a) the test is composed of only one particular hyperset (see Fig. 1) pre-
sented to the system several times; (b) the buttons involved in different sets are differ-
ent; (c) the first LED to be “pressed” in each set is turned off when reached. 

 
 
 
 
 
 

Fig. 1. The “hyperset” of Hikosaka’s task used for testing the architecture. Each grid represents 
a “set”: numbers “1” and “2” represent the two LEDs to be reached in sequence within the set. 

The system’s “body”. The system is composed of a two-segment arm that moves on 
a 2D plane (Fig. 7, left), and a 2D retina. The retina is formed by 20×20 units and is 
supposed to correspond to an “eye” that watches the whole area that the arm can reach 
from above. The retina’s visual field has a size of 40×40 cm and is centered on the 
arm’s shoulder joint (so as to cover the whole area that the arm can reach). The cen-
ters of the retina’s units are organized in a 20×20 grid that cover to whole visual field. 
The two segments of the arm measure 20 cm each. The arm has two degrees of free-
dom: the upper arm can move 180° with respect to the system’s torso, by pivoting on 
the shoulder joint, while the forearm can move 180° with respect to the upper arm, by 
pivoting on the elbow joint (only simple kinematics of the arm were simulated).  

The Architecture of the Model. The architecture of the model is shown in Fig. 2. 
The functioning and learning processes of its components will now be explained in 
detail (note: the corresponding brain parts will be indicated in Italics in brackets). 

The retina’s units are activated by LEDs. Each LED is simulated as a point with 
coordinates (c1, c2) and when it is on, it activates the retina’s units with an activation 
xi ∈ [0, 1] on the basis of Gaussian receptive fields having standard deviation σ (0.75 
cm) and centers (c1i, c2i) that correspond to the positions of the units in the visual 
field: 
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The actor-critic components are a neural implementation of the actor-critic model 
[23]. The actor (basal ganglia’s matrix, cf. [10]) is a two-layer feed-forward neural 
network with 20×20 input units, that correspond to the units of the retina, and 20×20 
output units. The output units have a Sigmoid transfer function with activation yj and 
each has a topological one-to-one connection (with weights equal to υ = +1) with the 
posture controller’s input units. The critic (basal ganglia’s striosomes and substantia 
nigra pars-compacta, cf. [10]) is mainly composed of a neural network (“evaluator”) 
having a linear output unit. At each step t this output unit produces evaluations Vt of 
perceived states, and the critic uses couples of successive evaluations, together with 
the reward signal Rt, to compute the surprise signal St  (dopamine) (cf. [23]):  
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where γ is a discount factor (γ = 0.3). The surprise signal is used for training both the 
actor and the evaluator (see [10, 23] and the learning algorithms presented below). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The neural components of the architecture with the corresponding brain areas in Italics. 
Symbols: grouping: broad functionalities implemented by the architecture’s main parts; bold 
arrows: all-to-all trained connections; thin arrows (only few of them are shown): one-to-one 
connections (weights = +1); dashed arrow: surprise learning signal; dotted arrow: delay connec-
tion; the weights of the critic’s one-to-one connections are indicated in the figure. 

The accumulator units (premotor cortex) form a 2D 20×20 map, have all-to-all lat-
eral inhibitions, and have local excitations that decrease with distance on the map. 
The units engage in a many-winner competition on the basis of the signals (“votes”) 
that they receive from the actor’s output units via the one-to-one connections. In par-
ticular, they behave as leaky-integrators and have an activation aj as follows: 
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where τ is a time constant, corresponding to 1/10s, dt is the integration time step (dt = 
0.05 1/10s, so dt/τ = 0.05; aj is numerically updated every 0.005 s), χ regulates the 
speed of the dynamics (χ = 1), δ is a decay coefficient (δ = 0.1), ι regulates the all-to-
all lateral inhibition (ι = 0.15), η regulates the local lateral excitation (η = 1), ek 
represents the fixed weights of the lateral excitatory connections (ek is set to 0.4 for 
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neighboring units along the x/y-axes directions, to 0.2 for neighboring units along the 
diagonals, and to zero for all other units), εjt is a noise component that ranges over [-0.1, 
+0.1] and varies in each cycle, εjc is a noise component that ranges over [-0.25, +0.25] 
and is constant for time intervals c randomly drawn from [0, 5] s (εjc is important for 
exploration of reinforcement learning as various εjt tends to sum to zero over many 
steps). When the activation aj of one accumulator unit reaches a threshold T (T = 1.9), 
the total activation of accumulator units is normalized to 1, their dynamics is “frozen”, 
and the execution of a reaching sensorimotor primitive is triggered. 

The posture controller has an input-unit layer corresponding to the accumulator units 
and two Sigmoid output units, with activation d’k, that range over [0, 1] (motor cor-
tex/spinal cord neurons). The activations of these output units are remapped onto the 
arms’ angles and form the commands issued to the posture servomechanism in terms of 
arms’ desired angles (posture). It is important to notice that these desired angles are 
generated by the cluster of accumulator units that are active at the end of the many-
winner competition. This implies that the target of the executed sensorimotor primitive 
is a mixture of the targets “suggested” by all active units: this population encoding al-
lows the arm to cover the whole continuous space of postures. 

The posture servomechanism is a hardwired closed-loop controller (Golgi tendon-
organs, muscle-fiber afferents, and spinal cord, cf. [22]) that issues commands to the 
arm’s actuators (muscles) on the basis of the desired-posture command received from 
the posture controller. In practice, this component simply changes the arm’s current 
angles in the direction of the desired angles, with maximum changes of 10 degrees. 

Learning Phases. The learning processes take place in two phases, the childhood 
phase (three processes) and the adulthood phase (one process). Now we first present an 
overview of these learning processes and then describe them in detail.  

During the childhood phase the system performs motor babbling: in practice the arm 
randomly varies its joints’ angles, with changes Δd’k belonging to [-10, +10] degrees, 
without violating the joints’ constraints. Motor babbling is used for performing three 
learning processes. The first two processes allow the system to learn to perform sen-
sorimotor primitives, in particular: (a) to train the 2D map of accumulator units, through 
a Kohonen algorithm [13], to represent the postures perceived by the proprioceptive 
units dk (during the childhood phase the proprioceptive units, the accumulator units, and 
their connections, function as a Kohonen network); (b) to train the posture controller, 
through a Widrow-Hoff algorithm [20] (the generalized “delta rule”), to return as output 
the arm’s angles corresponding to postures encoded in the Kohonen map. These two 
training processes lead the whole network formed by the Kohonen network and the 
posture controller to implement an “auto associative” function (i.e., the arm’s angles 
encoded in the proprioceptive units are returned by the postural controller’s output 
units). This whole network allows the system to recode postures, at the level of accumu-
lator units, in an expanded format suitable to perform actor-critic reinforcement learning 
(cf. [23]). Notice that suitable population encodings at the level of the accumulator units 
allow the system to select any posture in the continuous space of postures: this is pre-
cisely what the actor-critic components learn to do while solving reinforcement-learning 
reaching tasks in the adulthood phase. 

With the third learning process of the childhood phase the system’s actor learns, 
through a Widrow-Hoff algorithm, to associate the point in space where the retina sees 
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the arm’s “hand” (i.e., the forearm segment’s tip) with the activation pattern of the Ko-
honen map’s units corresponding to such point (pattern caused by the arm’s perceived 
angles). With this training, the actor acquires a bias to select sensorimotor primitives 
that drive the arm’s hand to points in space corresponding to the retina’s active units. 
This bias makes reinforcement learning performed during the adulthood phase quite fast 
notwithstanding the fact that the continuous space of postures is quite large. Note that 
two simplifying assumptions allow obtaining this result: (a) the retina does not perceive 
the arm and hand in the adulthood phase; (b) retina’s units activated by the hand in the 
childhood phase are activated by the LEDs in the adulthood phase. 

During the adulthood phase the system learns by trial-and-error to accomplish Hiko-
saka’s task. The actor-critic model used to this purpose has been suitably modified to be 
capable of selecting “actions” represented with population encodings. The four learning 
processes are now illustrated in detail. 

Childhood phase: training of the Kohonen network. During the childhood phase, 
while the system performs motor babbling, the accumulator units receive input signals 
from two input units, having activation dk, that encode the arm’s current angles (remap-
ped in [-1, +1]: this information is thought to be returned by proprioceptive sensors 
located in the muscles, e.g. Golgi tendon-organs and muscle-fiber afferents, cf. [22]). 
An extra pseudo input unit is used to perform a “z-normalisation” of the input pattern: 
this is a normalization that preserves size information [13]. The accumulator units are 
trained with a Kohonen algorithm [13] that allows them to develop representations of 
the arm’s angles in their weights. The output units give place to a winner-take-all com-
petition: the unit with the highest activation potential activates with 1 (“winning unit”), 
while the other units activate at levels decreasing with their distance from the winning 
unit on the basis of a Gaussian function. In particular, the activation a’j of the unit j and 
the rule to update its weights wjk are as follows: 
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where hfj is the distance on the map between the unit j and the winning unit f (hfj = 1 for 
two contiguous units), σ is the standard deviation of the Gaussian function (σ = 1), φ is 
a learning coefficient (φ = 0.01). Note that the Kohonen algorithm uses a winner-take-
all competition to activate the accumulator units instead of the dynamic competition 
reported in equation 3, used in the adulthood phase: indeed, the former tends to lead to 
an activation of the accumulator units that approximates the steady state activation that 
the same units would get through the latter (cf. [13]). 

Childhood phase: training of the posture controller. The posture controller is trained 
on the basis of a direct inverse modeling procedure [14] that exploits the random 
movements Δd’k produced by motor babbling as follows: (a) the arm’s angles are per-
ceived and categorized by the Kohonen net; (b) a Widrow-Hoff algorithm ([20], learn-
ing rate = 0.3) is used for training the posture controller’s weights wkj to associate the 
Kohonen-map units’ activation (input pattern) with the angles d’k caused by the random 
movements considered as desired output.  

Childhood phase: pre-training of the actor. Through this pre-training, based on a 
Widrow-Hoff algorithm, the actor’s weights wji are trained to associate the position of 
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the hand perceived with the retina (input pattern x) with the corresponding posture (de-
sired output a’) encoded in the Kohonen map (learning rate 0.1). 

Adulthood phase: actor-critic’s reinforcement learning. During the adulthood phase, 
the actor-critic component is trained to solve the Hikosaka’s task by reinforcement 
learning. During training, Rt is set to 1 when the arm reaches the two targets of any set 
of the hyperset in the correct order, and to 0 otherwise. The evaluator is trained after the 
selection and execution of a whole sensorimotor primitive (the primitive terminates 
when the arm reaches the desired posture selected by the posture controller). In particu-
lar its weights wi are trained, on the basis of a Widrow-Hoff algorithm (learning rate ψ = 
0.6) and a TD-rule (cf. [23]), as follows: 

( )( ) 11111  −−−−− −++=+= ittttitittitit xVVRwxSw w γψψ  (5) 

Through this learning process, the evaluator’s evaluations Vt of the perceived states xt 
tend to become higher for states corresponding to postures “closer” to reinforced 
states, and to form a gradient over the space of postures. The actor uses this gradient 
to learn to select highly rewarding sequences of primitives (cf. [23]). In particular the 
actor updates its weights wji with a Widrow-Hoff algorithm (learning rate ζ = 0.6): 

( )( ) ( )( ) 1111111 1 −−−−−−− −−++= itjtjtjtjttjtjitjit xyyyaSyww ζ  (6) 

where (yjt-1(1-yjt-1)) is the derivative of the Sigmoid function. The functioning of this 
learning rule is illustrated in Fig. 3. The rule tends to update only the weights of the 
units of the “winning cluster” because the activation aj of other units tends to be zero 
at the end of the race. The votes of the winning units are decreased or increased in 
correspondence of respectively positive and negative surprises. 

 
 
 
 
 
 

Fig. 3. Effects of the actor’s learning rule of equation 6 illustrated with a scheme relative to a 
1D layer of actor’s output units (horizontal axis). Left: with a surprise St > 0, the actor’s votes 
yt-1 (upper graph), that caused certain accumulator units’ final activations at-1 (lower graph), are 
moved toward the target yt-1+St at-1 (upper graph): this causes the votes of the winning cluster of 
accumulator units to increase (bold arrow) while other votes are not changed. Right: with a 
surprise St < 0, actor’s votes yt-1 are moved toward the target yt-1+St at-1: this causes the votes of 
the winning cluster of accumulator units to decrease, while other votes are not changed. 

3   Results 

Now we present some tests that prove the computational soundness of the model, 
illustrate the functioning of its components, and show its capacity to learn sensorimo-
tor primitives, by motor babbling, and to compose sequences of them, by reinforce-
ment learning, on the basis of their population encoding. 
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yt-1+Stat-1 

at-1 

yt-1 

yt-1 

yt-1+Stat-1 
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During the first training of the childhood phase, the Kohonen network’s error 
(measured as the average over 1,000 cycles of the square of the norm of the difference 
between the vector of weights and the vector of the input pattern) decreases from 
0.411 to 0.034 after 600,000 random arm’s movements. After this training the net-
work learns to represent the whole perceived postural space by using its units in a 
statistically well-distributed fashion (Fig. 4, left graph). This representation is at the 
basis of the population encoding of postures used in the adulthood phase. 

     

Fig. 4. Left: result of the training of the Kohonen network. Each vertex of the grid represents a 
node of the Kohonen map, and its x-y coordinates correspond to the node’s two weights encod-
ing the arm posture. Right: errors of the posture controller after training, collected while the 
arm produces several random movements; the graph represents the errors as gray segments 
plotted between the x-y positions of the hand corresponding to the target actual posture (e.g., 
black arm) and the position that the hand would have achieved on the basis of the posture con-
troller’s output pattern (e.g., dark gray dashed arm; the light gray dashed arm indicates the 
previous posture assumed by the arm during motor babbling). 

During the second training of the childhood phase, the posture controller’s error 
(measured as the average over 1,000 cycles of the distance between the point 
reached by the arm and the target point) decreases from 8.62 cm to 1.19 cm. Note 
that this error cannot become very low since the Kohonen network’s units are acti-
vated on the basis of a Gaussian function centered on the winner units, that are in a 
finite number, while the desired output belongs to the whole continuous space of 
arm’s postures. Indeed, the right graph of Fig. 4, which shows the residual errors 
after training, indicates that the hand tends to reach only few specific points corre-
sponding to the vertex of a grid that covers the whole postural space (this grid is 
explicitly represented in Fig. 5, right graph). In the adulthood phase, this problem is 
overcome by the population encoding of postures resulting from the accumulator 
units’ activation.  

During the third training of the childhood phase, the actor’s error (measured as the 
output units’ mean error averaged over 1,000 cycles) decreases from 0.513 to 0.052. 
This training leads the system formed by the actor, accumulator units, and postural 
controller to acquire the capacity to perform fine reaching movements in the continu-
ous space of postures even if the accumulator units cover such space at a gross  

Previous posture 
Net’s output posture 
Target posture 
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granularity. This can be illustrated by showing the system a sequence of 100 targets 
positioned along a circumference having a ray of 10 cm and located near the arm’s  
shoulder (see Fig. 5, right graph). The left graph of Fig. 5, which shows the errors 
between the targets and the points reached by the hand in the test, indicates that the 
errors are very small (mean: 3.2 mm). Moreover, and more importantly, the system 
succeeds in reaching virtually any point in the continuous space of postures even if 
the accumulator units cover such a space with a gross granularity. This skill depends 
on the mentioned accumulator units’ capacity to represent postures by population 
encodings.  

   

Fig. 5. Left: errors (indicated by the gray segments) between 100 target points positioned on a 
circumference (shown in the right graph) and the corresponding points reached by the hand. 
Right: activation (proportional to the size of the full dots) of the actor’s output units caused by a 
target. The positions of the dots and vertexes of the grid plotted in the graph correspond to the 
positions of the hand related to the “postures” encoded in the accumulator units’ weights of the 
posture controller. 

During the adulthood phase, the system is tested with the Hikosaka’s task illus-
trated in section 2. During 120,000 learning cycles, the performance of the system 
(measured as a 1000-step moving average of rewards) increases from 0.187 to the 
theoretical maximum of 0.500, when it successfully completes all the five sets of 
the task in sequence. The results show that the pre-training of the actor gives it a 
useful bias to reach the targets perceived by the retina. In particular the left graph of 
Fig. 6, reporting the activations of the actor’s output units when the system sees two 
targets, shows that the units that “vote” for the two possible correct arm’s postures 
form two clusters and have an activation higher than that of other units. The same 
figure (right graph) shows that the two clusters compete, at the level of the accumu-
lator units, and only one of them “survives” and triggers the corresponding arm’s 
posture when the activation of one of its units reaches the threshold. The left graph 
of Fig. 7 shows how the arm moves from one target to another, after target postures 
have been selected, on the basis of the postural servo controller. The same figure 
(right graph) also shows that the final points reached by the trained arm are quite 
accurate. 
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Fig. 6. Left: activations of the actor’s output units before adulthood training caused by the 
perception of two targets in the Hikosaka’s task (the area of the gray dots and black circumfer-
ences is proportional to the units’ activations respectively before and after the addition of 
noise); the two arrows indicate two clusters of units with activation higher than that of the other 
units due to the actor’s pre-training. Right: activation of the same units after training; notice 
how one of the two clusters has been strengthened while the other one has disappeared; the 
activation of the units of the strengthened cluster cause an activation of the accumulator units, 
at the end of the race, as plotted in the bottom right small graph. 

       

Fig. 7. Left: the trained arm that moves from the first to the second LED of “set 1” of Hiko-
saka’s test under the control of the postural servomechanism (the two LEDs are represented by 
the black and light gray squares in the right graph). Right: panel with the LEDs, with gray dots 
indicating the positions reached by the hand of the trained arm in several trials of the hyperset. 

4   Conclusions 

This paper presented an architecture to solve reaching tasks by reinforcement learn-
ing. The architecture is based on the idea, suggested by recent neuroscientific re-
search, according to which monkeys’ sensorimotor behavior involving upper-limbs is 
organized on the basis of a repertoire of sensorimotor primitives that are represented 
in premotor cortex in terms of the limbs’ final postures that they produce. The archi-
tecture uses motor babbling to learn sensorimotor primitives, develops a map of units 
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that represent the corresponding postures on the basis of population encodings (so 
mimicking premotor cortex), and selects primitives on the basis of a biological-
plausible accumulation model. Moreover, it proposes a novel learning rule which 
allows the actor of the actor-critic component (supposed to correspond to basal gan-
glia) to learn to select sensorimotor primitives on the basis of the population-encoding 
of their postural goals. The relevance of these novelties resides in the fact that popula-
tion-encoding representations are widespread in real brains [18], so it is important to 
have reinforcement-learning models that can function on the basis of them. 

The main limitations of the architecture that will be the starting point for future 
work. First, tests are needed to verify if the system can scale to arms with redundant 
degrees of freedom and/or to arms with a number of degrees of freedom higher than 
the number of the dimensions of the Kohonen network. Second, the Kohonen network 
functions on the basis of a winner-take-all competition: in the future this will be sub-
stituted with the same many-winner competition used while performing reinforcement 
learning. This improvement is relevant for the biological plausibility of the system. 
Third, although very detailed, the architecture takes into account only a part of the 
relevant available neuroscientific empirical evidence. For example, it does not model 
the different time courses of learning in basal ganglia and prefrontal cortex [17], the 
role of basal-ganglia direct and indirect pathways [10, 12], the possible separation of 
selection vs. control pathways [9], and the role of ventral and dorsal portions for ap-
petitive and consummatory behaviors [5]. 
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Abstract. In a reward-seeking task performed in a continuous environment, our 
previous work compared several Actor-Critic (AC) architectures implementing 
dopamine-like reinforcement learning mechanisms in the rat’s basal ganglia. 
The task complexity imposes the coordination of several AC submodules, each 
module being an expert trained in a particular subset of the task. We showed 
that the classical method where the choice of the expert to train at a given time 
depends on each expert’s performance suffered from strong limitations. We 
rather proposed to cluster the continuous state space by an ad hoc method that 
lacked autonomy and generalization abilities. In the present work we have 
combined the mixture of experts with self-organizing maps in order to cluster 
autonomously the experts' responsibility space. On the one hand, we find that 
classical Kohonen maps give very variable results: some task decompositions 
provide very good and stable reinforcement learning performances, whereas 
some others are unadapted to the task. Moreover, they require the number of 
experts to be set a priori. On the other hand, algorithms like Growing Neural 
Gas or Growing When Required have the property to choose autonomously and 
incrementally the number of experts to train. They lead to good performances, 
even if they are still weaker than our hand-tuned task decomposition and than 
the best Kohonen maps that we got. We finally discuss on propositions about 
what information to add to these algorithms, such as knowledge of current be-
havior, in order to make the task decomposition appropriate to the reinforce-
ment learning process. 

1   Introduction 

In the frame of the Psikharpax project, which aims at building an artificial rat having 
to survive in complex and changing environments, and having to satisfy different 
needs and motivations [5][14], our work consists in providing a simulated robot with 
habit learning capabilities, in order to make it able to associate efficient behaviors to 
relevant stimuli located in an unknown environment. 
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The control architecture of Psikharpax is expected to be as close as possible to 
known anatomy and physiology of the rat brain, in order to unable comparison be-
tween functioning of the model with electrophysiological and behavioral recordings. 
As a consequence, our model of reinforcement learning is based on an Actor-Critic 
architecture inspired from basal ganglia circuits, following well established hypothe-
ses asserting that this structure of the mammalian brain is responsible for driving ac-
tion selection [16] and reinforcement learning of behaviors to select via substantia 
nigra dopaminergic neurons [17]. 

At this stage of the work, our model runs in 2D-simulation with a single need and a 
single motivation. However the issue at stake already has a certain complexity: it cor-
responds to a continuous state-space environment; the perceptions have non mono-
tonic changes; an obstacle-avoidance reflex can interfere with actions selected by the 
model; the reward location provides a non instantaneous reward. In a previous paper 
[11], we demonstrated that this task complexity requires the use of multiple Actor-
Critic modules, where each module is an expert trained in a particular subset of the 
environment. We compared different hypotheses concerning the management of such 
modules, concerning there more or less autonomously determined coordination, and 
found that the classical mixture of experts method - where the choice of the expert to 
train at a given time depends on each expert's performance [3][4] – cannot train more 
than one single expert in our reinforcement learning task. We rather proposed to clus-
ter the continuous state space and to link each expert to a cluster by an ad hoc method 
that could indeed solve the task, but that lacked autonomy and generalization abilities.  

The objective of the present work is to provide an autonomous categorization of 
the state space by combining the mixture of experts with self-organizing maps 
(SOM). This combination has already been implemented by Tang et al. [20] - these 
authors having criticized the undesirable effects of classical mixture of experts on 
boundaries of non disjoint regions. However, they did not test the method in a rein-
forcement learning task. When they were used in such tasks [18][13] - yet without 
mixture of experts –, SOM were applied to the discretization of the input space to the 
reinforcement learning model, which method suffers from generalization abilities. 
Moreover, the method has limited performance in high-dimensional spaces and re-
mains to be tested robustly on delayed reward tasks. 

In our case, we propose that the SOM algorithms have to produce a clustering of 
the responsibility space of the experts, in order to decide which Actor-Critic expert 
has to work in a given zone of the perceptual state space. In addition, the selected 
Actor-Critic expert of our model will receive the entire state space, in order to pro-
duce a non constant reward prediction inside the given zone.  

After describing the task in the following section, we will report the test of three 
self-organizing maps combined with the mixture of Actor-Critic experts, for the com-
parison of their usefulness for a complex reinforcement learning task. It concerns the 
classical Kohonen algorithm [12], which requires the number of experts to be a priori 
set; the Growing Neural Gas algorithm [6], improved by [9], which adds a new expert 
when an existing expert has a important error of classification; and the Growing When 
Required algorithm [15], which creates a new expert when habituation of the map to 
visual inputs produces a too weak output signal when facing new visual data. 

In the last section of the paper, we will discuss the possible modifications that 
could improve the performance of the model. 
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2   The Task 

Figure 1 shows the simulated experimental setup, a simple 2D plus-maze. The dimen-
sions are equivalent to a 5m * 5m environment with 1m large corridors. In this envi-
ronment, walls are made of segments colored on a 256 grayscale. The effects of light-
ing conditions are not simulated. Every wall of the maze is colored in black (lumi-
nance = 0), except walls at the end of each arm and at the center of the maze, which 
are represented by specific colors: the cross at the center is gray (191), three of the 
arm ends are dark gray (127) and the fourth is white (255), indicating the reward loca-
tion equivalent to a water trough delivering two drops (non instantaneous reward) – 
not a priori known by the animat. 

 

Fig. 1. Left: the robot in the plus-maze environment. Upper right: the robot’s visual percep-
tions. Lower right: activation level of different channels in the model. 

The plus-maze task reproduces the neurobiological and behavioral experiments 
that will serve as future validation for the model [1]. At the beginning of each trial, 
one arm end is randomly chosen to deliver reward. The associated wall becomes 
white whereas the other arm ends become dark gray. The animat has to learn that se-
lecting the action drinking when it is near the white wall (distance < 30 cm) and faces 
it (angle < 45°) gives it two drops of water. Here we assume that reward = 1 for n 
iterations (n = 2) during which the action drinking is being executed. However, the 
robot's vision does not change between these two moments, since the robot is then 
facing the white wall. As visual information is the only sensory modality that will 
constitute the input space of the Actor-Critic model, this makes the problem to solve a 
Partially Observable Markov Decision Process [19]. This characteristic was set in 
order to fit the multiple consecutive rewards that are given to rats in the neurobiologi-
cal plus-maze, enabling comparison between our algorithm with the learning process 
that takes place in the rat brain during the experiments. 

We expect the animat to learn a sequence of context-specific behaviors, so that it 
can reach the reward site from any starting point in the maze: 

• When not seeing the white wall, face the center of the maze and move forward 
• As soon as arriving at the center (the animat can see the white wall), turn to the 

white stimulus 
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• Move forward until being close enough to reward location 
• Drink 

The trial ends when reward is consumed: the color of the wall at reward location is 
changed to dark gray, and a new arm end is randomly chosen to deliver reward. The 
animat has then to perform another trial from the current location. The criterion cho-
sen to validate the model is the time – number of iterations of the algorithm - to goal, 
plotted along the experiment as the learning curve of the model. 

3   The Animat 

The animat is represented by a circle (30 cm diameter). Its translation and rotation 
speeds are 40 cm.s-1 and 10°.s-1.  
Its simulated sensors are: 

• Eight sonars with a 5m range, an incertitude of ±5 degrees concerning the pointed 
direction and an additional ±10 cm measurement error. The sonars are used by a 
low level obstacle avoidance reflex which overrides any decision taken by the Ac-
tor-Critic model when the animat comes too close to obstacles. 

• An omnidirectional linear camera providing every 10° the color of the nearest 
perceived segment. This results in a 36 colors table that constitute the animat’s 
visual perception (see figure 1). 

The animat is provided with a visual system that computes 12 input variables and a 

constant equal to 1 i 1; 13 ,0 var
i

1  out of the 36 colors table at each time 

step. These sensory variables constitute the state space of the Actor-Critic and so will 
be taken as input to both the Actor and the Critic parts of the model (figure 3). Vari-
ables are computed as following: 

• seeWhite (resp. seeGray, seeDarkGray) = 1 if the color table contains the value 
255 (resp. 191, 127), else 0. 

• angleWhite, angleGray, angleDarkGray = (number of boxes in the color table 
between the animat’s head direction and the desired color) / 18. 

• distanceWhite, distanceGray, distanceDarkGray = (maximum number of consecu-
tive boxes in the color table containing the desired color) / 18. 

• nearWhite (resp. nearGray, nearDarkGray) = 1 – distanceWhite (resp. distance-
Gray, distanceDarkGray). 

The model permanently receives a flow of sensory information and has to learn 
autonomously the sensory contexts that can be relevant for the task resolution. 

The animat has a repertoire of 6 actions: drinking, moving forward, turning to 
white perception, turning to gray perception, turning to dark gray perception, and 
waiting. These actions constitute the output of the Actor model (described below) and 
the input to a low-level model that translates it into appropriate orders to the animat’s 
engines. 
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Fig. 2. General scheme of the model tested in this work. The Actor is a group of “GPR” mod-
ules [8] with saliences as inputs and actions as outputs. The Critic (involving striosomes in the 
dorsal striatum, and the substantia nigra compacta (SNc)) propagates towards the Actor an 
estimate  of the instantaneous reinforcement triggered by the selected action. The particularity 
of this scheme is to combine several modules for both Actor and Critic, and to gate the Critic 
experts’ predictions and the Actor modules’ decisions with responsibility signals. These re-
sponsibilities can be either computed by a Kohonen, a GWR or a GNG map. 

4   The Model 

4.1   The Multi-module Actor-Critic 

The model tested in this work has the same general scheme than described in [11]. It 
has two main components, an Actor which selects an action depending on the visual 
perceptions described above; and a Critic, having to compute predictions of reward 
based on these same perceptions (figure 2). Each of these two components is com-

posed of N submodules or experts. At a given time, each submodule k k 1 ;N  

has a responsibility c
k

t that determines its weight in the output of the overall 

model. In the context of this work, we restrict to the case where only one expert k has 

its responsibility equal to 1 at a given moment, and j k , c
j

t  =  0 . 

Inside the Critic component, each submodule is a single linear neuron that com-
putes its own prediction of reward: 
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p
k

t
j= 1

13

w'
k,j

t var
j

t                                     (1) 

where w'
k,j

t  is the synaptic weight of expert k representing the association strength 

with input variable j. Then the global prediction of the Critic is a weighted sum of 
experts’ predictions: 

P t
k= 1

N

c
k

t p
k

t                                               (2) 

Concerning the learning rule, derived from the Temporal-Difference Learning al-
gorithm [19], each expert has a specific reinforcement signal based on its own predic-
tion error: 

r
k

t =r t +gP t p
k

t 1                                       (3) 

The synaptic weights of each expert k are updated according to the following for-
mula: 

w'
k,j

t w'
k,j

t 1 r
k

t var
j

t 1 c
k

t                             (4)                 

Actor submodules also have synaptic weights w
i,j

t  that determine, inside each 

submodule k, the salience – i.e. the strength – of each action i according to the follow-
ing equation: 

sal
i

t
j 1

13

var
j

t w
i,j

t +persist
i

t w
i,14

t                             (5) 

The action selected by the Actor to be performed by the animat corresponds to the 
strongest output of the submodule with responsibility 1. If a reinforcement signal oc-
curs, the synaptic weights of the latter submodule are updated following equation (4). 

An exploration function is added that would allow the animat to try an action in a 
given context even if the weights of the Actor do not give a sufficient tendency to 
perform this action in the considered context. 
To do so, we introduce a clock that triggers exploration in two different cases: 

• When the animat has been stuck for a large number of timesteps (time superior to 
a fixed threshold ) in a situation that is evaluated negative by the model (when 
the prediction P(t) of reward computed by the Critic is inferior to a fixed thresh-
old). 

• When the animat has remained for a long time in a situation where P(t) is high but 
this prediction doesn’t increase that much (|P(t+n) – P(t)| < ) and no reward  
occurs. 

If one of these two conditions is true, exploration is triggered: one of the 6 ac-
tions is chosen randomly. Its salience is being set to 1 (Note that: when exploration 
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= false, sal
i

t 1, i,t,w
i,j

t ) and is being maintained to 1 for a duration of 15 

timesteps (time necessary for the animat to make a 180˚ turn or to run from the cen-
ter of the maze until the end of one arm). 

4.2   The Self-organizing Maps 

In our previous work [11], we showed that the classical method used to determine the 
experts’ responsibilities – a gating network, giving the highest responsibility to the 
expert that approximates the best the future reward value [3][4] – was not appropriate 
for the resolution of our reinforcement learning task. Indeed, we found that the 
method could only train one expert which would remain the more responsible in the 
entire state space without having a good performance. As our task is complex, we 
rather need the region of the state space where a given expert is the most responsible 
to be restricted, in order to have only limited information to learn there. As a conse-
quence, we propose that the state space should be clustered independently from the 
performance of the model in learning the reward value function. 

In this work, the responsibility space of the Actor-Critic experts is determined by 
one of the following self-organizing maps (SOMs): the Kohonen Algorithm, the 
Growing Neural Gas, or the Growing When Required. We will describe here only 
essential aspects necessary for the comprehension of the method maps. Each map has 
a certain number of nodes, receives as an input the state space constituted of the same 
perception variables than the Actor-Critic model, and will autonomously try to cate-
gorize this state space. Training of the SOMs is processed as following: 

 
Begin 
  Initialize a fixed number of nodes (for the Kohonen 
  Map) or 2 nodes for GNG and GWR algorithms; 
  While (iteration < 50000) 
    Move the robot randomly; //Actor-Critic disabled 
    Try to categorize the current robot’s perception; 
    If (GNG or GWR) and (classification-error > threshold) 
        Add a new node to the map; 
    End if; 
    Adapt the map; 
  End; 
  // After that, the SOM won’t be adapted anymore 
  While (trial < 600) 
    Move the robot with the Actor-Critic (AC) model; 
    Get the current robot’s perception; 
    Find the SOM closest node (k) to this perception; 
    Set expert k responsibility to 1 and others to 0; 
    Compute the learning rule and adapt synaptic weights of the AC; 
  End; 
End; 
 

Parameters used for the three SOM algorithms are given in the appendix table. Fig-
ure 3 shows some examples of categorization of the state space obtained with a GWR 
algorithm. Each category corresponds to a small region in the plus-maze, where its as-
sociated Actor-Critic expert will have to learn. Notice that we set the parameters so that 
regions are small enough to train at least several experts, and large enough to require 
that some experts learn to select different actions successively inside the region. 
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Fig. 3. Examples of clusterings found by the GWR self-organizing map. The pictures show, for 
three different AC experts, the positions of the robot for which the expert has the highest re-
sponsibility – thus, positions where the Actor-Critic expert is involved in the learning process. 

5   Results 

The results correspond to several experiments of 600 trials for each of the three dif-
ferent methods (11 with GWR, 11 with GNG, and 11 with Kohonen maps). Each ex-
periment is run following the algorithmic procedure described in the previous section.  

Table 1. Summarized performances of the methods applied to reinforcement learning 

Method Average performance during 
second half of the experiment 

(nb iterations per trials)

Standard 
error

Best map's aver-
age performance 

Hand-tuned map 93.71 N/A N/A 
KOH (n=11) 548.30 307.11 87.87 
GWR (n=11) 459.72 189.07 301.76 
GNG (n=11) 403.73 162.92 193.39 

Figure 4 shows the evolution with time of the learning process of each method. In 
each case, the smallest number of iterations occurs around the 250th trial and remains 
stabilized. Table 1 summarizes the global performances averaged over the second half 
of the experiment – e.g. after trial #300. Performances of the three methods are com-
parable (Kruskall-Wallis test reveals no significant differences: p > 0.10). When look-
ing at the maps' categorizations precisely and independently from the reinforcement 
learning process, measure of the maps' errors of categorization highlights that Koho-
nen maps provide a slightly worst result in general, even while using more neurons 
than the GWR and GNG algorithms. However, this doesn't seem to have conse-
quences on the reinforcement learning process, since performances are similar. So, 
the Kohonen algorithm, whose number of experts is a priori set, is not better than the 
two others which recruit new experts autonomously. 

Performances with GNG and GWR algorithms are not very different either. In their 
study, Marsland et al. [15] conclude that GWR is slightly better than the GNG algo-
rithm in its original version. Here, we used a modified version of GNG [9]. In our 
simulations, the GNG recruited on average less experts than the GWR but had a clas-
sification error a little bigger. However, when applied to reinforcement learning, the 
categorizations provided by the two algorithms did not show major differences. 
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Fig. 4. Learning curves of the reinforcement learning experiments tested with different self-
organizing maps 

Qualitatively, the three algorithms have provided the multi-module Actor-Critic 
with quite good experts' responsibility space clustering, and the animat managed to 
learn an appropriate sequence of actions to the reward location. However, perform-
ances are still not as good as a version of the model with hand-tuned synaptic weights. 
The latter has an average performance of 93.71 iterations per trial, which is character-
ized by a nearly “optimal” behavior where the robot goes systematically straight to 
the reward location, without loosing any time (except the regular trajectory deviation 
produced by the exploration function of the algorithm). Some of the best Kohonen 
maps and GNG maps reached similar nearly optimal behavior. As shown in table 1, 
the best Kohonen map got an average performance of 87.87 iterations per trial. In-
deed, it seems that the categorization process can produce very variable reinforcement 
learning depending on the map built during the first part of the experiment. 

6   Discussion 

In this work, we have combined three different self-organizing maps with a mixture 
of Actor-Critic experts. The method was designed to provide an Actor-Critic model 
with autonomous abilities to recruit new expert modules for the learning of a reward-
seeking task in continuous state space. Provided with such a control architecture, the 
simulated robot can learn to perform a sequence of actions in order to reach the re-
ward. Moreover, gating Actor-Critic experts with our method strongly ressembles 
neural activity observed in the striatum – e.g. the input structure of the basal ganglia – 
in rat performing habit learning tasks in an experimental maze [10]. Indeed, the latter 
study shows striatal neurons' responses that are restricted to localized chunks of the 
trajectory performed by the rat in the maze. This is comparable with the clusters of 
experts' responsibilities shown in figure 3. 
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However, the performance of the model presented here remains weaker than a 
hand-tuned behavior. Indeed, the method produces very variables results, from maps 
with nearly optimal performance to maps providing unsatisfying robotics behavior. 

Analysis of the maps created with our method shows that some of them are more 
appropriate to the task than others, particularly when the boundaries between two 
experts' receptive fields corresponds to a region of the maze where the robot should 
switch from one action to another in order to get the reward. As an example, we no-
ticed that the majority of the maps obtained in this work had their expert closer to the 
reward location with a too large field of responsibility. As a consequence, the trunk of 
the global value function that this expert has to approximate is more complex, and the 
behavior to learn is more variable. This results in selecting inappropriate behavior in 
the field of this expert – for example, the robot selects the action “drinking” too far 
from reward location to get a reward. Notice however that this is not a problem with 
selecting several different actions in the same region of the maze, since some experts 
managed to learn to alternate between two actions in their responsibility zone, for 
example in the area close to the center of the plus-maze. A given expert having lim-
ited computational capacities, its limitations occur when its region of responsibility is 
too large. 

To improve the performance, one could suggest setting parameters of the SOM in 
order to increase the number of experts in the model. However, this would result in 
smaller experts' receptive field than those presented in figure 3. As a consequence, 
each expert would receive a nearly constant input signal inside its respective zone, 
and would need only to select one action. This would be computationally equivalent 
to the use of small fields place cells for the clustering of the state space of an Actor-
Critic, which has been criticized by several authors [2], and would not be different 
than other algorithms where the winning node of a self-organizing map produces a 
discretization of the input space to a reinforcement learning process [18]. 

One could also propose to increase each expert-module's computational capacity. 
For instance, one could use a more complex neural network than the single linear neu-
ron that we implemented for each expert. However, one cannot a priori know the task 
complexity, and no matter the number of neurons an expert possesses, there could still 
exist too complex situations. Moreover, “smart” experts having a small responsibility 
region could overlearn the data with poor generalization ability [7]. 

7   Perspective 

In future work, we rather propose to enable the experts' gating to adapt slightly to the 
behavior of the robot. The management of experts should not be mainly dependent on 
the experts' performances in controlling behavior and estimating the reward value, as 
we have shown in previous work [11]. However, considering the categorization of the 
visual space as the main source of experts’ specialization, it could be useful to add 
information about the behavior in order for boundaries between two experts' respon-
sibility regions to flexibly adapt to areas where the animat needs to switch its behav-
ior. In [21], the robot's behavior is a priori set and stabilized, and constitutes one of 
the inputs to a mixture of experts having to categorize the sensory-motor flow per-
ceived by a robot. In our case, at the beginning of the reinforcement learning process, 
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when behavior is not yet stable, visual information could be the main source of ex-
perts’ specialization. Then, when the model starts to learn an appropriate sequence of 
actions, behavioral information could help adjusting the specialization. This would be 
similar to electrophysiological recordings of the striatum showing that, after extensive 
training of the rats, striatal neurons' responses tend to translate to particular “meaning-
ful” portions of the behavioral sequences, such as the starting point and the goal loca-
tion [10]. 
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Appendix: Parameters Table  

Symbol Value Description 
t 1 sec. Time between two successive iterations of the model. 

 [50;100] Time threshold to trigger the exploration function. 

g 0.98 Discount factor of the Temporal Difference learning rule. 

 0.05 / 0.01 Learning rate of the Critic and the Actor respectively. 

N 36 Number of nodes in Kohonen Maps. 

-koh 0.05 Learning rate in Kohonen Maps. 

σ 3 Neighborhood radius in Kohonen Maps.  

Ew, En 0.5, 0.005 / 0.1, 0.001 Learning rates in the GNG and GWR respectively. 

a-max 100 Max. age in the GNG and GWR. 

S  Threshold for nodes recruitment in the GNG. 

-gng, ß-gng 0.5, 0.0005 Error reduction factors in the GNG. 

λ 1 Window size for nodes incrementation in the GNG. 

a-T 0.8 Activity threshold in the GWR 

h-T 0.05 Habituation threshold in the GWR. 
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Abstract. Self-organization and the phenomenon of emergence play an
essential role in living systems and form a challenge to artificial life sys-
tems. This is not only because systems become more lifelike, but also
since self-organization may help in reducing the design efforts in creat-
ing complex behavior systems. The present paper studies self-exploration
based on a general approach to the self-organization of behavior, which
has been developed and tested in various examples in recent years. This is
a step towards autonomous early robot development. We consider agents
under the close sensorimotor coupling paradigm with a certain cogni-
tive ability realized by an internal forward model. Starting from tabula
rasa initial conditions we overcome the bootstrapping problem and show
emerging self-exploration. Apart from that, we analyze the effect of lim-
ited actions, which lead to deprivation of the world model. We show that
our paradigm explicitly avoids this by producing purposive actions in a
natural way. Examples are given using a simulated simple wheeled robot
and a spherical robot driven by shifting internal masses.

1 Introduction

Adaptation and survival in uncertain and ever changing environments are one
of the key challenges in natural and artificial beings. The field has seen many
impacts from life sciences, one of the directions being epigenetic and develop-
mental robotics [11] trying to mimic natural ontogenesis. Moreover, the role of
embodiment has become an important subject in the past decade under (i) the
practical aspect of reducing computational efforts for control by exploiting the
physical properties of the robot in its environment, see [12], [9], and (ii) the
more conceptual aspect that embodied sensorimotor coordination is vital for the
self-structuring of the sensor space necessary for categorization and higher level
cognition, see [15], [10].

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 406–421, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



From Motor Babbling to Purposive Actions 407

The approaches are very diversified and often oriented towards specific goals,
leading to nice results up to the humanoid level. Our work aims more towards an
approach from first principles. We consider agents under the close sensorimotor
coupling paradigm, controlled by a neural network. Moreover, the robot disposes
of a certain cognitive ability realized by an internal forward model (world model)
predicting future observations on the basis of present observations and controls.
Such models are speculated to play an important role for human motor control,
cf. [17] as an example.

In the engineering sense the world model is learned by trying random actions.
This is also assumed to take place in human development and is called motor
babbling. However this approach is infeasible in high dimensional systems. This
problem is called the curse of dimensionality in statistical learning theory and
was realized to be a serious problem in learning sensorimotor tasks by Bernstein
[1] long ago. Moreover, usually it is even not necessary to try all actions, but just
those that contribute most to the information gain of the model. Our approach
aims at the realization of self-exploration with emerging purposive actions in-
stead of motor babbling.

The concomitant learning of both, the controller and the model, faces among
others the cognitive bootstrapping problem. Starting at a “do nothing” and
“know nothing” initialization of the controller and the internal model, respec-
tively, the robot does not have any information on the structure and dynamics
of its body so that the world model has to learn this from scratch. However, in
order to learn effectively, the controls have to be informative or purposive so that
the world model is provided with the sensorimotor patterns necessary for its im-
provement. On the other hand, these actions require a certain knowledge of the
reactions of the body – information is acquired best by informed actions. This
bootstrapping situation in principle reappears on all stages of the developmental
process. We consider here a solution at a level, which is essentially based on the
feed-back of proprioceptive sensors, i.e. self-exploration of the physical properties
of the body. We understand this as early robot development, i.e. the first step
of a self-organized development towards ever increasing behavioral competencies
and understanding of the behavior of the body in its environment.

In recent years we have derived a systematic approach to the self-organization
of behavior which has proven its practical applicability in a number of examples,
see Refs. [4], [8] or the videos on [7]. This has been achieved not only for wheeled
robots in a cluttered environment, see the video [2] and others on our video
page, but also for high dimensional snake like robots, see the zoo videos on [7].
These creatures have no program (set of rules defining behavior), no aims, and
no purpose. Yet they deploy activities by itself which are rooted in their bodies
and related to the environment in which they “live”. We will discuss in the
present paper how this is related to the solution of the bootstrapping problem
by emerging self-exploration.

The paper is organized as follows. In Sec. 2 we give a brief introduction to our
general control paradigm. We demonstrate on a theoretical basis how purposive
actions, necessary for self-exploration, emerge in a natural way in Sec. 3. These
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theoretical findings are verified in the following section with two examples, a
wheeled robot and a spherical robot driven by internally shifting masses.

2 Controller Learning – Between Sensitivity and
Predictability

The learning of the controller is based on the papers [3], [5]. We give here only
the basic principles of our approach. We start from the information the robot
gets by way of its sensor values.

2.1 The Sensorimotor Dynamics

Let us consider a robot which produces in each instant t = 0, 1, 2, . . . of time the
vector of sensor values xt ∈ R

n. The controller is given by a function K : R
n →

Rm mapping sensor values x ∈ Rn to motor values y ∈ Rm

y = K (x)

all variables being at time t. In the example of a two-wheeled robot we have yt =
(yt1, yt2)

�, yti being the target wheel velocity of wheel i. In the cases considered
explicitly below, the controller is realized by a one layer neural network defined
by the pseudolinear expression (omitting the time index)

Ki (x) = g (zi) (1)

where g (z) = tanh (z) and

zi =
∑

j

Cijxj + hi (2)

This seems to be overly trivial concerning the set of behaviors which are
observed in the experiments. Note, however, that in our case the behaviors are
generated essentially also by an interplay of neuronal and synaptic dynamics
(see Eq. 11 below), which makes the system highly nontrivial.

Our robot is equipped with a world model which is a function F : Rn ×Rm →
Rn predicting the current sensor values in terms of the earlier sensor and motor
values, i.e.

xt = F (xt−1, yt−1) + ξt (3)

where ξ is the modeling error. In practical applications, F may be represented
by a neural network with parameter vector w, which might be learnt by standard
back propagation. The world model realizes the cognitive abilities of the robot.
Cognition is understood on a very low level, meaning essentially the ability to
predict the future consequences of the actions undertaken by the robot. This is
actually what the world model does.

Introducing Eq. 1 into the equation for the world model, we get the dynamical
system representing the dynamics of the SM loop as

xt = ψ (xt−1) + ξt (4)
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The dynamics for the parameters of the controller are derived from the following
two objectives. We aim on the one hand, at a maximum sensitivity of the effects
of the controls to the current sensor values. This induces a self-amplification of
changes in the sensor values and thus is the source of activity. On the other hand,
we require a maximum predictability of these effects, which are represented by
future sensor values. This keeps the behaviour in “harmony” with the physics of
the body and the environment.

The first objective is realized by requiring a high sensitivity of the map ψ of
the sensorimotor loop towards small changes in its inputs. In more detail, we
require that ψ realizes the new vector of sensor values xt by applying a small
shift to the inputs, i.e. we put

xt = ψ (xt−1 + vt−1) (5)

or
ψ (x) + ξ = ψ (x + v) (6)

where v is the input shift. This equation has a unique solution if ψ is invertible.
If not, convenient approximations must be used. This question has to be solved
in order to find a stable algorithm but we are not going into these details in the
present paper.

At each time step we can find the value of v and define the error (omitting
the time index)

E = ‖v‖2 = vT v (7)

where‖. . .‖ means the Euclidean norm. The quantity x̂t−1 = xt−1 + vt−1 is the
vector of previous sensor values as reconstructed from the current ones. We may
therefore call E the reconstruction error. Moreover, from the point of view of
time step t − 1 the vector x̂t−1 is obtained by going one step forward in time
by the true dynamics and then back to time t − 1 by the inverse world model
dynamics given by ψ. This is why we also call E the time loop error.

In order to get a more explicit expression we use Taylor expansion, which in
leading order yields

ξ = L (x) v

where L is the Jacobian matrix defined as

Lij (x) =
∂

∂xj
ψi (x)

which is a direct measure of the stability of the dynamical system, see below for
a discussion. If L exists we immediately find

v = L−1ξ

so that
E =

∥∥L−1ξ
∥∥2 = ξT

(
LLT

)−1
ξ (8)

which is the error function used in the algorithm for adapting C, see Eq. 9 below.
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The Gradient Flow of the Parameters. The adaptation of the parameters
of the controller can be realized by gradient descending the error function E as
usual

ΔC = −ε
∂

∂C
E (9)

The resutling dynamics of the parameters can, at a formal level, be argued
to produce the desired properties of the system. In fact, since LLT is symmetric
we may decompose it as

LLT =
n∑

i=1

λiPi

where Pi = nin
T
i is the projector on the eigenvector ni with λi the corresponding

eigenvalue. Then

E =
∑

i

λ−2
i ξ2

i

with ξi = nT
i ξ being the projection of the model error into the subspace spanned

by ni, both λi and Pi depending on the parameters C of the controller in an
intricate way. This expression is only valid if the n × n matrix Q = LLT is of
full rank, so that none of the λi is equal to zero. However, we also note that, if
we start with an L of full rank, the parameter dynamics will drive Q away from
impending singularities due to the divergence of E for any λi → 0.

In more detail, writing the gradient rule as

ε−1ΔC =
n∑

i=1

(
ξ2
i

λi

∂λi

∂C
− ξi

∂ξi

∂C

)
λ−2

i (10)

we see that the gradient flow is driven by two objectives. The first term on the
right hand side obviously tends to increase each of the eigenvalues λi and hence
the instability in the corresponding subspace. The interesting point is in the
prefactors ξ2

i /λi which mean that the update is strong where λi is small (high
stability) and/or ξ2

i is large (high modeling error component in this subspace).
This can be interpreted as the tendency of the parameter dynamics to produce
in all directions the same degree of instability with subspaces of higher modeling
error being destabilized even more strongly. Destability corresponds to a higher
rate of noise amplification, such that one may say that those subspaces are
explored more intensively, which are less well represented by the model. This is
the effect which is relevant for the present paper and will be discussed by way
of example in Sec. 3.2 below.

The second term in Eq. 10, the strength of which is modulated by ξi, es-
sentially counteracts the overshooting destabilization of large error subspaces
caused by the first term. It is to be noted, that the error components ξi not
only depend on the quality of the model, but in an essential way on the behav-
ior of the robot. Hence, both the ξi and eigenvalues λi change with changing
parameters.



From Motor Babbling to Purposive Actions 411

Altogether we may say, that our parameter dynamics generates an explorative
behavior of the robot (by the first term), which however is related to the envi-
ronmental reactions by the second term. This has been demonstrated in many
applications realized in recent years, see for instance [5] and our video page.

Expicit Learning Rule. In the present paper we consider the one-layer neural
network controller given by Eq. 1 so that the Jacobian is

Lij =
∑

k

Aikg′ (zk)Ckj

where

Aik =
∂

∂xk
Fi (x, y)

and F is learnt concomitantly with the controller by supervised learning on the
basis of the new sensor values. We use g (z) = tanh(z) where g′′ = −2gg′ so that
we get the explicit expressions (omitting the time indices everywhere)

ε−1ΔCij = ζivj − 2ζiρiyixj (11)

ε−1Δhi = −2ζiρiyi

where v = L−1ξ, μ = A�Q−1ξ, ζi = g′iμi, and ρ = Cv. The inversion of the
matrix Q = LL� is done by standard techniques, and has proven in many
applications to be feasible and not time critical with up to 20 independent degrees
of freedom.

Note that the parameter ε is chosen such that the parameters change at
about the same time scale as the behavior. The interplay between synaptic and
state dynamics of the controller induces a high dynamical complexity of the
sensorimotor loop. The resulting robot behaviors are of a much larger complexity
than the pseudolinear expression with fixed parameters might ever realize.

3 Model Learning – Problems and Challenges

Internal models are one of the prerequisites for a robot to become a cognitive
system. In the case of human motor systems the role of internal models has
in particular been emphasized by the work of Wolpert [18], [16]. In the present
paper we are concerned with forward models as given by Eq. 3 which are learnt in
a supervised way on a training set of sensorimotor patterns (xt+1, yt). However,
in order to learn the relevant information about the world, the training instances
must be guaranteed to sufficiently sample not only the sensor space, but also
the action space. In practice it is complicated to ensure this sampling property.
In case of on-line learning there is always only a part of the state action space
covered in a restricted interval of time. This fact actually is widely recognized
but we will demonstrate it in an extremely simple situations in order to work
out explicitly the bootstrapping problem involved.
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3.1 The Deprivation Effect

Let us consider a very simple example of a sensorimotor loop given by a robot
with two wheels. The only sensor values are given by the current velocities which
can be measured by a wheel counter, i.e. we have only proprioceptive sensors in
this case. Assuming that the reactions of the wheels are largely independent of
each other, we expect the model to be given as xt+1 = Ayt +ξ where x ∈ R

2 and
y ∈ R2 are the measured and target wheel velocities, respectively, and ξ is the
modeling error. In the case given A = αE is essentially the unit matrix. This is
what one expects to be learnt by for instance gradient descending the error E =
ξ�ξ with learning rule

ΔAt = εAξty
�
t−1 − βAt (12)

where ξt ∈ Rn, yt−1 ∈ Rm, and
(
ξy�)

ij
= ξiyj . The small damping term −βA

has to be introduced in order to damp away the influence of the initial conditions.
The scaling factor α is a hardware constant.

However, convergence to the correct solution A = αE is guaranteed only if the
training instances (xt, yt−1) cover the full state-action space. Now let us assume
that the behavior is restricted to a certain subspace of the action space. Under
our closed loop control paradigm, behavior is parameterized by the matrix C of
the controller. A restricted behavior is produced by assuming the C matrix of
the controller as

C = γpp� (13)

where p is a normalized vector, pp� is the projector onto p, and γ a constant
with γ > 0 and γα > 1. The sensorimotor dynamics1

xt = Ag (Cxt−1 + h) + ξt

converges towards a fixed point. The controller will produce the vector y =
g (sp + h) defining the wheel velocities, where s is obtained from the solution of
the fixed point equation. In particular if (h = 0 for the moment)

p =
1√
2

(
1
1

)
(14)

the robot will move either straight forward or backward if s > 0 or s < 0,
respectively. Choosing instead p = (1, − 1)T

/
√

2 the robot will rotate on site.
The behavior can still be further modified by changing h.

The point now is, that instead of converging towards the unit matrix, A is
learnt as

A = αpp� (15)

so that A is essentially the projector on the subspace given by the degenerate
controller. This is a correct solution in the space covered by yt which of course
is completely wrong in the complementary subspace of the motions of the robot.

1 Consider g (z) as a vector function, i.e. gi (z) = g (zi).
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This effect makes the learning unstable if the controller changes the motor
vector on a slow time scale since the matrix A will follow this change. Of course
this result hinges on the time scales. In fact the problem will not arise so strongly
if the time scales for the learning are much larger than the intervals of persistent
directions of the robot.

3.2 The Bootstrapping Scenario

As explained in the introduction, the aim of our approach is the concomitant
learning of the controller and the model from scratch. The toy example given
above has demonstrated that, if the actions y ∈ Rm (with m = 2 in the exam-
ple above) are restricted to a certain subspace, the model will degenerate to a
projector onto that subspace with the effect that it will be completely wrong in
the orthogonal subspace. The challenge is that the controller needs to “feel” this
deprivation of the world model and to issue motor commands which provide the
world model with the state-action pairs (xt, yt−1) necessary for learning in the
orthogonal subspace neglected so far.

This is exactly what happens in our approach for the learning of the controller.
We will now demonstrate this theoretically in terms of the above model with
degenerate C = γpp�. With A from Eq. 15 we get in the linear (low z) case

L = γαpp�

so that the Jacobian matrix is singular, hence E has a singularity, and the
degenerate C is seen to be an instable fixed point of the gradient dynamics.
Without loss of generality we may use the specific form Eq. 14 for p. Now let
us assume that C has a small deviation δC which corresponds to the projector
into the orthogonal subspace, i.e. we put

C = γppT + μp⊥pT
⊥

where p⊥ is orthogonal to p, i.e. p⊥pT
⊥ is the projector onto the orthognal com-

plement of p, and μ is arbitrarily small. With a noisy input or with a random
motor event (motor babbling) the action may be

y = sp + σp⊥ (16)

where |σ| is small. We are now going to show now that this small fluctuation
leads to a strong amplification of the p⊥pT

⊥ component in C.
If the robot is executing this action, we get a model error (we assume the p

subspace is already learnt correctly and neglect other noisy events)

ξ = ασp⊥ (17)

since A is still the degenerate matrix A = αppT . The learning step for A produces

ΔA = εξyT = εασs

(
1 1

−1 −1

)
+ εασ2ppT

⊥
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(we drop the damping term because it only contributes to the degenerate part
of A). In the small z case considered we have now L = (A + ΔA)C. In leading
order (small μ and εσ) we find with simple matrix algebra that

(
LLT

)−1
=

1
4α2ε2σ4μ2 p⊥pT

⊥

which is the projector on just that subspace which is not well covered by the
model so far, i.e. in this order the learning so to say concentrates fully onto the
subspace not “understood” by the model. Using Eq. 17 the error is obtained as

E =
1

2σ2ε2μ2 (18)

This shows that the learning will rapidly increase the strength μ of that part
of C which projects into the orthogonal subspace. However, in this way also the
contribution of the orthogonal actions is increasing so that the constant μ in Eq.
3.2 is increasing as long as the model is still wrong. We may interprete this by
saying that the controller tries more and more actions which force the model to
learn also the behavior in the orthogonal subspace. This is a kind of purposive
behavior, the purpose being to feed the model with the necessary input-output
pairs for complete learning. The process has to be started by some fluctuation
in the output of the controller which may be called motor babbling.

The difference of this behavior to the usual strategy of issuing random mo-
tor commands consists in the fact that the novel motor commands are directed
into the unknown regions of the state-action space. This of course is of rele-
vance for high dimensional systems where random commands face the curse of
dimensionality. This has been clearly demonstrated in our experiments with high
dimensional (up to 20 independent motors) systems, see our videos of the snake
robots, where collective modes are excited by this bootstrapping phenomenon.
The background behind the high dimensional scenario is that the paradigm en-
sues spontaneous symmetry breaking and creating low dimensional searching
modes in high dimensional search spaces, which will be demonstrated in a later
paper.

4 Experiments

In the sections before we have studied deprivation of the world model and we
have seen how purposive actions can efficiently eliminate this effect. In order
to illustrate this in practice, we will consider different experiments. First, we
consider the rather artificial setting as described in section 3.1 theoretically
with a simulated two-wheeled robot. Second, the self-explorative character of
you controlling paradigm is analyed using the same robot. Third, a simulated
spherical robot is considered on a flat surface to show self-explorative behavior
at a more complex system. Finally the spherical robot is considered in a basin
like environment, where deprivation occurs naturally.
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4.1 Experiment I – Two-Wheeled Robot: Deprivation and
Bootstrapping

The idea of this experiment is to show, that first in the case of limited motor
commands deprivation of the world model occurs, and second that our controller
effectively produces purposive actions. We use the physics engine ODE (open
dynamic engine [14]) for the computer simulation experiments. A simulated two-
wheeled robot is controlled with motor commands within a subspace of the action
space. Motor commands y are understood as wheel velocities and the sensors
values x are the read back wheel velocities obtained from the wheel counters.
Please recall the controller function K(x) = y = tanh(Cx + h) (Eq. 2). As
decribed in section 3.1 the controller matrix is degenerated as Cij = 0.6 + λuij ,
where uij are random numbers and 0 < λ � 1. We modulate h such that the
robot drives backward and forward periodically.

As expected, we observe a degeneration of the world model, see Figure 1.
After the model learning is basically converged, the learning of the controller
according to Eq. 11 was switched on (at time 4550). After a short break down of
the activity one observes the emergence of motor commands which live mainly
in the orthogonal subspace. This means rotational behavior of the robot. Later
on both, straight and rotational modes, are equally visited so that the model
gets the necessary information. A is converging towards the unit matrix as it
should be. The behavior and the parameter dynamics are displayed in Figure 1.

4.2 Experiment II – Two-Wheeled Robot: Frequency Wandering

Besides the effects discussed so far there is more to the self-exploration properties
of our approach. In particular the fact that the error E = v�v is invariant
to rotations of v introduces a certain invariance of the state dynamics against
frequency changes (in a linear approximation). This leads to the effect that the
robot self-regulates the frequencies of its motor values.

In the experiments we use the simulated two-wheeled robot as in the previous
section. Most of the time the robot moves by sequences of straight and rotational
motion primitives. This corresponds to the exploration of the physical space and
is what one would call an explorative behavior in the usual sense. However, oc-
casionally the controller gradually increases the frequency of the dynamics in
the sensorimotor loop so that rather complex trajectories emerge in the physical
space. With even higher frequencies we observe a jiggling of the body where
physical effects due to inertia, swing, and even gyro effects come into play. We
may say that this is the phase of the self-exploration of these physical properties
of the body. However, the simple world model does not understand the high fre-
quency modes very well, so that they are left after some time. The robot returns
to its “normal” behavior with a succession of rotational and straightforward
driving modes. This play repeats more or less forever with a strong influence of
the noise. In Figure 2 the short-time fourier transform of the motor values are
displayed, which reflect the frequency in the sensorimotor dynamics.
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Fig. 1. Model deprivation and recovery in case of a two-wheeled robot. From time
0 – 4550 the robot was controlled by fixed C and modulated h (oscillating for-
ward/backward), and after time 4550 the learning of the controller is enabled. The
time scale is 1/50 sec, i.e. the whole run is 160 sec long. Left: Model matrix A. Degen-
erates until controller learning is enabled. After that it learns towards a unit matrix.
Upper right: Motor commands yi and steering y0 − y1. One can clearly see that the
controller performs rotational actions in a dedicated manner after the activation of
the learning (> 5000). Later on the motion consists of straight and rotational modes
leading to the full deployment of the world model. Lower right: Controller matrix C.

This scenario actually reminds one of the fact that the controller with its
learning dynamics does not know about the physical space so that everything it
does is the exploration of the properties of the body and the exploration of the
space is only in the eye of the beholder. A relation to the space would emerge
if we include sensors informing about positions in space. The emergence of the
concept of space will be the subject of a later paper.

4.3 Experiment III – Spherical Robot: Emerging Self-exploration
on Flat Surface

The wheeled robot is a rather simple example of a sensorimotor loop. In order to
show the emergence of sensorimotor coordination by self-exploration we demon-
strate the above phenomena with a more complicated robotic object. The object
of study is a simulated spherical robot see Figure 3, inspired by Julius Popp [13].

The motor commands y are the nominal positions of the masses along the axes.
The sensor values are in this case the components of the vector of the z-axis of
the robot in the world coordinate system. In this way, the controller has only very
restricted information about the physical state of the sphere. Nevertheless, our
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Fig. 2. Power spectra of the motor values (speeds) over time. Each column is the lower
frequency part of the discrete Fourier transform of a 2 seconds time window of the
motor values (wheel velocities). Subsequent lines are overlapping, so that the time
scale is in units of 0.5 seconds. Dark pixels correspond to low energy and bright to
high energy in the corresponding frequency band. High energy in a certain frequency
band means that changes between forward and backward driving occur at about that
frequency. Note that at times 120 and 200 a jump in the frequency occurs meaning that
the robot suddenly changes to a highly complex motion pattern which then gradually
decays towards the mentioned low frequency regime.

Heavy Masses

Axis (Sliders)

Fig. 3. Simulated spherical robot used in the experiment. Left: Sketch of a spherical
robot. Inside the robot there are three orthogonal axes equipped with sliders. To each
slider a heavy mass is attached which can be shifted along the axis. There is no collision
or interaction of the masses at the intersection point of the axes. Upper right: Picture
of a spherical robot on the ground. Lower right: Picture of a spherical robot in a basin.

learning algorithm manages to produce highly coordinated sensorimotor patterns
corresponding to different rolling modes in the course of time.

Let us consider the case of the sphere on a flat surface, see the video [6]. In the
beginning the controller and world model is initialized in the “do nothing” and
“know nothing” situation (C and A are small random matrices). The parameter
dynamics given by Eq. 11 drives C until noise amplification sets in and the
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inner masses start moving so that the world model also starts learning. After
some time the sphere starts to roll slowly. Different movements are probed and
later a nice and constant rolling mode emerges. Such periods stay for quite a
long period of time. What happens in that time is that the world model gets
restricted information and the deprivation sets in which leads to the sudden
appearance of new controller actions which lead to a kind of explorative periods
followed by a new stable rolling period about a different axis.

Besides of the rolling mode we also observe a kind of jumping mode and
rolling modes with all three axes involved. These behaviors demonstrate the
self-exploration of the body and show how our algorithm manages to close the
sensorimotor loop in order to excite stable behavioral modes adequate to the
physical properties of the body.

This effect is also demonstrated with a different sensor set. In this experiment
we equipped the spherical robot with six infra-red sensors, which are installed
in each point of intersection of the axes with the surface of the sphere with the
direction along the axis and range of about two diameters of the sphere. The
six sensors values are fed directly to the controller. No other sensors are in use.
The sensor characteristic was chosen nonlinear as x = sα, where s is the primary
sensor value (distance) and α = 1.5. The effect is that the sensor characteristic
is a smoother function of the angular position of the robot. Still the sensor
information is extremely unreliable and related to the position of the sphere
in a very complicated way. Nevertheless, starting with the “do nothing” and
“know nothing” initialization, we observe many different rolling modes which
are visited in the course of time. In Figure 4 the power spectra of the sensor
values over time are displayed. High frequency means here high velocity. We
observed different behavioral modes. For example rolling with different velocities
around one of the slider axis or also the tumbling mode involving all three
axis.
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Fig. 4. Power spectra of the infra-red sensor values of the spherical robot on flat ground
over time based on 10 s time windows. The bright pixels indicate that there is a
dominating frequency of the sensor values which means that the robot is in a rolling
mode, the rolling velocity being roughly proportional to the frequency. Periods of stable
rolling modes of different velocities are seen to sometimes change rapidly into a resting
mode (frequency zero) or to other velocities.
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4.4 Experiment IV – Spherical Robot: Deprivation in a Basin

An interesting effect is produced if we put the sphere into a circular basin.
We use as sensors the projections of the z-axis of the body coordinate system
on the z-axis of the world coordinates. The motor commands are the nominal
position of the mass points on the inner axis. In Fig. 5 the behavior of the
robot in a basin is shown using the power spectra of the sensor values and the
determinant of the world model. The initial phase is of the same nature as on
the flat surface, i.e. from time 0 – 80 one can see self-explorational modes, where
different frequencies are probed. Then a stable rotational mode emerged (time 80
– 120), which is the circulation in the basin at a constant height. The circulation
mode is manifest in the power spectrum by the low frequency excitation, the
high frequency excitations being the motions of the axes of the robot due to the
rolling motion.

The circulation mode is a behavior which is not so easily realized with the
internally shifting masses. Contrary to the rolling on the flat surface the cir-
culation in the basin permanently changes the direction of the axes and hence
of the sensor vector. Nevertheless, the controller finds a strategy, such that the
circulation mode is stable over many laps. Interestingly this stable sensorimotor
pattern is realized by a trajectory which directly reflects the specific geometry
of the world. In a certain sense one might say that the robot by its behavior
recognizes this geometry.
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Fig. 5. Behavior of a spherical robot in a basin. (a): Determinant of the model matrix
A, (b – d): Power spectra of the sensor values (x, y, z) over time. In the time intervals
80 – 110 and 140 – 170 there are components of stable low frequency in sensor 1 (x)
and 2 (y), which correspond to the circulation in the basin at constant height. The
higher frequencies reflect the rolling of the sphere as in the flat surface case. One can
see that the value of the determinant of A decreases while the robot stays in one mode
of behavior (80 – 110, 140 – 170). This is an indication for the deprivation of the model
arising from the restriction to a specific mode of behavior. Once the deprivation reaches
a certain measure the bootstrapping of new actions sets in which leads to the recovery
of the model (increasing determinant).
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The behavior in the basin also shows that staying in a stable mode for a longer
time leads in general to a deprivation of the world model. This is seen from the
time plot of detA, which is taken as a crude measure for the degeneracy. In
Fig. 5 the deprivation can be seen at the behavior of detA. It is seen to be
indeed decreasing until it reaches nearly 0 at time 115, which means A is closed
to a singularity. An explorational period follows, which effectively explores the
orthogonal subspace, and the determinant of A is seen to increase rapidly. The
same starts again at time 140 and so forth.

5 Conclusions and Outlook

The results presented in the present paper can be considered as a step towards
autonomous early robot development, meaning the scenario where an unbiased
robot might learn the essential sensorimotor coordination by self-exploration.
The important point of our approach is, that it is completely domain invariant,
so that the emerging behaviors are dictated by the physical properties of the
body and the environment. This has a direct bearing for embodied AI in the
sense, that our controller learns to excite certain physical modes of the body,
which are qualified by the fact that they can be understood by the world model
in easy terms. Hence, we may understand these modes as behavioral primitives
which may be used in more complex behavioral architectures.

We have given a theoretical approach to the deprivation problem which arises
in the interplay between the world model and the controller. The system does
not have any information on the structure and dynamics of the body, so that
the world model has to learn this from scratch. This involves the so called boot-
strapping problem, meaning that on the one hand the controls have to be such,
that the world model is provided with the necessary information. On the other
hand, these actions require a certain knowledge of the reactions of the body
– information is acquired best by informed actions. The concerted manner by
which both the controller and the world model evolve during the emergence of
the behavioral modes seems to be a good example of this process.

We consider our approach as a novel contribution to the self-organization of
complex robotic systems. At the present step of our development the behaviors,
although related to the specific bodies and environments, are without goal. As a
next step we will realize a so called behavior based reinforcement learning. When
watching the behaving system one often observes behavioral sequences which
might be helpful in reaching a specific goal. The idea is to endorse these with
reinforcements in order to incrementally shape the system into a goal oriented
behavior.
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Abstract. The moth Macroglossum stellatarum can learn the colour
and sometimes the odour of a rewarding food source. We present data
from 20 different experiments with different combinations of blue and yel-
low artificial flowers and the two odours honeysuckle and lavender. The
experiments show that learning about the odours depends on the colour
used. By training on different colour-odour combinations and testing on
others, it becomes possible to investigate the exact relation between the
two modalities during learning. Three computational models were tested
in the same experimental situations as the real moths and their predic-
tions were compared to the experimental data. The average error over all
experiments as well as the largest deviation from the experimental data
were calculated. Neither the Rescorla-Wagner model or a learning model
with independent learning for each stimulus component were able to ex-
plain the experimental data. We present the new categorisation model,
which assumes that the moth learns a template for the sensory attributes
of the rewarding stimulus. This model produces behaviour that closely
matches that of the real moth in all 20 experiments.

1 Introduction

Flowers attract pollinators mainly by colour and odour stimuli. For newly eclosed
moths and butterflies, it is important to quickly recognise a rewarding flower,
and innate colour and odour preferences contribute to this ability [10,33]. By
their innate preference for blue, naive honeybees are guided to flowers with a
large amount of nectar [15]. A preference for blue is shared by other insects
but innate colour preferences can differ between species [34]. Rapid and flexible
learning to associate colour or odour with a reward has been demonstrated in
honeybees, butterflies and moths [1,32,31,20,24,30,33].

The diurnal hummingbird hawkmoth, Macroglossum stellatarum, uses colour
vision in food-searching, and spontaneously forages from coloured artificial flow-
ers without any odour [19,18]. M. stellatarum has a strong innate preference for
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blue flowers as a food-source and a weaker preference for yellow [18], but it can
easily and equally fast learn other colours including green which is not a colour
of a typical flower [2,18].

M. stellatarum has most probably evolved from a nocturnal ancestor, and in
nocturnal hawkmoths, odour is very important in food-searching [6,28]. It has
recently been shown that the ability of M. stellatarum to learn an odour that
accompanies a colour depends on the choice of colour [3]. When an innately
preferred blue colour is learned together with an odour, the moth will not learn
the odour. On the other hand, if the less preferred colour yellow is used in, the
moths can readily learn the odour.

Stimuli of one sensory modality can influence learning of stimuli of another
modality in different ways. In most cases, two stimuli are more effective than one
and the advantages of multi-sensory integration are of great importance in many
animals [22]. In honeybees, colours attract attention before odour, while odour
attracts attention when the bees are very close to the food source [32,14]. There
is also evidence for increased learning when two stimulus types are combined
[29]. In bumblebees, it has been shown that the presence of odour enhances
colour discrimination, and increases attention and memory formation [21]. In
honeybees, the similarity between colours modulate odour learning [32,14]. The
similarity between colours has also been shown to modulate place learning in a
hawkmoth [4].

A special case of multi-modal learning is configural learning where an animal
learns to respond to a configuration of stimuli, but not to the single stimulus
modalities themselves [23]. The hawkmoth Manduca sexta needs both an odour
and a visual stimulus to unroll the proboscis for feeding [28], which also might
be a preference for a configuration of both cues.

In contrast, two different situations have been found where learning of one
stimulus prevents the learning of another stimulus. First, animals trained to a
stimulus compound consisting of, for instance, a colour and an odour, sometimes
only learn one of the components. For example, they learn the colour but not the
odour. This effect is called overshadowing [25]. Second, when animals are first
trained to one stimulus component and later to the compound they will not learn
the stimulus component that was initially absent. The first component already
predicts the reward and blocks learning of the second component [17]. Blocking
and overshadowing were originally defined for classical conditioning but have also
been found in instrumental conditioning [8,9,23]. A possible reason for the lack
of learning of the second stimulus may be that the animal directs its attention
only to the first stimulus [35]. The existence of blocking and overshadowing in
insects is controversial and experiments have given mixed results [8,9,7,11,13]. In
particular, it has been disputed whether the learning of one stimulus modality
depends on the other.

To test this, we collected data from 20 different learning experiments with M.
stellatarum where multi-modal stimuli were used. Most of the animal data has
been previously published [3], but experiments 8-12 are reported here for the first
time. We also tested a number of learning models on these experiments using
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computer simulations. The models tested were: (1) the Rescorla-Wagner model,
which assumes that learning depends on all stimuli present and the prediction
error of the reward magnitude, (2) the independence model, which assumes that
learning of each stimulus component is independent of the other, and (3) the
new categorisation model, which assumes that the moth learns a template for
the rewarded stimulus when there is a prediction error. As a base case, we also
simulated random selection of stimuli.

2 Materials and Methods

M. stellatarum were bred in the laboratory throughout the year. The larvae were
fed their natural food plant, and the pupae were kept at 20◦C. On the day after
eclosion, the näıve moths were released in the cage with two feeders [27]. The
experimental cage measured 50 x 60 x 70 cm and was illuminated from above
with four fluorescent tubes (Osram, Biolux). Two feeders were placed 35 cm
above the cage floor and 30 cm apart from each other. To prevent place learning
[4], the feeders were randomly shifted between four locations during learning.
During training, the rewarded feeder was filled with sucrose solution and the
unrewarded contained water. Groups of up to 25 moths were flying and feeding
in the same cage. The tests occurred after four days of training. During tests,
both feeders were filled with water and each moth was tested on its own. The
first artificial flower the moth touched with its proboscis was recorded.

Two colours, blue (B), and yellow (Y) and two odours, artificial honeysuckle
(H) and extract of lavender (L) (oil) were used in the experiments. 25 μl of the
odour extract was distributed in 10 ml of water of sucrose solution in the feeders
and refilled every second day. Both honeysuckle and lavender flowers are vis-
ited by M. stellatarum in the wild [16]. In electroantennograms, M. stellatarum
responded strongly to both odours [5].

We run 20 different experiments with different combinations of colours and
odours. Experiments 1-5 were different preference tests. Untrained moths were
presented with two stimuli and their first choice was recorded. The stimulus com-
binations used were B/Y, YH/YL, BH/BL, BL/YH, and BH/YL. The results
of the preference tests were used to set the initial weights of the different com-
putational models. The number of animals tested in the first five experiments
were 25, 38, 21, 25 and 10 respectively.

In experiment 6 and 7, we tested the ability of the moths to learn which
colour was rewarded. The training used B+/Y and Y+/B respectively, where +
indicates that this stimulus was rewarded. The tests used the same stimuli, but
without any reward. There were 20 animals in each experiment.

In experiment 8-12, the moths were trained on one combination of colour
and odour and tested on another. These combinations are shown in Fig. 2.
The number of animals tested in these experiments were 50, 18, 21, 10 and
18 respectively.

We also used additional data from 8 experiment previously reported by Balke-
nius and Kelber [3] summarised in Fig. 1 and Fig. 3. The experiments shown
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in Fig. 3 started with a pre-training phase where the preference for a colour
was changed. In two of the experiments, the weak preference for yellow was
strengthened by a pre-training procedure, and in the the two other experiments,
the strong preference for blue was weakened to see how this would influence
subsequent learning (For details, see [3]).

3 Computational Models

The experiments run with the real moths were also tested with four compu-
tational models to see if these models were able to explain the behaviour of
the animals. These models were a random selection model, the Rescorla-Wagner
model, an independence model, and the new categorisation model which is de-
scribed here for the first time.

For all models, each flower stimulus was coded as a vector s = 〈s0, s1, s2, s3〉
with four components coding for blue colour (s0), yellow colour (s1), honeysuckle
odour (s2), and lavender odour (s3). Each of these components were set to 1
when the corresponding stimulus component was available and 0 otherwise. For
example, the stimulus BL was coded as s = 〈1, 0, 0, 1〉.

3.1 Random Selection

In the random selection model, a stimulus was always selected with probability
p(s(t)) = 1. This model serves as a base case against which the other models
could be compared. This model tests the assumption that no learning takes
place at all. The result of the random model is not shown in the figures since it
is always the same.

3.2 The Rescorla-Wagner Model

Since it appears that learning of one stimulus component can block learning
of another in the moth experiments, it seems reasonable to test how well the
Rescorla-Wagner model is able to reproduce the results of the experiments. Let
w(t) be the current weight vector and R(t) the current reward at time t. When
the moth attempts to forage, the weights are updated according to the equation

wi(t + 1) = wi(t) + γδ(t)si(t) (1)

for both rewarded and unrewarded trails, where γ is the learning rate and δ(t)
is the difference between the actual and expected reward

δ(t) = R(t) −
n∑

i=0

wi(t)si(t), (2)

where n = 3 since there were four different stimulus components. The stimulus
s(t) is selected according to the probability

p(s(t)) =
n∑

i=0

wi(t)si(t). (3)
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3.3 The Independence Model

The independence model is similar to the Rescorla-Wagner model except that
learning about one stimulus component is independent of the connection
strengths of the other associations. In this model, one stimulus component is
not able to block learning of another.

Let w(t) be the current weight vector and R(t) the current reward. When the
moth attempts to forage, the weights are updated according to the equation

wi(t + 1) = wi(t) + γ[2R(t) − 1]si(t). (4)

A stimulus is selected according to the same probability as in the Rescorla-
Wagner model (Eq. 3).

3.4 The Categorisation Model

The categorisation model assumes that the animal learns a template for the
sensory attributes of the rewarding flower during foraging. When the moth is
rewarded, its template for the flower will change towards the current flower.
The moth has only one preferred stimulus, which is only updated when the
moth is rewarded. Let w(t) be the current weight vector coding for the flower
template and R(t) the current reward. When the moth is rewarded, the weights
are updated according to the equation

wi(t + 1) =
ui(t + 1)∑n
i=0 ui(t + 1)

(5)

where

ui(t + 1) =
{

wi(t) + γδ(t) when si = 1
wi(t) − ε otherwise (6)

and δ(t) is calculated as for the Rescorla-Wagner model (Eq. 2). To function as
a template it is necessary that the weight vector w is normalized as described by
Eq. 5. The match between the learned stimulus and the current external stimulus
is thus used to predict the magnitude of the reward. Unlike the Rescorla-Wagner
model, however, the learning attempts to move the learned template towards
the rewarded stimulus instead of directly decreasing the prediction error. As a
consequence, the prediction error will still decrease as the template reaches the
rewarded stimulus.

Because of the δ in Eq. 6, learning only occurs when there is a prediction
error, which makes blocking possible when the reward is already predicted by
the stimulus. Since the template is normalized, but the stimulus input is not,
It is possible for a stimulus component to completely block learning even if the
stimulus and the template are not identical.

The probability of selecting a stimulus is set to

p(s(t)) =

[
n∑

i=0

wi(t)si(t)

]q

. (7)
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The sum describes the matching process and the exponent q is a parameter
which is used to derive selection probabilities from the matching. This parameter
was set to q = 2.00 to quantitatively fit the experimental data.

3.5 Simulations

The four models were tested on the 20 experiments describe above. During each
simulation, the simulated moth was randomly presented with one of two stimuli
and was allowed to select it with the probability given by the selection functions
described above. Data from 1000 simulated animals were recorded for each ex-
periment and each model. The simulated moths were rewarded 50 times during
each learning phase.

In the simulations, the initial weights were set to parallel the stimulus pref-
erences of the moth as closely as possible. The weights were optimized to two
decimal places. The constants for each model were subsequently set to minimise
the average error over all experiments. These constants and initial weight values
are given in table 1.

Table 1. Optimal parameter for each of the models. Note that the sum of the weight
for the categorisation models equals 1.

Model γ ε w0 w1 w2 w3

Rescorla-Wagner 0.05 - 0.10 1.00 0.15 0.00
Independence 0.04 - 0.10 1.00 0.15 0.00
Categorisation Model 0.05 0.10 0.18 0.74 0.08 0.00

4 Results

The results of experiments 1-5 showed that the moth had a marked preference
for blue, but no clear preference for any of the odours (data not shown). Since
the parameters of each model were optimised to reflect these preferences, all
models behaved as the real moth in these preference tests. Experiments 6 and 7
verified that the moth could be trained to select either a blue or yellow flower.
The real moth selected yellow in 80% of the trials after being trained on yellow,
and blue in 95% of the trials after being trained on blue. All models, except the
random selection, were able to learn these discriminations.

Fig. 1 shows the result of experiments 8-11 with the same colour but differ-
ent odours [3]. In the real moth, the blue colour prevents odour learning from
occurring, but with the yellow colour, the moth is able to learn which odour
is rewarded. The categorisation model gives almost the same result as the real
moth on all experiments. Contrary to the real moth, the Rescorla-Wagner model
learns the odour in all experiments. The same is true about the independence
model, although the learning is less pronounced for this model regardless of
which colour was used.

The behaviour of the real moth and the different models differ even more in
experiments 12-16 shown in Fig. 2. Here, it is again evident that the real moth
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Fig. 1. Choices of the stimulus with the rewarded odour after discrimination training
in experiments 8-11 for the real moth (data from [3]) and the three models. B: blue; Y:
yellow; H: honeysuckle; L: lavender. With the yellow colour, the moths learn the odours,
but with blue colour, they do not. This is predicted by the categorisation model, but
not by the Rescorla-Wagner or independence models.

learns odour when it is presented together with yellow (Fig. 2a, b and e). Since
the test with colour and odour and the test with only colour differs, the animals
must have learned the odour. With the blue colour, the animals did not learn
the odour and the result is the same with and without odour (Fig. 2c and d).

Again, the predictions of the categorisation model were very close to the
actual data, but the other two models differed in different ways. In experiment
12 and 16 (Fig. 2a and e), the Rescorla-Wagner model did not make the correct
discrimination and appears to select the correct odour and ignore the colour.
The independence model does not take the colour into account when learning
odour and learns the colour in experiment 10 (Fig. 2c), when the other models
and the real moth does not.

For the real moth, the preference for the colour could be changed by pre-
training [3]. In the experiments shown in Fig. 3a and b, the innate preference for
blue is extinguished during pre-training. As a result, the moth can later learn
odours together with a blue artificial flower. The opposite situation is shown in
Fig. 3c and d where the less preferred yellow is made more attractive during pre-
training. As a consequence, the real moth no longer learns the odour together
with yellow.

Like the real moth, the categorisation model behaves differently depending
on which colour is used and whether it was pre-trained or not. This is also true
of the independence model, although the difference in the two cases is not as
large. For the Rescorla-Wagner model, however, the learning is almost the same
regardless of the colour or pre-training.

Fig. 4 shows the overall results of the simulations for the different models. The
average error of the new categorisation model is clearly much lower than that
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Fig. 2. Results of experiment 12-16. Choices of the stimulus with the rewarded colour
after discrimination training in five experiments for the real moth and the three models.
In the experiments, the moths (and models) were first trained on one combination of
colour and odour and later tested on another combination to see how much of the
learning that involved colour and odour respectively. See Fig. 1 for further explanations.

of the other models. Both the Rescorla-Wagner and the independence model
are much better than random. Looking at the maximal error, the categorisation
model reproduces the data much more closely than the other models. Surpris-
ingly both the Rescorla-Wagner and the independence models perform at close
to the random model in the worst case. The Rescorla-Wagner is even worse than
the random model on some experiments.

5 Discussion

We have reported the results of 20 experiments with moths in different discrim-
ination tasks involving multi-modal stimuli with colour and odour. Three com-
putational models were tested on the data to try to determine the mechanisms
behind this type of learning in hawkmoths. This is the first time multi-modal
learning in sphingids has been modelled and the results shows that the learning
mechanisms in insects can be far from trivial.

We observed behaviours that are reminiscent of overshadowing (Fig. 1a and
b) and blocking (Fig. 3c and d). In naive moths, the degree of odour learning
depended on the colour used during training (Fig. 1). Although the Rescorla-
Wagner model is often proposed as an explanation for these phenomena, it was
not able to reproduce our experimental results without changing the parameters
for each individual experiment. Since the parameters were set to minimise the
overall error on all experiments, the model failed in some instances. In fact,
in one case, this model performed worse than random selection (Fig. 4). This
parameter sensitivity is a well known problem with this model [12]. For example,
in the experiments shown in Fig. 1a-b, the blue colour is not able to block odour
learning since the colour undergoes extinction on the non-rewarded trials and
thus looses it ability to block odour learning. For the same reason, the Rescorla-
Wagner model fails to reproduce the blocking like situation in Fig. 3c-d. It is clear
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Fig. 3. Choices of the rewarded colour in experiments 17-20 for the real moth (data
from [3]) and the three models. By pre-training the moths, their learning could be
changed. (a-b). When the innate preference for blue was extinguished through discrim-
ination learning, the moths could learn to discriminate between the two odours. This
behaviour was predicted by all models. (c-d). When the moths were pre-trained to
prefer yellow, they lost their ability to learn a discrimination between the two odours.
The categorisation model as well as the independence model predicts this behaviour,
while the Rescorla-Wagner model fails. See Fig. 1 for further explanations.

Fig. 4. Overall results of the three models and a random selection strategy (horizontal
stripes). (a). Average error on all 20 experiments. The new model clearly outperforms
the other models with an average error of 3.91%. (b). The maximum error for each of
the models and the random selection strategy. Again, the new model is much better
than the two alternatives.

that the influence of this extinction is highly dependent on the precise learning
rate and the number of trials. In contrast, in the real moth, this phenomenon
does not critically depend on the number of trials.

This was the motivation for the learning rule in the categorisation model,
where learning only occurs during rewarded trials. This model is thus immune to
extinction during non-rewarded trials and can accurately predict the behaviour
of the moth in all the experiments in Fig. 1 and Fig. 3. In particular, the model
will never learn the odour with a blue colour since this colour is never extin-
guished, and thus blocking remains intact throughout the experiment.

Surprisingly, the independence model was slightly better than the Rescorla-
Wagner model both on average and in the worst case (Fig. 4). In particular, this
was the case in the blocking like experiments in Fig. 3. The reason for this is the
interaction between the initial preferences and the particular number of trials
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despite a fundamental disability to handle these learning situations. However,
from the data, it is clear that the learning of one modality depends on the other.

These experiments are in line with colour preference tests that have shown
that M. stellatarum prefers blue to yellow [18]. Blocking has been demonstrated
with free-flying honeybees. Experiments have shown that the blocking effect
depended on the salience of the different stimuli, that is, how easy it was for the
animal to detect the stimulus [7]. In honeybees, the salience of a stimulus, e. g.
the concentration of an odour, also influenced its ability to overshadow other
stimuli [26].

In the future, it would be interesting to test more learning models available
in the literature on the experimental data. In particular, we would like to test
attentional models that may be able to explain the overshadowing like results in
some of the experiments. This would possibly lead to alternative explanations
for the results. We would also like to further study two of the assumptions of
the model in experiments with real moths. One is that extinction never occurs
which appears rather counterintuitive. The other is that the moth can only learn
a single template.

In summary, we have presented experimental results from 20 different experi-
ment with the hawkmoth M. stellatarum, which shows that the particular colour
of an artificial flower determines whether the moth will learn its odour or not.
Also, when the moth has learned a combination of colour and odour, colour is
most important. By manipulating the preference for the colours, its effect on
odour learning could be changed. Furthermore, we have shown that neither the
Rescorla-Wagner model, nor the independence model are able to explain the
experimental results. Instead, we have proposed a new model, the categorisa-
tion model, which is based on the idea that the moth learns a template for the
rewarded multi-model stimulus when it is rewarded. This new model faithfully
reproduces all the experimental data.
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Abstract. This work is concerned with the study of the application of the MDB 
(Multilevel Darwinist Brain) evolution based Cognitive Architecture in real ro-
bots performing adaptive learning tasks. The experiments described here dis-
play the capabilities of this architecture when dealing with tasks that involve 
real time learning from a teacher and real time adaptation to changes in the 
goals provided or the communication pattern used by the teacher. One of the 
consequences of the interaction of the robot with the environment through the 
MDB is the generation of induced behaviors that allow the robot to continue its 
operation when no teacher is present. The experiments were carried out using a 
Sony AIBO robot and a Pioneer 2 robot with the same mechanism running on 
both just to demonstrate the robustness of the approach. 

1   Introduction 

In the field of autonomous robotics several approaches have been proposed to obtain 
controllers for physical agents through evolutionary processes [1]. Most of them use a 
stage of evolution in a simulated or real learning setting, but usually prior to the ap-
plication in a real robot [2][3]. Thus, the acquisition of knowledge takes place in a 
controlled fashion and the problems of adaptation to the dynamics of the real envi-
ronments are simplified. A relevant example of this is the system developed by Wat-
son [4] which, starting from some pre-trained building blocks and behavior se-
quences, when released in a real environment adds its experiences to memory, build-
ing new behavior sequences, rules and procedures and deleting unused ones through a 
genetic algorithm. Nordin et al. [5] employ a memory based genetic programming 
mechanism in order to obtain a Cognitive Architecture for a Khepera robot that makes 
use of previous experience in its interaction with the world. Basically, a planning 
process incorporates a GP system that is used to evolve a suitable plan for the optimi-
zation of the outcome given the best current environment model. Walker [6] applies a 
training stage where a standard genetic algorithm is employed to obtain a robust and 
general controller through the presentation of many different situations. When operat-
ing on a real robot, they apply a minimal evolutionary strategy that adapts the control-
ler in real time. 
                                                           
* This work was supported by the MEC of Spain through project CIT-370300-2005-24. 
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As mentioned before, the adaptive behavior in these cases is achieved starting from 
a controlled dynamic environment in the learning stage. However, if the objective is 
to obtain a controller in real time in a real agent operating in a real environment using 
evolutionary algorithms (called Lifelong Adaptation by Evolution, LAE), the number 
of examples found in literature decreases. In [7], the authors present an approach 
called “embodied evolution” where a group of robots can improve in real time a basic 
set of behaviours through evolution and use a system whereby they mate to transmit 
genetic information. Another relevant example that fits into the LAE approach is the 
one by Floreano and col. [8] where competitive coevolution is used to make two 
physical agents adapt their behaviours in real time. This work was continued by Os-
tergaard and Lund [9] applied to team competition.  

After reviewing the literature, two main problems become evident in the LAE ap-
proaches: the real time adaptation to the dynamics of the real environment that must 
be solved by the Evolutionary Algorithm and the high computational cost of evolu-
tion. The solutions found in the literature, deal with these two problems in a theoreti-
cal way, but in real applications the dynamics of the environments and the real time 
adaptation of the systems are very limited. In this work, we present and apply a Cog-
nitive Architecture (MDB) that follows this LAE approach. The objective of the MDB 
is to provide a robust evolutionary framework for the direct adaptation of the system 
to the dynamics of the environment and its interaction with it in such a way that com-
putational cost can be reduced to make it efficient in real time applications. This is 
presented through the description of a set of experiments carried out on two different 
robotic platforms: an AIBO robot and a Pioneer 2 wheeled robot. 

2   The Multilevel Darwinist Brain 

The Multilevel Darwinist Brain (MDB) is a general Cognitive Architecture developed 
in our group and first presented in [10]. As usual in this kind of architectures, it has 
been designed to provide an autonomous agent with the capability of selecting the 
action (or sequence of actions) it must apply in its environment in order to achieve its 
goals. The main design objective was to automate the acquisition of knowledge in a 
real agent through the interaction with its environment so that it could autonomously 
adapt its behavior to fulfill its motivations. To carry out this requirement, we have 
resorted to classical bio-psychological theories by Changeaux [11], Conrad [12] and 
Edelman [13] in the field of cognitive science relating the brain and its operation 
through a Darwinist process. All of these theories lead to the same concept of cogni-
tive structure based on the brain adapting its neural connections in real time through 
evolutionary or selectionist processes.  

The MDB can be formalized through a cognitive model which is a particularization 
of the standard Abstract Architectures for agents [14]. In this case, a utilitarian cogni-
tive model [15] is used which starts from the premise that to carry out any task, a 
motivation (defined as the need or desire that makes an agent act) must exist that 
guides the behavior as a function of its degree of satisfaction. We consider that the 
external perception e(t) of an agent is made up of the sensory information it is capable 
of acquiring through its sensors from the environment in which it operates. The envi-
ronment can change due to the actions of the agent or to factors uncontrolled by the 
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agent. Consequently, the external perception can be expressed as a function of the last 
action performed by the agent A(t-1), the sensory perception it had of the external 
world in the previous time instant e(t-1) and a description of the events occurring in 
the environment that are not due to its actions Xe(t-1) through a function W:    

e(t) = W [e(t-1), A(t-1), Xe (t-1)] 

The internal perception i(t) of an agent is made up of the sensory information pro-
vided by its internal sensors, its propioception. The internal perception can be written 
in terms of the last action performed by the agent, the sensory perception it had from 
the internal sensors in the previous time instant i(t-1) and other internal events not 
caused by the agent Xi (t-1) through a function I: 

i(t) = I [i(t-1), A(t-1), Xi (t-1)] 

The satisfaction s(t) of the agent can be defined as a magnitude that represents the 
degree of fulfillment of the motivation of the agent and depends on the internal and 
external perceptions through a function S. As a first approximation we are going to 
ignore the events over which the agent has no control and reduce the problem to the 
interactions of the agent with the world and itself. Thus, generalizing: 

s(t) = S [e(t), i(t)] = S [W [e(t-1), A(t-1)], I [i(t-1), A(t-1)]] 

The main objective of the Cognitive Architecture is the satisfaction of the motiva-
tion of the agent, which, without any loss of generality, may be expressed as the 
maximization of the satisfaction s(t) in each instant of time. Thus: 

max{s(t)} = max {S [W [e(t-1), A(t-1)], I [i(t-1), A(t-1)]]} 

To solve this maximization problem, the only parameter the agent can modify is 
the action it performs, as the external and internal perceptions should not be manipu-
lated. That is, the Cognitive Architecture must explore the possible action space in 
order to maximize the resulting satisfaction. To obtain a system that can be applied in 
real time, the optimization of the action must be carried out internally (without inter-
action with the environment) so W, I and S are theoretical functions that must be 
somehow obtained. These functions correspond to what are traditionally called: 

• World model (W): function that relates the external perception before and after 
applying an action. 

• Internal model (I): function that relates the internal perception before and after 
applying an action. 

• Satisfaction model (S): function that provides a predicted satisfaction from pre-
dicted perceptions provided by the World and Internal models. 

As commented before, the main starting point in the design of the MDB was that 
the acquisition of knowledge should be automatic, so we establish that these three 
models must be obtained in execution time as the agent interacts with the world. To 
develop this modeling process, information can be extracted from the real data the 
agent has after each interaction with the environment. These data will be called ac-
tion-perception pairs and are made up of the Sensorial Data on instant t, the Applied 
Action on instant t, the Sensorial Data on instant t+1 and the Satisfaction in t+1. 
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Summarizing, for every interaction of the agent with its environment, two proc-
esses must be solved: 

• The modeling of functions W, I and S using the information in the action percep-
tion pairs. As we will explain later, these are learning processes. 

• The optimization of the action using the models available at that time. 

2.1   Basic Operation  

Fig. 1 displays a block diagram of the MDB with arrows indicating the flow of execu-
tion. The operation of the architecture can be summarized by considering that the 
selected action (represented by the current action block) is applied to the environment 
through an acting stage obtaining new sensing values. These acting and sensing val-
ues provide a new action-perception pair that is stored in the Short-Term Memory 
(STM). Then, the model learning processes start (for world, internal and satisfaction 
models) trying to find functions that generalize the real samples stored in the STM. 

The best models in a given instant of time are taken as current world, internal and 
satisfaction models and are used in the process of optimizing the action with regards 
to the predicted satisfaction of the motivation. After this process finishes, the best 
action obtained (current action) is applied again to the environment through an acting 
stage obtaining new sensing values. 

These steps constitute the basic operation cycle of the MDB, and we will call it one 
iteration. As more iterations take place, the MDB acquires more information from the 
real environment (new action-perception pairs) and thus the learning model processes 
have more information and, consequently, the action chosen using these models is 
more appropriate. 

The block labeled Long-Term Memory stores those models that have provided suc-
cessful and stable results on their application to a given task in order to be reused 
directly in other problems or as seeds for new learning processes. We will later dis-
cuss the details of this memory due to its relevance in real applications. 

Fig. 1. Block diagram of the Multilevel Darwinist Brain 
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2.2   Darwinism  

The main difference of the MDB with respect to other architectures lays in the way 
the process of modeling the functions W, I and S is carried out. According to the Dar-
winist theories that are the basis for this architecture, we have selected as modeling 
technique Evolutionary Algorithms and as the representation for the models Artificial 
Neural Networks, this is, the acquisition of knowledge in the MDB is basically a neu-
roevolutionary process. There is no design limitation in the type of Evolutionary tech-
nique to be used or in the type of neural structure to be applied in the MDB. 

In this case, the modeling is not an optimization process but a learning process tak-
ing into account that we seek the best generalization for all times, or, at least, an ex-
tended period of time, which is different from minimizing an error function in a given 
instant t [16]. Consequently, the modeling technique selected must allow for gradual 
application, as the information is known progressively and in real time. Evolutionary 
techniques permit a gradual learning process by controlling the number of generations 
of evolution for a given content of the STM. Thus, if evolutions last just a few genera-
tions per iteration (interactions with the environment), gradual learning by all the 
individuals is achieved. To obtain a general model, the populations of the evolution-
ary algorithms are maintained between iterations (represented in Fig. 1 through the 
world, internal and satisfaction models blocks that are connected with the learning 
blocks), leading to a sort of inertia learning effect where what is being learnt is not the 
contents of the STM in a given instant of time, but of sets of STMs. 

The MDB has been designed to be applied in real agents; this is, in real environ-
ments. The dynamics of such environments imply that the architecture must be intrin-
sically adaptive. The strategy of evolving for a few generations and maintaining 
populations between iterations permits a quick adaptation of models to the dynamics 
of the environment, as we have a collection of possible solutions in the populations 
that can be easily adapted to the new situation. 

Obviously, the system must be able to respond in real time, and this is achieved 
through the use of current models to determine the action to be carried out, independ-
ently of what the modeling process is doing. 

2.3   Short and Long Term Memory 

The management of the Short Term Memory is critical in this real time learning proc-
ess because the quality of the learned models depends on what is stored in this mem-
ory and the way it changes. The data stored in the STM are acquired in real time as 
the system interacts with the environment and, obviously, it is not practical or even 
useful, to store all the samples acquired in the agent's lifetime. A dynamic replace-
ment strategy was designed that labels the samples using four basic features (distance, 
complexity, initial relevance and time) related to saliency of the data and temporal 
relevance. These four terms are weighted and, depending on the storage policy (de-
pending on the motivation), the information stored in the STM may be different. For 
example, while the agent is exploring the environment or wandering (the motivation 
could be just to explore), we would like the STM to store the most general and salient 
information of the environment, and not necessarily the most recent. This can be 
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achieved by simply adjusting the parameters of the replacement strategy. Details 
about the management strategy for the STM can be found in [17].  

The Long Term Memory is a higher level memory element, because it stores in-
formation obtained after the analysis of the real data stored in the STM. From a psy-
chological point of view, the LTM stores the knowledge acquired by the agent during 
its lifetime. This knowledge is represented in the MDB as models (world, internal and 
satisfaction models) and their context, so, the LTM stores the models that were classi-
fied by the agent as relevant in certain situations (context). In an initial approach we 
have considered that a model must be stored in the LTM if it predicts the contents of 
the STM with high accuracy during an extended period of time. 

From a practical point of view, the introduction of the LTM in the MDB, avoids 
the need of re-learning the models in a problem with a real agent in a dynamic situa-
tion every time the agent changes into different states (different environments or dif-
ferent operation schemas). The models stored in the LTM in a given instant of time 
are introduced in the evolving populations of MDB models as seeds so that if the 
agent returns to a previously learnt situation, the model will be present in the popula-
tion and the prediction will be accurate soon. In [18] there is formal presentation of 
the LTM in the MDB.  

In addition, as explained before, the replacement strategy of the STM favors the 
storage of relevant samples. But, in dynamic environments, what is considered rele-
vant could change during time, and consequently the information that is stored in the 
STM should also change so that the new models generated correspond to the new 
situation. If no regulation is introduced, when situations change, the STM will be 
polluted by information from previous situations (there is a mixture of information) 
and, consequently, the generated models will not correspond to any one of them. 
These intermediate situations can be detected by the replacement strategy of the LTM 
as it is continuously testing the models to be stored in the LTM. Thus, if it detects a 
model that suddenly and repeatedly fails in the predictions of the samples stored in 
the STM, it is possible to assume that a change of context has occurred. This detection 
will produce a regulation of the parameters controlling the replacement in the STM so 
that it will purge the older context. A more in depth explanation of the interaction 
between short and long term memory can be found in [19]. 

3   Adaptive Behavior Example 

After presenting the basic operation of the MDB, in this section we describe an appli-
cation example that uses the main features of the architecture: real time learning, real 
time operation, physical agent operation and adaptive behavior. We have carried out 
the same experiment using two different physical agents to show the robustness of the 
architecture: a Pioneer 2 wheeled robot and Sony’s AIBO. Previous examples of the 
successful operation of the MDB in real problems can be found in [17]. 

3.1   Experimental Setup and Induced Behavior 

The task the physical agent must carry out is simple: learn to obey the commands of a 
teacher that, initially, guides the robot towards an object located in its neighborhood. 
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In Fig. 4 we show the experimental setup for both agents. In the case of the Pioneer 2 
robot (left image of Fig. 4), the object to reach is a black cylinder and in the case of 
the AIBO robot the object is a pink ball (right images of Fig. 4). The Pioneer 2 robot 
is a wheeled robot that has a sonar sensor array around its body and a laptop placed on 
its top platform. The laptop provides two more sensors, a microphone and the numeri-
cal keyboard, and the MDB runs on it. The AIBO robot is a dog-like robot with a 
higher range of sensors and actuators. In this example we use the digital camera, the 
microphones and the speaker. The MDB is executed remotely in a PC and communi-
cates with the robot through a wireless connection. 

Fig. 2 displays a schematic view of the current world and satisfaction models (with 
their respective numbers of inputs and outputs) that arise in this experiment in a given 
instant. The sensory meaning of the inputs and outputs of these models in both physi-
cal agents is summarized in Table 1. In this example, we do not take into account 
internal sensors in the agent and, consequently, internal models are not used. The flow 
of the learning process is as follows: the teacher observes the relative position of the 
robot with respect to the object and provides a command that guides it towards the 
object. Initially, the robot has no idea of what each command means in regards to the 
actions it applies. After sensing the command, the robot acts and, depending on the 
degree of obedience, the teacher provides a reward or a punishment as a pain or pleas-
ure signal. The motivation of the physical agent in this experiment is to maximize 
pleasure, which basically means being rewarded by the teacher.  

 

 
 

Fig. 2. World and satisfaction models involved in this example with their corresponding sen-
sory inputs and outputs 

 
To carry out this task, the robot just needs to follow the commands of the teacher, 

and a world model with that command as sensory input is obtained (top world model 
of Fig. 2) to select the action. From this point forward we will call this model commu-
nication model. The satisfaction model (top satisfaction model of Fig. 2) is trivial as 
the satisfaction is directly related to the output of the communication model, this is, 
the reward or punishment. 
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Table 1. Inputs and outputs involved in the models of the MDB for the two physical agents 
used in the experiment 

Pioneer 2 robot AIBO robot 
Command 

(1 input) 
Group of seven possible values 
according to the seven musical notes. 
Provided by the teacher through a 
musical keyboard. 
Sensed by the robot using the 
microphone of the laptop. 
Translated to a discrete numerical range 
from -9 to 9. 

Group of seven possible values 
according to seven spoken words: hard 
right, medium right, right, straight, left, 
medium left and hard left. 
The teacher speaks directly. 
Sensed using the stereo microphones of 
the robot. 
Speech recognition using Sphinx 
software translated into a discrete 
numerical range from -9 to 9. 

Action
(1 input)

Group of seven possible actions:  turn 
hard right, turn medium right, turn right, 
follow straight, turn left, turn medium 
left and turn hard left that are encoded 
with a discrete numerical range from -9 
to 9. 
The selected action is decoded as linear 
and angular speed. 

Group of seven possible actions:  turn 
hard right, turn medium right, turn right, 
follow straight, turn left, turn medium 
left and turn hard left that are encoded 
with a discrete numerical range from -9 
to 9. 
The selected action is decoded as linear 
speed, angular speed and displacement. 

Predicted 
human 

feedback 
(1 output 
/input)

Discrete numerical range that depends 
on the degree of fulfillment of a 
command from 0 (disobey) to 5 (obey). 
Provided by the teacher directly to the 
MDB using the numerical keyboard of 
the laptop. 

