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Abstract. Most existing real-time fault-tolerant scheduling algorithms for het-
erogeneous distributed systems can achieve high reliability for non-preemptive 
and aperiodic tasks. However, the existing scheduling algorithms assume that 
status of each backup copy is either active or passive. To remedy this defi-
ciency, we propose a novel reliability model tailored for preemptive periodic 
tasks. Next, we develop two real-time fault-tolerant algorithms (NRFTAHS and 
RDFTAHS) for heterogeneous distributed systems. NRFTAHS manages to as-
sign tasks in a way to improve system schedulabilties, whereas RDFTAHS aims 
at boosting system reliability without adding extra hardware. Unlike the exist-
ing scheduling schemes, our algorithms consider backup copies in both active 
and passive forms. Therefore, our approaches are more flexible than the alterna-
tive ones. Finally, we quantitatively compare our schemes with two existing al-
gorithms in terms of performability measured as a function of schedulability 
and reliability. Experiments results show that RDFTAHS substantially im-
proves the overall performance over NRFTAH.  

1   Introduction 

With the development of high speed network and high performance computers, hetero-
geneous distributed systems have been widely applied for critical real-time systems, in 
which real-time and fault-tolerant abilities are two indispensable requirements. 

To exploit high performances for real-time heterogeneous systems, much attention 
has been paid to real-time scheduling algorithms in context of heterogeneous systems. 
Ranaweer and Agrawal developed a scheduling scheme named SDTP for heterogene-
ous systems. Reliability costs was factored in some scheduling algorithms for tasks 
with precedence constrains [2][3]. Although schedulability is a main objective of 
these scheduling algorithms, the algorithms neither consider timing constraints nor 
support fault-tolerance. In addition, reliability models in these studies are geared to 
handle aperiodic, non-preemptive tasks. 

Fault-tolerance, an inherent requirement of real-time systems, can be achieved in 
several approaches. One efficient fault tolerant technique, of course, is scheduling 
algorithms, among which the Primary-backup scheme plays an important role. In this 
approach, two versions of one task are scheduled on two different processors and an 
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acceptance test is used to check the correctness of schedules [4,5,6]. The three  
variants of this scheme include active backup copy[4], passive backup copy[5], and 
primary backup copy overlapping[6]. Generally speaking, backup copy is always 
preferred to be executed as passive backup copy, because it can take the advantages of 
backup copy overloading and backup copy de-allocation technique to improve sched-
ulability[4,5]. Primary backup copy overlapping technique is a tradeoff technique 
between the other two and can exploit the advantages of both the other two  
approaches[6]. 

Both active backup copies and passive backup copies have been incorporated into 
the Rate-Monotonic First-Fit assignment algorithm to provide fault-tolerance[7]. This 
scheme overcomes the drawbacks of timing constraints on backup copies to some 
extends. However, this scheduling algorithm neither considers heterogeneous systems 
nor takes system reliability into account.    

Qin et. al. extensively studied real-time fault-tolerant scheduling algorithms based 
on heterogeneous distributed systems[8,9,10]. However, theses algorithms assume 
that status of each backup copy is either active or passive. Moreover, they only con-
sider non-preemptive and aperiodic tasks. 

Although numerous algorithms have been developed with respect to real-time fault-
tolerant scheduling for distributed systems, to the best of our knowledge no work has 
been done on reliability-driven real-time fault-tolerant scheduling tailored for periodic 
tasks for heterogeneous distributed systems. In this study, a novel reliability model for 
real-time periodic tasks is proposed by extending the conventional reliability model 
designed for aperiodic tasks. In our approach, the primary backup copy approach is 
leveraged to tolerate single processor failures. Furthermore, two real-time fault-
tolerant algorithms are devised for heterogeneous distributed systems. The first algo-
rithm named NRFTAHS aims at assigning tasks in a way to improve schedulabilty of 
system, while the second algorithm termed as RDFTAHS employs the reliability 
measure as a major objective for scheduling real-time tasks. To quantify the combined 
metric of schedulability and reliability, the Performability measure is introduced. 
Finally, simulation experiments were conducted to compare the two algorithms in 
several aspects. The experiments results indicate that RDFTAHS performs signifi-
cantly better than NRFTAHS with respect to reliability with marginal degradation in 
schedulability and, therefore, RDFTAHS substantially improves the overall perform-
ance over NRFTAH. 

The paper is organized as follows: In section 2, a system model and assumptions 
are presented. Section 3 proposes reliability model for periodic tasks. Two novel real-
time fault-tolerant scheduling algorithms are outlined in Section 4. Simulation ex-
periments and performance analysis are presented in section 5. Finally, Section 6 
concludes the paper by summarizing the main contribution of this paper and com-
menting on future directions of this work. 

2   Systems Model  

Our paper considers a typical heterogeneous distributed systems consisting of a set of 
tasks and a set of processors which are characterized as follows. 
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 A set of processors 

Ω = {p1, p2,…, pM}                      
R = (λ1,λ2,…,λM)  

Here, Ω is the processor set, pi is the i-th processor and M is the total number of 
processor. All processors in the heterogeneous systems are connected by high-speed 
network. In this model, processor failures are assumed to be independent, and follow 
a Poison Process with a constant failure rate. R denotes the failure rates vector, 
wherein λi  is the failure rate of  pi. 

 A set of primary copy of real-time tasks  
Γ = {τ 1 ,τ 2 ,τ 3 ,…,τ N}       
 τi = (Ci , Ti)  (i = 1,2,…,N) 

     Here, Γ is the set of tasks, τi is the i-th task, and N is the number of tasks which are 
periodic, independent and preemptive. Ci denotes an execution time vector:  
Ci = [c(i,1), c(i,2),…,c(i,M)]. Where c(i, j) denotes the execution time of taskτi on 
processor pj. Ti denotes the period of τi.  

 A set of backup copy of real-time tasks  

BΓ = {β 1 , β 2 , β 3 ,…,β N }        
βi = (Di , Ti)  i = 1,2,…,N 

Here, BΓ is the set of backup copy of real-time tasks Γ. βi is the corresponding 
backup copy of τi. Hence, Di is the execution time vector of βi. In our mode, it is as-
sumed that backup copy and primary copy of a task are completely identical, that is: 
Di = [c(i,1), c(i,2),…,c(i,M)]. Correspondently, Ti denotes the period of βi. 

In our system model, as in [7], the backup copy has two statuses: passive backup-
copy and active backup copy. When we assign a task, we assign its primary copy 
before assigning the backup copy. The status of backup copy is determined by the 
following: 
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Here, Rij denotes the WCRT(worst case response time) of τi  which is assigned to Pj. 
For ease of presentation, γi  represents a primary copy or a backup copy, namely, γi =τi 

or  βi.  
To concentrate on our concerned problems, we make the following assumptions 

about failure characteristic of the hardware: 

1. Hardware provides fault isolation mechanism, that is a faulty processor cannot 
cause incorrect behaviors in a non-faulty processors; 

2. Processors fail in a fail-stop manner, which means a processor is either operational 
or cease functioning; 

3. The failure of a processor is detected by the remaining ones within the closest 
completion time of a task scheduled on the faulty processor. 
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3   Reliability Model Based on Periodic Tasks   

In this section, we attempt to address the issue of reliability for periodic tasks in het-
erogeneous systems. In [2], reliability is defined as the probability that the system can 
run an entire task set successfully. Furthermore, the definition of reliability costs is 
proposed. However, the definition of reliability costs is based on aperiodic, non-
preemptive tasks set which is not applicable for periodic, preemptive tasks set. Be-
cause, usually, the periodic tasks will run periodically and will not cease until we 
force it to or external events. To solve this issue, we firstly analyze the characteristics 
of periodic tasks and the failure characteristic of heterogeneous processors, and then a 
definition of reliability costs based on periodic, preemptive tasks set is investigated.  
      It is worth noting that not only the periodic tasks are periodic in nature, but also 
the behavior of real-time tasks set as whole is periodic. The hyperperiod H can be 
seen as the period of the tasks set. H is defined as the least common factor of periods 
of all tasks sets, namely, H = lcm{Ti|τi ∈Γ}).  