Group of five possible values according 
to five spoken words: well done, good 
dog, ok, pay attention, bad dog. 
The teacher speaks directly 
Sensed using stereo microphones of the 
robot. 
Speech recognition using Sphinx 
software translated into a discrete 
numerical range from 0 to 5 

Satisfaction 
(1 output)

Continuous numerical range from 0 to 
11 that is automatically calculated after 
applying an action. It depends on: 
o The degree of fulfillment of a 

command from 0 (disobey) to 5 
(obey). 

o The distance increase from 0 (no 
increase) to 3 (max). 

o The angle with respect to the object 
from 0 (back turned) to 3 (robot 
frontally to the object) 

Continuous numerical range from 0 to 
11 that is automatically calculated after 
applying an action. It depends on: 
o The degree of fulfillment of a 

command from 0 (disobey) to 5 
(obey). 

o The distance increase from 0 (no 
increase) to 3 (max). 

o The angle with respect to the object 
from 0 (back turned) to 3 (robot 
frontally to the object). 

Distance and 
angle 

(2 outputs/ 
inputs)

Sensed by the robot using the sonar 
array sensor. 
Measured from the robot to the black 
cylinder and encoded directly in cm and 
degrees. 

Sensed by the robot using the images 
provided by the colour camera. 
Colour segmentation process and area 
calculation taken from Tekkotsu 
software. 
Encoded in cm and degrees. 
Measured from the robot to the pink ball.  

The interesting thing here is what happens to the models corresponding to other 
sensors. We assume that, in general, to design the models needed in the MDB for a 
particular task, no simplifications are made and world models are generated to cover 
the sensory capabilities of the physical agent. In this case, a second world model was 
simultaneously obtained (bottom world model of Fig. 2) that uses distance and angle 
to the object as sensory inputs. Obviously, this model is relating information other 
than the teacher’s commands during the performance of the task. If the commands 
produce any regularities in the information provided by other sensors in regards to the 
satisfaction obtained, these models can be applied when operating without a teacher. 
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This is, if in a given instant of time, the teacher stops providing commands, the com-
munication model will not have any sensory input and cannot be used to select the 
actions leaving this task in the hands of other models that do have inputs. For this 
second case, the satisfaction model is more complex relating the satisfaction value to 
the distance and angle, directly related with rewards or punishments. 

In this particular experiment, the four models are represented by multilayer percep-
tron ANNs (with a number of neurons of 2-3-3-1 for the communication model, 3-6-
6-2 for the world model and 2-3-3-1 for the second satisfaction model). They were 
obtained using the PBGA genetic algorithm [20] that automatically provides the ap-
propriate size of the ANNs. Thus, in this case, the MDB executes four evolutionary 
processes over four different model populations every iteration. The STM has a size 
of 20 action-perception pairs in all the experiments. 

Fig. 3 displays the evolution of the Mean Squared Error provided by the current 
models (communication, world and satisfaction) predicting the STM as iterations of 
the MDB take place in both physical agents. The error clearly decreases in all cases 
and in a very similar way for both agents (except at the beginning where the STM is 
being filled up). This means that the MDB works similarly in two very different real 
platforms and that the MDB is able to provide real modeling of the environment, the 
communication and the satisfaction of the physical agent. As the error values show in  
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Fig. 3. Evolution of the Mean Squared Error of the current communication model (top), satis-
faction model (middle) and world model (bottom) predicting the STM as iterations of the MDB 
take place in the AIBO robot (left column)  and in the Pioneer 2 robot (right column) 
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Fig. 4. Left images show a sequence of real actions in the Pioneer 2 robot when the teacher is 
present (top) and the robot uses the induced models (bottom). Middle and right images corre-
spond to the same situation but in the case of the AIBO robot. 

 
Fig. 3, both robots learned to follow teacher commands in an accurate way in about 

20 iterations (from a practical point of view this means about 10 minutes of real time) 
and, what is more relevant, the operation without teacher was successful using the 
world and satisfaction models. In this kind of real robot examples, the main measure 
we must take into account in order to decide the goodness of an experiment is the 
time consumed in the learning process to achieve a perfect obedience. Fig. 4 displays 
a real execution of actions in both robots. In the pictures with a teacher, the robot is 
following commands; otherwise it is performing the behavior without any commands, 
just using its induced models. It can be clearly seen that the behavior is basically the 
same although a little less efficient without teacher commands (as it has learnt to 
decrease its distance to the object and not the fastest way to do it). 

Consequently, an induced behavior was obtained in the physical agents based on 
the fact that every time the robot applies the correct action according to the teacher’s 
commands, the distance to the object decreases. This way, once the teacher disap-
pears, the robot can continue with the task because it developed a satisfaction model 
related to the remaining sensors telling it to perform actions that reduce the distance. 

3.2   Dynamic Adaptation 

To show the adaptive capabilities of the MDB in a real application, in Fig. 5 (left) we 
have represented the evolution of the MSE provided by the current communication 
model during 200 iterations. In the first 70 iterations the teacher provides commands 
using the same encoding (language) applied in the previous experiment. This encod-
ing is not pre-established and we want the teacher to make use of any correspondence 
it wants. From iteration 70 to iteration 160 another teacher appears using a different 
language (different and more complex relation between musical notes for the pion- 
eer or words for the AIBO and commands) and, finally, from iteration 160 to iteration 
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Fig. 5. Evolution of the MSE provided by the current communication model (left) and satisfac-
tion model (right) predicting the STM as iterations of the MDB take place. The left graph cor-
responds to a dynamic language and the right graph to a dynamic satisfaction. 

 
200 the original teacher returns. As shown in the figure, in the first 70 iterations the 
error decreases fast to a level (1.6%) which results in a very accurate prediction of the 
rewards. Consequently, the robot successfully follows the commands of the teacher. 
When the second teacher appears, the error level increases because the STM starts to 
store samples of the new language and the previous models fail in the prediction. At 
this point, as commented before, the LTM management system detects this mixed 
situation (detects an unstable model) and induces a change in the parameters of the 
STM replacement strategy to a FIFO strategy. As displayed in Fig. 5 (left), the in-
crease in the value of the error stops in about 10 iterations and, once the STM has 
been purged of samples from the first teacher’s language, the error decreases again 
(1.3% at iteration 160). The error level between iterations 70 and 160 is not as stable 
as in the first iterations. This happens because the language used by the second 
teacher is more complex than the previous one and, in addition, we must point out that 
the evolution graphs obtained from real robots oscillate, in general, much more than 
in simulated experiments due to the broad range of noise sources of the real environ-
ments. But the practical result is that about iteration 160 the robot follows the new 
teacher’s commands successfully again, adapting itself to teacher characteristics. 
When the original teacher returns using the original language (iteration 160 of Fig. 5 
left), the adaptation is very fast because the communication models stored in the LTM 
during the first iterations are introduced as seeds in the evolutionary processes. 

In Fig. 5 (right) we have represented the evolution of the MSE for the current satis-
faction model in another execution of this second experiment. In this case, the change 
occurs in the rewards provided by the teacher. From initial iteration to 70, the teacher 
rewards reaching the object and, as we can see in the graph, the error level is low 
(1.4%). From iteration 70 to 160, the teacher changes its behavior and punishes reach-
ing the object, rewarding escaping from it. There is a clear increase of error level due 
to the complexity of the new situation (high ambiguity of possible solutions, that is, 
there are more directions of escaping than reaching the object). In iteration 160, the 
teacher returns to the first behavior and, as expected, the error level decreases to the 
original levels quickly obtaining a successful adaptive behavior. 

4   Conclusions 

This paper describes the application of the Multilevel Darwinist Brain to the control 
of two different robot platforms. The mechanism is robust with respect to the platform 
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and sensor and actuator configuration. It allows the robot to learn on line while inter-
acting with the environment and provides a way to do so redundantly in terms of 
world or satisfaction models. Another important characteristic is the capability of 
adapting in real time to changes in the environment, whether in terms of world or 
internal characteristics through world or internal models and task specifications 
through the satisfaction models obtained. 
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Abstract. It has been suggested that evolving developmental programs
instead of direct genotype-phenotype mappings may increase the scala-
bility of Genetic Algorithms. Many of these Artificial Embryogeny (AE)
models have been proposed and their evolutionary properties are being
investigated. One of these properties concerns the fault-tolerance of at
least a particular class of AE, which models the development of artificial
multicellular organisms. It has been shown that such AE evolves designs
capable of recovering phenotypic faults during development, even if fault-
tolerance is not selected for during evolution. This type of adaptivity is
clearly very interesting both for theoretical reasons and possible robotic
applications.

In this paper we provide empirical evidence collected from a multi-
cellular AE model showing a subtle relationship between evolution and
development. These results explain why developmental fault-tolerance
necessarily emerges during evolution.

1 Introduction

That biological organisms display various levels of robustness is a well known
fact. Waddington referred to this tendency to suppress phenotypic variation
as canalization [1,2]. Two types of canalization are distinguished. Genetic
canalization describes the phenotypic resistance to alterations of the genotype
(herein Mutational Robustness). Environmental canalization is instead the or-
ganism’s capacity to suppress external influences. The latter comprises fault-
tolerance as the ability to recover from transient phenotypic faults during
development.

It is widely accepted that, when noise is present at the level of both the
genotype and the phenotype, canalization emerges as an adaptive response under
the influence of natural selection. This stabilizing selection captures the inclusive
fitness advantage derived by robustness [3].

But is stabilizing selection strictly necessary for achieving robustness? (see
also [4]).

This question is of great interest both for theoretical reasons and for engi-
neering purposes. The possibility to develop designs/algorithms which can au-
tonomously recover from faults during operation, much like living systems, is
clearly very appealing. The classical engineering approach to fault-tolerance is
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functional redundancy, but biological organisms can also recover faults by home-
ostatic processes, such as self-healing and regeneration. Theoretically a perfectly
regenerating individual (e.g. a robot) could continue to operate ad infinitum
without external maintenance.

A notable example is provided by the Hydra Oligactis. Hydras can regenerate
any damaged or dead cell, and severed body parts can even reconstruct the
complete organism [5]. Famous are also the limb of the salamander and the tail
of the lizard, which can be regrown after being severed. Regeneration also takes
place in the nervous system, as has been shown in recent studies [6,7].

But testing all possible sources of faults can be prohibitively expensive, if not
impossible. This simple fact hinders the construction of artificial systems which
are too complex for mathematical analysis. These unfortunately include most
evolutionary designs.

Recently a few different models of multi-cellular development have been pro-
posed as a possible solution to the scalability limitations of evolutionary compu-
tation [8,9,10]. An interesting property of these systems is that they have been
shown to produce fault-tolerant designs in the absence of stabilizing selection
[11,10], in other words “for free”. We will refer to this property as emergent
fault-tolerance.

Emergent fault-tolerancemay be caused by some intrinsic property of the multi-
cellular model. For example, due to their distributed nature, artificial neural net-
works are known to showa graceful functional degradation in response to the loss of
a fewunits or connections.On the other hand, in [10] itwas shown that this does not
appear to be the case for multi-cellular development since recovery from faults was
shown to be present in evolved individuals but not random ones. In [12] emergent
fault-tolerance was shown to appear during evolution after a few generations. This
fact is quite interesting since it is in agreement with biological findings in selection
experiments, where canalization is shown to evolve in few generations [13,14].

It seems that the evolution of multi-cellular developing models shows a pref-
erence toward fault-tolerant individuals. Such a tendency can be exploited to
produce designs with increased fault-tolerance even if during evolution only par-
tial tests are carried on all possible sources of faults [15]. Similar results are also
found in [10,16].

But if it is not caused by stabilizing selection, why are evolved individuals
fault-tolerant? In [12] it was shown that individuals displaying high mutational
robustness also proved particularly fault-tolerant. It was then hypothesized that
fault-tolerance is the developmental counterpart of mutational robustness.

In fact with development phenotypes are constructed unfolding genotypes in
time. A mutation can cause a phenotypic divergence in a phase, which can then
be recovered in a following one. So, if with direct encoding mutational robustness
can only be achieved by suppressing the phenotypic effects of mutations [17], with
development variations can be expressed but still be neutral as long as they get
corrected before the fitness test.

The correlation between mutational and phenotypic robustness appears be-
cause, if individuals can recover phenotypic perturbations caused by mutations,
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Fig. 1. Correlation between environmental and genetic canalization, Ahealthy is the
original individual, Amutated its mutated offspring. Mutations that cause phenotypic
effects can be recovered later (bottom row). In the same way faults occurring to Afaulty

can be recovered as long as they are homologous to the typical divergence caused by
mutations (top row). To be neutral to selection, divergence must be recovered before
the fitness test.

they can also recover from similar phenotypic perturbations caused by faults
(see Figure 1). In this paper, this hypothesis is put to the test and supporting
is provided.

First developing artificial organisms are evolved to match specific targets.
Then the robustness of the best individuals is checked offline. Results show that
recovery from both genotypic and phenotypic perturbations becomes stronger
as the fitness test gets closer in time, therefore validating the initial hypothesis:
fault-tolerance is the ontogenetic homolog of mutational robustness.

These results highlight a subtle and indirect interaction between phylogeny
and ontogeny. This interaction can both help to explain the evolutionary emer-
gence of phenotypic robustness even in the absence of a direct evolutionary
advantage (i.e. faults or noise), and be exploited to cheaply produce increasingly
resistant artificial adaptive organisms (see also Conclusions).

2 Related Work

Typically introduced to increase the scalability and flexibility of evolutionary
computation, several indirected encoding schemes have been proposed. These
artificial embryogeny (AE, [18]) methods recursively construct the mature phe-
notype following the growth program defined in the genotype.

Since selection operates at the level of the phenotype, the relationship between
the evolving genotype and its inclusive fitness is mediated by the development
process. This indirect path may trigger complex gene-to-gene interactions, which
are captured by the concept of the gene regulatory network (GRN).
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Since phenotypic maturation in AE is de facto a rewriting process, early mod-
els were based on grammar-based approaches in which the genotype defines the
substitution rules which are repeatedly applied to the phenotype. Examples in-
clude the matrix rewriting scheme [19] and the cellular encoding [20].

Some models introduced additional contextual information in each rule def-
inition [21,22], so that phenotypic trait variations could be generated. Also, it
is possible to implicitly define the grammar by means of an artificial GRN [23]
and use the accumulated concentrations of simulated chemicals to modulate the
characteristics of morphological constituents.

In this direction, and inspired by cellular automata, a second approach is
to evolve the rules by which cells alter their metabolism and duplicate. Cells
are usually capable of sensing the presence of neighboring cells [24], releasing
chemicals which diffuse in simulated 2D or 3D environments [25,9], and moving
and growing selective connections to neighboring cells [26].

Closely related to the one presented in this paper, the model proposed in [8]
is based upon a fixed Cartesian 2D lattice, in which each cell occupies a given
square. Artificial organisms are generated starting from a single cell. Every cell
can replicate in the four cardinal directions taking the organism to maturation
in a fixed number of development steps.

All cells share the same genotype encoding the cell growth program (its regu-
latory network). In [8] the growth program is structured as a sequence of rules.
Rules are activated by matching the local neighborhood of a given cell and trigger
specific cell responses: duplication, death and cell-state change.

In [9], the growth program is represented by a Boolean network. Cells belong
to one of four different types and can release chemicals which undergo a simulated
diffusion process. Specific evolutionary targets (2D patterns) were evolved and
emergent self-healing dynamics were reported for the first time [11].

In [10] the previous model is extended with internal chemicals, which do not
diffuse in the environment but are private to each cell. The growth program is
encoded by a recursive neural network, and the organism’s genotype can contain
several chromosomes, each one specifying a complete growth program. Individ-
uals are initialized with a single chromosome which controls the entire develop-
ment process. During evolution, additional chromosomes can be introduced by
duplication (i.e. gene duplication [27]), each one being associated to a specific
stage of development. By allowing several independent embryonal stages, this
method proved capable of increasing overall evolvability in the evolution of spe-
cific 2D patterns, also showing a higher scalability then direct encoding. In this
case too, emergent fault-tolerance was reported.

In [8,9,10], fitness was based only on the topological displacement of cell in
mature individuals. In [16] the AE model in [9] was used to produce a 2-bit mul-
tiplier capable of recovering transient phenotype faults. In [15] the AE model
in [10] was used to evolve a regenerating spiking neuro-controller for simulated
Khepera robots. These last results indicate the great potential that the evolu-
tion of complex fault-tolerant ontogenies can provide to the adaptive behavior
community.
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Fig. 2. Illustration of the relation between mutational robustness and fault-tolerance. If
a development program has a region of stability, as long as they do not take phenotypes
outside of the region perturbations can be recovered, whatever their cause.

3 Methods

It has been hypothesized that fault-tolerance is a side-effect of the genotype’s mu-
tational robustness (genetic canalization). Mutated genotypes could in fact pro-
duce identical mature organisms even if during development phenotypic diver-
gence occurs. This as long as this phenotypic divergence is recovered/corrected
before maturation, i.e. the fitness test, is reached (see Figure 2).

The central point is that once a genotype evolves a means to recover from pheno-
typic divergence, it will do so whatever the cause: either if it is causedby a mutation
affecting the growth program or if it is produced by similar transient faults.

In either case, robustness should be stronger when the fitness test is closer
in time, due to the fact that phenotypic divergence is only “apparent” to the
selection mechanism at the time of the fitness test.

We can therefore test the level of mutational and phenotypic robustness and
see how it varies during development. To do so we will perturb evolved genotypes
and phenotypes for a single step and let the developing individual recover for an
additional step. Divergence will be measured as the Hamming distance between
the perturbed and non-perturbed individuals.

One problem, however, is created by the fact that multicellular development
starts from a single cell (the zygote) to reach maturation in a certain number
of steps. During the initial expansion phase perturbations will have a different
impact on development.

To minimize this effect, it is possible to evolve individuals checking fitness at
two different steps of development, in our case at step 12 and 17. It is reasonable
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Fig. 3. Evolutionary targets and best evolved individuals at steps 12 and 17. Above
the Circle and below the Tao target. Fitness is the average resemblance to the target
computed at steps 12 and 17.

to assume that during the 5 growth steps from 12 to 17 the phenotypes will be
more stable.

3.1 Development Model

The AE model used in this paper is explained in detail in [10]. For clarity, a
short summary of the model’s details follows.

Phenotypes develop starting from a single cell placed in the center of a fixed
size 2D rectangular array. Multicellular organisms reach maturation in a pre-
cise number of developmental steps. Cells replicate and can release simulated
chemicals in intra-cellular space (cell metabolism).

Unlike other possible approaches [8], no predefined chemical gradients are
present. These in fact offer a global contextual information which biases the
evolution of development toward trivial solutions.

Cell behavior in our model is governed by a growth program based on local
variables, and represented by a simple recursive neural network (Morpher) with
4 hidden units. The Morpher input vector encodes the state of a particular cell
(type and metabolism) and the types of the four neighboring cells in the North,
West, South and East directions (NWSE).

At each developmental step, under the control of the Morpher, existing active
cells can change their own type, alter their metabolism and produce new cells.
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An active cell can also die or become passive. Each step, up to four new cells
can be produced in any of the NWSE directions. In case of cell genesis, the
mother cell specifies the daughter cells’ internal variables (type and metabolism)
and whether they are active or passive. If necessary, existing cells are pushed
sideways to create space for the new cells. When a cell is pushed outside the
boundaries of the grid, it is permanently lost.

Embryonal Stages. The regulatory system controls gene expression over two
orthogonal dimensions: time and space. Development with Embryonal Stages
(DES) implements a direct mechanism of Neutral Complexification for the tem-
poral dimension [10].

As development spans over several consecutive steps, the idea is to start evo-
lution with a single growth program (chromosome/Morpher) which controls all
the development steps. As evolution proceeds, a new chromosome can be added
by gene duplication.

The developmental steps are therefore partitioned into two groups/stages.
The first, controlling the initial steps of embryogenesis, is associated with the
old chromosome. The latter, completing growth, is associated with the new,
identical, duplicated chromosome.

Being exact copies, new chromosomes do not alter development, and are there-
fore neutral. But possible mutations can independently affect each duplicated
gene.

By unlocking the gene expression of different development phases, each chro-
mosome can assume more specialized roles, de facto increasing the genotypic
resolution around the area represented by the current mature phenotype. Over-
all, the effect is an increase in genotype-phenotype correlation leading to higher
evolvability. In the simulations presented herein, only the chromosome control-
ling the latest stage is subjected to the evolutionary operators, while all other
chromosomes remain fixed.

3.2 Evolutionary Details

Each cell in the mature phenotype is interpreted as a pixel, its color provided by
the cell type (three possible). Fitness is proportional to the resemblance of an
individual to the target pattern (see Figure 3) and is computed as the normalized
Hamming distance to the target at steps 12 and 17. For fitness computation, dead
cells are assigned the default type 0 (black color). Organisms grow in a 32x32
2D array starting from a single active cell in position (16,16), with type 1 and
metabolism 0.

Results are obtained from 20 independent populations for each target. Every
population is composed of 400 individuals. The best 50 individuals are copied
to the next generation and reproduce (elitism). Evolution comprises 2000 gen-
erations. 10% of the offspring are produced by crossover.

The Morpher is modeled by a neural network with 7 inputs, 15 outputs and
4 hidden nodes. The genotype contains a floating point number for each of the
107 Morpher’s weights. Mutation takes each weight of the Morpher with a .1
probability and adds to it Gaussian noise with 0 mean and .1 variance.



456 D. Federici and T. Ziemke

Fig. 4. Phenotypic divergence after the perturbation of a development step by means
of two consecutive mutations (left) or the removal of each cell with a 10% probability
(right). Circle (top) and Tao (bottom) individuals are allowed to recover one addi-
tional step. Robustness both to mutations and fault increases in temporal proximity
of the fitness test. Averages and standard deviations over 100 perturbations, at each
development step for each of the best individuals of the 40 populations.

4 Results

Fit individuals were produced in all the evolutionary runs. In the case of the
Tao target the average fitness was 86 ± 2% with a maximum of 89%, while for
the Circle it was 81 ± 3% with a maximum of 86% (see Figure 3).

In Figure 4 we show how genotypic and phenotypic perturbations are recov-
ered in a single ‘healing’ step by the best evolved individuals of each population.
Perturbations are generated either by two consecutive mutations to the tested
genotypes, or by removing each cell in the phenotype with a 10% probability.

For both targets the phenotypic divergence ΔP decreases as the fitness test gets
closer in time, both with genotype and phenotype perturbations. In the case of the
Tao target,which is also the easier target to evolve, individuals appearmore robust.

Since in all cases robustness measures the ability to dampen divergence with
a single ‘healing’ step, it appears that phenotypic perturbations are taken care
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Fig. 5. An individual residing in a genotypic region of stability (top) will display a
high degree of mutational robustness. Depending on the properties of the genotype-
phenotype mapping, the genotypic region of stability can project in phenotype spaces
in different ways. In P1 small movements in genotype space produce small movements
in phenotype space so that the region of stability is still, for the most, surrounding the
individual’s phenotype. The opposite in the case of P2. Faults occurring in P1 have
a greater chance to be homologous to mutations in G and therefore be tolerated by
development.

of more effectively in the temporal proximity of the fitness test. That means,
the closer the fitness test in time, the more robust the organisms appear to be.
This indicates that fault-tolerance is not a normal tendency of development but
it is directed toward the dampening of the observable phenotypic deviations, i.e.
from the point of view of selection and fitness.

5 Conclusions

We have argued that environmental canalization (fault-tolerance) is the devel-
opmental homolog of genetic canalization (mutational robustness).

Mutational robustness is the dampening of the observable1 phenotypic conse-
quences of mutations. It has been shown to emerge spontaneously as an adaptive
response to the evolutionary dynamics [12], as regular regions of the fitness land-
scape are more stable under natural selection [28].

For direct mappings from genotypes to phenotypes, lacking a temporal di-
mension, robustness can only be achieved by means of epistatic interactions (see

1 Observable by means of the fitness function.
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for example [17]). With development on the other hand, phenotypic divergence
can be recovered during growth.

When a good correlation between ‘small genotypic changes’ to ‘small phe-
notypic changes’ is present, mutational robust developing organisms will also
display fault-tolerance. In fact, ‘small genotypic changes’ are dampened by the
evolutionary preference for regular regions of the fitness landscape, while ‘small
phenotypic changes’ are recovered because they are homologous to the those (see
also Figure 5).

With this theory in place we can formulate a set of predictions:

Evolvability Tests. The presence of mutations pushes evolutionary-stable pop-
ulations into genotype regions of stability. Since these regions are generated in
genotype space by dampening the effects mutations, in general we cannot expect
that the G-region of stability projects nicely into phenotype space.

For example, suppose you have a development system by which any small
genotypic change can only cause big phenotypic consequences (a mapping based
on a hashing function for example). In this case a mutationally robust individual
may not display resistance to small faults, since small phenotypic variations
are homologous to big leaps in genotype space, leaps which are unusual during
evolution2 and will probably take the genotype out of its region of stability.

In order for fault-tolerance to emerge, we must have a development system in
which small phenotypic changes are homologous to the typical effects of muta-
tions. The design of such systems is not a new problem in evolutionary compu-
tation since there is a wide consensus that they are associated with high levels
of evolvability.

We can use the emergence of fault-tolerance as an indication of evolvability.
Since fault-tolerance is shown to emerge in few generations, evolvability can be
sampled rapidly on a wide range of parameters before more extensive searches
are conducted.

Convergence and Robustness. As shown in selection experiments [13,14], popu-
lations undergoing a selective pressure for new characteristics also display less
robustness. Evolution will in fact select those individuals capable of escaping
the genotypic stability region, de facto pushing toward less robust genotypes. It
might take several generations before robustness emerges again.

To boost fault-tolerance, it could be possible to first evolve a suitable individ-
ual. In a second evolutionary phase, the old population would now evolve not
toward the old target, but toward the best individual found in the first phase.

By preferring younger individuals to old ones, or allowing selection with full
replacement, the second phase will produce individuals with increased levels of
canalization.

Mutation Levels and Fault-Tolerance. Since emergent fault-tolerance is a by-
product of mutational robustness, larger regions of stability are to be expected
as the mutation rate is increased.

2 Using the mutation operator to define the genotype space metric.
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This was in part validated by results contained in [12]. An increase in the
mutation rate produced individuals with higher fault-resistance at the price of
a decrease in overall fitness.
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Abstract. In the last few years a lot of work has been done to discover why 
GasNets outperform other network types in terms of evolvability. In this work 
GasNets are again compared to CTRNNs on a shape discrimination task. This 
task is used as to solve it, or gain an advantage, a controller does not need 
timers or pattern generators. We show that GasNets are outperformed by 
CTRNNs in terms of evolvability on this task and possible reasons for the 
disadvantages of GasNets are investigated. It is shown that, on a simple task 
where there is no necessity for a timer or pattern generator, there may be other 
issues which are better tackled by CTRNNs. 

1   Introduction 

After GasNets, artificial neural networks inspired by gaseous signalling in biological 
neural systems, were introduced 1998 [4], they were used for evolution of controllers 
in many different tasks - from pattern generator tasks [12] to quadrupedal walking [5]. 
The findings in these experiments were that GasNets evolved faster than the same 
controller type without gas (e.g. [12] or [4]). Other studies also compared GasNet 
controllers to other controller types like continuous time recurrent neural networks 
(CTRNNs) or plastic neural networks (PNNs) [5][6]. In terms of evolvability 
(measured as the length of evolutionary runs till a successful controller was evolved 
or the robustness of evolved controllers), GasNets generally outperformed other 
network types or the GasNets without gas. After this higher performance in 
evolvability became evident, theoretical approaches were made to find the reason for 
this advantage. However, differences in fitness landscape properties between the 
GasNet and No-Gas classes which could explain the advantage for example, could not 
be found [12]. Other investigations focused on other properties of the GasNets, such 
as the coupling between the electrical and chemical signalling systems [7] and 
functional neutrality in evolution [14]. 

While some progress was made, none of these approaches found a definitive 
explanation of the improved evolvability of GasNets compared to other networks. 
This and other work did however lead to the current hypothesis that there are 3 
possible reasons for improved evolvability [9]: 
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− modulatory effects 
− different and separate temporal time scales of gas actions 
− Flexible coupling of two different and interacting signalling systems through 

spatial embeddedness  

In many of the tasks where GasNet controllers were analyzed, it turned out that the 
network had at least one sub network which produced a cyclic pattern or timing signal 
[11]. These timers or pattern generators (PG) are easy to realize in GasNets and it was 
suggested that this ability to tune pattern generators to given environments can be an 
advantage of GasNets [12 chapter 7.3.4]. Moreover, in almost all tasks used, the 
ability to tune pattern generators is helpful. Walking is clearly a cyclic process where 
timers/PGs can help. Also in the triangle-square discrimination task [4] the controller 
made use of pattern generators within the network [11]. But what happens if the task 
doesn’t need a PG? If there are solutions which can be found without timers/PGs, are 
GasNets still better to evolve? 

The aim of this work is to answer these questions. To do this, a shape 
discrimination task is introduced, which was previously used with CTRNNs [2]. 
Timer or pattern generator sub networks should not lead to an evolvability advantage 
in this task because no cyclic behaviour is needed. Different GasNet controllers are 
compared to different CTRNN controllers in terms of evolvability which is judged by 
the fitness of evolved solutions and the length of time to evolve them (if the word 
performance is used in this work, then always in terms of evolvability).  

The hypothesis to be proven is that GasNets are good to evolve pattern generators 
and gain advantages in tasks where they are useful, but perform worse on tasks where 
these abilities are almost useless compared to different types of neural networks.  

2   Experimental Setup 

2.1   Shape Discrimination Task 

The shape discrimination task as used in this 
work was introduced by Randall Beer [2]. 
The robot has to discriminate between 
different falling objects and has to catch or 
avoid the objects, depending on the shape. 
The robot is represented by a line with a 
given length (30 Pixel) and is acting in a 2-
dimensional, closed room (The room is 400 
pixels wide and 275 pixels high, starting 
position is always (0,200)).  

The robot has seven sensor rays which are uniformly distributed over a fixed angle 
(Π/6) starting from the centre of the robot and facing straight up. The rays act as 
proximity sensors with a maximum sensing range of 220 Pixel and a maximum output 
value if the object has reached the robot.  

Each robot has two motor neurons for horizontal motion. They define the speed 
and direction of the robot. The speed is given by OutputNeuron0-OutputNeuron1. Negative 
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speed stands for motion to the left, positive values for motion to the right. The 
maximum speed is 2 Pixel/time step.  

Two shapes are used for the task: Circles (radius = 30) and diamonds (side length = 
30). Reference points are always the centres of the objects or the robot. The robot has 
to catch circles and avoid diamonds. The falling speed for all objects is always one 
Pixel per time step. This leads to a simulation time of 275 discrete time steps. The 
horizontal offset of the object can be +/- 50 Pixel from the robots starting point. 

After the falling object has reached the floor (xObejct = 0) the fitness of the robot is 
evaluated by the following formula: 

24

1

24i
i

p
=  

(1) 

where pi = di for diamonds and pi = 1-di for circular objects. di is the distance between 
centre of robot and objects and is clipped to a maximum distance and normalized to 
[0,1]. The maximum distance is 1.5 * (radiusObject + radiusRobot) and has to be used, 
because it leads to a balance between avoidance distance for diamonds and accuracy 
in catching circles. 24 evaluation trials are performed for each robot with uniformly 
distributed dropping points and alternating object shapes. 

2.2   Genetic Algorithm 

In all experiments and for all network types, the same genetic algorithm is used. The 
competition is tournament based and the algorithm as follows:  

The population is spatially distributed on a square plane and an individual 
randomly chosen. The tournament group consists of this individual and its 8 
neighbours. The two fittest individuals are picked, recombined and the weakest 
individual in the group is then replaced by the mutated offspring.  

As recombination, 1-point crossover is used with a randomly chosen crossing point 
between nodes (only whole nodes are transferred). For the shape discrimination task, the 
population size was always 324 and the genetic algorithm was running over a maximum 
of 200 pseudo generations or stopped if an individual with a fitness > 0.99 was found. 
One pseudo generation is equal to 324 selection and recombination processes. 

Loci from the produced offspring are chosen for mutation with a fixed probability. 
This mutation rate is adjusted to the number of loci which can be mutated in the 
genotype (for some experiments, specific loci are locked) and therefore, always the 
same number of mutations are performed on average for each network type. If chosen, 
the locus is mutated using a Normal distribution with standard deviation of 1, which is 
scaled up (or down) to the range of the mutated value. The mean of the distribution is 
the original value of the locus. The maximum possible mutation is (upper limit – 
lower limit)/2. For example, the possibility to change a weight in a CTRNN (ω∈[-
5,5]) by less than 1.0 is 84%. The possibility for a change less than 2.0 is 98%. 

2.3   Network Types and Characteristic Equations 

2.3.1   CTRNN Network Types 
All Continuous Time Recurrent Neural Networks used in this work have a fixed 
number of seven neurons. These neurons are divided into five inner neurons and two 
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motor neurons. The inner neurons are fully connected. Each of them can have one 
non-weighted sensor input connection and is connected to the motor neurons. All 
connections between neurons have a weight value in each direction. The motor 
neurons are not connected to each other and can not receive input from sensors.  

Three different CTRNN variations are used in this work, which are all based on 
this basic topology. Each network has a specific name in brackets for later references. 

2.3.1.1 Standard CTRNN (C1). This is a conventional CTRNN [1] with the following 
characteristic equation: 
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Where: 
t
iy  is the activation of neuron i at time t  

Δt   is the time slice (Δt was 1.0 in all shape discrimination trials)  

iτ   is the time constant of neuron i (τ ∈ [1,5])  

jiω  is the weight of the connection from node j to i (ω ∈ [-5,5])  

jθ  is the bias term of neuron j (θ ∈ [-5,5])  

iI  is the sensor input to the i’th neuron (I ∈ [0,10], see experimental setup) 

σ  is the sigmoid function 
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Biases, time constants, connection weights and the input source are under 
evolutionary control, i.e. for the input, the evolution can choose from which sensor 
ray the input is from. 

2.3.1.2 CTRNN with no Temporal Dynamics (C2). This network has the same 
characteristic equation and topology as C1, but τ is set to 1.0 for all neurons and is not 
under evolutionary control. This effectively turns the neurons into reactive integrate-
and-fire type neurons with no internal temporal dynamics. 

2.3.1.3 CTRNN with Discrete Weights (C3).  Same as C1, but only discrete weights 
are used. Connection weights in this network type can only be -5, 0 or 5.  

2.3.2   GasNet Types 
GasNets, introduced by Husbands et al. [4], have two different signalling 
mechanisms. They have electrical connections which can be compared to other ANN 
types and a gas signalling mechanism. The gases can be emitted by nodes and have 
modulatory effects on the transfer function of nodes in the vicinity of the emitting 
node. These gas connections work on different time scales than the electrical 
connections by build up and decay mechanisms. To model the gas diffusion the 
neurons of a GasNets are spatially distributed points on a square plane (in this work 
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with side length 50 pixels). Electrical connections are based on neurons’ positions in 
this plane with connections from a neuron being formed to all others within a 
genetically specified arc.  

Detailed information on the GasNet model can be found in [12], [7]. The following 
chapters only repeat what is relevant for this work.  

2.3.2.1 Standard GasNet (G1). This is a standard GasNet, already used in previous 
work [4-8,11-14] The characteristic equation is as follows: 
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Where: 
t
iy  is the output of neuron i at time t   
t
iK  is the transfer function parameter 

 C   is the set of nodes which have connections to node i 

jiω  is the weight of the electrical connection from node j to node i (ω ∈ [-1|1])  

jθ  is the bias term of neuron j (θ ∈ [-1,1])  

iI  is the sensor input to the i’th neuron (I ∈ [0,1], see experimental setup) 

In this work two gas types are used. Gas 1 increases the transfer function parameter K 
and gas 2 decreases it. This is done, dependent on the gas concentration at a given 
node. The gas concentration at a given node j with a distance d to the emitting node i 
at time t, is given by the following equations: 
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where r is the radius of the gas cloud, s is the parameter that controls the build 
up/decay rate of the gas, te is the time node i started emitting and ts the time node i 
stopped emitting. The parameters r and s are genetically determined for each node.  

The parameter t
iK  for node i at time step t is then given by equations 8 to 11: 
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t
iK = P[

t
iD ] (8) 

P={-4.0,-2.0,-1.0,-0.5,-0.25,-0.125,0.0,0.125,0.25,0.5,1.0,2.0,4.0} (9) 
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2.3.2.2   GasNet without Gas (G2). This network type was also used in previous work 
and is a standard GasNet but using no gas (NoGasNet). This means no neuron can 
emit gas and only electrical connections can be used to connect neurons.  
 
2.3.2.3   GasNet with Weight Table (G3). This is a fully connected GasNet. All 
neurons are connected and evolution can set the weights of these connections. As 
weight values, -1, 0 and 1 are used, as in the original GasNet. This means, that the 
network initially is never totally connected, because on average 1/3rd of the 
connections has weight = 0. However it is much easier for evolution to connect two 
nodes by mutating only one locus than when using the spatial connectivity scheme of 
the standard GasNet.  
 
2.3.2.4 GasNet with Weight Table but Real Weights (G4). Same network type as G3, 
but using real weights. The initial connection ratio is much higher in this net, because 
it is very unlikely to have connections with weight=0.0. 

 
2.3.2.5 GasNet with Weight Table, Real Weights but no Gas (G5). Same network as 
G4 but again no gas is used.  

 
2.3.2.6 GasNet without Spatial Distribution (G7). In this GasNet the G5 type is 
changed a little bit. Because the G5 type does not use gas any more and all 
connections are given by a weight table, the neurons don’t have to be spatially 
distributed any more. So, in the G7 type, the x and y loci are set to 0.0 and locked for 
mutation. 

3   Results 

As can be seen in Table 1, the CTRNN controlled robots clearly outperform the 
GasNet controlled robots. The best robots evolved over all runs were controlled by C1 
and C2 networks (standard CTRNN and CTRNN with  = 1). They had a fitness value 
of 0.990 on the evaluation trials and an average of around 0.995 on 100 random trials. 
The best of the best GasNet controlled robot had an average fitness of .991 and an 
average of 0.959 on 100 random trials. It should be pointed out that the genetic 
algorithm stopped if a best individual was found (with a fitness of 0.990) or if the 
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limit of 200 generations was reached. This explains the maximum of 0.990 on the 
CTRNN runs and the average generation number of around 200 on the GasNet runs. 

The C1- and C2-robots only once reached the maximum of 200 generations. The 
best individual in this run already had a fitness value of 0.949. Only one G1 run 
stopped before the maximum number of generations was reached (177 generations). 
Two G2 runs stopped before the maximum was reached (151 and 182 generations). 

Table 1. Results of 20 evolutionary runs. The table shows the average fitness of the best 
individual and the average of the whole population after 20 runs, the average fitness of the best 
individual on 100 random trials and the average number of generations needed to evolve the 
best individual. The values in brackets specify the standard deviation. 

Network 
type: 

Average of  
best individual: 

Average fitness 
of population: 

Average fitness 
on random 
trials: 

Average Nr of 
generations: 

C1 0.990 (0.010) 0.826 (0.030) 0.949 (0.043) 100.000 (42.7) 
C2 0.990 (0.010) 0.798 (0.030) 0.953 (0.031) 108.000 (55.3) 
G1 0.882 (0.099) 0.762 (0.075) 0.825 (0.119) 198.000 (5.1) 
G2 0.775 (0.100) 0.683 (0.062) 0.723 (0.125) 196.000 (11.2) 

Notice that the C2 variant, which has no internal temporal dynamics, performed as 
well as C1. This is evidence that different temporal scales are not needed in the nodes 
to complete the task and that the use of different temporal scales in the network does 
not lead to improved performance. Samples did not show evidence that the evolved 
solutions are different between both network types.  

4   Why Are CTRNNs Better? 

There are a lot of differences between CTRNNs and GasNets which could account for 
the CTRNN’s better performance. In the following sections specific differences are 
highlighted and their influence on the advantage of CTRNNs evaluated. 

4.1   Connection Scheme 

The most eye-catching difference is the different connection scheme between both 
network types. CTRNN variants are almost fully connected whereas GasNets are only 
sparsely connected. This means that an evolving CTRNN only has to find a working 
set of weights, but an evolving GasNet also has to find the right sensor to motor 
connection mapping. 

To find out if the connection scheme is accountable for a performance gain, a fully 
connected GasNet version (G3) was evaluated and compared to G1 and G2. For 7 
neurons in a network, the gene length of G3 is the same as for G1. (In G1 seven loci 
are used to specify the connection scheme. In G3 the seven connection weights (-1, 0 
or 1) are stored instead) so different mutation factors are no issue. No performance 
gain occurred by connecting all neurons in a GasNet (Table 2). In fact, the opposite 
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occurred and the fully connected GasNet performs worse than the standard GasNet. 
This shows clearly that it is not the connection scheme on its own that leads to a better 
performance. It should be pointed out, however, that even in a G3 network the nets 
are never fully connected and the chance of a connection with weight = 0.0 is much 
higher than in a CTRNN with real weighted connections.  

Table 2. Evolution of GasNet G3 compared to standard GasNet G1 and NoGasNet G2 

Network 
type: 

Average of best 
individual: 

Average fitness 
of population: 

Average fitness 
on random 
trials: 

Average Nr of 
generations: 

G1 0.882 (0.099) 0.762 (0.075) 0.825 (0.119) 198.000 (5.1) 
G2 0.775 (0.100) 0.683 (0.062) 0.723 (0.125) 196.000 (11.2) 
G3 0.743 (0.048) 0.591 (0.022) 0.699 (0.062) 200.000 (0.0) 

4.2   Real Weights 

Apart from the connection scheme, CTRNNs also use real weights for connections 
while GasNets only use inhibitory (weight = -1) or excitatory (weight = 1) 
connections. To find out if this influences evolution, a CTRNN variant (C3) with 
discrete weights (-5, 0 or 5) and GasNet variants (G4 and G5) with weight tables and 
real weights (with and without gas) were evaluated and compared to the standard 
CTRNN and GasNet versions. 

Table 3. Comparison of evolution results for networks with varying weight type 

Network 
type: 

Average of best 
individual: 

Average fitness 
of population: 

Average fitness 
on random 
trials 

Average Nr of 
generations: 

C1 0.990 (0.010) 0.826 (0.030) 0.949 (0.043) 100.000 (42.7) 
C2 0.990 (0.010) 0.798 (0.030) 0.953 (0.031) 108.000 (55.3) 
G5 0.973 (0.041) 0.703 (0.035) 0.911 (0.075) 160.000 (36.4) 
G4 0.954 (0.048) 0.766 (0.049) 0.920 (0.063) 185.000 (26.0) 
G1 0.882 (0.099) 0.762 (0.075) 0.825 (0.119) 198.000 (5.1) 
C3 0.874 (0.051) 0.631 (0.019) 0.835 (0.062) 200.000 (0.0) 
G2 0.775 (0.100) 0.683 (0.062) 0.723 (0.125) 196.000 (11.2) 

As one can see in Table 3, if the connections in a fully connected GasNet are 
combined with real weights, the results of the best individual almost reach the 
CTRNN results. Real weights for connections seem to be crucial for successfully 
evolved controllers in this task. As a crosscheck the network C3 was used which 
performed worse than all network types with real weights. Possible reasons for this 
are that it is easier for evolution to fine tune connections or to use the same neuron 
output as input with different strengths in different neurons.  
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As it turned out in the GasNet experiments, a successfully evolved solution doesn’t 
need a lot of connections. It seems reasonable that if there are only a few connections, 
it is crucial to be able to fine tune them. Real weights provide this opportunity. More 
experiments have to be done to prove this and to find the specific reasons for the 
necessity of real weights. However, even with full connection scheme and real 
weights, the GasNets are still outperformed by both CTRNN variants in terms of 
evolution time. Thus, real weights are important, but not the only reason. 

4.3   Neutrality 

After examining many GasNet runs, we noticed that the best individual often does not 
change over long periods. Moreover, the fitness of the best individual plotted over 
generations shows long, flat regions: much longer than CTRNN runs. In [14], Tom 
Smith et al. show that GasNets have high functional neutrality, i.e. “many distinct 
neural network structures will produce the same functional mapping from sensory 
input to motor output” [14]. Perhaps this neutrality causes the long and flat regions? 

To answer this question, a different kind of mutation operator is used. Every time a 
genotype is mutated, the corresponding phenotype is compared to the phenotype 
corresponding to the original genotype. If no change in the phenotype can be detected 
(i.e. phenotype has same electrical and gas connections), then the genotype is mutated 
again. This procedure continues till the mutation affects the phenotype. Although the 
mutation operator prevents neutral mutations, the picture does not change 
significantly. There are still long periods without change which leads to the 
conclusion that evolutionary search got stuck, but not for neutrality reasons. Also the 
overall results do not change (Table 4).   

However, type G7 was also used which suggests that neutrality is not unimportant. 
Types G7 and G5 nn are functionally the same since changes to the coordinates in G5 
are functionally neutral. Thus, in G7 mutation cannot change these coordinates and so 
less neutral mutations are made.  

Table 4. Results from GasNet variants compared to the same variants using the “noNeutrality”-
mutation operator (nn) and the results of the GasNet variant G7 

Network 
type: 

Average of best 
individual: 

Average fitness 
of population: 

Average fitness 
on random 
trials 

Average Nr. of 
generations: 

G5 nn 0.986 (0.024) 0.702 (0.044) 0.914 (0.048) 143.000 (49.3) 
G7 0.984 (0.037) 0.722 (0.043) 0.913 (0.065) 119.000 (53.1) 
G5 0.973 (0.041) 0.703 (0.035) 0.911 (0.075) 160.000 (36.4) 
G4 0.954 (0.048) 0.766 (0.049) 0.920 (0.063) 185.000 (26.0) 
G4 nn 0.948 (0.064) 0.710 (0.043) 0.894 (0.089) 163.000 (44.1) 
G1 0.882 (0.099) 0.762 (0.075) 0.825 (0.119) 198.000 (5.1) 
G1 nn 0.865 (0.057) 0.738 (0.050) 0.794 (0.093) 197.000 (9.4) 

The time to evolve a successful G7 individual was significantly less than other 
GasNet types and is close to the result of the CTRNN results.  
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4.4    Fine Tuning Ability 

The fitness value attained is strongly dependent on the exact position of the robot. If a 
robot is able to distinguish between circles and diamonds but cannot reach the exact 
position of the object at the end, the fitness value can be the same or even worse as 
the fitness of a robot that fails to distinguish shapes a few times, but has reached the 
exact position in all other trials. Exact positioning is rewarded. In 100 random trials 
(50% circles), the fitness of a robot that misses the exact position by one pixel every 
time while catching circles is 0.989 ((0.978 * 50 + 50) / 100). The average fitness of a 
robot that fails to distinguish a shape once, but positions exactly in 99 other trials is 
0.990 (assuming that they all successfully avoid diamonds).  

To find out if GasNets are likely to evolve controllers which can correctly 
distinguish shapes, but fail in finding the exact position (fine tuning), a different 
fitness function is used: 
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Where d is the distance between the centres of robot and object, min = radiusObject and 
max = 1.5 * (radiusObject + radiusRobot). This means that the robot does not have to find 
the exact position but only has to reach the area under the object.  

Table 5. Results with new fitness (nf) compared to standard GasNet (G1) and NoGasNet (G2) 

Network 
type: 

Average of  
best individual: 

Average fitness 
of population: 

Average fitness 
on random 
trials 

Average Nr. of 
generations: 

G1 0.882 (0.099) 0.762 (0.075) 0.825 (0.119) 198.000 (5.1) 
G1 nf 0.845 (0.096) 0.720 (0.049) 0.741 (0.150) 186.000 (37.5) 
G2 0.775 (0.100) 0.683 (0.062) 0.723 (0.125) 196.000 (11.2) 

The results in Table 5 show there is no difference between G1 and G1nf with new 
fitness. Hence, the problem of the GasNet evolution does not seem to be fine tuning 
of parameters governing the robot’s final position.    

5   Discussion 

This work set out to give evidence that GasNets are outperformed by other neural 
network types if the solution to a given task does not need timer or pattern generator 
sub networks. To prove this, a task was chosen where the ability to use different time 
scales in the network gives no advantage. Samples over evolved controllers from both 
types showed, that successful solutions used active scanning and no examined GasNet 
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had a pattern generator sub net. As shown in section 3, CTRNNs with or without 
evolvable time constants perform the same, which shows that timing is not necessarily 
needed for a successful solution. CTRNNs solve this task easily, while GasNets 
perform much worse. Further evidence that it is timing that is important is that 
GasNets have been shown to outperform other network types on tasks where pattern 
generation is needed [4] [5]. However, in a comparison with CTRNNs on a simple 
pattern generation task, while GasNets were superior to CTRNNs on one pattern, the 
converse was true for a second pattern [16]. It is possible that these differences are 
due to the range of temporal dynamics available to the two types of networks, but 
further work is needed to investigate this fully. 

Different reasons for the disadvantage of GasNet controllers were examined. It was 
shown, that connectivity and fine tuning issues have no big impact on the results of 
the evolutionary runs. A fully connected GasNet with original GasNet weights (-
1,0,1) using a weight table does not lead to a measurable performance gain. The 
crucial issue seems to be to have real weighted connections. As soon as a GasNet has 
real weighted connections, its performance is much better, while a CTRNN with 
discrete weights performs much worse. While the reason for the necessity of real 
value weights in this task is not known it is possible that the difference between the 
standard GasNet and its no-gas counterpart can be explained by the need for evolution 
to use different connection types where real weights are not available to enrich the 
connection scheme. 

It was also shown that the time evolution needs to find a reasonable good 
individual decreases significantly for GasNets if loci with a high possibility of neutral 
mutations are taken out of evolutionary control. This is not surprising but can be still 
be outweighed by other issues for more complex tasks (e.g better robustness) and 
therefore worth accepting.  

The results support the initial hypothesis, that while GasNets are good to evolve 
timers and pattern generators, they have disadvantages if other issues are more 
important. No successfully evolved GasNet controller that was analyzed during this 
work was using a timer/PG sub network or used a technique where timer/PG sub 
networks are useful.  This work therefore provides evidence that for simple tasks 
which do not require timers or pattern generators, other issues which are not suited to 
GasNet type networks become more important. More research on the dynamics of 
GasNets is thus needed to further classify the type of tasks where they outperform 
other network types. 
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Abstract. In this paper we apply incremental evolution for automatic
synthesis of neural network controllers for a group of physically con-
nected mobile robots called s-bots. The robots should be able to safely
and cooperatively perform phototaxis in an arena containing holes. We
experiment with two approaches to incremental evolution, namely behav-
ioral decomposition and environmental complexity increase. Our results
are compared with results obtained in a previous study where several
non-incremental evolutionary algorithms were tested and in which the
evolved controllers were shown to transfer successfully to real robots.
Surprisingly, none of the incremental evolutionary strategies performs
any better than the non-incremental approach. We discuss the main rea-
sons for this and why it can be difficult to apply incremental evolution
successfully in highly integrated tasks.

1 Introduction

Automatic synthesis of robot controllers is an interesting field, which is likely
to some day contribute significantly to the advancement and adoption of robots
by industry and the general public. Techniques such as artificial evolution of
controllers for autonomous robots can free us from having to understand every
detail related to mapping sensory inputs to actuator outputs. Instead, we can
focus on more high-level aspects in order to obtain a controller capable of solving
a given task.

A robotics setup where artificial evolution can be applied usually starts off
with one or more robots and some task. A fitness function is defined, which,
given a behavior, assigns a number reflecting the goodness of that behavior with
respect to the task. An evolutionary algorithm is then used to find an appropriate
controller. The controllers themselves may consist of rule sets, decision trees or
similar, but it has become common to use artificial neural networks (ANNs)
due to their versatility and tolerance to noisy sensory input. If the controller is
represented as an ANN, an evolutionary algorithm can be employed to optimize
the weights, and possibly the morphology, of the network. Solutions found in this
way can exploit subtle environmental features as they are perceived through the
robot’s sensors. Therefore, artificial evolution might not only be a time-saving
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approach for synthesizing controllers: better controllers than those hand-crafted
by human developers can be obtained in some cases [1].

The field in which evolutionary techniques are applied in order to develop
robotics hardware and/or software is called evolutionary robotics. One direction
of studies in this field is concerned with cognitive science and psychology [2],
while another direction focuses on the use of evolutionary techniques as an en-
gineering tool. Our interest falls in the latter category. We focus on the feasibil-
ity and efficiency of different approaches to automatic synthesis of controllers.
Hence, our objective is to find evolutionary setups that frequently produce con-
trollers capable of solving a given task.

The task we are concerned with is the evolution of controllers for a number of
autonomous mobile robots called s-bots [3]. Each s-bot has a variety of sensors
and actuators. Among these, particularly important is the gripper, which enables
multiple robots to physically connect and form an artifact called a swarm-bot.
In swarm-bot formation each s-bot maintains autonomous control. Our objective
is to obtain controllers for a group of real s-bots, in swarm-bot formation, that
allow them to safely navigate through an arena containing holes. The target
location is indicated by a light source.

In our previous work we managed to evolve controllers for the combined pho-
totaxis and hole-avoidance task in simulation, and we showed that the controllers
could be transferred successfully to real robots [4]. In that work we also compared
the performance of various non-incremental evolutionary algorithms: genetic al-
gorithms [5,6], (μ, λ) evolutionary strategies [7], and cooperative coevolutionary
genetic algorithms [8,9]. We found that the (μ, λ) evolutionary strategy in gen-
eral out-performed the other evolutionary algorithms with respect to the number
and quality of the successful solutions found. Furthermore, we tested a number
of ANN structures and found that a multilayer perceptron with a hidden layer
of two neurons is sufficient to represent successful solutions that can be trans-
ferred to real robots. For the study presented in this paper, we use the neural
network topology, the fitness function components, and the (μ, λ) evolutionary
strategy, which we previously found be the highest performing while resulting in
transferable controllers [4], [10].

In the following section we discuss what incremental evolution is and provide
examples of studies in which this technique has been applied in the field of au-
tonomous robots. The task and the robotic hardware are explained in Section 3
and 4. Our approach and experimental setup is discussed in Section 5. In Sec-
tion 6, our results are presented, discussed, and compared to results obtained in
our previous work.

2 Incremental Evolution and Related Work

Incremental evolution, applied in order to obtain controllers for a given task,
is a method in which evolution begins with a population that has already been
trained for a simpler, but in some way related, task [11]. This is done by changing
the fitness function during evolution in order to make the task progressively
more complex. In this way, bootstrapping problems can possibly be overcome
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and evolution can be sped up. The use of incremental evolution can, however,
require a substantial engineering effort, because the goal-task has to be organized
into a number of sub-tasks of increasing complexity.

Note that some authors use the term incremental evolution for algorithms in
which the morphology of ANNs is under evolutionary control. Such algorithms
include SAGA where the morphology of ANNs is evolved in an incremental
manner by the algorithm itself [12]. Another example is the SGOCE paradigm
in which ANNs are constructed based on developmental programs that change
size and composition during evolution [13]. We will not consider such algorithms
here, but instead we use the term incremental evolution to denote evolutionary
setups in which the fitness function and/or the environment in which the robots
operate are modified during evolution.

A number of studies of incremental evolution of robot controllers has already
been performed. Nolfi et al. [14] used incremental evolution to overcome some
of the discrepancies between simulation and the real world. Controllers evolved
in simulation were transferred to real robots on which evolution was continued.
After a few generations, the performance of the controllers on real robots reached
the same level as achieved in simulation. Thus, incremental evolution was used to
adapt controllers, trained in simulation, to the sensory noise and behavior of the
physical robot hardware, which are both impossible to simulate accurately [15].

Harvey et al. [11] evolved controllers incrementally to let a robot distinguish
between white triangular and rectangular objects on a dark background. The
goal was to evolve controllers that would move robots towards triangles only.
The task was divided into sub-tasks where the robots would first learn to orient
themselves to face a large rectangle easily detectable by their sensors, then to
face and approach a smaller, moving rectangle, and finally to distinguish between
rectangles and triangles, and only move towards triangles. Thus, controllers were
first trained to follow white rectangles and then later trained not to follow them,
but instead to follow triangles only. The authors divided the goal-task into sub-
tasks in which recognition and pursuit were learnt in the first evolutionary phase,
or increment, while discrimination between the two geometric shapes was learnt
during later increments. The controllers obtained with incremental evolution
were shown to be more robust than controllers trained on the complete task
from an initial random population.

Gomez and Miikkulainen [16] used incremental evolution, combined with en-
forced sub-population and delta-coding, to evolve obstacle avoidance and preda-
tor evasion. Incremental evolution was performed by first evolving populations
of neurons capable of avoiding a single enemy moving at low speed on a discrete
10x10 grid. The size of the grid was then increased to a 13x13 grid and another
enemy was added. Two increments followed in which the speed of the two enemies
was increased. The authors found that evolving controllers for the complete task
directly was infeasible, while incremental evolution yielded satisfactory results.

In this paper we test different approaches to dividing the goal-task into sub-
tasks, one inspired by Harvey et al. [11], which we denote behavioral decompo-
sition, and one inspired by Gomez and Miikkulainen [16], which we call envi-



476 A.L. Christensen and M. Dorigo

ronmental complexity increase. By performing incremental evolution we hope to
guide the evolution search towards regions of the fitness landscape containing
successful solutions. This should make the evolutionary process more efficient
and should therefore increase the likelihood that an evolutionary run finds a
good solution.

3 The Task

A group of physically connected s-bots should be able to navigate through each
of the four arenas shown in Fig.1. The s-bots are physically connected using the
rigid grippers mounted on the s-bots. The group is initially located in a starting
zone and should navigate to the location of the light source without falling
into any holes or over the side of the arena. Phototaxis and obstacle avoidance
for physically connected robots has previously been studied in simulation by
Baldassarre et al. [17].

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5  0  0.5  1  1.5  2

’gnuplot_renderer_arena.dat’

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5  0  0.5  1  1.5  2

SF

’gnuplot_renderer_arena.dat’

(a) (b)

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5  0  0.5  1  1.5  2

SF

’gnuplot_renderer_arena.dat’

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5  0  0.5  1  1.5  2

SF

’gnuplot_renderer_arena.dat’

(c) (d)

Fig. 1. The four arenas used to evolve controllers. Each of the arenas measures
480x240 cm. The dark areas denote holes, while the white patches denote the arena
surface on which the robots can move. The swarm-bot must move from the initial loca-
tion shown on the left-hand side of each arena to the light source on the right without
falling into any of the holes or over the edge of the arena.

4 The Robots

In this study, we develop controllers for the SWARM-BOTS platform [3]. Fig. 2
shows photos of an s-bot and a swarm-bot. Each s-bot is equipped with four infra-
red ground sensors, one pointing 45 degrees forward, two pointing straight down-
ward, and one pointing 45 degrees backward. The ground sensors are mounted
between the differential treels c© (a combination of tracks and wheels, see Fig. 2).
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Fig. 2. Different views of an s-bot highlighting the location of the sensors used and a
swarm-bot. An s-bot has a diameter of 120 mm and a height of 190 mm.

Microphones and speakers allow s-bots to emit and perceive sounds. An s-bot
can sense forces exerted on its body in the horizontal plane via a traction sen-
sor. These forces allow the s-bot to gauge the direction of motion of the rest of
the group. Thus, each s-bot can align its own direction of motion to that of the
other s-bots, allowing the swarm-bot to move coordinately. The traction sensor
is mounted inside the robot between the bottom part (the chassis) and the top
part (the turret). The turret can rotate independently of the chassis: up to 180
degrees in each direction from the neutral position. The result of an action in a
given situation is likely to depend on the current rotational difference between
the top and bottom parts of the s-bot. We therefore use two sensors that read
the rotational difference in the clockwise and counter-clockwise directions, re-
spectively, at every control step. The relative direction of the target, identified
by a light source, is perceived via 8 light-sensors distributed evenly around the
plastic ring on the chassis of the s-bot as shown in Fig. 2.

The ground sensors are located directly under the s-bot, which means that the
s-bot will only detect the presence of a hole once it is already partly over it. If a
single robot tries to navigate through an arena containing holes, it is very likely
to fall into a hole unless it approaches the hole perpendicularly. In swarm-bot
formation, however, the s-bots should be able to cooperate to safely navigate
through the arena and reach the location of the light source.

We have preprogrammed the s-bots to emit a sound, which can be perceived
by the other s-bots in the swarm-bot, when the presence of a hole is detected. This
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has previously been found to be an efficient aid when evolving hole-avoidance
for a swarm-bot [18].

5 Methodology

5.1 Preliminary Fitness Function Components

In this section we present four components of the fitness function, which are used
in the incremental evolution setups. In our previous studies, we found that these
fitness components assist evolution in finding controllers capable of solving the
combined phototaxis and hole-avoidance task on real robots [10], [4].

The first component scores controllers depending on how close they manage
to get to the light source. In case they manage to get in the immediate vicinity
(within 50 cm) of the light source they are scored based on how fast they do so:

flight =

⎧⎪⎪⎨⎪⎪⎩
1 − min distance

initial distance
if the light source is not reached,

2 − time light is reached
total time

otherwise,

(1)

where total time is 240 seconds. A component penalizing controllers for falling
into holes:

fstayalive =
{

0.5 if the swarm-bot falls into a hole,
1.0 otherwise. (2)

Previous studies have shown that coordinated-motion in a group of connected
s-bots can be obtained by minimizing the traction between the s-bots [19]. The
traction forces are measured in the two dimensions of the horizontal plane with 0
corresponding to no traction perceived and 1 to the maximum traction force per-
ceivable. At each control step i, we record the maximum traction τmax

i perceived
by any of the s-bots in the simulation:

fminimizetraction =
∑

i(1 − τmax
i )

total number of control steps
. (3)

The three components above are multiplied to form the function ffinal:

ffinal = flight · fstayalive · fminimizetraction. (4)

Finally, we introduce an additional fitness component fmove that is used in
one of our proposed incremental evolutionary setups. This component rewards
coordinated-motion and exploration by measuring the distance covered, mea-
sured in a straight line, during different time intervals. Initial experiments showed
that measuring the distance moved during multiple time intervals is necessary in
order to prevent circular paths and therefore three “good” intervals were found
by trial-and-error. Every 7, 13 and 29 seconds, the position of the swarm-bot is
compared to its position respectively 7, 13, and 29 seconds earlier. The controller
achieves a fitness score based on the accumulated distances covered during these
intervals divided by the maximum theoretical distance coverable.
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5.2 Sub-task Divisions

We divide our goal-task in two different ways based on behavioral decomposition
and environmental complexity increase, respectively.

Behavioral decomposition: Assuming that a successful overall behavior can
be decomposed into the sub-behaviors: coordinated-motion, hole-avoidance,
and phototaxis, it is possible that these behaviors can be learnt in an incre-
mental fashion. That is, the first learning task is concerned with coordinated-
motion in an arena without holes under a fitness function that rewards
coordinated-motion (fminimizetraction · fmove). Once a satisfactory solution
has been found, holes are added and the fitness function is extended with
a component, which rewards controllers that avoid steering the s-bots into
holes (fstayalive). Finally, phototaxis too is rewarded and the evolved con-
trollers should be able to solve the goal-task (ffinal). Hence, we assume that
the most fundamental task is coordinated-motion, since coordinated-motion
is needed for performing both phototaxis and hole-avoidance, followed by
combined coordinated-motion and hole-avoidance, and finally the goal task
(including phototaxis) in an arena containing holes1.

Environmental complexity increase: Evolution is started in one of two sim-
ple arenas, one containing no holes and the other containing a single hole.
More holes and different arena layouts are added as evolution finds solutions.
The purpose of applying incremental evolution in this manner is to shape the
initial fitness landscapes in such a way that solutions are easier to find be-
cause the task is less difficult. When the complexity of the arena is increased,
we expect the evolutionary search to resume in region(s) of the fitness land-
scapes closer to good solutions than a random population would cover. This
way of performing incremental evolution could, for instance, prevent evolu-
tionary runs in which the s-bots fail to coordinate and move, because in the
first increments swarm-bots are less likely to encounter a hole. Evolutionary
pressure is therefore towards controllers that cause the swarm-bot to move.
In all increments fitness scores are computed by ffinal.

For our experiments with environmental complexity increase we use the addi-
tional arenas shown in Fig. 3. Two different evolutionary setups are used to test
incremental evolution based on environmental complexity increase. One setup
consists of six increments while the other consists of three. In the setup com-
prising six increments, fitness scores of individuals are computed based on trials
in the simplified arenas shown in Fig. 3a, 3b, 3c, and 3d, in the first four in-
crements, respectively. In the 5th increment individuals are scored in two of the
final arenas shown in Fig. 1a and 1b during the fitness evaluation, while in the
6th and final increment all four arenas shown in Fig. 1 are used. In the environ-
mental complexity increase setup consisting of three increments, a population
1 We experimented a different ordering of sub-tasks and with an initial increment

in which only fminimizetraction, as opposed to fminimizetraction · fmove, was used.
However, the behavioral decomposition described above was the highest performing
of those tested.



480 A.L. Christensen and M. Dorigo

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5  0  0.5  1  1.5  2

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5  0  0.5  1  1.5  2

(a) (b)

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5  0  0.5  1  1.5  2

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5  0  0.5  1  1.5  2

(c) (d)

Fig. 3. Additional arenas used for incremental evolution based on environmental com-
plexity increase. A population is first trained in (a) until an acceptable performance is
achieved, then in (b) and so on.

starts in the arena shown in Fig. 3b containing a single hole. In the second in-
crement the arena shown in Fig. 3d containing multiple holes is used. Finally,
in the last increment, the goal-task is used and individuals are evolved based on
fitness scores in all of the four arenas shown in Fig. 1.

We base the transition from one increment to the next on the performance
of the population on the current sub-task. The fitness components we use are
all relatively noisy. We have to take this into account to avoid that a noisy
fitness function makes evolution move from one increment to the next before the
current sub-task has been truly learnt. We therefore require the fitness score of
the best performing individual to be above a certain threshold for 10 consecutive
generations before a transition is made. The thresholds are different for each
increment and they are determined based on the fitness function, stagnation of
fitness scores during trial runs, and visual inspection of strategies found during
the trial runs. Thus, the task of finding these thresholds is, like finding a suitable
sub-division of the goal-task, an engineering effort.

For each of the evolutionary setups described above, we run 20 evolutions.
Each evolutionary run comprises 1000 generations with a population size of
100 individuals. In all cases, we have used a (μ, λ) evolutionary strategy with
μ = 20 and a mutation rate of 15% on a chromosome of floating-point genes.
This evolutionary algorithm was found to be the highest performing in our pre-
vious study [4]. All evolutionary runs are conducted in our software simulator
TwoDee [10].

6 Results

In order to compare the performance of the controllers evolved in the different
evolutionary setups, we took the highest scoring controller from each of the final
generations, post-evaluated them 25 times in each of the four arenas shown in
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Fig. 4. Box-plot of post-evaluation results for incremental evolution through environ-
mental complexity increase (results for both six and three increments, see text) and
behavioral decomposition. We have included the results for non-incremental evolution-
ary runs using a (μ, λ) evolutionary strategy with a mutation rate of 15%. Each box
comprises observations ranging from the first to the third quartile. The median is in-
dicated by a bar, dividing the box into the upper and lower part. The whiskers extend
to the farthest data points that are within 1.5 times the interquartile range. Outliers
are shown as circles.

Fig. 1, and recorded their average fitness scores. The results for incremental evo-
lution through behavioral decomposition and through environmental complexity
increase are shown on the box-plot in Fig. 4. Each box represents post-evaluation
results for 20 evolutionary runs. We have included results for the (μ, λ) evolu-
tionary strategy with μ = 20, obtained without the use of incremental evolution.

An example of a successful strategy can be seen in Fig. 5. All evolved con-
trollers capable of performing integrated hole-avoidance and phototaxis dis-
played a similar strategy: The swarm-bot moves coordinately towards an edge
of the arena and follows that edge in the direction of the light until the light
source is reached.

As it can be seen in Fig. 4, on average the incremental evolutions did not
produce better controllers than the evolutionary runs without increments. In
the following, we discuss why this is the case.

In the evolutionary setup where integrated phototaxis and hole-avoidance
behaviors were evolved incrementally based on behavioral decomposition, we
assumed that a successful behavior can be decomposed into coordinated-motion,
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Fig. 5. Example of how a controller capable of solving the task behaves using a simple,
but nonetheless general and successful, hole-following strategy

hole-avoidance, and phototaxis. If we take a closer look at the successful solutions
found by artificial evolution (an example is shown in Fig.5), it is questionable if
such a decomposition is valid and if a suitable decomposition can be found at
all. Regardless of the initial position of the swarm-bot, the initial orientation of
the s-bots, and the layout of the arena, the result we observe is always that the
swarm-bot starts moving left (or right) with respect to the light. Therefore, it
appears that the s-bots mainly coordinate based on the sensed direction of the
light, which serves as a global point of reference, and not on the readings of the
traction sensors. Hence, in a successful integrated behavior, coordinated-motion
is partly a by-product of phototaxis and it is therefore not beneficial to evolve
the two behaviors independently.

In the evolutionary setup based on environmental complexity increase with
six increments, only 11 out of the 20 evolutionary runs reached all increments. In
the remaining 9 setups the populations did not reach an adequate performance
in one of the previous increments. If an evolutionary run does not reach the final
increment, then the controllers produced by this run have not been evolved with
respect to the goal-task but only with respect to a simpler task. We assume that
such controllers obtain a lower post-evaluation score. In the evolutionary setups
using only three increments, 17 of the 20 evolutionary runs reached the final
increment before the 1000th generation.

No assumptions regarding decomposition of behaviors were made in the ex-
periments for incremental evolution through environmental complexity increase.
Nonetheless, the resulting controllers did not on average perform better than con-
trollers evolved non-incrementally. According to the results in Fig. 4, it appears
as if the results for incremental evolution through environmental complexity in-
crease are not better than the results for the non-incremental approach. This is
surprising given that we started evolution in a simplified arena and increased the
complexity gradually in order to avoid bootstrapping issues and assist evolution
in finding good solutions. We believe the major reason for the lack of superior
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performance is that some solutions found in the earlier increments are in fact
not in regions of the fitness landscape that contain successful strategies for later
increments. To illustrate this, take for instance the arena shown in Fig. 3b con-
taining a single hole. In this arena, successful solutions include moving directly
towards the light and then to move either left or right around the hole if/when
it is encountered. However, this strategy does not work in the arenas shown in
Fig. 1c and 1d, which both contain a number of turns and which cannot be solved
by controllers that turn either only left or only right around holes. Given the
reactive nature of the ANN controller, such strategies cause the swarm-bot to get
trapped in one of the corners. In this way, incremental evolution through envi-
ronmental complexity increase does in fact results in evolution taking a detour,
because the highest scoring solutions in the initial increments are not simpler
versions of successful behaviors in later increments.

The results of our study illustrate a fundamental issue related to applying
artificial evolution in the field of robotics: The fact that evolution can find so-
lutions, which we as human developers would not have anticipated, is a double-
edged sword. On the one hand we can obtain novel solutions, while on the other
it can complicate the applicability of techniques like incremental evolution for
the very same reason.
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Abstract. Magicicada is the genus of periodical cicadas which display a
unique combination of long life cycles, periodicity, and mass emergences.
Their nymphs live underground and stay immobile before constructing
an exit tunnel in the spring of their 13th or 17th year, depending on
the species. Once out, the adult insects live only for a few weeks with
one sole purpose: reproduction. Both 13 and 17 are prime numbers; why
did the cicadas “choose” these lengths for their life cycles? Two are the
most interesting hypotheses (limited resources and hybridization avoid-
ance) drawn by biologists, both bringing to the conclusion that the prime
number cycles were selected because they were least likely to emerge with
other cycles. If that’s the case, then these lengths would have been se-
lected via a sort of “tacit coordination by evolution”. In the agent based
model presented here, it is shown how the two major hypotheses must be
both present in order to cause the emergency of the prime numbers based
life cycles. A very important point here is that the agents in the model
are not endowed with a “calculating” ability, in particular they lack the
capacity of determining divisors. In the model no form of learning is
present; the emergency of prime numbers is then a fact of evolutionary
biology, a natural selection by adaptation, a la Darwin’s theory known as
“survival of the fittest”. Collective behaviour thus emerges from simple
atomic reactions at agents’ level and from their reactions to the con-
straints imposed by the environment. In order to explore the space of
parameters and to understand their role in the evolutionary selection of
the life cycles, the multi-run technique is used (i.e.: changing a value at
a time, the others being the same).

1 Introduction

There are two species of cicada, called Magicicada Septendecim and Magicicada
Tredecim, which have a life cyle of 17 and 13 years respectively. These are among
the longest living insects in the world; they display a unique living behaviour,
since they remain in the ground for all but their last few weeks of life, when they
emerge en masse from the ground into the forest where they sing, mate, eat, lay
eggs and then die. The nymphs of the periodical cicadas live underground, at
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depths of 30 cm (one foot) or more, feeding on the juices of plant roots. They
stay immobile and go through five development stages before constructing an
exit tunnel in the spring of their 13th or 17th year. Adult periodical cicadas
live only for a few weeks: by mid-July, they will all be gone. Their short life
has one sole purpose: reproduction. After mating, the male weakens and dies.
The female lives a little longer in order to lay eggs: it makes between six and
20 V-shaped slits in the bark of young twigs and deposits up to 600 eggs there.
Shortly afterwards, the female also dies. After about six to ten weeks, the eggs
hatch and the newborn nymphs drop to the ground, where they burrow and
begin another 13 or 17 year cycle.

The fact that they have both evolved prime number life cycles is thought
to be key to their survival. Many are the hypothesis about why these insects
display these life cycle lengths. Two are the most interesting ones, and both of
them require an adaptation by evolution of these species. The first one is about
limited resources, that must be shared by the insects once out. By evolving life
cycles of 17 and 13 years, the two species only have to share the forest floor every
221 years, that’s 13 times 17. Resource boundedness can then be considered as
an upper limit for the cicadas: no more than a threshold could survive with the
available food, and then the fewer insects are out at the same time, the better.

The second hypothesis, actually interacting with the first one, is somewhat
opposite to it; it’s called predator satiation hypothesis and moves the focus from
the insects to their main predators: dogs, cats, birds, squirrels, deer, raccoons,
mice, ants, wasps, and even humans make a meal of the cicadas. Predator sa-
tiation is when a species can survive because its abundance is so great that
predators do not have a large enough impact to effect the species’ survival. In
order to prove that predator satiation is occurring in a certain situation one must
prove that above a certain prey density, the frequency of predation does not in-
crease as the prey density increases (1). In the case of magicicadas this has been
proved to occur. When the first cicadas emerge from the soil there is a very high
predation rate, especially from avian predators. However, the predation rates
decline over the next couple of days as predators have indulged in all the food
they needed, or “satiated”. Then, by the time that the satiation of the predators
has worn off and foraging activities increase again, the density of adult cicada’s
has begun declining and they have already mated. This creates a situation where
only a small portion of the adult population is consumed by predators. This is
indeed a sort of lower bound for the number of cicadas that can be out at the
same time; in few words, the more cicadas out at the same time, the least the
possibility of being decimated by predators. Also according to this hypothesis,
the prime numbers have a motivation: the prime number cycles were selected for
because they were least likely to emerge with other cycles. For periodical cicadas
emerging with other cycles of cicadas would mean hybridization, which would
split up populations, shift adult emergences, and create lower densities below the
critical size: (2). This would have made it harder for the hybridized broods to
survive predation. Thus, prime number cycles which emerged with other cycles
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the least, would grow in population size over time because they would have the
highest survival rates.

Considering these two hypothesis as real and founded, then we can assume
that there has been a real selection among the species through many generations
or, better a “tacit coordination by evolution”. In this way, the prime number
cycles can be seen as a very interesting emergent natural phenomenon, where
the conclusions (results) were not embedded in any way into the initial data. For
this reason, we chose to model this phenomenon using Agent Based Simulation
(ABS) (3), a paradigm able to capture emergent behaviour arising from complex
systems. Using an agent-based model of the cicadas’ life cycle, we simplify the
world in which they live and reduce it to just few parameters, essentially the
limited resources and the predators. The cicadas have a reproduction rate, and
so the predators and the food; we wonder if these parameters are enough for life
cycles based on prime numbers to emerge as a result of adaptation and evolution.
A very important thing is that the agents used in the model are reactive ones,
i.e.: able to react to the stimuli coming from the environment, but not endowed
with a mind. This means that they neither able to reason on the actions to
perform at the individual level, nor to calculate which is the “optimal length”
of their life cycle in order to optimize their perspectives. Every result in the
model is thus to be considered as a collective evolutionary behaviour based on
the interaction among the agents and the environment (4).

In the study of aggregate behaviour within Biology, it is more and more rec-
ognized that in addition to real experiments and field studies, also simulation
experiments are a useful source of knowledge and verification. Using simulations
for testing and validation of computational models could be seen as performing
an experiment: since in the social sciences real experiments are in many cases not
possible or only in a very restricted way, the use of computer simulations plays
a decisive role: very often computer experiments have to play the part of real
experiments in the laboratory sciences. By the way, that is also the case in those
natural sciences where for similar reasons experiments are not (yet) possible, in
particular in the those sciences like Entomology or evolutionary Biology.

ABS looks at agent behaviour at a decentralized level, at the level of the
individual agent, in order to explain the dynamic behaviour of the system at
the macro-level. Instead of creating a simple mathematical model, the under-
lying model is based on a system comprised of various interacting agents. For
this reason the agent based paradigm has been chosen to model this biological
phenomenon.

Emergent structures are patterns not created by a single event or rule. There
is nothing that commands the system to form a pattern, but instead the interac-
tions of each part to its immediate surroundings causes a complex process which
leads to order. One might conclude that emergent structures are more than the
sum of their parts because the emergent order will not arise if the various parts
are simply coexisting; the interaction of these parts is central. Life is a major
source of complexity, and evolution is the major principle or driving force behind
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life. In this view, evolution is the main reason for the growth of complexity in
the natural world.

As stated before, we are facing a situation in which an emergent (possibly evo-
lutionary) behaviour occurs: in the real world, life cycles based on prime numbers
could have been a result of the environment in which the cicadas live. The agent-
based model could give us an empirical answer to the following question: is the
“predator satiation” hypothesis enough, along with the limited food quantity, to
explain the emergence of life cycles based on prime numbers, through evolution?

2 The Model

An agent based model was created using the JAS library (http://jaslibrary.
sourceforge.net/), in order to simulate different situations in which many
species of cicadas compete for finite resources and are threatened by some preda-
tors. The only difference among the species, in the model, is the duration of
their life cycle; population #1 will have a one year long life cycle, while pop-
ulation #20 a twenty years life cycle and so on. In this paragraph we describe
the model as it’s been implemented; words in italic identify the names of the
variables.

We define a world with a fixed amount of resources (resources), that can
be consumed by cicadas, a fixed amount of predators (predatorsNumber) and a
probability to survive at wake up (chanceToSurviveAtBirthRate). Except for the
constrain represented by food (resources), the other (chanceToSurviveAtBirth
and predators) can be switched on and off, through the parameters window.

The population of cicadas is characterized by the number of members (magi-
cicadasNumber), randomly distribuited among the different classes and by a
growth rate (reproductionRate).

We use a fixed number of predators in order to underline that their population
is not influenced by cicadas; In fact these insects represent only an alternative
food, among the many present in nature, as they have to survive also in years
without cicadas.

At the beginning of the simulation the cicadas are uniformly randomly dis-
tributed among C classes/sub-species. In our metaphorical world, each class of
cicadas has a different life cycle length, so that they wait a different number of
years underground, from a minimum of 1 to maxSleepingTime. We decided to
use 20 as a maximum number of years a cicada can live, since in nature the Magi-
cicada Septendecim is already the longest living insect, and we wanted to have
a realistic setup. However, our model supports whatever number as a maximum
life cycle.

At each simulation step, one year passes and the model inquires every cicada
in order to update/reduce the number of years left for it to stay underground,
or if this time is over, to wake it up.

The probability chanceToSurviveAtBirthRate also increases every year they
spent underground. This is done according the biological theory that a longer life
cycle is usually a good achievement. In particular, for the cicadas, (2) points out
that during the climate cooling of the Glacial period, growth and development of
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cicada nymphs was slowed down by lowering soil temperature. He supports this
by pointing out that it is well known that cumulative temperature is very critical
in insect development. Also, the fact that the cooling climate slowed down the
development of host plants from which cicadas get their nutrient may have also
slowed their development. Because cicadas needed proper nutrients at each stage
of their developmental cycle, and they were provided less because of the cooling
temperatures, their life cycle was extended to larger range of years. So in the
model we increase the chanceToSurviveAtBirthRate at any simulation step, to
reproduce this natural phenomenon. When the cicadas have to go outside (i.e.:
when their time underground is over), they perform a first check according to
this probability.

As soon as they go outside, the cicadas must eat and reproduce themselves.
Since the resources are limited, in our model only a certain number of cicadas
can survive at each year/tic; this is a strong constraint existing also in the real
world. Synthetically, if there are n resources in the world at time t, only n cicadas
will survive.

Then predators can also eat cicadas, and reduce the population. This is the
second constraint, present in the real world. In order to fulfill the “predator
satiation” hypothesis we decided that after eating a fixed number of cicadas, the
predators are satiated and let the other cicadas live and reproduce.

Finally the survived cicadas can reproduce and die; we clone the cicadas ac-
cording to reproductionRate: the new cicadas have the same properties of their
parents, and start a new life cycle underground, according to their duration.

Obviously, before each step we shuffle the list of alive cicadas, in order to
randomize the process.

3 Results

Here we present some of the results from the simulation. Each run represent
20.000 years of time, in which we compute each step presented before, in order
to define the population dynamics. For each run we show the graphs at times
20, 1000, 5000 and 20000.

Each graph has on x axis the classes, ordered by the number of years to
be spent underground before emerging to the surface; on y axis the number of
cicadas.

The first run we present features these parameters:

– magicicadasNumber 10000
– reproductionRate 6.0
– chanceToSurviveAtBirth true
– chanceToSurviveAtBirthRate 0.15
– predators true
– predatorsNumber 190
– resources 1000
– maxSleepingTime 20
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Fig. 1. Experiment 1 at 20 tics

During first 20 steps (figure 1) the cicadas with few years of sleeping died,
according to their low chanceToSurviveAtBirthRate. At this time nothing can be
said about the trend, yet, since most of the cicadas have been out for just one
time and the food and predators dynamics have not yet influenced the results.

Normally the even classes are the least likely to survive; this could happen
since they have many divisors. This causes many cicadas to be out at the same
time, that starve to death according to the limited resources constraint. As you
can observe in figure 2, after 1000 simulated years all the even classes are gone,
except for class #20. This is because it’s the longer living one (and in our model
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Fig. 2. Experiment 1 at 1000 tics
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“longer is better” accorging to (2)) and because it’s out less often then others.
Notice that at this time (after 1000 years) four out of six classes which still exist
have a prime number based life cycle.

Without the chanceToSurviveAtBirthRate, which increases at each time step
the probability of a class to survive and go out, we’d obtain a different effect: in
fact the populations with longest sleeping time are not competitive as the others,
since they don’t take advantage from the reproduction rate, being out less often.
This would be highly unrealistic: the classes with a short life cycle (one to three
years) will have much more chances to go out and reproduce themselves, when
compared to those with longer cycles. As said before, nature often prefers, when
possible, longer life cycles for cicadas, according to (2), so the model holds.

In figures 3 and 6 the typical trend of all the experiments can be observed,
with a stable population concentrated in few classes. In particular, with the
parameters we choose, after 5000 tics we have three high prime numbers left (13,
17 and 19) and the longest possible class (20), while after 20000 cycles (figure
3) the highest reproduction rate of the lower classes wins over the longest living
one, and the only three remaining are represented by the three highest prime
numbers lower than 20, which are 19, 17 and 13. While in nature a cicada with
a life cycle of 19 years doesn’t exist, probably because it wouldn’t be possible
for such insect to life so long, in our simulated world that is considered feasible.
If we had classes just up to 18, we would have reproduced exactly the real
situation, that is one in which two species emerge, the Magicicada Tredecim and
the Magicicada Septendecim. In this experiment, then, you can observe that the
populations of magicicadas confirm the “myth” of being biological prime number
generator.

In order to investigate the individual trends of the single classes, some species
have been analysed by considering the number of individuals belonging to them,
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Fig. 5. Trends for ages 20, 17, 13, 8

over time. Class number 8 has been considered as representative for all the even
classes, and, more generally, for all those that are not based on prime numbers
and are low numbered. Classes number 13 and 17 are obviously very important,
since in nature there are species with these life cycles. Class number 20 is then
the “longest living” one among those in the simulation, and the last even class
to “extinguish”.

In the graphs in 5, the trends are examined with intervals of one hundred steps.
The species with a life spam of 8 years is soon extinguished; this is probably due
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to the fact that when the cicadas belonging to this class step outside, they have
to face an harsh competition for the limited resources. In fact, when they are
“out”, they have to share the resources with species number 1, 2, 4 and - once
every two life cycles - with number 16. The same situation happens for species
number 1, 2, 3, 4, 5, 6, 10, 12, 14, 16 and 18 soon to be followed by number 9
and, lastly, by number 7 (which was made weaker and weaker by the previous
competition with number 14).

Species number 13 and 17 are the most interesting ones to analyze: they show
a very similar trend and both of them survive after 20000 steps, exactly the same
way as they survived in the real world. The trend is not linear at all, though,
and both the species sometimes go all the way down to about 500 individuals,
but they immediately reproduce and get back to about 1500, drawing a stable
average of about 1000 individuals (these numbers are to be considered in function
of the starting population of 10000 total cicadas for all the classes together).

A slightly different story is told by class number 20; this is an interest actor,
since it exists till step 10000 and then suddenly extinguish. This is probably due
to the previous competition with classes number 5, 10 and sometimes 15, which
made it weaker than classes 13 and 17; class number 20 lives longer than other
even classes thanks to the hypothesis by (2), implemented in the model.

3.1 MultiRun and Other Experiment

Our model, for its construction, is very “parameters sensitive”, in the sense
that a slightly different reproduction rate, or a negligible variation of the ci-
cadas/predators ratio can lead to very different results in the long run. For this
reason, we thought of a way to test many different parameters using a sort of
“brute force” approach, i.e. by changing a value at a time, the others being the
same (ceteris paribus). This is a sort of tuning, or even an empirical valida-
tion, useful to observe the aggregate results and to find dependencies among the
parameters and the results.

Basically a MultiRun is a “super Model” class that launches sub-models, by
changing a single parameter at each run, while the others remain the same.
In the “result space” explored with this discrete method, zones without any
cicadas surviving emerge, because of too many predators bundled with a low
reproduction rate, or few chances to survive at birth.

A MultiRun simulation with these fixed parameters is performed:

– magicicadasNumber 10000
– chanceToSurviveAtBirth true
– predators true
– resources 1000
– maxSleepingTime 20

While those are fixed, reproductionRate iterates from 0.1 to 10.1 with steps
equal to 0.1, chanceToSurviveAtBirthRate from 0.05 to 1.05 (step = 0.5) and
predatorsNumber from 0 to 300 (step = 1).
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The results of every run are collected after 20.000 years of evolution (tics),
and represented in figure 6, where the aggregate average result of 1220 total runs
are shown.

From these aggregate results a very interesting figure emerges; by exploring
the parameter space, it’s evident that prime numbers are the most likely results
to appear. In fact, the first five positions are indeed prime numbers (13, 19, 7,
11 and 5 respectively). Number 9 follows, that’s not prime, but after it there
are other two prime numbers, # 17 and # 3. With the exception of # 2 (which
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is probably too short a life cycle, to be selected), all the prime numbers among
3 and 20 were discovered by the model and, with the exception of # 9, all the
selected numbers are prime.

The model allows “what-if” analysis; in particular the number of species can
be higher than 20 (i.e.: with longer life cycles). Though impossible in nature,
where a cicada living 17 years is already the longest living insect in the world,
this could be very interesting to simulate, in order to see if the model can be a
true (though inefficient) “biological prime numbers generator”.
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Fig. 10. Magicicada Septendecim

A simulation is now presented with the same parameters of the experiment in
paragraph 2, except for the maxSleepingTime, now set at 50. This means that
instead of 20 species of cicadas, we now have 50 species (unrealistic situation, of
course, but useful for a “what-if” extrapolation).

In figure from 7 to 9 the distribution of the results after 5000, 10000 and
20000 simulated years can be observed, which seems, once more, to confirm the
myth of periodical insects as “prime number generators”. Even in an unrealistic
biological situation, the mechanism inspired by magicicadas seems to work and
after 20000 cycles the insects with a life cycle based on prime numbers are the
most likely to survive (19, 29, 37, 43, 47, while 25 is the only number “surviving”
not being prime).

4 Conclusion

Biology is an interesting field for agent based modelling, both as a source for ex-
amples/applications and as methodological inspiration. Many important results
in Artificial Life and Computer Science are based on biological metaphors such
as the ALife concept itself and, in detail Game of Life by John Conway, Hol-
land’s Genetic Algorithms, Neural Networks and many others. We also mention
the simple ants or “vants” (virtual ants), with their simple rules and their simu-
lated pheromones that are present in a great number of models and algorithms,
since the Langton’s ant.

In this paper agent based simulation was applied to a biological evolutionary
phenomenon. Two species of cicadas living in North America show a unique
behaviour: they remain in the ground for all but their last few weeks of life,
when they emerge en masse from the ground into the forest where they sing,
mate, eat, lay eggs and then die. The most interesting part is that their life
cycle is, respectively, of 13 and 17 years, which are obviously prime numbers.
Biologists tried to explain this phenomenon with some theories, among which
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we find the one stating that prime number were selected by evolution, since in
this way the two broods would have had less chances to meet, avoiding to share
resources.

An agent based evolutionary model was presented in which the agents repre-
sent the cicadas; there are different species of agents, who differ for the length of
their life cycle. In the first experiment life cycles going from 1 to 20 were used,
since beyond it wouldn’t have been realistic, being Magicicada Septendecim the
longest living insect in the world. In the proposed model there is a finite number
of resources, and the agents must compete for them; when their time comes,
the agents “come out” and must eat, before being able to reproduce themselves.
Those who can’t find food die, while the ones who find it live; also predators
are present in the model. This is another threat for the insects, since some of
them are caught and eaten by predators; the one who survive can reproduce
themselves and then die of a natural death. The children inherit the life cycle
length from their parents; of course, if no cicada of a brood is alive, then that
class is extinct and disappears from the simulation. The model features a set of
modifiable parameters, such as the reproduction rate, the number of predators,
the maximum allowed life cycle and the probability to be alive after the period
spent underground; this last parameter increases with the time, since for cicadas
it’s been proved that a longer life is a better option, according to (2).

The quantities of cicadas at four different times were examined: after 20, 1000,
5000 and 20000 years/tics. In the experiment, after 20000 years, the only cicadas
alive are the ones with a life cycle of 13, 17 and 19 years. This is a great result,
since it mimics the real world; 19 years is not applicable in the real world since
it’s too long a life cycle for an insect, but anyway it’s a prime number itself,
proving that the constraints coming from the environment lead to a selection of
high prime numbers.

This model of evolutionary biology empirically validates, through an agent
based technique, some different theories. A multi-run approach was then
adopted, to show some robust results which partially confirm the “myth” of
periodical cicadas being a biological prime number generator.
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Abstract. This paper describes work carried out to investigate whether
a classic reaction-diffusion (RD) system could be used to control a ‘min-
imally cognitive’ animat. The reaction-diffusion system chosen was that
first described by Gray and Scott (Gray-Scott) and the minimally cog-
nitive behaviors those used by Beer et. al involving the fixation and
discrimination of diamond and circle shapes by a whiskered animat. The
parameters of this RD-controller were evolved using an evolutionary, or
genetic, algorithm (GA).

1 Introduction

This paper describes work carried out to investigate whether a classic reaction-
diffusion (RD) system could be used to control a ‘minimally cognitive’ animat.
The reaction-diffusion system chosen was that first described by Gray and Scott
(Gray-Scott) and the minimally cognitive behaviors those used by Beer et. al
involving the fixation and discrimination of diamond and circle shapes by a
whiskered animat. The parameters of this RD-controlller were evolved using an
evolutionary, or genetic, algorithm (GA).

Within Evolutionary Robotics the prominent model dynamical system is the
continuous time recurrent neural network (CTRNN) [7,8,3]. Many examples tes-
tify to the rich dynamics of which CTRNNs are capable [6,8], such as generating
the patterns to regulate legged robot gaits, and controlling such simple cognitive
tasks as navigation and shape-discrimination. Many classic RD systems also dis-
play rich dynamics, manifesting the full range of classic qualities such as Hopf
bifurcation, stable and unstable limit-cycles, chaotic boundaries etc.. The main
motivation for the work described in this paper was to see whether the tried
and tested technique of evolving neural-network controllers for simple robotic
behavior could be adapted to harnessing some of the rich dynamics displayed by
these RD systems. In this sense the interest was both methodological, to show
that evolutionary algorithms could be used successfully with a different class of
non-linear system, but also focused on exploring the ability of RD controllers.
For example the ability to sustain spatio-temporal patterns suggests a role in
controlling gaited movement but can systems be tuned to particular require-
ments? Given the difference between the essentially ‘spaceless’ CTRNNs and

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 498–509, 2006.
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the necessarily spatial RD systems there is also the intriguing possibility that
they might be able to compliment one another. By placing artificial neurons in
an excitable medium with which they can interact, CTRNNs might be able to
exploit the spatio-temporal properties of the medium. Given the dynamical po-
tential of these RD systems there has been very little work dedicated to exploring
it [1,2].

In place of the continuous time recurrent neural network used by Beer we used
a one-dimensional ring of cells within which the concentration of two coupled
chemicals changed according to two differential equations describing intra-cell
reactions and inter-cell diffusion. Output from whisker-like proximity sensors was
fed to the cells in the RD-ring via weighted links, perturbing the concentration of
the two chemicals. Weighted links in turn allowed the concentration of particular
chemicals in designated cells to specify motor activation, completing a sensor-
motor loop. In some of the controllers described the RD-ring also received input
from the motors. Links were made symmetrically about the animat’s longitudinal
axis. Parameters specifying the weighted links between cells, motors and sensors
were evolved as were the values of a dimensionless feed rate and rate constant for
the RD-system. A simple fitness-function encouraged animats to fixate circles
and avoid diamonds.

1.1 Reaction-Diffusion Models

Perhaps the best known example of a reaction-diffusion model is that proposed
by Alan Turing [5] as an attempt to explain cellular differentiation in early bio-
logical development. It is also one of the first examples of the use of a computer
to solve differential equations. Turing was trying to understand how the chemi-
cals in arrays, in this case one-dimensional, of identical cells could, by reacting
within the cells and diffusing between them, form stable patterns. He was able
to show that by constraining the chemical reactions within cells and the relative
rate of diffusion between them one could guarantee a stable pattern. Subsequent
work has shown analogous systems responsible for leopards’ stripes, patternation
of nautilus shells and many other natural patterns.

Within the class of model reaction-diffusion systems defined by two coupled
chemicals (two rate equations) Turing was interested in those tending toward a
stable configuration. But by altering the governing reactions and diffusion rates
many other systems are possible, displaying a wide variety of spatio-temporal
properties. One of the most intriguing is that proposed by Gray and Scott in
their 1984 paper [9] and extensively analyzed by Pearson in his 1993 paper [4]. A
variant of the autocatalytic Selkov model of glycolysis [4] the Gray-Scott model
corresponds to the following reactions:

u + 2v ⇀ 3v (1)

v ⇀ p (2)

Both reactions are reversible so p is an inert product. A feed term for u introduces
a non-equilibrium constraint with the feed process removing both u and v. This
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results in the following reaction-diffusion equations, expressed in dimensionless
units:

∂u

∂t
= du∇2u − uv2 + F (1 − u) (3)

∂v

∂t
= dv∇2v + uv2 − (F + k)v (4)

where k is a dimensionless rate constant and F a dimensionless feed constant.
du and dv are the diffusion rates for the two chemicals (see Sect. 2 for specific
details). A trivial steady state of u = 1, v = 0 exists for all values of F and
k. Gray-Scott proves a very robust simulation, showing no qualitative difference
when implemented by forward Euler integration over a broad range of spatial
and temporal scales [4].

When suitably perturbed Gray-Scott exhibits a large variety of spatio-
temporal patterns that have to be seen to be appreciated. Pearson’s paper is
replete with beautiful images but the simulation is best appreciated in real-time
with a two-dimensional simulation and a suitable colour-map. By fixing the dif-
fusion rates of the chemicals and using F and k as control parameters Pearson
was able to show that within suitable limits the two-dimensional phase-diagram
described shows regions associated with specific spatio-temporal patterns, rang-
ing from spot replication and stripes in a continuous transition to traveling waves
and spatio-temporal chaos.

A disclaimer should be made at this point. The specific details of the Gray-
Scott model are not central to this paper. It was chosen as a suitable candidate
to provide an excitable medium, capable of rich dynamics and as likely as any
to be exploited by evolution. There are many other classic two-chemical model-
systems, with greater and lesser biological plausibility. Gray-Scott was the first
tried and proved very capable.

1.2 Visually-Guided Agents

The choice of an evolved animat model, for example to demonstrate the potential
of a novel reaction-diffusion controller, should be informed by two key consid-
erations. The behavior in question must be cognitively ‘interesting’ and there
should be a reasonable expectation that resultant controllers can be analyzed
and understood.

The term ‘minimally cognitive behavior’ is meant to connote the
simplest behavior that raises cognitively interesting issues.

Generally speaking, visually-guided behavior provides an excellent
arena in which to explore the cognitive implications of of dynamical and
adaptive behavior ideas, since it raises a host of issues of immediate
interest. ([7] p.422)

In keeping with Beer’s thesis we chose two of the visual-guidance tasks conform-
ing to the requirements of ‘minimal cognition’. In the first and easiest a whiskered
animat, capable of moving along the floor of a two-dimensional arena (in the xz
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plane), is required to orientate toward and track a circular object falling from
the arena’s ceiling with a large range of vertical and horizontal speeds (see Fig. 2
for details). The second, more challenging task took place in the same arena and
required the animat to discriminate between diamond and circle objects dropped
directly down from the arena’s ceiling. The animat was rewarded for fixating the
circles and avoiding the diamonds.

Beer evolved continuous time recurrent neural networks (CTRNNs) to con-
trol his animats, a control-system the author have some experience of [3]. His
subsequent analysis [8] of the CTRNNs’ dynamics makes them probably the
best understood of all animat controllers, evolved or otherwise. This represents
a useful benchmark and an obvious model to emulate. The use of such canonical
models to provide a common point of reference would seem to be an efficient
way to exploit the resources available. Broadly speaking this work preserves the
details of Beer’s model while replacing the CTRNN controller with a novel one
using a reaction-diffusion medium.

sensors

motors

RD-ring

reaction within

diffusion between
cell

excitatory inhibitory

(a) (b)

Fig. 1. (a) The animat model. Output from the proximity sensors (and occasionally
motors) is fed, via weighted links, to the reaction-diffusion ring (RD-Ring) where it
perturbs the cellular concentration of chemicals u and v. Solid links increase the chem-
ical concentration in the cell while dashed links decrease it (link-effects). Following a
number of reaction-diffusion cycles (reaction and diffusion), the chemical concentration
levels in designated cells are in turn fed via weighted links to activate the animat’s mo-
tors. Activation at a motors is summed and multiplied by a constant (10) to produce
an output. The combined output of oppositional left and right motors is used to move
the animat. (b) Excitatory links from the sensors increase chemical concentration while
inhibitory links (dashed) decrease it.

1.3 Evolving Controllers

The Gray-Scott model, in keeping with most reaction-diffusion systems, is highly
non-linear, at least unintuitive and often counter-intuitive 1. It is not immedi-
1 The speed of modern processors makes it possible to interact in real-time with 2D

implementations of these reaction-diffusion systems. Having implemented and played
with just such a model of, among others, Gray-Scott the we can attest to its counter-
intuitiveness.
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Fig. 2. (a) The fixation experiment (to scale). An animat with five whiskers spread over
a 30o span is placed at the centre of the arena’s floor. During a trial a circular object
was placed in the starting zone (grey-line) on a trajectory within the limits defined
by the animat’s distal whiskers (θ). This was to ensure that the animat received some
stimulation from the falling object. The object’s speed is indicated by the relative
position of large and small arrows, lying within 0.5 and 7 units per second. The end
of the trial was signaled by the object reaching the arena floor, at which point the
distance between object and animat was used, along with their relative start points,
to calculate a fitness score for the animat. (b) Six animat-circle trajectory pairs with
the circle’s trajectory dashed.

ately clear how one could ‘hand-wire’ such a controller, but it would require
an intuition about the rich dynamics of the system which escapes us. In cases
such as this, where we require a controller capable of exploiting even a rel-
atively simple dynamical system, it would seem that the need is pressing to
leverage the increasing computer power at our disposal and automate the pro-
cess of discovery. This approach is particularly appropriate to a robot that is
intended to remain in-silico. The search algorithm employed here is a genetic
algorithm (GA). A simplistic, but initially useful, way of understanding how
a GA works is to picture the parameter space, describing in this case the de-
tails of our reaction-diffusion controller such as linkage points and weights, as a
fitness landscape. Every point in this landscape describes an animat controller
and height above ground corresponds to fitness. If the landscape is reasonably
well-ordered it should be possible for the GA to find its way from low ground
initially, corresponding to randomly-wired, poor performing controllers, to high,
where the controllers are (much) better performing. This image leaves out im-
portant details, particularly the concept of neutral-networks 2, but the key de-
tail is captured. From random parameters and allowing for a suitable encoding
scheme, it should be possible to automatically produce good controllers by ap-
plying evolutionary pressure. The work described in this paper and elsewhere
[7,8] is testament to that fact.

2 A complex subject highlighting our poor intuition of movement in higher-dimensional
space.
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2 Method

To a large extent details from Beer’s earlier simulations [7] were preserved and
the required behaviors essentially the same. The arena was 400 units long by
275 units high (Figs. 2 and 3) in all the experiments. The animat’s whisker
sensors were 220 long and uniformly spaced over a 30o spread. The animat had
five whiskers in the orientation experiment and seven in the discrimination ex-
periment. Activation of the whiskers was a simple linear function with a minimal
value of 0 when the whisker was unimpinged and 1 when it was intersected at
base.

Fig. 1 shows a diagram of the animat. Activation from the sensors ∈ [0, 1] was
fed through weighted links ∈ [−1, 1] to the one-dimensional reaction-diffusion
ring (RD-ring) consisting of 128 cells subject to intra-cellular reaction and inter-
cellular diffusion between near-neighbours (see the chemical reactions 1, 2 and
rate equations 3 and 4). The weighted links were specific to either chemical u or
v, this specificity being under evolutionary control.

The sensors, motors and input to the RD-Ring were updated using the forward
Euler method with an integration step-size of 0.1. During this time-step each cell
in the RD-ring was updated twice using the rate equations 3 and 4). Input via
links to the cells perturbed the specified chemical’s concentration by a simple
multiple of time-step (0.1), sensor activation ∈ [0, 1] and link weight ∈ [−1, 1].
The cellular concentration of u and v was bounded within the range ∈ [0, 1].

The animat’s motors received input from cells in the RD-ring. Input from a
individual link was a product of link-weight ∈ [−1, 1] and the concentration of
the evolutionarily specified chemical in the cell. To update the animat’s position,
the activation of the oppositional motors was subtracted (right − left) and the
result multiplied by 10. This multiplier was fairly arbitrary, taking into account
the need for the animat to move fast enough to catch objects with a maximal
horizontal velocity around 5. It worked well enough but is probably too large.
On reflection this value should probably have been an evolutionarily-specified
parameter but given the fitness scores generated any gains could only have been
very marginal.

Diffusion rates du and dv were fixed at the standard values [4] of 2×10−5 and
10−5 respectively and the length of the RD-ring was 0.32. Each animat genotype
specified a value for the rate constant k and feed constant F (equations 3 and
4) which were seeded at values 0.055 and 0.02 respectively in the otherwise
randomly generated initial populations. By moving through this F, k parameter-
space evolution had some control over the properties of the reaction-diffusion
system (see section 1.1).

The GA consisted of a population of thirty animat genotypes which were
updated generationally according to rank-based selection. The genotypes were
essentially a list of weighted, chemically specific links, describing the wiring of
an animat controller. As the animat controllers were symmetrical, each link on
the list corresponded to two links on the controller. At each generation these
lists were converted into their respective animat controllers and assigned a fit-
ness value according how well the controller performed its task. It was neither
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practical or desirable to have the genotype describe a fully connected controller
(1408 links in all) so the number of links was pre-set. The starting number
for the orientation experiment was 8 sensor→RD-ring, 4 RD-ring→motor and
4 motor→RD-ring making 32 symmetrically arranged links in all. For the dis-
crimination experiment it was 16 sensor→RD-ring, 8 RD-ring→motor and 4
motor→RD-ring making 56 links in all. These values seemed about right and
worked well but subsequent analysis showed near optimal performance was pos-
sible with less than half this number of links (see Fig. 4.b for technical details).

Fig. 3. The discrimination experiment (to scale). An animat with seven whiskers spread
over a 30o span is placed at the centre of the arena’s floor. During a trial an object
was placed at the top of the arena within the grey drop zone on a straight downward
trajectory of between 3 and 4 units per second. A pair of trials with the same starting
position and speed was performed for diamond and circle objects. The animat was
rewarded for it’s ability to fixate the circle and avoid the diamond.

At the end of each generation a new generation was formed from the old
and subjected to mutation operations. The numbers on the genotype were in
the range ∈ [0, 1], being mapped onto their respective controller parameters.
Mutation consisted of the addition of a normally distributed random value with
average 0 and standard-deviation 0.25. A second mutation operator was applied
to each genotype with a probability of 10%, randomly deleting a link from or
adding a link to the list. The link-addition operator allowed two links to share
start and end points and chemical specificity.

Fitness was a function of the two values diststart and distend specifying the
absolute distance between animat and shape at the trial’s start and end, signaled
by the shape reaching the arena floor. For the circle object, required to be fixated
in both experiments the fitness function f was:

f(diststart, distend) =
{

1 −
diststart

distend

if distend < diststart

max(diststart−distend

50 ,−1) if distend ≥ diststart

The fitness function for the diamond, required to be avoided, was the negative
of that for the circle.
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2.1 Training Protocol

A number of trials were conducted to assess the ability of individual controllers
and allot their respective genotypes a fitness score. Fig. 2.a shows the trial set-
up for the orientation experiment. The grey-zone at the top indicates potential
starting points for the circle during a trial and theta the limits within which the
trajectory line is set. In keeping with Beer’s original model [7] the simulation
was noiseless, meaning that the symmetrical animat controller was incapable
of breaking symmetry without stimulus from the whiskers. The trajectories of
falling objects were controlled to make sure the animat received some sensory
stimulus during the course of a trial.

To test a controller for ability to orientate towards the circle, the grey starting-
zone (±70 from the animat’s starting point x = 200) was broken into four equally
spaced regions and 2 starting points chosen randomly from each region. Two
random trajectories within the limits set by θ were chosen for each starting
point and each of these tested at two random speeds, within the range [0.5, 7].
This makes a total of sixteen trials per assessment. Two assessments were carried
out and the average returned as a fitness score.

Fig. 3 shows the set-up for the diamond-circle discrimination trials. Animat
performance with dropped circles and diamonds was compared for eight random
points starting within the drop zone (grey region ±50 from the animat’s starting
point x = 200) and two random speeds ∈ [3, 4] per point, making a total of
32 trials in all for a single assessment. Two assessments were made for each
controller and the average returned as a fitness score for the genotype.

3 Results

3.1 Orientation

Animats capable of orientating toward and fixating a falling circle were easily
evolved, almost invariably with close to optimal fitness for the best members.
Perhaps not so surprising given the symmetrical nature of controller and task
it is nevertheless remarkable how many randomly generated animat controllers
were able to achieve respectable scores ab-initio. It is far too early to say but it
appears that the symmetrically wired RD-rings have a natural tendency to resist
perturbation and normalize left and right sensor input. It should be stressed that
for the harder discrimination task no animat populations showed any ability
ab-initio.

Fig. 2.b shows the tracking performance of a typical animat for three pairs
of random circle trajectories, with evenly-spaced start points. The dashed-lines
show circle trajectories and the solid the animat’s response. Starting at x = 200
the animat remains stationary until its whiskers are stimulated by the falling
object. It then oscillates back and forth below the falling object continually
overshooting its position. These oscillations are damped as the object gets closer
to the animat and sensor stimulus increases. The plots resemble attractor-cycles
converging on the intersection of animat and falling shape at the ground. This
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animat controller had sixteen links in total. After an initial 200 generations,
during which near optimal performance was achieved, the animat was evolved
for a further 1000 generations with the link-addition mutator turned off but
the link-deletion mutator still active. This effectively reduced the size of the
controller while maintaining fitness.

3.2 Discrimination

Animats capable of distinguishing between circles and diamonds were readily
evolved within 200 generations (see Fig. 3 for details of the task). From a typical
batch of 20 at least a third achieved fitnesses of over 1.8 from a maximum 2 over 32
random trajectories. Much better results were achieved if the animats were trained
initially to fixate a circle before being introduced to the discrimination task.

Fig. 4 shows the network of a typical near-optimal animat after the removal of
most redundant links by an extended period of evolution with the addition mutator
turned off(see Fig. 4.b for details). A total of 26 links are used with fairly even
sampling of the seven available whisker sensors. Six links from the RD-ring to the
motors dictate the animat’s movement. The inner two links have converged on the
same cell, allowing the cell to strongly influence the animat’s movement by exciting
one motor while inhibiting its opposite. Interestingly ,although allowed feedback
from the motors to the RD-ring these links have been pruned away as unnecessary.

whiskers

RD-ring

motors

excitatory

inhibitory

u
v

(a) (b)

26

max fitness

56

generations0 250 1250

a b

64

Fig. 4. (a) The complete reaction-diffusion controller for an animat capable of discrim-
inating diamond and circle objects. Coloured nodes are used to indicate the chemicals
affected by the whisker sensors and the chemicals affecting the motors respectively. This
network has no feedback from motors to the reaction-diffusion ring. (b) Simplifying the
network of a diamond-circle discriminator. The figure shows superimposed plots for the
number of weighted links in the reaction-diffusion controller (thick-line) and the fitness
of the best individual in the population (thin-line). After a short period during which
the animat is evolved to fixate a circle the fitness drops as the animat is introduced
to the diamond-circle discrimination task (line a). At this point the controller consists
of 56 weighted links. Over 250 generations the GA is allowed to randomly insert and
delete links from the controller genotype untill at line b the network has 64 links and
the animat has achieved near-optimal fitness. At this point the GA’s insertion muta-
tor is turned off while continuing to allow evolution to delete links randomly. Over
the next 1000 generations the animat maintains a close to optimal fitness while losing
links, ending with 26 links, less than half the number it started with.
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Fig. 5. The leftmost plot shows the x-position over time for two superimposed animat
trajectories, both starting at A(x = 200), in response to a shape dropped from S
(x = 250)at speed 3.5. The dashed line shows the animat’s response to a dropped
diamond, the solid line to a dropped circle. The centre plots show activation of the
reaction-diffusion cells during the circle and diamond trials. The right most plot shows
the result of subtracting the activations of circle and diamond trials. Around time 56
a strong difference is seen in chemical concentrations in the reaction diffusion rings,
corresponding to the animat’s evasion of the diamond (left-plot). In this sense the right
plot shows traces of the animat’s active shape-detection.

Full analysis of the network will take some time but some provisional observa-
tions can be made. Fig. 5 shows two trajectories made by the animat controller
shown in Fig. 4 in response to a diamond and circle dropped at the extreme end
of its evolved range (see Fig. 3) at speed 3.5 and along the line s. The left plot
shows the animat avoiding the diamond (dashed-line) while fixating the circle
(solid-line). The central two plots show the concentration of chemical u in the
RD-ring’s cells over the course of the two trajectories and the plot on the right
the result of subtracting the two central plots. This plot shows that following
a period of relatively similar activity, during which time the animat is fixating
both diamond and circle, there is a large difference in activity at time 56 around
cells 27 and 79, these falling under the remit of the rightmost whisker. While
the circle-plot concentrations remain symmetrical along the ring, an asymmetry
can be seen in the diamond-plot. This corresponds to the initiation of a strong
leftward avoidance tactic, taking the animat over a hundred units from the di-
amond at trial’s end (maximum fitness is achieved for a distance of 50 units).
Observing the diamond trajectory it is clear that the animat’s attempt to fixate
the diamond as it does the circle cause it to keep the diamond to the right of
its central-line, introducing an asymmetry as the right whiskers stimulation is
unbalanced by those on the left. This loss of balance initiates avoidance.

3.3 Generalization

The group of trajectories performed per animat assessment was not necessar-
ily representative of the set of all possible trajectories. Random components in
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the construction of trial-sets introduced a noisy element into the fitness scores.
This was reflected by the difference between average and maximum performance
of the population. To test how well the animats generalized over all possible
they were tested over batch of 200 randomly generated trajectories. This saw
a marked reduction in the average score. Taking the animat from Fig 2 as a
representative example, over the two-hundred trials its average was 0.82 with
a standard-deviation of 0.24. On only eight of the two hundred trials did the
animat respond inappropriately, scoring a negative fitness by ending the trial
further from the shape at the start. On only 20 of the 200 did the animat fail
to score less than 0.5. In other words for 90% of the trials the animat man-
aged to at least halve horizontal distance between itself and the falling shape,
on average covering over 80% of the optimal distance. Evolution under more
stringent conditions saw the expected improvement in generalization confirming
the limitation of the trial regime, not the controller model.

The range of possible trajectories was much smaller for the discrimination
test (see Fig. 3) with a narrower range of velocities ∈ [3, 4] and no horizontal
movement of the shape. Generalization here was correspondingly better. Taking
the animat discussed (Figs.4 and 5) as a representative example, it averaged 1.82
with standard-deviation 0.4 with 2 the maximum possible score. On only one
out of the two hundred trials did the animat respond inappropriately, ending the
trial closer to the diamond than to the circle. This network had been pruned of
nearly all redundant links over a long period of evolution and would be expected
to have fully exploited any deficiencies in the trial regime.

4 Conclusion

The challenge to emulate a classic, minimally cognitive animat control task has
we believe been met by this novel control system. Given the much explored
non-linearities in the Gray-Scott system it is perhaps surprising how readily the
medium was exploited by evolution and some considerable work is needed to
establish specific details of the successful controllers. As has been mentioned the
Gray-Scott reaction-diffusion model was chosen because it is a classic of the liter-
ature with well documented properties. There is no reason to think it particularly
well-suited for this task. It is conceivable that evolution be allowed to specify its
own chemical equations but at this stage that is an unnecessary introduction of
complexity. The results of using Gray-Scott are gratifyingly interesting.

The limitations of this class of controller remain to be seen, particularly in
comparison to the performance of CTRNNs on similar problems. This work was
in part prompted by the idea that hybrid systems, made by placing artificial
neurons in an active medium, might allow CTRNNs to exploit spatio-temporal
properties otherwise unavailable. As normally conceived CTRNNs are ‘spaceless’.
The one-dimensional RD-rings have two and three dimensional counterparts,
another potential avenue of exploration.

To sum, a benchmark has been established and these RD-controllers have
earned the right to further consideration.
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Abstract. We introduce a simulation model of coordinated adaptive be-
havior of agents with homogeneous elements connected by springs. The
agents accomplish a hill climbing task by coordinating the dynamics of
active elements and responding to the spatial pattern of surface con-
vexity. Transition between discrete movement patterns is observed while
moving in a rugged environment. The difference of dynamics between
approaching hills and avoiding hollows is distinct and can be interpreted
as a dynamic categorization of bumps on the surface.

1 Introduction

By moving one’s fingers over the surface of objects, it is possible to obtain
sensations of its shape, roughness and material and categorize these sensations to
arrive at a perception of the object. The sensation of touching objects can not be
deduced from the instantaneous sensory patterns on our fingers. These sensations
exist inside the dynamics of our nervous system, which itself is modulated by
the environment and our spontaneous movements.

In studies of haptic perception, the importance of self movement has been
discussed and identified with a property called Active Touch[1]. Noë[2] concludes
that all of our perceptions are grounded in our active body experiences.

However, in many computational models of embodied cognitive agents, the
role of activeness has been neglected or underestimated. Perception has been
considered as a transformation from a series of sensory inputs to internal rep-
resentations that are used in selection of the next action. The effect of infor-
mation about self action on perception is considered in order to calibrate the
sensory input by using efferent copy of motor commands and proprioceptive
feedback. The other aspects of activeness in perception that we want to empha-
size in this work are as follows. Meaningful stimuli to sensory organs are not
given passively but obtained actively by spontaneous exploration. The targets
of perception, what we subjectively feel, are not attributed to sensations given
from the object but induced internally by the sensory-motor coupling between
agents and the environment. The correspondence between sensory-motor flow
and internal representation can be more dynamic and complex than one would
expect.
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Agent’s categorization by way of sensory-motor coordination is called Dy-
namic Categorization. Many examples of such categorization have been explored,
see e.g., [3], [4], [5], [6], [7]. In this paper, we would like to introduce a novel simu-
lation model, one in which artificial agents behave as if they have a categorization
of the bumps on the surface yet without employing explicit, predefined sensory-
motor coordination. The body of an agent is constituted from homogeneous
active elements and plays mediating role between salience in the environment
and coherent internal state dynamics.

2 Model Description

2.1 Body Dynamics

The body of each agent consists of seven active elements mutually connected by
an elastic spring. The agent moves in a two dimensional space. Fig. 1(a) shows
the connectivity of elements. A system in an equilibrium state has a hexagonal
shape.
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Fig. 1. (a) The body of an agent in an equilibrium state. Seven elements are connected
by identical springs. Mass of all elements are the same. We denote the position and
the velocity of the elements in a two dimensional space as xi and vi, respectively.
(b) Control system of the body. Every element has a variable ui and produces force
along the direction of the spring which connects it to the central element. ui is a leaky
integrator and its input is the force from connected springs and the signal from adjacent
elements. Curved arrows indicate the flow of information to an element i.

The total energy of an agent’s body is given as

E = Σi
1
2
mv2

i + Σ(i,j)φ(‖xi − xj‖ − L) + ΣiV (xi) , (1)

where φ(r) is the potential energy of springs and V (x) is the rest potential energy
from the environmental field. We use exponential springs, which are easier to
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extend and harder to shrink than linear springs 1.

φ(r) = ar +
a

b
(exp(−br)) , (2)

φ′(r) = a (1 − exp(−br)) . (3)

The dynamics of the body is governed by the following equations.

ẋi = vi , (4)

mv̇i = −εvi − ∂E

∂xi
+ fi , (5)

where fi is the output of an element i, described in the next subsection.

2.2 Control System

Without any control system, the agent’s body slides in a downward direction
according to the gradient of the potential, reaching an equilibrium shape in a
flat region of space or descending into a valley of the potential field. Each of
the surrounding six elements has one variable ui as internal state that can be
activated. The active element is pulled or pushed from/to the central element
by a force. The magnitude of the force acting on each element is computed from
ui as follows.

fi(ui) = tanh(αui) × xi − xc

‖xi − xc‖
. (6)

The central element does not receive any force and all of the surrounding six
elements are homogeneous and symmetric. Therefore, to achieve spontaneous
movement of the body, symmetry must be broken by coordinating the state of
elements.

A state ui is a continuous time leaky integrator that receives input from adja-
cent elements and connected springs. Fig. 1(b) shows the flow of information to
an element i. The input from adjacent elements corresponds to signal transmis-
sion and the input from the connected springs corresponds to proprioception.
The dynamics of ui is governed by 2

τu̇i = γ − ui

+ wug(tanh(αui−1) − θu, βu) + wug(tanh(αui+1) − θu, βu)
+ wsg(‖xi − xi−1‖ − L − θs, βs) + wsg(‖xi − xi+1‖ − L − θs, βs)
+ wcg(‖xi − xc‖ − L − θc, βc) , (7)

1 We have also experimented with linear springs, φ(r) = 1
2abr2. By simulating both

cases two times each, we found that evolved agents with the exponential spring can
climb a hill. Agents with linear springs can also break symmetry and move straight
in flat regions of space, however they cannot climb hills. The reason is not yet clear,
but we have a hypothesis. The effective elasticity of the exponential springs changes
according to the length of the spring, which might be beneficial for the agent’s
reaction to the distortion of the space when the body shape is asymmetric.

2 This equation is essentially the same as one introduced in CTRNN[3]. Differences
between this model and a normal CTRNN implementation reside in the homogeneity
of elements and the locality of connections.
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where τ is the time constant and γ is the gain of the element. wu,s,c are the
weights, i.e., the contribution to the activation of unit i from other elements
or springs, and θu,s,c are the thresholds of these contributions. g(x, β) is the
sigmoid function with a nonlinear parameter β.

g(x, β) = (1 + exp(−βx))−1
. (8){

τ, γ, α, w{u,s,c}, θ{u,s,c}, β{u,s,c}} are the parameters of the control system
and characterize the behavior of the agent.

2.3 Potential Field and Hill Climbing

Every element is affected by an external potential field V (x). The strength of
the potential is a function of its distance from a point source.

ψ(r) = h exp
(

−
(r

d

)2
)

, (9)

where h is the strength of the source and d is the characteristic size. All effects
from the positive and negative sources are linearly superposed. Hereafter, we
consider the potential from the point sources as if the space is a surface in three
dimensional space with gravity. A positive source is like a hill and a negative
source is like a hollow.

By introducing an evolutionary algorithm, we enable agents to acquire adap-
tive behaviors. The first example of adaptive behavior will be hill climbing. The
characteristic of biological adaptive behavior is decreasing entropy and main-
tenance of non-equilibrium states. Because in our model there is dissipation of
energy as well as energy input resulting from the activation of elements, the
system can enter into non-equilibrium states. It is in theory possible for agents
to climb up a potential, behavior we would consider to be interesting.

2.4 Genetic Algorithm

Parameters of the control system, namely
{
τ, γ, α, w{u,s,c}, θ{u,s,c}, β{u,s,c}} are

encoded in genes as real values. It should be noted that all elements have the same
parameter value, hence we refer to them homogeneous elements. Parameters in
Table 1 are fixed in all the simulations in this paper. Behavior of individual
agents is simulated in an environment in which two positive sources and two
negative sources are randomly positioned. The boundary condition of the space
is periodic.

Agents’ performance at the hill climbing task is evaluated in terms of how
long the central element is kept in the high potential position. The score of the
agent is computed as ∫

V (xc)dt . (10)

The sum of the scores of the five runs from different initial positions, for 200 time
periods each, totals the fitness of the agent. In each generation 100 individuals
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in the population are evaluated. The worst 30 individuals are removed from the
population and 30 new individuals are produced from other agents by a mutation
and a crossover operator. The strength, the size and the location of potential
sources are updated at every generation.

Table 1. Parameters which are fixed in all the simulations in this paper

mass of an element m 1.0
natural length of a spring L 0.5
viscosity coefficient ε 1.0
spring stiffness (constant part) a 1.0
spring stiffness (exponential part) b 5.0
strength of potential sources h ±[0.05, 0.1] (uniform distribution)
size of potential sources d [0.5, 1.0] (uniform distribution)
size of the space 8.0 × 8.0 (periodic boundary)

3 Results

3.1 Behavior of an Evolved Agent

The control parameters of an evolved agent are shown in Table 2. Fig. 2 shows
the shape and movement of the agent. The evolved agent can move straight in
flat regions of space. Destabilization of symmetric shapes and stabilization of
asymmetric shapes results from regulating the control system under no external
force. The shape and the force from elements in the figure generates a fixed point
attractor in flat regions of space.

Because the agents cannot sense the potential or the gradient of the poten-
tial directly, the only information that agents can use is the relative difference
of the external forces between elements. The spatial difference of the external
force from the potential, which is the second order differential of the poten-
tial, is the convexity of the space (Fig. 3). To climb a hill, the agents must be
sensitive to information about convexity obtained through changes in body dy-
namics. Fig. 4 shows the time series of the output from all elements. A slight
skew of the asymmetric shape according to the distortion of the space triggers
changing of roles between three asymmetric elements, resulting in a change of
direction.

Table 2. Control parameters of an evolved agent. The behavior of this agent is de-
scribed in this section.

τ γ α wu θu βu

0.02579 0.6631 2.486 −2.489 0.7149 173.2
ws θs βs wc θc βc

5.683 0.6455 1.794 0.4211 2.129 35.38
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Fig. 2. Snapshots of the position and the shape of the evolved agent. Small circles are the
position of point sources and large circles show the characteristic size of the potential area
from the source. In this environment, top left and bottom right sources are positive and
others are negative. The forces on the six surrounding elements are depicted in the figure
from time 20. The force vector is (−0.47, 1.0, 0.58, 1.0, −0.47, 1.0). This coordination cor-
responds to moving straight to the north in flat regions of space. The agent encountered
a negative source at around time 40 and change direction to avoid the source. The time
series of the force from all elements is shown in Fig. 4. The top left panel of the Fig. 5
shows the trajectory of the central element in this environment.

Convex Concave

Fig. 3. Relative difference of external forces is interpreted as the convexity of the space.
This is the only information about the potential field that agents can obtain through
changes in body dynamics.

The top left panel of Fig. 5 corresponds to a trajectory of the central element
in the same environment as that of Fig. 2. The agent explores the space, avoids
hollows and tries to remain close to hills.

3.2 Internal Representation of Surface

It is possible to project the internal state dynamics of the agent in six dimensional
space to the lower dimensional plane. We have chosen the mean and the variance
of six outputs and traced the trajectory in two dimensional space. Fig. 5 and
Fig. 6 show several trajectories (a) in the real space and (b) in the internal state
space in various environments. In regular environments, four identical sources are
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Fig. 4. Time series of output of the surrounding six elements. Output is the magnitude
of the force by which the element pulls or pushes the central element. Three outputs
(f1, f3, f5) are almost fixed to one in this run, thus these three elements pull the central
element as strong as possible. The differentiation of (f0, f2, f4) is the cause of the
movement. The role of these three elements change while moving in the environment
when the body shape skews according to the distortion of the space. Direction of
movement changes as a result.

positioned at regular intervals. Observed behaviors such as avoidance, approach
and exploration correspond to different internal cycles.

Fig. 6 shows the dependency of the behavior of the agent on the shape of hills
in the regular environments. The behavior and the internal cycle are distinct.
In addition, the position of the cycles in the internal state space has a strong
correlation with the value of the potential in the real space.

3.3 Evolution of Categorization

Fig. 7 shows the scoring profile in the regular environments as a function of the
strength and size of the potential sources. The top left panel shows the initial
generation, whereas the top right panel shows an earlier generation in the evo-
lutionary process. Distinctive patterns appear in the evolution. The distinction
is related to the behavioral categorization of hills in Fig. 6.

Although such categorization of bumps on the surface is not the objective of
the agent, this functionality arises as a self-organized property through adaptive
behavior. In earlier generations of evolution, agents begin to move straight and
try to avoid hollows, but they cannot climb hills. Expected scores of such agents
is close to zero. We have found no clear distinction of the bumps on the surface
in these agents.

The difference of the potential shape is not explicit in the force on each element
from the environment, because the change of the force is gradual. The distinction
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Fig. 5. Trajectories in various environments. Top: Mixture of positive and negative
source randomly positioned. An example of an environment to which agents must
adapt. Middle: Regularly positioned medium sized positive sources, whose strength is
0.075 and size is 0.75. Bottom: Regularly positioned medium sized negative sources,
whose strength is −0.075 and size is 0.75. (a) Trajectory of the central element of
the agent in the real space. The color is the potential at the point, the brighter the
point the higher the potential. (b) Trajectory of the internal state as a two dimen-
sional projection. Horizontal axis is the mean of the outputs of elements. Vertical axis
is the variance. (0.44, 0.44) in the internal state space is the fixed point attractor cor-
responding to straight motion in flat region. Behaviors such as avoidance, approach
and exploration correspond to different internal cycles.

is an outcome of the internally-driven sensory-motor coupling between agent and
environment. Switching between several patterns of behavior is adaptive in the
complex environment. The distinction simultaneously appears in both behavioral
patterns and internal states.
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Fig. 6. Dependency of the behavior on the shape of hills. Trajectories of the agent
in four regular environments, in which four identical hills are positioned at regular
intervals, are shown. Strength: high – 0.09 low – 0.06; Size: large – 0.9, small – 0.6.
The position of the internal cycles has a correlation with the value of the potential.
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Fig. 7. Scoring profile of the evolved agent. Horizontal axis is the strength of the
potential source (height of hills/hollows). Vertical axis is the characteristic size. The
color shows the score of the agent in an environment in which four identical potential
sources are positioned at regular intervals. The top left panel is the initial profile. The
top right panel is the agent from an earlier generation. The agent breaks symmetry and
moves straight in flat region, avoiding hollows. But still the agent cannot approach hills.
There is no clear distinction between hills. The bottom panel is the profile of the evolved
agent. The profile has a structure corresponding to the behavioral categorization in
Fig. 6. In an environment with high hills that take up a large area, the agent can stay
near the top of hills for a long time but sometimes fails to remain, and thus score is the
highest but has a fluctuation. In an environment with high hill taking up a small area,
hills are too steep to climb and the score is worse. Low and large hills are too vague
to climb and remain close to. Low and small hills island in the profile corresponds to
hills which the agent can climb and stay on top of. The oblique line with high scores
shows the proportional hills, gradients of which are similar.

4 Discussion

To achieve sensory-motor coordination, neural networks are often employed.
Neural networks with N elements generally have to tune N2 parameters to
achieve a given task. Here in this study, we only tune a single common parame-
ter set shared by every element. Spontaneous symmetry breaking of the internal
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states is the key mechanism generating desired behaviors. The present model
performs well and shows coordinated and coherent behavior. In flat region, the
agent fixes the states of three elements and releases the other three elements
(Fig. 4). This coordination generates a diamond shape and results in straight
motion. To make a turn, the role of elements is alternated. The role of each ele-
ment is both a cause and an effect of the body shape. This is the main difference
between this study and other neural network studies.

The second point of this study is the origin of dynamic categorization by the
evolved agent. The categorization is not the direct objective of the agent under the
evolutionary pressure. The scoring profile is different from generalization of target
categories. In other words, the evolved agent cannot help categorizing the object
without being instructed in order to behave adaptively in the complex environ-
ment. In experimental studies, activations of hippocampal place cells of rats are
known to diverge under the exposure of differently shaped environment without
explicit reward[8]. Autonomous categorization is a nature of active perception.

Another interesting point is that the model agent has no explicit sensory in-
puts. Environmental information is only implicitly transferred to the agent by
modifying the springs that connect the elements. We interpret this as propri-
oceptive flow producing “sensory” signals from the environment. This implicit
coupling between sensory input and motor outputs may provide an origin of
active perception. Iizuka[9] has discussed the spontaneous separation of sensors
and motors in artificial cognitive agents.

As a prerequisite condition for having active perception, a flexible morphol-
ogy is important. The change in the internal state of elements is reflected in the
morphology of the agent, which enables coherent as well as exploratory motion.
Pfeifer[10] has intensively discussed the relationship between control and mor-
phology in adaptive behavior. For the moment, the agents have no memories and
the morphology is restricted. Association of morphology with memory capacities
is the next step.
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Abstract. This paper reports an experiment in which artificial foraging agents 
with dynamic, recurrent neural network architectures, are "evolved" within a 
simulated ecosystem. The resultant agents can compare different food values to 
"go for more," and display similar comparison performance to that found in bio-
logical subjects. We propose and apply a novel methodology for analysing 
these networks, seeking to recover their quantity representations within an Ap-
proximationist framework. We focus on Localist representation, seeking to in-
terpret single units as conveying representative information through their aver-
age activities. One unit is identified that passes our "representation test", repre-
senting quantity by inverse accumulation. 

1   Introduction 

In 1963, Feyerabend ([1] and [2]) claimed that improvements in our scientific under-
standing of the mind will eventually undermine our basic concepts of mental states. 
His position – Eliminative Materialism – stemmed from the intuition that “folk psy-
chology” [3] is merely our current best “theory” of mind. Like any other theory, folk 
psychology may eventually be falsified, perhaps in favour of a neuro-biological ac-
count of cognition. Significantly, there is no requirement that this replacement must 
“explain” the theory that it replaces – like phlogiston and alchemy, mental states may 
simply disappear [4] in the face of scientific progress. In cognitive science, a debate 
has recently emerged that adds a practical dimension to Feyerabend’s position. 

Since the emergence of the digital computer during the 1940’s, the Computer 
Metaphor (CM – [5]) has dominated the way in which scientists study intelligent 
behaviour. One of the principal methodological commitments of the CM is Functional 
Decomposition (FD), which implies that, like computers, cognitive systems can be 
understood as networks of functional “modules” [6]. The acceptance of this intuition 
is nearly ubiquitous in contemporary cognitive science; most experimental paradigms 
are designed explicitly to isolate and manipulate these putative modules. Seeking to 
account for experimental data, computational cognitive models have tended to be 
directed along similar lines. This division naturally emphasises the concept of “repre-
sentation” in contemporary cognitive theories, since the specification of a module’s 
interfaces (input and output representations) has a critical impact on its empirical 
behaviour (e.g. [7]). 
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Yet for all its evident utility, FD carries a heavy burden of explanation; functional 
modules must be integrated before they can reasonably be said to account for cogni-
tive behaviour. Recognising the critical role that module interfaces play in designing 
these modules, some researchers (e.g. [8], [9]) have questioned whether this integra-
tion could ever be successful.  

Dynamicism [10] offers an alternative. The Dynamicist programme construes cog-
nition as intrinsically embodied, emerging from the interaction of adaptive behav-
iours. These behaviours are the Dynamicist equivalent of functional modules – the 
atomic components of intelligence [8]. To the extent that this framework addresses 
the “integration problem” mentioned previously, it must surely be welcomed even by 
researchers entrenched within the CM. The problem is that, at least as commonly 
construed [11], the Dynamicist programme is resolutely Eliminativist. 

Dynamicist models are thought to be best understood in terms of the temporally 
situated causal processes that manage sensor-motor integration [11]. Traditionally 
critical concepts, like representation, simply do not appear to “fit” with how these 
systems work. Recognising this, many Dynamicist researchers have been moved to 
claim that the CM-inspired distinction between data and process – the very concept of 
representation itself – must go the way of phlogiston [8]-[11]. 

This proposition is antithetical to many neuroscientists because it simply does not 
appear to correspond with the observed structure of cognition in the brain. Selective 
neural disorders and brain imaging experiments [12] provide convincing evidence of 
functional specialisation in human cognition; though consistent with Dynamicism, a 
functionally specialised cognitive system naturally encourages analysis by FD. Con-
cepts of representation are a powerful and intuitive tool in accounting for well-
confirmed experimental data (e.g. [13], [14]); in some cases, such as [15], these ac-
counts can even draw on “observations” of the representations themselves. In some 
respects at least, brains just do appear to represent and to compute. If Dynamicism 
must be accepted at the expense of the concept of representation, few cognitive neu-
roscientists will accept it.  

To manage this tension, we propose an Approximationist response. Approxima-
tionism articulates the intuition that computational accounts of cognitive processes 
may be useful and approximately correct, without necessarily capturing every detail 
of the underlying causal processes [16]. One implication is that we might usefully 
search for – and discover – representations in neural systems, while at the same time 
accepting that the implied “computational story” will be at best a good approximation 
to the underlying “causal story”. 

Following the logic of [17], we evolve artificial agents to perform a “representa-
tion-heavy” task – a task for which some kind of representational structure appears to 
be required. Section 2 describes the artificial ecosystem and agents, as well as the 
representation-heavy task that they evolve to perform. The goal is then to recover the 
agents’ evolved representations. Section 3 describes and applies a methodology de-
signed to achieve this goal.  

2   Through Foraging to Quantity Comparison 

The focus for the current project is "quantity comparison", a common theme of study 
within the cognitive neuroscience of numeracy. Representation plays a critical role in 
contemporary accounts of the way in which subjects (humans and animals) manipu-
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late numbers and numerosities [13] – indeed, there is great debate in this field con-
cerning the precise format of that representation (e.g. [13], [18], [19]). Quantity com-
parison therefore meets our requirement for a representation-heavy process. Further, a 
growing body of evidence indicates that certain facets of the “number sense” may be 
inherited [20]. The implication is that evolution might engender a preparedness in 
humans and animals to represent quantity in a particular way, raising an independent 
question about what kinds of quantity representations can emerge “spontaneously” 
during evolution. The current work approaches quantity comparison as an evolution-
ary by-product of selection for quantity-sensitive foragers. 

2.1   The Artificial Ecosystem 

The environment is a 2-dimensional, toroidal grid, composed of 100x100 square cells. 
Agents navigate the grid by moving between neighbouring cells. Each cell can con-
tain “food”, construed as appearing in “bundles” of some specified numerosity (1-9). 
Any number of agents can co-exist in the same cell: the only upper limit is the size of 
the population itself (200), which remains constant throughout the run. Food can also 
“grow”, in the sense that its numerosity can increase. A record is kept of the total 
depletion of food during the run, and this food is periodically reinserted by sharing it 
among randomly selected cells.  

The ecosystem proceeds by iterative update. During each iteration, every individual 
is updated, with sensor activity propagated through the neural network and effector 
units interpreted to identify if any action has been made. The update order for agents 
is randomly specified at the beginning of each iteration.  

The agents are recurrent, asymmetrically connected neural networks. In a network 
of N units, the activity u of the i-th unit (ui) at time step t is calculated by  

1

( ) ( ( 1)).(1 ) ( 1).
N

i ij j i

j

u t S w u t m u t m
=

= − − + −  (1) 

where wij is the weight of the connection from unit j to unit i, S() is the sigmoid func-
tion and m is a fixed momentum term with a value of 0.5. 

A subset of units act as sensors, which are clamped according to the salient fea-
tures of the environment around the agent. Agents have a 3 cell field of view, and are 
also sensitive to food in the cell that they currently occupy (see Fig. 1), for a total of 
four sensor “fields”. Each field represents its corresponding food quantity using a 
“Random Position Code”; this was used in [18], among others, to capture quantity 
information without biasing models in favour of specific representational strategies. 
To represent food numerosity N, the code requires that N (randomly chosen) sensor 
units (positions) should be active. The scheme is illustrated in Fig. 2, where N = 5. 

Another subset of units are effectors, whose activity determines how the position / 
orientation of the agent's body is updated, as well as defining when agents try to eat. 
The remaining units are hidden and do not interact directly with the environment. 
Sensor units receive no input from the rest of the network, and have no direct connec-
tion to effector units, but the hidden layer is universally connected – every unit is 
connected to every other unit, and to itself. 
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Fig. 1. An agent in its environment. (A) The 
agent – a black triangle – is facing right and 
can sense food (grey circles) in its right and 
left-most sensor fields. (B) The same agent, 
after making a single turn to the left. It can 
now sense only one cell containing food. 

 
Fig. 2.  The Random Position Code. For 
food = N, exactly N units are active (activ-
ity clamped to ‘1’), while the remainder 
are inactive (activity clamped to ‘0’). Each 
sensor field has a total of 9 units. 
 

2.2   Evolution in the Ecosystem 

All of the agents in the initial population are specified with random numbers of hid-
den units, and random weights. The "fitness" (F) of the i-th agent is just the rate at 
which it has consumed food, 

F( ) /i ii f a=  (2) 

where f is the total food consumed and a is the agent’s age (expressed as the number 
of iterations since the agent's creation). 

At the end of each iteration, two “parents” are drawn at random from the popula-
tion and their fitnesses compared. The structure of the “child” is defined by randomly 
mixing the parents’ weight vectors (cross-over), followed by mutation. The mutation 
operator will usually increment or decrement a randomly selected weight value by a 
small constant (0.01), but may also add or remove a hidden unit. The resultant child 
replaces the least fit of the two parents. 

The best signal that agents are discriminating quantity is high food collection effi-
ciency: food collected per moves made in the environment. The agents’ food collec-
tion efficiency rises above 5 after about 10 million iterations (~50,000 generations), 
indicating that genuinely “discriminating” foraging behaviour has evolved. 

2.3   Quantity Comparison Performance 

The evolved agents are not merely models of quantity comparison; to capture that 
facet of their behaviour, we need a methodology that can effectively isolate it. Fortu-
nately, examples of the required kind of methodology already exist. In [21], the “sub-
jects” (salamanders) were placed at the base of a clear Perspex T-maze. Two clear jars 
of drosophilia fruit flies, which the salamanders eat, were placed at the end of each 
branch of the maze – two flies in one jar and three flies in the other. The authors re-
ported that twice as many salamanders “chose” the jar with more flies (signified by 
walking toward and touching that jar). Our methodology emulates this experiment. 
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The experimental environment is a 3x3 “mini-world”. Two cells, the top left and 
top right of the world, contain food of varying quantity. In its initial position at the 
centre of the world, the agent can “see” both of these food quantities, though it may 
turn without constraint once the trial begins. Food “selection” occurs when the agent 
moves onto one or other of the filled cells – the only cells onto which the agent is 
allowed to move. A correct choice is defined as the selection of the larger of the two 
food groups. Every agent in the population was tested using this methodology, with 
50 repetitions of every combination of food quantities (1-9, 72 combinations in all), 
for a total of 3,600 trials per agent. The results are displayed in fig. 3.  

 
Fig. 3. (Left) The schematic structure of the comparison experiment. The agent is placed in the 
centre of the mini-world, facing “up”. (Right)  A histogram of the population performance in 
the quantity comparison experiment. 

A few of the agents perform extremely badly, indicating that the evolved foraging 
solutions are brittle in the face of “evolutionary” change – perhaps emphasised as a 
consequence of a mutation bias against specialised structures [22]. The main bulk of 
the population distribution is also apparently bimodal; agents in the left-most cluster 
perform at roughly chance levels, whereas agents in the right-most cluster perform 
significantly above chance – only this latter group appear to discriminate quantity. 
The persistence of non-discriminating agents is unsurprising, since high rates of food 
collection can be achieved by sacrificing decision quality for decision speed. A visual 
inspection of the performance scores for agents in this cluster indicates strong asym-
metry in their behaviour; many simply “choose” the right-hand square regardless of 
the food quantities presented.  

2.4   Single-Subject Comparison Behaviour 

Using the results of the previous section, we selected the best “discriminator” from 
the population and recorded its empirical performance in more detail. The results are 
displayed in fig. 4.  

The agent’s empirical behaviour displays certain characteristic phenomena that are 
also reliably found when both humans and animals compare quantities. As the mini-
mum of the two quantities-to-be-compared increases (fig. 4a), there is an increase in 
discrimination error, this is an instance of the “Size Effect” [13].  As the numerical 

Food 1 Food 2
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Fig. 4. Accuracy scores are rates of correct choices per 1,000 trials. (a) Mean accuracy vs. 
minimum quantity of food (Min) in a given trial. (b) Mean accuracy vs. numerical distance 
(Split) between food quantities. (c) Mean “reaction time” vs. numerical distance between  
quantities. 

distance between the quantities increases (fig. 4b), there is a corresponding   
improvement in discrimination accuracy; this is an example of the “Distance  
Effect” [13].  

Surprisingly, this agent also displays a Distance Effect for reaction times, defined 
as the number of time steps between the start of a comparison trial and the agent's 
selection of one of the two food quantities. Non-discriminating foragers can persist by 
sacrificing decision accuracy for decision speed, but this agent is capable of reversing 
that tradeoff, sacrificing decision speed in order to more reliably “go for more”. 

Though the agents are too simple to support a meaningful comparison with biologi-
cal organisms, this behavioural correspondence is nevertheless encouraging. As men-
tioned prevously, most contemporary theories of quantity manipulation account for 
empirical phenomena (such as the Size and Distance effects) as a consequence of the 
way in which subjects represent quantities. A representational account of this agent's 
behaviour could therefore add a new dimension to this traditional debate, expanding 
the space of representational strategies that can account for the empirical phenomena. 

3   Approximationist Representation 

The key property of a representation is that it tracks some property of the environ-
ment. During the comparison experiment, the most salient properties are the values of 
the two food “options”, which remain static throughout each trial. But a visual inspec-
tion of the agent’s network dynamics reveals nothing remotely static – nothing that 
seems appropriate to represent these food values.  

Our thesis is that although the behaviour of each unit is subject to chaotic variation, 
its average activity may still be interpreted as conveying representative information.  

If a unit’s average activity (relative to some food value) is a functionally significant 
representation, it should be possible to “fool” the agent by fixing the unit’s activity to 
its average for a different food value. In deference to previous work (e.g. [23] and 
[24]) on lesion types in network analysis, we refer to this kind of interference as "Par-
tial Informational Lesion" (PIL). Our Approximationist method relies on statistical 
analyses of the impact of PIL’s on the agent’s behaviour. 

In the material that follows, we restrict the analysis to Localist "theories" of repre-
sentation – to theories that single units can be interpreted as conveying functionally 
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significant, representative information. This is a simplifying assumption, but not with-
out biological justification; recent single-cell recording experiments [25] suggest that 
single neurons in the primate parietal cortex may be selectively tuned to quantity. 

3.1   Defining "Representation-Like" Deviation from Normal Behaviour 

Consider a simple example in which a hypothetical agent manages a quantity com-
parison using just two hidden units – unit A and unit B. Each unit is subject to exten-
sive noise, but represents a corresponding quantity (Food A and Food B) by its aver-
age activity. As in the current work, our hypothetical system uses food values 1-9, 
signified by average unit activities of 0.1, 0.2…., 0.8, and 0.9. Suppose that we inter-
fere with unit A so that its activity is always 0.5 – now, the agent will always perceive 
food A as taking the value ‘5’.  

In some circumstances, this discrepancy between “actual” and “perceived” value of 
food A should reduce the agent’s comparison performance. If the actual value of food 
A is ‘2’, and the value of food B is ‘4’, our agent will “think” (wrongly) that food A is 
larger and could make the wrong decision. There are also circumstances in which this 
intervention should improve the agent’s performance. Suppose now that the true value 
of food A is in fact ‘2’ and food B is ‘1’; the perceived and actual comparisons be-
tween the two quantities both have the same “answer” (i.e. food A is larger), but the 
perceived comparison is arguably easier because the numerical distance between ‘5’ 
and ‘1’ is greater than that between ‘2’ and ‘1’. 

This logic leads us to define two groups of comparison trial, relative to particular 
PIL’s; Consistent trials are those for which PIL’s should improve comparison per-
formance, whereas Inconsistent trials are those for which PIL’s should reduce com-
parison performance. The hypothesis that some unit’s average activity does in fact 
“represent” can then be judged by reference to two “Representation Scores”; one for 
Consistent trials, and one for Inconsistent trials, calculated as in equation 3. 

1 1

1 1
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i i
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j j
i i
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= =
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− = −
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where Rj is the representation score for the j-th unit, and Pj() is a function that counts 
the number of correct comparison choices that the agent makes under the four possi-
ble conditions. The four conditions are: 

1) ( C, L ): Consistent comparisons made while the unit was subject to a PIL (i.e. 
is Lesioned). 

2) ( C, N ): Consitent comparisons, but where the unit is allowed to change freely 
(i.e. is Normal). 

3) ( I, L ): Inconsistent comparisons made while the unit was subject to a PIL (i.e. 
is Lesioned). 

4) ( I, N ): Inconsistent comparisons, but where the unit is allowed to change 
freely (i.e. is Normal). 
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A “positive” result is observed when R+ (the “Consistent Score”) is significantly 
positive, and R– (the “Inconsistent Score”) is significantly negative. 

3.2   Identifying "Representation-Like" Deviation from Normal Behaviour 

The current results are derived from the hypothesis that single units may represent 
food quantities. The average activities of these units – putatively localist representa-
tions – were collected during 100 repetitions of the comparison experiment described 
in section 2. This process associates each unit with one average activity for each food 
value (1-9) in each position (Food 1 or Food 2) – 18 values in total. 

Fig. 5 displays scatter plots for the 2-dimensional representation scores of each of 
the agent’s 25 hidden units. Each unit has a data point in both graphs. Each compo-
nent of a unit’s representation score is a mean average value. Scores that pass our 
“Filter test” will lie in the top-left quadrant of each graph; when applied to the units 
that correspond to these data points, PIL’s improve the agent’s performance during 
Consistent comparison trials, and reduce that performance during Inconsistent trials.  

T-tests for paired samples (Lesioned vs. Normal in both Consistent and Inconsis-
tent comparison conditions, N = 90 in both cases) confirm that the marked data points 
represent significant deviation from normal performance after the lesion (p < 0.05) in 
both Consistent and Inconsistent conditions.  

 

Fig. 5. Representation scores for the agent’s 25 hidden units, relative to the hypotheses that 
each unit represents either food group 1 (left) or food group 2 (right). Scores in the top-left 
quadrant of the graph indicate a positive result. Data labels denote the unit numbers of associ-
ated data points. 

 
Both of the food groups support multiple theories of unit-centric representation; 

relative to each food group there are three units that, when lesioned with PIL's, en-
gender the behavioural deviations that we hoped to discover. A visual inspection of 
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the associated representation scores is not sufficient to adjudicate between them. To 
make that step, we need to extend the method. 

3.3   Comparing Candidate Theories 

Returning once more to our hypothetical agent, consider what happends when we fix 
the value of unit A to ‘0.1’. In this case, the agent will “think” that Food A takes the 
value ‘1’, regardless of the true value of Food A, and its comparison performance 
should reflect that perception.  This logic is the foundation for our extension. 

We can collect a pair of performance scores based on this hypothesis; in the “Le-
sioned” condition, the PIL is applied and Food A takes some value other than ‘1’, 
whereas in the “Unlesioned” condition, no PIL is applied and Food A is always equal 
to ‘1’. After collecting analogous pairs for every other food value, relative to each of 
the two food groups, we have two sets of paired series of performance scores. To the 
extent that the PIL's have captured the agent's representational strategy, there should 
be a significant relationship between these paired series; we can capture that relation-
ship using linear regression. If the relationship is significant, its “variance explained” 
(R2) provides the metric that we need to compare competing theories. 

Table 1 displays the results when this Comparison test is applied to the data-points 
highlighted in Fig. 5. The values are derived from series generated by 10 repetitions 
of each experiment; regressed series are 90 elements long. 

Table 1. Linear regression results for each of the unit-centric theories identified by the Filter 
test. The shaded column corresponds to a theory that passes the Comparison test. 

 Food 1 Food 2 
Unit 2 5 14 6 7 17 

Significance 0.127 < 0.001 0.176 0.943 0.544 0.062 
R2 0.026 0.219 0.021 < 0.001 0.004 0.039 

Beta 0.162 0.476 0.144 0.008 -0.065 -0.198 
 
 

                                         

Fig. 6. The average activity of the agent’s hidden unit ‘5’, relative to the value of food group 1 

Only one of the units passes this Comparison test – unit 5 does justify an interpreta-
tion of representing food group 1 by its average activity. The quality of that justifica-
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tion depends on the R2 and Beta values associated with the regression; the quality 
increases as these variables approach the value ‘1’. This unit's activity (Fig. 6) is in-
versely proportional to the value of “Food 1”, a pattern consistent with the “Accumu-
lator” theory [26] of neural quantity representation. 

4   Discussion 

Conventional approaches to cognitive modeling tend to focus on the isolated, func-
tional components of cognitive behaviour; methods that could facilitate more behav-
iourally integrated models have failed to attract great support among cognitive neuro-
scientists. One reason for this is the sense that the gulf between human / animal and 
artificial agent behaviour is too wide to permit useful comparisons. Another reason is 
that these techniques can challenge our fundamental notions of representation, which 
remains an important conceptual tool for understanding cognitive systems. 

The current work lays the foundations of a methodological framework designed to 
address these apparent inconsistencies. We have evolved agents whose behavioural 
performance is reminiscent of that found in biological organisms, and offered an ana-
lytical framework that permits the recovery of classically “recognisable” representa-
tions from those agents. Critically, our method quantifies the extent to which a repre-
sentational account of the agent’s behaviour can be justified – the extent to which the 
theory captures the underlying causal process. 

We chose to base the analysis on the thesis the average unit activities can be inter-
preted as conveying functionally significant representative information. Though po-
tentially controversial, this thesis is at least consistent with the practice of single-cell 
recording experiments (e.g. [25]), which emphasise average neural behaviour at the 
expense of the apparently random [27] variation in specific spike trains. The real 
justification for the choice flows from the results of the analysis itself; despite its 
restricted (Localist) scope, we have identified a unit that appears to represent quantity 
by its average activity. We expect that the strength of this result can be improved by 
relaxing the Localist restriction, and work to implement that extension is currently 
underway. 

Despite its limitations, the current version of this system yields an interesting im-
plication concerning the symmetry assumption in conventional cognitive modeling. 
Contemporary models of quantity comparison are invariably “functionally symmetri-
cal” in that both of the quantities-to-be-compared are treated in the same way; the 
current result exposes that assumption to unfavourable scrutiny. As mentioned in 
section 2.3, the evolved population reliably contains “non-discriminating” foragers. 
These agents display strongly asymmetrical behaviour, selecting food group 2 (ini-
tially on the agent’s right) regardless of the food values. This strategy emerges rather 
earlier in evolutionary runs than does the more “discriminating” variant; the implica-
tion is that quantity comparison processes emerge within a behaviourally asymmetri-
cal context.  

Given the context of behavioural asymmetry, it seems natural to predict that an 
agent's representational strategy will also be asymmetrical – though preliminary, our 
results do support this prediction because there is no equivalent of unit ‘5’ for food 
group 2. In other words, though we cannot say with confidence how the agent “repre-
sents”, we can predict that its distributed representations will not be symmetrical. 
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Abstract. Strategies of incremental evolution of artificial neural sys-
tems have been suggested over the last decade to overcome the scala-
bility problem of evolutionary robotics. In this article two methods are
introduced that support the evolution of neural couplings and extensions
of recurrent neural networks of general type. These two methods are ap-
plied to combine and extend already evolved behavioral functionality of
an autonomous robot in order to compare the structure-function rela-
tions of the resulting networks with those of the initial structures. The
results of these investigations indicate that the emergent dynamics of the
resulting networks turn these control structures into irreducible systems.
We will argue that this leads to several consequences. One is, that the
scalability problem of evolutionary robotics remains unsolved, no matter
which type of incremental evolution is applied.

1 Motivation

In evolutionary robotics (ER) artificial neural networks (ANN) are frequently
used as medium for the development of behavior control for autonomous systems
by evolutionary algorithms (EA). As control structures, ANNs are applied with
or without learning processes on feedforward as well as on recurrent connectivity
structures [1,2,3].

The usage of ANNs in ER is mainly justified by their evolabilty and their
ability to implement robust and generalized sensor-motor mappings. But the
usage of ANNs is also suggested to support a modular organization and its
incremental development of multi-functional behavior control [4,5].

One objective of this paper is to draw attention to a crucial aspect inherent
in the mechanisms of incrementally evolved recurrent neural networks (RNN),
which create multi-functional robot behavior. In the following we introduce ex-
periments that are strictly focused on the combination and extension of struc-
tural and functional separated neural units. We call them basic modules. In order
to combine or extend the behavior functionality of such basic modules we have
evolved neural expansions or couplings between them. We call this approach a
modular design.

Our experiments show that the behavioral functionality of the resulting net-
works is based on new dynamical properties. We call these new dynamics emer-
gent dynamics, in order to emphasize that these dynamical properties can not
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be generated by the single basic modules. Exactly these emergent dynamics turn
a network into an irreducible system, although it was developed by a modular
design. We call this principle the modular design of irreducible systems.

We believe that this principle is relevant for each nontrivial behavior con-
trol, developed in a self-organized process. Certainly, we are well aware that this
principle contradicts approaches to complex systems research, that are based on
the concept of “nearly decomposable” systems [6,7]. Although our incrementally
evolved neural control structures are based on basic modules that are separated
according to structure and function, they are far away from being “nearly decom-
posable.” Therefore we see our results as a suggestion to think about concepts
of modularity that go beyond structural organization of neural systems.

But before we come to discuss this issue we will introduce the properties
of RNNs serving as control structures for autonomous robots, that act in the
sensorimotor loop. We find the modular neurodynamics approach [8] the most
fruitful to describe this issue within the theory of dynamical systems. This paper
thus is organized as follows.

In the next section we introduce a description of RNNs as parameterized
sensor-driven dynamical systems. It follows a section where a method (called
schemas) is introduced that provide a formal description of multi-functional
robot behavior according to the underlying neural dynamics. The fourth section
gives a brief introduction of our evolutionary algorithm, called ENS3 (evolution
of neural systems by stochastic synthesis) [9]. We use this algorithm to develop
the recurrent neural connectivity structures of RNNs. Further on, our techniques
for the incremental evolution, called fusion and expansion, are based on this algo-
rithm. Both techniques will be described in this section too. Section 5 goes on to
examine experimental examples of incrementally (i.e., by expansion and fusion)
evolved behavior control including the analysis of their underlying dynamical
properties. The last chapter 6 concludes this paper with a discussion specifically
focusing on the essential mechanisms of neural control structures underlying a
concrete multi-functional behavior. This leads to conclusions relevant for each
type of incremental evolution of nontrivial and multi-functional behavior control.

2 Neuromodules Acting in the Sensorimotor Loop

In the following we describe a recurrent neural network as a time discrete sys-
tem. Further on, we apply the standard additive neuron with sigmoidal transfer
function as neuron model. Now an arbitrary RNN can be defined by ordinary
differential equations of the following type:

ai(t + 1) = Θi +
n∑

j=1

wij · σ(aj(t)) , i = 1, . . . , n . (1)

The variable ai(t) describes the activation of neuron i at time step t, wij the
strengths of the incoming synapse from neuron j, and Θi its bias term. As
transfer function the standard sigmoid σ(x) = 1

1+e−x is used.
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In such a way we get a formal description of RNNs as nonlinear dynamical
system with discrete time [10]. It is known from analytical investigations that
already small RNNs (i.e., two neurons recurrently coupled) of this type can have
asymptotically stable fixed points, periodic, quasi-periodic and chaotic attrac-
tors, even coexisting [11].

Taking a RNN with fixed bias and weight parameters then an initial state (i.e.
neuron activations) is transformed by iterations into an asymptotic final state,
called attractor. The choice of a different initialization might result in a different
final state (as it is utilized in Hopfield-networks [12]). But if RNNs should be
applied as control structures for autonomous robots, obviously only RNNs are
of particular interest that get some inputs, derived from sensor data, and deliver
signals for certain actuators.

A RNN that is extended in this way consists of three types of neurons: input,
hidden and output neurons. Input neurons serve only as buffers for specific sensor
signals. Therefore activation and output of an input neuron means the same.
Neurons are called output neurons, if their output values are used as control
signals for specific actuators. All the other neurons are called hidden neurons.

Notice, by simply adding one or more input neurons a RNN undergoes a
qualitative change that can hardly be overemphasized.

We still assume constant bias and weight parameters. As formal description
of the extended RNN we have now:

ai(t + 1) = Θi +

⎛⎝ n∑
j=1

wij · σ(aj(t))

⎞⎠+

⎛⎝ m∑
j=1

wij · Ij

⎞⎠ , i = 1, . . . , n.

According to equation 1 we have only one new sum, which describes the in-
fluence of the input signals to the activation of neuron ai. With: Θi := Θi +(∑m

j=1 wij · Ij

)
, i = 1, . . . , n we get:

ai(t + 1) = Θi +
n∑

j=1

wij · σ(aj(t)), i = 1, . . . , n. (2)

In comparison with equation 1 we see that in general each hidden and output
neuron of such an extended RNN has now a bias term Θi that changes as the
senor values undergo certain variations. But if the bias is changed, then the whole
character of the RNN is altered. Because like the weights wij , the bias terms are
parameters that define the transition rules of a RNN. Hence, the addition of input
neurons turns a RNN into a parameterized dynamical systems. Its parameters
are the input neurons, i.e. the sensors with their co-domains.

The change of the transition rules can lead to qualitative different attractors.
With respect to our RNNs as time discrete systems we can distinguish four
qualities of attractors: asymptotically stable fixed points, periodic, quasi-periodic
and chaotic attractors [10]. Parameter values which cause a qualitative change
of the attractor are called bifurcation points.

The quality of the system’s attractor is very important, because it determines
the system’s dynamics. With other words, if we know the attractors of the pa-
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Fig. 1. A recurrent neural network or a concrete dynamical system (left) and an exten-
sion of this RNN to a neuromodule representing a whole class of dynamical systems.
The extension to a NM is simply done by including three input neurons and the defi-
nition of output neurons (right).

rameter configurations and the bifurcation points, we understand much more
of the signal processing that a RNN with continously given (sensor) inputs is
performing.

The concept of neuromodule (NM) [8] was introduced to emphasize this qual-
itative difference between one RNN as a concrete dynamical system and a RNN
with continuous inputs as parameterized dynamical system. This formalism is
quite general and for the objectives of this paper it is not advisable to introduce
it in its most general form. Here it is sufficient to utilize a more specific formal-
ism that defines a neuromodule as a RNN with fixed weight and bias terms and
a specific input- and output-layer. The input neurons are the parameters of the
neuromodule.

As a NM is applied as control structure for an autonomous systems it acts
in the sensorimotor loop. This basically means that the parameters of the NM
underly permanent changes, due to the noise and significant changes of the
sensor values, that represents behavior relevant changes of the external world.
Therefore we call a neuromodule acting as control structure for autonomous
robots a sensor-driven parameterized dynamical system.

Noise and significant changes of the sensor values are connected to two issues
usually denoted as robustness and action selection. In our framework of NM
robustness means that a NM has to generate the same dynamics although its
parameters underly permanent disturbances. The action selection process of a
NM has to be understood as an appropriately change of the system dynamics
due to significant alterations of the parameter / sensor input resulting from the
robot-environment interaction.

3 Schemas

The usage of a NM as control structure leads to the fact that not all
parameter / sensor value configurations can be expected to emerge during the in-
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teraction of the robot within its environment. Obviously there are sub-spaces in
the parameter space of a NM which are not relevant for the control of the robot.

Investigations on the structure-function relation of NM shall only take into
account the behavior relevant parameter configurations. The dynamics that a
NM is generating within these parameter domains is what we call the behavior
relevant dynamics of a NM.

In order to stay focused on the behavior relevant dynamics we chose from an
external point of view behavior patterns of the robot that we are interested in.
But for further investigations we define these patterns according to the sensor
value / parameter configurations of the NMs and their temporal regimes as they
are typically appearing during the execution of this behavior pattern.

These configurations become the starting point for our analysis of the struc-
ture-function relation. We call such behavior patterns schemas in order to em-
phasize that they are formally defined as parameter configurations and the tem-
poral regime with respect to a given neuro-module.

Notice, schemas ensure the grounding of our structure-function relation. Since
this approach inhibits the selection of arbitrary parameter domains. Further on
schemas avoid descriptions of behavior patterns from the point of view of an
external observer [5].

The structure-function relation for a single schema can be described as (1) the
clarification of the attractors of the NM in the parameter domain that is given by
a specific schema and (2) the explanation how these attractors are provided by
neural sub-structures of the NM. The structure-function relation of the overall
robot behavior can be clarified with respect to the relations between a set of
single schemas. Of primary interest are also the changes of attractors during the
transitions between the schemas.

But before we apply this approach to an analysis of the structure-function
relation we will introduce our methods of incremental evolution.

4 Fusion and Expansion

The following methods of incremental evolution of recurrent neural networks are
based on the functionality of the structure evolution algorithm ENS3 (evolution
of neural systems by stochastic synthesis) [9]. This algorithm belongs to the class
of evolutionary strategies [13] and was originally developed to evolve structure
and optimize parameters of RNNs of general type simultaneously. It applies a
direct coding of the structure and parameters of the evolved RNNs and is thus
especially suited for the optimization of the resulting problem solving behavior
of the RNNs.

Given problem-specific defined input-output-layers and a transfer function
nothing else is determined. Hence, any kind of recurrences can be expected to
emerge, i.e. self-connections and loops established by inhibitory and excitatory
synapsis.

The variation and selection operators of the ENS3-algorithm are stochastic.
During the variation neurons and / or synapses are inserted or removed with a
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user-given probability. Likewise the real-valued parameters (e.g. weight and bias
terms) of the individual networks are modified due to user-defined probabilities
of change and intensities.

Due to the direct coding of neural network structure and its parameters, there
is no need to start the ENS3-algorithm with an empty network. Any arbitrary
network can be used as initial network– as long as the input-output-structure
and transfer function are compatible.

This gives us the opportunity to evolve arbitrary extensions of already given
neural networks. Basically we can distinguish two types of such extensions. On
the one hand, one existing RNN can be expanded to enrich its behavioral capa-
bilities. On the other hand, two or more already existing networks can be coupled
in order to get an effective coordination of the separate functionalities solving
a global task [14]. The latter methods is called fusion and the first expansion
method.

In the next section we introduce four RNNs resulting from these methods.
As behavior control we chose a simple light seeking task as demonstration of
method, because this task needs a combination of a negative (obstacle avoidance)
and positive (photo) tropism.

The basic modules for these experiments are manually designed, inspired by
our investigations of structure-function relations of former evolution tasks [14].

We run the expansion and fusion experiments in two different modes, called
restrictive and semi-restrictive. In the restrictive mode the initial structures are
not varied. Neither their structural elements (synapses and hidden neurons) nor
their parameters (bias and weight terms) are varied. Hence, new behavioral func-
tionality can only be achieved through new structural elements (hidden neurons
and / or synapses). In the semi-restrictive mode the parameter values of the
initial structures can be varied. Their structural elements stay untouched.

5 Structure-Function Relation of Incrementally Evolved
Behavior Control

All of the following experiments were performed with the Khepera robot [15].
This wheel driven miniature robot has two DC-motors (control signals ml, mr).
The motors are able to move the left and right wheel forward (positive signals)
and backward (negative signals). The sensor data of the Khepera are delivered
by eight infrared sensors measuring lights intensity and distances.

Based on these eight sensors we derive a minimal input structure for our NMs.
For distance information we have only two input neurons I1 and I2. These two
neurons deliver the distances values to obstacles on the robot’s left (I1) and right
side (I2). The light intensities are given by four additional input neurons I3,...,6.
The values of the sensors I3 and I5 indicate the light intensity detected on the
left and the right side of the robot, I4 the light intensity at the front, and I6 at
the rear.

All sensor values are mapped onto the interval [0; 1.0]. For the light sensors,
a value 0.0 refers to darkness and 1.0 to the maximal measurable light intensity.
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Fig. 2. The two basic modules DO (a) and DL (b) and the behavior in simulations.
Notice, the right picture indicating the photo-tropism behavior shows several paths,
including the cases when the robot was colliding with bounding walls.

While distance values are zero if no obstacle is detected. The value 1.0 represents
a collision.

With respect to our transfer function σ(x) (Eq. 1) all output values are in
the open interval (0; 1). As two output neurons O1 and O2 shall directly drive
the motors, we apply the mapping: ml,r := 10 · o1,2 − 5, to derive positive and
negative motor control signals. In such a way we derive integer values within the
interval [−5; 5] controlling the Khepera robot in a 2-dimensional simulation [16]
and as real physical robot platform.

In the following upper symbols are used to refer to the neurons (e.g. In for
input and On for output neurons) while the corresponding lower symbol refers
to the neuron’s output value.

5.1 Basic Modules

In order to compare the structure-function relation of the incrementally evolved
neural control with respect to their underlying initial structure(s) we first briefly
introduce the basic modules DO and DL.

Module DO solves an obstacle avoidance task (Fig. 2(a)). Its dynamics is char-
acterized by asymptotically stable fixed points. The only remarkably property
is that in certain parameter domains two asymptotically stable fixed points are
coexisting.

This coexistence becomes relevant during the transition between straight for-
ward and turning movements as it is the case during the avoidance behavior of
the robot. In such cases the coexisting fixed points generate hysteretic responses.

Also interesting the self-connections of the two output neurons and the recur-
rences between them create three different hysteresis elements. Their interplay
leads to noise-filtering and to constant and context-sensitive turning angles [14].

The second basic module DL produces only a positive photo tropism. Its
structure contains no recurrences. Hence, this module implements just a mapping
generating a simple stimuli-response behavior.

5.2 Results Form the Expansion and Fusion Experiments

As demonstration of the expansion method we chose the obstacle avoidance
module DO as initial structure and evolved a reactive light seeking behavior.
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Fig. 3. Structure and their behavior in simulation of the incrementally evolved NMs
DO⇒L (a), DO→L (b), DO⇔L (c) and DO↔L (d). The grey colored elements of the NMs
indicate those structure elements and their parameters which can not be modified by
the variation operator during the evolutionary process.

Applying the fusion method to evolve the same behavior both basic modules
were used to create one initial structure. In the resulting initial structure the
former output neurons of the basic modules become hidden neurons. Further
on, during the fusion process a development of synapses coming directly from
the input neurons was inhibited. This forces the evolution of a neural coupling
between the basic modules.

Examples of NMs resulting from the restrictive and semi-restrictive expansion
and fusion experiments are shown in Figure 3. To refer to them the following
symbols are used: DO⇒L refers to the restrictive expanded module, the semi-
restrictive expanded is represented by DO→L. The modules resulting from the
fusion experiments are symbolized with DO⇔L for the restrictive and with DO↔L
for the semi-restrictive case.
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As the pictures in Fig. 3 are indicating all the modules create the desired
reactive light seeking behavior. But as we already mentioned, we are particularly
interested in the attractors underlying the behavior relevant dynamics. In the
next part we clarify this issue based on four schemas.

5.3 Dynamical Properties of Typical Schemas

The parameter configurations of the four schemas that have been investigated are
the same for each NM. The schema forward is defined by minimal activations
of all senor inputs / parameter values (including, like in all other cases too,
the noise as it results from the sensors). This configuration corresponds to the
straight forward movement of the robot, if no obstacle and light is detected.

A second schema avoid is defined by a high activation of either the left or
the right distance sensor I1,2 and minimal activations of all other input neurons.
Such parameter configurations are present while the robot turns to the left or
the right in order to avoid a collision with detected obstacles. (The case of dead
ends, where both parameters I1 and I2 have high activation, needs an additional
schema. This case is not considered in the following. See [14] for this issue.)

A third schema, called approach, is defined by parameter configurations which
represent high activations of the left or right light sensor (I3,5) while all other
sensor values are minimal. This is related to an orientation of the robot to a
light source.

The last schema that we have investigated is called halt. It is defined by a
high activation of the frontal light sensor I4, while all other sensor values are
minimal.

Notice, although these qualitative definitions of the four schemas are the same
for all modules, there are minor differences in the quantity. Consider the schema
halt. Obviously, the activation of the frontal light sensor I4 depends on the
distance that a robot is standing in front of the light source. But this distance
is a result of the interaction of the robot with the environment generated by the
NM. Hence, the schemas quantitatively vary according to the concrete robot-
environment interaction that a module is creating.

We simulated the NMs as dynamical systems in the domains that were given
by these schemas. Simulation as dynamical systems basically means, that we de-
couple the NM from its sensorimotor-loop in order to compute the corresponding
bifurcation diagrams and iso-periodic plots. The results of these simulations in-
dicate the behavior relevant attractors.

Table 1 summarizes the results of our extensive simulations. Certainly, this
summary can not explain how a specific attractor of a certain NM produces
a behavior pattern. It is rather to point out the following general picture of
our expansion and fusion experiments with respect to the behavior relevant
dynamics.

The first thing that one can realize is that each NM utilizes qualitative dif-
ferent attractors. Furthermore, each module has at least one behavior relevant
attractor that can not be generated by the basic module(s). On the other hand,
the resulting behavior relevant attractors can undergo qualitative changes. And
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Table 1. Attractors of the NMs for specific schemas, (FP = asymptotically stable fixed
points, P-n = periodic attractor of period n, QP = quasi-periodic attractor). Notice,
the mapping of DL is indicated with FP. Because its resulting sensor-motor mapping
is “similar” to that of asymptotically stable fixed points.

schemas
module forward avoid approach halt

DO FP FP × ×
DL FP × FP FP
DO⇒L FP FP FP P-6
DO→L FP & P-2 P-2 P-2 P-2
DO⇔L FP FP & P-n (n > 20) FP FP
DO↔L FP FP & QP QP FP

finally, qualitative different dynamics can be involved to generate one schema.
This is mainly the case for module DO→L and its forward schema. The utiliza-
tion of two qualities of attractors for one schema means, that the parameter
values that define a schema are close to a bifurcation point. In module DO→L
transitions between asymptotically stable fixed points and a period-2 attractor
are already caused by the sensor noise. These noise induced phase transitions
lead to slightly disturbed motor signals during the forward movement of the
robot and might improve its exploration abilities. The indicated two attractors
of schema avoid for DO⇔L and DO↔L refer to the fact that each one of them is
responsible either for left turning or right turning.

Further investigations have given insights into which neural sub-structures
cause the behavior relevant attractors. These results are in accordance with ana-
lytical investigations that are presented for instance in [11]. The period-6 attractor
of DO⇒L is an intrinsic property of its 3-ring, which is established by the two out-
put neurons and hidden neuron H1 (see Fig. 3 (a)). The period-2 attractor of the
semi-restrictive expanded module DO→L results from the self-connection of out-
put neuron O2. This self-connection have become negative during the evolutionary
process. It has been suggested in [17] that such single neurons with over-critical
negative self-connections might be used as switchable oscillators. Here we see an
application of such a switchable oscillator providing behavior control.

The quasi-periodic attractors of module DO↔L is caused by the over-critical
weights between neuron O1 and H3 (see Fig. 3 (d)). The dynamical properties of
such odd 2-loops are well investigated [11]. They are called odd because the product
of the two weights is negative. One can find two of such odd 2-loops also in module
DO⇔L (between H1 and O1, and between H1 and O2). They are the basis of the
periodic attractors which becomes active during the avoidance behavior.

The behavior relevant asymptotically stable fixed points and the periodic and
quasi-periodic attractors of the evolved networks are not intrinsic dynamical prop-
erties of their basic modules. They basically emerge from the recurrent neural cou-
plings and extensions of the basic modules. Therefore we use the term emergent
dynamics to refer to this essential property of the incrementally evolved NMs.
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6 Multi-functionality as an Emergent Property

We have seen that multi-functional robot behavior can be implemented by small
RNNs without learning processes. In contrast to others [3,5], we were able to
show that the evolved multi-functionality is mainly provided by different quali-
ties of dynamical properties, such as periodic and quasi-periodic attractors. Our
investigations demonstrate that an understanding and a formal description of the
nontrivial neural dynamical properties is well supported by the introduced con-
cept of sensor-driven parameterized dynamical systems and the schema method,
both grounded into the modular neurodynamics approach [8].

The presented structure-function relations of the evolved behavior control in-
dicate, that nonlinearity and recurrences of our incrementally evolved couplings
and extensions are the essential properties of the emerged multi-functionality.
Therefore it follows, although we have used initial structures that were struc-
tural and functional separated, a relation between neural substructures and spe-
cific behavior patterns of the evolved modules does not exist. The incrementally
evolved modules are irreducible.

Our results suggest, that an approach that is based on decomposition [6,7] in
order to understand or to model neural behavior control can be misguiding and
must fail at a certain point of complexity, if such an approach abstracts those
properties that we have identified as the essentials of our neural systems, that
are nonlinearity and recurrences.

Finally, incremental evolution is a basic mechanism for open-ended evolution-
ary processes to complex behavior control [18,19]. Hence, the introduced incre-
mentally evolved multi-functionality based on nonlinear structural couplings or
extensions of RNNs seems a promising approach. But as our results are indi-
cating emergent dynamics has to be taken into account. There is still no theory
that enables us to manage this type of emergence in general. As a consequence,
it turns out that we can not know a priory if a given set of initial structures pro-
vide an incremental evolution of new behavior control. The scalability problem
of ER remains unsolved in general.
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Abstract. This paper investigates the relationship between spatially embedded 
neural network models and modularity. It is hypothesised that spatial 
constraints lead to a greater chance of evolving modular structures. Firstly, this 
is tested in a minimally modular task/controller scenario. Spatial networks were 
shown to possess the ability to generate modular controllers which were not 
found in standard, non-spatial forms of network connectivity. We then apply 
this insight to examine the effect of varying degrees of spatial constraint on the 
modularity of a controller operating in a more complex, situated and embodied 
simulated environment. We conclude that a bias towards modularity is perhaps 
not always a desirable property for a control system paradigm to possess. 

1   Introduction 

Modular control systems can be used to enhance our ability to generate adaptive 
behaviour. Based on the knowledge that brains are often shown to contain highly 
distinct regions of processing activity, artificial mechanisms which promote 
modularity are often added to neural networks in order to build similarly 
decomposable structures. Yamauchi & Beer [18] use separate neural networks, each 
evolved to perform dedicated functions and later combined, to carry out a sequential 
learning task that could not otherwise be satisfied. Often, however, such an a priori 
decomposition of a task into modules is not available. In order to benefit from 
modularity in a more generic way, work such as Calabretta et al. [1] examines 
modular neurocontrollers which emerge from the evolutionary optimization of their 
networks, rather than from any hardwired structural constraint. They achieve this 
using a genetic operator which duplicates existing modules, thus allowing the 
topology to develop on its own towards the best performing modular architectures. 

Often in evolutionary robotics, a neurocontroller is generated by fully connecting 
each of an agent’s sensors to each of its interneurons, which are in turn fully linked to 
its motors. If recurrent connections are allowed, interneurons will be connected to 
every other interneuron. The functional structure of the network can then emerge by 
variations in the strength of those connections, some of which may drop to near 0 and 
impose an effectively topological constraint on the network’s dynamics. 
Alternatively, it is possible to structure the connectivity of the network, perhaps using 
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a genetically mediated mechanism to specify which nodes are connected. 
Lindenmeyer systems, for example, can generate repeating, modular architectures 
using a compact genetic representation [10]. 

Another method of configuring neural network architectures involves embedding 
the neurons and connections within an abstract ‘space’, where they interact directly 
with only their nearby neighbouring components. It is apparent that the use of such a 
spatial constraint has important implications regarding the presence of modularity, 
without requiring any explicit modularity-generating mechanisms. For this reason, 
this paper concentrates on exploring modular control systems, within spatially 
embedded networks. We study the nature of the relationship between modularity and 
spatiality, and exploit the discovered inherent modularity found in spatially embedded 
systems to look at whether a bias towards modularity is necessarily a positive feature. 
Prior uses of spatially embedded networks are discussed in section 2. Since we will 
need to quantify the level of modularity related to a given form of spatial constraint, 
methods for measuring modularity are also discussed. This uncovers further 
distinctions regarding the nature and role of modularity in complex systems. 

 Section 3 then investigates the supposed relationship in a simple, necessarily 
modular task/controller scenario, using an evolutionary algorithm to compare the 
ability of spatial and non-spatial networks to generate modular solutions. Having 
found a correlation, we wished to examine its potential relevance to our understanding 
of a more realistic scenario. Section 4 uses data from a more complex, simulated 
robot task with no apparent necessity for a modular controller. The role of differing 
degrees of spatial embeddedness is investigated using these experiments, suggesting 
that in some cases, less modularity may be a positive attribute. Finally, Section 5 
discusses the limitations of our approach whilst offering our conclusions. 

2   Spatially Embedded Networks and Modularity 

Cliff and Miller [2] embed the nodes in their neural networks within a 2-D planar 
surface. Neurons can then connect to other nodes which are nearby. They find that 
this provides a natural framework within which to map a control system onto the 
actuators and sensors of a simulated agent. This can also be seen as biologically 
inspired, since real neurons within the brain emit axons to connect to their neighbours 
(see [16] for a review). More recently, Philippides et al. [12] have studied more 
complex features of spatial neural networks by including a model of neurotransmitter 
diffusion across the plane, allowing neurons to interact both electrically and 
chemically with other local neurons. 

This embedding feature has implications regarding the presence of modularity 
within network topologies. The notion of a neuron’s local neighbourhood may 
encourage the division of network activity into distinct regions. One part of the spatial 
plane could implement a particular aspect of the control system, without interfering 
with (or being affected by) the other regions. Whilst a similar division of labour could 
potentially emerge from a fully connected network, it would be more difficult to 
generate, since without a spatial constraint a neuron is equally likely to interact with 
every other neuron in the network. 
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2.1   Measuring Modularity 

The varied attempts to provide a metric for the quantification of modularity 
demonstrate different ways to conceive of its role in complex systems. One recent 
contribution by Newman & Girvan [11] searches for highly-interconnected 
communities within networks by first compiling them to abstract graphs of nodes and 
edges. This structural measure ignores the dynamics of the system under 
consideration, but nevertheless proved successful when applied to the modular 
architectures of a number of social interaction networks. Watson & Pollack [17] offer 
a measure which investigates the dynamical correlations between the node’s 
behaviour. They claim that ignoring dynamics is liable to mislead, since some 
physical connections could be irrelevant to a network’s overall behaviour. 
Conversely, even sparse connections between two topological clusters of nodes could 
play a dynamically highly significant role, undermining the distinctiveness of the 
supposed modules. Also, Polani et al. [14] present an information theoretic metric, 
which looks at the degree of ‘mutual information’ which is shared between 
subsystems. 

Neurons often exhibit nonlinear interactions, and so in neural networks some 
connections will be likely ignored due to quiescent synapses. Others, however, may 
be exaggerated through phenomena such as bursting or hyper-excitability [8]. 
Measures which account for dynamical relationships will therefore no doubt be 
important in future studies of neural modularity. However we have reason to believe 
that a purely structural metric can still provide useful insights into the behaviour of 
the two cases studied in Sections 3 and 4 of this paper. In the first case, the network is 
made up of a simple spiking network which omits many of the more complex 
nonlinear features of real neurons. Combined with the fact that all weights were set to 
either 0 or 1, it is likely that neurons will influence each other in a quite homogenous 
manner across the network. A quantification of structural modularity may therefore 
tell us something about the modularity of the network’s dynamics, as proved to be the 
case in Section 3. 

The second case study involves networks comprising of two subsystems (gaseous 
and electrical, as described in Section 4). An analysis was undertaken to compare the 
structural relationships between these two systems with the level of overlap in their 
dynamical activity (presented in Philippides et al., [12]). They concluded that in this 
respect, the physical arrangement and dynamical behaviour was very similar despite 
some of the physical connections being inactive during the experimental trials. Whilst 
this is somewhat indirect and limited evidence towards a correspondence between the 
network’s topology and its actual function, it suggests that if we restrict our analysis 
to structural organization of these neural networks, our conclusions may be 
informative to our understanding of a controller’s behaviour. The validity of this 
approach forms an additional research question. 

With this in mind, we used the structural measure of Newman & Girvan [11]. 
Since the spatial constraint operates by imposing restrictions on a network’s physical 
connectivity, this measure provides the most direct way of studying how such 
constraints affect the development of the network. Additionally, it is clear that a 
network’s physical topology will play a role in constraining its dynamics. 
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The measure proceeds by removing connections from a network, one by one. At 
each stage, the node with the highest degree of ‘betweenness centrality’ (a measure of 
the number of shortest paths between any two nodes which a given connection is a 
part of) is deleted. It is claimed that if a connection is frequently part of the shortest 
route between pairs of nodes, it is likely to be one of the sparse ‘bridges’ between 
different clusters of highly interconnected nodes. Eventually, as nodes are removed, 
the network breaks down into increasingly small and numerous separate graph 
components. Each discovered division into these component ‘modules’ is then 
examined and compared to see which provides the most appropriate division of nodes 
into clusters. The ‘best’ cluster division is determined in terms of the likelihood of a 
given node connecting to another member of its own module (rather than a different 
one). The proportion of intra-module connections versus inter-module links of the 
best rated division becomes a network’s measured ‘modularity rating’, which should 
be used comparatively to determine whether a network is more or less modular than 
an alternative structure [6]. 

3   Minimally Modular Control Systems 

As detailed above, we have reason to believe that spatially constrained networks offer 
the potential for clustered architectures, without requiring any mechanisms which 
‘create’ or impose modularity. To investigate whether this is true in practice, a genetic 
algorithm was used to evolve controllers for a simple task. The emergence of modular 
topologies could thus be investigated without explicitly biasing the controller towards 
them, allowing the conditions under which they arise to be discussed. 

For this, we required a minimal task/neurocontroller combination which 
necessitated a modular structure for successful completion, whilst being simple 
enough to analyse. In the course of previous investigations into spiking network 
dynamics, this task was found to require two distinct modules to be present within the 
controller. Note that the task only requires a modular controller when paired with the 
spiking neuron model presented; we do not claim that it represents a necessarily 
modular task by itself. The justification for the claim that success here requires 
modularity is presented after the description of the methods used. 

3.1   Experimental Method 

A simple simulated ‘agent’ was used to evolve a memory task, where it had to move 
to either the left or the right of its ‘world’, depending on its prior (since extinguished) 
sensory input. The agent was placed on a 1-dimensional line (200 units in length), 
where it could move to the left or right based on the output of two network nodes 
which were designated as outputs (the location x=0 corresponds to the far left, and 
x=200 the far right). Two different nodes were used as inputs, each receiving signals 
from one of two externally controlled sensors (labelled the left and the right sensor). 
For each evaluation of a genotype’s fitness, two trials were run. In each, just one of 
the sensors was enabled (set to output a value of 1) for 2 ‘seconds’, whilst the agent 
was held in its initial location at the middle of the line (x=100). The input was set to 
0, and only then were the agent’s motor neuron values used to move its location. High 
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fitness was achieved if the agent moved to the left of the line when its left sensor had 
been previously enabled, and the right of the line in the right sensor trials. 
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Equation (1) shows the fitness measures Fl and Fr for the left and right sensor trials 
respectively, which were averaged to give an agent’s fitness. t corresponds to the 
timestep of integration, T is the length of the trial, xt the agent’s position at time t, and  
X̂  the width of the line on which the agent resides. 

A leaky integrate-and-fire neuron model was used (after [5], see [3] for use in 
evolutionary robotics setting). Sensor values were translated into input neuron spike 
trains using a Poisson process, with a probability of firing dependent on the sensor 
value plus noise. In addition to the 2 sensor and 2 motor neurons, 9 interneurons were 
included. The network activity is governed by: 

( )( ) ( )( )

( ) ( )

( )( )

d
.

d

 .

d d
,      .

d d

d
 .

d

m rest ex ex in in

type type ij

ex in
ex ex in in

x
out x G now x

V
V V g t E V g t E V

t

g t g t w

g g
g g

t t

M
M M t t

t

τ

τ τ

τ δ

= − + − + −

→ +

= − = −

= − + −

 

All parameters were evolved, unless otherwise specified. In Equation 2, m is the 
membrane time constant [10ms, 40ms], V is the membrane potential, Vrest = -70mV 
and the excitatory and inhibitory reversal potentials (Eex and Ein) are 0mV and -80mV 
respectively. V ‘spikes’ when it reaches a normally distributed noisy threshold (Vthresh, 
mean [-60mV, -50mV] with deviation 1mV), and is followed by a random refractory 
period [2ms, 4ms] after which V Vrest. Equation 3 is applied when a neuron’s 
inhibitory or exhibitory synapse receives a spike (type = in or ex respectively, and wij 
is the connection strength from the presynaptic neuron). Equation 4 describes the 
decay of the input conductances, with  values [2ms, 4ms]. Finally, Equation 5 shows 
the motor output integrator (with x = left or right), capped at 1, where tx is the time of 
the last spike in the corresponding motor neuron, MG is the motor gain (scaled 
exponentially between [0.1, 50]) and out = [40ms, 100ms].  

The connectivity of the network was generated by embedding each node in a 2 
dimensional plane using a genetically specified x and y coordinate. Each neuron 
maintained a number of connections n (evolved per neuron between 0 and 5), which 
were made to the n nearest neighbouring neurons (excluding self-connections, which 
were not permitted). To aid analysis, all connections were made with a weight of 1. A 
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non-spatially embedded network was used as a control. Each neuron maintained an 
evolvable parameter in the range [0, 1] for every other neuron in the network. They 
were then connected to the n nodes for which this value was highest. Other control 
experiments were run using a more typical, fully connected architecture with 
evolvable weights, producing similar results to the first control network (results not 
shown). Note that the spatiality of the experimental condition was only exploited to 
generate the network architecture; once a trial had begun the network operated as in 
the control condition. 

All controllers were optimized using a rank based genetic algorithm with elitism. 
The non-elite genotypes were mutated by adding a vector of random numbers of total 
length 2.5, taken from a Gaussian distribution around 0. Any mutations which took a 
gene beyond its 0 to 1 limits were discarded, and a different random mutation selected 
for that gene until the boundaries were satisfied. 

The fact that this task requires a modular architecture stems from the way in which 
the neurons reset their internal state value after every spike with a fast timescale 
(order of milliseconds). In order to retain activity for longer (allowing the agent to 
move in relation to the extinguished sensory input at a timescale extending over 
seconds), more than one neuron would thus be required. In fact, an exhaustive search 
of each possible two and three neuron topology (with weights constrained to -1, 0 or 
1) provided no architecture capable of showing reliable persistent activity after the 
input was removed. Only when four neuron circuits were considered was an adequate 
‘switch’ behaviour found, which could be triggered by an input to one of the nodes, 
and maintained regular spiking activity through its recurrent dynamics after that input 
was removed. 
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Fig. 1. a) Hand designed topology of spiking neurons which completes the task successfully.  
b) An example spatially embedded network, with a fitness of 0.825. 

 
In order to complete the task, the agent would require two of these ‘switches’, one 

pairing the left sensor with the right motor (enabling the agent to move towards the 
left), and vice-versa. An example of this, using two four-node fully connected 
switches, is shown in Figure 1a. Whilst other mechanisms may exist, none were found 
throughout the extensive evolutionary simulations undertaken. The four neuron 
switches were somewhat robust to the removal of a limited number of connections. 
However the addition of a single connection linking any pair of nodes across different 
switches (thus breaking the perfect modularity) prevented the network from 
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succeeding. Activity would ‘leak’ across that connection, triggering both switches 
(and therefore both motors) equally, preventing the agent from moving. 

3.2   Results 

A set of 24 evolutionary runs of each condition were undertaken, each with a 
population of 50 for 800 generations. Every run of the spatially constrained network 
reached a maximum fitness of 0.825, which was the same as the hand designed 
version (a score of 1 is not possible because the agent cannot move at the start of each 
trial). The control network, however, could only reach 0.67. These networks were 
only able to move to one side of the line when one particular sensor was enabled, and 
did not move at all in the other case. An analysis of the spiking dynamics of one of 
these control networks showed that one sensor and one motor neuron had been 
disconnected from the network, and all of the other neurons acted as a switch enabling 
movement in the direction mediated by the remaining connected motor neuron. Only 
when the spatial constraint was added were two distinct switches able to evolve, as 
shown in the example (Figure 1b), which was taken from generation 800 of one of the 
spatially embedded runs. This is corroborated by the results from Newman & 
Girvan’s modularity measure, with the highest scoring spatial network from each run 
producing a mean score of 0.48, whilst the control network mean was 0.14 
(significantly less modular, p = 5.41 x 10-15). 

The above results demonstrate that even an apparently simple task, such as using a 
spiking network to ‘remember’ which direction an agent should move in, can 
necessitate a highly modular architecture. Crucially, this form of topology was not 
evolvable with a standard network generation technique. Only when embedded in 
space did the requisite modularity emerge, and it did so with apparent ease (in 100% 
of the runs carried out). 

4   Controller Modularity in an Embodied, Active Vision Task 

The previous results suggested a strong relationship between modularity and 
spatiality. However the use of an a priori modular task/controller, and the simplicity 
of the experiments leave open questions about the wider validity of this trend. The 
results of a complex scenario (which used a spatially embedded controller) were 
therefore analysed, looking at the modularity of the best performing controllers. Their 
use of a partially spatial controller (in addition to a fully embedded version) also 
allows for an interesting comparison to be made. 

The experiments analysed in this section were carried out by Philippides et al. [12], 
and were an extension of the GasNet model (see reference for further details). 
GasNets are spatially embedded controllers, combining a standard neural network 
with a model of diffusing neurotransmitters. In addition to forming the topology of 
the network based on spatial factors (similarly to the spiking network experiments in 
Section 3), each node may act as a point source of gas. This diffuses across the plane, 
affecting nearby neurons by modulating their transfer function. 

As in the minimal model presented in Section 3, each node in a GasNet maintains 
an evolvable x and y coordinate. Rather than connecting to its n nearest neighbours, it 



 Spatially Constrained Networks and the Evolution of Modular Control Systems 553 

maintains two genetically specified ‘cones’ emanating from the neuron’s position, for 
a limited distance across the plane. Positive connections are made to any neuron 
falling within the first of these, and negative connections to the second. The activity 
of these electrical connections are modelled as a discrete time, recurrent network 
which maintains a gain function k. Each neuron is also capable of producing one of 
two gases, either when its electrical output crosses a given threshold, or when gas in 
the vicinity reaches a certain level. Each of these parameters is genetically specified. 
The gases diffuse and disperse automatically. The summed concentration of the each 
gas is measured at each neuron’s location. The level of the first gas is used to increase 
the gain of the transfer function applied to the neuron’s electrical inputs, and the 
second gas decreases this value. 

 

 

Fig. 2. An example GasNet electrical topology (not from experimental data), showing just the 
gas emitted by Neuron 3. The dashed lines denote negative connections. 

 
The topologies were generated from the results of the experiment detailed in [12]. 

It involved a gantry robot starting from an arbitrary position and orientation in a 
black-walled arena. Equipped with a minimal vision system, taken from a forward-
facing camera, it must navigate under extremely variable lighting conditions towards 
one shape (a white triangle), while ignoring the second shape (a white square).  

Philippides et al. [12] also provide a modification of standard GasNets, taking 
inspiration from the way in which neurons emit Nitric Oxide (NO) in the mammalian 
cortex where it is generated by a network, or plexus, of fine fibres [13]. Rather than 
emanating from the neuron’s location, the gas forms a uniform cloud, targeted over a 
potentially distant area, away from the source node. This was termed the plexus 
model, and used two extra evolvable parameters per neuron, determining the x and y 
coordinates of the centre of that neuron’s gas cloud. This essentially means that whilst 
the electrical topology of the network is spatially constrained exactly as in the original 
GasNet, the gaseous connectivity (i.e. whether a pair of neurons influence each other 
through the production of gas) is not limited in this sense. Space still plays a role in 
this connectivity, because the gas from each neuron falls over a defined circular 
region of the plane. However this is a much more subtle constraint than in the original 
model, because that cloud can be located anywhere, instead of being restricted to 
being over nodes in the source neuron’s locality. 

The plexus GasNets were found to be significantly more evolvable for this task, 
both in terms of the chance of a given run producing a high fitness controller, and the 
number of generations required to do so. The authors characterize the reasons for the 
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difference in terms of the lesser degree of coupling between the gaseous and electrical 
parts of the network’s operation. They describe how during evolution changes in the 
gaseous structure of the network have a looser effect on the electrical systems (and 
vice versa). This is said to allow greater flexibility in ‘tuning’ each system against the 
other, with a corresponding greater level of evolvability.  

Without wishing to question this factor, we propose a different, perhaps 
complementary hypothesis for the observed performance differences. In the plexus 
model, the spatiality of the electrical connections is preserved, but the gaseous links 
are no longer spatial (as described above). In light of the relationship between spatial 
constraints and modularity (see Section 3), it may be that the plexus networks are 
prone to a lower degree of modularity. With only a part of the structure restricted to 
neighbourhood-only connections, potentially parts of the overall network will be less 
modular and this may aid the development of a successful controller. 

To determine whether this was the case, the best performing networks from 40 
original GasNet runs and 40 plexus runs were compared. Firstly, the 7 original and 2 
plexus runs which failed to reach the maximum fitness scores were removed, so as to 
only consider those networks which satisfied the task. Then, the excitatory and 
inhibitory electrical connectivity matrices were combined, so the resulting electrical 
matrix simply records whether a connection of either type was present or not (nodes 
connected by both positive and negative connections were assumed to be not 
connected, since the effect on the target neuron would be cancelled out). Also, the 
gaseous connectivity matrix was thresholded so that any non-zero level of influence 
between two nodes was regarded as a full connection, due to the Newman & Girvan 
metric’s use of unweighted graphs. All connections were assumed to be undirected 
and self-connections were deleted, also due to further restrictions of the modularity 
measure. 

4.1   Results 

It is apparent from Figure 3 that the original GasNet produced overall topologies 
which were considerably more modular than the plexus model (confirmed by a T-test, 
p = 6.24 x 10-17). Visualisations of the combined topologies were used to ensure that 
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the original and plexus models 
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 the results of the modularity test did appeal to our own notions of modularity. For 
example, it was noticed that all of the plexus topologies consisted of one component 
(i.e., every node was reachable from every other node), whist 14 (out of 33) of the 
original GasNet runs produced a best performing controller with at least two network 
components. The examples shown in Figure 4 show a typical, best performing 
topology from each controller type.  

            

Fig. 4. Example combined topologies from the Plexus model (left), and the original GasNet 
(right). Generated by the GraphViz package [4]. 

Additionally, a statistically significant decrease in modularity for the plexus case 
was found when considering the gaseous interaction topologies alone, whereas the 
electrical connections were found to be statistically similar. This is to be expected, 
since the electrical systems were the same in both cases. The gaseous connectivity, 
however, was only spatially constrained in the original GasNet, which is likely to 
have lead to the increased level of gaseous modularity in that case. It would seem that 
networks which are partially spatially embedded have evolved topologies with a 
lower degree of modularity than fully embedded networks. These more 
interconnected networks were considerably more adept at evolving a suitable 
controller to complete the triangle/square detection task. 

5   Discussion 

Section 3 has demonstrated that spatially embedded neural networks are considerably 
more able to generate a modular solution to a minimally modular scenario than non-
spatial neurocontrollers. Spatially constrained networks could thus provide a useful 
substrate within which to investigate the emergence of modularity, both in neural 
systems and potentially other forms of network. The form taken by the modules is, in 
some respects, free of assumptions imposed by the researcher. The use of pre-
hardwired modules or specific, ‘modularity-generating’ mechanisms entails that the 
resultant modular properties of a network are liable to show a degree of bias in their 
configuration. Within a spatial network, however, the structure of any modules which 
ensue emerge from the same mechanisms which generate all aspects of the network’s 
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connectivity, and so could be used to study the emergence and form of modular 
architectures in general. 

That said, the modules which form a spatially embedded network are manifestly 
structural constructions, rather than dynamical in nature. Whilst the physical topology 
of a network will undoubtedly influence its dynamical properties, structure does not 
tell the whole story. It is possible that a structurally modular connectivity could prove 
to be less flexible than a modularity which is determined by dynamics. One such 
example (Izhikevich, [9]) examines groups of neurons which are defined by stable, 
repeatable patterns of firing in large, randomly structured networks. Neurons can be a 
part of more than one dynamically determined ‘module’, and many more modules can 
occur than the number of neurons in a network. Structural modularity is nevertheless 
clearly an important feature to investigate, and biologically relevant, relating to 
cortical column work [7] amongst others. However future work should additionally 
investigate dynamical properties, possibly in relation to structural constraints. A 
measure of dynamical modularity would aid such a study. 

Section 4 investigated the association between spatiality and modularity within a 
more complex scenario, including features such as a variable-length genotype and a 
requirement for embodied, situated perception and action in a simulated environment. 
In one experiment, this used a network with a similar level of constraint found in the 
spiking model. Another version used a looser kind of spatial constraint. Firstly, it was 
apparent that within this more realistic simulation, the fully embedded controllers 
produced highly modular networks. This was demonstrable using a measure of 
structural modularity, the results of which matched our intuitions gained from 
counting the number of components found in each network structure. 

It turned out, however, that these highly modular solutions were considerably less 
evolvable than those of the other, partially embedded neurocontroller. Whilst 
modularity is clearly a desirable property in many cases, it seems that here too much 
inherent modularity could be a negative influence on the development and behaviour 
of the networks. The ‘plexus’ model may correspond to a compromise between 
spatially modular, and flexibly non-modular structural architectures. Of course, the 
reduction in modularity found in these networks could impact on the plexus model’s 
capacity to evolve modular properties when highly modular controllers are required to 
satisfy a task. It would be interesting to determine whether they could, in fact, 
produce more modular topologies in a different experimental scenario which 
benefited from such an architecture. 

This compromise could appeal to notions of near-decomposability (Simon, [15]), 
which discusses modularity in terms of subsystems which behave in distinct ways, but 
whose interdependencies are also of importance in describing a system’s behaviour. 
Simon [15] describes these different levels of influence in terms of different 
timescales of interaction, which is not something that can be examined using the 
purely structural metric employed in this paper. More suitable tools would be required 
to make progress understanding in more general terms how different degrees of 
modularity arise from systems partially embedded in space. 
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Abstract. In this paper we present a novel information-theoretic measure of spa-
tiotemporal coordination in a modular robotic system, and use it as a fitness func-
tion in evolving the system. This approach exemplifies a new methodology for-
malizing co-evolution in multi-agent adaptive systems: information-driven evo-
lutionary design. The methodology attempts to link together different aspects of
information transfer involved in adaptive systems, and suggests to approximate
direct task-specific fitness functions with intrinsic selection pressures. In particu-
lar, the information-theoretic measure of coordination employed in this work esti-
mates the generalized correlation entropy K2 and the generalized excess entropy
E2 computed over a multivariate time series of actuators’ states. The simulated
modular robotic system evolved according to the new measure exhibits regular
locomotion and performs well in challenging terrains.

1 Introduction

Innovations in distributed sensor and actuator technologies, as well as advances in
multi-agent control theory and studies of self-organization, support rapid growth in ap-
plications of complex adaptive multi-agent systems (MAS), such as modular robotics,
multi-robot teams, self-assembly, etc. In particular, modular robots built of several sim-
ilar building blocks (modules) become more and more attractive due to high versatil-
ity in their shapes, locomotion modes, tasks, and manipulation abilities [3,26,22,21,7].
This multi-faceted versatility increases robustness, adaptability, and scalability required
in practical systems, ranging from search and rescue to space exploration. These re-
quirements are achieved through a distribution of sensing, actuation and computational
capabilities throughout the MAS such as a modular robotic system. This distribution
forms a complex multi-agent network, enabling the desired responses to self-organize
within the system, without central control. However, the main challenge with develop-
ing a self-organizing MAS is a design methodology for systematically inter-connecting
a set of global system-level tasks, functions, etc. with localized sensors, behaviors, and
actuators.

In this paper we further develop such a methodology originally sketched in [14], aim-
ing at formalizing “taskless adaptation” of co-evolving multiple agents (robotic mod-
ules, network nodes, swarm elements, etc.). The co-evolution can be achieved in two
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ways: via task-specific objectives or via generic intrinsic selection criteria. The generic
information-theoretic criteria may vary in their emphasis: for example, we may focus
on maximization of information transfer in perception-action loops [11,12]; minimiza-
tion of heterogeneity in agent states, measured with the variance of the rule-space’s en-
tropy [25,17] or Boltzmann entropy in swarm-bots’ states [1]; stability of multi-agent
hierarchies [17]; efficiency of computation (computational complexity); efficiency of
communication topologies [15,16]; efficiency of locomotion and distributed actuation
[14,6,22,21], etc. The solutions obtained by information-driven evolution can be judged
by their degree of approximation of direct evolutionary computation, where the lat-
ter uses task-specific objectives and depends on hand-crafting fitness functions by hu-
man designers. A good approximation will indicate that the chosen criteria capture the
information-theoretic core of selection pressures. The main theme, however, is that dif-
ferent selection criteria incorporate information transfer within specific channels, and
selecting some of these channels and not the others would guide information-driven
evolutionary design.

Following [14] we apply here an information-theoretic measure of spatiotemporal
coordination in a modular robotic system to an evolution of a sufficiently simple sys-
tem: a modular limbless, wheelless snake-like robot (Snakebot) [22,21] without sensors.
The only design goal of Snakebot’s evolution, reported by Tanev and his colleagues, is
fastest locomotion. Our immediate goal is information-theoretic approximation of this
direct evolution. Specifically, we construct measures of spatiotemporal coordination of
distributed actuators used by a Snakebot in locomotion. The measures are based on the
generalized correlation entropy K2 (a lower bound of Kolmogorov-Sinai entropy) and
its excess entropy E2 computed over a multivariate time series of actuators’ states. The
experiments reported by [14] confirmed that maximal coordination is achieved syn-
chronously with fastest locomotion. In this paper we replace the direct measure with
the information-theoretic measure of spatiotemporal coordination, and use the latter
exclusively in evolving the Snakebot.

The following Section places this methodology in the context of previous studies,
describes the proposed measures, and presents results, followed by conclusions.

2 Information Transfer as an Intrinsic Selection Pressure

An example of an intrinsic selection pressure is the acquisition of information from the
environment: there is evidence that pushing the information flow to the information-
theoretic limit (i.e., maximization of information transfer) can give rise to intricate be-
havior, induce a necessary structure in the system, and ultimately adaptively reshape
the system [11,12]. The central hypothesis of Klyubin et al. is that there exists “a lo-
cal and universal utility function which may help individuals survive and hence speed
up evolution by making the fitness landscape smoother”, while adapting to morphol-
ogy and ecological niche. The proposed general utility function, empowerment, couples
the agent’s sensors and actuators via the environment. Empowerment is the perceived
amount of influence or control the agent has over world, and can be seen as the agents
potential to change the world. It can be measured via the amount of Shannon informa-
tion that the agent can “inject into” its sensor through the environment, affecting future
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actions and future perceptions. Such a perception-action loop defines the agent’s actua-
tion channel, and, technically, empowerment is defined as the capacity of this actuation
channel: the maximum mutual information for the channel over all possible distribu-
tions of the transmitted signal. “The more of the information can be made to appear in
the sensor, the more control or influence the agent has over its sensor” — this is the
main motivation for this local and universal utility function [12].

Heterogeneity in agent states is another generic pressure related to intrinsic coordina-
tion and self-organization. For example, it was measured with the variance of the rule-
space’s entropy [25] and applied to evolve the spatiotemporal stability of multi-cellular
patterns in a sensor/communication network embedded within a self-monitoring impact
sensing test-bed of an aerospace vehicle [9,17,24]. The study of spatiotemporal stability
in evolving impact boundaries — continuously connected multi-cellular circuits, self-
organizing in presence of cell failures and connectivity disruptions around damaged ar-
eas — employs both task-dependent graph-theoretic and generic information-theoretic
measures in separating chaotic regimes from ordered dynamics. The task-dependent
measure captured the impact boundary’s connectivity in terms of the size of the average
connected boundary fragment — an analogue of a largest connected sub-graph and its
standard deviation over time. The intrinsic information-theoretic measure captured the
diversity of transition rules invoked by the network cells during an impact boundary
formation, using the Shannon entropy of the rules’ frequency distribution:

H(Xt) = −
m∑

i=1

Xt
i

n
log

Xt
i

n
,

where n is the system size (the total number of cells), and Xt
i is the number of times the

transition i was used at time t across the system. Both measures concurred in identifying
complex dynamics, pointing to the same phase transition between chaos and order, for
particular regions in a parameter-space. The entropy H(Xt) can also be interpreted as
the joint state transition entropy H(St, St+1), where St is the state of the cell at time t
[17]. This opens a way to consider information transfer

I(St; St+1) = H(St) − H(St, St+1) ,

within the channel between a cell and itself at the next time-step.
An investigation of Baldassarre et al. [1], characterized coordinated motion in a

swarm collective as a self-organized activity, and measured the increasing organization
of the group on the basis of Boltzmann entropy. In particular, the emergent common
direction of motion, with the chassis orientations of the robots spatially aligned, was
observed to allow the group to achieve high coordination. Baldassarre et al. proposed
a method to capture the spatial alignment via Boltzmann entropy by dividing the state
space of the elements of the system into cells (e.g., cells of 45◦ each, corresponding
to chassis orientations), measuring the number of elements in each cell for a given
macrostate m, computing the number wm of microstates that compose m, and calcu-
lating Boltzmann entropy of the macrostate as Em = k ln[wm], where k is a scaling
constant. This constant is set to the inverse of the maximum entropy which is equal to
the entropy of the macrostate where all the elements are equally distributed over the
cells. The results indicate that “independently of the size of the group, the disorganiza-
tion of the group initially decreases with an increasing rate, then tends to decrease with
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a decreasing rate, and finally reaches a null value when all the robots have the same
orientation” [1].

In this work, we advance from a purely spatial characterization (such as Boltzmann
entropy of a macrostate distributing chassis orientations over the cells) to a spatiotempo-
ral measure. The entropy measure proposed in our work is intended not only to capture
spatial alignment of different modules, but also to account for temporal dependencies
among them, such as travelling or standing waves in multi-segment chains observed
by Ijspeert et al.. Importantly, we plan to focus on channels where information transfer
contributes to a selection pressure.

We refer here to one more example of a selection pressure — efficiency of commu-
nication topologies — which can be interpreted as in terms of information transfer. One
feasible average measure of a complex network’s heterogeneity is given by the entropy
of a network defined through the link distribution. The latter can be defined via the sim-
ple degree distribution — the probability Pk of having a node with k links. Similarly,
one can capture the average uncertainty of the network as a whole, using the joint en-
tropy based on the joint probability of connected pairs Pk,k′ . Ultimately, the amount
of correlation between nodes in the graph can be calculated via the mutual information
measure, the information transfer [19], as

I(P ; P ′) = H(P ) − H(P |P ′) =
m∑

k=1

m∑
k′=1

Pk,k′ log
Pk,k′

PkPk′
.

The reviewed examples highlight the possible role of information transfer in guid-
ing selection of efficient perception-action loops, spatiotemporally stable multi-cellular
patterns, and well-connected network topologies. We intend to demonstrate that spa-
tiotemporal coordination in a modular robotic system can also be captured as informa-
tion transfer, and apply such a measure to the system’s evolution.

Before presenting our approach, we briefly review some studies of the relation be-
tween locomotion and rhythmic inter-modular coordination. Dorigo [7] describes an
experiment in swarm robotics (SWARM-BOT) which also complements standard self-
reconfigurability with task-dependent cooperation. Small autonomous mobile robots
(s-bots) aggregate into specific shapes enabling the collective structure (a swarm-bot)
to perform functions beyond capabilities of a single module. The swarm-bot forms as
a result of self-organization “rather than via a global template and is expected to move
as a whole and reconfigure along the way when needed” [7]. One basic ability of a
swarm-bot, immediately relevant to our research, is coordinated motion emerging when
the constituent independently-controlled modules coordinate their actions in choosing
a common direction of motion. Our focus is on how much locomotion can be “pat-
terned” in an aggregated structure. Regardless of an environment (aquatic, terrestrial
or aerial), locomotion is achieved by applying forces generated by the rhythmic con-
traction of muscles attached to limbs, wings, fins, etc. Typically, a locomotory gait is
efficient when all the involved muscles contract and extend with the same frequency
in different phases. For example, Yim et al. [26] investigated a snake-like (serpentine)
sinusoid gait, where forward motion is essentially achieved by propagating a waveform
travelling down the length of the chain. Tanev and his colleagues [22,21] demonstrated
emergence of side-winding locomotion with superior speed characteristics for the given
morphology as well as adaptability to challenging terrain and partial damage.
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3 Spatiotemporal Coordination of Actuators

Snakebot is simulated as a set of identical spherical morphological segments, linked
together via universal joints. All joints feature identical angle limits, and each joint has
two attached actuators. In the initial standstill position of Snakebot, the rotation axes
of the actuators are oriented vertically (vertical actuator) and horizontally (horizontal
actuator). These actuators perform rotation of the joint in the horizontal and vertical
planes respectively. No anisotropic friction between the morphological segments and
the surface is considered. Open Dynamics Engine (ODE) was chosen to provide a re-
alistic simulation of the mechanics of Snakebot. Given this representation, the task of
designing the fastest Snakebot locomotion can be rephrased as developing temporal
patterns of desired turning angles of horizontal and vertical actuators for each joint,
maximizing the overall speed. Previous experiments of evolvable locomotion gaits with
fitness measured as either velocity in any direction or velocity in forward direction [22]
indicated that side-winding locomotion — locomotion predominantly perpendicular to
the long axis of Snakebot (Figures 1 and 2) — provides superior speed characteristics
for the considered morphology. The actuators states (horizontal and vertical turning an-
gles) are constrained by the interactions between segments and the terrain. The actual
turning angles provide an underlying time series for our information-theoretic analysis:
horizontal turning angles {xi

t} and vertical turning angles {yi
t} at time t, where i is the

actuator index, S is the number of joints, 1 ≤ i ≤ S, and T is the considered time
interval, 1 ≤ t ≤ T . Since we deal with actual rather than ideal turning angles, the
underlying dynamics in the phase-space may include both periodic and chaotic orbits.

Fig. 1. Side view of the Snakebot Fig. 2. Top view of the Snakebot

We intend to estimate “irregularity” for each of the multivariate time series {xi
t} and

{yi
t}. Each of these time series, henceforth denoted for generality {vi

t}, contains both
spatial and temporal patterns, and minimizing the irregularity over both space and time
dimensions should ideally uncover the extent of spatiotemporal coordination among
actuator states.