It is also noted that the processor failures are assumed to be independent and fol-
low a Poisson Process with a constant failure rate. Moreover, because the Poisson 
Process is a stable incremental process, the processors have equal fault probability 
during any equal time interval on the same processor. Thus, we can study the reliabil-
ity of tasks set in a hyperperiod as the metric of reliability of the system. 
      To simplify our discussion without losing generality, we have the following  
assumptions: 

1. If a processor fails when it is period, the failed processor will be replaced by a 
spare processor immediately. So, we do not consider it as a critical failure. 

2. If a processor fails while the processor is working, we can use a spare processor 
and certain processor replacing mechanism(e.g., FTRMFF-Replacing presented in 
[7]) to recover the system to the non-faulty state after some time. 

With the above two assumptions along with the single processor failure assump-
tion, we can safely only consider the system reliability in fault-free scenario.  
Moreover, we only need to consider the effects of processors failure on tasks while 
processor is working. Therefore, we can redefine the system reliability based on peri-
odic task set as the probability of system can run the entire task set in a hyperperiod 
while no critical failure occurs. Thus, 
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According to the above definition of reliability, we can derive the definition of reli-
ability costs based on our system model as.    

Definition 1. When we assign both primary copy set Γ and backup copy set BΓ of a 
set of real-time tasks on a set of heterogeneous processors Ω. The system Reliability-
Costs is defined as follows: 
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Clearly, in order to increase the reliability of system we have to reduce the reliability 
costs as much as possible. The first item in the parentheses of (2) denotes the unreli-
ability contributed by primary copy on their corresponding processors, while the sec-
ond item is due to the active backup copy. This inspires us that allocating primary 
copy and active backup copy with greater load to more reliable processors might be 
good heuristic to decrease the reliability costs. Moreover, it is highly desirable to 
make as many backup copies as possible to be executed as passive status. Because, on 
one hand, it can increase the system schedulability, and can decrease the reliability 
costs on the other hand. 

4   Proposed Scheduling Algorithms   

In this section, we propose two algorithms for scheduling periodic tasks set along 
with their corresponding backup copy on a heterogeneous distributed system. The 
objective of the first algorithm, NRFTAHS, is to maximize the schedulability of the 
system and does no take reliability into account. By contrast, the other one, 
RDFTAHS, tries to minimize the total reliability costs of the system while retaining 
the schedulability of the system. 

As [7], before task copies are assigned, both primary copy and backup copy are  
ordered by increasing period to simplify our algorithm. Thus, tasks are assigned to 
processors following the order: 

                                              τ 1 ,β 1 ,τ 2 ,β 2 , …,τ N ,β N                                  (4) 

4.1   NRFTAHS   

The main objective of the NRFTAHS is to maximize the schedulability of the system. 
The gists of NRFTAHS are:  

1. Try to assign primary copy to a processor on which the execution time is shortest.  
2. Try to schedule backup copy as a passive copy whenever possible.  
3. If a backup copy has to be scheduled as an active backup copy, the algorithm    

endeavors to assign backup copy to processor on which the execution time is  
minimal. 

Before presenting our algorithm, an execution time order vector for each task is in-
troduced. 

Definition 2. Given a set of real-time tasks Γ and a set of processors Ω. An execution 
time order vector for each task τi is defined as exec_order(i) = [eti1,et i2,…,etiM], where 
etij (1≤j≤ M) is the processor number. exec_order(i) is sorted in the order of non-
decreasing execution time of τi on processor set Ω, namely: 

[1, ], , [1, ]: ( ( [ ,et ] [ ,et ]))ij iki N j k M j k C i C i∀ ∈ ∀ ∈ < → ≤    
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    The algorithm NRFTAHS is described as follow: 

Algorithm: NRFTAHS 
1) Initialization: reorder primary and backup copies following decreasing RM priori-

ties as (4)； generate  execution time vector Exec_order(i) of each task i;  
2)  for i ←1,2,…, N do /* allocating processor to both primary and backup copies of 
N tasks*/ 
3)   found_active ← FALSE；  
4)    for  k ← 1, 2, …, M do   
5)     for s←1, 2, …, M, s≠k do  