For any given actuator i, a simple characterisation of the “regularity” of the time
series {vt} is provided by the auto-correlation function. However, the auto-correlation
is limited to measuring only linear dependencies. We consider instead a more general
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approach. One classical measure is the Kolmogorov-Sinai (KS) entropy, also known as
metric entropy [13]: it is a measure for the rate at which information about the state
of the system is lost in the course of time. In other words, it is an entropy per unit
time, an entropy rate or entropy density. Suppose that the d−dimensional phase space
is partitioned into boxes of size rd. Let Pi0...id−1 be the joint probability that a trajectory
is in box i0 at time 0, in box i1 at time Δt, ..., and in box id−1 at time (d−1)Δt, where
Δt is the time interval between measurements on the state of the system (in our case,
we may assume Δt = 1, and omit the limit Δt → 0 in the following definitions). The
KS entropy is defined by

K = − lim
r→0

lim
d→∞

1
dΔt

∑
i0...id−1

Pi0...id−1 lnPi0...id−1 , (1)

and more precisely, as a supremum of K on all possible partitions. This definition has
been generalized to the order-q Rényi entropies Kq [18]:

Kq = − lim
Δt→0

lim
r→0

lim
d→∞

1
dΔt(q − 1)

ln
∑

i0...id−1

P q
i0...id−1

. (2)

It is well-known that K = 0 in an ordered system, K is infinite in a random system, and
K is a positive constant in a deterministic chaotic system. Grassberger and Procaccia
[10] considered the correlation entropy K2 in particular, and capitalized on the fact
K ≥ K2 in establishing a sufficient condition for chaos K2 > 0. Their algorithm
estimates the entropy rate K2 for a univariate time series. For our analysis we need to
introduce a spatial dimension across multiple Snakebot’s actuators. An estimate of the
spatiotemporal entropy density can be obtained as

K = − lim
ds→∞

lim
dt→∞

1
ds

1
dt

∑
V (ds,dt)

p(V (ds, dt)) ln p(V (ds, dt)) , (3)

where V (ds, dt) are “patterns” of spatial size ds and time length dt [2]. Our objective,
an estimate of spatiotemporal generalized correlation entropy, can be obtained as

K2 = − lim
ds→∞

lim
dt→∞

1
ds

1
dt

ln
∑

V (ds,dt)

p2(V (ds, dt)) . (4)

In achieving this objective, we follow Grassberger-Procaccia method [10] of computing
correlation integrals, but use the multivariate time series with S actuators (joints) and
T time steps in the following approximation:

Kdsdt
2 (S, T, r) = ln

Cdsdt(S, T, r)
Cds(dt+1)(S, T, r)

+ ln
Cdsdt(S, T, r)

C(ds+1)dt
(S, T, r)

, (5)

where correlation integrals are generalized as

Cdsdt(S, T, r) =
1

(T − 1)T (S − 1)S

T∑
l=1

T∑
j=1

S∑
g=1

S∑
h=1

Θ(r − ‖V g
l − V h

j ‖) . (6)
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Here Θ is the Heaviside function (equal to 0 for negative argument and 1 otherwise),
and the vectors V g

l and V h
j contain elements of the observed time series {vi

t} for
each actuator (the spatial dimension), “converting” or “reconstructing” the dynami-
cal information in two-dimensional data to information in the dsdt-dimensional em-
bedding space [20]. More precisely, we use spatiotemporal delay vectors V i

k = (vi
k,

vi+1
k , vi+2

k , . . . ,vi+ds−1
k ), whose elements are time-delay vectors vi

k = (vi
k, vi

k+1,

vi
k+2, . . . , v

i
k+dt−1), and the spatial index i is fixed [14]. The norm ‖V g

l − V h
j ‖ is the

distance between the vectors in the dsdt-dimensional space, e.g., the maximum norm:

‖V g
l − V h

j ‖ =
ds−1
max
σ=0

dt−1
max
τ=0

(vg+σ
l+τ − vh+σ

j+τ )

Put simply, correlation integral Cdsdt(S, T, r) computes the fraction of pairs of vectors
in the dsdt-dimensional embedding space that are separated by a distance less than or
equal to r. In order to eliminate auto-correlation effects, the vectors in equation (6)
should be chosen to satisfy |l − j| > L, for an integer L, and |g − h| > M , for an
integer M , in order to exclude auto-correlation effects among temporally close delays
or closely coupled segments [23]. The standard temporal delay reconstruction [20] is
recovered by setting ds = 1 [4].

The correlation entropy K2 (the generalized entropy rate) measures the irregularity
or unpredictability of the system. A complementary quantity is the excess entropy E
[8,5] — it may be viewed as a measure of the apparent memory or structure in the
system. The generalized excess entropy E2 is defined by considering how the finite-
template (finite-delay and finite-extent) entropy rate estimates Kdsdt

2 (S, T, r) (equation
(5)), converge to their asymptotic values K2 (equation (4)). It is estimated for a fixed
spatial extent Ds and a given time range Dt as:

E2(Ds, Dt, S, T, r) =
Ds∑

ds=1

Dt∑
dt=1

(Kdsdt
2 (S, T, r) − K2) . (7)

For regular locomotion the asymptotic values should be zero (while non-zero entropies
would indicate non-periodicity, i.e. deterministic chaos). It was shown that the excess
entropy also measures the amount of historical information stored in the present that is
communicated to the future [5,8]. In other words, it can be represented as asymptotic
mutual information between two adjacent dsdt-dimensional half-planes

lim
ds,dt→∞

I(V g
−dt

; V h
0 ) =

lim
ds,dt→∞

I((vg
−dt

, vg+1
−dt

, vg+2
−dt

, . . . ,vg+ds−1
−dt

); (vh
0 , vh+1

0 , vh+2
0 , . . . ,vh+ds−1

0 ))

where vi
k = (vi

k, vi
k+1, vi

k+2, . . . , v
i
k+dt−1). This alternative representation establishes

that the proposed measure may estimate information transfer within the space of ac-
tuators: the more information between the spatiotemporal past and the spatiotemporal
future is transferred, the more coordination is achieved. If g = h in the last expression,
the transfer is purely between the temporal past and the temporal future. Otherwise, if
g �= h, we are concerned with how much information contained in the past of one group
of actuators is injected into the future of another group of actuators.
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When dealing with non-zero entropy rates K2, one may consider relative excess
entropy:

e2(Ds, Dt, S, T, r) =
Ds∑

ds=1

Dt∑
dt=1

Kdsdt
2 (S, T, r) − K2

K2 + ε
. (8)

where ε is a small constant (e.g., ε = 0.03), balancing the relative excess entropy e2 for
very small entropy rates K2. The relative excess entropy e2 attempts to “reward” the
structure (coupling) in the locomotion and “penalise” its non-regularity.

4 Results

In this section we present experimental results of Snakebot’s evolution based on esti-
mates of the excess entropy E2 (equation (7)) and the relative excess entropy e2 (equa-
tion (8)). The Genetic Programming (GP) techniques employed in the evolution are de-
scribed elsewhere [22,21]. In particular, the genotype is associated with two algebraic
expressions, which represent the temporal patterns of desired turning angles of both the
horizontal and vertical actuators of each morphological segment. Because locomotion
gaits, by definition, are periodical, we include the periodic functions sin and cos in the
function set of GP in addition to the basic algebraic functions. The selection is based
on a binary tournament with selection ratio of 0.1 and reproduction ratio of 0.9. The
mutation operator is the random subtree mutation with ratio of 0.01. Snakebots evolve
within a population of 200 individuals, and the best performers are selected according
to the excess entropy values, over a number of generations.
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Fig. 3. First offspring: actuator angles
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Figures 3 and 4 contrast (for vertical actuators) actual angles used by the first off-
spring and the final generation. Similarly, Figures 5 and 6 contrast the spatiotemporal
correlation entropies produced by the first offspring and the evolved solution. It can
be easily observed that more regular angle dynamics of the evolved solution manifests
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itself as more significant excess entropy. Figures 7 and 8 show typical fitness growth
towards higher excess entropies estimated as E2 (equation (7)) and the relative ex-
cess entropies e2 (equation (8)), for two different experiments. It should be noted that
there are well-coordinated Snakebots which are moving not as quickly as the Snakebots
evolved according to the direct velocity-based measure, i.e. the set of fast solutions is
contained within the set of well-coordinated solutions. This means that the obtained
approximation of the direct fitness function by the information-theoretic selection pres-
sure towards regularity is sound but not complete.

In certain circumstances, a fitness function rewarding coordination may be more suit-
able than a direct velocity-based measure: a Snakebot trapped by obstacles may need
to employ a locomotion gait with highly coordinated actuators but near-zero absolute
velocity. In fact, the obtained solutions exhibit reasonable robustness to challenging
terrains, trading-off some velocity for resilience to obstacles. In particular, the evolved
Snakebot shown in Figure 9 is able to traverse ragged terrains with obstacles three
times as high as the segment diameter, move through a narrow corridor (only twice as
wide as the segment diameter), and overcome various extended barriers. In addition, the
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Fig. 9. Snakebot negotiating a terrain with obstacles

Snakebot is robust to failures of individual segments: e.g., it is able to move even when
every third segment is completely incapacitated, albeit with only a half of the normal
speed. Interestingly enough, the relative excess entropy is increased in partially dam-
aged Snakebots, as the amount of transferred information in the coupled locomotion has
to increase. Moreover, there appears to be a strong correlation between the number of
damaged (evenly spread) segments s and the resulting relative excess entropy es

2 ≈ β s,
where the coefficient β of the linear fit is approximately equal to the relative excess
entropy of a non-damaged Snakebot e0

2. This observation opens a way for Snakebot’s
self-diagnostics and adaptation: the run-time value of e2 may identify the number of
damaged segments, enabling a more appropriate response.

5 Conclusions

We modelled a specific step towards a theory of information-driven evolutionary de-
sign, using information-theoretic measures of spatiotemporal coordination in a mod-
ular robotic system (Snakebot). These measures estimate the generalized correlation
entropies K2 computed over a time series of actuators’ states and the spatiotemporal
excess entropies E2. As expected, increased coordination of actuators is achieved by
agents with faster locomotion. However, the set of fast solutions is a subset of the set of
well-coordinated solutions. A more precise approximation of fast locomotion is a sub-
ject of future work. In parallel, we are investigating other tasks adaptation to which may
require a high degree of actuators’ coordination : e.g., rugged terrain traversal, energy-
efficient locomotion, etc. Both directions essentially require identification of channels
through which the information transfer among system’s components is optimized. We
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believe that development of adequate information-theoretic criteria, such as the mea-
sure of spatiotemporal coordination of distributed actuators, will contribute to design
guidelines for co-evolving multi-agent systems.
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4. R. Carretero-González, S. Ørstavik, and J. Stark. Quasidiagonal approach to the estimation
of lyapunov spectra for spatiotemporal systems from multivariate time series. Phys Rev E
Stat Phys Plasmas Fluids Relat Interdiscip Topics, 62(5) Pt A:6429–6439, 2000.

5. J.P. Crutchfield and D.P. Feldman. Regularities unseen, randomness observed: The entropy
convergence hierarchy. Chaos, 15:25–54, 2003.

6. R. Der, U. Steinmetz, and F. Pasemann. Homeokinesis - a new principle to back up evolu-
tion with learning. Concurrent Systems Engineering Series, 55: Computat. Intelligence for
Modelling, Control, and Automation:43–47, 1999.

7. M. Dorigo. Swarm-bot: An experiment in swarm robotics. In P. Arabshahi and A. Martinoli,
editors, Proceedings of SIS 2005 – 2005 IEEE Swarm Intelligence Symposium, pages 192–
200. IEEE Press, 2005.

8. D.P. Feldman and J.P. Crutchfield. Structural information in two-dimensional patterns: En-
tropy convergence and excess entropy. Physical Review E, 67, 051104, 2003.

9. M. Foreman, M. Prokopenko, and P. Wang. Phase transitions in self-organising sensor net-
works. In W. Banzhaf, T. Christaller, P. Dittrich, J.T. KIm, and J. Ziegler, editors, Advances
in Artificial Life - Proceedings of the 7th European Conference on Artificial Life (ECAL),
volume 2801 of Lecture Notes in Artificial Intelligence. Springer Verlag, 2003.

10. P. Grassberger and I. Procaccia. Estimation of the kolmogorov entropy from a chaotic signal.
Phys. Review A, 28(4):2591, 1983.

11. A. S. Klyubin, D. Polani, and C. L. Nehaniv. Organization of the information flow in the
perception-action loop of evolved agents. In Proceedings of 2004 NASA/DoD Conference on
Evolvable Hardware, pages 177–180. IEEE Computer Society, 2004.

12. A. S. Klyubin, D. Polani, and C. L. Nehaniv. All else being equal be empowered. In M.S.
Capcarrère, A.A. Freitas, P.J. Bentley, C.G. Johnson, and J. Timmis, editors, Advances in
Artificial Life, 8th European Conference, ECAL 2005, Canterbury, UK, September 5-9, 2005,
Proceedings, volume 3630 of LNCS, pages 744–753. Springer, 2005.

13. A.N. Kolmogorov. Entropy per unit time as a metric invariant of automorphisms. Doklady
Akademii Nauk SSSR, 124:754–755, 1959.

14. M. Prokopenko, G. Gerasimov, and I. Tanev. Measuring spatiotemporal coordination in a
modular robotic system. In L.M. Rocha, M. Bedau, D. Floreano, R. Goldstone, A. Vespig-
nani, and L. Yaeger, editors, Proceedings of Artificial Life X. in press, 2006.

15. M. Prokopenko, P. Wang, M. Foreman, P. Valencia, D. Price, and G. Poulton. On connectivity
of reconfigurable impact networks in ageless aerospace vehicles. Robotics and Autonomous
Systems, 53:36–58, 2005.



Evolving Spatiotemporal Coordination in a Modular Robotic System 569

16. M. Prokopenko, P. Wang, and D. Price. Complexity metrics for self-monitoring impact sens-
ing networks. In J. Lohn, D. Gwaltney, G. Hornby, R. Zebulum, D. Keymeulen, and A. Sto-
ica, editors, Proceedings of 2005 NASA/DoD Conference on Evolvable Hardware (EH-05),
pages 239–246. IEEE Computer Society, 2005.

17. M. Prokopenko, P. Wang, P. Valencia, D. Price, M. Foreman, and A. Farmer. Self-organizing
hierarchies in sensor and communication networks. Artificial Life, 11:407–426, 2005.
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2 Babeş-Bolyai University, Institute for Interdisciplinary Experimental Research,
Str. T. Laurian nr. 42, 400271 Cluj-Napoca, Romania

Abstract. We evolve spiking neural networks that implement a seek-
push-release drive for a simple simulated agent interacting with objects.
The evolved agents display minimally-cognitive behavior, by switching as
a function of context between the three sub-behaviors and by being able
to discriminate relative object size. The neural controllers have either
static synapses or synapses featuring spike-timing-dependent plasticity
(STDP). Both types of networks are able to solve the task with similar
efficacy, but networks with plastic synapses evolved faster. In the evolved
networks, plasticity plays a minor role during the interaction with the
environment and is used mostly to tune synapses when networks start
to function.

1 Introduction

Genuine, creative artificial intelligence can emerge only in embodied agents,
capable of cognitive development and learning by interacting with their environ-
ment [1]. Before the start of the learning process, the agents need to have some
innate (predefined) drives or reflexes that can induce the exploration of the en-
vironment. Otherwise, the agents might not do anything once emerged in their
environment, and learning would not be possible. In the experiments presented
in this paper, we evolve a basic drive for a simple simulated agent that is able to
interact with the objects in its environment. This drive could be used in future
research to bootstrap the ontogenetic cognitive development of the agent.

The agent is controlled by a spiking neural network [2,3]. Among classes of
neural network models amenable to large scale computer simulation, recurrent
spiking neural networks are an attractive choice for implementing control systems
for embodied artificial intelligent agents [4]. Spiking neural networks have more
computational power per neuron than other types of neural networks [5,6,7]. Sev-
eral studies [8,9,10,11] have shown that spiking neural networks achieve better
performance for the control of embodied agents than continuous time recurrent
neural networks or McCulloch-Pitts networks. More importantly, spiking neurons
have a closer resemblance to real neurons than other neural models, which al-
lows a bidirectional transfer of concepts and methodologies between neuroscience
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and artificial neural systems. Biological examples may suggest architectures and
learning mechanisms for artificial models that would improve their performance.
In the reverse direction, theories developed during the study of embodied artifi-
cial neural networks may lead to new concepts and explanations regarding the
activity of real neural networks [12].

Evolved spiking neural networks have been used in the last few years for the
control of simulated or real robots, but more rarely than other types of neural
networks [8,13,14,15,16,17,18,9,19,20,21,22,23,24,10,11,25,26,27]. Among previ-
ous evolutionary studies, only one explored the properties of a plastic spiking
neural network [18,9,19]. Very few studies used spiking neural controllers for
embodied agents that were not evolved, but were taught using other learning
methods [28,29,30,31,32].

This paper presents experiments where we evolved spiking neural networks
with static as well as with plastic synapses. These networks are one of the largest
spiking neural networks evolved to date. The evolved controllers display inter-
esting minimally-cognitive capabilities, being able to discriminate relative object
size.

2 The Agent, Its Environment and Its Task

2.1 The Simulator

The agent and its environment were simulated using Thyrix, an open source
simulator specifically designed for evolutionary and developmental experiments
for embodied artificial intelligence research [33]. The simulator provides a two-
dimensional environment with simplified, quasi-static (Aristotelian) mechan-
ics, and supports collision detection and resolution between the objects in the
environment.

2.2 The Agent’s Morphology

The agent’s morphology was chosen as the simplest one that allows the agent to
push the circular objects in its environment without slipping of objects on the
surface of the agent. Slipping may appear, for example, if a circle pushes another
circle, and the pushing force is not positioned exactly on the line connecting the
centers of the two circles.

We wanted maximum simplicity both for economy (in order to need less com-
puting time for evolution) and for having few degrees of freedom, which allows a
simpler analysis of the behavior of the agent. However, we have tried to respect
the principle of ecological balance [34] in the design of the agent’s morphology
and sensorimotor capabilities.

Thus, the agent is composed of two circles, connected by a variable length link.
The link is “virtual”, in the sense that it provides a force that keeps the two
circles together, but it does not interact with other objects in the environment,
i.e. external objects can pass through it without contact. With this morphology,
the agent can easily push other circles in its environment, by keeping them
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Fig. 1. a) The agent’s morphology. b) The agent pushing a ball.

between its two body-circles, without the need of balancing them to prevent
slipping. The agent was named Spherus and the code that defines it is available
in the open source Thyrix simulator (http://www.thyrix.com).

2.3 The Agent’s Effectors and Sensors

The agent can apply forces to each of its two body-circles. The forces originate
from the center of the circles and are perpendicular to the link connecting them.
Two effectors correspond to each of the two body-circles, one commanding a
forward-pushing force, and one commanding a backward-pushing force. These
effectors allow thus the agent to move backward or forward, to rotate in place,
and, in general, to move within its environment. A fifth effector commands the
length of the virtual link connecting the two body-circles, between zero and a
maximum length. If the actual length of the link is different from the commanded
length, an elastic force (proportional with the difference between the desired and
actual length) acts on the link, driving it to the desired length.

The agent has contact sensors equally distributed on the surface of its two
body-circles (8 contact sensors per circle, spanning a 45◦ angle each). The acti-
vation of the sensors is proportional to the sum of the magnitudes of the contact
forces acting on the corresponding surface segment, up to a saturation value.
Each circle also has 7 visual sensors, centered around the “forward” direction.
Each sensor has a 15◦ view angle, originating from the center of the circle. The
activation of the sensors is proportional to the fraction of the view angle covered
by external objects. The range of the visual sensors is infinite.

The agent also has proprioceptive sensors corresponding to the effectors. Each
body-circle has two velocity sensors, measuring the velocity in the forward and
backward directions, respectively. The sensors saturate at a value correspond-
ing to the effect of the maximum motor force that can be commanded by the
effectors. The agent also has a proprioceptive sensor that measures the actual
length of the link connecting the two body-circles, that saturates at the maxi-
mum length that can be commanded by the link effector.

Thus, the agent has a total of 5 effectors and 35 sensors (16 contact sensors,
14 visual sensors, and 5 proprioceptive ones). Each sensor or effector can have
an activation between 0 and 1.
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2.4 The Environment

In the experiments presented in this paper, the environment consisted of one
agent and 6 circles (“balls”) that the agent can move around. The spatial ex-
tension of the environment was not limited. The balls have variable radiuses
(varying linearly between r1 = 0.06 m and r2 = 0.26 m), comparable in size to
the radius of the agent’s body-circles (0.1 m).

During each trial, the agent and the balls were positioned randomly in the
environment, without contact, in a rectangular perimeter of 6 m by 4 m.

2.5 The Task

The task of the agent was to move alternatively each of the balls in its envi-
ronment, on a distance as long as possible, in limited time (100 s of simulated
time). More specifically, the fitness of each agent was computed as the sum of
the distances on which each ball was moved, but with a threshold of dt = 2 m
for each ball. Thus, the agent had to move all balls, instead of just detecting one
ball and pushing it indefinitely. The sum of distances may thus range between 0
and 6 dt = 12 m.

This task was considered to implement a seek-push-release drive, that might
be used in future experiments to bootstrap more complex behaviors, such as ar-
ranging the balls in a particular pattern, sorting the balls by size, or categorizing
different kinds of objects.

If the agent moves in straight line at the maximum speed corresponding to the
maximum forces it can produce, pushing the six balls for equal time, and if we
neglect the time needed for taking curves, seeking the balls, switching between
balls, the distance that it may cover in the limited time is 55.945 m. Given the
existence of distances between balls, the fact that the speed is lower when taking
curves, that the agent has to release the balls when switching them, we can see
that the task is relatively difficult. From the perspective of an external observer,
it may require the coordination of the motor effectors for attaining high speeds,
the evaluation of the distance or time spent pushing a certain ball, and eventually
the memorization of either objects’ sizes or positions, that prevents the repeated
pushing of the same balls.

To determine the fitness of a particular individual, we have averaged its per-
formance on three trials, with random initial configurations of the balls.

3 The Controller

3.1 The Spiking Neural Network

The controller of the agent consisted of a recurrent spiking neural network. The
controller had as input the activations of the agent’s sensors, and as output the
activations of the agent’s effectors. The network was implemented by a fast,
event-driven spiking neural simulator, inspired by Neocortex [35].

The network consisted of leaky integrate-and-fire neurons [3] with a resting
and reset potential of -65 mV, a threshold potential of -40 mV, a resistance of
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10 MΩ and a decay time constant of 10 ms. The network was fully connected:
all neurons were connected to all neurons in the network, except input neurons,
which had only efferent connections; there were no self-connections. There were
50 hidden neurons, in addition to the 70 input neurons and the 5 output neurons.
The network was thus composed of 125 neurons and 6875 synapses.

The simulator used discrete time with a resolution of 1 ms. At each time
step, only the neurons that received spikes were updated (hence the event driven
nature of the updating of the network). If the updated neurons fired, their spikes
were stored in a list. This spike list was used during the next time step to update
the affected postsynaptic neurons. Thus, the spikes propagated within an axonal
delay of one time step.

3.2 Spike-Timing-Dependent Plasticity

During some of the experiments, the neural network featured spike-timing-depen-
dent plasticity (STDP). STDP is a phenomenon that was experimentally ob-
served in biological neural systems [36,37,38,39]. The changes of the synapse
efficacies depend on the relative timing between the postsynaptic and presynap-
tic spikes. The synapse is strengthened if the postsynaptic spike occurs shortly
after the presynaptic neuron fires, and is weakened if the sequence of spikes is
reversed, thus enforcing causality. Notably, the direction of the change depends
critically on the relative timing.

We have modeled STDP following the method of [40]. The values of the pa-
rameters used were A+ = 0.005, A− = 1.05 A+, and τ+ = τ− = 50 ms. Fol-
lowing [9], we implemented directional damping for the synapse efficacies. The
synapse efficacies w, which were variable due to STDP, were limited to the in-
terval [0, wmax], where wmax could be either positive or negative, and was a
genetically determined maximum (in absolute value) efficacy.

4 The Agent-Controller Interface

In interfacing a spiking neural controller with an embodied agent, a conversion
of the analog input to binary spikes and then of spikes to an analog output has
to be performed. Following [9], the analog values of the sensor activations were
converted to a spike train using a Poisson process with a firing rate proportional
to the activation. The maximum firing rate of the input neurons was set to
100 Hz.

The spikes of the motor neurons were converted to an analog value by a
leaky integrator of time constant τ = 10 ms. The maximum value of the effector
activation, 1, corresponded to a firing rate of the motor neuron of 100 Hz.

Each sensor of the agent, of activation s, 0 ≤ s ≤ 1, drove two input spiking
neurons, one being fed with activation s and the other with activation 1−s. Thus,
both the activation of the sensor and its reciprocal was fed to the network. The
reason of this duplication of the sensory signal in the spiking neural network
is twofold. First, this allows the network to be active even in the absence of
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Fig. 2. Best fitness of the networks from a population over generations

sensory input. For example, if the agent is in a position where nothing activates
its sensors (there is no object in its visual range, no tactile contact etc.), there
must be however some activity in the neural network, in order for the effectors
to be activated and the agent to orientate to stimuli. Second, this mechanism
implies that the total input of the network is approximately constant in time (the
number of spikes that are fed to the network by the input). This simplifies the
selection of the network’s parameters and the analysis of the network’s behavior.

5 The Evolutionary Algorithm

The parameters determined by evolution were the values of the synaptic efficacies
w (in the non-plastic case), or the values of the maximum (in absolute value)
synaptic efficacies wmax (in the STDP case). The genome directly encoded these
values for the 6875 synapses. We used a standard evolutionary algorithm, with
a population of 80 individuals, truncation selection (the top 25 % individuals
reproduced) and elitism. 10 % of the offspring resulted from mating with single
cut crossover. Mutation was applied uniformly to all genes.

6 Results

Networks with both static and plastic synapses evolved to solve the required
task, with the fitness of the best individuals reaching a plateau at about 11.3,
very close to the maximum possible of 12 (see Fig. 2). Plastic networks evolved
faster, in terms of generations, than networks with static synapses. However,
the simulation of plastic networks required a higher computational effort. Only
one evolution has been performed for each case (STDP, and respectively static
synapses), because of the required computing time (a few weeks on a stand-
ard PC).
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7 Behavioral Analysis

The agents controlled by the evolved networks seek the closest ball, push it for a
while, then release it and seek another ball. They use visual information for seek-
ing the balls: when no ball is pushed, and a ball enters the visual field, the agents
go towards it. If there is no ball in the visual field, the agents rotate in circles
in order to visually scan the environment. When they push a ball, they keep the
link that unite their two body-circles extended, in order to have most of their
visual field not occupied by the pushed ball. However, the link is not extended
to maximum, for not letting the ball pass trough it. The agents also move circu-
larly when pushing a ball, in order to seek other balls in the environment. When
another ball enters the visual field, they go towards it while still pushing the first
ball, and release it only when they are close to the new ball. Release is performed
by extending the link. Again, they use visual information in order to seek new
balls while pushing one. For example, if a single ball is placed in the environment,
they keep pushing it in circles indefinitely, without releasing it. The behavior of
the evolved agents is thus relatively complex, from an external observer per-
spective, requiring the composition of three sub-behaviors: seek, push, release.
Although the agents may come more than once to push a particular object, their
strategy leads them to alternatively push, in most cases, all objects in their
environment. A movie displaying the behavior of an evolved agent is avail-
able online at http://coneural.org/reports/object pushing/object
pushing.avi.

The balls that the agents push have the same density, and thus larger balls are
heavier. Since the environment obeys a quasistatic physics, velocity is inversely
proportional to mass, for a given force. In order to optimize their behavior for
solving the task, the agents have to push the balls as hard as possible, and,
for constant (maximum) forces, they have to push larger (heavier) balls longer
periods of time than the smaller ones, to move them on similar distances dur-
ing a limited time interval. It is interesting that this behavior — pushing for
longer periods the larger balls — actually emerges during evolution. On av-
erage, the balls from the set encountered during evolution are pushed on the
same distances. This is illustrated in Fig. 3 a). We tried to uncover the mech-
anisms that determine this behavior by subjecting the evolved agents to sev-
eral “psychological” experiments, where the reality they were accustomed to
(through evolution) was modified. More precisely, we modified systematically
the radiuses and/or the densities of the balls. It can be seen (Fig. 3) that the
average distance on which a ball is pushed does not depend exclusively on its
characteristics, such as radius or mass, but on the characteristics of the whole
set of balls. The average distances do not depend exclusively on the geometry of
the environment, but also on the interaction of the agent with the balls. There
is no particular parameter on the basis of which the agent estimates for how
long it should push a ball, but the constance of the average distances emerges
as a property of the complex dynamical system constituted by the agent, its
environment, and the neural network, a property which is found and selected
by the evolution. However, an external observer could argue that the evolved
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Fig. 3. Average (over 500 trials) and standard deviation of the average time and
of the average distance a ball is pushed during a trial. a) The balls are like dur-
ing the evolution, having radii varying linearly between r1 and r2. b) First three
balls have radius r1 and the other three have radius r2. c)-e) The balls have equal
radii: c) r1; d) ra = (r1 + r2)/2; e) r2. f) The balls have equal radii ra but variable
masses (corresponding to radii varying linearly between r1 and r2, at default den-
sity). g) The balls have equal masses (corresponding to a radius ra at default density)
but radii varying linearly between r1 and r2. The relatively high variability of the
displayed quantities is due by the variability of initial positions of the balls in the
environment.

agents discriminate relative object size, by pushing larger objects for longer
periods.

8 The Role of Plasticity

The evolved networks featuring STDP had a performance similar to the one of
networks with static synapses, but evolved slightly faster. The improvement in
evolution speed observed in plastic networks could be explained by a number
of factors, including random exploration (smoothing) of the fitness landscape
in the surroundings of individuals [41]. It is interesting to investigate whether
plasticity also has an active role in determining the networks’ performance. We
have thus freezed the plasticity in networks evolved with STDP, either completely
or after 1 s of activity (i.e., the first 1% of the duration of a trial). The results are
presented in Fig. 4: freezing completely the plasticity leads to an important (80%)
loss of performance, while freezing it after a short time that allows plasticity to
act reduces performance only with about 33%. This means that most of the
role of STDP in our evolved networks consists in tuning synapses to quasi-
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evolved with static synapses. b) Best network evolved with STDP. c) Best network
evolved with STDP; plasticity is freezed after 1 s from the beginning of each trial. d)
Best network evolved with STDP; plasticity is completely freezed. e) Random networks,
not subjected to evolution.

stable, adaptive strengths, rather than contributing actively to the network’s
dynamics.

9 Conclusion

We have successfully evolved fully connected spiking neural networks consisting
of 125 neurons and 6875 synapses, that allow a simple agent to alternatively
seek, push and then release the 6 balls in its environment. This is one of the
largest spiking neural network successfully evolved for the control of an embodied
agent reported in the literature. This was possible because we used a fast agent-
environment simulator especially designed for evolutionary and developmental
experiments, and a fast event-driven neural network simulator. The evolved
agents display interesting, minimally-cognitive behavior [42,43], by switching as a
function of context between the three sub-behaviors (seek, push, release) and by
being able to discriminate relative object size. We evolved networks with either
static synapses or synapses featuring STDP. Plasticity proved to play a minor
role in the dynamics of the evolved networks, contributing mostly to speeding
up the evolutionary process and to tuning the synapses at the beginning of the
networks’ activity.

The evolved drive could be used in future experiments to bootstrap the devel-
opment of more complex behaviors, by using, for example, reinforcement learning
[32] to shape further the agent’s behavior.
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Abstract. The current work addresses the problem of redesigning brain-
inspired artificial cognitive systems in order to gradually enrich them
with advanced cognitive skills. In the proposed approach, properly for-
mulated neural agents are employed to represent brain areas. A cooper-
ative coevolutionary method, with the inherent ability to co-adapt sub-
structures, supports the design of agents. Interestingly enough, the same
method provides a consistent mechanism to reconfigure (if necessary) the
structure of agents, facilitating follow-up modelling efforts. In the present
work we demonstrate partial redesign of a brain-inspired cognitive sys-
tem, in order to furnish it with learning abilities. The implemented model
is successfully embedded in a simulated robotic platform which supports
environmental interaction, exhibiting the ability of the improved cogni-
tive system to adopt, in real-time, two different operating strategies.

1 Introduction

Brain-inspired computational systems are recently employed to facilitate cognitive
abilities of artificial organisms. The brain of mammals consists of interconnected
modules with different functionalities, implying that models with distributed ar-
chitecture should be designed. In this context, a modular design approach is fol-
lowed by [1,2], to develop distributed brain-like computational models.

The construction of large scale models is difficult to be accomplished by de-
veloping from scratch complicated structures. An alternative approach could be
based on implementing partial models of brain areas which are gradually re-
fined to more efficient ones. Along this line, existing approaches suffer in terms
of scalability, because they lack a systematic procedure to support the progres-
sively more complex design procedure. In contrast, they follow a manual design
approach and thus they can not be used as a long-term modelling framework.

We have recently proposed a new computational framework to design dis-
tributed brain-inspired structures [3]. Specifically, the model consists of a col-
lection of self-organized neural agents, each one representing a brain area. The
performance of agents is specified in real-time according to the interaction of the
composite model with the external world, simulating epigenetic learning. The
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self-organization dynamics of epigenetic learning are designed by an evolution-
ary process which simulates phylogenesis. Following the phylogenetic/epigenetic
approach, the objective adopted during the evolution of agents, is to enforce
the development of brain area like performance, after a certain amount of en-
vironmental interaction. Instead of using a unimodal evolutionary process, we
employ a Hierarchical Cooperative CoEvolutionary (HCCE) approach which is
able to highlight the specialties of brain areas, represented by distinct agents.
The agent-based coevolutionary framework has been utilized to develop mod-
els that reproduce computationally biological findings [4], and additionally to
integrate partial models formulating gradually more complex ones [5].

The present study investigates the ability of the agent-based coevolutionary
framework to facilitate redesign steps, enriching existing models with gradually
more advanced features. The ability of partial redesign is an important char-
acteristic for an effective and successful computational framework that aims to
support long-term design processes. This is because initial design steps impose
constraints to the computational structure that may harm forthcoming mod-
elling efforts. Hence, it is necessary to have a consistent design method that
reformulates systematically partial structures, and additionally guarantees the
cooperation of the refined components (and potentially some completely new)
with the unchanged preexisting ones.

The proposed computational framework is particularly appropriate to support
redesign steps because of the distributed architecture it follows. Specifically,
due to the combination of agent-based modelling with the distributed HCCE
design methodology, we are able to address and specify explicitly the special
features of each component in the model. As a result, when partial redesign
steps are necessary, we are provided with a systematic mechanism to reconfigure
subcomponents according to an enhanced set of design objectives.

The rest of the paper is organized as follows. In the next section, we present
the neural agent structures used to represent brain areas, and the hierarchical
cooperative coevolutionary scheme which supports the design of agents. Then,
we present the results of the proposed approach on redesigning partly an artifi-
cial cognitive system in order to furnish it with reinforcement learning abilities.
Finally, conclusions and suggestions for future work are drawn in the last section.

2 Method

The design of brain-inspired structures is based on the argument that the behav-
ior of animals is a result of phylogenetic evolution, and epigenetic environmental
experience [6]. Phylogenetic evolution is facilitated by the HCCE design ap-
proach, while epigenetic learning is facilitated by the self-organization dynamics
of the computational model. Both of them are described below.

2.1 Computational Model

Two different neural agents provide a computational framework which supports
modelling: (i) a cortical agent to represent brain areas, and (ii) a link agent to
support information flow across cortical modules.
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Fig. 1. Schematic representation of the computational model. Part (a) illustrates a link
agent which supports information flow from cortical agent A to B. Part (b) illustrates
synapse definition in cortical agent B.

Link Agent. The structure of the link agent is properly designed to support
connectivity among cortical modules. Using link agents, any two cortical modules
can be connected, simulating the connectivity of brain areas.

Each link agent is specified by the projecting axons between two cortical
agents (Fig 1(a)). Its formation is based on the representation of cortical modules
by planes with excitatory and inhibitory neurons (see below). Only excitatory
neurons are used as outputs of the efferent cortical agent. The axons of projecting
neurons are defined by their (x, y) coordinates on the receiving plane. Cortical
planes have a predefined dimension and thus projecting axons are deactivated if
they exceed the borders of the plane. This is illustrated graphically in Fig 1(a),
where only the active projections are represented with an × on their termination.
As a result, the proposed link structure facilitates the connectivity of sending
and receiving cortical agents supporting their combined performance.

Cortical Agent. Each cortical agent is represented by a rectangular plane. A
cortical agent consists of a predefined population of excitatory and inhibitory
neurons, which all follow the Wilson-Cowan model with sigmoid activation. Both
sets of neurons, are uniformly distributed, defining an excitatory and an in-
hibitory grid on the cortical plane. On the same plane there are also located the
axon terminals from the projected cortical agents.

All neurons receive input information either from i) projecting axons, or ii)
excitatory neighbouring neurons, or iii) inhibitory neighbouring neurons. The
connectivity of neurons follows the general rule of locality. Synapse formation
is based on circular neighbourhood measures. A separate radius for each of the
three synapse types, defines the connectivity of neurons. This is illustrated graph-
ically in Fig 1(b), which further explains the example of Fig 1(a). Neighbourhood
radius for i) axons is illustrated by a solid line, for ii) excitatory neurons by a
dashed line, and for iii) inhibitory neurons by a dotted line. Sample neighbour-
hoods for excitatory neurons are illustrated with grey, while neighbourhoods for
inhibitory neurons are illustrated with black.

The performance of cortical agents is adjusted by environmental interaction,
similar to epigenetic1 learning ([7]). To enforce experience-based subjective learn-

1 Epigenesis here, includes all learning processes during lifetime.
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ing, each set of synapses is assigned a Hebbian-like learning rule defining the
self-organization dynamics of the agent. This is in contrast to the most common
alternative of genetically-encoded synaptic strengths which prevents experience
based learning. We have implemented a pool of 10 Hebbian-like rules that can
be appropriately combined to produce a wide range of functionalities [3].

Reinforcement Learning. Reinforcement learning models are very popular
in robotic applications in recent years. Computational models similar to the
one described above have been demonstrated to exhibit reinforcement learning
abilities (e.g. [8]). The idea is based on treating the reward as an ordinary signal
which can be properly given as input in pre- and post- synaptic neurons to
coordinate their activations. In other words, the external reinforcement signal
takes advantage of the internal plasticity dynamics of the agent, in order to
modulate its performance accordingly.

2.2 Hierarchical Cooperative CoEvolution

Similar to a phylogenetic process, the structure of agents can be specified by
means of an evolutionary method. However, using a unimodal evolutionary ap-
proach, it is not possible to explore effectively partial components, which repre-
sent brain substructures. To alleviate that, coevolutionary algorithms have been
recently proposed that facilitate exploration, in problems consisting of many
decomposable components [9]. Specifically, coevolutionary approaches involve
many interactive populations to design separately each component of the so-
lution. These populations are evolved simultaneously, but in isolation to one
another. Partial populations are usually referred as species in the coevolutionary
literature, and thus this term will be employed henceforth.

The design of brain-inspired structures fits adequately to coevolutionary ap-
proaches, because separate coevolved species can be used to perform design de-
cisions for each substructure representing a brain area. As a result, coevolution
is able to highlight the special features of each brain area, and additionally the
cooperation within computational modules.

We have presented a new evolutionary scheme to improve the performance of co-
operative coevolutionary algorithms, employed in the context of designing brain-
inspired structures [3,4].We employ twodifferent kinds of species to support the co-
evolutionary process encoding the configurations of either a Primitive agent Struc-
ture (PS) or a Coevolved agent Group (CG). PS species specify partial elements of
the model, encoding the exact structure of either cortical or link agents. A CG con-
sists of groups of PSs with common objectives. Thus, CGs specify configurations
of partial solutions by encoding individual assemblies of cortical and link agents.
The evolution of CG modulates partly the evolutionary process of its lower level
PS species to enforce their cooperative performance. A CG can also be a member
of another CG. Consequently several CGs can be organizedhierarchically,with the
higher levels enforcing the cooperation of the lower ones.

The HCCE-based design method for brain modelling is demonstrated by
means of an example (Fig 2). We assume the existence of two cortical agents con-
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Fig. 2. An overview of the hierarchical coevolutionary scheme, with CG species tuning
the evolutionary processes of PS species

nected by three link agents representing their afferent and efferent projections
(Fig 2(a)). One hypothetical HCCE process employed to specify agent structure
is illustrated in (Fig 2(b)). CGs are illustrated with oval boxes, while PSs are
represented by ovals.

All individuals in all species are assigned an identification number which is
preserved during the coevolutionary process. The identification number is em-
ployed to form individual assemblies within different species. Each variable in
the genome of a CG is joined with one lower level CG or PS species. The value of
that variable can be any identification number of the individuals from the species
it is joined with. PSs encode the structure of either cortical or link agents. The
details of the encoding have been presented in [3], and thus they are omitted here
due to space limitations. A snapshot of the exemplar HCCE process described
above is illustrated in (Fig 2(c)). Identification numbers are represented with
an oval. CGs enforce cooperation of PS structures by selecting the appropriate
cooperable individuals among species.

In order to test the performance of a complete problem solution, populations
are sequentially accessed starting by the higher level. The values of CG individ-
uals at various levels are used as guides to select cooperators among PS species.
Then, PS individuals are decoded to specify the structure of cortical and link
agents, and the performance of the proposed overall solution is tested on the
desired task.

Furthermore, the proposed HCCE scheme allows the employment of separate
fitness measures for different species. This matches adequately to the distributed
agent-based modelling of brain areas, because different objectives can be defined
for different components of the system, preserving their autonomy. As a result,
the hierarchical coevolutionary scheme addresses explicitly the special roles of
agents, facilitating any potential redesign of their structure.
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For each species s, a fitness function fs is designed to drive its evolution. All
PS species under a CG share a common fs. Specifically a partial fitness function
fs,t evaluates the ability of an individual to serve task t, while the overall fitness
function is estimated by:

fs =
∏

t

fs,t (1)

Furthermore, the cooperator selection process at the higher levels of hier-
archical coevolution will probably select an individual to participate in many
assemblies. (e.g. the case of individual 28 of PS species L1, of Fig 2(c)). Let
us assume that an individual participates in K assemblies which means that it
will get K fitness values fs,t. Then, the ability of the individual to support the
accomplishment of the t-th task is estimated by:

fs,t = maxk{fk
s,t} (2)

where fk
s,t is the fitness value of the k-th solution formed with the membership

of the individual under discussion.
The above equations describe fitness assignment in each species of the hier-

archical coevolutionary process. Just after testing the assemblies of cooperators
and the assignment of their fitness values, an evolutionary step is performed in-
dependently on each species, to formulate the new generation of its individuals.
This process is repeated for a predefined number of evolutionary epochs, driv-
ing each species to the accomplishment of each own objectives and additionally
enforcing their composite cooperative performance.

3 Results

The present experiment demonstrates the effectiveness of the agent-based coevo-
lutionary framework to redesign computational structures, furnishing them with
gradually more advanced cognitive skills. In order to prove the validity of the
result, a mobile robot is utilized to support environmental interaction. Specif-
ically, we employ a two wheeled robotic platform equipped with 8 uniformly
distributed distance, light and positive reward sensors.

In our previous work [4], we have described the utilization of the HCCE scheme
to model working memory (WM) development and how it is employed to accom-
plish delayed response tasks. In short, a light cue is presented to the robot and
the latter has to memorize the side of light cue appearance in order to make a
future choice, related to 90o turning, left or right (similar tasks have been also
discussed in other studies e.g. [10]). Two different response strategies can be
defined. According to the Same-Side (SS) response strategy, the robot should
turn left if the light cue appeared at its left side, and it should turn right if the
light source appeared at its right side. Evidently, the complementary response
strategy can be also defined, named Opposite-Side (OS), which implies that the
robot should turn left if the light cue appeared at its right side, and it should
turn right if the light source appeared at its left side.
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Fig. 3. A schematic demonstration of the computational model

The HCCE design mechanism has been employed to implement computational
models exhibiting either the SS or the OS response strategy [4]. In both cases,
the models are developed with the inborn ability to develop the correct response
strategy. The question that now arises, is if we can design a single computational
system that is able to adopt either the SS or the OS response strategy during
life-time. The current study investigates the redesign of existing models that
exhibit predefined behaviors, in order to enrich them with the ability to adapt
their response strategy, as it is indicated by properly located reward signals.

3.1 Experimental Setup

The present experiment aims at extending the computational structure described
in [4], thus developing an improved system with learning abilities. The compos-
ite model is illustrated in Fig 3. In order to facilitate the design procedure, we
avoid designing the composite model from scratch. Particularly, the current ex-
perimental process keeps in their original formulation the components which are
less involved in the learning procedure (namely, Posterior Parietal cortex (PPC),
Primary Motor cortex (M1), and Spinal Cord (SC)). The biological structures
mostly involved in the learning process are Prefrontal and Premotor cortices
(PFC, PM) [11]. The module representing PFC was also present in our previous
experiment, and it needs to be redesigned in order to be furnished with learning
facilities. PM is a new module that needs to be designed from scratch. Both
PFC and PM modules receive information related to the reward stimuli, adapt-
ing accordingly the motion orders to the lower levels of the motor hierarchy.
Furthermore, an additional module to strengthen reward information is added,
modulating effectively PFC, PM operation. This module could represent Ventral
Tegmental Area (VTA) that guides learning in neocortex [12].

Learning the Opposite-Side Strategy. The training process of the robot is
separated to several trials. Each trial includes two sample-response pairs, testing
the memorization of two different sample cues by the robot (left or right side of
light source appearance), and the selection of the appropriate delayed response
in each case. Particularly, during the response phase, the light source disappears,
and the robot drives freely to the end of the corridor where it has to make a
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turn choice. In the OS training process, the response is considered correct, if
the robot turns to opposite side of light cue appearance. In the case that the
robot makes the correct choice, it drives to the reward area receiving a positive
reinforcement that modulates its belief regarding the correct response strategy.

The learning of the OS response strategy is tested for T trials, each one
consisting of M simulation steps. The success of the training process is evaluated
by:

Etr =

⎛⎝ ∑
T,left

∑
M

r

⎞⎠⎛⎝ ∑
T,right

∑
M

r

⎞⎠(1 −
√

B

2 · T · M

)3

(3)

The first term seeks for maximum reward stimuli when the correct response of
the robot is considered the left side, while the second seeks for maximum reward
when the correct response is the right side. The higher the reward the robot has
received, the more successful was the reinforcement training process. The last
term minimizes the number of robot bumps on the walls.

Additionally, HCCE facilitates the employment of partial criteria highlighting
the special roles of cortical agents in the composite model. Specifically, we use a
partial criterion that addresses the development of WM-like activation patterns
on PFC. Two different states a, b are defined, associated with the two possible
sides of light source appearance. For each state, separate activation averages, pl,
are computed, with l identifying PFC excitatory neurons. The formation of WM
patterns is evaluated by:

Ewm=
(

va

ma
+

vb

mb

)
· min

⎧⎨⎩
l∑

pa
l >pb

l

(
pa

l − pb
l

)
,

l∑
pb

l >pa
l

(
pb

l − pa
l

)⎫⎬⎭ (4)

ma, va, mb, vb are the means and variances of average activation at states a, b.
The first term enforces consistent activation, while the second supports the de-
velopment of separate activation patterns for each state a, b.

Another criterion addresses the development of different activation patterns in
PM structure. They are related to the different higher level motion commands
that should be passed to M1. Two different states r, l are defined, associated
with the commands of right or left turning. For each state, separate activation
averages, pk, are computed, with k identifying PM excitatory neurons. The suc-
cessful development of distinct activation patterns for the right and left turning
is measured by:

Ec=
(

vr

mr
+

vl

ml

)
· min

⎧⎨⎩
k∑

pr
k>pl

k

(
pr

k − pl
k

)
,

k∑
pl

k>pr
k

(
pl

k − pr
k

)⎫⎬⎭ (5)

The explanation of the measure is similar to eq (4).
Finally, an additional criterion highlights the development of different patterns

on the VTA structure, related to the two possible locations of the reward signal.
Two different states x, y are defined, associated with the right or left reward
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Fig. 4. An overview of the extended Hierarchical Cooperative CoEvolutionary process
employed to design the composite computational model

location. For each state, separate activation averages, pt, are computed, with t
identifying VTA neurons. This is described by:

Er=
(

vx

mx
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vy
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t

(px
t − py

t ) ,
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py
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t )

⎫⎬⎭ (6)

The explanation of the measure is similar to eq (4).

Learning the Same-Side Strategy. Just after testing the performance of the
robot on learning the OS strategy, the computational structure is re-initialized,
and we test if it is able to adopt the SS response strategy, by means of a different
set of reward stimuli. The process is again separated to T trials, and it is very
similar to the one described for OS training. Specifically, each trial includes two
sample-response pairs, but this time, due to the SS strategy the reward stimulus
is located to the same side that the light cue appeared.

The measure evaluating the adoption of the SS strategy by the robot is the
same with the one described in eq. (3). Furthermore, additional evaluation mea-
sures similar to those described in eqs (4), (5), (6) highlight the roles of PFC,
PM, AmpR structures in the composite model. Overall, we employ two different
sets of measures, namely Ewm,os, Ec,os, Er,os, Etr,os and Ewm,ss, Ec,ss, Er,ss,
Etr,ss evaluating the ability of the robot to adopt either the OS or the SS strategy
during the reward-based training process, and the distinct role of substructures
in the composite model.

3.2 Computational Modelling

We turn now to the design of the model by means of the HCCE scheme. The hi-
erarchical coevolutionary process that re-designs and extends the computational
model is illustrated in Fig 4. The species below CG1 and CG3 are depicted with
a dotted line, in order to demonstrate that we keep their original structure (for-
mulated in our previous experiment [4]) and they are not evolved in the current
coevolutionary design procedure. According to the experimental scenario fol-
lowed in the present study, two behavioral tasks t1, t2, are employed to validate
respectively the adoption of either the OS or SS response strategies.

Specifically, the fitness function employed for the evolution of CG2 and its
lower level species, evaluates the success of OS and SS learning procedures, and
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the development of WM activity in PFC. Following the formulation introduced
in eqs. (1), (2), this is described mathematically by:

fCG2 =fCG2,t1·fCG2,t2 with fk
CG2,t1=Ewm,os·Etr,os, fk

CG2,t2=Ewm,ss·Etr,ss (7)

where k represents each membership of an individual in a proposed solution.
The agent structures grouped under CG4 serve the success on OS, SS learning,

and the development of the appropriate higher level motion commands on PM.
Thus, the fitness function employed for the evolution of CG4 is:

fCG4=fCG4,t1 ·fCG4,t2 with fk
CG4,t1=Ec,os ·Etr,os, fk

CG4,t2=Ec,ss ·Etr,ss (8)

where k is as above.
The agent structures grouped under CG5 support OS, SS learning and the

development of different reward patterns on VTA. Thus, the fitness function
employed for the evolution of CG5 is:

fCG5 =fCG5,t1·fCG5,t2 with fk
CG5,t1 =Er,os ·Etr,os, fk

CG5,t2=Er,ss ·Etr,ss (9)

where k is as above.
Finally, the top level CG enforces the integration of partial configurations in a

composite model, aiming at the cooperation of substructures in order to facilitate
the accomplishment of both learning processes, and additionally highlighting the
role of each cortical agent in the composite model. The fitness function employed
for the evolution of CG6 is defined accordingly, by:

fCG6=fCG6,t1 ·fCG6,t2 with fk
CG6,t1=Etr,os ·

√
Ewm,os ·Ec,os ·Er,os,

fk
CG6,t2=Etr,ss ·

√
Ewm,ss ·Ec,ss ·Er,ss

(10)

where k is as above.
The hierarchical coevolutionary process described above, employed popula-

tions of 200 individuals for all PS species, 300 individuals for CG2, CG4, CG5,
and 400 individuals for CG6. After 70 evolutionary epochs the process converged
successfully. Sample results of robot learning to adopt the OS and SS strategies
are illustrated in Figs 5, 6. In both cases, the response of the robot in the first
two trials (columns 2,3) are incorrect. However, in the third trial (column 4),
the robot tries another strategy which is successful, and it is continued for all
the remaining trials. As a result, HCCE successfully redesigns the computational
structure, formulating an improved model with reinforcement learning abilities.

Overall, the present experimental procedure demonstrates the power of the
HCCE-based design mechanism to refine an existing computational structure
in order to enhance its functionality. The same results demonstrate also that
the distributed design mechanism is particularly appropriate to enforce the
cooperation among new and preexisting components. As a result, HCCE can
be consistently employed to facilitate the success of complex, long-term design
procedures.
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Fig. 5. A sample result of robot performance in the Same-Side response task. The
first column illustrates sample cues. The rest columns (2-7) demonstrate the response
of the robot in consecutive trials. The “R” depicts the side of the reward. Snapshots
in the first line illustrate robot responses when light sample cue appears to the right,
while the second line illustrates robot responses when light sample appears to the left.

R R R R R R
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Fig. 6. A sample result of robot performance in the Opposite-Side response task. The
first column illustrates sample cues. The rest columns (2-7) demonstrate the response
of the robot in consecutive trials. The “R” depicts the side of the reward. Snapshots
in the first line illustrate robot responses when light sample cue appears to the right,
while the second line illustrates robot responses when light sample appears to the left.

4 Conclusions

The work described in this paper, addresses the development of cognitive abil-
ities in artificial organisms by means of implementing brain-inspired models.
Specifically, we introduce a systematic computational framework for the design
and implementation of brain-like structures. This is based on the employment
of neural agent modules to represent brain areas, and an HCCE-based design
methodology to facilitate both the design of partial models and their further
advancement in gradually more complex ones.

Due to the distributed architecture followed by both the agent-based model
and the HCCE design methodology, the proposed computational framework is
able to address explicitly the structure of system components. Hence it is able to
add new components in the model, and re-design some of the pre-existing ones
in order to advance gradually the capabilities of the model.

We believe that by exploiting the proposed approach, a powerful method to
design brain-inspired structures can emerge. Further work is currently underway
to investigate the suitability of our approach in large scale modelling tasks.
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Abstract. This article presents a multi-agent simulation of an abstract ecosys-
tem which is inhabited by two species: a predator species and a prey species. 
Both species show the typical behaviors found in such an ecological relation-
ship that are: hunting behavior and escaping behavior. In the simulation, the ac-
tors make behavioral decisions according to “genetically fixed” weighting pa-
rameters. These parameters determine which prey item is selected by the preda-
tor and which predators are avoided the most by prey. Thus these parameters 
shape the decisions performed by both species. We incorporated artificial evo-
lution by allowing successful animals to pass their features to their offspring, a 
process that includes mutation and recombination of these “genes”. The simula-
tion shows that different kinds of optimal behavioral choices emerge out of arti-
ficial evolution, when the simulation is run with different physiological and 
morphological parameters of the actors. 

1   Introduction 

In nature, the behaviors of animals are shaped by two processes. On the one hand, 
behaviors can be optimized during life-time of an individual by learning. In some 
cases, these learned patterns can be transferred among animals, even without repro-
duction of an organism (memes, see [1]). On the other hand, another very important 
process of adaptation is biological evolution [2] that works via natural selection, in-
heritance and mutation. Most behaviors of animals follow intrinsic patterns, which are 
passed and shaped as their corresponding genes pass from generation to generation 
[1][3]. Such evolutionary adaptations of behaviors are difficult to study in real life 
because - except some rare cases - they work over extremely long periods. Computer 
simulation allows a fascinating approach to study these processes, because simula-
tions can be performed for hundreds or thousands of generations within hours of run 
time, thus they allow comparative studies of artificial evolution under controlled and 
reproducible conditions. 

Since the beginning of the research field called “artificial life” [4][5], the emer-
gence of behaviors and the shaping of behaviors have been studied in a variety of 
computational experiments. In some approaches behaviors were studied in specific 
environments that do not resemble real ecosystems very much, like the ‘core-war’ 



 Bubbleworld.Evo: Artificial Evolution of Behavioral Decisions 595 

system, the ‘coreworld’ system, the ‘tierra’ system, or the ‘avida’ system. For an 
overview about these systems, see [4]. Other studies tried to evolve behaviors pro-
duced by artificial neural networks which control the behavior of the agents. Some 
approaches used tournaments-like contests to evolve the morphology and the behav-
iors of their agents [6], [7]. None of theses approaches showed sophisticated behavior 
of prey or of predators, least of all in a way that produces a predator-prey system that 
is comparable to well known ecological models [8][9][10][11]. 

The approach of bubbleworld is significantly different from the approaches men-
tioned above. We started with a fully developed simulation of a predator-prey ecosys-
tem that involves intraspecific competition among both simulated species. Our simu-
lation (called “bubbleworld”) incorporates developmental processes of the prey spe-
cies (“bubbles”) and a simulated metabolism of the predator species (“sorgs”). This 
metabolism forces the predator to act “optimal” otherwise the predator dies because it 
runs out of energy. Figure 1 shows a screenshot of the “world” of bubbles and sorgs at 
runtime. Based on this ecological-focused multi-agent simulation, we developed bub-
bleworld.evo which differs from bubbleworld by allowing inheritance, mutation, 
recombination of some of the individuals’ features. All factors implemented in bub-
bleworld do also exist in bubbleworld.evo. We implemented the basic behavioral rules 
of our two modeled species in a way that is comparable to hunting behaviors found in 
nature: A predator selects one focal prey animal and starts to chase it. If it catches the 
focal prey, it swallows the prey, digests it for some time (while resting) and earns 
energy this way. If the predator does not catch the focal prey, it can make a new deci-
sion after some time steps by selecting another prey item. 

 

 
 

Fig. 1. A screenshot of the multi-agent simulation bubbleworld at runtime. Hundreds of prey 
items (bubbles, circle-shaped agents) try to avoid the predators (sorgs, triangular-shaped 
agents). The bubbles drawn with filled color are currently targeted due to the decision process 
described in equation 2. The brighter the predators are colored, the higher their energy level is 
and the faster they are. The bigger the prey is, the faster it can escape, but the more energy gain 
it offers to its predators. 
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The prey animals show even simpler behavior: They flee away from the predators. 
What makes our study interesting is the process how a predator chooses the focal prey 
out of all the prey animals that are within its sensory radius. Several aspects have to 
be taken in account for the predator, because wrong decisions will lead to unsuccess-
ful hunts and will cost energy without gain. A frequently unsuccessful predator dies, 
the genes that led to a sub-optimal decision can disappear from the “gene-pool” this 
way. Successful predators grow faster and thus reproduce more frequently; ultimately 
“good” features will accumulate in the population. 

The situation gets more complex as there are 4 criterions that have to be assessed 
and weighted correctly with the prey-selection decision performed by the predators: 
The distance to the prey, the angle to the prey, the size of the prey and the current 
speed of the prey. The overall decision is the result of these factors and of the inher-
ited weights that the predator associates with them. Also the prey has to make deci-
sions in the case that more than one predator is in sight: This decision is done by 
choosing the optimal escape direction. An optimal decision has to account for the 
threats associated to the different predators. These threats depend on the distances and 
on the current orientations of the predators. Obviously the decisions made by preda-
tors and prey are somehow inter-linked. If prey animals “know” the way predators 
choose their focal prey, the decision of the optimal escape direction can be optimized, 
and vice versa. So we even expect to find some aspects of co-evolution. 

2   The Model 

Our simulation represents a habitat that incorporates two species that live together in a 
predator-prey relationship. Both species show intra-specific competition to allow 
density-regulated growth of the populations (as they are described in [8][9][10][11]). 
The simulation is a multi-agent simulation [12], what means that behaviors are pro-
grammed based on local sensory input of the agents (simulated animals). 

In our simulation, there is an autotrophic species called “bubbles”. These agents 
grow slowly over time. The faster they move the less energy they can invest into 
growing, thus the slower they grow. Maximum growth rate of resting bubbles is one 
state unit (= size unit) per time step. Minimum growth rate of a bubble (moving at full 
speed) is 0.66 state units per step. A bubble that has reached 1000 state units is able to 
reproduce. The “mother” bubble dies and produces 1-10 offspring, depending on the 
number of bubbles within its sensory radius, which is 150 pixels. The offspring start 
at a size of one unit. The bigger a bubble is, the faster it can move. The minimum 
speed for a small (young) bubble is 3 pixels per step; the maximum speed is 5 pixels 
per step. A bubble can accelerate with 1 pixels/step2 and can slow down 0.5 pix-
els/step2. A bubble can turn at a maximum extent of 0.1 degrees per time step.  Fig. 2a 
depicts the “normal” life cycle of a bubble in our simulation. 

The “sorgs” are the predatory species in our simulated predator-prey system, they 
hunt for bubbles and feed on them. A sorg is born with an energy state level of 300 
energy units. Per time step it consumes some energy depending on its speed, accord-
ing to equation 1. A sorg that reaches a level of zero energy units dies. A sorg that 
catches a bubble, swallows it and digests it (Fig. 2b), by retrieving energy from this 
process. The bigger the caught bubble is, the longer this digestion process takes and 
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the more energy is gained by the sorg. Bigger bubbles are harder to catch, as they are 
faster, but they represent more energy gain. In addition, the longer digestion time 
leads to longer hunting pauses, which in turn allows the other bubbles to grow and 
reproduce. A sorg’s maximum speed depends on its energy state. In the default set-
tings, the maximum speed of a very fit sorg is set to 5.3 pixels per step and the maxi-
mum speed of a sorg that is almost out of energy is set to 3.3 pixels per time step. 
Maximum acceleration of a sorg is 1 pixels/step2, maximum deceleration is 0.5 pix-
els/step2. A sorg can turn its direction at a maximum extent of 0.1 degrees per time 
step. A sorg that reaches a level of 1000 energy unit dies after it has reproduced into 
1-3 offspring, which start with 300 energy units in turn. The number of offspring is 
regulated by the local sorg density: the more sorgs are within the sensory radius (180 
pixels), the lower is the number of offspring. 

2021 .
speed

speed
.cost

max

current +⋅=  (1) 

Please note that all of the parameters mentioned above are adjustable in bubble-
world and that the description above represents the “default settings”. In some simula-
tion experiments described in this article, we deviated from these defaults. Table 1 
shows all values of default settings and parameter names. 

 

         

Fig. 2. (a) The life cycle of a successful bubble: The bubble starts with a size of 1 unit and 
moves slowly. It grows over time and increases its maximum speed. As soon as the bubble 
reached a size of 1000 units, it reproduces into 1-10 offspring, which start their lives again 
small and slow.(b) The life cycle of a successful sorg: The sorg is born with a low energy level 
(dark color) and is therefore quite slow. It selects a small (and therefore also slow) bubble, 
chases it and catches it. The bubble gets digested and the sorg gains energy (color of sorg 
brightens as the bubble shrinks). As soon as the sorg reaches a level of 1000 energy units, it 
reproduces and 1-3 sorgs with low energy level are born. This picture is simplified, because in 
bubbleworld, a sorg has to hunt successfully several times before it reaches the reproductive 
state. 

2.1   Modeling the Behaviors of Predators and Prey 

Both species show a typical behavior that can be frequently found in nature. The 
predators select one specific prey animal and test it (hunt it). The focus of a predator 
can change, but this is not performed in every time step: the probability to select a 
new focal prey is 1/20 per time step. Thus, on average, the prey is tested for 20 time 
steps. As it is depicted in figure 3a, there are 4 criterions (variables) evaluated during 
this decision making: The distance of the prey to the predator, the angle of the turning 
curve that has to be performed to focus on the prey, the size of the prey and the actual 
surplus, that is the maximum speed of the sorg compared to the maximum speed of 
the bubble. As shown in equation 2, these variables are used to calculate a “quality” 

(a) (b) 
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index of the prey: the prey with the highest quality index is chosen as focal prey. The 
most important point in the decision making process is that all four factors are 
weighted by the four weighting-factors called w(distance), w(angle), w(size) and 
w(speedsurplus). The higher one of these weights is (in relation to the other weights!), 
the more dominant the associated factor is represented in the decision making process. 
Equation 2 shows the quality that is associated to the bubble i by a sorg. 

speedisizei

distanceiangleii

wusspeedsurplwsize

wdistancewanglequality

⋅+⋅+

⋅−⋅−=
 (2) 

A similar decision is made by the bubbles when they decide on their optimal escap-
ing direction. The escape vector is the sum of the weighted escape vectors away from 
all sorgs that are within the sensory range of the bubble. These individual escape 
vectors are weighted by two factors which account for the distance of each sorg and 
for the angle this sorg has to turn to focus on the bubble. Figure 3b depicts the deci-
sions performed by a bubble attacked by two sorgs:  

=
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As can be seen in equation 3, two weighting-factors called w(distance) and w(angle) 
are associated with the variables “distance” and “angle”. The variable anglei describes 
the angle the sorg i has to turn to target the bubble. The variable distancei represents 
the distance from sorg i to the bubble that makes its decision. rsensory represents the 
radius of the bubbles sensory range. 

 

  
Fig. 3. (A) The decisions made by sorgs: Bubble (a) is the closest one, bubble (b) requires the 
smallest turning angle. Bubble (c) is the biggest one and offers the highest energy gain. Bubble 
(d) has the slowest speed. (B) The decisions made by bubbles: The vectors Ta and Tb point 
from sorgs (a) and (b) to the bubble. The length of the two resulting escape-vectors depend on 
the values of the two weights w(distance) and w(angle). The resulting overall escape-vector of 
the bubble is calculated by the sum of the individual escape-vectors. The bubble depicted in this 
figure bases its decision mostly on the factor “distance”, thus w(distance) >> w(angle). 

2.2   Artificial Evolution 

In the runs with artificial evolution, the weights are not global parameters for the 
whole population, they are stored within an artificial chromosome that resides inside 
of each bubble and inside of each sorg. These chromosomes are binary strings con-

(A) (B)
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taining 32 bits per “gene”, each gene represents one weighting factor used in equa-
tions 2 and 3. Upon reproduction, these chromosomes are passed on to the offspring. 
They are affected by a random mutation of one bit per reproduction. To avoid too big 
changes within one mutation step, we used grey coding for the binary information, as 
it is described in [13]. In addition to that, with a probability of 1/10 per reproductive 
event, another (randomly chosen) species-mate is selected for recombination of “ge-
netic material” and a cross-over event is generated. This cross-over is done by trans-
ferring a random-sized fragment from a randomised position of the “donor” animal to 
a randomised position in the offspring’s’ chromosome. 

Table 1. Settings of the fixed parameters in the two setups used for artificial evolution. The 
basic unit for distances is “pixels” the basic unit for energy status and maturation status is 
called “state units”. The basic unit for time is called “step”. Maximum maturation is one “state 
unit” per time step. A bubble needs 1000 state units to reach the reproductive phase. 

Units Setup1 (default abilities 
of both species) 

Setup2 (agile bubbles 
and fast sorgs) 

Parameter name 

 Bubbles Sorgs Bubbles Sorgs 
preproduce 1/step 0.01 0.01 0.01 0.01 
Maturation step steps 1000 1000 1000 1000 
Max. offspring animals 10 3 10 3 
Max speed (young) pixels/step 5 5.3 5 6 
Max speed (old) pixels/step 3 3.3 3 4 
Turn angle degrees 0.1 0.1 0.2 0.1 
rsensory-range pixels 150 180 150 180 
pfocus-change 1/step --- 0.05 --- 0.05 
Start state state units 1 200 1 200 
Max. gain state units --- 400 --- 400 
Max digestion time steps --- 150 --- 150 

 

2.3   Experimental Setup 

Two evolutionary setups were performed in the experiments described in this article. 
These simulation runs were performed with different (morphological) parameters of 
bubbles an sorgs which result in different abilities of the simulated animals: the 
changed parameters affect their maximum speed and their maximum turning angle.  

Setup1 (default settings): In this experiment, the basic settings of morphological 
and physiological parameters of bubbles and sorgs were used. The most important 
point is that in this setup, the bubbles and sorgs were of equal agility, that means they 
showed identical maximum turning angles per time step. In this setup, the sorgs were 
slightly (0.3 pixel per step) faster than bubbles to allow the sorgs to hunt successfully. 

Setup2 (agile bubbles, fast sorgs): In this experiment, the maximum turn angle 
per time step of the bubbles was doubled, what led to more agile bubbles which were 
able to out-manoeuvre sorgs by simply moving in a curve with a small radius. To 
compensate for that disadvantage, the maximum speed of sorgs was increased signifi-
cantly (one pixel per time step).  
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In total 46 successful repetitions of artificial evolution were performed, a success-
ful repetition has to reach time step 200,000 without having one of the populations 
died out. Initially, the evolutionary runs started with totally randomised values (uni-
form random values between 0 and 1) of the weighting parameters w(distance), 
w(angle), w(speedsurplus), w(size), and w(angle). After the end of each run, the val-
ues of the weighting parameters of the survived bubbles and sorgs were investigated. 
For interpreting these values, the reader has to keep in mind that the relative differ-
ences between two weights modulate the decision made by a sorg or by a bubble. A 
bubble having w(distance)=1 and w(angle)=1 decides in exactly the same way than a 
bubble with the values w(distance)=0.1 and w(angle)=0.1. 

3   Results 

In total, we performed 26 evolutionary runs according to setup 1 (default settings) and 
33 evolutionary runs according to setup 2 (agile bubbles / fast sorgs). In two cases the 
simulation runs of setup 1 were unsuccessful, what means that one or both species 
died out through the evolutionary process. In setup 2, this happened more frequently 
(in 11 out of 33 cases), showing that the predator-prey relationship has a less stable 
equilibrium point in this setup. All runs lasted for 200,000 steps. 

3.1   Comparison of the Evolved Weights in the Two Setups 

In a first analysis, we plotted the values of the two weights w(distance) and w(angle) 
of bubbles and of sorgs in a x/y phase-plot (Figs. 4,5, and 6). We found 26620 bub-
bles at time step 200,000, so we reduced the number of plotted bubbles in figure 4 by 
randomly removing 19 out of 20 bubbles, thus we displayed every 20th bubble that 
survived. The dashed diagonal line in the figures 4,5, and 6 indicate those combina-
tions of weighting factors that lead to an equal weighting of the associated variables. 
E.g., a dot in the upper left triangle of figure 4 corresponds to a bubble that gives the 
distance of a sorg a higher priority than the current orientation of the sorg. The further 
the dot is away from the dashed diagonal line, the higher the priority of the sorg’s 
distance in the decision making of such a bubble is. As can be seen in figure 4 the 
bubbles evolve a decision strategy in setup 1 that favors the factor “distance” signifi-
cantly over the factor “angle”. This means, that the bubbles always flee away from the 
nearest sorg, regardless of the direction the sorg is facing to. In contrast to that, in 
setup 2 the artificial evolution led to a significantly different decision strategy: The 
bubbles still favor “distance” a little bit more over “angle” in their decision making, 
but in this setup, the orientation of the sorg plays an almost similar important role. 

A similar picture is found in the sorgs decision making after 200,000 time steps of 
evolution (Fig. 5). In setup 1, the sorgs choose mainly the closest bubble. But in con-
trast to the bubbles (Fig. 4), the angle the sorg has to turn towards the bubble (variable 
“angle”) has a significant weight. In setup 2, the weight associated with the variable 
“distance” decreased, while the weight of the variable “angle” increased. This is a 
plausible result, because the sorgs are faster in this setup and the bubbles have a 
higher turning ability (agility) in this setup. The investigation of the two other factors 
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Fig. 4. Weighting factors of bubbles after the artificial evolution. (a) In setup 1, the evolution 
led to bubbles that use primarily the distance of sorgs as an important factor in their decision 
making. (b) In setup 2, the orientation of the sorg plays a significantly higher role. 

evaluated during the decision making of the sorgs revealed more interesting details 
(Fig. 6). In setup 1, the variable “speed_surplus” gets almost ignored (weight close to 
zero), and the variable “size” is weighted also on a very low extent. In contrast to that, 
these weights increased significantly in setup 2. The faster sorgs now select bigger 
bubbles and currently slow-moving bubbles with a significantly higher frequency. 
This is a sound result, because this decision strategy allows the sorgs to exploit their 
increased speed abilities. 

Table 2. Median and IQR (=interquartile range) values of the evolved values of the weighting 
factors in the decision making process of bubbles and sorgs 

weight Setup1 (default abilities of 
both species) 

Setup2 (agile bubbles and fast 
sorgs) 

 Bubbles Sorgs Bubbles Sorgs 
w(distance) 0.74±0.33 0.83±0.17 0.72±0.29 0.80±0.24 
w(angle) 0.19±0.32 0.24±0.24 0.50±0.32 0.47±0.38 
w(size) --- 0.32±0.33 --- 0.56±0.33 
w(speed_surplus) --- 0.11±0.14 --- 0.38±0.12 
 

As a summary of the results of the evolutionary runs, we compiled the final rela-
tive values that evolved for w(distance)/w(angle) and for w(size)/w(speed_surplus) in 
figure 7. It shows that both species evolved a higher dominance of the factor “dis-
tance” over the factor “angle” in the default setup (setup 1). Also the variable “size” 
had a higher dominance over the variable “speed_surplus” in setup1 compared to 
setup 2. All of these differences were found to be statistically significant (t-test, 
p<0.01). Table 2 shows a summary of the median value of weights that evolved in 
both setups. In a final simulation run we investigated whether or not the evolved val-
ues of the weighing factors in our two setups are able to create plausible population 
dynamics in bubbleworld. As can be seen in figure 8, well known population  
 

(a) (b) 



602 T. Schmickl and K. Crailsheim 

default bubbles and sorgs

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

w(angle)

w
(d

is
ta

nc
e)

agile bubbles and faster sorgs

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

w(angle)

w
(d

is
ta

nc
e)

 

Fig. 5. Weighting factors of sorgs after the artificial evolution – part 1. (a) In setup 1, the evolu-
tion led to sorgs that use primarily the distance of bubbles in their decision making. On average 
the weight of the variable “distance” was approx. 4 times higher than the weight of the factor 
angle. (b) In setup 2, the weight of the variable “angle” increased significantly. 

default bubbles and sorgs

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

w(speed_surplus)

w
(s

iz
e)

agile bubbles and faster sorgs

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

w(speed_surplus)

w
(s

iz
e)

 

Fig. 6. Weighting factors of sorgs after the artificial evolution – part 2. (a) In setup 1, the evolu-
tion led to sorgs that mainly ignore the speed of the bubbles. At a small extend, the variable 
“size” is used in decision making. (b) In setup 2, the weight of the variables “size” and “speed-
surplus” increased significantly, with the result that bigger bubbles are attacked more fre-
quently, allowing the sorgs to draw advantage from their increased maximum speed. 

dynamics for predator-prey ecosystems are found. Figure 8 shows also a simulation of 
the classical Lotka-Volterra model (with intraspecific competition and with a stochas-
tic component). As can be seen by the subfigures 8b, 8d, 8f, the proportions of preda-
tors to prey in bubbleworld resemble the well known trajectories for the classical 
differential-equation model. 

Finally, we investigated whether or not the evolved values of the weighing factors 
in our two setups are able to create plausible population dynamics in bubbleworld. As 
can be seen in figure 8, well known population dynamics for predator-prey systems 
are found. Figures 8e and 8f show asimulation of the classical Lotka-Volterra model 
(with intraspecific competition and a stochastic faktor, taken from [9]): 

(a) (b) 

(a) (b) 
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dN ⋅−⋅⋅⋅= δ                       (5) 

In equations 4 and 5, NPrey and NPred represent the population sizes of prey and of 
predators. rPey and rPred represent their growth rates, sPrey and sPred represent their 
death rates. KPrey represent the “carrying capacity” of the habitat, which is deter-
mined by intraspecific competition. δ represents a stochastic component. These 
equations are well known to describe a predator-prey system that tends towards an 
equilibrium point, but that is forced to oscillate due to stochastic factors. In bubble-
world, the growth rates mentioned above are represented by the reproduction proc-
ess of bubbles and sorgs (see figure 2). As in equation 4, the bubbles in bubble-
world can only die if they are eaten by sorgs. The carrying capacity is implemented 
by lowering the reproductive rate of bubbles and sorgs according to the number of 
species mates that are within their sensory range. And the stochastic component is 
mainly represented by the “random walk” that is the basic behavioural program of 
bubbles and sorgs in times when they are not involved in a hunting episode. As can 
be seen by the subfigures 8b, 8d, 8f, the proportions of predators to prey in  
bubbleworld resemble the well known trajectories for the classical differential-
equation model. 
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Fig. 7. Results of both setups in the evolutionary runs. N1=24, N2=22. In each single run, we 
calculated the median ratio of the weights that are depicted in the figures 4,5, and 6. The 
evolved relative values of w(distance) vs. w(angle) were significantly higher than in setup 2. 
Also the evolved relative values of w(size) vs. w(speed_surplus) were significantly higher in 
setup 1 than in setup 2 (t-test, p<0.01). 
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setup1: default settings
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setup2: fast sorgs/agile bubbles
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Fig. 8. Population dynamics of sorgs and bubbles. (a,b,c,d): In two exemplary simulations 
using the median evolved parameters listed in table 2 (without any evolution), well-known 
population dynamics [8][9][10][11] for a predator-prey relationships can be observed. For 
comparison, one additional simulation of the classical Lotka-Volterra differential-equation 
model is depicted in the subfigures (e) and (f). 

4   Discussion 

In conclusion, we showed that successful evolution can be simulated with bubble-
world.evo. The evolution accounts for different abilities of the predators and prey in 
the two simulated setups. Finally, the evolution produced animals that are able to 
generate a predator-prey system that shows systems dynamics that are comparable to 
the examples found in literature for real-world ecosystems [8] [9] [10][11]. This is 
important, because recent studies in “artificial life” were able to evolve creatures that 
show interesting behaviors, but emergence of classical predator-prey dynamics was 
never found in these approaches. We achieved this result mainly by giving our agents 
a nature-like behavior and by evolving not the behavioral patterns itself but by evolv-
ing the decision mechanism that triggers the behaviors in a certain manner. Although 
the results of bubbleworld.evo are quite promising, it was not possible to find two 
interesting processes so far: significant levels of co-evolution over time and the emer-
gence of distinct species that show different successful behaviors. The main reason 
for that is that the spectrum of possible behaviors in bubbleworld.evo is limited and 
therefore it does not represent an “open-ended” evolution (as is discussed in [7]).  

The prey-selection mechanism of predators was already investigated by [14], but 
without artificial evolution and the analysis focused on the decision-making of the 
predator only. In [15], the evolution of a forager that moves in a “braitenberg”-
vehicle-like way was demonstrated. In [16] artificial neural networks were evolved 
which produced low-level behaviors, but these studies did not lead to classical preda-
tor-prey dynamics. The approach closest to bubbleworld.evo so far is described in 
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[17], but in this approach the autotrophes (prey) reproduced at a certain fixed rate and 
were immobile, so that principally no co-evolution of behaviors could emerge in this 
system. Future versions of bubbleworld.evo will increase the potential behavioral 
repertoire of the agents by describing the movement patterns by repulsive and attract-
ing forces. Such a behavioral representation can also describe herding and flocking 
behaviors. It is also planned to allow age-dependent changes in the parameters that 
shape behavior and decisions. This way, younger (and slower) sorgs can follow dif-
ferent hunting strategies than older (faster) sorgs. 

References 

1. Dawkins, R.: Das egoistische Gen. Springer-Verlag, Berlin Heidelberg New York (1978). 
2. Darwin, C. R.: The Origin of Species. John Murray, London. (1859). 
3. Alcock, J.: Animal Behavior: An Evolutionary Approach. Sinauer Associates, Inc. (1998). 
4. Adami, C.: Introduction to Artificial Life. Springer Verlag, New York (1998). 
5. Levy, S.: Artificial Life. Pantheon Books, Random House, Inc. (1992). 
6. Sims, K.: Evolving 3D Morphology and Behavior by Competition. In: Brooks, R., Maes, 

P., (eds.): Articial Life IV Proceedings. Cambridge, MA: MIT Press (1994). 
7. Komosinski, M., Rotaru-Vaga, A. : From Directed to Open-Ended Evolution in a Complex 

Simulation Model. In: Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S. (eds.): 
Artificial Life VII. MIT Press, Cambridge, MS., London, U.K. (2000) 293 – 299. 

8. Wilson, W.: Simulating Ecological and Evolutionary Systems in C. Cambridge University 
Press (2000). 

9. Bernstein, R.: Population Ecology. An Introduction to Computer Simulations. Wiley & 
Sons Ltd. (2003) 

10. Edelstein-Keshet, L.: Mathematical Models in Biology. McGraw Hill (1988). 
11. Wissel, C.: Theoretische Ökologie. Springer Verlag (1989). 
12. Woolridger, M.: An Introduction to Multiagent Systems. John Wiley & Sons, Chichester, 

England (2002). 
13. Kennedy,  J., Eberhart, R.C.: Swarm Intelligence. Academic Press, San Francisco, San 

Diego, New York, Boston, London, Sydney, Tokyo, (2001). 
14. Nishimura, S.I.: Studying Attention Dynamics of a Predator in a Prey-Predator System. In: 

Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S. (eds.): Artificial Life VII. 
MIT Press, Cambridge, MS., London, U.K. (2000) 337 – 342. 

15. Hutt, B., Keating, D.: Artificial Evolution of Visually Guided Foraging Behaviour. In: Ad-
ami, C., Belew, R.K., Kitano, H., Taylor C.E. (eds.): Artificial Life VI. MIT Press, Cam-
bridge, MS., London, U.K. (1998) 393 – 397. 

16. Channon, A.D., Damper R.I.: Evolving Novel Behaviors via Natural Selection. In: Adami, 
C., Belew, R.K., Kitano, H., Taylor C.E. (eds.): Artificial Life VI. MIT Press, Cambridge, 
MS., London, U.K. (1998) 384-388. 

17. Gracia, N., Pereira, H., Lima, J.A., Rosa, A.: Gaia: An Artificial Life Environment for 
Ecological Systems Simulation. In: Langton, C.G., Shimohara, K. (eds.): Artificial Life V. 
MIT Press, Cambridge, MS., London, U.K. (1997) 124-131. 



Incremental Evolution of Target-Following
Neuro-controllers for Flapping-Wing Animats
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Abstract. Using an incremental multi-objective evolutionary algorithm
and the ModNet encoding, we generated working neuro-controllers for
target-following behavior in a simulated flapping-wing animat. To this
end, we evolved tail controllers that were combined with two closed-loop
wing-beat controllers previously generated, and able to secure straight
flight at constant altitude and speed. The corresponding results demon-
strate that a wing-beat strategy that consists in continuously adapting
the twist of the external wing panel leads to better manoeuvring capa-
bilities than another strategy that adapts the beating amplitude. Such
differences suggest that further improvements in flying control should
better rely on some sort of automatic incremental evolution procedure
than on any hand-designed decomposition of the problem.

1 Introduction

Birds continuously demonstrate capabilities which would be of great interest for
most Unmanned Aerial Vehicles (UAVs). They are highly agile, able to take
off without any runway, to settle on a branch, and to exploit thermals like
a sailplane. Consequently, bio-inspired flapping-wing platforms could represent
useful trade-offs able to benefit from both the manoeuvrability of helicopters
and the energy efficiency of standard airplanes.

However, taking inspiration from birds to design a flapping-wing UAV requires
a deep understanding of complex aerodynamic principles that nature learned to
exploit in about 150 millions years of evolution. In particular, the numerous
degrees of freedom of such UAV must be carefully synchronized to produce ade-
quate thrust and lift forces. Additionally, the corresponding rhythmic movements
must be continuously adapted to unpredictable changes in the surrounding air
mass. To tackle such issues, that are currently not solved by traditional engineer-
ing approaches, the ROBUR project of the AnimatLab [7] aims at designing the
morphology and control of a flapping-wing animat through artificial evolution.

In a previous work [15], we used a multi-objective evolutionary algorithm to
generate wing-beat neuro-controllers able to secure a straight and horizontal
flight at constant speed, even in cases where the flying animat was artificially
slowed down. Two efficient control strategies emerged, but with no indication
about which one should be used in more challenging conditions.

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 606–618, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. The simulated bird is modelled using cones, cylinders and rigid panels. A wings
internal panel can be moved along the dihedral and the twist axis, while its external
panel can be moved along the twist and the sweep axis.

The goal of the research effort described in this article was to extend this work
to the control of target-following behavior. To this end, we used an incremental
approach that already proved to be efficient at designing wheeled [19,2], legged
[12] and flying [1] robots. We thus capitalized on the previously evolved wing-beat
controllers, and let evolution combine their effect with that of newly generated
tail controllers that would force the animat to orient itself towards a targeted
direction. We also assumed that the corresponding results would help better
assessing the relative advantages of the two wing-beat strategies just mentioned.

The corresponding experiments called upon a realistic aerodynamic simulator
that computes lift and drag forces whatever the local airflow direction. The
underlying aerodynamic model has been validated in a wind-tunnel for a fixed-
wing UAV.

The simulated bird was made of cones and cylinders which made up its
body, and of rigid panels that composed its wings and tail (figure 1). The total
wingspan was 124 cm. Additional relevant details are to be found in [15].

This article starts with a summary of the previous results we obtained with
wing-beat controllers. The next section describes the evolution of tail neuro-
controllers for target-following. Sample trajectories and typical neural networks
are then exposed, and the corresponding results are discussed.

2 Wing-Beat Controllers

Contrary to airplanes which use their wings to sustain themselves, and a pro-
peller to create thrust, birds use their wings to create both an upward and a
thrust forces. A wing-beat is made of two distinct phases, the down-stroke and
the up-stroke. During the down-stroke, the wings are fully extended and powered
downward. The twist is tilted down during this phase, particularly towards the
tip. As a consequence, the lift force, created by the pressure difference around
the airfoil, is oriented forward and upward. During the up-stroke, the wing is
partially folded, to reduce the drag. Additional information on these bird-flight
kinematics can be found in [16,10].
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We previously evolved wing-beat neuro-controllers able to exploit such forces
and to maintain a flying animat at a constant speed and altitude despite external
disturbances. The design of these controllers drew inspiration from the work of
biologists on Central Pattern Generators (CPGs) [5,3,13] and called upon both
non-linear oscillators [3,13] and standard McCulloch and Pitt’s neurons. These
controllers could use a speed sensor as input, and four actuators as outputs: the
dihedral and the twist of a wing’s internal panel, the twist and the sweep of its
external panel. The symmetry between wing-beats was forced.

Evolutionary algorithms are the only means that allow to optimize both the
topology and the parameters of this kind of neural-networks. The problem to
be solved requiring multiple trade-offs – from the energy consumption mini-
mization to the maximization of accelerations – the multi-objective evolutionary
algorithm MOGA [8] was used, together with ModNet[6], a modular encoding
scheme adapted to the task of evolving neural networks. The corresponding fit-
ness function depended upon six objectives [15], which were evaluated in two
stages.

Two different classes of optimal strategies emerged that both relied on the
same kinematic principles. According to the first strategy, the twist of a wing’s
external panel is increased when an acceleration is required, hence increasing
the thrust component of the lift force. The wing being folded during the up-
stroke, the twist of this panel is not changed. The analysis of the corresponding
controllers showed that they implement a simple proportional control of the
external twist as a function of the difference between the current speed and the
targeted speed.

According to the second wing-beat strategy, all degrees of freedom of a wing
exhibit a sinusoidal movement. When an acceleration is required, the amplitude
of the oscillations is increased and, consequently, the magnitude of the upward
and forward components of the lift force are increased.

Videos of some animats exhibiting these strategies can be downloaded from
our website: http://animatlab.lip6.fr/RoburEvolvingEn. To the best of our
knowledge, this is the first time that closed-loops controllers are obtained for
flapping-wing flight.

3 Target Following

The detailed kinematics used by birds to change the direction of their flight
largely remain an open question, the answer to which probably varies across
bird species. It has been suggested that the tail might be used for such use, in
a manner similar to the use of elevators in an aircraft [18]. However, some birds
succeed to fly without their tail, and mostly rely on wing movements for that. For
instance, it has been shown that pigeons use down-stroke velocity asymmetries
and rapid alternating wing movements to turn [21,20].

Likewise, although the control of standard airplanes and UAVs is a widely
studied topic, described in many textbooks like [14] for instance, it remains to be
proved that classical control methods can be directly used to control an artificial
flapping-wing bird because the dynamics of such an engine are complex to model,
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and because wing-beats generate a lot of parasite movements, especially when
orienting.

Additionally, it turns out that radio-controlled ornithopters built by hobby-
ists exploit their tail to execute simple manoeuvres, as many radio-controlled
airplanes do.

For all these reasons, and because the control of a tail can easily be decoupled
from the wing-beat control, in a first approach towards implementing useful
flying capacities, we chose to evolve tail controllers that could be combined
with the wing-beat controllers previously evolved (section 2). More precisely, the
objective of these additional controllers was to orient the artificial bird towards
a target point, for instance a GPS way-point or a visual landmark, while keeping
its altitude constant. To this end, we used exactly the same methodology, calling
upon MOGA and ModNet softwares, that the one evocated above and that led
to efficient flapping-wing controllers.

To the best of our knowledge, only two papers previously dealt with the gener-
ation of kinematics for a flapping-wing artificial bird able to turn [22,17]. But the
goal of these research efforts was to create visually convincing movements and not
to design closed-loop controllers.Consequently, the optimization of the kinematics
parameters characterizing each trajectory were computationally too greedy to be
tested as competitive approaches to the one that has been chosen here.

3.1 Sensors and Actuators

In the absence of any a priori knowledge concerning the sensors that birds use to
control their flying manoeuvres, we allowed evolution to incorporate, or not, four
sensors in the neural controllers it would generate: an altitude sensor - assessing the
difference between the current and targeted altitude - a direction sensor - reorient-
ing the animats relative direction to the target - a roll sensor and a pitch sensor.

Furthermore, in the absence of precise specifications of real sensors to be
embedded on a real platform, in this preliminary stage we chose to use ideal
sensors that would prevent evolution from exploiting specific characteristics of
specific devices.

Fig. 2. A v-tail is used to control the artificial bird. (a) When the the panels are in
the neutral position, the animat move along a straight line. (b) When the left panel
is raised and the right one lowered, the animat turns right. (c) Symetrically, when the
left panel is lowered and the right one rised, the animat turns left. (d) When both
panels are rised, the animat goes up. (e) Symetricallly, when both panels are lowered,
the animat goes down.
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Fig. 3. Overview of the control loop. The wing-beat controller has been evolved in a
previous work.

Besides the wing characteristics evocated above, an ideal servo-mechanism
was used to move each of the two panels that constituted the animats V-shaped
tail. To provide an intuitive control of the bird, these two actuators were mixed
together in a way similar to that used in radio-controlled sailplanes. Thus, two
virtual actuators are provided, one to control the pitch angle and one to act on
the yaw and roll angles. Figure 2 displays some typical reactions of the simulated
bird to various tail configurations.

3.2 Fitness

A multi-objective evolutionary algorithm was used to seek controllers able to
secure a constant-altitude flight while pointing towards a given target. Figure 3
shows an overview of the corresponding control loop.

Let us denote by N the total length of the evaluation. The bird started its
flight at 15m.s−1 and the position of its center of gravity g(n) was measured at
each time-step n. The altitude objective was written as:

Oalt = − 1
N

n=N∑
n=0

|gz(n) − Z| (1)

where gz(n) denotes the altitude of the artificial bird at time-step n and Z the
desired altitude.

Let first define the vector v(n) which links the current position g(n) to the
target position T:

v(n) = T − g(n). (2)

We then defined the second objective, which rewarded how close the simulated
bird was to the desired direction:
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Otar = − 1
N

n=N∑
n=0

|atan2(vy(n),vx(n)) − θ(n)| (3)

The atan2(y, x) function calculates the arc tangent of y
x except that the signs of

both arguments are used the determine the quadrant of the result.
These two objectives had to be maximized, with an optimal value of 0. They

might be evaluated for k different targets. In this case, the results of successive
evaluations were summed together.

Oalt =
1
k

i=k∑
i=0

Oalt,i (4)

Otar =
1
k

i=k∑
i=0

Otar,i (5)

3.3 Experimental Setup

We used the objectives just defined in conjunction with the MOGA algorithm
and the ModNet encoding. Population’s size was 350 with 60 % of elites. Six
different targets were used, towards which the animat was expected to fly. The
total evaluation length was 18000 time-steps, simulating 54 seconds of flight (9
seconds for each target).

Thanks to the use of a so-called model-module pool[6,15], the neural con-
trollers that were evolved could incorporate and modify across successive gener-
ations any number of three different modules:

– a “derivative” module, which computed an approximation of the derivative
of its input signal;

– an “integral” module, which computed an approximation of the integral of
its input signal;

– a generic module, made of standard McCulloch and Pitt’s neurons, with an
evolvable structure.

Using two previously evolved controllers, each exhibiting a different wing-beat
strategy (section 2), three evolutionary runs of 500 generations were performed to
evolve tail controllers likely to complement them. About 12 hours on 20 Pentium
at 2Ghz were required for each run.

4 Results

4.1 First Wing-Beat Controller

Starting with a wing-beat controller that adapted the twist of the external panel
to maintain a targeted flying speed, the individuals that constituted the Pareto
front of the last generation segregated in two populations: those that obtained
good results on the altitude objective, and those that were efficient with re-
spect to the target objective. The behavior of two randomly-selected individuals
representative of each of these populations is shown on Figure 4.



612 J.-B. Mouret, S. Doncieux, and J.-A. Meyer

(a) (b)

Fig. 4. (a) Top: Examples of target-following trajectories for an individual using the
first type of wing-beat controller. Bottom: This individual obtained good results on the
altitude objective. (b) Trajectories of another individual (Top) with good results on the
target objective (Bottom).The targets that were used here were different from those
that served to evaluate the individuals. For flights not exceeding the corresponding
evaluation period (9 sec), the corresponding behaviors were satisfactory. Beyond this
period, some trajectories led to stalling, particularly when the targeted orientation
angle was high.

While both individuals succeeded to execute light turns, especially during
the evaluation period (9 s), they didn’t deal successfully with larger changes
of directions beyond the evaluation period. They used a different approach to
handle the latter case. The first individual, which had the best fitness for the
altitude objective, stopped orienting when the required change in direction was
too large. As a consequence, it did not loose altitude, but at the price of not
aligning correctly with the target. The second individual, which had a better
fitness on the target objective, often started orienting in the right direction, but
ended stalling along a spiral trajectory. However, because such events occurred
after the evaluation period, this individual was not much penalized with respect
to the altitude objective.

We performed a Multiperturbation Shapley value Analysis (MSA) [11] to
understand the inner workings of the first individual’s tail controller (figure 5).
The most useful neurons were those numbered 0, 1, 2, 3, 4 and 5, while the
other neurons didn’t seem to contribute a lot to the animat’s orienting behavior.
In particular, neurons 1, 3 and 4 had a large contribution to the first objective,
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Fig. 5. Left: the neural network that produced the trajectories shown in figure 4 (a).
Right: the results of the corresponding MSA. The y-axis gives the numbers identifying
the neurons. The x-axis gives the Shapley values. High values indicate important con-
tributions to each of the two considered objectives (altitude and target). Grey levels
characterize which neuron is important to the realization of which objective.

while neurons 0 and 2 mostly contributed to the second objective only. This result
indicates that the two objectives were decoupled by the evolutionary process, a
conclusion that is confirmed by the close observation of the organization of this
controller (Figure 5), which appears as almost split in two separate networks.
The first one, on the left side of the figure, controls the flight direction using
the target’s direction sensor. The second one, on the right side, controls the
elevator. These two independent controllers are linked by a connexion with a
very low weight, which explains the null Shapley value of neuron 11.

By assigning a null or negative contribution to neurons 5, 12 and 11, the
MSA also indicates that the roll sensor is not useful to this controller. Such
could be also the case with the pitch sensor, as it will be shown later for an
other controller, but the MSA is not conclusive on this point because one cannot
decide if the utility of neuron 3 must be attributed to information brought by
the altitude sensor, by the pitch sensor, or by both sensors. Be that as it may, we
believe that the role of the roll sensor would be much greater if the animat had
to fly in an unstable air mass, for instance to secure a constant roll angle despite
external perturbations. This hypothesis could be tested by adding perturbations
during the evaluation procedure, as we did in [15].

4.2 Second Wing-Beat Controller

Figure 6 shows the behavior of two individuals populating the Pareto front of the
last generation, starting with a wing-beat controller that adapted the amplitude
of the oscillations to maintain a targeted flying speed. These individuals were
randomly-selected among those that respectively obtained good results on the
altitude objective, and good results on the target objective.

The first individual exhibits a behavior similar to the one displayed on figure
4 because it stopped orienting when the required changes of direction were large.
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Fig. 6. (a) Top: Examples of target-following trajectories for an individual using the
second type of wing-beat controller. Bottom: This individual obtained good results on
the altitude objective. (b) Trajectories of another individual (Top) with good results
on the target objective (Bottom). Both individuals performed correctly during the
evaluation period (9s).

However, it stalled after having flied for about 200m. Moreover, the error between
the animat’s direction and the targeted one was larger on figure 6 (a) than on
figure 4 (a).

The second individual got the best fitness evaluation according to the angle
objective. Surprisingly, although the animat succeeded to perform the largest
turns (labeled 9 and 10), it couldnt avoid climbing up. This was due to the
fact that the wing-beat controller reached a saturated state, according to which
the wings were steadily flapped with a maximum strength, thus producing a
maximum thrust. By flying faster, the bird generated more lift and, accordingly,
went up. This saturated state was not reached for every target, as demonstrated
by the stalling trajectory 7.

The analysis of the corresponding neural controller (figure 7) indicates that
it is also split in two sub-networks, one controlling the direction and the other
controlling the altitude. For this controller, both the roll and the pitch sensors
seem useless. Again, these two sensors would probably be required for flights in
an unstable air mass.
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Fig. 7. Left: The neural network that produced the trajectories shown in figure 6 (a).
Right: Its MSA results.

4.3 Objective Space

Figure 8 displays the two objective scores attained by each animat generated
during the three evolutionary runs, for the two wing-beat strategies.

It thus turns out that individuals exploiting the first strategy are distributed in
most of the objective space, with a higher concentration close to the Pareto front.
The shape of this front expresses the necessity of a trade-off, since no individual
gets an optimal score on both objectives. The evolutionary process generated a lot
of such trade-off solutions situated near the optimum, i.e., at coordinates 0,0.

The exploration of the objective space by individuals exploiting the second
strategy was quite different. First, the best scores thus attained are substantially
lower than in the previous case, especially on the target objective. Second, the
explored solutions cover a much limited range of possible scores.

The horizontal line with a target objective value of −0.6 corresponds to indi-
viduals that did not turn at all. These individuals quickly disappeared when we

Fig. 8. Exploration of the objective space by all individuals exploiting the first (a) or
the second (b) wing-beat strategy. Each dot corresponds to an individual. Grey levels
denote the last generation for which this individual was present in the population.



616 J.-B. Mouret, S. Doncieux, and J.-A. Meyer

used the first wing-beat controller, but they were still present after 500 genera-
tions when the second controller was used.

All these results suggest that optimizing a target-following behavior is more
difficult with the second controller than with the first.

5 Discussion

The above results demonstrate that, once neural controllers for straight-line flight
have been evolved, it is possible to capitalize on the corresponding networks to
evolve additional tail controllers that exhibit minimal target-following capacities.
However, as mentioned above, better results would probably be obtained by relax-
ing the symmetry constraint that was imposed here on wing movements, and by
exploiting the manoeuvrability capacities thus offered. Such approachmight entail
the joint evolution of wing-beat and tail control, a task that seems highly challeng-
ing according to current technology. To raise its chances of success, the recourse
to some sort of automatic incremental methodology seems mandatory. Indeed, it
has been shown here that one cannot rely on fundamental principles or empirical
knowledge to decide which, among two available wing-beat controllers, would be
better suited to pave the way to additional flying manoeuvrability. Nevertheless,
their aptitudes for this endeavour ultimately turned out to be quite different.

Two main reasons motive the use of incremental evolutionary approaches to
evolutionary robotics:

– The bootstrap problem. In many real-life situations, an intermediate action
is required – e.g. pushing a button to switch-on a light – before receiving any
reward – e.g. going to the light to get food. By decomposing the problem
into sub-tasks, one may guide the evolutionary process towards satisfying
solutions that would otherwise be hard or impossible to discover.

– The search space problem. By imposing intermediary stages, one reduces the
size of the search space, hence speeding-up the evolutionary process.

Some promising work has been carried out to automatize such a procedure
using cooperative co-evolution [9,4]. We plan to assess the applicability of similar
approaches to flying behavior in the near future.

6 Conclusion

Although evolving flying robots seems a greater challenge than evolving crawling,
walking, or swimming artefacts, we have shown that a suitable evolutionary
algorithm, combined with an efficient coding and a two-stage approach, made it
possible to generate close-loop controllers for a target-following flying behavior.
However our results suggest that future improvements should better rely on some
sort of automatic incremental evolution procedure than on any hand-designed
decomposition of the considered problem.
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Abstract. We present an approach for evolutionary design of the driving style 
of an agent, remotely operating a scale model of a car running in a fastest pos-
sible way. The agent perceives the environment from a video camera and con-
veys its actions to the car via standard radio control transmitter. In order to cope 
with the video feed latency we propose an anticipatory modeling in which the 
agent considers its current actions based on the anticipated intrinsic (rather than 
currently available, outdated) state of the car and its surrounding. The driving 
style is first evolved offline on a software model of the car and then adapted 
online to the real world. An online evolutionary adaptation of the offline-
obtained best styles to the needs to avoid a small obstacle results in lap times 
that are virtually the same as the best lap times achieved on the same track 
without obstacles. Presented work is a step towards the automated design of the 
control software of remotely operated vehicles capable to find an optimal solu-
tion to various tasks in different environmental situations. The results, also, can 
be seen as an attempt to explore the feasibility of developing a framework of 
adaptive racing games in which the human competes against a computer with 
matching capabilities, both operating physical, scale models of cars. 

1   Introduction 

The success of the computer playing games (like chess [5]) has long served as touch-
stone of the progress in the field of artificial intelligence (AI). The expanding scope of 
applicability of AI, when the latter is employed to control the individual characters 
(agents) which are able to “learn” the environment and to adopt an adaptive optimal 
(rather than a priori preprogrammed) playing tactics and strategy include soccer [10], 
F1 racing [14], etc. [3]. Focusing in the domain of car racing, in this work we con-
sider the problem of designing a driving agent, able to remotely control a scale model 
of a racing car, which runs in a fastest possible way. Our work is motivated by the 
opportunity to develop an agent, able to address some of the challenges, which a hu-
man driver of racing car faces. In order to provide a fastest laps times around the 
circuit, the driver needs to define the best driving (racing) line, or the way the car 
enters, crosses the apex, and exits the turns of the circuit. Moreover, realizing the 
once defined optimal line, the driver has to make a precise judgment about the current 
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state (i.e., position, orientation and velocity) of the car and the environment, and to 
react quickly and precisely.  

The objective of our work is an automated evolutionary design of the functionality 
of driving agent, able to remotely operate a scale model of racing car (hereafter re-
ferred to as “car”) running in a fastest way around. The agent should be able to con-
trol the car in (i) a consistent way and (ii) to avoid small, static obstacles. An agent 
with such capabilities would open up an opportunity to build a framework of adaptive 
racing games in which the human competes against a computer with a matching capa-
bilities, with both of them remotely operating scale models, rather than simulated 
cars. The proposed evolutionary approach could be also applied for automated design 
of the control software of remotely operated vehicles capable to find an optimal solu-
tion to various tasks in different environmental situations.   

Achieving the objective implies that the following tasks should be addressed: (i) 
developing an approach that allows the agent to adequately control the scale model of 
the car addressing the challenge of controlling a fast moving artifact via closed con-
trol loop with a finite feedback latency; (ii) formalizing the driving style and defining 
the key parameters that describe it, and (iii) developing an algorithm paradigm for 
automated definition of the fastest driving style by setting its key parameters to their 
optimal values. 

The related work done by Wloch and Bentley [14] demonstrates the feasibility of 
applying genetic algorithms for automated optimization of the setup of the simulated 
racing car. However, neither the adaptation of the driving style to the setup of the car 
(i.e., a co-evolution of the driving style and the setup of the car) nor the use of a 
physical (scale) model of a car was considered in their work. Conversely, Togelius 
and Lucas [12] used scale models of cars in their research to demonstrate the ability 
of the artificial evolution to develop optimal neuro-controllers with various architec-
tures.  However, the effects of the inherent latencies in the video feedback on either 
the precision or the speed of the car was beyond the scope of their work. In our previ-
ous work [13], we used an evolutionary approach to optimize the controller of a scale 
model of a car. Although we did consider the feedback latency and proposed a way to 
alleviate its detrimental effect on the drivability of the car, we have considered neither 
the driving consistency nor the avoidance of obstacles or “guardrails”, which are 
relevant for the real-world applications.  

The remaining of the article is organized as follows. Section 2 introduces the hard-
ware configuration used in our work. Section 3 elaborates on the anticipatory model 
employed by the driving agent to alleviate the detrimental effect of the feedback la-
tency on the performance of the agent. Section 4 discusses the key attributes of driv-
ing style with obstacle avoidance capabilities and the proposed approach of genetic 
algorithms employed to automatically evolve them. Section 5 draws a conclusion. 

2   System Configuration 

2.1   The Car 

We choose the 1:24 scaled model of an F1 racing car, with the bodywork stripped 
from decals and repainted for more reliable image tracking (Figure 1).  
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Fig. 1. System configuration 

This off-the-shelf car features a simple two-channels radio remote control (RC) 
with functionality including "forward", "reverse", and "neutral" throttle control com-
mands and "left", "right" and "straight" steering controls. The car has the following 
three favorable features: (i) a wide steering angularity, (ii) a spring suspension system 
in both front and rear wheels, and (iii) a differential drive. The former feature implies 
a high maneuverability of the car. The torsion spring of the rear suspension of the car 
functions as an elastic buffer, which absorbs the shocks, caused by the sharp and often 
violent alterations in the torque generated by the car's motor. These torque alterations 
occur during the pulse-width modulation (PWM) of the throttle, by means of which 
the driving agent regulates the speed of the car within the range from zero to the 
maximum possible value. In addition, torque alterations occur when the “reverse" 
throttle command is applied for braking of the car that still runs forward. The absorp-
tion of these shocks is relevant for the smooth transfer of the torque from the motor to 
the driving wheels of the car without an excessive wheelspin, achieving a good trac-
tion under braking and acceleration.  Moreover, the absorptions of the shocks caused 
by the frequent torque alterations are important for the longevity of the transmission 
of the car. The last mentioned feature - differential rear wheels drive implies that that 
the torque of the motor is split and delivered to the rear wheels in a way that allows 
them to rotate at different angular speeds when necessary, e.g., under cornering. 
Therefore, the car turns without a rear wheels spin, which results in a smooth entrance 
into the turns and a good traction at their exits.  