Step 5.1: Check the schedulability ofτi andβi on processor exec_orer[i, k] and  
exec_orer[i, k], respectively. Determine the status of βi  according to (1); 

    Step 5.2: If bothτi  and βi can successfully scheduled on processor exec_orer[i, k] 
and processor exec_orer[i, s] respectively, and status(βi) = passive, then go to (2); 

Step 5.3: if both τi  and βi can successfully scheduled on processor exec_orer[i, k] 
and processor exec_orer[i, s] respectively, status(βi) = active and found_active = 
FALSE, then found_active←TRUE, save the processor exec_orer[i, k], 
exec_orer[i, s] number to temporary variable；  

6)   end for  
7)  end for 
8)  if (found_active = TRUE) 
9)      Set P(τi), P (βi) to the processor recorded in step 5)；  
10)  else 
11)      ret_value ← FAIL; return  ret_value; 
12)  end if 
13)  end for   
14)  ret_value ← SUCCESS return ret_value；  

4.2   RDFTAHS 

RDFTAHS consider the heterogeneities of reliability costs, thereby improving the 
reliability of the system without extra hardware costs. The objective of RDFTAHS is 
to minimize the reliability costs. The gists of NRFTAHS are:  

1. Try to assign primary copy to a processor on which the reliability cost is minimal.  
2. Try to schedule backup copy as a passive copy whenever possible.  
3. If a backup copy has to be scheduled as an active backup copy, the algorithm en-

deavors to assigned backup copy to processor on which the reliability costs is 
minimal. 

    Before presenting our algorithm, A reliability costs vector is defined. 

Definition 3. Given a set of real-time tasks Γ, corresponding backup copy BΓ and a 
set of processors Ω. A reliability costs vector ofτi and βi is defined as RCVi = [rcvi1, 
…, rcviM], where rcvij = (rcij, ρij). rcvij is derived from vector Ci and Ω. Namely, rcij = 
(C[i, ρij]/Ti )×λρij. Elements in RCVi  is sorted in order of non-decreasing reliability 
costs, namely: 

ij ik[1, ], , [1, ]: ( (rc rc ))i N j k M j k∀ ∈ ∀ ∈ < → ≤ ; 
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The algorithm RDFTAHS is described as follow: 
Algorithm: RDFTAHS 
1)  Initialization: reorder primary and backup copies following decreasing RM priori-
ties as (4);generate  execution time vector exec_order(i) and reliability costs vector 
RCVi for each task i;  
2)  for i ←1, 2, ……N do   
3)  found_active←FALS， tmp_rc←0 ;  
4)   for k ← 1, 2, …,M  do   
5)   for s←1, 2, ……M, s≠k do   

Step 5.1: Assign primary copy τi  to processor RCVi.ρik, which follows the order 
defined by reliability costs vector. Assign backup copy βi to processor 
exec_order(i, s), which follows the order defined by execution time order vector; 
Status of βi is determined by (1)；  

     Step 5.2: if both τi and βi are schedulable, and status(βi) = passive, then assignτi 
and βi to processor RCVi.ρik and Exec_order(i, s), respectively; go to (2)；  

     Step 5.3: if both τi and βi are schedulable, and status (βi) = active;  
Step 5.3.1: if found_active = FALSE, then calculate the reliability costs of βi on 

processor exec_order(i, s), tmp_rc; found_active ← TRUE ; save processor 
RCVi.ρik and exec_order(i, s) to temporary variable. 

Step 5.3.2: if found_active = TRUE, and the reliability costs of βi on processor 
exec_order(i, s) is smaller than tmp_rc,  then set tmp_rc ← reliability costs of 
βi on processor exec_order(i, s); save processor RCVi.ρik and exec_order(i, s) 
to temporary variable;  

6)   end for  
7)  end for 
8)  if (found_active = TRUE) 
9)     Set P(τi) and P(βi) with the processor number saved at Step 5.3; Set status(βi) 

←active；  
10)  else  ret_value ← FAIL; return ret_value; 
12)  end if 
13)  end for   
14) ret_value ← SUCCESS； return ret_value；   