The main mechanical characteristics of the car are shown in Table 1. Characteris-
tics #6-#9 are experimentally obtained from the car running on the considered track 
surface - a polyvinyl chloride carpet with coefficients of static and kinematic friction 
between the rubber tires and the surface S=0.8 and K=0.7, respectively. The tires of 
the turning car, operated at, and beyond the limits of the friction (grip, adhesion) 
forces, slide to some degree across the intended direction of traveling. The dynamic 
weight redistribution causes the grip levels at the front and rear wheels to vary as the 
turning car accelerates on “forward” or decelerates on either “neutral” or “reverse” 
throttle commands. This, in turn, yields different sliding angles for the front and rear 
wheels, causing the fast turning car to feature either a neutral steering (the slide angles 
of both axles assume the same values), an oversteer (slide angle of the front wheels 
are narrower than that of the rear ones) or understeer (slide angle of the front wheels 
are greater than that of the rears). In addition to the degradation of the maneuverabil-
ity of the car, the sliding of the wheels results in a significant braking momentum that, 
in turn, reduces the velocity of the turning car if the latter enters the turn too fast. 
Moreover, the increased actual turning radius due to sliding of either a neutral or 
understeering car means that the car might enter the run-off areas or even hit the 
guardrails on tight corners of the track, which, in turn, might result either in a damage 
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of the car, or lost of momentum (or both). Therefore, sliding limits the average veloc-
ity of the cornering car (due to the lower, than intended speeds along longer, than 
intended arcs), which may have a detrimental effect on the overall lap times. On the 
other hand, the sum of the driving and centrifugal forces applied to the rear wheels of 
a turning car under braking (i.e, when “reverse” throttle command is applied on cor-
nering) may exceed the reduced (due to the weight redistribution) grip limits of the 
rear wheels, causing the car to oversteer. Depending on the severity and duration of 
the oversteer, the car might either turn into the corner smoothly with a nominal or 
slightly lower turning radius, or spin out of control. The complexity of the effects of 
the various handling attitudes of the car on the lap time renders the task of optimizing 
the driving style of the agent quite challenging, which, in turn, additionally motivated 
us to consider an automated heuristic approach to address it. 

 
Table 1. Mechanical characteristics of the car 

Parameter Value 
 1) Car: model and scale Auldey F1, 1:24 

 2) Dimensions (l x w x h), mm 200 x 86 x 54 

 3) Wheelbase, mm 130 

 4) Steering angle, degrees 30 

 5) Mass, g 310 

 6) Max straight line velocity, mm/s    (scaled, km/h) 2000  (172) 

 7) Acceleration on full throttle, mm/s2 800 

 8) Deceleration on reverse, mm/s2   -2000 

 9) Deceleration due to the mechanical drag on throttle lift-off, mm/s2 -600 

2.2   Perceptions and Actions of the Agent 

The perceptions of the agent are obtained from a video camera mounted overhead. 
The camera features a CCD sensor and lenses with wide field of view (66 degrees), 
which allows to cover a sufficiently wide area of about 2800mm x 2100mm from an 
altitude of about 2200mm. The camera operates at 320x240 pixels mode, with a video 
sampling interval of 30ms. The camera is connected to the personal computer (PC) 
through a PCMCIA-type video capture board. 

The agent’s actions (a series of steering and throttle commands) are conveyed to 
the car via standard two-channels radio control transmitter operating in 27MHz band. 
The four mechanical buttons (two buttons per channel) of the transmitter are elec-
tronically bypassed by transistor switches activated by the controlling software. Tran-
sistors are mounted on a small board, connected to the parallel port of the PC. 

3   Anticipatory Modeling 

3.1   Outdated Perceptions 

The delays introduced in the control loop (Figure 1) by the latency of the video feed 
imply that the current actions of the driving agents are based on outdated perceptions, 
and consequently, outdated knowledge about its own state and the surrounding envi-
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ronment. For the hardware used in our system, the average estimate of the aggregated 
latency is about 90ms, which results in a maximum error of perceiving the position of 
the car of about 180mm when the later runs at its maximum speed of 2000mm/s. The 
latency also causes an error in perceiving the orientation (bearing) and the speed of 
the car. As demonstrated in [13], the cumulative effect of these errors renders the 
tasks of precisely following even simple O-, 8-, and S-shaped routes hardly solvable.  

3.2   Software Simulator. Anticipating the State of the Car and the Environment   

In order to investigate the detrimental effect of latency on the performance of the 
driving agent, and to verify the effectiveness of the proposed approach for its allevia-
tion, we developed a software simulation of the car and tracks. The additional ration-
ales behind the development of the software simulation include (i) the possibility to 
verify the feasibility of certain circuit configurations without the need to consider the 
risks of possible damage to the environment or the car (or both), and (ii) the opportu-
nity to "compress" the runtime of the fitness evaluation in the eventual implementa-
tion of agent's evolution [6][8]. Furthermore, while operating the real car, the driving 
agent, as elaborated below, continuously applies the kernel of the developed simulator 
- the internal model of the car and the environment in order to anticipate the car’s 
intrinsic state from currently available (outdated) perceptions. The software simulator 
takes into consideration the Newtonian physics of the (potentially sliding) car and the 
random uniform noise of +/-1 pixel (equal to the experimentally obtained value) in-
corporated in the “tracking” of the modeled car. No deviation of the estimated aver-
age latency of 90ms of the video feedback is modeled in the current version of the 
system. 

In the proposed approach of incorporating an anticipatory modeling [11], the driv-
ing agent considers its current actions based on anticipated intrinsic (rather than cur-
rently available, outdated) state of the car and surrounding environment. The agent 
anticipates the intrinsic state of the car (position, orientation, and speed) from the 
currently available outdated (by 90ms) state by means of iteratively applying the 
history of its own most recent actions (i.e., the throttle and steering commands) to the 
internal model of the car. It further anticipates the perception information related to 
the surrounding environment, (e.g., the distance and the bearing to the apex of the 
next turn) from the viewpoint of the anticipated intrinsic position and orientation of 
the car. The approach is somehow related to the dead reckoning in GPS-based vehicle 
navigation [1]. In our previous work [13] we demonstrated that compared to the sys-
tem without anticipatory modeling, the implementation of the latter contributes to the 
significant improvement of the drivability of the car on simple O-, 8-, and S-shaped 
routes. 

4   Experimental Results 

4.1   Attributes of the Driving Style 

We consider the driving style as the driving line, which the car follows before, 
around, and after the turns in the circuits combined with the speed, at which the car 
travels along this line. Our choice of driving styles’ parameters is based on the view, 
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shared among the high-performance drivers from various racing teams in different 
formulas, that (i) the track can be seen as a set of consequent turns they need to opti-
mize divided by simple straights (ii) the turns and both the preceding and following 
straights should be treated as a single whole [2]. Therefore, we introduce the follow-
ing key attributes of the driving style: (i) straight-line gear - the gear at which the car 
approaches the turn, (ii) turning gear, (iii) throttle lift-off zone – the distance from the 
apex at which the car begins slowing down from the velocity corresponding to the 
straight line gear to the velocity of the turning gear, (iv) braking velocity - the thresh-
old, above which the car being in the throttle lift-off zone, applies brakes (i.e., reverse 
throttle command) for slowing down, and (v) approach (homing) angle – the bearing 
of the apex of the turn. Higher values of the latter parameter yield wider driving lines 
featuring higher turning radiuses. Viewing the desired values of these attributes as 
values that the agent has to maintain, the functionality of the agent can seen as issuing 
such a control sequence that result in the perceived state of the car and environment to 
match the desired values of the corresponding parameters.  

4.2   Evolving Driving Styles 

Assuming that the key parameters of optimal driving style around different turns of a 
circuit will feature different values, our objective of automatic design of optimal driving 
styles can be rephrased as an automatic discovery of the optimal values of these parame-
ters for each of the turns in the circuit. This section elaborates (i) on the proposed evolu-
tionary approach for automatic discovery of these optimal values on the software simu-
lator of the car and (ii) on the method used to adapt the evolved solution to the concrete 
physical characteristics of the real scaled model of the car on the real track. 

GA. Genetic algorithm (GA) [4] is a naturally inspired domain-independent problem-
solving approach in which a population of individuals representing the parameters of 
the candidate solution to the problem (individuals’ genotypes) is evolved applying the 
Darwinian principle of reproduction and survival of the fittest. The fitness of each 
individual is based on the quality with which the candidate solution is performing in a 
given environment. 

Genetic Representation. The genotype in the proposed GA encodes for the evolving 
optimal values of the key parameters of the driving style for each of the turns of a 
given circuit. In order to allow for the crossover operation to swap not only the values 
of a particular parameter, but also the complete set of driving style parameters associ-
ated with particular turn with the complete set of parameters of another turn, and con-
sequently, to protect the higher granularity building blocks from the destructive ef-
fects of crossover, we implement a hierarchical, tree-based representation of the geno-
type as a parsing tree, as usually employed in genetic programming. A sample geno-
type, represented as XML/DOM formatted text, is shown in Figure 2. The main pa-
rameters of GA are shown in Table 2.  

The sample circuit considered in our experiments of evolving driving styles of the 
agent operating both the software model and the real scale model of the car is shown 
in Figure 3a. The circuit features a combination of one high-speed (3), one medium-
speed (1) and two low-speed hairpin turns (2 and 4), represented in the figure with 
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  <?xml version="1.0" ?>  
- <GP  xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"  xs:noNamespaceSchemaLocation="GPSchema.xsd"> 

- <DStyle ind="3"> 
+ <Turn ind="4"> 
- <Turn  ind="21"> 

  <StraightLineGear>4</StraightLineGear>  
  <ApproachingMode>0</ApproachingMode>  
  <ApproachingAngle>8</ApproachingAngle>  
  <ApproachingAngleThreshold>7</ApproachingAngleThreshold>  
  <ThrottleLiftOffZone_x10>29</ThrottleLiftOffZone_x10>  
  <BrakingVelocity_x10>186</BrakingVelocity_x10>  
  <TurningGear>3</TurningGear>  
  <DistToCurrSwitchToNext_x10>12</DistToCurrSwitchToNext_x10>  

       </Turn> 
                +<Turn  ind="38"> 
                +<Turn  ind="55"> 
 </DStyle> 

 </GP> 
 

Fig. 2. Sample genotype represented as XML/DOM-formatted text. The sub-tree with the val-
ues of attributes of the second turn of the circuit is shown expanded. 

 
their respective apexes. The series of turns 4-1-2 form a challenging, technical S-
shaped sector of right, left, and right turn. The length of the track, measured between 
the apexes of the turns is about 3800mm. The walls (“guardrails”) are virtual in that 
they are not physically constructed on the track. Consequently, in both cases (simu-
lated and real car), “hitting” the walls in no way effects the dynamics of the car. How-
ever, each “crash” is penalized with 0.4s (about 10% of the expected lap time), added 
to the actual lap time. This reflects our intention to evolve driving styles that avoid the 
potentially dangerous crashes into the eventual real walls rather than trying to exploit 
the occasional benefits of bouncing from them. 

 
Table 2. Main parameters of STGA 

Category Value 
Population size 100 individuals 
Selection  Binary tournament, selection ratio 0.1, reproduction ratio 0.9 
Elitism Best 4 individuals 
Mutation Random sub-tree mutation, ratio 0.01 
Trial interval Single flying lap for the software model and two flying laps for the real car 
Fitness Average lap time in milliseconds 
Termination criteria Number of generations = 40 

 

Offline Evolution of Driving Styles. The fitness convergence results of the offline 
evolution on the software anticipatory model of the car, aggregated over 50 independ-
ent runs of GA, are shown in Figure 3b. As figure illustrates, the best lap time average 
over all runs of GA improved from 4770ms to about 4200ms (i.e., about 14%) within 
40 generations, which for a single run of STGA consumes about 24 minutes of 
runtime on PC with 3GHz CPU, 512MB RAM and Windows XP OS. For the meas-
ured average speed of about 1100mm/s the achieved average reduction of lap time by 
570ms corresponds to an advantage of about 63cm (more than 3 lengths of the car) 
per lap. 

Porting the Evolved Solution to the Real Car. For the considered task of evolving 
driving styles, the process of porting the solution evolved offline can be viewed as a 
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process of adaptation to the changed fitness landscape of the task. In our approach we 
employ the same GA framework, as used for offline evolution, for a phylogenetic 
adaptation of the already obtained set of good solutions to the changes in the fitness 
landscape caused by switching from the simulated world into the reality. At the be-
ginning of the adaptation the GA is initialized with a population comprising 20 best-
of-run driving styles obtained from the offline evolution. In order to address the chal-
lenges of (i) guaranteeing an equal initial conditions for the time trials of all candidate 
solutions and (ii) automatic positioning of the real car before each time trial, we em-
ploy a time trial comprising an out-lap followed by a series of flying timed laps, and 
finally, an in-lap in a way similar to the current qualifying format in the car racing 
formulas. After crossing the start-finish line (shown immediately after the turn 4 in 
Figure 3a) completing the final timed lap governed by the current driving style, the 
car enters the in-lap and slows down under “Neutral” throttle command. Depending 
on the speed at the start-finish line, the car comes to a rest at a point somewhere be-
tween turns 1 and 2. At this point, which can be seen as an improvised pit, the next 
driving style which has to be evaluated is loaded into the agent’s controller, and the 
car starts its out-lap. Controlled by the new driving style, the car negotiates turns 2, 3 
and 4. During the out lap the car covers a distance from the pit stop to the start-finish 
line, which is sufficient enough to cancel out any effect of the previously evaluated 
driving style on the performance of the current driving style. In order to compensate 
for the eventual small inconsistence of the lap time, a total amount of 2 timed laps are 
conducted during the time trial of each driving style, and the average lap time is con-
sidered as a corresponding fitness value. 
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Fig. 3. Sample circuit used for evolution of driving style of agent (a), the fitness convergence 
characteristics (b) of offline evolution of driving styles on this circuit and (c) the emergent 
features of an online evolved best driving style.  

The online evolution of the initial population of 20 best-of-run solutions obtained 
offline was allowed to run until no improvement in fitness value of the best driving 
style have been registered for 4 consecutive generations. A single run has been com-
pleted, and improvement of the aggregated fitness value of the best solution from the 
initial value 4930ms (due to the initial hitting of the “walls” by the fast agents evolved 
offline and currently operating the scale model of the car) to 4140ms (average speed 
of 1120mm/s, scaled to about 97km/h) has been observed within 10 generations. The 
emergent features of the evolved best driving style of the anticipatory agent are shown 
in Figure 3c. As illustrated in the figure, (i) the car starts its flying lap entering the 
turn 4 relatively wide and exiting it close to the apex, which allows (ii) to negotiate 
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the turn 1 and the following turn 2 using the shortest possible driving line.  The car 
exits the turn 2 in a way (iii) that allows for a favorable orientation at the entrance of 
the following turn 3 and (iv) an early acceleration well before its apex, contributing to 
the achievement of the faster speed down the back straight between turns 3 and 4. The 
car uses the full width of the track and enters the turn 4 wide and exits it close to its 
apex preparing for the first turn of the next flying lap. 

The experimental results of the lap times of a sample best driving agent over 300 
consecutive laps (30 runs of 10 laps each) on the circuit shown in Figure 3a indicate 
the adequate consistence of the control. The relative standard deviation of the lap time 
is low (0.038, i.e., a standard deviation of 160ms of an average lap time of 4140ms), 
which is important for the efficiency of the evolutionary optimization [9].  

In order to estimate the human-competitiveness of the evolved solution, we con-
ducted the experiments with the best (in terms of both speed and consistence) of four 
human operators. The operators were given enough time to learn the optimal driving 
of the car on the sample track. The average lap time over 30 runs (of 10 laps each), 
achieved by human was 4150ms, which is virtually the same as the time achieved by 
the evolved solution.  However, the standard deviation of the lap time of the human-
controlled car was 270ms, indicating poorer consistence than that of the driving agent. 

Evolution of Optimal Obstacle Avoidance. Obstacle avoidance is a key capability 
of any mobile robot. However, depending on what the characteristics of the obstacle 
are (large or small, static or moving), whether the artifact is a priori aware of it or not, 
and when it is introduced to the scene (before the trial or at runtime), the implementa-
tion of obstacle avoidance requires an addressing of numerous algorithmic and tech-
nological challenges. In this very preliminary work we consider the simplest case of a 
static obstacle with known properties (position and size), introduced to the scene be-
fore the time trial. For the considered car-racing domain, the problem of optimal ob-
stacle avoidance can be viewed as discovering the driving line of circumnavigating an 
obstacle and the speed along this line that result in a minimal lap time around a prede-
fined circuit. 

Based on the repulsive potential field approach of obstacle avoidance, we view the 
steering the car away from the obstacle as correction of the desired angle of approach 
(Desired_AA) of the apex of the following turn. The parameterization of the maneuver 
is shown in Figure 4. As figure illustrates, the steering correction is initiated when the 
car enters the obstacle zone. The degree of this correction depends on the angular 
distance between the car and the obstacle (Figure 4, parameter AO) as follows: the 
correction AC of Desired_AA is set to its maximal (initial) value (Figure 4, parameter 
ACI) when the bearing of the obstacle is minimal (i.e., AO=0, when the car travels 
head on into the obstacle), and decreases inversely proportionally to zero with the 
increase of the bearing AO to its maximal value (i.e., AO=90 degrees when the car is 
lined-up with the obstacle). In addition to the steering correction, a throttle control is 
also applied to maintain the desired velocity VO while negotiating the obstacle. The 
evolutionary optimization of the obstacle avoiding implies, in addition to the values of 
general parameters of the driving style, an automated discovery of the values of the 
key parameters of the obstacle avoidance that result in a fastest lap around the circuit. 
The obstacle avoidance parameters are the direction of avoidance (left or right), radius 
of the obstacle zone (ZO), initial correction of the apex approach angle (ACI), and 
speed inside the obstacle zone (VO).  
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a

b

Obtain the evolved apex approaching parameters:
      Desired_AA and Desired_V; 
 Obtain the perceived DO and the evolved ZO; 
 if  (DO<ZO)  then  begin       //  Inside the obstacle zone 
   Obtain the perceived AO;  //  Bearing of the obstacle 
   //  Obstacle avoidance parameters: 
  Obtain the evolved direction, ACI, and VO;           
   //  Steering correction: 
    Desired_AA = Desired_AA+ sign(direction) AC(ACI, AO);  
    Desired_V   =  VO;          //  Throttle correction 
 end; 
 Perform the normal functionality of driving agent;                 

ZO ACI VOdirection: left (+) or right (-)
Evolved obstacle avoidance parameters 

DO

AO

Perceived 
parameters

Obstacle zone Obstacle 

Apex 

Apex 
Driving line 

without an obstacle
Obstacle

 avoidance

 

Fig. 4. Parameterization (left) and the algorithm (right) of the obstacle avoidance maneuver 

 
 

Fig. 5. The traces of the sample best evolved obstacle avoiding driving style adapted to the real 
world. The dark trailing circles in (b) depict the trajectory of the center of the car. The time-
stamp interval between each of these circles is 120ms (4 sampling intervals). 

 
In our experiment, a round obstacle with a diameter of 180mm (about two car 

widths) is placed 400mm before the apex of the turn 4 (Figure 3a) on the driving lines 
of the sample 10 best-of-run driving styles. Analogous to the collisions with the walls, 
“hitting” the obstacle has no effect on the dynamics of the car. Rather, the agent is 
penalized with 0.4s added to the actual lap time. GA, employed to adapt the best 
evolved driving styles to the modified fitness landscape caused by the need to avoid 
an obstacle, is initialized with a population comprising 90 randomly created individu-
als, plus 10 best-of-run driving styles (with randomly initialized part of chromosome 
that encodes for the obstacle avoidance parameters) obtained from the experiments as 
elaborated earlier in this section. However, conversely to the canonical GA, we im-
plemented the genetic operations that alter only the parameters of driving styles, that 
are relevant to the obstacle avoidance, i.e., parameters, associated with the turns 2, 3, 
and the obstacle itself. The experimental results of 20 independent runs indicate that 
due to the reduced search space of such biologically plausible “facilitated variations” 
[7] the evolutionary adaptation of the driving style is quick (within one to three gen-
erations) delivering lap times of 4200ms (from the initial 4900ms), i.e. the same lap 
times as for the circuit with no obstacles. 

The online adaptation of the initial population of 20 best-of-run solutions obtained 
offline was performed in a way analogous to the case of circuit with no obstacles. An 
improvement of lap time of the best solution from the initial value of about 5230ms to 
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4220ms was observed within 4 generations. The snapshot of the traces of the best-
evolved driving style is shown in Figure 5.  

5   Conclusions 

The objective of this work is an automatic evolutionary design of driving agent, able 
to remotely operate a scale model of racing car running in a fastest possible way. The 
agent’s actions are conveyed to the car via simple remote control unit. The agent 
perceives the environment from live video feed of an overhead camera. In order to 
cope with the inherent video feed latency we implemented an approach of anticipa-
tory modeling in which the agent considers its current actions based on anticipated 
intrinsic (rather than currently available, outdated) state of the car and surrounding 
environment. We formalized the notion of driving style with obstacle avoidance ca-
pabilities and defined the key parameters, which describe it. We demonstrated the 
feasibility of applying genetic algorithms to evolve the optimal values (i.e., yielding 
fastest lap times) of these parameters first on a software simulator of the car and then 
in the real world. An evolutionary adaptation to the changes in the fitness landscape 
caused by the need to avoid a small static obstacle with a priori known properties 
result quickly in lap times that are virtually the same as the best lap times achieved on 
the same track without obstacles. Presented work can be viewed as a step towards 
developing a framework of a racing game in which the human competes against a 
computer, both of them remotely operating scale models of racing cars. In our future 
work we are planning to incorporate more challenging obstacles that should be nego-
tiated in a robust way regardless of their number, current locations, moving directions 
or velocities. 
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1 University of Calabria, 87036 Arcavacata di Rende, Italy
bilotta@unical.it

2 University of Turin, 10124 Turin, Italy
giuseppe.cutri@unito.it

3 University of Calabria, 87036 Arcavacata di Rende, Italy
piepa@unical.it

Abstract. This paper deals with a new kind of robotic control, based
on Chua’s nonlinear circuit called Cellular Neural Network (CNN). A
CNN is a net of coupled circuits, connected in a grid structure, which
inherits its features and properties from the well known Artificial Neural
Network and Cellular Automata. It has been demonstrated that CNNs
are able of universal computation, many cognitive processes such as pat-
tern recognition, features extraction, image processing, and mathema-
tical simulations of nonlinear equations such as Navier-Stokes equations,
reaction-diffusion equations, and so on. Using an approach like Evolutio-
nary Robotics, we evolved, instead of Neural Networks, CNNs by us-
ing Genetic Algorithms (GAs), for controlling the behavior of an hexa-
pod robot in a simulated environment. We developed a Java3D software
in which physical simulations are carried on by using different kind of
robots. In this program, a module for evolving the robot’s behavior by
GAs has been implemented. Furthermore, many advanced sensors and
actuators complete the evolution of the robot’s behavior. The evolved
behavior of our robots is very similar to that of real insects, and we ana-
lyzed the pathways these agents perform in the simulated environment.

1 Introduction

Evolutionary Robotics [1], a new branch of Robotics, models robotic behavior us-
ing a biological approach, in which the control system is based on the well known
Artificial Neural Networks (ANNs), evolved through Genetic Algorithms (GAs).

We replaced the ANN based control system with CNNs. We used this method
since CNNs have a powerful hardware implementation (response time is about
few nanoseconds), so it will be possible to build a real robot with an integrated
powerful analog brain based on CNNs.

CNNs have been already used to reproduce brain activities and a lot of works
in this way can be found in [2], [3] and [4], where the authors simulate the Cen-
tral Pattern Generator (CPG), a brain area whose task is to control locomotion,
by resolving the Turing’s reaction-diffusion equations (that happen in the CPG),
modeled on top of the CNN status equation. An other method for CNN param-
eterization can be found in [5], which is the first example of evolution of CNNs
through Genetic Algorithm.

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 631–639, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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So using the approach of Evolutionary Robotics and CNNs, we developed a
robotic control based on CNNs, whose parameters are evolved by GAs.

In order to obtain this aim, we developed a simulated virtual environment to
perform simulations into a 3D space. We called this application RoVEn (acronym
of Robot Virtual Environment).

In the next Sections, a basic introduction on CNNs and how they work is pre-
sented, followed by a very brief overview of Genetic Algorithms and, in particular,
how this technique has been used for our aim. Then we will present RoVEn and
how an example robot (an hexapod) was realized in order to verify the efficacy of
the proposed method. At the end some results and conclusion are presented.

2 Cellular Neural Networks

Cellular Neural Networks [6] are dynamical systems composed by a lattice of
analog non linear circuits called cells. The structure of a CNN is a grid of one,
two or three dimensions, in which each cell is connected to the nearest cells of
the grid. In this paper we refer only to two-dimensional CNNs.

Given a CNN of LxK cells, it is possible to define a parameter r (ray) that
specifies the length of the neighborhood of cells that are connected to each other.
In a more formal way, we define Nr(i, j) as the set of cells that belong to the
neighborhood of ray r of the cell C(i, j) or

Nr(i, j) =
{

C(l, k) : max(|l − i|, |k − j|) ≤ r
1 ≤ l ≤ L; 1 ≤ k ≤ K

The contour so defined exhibits a symmetric property, in the sense that if
C(i, j) ∈ N(l, k) then C(l, k) ∈ N(i, j) for every C(i, j) and C(l, k) of the net.

A typical example of i, j cell is shown in Fig. 1. The notation u, x and y
means respectively the input, the state and the output of the cell. In particular,
the voltage on the node vxij of the cell C(i, j) is called state of the cell and its
initial value must be minus or equals to 1; the voltage on the node vuij , called
input of the cell, must be constant, with amplitude minus or equals to 1; finally,
the voltage on the node vyij is called output.

Looking at Fig. 1, one can see that each cell has:

Fig. 1. The circuital model of a CNN cell
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Fig. 2. The f function

– an independent voltage generator Eij ;
– an independent current generator I;
– a linear capacitor C;
– two linear resistors Rx and Ry;
– (2r + 1)2 linear current generators voltage controlled, that are coupled with

the other cells of the neighborhood through the vulk, vylk and vxlk voltages.

In particular, Ixy(i, j; l, k) and Ixu(i, j; l, k) are the generators with the cha-
racteristics:

Ixy(i, j; l, k) = A(i, j; l, k)Vylk

Ixu(i, j; l, k) = B(i, j; l, k)Vulk

Moreover, the only non-linear element in each cell is the current generator
voltage controlled:

Iyx =
1

Ry
f(Vxij)

Where f , represented in Fig. 2, is defined as:

f(xij) =
1
2
(|xij + 1| − |xij − 1|)

2.1 CNN Model

Using the Kirchkoff’s laws for the circuit on Fig. 1, it is possible to obtain the
mathematical model of a CNN cell:

C
dvxij(t)

dt
= − 1

Rx
vxij(t) + A(i, j; l, k) vyij(t) + B(i, j; l, k) vuij + I (1)

Let’s notice that:

– a generic cell is central if its neighborhood has (2r + 1)2 cells; of frontier
otherwise;

– cells have local interconnections, but cells not directly connected can influen-
ce each other through the propagative effects of the continuum-time dynami-
cs of the CNN;
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– the dynamics of a CNN has three feedback mechanisms: on the output, on
the input and on the state of the system. These feedback effects depend by
the parameters A(i, j; l, k) and B(i, j; l, k), called respectively feedback op-
erator or feedback template and feed-forward operator or feed-forward tem-
plate. Templates parameters stand for the weights of the state equations
and, with the parameter I called bias or threshold, they complete the CNN
specification.

2.2 CNN Matrices

Equation 1 can be rewritten in the form:

ẋij(t) = − 1
RxC

xij(t) + A(i, j; l, k) yij(t) + B(i, j; l, k) uij + z (2)

where z is the threshold. Templates can be expressed in a matrix form; for
example, for r = 1 we have:

A =

⎛⎝A(i, j; i − 1, j − 1) A(i, j; i − 1, j) A(i, j; i − 1, j + 1)
A(i, j; i, j − 1) A(i, j; i, j) A(i, j; i, j + 1)

A(i, j; i + 1, j − 1) A(i, j; i + 1, j) A(i, j; i + 1, j + 1)

⎞⎠

B =

⎛⎝B(i, j; i − 1, j − 1) B(i, j; i − 1, j) B(i, j; i − 1, j + 1)
B(i, j; i, j − 1) B(i, j; i, j) B(i, j; i, j + 1)

B(i, j; i + 1, j − 1) B(i, j; i + 1, j) B(i, j; i + 1, j + 1)

⎞⎠
The parameters of the circuit can be scaled and it is often convenient to

rewrite the equation 2 in the following dimensionless normalized form, that is
the cell state equation:

ẋij(t) = −xij(t) + A ∗ yij(t) + B ∗ uij + z

As we will show, it is not so easy to find the coefficients of these matrices.
This is the main aim of our work, in order to create a robotic control based on
these dynamical systems.

3 Genetic Algorithms

Genetic Algorithms, invented by John Holland [7], are optimization methods
used to solve a large class of problems where the classic techniques do not supplies
a valid support. GAs have been used for evolving robot’s control by a large
number of researchers [8], [9], [10].

CNN can be totally specified by a set of parameters as well. These parameters,
put in a string, become the DNA of the system, where each of these features
stands for a gene. In particular, we used as genotype of the CNN the feedback
and feed-forward matrices. Instead, phenotype is a robot whose CNN parameters
are specified.
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An important phase of the GA method is the evaluation of the fitness of a
genotype. In our problem, this can be done by simulating the robot behavior in
a physical simulator and then extracting some information from this simulation
(e.g. Lagrangian parameters values and theirs derivate, distance covered, etc.).
Such information are the variables of a function called fitness function that
assigns a value to a genotype.

So, in our case, the scheme of a Genetic Algorithm is the following:

1. Generation of initial population of robots, whose parameters of the CNN are
randomly generated;

2. Fitness evaluation on robot’s behavior calculating the fitness values for each
robot;

3. Selection of a percentage of robots with the best fitness values;
4. Reproduction of new borns whose genotype is obtained by cross-over and

random mutation;
5. Go to step 2: allows for the repetition of the cycle.

The fitness function will be given after introducing the system we have
developed.

4 RoVEn

RoVEn is a software allowing for the creation of complex robotic structures,
starting from simple rigid bodies, that can be generated as regular 3D geometries
or imported from VRML files. Subsequently, it is possible to connect these bodies
each other trough spherical joints that contain servo-motors.

We used Java3D™ framework [11], for the graphical part, and the Open Dy-
namic Engine (ODE) [12] for the physical simulation.

Spherical joints can be appropriately designed with some properties which
allow for binding each Degrees Of Freedom (DOF) of the joint.

Other parameters, called Elevation Random Range (ERR), Azimuth Ran-
dom Range (ARR) and Tilt Random Range (TRR) permit to choose the range
of angles according to which the body rotates. These parameter values are cho-
sen arbitrarily by the program when the simulations start. This procedure is
activated for changing initial conditions at any simulation.

It is possible to connect to the robot various kind of sensors, among which
position sensor and camera sensor play an important role in the simulation.
The first is a sensor returning its position in the absolute coordinates system.
The second is an image acquisition camera that returns a picture of nxn pixels
(where n is a user selected value) of the world, taken from its point of view.

Once a robotic structure is created, it is possible to control each actuator
by a control system that can be obtained by programming it in the Java™ pro-
gramming language. The control system can be put into RoVEn as a plug-in,
and then sensors and actuators can be connected by a control panel. As will be
explained below, the main aim of our work is the development of such control
system in order to model robot’s behavior using Cellular Neural Networks. The
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reason that brought us to develop a new simulation software is that in RoVEn
it is easy to obtain control systems genetically. In fact, we developed a module
that permits to run a sequence of simulations, generated by the GA procedure,
directly in the RoVEn environment. In this way we are able to evolve these
control systems in order to perform assigned tasks.

5 Hexapod Robot

The robot we have used as prototype (Fig. 3) has been built by a body to which
are connected six legs, each of them is made by two pieces. Each of these piece
is connected by spherical joints. For each leg, a first spherical joint connects the
leg to the body (internal joint), while the second one connects the second piece
of the leg to the first one (external joint) (Fig. 4).

Fig. 3. The hexapod robot

Even if each joint is spherical, in order to simplify the problem, we set up the
properties EB and TB of the internal joints to the couple of values -1, 1 that hinder
two DOF. So the joints become a cylindrical hinge. With this configuration (that
leaves free only the azimuth), the internal joints can only move the legs ahead and
behind. Furthermore, the properties AB and TB of the external joints are set up
to the couple of values -1, 1 in order to hinder two DOF except for the elevation
rotation (that raises and lows the second part of the leg).

Moreover, the elevation is bounded in a range of values that goes from -45° to
0°, and the azimuth is bounded in a range of values that goes from -20° to +20°.
This is done to prevent that one leg can touch another one and create problems
in the simulator.

Fig. 4. Robot’s leg
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Fig. 5. Connection scheme of CNNs and motors

Table 1. Connection scheme of CNN cells and motors

CNN 1 CNN 2

IFLJ IFRJ EFLJ EFRJ
IMLJ IMRJ EMLJ EMRJ
IBLJ IBRJ EBLJ EBRJ

A position sensor is attached in the front side of the robot in order to know
its position when required.

5.1 CNN Control System

Together with RoVEn, we developed simple control systems that are supplied
directly by the program. For example, one of this permits to control actuators
and to read sensors status by a graphical interface; another one permits to assign
as input, for each parameter of a motor, a time-series, taken from a text file.

The CNN Control System (CCS) we developed is a software version of the
CNN circuit, in which one can connect to each cell any sensor in the virtual
environment as input; while the output of the cells can be the input for actuators.
This connections are realized by using functions of the RoVEn SDK.

In our experiments we used two CCS 3x2 (six cells); one CNN is connected
to the internal joints, and one is connected to the external joints (Fig. 5). Since
the robot has six legs, there are 6 + 6 hinges, each one has a motor connected
to a cell of a CNN. The output of each cell is the input for the motors as shown
in Table 1.

In this table, the following convention is used: the first letter indicates an
internal joint (I letter) or an external one (E letter); the second letter indicates
a frontal, middle or back joint (F, M, B letters); the third letter indicates a left
or right joint (L or R letters), finally the last letter (J) represents a joint.

Moreover, the first CNN takes as input the value of the angular sensors inside
the hinges – the association cell-hinge is the same as the output – while the
second CNN takes as input the output of the first (first cell of CNN 1 is connected
to the first cell of CNN 2, second cell of CNN 1 is connected to the second cell
of CNN 2, and so on).
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6 Evolution

The GA scheme above presented can be improved to obtain more efficient robots.
Here we present the features we used in our implementation:

– Single point cross-over: the cross-over of the step 4 of the GA is done by
dividing in the same point the genotype strings of the two parents, and then
obtaining a new child, choosing the first piece from parent 1 and the second
piece from parent 2;

– Mutation: a percentage of genes (usually not more than 3%) randomly chosen
is changed into a new random value;

– Elite strategy: a percentage of the population with best fitness is copied
without been modified in the next generation;

– Fitness overestimation: fitness value for the genotype i is given by:

max(vali,j−1, vali,j)

where vali,j−1, vali,j are respectively the fitness value of the genotype i at
the previous j − 1 and the current j generation.

Note that with the fitness overestimation, the graph of the fitness values for
each generation, represents a monotonic function.

Since our aim is to evolve robots able to walk straight forward, the fitness
function is given by the distance covered by the robot. Actually, it is done by
checking the state of the position sensor in the front side of the robot’s body.
As the simulation time is the same for each robot, the distance divided by time
gives the mean velocity, so robots have higher fitness as they walk faster.

The feedback matrix is set up with all coefficients equals to 0 except for the
central one, which is equals to 1. The feed-forward matrix is evolved and the
threshold is given by the mean of the thresholds of the parents.

In our experiments, we ran evolution for about 50 iterations. Evolving both
CNN simultaneously can bring some undesirable instability phenomena (i.e. the
CNN evolution cannot have time to synchronize with the other one because

Fig. 6. Fitness diagram for the best evolution obtained. The abscissa report the number
of the generation and the ordinate report the fitness value.
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it is mutating too fast). For this reason the evolution is done considering one
CNN at time. At the beginning, each robot has one CNN whose parameters are
generated randomly, according to some conditions specified in the user interface
(in our experiments values of each coefficients must be in a range of values equals
to -1, 1). The other CNN is static, and the feed-forward value is chosen with a 1
for some coefficients and 0 elsewhere. At the end of the evolution the two CNN
are switched and the GA works on the second CNN. This procedure is done for
3 or 4 times.

7 Results and Conclusions

As result we got very interesting robots whose behavior is similar to real insects.
In fact, the robot’s legs alternate the movements of the legs in a coordinated
way. In this way, the robot always maintains both static and dynamic stability.

Many experiments have been run. The best evolved robot has got a fitness of
4.1 cm in 20 seconds and its fitness diagram is shown in Fig. 6.

The presented method has given satisfactory results, demonstrating that the
evolutionary process, used for evolving Artificial Neural Networks can be applied
effectively to Cellular Neural Networks as well.

With this method, many classical robotic problems – such as locomotion on
different terrain, obstacle avoidance, etc. – can be studied, while the robotic
structure can be varied as well.
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Abstract. “Learning” has been well studied in several research areas such as 
psychology, brain science, computer science and robotics. In these studies, 
many experiments using animals have been performed. On the other hand, sev-
eral researchers have been studying adaptive interactions and task learning 
through interactions between humans and robots. We then focus on adaptive in-
teractions between animals and robots. The purpose of our research is to de-
velop a framework of adaptive interactions between animals and robots through 
interaction experiments between rats and a robotic rat. We propose a novel be-
havior generation algorithm for the robot to enable it to autonomously teach a 
simple behavior task to rats as an example of adaptive interaction. This algo-
rithm was implemented in the robot and the experimental setup, and then veri-
fied through the experiment. 

1   Introduction 

Many studies on “learning” are performed in various research areas such as psychol-
ogy, brain science, computer science and robotics. Before the 19th century, “learning” 
was studied by philosophers. Early studies on “learning” from a positive scientific 
viewpoint started in psychology. In the earlier part of the 20th century, “learning” was 
studied in animal psychology. 

Since the theory of evolution published by Darwin (1809-1882), animal psychol-
ogy has been playing a very important part and contributing to clarifying the human 
mind [1]. Many studies on animal behavior focusing on their learning ability or 
mechanisms have been performed, and many effective results are reported. For in-
stance, Thorndike (1874-1949) established the concept of “trial and error,” a basic 
principle of learning psychology, through experiments using the “puzzle box” (“prob-
lem box”) [2]. Skinner (1904-1998) developed the “Skinner Box” and conducted 
experiments using rats. He then advanced Thorndike’s concept and established the 
concept of “Operant Conditioning” [3]. From the latter half of the 20th century, brain 
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scientists and neuroscientists started to study the learning mechanisms of animals. For 
instance, Rudy and Sutherland reported the relationship between brain activity and 
behavior learning [4] [5]. 

Referring these studies, some computer scientist then started to study recreating the 
learning ability of animals as artificial intelligence. For instance, the model of “rein-
forcement learning” was developed based on “operant conditioning” [6]. Doya then 
expanded it and implemented it in small mobile robots named “cyber rodent” [7] [8]. 
Using them, he has been trying to represent adaptive behavior of rodents. Yamada and 
Yamaguchi also implemented the reinforcement learning in an AIBO for natural and 
adaptive interaction with humans [11]. Furthermore, several researchers have been 
studying adaptive interactions between humans and robots [9] [10]. These robots also 
have some kind of adaptive models inspired from animals. Robots that learn and ob-
tain new skills and behavior through interactions with humans and the environment 
are useful for people without special knowledge of robotics. These robots are ex-
pected as nursing-care robots and personal robots in the recent aging society. 

As stated above, the studies on animals have given many useful ideas to the re-
searchers in intelligent robotics and artificial intelligence. We then considered that 
experimental studies on adaptive interaction between robots and animals from animal 
psychological viewpoint could contribute to developing framework of that. Thus, the 
aim of our study is to develop frameworks in adaptive interactions between animals 
and robots through the interaction experiment between them. We believe these frame-
works would give several useful ideas to design adaptive interactions between hu-
mans and robots. We selected rats as the first target because of their abundance in 
previous works in animal psychology. Some researchers have also been studying 
interactions between animals and robots. In United States, Sanjay developed a behav-
ior model of rats and then integrated this model into a small mobile robot [12]. In 
Switzerland, the studies on social interaction between cockroaches and a robot have 
been performed [13]. 

Since 1995, we have been developing experimental setups and small mobile robots 
as robotic agents. Using them, we have been conducting several interaction experi-
ments between rats and the robots. In 2003, we developed WM-6, a rat-robot that had 
two levers as shown in Figure 2 and an experimental setup for long-time experiments 
(over 24 hours or more) as shown in Figure 1. We then conducted the interaction 
experiment and succeeded in conditioning (training) the rats to perform a simple task, 
which was pushing the levers on WM-6 to obtain food as shown in Figure 3. In this 
experiment, the experimenter pushed the levers on WM-6 in front of the rats in order 
to demonstrate the lever-pushing task. The rats then modified their behavior and fi-
nally learned the rule between lever pushing and food feeding [14].  

We then considered that the robot could teach the lever-pushing task to the rats by 
itself instead of being demonstrated by the experimenter. Therefore, a novel behavior 
generation algorithm for a robot that enables it to autonomously condition rats to 
perform a simple task was developed introducing the idea of “shaping” [15]. In this 
paper, we describe the behavior generation algorithm for a robot to teach a behavior 
task as an example of learning through interaction. We then report the experimental 
evaluation of this algorithm. Finally, we propose some techniques to design robot’s 
behavior in the situation that it teaches behavior tasks to animals. We also discuss 
how to expand this algorithm into several kinds of adaptive interactions. 
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2   Shaping 

“Shaping” is a method of operant conditioning proposed by Skinner [16]. This is one of 
the most effective methods of conditioning subjects, such as animals or humans, to 
perform difficult or complex behavior tasks that would rarely occur spontaneously. 
Skinner said it is possible to condition the performance of such difficult behavior tasks 
by dividing the conditioning process into small steps. In the first step, the subjects 
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are conditioned to perform a simple behavior task that is associated with the required 
complex task by selective reinforcement. In the second step, the subjects are condi-
tioned to perform a slightly difficult behavior task that is more strongly associated with 
the required task. In this way, by increasing the difficulty of the conditioning in a step-
by-step manner, it is possible to condition the subjects to perform a complex behavior 
task. “Shaping” is also used as a technique in behavior therapy to treat mental disorder 
and psychological problems in human beings [17]. 

Using this method, Skinner conditioned a rat to push a lever on the wall in the 
Skinner box to obtain food. At the first step, he conditioned the rat to look at the lever 
to obtain food. He then increased the difficulty of conditioning step by step and fi-
nally succeeded in conditioning the rat to push the lever to obtain food. 

3   Robotic Agent; WM-6 

We developed a small mobile robot as a robotic agent, WM-6 (Waseda Mouse No. 6) 
as shown in Figure 2. The mobility and dimensions are almost equal to those of ma-
ture rats as shown in Table 1. WM-6 is wirelessly controlled by a PC and consists of 
two levers, two driving wheels, a microcontroller, a Bluetooth wireless communica-
tion module, and a Li-ion battery. 

3.1   Mobile Mechanism 

WM-6 has 2 drive wheels and 1 passive omni-directional ball caster. Each drive 
wheel is separately actuated by a DC motor with planetary gear reduction and is 
mounted on the left and right sides of the rear portion while the ball caster is mounted 
on the center of the front end. Due to this mobile mechanism, WM-6 is non-
holonomically constrained. 

3.2   Power Supply 

A Li-ion battery is selected as the power supply unit for WM-6, since it is simple to 
measure the remaining battery level using the battery voltage. WM-6 has a Li-ion 
battery pack (7.2 [v], 1500 [mAh]). WM-6 operates constantly for a minimum of 120 
[min] with one fully charged battery. In addition, the battery exchanger (described in 
Chapter IV) automatically exchanges the battery on the robot without human han-
dling. Therefore, it is possible to perform the interaction experiments for over 120 
[min] without human interruption to exchange the battery. 

Weight                            g 540 

Length                           mm 170 

Width                            mm 85 

Height                           mm 100 

Max speed                     m/s 1.0 

Max rotational speed   deg/s 270 

 

Table 1. Specifications of WM-6 
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3.3   Electronic System 

WM-6 has a microcontroller PIC (16F877, 20 MHz, Microchip ltd.) and a Bluetooth 
communication unit. The microcontroller controls the directions and velocities of 
the left and right wheels separately (via DC motors) according to instructions sent 
from the PC. In addition, the microcontroller measures the battery voltage and 
states of each lever (described later) before sending these data to the PC every  
100 [ms]. 

Bluetooth communication supports two-way communication and its energy con-
sumption is low; it is thus suitable for small mobile robots. WM-6 has a standby bat-
tery for the Bluetooth communication unit to maintain the power supply while the Li-
ion battery is being exchanged. 

3.4   Interaction Module; Levers 

WM-6 has two levers to interact with rats. Since Skinner’s experiment, levers have 
been used in many experiments using rats. Pushing levers is not an innate behavior of 
rats, meaning that it is highly likely that pushing the levers observed in experiments is 
an intentional behavior. 

The dimensions of the levers are 20 x 30 [mm] identical to the Skinner box, and 
they are colored blue and yellow respectively for image processing. These levers 
consist of touch sensors that are electrically connected to the microcontroller and the 
logic level of each touch sensor is also sent to the PC through the microcontroller. It is 
possible to use these data as variables on the operation generator module in the PC. 
For example, in Figure 3, WM-6 moves to the front of the food-feeding machine 
when the lever is pushed. We consider these two to be levers are input devices of 
WM-6. 

10
00

 [
m

m
]

1000 [mm]
 

Fig. 4. Top view of the experimental setup 
consisting of a square “open field” with the 
feeding machines 

Fig. 5. Positions of rat and WM-6 computed 
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4   Experimental Setup 

The experimental setup as shown in Figure 1 was developed. The interaction experi-
ments between the rats and WM-6 are conducted in an “open field,” 1000 [mm] 
square flat area surrounded by a wall of 450 [mm] high (Figure 4). The food-feeding 
machine, water-feeding machine and the battery exchanger are mounted on the wall. 
A CCD camera is positioned above the open field and sends images of the experiment 
to the PC every 30 [ms]. The PC automatically controls WM-6, the food-feeding 
machine, the water-feeding machine and the battery exchanger.  

4.1   Food-Feeding Machine and Water-Feeding Machine 

The food-feeding machine consists of a microcontroller PIC (16F877, 20 [MHz]) and 
a stepping motor. This machine releases a food pellet of 45 [mg] into a plastic bowl 
on the field when it receives an instruction sent from the PC. 

4.2   Battery Exchanger 

The battery exchanger consists of a microcontroller PIC (16F877, 20 [MHz]), elec-
tromagnets for attracting the batteries, 2-DOFs arm and a charger. WM-6 moves to 
the front of the battery exchanger when the battery on the robot is running low. The 
PC then sends an instruction to the battery exchanger. After that, the arm attracts the 
dead battery on the robot via electromagnets and exchanges it for a fully charged 
battery on the charger. 

4.3   Control PC 

Software that automatically controls WM-6 and all the machines is installed in a PC 
(CPU; Pentium IV 3.4 GHz, OS; Windows XP) that has an image-processing board 
and two Bluetooth communication units. This software consists of some software 
modules involving an image-processing module, operation generator module, robot 
controller module and device controller module. Therefore, it automatically conducts 
the interaction experiments and records the data without human intervention. 

The image-processing module receives images from the CCD camera via the im-
age-processing board. This module then computes the gravity points of the rat and the 
robot respectively every 100 [ms] (Figure 5). This module also saves the positions of 
the rat and the robot, and their movement distances respectively every 1 [sec] using 
CSV format. 

The operation generator module generates the motion of WM-6 and the operation 
of the experimental setup based on pre-programmed patterns (e. g. Figure 3). For 
these patterns, experimenters can use variables such as the robot’s position, the rat’s 
position, the state of each lever on the robot, and the battery voltage of the robot. The 
behavior generation algorithm for autonomous teaching is included in this module. It 
is described in the next chapter. 

The robot controller module determines the robot’s movements according to the 
motions generated by the operation generator module. This module then controls 
WM-6 to move to the target point by controlling the directions and the velocities of 
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each motor according to the distance and angle relative to the target point from the 
current point.  

5   Behavior Generation Algorithm for Teaching 

A novel behavior generation algorithm that enables WM-6 to teach lever-pushing task 
to rats is being developed introducing the idea of “shaping.” The lever-pushing task is 
shown in Figure 3. In this task, rats have to push levers on the robot to obtain food, 
while the robot usually remains at its home position. When the rat pushes the levers 
on the robot, the robot moves to the front of the food-feeding machine and then stays 
there for three seconds. During the time that the robot stays there, the food-feeding 
machine releases a food pellet if the rat moves there. After these three seconds, the 
robot returns to the home position.  

This behavior task looks simple and easy to learn. However, it is much harder for 
rats than the lever-pushing task in the Skinner box due to the movement of the robot. 
In fact, the rats never learned this behavior task without any teaching in our previous 
experiments [14]. Thus, the robot has to autonomously behave to show the rules be-
tween the lever-pushing task and food feeding. 

Start

Reinforcing
Rat’s motivation

Rat moves 
actively?

No

Conditioning 
to approach robot

Rat have 
learned to approach

the robot? 

No

Yes

Conditioning 
to push levers

Yes

NoRat have
learned to push

the levers?

Finish

Yes

Step1 Step2 Step3  

Fig. 6. Behavior generation algorithm for teaching lever-pushing 

5.1   Design of Behavior Generation Algorithm 

In psychology, the method of “shaping” is used for this kind of complex task learning. 
We designed the behavior generation algorithm for the robot introducing the idea of 
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“shaping.” Therefore, the learning process until the rats learn the lever-pushing task is 
divided into three steps (Step 1, Step 2, and Step 3). We then determined the target 
behavior or task in each step. We also constructed operational patterns of the setup 
and robot in each step to increase the chances of the target behavior appearing in the 
rats as shown in Figure 6.  

Step 1: Reinforcement of the rat’s motivation 
The target behavior of this step is active movement, the simplest kind of behavior. 
Rats rarely move in an environment that they have never previously experienced due 
to their natural sense of caution. Therefore, in this step, the food-feeding machine 
routinely releases ten food pellets every 1 hour. In our previous experiment, the rats 
that had obtained food in the open-field moved actively compared to those that had 
not. Therefore, we believe that these routine feedings are effective in reinforcing the 
rat’s motivation to move. When the total movement distance of the rat exceeds 50 
[m], this step is finished and the next step is started. 

Step 2: Conditioning the rat to approach to WM-6 
The target behavior of this step is the approach to the robot. To attract the rat’s inter-
est in WM-6, the robot routinely moves to the front of the food-feeding machine and 
this machine then releases a food pellet at the moment at which the robot arrives. We 
believe that the rat learns the relationship between the robot and the feedings through 
these routine movements and feedings. It is then expected that the rat would be inter-
ested in WM-6 and hence approach it. 

The rat’s approach to the robot is detected by image processing. When drr, the 
distance between the rat and the robot, is less than Dap, the threshold of approach 
detection, the approach is detected. When the rat’s approach to WM-6 is detected, 
the robot moves to the front of the food-feeding machine. To reinforce the approach 
of the rat to the robot, the food-feeding machine then releases a pellet. After that, 
the robot returns to the home position. When the number of detections and rein-
forcements of approaches exceeds 200, this step is finished and the next step is 
started. 

Step 3: Conditioning the rat to push the levers 
The target behavior of this step is pushing the levers on WM-6. At the beginning of 
this step, when the rat approaches the robot, the robot moves to the front of the 
food-feeding machine and this machine then releases a pellet. After 200 reinforce-
ments, Dap, the threshold of approach detection, is reduced every time the rat ap-
proaches the robot. We believe that the rat would then approach the robot more 
closely, and it is subsequently expected that the rat would occasionally push the 
levers on the robot. 

When the rat pushes the levers on WM-6, the robot moves to the front of the food-
feeding machine and this machine releases a pallet. In this way, the rat would be con-
ditioned to push the levers on the robot. When the number of times that the lever is 
pushed exceeds 200, this step is finished. In this way, we believe that rat can be con-
ditioned to push levers to obtain food.  
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5.2   Implementation 

This behavior generation algorithm is implemented in the operation generator module 
in the PC. The behavior of WM-6 and the operation of the setup are automatically 
generated according to this algorithm. The PC then automatically controls the ex-
perimental setup and WM-6 without any human operation or intervention. Thus, the 
experimenter has to just release the rat that has no experience of experiment into the 
experimental setup. The setup and the robot then autonomously condition the rat to 
perform lever-pushing task in a couple of days. 

6   Experimental Evaluation 

An experimental evaluation for the behavior generation algorithm for teaching was 
performed with the experimental setup. 

6.1   Procedure 

The experiment is performed autonomously using the experimental setup implement-
ing the behavior generation algorithm for teaching. Three rats were used in this ex-
periment. They were male albino rats without any experimental experience and bred 
singly in breeding cages. Before the experiment, they were made hungry by food 
restriction. Table 2 shows the conditions of the rats at the start of this experiment. 

Each trial was conducted using a single rat autonomously without any human in-
tervention. The rat was released into the experimental setup at the start of each trial. 
Until the number of times that the lever was pushed exceeded 200, the rat was left 
there. 

6.2   Results 

In this experiment, all three rats learned to push the levers on WM-6 to obtain food. In 
the case of Rat 1, the time required to learn the lever-pushing task was 9360 min (156 
hour), in the case of Rat 2, it was 3260 (55 hour), and in the case of Rat 3, it was 5320 
min (89 hour). Table 3 shows the time that these rats required to finish each step. The 
cumulative number of movements, approaches to the robot, and lever pushings of 
each rat are shown in Figure 7.  

 

Table 2. Condition of the rats used in the 
evaluation experiment 

Experimental Group 
 

Rat 1 Rat 2 Rat 3 

Age [weeks] 75 15 15 

Weight [g] 320 270 260 

Table 3. Experimental result; time re-
quired for finishing each step [min] 

 Rat 1 Rat 2 Rat 3 

Step 1 430 50 240 

Step 2 6080 1850 1950 

Step 3 9360 3260 5320 
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Fig. 7. Experimental Result; cumulative number of movement, approach to the robot, and 
lever pushing of each rat 
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6.3   Consideration 

All three rats learned the lever-pushing task to obtain food, whilst the rats in the pre-
vious experiments in which the robot did not behave autonomously never learned 
[14]. Therefore, the behavior generation algorithm for teaching was verified. 

The times required to learn the lever-pushing task are different for each rat. Rat 1 
required the longest time to learn the task of all three. The learning curves of Rat 1, as 
shown in Figure 7 (a), slowly increase from the beginning to the end, while rapid 
points of increasing are found in those of Rat 2 and Rat 3. As shown in Table 2, the 
age of Rat 1 and those of Rat 2 and 3 are different. Generally, a rats’ lifespan is two or 
three years. Therefore, we consider that Rat 1 is over middle age, and that Rats 2 and 
3 are young. Thus, we believe that the differences in their learning curves show dif-
ferences in their learning ability depending on age. 

7   Summary and Discussion 

The purpose of our study is to develop frameworks of adaptive interactions between 
animals and robotic agents. As an example of this, we developed a behavior genera-
tion algorithm for a robot to enable it to teach lever-pushing task to rats introducing 
the idea of “shaping.” We then implemented it in the experimental setup and the ro-
botic agent WM-6, and experimentally verified it. In the experiment, the robot under-
stood rat’s learning level and changed the “step” depending it. At the moment, the rat 
learned the behavior task through the interactions with the robot. Thus, we believe 
this experiment can be said a simple example of adaptive interaction. 

Through this experiment, we proposed three ideas to design robot’s behavior in the 
situations that it teaches behavior task to animals. The first is that robot should change its 
behavior depending learning level of the animals. The second is that the learning process 
should be divided into several small steps based on the concept of “shaping.” The third is 
that design of robot’s behavior is important to let the rat obtain new behavior.  

The behavior generation algorithm for teaching that we developed is just for the 
lever-pushing task. However, the design method of behavior generation algorithms 
for the robotic agents based on the idea of “shaping” is useful for many kinds of ro-
botic agents. The next step of our study is to develop the design method much more 
clearly. Therefore, we should consider methods of dividing behavior tasks into small 
steps and constructing operation patterns in each step.  

We also have another idea of multi-branching shaping. In this paper, we used one-
way and one-line without-branching “shaping.” We consider the idea of multi-
branching shaping, which has some options in each step, is useful and effective for 
task teaching. A major problem in implementation is choosing the most suitable 
branch. Therefore, we have to develop an algorithm that enables robots to choose the 
most suitable branch in their options interacting with rat. 
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Abstract. In imitation learning, agents are trained to carry out certain
actions by examining a demonstration of the task at hand. Though com-
mon in robotics, little work has been done in translating these concepts
to computer games. Given that present-day games generally use anti-
quated AI techniques which can often lead to stilted, mechanical and
conspicuously artificial behaviour, it seems likely that approaches based
on the imitation of human players may produce agents which convey a
more humanlike impression than their traditional counterparts. At the
same time, there exists no formal method of quantifying what constitutes
a ‘humanlike’ impression; an equivalent of the Turing test is needed, with
the requirement that an agent’s appearance and behaviour be capable of
deceiving an observer into misidentifying it as human. The aims of this
paper are thus threefold; we describe an approach to the imitation of
strategic behaviour and motion, propose a formal method of quantifying
the degree to which different agents are perceived as ‘humanlike’, and
present the results of a series of experiments using these two systems.

1 Introduction

Imitation learning, as the name suggests, refers to the acquisition of skills or
behaviors through examination of a demonstrator’s execution of a given task.
Imitative techniques have been adopted by many researchers in robotics as a
means of ‘bootstrapping’ their machines’ intelligence, providing them with a
high level of competence after a comparatively short training period [1]. Demiris
and Hayes [2], for instance, train an apprentice robot to navigate a maze by
imitating the actions of a demonstrator agent. Schaal [3] proposes a control-based
approach to imitating a tennis swing from demonstration. Fod, Mataric and
Jenkins [4] outline various statistical approaches to deriving movement primitives
from observed human motion.

Despite the interest exhibited by the robotics community, however, very few
attempts have been made to apply these principles to interactive computer
games. Indeed, even the most modern games still predominantly rely on symbolic
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artificial intelligence techniques that were developed several decades ago [5,6].
Given that many modern games allow the recording of entire sessions, and that
– rather than limb movement data, as is common in robotic imitation – these
recordings encode the frame-by-frame behaviour of the player under complex,
rapidly-changing conditions and in competition with opponents of comparative
skill, it becomes clear that computer games are an ideal platform for research
in imitation learning. In this paper, we detail part of our work in this area;
a Bayesian-based approach to the derivation and imitation of human strategic
behaviour and motion patterns in commercial computer games. In conjunction
with the believability-testing system described below, we then demonstrate its
effectiveness in producing convincingly humanlike game agents.

When evaluating imitation agents, three distinct metrics are applicable: i)
statistical analysis of the accuracy with which the observed behaviours are
reproduced; ii) believability testing to verify whether the cloned agent ef-
fectively conveys the impression of being human; iii) performance-based as-
sessment of the imitation agent in direct competition against other agents and
human players. This paper concerns itself with believability testing. A significant
impediment to work in this field is the lack of a formal, rigorous standard for
determining how ‘humanlike’ an artificial agent is, or any strict means of com-
paring the believability of different agents. While some contributions compare
observers’ reactions to artificial and human players [7], these have invariably
been of a very limited, informal and often inconclusive nature. Imitation learn-
ing holds obvious potential as a method of producing more credible agents, but
there has thus far been no means of empirically assessing this credibility; the
need for a perception- and behavior-based analogue to the Turing test is clear
[8]. To address this need, we introduce a formal method of quantifying the de-
gree to which cognitive agents are perceived as ‘humanlike’, and of facilitating
the objective comparison of different agents. This method has been designed to
minimize the subjectivity associated with such surveys, and to produce a be-
lievability index weighted according to both the observer’s experience and the
certainty with which the agents are identified.

The first-person shooter (FPS) genre – wherein players explore a 3D environ-
ment littered with weapons, bonus items, traps and pitfalls, with the objective
of defeating as many opponents as possible – was chosen for our work on the
basis that it provides a relatively direct mapping of human decisions onto agent
actions. Due to its prominence within the literature [9], we opted to use iD Soft-
ware’s Quake IIR© as our testbed. In order to extract the required data from its
recorded DM2 or demo file format – consisting of the network traffic received
during the game - and to realise the in-game agents (or bots, in game vernacular),
we employ our own QASE API and its MatLab-integration facilities [10].

2 Imitation Learning - Methodology

In this section, we outline our current approach to imitating human movement
and strategic behavior in Quake IIR© . The individual components of this ap-
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Fig. 1. Typical Quake IIR© environment

proach were introduced in previous publications [11,12], while a forthcoming con-
tribution describes their integration. Here, we briefly review the system; readers
are referred to the earlier publications for additional details.

2.1 Behaviour Model

The current model focusses on two core aspects of human behaviour; strategic
planning and motion modelling. A number of investigations [13,7] have found
that the ability of an agent to exhibit long-term strategic planning faculties
is a crucial factor in determining how humanlike it appears. The importance
of motion modelling is equally evident - human players frequently exhibit ac-
tions other than simply moving along the environment surface, including jumps,
weapon changes and discharges, crouches, etc. In many cases, the player can
only attain certain goals by performing one or more such actions; they there-
fore have an important functional element. From the perspective of creating
a believable agent, it is also vital to reproduce the aesthetic qualities they
encode.

2.2 Learning Goal-Oriented Strategic Behaviours

In Quake IIR© , experienced players traverse the environment methodically, con-
trolling important areas of the map and collecting items to strengthen their char-
acter. Thus, we define the player’s long-term goals to be the items scattered at
fixed points around each level. By learning the mappings between the player’s
status and his subsequent item pickups, the agent can adopt observed strategies
when appropriate, and adapt to situations which the player did not face.

We first read the set of all player locations l = [x, y, z] from the recording, and
cluster the points using a fast k-means to produce a goal-oriented discrimination
of the level’s topology. We also construct an n × n matrix of edges E, where
n is the number of clusters, and Ei,j = 1 if the player was observed to move
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from node i to node j and 0 otherwise. The player’s inventory – the list of what
quantities of which items he currently possesses – is also read from the demo at
each timestep, and unique state vectors are obtained; these inventory prototypes
represent the varying situations faced by the player during a game. We can now
construct a set of paths which the player followed while in each such situation.

Having obtained the different paths pursued by the player in each inventory
state, we turn to reinforcement learning to learn his behaviour. The topological
map of the game environment may now be viewed as a Markov Decision Process,
with the clusters corresponding to states and the edges to transitions.In this
scenario, the MDP’s actions are considered to be the choice to move to a given
node from the current position. Thus, the transition probabilities are P (c′ =
j|c = i, a = j) = Eij where c is the current node, c′ is the next node, a is the
executed action, and E is the edge matrix. We assign an increasing reward to
consecutive nodes in every path taken under each prototype, such that the agent
will be guided along similar paths to the human when facing similar situations.
With the transition probabilities and rewards in place, we now run a modified
version of the value iteration algorithm in order to compute the utility values for
each node in the topological map under each inventory state prototype.

A number of other features of human planning behaviour must also be taken
into account. Principal among these are the human player’s intuitive weighing
of strategic objectives, and his understanding of object transience – that is, a
collected item will be unavailable until the game regenerates it after a fixed
interval. To model these, we introduce a weighted fuzzy clustering approach and
an item activation variable:

mp(s) =
a(op)d−1(s, p)∑

a(oi)d−1(s, i)
(1)

where m is the membership, s is the current inventory state, p is a prototype
inventory state, P is the number of prototypes, a is 1 if the object o at the ter-
minal node of the path associated with prototype p is present and 0 otherwise,
and d−1 is an inverse-distance or proximity function. The membership distri-
bution implicitly specifies the agent’s current goals, which will later facilitate
integration with the Bayesian motion-modeling system. The final utilities are:

U(c) = γe(c)
∑

Vp(c)mp(s), ct+1 = max
y

U(y), y ∈ {x|Ec,x = 1} (2)

where U(c) is the final utility of node c, γ is the discount, e(c) is the number
of times the player has entered cluster c, Vp(c) is the original value of node c in
state prototype p, and E is the edge matrix.

2.3 Bayesian Motion Modelling

It is not sufficient to simply identify the player’s goals and the paths along which
(s)he moved to reach them; it is also necessary to capture the actions executed
by the player in pursuit of these goals. In a previous contribution [12], Thurau
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et al describe an approach based on Rao, Shon & Meltzoff’s Bayesian inverse-
model for action selection in infants and robots [14]. The choice of action at each
timestep is expressed as a probability function of the subject’s current position
ct, next position ct+1 and goal cg:

P (at|ct, ct+1, cg) =
P (ct+1|ct, at)P (at|ct, cg)∑
u P (ct+1|ct, au)P (au|ct, cg)

(3)

This model fits into the strategic navigation system almost perfectly; the clus-
ters ct and ct+1 are chosen by examining the utility values, while the current
goal state is implicitly defined by the membership distribution. In order to derive
the probabilities, we read the sequence of actions taken by the player as a set
of vectors v such that v = [Δyaw, Δpitch, jump, weapon, firing]. We then cluster
these action vectors to obtain a set of action primitives, each of which amalga-
mates a number of similar actions performed at different times into a single unit
of behavior.

Several important adaptations must be made in order to use this model
in the game environment. Firstly, Rao’s model assumes that transitions be-
tween states are instantaneous, whereas multiple actions may be performed
in Quake IIR© while moving between successive clusters; we therefore express
P (ct+1|ct, at) as a soft-distribution of all observed actions on edge Ect,ct+1 in
the topological map. Secondly, Rao assumes a single unambiguous goal, whereas
we deal with multiple weighted goals in parallel. We thus perform a similar
weighting of the probabilities across all active goal clusters. Finally, Rao’s model
assumes that each action is independent of the previous action. In Quake IIR© ,
however, each action is constrained by that performed on the preceding timestep;
we therefore introduce an additional dependency in our calculations. The final
probabilities are computed as follows:∑

g

mgP (at|ct, ct+1, cg)
P (at|at−1)∑
u P (au|at−1)

(4)

3 Believability Testing

As discussed earlier, there exists no standard method of gauging the ‘believabil-
ity’ of game bots, nor of objectively comparing this quality in different agents;
given that one of the central aims of our work lies in improving the believability
of such agents, this is clearly a shortcoming which needs to be addressed. The
most obvious means of determining the degree to which agents are perceived as
human is to conduct a survey. This, of course, immediately raises questions of
subjectivity, experimenter influence, and so on. In order to produce a credible
assessment of agent believability, any proposed system must be designed with
these concerns in mind. Our aims, then, are as follows: i) to construct a frame-
work which facilitates rigorous, objective testing of the degree to which game
agents are perceived as human; ii) to formulate a believability index expressing
this ‘humanness’, and allowing comparisons between different agents.
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The system developed to fulfil these criteria is described below. We outline the
structure of the survey and its applicability to the testing of agents in general,
using our own experiments to illustrate key concepts; we then describe these
experiments and their results in greater detail. The test itself can be taken at
http://reynard.computing.dcu.ie/sab tests/

3.1 Structure of the Believability Test

To counteract any potential observer bias, the test takes the form of an anony-
mous online survey. Respondents are first presented with detailed instructions
covering all aspects of the test. Before starting, they are further required to esti-
mate their experience in first-person shooter games, at one of five different levels.
Subjective judgements are avoided by explicitly qualifying each experience level:

1. Never played, rarely or never seen
2. Some passing familiarity (played / seen infrequently)
3. Played occasionally (monthly / every few months)
4. Played regularly (weekly)
5. Played frequently (daily)

Upon proceeding to the test itself, the respondent is present with a series of
pages, each of which contains a group of video clips. Each group shows similar,
but not identical, sequences of gameplay from the perspective of the in-game
character. This approach was adopted due to concerns that asking respondents
to view individual clips in isolation, with no basis for comparison against simi-
lar samples, would lead to a significant amount of subjectivity and guesswork.
Within each group, the clips may depict any combination of human and artificial
players; the respondent is required to examine the behaviour of the character in
each clip, and indicate whether (s)he believes it is a human or artificial player.
The clips are marked on a gradient, as follows:

1: Human, 2: Probably Human, 3: Don’t Know, 4: Probably Artificial, 5: Artificial

This rating is the central conceit of the survey, and will later be used to
compute the believability index. The respondent is also asked to specify how
many times (s)he viewed the clip (to a maximum of 3 times), and to provide an
optional comment explaining his/her choice. In cases where (s)he indicates that
(s)he believes the agent to be artificial, (s)he will be further asked to rate how
”humanlike” (s)he perceives its behaviour to be, on a scale of 1 to 10. This more
subjective rating is not involved in the computation of the believability index,
but may be used to provide additional insight into users’ opinions of different
agents. Having completed all required sections on each page, the user submits
his/her answers and moves on to the next.

3.2 Subjectivity, Bias and Other Concerns

Aside from the observer effect, there are several areas in which the potential
for subjectivity and the introduction of bias exist. Since our aim is to provide
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Fig. 2. Extract from the main believability test screen

an objective measure of believability, these must be eliminated or minimized. A
number of these issues are discussed below.

The first obvious pitfall lies in the selection of video clips. The selector may
deliberately choose certain clips in an effort to influence the respondents. To
guard against this, we first ensure that the number of samples is sufficient to
embody a wide variety of behaviours, and secondly, we cede control of the se-
lection of the specific behaviours to an unbiased arbiter. In our case, we wished
to compare the believability of our imitation agents against both human players
and traditional rule-based bots; thus, we first ran numerous simulations with
the traditional agent – over whose behavior we had no control – to generate a
corpus of gameplay samples, and then proceeded to use human clips embodying
similar behavior both in the believability test and to train our imitation agents.

Similarly, the order in which the videos are presented could conceivably be
used to guide the respondents’ answers. To prevent this, we randomize the order
in which the groups of clips are displayed to each user, as well as the sequence of
clips within each page; the test designer thus has no control over the order of the
samples seen by the user. Additionally, the filenames under which the clips are
stored are randomized, such that the respondent cannot determine the nature
of each clip based on examining the webpage source (e.g. clip 1 always human,
clip 2 always artificial, etc).

Another issue concerns the possibility that users will choose the ‘Probably’
options in a deliberate effort to artificially minimize their error and ‘beat’ the
test, or that they will attempt to average out their answers over the course of
the survey – that is, they may rate a clip as ‘human’ for little reason other than
that they rated several previous clips as ‘artificial’, or vice-versa. To discourage
this, we include notes on the introduction page to the effect that the test does
not adhere to any averages, that the user’s ratings should be based exclusively
upon their perception of the character’s behavior in each clip, and that the user
should be as definitive as possible in their answers. A related problem is that
of user fatigue; as the test progresses, the user may begin to lose interest, and
will consequently invest less effort in each successive clip. We address this by
including a feature enabling users to save their progress at any point, allowing
them to complete the survey at their convenience.

It is also imperative to ensure that the test is focused upon the variable under
investigation – namely, the believability of the agent’s movement and behavior.
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As such, the survey must be structured so as not to present ‘clues’ which might
influence the respondents. For instance, the tester should ensure that all clips
conform to a standard presentation format, so that the respondent cannot discern
between different agents based on extraneous visual cues - different players may
have used different in-game character models, individual player names, etc. To
this end, we run a script over the demo files to remove all such indicators and
homogenize them to a common format.

In the specific case of our imitation agents, this requirement that all extrane-
ous indicators be removed raises a conflict between two of our goals in conducting
the survey. If the players in two of the three clips we use on each page begin
from the same location and exhibit near-identical behavior, the respondent may
conclude through pure logical deduction that (s)he is probably viewing a human
and imitation agent, and consequently that the remaining clip is more likely to
be a traditional artificial agent. Note that this might not necessarily be true, but
even an incorrect answer based on factors other than believability will adversely
affect the accuracy of the results. We circumvent this problem by training imi-
tation agents with different (but similar) samples of human gameplay to those
actually used in the test. The resulting clips are therefore comparable, but do
not ‘leak’ any additional information; respondents must judge whether or not
they are human based solely on their appearance. At the same time, however,
we obviously wish to test how accurately our agents can capture the aesthetic
appearances of their human exemplars. To satisfy both requirements, a small mi-
nority of imitation agents are trained using the same human data as presented
in the survey; in the experiments described below, 2 of the imitation agents were
direct clones, while the remainder were trained on different data.

3.3 Evaluation of Results

Before evaluating the results of the survey, one should ensure that there have
been a substantial number of responses with a decent distribution across all
experience levels; a good ‘stopping criterion’ is to run the test until the aver-
age experience level is at least 3 (i.e. a typical gamesplayer). Standard analyses
(precision, recall, etc) can be carried out on the results; however, as mentioned
earlier, we also wish to formulate a believability index which is specifically de-
signed to express the agent’s believability as a function of user experience and
the certainty with which the clips were identified.

Recall that each clip is rated on a scale of 1 (definitely human) to 5 (definitely
artificial). Obviously, the true value of each clip is always either 1 or 5. Thus, we
can express the degree to which a clip persuaded an individual that the visualised
character was human as the normalised difference between that person’s rating
and the value corresponding to ‘artificial’:

hp(ci) =
|rp(ci) − A|

max(h)
(5)

where hp(ci) is the degree to which person p regarded the clip as depicting a
human, rp(ci) is person p’s rating of clip i, A is the value on the rating scale
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which corresponds to ‘artificial’, and max(h) is the maximum possible difference
between a clip’s rating and the value of ‘artificial’. In other words, hp(ci) will
be 0 if the individual identified a clip as artificial, 1 if he identified it as human,
and somewhere in between if he chose one of the ‘Probably’ or ‘Don’t Know’
options. We now weight this according to the individual’s experience level:

wp(ci) =
ephp(ci)
avg(e)

(6)

where ep is the experience level of person p and avg(e) is the mean experience
level. Finally, we sum the weighted ratings across all clips and respondents, and
take the average:

b =

∑n
p

∑m
i wp(ci)
nm

(7)

where b is the believability index, n is the number of individual respondents,
and m is the number of clips. The believability index is, in essence, a weighted
representation of the degree to which a given type of clip was regarded as human,
in the range (0, 1). In order to express the strength of the result and to facilitate
comparison between agents evaluated in different surveys, we also compute a
confidence index as follows:

c =
avg(e)
max(e)

(8)

where avg(e) is the average experience of the respondents, and max(e) is the
maximum experience level; the confidence index is thus conditioned upon a suf-
ficient level of expertise among respondents. In the context of the survey, then,
a ‘good’ result for an AI agent would involve a high value of b for both the agent
and human clips, together with a confidence index of 0.6 or greater (indicating
that respondents were, on average, significantly experienced).

4 Experiments

In this section, we detail an experiment carried out using the believability test
in conjunction with our imitation agents. The purpose of this experiment was
twofold; first, to evaluate the believability-test framework itself, and second, to
examine how believable our imitation agents were in comparison with human
players and traditional rule-based artificial agents.

The experiment consisted of 15 groups, with 3 clips in each; these clips were, on
average, approximately 20 seconds in length. We first ran numerous simulations
involving the rule-based artificial agent to derive a set of gameplay samples, and
then used similar samples of human players both in the test itself and to train
our imitation agents. The rule-based agent used was the Quake IIR© Gladiator
bot, which was chosen due to its reputation as one of the best bots available.

It should be noted that, since our imitation mechanism is designed to imitate
strategic navigation and human motion, combat was omitted from consideration
in this study. As one of our respondents commented, this filters out one variety
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Table 1. Believability/Confidence indices, Recall and Precision values. Recall values
consider classification as ‘human’ to be the desired results. Precision is estimated over
[human or imitation] identified as human, and rule-based agent identified as artificial.

Clip Type Believability Confidence Recall (%) Precision (%)
Human 0.69 68.08

Imitation 0.69 0.64 68.81
78.39

Artificial 0.36 36.69 50.87

of behavior from the agent’s repertoire, and has the effect – as with the original
Turing test – of reducing the opportunities for an observer to detect artificialities.
While the test can be used to accurately gauge how well our system captures
human strategy and movement, a further study involving combat behaviours is
essential. See Future Work for further discussion.

With the video clips in place, the URL of the survey site was distributed to
the mailing lists of several colleges in Ireland and Germany. After a one-week
test period, we had amassed a considerable number of responses. After discard-
ing incomplete responses, we were left with 20 completed surveys, totalling 900
individual clip ratings; the average experience level of respondents was 3.2.

As can be seen from Tab. 1, the survey produced a very favourable impression
of our imitation agents compared to the artificial agent. The believability indices
for human, imitation and traditional artificial clips were 0.69, 0.69 and 0.36, re-
spectively. In other words, the imitation agents were misidentified as human 69%
of the time, while the rule-based agents were mistaken as human in only 36% of
cases (weighted according to experience). Clips which actually did depict human
players were also identified 69% the time. Essentially, it seems that respondents
were generally unable to discern between the human players and our imitation
agents. These results are corroborated by the recall values, which indicate that
both the human and imitation clips were classified as human in approximately
68% of cases, while the rule-based agent was classified as human only 36.69%
of the time. Since the human sources used to train the imitation agents were
different than those human clips presented as part of the test, this implies that
the results are based on the general abilities of the imitation mechanism, rather
than any factors unique to the clips in question.

Further indication of the imitation agents’ effectiveness is evident in the graph
of believability against experience level shown in Fig. 3; as experience level
rises, respondents correctly identify human clips as human more frequently, and
misidentify the traditional agent as human less frequently. The identification of
imitation agents as human, by contrast, closely parallels that of genuine human
clips. These trends may be explained by the fact that more experienced play-
ers have a greater knowledge of characteristically human behaviours – smooth
strafing, unnecessary jumping, pausing to examine the environment, and sim-
ilar idiosyncrasies – which the traditional agent would not exhibit, but which
would be captured and reproduced by the imitation bots. This interpretation is
supported by many of the comments submitted by respondents, including those
shown in Table 2.
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Fig. 3. Variation of believability with experience level

Table 2. Sample comments from imitation clips misidentified as human

Experience Comment
5 Bunny hop for no reason, also seems to be scanning for enemies
5 Fires gun for no reason , so must be human
5 Unnecessary jumping
5 Stand and wait. Ai wouldn’t do this (?)
5 Human as they knew how to Rocket jump

The rocket jump and the short sequence of backward5
running at the end suggest this was human

In conclusion: while further testing (mainly of combat behaviours) is required,
the results of the believability study suggest that our imitation agents exhibit far
greater ‘humanness’ than even a well-regarded rule-based agent, and indeed are
comparable to genuine human players. We consider this to be strong evidence in
support of our original premise; namely, that imitation learning has the potential
to produce more believable game agents than traditional AI techniques.

5 Summary and Future Work

In this paper, we proposed a formal method of quantifying the degree to which
different agents are perceived as ‘humanlike’, in the form of a web-based survey
and an objective metric based on both the respondents’ level of experience and
the accuracy with which the players/agents were identified. Through our experi-
ments, we verified the effectiveness of the believability-testing system; we further
showed that our imitation-learning approach produces game bots which are ca-
pable of conveying a significantly more humanlike impression than traditional
agents, and are often almost indistinguishable from genuine human players.



666 B. Gorman et al.

Clearly, the next stage in our work must concentrate on imitating combat
behaviours, and integrating them into the existing imitation mechanism. Beyond
this, tests based on the third metric described in the introduction will also be
conducted – that is, in-game performance-based evaluation of the imitation bots,
in direct competition with human players and other artificial agents.
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Abstract. In this article we study the convergence of the positions of
a multi-agent system in a cyclic pursuit under asynchronism and time
delays. Each agent is assumed to operate on an infinite sequence of be-
haviors modeled by a finite state machine, which is represented by a
discrete asynchronous mathematical model on a higher-level. The re-
sults on the convergence of the synchronous model are used in the proof
of convergence of the asynchronous system. Numerical simulations are
also performed to verify the theoretical results.

1 Introduction

Recent robotics research has been focusing on multi-agent systems or basically
groups of autonomous mobile agents. Such systems are of interest for several
reasons: (i) Tasks may be too complex or sometimes impossible for a single
agent to achieve; (ii) Performance of the system may be improved by using mul-
tiple agents; (iii) The agents of a multi-agent system may be easier to build,
cheaper, more flexible, and more fault tolerant than a single agent designed
for each separate complex task; (iv) The constructive, synthetic logic developed
for cooperative mobile robotics can also be beneficial in the problems of other
sciences; especially for social sciences including organization theory, economics,
cognitive psychology or life sciences like theoretical biology and animal ethol-
ogy [1]. The references in [1] and [2] provide comprehensive reviews of multi-agent
systems.

The output of multi-agent systems research has implications on many fields
of (engineering) applications such as terrestrial, space and oceanic exploration,
military surveillance and rescue missions, and other automated collaborative op-
erations. The desired approach in solving such engineering problems is achieving
the global objective or emergent behavior by simple local rules/interactions.
However, determination of agent level simple interaction rules that yields the
desired global behavior is a challenging problem that has not been solved yet.
On this subject one of the earliest famous study was performed by Reynolds [3].
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He introduced a model and wrote a program called boids (or bird-oids) that sim-
ulates a flock of birds in flight. The behavior-based techniques used by Reynolds
were also studied by Balch and Arkin [4]. They designed reactive behaviors to
implement multivehicle formations in combination with rules for collision avoid-
ance and other navigational goals.

Bruckstein worked on the behaviors of ants in [5]. He investigated how the
path connecting the anthill and a food location becomes a straight line after a
pioneer ant shows the way to the food. A study on the efficiency in chemotaxis
due to schooling behavior was performed by Grünbaum in [6].

The very first scientist worked on the mathematics of pursuit curves was the
French scientist Bouguer (c. 1732) [7]. In 1877, Lucas asked what trajectories
would be generated if three dogs, initially placed at the vertices of an equilateral
triangle, were to run one after the other? Brocard showed that each dog’s pursuit
curve would be that of a logarithmic spiral and that the dogs would meet at a
common point (Brocard point) [7]. Klamkin and Newman [8] showed that, three
bugs in cyclic pursuit which are not initially collinear, will meet at a point
and this meeting will be mutual. Behroozi and Gagnon [9] later on proved that
if all the bugs have the same speed and a nonmutual capture occurs, then this
capture should be a head on collision. Richardson [10] showed that for the n-bugs
problem, the head on collision is possible even for non-collinear initial positions
but the probability of this collision is zero if the initial positions of the bugs
are determined due to a smooth probability distribution. Similarly, Bruckstein,
Cohen, and Efrat [11] considered a deterministic continuous pursuit in cyclic
order and with preassigned varying speeds.

A study on the aggregation problem is performed in [12] with agents that are
anonymous, homogeneous, memoryless, and lack communication capabilities. In
a similar study in [13] the authors showed that asynchronous autonomous agents
which have limited visibility and no memory, would gather at the same location
in finite time provided that they have a compass. The problem of aggregation or
gathering to a point is studied also by several other researchers within different
contexts and under different names such as synchronization, consensus seeking,
rendezvous, and others [14,15,16,17,18].

A systematic analysis of probabilistic aggregation strategies in swarm robotic
systems is presented in [19], which considers four basic behaviors of the agents
-obstacle avoidance, approach, repel, and wait - for aggregation. Similarly, in [20],
the effects of different evolutionary parameters on the performance and scalabil-
ity of system are studied.

A particular version of pursuit problem is studied in [21] for a system of
n wheeled vehicles which are subject to a single nonholonomic constraint. The
study provides a full stability analysis for the special case when n = 2 and how the
global behavior of the system can be shaped through appropriate controller gain
assignments. The same authors showed in [22] that the equilibrium formations
of the system are generalized regular polygons and studied the local stability
of these equilibrium polygons. The authors extend their work by studying the
stability of equilibrium formations for multiple unicycle systems in cyclic pursuit
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in [23] and provide a complete local stability analysis for the general case n ≥ 2.
The study of Lin, Broucke, and Francis [24] is similar to these in means of the
convergence of agents under certain conditions.

In this paper we focus on the problem of a multi-agent system performing
cyclic pursuit with asynchrony in motion and sensing. We use a finite state
machine to describe the sequence of behaviors of each agent and a discrete asyn-
chronous mathematical model on a higher-level. After presenting the proof of
convergence for synchronous cyclic pursuit model, we analyze the properties
of the asynchronous model. Finally, we provide some numerical simulations to
illustrate the results of the study.

2 Asynchronous High-Level Model

Consider the architecture shown in Figure 1 which consists of three behaviors:
wait, sense and compute, and move. During the sense and compute behavior the
ith agent gets (measures or receives by other means) the relative position of the
i+1th agent and computes its own next desired position or way-point. During the
move behavior the ith agent moves towards the computed way-point. During the
wait behavior, the agent doesn’t move or basically stays in place. These behaviors
are arbitrated by using a finite state machine (FSM) in an infinite loop and in
the sequence shown in Figure 1.

Fig. 1. Finite State Machine Model

Since here we are concerned with cyclic pursuit the computed next positon
of the ith agent is always towards the sensed position of the i + 1th agent and
during the move state the agent moves towards this way-point. We assume that
each agent has a low level control which guarantees that the agent reaches the
computed way-point in a finite time. We are not concerned with the low level
dynamics and how the low-level control is implemented. Therefore, the analysis
below is applicable for many systems with variety of different low-level vehi-
cle dynamics including heterogenous swarms/systems (i.e. swarms consisting of
more than one type of agents). Moreover, we ignore the issue of collisions be-
tween the agents. The resulting sequence of behaviors can be summarized as:
Move towards the pursued agent. Wait for a predetermined time interval. Then
sense the location of the next agent and move again towards that agent.

In this system we assume that the agents are ordered from 1 to n. Agent i
pursues agent i + 1 modulo n. In other words, the last (nth) agent pursues the
first one. The agents are assumed to move in 2-D space and the position of the
agents is given by
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zi(t) = [xi(t), yi(t)]T ∈ R2, i = 1, 2, ..., n (1)

Note, however, that this is not a critical assumption and the results developed
will be valid also for zi(t) ∈ Rm (m = 1, 2, ...) for a finite positive integer m.

Recall that during the sense and compute behavior the ith agent gets the
position of the i + 1th agent and then computes its own next desired position
or way point. However, during these sensing and computing processes of the ith

agent the i + 1th agent may be in its move state and therefore the measured
position of the next agent may be outdated. Moreover, the measurement of the
position of the next agent may itself incure some delay. Whether ultrasonic,
infrared or other type of sensors are used the propagation delay of the signals
may lead to measurement of old (outdated) positions. Similarly delay will be
also present even if the positions are obtained by inter-agent communication
or by other means such as global positioning system. Therefore, the modeling
of the dynamics of agents in cyclic pursuit should be designed including the
position sensing delays. Referring to this phenomena we introduce the variables
τi+1(t) which satisfy 0 ≤ τi+1(t) ≤ t in order to represent the delay in the
position measurements. In other words, we assume that at time t agent i knows
zi+1(τi+1(t)) instead of the actual zi+1(t) about the position of agent i + 1. In
other words, zi+1(τi+1(t)) is the perceived position of agent i + 1 by agent i
at time t. Also since each agent operates on its own local clock following the
state machine cycle on Figure 1 without a need for synchronization with the
other agents, we introduce a set of time indices T i, i = 1, 2, ..., n, at which the
agent i updates its way-point zi. It is assumed that at the other instances the
agent i does not perform way-point calculation (it might be in one of other
states/behaviors at these time instants). With these in mind the “high-level”
dynamics of each agent can be represented as

zi(t + 1) = (1 − p)zi(t) + p zi+1(τi+1(t)), t ∈ T i (2)
zi(t + 1) = zi(t), t /∈ T i

where p is the gain satisfying 0 ≤ p ≤ 1 and as mentioned above the variables
τi+1(t), i = 1, . . . , n, are used to represent the time index of the position infor-
mation of the i + 1th agent. These variables satisfy 0 ≤ τi+1(t) ≤ t for all t ∈ T i

and for all i. If agent i has not yet obtained any information about the i + 1th

agent’s position and still has the initial position information, then τi+1(t) = 0
whereas τi+1(t) = t means that agent i has the current position information of
the i + 1th agent. The difference between the current time t and the value of
the variable τi+1(t) is the delay occurring due to the sensory, computing and/or
communication processes or other reasons.

In equation (2), the elements of the set T i ⊂ {0, 1, 2, ...} are the indices of
the sequence of ordered physical times T = {t0, t1, t2, . . .} similar to the times of
events in discrete-event systems where ti < ti+1 are the time instants at which
the events in the system occur. The times ti do not need to be equally spaced,
i.e., the intervals ti+1 − ti do not have to be equal. Referring to the FSM model
in Figure 1 during the time interval between two subsequent indices of T i the
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agent performs its move, wait, and sense and compute behaviors. As expected
the completion of the sequence of the behaviors may take different time intervals
for different agents and for the same agent at different steps. For instance the
distance of the way-point of the agents may change at each step and so the move
states may last for different amounts of times. Since behaviors of agents last for
different time intervals, each agent has its own time set, T i and these time sets
are independent. However, it is possible to have T i∩T j �= ∅ for i �= j which means
that sometimes two or more agents may update their state simultaneously. Note
that the set T i is needed only for analysis purposes and in order to implement
the iteration in (2) it is not required for the agents to know it. Similarly, the
agents do not need to know neither the sets T i nor the set of physical times
T . Therefore, there is no need for a global clock or means for synchronization
for implementing equation (2) and each agent can operate based on its internal
logic and using only its local clock without a need for synchronization. Before
analyzing the convergence performance of this proposed asynchronous model,
we will focus on the synchronous case in the following section, after which the
asynchronous case will be analyzed in detail.

3 Convergence Under Total Synchronism

In this section we assume that the agents are synchronized and analyze the
systems behavior based on this assumption. From practical point of view syn-
chronism is hard to implement in swarm of individual agents with decentralized
control since each agent has different duration of states. Still we analyze the con-
vergence of the synchronous case because later in the following section we will
use the results from this section to establish the stability of the asynchronous
case. We start with the assumption of no delay in the position information. In
particular we assume that τi+1(t) = t for all i and that T i = T = {0, 1, ...} for
all i. In other words, all of the agents will move at the same time instants and
each one knows the current position information of the agent it pursues. With
respect to this assumption the dynamics of the model become

zi(t + 1) = (1 − p)zi(t) + p zi+1(t) (3)

Writing these equations in matrix form we obtain.

z(t + 1) = Az(t) (4)

where z(t) = [z1(t) z2(t) . . . zn(t)]T ∈ Rn×2 and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 − p p 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0
. . .

. . . p
p 0 . . . 0 1 − p

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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The stability of equation (4) depends on the eigenvalues of A. All eigenvalues
of the state matrix A should lie within the unit circle. To show that this is the case
we will use a result from matrix theory. In particular, we will use Gerchgorin’s
Theorem [25] which we present below for the convenience of the reader.

Gershgorin’s Theorem. Let An×n = [aij ], and let

Ri(A) ≡
n∑

j=1,j 
=i

|aij |, 1 ≤ i ≤ n (5)

denote the deleted absolute row sums of A. Then, all the eigenvalues of A are
located in the union of n discs

n⋃
i=1

{z ∈ C : |z − aii| ≤ Ri(A)} ≡ G(A)

where C denotes the complex plane.
Therefore, for an n × n square matrix A, n circles can be drawn with centers

at the diagonal elements of A, i.e., aii, i = 1; 2; ...; n and with radius of each
of the circles equal to the sum of the absolute values of the other elements in
the same row, that is,

∑
j 
=i

|aij |. Such circles are called Gershgorin’s discs. Then

all the eigenvalues of A lie in the region formed by the union of all the n discs.
From Gershgorin’s Theorem we know that all the eigenvalues of the matrix A
in (4) are located within discs centered at (1 − p) and having radius p. Then as
seen in Figure 2a the vector of points, s in the smaller circle can be formed as
s = (1−p)+αejθ where α ≤ p is the distance of the eigenvalue to the Gershgorin’s
disc center. Then it can be shown that |s| = (1 − p)2 + α2 + 2(1 − p)α cos(θ).
Moreover, since α ≤ p we have

(1 − p)2 + α2 + 2(1 − p)α cos(θ) ≤ (1 − p)2 + p2 + 2(1 − p)p cos(θ)

and if p ≤ 1 then (1 − p)2 + p2 + 2(1 − p)p cos(θ) ≤ 1 and (1 − p)2 + α2 +
2(1−p)α cos(θ) ≤ 1 or basically |s| ≤ 1 is satisfied. Therefore, the eigenvalues of
matrix A are within the unit circle if p ≤ 1. The circles that enclose the location
of eigenvalues for the values of p = 0.25, 0.50, 0.75, and 1.00 are plotted in
Figure 2b. Note that the circle for p = 1 is indeed the unit circle.

Another issue to note here is that one of the eigenvalues of the matrix A
is always on the unit circle at λ = 1 and the convergence point of the system
depends on that eigenvalue. We can simply show that for the n×n state matrix
A in (4) the characteristic polynomial is P = (1 − p − λ)n + pn(−1)n−1. Note
that one of the roots of this characteristic polynomial is always λ = (1−p)+p =
1 (as stated above) while all the other eigenvalues are within the unit circle.
The eigenvector corresponding to this eigenvalue is α = [1 1 . . . 1]T . Now, the
solution of (4) can be written as

z(t) = (λ1)tα1c1 + (λ2)tα2c2 + . . . + (λn)tαncn (6)
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Fig. 2. (a) Gershgorin disc with center at 1 − p and radius p. (b) Gershgorin discs for
p = 0.25, 0.50, 0.75, and 1.00.

where λi are the eigenvalues of A and αi are the corresponding eigenvectors
and ci are arbitrary constants which depend on the initial conditions. (Actually,
since zi(t) ∈ R

2, ci = [c1i, c2i] ∈ R
2 are constant row vectors). Let λ1 = 1 be

the eigenvalue on the unit circle while |λi| < 1 , ∀i = 2, . . . , n are the other
eigenvalues. Then the solution in (6) will converge to:

lim
t→∞

z(t) = α1c1 = [cT
1 cT

1 . . . cT
1 ]T

which means that all agents will reach to the same point, c1 ∈ R2 as t → ∞.
Now based on the above convergence result of the synchronous system we will

define a sequence of (contracting) sets which will be useful later on in the proof
of the asynchronous case. Let us define

Y (t) = {y ∈ R
2|m(t) ≤ y ≤ M(t)} ⊂ R

2 (7)

where m(t) = mini=1,...,n{zi(t)} and M(t) = maxi=1,...,n{zi(t)} where the in-
equality sign and the minimum and maximum operators are operated elemen-
twise. Note that the sequence m(t) is non-decreasing and the sequence M(t) is
non-increasing. In other words, we have m(t + 1) ≥ m(t) and M(t + 1) ≤ M(t)
for all t. Moreover, one can show that there exists a finite μ > 0 such that
m(t + μ) > m(t) and M(t + μ) < M(t) for all t. In fact it is guaranteed that a
decrease in M(t) and an increase in m(t) occurs in a few time steps. We will do
the below analysis as if m(t) ∈ R and M(t) ∈ R but similar analysis will hold
also for the m(t) ∈ R

2 and M(t) ∈ R2 case.
If M(t) and m(t) are not equal, (in other words, agents have not converged

yet to a common point) then M(t) > m(t). Let IM (t) = {i|zi(t) = M(t)} and
Im(t) = {i|zi(t) = m(t)} denote the sets of agents located at time t at the
maximum and the minimum, respectively. Also, denote with #(M) = |IM (t)|
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and #(m) = |Im(t)| the number of agents in these sets. Note that at least one of
the agents in IM (t) and Im(t) is pursuing an agent outside of its corresponding
set. Therefore, #(M) and #(m) both decrease at each step. This guarantees
that M(t) will decrease in at most #(M) − 1 steps and m(t) will increase in at
most #(m)− 1 steps from time t. The worst case occurs when half of the agents
are at the maximum and the remaining half are at the minimum. Then both
M(t) and m(t) do not change for n/2 − 1 steps. This implies that the interval
between M(t) and m(t) contracts in at most μ = n/2 time units. Then it is clear
that Y (t+μ) ⊂ Y (t). Defining Z(k) = Y (kμ) as the sequence of contracting sets
and in the light of the preceding convergence analysis, we may write

c1 = Z ⊂ . . . Z(k + 1) ⊂ Z(k) ⊂ . . . ⊂ Z(0)

Now for every k let us define Z̄(k) such that

Z̄(k) = Z(k) × Z(k) × . . . × Z(k)︸ ︷︷ ︸
n

⊂ R
n×2 (8)

and note that α1c1 = Z̄ ⊂ . . . Z̄(k + 1) ⊂ Z̄(k) ⊂ . . . ⊂ Z̄(0) is satisfied. We will
use these definitions in the next section.

4 Convergence Analysis of the Asynchronous Model

In this section, we analyze the convergence properties of the asynchronous sys-
tem. As mentioned before here each agent performs the behaviors at totally
different time instants. Formally zi’s are updated at t ∈ T i where T i for each
agent are independent. Moreover, the sensing/measurement process may incur
delays. We start with an assumption which establishes a bound on the maximum
possible time delay as well as guarantees uniformity in the updates of the agents.
The analysis here is based the results on parallel and distributed computation
in [26].

Assumption 1. There exists a positive integer B such that
(a) For every i and every t ≥ 0, at least one of the elements of the set {t, t +
1, . . . , t + B − 1} belongs to T i.
(b) There holds t − B < τi+1(t) ≤ t ∀i t ≥ 0, t ∈ T i

Assumption 1 is a fairly realistic assumption since in any practical system the
measurement/communication delays must be bounded. If an agent is unable to
receive information for an unbounded amount of time from its neighbor which
it tries to pursue, then it may not be able to follow/pursue it and the pursuit
behavior looses its meaning. Similarly, in order for the system to work properly
every agent should be able to move to its next way-point and complete the cycle
in Figure 1 in a finite amount of time. Note, however, that the agents do not
need to know the value of B.



Asynchronous Cyclic Pursuit 675

Theorem 1. For the multi-agent system in cyclic pursuit described by the equa-
tion in (2) under Assumption 1 as t → ∞ the positions of all the agents will
converge to a common point or basically

lim
t→∞

zi(t) = c ∀i = 1 . . . n (9)

where c is some constant.

Proof. Given time tk ∈ T such that zi(t) ∈ Z(k) for all i = 1, 2, ..., n and t ≥ tk,
we will show that there exists a time tk+1 such that zi(t) ∈ Z(k + 1) for all
i = 1, 2, ..., n and t ≥ tk+1. Therefore, let us assume that there exists a time
tk ∈ T such that zi(t) ∈ Z(k) for all i = 1, 2, ..., n and t ≥ tk . Consider agent
i; from the asynchrony we know that there may be time delay in sensing the
position of agent i + 1 by agent i. Therefore, even though zi+1(tk) ∈ Z(k), it
might be the case that, zi+1(τi+1(tk)) /∈ Z(k). However, by Assumption 1, the
delay in the position information update is bounded by B steps. Therefore, at
time tk we have

tk − B < τi+1(tk) ≤ tk ∀i tk ≥ 0, tk ∈ T

Furthermore, for all t ≥ t1 = tk + B and for each agent i = 1, 2, ..., n it is
guaranteed that

tk < τi+1(t) ≤ t ∀ t ≥ t1,

implying that
zi+1(τi+1(t)) ∈ Z(k) ∀ t ≥ t1

Recall also from Assumption 1 that the update of the positions of each agent is
subject to the delay which is at most B steps. Then at time t2 = t1+B = tk+2B,
all the agents will have updated their position information. If the agent is at
maximum and not pursuing an agent at maximum, then zi(t2) will decrease
and if the agent is at minimum and not pursuing an agent at minimum, then
zi(t2) will increase. Therefore, if there are at most one agent at each maximum
and minimum, then from the result for the synchronous case in the preceding
section, the position set will contract, implying Z(t2) ⊂ Z(k). However, recall
the worst condition of agent topology in the synchronous convergence problem;
the position sets were to converge in at most μ = n/2 amount of steps. Applying
this worst condition for the synchronous case together with the discussion above,
we find that the position sets are guaranteed to contract in at most 2μB steps.
Let us define tk+1 = tk + 2μB = tk + nB. Then it is guaranteed that zi(t) ∈
Z(k + 1) ⊂ Z(k) for all t ≥ tk+1 = tk + 2μB. Since at the initial state we have
zi(0) ∈ Z(0) ∀i = 1, 2, ..., n the induction is complete. Then using the result
above we have

c = Z ⊂ ... ⊂ Z(k + 1) ⊂ Z(k) ⊂ ... ⊂ Z(0)

which implies the convergence of agents to a common point, c ∈ R
2.
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5 Simulation Examples

We simulated the cyclic pursuit for 5 agents. We performed simulation for both
the synchronous and asynchronous cases in order to see the differences between
the two cases and in particular the effects of asynchronism. The initial posi-
tions of agents are S = {(7, 2), (−4, 6), (−9, −4), (−2, −7), (4, −6)}. The gain p
for the updates is selected to be p = 0.05. In the synchronous case the agents
converge to Zf = [−0.8750, −1.8365] after sufficiently long simulation interval.
The trajectories of the agents are shown on Figure 3a. For the asynchronous
case we used the same initial positions of agents and gain (p) value. In order to
achieve asynchronism in simulation and also to simulate the delays in sensing
and processing we integrated a probability mechanism that decides whether to
update the position information of the i + 1th agent in the system. In the fol-
lowing simulation sample the probability of update is chosen to be % 20. The
result of the simulation for this case is on Figure 3b. The agents converge to
Zf = [−0.2565, −1.9317]. The convergence point in this case is different from
the synchronous case, since the asynchronism in the actions of agents leads to
pursuing of next agent with old position information and take the move action
with some delay. This results in, a different sequence of contradicting sets and
therefore different final position.

−10 −8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

1

2

3

4

5

−10 −8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

1

2

3

4

5

(a) (b)

Fig. 3. (a) Simulation results for synchronous convergence. (b) Simulation results for
asynchronous convergence.

Moreover, in order to measure or compare the performance of these two sys-
tems we plotted the sum of the distances between the agent positions

e(t) =
n∑

i=1

n∑
j=1,j 
=i

||zi(t) − zj(t)||2

in Figure 4 for both synchronous and asynchronous cyclic pursuits. It is seen
that the synchronous cyclic pursuit converges faster than the asynchronous one.
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Fig. 4. Convergence performance of synchronous and asynchronous pursuits

This is an expected result when we consider the delays in actions and position
sensing of agents during asynchronous pursuit. Although not shown in Figure 4
e(t) converges to zero in the asynchronous case as well.

Note that in the implementation here the value of the probability of update
and sensing dictates the value of B. As this probability decreases the value of B
increases and this decreases the speed of convergence.

6 Conclusions

In this paperwe showed the convergence of the positions ofn agents in cyclic pursuit
with asynchronous dynamics to a common point. We assumed that the agents per-
form fundamental behaviors modeled by a finite state machine consisting of wait,
sense and compute, and move states. To reach the proof of convergence of asyn-
chronous pursuit we started with the convergence of synchronous cyclic pursuit.
Then using the result for the synchronous case we showed that the asynchronous
system will converge as well, despite the asynchronism and the time delays.

It is claimed that if convergence to a point is feasible, then more general
formations are achievable as well [24]. However, it is not clear whether its possible
or not to achieve convergence to any geometric formation using cyclic pursuit
under asynchronism and time delays and this needs to be investigated further.
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Abstract. This paper tackles the issue of designing homogeneous neuro-
controllers with artificial evolution in order to control groups of robots
that differ in terms of sensory capabilites. In order to accomplish a com-
mon goal, the agents have to complement the partial “view” they have
of the environment. The results obtained prove that the agents are ca-
pable of cooperating and coordinating their actions in order to carry out
a navigation task. A preliminary analysis of the mechanisms underlying
the group behaviour is provided.

1 Introduction

Embodied autonomous systems are relatively recent methodological tools which
can be used to investigate various aspects of social interactions and behavioural
coordinations in artificial and natural organisms (see [9,2]). In this type of sys-
tems, social behaviour is investigated by firstly determining the characteristics
of the agents’ embodiment (e.g., sensory and motor capabilities of the agent)
and the world that they inhabit, and by subsequently looking at how the these
features influence social skills.

This approach is particularly prominent in a subset of embodied autonomous
systems, generally referred to as Evolutionary Robotics models (ER, see [7]).
Roughly speaking, ER is a methodological tool to automate the design of robots’
controllers. ER is based on the use of artificial evolution to find sets of parameters
for artifical neural networks that guide the robots to the accomplishment of their
objective, avoiding dangers. Owing to its properties, ER can be employed to look
at the effects that the physical interactions among embodied agents and their
world have on the evolution of individual behaviour and social skills. In the recent
past, ER has been used in the context of social behaviour to investigate issues
concerning the evolution of communication in groups of agents required to solve
tasks that demanded coordination and cooperation (see [8,10,1,11,5]). Following
this line of investigation, we are interested in further exploring the evolution
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Fig. 1. (a) Env. L; (b) Env. R. See text in Sec. 1 for details

of social skills. In particular, we focus on a context in which a group of agents
with different sensory capabilities are required to share their “knowledge” of
the world to accomplish a common task. We consider the following experiment:
three robots are placed in an arena, as shown in Fig. 1. The arena is composed
of walls and a light that is always turned on. The light can be situated at the
bottom left corridor (Env. L) or at the bottom right corridor (Env. R). The
robots are initialised with their centre anywhere on an imaginary circle of radius
12 cm centred in the middle of the top corridor, at a minimum distance of 3 cm
from each other. Their initial orientation is always pointing towards the centroid
of the group. The goal of the robots is (i) to navigate towards the light whose
position changes according to the type of environment they are situated in, (ii)
to avoid collisions.

The peculiarity of the task lies in the fact that the robots are equipped with
different sets of sensors. In particular, two robots are equipped with infrared and
sound sensors but they have no ambient light sensors. These robots are referred
to as RIR (see Fig. 2a). The other robot is equipped with ambient light and
sound sensors but it has no infrared sensors. We refer to this robot as RAL (see
Fig. 2b). Robots RIR can perceive the walls and other agents through infrared
sensors, while the robot RAL can perceive the light. Therefore, given the nature
of the task, the robots are forced to cooperate in order to accomplish their goal.
In principle, it would be very hard for each of them to solve the task solely based
on their own perception of the world. RAL can hardly avoid collisions; RIR can
hardly find the light source. Thus, the task requires cooperation and coordina-
tion of actions between the different types of robots. Notice that the reason why
we chose the group to be composed of two RIR and one RAL robot is that this
intuitively seems to be the smallest group capable of spatially arranging itself
adaptively in order to successfully navigate the world. Although the robots differ
with respect to their sensory capabilities, they are homogeneous with respect to
their controllers. That is, the same controller, synthesised by artificial evolution,
is cloned in each member of the group. Both types of robots are equipped with
a sound signalling system (more details in Sec. 2). However, contrary to other
studies (see [5,1]), we do not assume that the agents are capable of distinguish-
ing their own sound from that of the other agents. The sound broadcasted into
the environment is perceived by the agent through omnidirectional microphones.
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Therefore, acoustic signalling is subject to problems such as the distinction be-
tween own sound from those of others and the mutual interference due to lack
of turn-taking (see [8]).

The results of our study show that a quite robust and effective phototactic
strategy evolves in spite of each of the agents being deprived of essential elements
to accomplish the task. The successful strategies are based on cooperation and
coordination of actions among the agents. The mutual coordination results par-
ticularly striking so that, as already emphasised in a similar model [8], it turns
out to be very hard to speak in terms of causality. For example, (a) phototaxis
is induced in the group by robot RAL, but this behaviour seems to be effectively
displayed by the robot RAL only if it is situated in a social context—i.e., sur-
rounded by robots RIR; (b) angular movement introduces rhythm in acoustic
perception, which per se, is not sufficient to coordinate the movements of the
group. However, coordinated actions come about by the fusion of perception
of sound and patterns in infrared proximity sensors. In conclusion, from these
simulations, we learn something about the relationship between individual and
social skills, and the potentiality of the system which can be further exploited
to study the evolution of more complex forms of social interactions in similar
circumstances (e.g., groups of morphologically heterogenous robots).

2 The Simulated Agents

The controllers are evolved in a simulation environment which models some of
the hardware characteristics of the real s-bots. The s-bots are small wheeled
cylindrical robots, 12 cm of diameter, equipped with a variety of sensors, and
whose mobility is ensured by a differential drive system (see [6] for details).
Robot RIR makes use of 12 out of 15 infrared sensors (Iri) of an s-bot, while
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Fig. 2. (a) The simulated robots RIR; (b) The simulated robots RAL; (c) the network
architecture. Only the connections for one neuron of each layer are drawn. The input
layer of RIR takes readings as follows: neuron N1 takes input from Ir0+Ir1+Ir2

3 , N2

from Ir4+Ir5+Ir6
3 , N3 from Ir8+Ir9+Ir10

3 , N4 from Ir12+Ir13+Ir14
3 , N5 from S1, and N6

from S2. The input layer of RAL takes readings as follows: N1 and N2 take input from
AL1, N3 and N4 take input from AL6, N5 from S1, and N6 from S2. M1 and M2 are
respectively the left and right motor.
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robot RAL uses the ambient light sensors (AL1) and (AL6) positioned at ±67.5◦

with respect to the orientation of the robot (see Fig. 2). The signal of the infrared
sensor is a function of the distance between the robot and the obstacle. Light
sensor values are simulated through a sampling technique.

All robots are equipped with a sound output (S.O.) that is situated in the
centre of the body of the robot, and with two omnidirectional microphones (S1
and S2), placed at ±45◦ with respect to the robot’s heading. Sound is modelled
as an instantaneous, additive field of single frequency with time-varying intensity
(η ∈ [0.0, 1.0]) which decreases with the square of the distance from the source,
as previously modelled in [8]. Sound intensity is regulated by the firing rate of
neuron N14 (see Sec. 3 for details). Robots can perceive signals emitted by them-
selves and by other agents. The modelling of the perception of sound is inspired
by what described in [8]. There is no attenuation of intensity for self-produced
signals which can in principle be loud enough (η = 1.0) to make it impossible
for a robot to perceive sound signals emitted by others. The perception of sound
emitted by others is affected by a “self-shadowing” mechanism which is modelled
as a linear attenuation without refraction, proportional to the distance travelled
by the signal within the body of the receiver (see [8] for details).

Concerning the function that updates the position of the robots within the
environment, we employed the Differential Drive Kinematics equations, as pre-
sented in [3]. 10% uniform noise was added to all sensor readings, the motor out-
puts and the position of the robot. The characteristics of the agent-environment
model are explained in detail in [12].

3 The Controller and the Evolutionary Algorithm

The agent controller is composed of a network of five inter-neurons and an ar-
rangement of six sensory neurons and three output neurons (see Fig. 2c). The
sensory neurons receive input from the agent sensory apparatus. Thus, for robots
RIR, the network receives the readings from the infrared and sound sensors. For
robots RAL, the network receives the readings from the ambient-light and sound
sensors. The inter-neuron network (from N7 to N11) is fully connected. Addition-
ally, each inter-neuron receives one incoming synapse from each sensory neuron.
Each output neuron (from N12 to N14) receives one incoming synapse from each
inter-neuron. There are no direct connections between sensory and output neu-
rons. The network neurons are governed by the following state equation:

dyi

dt
=

⎧⎪⎨⎪⎩
1
τi

(−yi + gIi) i ∈ [1, 6]

1
τi

(
−yi +

k∑
j=1

ωjiσ(yj + βj) + gIi

)
i ∈ [7, 14]; σ(x) = 1

1+e−x

(1)

where, using terms derived from an analogy with real neurons, yi represents
the cell potential, τi the decay constant, g is a gain factor, Ii the intensity of
the sensory perturbation on sensory neuron i, ωji the strength of the synaptic
connection from neuron j to neuron i, βj the bias term, σ(yj + βj) the firing
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rate. The cell potentials yi of the 12th and the 13th neuron, mapped into [0,1]
by a sigmoid function σ and then linearly scaled into [−6.5, 6.5], set the robot
motors output. The cell potential yi of the 14th neuron, mapped into [0, 1] by
a sigmoid function σ, is used by the robot to control the intensity of the sound
emitted η. The following parameters are genetically encoded: (i) the strength of
synaptic connections ωji; (ii) the decay constant τi of the inter-neurons and of
neuron N14; (iii) the bias term βj of the sensory neurons, of the inter-neurons,
and of the neuron N14. The decay constant τi of the sensory neurons and of the
output neurons N12 and N13 are set to 0.1. Cell potentials are set to 0 any time
the network is initialised or reset, and circuits are integrated using the forward
Euler method with an integration step-size of dt = 0.1.

A simple generational genetic algorithm is employed to set the parameters of
the networks [4]. The population contains 80 genotypes. Generations following
the first one are produced by a combination of selection with elitism, recombina-
tion and mutation. For each new generation, the three highest scoring individuals
(“the elite”) from the previous generation are retained unchanged. The remain-
der of the new population is generated by fitness-proportional selection from the
individuals of the old population. Each genotype is a vector comprising 84 real
values (i.e., 70 connection weights, 6 decay constants, 7 bias terms, and a gain
factor). Initially, a random population of vectors is generated by initialising each
component of each genotype to values chosen uniformly random from the range
[0,1]. New genotypes, except “the elite”, are produced by applying recombination
with a probability of 0.3 and mutation. Mutation entails that a random Gaussian
offset is applied to each real-valued vector component encoded in the genotype,
with a probability of 0.15. The mean of the Gaussian is 0, and its standard
deviation is 0.1. During evolution, all vector component values are constrained
to remain within the range [0,1]. Genotype parameters are linearly mapped to
produce network parameters with the following ranges: biases βi ∈ [−4, −2] with
i ∈ [1, 6], biases βi ∈ [−5, 5] with i ∈ [7, 14]; weights ωij ∈ [−6, 6] with i ∈ [1, 6]
and j ∈ [7, 11], weights ωij ∈ [−10, 10] with i ∈ [7, 11] and j ∈ [7, 14]; gain factor
g ∈ [1, 13]. Decay constants are firstly linearly mapped into the range [−1.0, 1.3]
and then exponentially mapped into τi ∈ [10−1.0, 101.3]. The lower bound of τi

corresponds to the integration step-size used to update the controller; the upper
bound, arbitrarily chosen, corresponds to about 1/20 of the maximum length of
a trial (i.e., 400 s).

4 The Fitness Function

During evolution, each genotype is translated into a robot controller, and cloned
in each agent. Then, the group is evaluated six times, three trials in Env. L,
and three trials in Env. R. The sequence order of environments within the six
trials has no bearing on the overall performance of the group since each robot
controller is reset at the beginning of each trial. Each trial (e) differs from the
others in the initialisation of the random number generator, which influences
the robots’ starting position and orientation, and the noise added to motors
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and sensors. Within a trial, the robot life-span is 400 simulated seconds (4000
simulation cycles). In each trial, the group is rewarded by an evaluation function
fe which seeks to assess the ability of the team to approach the light bulb, while
avoiding collisions and staying within the range of the robots’ infrared sensors.
By taking inspiration from the work of Quinn et al. [11], the fitness score is
computed as follows:

fe = KP
(∑T

t=i[(dt − Dt−1)(tanh(St/R))]
)
;

As in [11], the simulation time steps are indexed by t and T is the index of
the final time step of the trial. dt is the Euclidean distance between the group
location at time step t and its location at time step t = 0, and Dt−1 is the
largest value that dt has attained prior to time step t. St is a measure of the
team’s dispersal beyond the infrared sensor range R (R = 24.6 cm) at time
step t. Recall that robot RAL has no infrared sensors. Therefore, it does not
have a direct feedback at each time-step of its distance from its group-mates.
Nevertheless, the sound can be indirectly used by this robot to adjust its position
within the group. If each robot is within R range of at least another, then St = 0.
Otherwise, the two shortest lines that can connect all three robots are found and
St is the distance by which the longest of these exceeds R. tanh() assures that,
as the robots begin to disperse, the team’s score increment falls sharply.

P = 1 − (
3∑

i=1
ci/cmax) if

3∑
i=1

ci ≤ cmax reduces the score in proportion to the

number of collisions which have occurred during the trial. ci is the number of
collisions of the robot i and cmax = 4 is the maximum number of collisions

allowed. P = 0 if
3∑

i=1
ci > cmax. The team’s accumulated score is multiplied by

K = 3.0 if the group moved towards the light bulb, otherwise K = 1.0. Note
that a trial was terminated early if (a) the team reached the light bulb (b) the
team distance from the light bulb exceeded an arbitrary limit set to 150 cm, or
(c) the team exceeded the maximum number of allowed collisions cmax.

5 Results

Ten evolutionary simulations, each using a different random initialisation, were
run for between 1000 and 1500 generations of the evolutionary algorithm. The
termination criterion for each run was set to a time equal to 86400 seconds of
CPU time. Experiments were performed on a cluster of 32 nodes, each with 2
AMD Opteron244TM CPU running GNU/Linux Debian 3.0 OS. In order to have
a better estimate of the behavioural capabilities of the evolved controllers, we
post-evaluate, for each run, the genotype with the highest fitness. The entire
set of post-evaluations should establish whether a group of robots is capable of
reaching the light in Env. L and Env. R. In particular, the robots of a successful
group should be capable of coordinating their movement and of cooperating, in
order to approach the light bulb without colliding with each other or with the
walls. A trial is successfully terminated when the centroid of the group is south of
the light bulb. During post-evaluation, each of the best ten evolved controllers
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is subject to a set of 1200 trials in both environments. The number of post-
evaluation trials per type of environment (i.e., 1200) is given by systematically
varying the initial positions of the three robots according to the following criteria:
(i) we defined four different types of spatial arrangements in which the robots
are placed at the vertices of an imaginary equilateral triangle inscribed in a circle
of radius 12 cm and centred in the middle of the top corridor (see Fig. 3b); (ii)
for each spatial arrangement, we identified three possible relative positions of
the robot RAL with respect to the walls’ corridor (see white circle in Fig. 3b);
(iii) for each of these (four times three) initial positions, the post-evaluation is
repeated one hundred times. The initial orientation of each robot is determined
by applying an angular displacement randomly chosen in the interval [−30◦, 30◦]
with respect to a vector originating from the centre of the robot and pointing
towards the centroid of the group. The four times three different arrangements
take into account a set of relative positions among the robots and between the
robots and the walls so that the success rate of the group is not biased by these
elements. During post-evaluation, the robot life-span is more than twice longer
than during evolution (i.e., 1000 s, 10000 simulation cycles). This should give
the robots enough time to compensate for possible disruptive effects induced
by initial positions never or very rarely experienced during evolution. At the
beginning of each post-evaluation trial, the controllers are reset (see Sec. 3 for
details).

The results of the post-evaluation phase are shown in Fig. 3a. We notice that
the best controller is the one produced by run n. 2, achieving a performance
over 90% in Env. L and Env. R. Runs n. 4, 9, and 10 display a performance over
80%, run n. 1, and 7 displays a performance around 75% in both environments.

T
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Fig. 3. (a) Results of post-evaluation showing the percentage of success of the best
evolved controllers of each run over 1200 trials per type of environment. White bars
refer to Env. L, and black bars to Env. R. (b) The robots’ initial positions during the
post-evaluation phase. White circles refer to RAL, grey circles refer to RIR.
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Table 1. Further results of the post-evaluation test, showing for the best evolved con-
trollers of each run: (i) the percentage of unsuccessful trials due to exceeded time limit
without the group having reached the target (columns 2, and 3); (ii) the percentage
of unsuccessful trials which terminated due to collisions (columns 4, and 5); (iii) the
average and standard deviation of the final distance of the centroid of the group to the
light during the unsuccessful trials (respectively columns 6, 8 for Env. L, and columns
7, 9 for Env. R). Note that in all trials the initial distance between the centroid of the
group and the light is equal to 85.14 cm.

(%) of failure (%) of failure Distance to the light
due to time limit due to collisions avg std

run Env. L Env. R Env. L Env. R Env. L Env. R Env. L Env. R

n. 1 15.75 20.08 3.17 3.17 22.22 24.29 14.35 22.20
n. 2 1.42 0.00 7.50 0.42 71.63 87.96 20.47 0.46
n. 3 19.17 4.67 69.00 15.50 45.11 36.67 23.06 13.73
n. 4 0.00 4.92 11.25 12.25 62.72 52.80 22.24 23.98
n. 5 20.75 11.33 15.58 21.83 48.83 47.31 38.70 25.72
n. 6 43.83 61.67 22.58 5.75 35.11 30.76 16.12 12.80
n. 7 0.00 10.17 12.00 12.33 67.60 42.93 15.98 28.05
n. 8 36.33 3.58 12.33 23.92 31.22 58.94 22.05 23.46
n. 9 0.67 7.50 5.00 6.25 55.49 29.10 22.73 17.29
n. 10 0.00 6.42 3.67 6.83 54.72 50.59 18.08 32.26

Note that when looking at the performances of the best evolved controllers, as
shown in Fig. 3a, one has to take into account the arbitrary criteria we chose
to determine whether or not a group of robots is successful in any given trial.
We should recall that, in order to be successful, no robot has to collide with
the walls or with the other robots. This is a very strict condition, which, given
the nature of the task, demands each agent to be very accurate in coordinating
its movement. Further post-evaluation tests proved that, if we allow the group
to make a certain number of collisions (i.e., four collisions) before defining a
trial as a failure, then several controllers would result almost always successful
in both types of environment—the data of these post-evaluation tests are not
shown. Whether or not the robots should be allowed to collide or the extent to
which a single collision invalidates the performance of the group, are issues that
extend beyond the interest of this paper, and shall not be discussed any further.
Instead, we focus on other performance measures which tell us more about the
characteristics of the best evolved controllers. For instance, by looking at the
data shown in Table 1, we notice that, for all the runs, the majority of the
failures are due to collisions. Exceptions are run n. 1 and 6 which seem to be
only minimally affected by this factor (see columns 4 and 5, Table 1). If we look
at the average distances to the light (see columns 6 and 7, Table 1) and the
relative standard deviations (see columns 8 and 9, Table 1), we can see that the
robots guided by these controllers seem to be capable of covering much of their
initial distance to the light. Therefore, the small percentage of collisions is indeed
the result of an effective coordination of actions among the agents invalidated
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by the lack of time to complete the task due to a slow phototactic movement,
rather than, for instance, a consequence of the lack of movement of the group
towards the light.

In the rest of this section, we concentrate on the analysis of the controller
of run n. 2, which proved to be the most effective at the first post-evaluation
test. In particular, we try to understand more about the mechanisms used by
the robots to coordinate their actions and to complement the partial view that
each of them has of the world.

5.1 Further Analysis of the Best Evolved Navigation Strategy

In an effort to understand how the robots manage to cooperate and coordinate
their actions in order to solve the task, we repeated the post-evaluation test
described at the beginning of Sec. 5 for groups of robots controlled by controller
run n. 2. However, in these series of tests, the robots are deprived in various
ways of sensory information which may or may not turn out to be crucial for the
achievement of the task.1 Recall that, only by “paying attention” to the sound
signals emitted by robots RIR, robot RAL can avoid collisions. Sound signalling
and/or coordination through the infrared sensors might play a significant role
in guiding the group towards the target.

First, we run two tests, referred to as Test A and Test B, which should reveal
to us whether the robots employ effective navigational strategies based on coop-
eration and coordination of actions or rather fixed phototactic movement which
may work as well given that the dimensions of the corridors and the positions of
the lights in the two worlds do not vary. In Test A, the best controller of run n. 2
is cloned on three robots RIR. Consequently, the robots have no means to know
where the light is placed. As shown in Table 2, the group was 100% unsuccessful
due to time limit exceeded without having reached the target (see columns 2
and 3, Table 2). Moreover, in both environments, the average distance between
the centroid of the group and the light does not differ much from the initial
distance (see columns 6 and 7, Table 2). The rather small standard deviation
confirms that this group of robots seems not to make any significant movement
away from its initial position (see columns 8 and 9, Table 2). Indeed, it seems to
be the presence of a robot RAL—missing in the group in this test—that triggers
the movement and guides the group towards the target. Not surprisingly, the
robots are very effective in avoiding collisions (see columns 4 and 5, Table 2). In
Test B a single robot RAL is controlled by the best controller of run n. 2. The
results tell us that RAL, if left without robots RIR, systematically collides with
walls (see columns 4 and 5, Table 2). Test A and B suggest that the successful

1 In the post-evaluation tests in which alterations concern the agents’ received sound
signal, or the nature of the group (i.e., what types of robot are part of the group),
and/or the characteristics of the environment, the changes are applied after 10 s
(i.e., 100 simulation cycles) from the beginning of each trial. This give time to the
controllers to reach a functional state different from the initial one, arbitrarily chosen
by the experimenter, in which the cell potential of the neurons is set to 0 (see
Sec. 3).
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Table 2. Results of different post-evaluation tests for the best evolved controller of run
n. 2. See text in Sec. 5.1 for details. Note that in all trials the initial distance between
the centroid of the group and the light is equal to 85.14 cm.

Test (%) of failure (%) of failure Distance to the light
due to time limit due to collisions avg std
Env. L Env. R Env. L Env. R Env. L Env. R Env. L Env. R

A 100 100 0.00 0.00 85.32 85.50 8.24 8.31
B 0.00 0.00 100.00 100.00 90.83 104.90 3.64 5.36
C 100 100 0.00 0.00 122.57 127.94 5.19 4.73
D 2.42 0.00 46.17 0.58 75.06 84.83 25.32 4.90
E 0.25 0.00 12.08 6.75 70.03 37.03 22.33 23.06

strategies of run n. 2 are based on effective coordination of actions and cooper-
ation among the different types of agents of the group. In brief, there is neither
phototaxis nor any other movement along the corridors if robot RAL is missing
in the group. There is neither obstacle avoidance nor successful phototaxis if a
single robot RAL is left alone in this simple world. Surprisingly, while robots
RIR retain their capability to avoid obstacles if situated in an “odd” group of
all RIR robots, a single robot RAL can hardly perform phototaxis if left alone.
This is shown by the results of Test C in which a single robot RAL is placed
in a boundless arena (no walls) with only a light at around 85 cm away from
it. As proved by the final distance to the light (see column 6 and 7, Table 2), a
single robot RAL is not capable of approaching the light source. Oddly enough, it
displays an anti-phototactic movement. In summary, the different types of robot
complement each other not only to accomplish the task, but also to carry out
those functions for which they are more apt (e.g., phototaxis in RAL).

In tests D and E, the best controller run n. 2 is cloned on a group of three robots,
in which, as during evolution, two are RIR and one RAL. Contrary to the evolu-
tion, in test D, the robots RIR only hear their own sound; in test E, the robots
RIR can potentially perceive the sound emitted by the robot RAL but they can
not hear each other’s sound. These tests should help us to understand more about
the significance of sound signalling. Data in Table 2 show that, in Test D, robots do
not systematically fail to reach the target. Although the performance in Env. L is
severely disrupted with almost 50% of unsuccess rate, in Env. R the group perfor-
mance is not touched by the alterations we applied to the system (see columns 2, 3,
4 and 5, Table 2). The failure in Env. L, is mostly due to collisions, which seem to
occur rather far away from the lights (see columns 6, and 8, Table 2). In summary,
the sound received by the robots RIR from robot RAL seems to play a significant
role in carrying out obstacle avoidance in Env. L.

In Test E, we immediately notice that the rate of failure is rather low (see
columns 2, 3, 4 and 5, Table 2). The success rate turns out to be quite similar to
that achieved in the evolutionary conditions in which all the robots can hear the
sound emitted by all the others. It seems fair to conclude that (i) communication
through sound signalling among the members of the group is required in order to
successfully approach the target; (ii) successful strategies of controller run n. 2
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are only marginally based on communication through sound signalling between
the robots RIR. Initially, we thought that this latter phenomenon was a side
effect of the spatial arrangement of the group during navigation. For instance,
if the robots form a chain in which the robot RAL is in the middle position and
the other two robots RIR are at the two ends of the chain, then the latter robots
may not hear each other because of the distance between them. Consequently,
preventing the robots RIR from hearing each other can not affect in any way a
navigational strategy of a group that does not rely on this element. However,
by looking at the spatial arrangement of the robots during navigation, we saw
that, within a trial, they tend to dispose themselves in various spatial configura-
tions in which the two robots RIR do perceive each other’s signals. This implies
that robots RIR might be capable of discriminating among agents of different
type (i.e., RIR, RAL). However, this and other issues related to management
of the coordination and cooperation of the group can not be inferred from this
preliminary analysis, and they need to be further investigated.

6 Conclusions

In a context in which robots differ in their sensory capabilities, cooperation and co-
ordination of actions evolved for the group to achieve a common goal. Behavioural
capabilities of the single agents become effective in a social context in which mu-
tual dependencies at various operational levels characterise the system more than
causal explanations. The agents (i) emit sound signals that are not too loud to hin-
der the perception of the sound emitted by the others, but loud enough to be cap-
tured by the other robots if relatively close to the emitter; (ii) negotiate a common
direction of movement; and (iii) navigate safely (i.e, without collisions) towards
the target. The “dynamic speciation” of the homogenous controller, whose mecha-
nisms underpin sensory-motor coordination and social interactions in structurally
different agents, is particularly significant. Froman engineering point of view, these
results suggest that homogeneous controllers can be efficiently exploited to con-
trol morphologically identical as well as morphologicallydifferent groups of robots.
This element can be also exploited in case of hardware failure, in which an on-line
re-assignment of association between agent’s sensors and network’s input neurons
might provide a robust mechanism to preserve the functionality of multi-robot sys-
tems. Moreover, a better coordination of actions might be achieved by varying
the characteristics of the sound and/or morphological features of the sound sig-
nalling systems—e.g., the number and/or the position of the loudspeakers and mi-
crophone. Finally, further investigations need to be carried out to provide a deeper
operational explanation of the properties of the system. Does the variability in the
emission of sound reflect a simple “vocabulary” grounded on sensor-motor activity
of the agent? This issue is an interesting subject for future investigations.
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Abstract. In this paper, research work on Arisco is described. Arisco is a social 
robot built around a robotic head with gesture ability, visual and auditive per-
ception and learning. It is intended for interacting with people. The general ar-
chitecture is first described in the paper. Then, the learning capacity of Arisco is 
addressed. It learns and performs associations between different stimulus re-
sponses through several dynamic neural networks, guided by motivational 
drives. Main contribution of this paper is the integration in a real robot  of con-
ditioning learning models based on a neural competitive network. A number of 
experiments are discussed, covering stimulus competition, habituation and first 
and second order conditioning. 

1   Introduction 

Social robots have been developed during the last few years as robots with human-
like abilities, which make human-robot interaction easier [1,2,3]. Robots with large 
perception capability, equipped with advanced communication interfaces based on 
natural language, expressivity and gesture recognition, makes communication easier 
not only for people with low technological skills, but also for people with decreased 
attention capability. For example, it has been shown that these agents help with prob-
lems like autism, thus, social robots can be used as a therapeutic tool [6]. 

Learning the consequences of its own actions is especially important when an  
animal or an intelligent machine has to operate in an unknown (or partly unknown) 
environment.  

Models of classical conditioning and operant conditioning have been conceived 
from the field of psychology to explain how an organism can achieve autonomous 
behaviour in a changing environment [9,10]. In the classical conditioning paradigm, 
learning happens by repeatedly associating a Conditioning Stimulus (CS), which 
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usually has no particular significance for the animal, with an Unconditioned Stimulus 
(UCS) which has significance and leads to an Unconditioned Response (UCR). For 
example, a dog that repeatedly hears a bell before being fed will eventually begin 
salivating when just hearing that bell. The response that is elicited by the CS after 
classical conditioning is known as the Conditioned Response (CR). In the operant 
conditioning paradigm, the animal learns the consequences of its actions. More spe-
cifically, it learns to exhibit, more frequently, behaviour that has led to a reward, and 
less frequently, behaviour that has led to a punishment. For example, a hungry cat in a 
cage from which some food can be seen, will learn to press a lever that allows it to 
escape the cage and reach the food. In this situation, the animal cannot simply wait for 
things to happen, but must generate different behaviours and learn which ones are 
effective. The main problem is how to learn which behaviour has produced the re-
ward. Furthermore, associations should be learned through time, since stimuli and 
rewards arrive continuously.  

In the present work, a model of classical conditioning and operant conditioning 
based on a competitive neural network, which learns new stimulus-response associa-
tions, is presented. Research has been performed on Arisco, a social robot who inter-
acts with people [4]. A general robot description is given in section 2. Behaviours and 
the learning architecture are presented in section 3. Experiments are presented and 
discussed in section 4. Finally, conclusions are summarized in section 5. 

2   Robot Description 

Arisco (see figure 1) is a robotic head with a capacity for gestures inspired physically 
in Kismet [2]  but with different internal functioning. Kismet behavior system is or-
ganized into loosely layered, heterogeneous hierarchies of behavior groups without 
learning. Arisco behaviors are activated depending on the competitive networks after 
stimulus-response association.  

 

Fig. 1. Arisco robot 

Arisco has 17 degrees of freedom, for neck movement and gesture production, and is 
equipped with 2 sphere-shaped webcams (at eyes), two microphones (at ears), one 
presence sensor and one short range, proximity sensor. Three microcontroller based 
boards to control the whole head, interface the sensors and provide the incoming 
sound direction. These boards and the webcams are connected to a laptop computer 
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under Knoppix 3.6, through a single usb port. This computer performs high-level 
planning, behaviour control, visual processing (see section 3.1), and voice command 
recognition (through an enhanced spectrogram matching procedure [7]). 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Overall organization of the robot 

The overall architecture of the robot is shown in figure 2. There are four main levels: 

• Hardware level. This is the lower level, and includes all sensors and actuators in 
the head. 

• Reactive level. The information coming from the head sensors is processed at this 
level. Also, the information coming from higher levels is here interfaced to the 
hardware level, through the movement control module and the sound and speech 
generation module. The former provides all actuator synchronization towards 
visual tracking [8], sound tracking [5] and gesture production (angry, sad, and 
happy); the latter provides speech from text and other sound effects (music etc.). 

• Deliberative level. At this level, external stimuli (from sensors) are processed, 
and motivational stimuli are generated upon the internal needs of the robot. All 
these stimuli are processed through learning neural networks in the behaviour 
and learning module, so that the currently active behaviours of the robot are  
chosen. These behaviours are fed to both the planning level, and the movement 
control module within the reactive level, for gesture and tracking movement  
production. 

• Planning level. High-level commands are here interfaced to the lower levels ac-
cording to the active behaviour, the sensorial information and internal variables 
such as the date, time and even information retrieved from Internet (such as 
weather information). The robot profile is defined at this level (a receptionist, in 
our case) for dialogue planning. Dialogue is then executed according to the user 
requests, and the external and motivational stimuli of the robot. Thus, an interac-
tive, bidirectional dialogue with the surrounding humans is maintained in defined 
context environments. 

Hardware
(sensors and actuators) 

Planner 

Sensor 
Perception 

Movement
Control 

Speech & 
Sound Synthesis

Motiva-
tion 

Behaviour
Learning 
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3   Behaviours 

The behaviour and learning module has two main subsystems: (i) the attentional 
behaviour subsystem, which selects the attention focus within the incoming sensor 
information; and (ii) the emotional behaviour subsystem, which selects the state of 
mood corresponding to a given situation. Both subsystems are controlled through 
competitive neural network maps, two separate computational maps [12]. The sensor 
information is filtered at the input (stimulus) layer through neuron competition, and 
the dominant behaviour is selected at the output layer depending on the weights be-
tween both layers. These weights are self-tuned at each cycle, so that the learning 
process takes place through time. Furthermore, some behaviours are directly wired to 
a certain stimulus (without adaptive weights). They are innate reflex behaviours, and 
correspond to self-protection instincts in animals (e.g. taking a hand away from pain). 

3.1   Attentional Behaviour 

This behaviour consists of selecting and tracking an attention point within the envi-
ronment around the robot [4]. This is done by selecting the most salient stimulus 
among the following: 

• Sudden sound (and its incoming direction) 
• Highly-saturated colour region. 
• Human face (along with its estimated distance). 
• Light source (bright saturation point). 
• A random point (useful when no noticeable feature is detected). 
• An image region whose HS histogram is close to that of a recently detected fea-

ture (useful for a continuous tracking of a momentarily disappeared feature). 

3.2   Emotional Behaviour 

The emotional behaviour subsystem selects one emotional behaviour from the incom-
ing-stimulus amplitude. Only a few representative, easily recognized behaviours are 
required [11] (e.g. neutral, happy, angry, sad, astonished). Furthermore, an associated 
activity degree determines how happy, angry etc. the robot is. The obtained behaviour 
is fed to the hardware level through the movement control module, so that different 
face gestures are produced. It should be noted that the attention point tracking and the 
gesture production are controlled in a parallel way: the face expression depends on the 
emotional behaviour (but not on the tracked feature), and the tracked feature depends 
on the active attentional behaviour. 

Proper cinematic and dynamic parameters, randomness ranges and motor positions 
corresponding to the different gestures are set up in the said movement control mod-
ule. Furthermore, reference values for neck, eyes and vision motors, suitable for the 
attention point tracking are also generated by this module.  

3.3   Neural Network Architecture 

The attentional behaviour and the emotional behaviour are implemented separately 
through the neural network architecture presented in Fig. 3. It consists of a habituation 
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network coupled to a computational map. The network maintains the stimulus varia-
tion through time and the competitive interactions in short term memory, STM, and 
the stimulus to behaviours association in long term memory, LTM. Both STM and 
LTM dynamics have been modelled through differential equations [Eqs.  1-8]. 

F2 Behaviours

Yj

F1 Habituated 
Stimulus

Ki

Si

gi

xi

+

+

Random
Generator

F0 StimulusIiHi  

Fig. 3. Neural network architecture 

Stimuli from sensors are placed at F0 level, e.g. a certain color region, a human 
face, or a resemblance figure between spectrograms (of the current word and a voice-
command stored in an internal database). Some stimuli, Ii, lead to conditioned behav-
iours, so they are connected through adaptive weights. Other Stimuli, Hi, lead to re-
flex behaviour, so they are directly connected (e.g. getting scared at a sudden sound, 
such as a clap, or receiving positive/negative reinforcement for intensify-
ing/attenuating a given behaviour). All stimuli are [0,1] normalized, and relative sali-
ence is modulated through Ki gains. Constant gain values have been selected in this 
work but variable values coming from a motivational module are also possible (e,g, 
face detection stimulus gain could increase when the robot is motivated for social 
interaction). Furthermore, stimuli may be either persistent through time (such as a 
face or colour region detection) or sporadic (such as a clap or word recognition). In 
the present model, sensor information is processed through a filtering neuron so that 
the stimulus decays slowly through time, because a certain time in the network is 
required for learning (STM memory). This is particularly convenient for sporadic 
stimuli. The filter equation is 

iii
i IaKaS

dt

dS +−=  (1) 
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where Si is the neuron activity (i.e. the attenuated sensorial information) and a is the 
rate of decay (so that the neuron activity decays at rate a when there is no excitation). 

The described neural network has habituation capability: the interest in a continu-
ous stimulus decays through time. For example, given that the robot is following a 
certain colour, the robot’s interest in this stimulus eventually decreases through time, 
under the interest of a new stimulus; say a human face for example. The habituation 
equations used in this work are based on the Slow Transmitter Habituation and Re-
covery  model [12]. In concrete, the habituation from F0 to F1 layer follows 

iii
i gSFgE

dt

dg −−= )1(  (2) 

where Si is the ith stimulus input and gi is the transmitter amount at the ith channel. The 
transmitter amount decays from maximum value (unity) at the beginning towards 
E/(E+F Si) value, proportionally to the Si input activity level. Once the input stimulus 
stops (Si =0), the transmitter recharges towards unity. E and F determine the transmit-
ter charging and discharging rate respectively. Thus, habituation happens according to 
Si gi . 

Sensorial stimuli feed an “On-Centre Off-Surround” competitive network [11]: 
“On centre” refers to positive feedback at the current neuron, and “Off Surround” 
refers to lateral inhibition of neighbouring neurons (see F1 level in figure 3). Gross-
berg [12] developed the multiplicative model taking the Hodgking-Huxley [14] equa-
tion that describes the neuron membrane behaviour. The equation that describes the 
multiplicative network is 

[ ]
≠

−+−+−=
ji

jiiiiii
i xfxxfgSxBAx

dt

dx
)()()(  (3) 

2)( Dxxf i =  (4) 

where xi is the activity of neuron i. Axi in (3) is the decaying rate. The second term is 
the “on centre” term, which pushes the neuron activity towards a maximum saturation 
value, B. Last term represents the lateral inhibition of neighbouring neurons. Different 
dynamic behaviour is obtained with different f(xi) choices (linear, faster than linear, 
slower than linear or sigmoid). In this work, a parabolic function has been selected 
(eq. 4), so that the winning neuron is reinforced over the others (“winner takes all”). 
Input to the behaviour level follows 

=

=
N

j
ijjj zxY

1

 (5) 

where zij are the adaptive connections, learned through an outstar learning law [12]: 

jijiij
ij xzyz

dt

dz
)( −+−= βγ  . (6) 

γ  es the forgetting factor, β is the learning rate, and yj is the jth neuron activity in the 

behaviour layer. Finally, the behaviour layer is modelled by a competitive neural 
layer similar to the stimulus layer: 
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The behaviour layer is activated by a random generator in the first learning stages 
(see figure 3), so that the robot can develop an exploratory behaviour. This kind of 
behaviour has been identified as an intrinsic learning mechanism in the early months 
for children, for basic visu-motor and speech-aural coordination learning. 

4   Experimental Results 

In this section, some experimental results of Arisco’s learning are addressed. Arisco’s 
face expressions corresponding to its different states of mood are shown in Fig. 4. 
Conditioning of these states upon visual and audio stimuli are specifically discussed. 

Sad Happy Bored Angry Scared 

Fig. 4. Arisco emotional behaviours 

Differential equations have been solved through a trapezoidal approximation: 
given 

)(xg
dt

dx =  , (9) 

the equivalent discrete equation is 

[ ]
2

))1(()(
))1(()(

hhkgkhg
hkxkhx

−++−=  (10) 

where h is the time integration step and k is a positive integer (0 <kh<t). 
An experiment on second order conditioning is hereby presented: a UCS which re-

flexly leads to a UCR is associated to a CS. In concrete, a clap UCS has been se-
lected, which leads to a scared UCR. A red card shown to the robot is the CS. The 
experiment objective consists in making Arisco scared by just showing it the red card. 
This is achieved by clapping repeatedly while the red card is in sight. The input 
stimulus corresponding to a red card is presented in Fig. 5.a (in red). Stimulus inten-
sity decays through time, thanks to the habituation, so that new stimulus arrival is 
favoured. The activity corresponding to four successive claps from 23 to 51 seconds 
is shown in blue. 
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  (a)  

 
  (b)  

 

  (c)  

Fig. 5. First order conditioning experiment corresponding to a UCS stimulus (a clap) and a CS 
stimulus (a red card). (a) Input stimulus to competitive network after filtering and habituation. 
(b) Stimulus activity in the competitive layer. (c) Response behaviour. Equation parameters are 
h=0.1 , A=0.3, B=1.0, C=1.0, D=5.0, E=0.04, F=0.08, =0.01, =0.0001 . 

 
Claps get Arisco scared, as a consequence of a reflex behaviour (fig. 5.c). Both red 
card and clap stimulus in the competitive layer are shown in fig. 5.b. When claps 
happen, the activity corresponding to the red colour detection decreases while the 
activity corresponding to claps increases. Weight learning (according to equation 6) 
occurs within the time period during which both the scared behaviour and the activity 
of the red colour are active. From 71 seconds on, only the red card is shown (without 
any clap). The habituated input stimulus and the stimulus activity in the competitive 
layer are shown in fig. 5.b and 5.c: the scared behaviour is activated every time the 
red card is presented to the robot (the behaviour intensity being below that of the 
reflex behaviour; this intensity is proportional to the elapsed learning time, i.e. the 
stimulus association time). 



 Robot Learning in a Social Robot 699 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Second order conditioning experiment corresponding to a CS1 stimulus (red card) pre-
viously conditioned to scared behaviour and CS2 stimulus (“scared” pronunciation). (a) Input 
stimulus to competitive network after filtering and habituation. (b) Stimulus activity in the 
competitive layer. (c) Response behaviour.  Equation parameters: h=0.1 , A=0.3, B=1.0, 
C=1.0, D=5.0, E=0.04, F=0.08, =0.1, =0.0001 . 

 
An experiment on second order conditioning is now discussed. The experiment 

target consists of checking the association to an already associated stimulus. After the 
experiment above, Arisco gets scared every time it sees a red card. Now, the robot is 
told “scared” each time it sees the red card, so that in the future it will get scared by 
just hearing “scared”. 

The stimulus corresponding to the red card detection while the robot is told “scared” 
is shown in fig. 6.a. Stimulus activity in the competitive layer is shown in Fig. 6.b. Red 
card stimulus is already conditioned, so Arisco gets scared (Fig. 6.c). Now “scared” is 
associated with the behaviour previously learned through weight adjustment. Then, the 
scared behaviour begins to stand out after adaptation, when the robot is just told 
“scared”, in spite of the short learning time (as seen from 65 seconds on in Fig. 6.c). 
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(a) (d) 

  

(b) (e) 

  

(c) (f) 

Fig. 7. Operant conditioning experiment. (a) Voice utterances corresponding to the behaviours. 
(b)  Stimulus activity in competitive layer. (c) Random behaviour generation. (d) Voice utter-
ances (test phase). (e) Stimulus activity in competitive layer (test  phase) (f) Behaviour obtained 
from F0-F1-F2 pathways. Equation parameters: h=0.1 , A=0.3, B=1.0, C=1.0, D=5.0, E=0.04, 
F=0.08, =0.01, =0.0001. 

An experiment on operant conditioning is finally discussed. The robot randomly 
generates different behaviours during a given time. The aim of the experiment is to 
test how the robot associates the generated behaviours to the incoming stimuli. The 
behaviours activated by the random generator are shown in Fig. 7.c (bored, scared, 
angry, sad and happy). For example, the robot is told “bored” when its facial expres-
sion corresponds to the bored behaviour. 
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The network is input the voice-command recognition (see Fig. 7.a). The input 
competition and the simultaneous behaviour-to-stimulus association learning is shown 
in Fig. 7.b. A test is performed after the initial learning phase: the robot is told the 
previously learned words, in a random order (Fig. 7.d). Stimulus competition is 
shown in Fig. 7.e, and the behaviour activity obtained from equations (5,7,8) is shown 
in Fig. 7.f. The winning behaviour is always that corresponding to the correct word. 

Some videos of the experiments can be downloaded from the site http://www. 
eis.uva.es/~eduzal/arisco/sab06.html . 

5   Conclusions 

In this paper, current research on a robotic head with basic social and learning abili-
ties have been presented. The head has a number of facial features and can show basic 
emotional behaviours, recognize voice commands, locate the incoming sound direc-
tion, detect human faces and colour regions, and track movement. A learning architec-
ture model based on competitive neural networks and outstar learning law, has been 
described. Though classical conditioning and operant conditioning learning methods 
have been studied exhaustively, they have not been used very much in real robots. 
The proposed architecture can do associations between any kind of stimuli and behav-
iors. Suitable performance of the model has been verified by means of different ex-
periments of first order, second order and operant conditioning. Future work will 
address low level behaviour learning (face expressions, eye-head coordination, etc) 
and the development of a motivational module for priming stimuli according to 
Arisco’s internal state and homeostatic signals. Motivation can also guide learning 
through reinforcement signals.  
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Abstract. In mixed societies of robots and cockroaches, several insect-like-
robot (Insbot) and animals interact in order to perform collective decision-
making. Many gregarious species are able to collectively select a resting site 
without any leadership. The key process is based on the modulation of the 
probability of leaving the shelter according to the total population under this 
shelter and its light intensity. It is important that cockroaches perceive the 
robot as a “congener”. This recognition is mainly based on a chemical blend. 
The aim of this study is to validate experimentally (1) the behavioral patterns 
expressed by the cockroaches in presence of shelters and of an Insbot, and (2) 
the important role played by the chemical blend on collective decision-
makings. 

1   Introduction 

With the rapid development of biology and biotechnology comes the growing need 
for systems where intelligent artificial and living agents cooperate. Controlling these 
interactions is therefore becoming a key challenge. Designing such synergetic 
societies requires studying new forms of information processing, problem-solving as 
well as synergetic behaviors between living beings and machines. Animal societies 
will be one of the first biological systems where living agents and autonomous 
artifacts will cooperate to solve problems. The machine does not replace the animal 
but collaborates and bring new capabilities to the mixed society. On one hand, the 
artificial systems bring new types of sensors, actuators and communication 
possibilities to the living systems; on the other hand the animals bring their cognitive 
and biological capabilities to the artificial systems. 

This study is a part of the Leurre project [1] [2] from which the main objective is to 
prove that it is possible to develop and control mixed-societies composed of insects 
(cockroaches) and small insect-like robots (the Insbots). Previous related works have 
studied interactions between robots and different animal species such as rats [3], or 
dogs [4]. As regards gregarious species, one may mention the use of smart collars to 
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hopefully control the herding behavior of cattle [5] or the Robot Sheepdog [6] to 
control a flock of ducks by moving them safely to a pre-determined position. 

The challenge of the Leurre project [2] consists in the development of a mixed 
society where several robots and several animals are able to interact in order to 
perform collective decision-making. One example of such collective decision is 
shelter selection by groups of cockroaches [7] [8]. 
To reach this objective, it means:  

1. to build of robots able to interact with animals;  
2. that the artificial agents will be able to respond to the signals emitted by the 

animals and to produce signals able to induce behavioral responses of the 
animals;  

3. that the interactions designed for the artificial agents or used by natural 
agents, are of the type mutual inhibition, mutual activation and competition 
for limited resources [9]. 

Then, our first goal was to obtain social interaction between an artificial and an 
animal agent. Indeed, we will lure animals in such a way that robots are socially 
integrated in the animal society, so that they are considered by animals “as one of 
them”. This means that robot and animals influence each other, that they both 
contribute to the collective decision of the mixed society. Groups of cockroaches 
exhibit such collective decision-making: e.g. when several identical shelters are 
present, the group chooses only one of them. Many experiments have been performed 
with different species [7] [8]. The large American species, Periplaneta americana is 
our reference species to test mixed societies. The classical example of collective 
decision-making is when all group members choose the same solution among 
identical alternatives. This decision is collegial without any leadership or 
anthropomorphic procedure such as voting. 

Contrary to the traditional lures that are elaborated following qualitative 
observations of the animal, the development of as well the hardware and the 
behaviour/software of our robot results from quantitative studies of the individual and 
collective behaviors of the cockroach. At the individual level, behavioral sciences 
have shown that animals’ interactions could be rather simple signals and that it is 
possible to interact with animals not only by mimicking their whole behaviors but 
also by making specifically designed artifacts. In this respect, the challenge was to 
determine the pertinent communication channels needed to integrate the robot within 
the animal group and to validate the repeatability of results in real experiments with 
animals.  

Concerning cockroaches, several studies have shown that recognition between 
individuals is based on the chemical compounds present on their body. Consequently, 
the robot was wearing a paper dress containing the cuticular extract of cockroaches 
[10]. At a collective level, the cockroach P. americana is a gregarious insect that 
forms large cluster of individuals in dark resting site. This cluster formation results 
from self-organized amplification processes based on the modulation of the 
probability to move according to two factors: the number of surrounding individuals 
and the local light intensity. It means that this probability decreases with the number 
of congeners present and with the level of darkness [7] [8]. Then like cockroaches, 
Insbot will behave according to this simple rule.  
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The aim of this study is to illustrate the building blocks needed to validate 
experimentally the behavioral patterns expressed by the cockroaches in presence of 
shelter and in presence of an Insbot. We will highlight the crucial role played by 
cuticular extracts of cockroach on the formation of mixed group.  

Finally, we will test whether the Insbot is well integrated in the animal society and 
whether it does not disturb the collective decision-making and aggregation patterns. 
Therefore among, all the interactions, we will study the interactions between 
cockroaches and the influence of shelters and Insbots on cockroaches’ behavior (Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 1. All possible interactions between Insbots, cockroaches and shelters. A distinction was 
made either the reaction induce by the interaction was an attraction (+) or a repulsion (-).  

2   Methods 

Cockroaches (Periplaneta americana) were raised in transparent boxes (length: 80 
cm; width: 40 cm; height: 100 cm). Water and food pellets were provided ad libitum. 
Cockroaches were kept under laboratory conditions at 25°C ± 1 in a 12h:12h 
light:dark cycle.  

2.1   Experimental Setup and Procedure 

Experiments were performed with adult male cockroaches. Following on the 
experiment conditions, 1, 10 or 30 adult cockroaches were picked up from the rearing 
box and isolated for 48 hours in the dark. They has access to water and food pellets. 
Animals with any external damage (e.g. missing antennal segments or legs) were 
discarded. After this isolation period, we introduced cockroaches in a circular arena 
(diameter: 100 cm) delimited by a black polyethylene ring (height: 20 cm, thickness: 
1 cm) (Fig. 2a,b). To confine cockroaches in this experimental arena, its inner surface 
was covered by an electric fence (alternation of positively and negatively charged 
black aluminum layers (19 V, 0.2 A)).  

+/- 

+/- 

+/- 

+ + 

Shelters 
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Fig. 2. A: Experimental setup composed of top camera (1), lamp (2), electrical fence (3), 
polyethylene ring (4), paper sheet (5), vibration absorbent layers (6) and wooden layer (7). 
Shelters are not represented on the illustration. The distance between lights and ground floor is 
1.5 m. B: Experimental arena with two identical shelters. 

The environmental conditions of the experimental setup were finely tuned in order 
to fit with cockroach and Insbot sensing capabilities. Firstly, temperature around the 
experimental setup was maintained at 20°C ± 1 since the walking speed of insects, 
like that of any insect, is highly sensitive to this factor. Secondly, since cockroaches 
mark the floor with a blend of different molecules (mainly hydrocarbons [10][11]), 
the white paper sheet (120g/m²) covering the ground of the arena (Fig. 2a) was 
renewed before each experiment. This prevents bias in cockroach behavior induced 
by the chemical marking deposited passively by congeners. In addition, the paper 
sheet was placed on two phonic layers which reduce the vibrations that could frighten 
the cockroaches. Finally, to prevent any disturbance of the cockroaches and the 
robots, lighting was exclusively artificial and produced by four neon lamp bulbs poor 
in IR (Fig. 2a, Philips ambiance Pro, 20 Watts, 355 lux ± 5 at ground level). 

Two Plexiglas discs (diameter: 15 cm) were suspended 3 cm above the ground and 
positioned at 23 cm from the edge, symmetrically to the centre of the arena (Fig. 2b). 
Before each experiment, discs were cleaned with denatured ethanol (ethanol + ether). 
To obtain different luminosities under the shelters, we covered it with one (the light 
shelter with underneath 100 lux ± 5) or two layers (a.k.a. dark shelter with underneath  
75 lux ± 5) of a red filter (Rosco color filter, E-Colour #019: Fire). The size of one 
shelter is large enough to contain up to 30 individuals, we did not observed any 
overcrowding. Due to the absence of red light-sensitive cells in their compound eye 
[12], cockroaches perceive an area illuminated by red light as shadow. When placed 
in an enlightened arena, these cockroaches have a higher probability to stop as soon as 
they enter the shadow area [13].  

Concerning Insbot, they are able to distinguish the four main features of the setup: 
the light intensity under of shelters, the arena walls, the cockroaches and the other 
robots [14]. Behaviours of the Insbot are divided into two categories: reactive 
behaviours and higher level behaviours. At the exception of reactive behaviours (e.g. 
obstacle avoidance and wall following), every 500 ms, the robot had a probability to 
perform each of the three actions (turning, moving, or stopping) according to its 
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 position (centre or periphery; under a dark or bright) and the number of surrounding 
individuals (cockroaches or robots). These probabilities were determined from the 
observation of cockroach’s behaviours (for detail of Insbot’s behaviour see [14]). 

 

 

Fig. 3. Two cockroaches and a chemically marked Insbot under a dark shelter (diameter: 15cm) 

In addition the Insbot was wrapped into a paper dress (Whatman, grade 1 filter 
paper, 8.5cm) which covered the whole surface of the Insbot excepting sensors  
(Fig. 3). Onto this paper dress, we laid extracts of chemical compounds necessary to 
induce the aggregation process and to maintain the cohesion of aggregates. These 
compounds are mainly cuticular hydrocarbons which were extracted by immersing 
adult cockroaches in dichloromethane [10]. Sixty microliters of these extracts were 
laid on the tested Insbot, which is equivalent to the amount of compounds present on 
the cuticle of one cockroach (marked Insbot). A control test was carried out by using 
a paper-dressed Insbot covered impregnated with sixty microliters of dichloromethane 
only (unmarked Insbot). 

The experiment began when cockroaches and/or an Insbot were introduced at the 
centre of the arena. All individual displacements were recorded by a camera for three 
hours (Fig. 1a, Fire-I Digital camera, Unibrain).  

3   Results 

3.1   Validation of the Experimental Setup Homogeneity 

We had to test in our experimental setup whether two identical shelters have the same 
probability to be occupied by individuals. Indeed, the presence of external landmarks 
could lead to a higher selection rate by agents (animal or artificial) of one of the two 
identical shelters. In this latter case, we could not make a distinction between the 
respective contribution of the position of the shelter in the arena and of tested factors 
(luminosity, number of individuals it contains) on the observed aggregation pattern. 
Then, the analysis of the cockroach distribution under the shelters after 180 minutes 
of experiments, we can exclude the existence of any bias related to the position of the 
shelter in the arena which may favor its selection by the group at the expenses of the 
other shelter. Indeed, cockroaches have an equal probability (number of cockroaches 
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under a shelter / total number of cockroaches under the two shelters) of 0.48 and 0.52 
(305 cockroaches tested; Chi-square goodness of fit: ²0.05,1 = 0.40, p > 0.05) to be 
found respectively under the left or the right light shelter. 

Insbot can be influenced in its choices by any landmark external to the arena (for 
detail of sensor sensitivity see [14]). Tests with isolated Insbot (11 experiments for a 
total of around 8 hours of experiments) show that Insbot have an equal probability of 
0.48 and 0.52 (number of entries = 147; Chi-square goodness of fit: ²0.05,1 = 0.15, p > 
0.05) to enter respectively in the left or in the right light shelter. 

3.2   Perception of Shelters as Resting Site 

The fraction of the total population (for one individual and groups of 10 or 30 
cockroaches) under two identical dark shelters is significantly greater than the 
probability expected in case of homogeneous distribution of individuals in the arena 
(Table 1). This expected probability, that also assumes that the cockroaches do not 
interact together, is equal to the ratio between the area of the shelters (353.4 cm²) and 
the area of the arena (7853.8 cm²). Then, due to the low light intensity under shelters 
in comparison with the uncovered part of the arena, the two shelters constitute the 
only heterogeneities susceptible to focus the cockroach aggregation. 

In table 1, we observe a high proportion of cockroaches aggregated under the 
shelters confirming that these heterogeneities are well perceived as resting sites. 
Indeed, one cockroach has a four times higher probability to be found out under 
shelters than expected from random. Furthermore, there is an enhancing group effect: 
when tested in groups of 10 or 30 individuals, more than a half of cockroaches are 
staying under the shelters. Hence the probability of a cockroach to leave a shelter 
decreases as the number of aggregated conspecifics increases. This confirms that the 
spatial distribution of the animals is not the simple summation of individuals’ resting 
preferences but also outcomes from interattraction effects.  

Table 1. Comparison between probability of being under shelters resulting from a random 
homogeneous distribution of individuals in the arena and the observed probability of presence 
under shelters for 1, 10 or 30 cockroaches 

Probability of presence 
 

Random Observed 
1 cockroach 

(37 replicates) 
0.045 0.20 

10 cockroaches 
(30 replicates) 

0.045 0.56 

30 cockroaches 
(25 replicates) 

0.045 0.62 

This interattraction which plays a key-role in collective decision, is not only based 
on physical contacts but also on chemical attraction, due to the perception of cuticular 
blend of group members. Therefore, we have investigated whether the addition of 
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these chemical compounds on Insbot may improve its integration within a 
cockroach’s group.  

3.3   Chemical Marking and Insbot Integration in Mixed Society 

To test to which extent the marking of Insbot with cuticular extracts of cockroaches is 
needed to allow the integration of the Insbot in a cockroach group, we compared 
individual and collective behavior of robot and insects in experimental tests with 10 
cockroaches without Insbot, 10 cockroaches with an unmarked Insbot and 10 
cockroaches with an Insbot chemically marked. 

3.3.1   Influence on the Individual Behavior of Cockroach 
The level of acceptance of an Insbot by one cockroach is assessed by the mean time 
during which they stay close together under the same shelter.  

The cockroaches are able to discriminate between an unmarked and a marked 
Insbot. Indeed, the mean time of contact between a cockroach and a marked Insbot is 
similar to the mean time between two cockroaches but lower than that between a 
cockroach and an unmarked Insbot (Fig. 4. Kruskal-Wallis test: KW = 14.3, 235 
replicates, p < 0.001. Dunn’s multiple comparison test: p < 0.05 only for the 
comparison cockroach-cockroach vs cockroach-unmarked Insbot). The lack of 
agonistic behavior by the cockroach as well as its prolonged association with the 
marked Insbot confirms the successful acceptance of this marked artificial agent.  

0

10

20

30

40

2 cockroaches marked unmarkedM
ea

n 
tim

e 
of

 c
on

ta
ct

 (
s)

 

Fig. 4. Mean time of contacts (± S.D.) under shelters between a cockroach and either another 
cockroach, a chemically marked Insbot or an unmarked Insbot. The duration of interactions 
between cockroach and robot are significantly different for the marked and unmarked robot. 

3.3.2   Influence on the Collective Behavior of Cockroaches 
The integration of an Insbot in a group of cockroaches is assessed by its influence on 
the clustering behavior of cockroaches and its presence within animal clusters.  

The unmarked Insbots seem to disturb the cockroach aggregation pattern. With an 
unmarked or a marked robot, respectively 40% or 70% of mixed society experiments 
ended by at least 66% of cockroaches under shelters (Fig. 5). This result shows that 
unmarked robot prevents the cockroaches from being under shelter.  
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Fig. 5. Frequency distribution of experiments according to the proportion of aggregated 
cockroaches under shelter for experiments with marked or unmarked Insbot. The unmarked 
robots tend to lower the occurrence of large aggregates. 

If we assumed that Insbot marked or not, has no influence on the aggregative 
choice of cockroaches, one would expect that the percentage of aggregated 
cockroaches would be similar in clusters including a robot or not. However, our 
observations show that the unmarked Insbot has a repulsive effect while the marked 
one attracts animals. Indeed, in only 30% of experiments, the majority of cockroaches 
(more than 2/3 of the total cockroach population) are with an unmarked Insbot under 
the same shelter (Fig. 6). On the other hand, around 60% of experiments with marked 
Insbot ended with the majority of sheltered cockroaches under the same shelter  
(Fig. 6). 
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Fig. 6. Frequency distribution of experiments as a function of the proportion of cockroaches 
under the same shelter as either a marked or an unmarked Insbot. The insects prefer to 
aggregate by segregating the unmarked Insbots. If the robots are marked, the insects prefer to 
aggregate in the same shelter as the Insbots i.e. without segregation. 

4   Conclusion 

Many gregarious species are able to perform collective decision such as the selection 
of one resting site without being guided by the leader, simply due to local -often 
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amplifying- interactions between group members. These collective decisions are not 
the simple summation of individual behavior (e.g. movement pattern, resting 
preference) but are deeply governed by a network of positive feedback loops. Hence, 
it is of the utmost importance to identify the nature and the specificities of amplifying 
interactions between group members in order to implement them in artificial agents 
and to build functional mixed societies. In accordance with the goals of the Leurre 
project [2], we are able to manage the behavioral and chemical parameters of the 
Insbot in order to integrate it in insect groups. 

The good integration of robot in animal group through the formation of mixed 
aggregates namely depends on chemical recognition of robots by the cockroaches as a 
full member of the group. 

We have validated the ability of the chemical lure put on Insbot to mimic 
interattraction between cockroaches. We highlight the crucial role played by cuticular 
extracts of cockroach on the formation of mixed group. Without chemical marking, 
the robot disturbs cluster formation and lead to spatial segregation from the insects. 
By contrast, with chemical marking, cockroaches share a shelter with the robot that 
could probably be perceived by the insects as a “congener”. Since the presence of one 
marked Insbot increases the resting time of a nearby cockroach, this artificial agent 
can nucleate the aggregation of animals and manipulate their spatial distribution. 
Besides, aggregation is a well known auto-catalytic process in which clustering 
increases with the number of already aggregated individuals. Therefore, in the future 
we will investigate how collective response of a mixed society will change with 
increasing number of artificial agents. 
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Abstract. Gregarious insects, like cockroaches, aggregate in shelters during 
their resting period. How do individuals reach a collegial decision? What is the 
relation between the distributions of the individuals and the parameter values 
characterizing the population and the environment? With a model based on 
experimental data, we demonstrated that the collegial decision is based on the 
relation between the individual resting time in a shelter and the population in 
this shelter. We extended this model to the case where different sub-groups may 
interact and where the crowding effect under the shelters influences the 
aggregation. This second model shows that depending on the interaction 
between the sub-groups and the crowding effect, different patterns are observed 
such as segregation of the different sub-group or the aggregation of the whole 
population. 

1   Introduction 

Grouping is the most common collective behaviour among living organisms. This 
phenomenon extends over the entire diversity of taxon and spans many biological 
characteristics like life-history strategy, degree of mobility… [1][2]. Many species 
from bacteria to higher vertebrates form groups more or less stable in time and 
space in response to environmental heterogeneities and environmental constraints or 
to attraction between individuals [3]. The level of interactions among individuals in 
a population relies on the spatial distribution of individuals that influences the 
structure and the organization of populations [4]. Aggregation can be defined as a 
higher temporal and spatial density of individuals than in the surrounding area 
[5][2]. The origin and the stability of social aggregates result from mutual inter-
individual interactions which are mediated by information transfer between 
individuals. This can induce emergent group behaviours, patterns or functions that 
are not merely the sum of the individual behaviours [6]. Self-organized systems 
allow understanding how non-linear interactions can lead to complex and non-
intuitive behaviours even with basic rules or information transfer at the individual 
level [2].  

In cockroach species, during the diurnal phases of their rhythm of activity the most 
widespread collective behaviour is gregariousness [7-9]. Studies on cockroaches and 
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especially on Blattella germanica have shown that clustering results from inter-
attraction between individuals in response to a signal mediated by chemical cues 
[10][11] and that this aggregation can be consider as a social phenomenon [12]. 
Different benefits result from aggregation such as reduction of stresses, increase in 
efficiency of alarm responses and antipredator behaviour, faster development and 
more efficient reproduction. Cockroaches tend to gather in shelters during their 
resting period. In Eublaberus distanti individuals are able to discriminate individuals 
belonging from the same strain or from another strain [13]. Ishii & Kuwahara [14] 
have shown that groups of cockroach larvae were able to select an aggregation shelter 
according to its odour conditioning in binary choices tests. Different strains of 
cockroaches imply different individual chemical signals per strains. Recent studies 
based on recognition of cuticular hydrocarbons profiles in Blattella germanica show 
that strains discriminate the signals and this leads to resting shelter selection. In a 
recent experimental binary choices study based on odour discrimination between 
species or strains of cockroaches, Leoncini and Rivault [15] have shown that 
segregation can occur when the carrying capacity of shelters is a limiting factor. In 
relation to the crowding effect sub-groups aggregate under the same shelter or 
segregate between the two shelters. 

The bases to model this kind of collective phenomena have been introduced in 
previous studies [16-18]. We present here collective decision making linked to 
aggregation problems between different sub-groups of individuals by taking into 
account the crowding effect. Our aim is to show that inter-attraction can lead, in 
relation to the limited carrying capacity of shelters, to different patterns of 
aggregation from a homogeneous distribution of individuals to segregation between 
sub-groups. Modulating the level of inter-attraction between strains and the crowding 
effect, we show in this study that either segregation or aggregation can be emergent 
patterns due to local interaction between individuals without global knowledge of the 
system. 

We describe the differential equations model that derives from the previous ones 
[16-18] and the stochastic description of the model by using master equations to take 
into account the fluctuations characterizing such systems and determine the 
probability distribution of individuals from each sub-group under shelters. 

This model study will be useful to determine how the properties observed at the 
individual-level can explain the patterns that emerge at the collective-level without an 
active signal. 

2   Formalizing the Model 

2.1   Meanfield Formulation of the Model 

Previous experiments provided data to build a dynamical model of aggregation based 
on the individual behaviour [18][19]. In previous studies on mechanisms that induce 
collective choices in binary choice tests, we have analyzed on one hand similar 
models based on strain recognition without a crowding effect [16][17]. On the other 
hand, we have analyzed the effect of crowding on one strain on binary choices and 
multiple choices tests and describe the patterns that appear [18]. The present model 
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mixes these studies and takes into account the crowding effect of shelters in binary 
choices tests for two strains and thus the effect of limited space due to the carrying 
capacity of shelter on strain repartition. 

We present first the general model for p strains (i=1…p) and two shelters (j=1,2) 
with a limited carrying capacity (Sj). We assume that the number of individuals from 
each strain is equal to N and that the maximum number of individuals that each shelter 
can harbor is equal (Sj=S). Xi,j is the number of individuals of the strain i under the 
shelter j. 

piNX
j

ji ...1
2

1
, =∀=

=

 (1) 

At each time step, each individual in the shelter j has a probability Qi,j to leave this 
shelter and to explore the arena. It has the same probability at each time step to 
encounter and to join the shelter h (Rh). 

Neglecting the time outside shelters, we can write the evolution of the number of 
individuals of strain i under shelter j as follow:  

pijhhjXQRXQR
dt

dX
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The probability to join the shelter j is given by: 
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Where μ is the maximal kinetic constant for entering in shelter j. Rj is equal to 1 as we 
have neglected the time outside the shelter thus individuals dynamic only depend to 
the probability to leave a shelter to reach directly another one. 

The probability Qi,j for one individual belonging to one strain to leave a shelter is 
in relation to the number of individuals present under this shelter. Experimental tests 
showed that larvae prefer their own strain odour to that of other strains [19]. In this 
case, the influence of individuals belonging to the same strain can be more important 
than that of individuals belonging to other strains. Thus the basic model must be 
completed with parameters of inter-attraction between strains i and l: βil. 

We suppose that the interaction of strain i on strain l is the same that l on i and that 
each strain has the same interaction with others, therefore βil= βli= β.  

The parameters of inter-attraction inside a strain already present in the single strain 
model are always considered equals to 1 (βii= 1). To express that an individual of one 
strain tends to stay more with an individual of the same strain than with individual of 
another strain, 0  β  1. If β = 0, we have p independent strains with no inter-
attraction between them. If β=1, we have p strains that interact in the same way with 
others. 

The experimental results show that the probability Qi,j of leaving shelter j decreases 

with the density of individuals 
S

X ji ,
 under this shelter [16]: 
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where θ is the maximal probability of leaving the shelter j per unit of time, and ρ is a 
reference surface ratio for estimating the carrying capacities. From personal measures, 
we assume that n 2 [16]. 

We can resume the evolution of the number of individuals of each strain under the 
two shelters after normalization (xi=Xi/N) as follow: 
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Shelters can’t hold more than the total number of individuals per strains (N). These 

conditions imply for p strains that pNS ≥2  or 
2

p
≥σ  (e.g. p=1 σ 0.5; p=2 σ 1). 

2.2   Stochastic Formulation of the Model 

A stochastic description of the model can be done by using master equations to take 
into account the fluctuations characterizing such systems and determine the 
probability distribution of individuals from each strain under shelters. 

Xi,j is the number of individuals of strain i under shelter j. The systems is 

characterized by pN )1( +  states Ω per strain i (1…p) and per shelter j:  

jpjijji XXXX ,,,1, ,...,...,)( =Ω  

Thus, we associate to each state Ω(n) a probability (P) to be in this state at time t:  
pitnP ...1)),(( =∀Ω  
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We can define the transition probability between states W: ))'()(( nnW ΩΩ . 

The following dynamical equation counts the processes leading to the state Ω(n) 
and the processes removing it from this state: 

'
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In term of probability, the incoming individuals on site j per unit of time of state 
Ω(n) come from transitions of all states Ω(n’) where the probability of occupation at 
time t is P(Ω(n’),t) to state Ω(n) with a transition probability W(Ω(n’)|Ω(n)). Else the 
outgoing of individuals from site j per unit of time of state Ω(n) is proportional to its 
probability of occupation at time t P(Ω(n),t) with a transition probability 
W(Ω(n)|Ω(n’)). 

At each time step, Xi,j can either unchanged or vary by only 1 or –1, corresponding 
to the individual movements between the shelters: 
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For two sites, assuming Xi,2=N-Xi,1 we can define the contributions of transition for 

state Ω(Xi,1) per unit time under shelter 1. For example ))()1(( 1,1, iii XXW Ω−Ω  is 

the transition probability per unit time of going from state Ω(Xi,1-1) to state Ω(Xi,1). It 
corresponds to the movement of an individual of strain i between the shelter 2 and the 
shelter 1. P(Ω(Xi,1-1),t) is the probability of being at state Ω(Xi,1-1) at time t. 
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To obtain the contribution of transition to the state Ω(Xi,1), we sum over all states 
that can lead to this state in a single step, corresponding to the movement of 
individuals of the p strains. Similarly the contribution from the state Ω(Xi,1) per unit 
time is the product of the probability of being in state Ω(Xi,1) at time t, times the sum 
of the transition probabilities per unit time from Ω(Xi,1) to all other states accessible 
from Ω(Xi,1). 

Thus the stochastic evolution per unit of time of the number of individuals of strain 
i under the shelter 1 is given by the equation (9): 
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3   Results 

3.1   Meanfield Model 

From the general model (Eq. 5), for two strains (i=2) we can resume the evolution of 
the number of individuals of these strains under the two shelters as follow: 
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With two strains and two identical shelters, the model has nine stationary solutions 
that correspond to different distributions of individuals under shelters. We resume 
below these analytical solutions and their analytical stability.    
 

(a) The symmetrical state 
These first solutions correspond to the dispersal of individuals between shelters 

(dispersal) with an equal number of individuals on each strain on both shelters: 

x1,1=x1,2=x2,1=x2,2=0.5.  

The symmetrical state exists for all values of σ and β and whatever the value of the 
parameter ρ. This state is stable when no other states exist (Fig. 1a & 2); see below 
for the conditions of existence of the aggregative and the segregative states. 
Thus for small values of σ (S N) and β > 0.3, and for huge values of σ, the shelters 
collect half the number of individuals of each strain (equipartition). 
 

(b) The two aggregative states 
Another group of two solutions is asymmetrical (heterogeneous), with an unequal 

number of individuals whatever the strain under each shelter: one shelter is selected, 
the two strains aggregate under the same shelter: 

x1,1=x2,1; x1,2=x2,2.  

These two aggregative states  are always stable when they exist (Fig. 1a & 2).  
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Fig. 1. Existence and stability of the different states for two strains and two shelters in relation 
to (σ, β). Assuming equation (5), σ  1 and ρ = ρexp= 1667. a- the homogeneous state, the 
aggregative and segregative states. b- the four mixed states (always unstable). 

(c) The two segregative states 
One group of solutions, are symmetrical (but heterogeneous), with an equal 

number of individuals whatever the strain under each shelter. This means that one 
shelter was selected by one strain, the other shelter by the other strain. The two strains 
segregate: 

x1,1= x2,2; x1,2= x2,1.  

The existence of the two segregative states depends on the level of interaction 
between strains and on the carrying capacity of shelters (Fig. 1a & 2). The following 
inequality gives the domain of existence of those states:  

For low values of σ and β, these states are stable but when β increases and when 
these states exist, they become unstable. 

(d) The four mixed states 
This group of 4 solutions correspond to an unequal number of individuals of each 

strain under each shelters: x1,1  x2,2  x1,2  x2,1.  
The four mixed states exist if the aggregative and the segregative states exist in the 

same time and are always unstable (Fig. 1b). 
The segregative solutions are always stable when they exist in the same range of 

values that the symmetrical state only i.e. for small values of σ (σ < 2, Fig. 1), and in 
a range of huge value of σ(σ  20 for ρ=1667) and small values of β (Fig. 1a & 2). 
Despite the aggregative states, even if σ is small, the segregative states exist while the 
coefficient of inter-attraction between strains is small (β< 0.3) but their stability is 
limited with the existence of the four mixed states that is always unstable (Fig. 1b & 
2, σ=5). The segregative states disappear when σ>21 for ρ=1667. The aggregative 
states exist from σ=2 but disappear in relation to the inter-attraction and the carrying 
capacity of shelters due to the non limited space of shelters (Fig. 1a). For S>>N, the 
symmetrical state become the stable state.  

3.2   Stochastic Study 

The numerical resolution of master equations aims to follow the time evolution of the 
distribution of individuals under shelters and gives the probability of each states 
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Fig. 2. Bifurcation diagrams as a function of β for four values of σ and ρ = 1667. Dashed lines 
represent unstable branches and solid lines, stable branches. ( ) represent the symmetrical state 
(dispersion), ( ),the segregative states, ( ), the aggregative ones and (×), the four mixed 
states. 

Ω(Xi,j) at the stationary regime. The time to reach the stationary regime increases in 
relation to N. 

For small values of σ (σ< 2) and β lower than 0.3 (Fig. 3a & 3b), the segregative 
states are selected; for β greater than 0.3, only the symmetrical state exist and is 
selected (Fig. 3c). So for a fixed carrying capacity, the greater is N, the more the 
segregation is selected if the strains few interact. 

For medium values of σ and small values of β we have coexistence of the 
aggregative states and the segregative ones (Fig. 3a & 3b) but for very small values of 
β the segregative states is more often selected and for upper values of β the 
aggregative states is more selected than the other ones (Fig. 3 & Fig. 4). 

In a range of values of σ between 2 and 19, the aggregative states and/or the 
symmetrical state are selected in relation to β (Fig. 3). The greater is σ in this range 
and/or β the smaller is the probability to select the segretative states instead of the 
aggregative ones (Fig. 3).  

However for huge values of σ(σ >20), in a first hand the segregative states 
disappear and in a second hand the aggregative ones in relation to β. For σ 40, the 
symmetrical state is the only existing state as predicted in the meanfield model (Fig. 3 
and see Fig. 1a). 
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This stochastic model shows similar results with experiments [15]. In those 
experiments, we can assume that S =25 and by approximation with the results of the 
model that β 0.15. For two strains, with populations of 5 (σ =5) and 10 (σ=2.5) 
individuals and for this small value of β, the segregation decreases face to the 
aggregation in relation to the increase of σ (Fig. 3b).  

 

 

 

Fig. 3. Stochastic resolution of the two-strain model for ρ = 1667. The figures give the 
probabilities to be in state Ω(Xi) associated to the proportions of individual in relation to σ 
(logarithmic scale on this figure).In the left column, xi is the proportion of individuals under 
one shelter for one of the two strain; in the right column, xi is the proportion of individuals 
under one shelter for both strains. a- probabilities for β=0.05; b- probabilities for β=0.15;  
c- probabilities for β=0.35. 



722 J.-M. Amé et al. 

4   Discussion 

Results show that solutions are not qualitatively different from the model without 
crowding effect [16][17]: collective patterns that emerge at the collective level 
without and with the crowding effect are identical. Whereas the crowding effect 
which is represented by the carrying capacity of shelters (S) limits the range of 
existence and of stability of the aggregative and segregative states for huge values of 
S. At the stationary regime, only 3 parameters characterize the model: σ (S/N), β 
(inter-attraction parameter) and ρ (reference surface ratio) that are linked to group 
properties but not to the individual behaviour. β is the parameter of interaction 
between strains (or between species of cockroaches). When β > 0.3, there is no 
difference between a two-strains group or a one-strain group. For β < 0.3 and small 
value of σ, the segregative states are stable. For larger values of σ, both aggregative 
and segregative states are stable, but the greater is the values of σ, the lower is the 
probability of observing the segregative states.  

Modulating the inter-attraction β, the total number of individuals (N) and the 
carrying capacity of the shelter (S), a diversity of solutions is generated (emergence of 
segregation, co-existence of segregation and aggregation, …) without any modulation 
of the individual behaviour and individual knowledge of the global system: the 
greater the number of individuals under a shelter is, the lower the probability of 
leaving this shelter. However, the crowding effect (environmental constraint) plays a 
role on the probability of joining a shelter by limiting to a critical value the number of 
individuals accepted under a shelter.  

         σ= 2.5 (N = 10, S = 25)    σ= 5 (N = 10, S = 50) 

 

Fig. 4. Probability to reach the aggregative states or the segregative states at the stationary 
regime with 80% of individuals of each strains under shelters for N = 10 and S = 25 (σ= 2.5) 
and 50 (σ= 5). ( ) represents the segregative states and ( ), the aggregative ones. 

This study shows that this kind model based on minimal rules of inter-attraction 
between individuals can explain the distribution of groups in a population (clustering 
and gregariousness between animal species or strains). By taking account positive 
feedbacks due to individual behaviours and negative feedbacks due to environmental 
constraints, collective choices can lead to the segregation or the aggregation of groups 
of animals [2][17][18]. This should describe a relevant and generic process for 
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understanding the dynamics of aggregation and segregation between sub-groups or 
species without the need of sophisticated behaviours modulated by the density 
[15][17]. Self-organised mechanisms govern many cases of aggregation and 
collective choice. Behavioural positive feedbacks, based on different type of signals 
(pheromone, silk, mechanical…), are the keystones of the dynamics of aggregation 
[20-24]. Our hypothesis is that for all these cases, the coupling between crowding and 
these positive feedbacks leads to a diversity of patterns similar to those of the 
cockroaches. 
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Abstract. A honeybee colony has to work highly efficient to survive. Most of a 
honeybee's energetic demands are satisfied by consuming carbohydrates which 
are collected by forager bees in form of nectar from flowering plants. The 
storage of this nectar is performed by another specialised group of bees. The 
size of the two workgroups (foragers and receivers) are precisely regulated by 
dances performed by forager bees, a process that represents adaptive behaviour 
of a superorganism. We implemented these mechanisms in a simulation of a 
honeybee colony to investigate the possible advantages of bigger colonies in 
nectar foraging.  

1   Introduction 

1.1   Biological Background 

Honeybees (Apis mellifera L.) are eusocial insects that live in large colonies of up to 
tens of thousands of individuals. A honeybee colony is a self-organizing system 
without a central regulatory unit. The individuals show age-polyethism, division of 
labour and task partitioning [1]. A cohort of bees which are specialized on the same 
task is called a “temporal caste”. 

Forager bees fly out of the hive to collect nectar, pollen, water or resins in the 
surrounding environment. The forager caste is subdivided into two groups: scouts, 
which explore the environment for new food sources, and recruits, which exploit 
“already known” food sources. Nectar receiver bees wait near the hive's entrance to 
accept nectar from the returning forager bees, which transport the nectar in their 
crops. This nectar is then processed and stored in the upper parts of the colony. 

1.1.1   Selection of Food Sources 
Usually, a colony has to choose among several food sources of varying qualities. The 
quality of a source can be described by the following equation: 

 
qi=

g− c
c               (1) 

whereby qi is the quality-index of the found source; g is the energetic gain of the 
collected nectar, measured in Joules [2]. The gain depends on the sugar concentration 
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of the found source (mol/l)and on the collected volume (μl); c represents the costs of 
the foraging trip, measured in Joules. The costs depend on the weight of the bee [mg], 
on the distance to fly (m) and on the speed of flight. 

Foragers returning from a successful foraging trip perform “waggle-dances” near 
the hive entrance, an area that is called “dance-floor”. These dances communicate the 
direction, the distance and the type of the source to several dance-following bees 
(recruits). The duration of a “waggle-dance”, as well as the probability to fly to this 
source again is modulated by the quality of the source [1].The longer a dance lasts, 
the higher is the probability, that one or more recruits follow the dance, and are 
recruited to the source themselves. In this way a self-organizing system for optimal 
source exploitation is accomplished.  

The relation between dance duration and source quality [2] can be shown in a 
“dance-response-curve” (Fig. 1). These dance-response-curves vary from individual to 
individual. Foragers with a big slope of the dance-response-curve dance very intense for 
a high quality source, and very little or not for a bad quality source, versus foragers with 
a small slope of the dance-response-curve, which dance little for sources of all qualities.  
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Fig. 1. Correlation between the quality of a nectar source and the dance rounds performed by 
honeybees. Redrawn from [2]. 

1.1.2   Regulation of the Size of the Worker Cohorts 
To allow the colony to work efficiently, it is crucial to regulate the size of the worker 
cohorts of foragers and receivers. Honeybees have evolved an astonishingly simple and 
robust way to perform this regulation: if the search for a receiver bee takes too long after 
a successful foraging flight, the forager bee performs a “tremble-dance”, which recruits 
additional receiver bees (Fig. 2). If the forager bee was able to transfer its nectar load 
quickly, it performs a “waggle dance” to recruit additional forager bees. If the size of the 
two working cohorts are balanced, moderate waiting times for foragers are most likely; 
after a waiting time of about 50 seconds, the forager performs no dance at all, thus the 
sizes of the two cohorts stay unchanged. If  returning forager bee has to search for a 
receiver bee more than about 50 seconds, it performs a “tremble dance” to recruit 
additional receiver bees.  
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Fig. 2. Correlation between the queuing delay experienced by a forager while waiting for a 
receiver bee and the probabilities to perform waggle or tremble dances. Redrawn from [2]. 

In this way an auto-balanced, self-organizing system for optimal source exploit-
tation is accomplished: 

1 The nectar influx is restricted to the current receiving workforce. 
2 The receiving workforce is regulated according to the current influx. 
3 The nectar sources of highest profitability are exploited to the greatest extent. 

1.2   Motivation 

The aim of this study is to investigate the influence of colony size on the adaptive 
regulation of the foraging-process and workload-balancing mechanisms, as they can 
be found in honeybee colonies. Why do Honeybees under natural conditions live only 
in colonies bigger than about 1000 individuals? Is there a correlation between 
honeybee behaviour, decision making and colony size? 

2   Material and Methods 

2.1   The Simulation Platform 

We extended our discrete-time multi-agent simulation platform of a honeybee colony 
“honeybee foraging simulation” (HoFoSim,[3][4][5]). In HoFoSim, only foragers 
were implemented as individual agents, receivers were implemented as a global 
property of the system. The new model “honeybee forager and receiver simulation” 
(HoFoReSim) adds receiver bees to the system, that are  implemented as agents, with 
their own metabolism. 

The advantages of the HoFoReSim simulation platform are: 

• It allows the high adaptivity to a variety of questions.  
• It enables us to study the interactions between the forager and receiver bees 
• It includes the nature-like individuality of honeybees regarding e.g., crop size, 

weight of bees, and dance-response curves. 
• The detailed simulation of the forager bee and receiver bee metabolism are 

implemented. 

We chose Netlogo 3.0 as programming environment [6]. 
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2.1.1   Implementation of Honeybees 
In our model, each honeybee in the colony is simulated by a single agent, which is 
driven by a finite-state machine consisting of a variety of behavioural states1 and 
transitions of these states. The whole collective of all agents is further on called 
“colony”. Each agent is implemented with a metabolism. The metabolic rate 
changes corresponding to the behavioural state of the agent. Furthermore the 
metabolic rate is influenced by the actual weight of the agent, consisting of its body 
weight and the nectar load. An agents' metabolism consumes nectar as its energy-
source. The simulation of metabolic activity together with the nectar income allows 
us to measure the economic success of a colony. To test the reliability of the 
simulation, we successfully compared simulated experiments to published empirical 
data (e.g., [7]).  

In our model, we turned special attention on the following behavioural aspects of 
honeybees:  

• the duration of different activities in and outside the hive,  
• the probability of changing from one behavioural state to another, 
• the dancing behaviour of forager-bees,  
• the exact simulation of biological relevant attributes, such as weight, stomach-

size etc., 
• the metabolic rates of the different behaviours. 

2.1.2   The Simulation Environment 
As shown in figure 3 the simulation environment is divided into two areas: the hive, 
where forager-receiver-interaction, dances and other colony internal activities  
take place, and the outside environment with nectar feeders placed in it. Each patch  
of  the  hive  area  represents  a  comb area of 0.75cm x 0.75cm, a patch outside the hive 

 

Fig. 3. Screen-shot of the simulation. Gray area on the right: Hive, where interactions between 
foragers and receivers, and the dances take place Small dots outside the hive: Bees flying in the 
environment. Big dot outside the hive: Nectar feeder, on which bees upload nectar. 

                                                           
1 e.g., “foraging”, “dancing”, “storing”, “receiving”, etc. 
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represents an area of 2.7m x 2.7m . Outside the hive several nectar feeders can be 
placed with up to 600 meters distance form the hive and have variable nectar 
concentrations. For the current work we used only one nectar feeder of constant 
nectar concentration. 

2.1.3   The Behavioural States and Transitions of Forager Bees 
The finite state automaton simulating the forager bees includes several behavioural 
states, differing in the corresponding agent behaviour and metabolic rate. Table 1 
shows the most important behavioural states of forager bees together with the 
associated activity level. We implemented two activity levels:  

• “low” for all running and walking activities of bees (inside of the hive), and  
• “high” for flying activities of the bees (foraging flights to and from the food 

source and random scouting flights).  

Table 1. States of a forager bee and the corresponding metabolic rate 

behavioural state behaviour activity level 
in hive w/o info random walk in hive low 
dance following random walk in hive, sensitive for waggle

dances 
low 

in hive with info random walk in hive low 
foraging direct flight to the source high 
returning direct flight home high 
searching for receiver random walk in the hive, sensitive for

receiver bees 
low 

unloading to receiver passing nectar to the receiver bee low 
dancing random walk in the hive, offering

information to nearby bees in state “dance
following” 

low 

scouting random flight high 

Transitions from one behavioural state of forager bees to another (Table 2) are 
triggered by one of the following mechanisms:  

• by fixed time delays (T), meaning a fixed number of time steps after with a 
agent switches from one behavioural state into another2, 

• by a fixed probability (P), meaning a fixed probability per time step, with 
which an agent switches from one behavioural state into another3,  

• by an internal trigger (I), meaning an internal sensor changing the behavioural 
state of an agent4, or 

• by an external triggers (E), meaning an agent-agent or an agent-environment 
interaction changing the behavioural state of an agent5. 

                                                           
2 e.g., leaving the hive after a dance. 
3 e.g., become a dance follower. 
4 e.g., return to colony when stomach is full or mostly empty. 
5 e.g., entering the colony. 
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Table 2. Behavioural transitions of forager bees (for abbreviation see text above) 
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in hive w/o info  - - P - - E - I - - 

dance following P - - - - - - - - - 

in hive with info - - - - - - - - - - 

foraging - E T - - - - I T - 

return with info - - - T - - - - - E 

return w/o info - - - I - - - - - I 

search for receiver - - - - E - - - - - 

unload to receiver - - - - - - E - - - 

dancing - - T - - - - I - - 

to 

scouting P - - - - - - - - - 

2.1.4   The Behavioural States and Transitions of Receiver Bees 
The finite state automaton of the receiver bees (table 3) is very much similar to the 
state automaton of the forager bees (see 2.1.2). All behavioural states of receiver bees 
correspond to the “low” activity level, because these bees never leave the hive in our 
model. 

Table 3. The most important behavioural states of receiver bees and the associated activity level 

behavioural state behaviour activity 
level 

waiting random walk in hive, sensitive for nearby foragers
in state “searching for receiver” 

low 

load from forager getting nectar from a forager in state “unload to
receiver” 

low 

storing random walk and search deposition place low 
idle random walk, insensitive for any foragers low 

Similar to the behavioural transitions of forager bees (2.1.2) the behavioural 
transitions of receiver (Table 4) bees can be triggered by fixed time delays (T), by a 
fixed probability (P), by an internal trigger (I),or by an external trigger (E). 
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Table 4. Behavioural transitions of receiver bees (for abbreviation see text above) 
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idle P - - - 

Receiver bees accept nectar from returning forager bees. When a receiver bee´s 
crop is full, the receiver bee starts to store the nectar in a honey-store, what is 
represented by the state “storing”, while which the receiver bee is not available for 
any other bee-bee interaction. Depending on the colony's nectar need the time a 
receiver bee spends with storing nectar varies from 10 minutes to 28 minutes [2]. 
The bigger the colony's honey reserves are, the smaller is the available space to 
store nectar, and the longer a storer bee has to search for appropriate space. 

2.1.5   Activity Levels and Metabolic Rates 
The metabolic rate of a honeybee depends on its actual weight and the activity level 
she is in. In our model, the empty weight WE of a honeybee is 83.32 ± 6.89 [8]. The 
maximum crop volume is 45.9 ± 8.7 [9]. The weight WL of the actual nectar load L of 
the sugar-concentration LC is calculated by the equation 2 (based on own 
measurements, data not shown): 

                                          WL = L * (0.065 * LC + 1.0026).                 (2) 

Due to this, the actual weight of a bee WA is calculated by the equation 3: 

               WA = WE + WL.                 (3) 

Based on [2] the metabolic rate of a bee MR is calculated by the equation 4 and 5, 
depending which activity level the bee is in: 

High activity level:  

                                     MR  = (0.00287 * (WA0.629)(2.827 * LC)                (4) 

Low activity level: 

                                     MR  = (0.00248 * (WA0.492)) / (2.827 * LC)               (5) 
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2.2   The Simulation Settings 

We performed three kinds of experiments: The first experiment addresses the question  
how a honeybee colony reacts to different sets of start configurations regarding the 
relation of foragers to receivers in the colony. The second experiment addresses the 
question how effective colonies work with these different initial sizes of worker 
cohorts. Finally the third experiment addresses the question how colonies of different 
size can react to changes in the environment. 

In all experiments one single feeder was placed in the simulation environment. 
This feeder was placed in a distance of 340 m (=127 patches) to the colony and 
offered a sugar solution with a concentration of 2.5 mol/l. This distance of the feeder 
to the colony leads to a foraging cycle length of about 2.8 minutes 

2.2.1   Experiment 1: Reactions of a Colony to Different Start Configurations  
To test the reactions of a colony to different start configurations, we performed 
several simulation runs with colonies of different forager to receiver ratios (F:R). This 
ratio we varied between 1:4 and 4:1. The total number of foragers and receivers in the 
colony was kept constant with 1000 bees. The number of recruited foragers and 
receivers after 3 hour of simulation time was recorded.  

2.2.2   Experiment 2: Influence of Different Colony Size on the Mean Queuing 
Delay Inside the Colony 

To test the economics of colonies of different sizes, we performed several simulation 
runs with colonies from 40 bees in the colony up to 1600 bees. The forager to receiver 
starting ratio was kept constant at 1:1. The mean queuing delays of foragers and 
receivers, and the net nectar gain of the colony was measured.  

2.2.3   Experiment 3: Reactions to Changes in the Environment 
To investigate the ability of a colony to adapt to sudden changes in the environment, 
we spontaneously doubled the length of the foraging flight cycle as proposed by [10],  
and switched it back to initial level after 2 hours. We measured the number of forager 
bees recruited to the source. For this experiments the colonies started with an optimal 
workload balance between foragers and receivers. If a colony has a suboptimal 
workload balance, effects of changes in flight cycle length may be masked by 
regulation mechanisms of the colony. Due to this, changes in the flight cycle length 
could take maximal effect on the number of recruited forager bees under conditions of 
optimal workload balance. 

3   Results 

3.1   Experiment 1: Reactions of a Colony to Different Start Configurations 

We found, that the starting condition of a colony has small influence on the ratios of 
recruited foragers to receivers after 3 hours. Colonies with a forager to receiver ratio 
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Fig. 4. Relation of recruited foragers to recruited receivers after 3 hours in colonies with 
different start configurations, respective the relation of foragers to receivers in the colony. Dots 
show mean values; Error bars indicate standard deviations. 

of F:R = 1:4 ended up at a recruited forager to recruited receiver ration of 
1:0.13 ± 0.02. Colonies with F:R = 4:1 ended up at a recruited forager to recruited 
receiver ration of 1:0.25 ± 0.02 (Fig.4). 

3.2   Experiment 2: Influence of Different Colony Size on the Mean Queuing 
Delay of Foragers and Receivers Before Unloading  

The mean queuing delay of foragers waiting for a receiver to unload the nectar is 
negatively correlated with the number of bees in the colony (Fig. 5A). Also the mean 
queuing delay of receivers waiting for a forager decreases with an increase of bees in 
the colony (Fig. 6A). Because the forager bees draw information about the workload 
balance of the colony from the experienced queuing delays while waiting for a 
 

 

Fig. 5. Mean values and standard deviations of queuing delays experienced by forager bees. 
Mean values and standard deviations decrease with an increase of the colony size. Only results 
of colonies of 120 or more bees are displayed for depicting reasons. 

A B 
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Fig. 6. Mean values and standard deviations of queuing delays experienced by receiver bees. 
Mean values and standard deviations decrease with an increase of the colony size. Only results 
of colonies of 120 or more bees are displayed for depicting reasons. Queuing delays of 
receivers are much longer than the queuing delays of forager bees (Fig. 5), for explanation see 
discussion. 

receiver (Fig. 2), we also measured the standard deviation of queuing delays, and 
found that these standard deviations are also decreasing with an increase of bees in 
the colony, for both, foragers (Fig. 5B) and receivers (Fig. 6B).  

3.2.1   Economy of Honeybee Colonies of Different Size 
We measured the net nectar gain of the colony by the volume of nectar gained per bee 
per hour. In our simulation small colonies (< 400 bees)6 worked very inefficient  
(Fig. 7). The efficiency of the colonies increased with their size, reaching a plateau at 
a colony size of about 400 bees. Bigger colonies did not gain more nectar per bee than 
about 7μl / bee / hour. 

 
Fig. 7. Net nectar gain of simulated honeybee colonies of different size. The net nectar nectar 
gain increases with the size of the colony, reaching a plateau at a colony size of about 400 bees 
(Bold Line: Mean values; Thin lines indicate standard deviations; n = 6). 

                                                           
6 Real world honeybee colony consist of much more than the two modelled temporal casts, for 

explanation see discussion. 

A B 
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3.3   Reactions to Changes in the Environment 

We found, that bigger colonies (Fig. 8B) react to a doubling of the foraging flight 
cycle length with a stronger and more precise recruitment of forager bees than smaller 
colonies (Fig. 8A). Colonies with 200 bees (Fig. 8A) show very little reaction, during 
the phase of elongated foraging flight cycle, which lasted from hour 2 to hour 4 of the 
experiment. Colonies with higher numbers of bees (1000 bees, Fig. 8B) show a strong 
recruitment of forager bees within the first hour of the phase of elongated foraging 
flight cycle. 

 
 

 

Fig. 8. A: Number of recruited forager bees in a colony of 200 bees. During the phase of 
elongated foraging flight cycle (hour 2-4) there is hardly any reaction visible in the number of 
recruited forager bees. B: Number of recruited forager bees in a colony of 1000 bees. During 
the phase of elongated foraging flight cycle the colonies react with massive forager recruitment. 
When the foraging cycle length drops back to initial level, the number of recruited foragers 
drops also back to normal level. Bold lines: Mean values (left y-axis); Thin lines indicate 
standard deviations; Gray line: relative flight cycle duration (right y-axis); n = 6. 

4   Discussion 

Our studies show, that our model of honeybee colony is very stable concerning the 
workload balancing between foragers and receivers, mostly independent of the 
configuration of the colony (Fig. 4). A mismatch between the forager and the receiver 
cohort is compensated by the waggle-tremble-dance recruitment system, mentioned in 
chapter 1.1. The results of our studies differ significantly from the work of [10], 
which show a much clearer correlation between the forager-to-receiver ratio and the 
queuing delays, with minimum queuing delays at a ratio of foragers to receivers of 1:1 
(under conditions of equal length of foraging cycle and storing cycle). This 
differences are based on the much more detailed simulation used for our studies. Our 
simulation includes the majority of the known recruitment and workload-balancing 
mechanisms of a honeybee colony, like dances, or the possibility of a honeybee to be 
“idle”, what leads to a reservoir of workforce. Our results, concerning the stability of 
a colony against internal mismatches, brought up the question, how different colony 
sizes affect the colony's efficiency. We found, that the waiting times experienced by 

200 bees 1000 bees 

A B
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the foragers reflect the colony situation less precisely in small colonies, than in bigger 
ones (Fig.5, 6). Due to the importance of waiting times of forager bees in the 
regulatory system of the colony (chapter 1.1), we found that bigger colonies have 
much higher quality of the information (less noise in the communication channel) 
about the status of the workload balance of the colony available. This also affects the 
efficiency of the colony, as is expressed by the foraging success (Fig. 7) and the 
ability of the colony to react to changes in the environment (Fig. 8). The much longer 
queuing delays of receiver bees are based on the low probability of the receiver bees 
to switch from state “wait for a forager” to “idle”, which is necessary to keep 
receivers waiting while long periods with no returning foragers. 

In our model colonies of less than 400 bees (foragers and receivers) are not able to 
work at maximum efficiency. Compared to the situations in a real world honeybee 
colony, we estimate, that a colony with less than about 1000 bees can not work 
optimal. Please keep in mind, that a real world honeybee colony consist of much more 
than the two modelled temporal casts e.g., nurses, wax builders, cleaners, guards. 
Honeybees in temperate climatic zones also have to spend big amounts of energy on 
temperature regulation of the colony, thus we maybe still underestimate the necessary 
minimum colony size for optimal foraging in real world honeybees. Nevertheless the 
simulation gives us a deeper insight into the adaptiveness of bigger amounts of 
individuals in a honeybee colony, due to single honeybee behaviour. 

Our simulation study showed the importance of incorporating all relevant feedback 
of the focal system into the model. Our model is the first published model that 
incorporates all important feedback involved in the honeybee foraging system in a 
bottom-up individual-based approach. The fact that the model (HoFoReSim) models 
foragers and receivers, the metabolisms of these bees and the relevant behaviours of 
these bees (dances, flights,...) significantly increases the reliability of our results. 
Based on our model we can successfully investigate the implications of individual 
behaviours on the colony's efficiency. This way, the model allows us to investigate 
the adaptive behaviour of a superorganism, as was demonstrated in this article. 
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Abstract. This paper investigates the dynamics of cumulative cultural
evolution in a simulation concerning the evolution of language. This sim-
ulation integrates the iterated learning model with the Talking Heads
experiment in which a population of agents evolves a language to com-
municate geometrical coloured objects by playing guessing games and
transmitting the language from one generation to the next. The results
show that cumulative cultural evolution is possible if the language be-
comes highly regular, which only happens if the language is transmitted
from generation to generation.

1 Introduction

Our knowledge seems to be ever more increasing, our social networks are getting
more complex, technology is advancing all the time, etc. In short: many aspects
of our culture seem to be getting ever more complex. This paper investigates
some dynamics of this cumulative cultural evolution by exploring a recent model
that simulates the cultural evolution of language.

Cultural evolution is often characterised in terms similar to Darwin’s [1] evo-
lution theory, see, e.g., [2,3]. Simply put, this means that culture evolves based
on the principles of variation, competition and selection. Darwinian explanations
have been applied to various aspects of cultural evolution, such as linguistics [4].

Boyd and Richerson [2] have argued that social learning is favoured if it is
less costly or more accurate than individual learning of such skills or knowledge.
Furthermore, if the cost decreases or accuracy increases for learning skills socially
over generations, such skills may improve accumulatively over time. Translating
this to language evolution, this view supports a gradual evolution of complexity
in languages, see, e.g., [5]. Recent computational studies on the cultural evolution
of language have shown how languages may become increasingly complex in
terms of, e.g., grammatical structures when it is transmitted from one generation
to the next [6,7]. One typical change that seems to have occurred in these models
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is that languages change in order to become more learnable, as hypothesised in,
e.g., [8]. If languages are learnt easier (or faster), this both decreases the learning
costs and increases learning accuracy.

Using the model introduced in [7], this paper illustrates how the iterated
learning of compositional structures from initially holistic languages can lead to
a cumulative cultural evolution until an optimal (cognitive) platform is reached.
Although this model has been used previously to study various aspects regarding
the evolution of compositionality (e.g., [7,9,10]), this study is unique in the way
the dynamics of the evolution is analysed. This is done using different param-
eter settings and measures highlighting how this model can contribute to our
understanding of how cumulative cultural evolution can work. The next section
will present the model. Section 3 will present and discuss experimental results,
which show that indeed learning cost decreases and learning accuracy increases.
Conclusions are provided in Section 4.

2 Iterated Learning and Language Games

As the model of this paper simulates a transition from holistic languages to
compositional languages, it is good to start with a definition of such languages:

Holistic languages are languages in which parts of expressions have no func-
tional relation to any parts of their meanings. For instance, there is no part
of the expression “bought the farm” that relates to any part of its meaning
has died.

Compositional languages are languages in which parts of expressions do have
a functional relation to parts of their meanings and the way they are com-
bined. For instance, the part “John” in “John loves Mary” refers to a guy
named John, likewise “loves” and “Mary” have their own distinctive mean-
ings. In addition, this sentence has a different meaning in English when the
word-order changes, as in “Mary loves John”.

Following Wray’s [5] hypothesis that modern languages were preceded by
holistic protolanguages, Kirby and colleagues have shown how an initially holis-
tic protolanguage can transform into a compositional language if the language
is iteratively transmitted from one generation to the next through a bottleneck
(which means that the next generation only observes a small subset of the lan-
guage from the previous generation) [6]. This bottleneck effect is understood by
realising that holistic languages are unstable over time when the next genera-
tion only observes a small subset, while compositional languages are stable (see
Fig. 1). This, of course, is only possible if the learners in this model can extract
compositional structures from their (possibly holistic) input.

The basic principle of this iterated learning model (ILM) [6] is that the pop-
ulation consists of two groups: adults and children. The children acquire the
language by observing the adults’ speech directed to them. At the end of an
iteration, during which the children have observed a part of the language, all
adults are removed, all children become adults and new children are added to
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Type G(n) Utter. G(n + 1)

Hol.

ab-00 ab-00 ab-00
cd-01 cd-01 cd-01
fg-10 fg-10 fg-10
fb-11 ??-11

Comp.

ab-00 ab-00 ab-00
ac-01 ac-01 ac-01
db-10 db-10 db-10
dc-11 dc-11

Fig. 1. This figure illustrates why holistic languages (upper part) are unstable when a
population of generation G(n+1) only observes three of the four utterances (Utt.) from
generation G(n)’s language (i.e. word-meaning mappings). In this case, if generation
G(n+1) wishes to communicate about meaning 11 (meanings in this example are to be
read as bit-strings), then this generation will have to create a new word. If the language
is compositionally structured, as in the bottom part of this figure, observing only three
out of four instances would allow the next generation to reconstruct the entire previous
language. Hence transmitting a compositional language through a bottleneck is more
stable than transmitting holistic languages.

the population. This process is then repeated, such that language is transmitted
over subsequent generations. In earlier ILMs (e.g., [6]), this transmission was
entirely vertical, because adults only directed their speech to children, who only
listened until they were adults themselves. With such a condition, the only way
to achieve a bottleneck is by the experimenter setting a parameter regulating
that children only see a fragment of the language of a given size.

It has been shown that when communication within one iteration is isotropic,
which means that communication goes in all directions from adult to adult, adult
to child, child to adult and child to child, then compositionality can evolve as a
stable system without the need for the experimenter to impose a bottleneck [9].1

This is because when children need to speak, they may face the consequences
of the bottleneck if they need to speak about previously unseen meanings (cf.
meaning 11 in Fig. 1). This implicit bottleneck is then a more natural bottleneck
and may in part explain why in horizontal models of language evolution com-
positionality evolves, see, e.g., [11]. In this model, which is a simulation of the
Talking Heads experiment [12], the population plays a large number of guessing
games to develop a language that allows the population to communicate about
their world, which contains a number of coloured geometrical shapes.

It is impossible to present all details of the model in this paper; the interested
reader is referred to [7,9]. The guessing games are played by two agents: a speaker
and a hearer. Both agents are presented a small number of objects randomly
sampled from the world. These objects constitute the context of the game; the
world contains a total of 120 objects (12 colours combined with 10 shapes).
Each agent individually categorises the perceptual features of each object using

1 In [9] this type of transmission was called horizontal transmission, but since in [3]
this refers to transmission only within one generation, the term isotropic is preferred.
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1 S → greensquare/(0,1,0,1) 0.2
2 S → A/rgb B/s 0.8
3 A → red/(1,0,0,?) 0.6
4 B → triangle/(?,?,?,0) 0.7

Fig. 2. This example grammar contains rules that rewrite a non-terminal into an
expression-meaning pair (1, 3 and 4) or into a compositional rule that combines dif-
ferent non-terminals (2). The meanings are 4-dimensional vectors, where the first 3
dimensions relate to the RGB colour space (rgb) and the 4th relate to the shape fea-
ture (s). The question marks are wild-cards. Each rule has a rule score that indicates
its effectiveness in past guessing games. Only sentences of 2 constituents are allowed
in this grammar.

a method based on the discrimination game, whose details are irrelevant to the
scope of this paper. Suffices to say that each object is categorised such that it
is distinctive from all other objects in the context. If distinctive categorisation
fails, a new category is constructed for which the object’s perceptual features
serve as exemplars. (Note that initially, each agent has no categories at all; these
are all constructed by these discrimination games.) Categories are represented
as prototypical points in a 4-dimensional space, each dimension relating to a
perceptual feature, which are the red, green and blue components of the RGB
colour space and a shape feature.

Once the agents have categorised the objects in the context, the speaker selects
one object at random as the topic of the communication. This agent then searches
its grammar for ways to encode an expression that conveys the topic’s meaning.
The grammar (Fig. 2) consists of simple rewrite rules that associate forms with
meanings either holistically (e.g., rule 1) or compositionally (e.g., rule 2 combined
with rules 3 and 4). The grammar may be redundant in that there may be
rules that compete to encode or decode an expression (cf. [11,13]). The speaker
searches for those (compositions of) rules that match the topic’s meaning and if
more than one are found, he selects the rule that has the highest rule score. If
the speaker fails to encode an expression this way, a new form is invented as an
arbitrary string and is associated with the topic’s meaning or – if a part of the
meaning matches some non-terminal rule – with the rest of this meaning.

In turn, the hearer tries to decode the expression by searching her own gram-
mar for (compositions of) rules that match both the expression and a category
relating to an object in the current context. If there are more such rules, the
hearer selects the one with the highest score, thus guessing the object intended
by the speaker. The hearer then points to this object, and if this is the object in-
tended by the speaker, the speaker acknowledges success; otherwise, the speaker
points to the topic allowing the hearer to acquire the correct meaning.

If the guessing game was successful, both the speaker and hearer increase the
scores of the rules they used and lower the scores of those rules that compete
with the used rules. If the game has failed, the scores of used rules are lowered
and the hearer acquires the proper association between the heard expression and
the topic’s meaning. To this aim, the hearer tries the following three steps until
one step has succeeded:
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1. If a part of the expression can be decoded with a part of the topic’s meaning,
the rest of the expression is associated with the rest of the meaning. For
instance, if the hearer of the grammar shown in Fig. 2 hears the expression
“redcircle” meaning (1,0,0,.5), the part “red”-(1,0,0,?) can be decoded, so
the hearer adds rule B→circle/(?,?,?,.5) to its grammar.

2. If the above failed, the hearer searches its memory, where she stores all
heard or produced expression-meaning pairs, to see if there are instances
that are partly similar to the expression-meaning pair just heard. If some
similarity can be found, the hearer will break-up the expression-meaning
pairs containing the similarities – following certain heuristics, thus forming
new compositional rules. Suppose, for instance, the hearer had previously
heard the expression-meaning pair “greensquare”-(0,1,0,1), and now hears
the expression-meaning pair “yellow square”-(1,1,0,1). The hearer can then
break up these pairs based on the similarity “square”-(?,1,0,1), thus forming
rules S→C/r D/gbs, C→green/(0,?,?,?), C→yellow/(1,?,?,?) and D→square-
(?,1,0,1). Note that this is not the ideal break up, since it breaks apart the
red component of the RGB colour space from the blue and green components
and the shape feature. The next section shows that over time such mistakes
diminish as a result of competition and selection.

3. If the above adaptations both fail, the heard expression-meaning pair is incor-
porated holistically, leading to a new rule such as S→yellowcircle/(1,1,0,.5).

At the end of these steps, the hearer performs a few post-processes to remove
any multiple occurrences of rules and to update the grammar such that other
parts of the internal language relates more consistently to the new knowledge.
Full details of the model are found in [7,9].

3 Cultural Evolution of Language

In order to see how improvements accumulate culturally, a series of simulations
were carried out in which the above model was run for 20 iterations (or gen-
erations) of 100,000 guessing games each. In these simulations the population
size was set to 50 (25 adults and 25 children). Ten simulations were run with
different random seeds. Although most different runs were quite similar, a few re-
vealed some noticeable differences (see [10] for a discussion on these differences).
Therefore, only the results of a few single runs are presented here.