5   Performance Evaluation    

In this section, a number of simulations are carried out to evaluate the two algorithms 
proposed in the paper and compare them in several aspects. Three performance met-
rics are used to capture there aspects of real-time fault-tolerant scheduling. The first 
metric is Reliability Costs, defined in (3); The second one is Schedulability, defined to 
be the minimal number of processors(MNP) required by a certain number of tasks. In 
order to comprehensively measure the performance of our algorithms, we introduce a 
new metric, Performability, defined to be the product of the Schedulability and Reli-
ability Costs. Formally: 

Performability(Γ, BΓ, Ω)=Schedulability× Reliability Costs(Γ, BΓ, Ω) 
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Here, Schedulability is the MNP of a set of primary copy Γ along with its corre-
sponding backup copy set BΓ scheduled by any algorithms proposed above. Reliabil-
ity Costs is obtained by a scheduling Γ and BΓ on MNP processors. Clearly, the 
smaller Performability, the better overall performances. 

Our simulations are presented for large task sets with periodic tasks which are gen-
erated according to following parameters: 

1) Periods of tasks (Ti)—a value generated randomly distributed in [0,500]; 
2) Execution time of any task on any processor(C[i, j])—a value taken from a random 

distribution in the interval 0<C[i, j]≤αTi, parameter α= 
1,..., , 1,...,

max [ , ]
= =

i
i N j M

C i j T , 

which represents the maximum load occurring in the task set on all processors. 
Three values are chosen for α, namely, 0.2,0.5, and 0.8.  

3) Size of any task set(L)—a value selected from a specific set, namely, [200, 400, 
600, 800, 1000].  

Besides, for the heterogeneous systems, the failure rate(FR) for each processor is 
uniformly selected between the range 0.95 to 1.05*10-6/hour(10-4)[11]. 

5.1   Reliability   

In this experiment, the Reliability Costs of the two algorithms are evaluated. Fig.1 
displays the Reliability Costs obtained by two algorithms as a function of size of task 
set. The number of processor (Processor_Num) is in proportional to the size of task 
set. Formally: 

Processor_Num =  (L*15)/200  

    From Fig.1, it is clear that all values of Reliability Costs increase as L increase, as 
expected. For fixed task set, Reliability Costs also increase as α increase. This is 
because the bigger L or α, the more computation time are needed; therefore, the Reli-
ability Costs increase. Most importantly, it is observed that RDFTAHS performs 
better NRFTAHS, in terms of reliability costs.  

5.2   Schedulability   

Another important metric for real-time fault-tolerant scheduling algorithms is Sched-
ulability. Here, the Schedulability is defined as the minimal number of proces-
sors(MNP) to which all tasks, together with their corresponding backup copy, can be 
scheduled to finish before their specific deadlines. Therefore, we devise an algorithm, 
called Find Minimal Number of Processors, to find the MNP of a give task set[13]. 
     Fig.2 illustrates the simulation results. Actually, RDFTAHS requires only one 
more processor than NRFTAHS in most cases. This result indicates that NRFTAHS is 
a little inferior to RDFTAHS. 

5.3   Performability 

In order to compare the overall performance, the third experiment is carried out to 
compare the two algorithms in terms of Performability.  
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Fig. 1. Comparison of the Reliability Costs between NRFTAHS and RDFTAHS.  
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Fig. 2. Comparison of the MNP between NRFTAHS and RDFTAHS.  
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Fig. 3. Comparison of the Performability between NRFTAHS and RDFTAHS  

Fig.3. reveals the Performability as a function of the size of task set. The number of 
processors used for each task set is MNP obtained in the previous experiment. As can 
be observed,  RDFTAHS outperforms NRFTAHS considerably.  
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6   Conclusions     

In this paper, we developed two real-time fault-tolerant scheduling algorithms for 
heterogeneous distributed systems and conduct extensive simulations about them in 
several aspects.Future studies in this area are two folders. First, we intend to study 
more efficient scheduling algorithms in the context of heterogeneous distributed sys-
tems. Second, we plan to extend our scheduling algorithms by incorporating prece-
dence constrains and communication heterogeneities in distributed systems. 
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