Before presenting the results, a few measures are defined:

Communicative success measures the number of successful guessing games
within a time window of 50 games.

Compositionality measures the number expressions decoded or encoded using
a compositional rule over a time window of 50 games.

Similarity measures the number of games in which both agents used the same
syntactic structure within a time window of 100 games. A syntactic structure
is considered similar if the words and the linguistic categories used are the
same and in the same order. (A linguistic category is characterised by the
dimensions that make up the conceptual space of a non-terminal node.)
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Learning period measures the number of guessing games it takes within each
iteration for communicative success to exceed 0.8 for the first time.

All these measures (except learning period) are normalised to a value between
0 and 1. In addition, the relative frequencies of rule types used during successive
periods of 10,000 guessing games are analysed. As the agents can break up the 4-
dimensional conceptual space in two conceptual spaces (or linguistic categories)
of lower dimension without knowing how, 15 different rule types (including the
holistic type) can develop. Only 5 rule types are inspected in this paper (all
other had insignificant frequencies). These are:

I: S→rgbs holistic rule
II: S→A/r B/gbs red v. green, blue & shape
III: S→B/gbs A/r green, blue & shape v. red
IV: S→C/rgb D/s colour v. shape
V: S→D/s C/rgb shape v. colour

Figure 3 shows the results for the first 10 iterations of one simulation (the
results did not change much during the final 10 iterations and are therefore
not shown). The top left graph shows the evolution of communicative success,
which rises to a more or less stable level of about 85-90% during the first 5-6
iterations. Each iteration is marked by a sharp decrease due to the drastic change
of the population when all adults are replaced by the children and new language-
less children are introduced. Compositionality (top right graph) increased more
rapidly in initial stages, but also kept on rising during the first 5-6 iterations until
a stable level around 93% was reached. Similarity (bottom left) evolved more
similar to communicative success and reached a stable level of around 80%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 2 4 6 8 10

co
m

m
un

ica
tiv

e 
su

cc
es

s

#games (x 100,000)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10

co
m

po
sit

ion
ali

ty

#games (x 100,000)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 2 4 6 8 10

sim
ila

rit
y

#games (x 100,000)

5

10

15

20

25

 0  2  4  6  8  10  12  14  16  18  20

lea
rn

ing
 p

er
iod

 (x
 1

0,
00

0)

iterations

Fig. 3. The results of the first simulation. The graphs show communicative success
(top left), compositionality (top right), similarity (bottom left) and learning period
(bottom right). See the text for details.
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All these three graphs clearly show that levels reached at the end of one gen-
eration are rapidly reached in the next generation, and – while there is still room
for improvement – these levels further increase at a slower rate. It was expected
that after a plateau was reached, learning speeds will continue to improve. This
expectation was based on earlier visual inspection of similar graphs. However,
closer analysis of the learning period reveals that this was not the case (Fig.
3 bottom right). Clearly, learning took quite a while in the first iteration, but
rapidly decreased during the next 5 iterations and then remained more or less
at the same level.

The graphs concerning communicative success and similarity clearly show
some stagnation in development during the second iteration. Figure 4 (left) shows
why this is the case: During the first two iterations there is a lot of competition
between different rule types, as there are still a substantial number of holistic
rules and rules of type II and III abound, before rules that differentiate colours
from shapes start to dominate in iteration 3. Recall that agents break apart
holistic rules when they find a similarity in the expression and the meaning.
Previous analysis of the model has shown that the probability of finding in two
different games a similarity in any conceptual space, other than the colour and
shape spaces, is 1.5 to 4 times larger than the probability of finding a similarity
in the colour or shape space [7]. Most likely, compositions of type II and III are
found. However, although such combinations are more frequently encountered,
they are less efficient than rules of type IV and V (combining colour and shape),
because rules of type II and III require almost 4 times as many different rules
than those of type IV and V. Moreover, a meaning that only takes the red
component of the RGB colour space cannot be applied with all possible meanings
that can be constructed in the other 3 dimensions. (Note that this is mainly due
to skew distribution of features in the RGB space.)

Once rules of type IV and V start to dominate, the other rules’ relative fre-
quencies start to diminish rapidly. In this simulation, there is first an almost
complete dominance of rule type V over rule type IV, but near the end of the
third iteration, the relative frequency of type IV starts to become substantial
too. Once these two rule types completely dominate (usage is then almost 100%),
communicative success and similarity can further improve. Drops in the usage
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of these rules coincide with the replacement of adults with new children, after
which the new children first invent quite some new words holistically when they
lack the linguistic knowledge to encode an expression for some meaning.

This tendency is also reflected in figure 4 (right) which shows the evolution
of the number of different words used in the language during successive peri-
ods of 10,000 games. The evolution first shows an immense increase of different
words: up to around 7,500 words are used in the first 10,000 games. Ignoring
the rise in words after the replacements of half the population, the number of
different words then decreases sharply until it stabilises around 200 words. As
has been observed in [14] for simulations evolving non-compositional vocabular-
ies, the decrease of words coincides with an increase in communicative success.
Interestingly, it has been suggested that the large number of words created early
in development (which to a lesser degree is also true shortly after the start of a
new iteration) increases the chances of finding similarities and thus give a boost
toward the development of compositional structures [10]. This, in addition to
the fact that the number of words created is proportional to the population
size, explained the observation that the level of compositionality was substan-
tially larger for populations of sizes 40-100 than for populations of less than 40
agents [10].

Comparing the 10 different runs revealed that 7 out of 10 yielded results
similar to the run discussed; the other 3 evolved similar to the one shown in
Figure 5. This figure shows the results of another run with the same conditions,
though plotted for the entire 20 iterations. Here the first 5 iterations are similar to
the previous run, though communicative success reaches a lower level. Moreover,
communicative success then slowly decreases, also slowing down the development
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of similarity. From the 11th iteration, communicative success rises again slightly
to a seemingly stable level around 0.7 reached in iteration 13. Similarity, however,
suddenly decreases from the 11th iteration and only starts to rise again from
iteration 15.

The difficulties arising during this evolution are apparently caused by the
strong competition between different rule types. Type II evolves as the most
dominant rule during the first 10 iterations, followed by a period of dominance
of rule type IV, which is finally taken over by rule type V. During this final
period, the competition with other rules seems to weaken. Interestingly, the
transition from rule type II to IV coincides with the decrease in similarity. This
may be explained by realising that for some time type II has established itself
in the language, though in competition with other types. When another type
takes over, this type is in strong competition with the previous type, so that
different agents are likely to favour one type over another, meaning that in a
given situation one agent may use type II while another uses type IV. This,
thus, lowers similarity, even though communicative success has improved during
this period. This is related to the fact that well structured rules of type IV are
taking over. Given the decrease in competition with other rules near the end and
the higher frequency of type V rules, it is expected that the results would have
improved further if the simulation was run longer.

So far, the simulations were carried out for 20 iterations of 100,000 games
each. However, what will happen if we look at one iteration that is run for 1
million games? Figure 6 shows the results of a simulation with that condition.
In order to make an interesting comparison with the case where language is
transmitted from one generation to the next, this figure also shows results of a
simulation run for 2 iterations of 500,000 games each. Both simulations show a
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very similar evolution of communicative success (apart from the discontinuity
in the second case). Similarity, however, tells a very different story. In the 1
iteration case, similarity does not further increase, but instead decreases slowly
after approximately 300,000 games. When there are 2 iterations, similarity tends
to increase further in the second iteration.

The rightmost graphs in Figure 6 show that in the 1 iteration case, there is
first a lot of competition leading to many fluctuations, but after about 500,000
games, the system tends to become stable and the population never seems to
get out of this system that has 4 rule types being used quite frequently (note
the different scale on the y-axis compared to the one shown in Fig. 4). Al-
though the communication system is successful to some degree, different agents
have acquired different grammars, thus reducing similarity. In the second condi-
tion, there is also a lot of competition and fluctuation during the first iteration.
Now before the system stabilises, the population is changed and the new agents
quickly learn the well structured parts of the language from their ancestors and
further improve this language.

This comparison thus shows that if there would be no population turnover
and all agents are equally old (which is the case for the 1st iteration of all
simulations), there comes a point in which there is hardly any improvement
to gain. This is most likely because at some point, each agent has acquired a
system that works sufficiently well, which is the case, because communicative
success is fairly high. Only when a new generation starting from afresh enters the
population, there is room for improvement. The ‘good’ structure – the one that
combines colour with shape – is relatively to learn. Each colour can be combined
with any shape. Hence, each time it is used in previously unseen situations, this
structure allows successful interaction. Successful interaction increases the rule
score, thus allowing this type of rule to win the competition with other rule
types. A rule type that combines the red component with the other dimensions
(i.e. rule type II or III) does not have that property, because if, for example,
you have a category whose red component has value 1 (i.e. redness), only 5

12 of
all categories in the complementary dimensions can be combined with this one.2

So, the likelihood of applying this rule type successfully in unseen cases is lower
than the odds for success when rule type IV or V is used.

4 Discussion and Conclusions

This paper investigates the dynamics of cumulative cultural evolution in lan-
guage using a computer model that simulates the evolution of compositional
structures in language. This model, first introduced in [7], integrates the iter-
ated learning model [6] with the Talking Heads experiment [12]. The results show
that initially holistic languages can evolve into compositional languages by trans-
mitting the language from one generation to the next. Unlike results obtained
with the ILM in which language is transmitted vertically [6], no transmission

2 In the model 5 out of 12 colours have a red component of value 1.
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bottleneck needs to be imposed when the language is transmitted isotropically,
because then language learners face an implicit bottleneck [9].

The model is based on the idea that the evolution of language is a cultural
analogy of Darwinian evolution [4]. In addition, the ontogenetic development of
language is also similar to Darwinian evolution (cf. Neural Darwinism [15]) in
that individuals acquire many variants of the language by communicating with
different individuals and making errors in acquisition. These different variants
then compete and are selected based on their effectiveness in communication.
The same principles work at the cultural level, where the main elements subject
to evolution are the word forms. So, there are two different levels of evolution
interacting with each other (see [16] for an interesting discussion of such systems).

At the cultural level a set of conventions are formed that map expressions
to objects in the agents’ world. These expressions are segmented internally to
form compositions with parts of the objects’ meanings. These meanings are
constrained by the visual input to the agents and the way these are processed
in terms of features (in the model these features are similar for all agents).
Initially, there are different (possibly ill-structured) rule types competing with
each other. The simulations show that when a next generation learns from such
a mixed language, they rapidly acquire the well-structured rule types and im-
prove the structure of the rest of the language. The improvement primarily
concerns the way meanings are segmented (i.e. the improvement from using
rule type II or III to types IV or V). These improvements are triggered by a
similarity in form, in addition to a similarity in meaning. Hence, there is a co-
evolution of form (or syntax) and meaning (or semantics) in that on the one
hand evolution of syntax is based on exploring similarities in form, though con-
strained by semantic structures and on the other hand evolution of semantics
is based on exploring similarities in meaning, though constrained by syntactic
structures [7].

As predicted by Boyd and Richerson [2], these simulations show a cumulative
cultural evolution when the costs of social learning are low and accuracy is
high. This can be concluded affirmatively because only when well structured
compositional systems (i.e. those systems that have rules combining colours with
shapes) develop, communicative success can further improve. Learning these well
structured systems is less costly, because they are acquired more rapidly than
unstructured ones, and they are also learnt more accurately, given the increase
in similarity in language use of different individuals.

Prior to this study, it was anticipated – based on visual inspection of the data
– that once a plateau of optimal communicative success was reached, learning
speed will improve over subsequent generations. This, however, was not con-
firmed by this study. Once an optimal plateau was reached, learning speeds
remained more or less constant over different generations. Explanations for this
are that the agents have either reached a cognitive plateau on which no further
improvements are possible, or because the evolved language reflects the struc-
ture of the environment so well that no pressures on further improvements are
present.
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Concluding, this study suggests that cumulative cultural evolution of language
is possible if 1) the language is transmitted from one generation to the next, 2)
the language evolves to well structured systems so it can be easily learnt by
members of the population and 3) there is still room for improvement in the
cognitive capacity of individuals or perhaps that there is a need for improve-
ment because the structure does not reflect the environmental structure. These
findings may well extend to other domains of cultural evolution.
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Abstract. The question “What drove foragers to farm?” has drawn answers 
from many different disciplines, often in the form of verbal models. Here, we 
take one such model, that of the ideal free distribution, and implement it as an 
agent-based computer simulation. Populations distribute themselves according 
to the marginal quality of different habitats, predicting settlement patterns and 
subsistence methods over both time and space. Our experiments and our analy-
ses thereof show that central conclusions of the ideal free distribution model are 
reproduced by our agent-based simulation, while at the same time offering new 
insights into the theory’s underlying assumptions. Generally, we demonstrate 
how agent-based models can make use of empirical data to reconstruct realistic 
environmental and cultural contexts, enabling concrete tests of the explanatory 
power of anthropological models put forward to explain historical develop-
ments, such as agricultural transitions, in specific times and places. 

1   Introduction 

To us modern agriculturalists, “Why farm?” seems like a non-question. Intensive food 
production is what supports our large, complex societies. It frees many of us to be-
come specialists, enriching life in ways beyond mere provisioning: as doctors, enter-
tainers, scientists.  Without crop cultivation, our current population densities and 
growth rates would be impossible to sustain. 

From that perspective, the advantages of agriculture over hunting-gathering, our 
earlier subsistence method, appear obvious. The daily toil of foraging for wild foods 
can only result in an existence best characterized as “nasty, brutish and short”,  as 
Thomas Hobbes once put it. Our ancestors’ eventual switch from foraging to farming 
can then be explained simply by people discovering how to accomplish it. 

The problem with this reasoning is that it rests on false assumptions. Our food 
crops today have characteristics carefully selected for by humans. On the whole, they 
are annuals, easy to sow and easy to harvest. The first farmers had much less to work 
with. If we take maize as an example, its likely precursor, teosinte, a wild cereal, 
produces a harvest only every other year, with tiny, brittle cobs and seeds nearly im-
possible to extract from their rock-hard casings [8].  

In fact, it has become increasingly clear that the first agriculturalists probably 
worked harder [3], enjoyed less diverse diets [8] and experienced more disease [1] 
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than their immediate hunter-gatherer predecessors. So what drove those first farmers, 
ten thousand years ago in the Fertile Crescent [5], to take to cultivating crops and 
raising livestock, considering the hardships it imposed? Why there? Why then? And 
what about the other independent centers of agriculture, like the Andes, or the Far 
East [5]?  Were the causes the same, or different? 

Kennett and Winterhalder [10] present a collection of papers on behavioral ecology 
approaches to these questions. In this context, behavioral ecologists consider the eco-
logical and evolutionary roots of subsistence change and how it helps individuals 
adapt to their environments. The mathematical and graphical theories of behavioral 
ecology are meant to capture the decisions and tradeoffs of individuals, and yet often 
include none, as they model only population-level behavior. As such, Winterhalder 
and Kennett [14, page 19] conclude, “…although there are at present no agent-based 
models of domestication or agricultural origins, behavioral ecology adaptations of the 
agent-based approach appear an especially promising avenue for research”. 

This paper is the result of a first attempt to realize that promise. To this effect, we 
have taken one of the models from [14] and implemented it as an agent-based com-
puter simulation. Our research questions were simple. If we follow the principles of 
the model in question, will our agents behave like the theory predicts? And if so, what 
can the simulation teach us about its underlying assumptions? The model we selected 
for this treatment, that of the ideal free distribution, is a theory of habitat choice. It 
assumes that any area can be divided into a number of discrete habitats, differentiated 
by their suitability, and that populations will distribute themselves according to the 
marginal quality of those habitats [14]. 

Figure 1A provided an illustration of use of suitability curves in the ideal free dis-
tribution. Imagine human colonists, arriving on a pristine island, consisting of two 
habitats:  the coastline and a mountain. The mountain is covered with dense forests; 
the coastline is sunny and rife with fish. If the assumptions of the ideal free distribu-
tion hold, all colonists will initially settle on the coast, because of its greater ‘suitabil-
ity’ for human residence (d0; numbers in brackets refer to specific densities in Figure 
1A). As population pressure rises, the coastal habitat becomes less and less attractive 
due to crowding and resource depletion, reducing its ‘marginal quality’. Eventually, 
the mountain’s suitability will rival that of the coast (d1). From this density onwards, 
people should start settling in the mountains, with further population growth spread 
equally over both habitats [inspired by 11, 12]. 

Let us further hypothesize that our island is home to a small stand of wild cereals, 
initially ignored by the colonists in favor of other, more easily procured food sources. 
As population grows, however, and these other food sources are exploited to carrying 
capacity, suitability of both habitats for human foragers drops considerably. At some 
point, artificially increasing the amount of wild cereal by planting and tending it may 
become worthwhile. At this density (d2), any additional residents should take to the 
mountains, where this type of food production is possible. In fact, these first farmers 
might actually increase the suitability of that habitat for other agriculturalists by 
clearing large sections of the forest, which should result in more people switching, 
until some maximum optimal density is reached (d3) [11, 12]. 
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Fig. 1. A: Suitability of example habitats relative to population density and subsistence method, 
numbered densities refer to descriptions in text [after 11, 12] B: Simplified 9x9 model scape,  3 
bands of 20 agents shown 

Essentially, by comparing the ‘suitability curves’ (see Figure 1A) of different habi-
tats with respect to changes in population density, the ideal free distribution model 
can make predictions about human settlement patterns over both time and space. By 
adding suitability curves for farming,  the model can also predict people’s subsistence 
strategies, as well as where they will adopt them and when they will switch [11, 12]. 

Using archeological evidence to construct appropriate suitability curves, the ideal 
free distribution theory has recently been applied to questions of agricultural origins 
in Eastern Spain [11] and Oceania [12]. In theory, realistic agent-based simulations, 
designed to mimic actual environmental and cultural conditions, offer possibilities for 
testing the explanatory power of such verbal models. 

In this paper, we report on a first step in that direction. We have built a simple 
three habitat system and populated it with digital foragers and farmers, incorporating 
as much empirical data as possible. Our two goals are to show that 1) this simulation 
is capable of reproducing the predictions of the ideal free distribution model and 2) 
that it can at the same time provide insights into the validity and applicability of its 
underlying assumptions. 

Our simulation, loosely based on Epstein and Axtell’s sugarscape model [6], con-
sists of a square grid of patches, divided into three discrete habitats. Each patch is 
inhabited by both prey and cereal, simulated by reasonably realistic growth rates, 
population sizes and energy values. The three habitats are 7x21 patches each, and 
differ only in the maximum densities of prey and cereal that can be supported by each 
patch. A reduced version of this model is Figure 1B. 

Every time step, representing a year, the agents that inhabit these habitats must ob-
tain enough food to survive, which they can accomplish by hunting prey, gathering 
cereal, or starting farms. Every subsequent time step, prey and cereal grow back, and 
the agents select new patches, preferring the most suitable ones. Reproduction grows 
the agent population until prey and cereal become seriously depleted, prompting ad-
aptation in the form of habitat migration or subsistence change. 
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2   The Simulation Model 

Considering that our explicit aim is to generate insight into an anthropological theory, 
it is of prime importance to ensure that any results will make sense to anthropologists. 
To this end, we have attempted to keep our model as realistic as possible, given the 
constraints of the data available to us. Our agent-based examination of the ideal free 
distribution involves a scape consisting of habitats, food resources to populate those 
habitats, agents that utilize these food resources and a set of behavioral rules that 
specify agents’ subsistence behavior. 

To capture the essential aspects of the ideal free distribution theory, the quality of 
our habitats must change with population density, and the agents must be able to 
make informed choices about which habitat is currently most suitable. Winterhalder et 
al.’s [13] mathematical model of optimal foraging theory, which considers ‘the inter-
action of human population, diet selection, and resource depletion’, provides a realis-
tic quantification of both these aspects. 

In this model [13], different food sources become increasingly hard to obtain as 
they become scarcer, increasing search times, which naturally occurs as population 
pressure rises. This reduces foraging efficiency and thus negatively impacts habitat 
suitability, which is measured as net acquisition rates [11]. In [13], the model is ap-
plied to questions of diet choice in a fixed area; in our simulation, we expand it to 
answer questions of habitat choice in a larger region, by explicitly including the di-
mension of space. 

2.1   Characteristics and Properties of the Habitats, Food Resources and Agents 

Scape and Habitats. To simulate hunter-gatherer behavior, one must first simulate a 
world of food to hunt and gather. Our world consists of 21x21 patches, each repre-
senting 300 square kilometers, with time steps (epochs) corresponding to a year. The 
edges of the world are true edges. According to [3] most foraging groups build base 
camps, which they may move once or twice a year.  A forager can cover about ten 
kilometers and still return to such a base camp the same day; using this as a radius, we 
can calculate a home range of approximately 300 square kilometers [13]. This is what 
determines our patch size.  Our three habitats are 7x21 patches each, colloquially 
termed the ‘lush’, ‘medium’ and ‘desert’ habitats, ordered from left to right in the 
scape and differentiated only by their carrying capacities for different food resources 
(see Figure 1B). 

Food Resources. Our hunter-gatherers have two dietary options, prey and cereal, 
which populate each patch.  The prey has characteristics inspired by large ungulates; 
the cereal is loosely based on wild barley. Here, energy value (ei) is the calories pro-
vided by a single prey or kilo of cereal; handle time (hi) is the total time required to 
catch, clean and cook a prey once spotted, or harvest, thresh and prepare a kilo of 
cereal gathered once located;  carrying capacity (Ci) is the maximum prey or cereal 
population that can be supported by a square kilometer of patch and growth rate (ri) 
specifies the intrinsic rate of increase of each, where the index i specifies prey p or 
cereal c. The prey values were calculated from anthropological data in [13]; the cereal 
characteristics represent ballpark figures, chosen as conscientiously as possible using 
data from [7, 8, 9]. 
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Table 1. Characteristics of Prey & Cereal 

Carrying capacity (Ci) 
(no or kilos/km2) 

Type Energy 
value (ei) 
(Cals) 

Handle 
time (hi) 
(minutes) Lush Medium Desert 

Growth rate 
(ri) (no or 
kilos/year) 

Prey (p) 13800 235 8.0 5.4 2.6 0.7 
Cereal (c) 3390 120 600 400 200 1 

Both prey and cereal grow according to equation (1), taken from [13] were pi,(t) is 
the population size of food type i at time step t, Ci is the maximum carrying capacity 
for food type i and ri  is its intrinsic rate of increase. The equation is applied per patch. 
This results in cereal and prey slowly growing towards their carrying capacities, then 
stabilizing. In principle, there is no influence of cereal and prey densities between 
patches, unless either cereal or prey completely disappears from a patch. In that case, 
each of its eight neighboring patches that does still have a viable population of the 
resource in question has a 10% chance of repopulating the depleted patch each year. 
A ‘viable population’ is either 100 prey or 400 kilos of cereal; these are also the initial 
population sizes of each for a repopulated patch. 

pi (t +1) = pi (t)
Cie

ri

Ci (1− sit (1− eri ))
 . (1) 

Agents. The agents in our simulation represent small bands of hunter-gatherers. Every 
band starts as a group of 20 people. Every times tep, each of those 20 people has an 
0.02 chance of reproducing, which is supposedly roughly characteristic of actual 
hunter-gatherers [13]. Once a band is made up of 40 individuals, it splits in two, each 
again representing 20 people. Every time step, the bands must forage 2000 kilo-
calories (Cal) for each of their group members, for each day of the year. Maximum 
foraging time is fixed at 14 hours per day. If there is shortfall, group size is scaled 
down to the number of people adequately fed. Foraging, however, also has costs; 4 
Cal per minute (cs) spent searching for prey or cereal, and 6 Cal per minute (ch) spent 
catching or harvesting them [13]. 

Table 2. Agent Characteristics 

Characteristic Value  Characteristic Value 
Group size 20 – 40 (people)  Search cost (cs) 4 (Cals/min) 
Min. energy 2000 (Cals)  Catch cost (cc) 6 (Cals/min) 
Max. forage time 14 (hours)  Search speed (ss) 0.5 (km/hour) 
Growth rate 0.02 (per year)  Search radius (sr) 0.0175 (km) 

Search Times. The catch times of prey and cereal are fixed; the search times for each 
depend on population density [13] within a patch. The rarer a food source has be-
come, the longer it takes to locate. It is also dependent on the speed at which agents 
search (ss), and their search radius (sr) as they do so (i.e. ‘How far can they see?’) (see 
Table 2). Search times are then calculated using equation (2), where si is the search 
time for food type i and di its current population density. 
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si = 1
ss ⋅ sr ⋅ 2 ⋅ di

 (in minutes/prey) . (2) 

Net Acquisition Rates. Now that we have specified the time it takes to catch (hi) and 
find (si) each type of food source, their respective energy values (vp and vc) and the 
energy costs incurred in obtaining them (ch and cs), we can calculate the ‘net acquisi-
tion rates’ (NAR) for each; that is, how much energy an agent gains for each hour 
spent hunting for prey or gathering cereal. The higher the net acquisition rate, the 
more efficient foraging for that food type is. The net acquisition rate of food source i 
at time t is then equal to the values in Table 3, as calculated per habitat. 

Table 3. Net Acquisition Rates 

 NAR ‘Lush’ Habitat 
(Cals/hour) 

NAR ‘Medium’ 
Habitat (Cals/hour) 

NAR ‘Desert’ Habitat 
(Cals/hour) 

Prey (p) 965 674 281 
Cereal (c) 1298 1256 792 
Farming 
(f) 

677 605 481 

 

NARi = ei

si + hi

− si

si + hi

cs − hi

si + hi

ch  . (3) 

2.2   Behavioral Rules 

Our agents now have properties, a scape of habitats to move about in, and two types 
of food resources to forage for. In this section, we define the rules that guide their 
behavior. The ideal free distribution is a model of habitat choice, which assumes that 
individuals populate habitats according to their marginal quality. Our agents thus need 
to have a sense of what makes a patch suitable, which depends on their dietary pref-
erences. Also relevant is the range in which agents can evaluate patches, and what the 
costs and benefits are of food production. 

Suitability & Dietary Preferences. A patch’s suitability may be measured by ‘the 
production of young or rate of food intake’ [14] of the initial occupant. Our agents 
rank patches by prey density first, cereal density second, reflecting the large percent-
age of meat found in most foragers’ diets [4], and the greater prestige associated with 
hunting over gathering as it is observed in most hunter-gatherer cultures. Once a patch 
has been selected, agents hunt prey and gather cereal in proportion to their net acqui-
sition rates; as prey becomes scarcer relative to cereal, it is consumed less (see equa-
tion (4)). Consumption of a  food source stops if its net acquisition rate drops below 
zero.  

percentage of food source i in diet = NARi NAR j

All food sources j

 (4) 

Range. Every time step, each band starts in one patch, and may choose to move to 
another, which is always the most suitable patch it has knowledge of. This represents 
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a small group of hunter-gatherers moving its base camp once a year. But which 
patches are considered to be ‘in range’? Realistically, one might assume that these 
hunter-gatherers only have some sense of the area just outside their home range, and 
hence can only evaluate their own patch and the eight surrounding ones. 

However, one of the ideal free distribution’s explicit assumptions is that ‘…all in-
dividuals have the information to select and the ability to settle in the most suitable 
habitat available.’ [12]. This would be best modeled by each agent having perfect 
knowledge of the suitability of each other patch in the scape. In our experiments, we 
try both options. Costs of moving are not considered, as ideal free distribution model 
assumes that those costs are ‘…negligible, when compared to the benefits of optimiz-
ing long-term habitat choice.’ [10].  

Food Production. Given that our simulation is intended to provide insights into be-
havioral ecology approaches to agricultural transitions, we must model some form of 
food production. Using [7, 8] as sources, some educated guesswork allows us to de-
rive the additional kilos a square hectare of cultivated cereal might yield (ck

+, where 
ck is the wild harvest), as well as the time it takes to produce a kilo of cereal by farm-
ing (tf) (equations (5)&(6)), where A is the number of hectares of cereal that can be 
tended by working an hour daily. This is excluding harvest time, which is considered 
to be identical to that of wild cereal, as given by Table 1. 

0.25(1000 )k kc c+ = −   (in kilos/hectare) . (5) 

t f = 1

h ⋅ (ck + ck
+) ⋅ 365

  (in hours/kilo) . (6) 

If we assume that it takes approximately half an hour a day to tend a hectare of ce-
real, and that both tending and harvesting cereal are strenuous activities [8], costing 6 
Cals of energy/minute (ch), we can then derive net acquisition rates for farming cereal 
in the three different habitats, as demonstrated by table 3. This means that the effi-
ciency of farming is independent of population density. The area which is suitable for 
agriculture is bounded, however, at 10% of each patch [7]. Food production is only 
practiced if its net acquisition rate becomes higher than that of foraging for cereal; it 
then enters the diet in accordance with equation (4). Agents can thus forage exclu-
sively, farm exclusively, or practice some mixture of both. 

3   Experiments and Results 

Our first goal is to ascertain to what degree our simulation reproduces the predictions 
of the ideal free distribution. To this end, we run the model in three different configu-
rations. First, as a single food source environment, where agents can only forage for 
cereal (Experiment I). Second, as a hunter-gatherer society, where both cereal and 
prey are available, but switching to food production is impossible (Experiment II). 

Third, as the full simulation, where agents can forage or farm as desired (Experi-
ment IIIa). In these three experiments, agents have access to the suitability of every 
patch in the scape, to mimic the ideal free distribution model’s assumption of ‘perfect 
information’ [12]. As a test of the consequences of this assumption, we will also run 
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the full simulation with bands that can only evaluate the suitability of their own patch 
and its eight neighboring patches (Experiment IIIb). 

In each of these experiments, we initialize the model by seeding five bands at ran-
dom locations throughout the scape. Bands are awarded the opportunity to select 
patches in fixed order, with older bands first and younger bands last. This represents 
the process of ‘daughter populations’ splitting off and seeking new habitats. Unless 
otherwise stated, an experiment consists of 10 runs of 3000 epochs each. 

3.1   Experiment I: Gathering  

Setup & Predictions. In this first experiment, agents must make their livelihoods ex-
clusively by gathering, which means they rank patches by cereal density only. Our 
agents have perfect information and free access to every patch on the scape; the ideal 
free distribution model straightforwardly predicts that they should colonize the ‘lush’ 
region first, followed by the ‘medium’ area and tailed by the ‘desert’ habitat, at a 
speed that maximizes rate of food intake throughout the scape. 

Results. All bands are immediately drawn to the ‘lush’ area, where population grows 
until about epoch 270 (μ =  267, σ = 5), when the first bands migrate to the ‘medium 
area’. Expansion into the ‘desert area’ follows around epoch 310 (μ =  310, σ = 5), 
with population still growing, reaching a maximum of approximately 0.39 (μ = 0.39, 
σ  ≈  0) agents/km2. Finally, around epoch 330 (μ =  326, σ = 8), carrying capacity of 
all three habitats is simultaneously exhausted, resulting in a massive population crash. 
The survivors pull back towards the ‘lush’ area, and the process restarts, with cycles 
of approximately 270 epochs (μ =  267, σ = 31). Comparing average gather times 
between habitats reveals no significant differences in any of the runs (two-tailed t-test, 
p > 0.05 for all pairs of average gather times). Figure 2A shows one run’s first cycle 
of agent densities and gather times over all three habitats. 

Discussion. The agents are as ideally free distributed as possible. All agents, all over 
the scape, work nearly equally hard during each time step, having distributed them-
selves unevenly over the habitats to do so.   

3.2   Experiment II: Hunting and Gathering 

Setup & Predictions. Now, agents have both prey to hunt and cereal to gather, which 
agents do relative to both food sources’ net acquisition rates (equation (4)). In essence, 
this means they have a preference for a mixed diet, but are willing to be flexible as re-
source densities change. Patches are selected by prey density first, cereal density sec-
ond.  The order in which habitats are settled is easily predicted as ‘lush’, then ‘medium’, 
then ‘desert’, but what an “ideal” distribution is in this situation, is unclear. 

Results. All agents immediately relocate to the ‘lush habitat’, expanding into the ‘me-
dium’ habitat around epoch 160 (μ = 162, σ = 5) and the ‘desert’ habitat about 40 
epochs later (μ = 200, σ = 6), with population steadily increasing until approximately 
epoch 300 (μ = 310, σ = 40), when carrying capacity is once again simultaneously 
exhausted all over the scape, causing massive drops in agent totals. As an example. 
the first cycle of one run is shown in the bottom panel of figure 2B. 
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Fig. 2. A: Top, average time spent gathering in the first cycle of a sample run of Experiment I; 
note how the lines for the different habitats actually cover each other; Bottom, average agent 
densities of the same run and cyle. B: Top, average time spent hunting in the first cycle of a 
sample run of Experiment II; Bottom, average agent densities of same cycle and run. 

The first migration to the second and third habitats is the result of agents following 
prey; the quick population increase in the ‘lush’ habitat after epoch 200 is the result of 
prey having become so depleted that many agents are having to live without meat; 
with no reason to follow prey to the lesser habitats, they crowd the ‘lush area’ until its 
cereal is so depleted that it becomes worthwhile to gather in the ‘medium’ and ‘de-
sert’ regions as well. Figure 1B shows an example, but a similar process occurs in all 
cycles and runs. 

Average foraging times, however, vary significantly between habitats. If we com-
pare the time spans where all three regions were populated, agents in the ‘lush area’ 
worked an average of almost two hours (μ = 1.88, σ  ≈  0) per day, agents in the ‘me-
dium’ area  foraged for over two and half hours (μ = 2.67, σ ≈ 0) while agents in the 
‘desert’ area spent almost three-and-a-quarter hours foraging faily (μ = 3.21, σ  ≈ 0). 

Discussion. Judged by the differences  in the agents’ average workloads, the obtained 
distribution can hardly be considered ideal for ‘rate of food intake’. On closer inspec-
tion, however, it appears that the distribution may be slightly fairer than it appears. 
The reason the agents in the ‘lush’ area forage so little, is that there is no prey left to 
catch. If we consider the average energy from hunting in epochs where all three habi-
tats are occupied, agents in the ‘lush’ area eat the least meat (μ = 49 Cals, σ = 1) and 
agents in the ‘medium’ area the most (μ = 93 Cals, σ = 1), while agents in the ‘desert’ 
area are in the middle (μ = 81 Cals, σ = 1). 

3.3   Experiment III: Hunting, Gathering and Farming 

Setup & Predictions. Agents can now hunt, gather or farm, with gathering initially 
twice as efficient as farming. Agents still prefer the mixed diets of Experiment II, 
with food production only considered in case its net acquisition rate outranks that of 
gathering cereal. Initially, agents should distribute themselves over the three habitats 
as they do in Experiment II, but rather than population crashing, agents should switch 
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to farming when prey and cereal first run out, starting in the ‘lush’ region, then the 
‘medium area’, then the ‘desert’ habitat.  

This system is essentially deterministic, as it is independent of initial conditions 
and involves so many agents that random fluctuations cancel each other out (Pear-
son’s correlation coefficient of agent totals per epoch: 0.99 per any two runs). As 
such, it seems safe to report on only one run per configuration. We run this model 
both with perfect (IIIa) and local information (IIIb). 

Results, IIIa. In the perfect information condition, agents first settle in the ‘lush’ habi-
tat, colonizing the ‘medium’ habitat in epoch 143 and the ‘desert’ habitat in epoch 
181. Food production starts in epoch 215, in the ‘lush’ area, where the number of 
farm hectares steadily climbs until epoch 459, when every single patch of ‘lush’ ar-
able land is in use, prompting new farmers to migrate towards the ‘medium’ habitat, 
and later to the ‘desert’ habitat (epoch 492). 

 

Fig. 3. A: Agent population densities  of Experiment IIIa, foragers & farmers with perfect 
information; B: Prey and cereal densities of Experiment IIIa, C: Agent population densities of 
Experiment IIIb, foragers & farmers with local information 

By epoch 507, all possibilities for agriculture have been seized, and agent densi-
ties stabilize at an average of 20 agents per square kilometer (Figure 3A). In the 
meantime, both wild cereal (epoch 499) and prey (epoch 508) have become extinct 
(see Figure 3B). Results of the ‘local information’ (IIIb) configuration runs are quali-
tatively similar, with the glaring exception of the timing. It takes up to epoch 2685 for 
the ‘desert’ habitat to fully fill up with farmers (Figure 3C). 

Discussion. The extinction of prey and wild cereal is the result of equation (4), which 
allows farmers to continue “hunting and gathering on the side” once food production 
enters the diet. The large time difference in completion of the agricultural transition 
between the ‘perfect information’ and ‘local information’ condition is caused by lack 
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of distribution possibilities. The high population densities of the farmed habitats cause 
large numbers of new bands to  be formed, but they have nowhere to go if they cannot 
see the relatively unpopulated ‘desert’ area. 

4   Conclusions 

The question of why our ancestors first switched from foraging to farming has fasci-
nated scientists for decades. In this paper, we hoped to offer only the suggestion of a 
new method, not a new model, to the study of this fascinating issue.  We took up 
Winterhalder & Kennett’s [14] suggestion to implement a behavioral ecology model 
as an agent-based simulation, consisting of three discrete habitats, and evaluated if 
our simulation could reproduce the model’s predictions. We have shown that: 

In the simplest possible implementation of the model, with only one food source 
and complete information, an ideal free distribution of the agents does indeed emerge. 
Agents in all three  habitats spend an equal amount of time gathering food. Hence, 
under these conditions, the ideal free distribution model is retained. 

If there are two food sources: highly desirable but hard to catch prey and less de-
sirable, but easy to collect cereal, agents in different habitats end up spending differ-
ent amounts of time. At first sight this contradicts the ideal free distribution model. 
However, agents that spend more time have more meat in their diets.  It thus seems 
that the distribution remains ideal if a more complete definition of ‘ideal’ is used. 

Agriculture can and does emerge in our simulations, and it emerges in the way 
that is predicted by the ideal  free distribution. Furthermore, wild prey and cereal go 
extinct, meaning that agents cannot go back to their original hunting-gathering life 
style. This conforms to the ratchet effect that is observed in human populations. When 
the assumption of global information is lifted, populations no longer distribute them-
selves ideally. This causes the transition to agriculture to take longer. 

It seems that, generally, our simulation has fulfilled our two initial goals. We have 
reproduced the predictions of the ideal free distribution theory in two settings – a 
single prey system and the transition to agriculture, assuming perfect information – 
and generated insight into its underlying assumptions in two others. Namely, the pau-
city of ‘rate of food intake’ as a general measure of habitat suitability, and the fact 
that assuming global information rather changes the model’s predictions, at least in 
our simulation. For the future, we think that agent-based simulation can do more than 
just confirm predictions and point out potential shortcomings in existing theories – 
they can actually help solve them. 

Realistically representing a preference for meat is practically impossible in a verbal 
model, but easy to implement in an agent-based simulation. The same goes for speci-
fying the amount of information available about other habitats. Anthropological find-
ings may often offer some idea about what is plausible in any given historical or envi-
ronmental setting, but quantifying the effects of these local variables in a verbal 
model is difficult, and usually very hard to verify empirically. Agent-based models 
offer an easy way of simulating specific conditions and cultural practices (for a recent 
example, see [2]), and thus seem to offer much explanatory power when it comes to 
considering agricultural transitions in specific times and places. 
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Abstract. We study the role of the agent interaction topology in distrib-
uted language learning. In particular, we utilize the replicator-
mutator framework of language evolution for the creation of an emer-
gent agent interaction topology that leads to quick convergence. In our
system, it is the links between agents that are treated as the units of se-
lection and replication, rather than the languages themselves. We use the
Noisy Preferential Attachment algorithm, which is a special case of the
replicator-mutator process, for generating the topology. The advantage
of the NPA algorithm is that, in the short-term, it produces a scale-free
interaction network, which is helpful for rapid exploration of the space
of languages present in the population. A change of parameter settings
then ensures convergence because it guarantees the emergence of a single
dominant node which is chosen as teacher almost always.

1 Introduction

The study of communication and language is an important aspect of the study
of adaptive behavior. Predefined languages for multiagent systems may not be
appropriate as they reflect the designer’s viewpoint rather than the agents’, and
are unable to adapt to changing environmental conditions and task definitions.
It is much more desirable for the agents to be able to create and maintain their
own language. This is not an easy task, however, as the mechanisms of language
evolution are far from being well understood.

The last decade or so has seen increasing application of computational meth-
ods to the study of language evolution [1], [2], [3]. The main mathematical ap-
proach, meanwhile, is to apply models of biological evolution to the evolution of
language(s) [4]. In this case, the languages themselves are considered the units
undergoing selection and mutation. These models have been used to address
questions about convergence [5], and the emergence of syntax [6], for example.

One of the main problems in language evolution, which has received little
attention so far, is how to get a population of agents to converge to a common
language, without globally imposing some kind of hierarchy on the population. In
other words, how does the topology of agent interactions affect the convergence
to a common language?

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 765–776, 2006.
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The topology clearly has an important role to play in convergence. For ex-
ample, if the population is split into two disjoint subgroups, then they cannot
converge onto a single language except by chance. Even if the topology con-
sists of a single component, multiple languages might co-exist in the population,
especially if the rate of change of the language (in response to environmental
changes, for example) is high in relation to diameter of the network. In other
words, languages might be changing faster than they can propagate across the
network.

In this work we show that we can take advantage of evolutionary dynamics
to actually construct the agent interaction topology on the fly. This is done by
a subtle change of focus. Instead of the languages being treated as the units of
selection and replication, we treat the interaction links between agents as the
units undergoing selection and replication.

The rest of this paper is organized as follows. We first describe some recent
work investigating the role of the interaction topology in the convergence of
language and emergence of social conventions in multi-agent systems. This is
followed by a discussion of our model for generating agent interaction topolo-
gies, which is based on the evolutionary framework described by the replicator-
mutator equation. We show that this mathematical model is valid through some
simple simulations. Then we go on to do a language learning experiment using
simple recurrent neural networks. Finally we discuss the possibilities for expand-
ing on this work to include situatedness and further numerical exploration of the
theoretical model.

2 Related Work

There has been some significant work on the convergence of a population of
agents to a particular language. Komarova et. al [7], and Lee et al. [8] have stud-
ied the problem from the point of view of population dynamics, while Dall’Asta
et al. [9] have studied the dynamics of the naming game [10] on small-world
networks, and Lieberman et al. [11] have introduced evolutionary graph theory,
which is the study of evolutionary processes on graphs.

The model of Dall’Asta et al., while very interesting, is not really an evolu-
tionary model since there is no notion of selection or variation in it. Therefore
we will not discuss it further here.

Lee et. al studied the role of the interaction topology on the convergence of
a population to a single language. This study looked at a set of specific inter-
action topologies, including fully connected, linear, von Neumannn lattice, and
a bridge topology. Using the model of Komarova et. al, which assumes random
pairwise interactions between all agents, they empirically studied the critical
learning fidelity threshold for language convergence in the various topologies.
Although several different interaction topologies were used, the topologies were
not emergent and were specified beforehand by the creator of the experiments.
In addition, the agents did not learn a language from interactions with other
agents, but rather neighbors of high fitness agents were transformed into copies
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of the high fitness agent with some fixed probability. Lieberman et al. put their
work on a firmer theoretical basis by studying the probability of fixation (i.e.
the probability that a fitter language, if it appears by mutation, will be adopted
by the entire population) on a graph. They showed that some graphs can be
selection amplifiers, in that the probability of fixation can be made as high as
possible, and also that some graphs are selection suppressors.

Here we ask the question, can the agents generate the topology on the fly,
while still ensuring that the emergent topology leads to rapid convergence?

3 Agent Interaction Topologies and Convergence

The agent interaction topology is a weighted directed influence graph which
describes the influence of an agent on the language of another agent. Such a
graph captures constraints such as spatial locality, agents’ knowledge of each
others’ existence, interaction choice preferences, etc.

Fig. 1. The interaction graph for quickest convergence. One agent teaches the language
to all the other agents. The circles represent agents, and the directed arrows represent
the influence of one agent on the language of the other agent.

A simple strategy for rapid convergence would be to designate a special agent
from which each of the other agents learn their language, as in figure 1. This
corresponds essentially to a pre-imposed or designed language, which may or
may not be of the highest objective quality. Such a centralized system is brittle
in practice because a) the teacher agent has to be responsible for adapting the
language to keep up with changing tasks, environments and needs of all the
agents, b) communicative load on the teacher increases at least linearly with
population size, reducing scalability, and c) the centralized teacher is a single
failure point. Multi-agent systems are generally distributed and open, which
means that there is no central control point, and agents may enter and leave
the population at any time. This means that although desirable for its speed,
uniformity, and certainty, the interaction topology shown in figure 1 is both
undesirable and unrealistic for a general multi-agent system.

It would be much better if agents could develop their interaction topologies
on the fly, by selecting interaction partners autonomously. We would still like,
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however, to have some guarantee of convergence, and of rapid convergence. In
this regard, we next discuss the Noisy Preferential Attachment algorithm which
we can use initially to generate scale-free topologies, and also to guarantee con-
vergence. The final emergent topology, as we will see, looks a lot like fig. 1, but
the crucial distinction is that it is emergent. Thus, e.g., if the central agent left
the population, another would emerge to take its place.

4 Noisy Preferential Attachment

We first derive a variant of the replicator-mutator equation (RME), the RME
without Death (RME-WD). Then we show that the preferential attachment
model of small-world network generation is a special case of the RME-WD. We
then use this equivalence to give a version of the preferential attachment algo-
rithm, called Noisy Preferential Attachment, which we will later use to generate
the agent interaction topology.

The Replicator-Mutator Equation (RME) describes the rate of change of the
proportion of types (genomes, languages) in a population undergoing replication
and mutation.

Suppose there are N types in a population of n individuals. Let fi be the fit-
ness of an individual of type i. Since fitness includes both frequency-independent
and frequency-dependent components, it is written as,

fi = wi +
N∑

j=1

aijxj , (1)

where xj is the proportion of individuals of type j in the population, and wi is a
measure of intrinsic fitness of the language which might be related to learnability,
expressiveness, etc.. The matrix A = [aij ] is known as the payoff matrix, and
can be thought of as the payoff or reward achieved by an individual of type i in
an interaction with an individual of type j. In the case of languages, A can be
thought of as a measure of intelligibility, i.e. the degree to which a speaker of
language i understands a speaker of language j.

The total number of individuals added to the population in a time step is∑N
j=1 fjxjn. Further, replication is imperfect. With a small probability, repli-

cating an individual of type i results in an individual of type j. This is quantified
by a matrix Q = [qij ], where qij is the probability that replication of an indi-
vidual of type i results in an individual of type j. In the case of languages, this
corresponds to learning fidelity. In a limited interaction between individuals, the
learner may not learn exactly the teacher’s language.

Suppose also that the size of the population is held constant at n, by remov-
ing an equal number of individuals uniformly randomly, as are added to the
population. This is because, in the case of language learning, when an agent
learns a new language, it necessarily replaces the old language of that agent.
Then the number of individuals of type i that are removed in one time step is
xi

∑N
j=1 fjxjn.
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Putting all these terms together, we get the rate of change of the proportion
of individuals of type i in the population, as

ẋi =
N∑

j=1

fjxjqij − xiφ, (2)

where φ =
∑N

j=1 fjxj . This is the Replicator-Mutator Equation (RME).

4.1 Replication-Mutation Without Death

If there is no death, the number of individuals of type i at the next time step is,

x
′
i(n +

N∑
j=1

fjxjn) = xin +
N∑

j=1

fjxjqijn.

Here n +
∑N

j=1 fjxjn is the total size of the population at the next time step,
and

∑N
j=1 fjxjqijn is the number of new individuals of type i. Rearranging, and

letting φ =
∑N

j=1 fjxj , we get

x
′
i(1 + φ) = xi +

N∑
j=1

fjxjqij

x
′
i(1 + φ) − xi(1 + φ) =

N∑
j=1

fjxjqij − xiφ

Thus the rate of change of the proportion of type i is,

ẋi =

∑N
j=1 fjxjqij − xiφ

1 + φ
(3)

This is the Replicator-Mutator Equation without Death. Note that, since
fj ≥ 0 ∀ j, the denominator on the right-hand side is always positive. Therefore
the critical points of the RME-WD are the same as those of the RME.

The general form of the RME is very difficult to study because of the large
number of parameters (all the entries of the A and the Q matrices). Often a special
symmetrical case is studied, where the A matrix is set to have diagonal values
equal to 1, and off-diagonal values a << 1, and the Q matrix is similarly set to
have diagonal values p (close to 1), and off-diagonal values (1 − p)/(N − 1). A
complete analysis of the critical points is possible in this fully symmetric case [12].

In particular, when p is less than a critical threshold, the system has only one
attractor, where all types are present in equal proportion in the population. For
large values of N and small values of a, this threshold is approximately 0.5. Above
this value, the attractor turns into a repeller, and the only stable attractors that
emerge correspond to the situation where a single type dominates the population.
Note that in the absence of death, and presence of mutation, there will always
be all types present in the population, but the proportion of one of the types
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goes towards one. Since the system is fully symmetric, it could be any one of
the N types that eventually dominates the population, and which attractor the
system falls into depends on the initial conditions, and statistical fluctuations.

We now shed some light on the transient behavior of the RME-WD, under
certain special conditions, by showing its equivalence with the preferential at-
tachment algorithm of small-world network generation. This means that, under
the right initial conditions, if we create a network (as we will later describe) using
the RME-WD, the network will be a scale-free network (in the short term).

4.2 Preferential Attachment and the Underlying Probabilistic
Model

The Preferential Attachment algorithm is the most commonly cited model of
small-world network generation [13]. Small-world networks are graphs which have
three properties: a small diameter, a high clustering coefficient, and a power-law
degree distribution. The clustering coefficient is defined as the average fraction
of neighbors of a node that are also neighbors of each other. Barabasi and Albert
showed that a small-world network can be generated by preferential attachment,
as follows.

We start the network with a small number of nodes and links, say two of each,
randomly connected. At each step, we add a node to the network and add a link
from the new node to one of the pre-existing nodes with probability proportional
to the number of in-links that node already has. Thus, the probability of node i
acquiring a new link is,

P (i) = αxγ
i , (4)

where xi is the proportion of in-links that go to node i, γ is a constant, and α
is a normalizing term. γ is generally set to 1, in which case α is also 1.

This process results in a small-world network. There are a couple of things worth
noting here. First, since new nodes don’t have any in-links, the probability of ac-
quiring any in-links is zero for these nodes. To get around this problem, every node
is assumed to have one pseudo-link, i.e. the number of in-links for each node for
the purposes of preferential attachment, begins at 1. Second, since new nodes are
added at every time step, the number of links remains approximately equal to the
number of nodes in the network. In later work, Albert and Barabasi modified the
preferential attachment algorithm to allow rewiring of links with some small prob-
ability, and also to allow adding links without adding nodes with some small prob-
ability [14], but the essential algorithm remains the same as that described above.

The underlying probabilistic model is an instance of a Polya’s urn model, as
described below (and also in [15]).

Imagine a set of N urns which are all empty except for one, which has one
ball in it. We now add balls one by one. A ball is put into urn i with probability
proportional to the number of balls already in that urn (plus one “pseudo-ball”).

This process is clearly equivalent to the preferential attachment algorithm
with the caveat that we have fixed the number of urns to be N . An urn represents
a node and a ball represents an in-link. In the short-term, i.e. while the number
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of balls is of the same order as the number of urns, this probabilistic model
represents the small-world network generation process.

We now add a further step to it to make it equivalent to the RME-WD. We
introduce a transfer matrix, Q, which is the same as the mutation matrix in the
RME. Suppose a ball is added to urn i at time step t. Then a ball is taken out
of urn i and moved to any of the urns with probability qij . This is similar to
later versions of the preferential attachment model which include rewiring.

This probabilistic model captures the RME-WD dynamics if we consider urns
to correspond to types and balls to individuals in the population. Since it is the
balls that correspond to the individuals undergoing replication and mutation, we
have to set the payoff matrix, A, equal to the null matrix in this case to get the
linear dependence of P (i) on xi. Note that in this case, the RME-WD loses its
frequency-dependent aspect. If we set A = I, the identity matrix, P (i) varies as
the square of the proportion of individuals of type i. If the off-diagonal elements
of A are set to be non-zero, then P (i) acquires additional second-degree terms.

We call this extended (but still finite) version of preferential attachment,
Noisy Preferential Attachment (NPA) [16], because of the introduction of the
mutation matrix into the probabilistic model. A caveat is in order here too:
there is no notion of pseudo-links (or pseudo-balls) in this model. New nodes
(types) are introduced into the graph (population) by the mutation process.
This means that the number of nodes increases much more slowly that it does
in the preferential attachment case. Therefore to generate a large network, the
initial state needs to include a fairly large number of nodes with non-zero number
of in-links. Alternatively, the mutation rate needs to have a high value.

5 Using NPA to Generate Agent Interaction Topologies

We use the NPA algorithm to generate the agent interaction topology on the fly
in two stages as follows. Initially the agents have no knowledge of (the quality
of) each other’s languages. Therefore the first stage is an exploration phase,
which sets up the second convergence phase. In the exploration phase, an agent
Alice chooses another agent, Bob, as a teacher with probability proportional
to Bob’s fitness. The fitness of an agent is equal to the number of times that
agent has been chosen as a teacher. The fitness can also include a term that is
independent of the frequency of selection as teacher, but for now, we ignore this
term since our current simulations are ungrounded. With probability (1 − p),
Alice switches to a uniformly randomly chosen teacher. This is similar to the
notion of exploration-exploitation in reinforcement learning. The intuition is
that if a lot of agents are choosing a particular agent as teacher, then choose
that agent as a teacher because a lot of agents consider its language to be good.
However, the proportions might be misleading near the beginning of the process
because the actual counts will be low. Therefore it makes more sense to explore
rather than exploit at the beginning of the distributed language learning process,
i.e. it makes sense to start out with a high value of the mutation rate, (1 − p),
and switch to a low value when the process has been going on for a while.
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Fig. 2. The degree distribution for p =
0.3 and γ = 1, after 1000 links have been
added. The number of nodes in the graph
is 1000 as well. The distribution is clearly
a power law.

Fig. 3. The degree distribution after
20,000 links have been added to the
graph. One node is clearly dominant.

Figure 2 shows a simulation in which we have a population of 1000 agents,
i.e. a graph with 1000 nodes. Initially, one link is randomly added to start the
process off. The initial value of p is 0.3, and γ, which is the exponent of the
proportion in the preferential selection equation, is set to 1. We add one link
at each time step, and figure 2 shows the in-degree distribution after 1000 links
have been added. The graph is plotted on a log-linear scale, and the distribution
is clearly a power-law. Therefore, at this stage, the graph is a scale free network.

At this point we start the second stage, by changing the value of p to 0.95,
and the value of γ to 2. The intuition is that once the space of languages has
been sufficiently explored, we can switch to the “convergence mode”, where we
trust the statistics of interactions that have been established in the first stage
to guide us to a good overall language.

As we continue adding links, the node with highest degree becomes the domi-
nant node. Figure 3 shows the degree distribution after 20,000 links (total) have
been added. We can see that a single node has acquired a far larger proportion
than the rest, and because of the frequency-dependent effect, the proportion of
links acquired by this nodes will continue to increase towards 1 as we continue
adding links to the graph. This means that the population will converge to the
language of this agent. If this agent later gets removed from the population, the
next most “fit” agent will become the dominant agent. It may possibly have a
different language, though.

6 A Language Learning Experiment

We now do a simulation where we have a population of agents trying to converge
onto a common language by learning from each other. The agent interaction
topology is generated as described above. The agents use simple recurrent neural
networks to generate, parse, and learn sentences. Each simple recurrent network
has 5 inputs, 3 hidden layer nodes, and 5 outputs. There are 5 symbols in the
“languages”, {a,b,c,d,e}, and we use a 1-of-n encoding, i.e. the symbol a is
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encoded as the vector [1, 0, 0, 0, 0] at the input of the neural network. A sentence
is generated from a simple recurrent network by setting its internal state to 0.5
and giving it a random initial input vector. The output of the neural net is then
fed back to its input and this process is repeated until we have generated as
many symbols as we want. The weights of the neural networks are initialized
randomly in the range [−0.5, 0.5].

The population size was set to 100, and the experiment was run for 1000
time steps. At each time step, an agent is selected in sequential order, and it
chooses a teacher according to the NPA algorithm. It receives a sample of 100
sentences of length 10 from the teacher and trains on this sample to convergence
or for 100 epochs, whichever comes first. Every 50th time step, we collect 5
randomly generated sentences from each agent to form a testing set and the
one-step symbol prediction error is calculated for each agent on this testing set.
These are summed up to indicate the error (the inverse of convergence) of the
entire population. This value is plotted in figure 4.

The parameters for the NPA algorithm were set in a manner similar to the pre-
vious section. Since there are 100 agents, i.e. 100 nodes in the graph of the agent
interaction topology, we set p = 0.3 and γ = 1 for the first 100 steps, and then
changed these values to p = 0.95 and γ = 2 for the remainder of the simulation.
As we see in figure 4, the error only starts dropping after time step 100. However,
after that the error drops quite rapidly and reaches almost zero by time step 1000.
As a comparison, we also plot the error with uniformly random teacher selection.
We see that convergence is attained much faster with the NPA algorithm.

Fig. 4. The one step symbol prediction error summed over all the agents on the testing
set. The testing set is generated by sampling 5 sentences from each of the agents at
that particular time step. The low prediction error at the end (∼ 1%) indicates almost
perfect convergence of the language.
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7 Discussion and Future Work

The two stages of the distributed convergence mechanism described in this work
combine the ideas of convergence to a common social convention and conver-
gence to a common language, through the mechanism of frequency-dependent
(or preferential) selection.

The goal of the first, or exploratory, stage is to evaluate the languages that are
present in the population and collectively decide on a single language, embodied
by a single teacher, as the language to converge upon. The second stage then
focuses on all the agents learning this one language, again in a distributed way, by
simply changing two global parameters of the system: the probability of switching
to a random teacher rather than the preferentially selected one, and the exponent
which determines how strongly the preferential selection mechanism works. The
underlying theoretical model guarantees that the appropriate parameter values
will result in both a power law initial distribution of links, and the dominance
of one teacher in the second stage.

Another important point, which was not mentioned in the language learning
experiment, is that learning is non-trivial. With all learning architectures and
algorithms, including the simple recurrent networks trained with the delta rule
and backpropagation that we have used, some languages are easier to learn
than others. In the work of Lee et al., e.g., this is captured by the learning
fidelity parameter [8]. However, the point is that in practice, this parameter
is non-uniform across the language space. “Simple” languages can be learned
with greater fidelity than more complex ones. For example, it is much easier to
converge upon point attractors, i.e. languages consisting of a single symbol, with
simple recurrent networks, than to converge upon other kinds of attractors: e.g.
languages consisting of alternating symbols or other more complex languages. In
the language learning experiment shown, it is much harder to attain convergence
when the selected teacher has a complex language, and convergence depends on
having appropriate parameters settings for the neural networks (such as number
of hidden layer nodes, learning rate, momentum, etc.).

There are many details that remain to be fleshed out in the model. The
algorithm given is not truly a distributed algorithm since it hasn’t really been
specified from the point of view of a single agent. We need to explicate how the
exploration phase works at the beginning when the agents have no information
about each other. We can imagine that each agent maintains a list of its own
estimate of all the other agents’ fitness values. They can all be initialized to
zero, and then a few of these get filled in by a “recommendation” mechanism
corresponding to the preferential selection. In other words, an agent chooses a
teacher randomly (or chooses a neighbor), and then gets referred to a better
teacher by this one based on the teacher’s knowledge about the population. This
is where a scale-free (or small-world if possible) nature of the agent interaction
topology helps. The small diameter of such a network means that it is easy for
an agent to find a good teacher using such a referral mechanism.

In future work, we intend to explore a more grounded language learning case.
As a first step, we need to investigate the effects of making the frequency-
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independent part of fitness non-zero. A second concern is the quality of language
that is converged upon. As pointed out above, there is an inherent bias in the
population towards learning simple languages, as learning fidelity is higher in
this case. There has to be a corresponding pressure towards language complexi-
fication, perhaps from a task based reward, otherwise the learned language will
almost surely be the simplest possible.

8 Conclusions

We have outlined a system capable of converging onto a common language in
a distributed manner. It relies on the framework of language evolution, with a
change of focus: instead of treating the languages themselves as the individuals
undergoing replication, selection and mutation, we treat the links in the agent
interaction topology as the evolutionary units.

We further showed that under certain special conditions, we can recover the
preferential attachment algorithm of small-world network generation from the
replicator-mutator system of evolution. This allowed us to give a two stage model
of distributed language learning, based on our Noisy Preferential Attachment
algorithm. In the first stage, the agents explore the languages present in the
population and generate a scale-free network of interaction. In the second stage,
the parameters are changed to allow rapid convergence by letting a dominant
“teacher” node emerge through the same evolutionary dynamics.

We demonstrated through a simple language learning experiment using simple
recurrent networks, that such a system can converge to a common language
autonomously and rapidly.

In the near future we intend to explore the parameter space of the system
more thoroughly, both numerically and theoretically, through more grounded
simulations.
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Abstract. In the context of minimally cognitive behavior, we used
multi-robotic systems to investigate the emergence of communication
and cooperation during the evolution of recurrent neural networks. The
networks are systematically analyzed to identify their relevant dynami-
cal properties. Evolution efficiently adapts these properties through small
structural changes within the networks when specific environmental con-
ditions are altered, such as the number of interacting robots. The find-
ings signify the importance of reducing the predefined knowledge about
resulting behaviors, dynamical properties of control, and the topology
of neural networks in order to utilize the strength of the Evolutionary
Robotics approach to Artificial Life.

1 Introduction

The dynamical systems approach to cognition [1,2,3] aims at the study of natural
cognitive systems as dynamical systems. While concrete dynamical models of
cognitive phenomena are still under construction, “one powerful way to improve
our intuitions, clarify the key issues and sharpen the debate is through a careful
study of simpler idealized models of minimally cognitive behavior, the simplest
behavior that raises issues of genuine cognitive interest”[4]. We consider minimal
cognition as metabolism-independent sensorimotor behavior [5] and presuppose
that cognitive behavior generally results from perception-action couplings [6].

The Evolutionary Robotics [7,8] approach to Artificial Life [9] aims at the
emergence of such perception-action couplings during the evolution of complete
brain-body-environment systems [4,10].

As artificial brain structures we utilize recurrent neural networks (RNNs)
which can be described as parameterized dynamical systems [11]. We distinguish
two types of parameters. The first type concerns parameters of single neurons
(bias terms), the structural coupling (the topology), and the strength of these
couplings (the synaptic weights). These parameters are shaped by an evolution-
ary algorithm. The second type of parameters are characterized by the sensor
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states of a robot, which are represented by the activation of input neurons. They
dynamically change during the interaction of a robot with the environment.

Here, we will investigate the dynamical properties of evolved RNNs and
their relation to observable collective behavior in groups of robots, especially
by systematically exploring the sensor input activations provoked by robot-
environment interactions. The detailed analysis of communication underlying
dynamical properties of recurrent neural networks and their relation to structural
changes during evolutionary processes distinguishes our work from pioneer stud-
ies on the evolution of emergent communication among artificial agents [12,13]
as well as from more recent studies [14,15]. These studies describe significant
results but they mainly focus on a detailed analysis at the behavioral level of
communicating artificial agents.

In earlier studies we utilized RNNs to coordinate conflicting behaviors in very
large robot groups [16]. There, we manually designed a local communication
system between several robots in order to synchronize individual internal neural
rhythms which determine the behavior of each robot. For the following experi-
ments, we used the same robot platform, but implemented a much simpler task
in order to investigate how communication can emerge as the basis of coopera-
tion by reducing the predefined knowledge assigned to the evolutionary process.
Furthermore, we investigate how evolution shapes certain parameters of behav-
ior underlying dynamical systems and how it adapts these parameters to specific
changes of the environment.

2 The Ingredients for the Emergence of Communication

To keep the analysis of evolved RNNs, concerning the dynamical properties and
their relation to behavior, still tractable, we use a neuron model with only two
parameters, a bias term and a synaptic self-weight [17]. A network consisting of
n units is then defined as a parameterized discrete-time dynamical system:

ai(t + 1) = θi +
n∑

j=1

wij f(aj(t)) , i = 1, . . . , n , (1)

where ai ∈ R denotes the activity of neuron i, wij the synaptic strength of the
connection from neuron j to neuron i, and θi its fixed bias term. The output
oi = f(ai) of a unit i is given by a sigmoid transfer function, here by f :=
tanh (i.e., oi ∈ (−1, 1)). Although this neuron model is rather simple, already
small recurrent networks of this type can generate complex dynamics, such as
periodic, quasi-periodic, or even chaotic attractors [11]. For the evolution of
these dynamical systems we used an implementation (see [18] for details) of the
evolutionary algorithm ENS3 [19]. This algorithm optimizes the parameters
intrinsic to the RNN, such as synaptic weights, bias terms, and the topology of
the network. For evolution and analysis a physical simulation environment was
created. There, we implemented important properties, such as noise of sensors
and motors, in accordance with results of measurements done with the physical
robot.
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Environment I Environment II Environment III

robot

food patch

obstacles

Fig. 1. The physical robot Do:Little (left) and three simulation environments of de-
creasing complexity (I → III)

We utilized the Do:Little robot (illustrated in Fig. 1) as an artificial creature.
The advantages of this robot are its simple but very reliable sensor and motor
capabilities. Besides infrared sensors for obstacle detection and floor sensors for
measuring the gray scale of the ground, we especially made use of its robust
communication system. It consists of a stereo microphone which can detect the
direction of sound signals emitted by nearby robots. In every interval of the
robot’s update cycle (100 ms) the robot can produce several sound signals of
the same frequency. Signals are differentiated by a unique sequence of pulses
within one update cycle. The advantage of not coding different signals with
different frequencies is that the robots are able to detect their sound signals
very reliable even in rather noisy environments. Thus only acoustic signal peaks
can be detected but no continuous sound signals. We will see later how this
constraint will influence the evolution of communication behavior if we change
the population size.

Neurons I1, I2, and I3 represent the left, right, and back infrared sensors,
respectively. The sensor inputs are linearly mapped onto [−1, 1], where −1 means
no obstacle detection and +1 indicates very close obstacles. Neuron I4 represents
the floor sensor. The inputs are also linearly mapped onto [−1, 1], where −1
indicates white colored and +1 black colored ground. For communication we
only used one acoustic signal. The angle α of a perceived sound signal to the
heading direction of the robot is represented by o(I5) = 0.5 · (1 + sin(α)) and
o(I6) = 0.5 · (1−sin(α)). The speed of the left and right wheel are calculated by
c ·(o(O1)−o(O2)) and c ·(o(O3)−o(O4)), respectively, where c is a speed factor.
Important for the understanding of the described communication systems is that
the robot emits a single sound signal when o(O5) switches from a negative to a
positive value.

In the following experiments we wanted to know more about the minimal
requirements necessary to provoke the emergence of communication within a
population of robots during the evolution of their control architectures. Hence,
we defined the following simple task: A single robot can increase its fitness by ex-
ploring the environment and finding patches of food while avoiding collisions with
obstacles and other robots. Thereby an individual can benefit from the behavior
of other robots if they cooperate. Such robots, sharing a common environment,
are conspecific because they are identical with respect to their morphology and
control, and the selection process during evolution is group based because the
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mean fitness of all robots in a group is taken1. However, this does not necessarily
mean that only cooperative behavior can be successful or communication will
inevitably emerge. For instance, even solitary behavior can be efficient if each
individual is able to locate food patches reliably without running into obstacles
or other robots.

To overcome the well known bootstrap problem of the evolutionary approach
to the development of behavior [7], we applied a so called semi-restrictive incre-
mental method [18]. Therefor, in the first evolutionary step the task of a single
robot was to explore its environment as good as possible without running into
obstacles. For this task robots were equipped with infrared sensors for avoiding
obstacles. The topology of the neural network was not determined, only input
and output neurons were defined. Structural elements, such as synapses and hid-
den neurons, could freely emerge in between. In the second evolutionary step,
robots could additionally access a floor sensor for detecting black food patches
on the ground. We selected several different RNNs which were successful in solv-
ing the exploration task as a basis for evolving RNNs which are now supposed
to force the robots to stay on a food patch as soon as they find one. During
this second evolutionary process, already existing structural elements were not
allowed to be removed (whereas their parameters could change), but new struc-
tural elements could emerge within the whole network which now also has new
sensor inputs. The same technique was applied for the last step, where robots, in
addition, could access a speaker and a stereo microphone for emitting and sens-
ing sound signals. RNNs resulting from the preceding step provided the basis for
this evolutionary run.

Consequently, after the first evolutionary step we always put a certain prede-
fined knowledge in each subsequent step. However, this was only done to provide
basic behaviors for the evolution of more complex behaviors, for which we never
defined how a network eventually should look like. Therefore, we argue that
the emergence of communication during evolution was neither explicitly forced
by a given network structure nor by the fitness function. Hence, the remaining
constraint was the design of the environment.

At first, we thought that a complex environment, such as Environment I, shown
in Fig. 1, would enforce the emergence of cooperation. In this environment it is
rather complicated for a solitary individual to quickly find the food patch. Once
an individual find it perchance, it could use its communication system to guide
the others. Surprisingly, even after many repetitions of the evolutionary process
no cooperation emerged. In our opinion this is because of the bootstrap problem
[7]. It may take too much time until an individual finds the food patch. And conse-
quently, even when it then starts to call other robots, this would not significantly
increase the performance compared to robust solitary behavior. Therefore, a step-
wise refinement of the communication system (note, the robots had to learn signal-

1 The fitness of a single robot i is Fi = 600ki
T

, where T is the number of evaluation
time steps and ki is defined by how often the robot is able to find a food patch in T
(whenever the robot finds a food patch, it recharges its virtual battery and is than
replaced randomly within the environment).
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ing and the appropriate responses to other signals) may become very improbable
during evolution (this first assumption has to be verified in future work). Thus, we
decreased the environmental complexity by removing obstacles and placing the
food patch in the center (Environment II), but even there no cooperation emerged
during evolution. Only further removal of obstacles (Environment III) enabled the
emergence of cooperation, as it will be discussed in the following section. Note, that
although all RNNs were evolved in the rather simple Environment III, the result-
ing cooperative behavior was robust enough that, in the end, we could also observe
better performance in the more difficult Environment I and II compared to solitary
behavior without any additional optimization.

3 Dynamics of Evolved Communication Systems

3.1 Communication in Small Groups of Robots

One small sized network resulting from the evolution of robot groups contain-
ing 10 individuals is drawn in Fig. 2A (we call individuals with this RNN as
control architecture individuals of type A1 ). For completeness, the whole net-
work and its parameters are given, but in the following we will concentrate only
on the communication system intrinsic to the RNN. By means of an odd loop
with over-critical synaptic weights2, the sound generating output neuron O5 is
connected with a hidden neuron (H1). This loop acts as a switchable oscillator
[11] depending on the value of I4, the floor sensor input. I4 is equal to -1.0 as
long as the robot is moving on white ground. As we can see in the bifurcation
diagram (Fig. 2C) the oscillation, caused by a period-4 attractor, is switched on
by an increased activation of I4. The bifurcation point is very close to I4 = −1.0,
and therefore, it can already be crossed by noise of the floor sensor. However, in
order to emit a sound signal at least two points of the periodic orbit have to be
in the negative and in the positive domain. This is only the case for I4 > −0.7
(never reached by sensor noise only). As a constraint of the environment, food
patches always provoke sensor signals of I4 within [0.8, 1.0]. For these values the
output of O5 oscillates as shown in Fig. 2B. Thus, communication is context-
sensitive: whenever a robot detects a food patch, it emits a sound signal every
4 time steps. This signal triggers a positive taxis in nearby perceiving robots
through the input neurons I5 and I6. Consequently, these robots will approach
the signaling robots until they reach the food patch where they then also imme-
diately start signaling. Therefore, communication is unidirectional, because the
signaling of one robot alters the behavior of another robot, but this behavioral
change does not influence the behavior of the signaler.

Another RNN with a completely different solution for context-sensitive com-
munication is shown in Fig. 3A. We call individuals with this control to be of
type A2. There, communication is realized by utilizing sensor noise. If no ob-
stacle is close to the left side of the robot (I1 = −1.0), the robot will stay on

2 Here, due to the use of tanh as activation function, over-critical means a synaptic
weight |wij | > 1.0. See [3] for details.
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I3 = −1.0; I4 = 1.0; I5 = I6 = 0.0). C: Bifurcation diagram for O5 by varying I4
(I1 = I2 = I3 = −1.0; I5 = I6 = 0.0).
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a detected food patch because the outputs of O1 and O2 are equal (within the
upper saturation domain of the transfer function, i.e., 1.0) as well as the outputs
of O3 and O4 (within the lower saturation domain, i.e., −1.0). Correlating these
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values with the connections projecting to O5 (emphasized in Fig. 3A) leads to
an activation of O5 = 0. In this situation the asymptotically stable fixed point
(SFP in the following) is in the linear domain of the transfer function. Hence,
the neural activation is highly sensitive to the sensor noise of I1. Therefore the
output crosses the zero-line randomly from the negative to the positive domain
(see Fig. 3B). Diagram C shows how the SFP of O5 is shifted from the lower
saturation domain to the linear domain when the robot detects a food patch
via I4. Once the robot stays on a food patch, this SFP can be shifted away
depending on the activation of I1, I2, and I3 (Fig. 3D-F). That means, if an-
other robot approaches a signaling robot, and consequently activates its infrared
sensors accordingly, the signaling will cease.

Using noise for behavior control of autonomous robots is usually not wanted
and engineers try to eliminate it from their systems as often as possible. In
our example, it is a quite efficient solution for signaling. Infrared sensors are
always noisy, and we tested different noise levels in the simulation environment3

with the result that the behavior does not qualitatively change when we vary
the noise level between 2% and 10%. In contrast to the prevention of noise in
most technical applications, for biological systems it is well known that noise
can significantly enhance sensorimotor patterns by means of a mechanism called
Stochastic Resonance [20].

When we compare A1 and A2 with respect to their performance depending
on the group size (see Fig. 5), we see that the more individuals are interacting
in the same environment, the better A2 performs compared to A1 (if n > 7).
The reason is the described constraint of the physical communication system,
namely the ability for perceiving only sound signal peaks. The more individuals
of A1 are signaling at the same time, the higher the probability that their signals
will sum up to a continuous signal which cannot be perceived anymore by other
robots still searching for food. Already four individuals of A1 can produce a
continuous signal when they are all signaling with different phases. Note, this is
not simply an artifact of the simulation. Experiments with physical robots have
also shown that the maximal frequency, where two subsequent signals can be
distinguished, is 5Hz.

In contrast to the constant period-4 signals in A1, the individuals of A2 signal
rather randomly. Consequently, the probability of producing a continuous signal
for a longer time period is rather low in larger groups. Additionally, whenever
a food patch becomes crowded, signaling robots will perceive nearby robots
by their infrared sensors which in turn will stop their signaling, as we have
discussed above (Fig. 3D-F). Thus, communication can no longer be described
as unidirectional because signaling of food patch locations will attract other
robots which in turn influence this signaling behavior as soon as they come close
to the signaler.

Nevertheless, both control architectures resulted from the evolution with a
group size of 10 individuals. For this size the performance difference between A1
and A2 is not as significant as it becomes with increased group size (Fig. 5).

3 The noise level of the physical infrared sensors is between 4% and 6%.
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3.2 Evolutionary Changes of Communication in Larger Groups

The results of the previous section suggest that performance may improve when
we repeat the evolution with a larger group size. More interesting than a sim-
ple performance improvement would be to see how the communication system,
as a part of the RNN, will change when we increase the number of interacting
individuals. Therefore, we started a new evolutionary run with the control ar-
chitecture of A1 as initial structure (which was more appealing because of its
independence of sensor noise and its lower fitness at larger population size). We
increased the group size to 25 individuals and allowed again parameter changes
of the initial RNN as well as the emergence of new structural elements.

One resulting RNN is shown in Fig. 4A. When we compare the structural
elements responsible for the communication system with the initial RNN of
A1 (Fig. 2A), we notice the same odd loop between H1 and O5 with over-
critical synaptic weights. In addition, we found an over-critical self-connection
at H1. With the given weight configuration this module exhibits quasi-periodic
oscillations (Fig. 4B) which are switched on by an increased activation of the
floor sensor I4 (see Fig. 4C). We applied a power spectrum analysis to the
time series in Fig. 4B and found a mean period length of about 8.7 time steps.
The period of time between emitting two subsequent sound signals is now almost
twice as long as in A1. Although this is presumably a coincidence, the correlation
is interesting because the group size used in evolution of B1 is also almost twice
as large as it was used for the evolution of A1.
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Fig. 5. Performance of A1, A2, and B1 individuals. For each group size several simu-
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the mean number of finding a food patch in 600 time steps for a single robot (mean of
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Another new structural element is the connection between I6, the left micro-
phone input, and H1. Whenever a robot is staying on a food patch, and therefore
I4 > 0.8, the described quasi-periodic oscillation (see Fig. 4B-C) is responsible
for sound emission. As soon as another nearby robot also starts signaling, I6
will become activated (even when the other robot is to the most right side,
which is due to the high noise, approx. 30%, of the sound direction detection).
Then, as we can see in the bifurcation diagram of Fig. 4D, the quasi-periodic
attractor switches to a SFP, thus the oscillation will cease. Because the sound
signal of signaling robots lasts only one time step, these oscillations immedi-
ately start again in the next time step (I6 = 0). This reset mechanism will lead
to a synchronization of the signaling among robots which stay together on the
food patch (a mechanism very similar to the synchronization of internal neu-
ral rhythms described in [16]). That means, if there are many robots on a food
patch, they will not produce a continuous sound signal as it is the case for robots
of type A1. One can see the improvement of the performance with respect to A1
in Fig. 5. However, the performance of B1 is not significantly higher compared
to A2 (although A2 was only evolved with a population size of 10). The next
section will discuss this surprising robustness of A2 against more complicated
environmental conditions which did not occur during its course of evolution.

3.3 Discussion

The results presented in section 3.1 demonstrate an example of the phenomena
called natural drift, which is well known from evolution of biological systems [6].
We started several evolutionary runs for the rather simple task of exploration
and obstacle avoidance. The initial conditions were always the same (empty RNN
structure, fitness function, environment). Evolution came up with solutions being
very different concerning the network’s topology, but very similar concerning the
observed behavior. Secondly we started again several evolutionary runs, with dif-
ferent RNNs as initial structure which resulted from the preceding step. The task
was slightly more complex (i.e., individuals had to find food patches and should
stay there). Again, several RNNs resulting from this evolution were selected as
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initial structures for the final evolutionary step. This time individuals could de-
velop a communication system in order to cooperate. During this runs we still
allowed the emergence of new structural changes within the initial RNNs. And
we presented two completely different solutions of emergent communication (A1
and A2 individuals) to the same task as a result of different structural changes.
Both perform well with respect to the given fitness function and group size with
which evolution took place. However, individuals utilizing noise for communi-
cation (A2 ) do also perform well in conditions they were not confronted with
during their course of evolution. They posses the intrinsic property to be robust
against increased population size not only because of the lowered probability
of producing unrecognizable continuous sound signals, but also because of the
described indirect bidirectional communication behavior. We argue, such solu-
tions can hardly be found when too much predefined knowledge about the fitness
function and topology of RNNs is assigned to the evolutionary process.

In section 3.2 we demonstrated another striking result of the described exper-
iments and analysis: the evolutionary adaptivity of RNNs, as dynamical systems
for behavior control, to varying environmental conditions, such as the number of
interacting robots. We observed how small structural changes within such net-
works lead to an adaptation of the communication mechanism. During the evolu-
tion with small group sizes a context-sensitive communication system developed
which is based on a simple two neuron loop that provided period-4 oscillations
(A1 individuals). In this case robots directly communicate the discovery of a
food patch unidirectionally to other robots. The behavior was sufficient to im-
prove the performance of the robot group, as we have defined it there. However,
by changing the environmental conditions, that is, by increasing the number of
robots, it turned out that this strategy was not sufficient enough anymore. In
our experiments this was especially due to the physical implementation of the
sound perception system. Confronted with this constraint and the larger group
size, small structural changes refined this solution. These changes lead to quasi-
periodic oscillations of longer periods which then are also synchronized among
interacting agents (B1 individuals). Communication is not longer just a sim-
ple stimulus-response action. It is direct bidirectional: the act of signaling also
directly influences the signaling behavior of other robots.

4 Conclusions

In this paper we showed how communication among interacting autonomous
robots emerges by evolving dynamical systems, like recurrent neural networks, in
the context of complete brain-body-environment systems [4,10]. We have seen that
only small structural changes are necessary to alter previously solitary behavior
to cooperative behavior among communicating robots.

The presented communication system and collective behavior are indeed
rather simple. And often the answer to what is necessary in the Artificial Life
approach to place autonomous robots into the same category as animals is to
keep up climbing the complexity ladder. However, we agree with [21] in that this
is “not the most practical answer .. [because].. seeking such complexity blindly,
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by typically restricting the search to achieving more complex behaviors, does
not accomplish much”. Therefore, our approach is to build simple, and therefore
still tractable, models of minimally cognitive behavior [22] and to increase their
complexity as soon as our understanding improves [23].

There are also some relations to biological systems, we can draw from our ob-
served processes of evolutionary adaptation. We setup a communication system
in the robot where the perception is limited to signal peaks. This was thought to
be a disadvantage for the development of behavior, although it is of great advan-
tage for the interaction with highly noisy real-world environments. In the end,
by evolving dynamical systems, we have to argue, that such physical constraints
are not necessarily a disadvantage for the development of behavior. Evolution
finds solutions which integrate the properties of such physical system very well.
On a more abstract phenomenological level, we can compare our artificial sys-
tem with biological systems, for instance with the synchronized flashing of male
fireflies during mating [24]. This astonishing collective process is in general also
based on pulse coupled oscillators [25]. Although the process which leads to this
synchronization is now well understood, the evolutionary reason why thousand
of fireflies synchronize their flashing can only be assumed. One possible expla-
nation is that females are stronger attracted by sudden bright pulses than by a
clutter of single flashes. It is also well known that humans, or animals in general,
react to sudden changes in their environment stronger than to sustained sensory
inputs (it is also known that persistent stimuli can attenuate sensation [26]).
Here, we unintentionally put this property into our system. There was no other
choice than utilizing only acoustic changes instead of continuous signals. And
evolution found solutions able to handle this handicap and adapt to changes in
the environment in a very efficient way considering the size of the resulting net-
works. We argue that such solutions are hardly found when too much predefined
knowledge about the topology and the dynamics are assigned to such systems,
however compelling this may seem in order to speed up the evolutionary process.
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Abstract. In this paper we describe how a population of simulated robots 
evolved for the ability to solve a collective navigation problem develop individ-
ual and social/communication skills. In particular, we analyze the evolutionary 
origins of motor and signaling behaviors. Obtained results indicate that signals 
and the meaning of the signals produced by evolved robots are grounded not 
only on the robots sensory-motor system but also on robots’ behavioral capa-
bilities previously acquired. Moreover, the analysis of the co-evolution of  
robots individual and communicative abilities indicate how innovation in the 
former might create the adaptive basis for further innovations in the latter and 
vice versa. 

1   Introduction 

The development of embodied agents able to interact autonomously with the physi-
cal world and to communicate on the basis of a self-organizing communication 
system is a new exciting field of research ([13], [1], [10], [3], [9], for a review see 
[2], [11], [14] and [7]). The objective is that to identify methods of how a popula-
tion of agents equipped with a sensory-motor system and a cognitive apparatus can 
develop a grounded communication system and use their communication abilities to 
solve a given problem. These self-organizing communication systems may have 
characteristics similar to that observed in animal communication [5] or human  
language. 

In this paper we describe how a population of simulated robots evolved for the 
ability to solve a collective navigation problem develop individual and so-
cial/communication skills. In particular, we analyze the evolutionary origins of motor 
and signaling behaviors. Obtained results indicate that the signals and the meaning of 
signals produced by evolved robots are grounded not only on robots sensory-motor 
system but also on robots’ behavioral capabilities previously acquired. Moreover, the 
analysis of the co-adaptation of robots individual and communicative abilities indicate 
how innovations in the former might create the adaptive basis for further innovations 
in the latter and vice versa.  

In the next section we describe the experimental setup (for more details on the ex-
periments and on the characteristic of the communication system at the end of the 
evolutionary process, see [4]). In section 3, we describe the evolutionary origin of the 
communication system used by evolved robots. Finally, in section 4, we summarize 
the main results and we briefly discuss the implications of these experiments. 
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2   The Experimental Set-Up 

A team of four simulated robots placed in an arena of 270x270cm (Fig.1, Left) are 
evolved for the ability to find and remain in the two target areas by equally dividing 
between the two targets. Robots communicate by producing and detecting signals up 
to a distance of 100cm. A signal is a real number with a value ranging between  
[0.0, 1.0]. 
 
 

    
 
Fig. 1. Left: The environment and the robots. The square represents the arena surrounded by 
walls. The two gray circles represent two target areas. The four black circles represent four 
robots. Right: The neural controller of evolving robots. 

Robots’ neural controllers (Fig. 1, Right) consist of neural networks with 14 sen-
sory neurons that encode the activation states of 8 infrared sensors, 1 ground sensor 
(that binarily encodes the color of the ground), 4 communicative sensors (that encode 
the value of the signals produced by other robots from four corresponding orthogonal 
directions (i.e. frontal [315°-44°], rear [135°-224°], left [225°-314°], right [45°-
134°]), and the activation state of the communication neuron at times t-1 (i.e. each 
robot can hear its own emitted signal at the previous time step). These sensory neu-
rons are directly connected to the three motor neurons that control the desired speed 
of the two wheels and the value of the communication signal produced by the robot. 
The neural controllers also include two internal neurons that receive connections from 
the sensory neurons and from themselves and send connections to the motor and 
communicating neurons [8]. The three motor neurons encode the desired speed of the 
two wheels of the robot and the value of the signal emitted by the robot.  

The output of motor neurons is computed according to the logistic function (2), the 
output of sensory and internal neurons is computed according to function (3) and (4), 
respectively (for more details on these activation functions and on the relation with 
other related neural models see [6]).  
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With Aj being the activity of the jth neuron, tj being the bias of the jth neuron, wij the 
weight of the incoming connections from the ith to the jth neuron, Oi the output of the 
ith neuron, Oj(t-1) being the output of the jth neuron at the previous time step, τj the time 
constant of the jth neuron, and Ij the activity of the jth sensors. 

The free parameters of the robots’ neural controllers have been evolved through a 
genetic algorithm. Each team of four robots was allowed to “live” for 20 trials (each 
trial lasting 100 seconds, i.e. 1000 lifecycles of 100 ms each). At the beginning of 
each trial the position and the orientation of the robots was randomly assigned outside 
the target areas. The fitness of the team of robots consists of the sum of 0.25 scores 
for each robot located in a target area and a score of -1.00 for each extra robot (i.e. 
each robot exceeding the maximum number of two) located in a target area. The total 
fitness of a team is computed by summing the fitness gathered by the four robots in 
each time step. 

The initial population consisted of 100 randomly generated genotypes that encoded 
the connection weights, the biases, and the time constants of 100 corresponding neu-
ral controllers. Each parameter was encoded with 8 bits and normalized in the range 
[–5.0, +5.0], in the case of connection weights and biases, and in the range [0.0, 1.0], 
in the case of time constants. Each genotype was translated into 4 identical neural 
controllers that were embodied in the four corresponding robots, i.e. teams were ho-
mogeneous and consisted of four identical robots. For a discussion about this point 
and alternative selection schemas see [7]. The 20 best genotypes of each generation 
were allowed to reproduce by generating five copies each, with 2% of their bits re-
placed with a new randomly selected value. The evolutionary process lasted 2000 
generations (i.e. the process of testing, selecting and reproducing robots is iterated 
2000 times). The experiment was replicated 10 times starting by 10 different initial 
populations. 

By analyzing the fitness thorough out generations we observed that evolving robots 
are able to accomplish their task to a good extent in all replications from generation 
500 on (evolving robots are able to find and remain in the two target areas by equally 
dividing between the two areas in 58.3% of the trials). Further increases of perform-
ance observed from generation 500 on, are due to slight improvements with respect to 
the ability to solve the task faster (the average time required by the four robots of all 
replications to reach the two target areas goes from 74s to 67s in generation 500 and 
2000, respectively) and better (the percentage of trials in which the task is solved 
correctly increase from 58.3% to 67.5%, in generation 500 and 2000 respectively).  

By comparing these results with the results obtained in a control condition in which 
robots were not allowed to detect signals (i.e. in which the state of the communication 
sensors was always set to 0.0) we observed that, in all replications, the fitness reach a 
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stable state after 150 generations, which is significantly lower than the case in which 
robots are allowed to communicate (i.e. robots are able to solve the problem only in 
36.7% of the trials after 2000 generations).  

The comparison between the results obtained in the normal and in the control con-
dition in which robots are not allowed to detect other robots’ signals indicates how the 
possibility to produce and detect other robots’ signals is necessary to achieve optimal 
or close to optimal performance.   

In the next subsection we will analyze the evolutionary origins of robots ability to 
solve their task and of the communication system displayed by evolved individuals. 

3   Origins and Evolution of a Self-organized Communication 
     System 

To understand the evolutionary origins of robots’ communication system we analyzed 
the motor and signaling behavior of evolving robots through out generations. To re-
construct the chain of variations that led to the final evolved behavior we analyzed, 
for each replication, the lineage of the best individual of the last generation (i.e. the 
1999 individuals, one for each generation, that constitute the ancestors of the best 
individual of generation 2000). Below we report the results of this analysis by focus-
ing in particular on the best replication of the experiment. The analysis of the other 
replications of the experiment (not shown) produced qualitatively similar results (al-
though the values of the signals serving a given function and the length of different 
evolutionary phases vary significantly). 

As shown in Fig. 2 and Fig. 3, in the case of the best replication of the experiment, 
the fitness quickly increases by reaching high level performance during the first 50 
generations (the team of robots of generation 50 is able to solve the problem in 64% 
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Fig. 2. Fitness of the lineage of the best individual of generation 2000 through out generations 
in the case of the most successful replication of the experiment. The black and gray lines repre-
sent the performance in a normal and no-signal condition (in which robots are not allowed to 
detect other robots’ signals). Lines indicate the moving average over 30 generations. Each 
individual have been tested for 100 trials.  
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Fig. 3. Percentage of trials in which robots accomplish the task successfully (within 100s) and 
average time required by the robots to reach the target areas by equally dividing between the two 
areas throughout generations. Average performance obtained by testing each team for 100 trials.  

of the trials and the average time required to reach the two target areas is 65.4s). From 
generation 50 to generation 1700, the fitness remains rather stable, beside small and 
unstable increases in performance. From about generation 1700 on, performance 
stabilizes again on a slightly higher value with respect to previous generations (the 
team of robots of generation 2000 are able to solve the problem in 79% of the trials 
and the average time required to reach the two target areas is 57.6s).  

By analyzing the motor and signaling behavior through out generations in the case 
of the best replication of the experiment (the same replication shown in Fig 2 and 3) 
we observed the following phases: 

Generation 1. At this stage robots move in the environment by producing curvilinear 
trajectories and by avoiding obstacles (in most of the cases). Robots produce two 
stable signals with a value of 0.53 and 0.33 when they are located inside or outside a 
target area, respectively, and far from other robots. Moreover, robots produce highly 
variable signals when they interact with other robots located nearby. 

In particular, when a robot located outside a target area starts to detect the signal 
emitted by another robot, it modifies the signal produced by a stable signal with a 
value of about 0.33 (a signal that we will call A that is produced by robots that do not 
detect signals produced by other robots) to an highly variable signal with an average 
value of 0.28 (a signal B that is produced by robots detecting the signal A or B pro-
duced by another robot). Signal B increases robots’ exploratory abilities (i.e. the prob-
ability to reach target areas). Indeed, by testing the robots in a normal condition and in 
a control condition in which they are not allowed to produce the signal B, we ob-
served that the average time spent by the robots to reach a target area for the first time 
is 58.8s and 70.4s, in the normal and control condition respectively. Therefore, the 
functionality of signal A is that to trigger the production of signal B. The functionality 
of signal B is that to increase robots navigation ability, as described above.  
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Fig. 4. Percentage of lifecycles spent by a team of robots in 6 possible states: void = all 
robots are outside target areas, 1 = only one robot is located in a target area, 2 = two robots 
are located in target areas (either in the same or in two different areas), 2+1 = 3 robots are 
located inside two different target areas, 2+2 = all robots are located inside the target area 
equally divided between the two areas, 3-4 = 3 or 4 robots are located in the same target 
area. The data refer to the lineage of the best individual of the last generation for the best 
replication of the experiment. Each robot have been tested for 100 trials lasting 1000  
lifecycles. Top graph: data up to generation 50. Bottom graph: data from generation 0  
to 2000.  
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We do not assign an identification letter to the other signals produced by robots at 
this stage since these signals does not seem to have any clear adaptive function. Some 
of these signals however, for example an highly varying signal (average value 0.45) 
and a stable signal (with a value of about 0.53) produced by robots located in a target 
area interacting or not interacting with other robots located nearby will acquire a func-
tional role in successive generations. 

On the basis of these individual and social behaviors (i.e. an individual obstacle 
avoidance behavior, individual exploration behavior, and a social behavior based on 
signals that alters other robots’ trajectories in a way that enhances their chance to 
reach target areas) robots are able to spend almost half of their lifetime on target areas 
(Fig. 4). A typical behavior observed at this stage is shown in Fig.5 (Gen. 1).  

Generations 2-7. During this phase robots progressively evolve an individual ability 
to remain in target areas. Indeed, at generation 7, robots located on target areas rotate 
on the spot so to remain there for the rest of the trial. Moreover, robots produce sev-
eral differentiated signals. However, as in the previous phase, only two of these sig-
nals have an adaptive function.  

As in the case of generation 1, robots located outside target areas produce a signal 
A (a signal with a value of about 0.34 produced by robots located far from other ro-
bots), and a signal B (a varying signal with an average value of 0.24 produced by 
robots interacting with other robots located outside target area). We keep the same 
labels introduced above since, although the value and the effect of the signals slightly 
varied, the functionality of the signals is very similar to that of the signals described 
in the previous section. As for generation 1, the functionality of signal A is that to 
trigger the production of signal B and the functionality of signal B is that to increase 
robots’ ability to reach target areas. Moreover, as in the case of generation 1, robots 
located on target areas produce two non-adaptive signals: (1) an highly varying signal 
with an average value of about 0.73 (produced by robots that interact with other ro-
bots located nearby outside target areas), and (2) a stable signal with a value of about 
0.82 (produced by robots that do not detect signals produced by other robots). These 
two signals do not have any adaptive function, but rather produce a decrease in ro-
bots’ performance. Indeed, the production of these two signals reduce the chances that 
robots located outside target area join target areas that already contain a single robot.  

As a result of the newly developed individual behavior that allows robots to remain on 
target areas, however, the percentage of lifecycles in which one or two robots are located 
on a target area increases from 35% to 45% and from 10% to 22%, respectively (see  
Fig. 4). A typical behavior observed at this stage is shown in Fig.5 (Gen. 7).  

Generations 8-14. The development of an individual ability to remain on target areas 
developed in previous generations posed the adaptive basis for the development of a 
cooperative behavior that allows robots located on a target area alone to attract other 
robots toward the same target area. As we said in the previous section, the highly 
varying signal produced at generation 7 by robots located inside a target area interact-
ing with other robots located outside the area reduced the chances that the latter  
robots join the area. At generation 14, however, this highly varying signal is not pro-
duced anymore. This innovation results from the fact that robots located outside target 
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Fig. 5. Motor and signaling behavior observed at different generations. Left: the trajectory produced 
by two robots tested in an environment including a single target area. Right: the signals produced 
by the two robots during the test shown in the left part of the figure. The motor trajectory and the 
signal of the first and of the second robot are shown with black and gray lines, respectively. 
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areas interacting with robots located inside target areas now produce signal D, (i.e. a 
signal with a value of 0.04). Since producing a signal with an almost null value is 
equivalent to stop signaling, the production of signal D implies that robots located 
inside a target area alone now produce a signal C (a stable signal with a value of 
about 0.78) independently of whether they interact or not with another robot located 
nearby outside the target area. Since the signal C, produced by a robot located inside a 
target area, increases the chances that other robots will enter in the same target area, 
the innovation that allows robots located outside the target area to switch their signal-
ing behavior off (as soon as they detect signal C) produces a significant adaptive 
advantage.  

To summarize, during this phase robots develop an ability to produce a new signal 
(signal D) whose functionality is that to allow robot located inside target area to keep 
producing signal C even when other robots are located nearby. This in turn allows 
robots to exploit the effect of signal C, that consists in attracting other robots toward 
the source of the signal (i.e. toward the corresponding target area). This effect of sig-
nal C on other robots motor behavior already existed in previous generations. How-
ever it could not be exploited since robots located in target area were able to produce 
signal C only when no other robots were located in the communicative range.  

The acquisition of an ability to switch signaling behavior off leads to a specializa-
tion of the role of the two interacting robots since, in these situations, the robot lo-
cated in the target area and producing the signal C acts as a speaker and the robot 
located outside the target area producing signal D, acts as a hearer. The social interac-
tion between the two robots in this circumstance, therefore, can be described as a 
form of information exchange (in which a speaker robot located inside a target area 
informs the hearer robot on the location of the target area and in which the hearer 
robot reacts to the signal by moving toward the direction of the area) or as a form of 
manipulation (in which the speaker robot drives the hearer robot toward the target 
area by exploiting the tendency of the hearer robot to alter its motor trajectory as a 
result of a detected signal). 

At this stage, robots are not still able to remain in a target area in couple (see  
Fig. 5, Gen. 14). In fact, as soon as a second robot reaches a target area, the two ro-
bots start to produce two different signals (i.e. two highly varying signals with an 
average value of 0.63 for the former and 0.38 for the latter robot) that are maladaptive 
since they increase the chances that one of the two robots abandons the area.  

As a result of the innovations occurring during this phase (that mainly consist in 
the variations that leads to the production of signal D) the percentage of lifecycles in 
which two and three robots are located on a target area increases from 22% to 50% 
and from 0% to 18% (Fig. 4).    

Generations 15-20. The development of an ability to attract nearby robots toward 
target areas that contain a single robot described in the previous section leads to an 
increase in performance but also poses new adaptive opportunities, namely the need 
to develop an ability to remain into target areas that contain a single robot and the 
need to produce a signal that keep other robots away from a target area that contains 
two robots. These two problems are solved in this phase through variations that allow 
robots to not exit from target areas when they detect the signal produced by another 
robot located in the same target area. This is achieved through the development of a 
new signal E (an highly varying signal with an average value of 0.61 produced by 
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robots located in a target area that contains two robots). Signal E plays two adaptive 
functions: (1) it does not push the other robot located in the target area out (unlike the 
signals previously produced in this circumstance), and (2) it reduces the chances that 
other robots located outside the target area will join the area itself. Interestingly, sig-
nal E (i.e. the signal produced by two interacting robots located in the same target 
area) allows the two robots to generate an information (i.e. that encode the fact that 
the area contains two robots) that is not directly available to none of the two robots.  

Generations 21-1700. During this long evolutionary phase the performances of the 
robots, the number of signals, and the functionalities of signals remain rather stable. 
Evolving robots display close to optimal performance, few simple but crucial individ-
ual behaviors (that allow the robots to explore the environment, avoid obstacles, and 
remain into target areas) and an effective communication system that now includes 5 
signals (i.e. signals A, B, C, D, and E described in previous sections) that modulate 
the robots’ behavior by producing an enhanced exploratory behavior, a target ap-
proaching behavior, and a target avoidance behavior. Since each of these individual 
and communication abilities provides a clear adaptive advantage, all of them are pre-
served during the rest of the evolutionary process. 

Despite of that, some characteristics of the individual behavior exhibited by the ro-
bots, the value of the signals serving a given function, and the impact of signals on 
other robots’ behavior vary significantly. 

Variations of individual behaviors mainly concern how robots explore the envi-
ronment while they do not detect signals produced by other robots. This fact can be 
explained by considering that robots’ ability to find target areas on their own plays a 
limited adaptive value at this stage in which individuals posses a reliable ability to 
find target areas by exploiting the signals produced by other robots. Variation on 
individual behavioral abilities, however, can be tolerated only within limits. To illus-
trate this point let us consider how robots’ individual exploratory behavior varies 
during this phase. As we reported above, robots located outside target areas tend to 
produce a curvilinear trajectory and to avoid obstacles. The combination of these two 
behaviors allow the robots to explore different parts of the environment and to en-
counter target areas relatively quickly. The turning angle with which robots move 
forward, however, should be sufficiently large so to avoid turning on the same posi-
tion indefinitely. The turning angle of the robots in this circumstance is indeed a char-
acter that is subjected to significant variations until a certain threshold is reached. 
Variations that overcome the threshold tend to be maladaptive since they lead to ro-
bots that are unable to explore the environment without the help of other robots (as 
shown in Fig. 6, Gen. 225). However, their negative effects only manifest in robots 
that do not receive the necessary social help during their lifetime. As a consequence, 
these variations might be retained and might cause a drop in performance in succes-
sive generations until characters similar to those previously lost are restored  (for an 
example, see Fig. 6, Gen. 226-230). This analysis illustrates how individual behavior, 
such as individual abilities to explore the environment, does not only poses the evolu-
tionary basis for the emergence of the communication system, but still plays a funda-
mental role when the communication system is established. This individual behavior, 
in fact, also constitutes a pre-requisites for the ability of the robots to collect informa-
tion to be communicated or to create the conditions for receiving useful signals. 
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Gen. 223    Gen. 225 

   
 
 

Gen. 226    Gen. 230 

  
 

Fig. 6. Behavior exhibited by robots of different generations. For space reasons only the behav-
ior produced by two robots of different generation is displayed. As can be seen, at generation 
225 robots lose their ability to explore the environment and keep circling in the same area. The 
exploration ability is recovered in successive generations.  

Other characteristics that significantly vary during this phase are the value of the 
signals and the way in which signals affect robots behavior. Although the function-
ality of the five signals described above remains rather constant during this phase, 
the value associated to each signal significantly vary (Fig. 7). This fact can be ex-
plained by considering that the functionality of a signal depend both on the value of 
the signal and the effect that the signal produces on robots. The possibility to co-
adapt the value of signals and the impact of a signal on robots’ motor and signaling 
behavior, ensures that the functionality can be preserved while the signals and their 
effects co-vary.  

In principle, these neutral variations could lead to new organizations of the com-
munication system, that might represent a pre-requisite for further innovations of 
individual and communicative abilities. Some preliminary evidences suggest that 
this is indeed one of the reasons that explain the evolutionary transition that leads to 
better behaviors in the next phase (see below). This evidences however are only 
preliminary and should be integrated with further analysis that we plan to conduct 
in the future. 
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Fig. 7. The value of the signals produced by robots throughout generations. Each point repre-
sents the mean value of each signal. The gray scale of each point indicates the variance of the 
signal with respect of the mean value (i.e. the darkness of each point is proportional to the 
variability of the corresponding signal). The data displayed on the graph have been obtained by 
filtering out signals that are produced only occasionally. Oscillatory signals have been identi-
fied through a wavelet analysis. The bottom figure displays the same data of the top figure with 
a superimposed schematization of signals average value through out generations.  

Generations 1700-2000. After a long phase in which performances remain rather 
stable, a small but stable increase in performance is observed from generation 1700 
on (Fig. 2). Indeed, as shown in Fig. 3, the percentage of times in which the robots are 
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able to accomplish their task correctly increase from 62% to 79% and the average 
time required for solving the problem decreases from 67s to 57s during this evolu-
tionary phase. 

The evolutionary transition that leads to this improvement involves a significant re-
organization of the values of the five signals (see Fig. 7). Although the number and 
the general functionality of the signals remains the same, from generation 1700 on, 
the values of the five different signals are distributed on a wider range and the value 
of each signal is distributed on a smaller range with respect to previous generations. 

Other variations occurring in this phase might affect the way in which signals are 
exploited. In particular, from generation 1700 on robots often display: (a) an en-
hanced ability to avoid target areas that already contains two robots without remain-
ing plugged into unfruitful conditions, (b) an ability to reach the target areas faster by 
taking the risk to end up in a target area that already contains two robots but by also 
being able to exit from these areas, (c) an enhanced ability to negotiate situations in 
which robots concurrently receive signals from several robots. However, further 
analysis should be conducted to clarify the nature and the adaptive role of the innova-
tions occurring during this phase. 

4   Conclusion 

In this paper we described how a population of simulated robots, evolved for the abil-
ity to solve a collective navigation problem, develop an effective communication 
system. By analyzing the evolutionary origins of motor and signaling behaviors we 
observed that the co-adaptation of robots’ motor and communicative abilities plays a 
crucial role on the evolutionary dynamic. 

In some cases the development of new motor skills poses the basis for the succes-
sive development of new social abilities. For instance, the development of an ability 
to remain in target areas constitutes a pre-requisite for the development of an ability 
to communicate the location of the area to other robots so to increase the chances that 
other robots will join the same target area. In other cases, the development of so-
cial/communication abilities pose the basis for the development of new motor skills. 
For instance the development of an ability to detect the number of robots located in a 
target area through bi-directional signaling interactions creates the basis for the devel-
opment of an effective avoidance behavior that allow robots to avoid entering in 
crowded target areas and to look for another target areas.  

Interestingly the co-adaptation process of motor and social/communicative abilities 
may potentially lead to open-ended evolutionary dynamics in which innovations cre-
ate the adaptive basis for further innovations thus leading to a progressive increase in 
performance and to a progressive complexification of agents abilities. Indeed, while 
during the first phase of the evolutionary experiment robots can only rely on few 
environmental cues (that provide information on whether they are located on a target 
area or not and whether they are close to obstacles), in later generation they can ex-
ploit a much larger number of cues (that, for example, provide information also on the 
location of target areas and on the number of robots located in target areas). 

Finally, we observed how the complexification of robots’ motor and social skills 
involve different aspects, and can be characterized along several dimensions: (a) an 
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increase in the number of elementary behaviors exhibited by the robots, (b) an in-
crease in the number of signals produced by robots, (c) an increase in the number of 
ways in which the same signal affect robots’ behaviors in different contexts, (d) a 
differentiation of the modalities with which communication is regulated (e.g. the 
transformation of symmetrical interaction forms in which communicating robots act 
concurrently as speakers and hearers to specialized asymmetrical interaction forms in 
which one robot acts as a speaker and one robot acts as an hearer).  

From a scientific point of view, these types of experiments and results can allow us 
to understand better how ‘meanings’ originate and how signals are grounded in agents 
sensory-motor and behavioral abilities. From an application point of view, these 
methods can allow us to develop a new generation of artifacts able to solve practical 
problems by cooperating and communicating on the basis of a self-organized commu-
nication system. 
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Abstract. An important problem for societies of natural and artificial
animals is to converge upon a similar language in order to communicate.
We call this the language convergence problem. In this paper we study
the complexity of finding the optimal (in terms of time to convergence)
algorithm for language convergence. We map the language convergence
problem to instances of a Decentralized Partially Observable Markov
Decision Process to show that the complexity can vary from P-complete
to NEXP-complete based on the scenario being studied.

1 Introduction

Language is a collective property of the society. A language is inherently a com-
municative system (although it has some non-communicative interactions with
agents, Clark ([1]) suggests that in addition to a communicative function, lan-
guage can serve as a tool to reshape the computational space that our brains
must handle), that allows agents to interchange information.

In this work we study how a set of initially diverse (in terms of languages)
agents can come to an agreement upon a single language. We refer to this as the
language convergence problem.

Previous work in this area has focused on the convergence rate of a particu-
lar algorithm. Each agent has a learning algorithm which will learn a language
based on examples of sentences from other agents. The algorithm for conver-
gence usually specifies a set of agents that each agent can interact with, and the
parameters of the learning algorithm.

In this paper we want to explore the question, how hard is it for an agent to
learn how to converge? We do not want to know how to converge in a specific
setting, but rather how to converge in a whole set of situations. For instance,
we want a policy for the agent that will tell it whom to interact with in order
for the agent to be able to communicate with the entire society after a period of
time.

Other work has focused on evaluating single algorithms to determine if, when
an agent follows a specific policy, will the entire society converge. For instance,
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Cucker, Smale and Zhou give bounds on how many other agents each agent must
interact with in order for the entire population to converge, given a policy where
each agent is to learn from the sentences it gathers of other agents languages
([2]). Steels creates a simulation and empirically shows the convergence of a
population of agents in [3]

Our work differs from the above because we want to study the higher order
problem of how hard it is to learn an algorithm for convergence, not how long
it takes to converge using a particular algorithm. We want to find the opti-
mal algorithm for convergence. The optimal algorithm, when implemented by
an agent, will result in the quickest convergence. To study the complexity of
finding an optimal algorithm for convergence we show how to map instances
of language convergence problems to instances of a Decentralized Partially Ob-
servable Markov Decision Process (Dec-POMDP ) [4]. The optimal algorithms
for convergence correspond to the optimal joint policies of a Dec-POMDP . We
make use of previous complexity results for finding the optimal joint policy for
a Dec-POMDP ([4], [5])

By mapping language convergence scenarios to the Dec-POMDP model we
can gain insight on the computational complexity of finding an optimal solu-
tion. This provides us with insight on the worst-case complexity of solving these
language convergence scenarios.

In this paper, four language convergence scenarios are examined, single goal
oriented, multiple goal oriented, teacher-student, and teacher-student with pop-
ulation observation. Each scenario can be modeled as a type of Dec-POMDP .

In Section 2 we go over the Dec-POMDP model and the mapping to the lan-
guage convergence situation. Next, we examine four different language conver-
gence scenarios mapped to the Dec-POMDP . Section 3 examines the complexity
of the four different language convergence scenarios. Finally we talk about some
related work, future work, and conclusions.

2 Language Convergence as a Dec-POMDP

In this section we describe the language convergence problem as a Dec-POMDP .
A Dec-POMDP is very similar to a POMDP except that in a Dec-POMDP

the state changes based on the actions of multiple agents. In a Dec-POMDP ,
we have a set of agents embedded in an environment, modeled as a global state.
The agents can execute actions that produce a change in the environment and
possibly a reward. Each agent makes its own observation about the environment
at each time step. In a POMDP there is only a single entity controlling the
system. While the process is controlled by multiple agents, there is only one
reward which is based on the single global state.

The structure of the behavior of the agents is:

1. Each agent, in parallel, observes the environment. This generates an obser-
vation for each agent.

2. Each agent, in parallel, chooses an action by using their policies and the
observation they have just perceived.
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3. The global state changes, based on the current global state, and the actions
of every agent.

4. One reward is generated for all the agents based on the previous state, the
actions executed, and the resulting state.

Formally, a Dec-POMDP is a tuple:

M =< S, A, P, R, Ω, O, T >

where (assuming the number of agents is n):

– S is a finite set of states, with initial state s0. The state at the current time
will be called the global state.

– A = {Ai|Ai is a finite set of actions for agent i.}
– P is a transition function, giving the probability

P (s′|s, a1, . . . , an) of moving from state s to state s′, given actions a1, . . . , an,
where ai is the action executed by agent i.

– R is a global reward function, giving the system-wide reward R(s, a1, . . . ,
an, s′) when actions a1, . . . , an cause the state-transition from s to s′.

– Ω = {Ωi|Ωi is a finite set of observations for agent i }
– O is an observation function, giving the probability O(o1, . . . , on|s, a1, . . . ,

an, s′) that each agent i observes oi when actions a1, . . . , an cause the state
transition from s to s′. Where oi is the observation of agent i.

– T is the time-horizon (finite or infinite) of the problem.

A joint policy < δ1, . . . , δn >, is a set of local policies, δi where

δi : Ω∗
i → Ai (1)

The joint policy specifies a policy for each agent that will determine the action
an agent should take at each time step based on the sequence of observations it
has made. Figure 1 is an illustration of the Dec-POMDP model.

See [5] for a full description of various classes of the Dec-POMDP . Roughly,
we can characterize the various sub-classes of Dec-POMDP by how much of the
global state each agent can observe (from each agent fully observing the global
state, to each agent only observing its own “local” state) and the accuracy to
which they can view the states (from viewing the state itself to viewing an
observation of it). Different combinations of these properties induce different
complexities when solving the Dec-POMDP .

A Dec-POMDP has independent transitions if the global state can be fac-
tored into n components such that the actions of an agent affects only its com-
ponent. An independent transition Dec-POMDP will be referred to as an IT,
Dec-POMDP

A Dec-POMDP has independent observations if the state can be factored
into n components such that the observations of an agent depend only upon its
component and the actions it has executed. An independent observation Dec-
POMDP will be referred to as an IO,Dec-POMDP
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St St+1

O1
t O2

t O1
t+1 O2

t+1
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Rt+1

A1
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t

Fig. 1. Illustration of a Dec-POMDP . St represents the state of the environment at
time t. A1

t and A2
t represent the actions that agents 1 and 2 executed at time t. Rt is

the reward at time t, and O1
t and O2

t are the observations at time t. The dotted arrows
between the observations and actions indicate that these observations were known when
making the decision on which action to execute at the next time step.

Following [5], we assume that the same decomposition of the state holds for
the independent transition and independent observations. We will refer to an
agents component of the state as its partial view or its local state. The partial
view of an agent will be denoted by Si.

An example of an IO, IT Dec-POMDP is a simple gridworld situation. Sup-
pose multiple agents are wandering around a 2-d gridworld. The state of the
system would be the aggregate locations of each agent. The partial view of each
agent would be its location. It is easy to see that any action an agent does (for
instance “Move North”) will only affect its own state, thus satisfying the inde-
pendent transition property. We can further have each agent observe only its
own location, thus satisfying the independent observation property.

If each agent can determine the global state based only on its sequence of
observations, we say the Dec-POMDP is Fully-Observable. In our gridworld ex-
ample, this would be like each agent knowing the locations of every other agent
based only on its own observations.

If there is a mapping from the aggregate observations of every agent to the
current state, then we say the Dec-POMDP is Jointly Fully-observable A jointly
fully-observable Dec-POMDP is called a Dec-MDP . The gridworld example
above is actually a Dec-MDP . The aggregation of each agents observations is,
by definition, the state of the system.

If each agent can determine its local state from its sequence of observations,
then we say the Dec-POMDP is Locally Fully-observable.

A finite horizon Goal-oriented Dec-MDP is a Dec-MDP with the following
conditions (taken from [5]):

1. There exist a set of states G ⊂ S of global goal states. At least one state of
G must be reachable by some joint policy

2. The process ends at time T
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3. All actions in A incur a cost, C(ai) < 0. For simplicity we assume the cost
is dependent only upon the action.

4. The global reward is R(s, < a1, . . . , an >, s′) =
∑n

i=1 C(ai)
5. If at time T the system is in a state s ∈ G there is an additional reward

JR(s) ∈ � that is awarded to the system for reaching a global goal state.

A GO-Dec-MDP has uniform cost when the cost of all the actions are the same.
There is also a NOP action that an agent can perform which has cost 0 and does
not change the state.

2.1 Finding the Optimal Policy

The main question is, how hard is it to find a joint policy that maximizes the
expected total return over the finite horizon? Bernstein et. al. in ([4]) have shown
that deciding whether there exists a joint policy with at least a certain value,
via an off-line algorithm, is NEXP-Complete for Dec-POMDP and Dec-MDP
where n ≥ 2.

The work in Dec-POMDP s has looked at finding a joint policy offline. This
means that the model is known, and as many simulations as needed can be run.
While during the search for the policy the model is known, during the execution
of the policy the agents will not know the entire model. The joint policy that is to
be found must take into account the constraints of the agents during execution
of the policy.

Goldman et. al. study the complexity of various subclasses of the Dec-POMDP
problem in [5]. Table 1 summarizes the results from [5]

Table 1. Complexity of Dec-POMDP and related models. The third column indicates
where this result was obtained. The lemmas and section 3 refer to [5]. The NBCLG
property will be examined in Section 2.3.

Model Complexity
Dec-POMDP NEXP-C [4]
Dec-MDP NEXP-C [4]
IO,IT Dec-MDP NP-C Lemma 4
IO, IT Dec-POMDP NEXP Section 3
GO-Dec-MDP NEXP-C Lemma 3
IO, IT, GO-Dec-MDP, 1 goal P-C Lemma 5
IO, IT, GO-Dec-MDP, NBCLG P-C Lemma 6

2.2 Mapping the Language Convergence Problem to a Dec-POMDP

The Dec-POMDP is an appropriate model to use to study the language conver-
gence problem because the Dec-POMDP explicitly models decentralized control.
There is a global goal - that of the entire population having the same language,
but only local control - each agent independently decides what action to take. A
Dec-POMDP explicitly models this situation, as there is a global reward based
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on the state of the system, yet the dynamics of the system are based on the
aggregate decisions of each agent.

The first issue when mapping language convergence scenarios to Dec-POMDP
is how to represent a language. We look at a simple type of language, represented
as an association matrix. A language is considered as a mapping from meanings
(objects, actions) to signals (words). There are many ways this mapping could be
represented (for instance the mapping is a continuos function from the space of
meanings to the space of objects in[2]) but one popular way is as an association
matrix. The rows of an association matrix correspond to meanings, and the
columns to words. An entry at row i and column j denotes the association
between meaning i and word j. In this work we do not constrain languages to
be represented as association matrices. We do, however, require that the number
of different languages be finite. An association matrix can represent synonyms
(multiple entries in a row) and homonyms (multiple entries in a column).

When representing a language as an association matrix, agents can change
their language by modifying the association values in the matrix. In this work
we assume that each agent has a finite set of actions that can modify its language.

In the language convergence case we want to reward the population when all
the agents have the same language. We can do this by setting the state space
to reflect the languages used by the agents. Let α be a set of n agents. Each
agent can use a language from the finite set L of languages. At each point in
time, every agent will be using a particular language from L. Let li denote the
language of agent i. We set the state of the Dec-POMDP at time t to be the
aggregate of the languages for each agent: st =< l1, l2, . . . , ln >. Thus the state
set will be Ln.

An optimal joint-policy is a policy that, when the agents use it, will result in
quick convergence to a high value state. We can formally specify this by setting
the reward function to reward quick convergence. We constrain the reward func-
tion to be independent of the actions and the previous state, R(s, a1, . . . , an, s′) =
R(s′). Every state will have a small negative reward, except for the states where
every agent has the same language. These states will have a high positive reward.

R(s′ =
〈
lt+1
1 , . . . , lt+1

n

〉
) =
{

1 if lt+1
1 = lt+1

2 = . . . = lt+1
n

−ε otherwise

Where lt+1
i is the language used by agent i at time t+1 and ε is a small positive

constant.
Under this reward function the policy that maximizes reward will minimize

the number of states to get to a converged state from s0.
We can also model situations in which specific languages have different re-

wards. As a means of communicating information, a language must be effective
(allow agents to communicate all important meanings),efficient (computable,
tractable) and shared (each agent must be able to understand each other).

We can assign to each language an objective value based on its effectiveness
and efficiency. The reward function will give a higher reward to a state where
all the agents have converged on a more effective and efficient language.
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The set of actions that each agent can execute will depend on the type of
languages that each agent can use. In this paper we will assume that each agent
has the same action set, A. The transition probability function P will define the
effects of executing an action.

The observations possible to an agent also have a large effect on the compu-
tational complexity of finding a solution. In this paper we will assume that each
agent has the same set of observations, Ω.

2.3 Four Language Convergence Scenarios

In this section we go over four different language convergence scenarios. They
differ from each other in terms of how much information each agent has about
itself and the other agents in the population.

Single Goal Oriented. One of the simplest cases of a convergence problem
occurs when there is only one language that has a positive reward. In this simple
case, each agent can only observe its own language. In addition, let us assume
that the action the agents can execute will change their language in some form,
but the effect of the action does not depend upon the language of the other
agents. In this situation each agent is moving in the state space trying to find
the language that every agent will converge upon. This can be mapped to a
uniform cost IO, IT GO-Dec-MDP .

An example of this situation would be where a language is represented as an
association matrix where each row can only have a single entry. This means that
each language does not contain any synonyms or homonyms. The set of actions
would be the set of row swaps - that is we swap the meanings for two words.

Assume that sg is the single global goal state that the agents want to converge
to. Then since we are using an uniform cost GO-Dec-MDP , every state except
sg will have a negative reward.

Since the effect of the actions will only change the language of the agent that
executed the action; and since the effect is determined only by the agents lan-
guage and not on the other agents languages, the system satisfies the independent
transition property.

Since the observations of a single agent depend only upon its own language
the system satisfies the independent observation property.

Thus, we have a uniform cost, independent transition, independent observa-
tion, jointly-fully observable GO-Dec-POMDP . By Lemma 5 of [5] deciding this
problem is P-Complete.

Intuitively this result makes sense, even though each agent only observes its
own language. The policy for each agent can be determined independently of the
policies for every other agent. Since it is known that all the agents will eventually
reach the single goal state (since that is the only state that provides a positive
reward), we can decompose this problem into n separate MDP’s (assuming that
the Dec-POMDP is locally fully observable).
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Many Goal-Oriented. We can extend the Single Goal-Oriented case to involve
multiple languages that the population can converge upon. This is more realistic
since there are often multiple languages that a population can converge upon.

This situation is difficult because each agent might choose to pursue a different
goal. Each agent will have to coordinate with the other agents to choose the same
goal, which will lead to a very complex space of policies to search in.

Goldman and Zilberstein outline the No Benefit to Change Local Goals
(NBCLG) property, which, if satisfied, will allow the system to be decomposed
into a set of MDP. If a system satisfies the NBCLG property, it is P-Complete
(Lemma 6 of [5]

The NBCLG property basically makes sure that it never is beneficial for an
agent, while executing the optimal joint policy, to switch which goal state to go
to. For instance, suppose that there is an optimal joint policy to one of the goal
states. This can be computed for each agent by constructing a MDP for each
agent to its component of the joint goal state. While executing the optimal joint
policy an agent might veer from the optimal route (since the effects of actions are
probabilistic, there is a chance that this might happen). If the NBCLG property
is satisfied then even when an agent veers off the optimal route, it is guaranteed
that the agent will not switch to another goal state.

Satisfying the NBCLG property depends upon the structure of the transition
probability function. Verifying that a system satisfies this property would be
quite difficult as well, since we would have to compute the value of changing
goals at every intermediate step.

Teacher-Student. In many situations agents change their language via a lan-
guage game ([6]). In a language game, a speaker and a hearer agent are drawn
from the pool of agents. The agents interact with each other, exchanging words
or sentences from their language. After the agents interact, either the hearer or
both the speaker and hearer change their language based on the communicative
success of the interaction.

What makes this situation different is that the language of an agent changes
based on the language of another agent. In our previous examples, each agent
modified its language independent of the languages of the other agents.

We can model this situation in a Dec-POMDP by having the actions corre-
spond to the execution of a language game with a particular agent. There will
be n actions, one for initiating a language game with each agent. The effects of
these actions are to change the language based upon the language of the agent
executing the action as well as the agent that is chosen to talk with.

In this case the independent transition property does not hold. The prob-
ability of an agents state at time t + 1 depends on both participants of the
language game. The Dec-MDP still has independent observations though. Thus
this situation can be modeled as an IO, Dec-MDP .

The complexity of an IO, Dec-MDP has not been studied yet. The complex-
ity of an IO, Dec-MDP is bounded by the complexity of an IO,IT Dec-MDP
(NP-Complete by Lemma 4 of [5]) and the complexity of a Dec-MDP (NEXP-
Complete)
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Teacher-Student with Population Observation. We can extend the previ-
ous Teacher-Student case by having each agent observe not just its own language,
but the languages of the whole population. This situation will be mapped to a
Dec-MDP .

Instead of having each agent observe its own language, we can allow the
agents to sample the languages of the the entire population. In this case, the
observations are dependent upon the state of the entire population and not just
on the state of the current agent.

For instance, the observation of an agent might be of the language that is
the most used. Or else, altering Ω to be the set of natural numbers the obser-
vation can be the number of agent using the same language as the observing
agent. In either of these situations the observations depend upon the state of
the population and not the partial view of the agent.

In this case, the language convergence problem is mapped to a Dec-MDP . The
complexity of finding an optimal solution to a Dec-MDP is NEXP-Complete.

3 Complexity of Language Convergence

The four situations outlined above varied widely in terms of complexity. What
makes the different situations easy or difficult to solve? The key is the level of
uncertainty present in the system. There are two levels of uncertainty present,
the first is the agents uncertainty of its own state, and the second is the agents
uncertainty about the state of the other agents. Both of these factors affect the
complexity of finding an optimal solution. Uncertainty about the agents state
means that there will be an exponential number of possible policies that must
be searched. Uncertainty about the state of other agents affects the size of the
joint policy space that must be searched through.

In the general case the local policy of each agent will be a mapping from
sequences of observations to actions. The policy must be from sequences of ob-
servations to actions because the agent is uncertain about the state that it is in.
This means that there are |A|ΩT

possible policies for the agent (where T is the
finite horizon).

On the other hand, when the agent has knowledge of its state, the size of the
policy can be substantially reduced. See [5] for more details.

While uncertainty about the local state of an agent affects the size of a policy,
uncertainty about the state of other agents affects the number of policies that
must be searched. If each agent knew the state of all the other agents then
we could just model this as a MDP or POMDP and solve it. But since each
agent does not know the state of the other agents we have to search through the
combinations of policies.

In the single goal oriented case, each agent knew with certainty its current
state. Lemma 1 of [5] proves that an IO,IT Dec-MDP is locally fully observable.
This means that the size of the space of policies that need to be searched can be
reduced because we don’t have to consider all possible sequences of observations.
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Rather, a policy for an agent will be a mapping from the local states of the agent
to actions. This significantly decreases the size of the space of policies to search
through.

In addition, there is no need to search through a joint policy space in the
single goal oriented case. Since there is only one state with a positive reward,
and each agent is striving to maximize reward, it is unnecessary to consider the
policies of the other agents. It is guaranteed that at some point all the agents
will reach the single goal state. Because of this assumption, finding an optimal
joint policy reduces to finding n different policies, one for each agent. This is
much less complex than searching for a single joint policy.

We can see that in the single goal oriented case there is no uncertainty about
the local state of the agent and no uncertainty about the behavior of the other
agent. Thus finding a solution is P − Complete.

The second situation, multiple goal oriented, is very close to the first situation
except that we have added uncertainty about the state of the other agents. In
the multiple goal case, the agents might converge upon different goal states, thus
we cannot simplify the situation to finding n different policies.

If the Dec-POMDP satisfies the NBCLG property, though, it is like the single
goal oriented case. Finding a policy for an NBCLG satisfying GO-Dec-MDP is
similar to finding a policy for a single goal oriented GO-Dec-MDP . Since we
know that once a goal is chosen no agent will veer from that goal, we are free to
look at each goal state, and find the optimal policy for each agent to get to its
partial view of the goal state. The goal state chosen will be the one which has
the highest reward. Since we know the agents will never veer from going towards
this goal state, we have found the optimal policy.

The third situation is another case where the agent does not know the state
of the other agents, it is similar to the multiple goal oriented case.

The fourth situation, teacher-student with population observation, provides
the most complex case. In this situation each agent does not know its own
state, nor does it know the state of the other agents. Thus finding a policy is
computationally expensive, since each policy will have to take into account all
the possible sequences of observations, and all combinations of local policies will
have to be considered.

4 Related Work

A good review of many Multi-Agent System models to the language convergence
problem is given in [7]. There has been some work in studying the theoretical
underpinnings of MAS models. Cucker, Smale, and Zhou [2] provide a mathe-
matical formulation for a MAS simulation. In their work, each agent gets a set
of example sentences from every other agent based on a pre-specified level of
interaction between the agents. They investigate the number of examples each
agent must be exposed to in order for the population of agents to converge.

[4] introduces and studies the complexity of finding optimal policies for the
Dec-MDP and Dec-POMDP models. In this paper they show that deciding
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these problems is NEXP-Complete. In other papers they present algorithms for
constrained versions of these problems.

[5] studies various modifications of the Dec-MDP and Dec-POMDP mod-
els. These variations include goal directedness, communication, and indepen-
dent transitions/observations. They showed the complexity of these problems
as well as specified two algorithms for the goal directedness cases. In some
cases, for instance when there is a single goal state and the transitions and
observations of each agent are independent of each other, the problem becomes
P-Complete.

5 Future Work

While the work here focuses on theoretical bounds for finding the optimal pol-
icy off-line, it would be very interesting to see if we can use some multi-agent
reinforcement learning algorithms to learn an optimal policy.

This work shows that finding the optimal policy can be quite computationally
expensive. This is because the specificity of the model is quite high - all actions
every agent takes must be analyzed. On the other hand population based models
like the Language Dynamical Equation ([8]) are much more tractable while giving
up knowledge of the specifics of agents actions.

We are investigating approaches that incorporate the best of both worlds. The
creation of a model that has the generalization and tractability of the LDE but
also the fine-grained control and information that a MAS model can give us.

The crucial parameter in deciding the complexity of the language conver-
gence problem is the amount of information that an agent has about the rest
of the population. In the case of a fully observable Dec-POMDP , each agent
can know the state of every other agent, and thus the problem can decompose
into n independent MDP’s. Direct communication is a possible way for agents
to achieve full observability, but communication usually incurs a cost. This cost
might be managed by specifying an interaction topology that limits the interac-
tion between agents. Delgado, in ([9]), shows that a set of agents can agree on
the same convention even when each agent might not interact with all the other
agents. This work could provide a starting point for studying how limiting the
interaction of agents could still result in language convergence.

A interesting avenue for future work would study how different interaction
topologies for message passing affect the rate of convergence, and the complexity
of finding optimal joint policies.

6 Conclusion

In this work we have investigated the complexity of finding an optimal policy for
language convergence problems. Our main contribution is in mapping instances
of language convergence problems to Dec-POMDP ’s

Four examples of language convergence problems, and their associated Dec-
POMDP ’s were shown. In the simplest case, when there is only one language
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that all the agents can converge upon, deciding whether an optimal policy exists
is P-Complete.

At the other extreme we have a situation where the agents are playing lan-
guage games and each agent must decide who to interact with at every time
step. In this case, when the agents cannot fully observe what language they are
currently using, deciding upon an optimal policy is NEXP-Complete.

We have argued that the increase in complexity of finding an optimal policy
is based on 2 levels of uncertainty, uncertainty over an agents local state and
uncertainty over the state of the other agents in the population.

By mapping instances of the language convergence problem to instances of
Dec-POMDP ’s we have been able to study the worst case complexity of finding
an optimal algorithm for the agents. This provides us with an intuition on what
makes the language convergence problem complex. In future work we plan on
adding communication between agents thus allowing them to gain knowledge of
the languages used by other agents.
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Abstract. In recent years, the advent of robust tracking systems has enabled be-
havioral analysis of individuals based on their trajectories. An analysis method
based on a Point Distribution Model (PDM) is presented here. It is an unsuper-
vised modeling of the trajectories in order to extract behavioral features. The ap-
plicability of this method has been demonstrated on trajectories of a realistically
simulated mobile robot endowed with various controllers that lead to different
patterns of motion. Results show that this analysis method is able to clearly clas-
sify controllers in the PDM-transformed space, an operation extremely difficult
in the original space. The analysis also provides a link between the behaviors and
trajectory differences.

1 Introduction

The development of vision-based tracking systems brings about an easy way to extract
trajectory data. Consequently, an ever-increasing number of domains are using it for
behavior and trajectory analysis, like video surveillance [11,13,5,12,8], sports analy-
sis [1] and ethology [4]. Behavioral analysis has also been done on human trajecto-
ries in a virtual environment [14,15] or on autonomous-robot trajectories [16,17,10].
All these applications aim to classify an individual from its trajectory, to analyze the
movement differences between individuals, or to create a motion model of animals or
insects.

This paper addresses the development of tools to analyze the motion of robots, or
more generally people or animals, by means of their trajectories. As we will explain in
further detail, robots were chosen as trajectory generators for their repeatability and be-
havioral controllability which natural being are lacking of. For the analysis, we use
a Point Distribution Model (PDM) [2], a kind of deformable template. This model
was often used to detect object shapes in an image, but it can also be used for tra-
jectory modeling [3]. It is able to take into account spatial and temporal information,
but in our experiments we focused on purely spatial analysis. We are more interested
in the way the individual is moving and not by the time it needs to travel a given
distance.

The paper is organized as follows. In section 2, the experimental method used will be
presented, followed in the next section by a description of the Point Distribution Model.
Section 4 will present the results and a discussion will close the paper.

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 819–830, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Experimental Method

In order to collect hundreds of trajectories in a very short time and perform a first
exploration of PDMs as tool for behavioral analysis, we have decided to work with
mobile robots. They may be embedded in a physical environment in the same way as
natural creatures, but are more easily programmed to produce repeatable behaviors.
Moreover, they can be small and therefore the experimental setup can easily fit into a
room and simple video tracking systems can extract their positions. Finally, their behav-
ioral repertoire can be quite rich and their controllers can achieve fairly high degrees of
complexity, spanning from purely reactive to more deliberative behaviors.

Fig. 1. Image of the simulated mobile robot, with its 8 infrared sensors (S0 to S7) and two wheels
(A0 and A1). The two walls of the circuit can also be seen.

(a) (b)

Fig. 2. The two circuits simulated in Webots (1 on the left, 2 on the right)
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Fig. 3. 6 trajectories (3 for each controller) of the robot’s movement simulated on the 2 circuits

In order to further speed up the trajectory generation, we carried out our experiments
using a simulated, miniature differential-wheel robot endowed with eight proximity
sensors (Fig. 2). We simulated it in Webots [9], a realistic simulator reproducing in-
dividual sensors and actuators with noise, nonlinearities, and dynamic effects such as
slipping and friction. The resulting simulation is sufficiently faithful for the controllers
to be transferred to real robots without changes and for the simulated robot behaviors
to be very close to those of the real robots, as shown in several previous papers (see for
instance [6]).

Figure 2 shows the shapes of the two circuits used for our simulation. They share
common features such as being characterized by only one lane and a closed loop, how-
ever, the length and curvature differ between them. We use two circuits for our experi-
ments in order to test the validity of our analysis.

We simulate the robot moving continuously within the two circuits, extracting each
lap as a separate trajectory. Since a lap does not begin and end at the same point, it adds
variability to the trajectories. Two different reactive controllers were implemented to
drive the robot on the circuits. The two controllers move around the track at the same
average speed, but using different methods of avoiding the walls. The first controller
was rule-based (“if a wall is too close in front, turn away from the wall, otherwise
go straight”). The second controller is essentially a Braitenberg vehicle and linearly
adjusts its trajectory as a function of its proximity to a wall on the left or the right
side. The robot was moving clockwise in both circuits. Both controllers continuously
calculate the perception-to-action loop every 32 ms. The description of the two con-
trollers can be found in Table 1. The two controllers were chosen for their simplicity,
but the analysis has very few limitations and could easily be used with more complex
controllers.

From this description, we can see that Controller 1 is characterized by essentially
two discrete behaviors: go straight or turn in place. Controller 2 makes much smoother
turns and its overall behavior changes as a function of the distance to the left or right
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Table 1. Description of the two controllers used for the experiments

Controller 1 Controller 2

If
∑2

0 Si < T ⇒ {A0=V
A1=−V Sl =

∑2
0 Si

Else if
∑5

3 Si < T ⇒ {A0=−V
A1=V Sr =

∑5
3 Si

Else {A0=V
A1=V A0 = V ·

(
1 + K·(Sl−Sr)

2·(Sl+Sr)

)
A1 = V ·

(
1 + K·(Sr−Sl)

2·(Sl+Sr)

)
S0 . . . S5 are the robot sensors as shown in Figure 2
(back sensors S6 and S7 are not used in either of the controllers)
A0 and A1 are the robot actuators as shown in Figure 2
T is a constant threshold value
V is a parameter modifying the robot’s overall speed
K is a parameter modifying the robot’s reactivity

wall. Figure 3 shows three trajectories per controller on each of the two circuits. Slight
differences can be seen between the two controllers; for example, Controller 2 makes
more zigzags than Controller 1 (even if its turns are smoother, it turns more often than
Controller 1). At first glance, it is not so easy for the human eye to differentiate between
the raw trajectories.

2.1 Trajectory Sampling

In order to apply the Point Distribution Model presented in section 3, each trajectory
must be sampled with the same number of points. For our previous experiments, pre-
sented in [3], the sampling of the trajectories was done with lines orthogonal to a
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Fig. 4. Sampling of the trajectory with gates as orthogonal to the wall as possible, with more gates
in the curves (SM-B, left) and more gates in the straight lines (SM-C, right)
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reference trajectory that needed to be chosen. However, this solution is cumbersome
and limits the number of sampling points. Therefore, we developed a new sampling
methodology based on the circuit instead of a reference trajectory. The inner and outer
wall of the circuit were modeled with b-splines and sampling gates were created as or-
thogonal as possible to the two walls. A fixed number of gates was then selected based
on three different criteria: the distance between gates (Sampling Method A), the curva-
ture (SM-B), and the linearity of the circuit (SM-C). The first criterion selects gates that
are equidistant from each other (the distance is measured between the midpoints of the
gates), the second places more gates in the curves (as shown in Figure 4(a)), and the last
places more gates in the straight sections (Figure 4(b)). This method allows us to very
easily modify the number of gates per circuit. The performance of the three placement
strategies will be compared in Section 4.3.

3 Modeling of the Trajectories

We have slightly modified the representation we used in [3] to accommodate the new
sampling method presented above. Each trajectory k is represented as an ordered set of
N points corresponding to the intersections of the trajectory with the sampling gates.
Each point can be expressed as the linear position on the ith sampling gate πk

i . Each
position πk

i has a value between 0 (the inner wall) and 1 (the outer wall). Therefore the
trajectory τk can be expressed as:

τk =
[
πk

1 . . . πk
N

]T
. (1)

The covariance matrix of the trajectories is

S =
1

K − 1

K∑
k=1

(τk − τ )(τk − τ )T = P · Λ · P −1, (2)

where P = [P1 . . . Pr . . . PR] is the matrix of the eigenvectors Pr, Λ the diagonal
matrix containing the eigenvalues of S, K is the number of trajectories in the set, and
where R = min(2N, K) − 1 is the number of degrees of freedom of the set.

Each trajectory τk in the set can be decomposed into an average trajectory and a
linear combination of deformation modes:

τk = τ + P · Bk (3)

Bk = P−1(τk − τ ). (4)

Equations 3 and 4 correspond to the projection from the deformation space (Bk) to the
trajectory space (τk) and the projection from the trajectory space to the deformation
space, respectively.

The computation of matrix P corresponds to the Principal Component Analysis
(PCA) [7] of the trajectory set. The first vector P1 corresponds to the direction of maxi-
mal variance in the trajectory space. The second vector P2 corresponds to the direction
of maximal variance orthogonal to P1. The other vectors are found likewise. In most
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cases, this construction implies that most of the deformation energy will be contained
in the first few deformation modes.

The Point Distribution Model [2] affords the transformation from the space of the
trajectories (τk) to the space of the modes (Bk).

3.1 Inter-cluster Distance

In this section we will describe the inter-cluster measure we used for our experiments.
Multivariate normal data tends to cluster about the mean vector, μcluster , falling in

an ellipsoidal cloud whose principal axes are the eigenvectors of the covariance matrix.
The Mahalanobis distance, r, takes into account the covariance of the cluster, Scluster ,
to calculate the distance from a point X to a cluster.

r =
√

(X − μcluster)T · Scluster
−1 · (X − μcluster) (5)

If normal data is projected on a unidimensional axis, a unitary Mahalanobis distance
is equivalent to a Euclidean distance of the square root of the data variance along this
axis (standard deviation). Thus, the points of unitary Mahalanobis distance to a cluster
forms a ellipsoid.

As a measure of distance between two clusters, we can use a combination of the two
Mahalanobis distances; from the mean of one cluster to the other, and vice versa. If r2

1
is the Mahalanobis distance from the first cluster mean to the second cluster and r1

2 the
Mahalanobis distance from the second cluster mean to the first cluster, d12 is a measure
of the inter-cluster distance.

d12 =
r2
1 · r1

2

r2
1 + r1

2
= d21 (6)

A unitary inter-cluster distance is equivalent to a Euclidean distance between the two
cluster means which is equal to the sum of the standard deviation of the projected mul-
tivariate cluster data on the axis connecting the two cluster means.

4 Results and Discussion

To show the performance of our method for clustering controller trajectories, we ac-
quired 200 trajectories (100 for each controller presented in Table 1) on the two circuits
(Figure 2 and 2(b)). The trajectories were then re-sampled with 100 points per trajec-
tory, using the gate selection criterion with more gates in the curves (SM-B). Then, we
model all the trajectories using the PDM presented in Section 3. Figure 5 shows the lo-
cations of the 200 trajectories in the space formed by the first two modes of the PDM for
each of the two circuits; two clusters can be easily differentiated. The clear separation
of the controllers shows the benefit of the PDM modeling of the trajectories. The intrin-
sic variance of the controllers is smaller than the distance between them. Therefore the
trajectories can be clustered and hence classified.
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Fig. 5. Projection of all the trajectories in the space of the first two deformation modes of the
PDM for the first (left) and the second (right) circuit. The ellipse of unitary Mahalanobis distance
is also plotted for each controller.

4.1 Analysis Using the First Two Modes of the PDM

The separation of the first 2 clusters is narrower for the second circuit than the first. The
lack of curves and the predominance of straight lines reduce the number of obstacles and
therefore the number of controller reactions from which the PDM transformation can
extract its data. As their straight movements are equivalent, it becomes more difficult
to detect differences and therefore classify the two controllers. If we calculate the inter-
cluster distance as presented in section 3.1, d = 4.3 for the first circuit and d = 2.4 for
the second circuit.

4.2 Prototype Trajectories

Figure 6(a) displays the mean of each controller’s trajectories. These trajectories are
prototypes of each controller. Slight differences appear at certain places in the circuit;
these are the places where the controllers can be differentiated.

Figure 6(b) shows the synthetic trajectories resulting from a positive or negative
contribution of value 5 to the first or the second deformation mode for the first circuit.
In the straight section on the right side of the circuit, we can see that the first mode is out
of phase with the second mode, such that they alternate. The second mode corresponds
to major trajectory variations in the straight section along the bottom of the circuit.

4.3 Variation of the Trajectory Sampling Methods and Number of Points

To evaluate the number of gates needed to achieve a good classification of the trajec-
tories, we calculate the inter-cluster distance as a function of the number of sampling
gates (from 3 to 500) for the three sampling methods described in section 2.1 and for
both circuits. Figures 7(a) and 7(b) present the results of our experiments. We can see
that a very small number of gates (3) is insufficient to separate the two controllers.
Increasing the number of gates results in a fast gain in cluster separability, until we
reached 50 gates. After this point, it has hardly any effect on the analysis, aside from
requiring additional computational power for calculating the PCA. We can also see that
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Fig. 6. On the left, prototype trajectory of the two controllers on the first circuit. On the right,
synthetic trajectories resulting from a contribution of 5 to one of the first two modes (first circuit).
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Fig. 7. Variation of the inter-cluster distance based on the first two modes as a function of the
number of sampling gates, for the three methods presented in 2.1 and for two circuits (circuit 1
on the left and circuit 2 on the right)

the three gate placement strategies (equidistant, more in the curves, more in the straight
sections) do not have the same influence on clustering performance. Placing gates in the
straight sections is clearly the worst solution, while using gates in the curves is clearly
the best solution for our experimental setup. Equidistant gates yield a solution in be-
tween the other two, but are clearly not so good as emphasizing the curves. This result
can be directly traced to the structure of the controllers. They have the same behavior
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in the straight sections, where there is no interaction with the walls. Curves imply more
interaction with the walls, and therefore elicit more behavioral differences between the
two controllers. It can be foreseen that if the controllers had the same behavior in the
curves, but different in the straight sections, the performance would be inverted. As
another result of the controller’s structure, the separability of the clusters on the second
circuit is clearly worse than on the first, because there are not as many curves to separate
the behavior of the two controllers.

4.4 Variation of the Robot Hardware and Software Parameters

To complete the performance evaluation of our method, we analyze the influence of
possible system design choices on the resulting analysis: the controller reactivity, the
overall robot speed, and the sensory range. For these experiments, we report only re-
sults obtained using Controller 2 for sake of clarity. Referring to Table 1, the reactivity
corresponds to K and the overall speed to V .

Figure 8(a) shows the analysis of the variation of the sensory range from 2 to 20
centimeters. The real range of the sensors (5 cm) is shown with the small lines in
Figure 2. For ranges of 10 centimeters and above, the robot will almost always be able
to see both walls at the same time. Therefore, the variability of the controller will de-
crease significantly, as the robot will follow a path in the middle of the lane. Naturally,
the greater the sensory range, the smaller the variability of the controller. The different
sensory ranges are mainly separated using the first deformation mode in Figure 8(a):
one variation axis (sensory range) corresponds to one dimension for classifying the
different clusters.

Figure 8(b) shows the clustering of the reactivity of the controller. The factor K
varies between 0.25 and 4, the reactivity increasing with K . If K is small, the robot
avoids the wall with more inertia and thus oscillates much more. As as result, the dis-
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Fig. 8. On the left, analysis of the variation of the sensory range from 2 to 20 cm. On the right,
analysis of the variation of the controller weights (K), for a sensory range of 20 cm.
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Fig. 9. Analysis of the variation of the overall robot speed (V ), for sensory range of 20 cm

persion of trajectories in the mode space is much greater, as can be seen in Figure 8(b).
With a sensory range of 5 centimeters and K = 0.25, the robot was not able to avoid
colliding with the walls anymore. Therefore, this experiment was made with a sensory
range of 20 centimeters (V = 1).

Figure 9 shows the result of the variation of the overall robot speed factor V . Sim-
ilarly to the previous experiment, with the robot overall speed increased (V = 4), the
robot was not able to avoid walls with a sensory range of 5 cm. Therefore, this experi-
ment was performed with a sensory range of 20 cm. As with a human driver, an increase
in the overall speed means that the robot pass closer to the walls before avoiding them,
resulting in larger oscillations. This variability can be seen in Figure 9.

5 Conclusion and Perspectives

We have presented a method for using a PDM to analyze a robot’s behavior from its
trajectory on a closed circuit. Applied to trajectories of the same simulated robot driven
by two different reactive controllers, it shows a complete separation of the controllers
in the space of the first two deformation modes of the PDM. The controller clusters
can be separated by a line, affording an easy classification of the trajectories. Quality of
separation depends on the sampling method, the circuit characteristics, and the software
and hardware parameters of the robot. The analysis of the prototype trajectory of each
controller shows the main differences between the controllers. Variation in three other
parameters, such as the robot speed, the controller reactivity, and the sensory range,
implies that all of these parameters can be clustered with our method.

Even though the clustering method is not sophisticated (Principal Component Anal-
ysis is a common tool), the fact that behavioral features can be distinguished makes
it very interesting. So far, only one variation axis has been analyzed at a time (cir-
cuit shape, controller description, sensory range, controller reactivity, and overall robot
speed). This kind of experiment affords us to separate the trajectories using only the
first two dimensions of the PDM. More complex setups might need more than two di-
mensions to achieve good clustering of the trajectories. Finding two combinations of
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hardware and software that provide different trajectories which can not be separated
with our method would help us to understand its limitations. However, our goal is not
to distinguish two different implementations of the same behavior, but rather to classify
different behaviors.

To validate the results obtained with the trajectories of the robot simulated in Webots,
we will create a similar circuit with a real robot, using a vision-based tracking system.
The same analysis will be applied to real trajectories and results will be compared with
the results gathered in simulation. Another challenge will be to extend our method to
trajectories not bound to a closed circuit. The ultimate goal will be to model robot
trajectories in an open space.
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Abstract. Simbad is an open source Java 3d robot simulator for sci-
entific and educational purposes. It is mainly dedicated to researchers
and programmers who want a simple basis for studying Situated Artifi-
cial Intelligence, Machine Learning, and more generally AI algorithms,
in the context of Autonomous Robotics and Autonomous Agents. It is is
kept voluntarily readable and simple for fast implementation in the field
of Research and/or Education.

Moreover, Simbad embeds two stand-alone additional packages : a
Neural Network library (feed-forward NN, recurrent NN, etc.) and an Ar-
tificial Evolution Framework for Genetic Algorithm, Evolutionary Strate-
gies and Genetic Programming. These packages are targeted towards
Evolutionary Robotics.

The Simbad Package is available from http://simbad.sourceforge.net/
under the conditions of the GPL (GNU General Public Licence).

1 Introduction

This paper provides an introduction to Simbad, a new mobile robot simulator
written in Java for Research and Education, and a set of tools for Evolutionary
Robotics [7]. The main motivation is to provide an easy-to-use all-in-one package
for Evolutionary Robotics. The Simbad package includes a mobile robot simula-
tor with complex 3D scene modelling and simulation engine (Simbad), a Neural
Network library (feed-forward and recurrent NN) as well as a complete Evolu-
tionary Algorithm Library (Genetic Algorithm, Evolutionary Strategy, Genetic
Programming with trees or graphs). All tools have been written to be efficient
and easy to use by Java and/or Python programmers.

Section 2 present the state of the art in mobile robot simulation and high-
lights the specific characteristics of existing simulators. Section 3 describes the
key motivations and characteristics of the Simbad simulator as well as its speci-
ficity compared to other simulators. This section also introduces the PicoNode
and PicoEvo packages as well as implementation issues. In section 4, classic ex-
periments are described using the Simbad packages. The last section concludes

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 831–842, 2006.
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this paper and refers to current applications of the Simbad package both for
Research and Education.

2 Available Mobile Robot Simulators

Due to the spreading of the Open/GL API several tools provide some kind of 3D
visualisation. However there are quite few simulators providing a complete 3D
simulation and, in particular, sensing in the 3D space (vision, sonars, bumpers
and lasers).

Player/Gazebo: Player and Gazebo projects have been developed at the USC
(University of Southern California) [2,3]. Those two components can be used in
conjunction so as to obtain a powerful multi-robot simulation in a 3D environ-
ment. The Player project provides an abstract programming framework for real
robots and is widely used in the robotics community. Gazebo is a 3D simulator
able to simulate several Player-based Robots. Gazebo uses ODE (Open Dynamic
Engine - a rigid body dynamics simulator) to compute physicals interaction with
objects. Player, Stage and Gazebo are freely available via SourceForge with both
binary and source code. Player/Gazebo constitutes a powerful package but relies
on several complex components and thus requires some time to learn.

Webots: [4] Is a product proposed by the Cyberbotics company from an initial
basis developed by the LAMI laboratory at the EPFL (Ecole Polytechnique Fed-
erale de Lausanne). Its functionalities are very similar to those of Player/Gazebo
but with the look and feel of a commercial package. As Gazebo, it uses ODE
for physical simulation. The main disadvantages of Webots are its cost and the
fact that source code is not available for standard users. This last point prevents
experimenters to have a precise insight of the simulator behaviour.

Other tools: One can also mention the Robocup soccer simulator, EyeSim for the
EyeBot Robot, SimBot and WoB [5]. Besides the 3D robot simulators, numerous
tools exist which perform simulation in the 2D space. Among the very good ones
are Stage simulator (which can be used in conjunction with Player instead of
using Gazebo), Khepera Simulator the precursor of Webots and TeamBots, a
multi robot Simulator.

3 The Simbad Package: Main Features

In this section, we describe the three main packages included in the Simbad
Packages:

1. The Simbad simulator ;
2. PicoNode, the neural network library ;
3. PicoEvo, the Evolutionary Algorithm library.
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3.1 The Simbad Simulator

Simbad [1] is a Java 3d multi-robots simulator developed for scientific and edu-
cational purposes. It is mainly dedicated to researchers and students who want
a simple basis for studying Situated Artificial Intelligence, Machine Learning,
and more generally AI algorithms, in the context of Autonomous Robotics and
Autonomous Agents. Simbad enables programmers to write their own robot
controllers, modify the environment and use the available sensors (or build their
own). It is not intended to provide a real world simulation and is kept voluntarily
readable, simple and extensible.

Simbad is written in java and requires only a standard Java development kit
(version 1.4.2 or higher) and Sun Java 3d (version 1.3.1). This last one provides
a well-documented 3D graph on which are constructed Simbads objects. Those
two components are easily available for a wide range of platforms (Windows, Mac
Os X , Linux, IRIX, AIX). The Simbad project is hosted at SourceForge and
available at http://simbad.sourceforge.net/. It is free to use and modify under
the conditions of the GPL (GNU General Public Licence).

The performances of the simulator are excellent and enable experimenters
to use batch simulation in the context of heavy computation for learning (e.g.
evolutionary algorithms). The ’Java is slow’ remark is outdated and Java appli-
cations are now clearly equivalent to C++ ones [6] but do not require numerous
external libraries. The simulator provides the following functionalities:

– Single or multi-robot simulation.
– Color Mono-scopic cameras.
– Contact and range sensors.
– Online or batch simulation.
– Python scripting with jython.
– Extensible user-interface.
– Simplified physical engine

Table 1 is a brief comparison of Gazebo, Webots and Simbad functionalities.
To sum it up, Simbad is very useful, and has proven to be so, for studying

models in middle size projects as well as teaching in AI and Robotics classrooms
while Gazebo and Webots are very good options if you are involved on a long-
term project with real robots.

As for implementation, the user only provide an environment derived from
the EnvironmentDescription class and a robot controller derived from Robot
class. This last one has an initialisation method (initBehavior) and a method
to be called on each simulation step (performBehavior). The simulator then
execute the motor control orders in a similar way as a real robot controller (i.e.
repetitive calls to the micro-controller). The following code shows how to create
a simulator, settle the environment with a single box in it and create a robot in
the environment (Figure 1 shows a comparable yet more complex environment):

import simbad.sim.*; import simbad.gui.*; import javax.vecmath.*;

public class MyEnv extends EnvironmentDescription {
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Table 1. Comparaison between available simulators

Player/Gazebo Webots Simbad

3D simulation yes yes yes

3D vision yes yes yes

multi-robots yes yes yes

Physics ODE ODE built-in

Source available yes no yes

Freeware yes no yes

Ease of use needs expertise quite good easy

Platforms win/linux/mac win/linux/mac win/linux/mac

Real Robots yes yes limited

public MyEnv() {
/* create four walls and the robot */
Wall w1 = new Wall( new Vector3d(9, 0, 0), 19, 1, this);
w1.rotate90(1); add(w1);
Wall w2 = new Wall( new Vector3d(-9, 0, 0), 19, 2, this);
w2.rotate90(1); add(w2);
Wall w3 = new Wall( new Vector3d(0, 0, 9), 19, 1, this);
add(w3);
Wall w4 = new Wall( new Vector3d(0, 0, -9), 19, 2, this);
add(w4);
add(new MyRobot( new Vector3d(0, 0, 0), "my robot"));

}

public class MyRobot extends Robot {
MyRobot (Vector3d _position, String _name )
{ super (_position, _name); }

public void initBehavior()
{ /* your init code goes here */}

public void performBehavior()
{ /* code perfomed on each step goes here */ }

}

public static void main(String[] args)
{ Simbad frame = new Simbad( new MyEnv(), false); }

}

Simbad can also be used with Python, a very popular scripting language1.
As a tutorial, a list of examples with sources is available from the menu in

Simbad that gives direct access to many of Simbad features. Examples are:

– BaseDemo : demo with camera sensor, sonars and bumpers. The robot wan-
ders and stops when it collides.

– ImagerDemo : shows how to capture the camera image , process it and
display it in a dedicated window.

– AvoidersDemo : shows several robot with sonars and bumpers performing a
collision avoidance behavior.

1 The above example written in Python can be found on the web site.
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Fig. 1. Simbad interface - Simbad can be run either as a standalone program (as shown)
or in batch mode with no display when simulation speed is crucial (e.g. Evolutionary
Robotics setup)

– BlinkingLampDemo : the lamp on each robot blinks when the robot is ap-
proaching an obstacle.

– BumpersDemo : several robots bumping.
– DifferentialKinematicDemo: a differential drive (two wheels) kinematics

demo.
– KheperaDemo : a Khepera robot demo.
– LightSearchDemo : robots search a light using light sensor.
– PickCherriesDemo : show a robot picking cherries. When touched, the cher-

ries are removed.
– PushBallsDemo : shows a robot pushing balls.

3.2 The Neural Network Library: PicoNode

In the field of autonomous robotics, the seminal work of Rodney Brooks on
Reactive Robotics and Subsomption Architecture [8] have lead the way toward a
vast amount of works in the field of machine learning and robotics where the goal
is to build the control function defined as : f(sensoryinputs{, internalstate}) →
motorcontrol where the optional term internal state may represent some kind
of memory. Popular learning approach for robot control includes Reinforcement
Learning [9], Learning in Bayesian and Markov Model and Learning in Neural
Network [7].
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Neural Networks provide a very powerful representation framework in the
scope of robot control due to their ability to handle continuous noisy data with
little computation. Moreover, internal states can be represented in recurrent
architectures and the important literature in this field attests for a wide range
of possible controllers.

The PicoNode library provides a general graph-based representation frame-
work along with two implementations: feed-forward and recurrent neural net-
works. The use of PicoNode is not limited to robot control; it has been designed
so as to ease building of simple (e.g. multi-layered perceptrons) as well as less
simple (e.g. N-layers recurrent nets) neural networks.

The following code illustrates how a simple feed-forward neural networks with
2 hidden units, 2 input nodes and 1 output node is built:

/* STEP 1 : Initializing and building a neural net */

// step 1a : create a network
FeedForwardNeuralNetwork network = new FeedForwardNeuralNetwork(

new ActivationFunction_logisticSigmoid() );

// step 1b : create some neurons
Neuron in1 = new Neuron( network,
new ActivationFunction_logisticSigmoid());

Neuron in2 = new Neuron( network,
new ActivationFunction_logisticSigmoid());

Neuron hidden1 = new Neuron( network,
new ActivationFunction_logisticSigmoid());

Neuron out1 = new Neuron( network,
new ActivationFunction_logisticSigmoid());

// step 1c : declare I/O neurons
network.registerInputNeuron( in1 );
network.registerInputNeuron( in2 );
network.registerOutputNeuron( out1 );

// step 1d : create the topology (random weight values)
network.registerArc( new WeightedArc( in1 , hidden1 ,

Tools.getArcWeightRandomInitValue()));
network.registerArc( new WeightedArc( in2 , hidden1 ,

Tools.getArcWeightRandomInitValue()));
network.registerArc( new WeightedArc( hidden1 , out1,

Tools.getArcWeightRandomInitValue()));

// step 1e : initialize the network (perform some integrity
// checks and internal encoding)
network.initNetwork();

/* STEP 2 : using the network (feed-forward signal) */

// step 2a : loading the input values (i.e. sensory inputs)
ArrayList inputValuesList = new ArrayList();
inputValuesList.add(new Double (0.5));
inputValuesList.add(new Double (0.5));

// step 2b : computing the output values (i.e. motor outputs)
network.step( inputValuesList );
System.out.println("Output value : " + out1.getOutputValue());

Of course, recurrent architectures may be defined as well by just adding re-
current arcs and use the available RecurrentNeuralNetwork object instead of
FeedForwardNeuralNetwork.
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3.3 The Evolutionary Framework: PicoEvo

PicoNode provides standard supervised learning algorithm (e.g. Back-
Propagation), however such learning algorithms are usually of little use2 in
the context of sparse, noisy, delayed and asynchronous reinforcement signals
that are usually part of the task of control learning in mobile robotics (e.g. a
binary reward (success/failure) is provided only when the robot may reach the
exit of a maze).

The Evolutionary Robotics [7] approach addresses this problem by relying
on population-based stochastic optimisation algorithms, i.e. evolutionary algo-
rithms. Such algorithms are particularly well fitted when the objective function
(i.e. the task) is difficult to describe. These stochastic optimisation algorithms
perform on a generational basis (i.e. optimisation at step i depends on step
i − 1) and rely on the exploration of the space of possible solutions through
a population of candidate solutions by combining selection operators (most
fitted candidates are likely to survive from one generation to another) and
ideally well-suited variation operators (candidates may be recombined and/or
altered to diffuse supposedly good characteristics as well as to efficiently ex-
plore the search space). These algorithms have been shown to be very effi-
cient and to achieve human-competitive results on numerous problems where
standard learning algorithm are difficult to apply, which is a key advantage in
robotics3.

The second advantage of Evolutionary Algorithm consists in that such algo-
rithms can deal with a wide range of representation formalism to be optimised,
from bit vectors to tree and graphs (and thus, programs). In the scope of neural
networks optimisation, it is then possible to optimise network weights (see next
section) or even the whole network topology [13]. It is important to notice that
even if only neural network optimisation is addressed in the scope of this paper,
other representation may be optimised as well (e.g. Bayesian network, markov
models, etc. – where topology learning is often an issue).

The PicoEvo library is a general Evolutionary Algorithm library that embeds
several kinds of algorithms such as Genetic Algorithm, Evolutionary Strategies,
tree-based and graph-based Genetic Programming. As for PicoNode, it has been
conceived to ease the implementation of new operators. Then again, implemen-
tation has been done in such a way that the underlying concepts are straight-
forward to understand, even if the user has little knowledge in Evolutionary
Algorithm (e.g. during an AI course). The typical main loop for evolving a pop-
ulation of vectors containing bit values is the following (the following example

2 Some architectures, such as the auto-teaching network [11] and AAA [12], do never-
theless rely on both back-propagation and evolution.

3 Note that the Simbad simulator can be launched in fast-mode when performing
such experiment, i.e. no user interface, so as to compute simulation much faster
than human real-time mode – indeed, Simbad has been benchmarked to run at
about 15000 steps per second on a Pentium 2.8ghz with 512mo RAM under Linux
(knoppix) and Windows XP for an experimental setup involving evolution of neural
network weights.
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concerns the classic max-one problem - the reader may refer to [10] for details
on the task and parameters):

/* STEP 1 - INITIALISATION */
// create an Evolution environment with a single Population

// the parameter container (may be load from file)
ParameterSet_Evolution_mulambdaES parameterSet =

new ParameterSet_Evolution_mulambdaES();

// setup evolution parameters
parameterSet.setGenomeSize(512);
parameterSet.setMu(5);
parameterSet.setLambda(195);
parameterSet.setMutationRate(1.0/512.0);
parameterSet.setMuPlusLambda(true);
parameterSet.setGenerations(250);
parameterSet.setInitPopSize(200);

// setup evolution operators
parameterSet.setSelectionOperator(
new SelectionOperator_MuLambda("MuLambda"));

parameterSet.setEvaluationOperator(
new EvaluationOperator_MaxOne_StaticArray_Bit("MaxOne"));

parameterSet.setPopulationInitialisationOperator(
new InitialisationOperator_Population_SimplePopulation("MaxOne"));

parameterSet.setIndividualInitialisationOperator(
new InitialisationOperator_Individual_StaticArray_Bit("MaxOne"));

parameterSet.setElementInitialisationOperator(
new InitialisationOperator_Element_StaticArray_Bit());

parameterSet.setPopulationStatisticsOperator(
new StatisticsOperator_Population());

World myWorld = new World ("myEvolution", parameterSet);
Population_SimplePopulation maxOnePop =

new Population_SimplePopulation("max-one population",myWorld);
myWorld.registerPopulation(maxOnePop);

maxOnePop.performInitialisation();

/* STEP 2 - RUNNING */

for ( int i=0 ; i!=myWorld.getTemplate().getGenerations() ; i++ )
myWorld.evolveOneStep(true);

maxOnePop.displayInformation();

Of course, PicoEvo may also be considered as a stand-alone module for non-
robotics-related optimisation tasks (e.g. classic examples are provided such as
max-one, symbolic regression, etc.).

4 Experiments

In this section we detail two experiments that illustrates the use of the Simbad
Package. The first experiment is a straightforward use of the Simbad simulator
and relies on a classic wall-avoidance and random wandering behaviour. The
second experiment involves the PicoNode and PicoEvo packages in order to au-
tomatically build controllers for the same wander/wall-avoider task.
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4.1 Experiment 1: A Simple Hand-Written Wander Behavior

In this experiment, we have implemented a simple wander behaviour. The robot
we consider is equipped with Infrared and bumper sensors and two motor com-
mands: directional and translation velocities. The code is the following:

public void performBehavior() {
if (bumpers.oneHasHit()) { setTranslationalVelocity(-0.1);
setRotationalVelocity(0.5-(0.1 * Math.random())); }

else
if (collisionDetected()) {
// stop the robot
setTranslationalVelocity(0.0);
setRotationalVelocity(0); }
else
if (sonars.oneHasHit()) {
// reads the three front quadrants
double left = sonars.getFrontLeftQuadrantMeasurement();
double right = sonars.getFrontRightQuadrantMeasurement();
double front = sonars.getFrontQuadrantMeasurement();

// if obstacle near
if ((front < 0.7)||(left < 0.7)||(right < 0.7)) {
if (left < right)
setRotationalVelocity(-1);

else
setRotationalVelocity(1);

setTranslationalVelocity(0);
} else {
setRotationalVelocity(0);
setTranslationalVelocity(0.6); }

} else {
setTranslationalVelocity(0.8);
setRotationalVelocity(0); }

}

As shown here, accessing sensor and motor information is very intuitive and
complex behaviours may be implemented on this basis. In this setup, this code
is executed 20 times per ”virtual”second4 and the simulator impact the motor
commands on the robot. An example of the resulting trace is shown in figure 2.

4.2 Experiment 2: Evolving a Wander Behaviour

In this experiment, we use a Multi-Layered Perceptron with four sensory inputs
(four quadrants of an Infrared sensors belt) and two motor outputs (transla-
tional and rotational velocity), i.e. same as before except that bumpers are not
used. Problem properties and parameters are : 11 neurons (4 inputs, 4 hidden,
2 outputs, 1 bias) fully connected (i.e. 26+6 = 32 weights) ; 20 individuals,
(2+18)-ES, mutation rate is 0.1 ; in the same environment as previous experi-
ment (see fig. 2). The objective for a given robot is optimal if the robot does not
hit walls, maximise translation, minimise rotation and minimise wall proximity.
That is :

if hit wall : fitnessroboti = 0 else : fitnessroboti =
∑

(translationspeed + (1 −
rotationalspeed) + (1 − max(IRvalue))

4 As stated before, ”virtual” simulation time can be accelerated more than 1000 times
depending on the machine used.
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Fig. 2. Trace for hand-written wander behavior

Fig. 3. Evolving a NN-based wander behaviour: Results

Results are shown in fig. 3 – Due to the task simplicity, the best individual
quickly achieve near-optimal control and performance keeps on improving over
time. This is of course a very basic, yet classic, experiment. This basic Evolution-
ary Robotics introduction task is taken from the classic reference [7] to illustrate
the simultaneous use of Simbad, PicoNode and PicoEvo.

Due to the necessarily limited size of this paper, only simple experiments
are described to illustrate the use of the Simbad package. However, the reader
may refer to [14,15] which present Evolutionary Robotics experiments performed
using elements from this package.

5 Conclusion

In this paper, we have presented the Simbad package for mobile robot simulation
and evolutionary robotics. This package provides three stand-alone important
components:
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– Simbad : an extensible mobile robot simulator which can handle complex 3D
scene and physics-based interaction;

– PicoNode : a library for graph-based controller such as (but not limited to)
feed-forward and recurrent neural networks;

– PicoEvo : an Evolutionary Algorithm library which includes Genetic Algo-
rithm, Genetic Programming (tree and graphs) and other popular approach
in the field of population-based stochastic optimisation algorithms;

The Simbad package provides a powerful and easy-to-use framework written in
Java for researchers and teachers in Evolutionary Robotics. To date, several
works in the field of Evolutionary Robotics have already been achieved using
the Simbad package [14,15] and current works relies on this package. Moreover,
the Simbad package is also used in the scope of Education in the last year of
IFIPS, the engineering school at Universite Paris-Sud (France), as well as at
Ecole Polytechnique (France), for a set of courses and projects on Reactive and
Evolutionary Robotics on simulated and real Khepera robots.

The Simbad package is freely distributed with sources and provides an ideal
solution for both researchers and teachers in the field of Autonomous and Evo-
lutionary mobile robotics. Current on-going works on the Simbad Package in-
cludes extensions of the Simbad simulator towards easy switching capability
from simulation to in situ robotics and of the PicoNode and PicoEvo libraries to
other machine learning algorithms (Reinforcement Learning, topology learning
in bayesian network for robot control, dynamical systems modelling, etc.).
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Abstract. In mobile robotics, it is common to find different control
programs designed to achieve a particular robot task. It is often necessary
to compare the performance of such controllers. So far this is usually
done qualitatively, because of a lack of quantitative behaviour analysis
methods.

In this paper we present a novel approach to compare robot control
codes quantitatively, based on system identification. Using the NARMAX
system identification process, we “translate” the original behaviour into
a transparent, analysable mathematical model of the original behaviour.
We then use statistical methods and sensitivity analysis to compare mod-
els quantitatively.

We demonstrate our approach by comparing two different robot con-
trol programs, which were designed to drive a Magellan Pro robot through
door-like openings.

1 Introduction

In mobile robotics it is common to find different control programs, developed
for the same behaviour, typically developed through an empirical trial-and-error
process of iterative refinement.

It is often interesting to compare and analyse such different controllers for
the same behaviour. However, because of a lack of quantitative descriptors of
behaviour such analyses are usually qualitative. As the number of controllers
developed for identical tasks increases, the need for fair comparisons based on
quantitative measures also becomes more important, and to find quantitative
answers to questions like “What are the advantages and disadvantages of each
controller?”, “Which one is more stable and efficient?”, “Will they work in com-
pletely different environments or crash even with slight modifications?” will en-
hance our understanding of robot-environment interaction.

Realistic mobile robot control programs tend to be so complex that their direct
analysis is impossible — the “meaning” of thousands of lines of code is not clear
to a human observer. In this paper we therefore propose the alternative approach
of “identifying” the behaviour in question, using transparent polynomial models

S. Nolfi et al. (Eds.): SAB 2006, LNAI 4095, pp. 843–854, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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obtained through NARMAX system identification [1], to ascertain the validity
of the model, and to analyse the model instead of the original behaviour, both
qualitatively and quantitatively.

2 Controller Identification

Motivation and Related Work. The main benefits of “system identification” (i.e.
mathematical modelling) are

1. Efficiency: The obtained models are polynomials. They are fast in execution
and occupy little space in memory.

2. Transparency: The transparent model structure simplifies mathematical
analysis

3. Portability: Polynomial models are universal, in the sense that they can be
quickly incorporated into any robot programming language.

Our models are obtained based on NARMAX (Nonlinear Auto-Regressive Mov-
ing Average model with eXogenous inputs) system identification [1]. This iden-
tification process has already been applied in modelling sensor-motor couplings
of robot controllers [2, 4]. In [5] we demonstrate how easy it is to exchange the
generated models between different robot platforms.

After the identification of the controllers it is relatively straightforward to
evaluate the models and to compare them quantitatively. The work presented in
[3] gives examples of the characterisation of models of robot behaviour.

The system identification process can be divided into two stages: First the
robot is driven by the original robot controller which we wish to analyse. While
the robot is moving, we log sensor and motor information to model the relation-
ship between the robot’s sensor perception and motor responses.

In the second stage, a nonlinear polynomial NARMAX model (see below) is
estimated. This model relates input sensor values to output actuator signals and
subsequently can be used to control the robot.

NARMAX Modelling. The NARMAX modelling approach is a parameter esti-
mation methodology for identifying the important model terms and associated
parameters of unknown nonlinear dynamic systems. For multiple input, single
output noiseless systems this model takes the form:

y(n) = f(u1(n), u1(n − 1), u1(n − 2), · · · , u1(n − Nu), u1(n)2, u1(n − 1)2,

u1(n − 2)2, · · · , u1(n − Nu)2, · · · , u1(n)l, u1(n − 1)l, u1(n − 2)l, · · · ,

u1(n − Nu)l, u2(n), u2(n − 1), u2(n − 2), · · · , u2(n − Nu), u2(n)2,

u2(n − 1)2, u2(n − 2)2, · · · , u2(n − Nu)2, · · · , u2(n)l
, u2(n − 1)l

,

u2(n − 2)l, · · · , u2(n − Nu)l, · · · , ud(n), ud(n − 1), ud(n − 2), · · · ,
ud(n − Nu), ud(n)2, ud(n − 1)2, ud(n − 2)2, · · · , ud(n − Nu)2, · · · ,

ud(n)l, ud(n − 1)l, ud(n − 2)l, · · · , ud(n − Nu)l, y(n − 1), y(n − 2), · · · ,

y(n − Ny), y(n − 1)2, y(n − 2)2, · · · , y(n − Ny)2, · · · , y(n − 1)l
,

y(n − 2)l, · · · , y(n − Ny)l)
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where y(n) and u(n) are the sampled output and input signals at time n respec-
tively, Ny and Nu are the regression orders of the output and input respectively
and d is the input dimension. f() is a non-linear function, this is typically taken
to be a polynomial or wavelet multi-resolution expansion of the arguments. The
degree l of the polynomial is the highest sum of powers in any of its terms.

The NARMAX methodology breaks the modelling problem into the following
steps: i) structure detection, ii) parameter estimation, iii) model validation, iv)
prediction and v) analysis.

Logged data is first split into two sets (usually of equal size). The first, the
estimation data set, is used to determine model structure and parameters. The
remaining data set, the validation data set, is subsequently used to validate the
model.

3 Experimental Scenario: Door Traversal

The example presented in this paper demonstrates how system identification
can be used to model sensor-motor couplings of two different robot controllers
designed to achieve the same particular task: the episodic task of “door traver-
sal”, where each episode comprises the movement of the robot from a starting
position to a final position, traversing a door-like opening en route.

In this paper, we compare two different controllers for this task. “Model 1” is
a hard-wired laser controller which maps the laser perception of the robot onto
action, using a behaviour based approach. For “model 2”, the robot was driven
manually by a human operator. While these two original behaviours were being
executed, we logged all sensory perceptions, motor responses and the robot’s
precise position, using a camera logging system, every 160 ms.

80cm

60cm

   300cm

80cm

60cm

300cm

(a) (b) (c)

Fig. 1. The Magellan Pro robot used in the experiments (a). Training environments
for the “Hard-Wired Laser Controller” (model 1, centre) and “Manual Control” (model
2, right). Environment (b) has extra walls on the wings of the door-like opening. The
initial positions of the robot were within the shaded area indicated in each figure; door
openings were twice the robot’s diameter (80cm).
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Each controller was then modelled through non-linear polynomial functions
(NARMAX), so that the resulting two models identify the two robot controllers
by relating robot perception to action. To test the validity of the two models,
we then let the models themselves control the robot.

The models of the two different robot controllers were deliberately trained
in different environments (figure 1 (b,c)), with different translational velocities
and different sensor information, to simulate the natural differences which might
exist between different implementations of the same task. All experiments were
conducted with a Magellan Pro robot (figure 1 (a)) in the Robotics Arena at
Essex University.

3.1 Model 1: Hardwired Laser Control

The first control program used a hardwired, behaviour-based control strategy
that mapped laser perception to steering speed of the robot. The translational
velocity of robot was kept constant at 0.2 m/s, the laser perception of the robot
was encoded in 36 sectors by taking the median value of every 5 degree interval
over a semi-circle. The model of the robot’s angular velocity ω, obtained through
NARMAX system identification, contains 84 terms and is given in table 1.

Table 1. Model 1: NARMAX model of the angular velocity ω as a function of laser
perception for the “hard-wired laser controller”. d1, · · · , d29 are laser bins, coarse coded
by taking the median value over each 5-degree interval.

ω = 0.574 + 0.045 ∗ d1(t) + 0.001 ∗ d6(t) + 0.032 ∗ d7(t) − 0.017 ∗ d8(t)
+0.113 ∗ d9(t) − 0.099 ∗ d10(t) − 0.011 ∗ d11(t) − 0.006 ∗ d12(t) − 0.020 ∗ d13(t)
+0.020 ∗ d14(t) − 0.015 ∗ d15(t) − 0.016 ∗ d16(t) − 0.046 ∗ d20(t) − 0.009 ∗ d21(t)
+0.007 ∗ d22(t) − 0.035 ∗ d23 − 0.017 ∗ d24(t) − 0.056 ∗ d25(t) + 0.026 ∗ d26(t)
+0.039 ∗ d27(t) − 0.003 ∗ d28(t) + 0.044 ∗ d29(t) − 0.018 ∗ d30(t) − 0.144 ∗ d31(t)
+0.001 ∗ d32(t) − 0.023 ∗ d2

1(t) − 0.001 ∗ d2
6(t) − 0.011 ∗ d2

7(t) + 0.003 ∗ d2
8(t)

−0.010 ∗ d2
13(t) − 0.001 ∗ d2

15(t) − 0.005 ∗ d2
16(t) − 0.001 ∗ d2

17(t)
−0.002 ∗ d2

19(t) + 0.002 ∗ d2
20(t) − 0.001 ∗ d2

21(t) − 0.001 ∗ d2
22(t)

+0.002 ∗ d2
23(t) + 0.002 ∗ d2

24(t) + 0.008 ∗ d2
25(t) − 0.004 ∗ d2

27(t)
−0.001 ∗ d2

28(t) + 0.019 ∗ d2
31(t) − 0.001 ∗ d2

35(t) + 0.001 ∗ d2
36(t)

−0.001 ∗ d1(t) ∗ d7(t) − 0.001 ∗ d1(t) ∗ d18(t) + 0.001 ∗ d1(t) ∗ d20(t)
+0.003 ∗ d1(t) ∗ d22(t) + 0.006 ∗ d1(t) ∗ d23(t) − 0.003 ∗ d1(t) ∗ d25(t)
−0.001 ∗ d1(t) ∗ d32(t) + 0.003 ∗ d1(t) ∗ d33(t) + 0.007 ∗ d1(t) ∗ d34(t)
−0.002 ∗ d1(t) ∗ d36(t) + 0.003 ∗ d7(t) ∗ d16(t) − 0.001 ∗ d8(t) ∗ d10(t)
−0.006 ∗ d9(t) ∗ d14(t) − 0.003 ∗ d9(t) ∗ d17(t) − 0.009 ∗ d9(t) ∗ d18(t)
−0.002 ∗ d9(t) ∗ d28(t) + 0.013 ∗ d10(t) ∗ d13(t) − 0.002 ∗ d11(t) ∗ d16(t)
+0.004 ∗ d11(t) ∗ d18(t) − 0.001 ∗ d12(t) ∗ d15(t) + 0.001 ∗ d12(t) ∗ d16(t)
+0.002 ∗ d12(t) ∗ d18(t) + 0.002 ∗ d13(t) ∗ d15(t) + 0.011 ∗ d13(t) ∗ d16(t)
−0.003 ∗ d14(t) ∗ d16(t) + 0.002 ∗ d14(t) ∗ d23(t) + 0.001 ∗ d14(t) ∗ d36(t)
+0.002 ∗ d15(t) ∗ d21(t) + 0.003 ∗ d16(t) ∗ d19(t) + 0.002 ∗ d16(t) ∗ d25(t)
+0.002 ∗ d17(t) ∗ d28(t) + 0.001 ∗ d18(t) ∗ d31(t) + 0.001 ∗ d20(t) ∗ d21(t)
+0.002 ∗ d20(t) ∗ d28(t) + 0.003 ∗ d20(t) ∗ d31(t) − 0.004 ∗ d21(t) ∗ d26(t)
+0.005 ∗ d21(t) ∗ d30(t) − 0.005 ∗ d25(t) ∗ d29(t)
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Qualitative Model Evaluation. Figure 2 shows the trajectories of the robot
under the control of the original hard-wired laser controller and its NARMAX
model respectively. In both cases the robot was started from 36 different initial
positions, and completed the task successfully in each case.

(a) (b)

Fig. 2. Robot trajectories under control by the original “Hard-wired Laser Controller”
(a) and under control by its model, “model 1” (b). Note that side walls of the environ-
ment can not be seen in the figures because they were outside the field of view of the
camera.

3.2 Model 2: Manual Control

The second control strategy used was to drive the robot through the opening
manually. Here, the translational velocity of robot was kept constant at 0.07 m/s.
For sensor information (i.e. model input), the values delivered by the laser scan-
ner were averaged in twelve sectors of 15 degrees each, to obtain a twelve dimen-
sional vector of laser distances. These laser bins as well as the 16 sonar sensor
values were inverted before they were used to obtain the model, so that large
readings indicate close-by objects. The identified model of the angular velocity
ω, which contained 35 terms, is given in table 2.

Qualitative Model Evaluation. Figure 3 shows the trajectories of the robot
under the control of human operator and its NARMAX model respectively. In
both cases the robot was started with 41 different initial positions, and passed
through the door-like gap successfully each time.

4 Comparison of the Two Models

Figures 2 and 3 show that on a qualitative level both models are good rep-
resentations of the original. Small differences in trajectory between “original”
and “model-controlled” behaviour we attribute to natural fluctuations in robot-
environment interaction.
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Table 2. Model 2: NARMAX model of the angular velocity ω as a function of sensor
perception for the door traversal behaviour under manual control. s10, · · · , s16 are the
inverted and normalised sonar readings (s′

i = (1/si − 0.25)/19.75), while d1, · · · , d6 are
the inverted and normalised laser bins d′

i = (1/di − 0.12)/19.88. Taken from [4].

ω(t) = 0.010 − 1.633 ∗ d′
1(t) − 2.482 ∗ d′

2(t) + 0.171 ∗ d′
3(t) + 0.977 ∗ d′

4(t)
−1.033 ∗ d′

5(t) + 1.947 ∗ d′
6(t) + 0.331 ∗ s′

13(t) − 1.257 ∗ s′
15(t) + 12.639 ∗ d

′2
1 (t)

+16.474 ∗ d
′2
2 (t) + 28.175 ∗ s

′2
15(t) + 80.032 ∗ s

′2
16(t) + 14.403 ∗ d′

1(t) ∗ d′
3(t)

−209.752 ∗ d′
1(t) ∗ d′

5(t) − 5.583 ∗ d′
1(t) ∗ d′

6(t) + 178.641 ∗ d′
1(t) ∗ s′

11(t)
−126.311 ∗ d′

1(t) ∗ s′
16(t) + 1.662 ∗ d′

2(t) ∗ d′
3(t) + 225.522 ∗ d′

2(t) ∗ d′
5(t)

−173.078 ∗ d′
2(t) ∗ s′

11(t) + 25.348 ∗ d′
3(t) ∗ s′

12(t) − 24.699 ∗ d′
3(t) ∗ s′

15(t)
+100.242 ∗ d′

4(t) ∗ d′
6(t) − 17.954 ∗ d′

4(t) ∗ s′
12(t) − 3.886 ∗ d′

4(t) ∗ s′
15(t)

−173.255 ∗ d′
5(t) ∗ s′

11(t) + 40.926 ∗ d′
5(t) ∗ s′

15(t) − 73.090 ∗ d′
5(t) ∗ s′

16(t)
−144.247 ∗ d′

6(t) ∗ s′
12(t) − 57.092 ∗ d′

6(t) ∗ s′
13(t)) + 36.413 ∗ d′

6(t) ∗ s′
14(t)

−55.085 ∗ s′
11(t) ∗ s′

14(t) + 28.286 ∗ s′
12(t) ∗ s′

15(t) − 11.211 ∗ s′
14(t) ∗ s′

16(t)

(a) (b)

Fig. 3. Robot Trajectories under under “manual control” (a) and under control of its
model, “model 2” (b). Taken from [4].

It is interesting to see that “Model 1” has significantly more terms (83) than
“Model 2” (35), and therefore requires more memory and computing power re-
sources. Immediately obvious is also that model 2 is simpler, in that it only uses
information from sensors found on the right side of the robot. In the following,
we were interested in investigating the differences between the models of the two
door-traversal behaviours further.

Testing and Evaluation Setup. We first tested the controllers in four differ-
ent environments (figure 4) to reveal differences in the behaviour of the robot
when controlled by the two models. To minimise the influence of constant errors,
model 1 and model 2 were selected randomly to control the robot.

In the first scenario (figure 4 (1)), the robot was driven by “Model 1” in the
training environment of “Model 2”. After this, the two controllers were tested
in a completely different environment, where two door-like openings with equal
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80cm

80cm

80cm

80cm

(1) (2) (3) (4)

Fig. 4. Four different test environments used to compare the two models qualitatively.
1) Single-door test scenario, 2) Double-door test scenario, 3) Completely-enclosed test
scenario, 4) Enclosure with a single door. The initial positions of the robot are within
the shaded area indicated in each figure. All openings found in the environment had a
width of two robot diameters (80cm).

width were presented at the same time (figure 4 (2)). This demonstrated how
each opening interfered with the robot’s behaviour. It also revealed the dominant
sensors.

In the third and fourth scenarios (figure 4 (3) and (4)) we tried to measure
the effect of a gap found in an environment. We assumed that in this application
openings would be the dominant environmental factors in robot-environment
interaction. Therefore the models were tested first in a completely closed envi-
ronment, subsequently we introduced a gap to observe the resulting change in
behaviour.

4.1 Qualitative Comparison

As can be seen in figure 5, when we remove the side walls from the environment,
the robot under the control of “Model 1” has some problems in centreing itself
while passing through the gap. We realised that side walls make the robot turn
sharper while approaching to the door-like opening, which made it easier for
robot to centre itself while passing through the gap.

For the double-door test scenario, it is interesting to see how two gaps interfere
with each other for the behaviour of robot under the control of “Model 1”. If
the robot was started from the middle region between two gaps, it generally
collided with the wall, without turning towards any of the gaps. If the robot
pointed at one of the gaps initially, it was attracted towards it, but the other
gap still effected the behaviour and the robot could not centre itself enough to
pass through the gap (figure 6 (a)).

When we look at the trajectories of robot under the control of “Model 2”
(figure 6 (b)), we observe that the two gaps do not interfere with each other.
This is a predictable outcome, as “Model 2” uses sensors only from the right side
of the robot. Therefore, if the robot detects the gap found on the right side, it
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(a) (b)

Fig. 5. Robot trajectories under the control of “Model 1” in the training environment
of “Model 1” (a), and in the training environment of “Model 2” (b). The arrows in
both figures indicate how much the robot deviated from the centre point of the opening
while passing through it. Note that side walls of the environment in (A) can not be
seen in the figure because of the limited range of camera view.

(a) (b)

Fig. 6. Robot Trajectories in the “double door” test scenario under the control of
“Model 1” (a), and controlled by “Model 2” (b).

passes through it. If it doesn’t, it automatically turns to the left, finds the other
gap and traverses it.

In the completely-enclosed environment, “Model 1” turned the robot con-
stantly to the left. Figure 7 (a) shows a sample trajectory of robot under the
control of “Model 1”. When we introduced a gap to the environment, we observed
that the gap has the dominating effect on the controller behaviour. Although the
model can not pass through the gap successfully in every trial, we still observe
a general tendency of robot towards the gap (figure 7 (b)).

Finally, “Model 2” showed very unstable characteristics in the last two en-
vironments. When we look at the trajectories closely we observe oscillations in
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(a) (b)

(c) (d)

Fig. 7. Robot trajectories under control of “Model 1” in the “Completely enclosed
environment” (a) and when an opening is introduced to the enclosed environment (b).
Robot trajectories under control of “Model 2” in the “Completely enclosed environ-
ment” (c), and when an opening is introduced to the enclosed environment (d).

the robot’s behaviour, especially when the robot is close to corners. The over-
all model generally looks like a right wall follower when the robot is far from
the corners. As it comes closer, the variation in angular velocity of the robot
increases and it bumps into the corners (figure 7 (c)). We can also see that for
“Model 2”, the influence of the gap on the robot behaviour is not as big as the
influence on “Model 1” (figure 7 (d)).

4.2 Quantitative Comparison

When we look at the behaviours of the robot qualitatively in different test en-
vironments, we see that the responses of the two models differ. We also observe
that both models do not produce a general door-traversal behaviour, but that
they fail in environments that differ considerably from the training environment.
In this section, we extended our work by comparing the two models quantita-
tively, based on a “hardware in the loop simulation” process.

Hardware in the Loop Simulation. In the first quantitative analysis we
wanted to see if the two models produce similar outputs for the same inputs. We
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(a) (b)

Fig. 8. Trajectory along which sensor data for “hardware in the loop” simulation
was taken (a), and steering velocity graphs of both models for the given trajectory
(b). There is no significant correlation between the two model’s angular velocities
(rS=0.078, not sig.,p>5%).

Table 3. Spearman rank correlation coefficients between “model 1” and “model 2”
responses to identical real world input data

Environment rS Stat. Sig.
1 0.08 not sig. (p>0.05)
2 -0.09 sig. (p<0.05)
3 0.27 sig. (p<0.05)
4 0.02 not sig. (p>0.05)

therefore fed the two models with same sensory perception of the robot, taken
from the real test environments, and then compared the corresponding outputs
of the models quantitatively in order to see if there is a significant correlation
between the responses of the two models.

For each of the four test environments, we therefore first drove the robot
manually to traverse the door from different initial positions and logged the
sensory perception of the robot at every 250ms. We then fed identical logged
sensor data to the two models individually, and computed the resulting an-
gular velocity vectors. As an example, figure 8(b) shows the steering velocity
graphs which the robot would attain along the sample trajectory given in fig-
ure 8(a)).

To assess the agreement between both model responses to identical input
vectors, we computed the Spearman rank correlation coefficient rS [6] between
the two model outputs for each test environment. The results are given in table 3,
even in cases where there is a statistically significant correlation coefficient they
are very low, indicating quantitatively that the two models generate different
robot behaviour.

Stability and Efficiency Analysis. The fact that the controller is known as
a transparent polynomial simplifies stability and efficiency analysis, as follows.
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Efficiency. The efficiency of the controllers can be evaluated by measuring their
execution time on the robot and memory space required to represent the model.
Obviously, a polynomial consisting of fewer terms will execute faster and occupy
less memory space. It therefore becomes immediately obvious that “Model 1”,
obtained through the hardwired laser-guided door traversal, is considerably less
efficient (83 model terms) than “Model 2”, obtained through manual training
(35 model terms).

BIBO stability. A controller is considered stable if it produces bounded output
for a bounded input. With today’s robot programming techniques, the only
way to determine if a controller is stable or not is to check the response of the
controller for the entire input space and make sure that the output never goes
to ±∞. Typically, robot programmers try to address this issue by writing extra
safety routines in the control code which constrain the controller’s output within
an acceptable interval, without formally analysing for controller stability.

With system identification it is possible to analyse the stability of the con-
trollers without searching the entire input space. The identified polynomials
presented in this paper can be classified as “zero order open loop controllers”,
because they don’t incorporate any feedback from the output (open loop con-
trol), and don’t use any lags related to past input values (no difference equations
in the polynomial). For this kind of polynomials it has been shown that their
responses are bounded for bounded inputs [7], which proves the stability of the
controllers.

5 Summary and Conclusion

It is sometimes useful in mobile robotics to be able to describe and analyse the
behaviour of a mobile robot quantitatively, for example when one is interested
in establishing the differences between different robot controllers. In the exper-
iments presented in this paper, we compared two controllers that accomplish
the same task (door traversal), one implemented by a hardwired, “traditional”
control program and the other through manual control.

In order to compare these two behaviours, we “identified” both behaviours
by determining transparent, analysable non-linear polynomial mappings between
sensor perception and motor response, and subsequently comparing the two mod-
els with each other. Such transfer to a common descriptor of behaviour has a
number of advantages.

Once transparent mathematical models of sensor motor behaviour are avail-
able, they can be analysed quantitatively. In the experiments presented in this
paper, we used a hardware-in-the-loop simulation to demonstrate that the hard-
wired and the manual control strategy differ from each other noticeably. We
furthermore evaluated the controllers in terms of efficiency and stability, again
revealing considerable differences between the two models in terms of efficiency.

Future Work. Further analysis methods, not demonstrated here, include
analysing the models’ spectra, detailed stability analysis, or sensitivity analy-
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sis [8, 9, 10]. Such detailed mathematical analysis of the polynomial models is
part of ongoing research at the universities of Sheffield and Essex.
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Abstract. This paper address the kinematic variables control problem for the 
low-speed manoeuvring of a low cost and underactuated underwater vehicle. 
Control of underwater vehicles is not simple, mainly due to the non-linear and 
coupled character of plant equations, the lack of a precise model of vehicle 
dynamics and parameters, as well as the appearance of internal and external 
perturbations. The proposed methodology is an approach that makes use of a 
pioneering algorithm in underwater vehicles, based on the fusion of a robust or 
sliding mode controller and an adaptive fuzzy system, including the advantages 
of both systems. The main property of this methodology is that it relaxes the 
required knowledge of vehicle model, reducing the cost of its design. 

1   Introduction 

Underwater vehicles have replaced human beings, especially in dangerous or precise 
tasks, making the design of automatic and precise navigation and control systems 
necessary. The problem of underwater vehicles control is difficult because of the 
unknown non-linear hydrodynamics effects, and parameter uncertainties.  

The problem analysed in this paper, the low-speed control of the kinematic 
variables of an underactuated underwater vehicle, can be defined as follow. Given an 
unknown underwater vehicle plant and a continuous bounded time-varying velocity 
and/or position references, design a controller that ensures that the plant states 
converge asymptotically to the kinematic references.  

Most dynamically positioned marine vehicles in used today employ PD or PID 
controllers for each kinematic variable. Moreover, PID control cannot dynamically 
compensate for unmodeled vehicle hydrodynamic forces or unknown disturbances 
[10]. To avoid this problem only a reduce number of commercial vehicles employ 
model-based controllers, because they require a plant model with unknown 
parameters which are difficult to estimate with accuracy. From this point of view, 
most of the proposed control schemes take into account the uncertainty in the model 
by resorting to an adaptive strategy or a robust approach. Thus, a significant number 
of studies have employed linearized plant approximations [1], [2] and [3]. 

In the area of modern control, relatively few studies directly address decoupled 
non-linear plant model for underwater vehicles. In [4] the authors report non-linear 
sliding mode control for surge, sway and yaw movements. Also, adaptive versions of 
sliding controllers have been implemented [5] and [6], reducing effectively model 
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uncertainty and control activity, and maintaining robustness without sacrificing 
performance. In [7] a state linearization control is studied, based on the known model 
of the plant. A step forward is an adaptive non-linear controller [8], which presents a 
problem of sensitivity to noise in the measurement of the kinematic variables. In [9] a 
modification of the non-linear adaptive control law is presented, in which in the 
adaptation process the velocity and position measurements are replaced by their input 
references. In [10] the authors compare, using experimental trial, some of the 
previously reported controllers, based on a decoupled non-linear plant model of the 
JHUROV vehicle. In the area of intelligent control, [11] proposes a neural control, 
using a nonparametric and adaptive recursive algorithm control that do not require 
knowledge of the plant dynamics. Finally, [12] proposes a fuzzy controller with 14 
rules for depth control of an UUV. 

This paper studies a pioneering algorithm in underwater vehicles, which is based 
on the work and results developed in [13], about adaptive fuzzy sliding mode control 
(AFSM). Euler angles and body fix reference frame are used to describe a semi-
decoupled non-linear plant model of the underactuated Snorkel vehicle, a UUV to 
show controller performance. The controller is based on the fusion of a sliding mode 
controller and an adaptive fuzzy system, and exhibits adaptive and robust features. 
The main advantage of the proposed theory versus previous studies is that it employs 
a nonparametric adaptive technique that requires a minimum knowledge of plant 
dynamics, being only necessary a theoretical and simple model of it. A Lyapunov-like 
stability analysis of the control algorithm is developed, ensuring the stability of the 
adaptation process and the convergence to the references.  

The paper is organized as follows; section 2 introduces the dynamic equations of 
the Snorkel vehicle. In section 3 the AFSM controller and its theoretical 
demonstrations of stability are presented. Section 4 is dedicated to the experiments 
setup. Section 5 shows a series of real experiments results, and the performance of the 
controller is described and compared. Finally, section 6 summarizes the results. 

2   Dynamical Model 

Dynamic modelling of UUV uses a finite dimensional approximation in which plant 
parameters enter linearly into the non-linear differential equations of motion. In this 
work a Newton-Euler formulation and a non-inertial reference system have been 
selected. Euler angles do not present singularities in the Snorkel vehicle, due to its 
moderate pitch and roll motion. Equation (1) represents the most reported [9] dynamic 
equations of 6-DOF, represented in compact form,  

gDCM =+++ )()()(  , (1) 

where 66×ℜ∈M  mass matrix that includes rigid body and added mass and satisfies 

OT >= MM  and 0
·

=M ; 66)( ×ℜ∈C  matrix of Coriolis and centrifugal terms 

including added mass and satisfies T)()( CC −= ; 66)( ×ℜ∈D  matrix of friction 

and hydrodynamic damping terms; 6)( ℜ∈g  vector of gravitational and buoyancy 
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generalized forces; 3ℜ∈  is the vector of Euler angles; 6ℜ∈  is the vector of 

vehicle velocities in its six DOF, relative to the fluid and in a body-fixed reference 

frame and 6ℜ∈  is the driver vector considering vehicle’s thrusters position. 
     Actually there is no an exact model to describe the value of matrix and vectors of 
(1). From AFSM controller capabilities, it is adopted a simplify vehicle model [9], 
that consider null values for: off diagonal entries of the damping matrix )(D ,  

with only linear and/or quadratic terms, inertial products, the tethered dynamics, as 
well as assuming a constant added mass. Thus, the equation (1) can be simp- 
lified [10] and divided in each of the semi-decoupled single DOF dynamical equ- 
ations (2).  

( ) ( ) iiii gfx +=  , (2) 

where ( ) ( ) ( )[ ]iiiixxi
i

i dgxxXc
m

1
f

ii
−−−−= v , ( ) ii m/1g = , and for each DOF 

i, τi is the control force or moment, mi is the effective inertia, ( )vic  are the Coriolis 

and centripetal terms, 
ii xxX is the quadratic hydrodynamic drag coefficient, ( )ig  is 

the buoyancy and weight term, id  is a term that represents unmodeled dynamics and 

perturbations, and ix , ix  and ix  are the velocity and acceleration of the vehicle.  

3   Fuzzy Sliding Mode Control Algorithm (AFSM) 

In this section the equations and a stability analysis of the resulting close loop of the 
AFSM controller is presented. The controller shares the control law with a pure 
sliding mode controller (SM). Since functions ( )f  and ( )g  of the vehicle model 

are partially unknown and non-linear, a set of fuzzy functions to estimate them are 
proposed, being the control diagram of the overall system shown in the Fig. 1.  

 

 

Fig. 1. Adaptive fuzzy sliding mode controller diagram 

3.1   Sliding Mode Controller 

The SM controller for a single DOF takes the form,  

( ) ( ) ( )[ ]b/ssatxx~f̂ĝ d
1 −+−= −  , (3) 
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where , b  and  are positive definite constant, s is the sliding surface defined as 

x~x~s += , where dxxx~ −=  and dxxx~ −= , ( )ĝ  and ( )f̂  are the estimation of the 

respective functions, and  is the control action. 
The evolution of the sliding controller can be divided in two phases: The 

approximation phase, where 0s ≠ , and the sliding phase when 0s = . The right 
election of the parameter , based on the uncertainty boundaries of system functions 

and perturbations, allows the designer to ensure that error vectors x~  and x~  change 
from the approximation phase to the sliding phase. Once on the surface, it is ensured 
that the system follows the input references, in presence of uncertainties, with a time 

constant of value, 1 . The saturation function is defined as 

>
≤<−

−≤−
=

1b/ssi1

1b/s1sib/s

1b/ssi1

)b/s(sat , where b is the thickness of the boundary layer, 

and its function is to avoid the chattering effect [8]. 

3.2   Fuzzy Adaptive System 

A fuzzy system may be used like a non-linear universal approximator [15], due to its 
ability to introduce verbal information, and its capacity to uniformly approximate any 
real and continuous function with different degrees of precision. In general, good 
verbal information can help to establish initial conditions, and so faster adaptation 
will take place.  

Thus, by using a Sugeno-like fuzzy system, with a singleton fuzzification strategy, 
product interface and media defuzzification, the functions ( )f  and ( )g  are 

parameterized by fuzzy logic systems as,  

( ) )(|f̂ T
ff = ,     ( ) )(|ĝ T

gg =  , (4) 

where ( ) ( ) ( )( )Tm1 ,,=  , with ( )
( )

( )∏

∏

= =

==
m

1j

n

1i
iA

n

1i
iA

j

j
i

j
i

 and ( )iA j
i

 are the 

membership functions of the fuzzy variable i , which are supposed to be fixed. And 

the elements T
f and T

g , which take the form ( )Tm1 y,,y , can be adaptatively 

tuned till they reach the optimal values, ∗
f  and ∗

g . 

3.2.1   Adaptation Law 
The adaptive functions will be tuned by the next parameter adaptation algorithm [13],  

( ) ( )
( ){ } ( ) >=

≤=<
=

⋅

)0sandM(ifsrP

)0sandM(or)M(ifsr
: T

fff1

T
fffff1

f1
 , (5a) 
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( ) ( )
( ){ } ( ) >=

≤=<
=>∈

⋅

)0sandM(ifsrP

)0sandM(or)M(ifsr
|: T

ggg2

T
ggggg2

g2 gj

, 
(5b) 

( ) ( )
( ) ≤

>
==∈

⋅

0sif0

0sifsr
|:

j

jj2
gj3 gj

 , (5c) 

where 1r  and 2r  are positive constants which define adaptation velocity, fM and gM  

are positive constants which fix the maximum value of the second norm of f  and 

g  respectively, and ∈  specifies the minimum value of g  elements, ( )j  is the  jth 

element of ( ) , gij  is the  jth element of gi , and projection operators are defined 

as ( ){ } ( ) ( )
2

f

T
ff

111 srsrsrP −= , ( ){ } ( ) ( )
2

g

T
gg

222 srsrusrP −= .  

 
Theorem [13]. For a non-linear system (2), consider the controller (3). If the 
parameter adaptation algorithm (5) is applied, then the system can guarantee that: (a) 
the parameters are bounded, and (b) closed loop signals are bounded and tracking 
error converges asymptotically to zero under the assumption of a fuzzy integrable 
approximation error. 

The proof of s, f  and g  boundedness is shown in [13]. Thus if the reference 

signal dx  is bounded, the system state variable x will be bounded, and that both the 

velocity tracking error and the time derivative of the parameters estimates converge 
asymptotically to zero. However, absent additional arguments, it cannot be claim 

either ( ) 0txlimt =∞→ , ( ) 0tslimt =∞→  or that 0
~

lim ft =∞→  and 0
~

lim gt =∞→ .  

4   Experimental Setup 

The Snorkel vehicle, Fig. 2, developed at the Centro de Astrobilogía is a tethered 
remotely operated UUV. The vehicle reduced cost conditions instruments and 
methods, limiting the identification experiments. The main goal of the vehicle is to 
carry out a scientific and autonomous inspection task in the Tinto River. The Snorkel 
vehicle has a dry mass of 75Kg and its dimensions are 0.7m long, 0.5m wide and 
0.5m high. Actuation is provided by four DC electric motors, two of them are placed 
 

Table 1. Vehicle instrumentation and its parameters 

Variable Sensor Company Precision Update rate 
Angular velocity ENV-05D gyroscopes Murata 0.14º/sec 100msec 
Depth 600Kpa pressure sensor Bosh 5cm 100msec 
Heave velocity Differential presume Bosh 1cm/sec 100msec 
Roll, pitch and yaw HMR3000 Honeywell 0.1º 50msec 
Heave, surge and sway DVL Sontek 1mm 100msec 
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in a horizontal plane while the others in a vertical one. Additionally, it is equipped 
with a distributed electronic architecture, and a low cost sensorial system, Table 1. A 
complete description of the Snorkel UUV is reported in [16]. 

The experiments have been carried out in a small tank of 1.8m of diameter and 2m 
of depth. Based on these limits and trying to avoid bumping with tank walls, the close 
loop tests only study the controller behaviour in yaw and heave movements, however 
the results can be extended to the surge DOF. Additionally, while an experiment is 
done in one DOF, the references for the rest of the two controllable DOF are zero.  

 

Fig. 2. Snorkel robot image and modules description 

4.1   Definition of Control Parameters  

Firstly, it must be pointed out that a reference model, implemented by a first order 
Butterworth low past filter, has been introduced to smooth references, trying to obtain 
a reasonable control effort.  

Several parameters have to be fixed for the sliding part of the controller. The value 
of 

i
 (3), must be established from the maximum value of functions ( )if , ( )ig  

and di uncertainty, and the initial value of the sliding surface [16]. Lastly, the 
thickness of the boundary layer, bi, has been fixed using numerical simulations.  

In order to define fuzzy estimators, firstly it is necessary to fix which of the 
kinematic variables are used for each estimator, based on the partial knowledge of 
the variables which determine vehicle dynamics. This knowledge can be obtained 
from the theoretical model of the vehicle, or from the a priori knowledge that an 
operator possesses of the system. From here, it has been decided to take the 
relations of Table 2 [16], where ( )k

iA  are the membership functions of the k 

variable, and x u, x v, x w and x w are the surge, sway, heave and yaw velocities. 

The dependence of ( )iĝ  with respect to the velocity of each DOF allows us to keep 

the adaptation process active. Also, the number and kind of the membership 
functions have to be defined [16]. 

Other specific parameters of the fuzzy estimators are related to the adjustment 
function of the output consequents. The value of constants Mfi and Mgi, has been fixed 
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following the criteria of doubling the theoretical values of ( )if̂  and ( )iĝ  functions. 

Additionally, the criterion chosen to fix the values of i∈  is to multiply the same 

theoretical value of ( )iĝ  by ½ [16]. Adaptation velocities, 1r  and 2r , have been 

fixed by data analysis of numerical simulations, Table 2.    

Table 2. AFSM control parameters for each controllable DOF 

DOF f( ) g( ) λ μΔ b r1 r2 

Surge )(
1 uA xμ , )( vA xμ , )(

2 rA xμ )(
2 uA xμ 0.3 0.38 6 0.2 0.005 

Heave )(
1 wA xμ

 
)(

2 wA xμ 0.15 0.13 6 0.2 0.01 

Yaw )(
1 rA xμ , )(

2 uA xμ , )( vA xμ  )(
1 rA xμ  0.3 0.55 1.75 10 0.005 

5   Experimental Results 

This section reports comparative experiments of the AFSM controller with a PD and a 
pure sliding mode controller (SM). The parameters of the PD controller have been 
obtain by identification with the AFSM control constants, eliminating the ( )f  

function, while the SM controller share the control law with the AFSM controller, but 
in this case ( )f  and ( )ĝ  functions are theoretically estimated. In order to 

implement the controllers a digital version with an Euler integration algorithm and a 
sample period of 100msec has been used. The figures correspond to the period after 

the initial adaptation process of ( )f̂  and ( )ĝ  functions. 

5.1   Velocity Reference and Adaptation Capabilities  

The first section reports a performance comparison, while a square yaw velocity 
reference of 10º/sec of amplitude, and 40sec of period is tracked. Real and reference 
positions are obtain by integrating the real and reference velocities respectively. 

From an analysis of the Fig. 3 we observe that the tracking of the input reference 
for the AFSM controller is nearly perfect, with a reasonable control effort, in spite of 
the oscillatory behaviour when the velocity is closed to zero. The oscillation is caused 
by an error in the on line algorithm of offset adjustment of the gyroscope signals.  

Fig. 4 shows analytically a comparison with the PD and SM controllers [10]. It 
concludes that AFSM controller presents the smaller velocity error, measure as 

( )xxmeanx~ d −= , while its control effort calculated as ( )dTOTAL mean= , is only 

slightly higher than the control effort of the PD controller. This is due to the 
adaptation capabilities of the AFSM controller, based on its fuzzy estimators and the 
right adaptation law. The performance of a model-based controller, as the SM 
controller, depends entirely on the accuracy of the dynamic plant model used in the 
designing of the controller. This section also corroborates the lack of accuracy of the 
theoretical determined dynamical plant model for the Snorkel UUV. 
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Fig. 3. Plot of AFSM controller in the yaw DOF. (Top) actual yaw velocity x r(- -) and 
reference x rd(-). (Medium) Velocity tracking error. (Bottom) Thrust of a horizontal thruster. 
Square yaw velocity reference of amplitude 10º/sec, and period 40sec.  
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Fig. 4. Plot of velocity tracking error, x~ [º/sec] (black) and control effort, TOTAL [N] (grey) for 

PD, SM and AFSM. Square yaw velocity reference of amplitude 10º/sec, and period 40sec. 

5.2   Thrusters Saturation with Position Reference 

The second set of tests attempts to show the influence of thrusters saturation in 
velocity and position tracking errors, while tracking a square position input reference 
for the yaw angle of 50º of amplitude, 70º of offset and 40sec of period.  

It is evident that there are some deficits in the tracking of position and velocity 
references, for the AFSM controller, Fig. 5. Nevertheless, the final values of the yaw 
angle and velocity are reached, in spite of the appearance of overshoot. The deficit is 
due to the excessively fast and large velocity reference, which generates fast and high 
thrust references, witch cannot be achieved by the propulsion system [17].   
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Fig. 5. Plot of AFSM controller in the yaw DOF. (Top) actual yaw angle x r(- -) and reference 
xrd(-). (Bottom) actual yaw velocity x r (- -) and reference x rd (-). Square yaw angle reference 
of amplitude 50º, offset 70º, and period 40sec.  

Fig. 6 shows directly the comparison among the PD, SM and AFSM controllers, 
using the same reference. It can be concluded that PD controller presents the 
smaller velocity and angle tracking errors, this last one measure as 

( )xxmeanx~ d −= [10], as well as slightly smaller control effort that the AFSM 

controller. This advantage is due to its better performance under the saturation of 
the thrusters. Thrusters saturation represents an unmodeled discontinuous dynamics 
[10], which affects negatively on adaptive controllers, because they attempt to 
estimate the parameters values of that ill-structured plant model. The worst 
performance of the SM controller is justified due to the lack of accuracy of the 
theoretical model of the Snorkel vehicle. 
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Fig. 6. Plot of angle tracking error, x~ [º] (white), velocity tracking error, x~ [º/sec](black) and 
control effort, TOTAL [N] (grey) for PD, SM and AFSM controllers. Square yaw angle 

reference of amplitude 50º, offset 70º, and period 40sec.    
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5.3   Adaptation Capabilities and Noise in Measurements 

The last section attempts to show controllers performance, while tracking a square 
depth position reference of 0.3m of amplitude, 0.7 of offset and 40sec of period, in the 
presence of a change in the buoyancy of the vehicle.  

In Fig. 7, the better performance of the AFSM control (Bottom) can be observed. 
This control technique is capable of reaching the permanent regime of input reference, 
while the other control techniques are not able to do it. Despite this, the transitory 
response does not track the reference due to two different reasons: the high 
quantification noise level associated with the measurements of depth and heave 
velocity, Table 1, and the high rates of depth reference that at the same time generates 
high values of velocity references, that can not be followed by the propulsion system 
[17]. A possible solution to this problem is to obtain the position references from the 
integration of velocity references, which could be saturated to reasonable values for 
the propulsion system. This better performance of the AFSM controller is based on 
the adaptation capability of the controller. 

 

 
Fig. 7. Plot of actual depth x w(- -) and reference x wd (-) for (Top)PD controller, (Medium)SM 
controller and (Bottom) AFSM controller. Square depth reference of amplitude 0.3m, offset 
0.7m, and period 40sec.   

7   Conclusion 

The AFSM controller, applied for the very first time in a UUV, allows us to consider 
the non-linearity of the system adapting to uncertainty in model plant and parameters. 
This feature permits the designer to work with minimum knowledge of the model, 
avoiding a tedious process of identification, helping to reduce the design cost. The 
theoretical and practical stability of the AFSM controller has been shown, assuring 
the convergence of the system to the input references, with a reasonable control effort. 
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The controller is capable of incorporating and compensating the dynamic problems 
and the perturbations of underwater vehicles. Also, it generates systems that are 
simple to implement and interpret. 

The proposed controller could be defined as a combination of an adaptive and a 
robust system. In this way, it presents the advantages of robust control like the 
capability of adapting to rapid variation of the parameters, perturbations, noise from 
unmodeled dynamics, and theoretical insensibility to errors of the state measurements 
and its derivatives. Also, it presents the advantages of adaptive systems, like no 
requirement for prior and precise knowledge of uncertainty, reducing the required 
knowledge of system boundaries of uncertainty, and the capacity of improving the 
output performance as the system adapts. The fuzzy adaptive part of the controller 
permits us to relax the design conditions of the sliding part. Additionally, one of the 
restrictions of the fuzzy adaptive part is the low speed of the parametric adjustment. 
Nevertheless, this lack it is compensated by the sliding part of the controller.  

The experiments of the close-loop performance of the studied controllers 
corroborate the theoretical predictions. Moreover, the experiments suggest that the 
AFSM controller is a valid method to be applied in underwater vehicles that 
outperform the PD and SM controllers using velocity trajectories. Thruster’s 
saturation significantly degrades the performance of AFSM controller, while PD 
controller shows better performance under this circumstance. The success of a simple 
model based SM controller rely on the plant model parameters to be exactly correct, 
where as AFSM based on its adaptation capabilities is not affected by inaccuracy in 
theoretical plant model. Noise is another factor that affects significantly the 
performance of the SM controller, and less seriously of the AFSM controller.   
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