
L.T. Yang et al. (Eds.): ATC 2006, LNCS 4158, pp. 571 – 580, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Fault-Tolerant Scheduling Based on Periodic
Tasks for Heterogeneous Systems

Wei Luo1, Fumin Yang1, Liping Pang1, and Xiao Qin2

1 School of Computer Science, HuaZhong University of Science and Technology,
Wuhan 430074, P.R. China

free_xingezi@163.com,yangfm@routon.com,lppang@hust.edu.cn
2 Department of Computer Science, New Mexico Institute of Mining and Technology,

Socorro, New Mexico, 87801-4796, USA
xqin@cs.nmt.edu

Abstract. Most existing real-time fault-tolerant scheduling algorithms for het-
erogeneous distributed systems can achieve high reliability for non-preemptive
and aperiodic tasks. However, the existing scheduling algorithms assume that
status of each backup copy is either active or passive. To remedy this defi-
ciency, we propose a novel reliability model tailored for preemptive periodic
tasks. Next, we develop two real-time fault-tolerant algorithms (NRFTAHS and
RDFTAHS) for heterogeneous distributed systems. NRFTAHS manages to as-
sign tasks in a way to improve system schedulabilties, whereas RDFTAHS aims
at boosting system reliability without adding extra hardware. Unlike the exist-
ing scheduling schemes, our algorithms consider backup copies in both active
and passive forms. Therefore, our approaches are more flexible than the alterna-
tive ones. Finally, we quantitatively compare our schemes with two existing al-
gorithms in terms of performability measured as a function of schedulability
and reliability. Experiments results show that RDFTAHS substantially im-
proves the overall performance over NRFTAH.

1 Introduction

With the development of high speed network and high performance computers, hetero-
geneous distributed systems have been widely applied for critical real-time systems, in
which real-time and fault-tolerant abilities are two indispensable requirements.

To exploit high performances for real-time heterogeneous systems, much attention
has been paid to real-time scheduling algorithms in context of heterogeneous systems.
Ranaweer and Agrawal developed a scheduling scheme named SDTP for heterogene-
ous systems. Reliability costs was factored in some scheduling algorithms for tasks
with precedence constrains [2][3]. Although schedulability is a main objective of
these scheduling algorithms, the algorithms neither consider timing constraints nor
support fault-tolerance. In addition, reliability models in these studies are geared to
handle aperiodic, non-preemptive tasks.

Fault-tolerance, an inherent requirement of real-time systems, can be achieved in
several approaches. One efficient fault tolerant technique, of course, is scheduling
algorithms, among which the Primary-backup scheme plays an important role. In this
approach, two versions of one task are scheduled on two different processors and an

572 W. Luo et al.

acceptance test is used to check the correctness of schedules [4,5,6]. The three
variants of this scheme include active backup copy[4], passive backup copy[5], and
primary backup copy overlapping[6]. Generally speaking, backup copy is always
preferred to be executed as passive backup copy, because it can take the advantages of
backup copy overloading and backup copy de-allocation technique to improve sched-
ulability[4,5]. Primary backup copy overlapping technique is a tradeoff technique
between the other two and can exploit the advantages of both the other two
approaches[6].

Both active backup copies and passive backup copies have been incorporated into
the Rate-Monotonic First-Fit assignment algorithm to provide fault-tolerance[7]. This
scheme overcomes the drawbacks of timing constraints on backup copies to some
extends. However, this scheduling algorithm neither considers heterogeneous systems
nor takes system reliability into account.

Qin et. al. extensively studied real-time fault-tolerant scheduling algorithms based
on heterogeneous distributed systems[8,9,10]. However, theses algorithms assume
that status of each backup copy is either active or passive. Moreover, they only con-
sider non-preemptive and aperiodic tasks.

Although numerous algorithms have been developed with respect to real-time fault-
tolerant scheduling for distributed systems, to the best of our knowledge no work has
been done on reliability-driven real-time fault-tolerant scheduling tailored for periodic
tasks for heterogeneous distributed systems. In this study, a novel reliability model for
real-time periodic tasks is proposed by extending the conventional reliability model
designed for aperiodic tasks. In our approach, the primary backup copy approach is
leveraged to tolerate single processor failures. Furthermore, two real-time fault-
tolerant algorithms are devised for heterogeneous distributed systems. The first algo-
rithm named NRFTAHS aims at assigning tasks in a way to improve schedulabilty of
system, while the second algorithm termed as RDFTAHS employs the reliability
measure as a major objective for scheduling real-time tasks. To quantify the combined
metric of schedulability and reliability, the Performability measure is introduced.
Finally, simulation experiments were conducted to compare the two algorithms in
several aspects. The experiments results indicate that RDFTAHS performs signifi-
cantly better than NRFTAHS with respect to reliability with marginal degradation in
schedulability and, therefore, RDFTAHS substantially improves the overall perform-
ance over NRFTAH.

The paper is organized as follows: In section 2, a system model and assumptions
are presented. Section 3 proposes reliability model for periodic tasks. Two novel real-
time fault-tolerant scheduling algorithms are outlined in Section 4. Simulation ex-
periments and performance analysis are presented in section 5. Finally, Section 6
concludes the paper by summarizing the main contribution of this paper and com-
menting on future directions of this work.

2 Systems Model

Our paper considers a typical heterogeneous distributed systems consisting of a set of
tasks and a set of processors which are characterized as follows.

 Fault-Tolerant Scheduling Based on Periodic Tasks for Heterogeneous Systems 573

 A set of processors

Ω = {p1, p2,…, pM}
R = (λ1,λ2,…,λM)

Here, Ω is the processor set, pi is the i-th processor and M is the total number of
processor. All processors in the heterogeneous systems are connected by high-speed
network. In this model, processor failures are assumed to be independent, and follow
a Poison Process with a constant failure rate. R denotes the failure rates vector,
wherein λi is the failure rate of pi.

 A set of primary copy of real-time tasks
Γ = {τ 1 ,τ 2 ,τ 3 ,…,τ N}
 τi = (Ci , Ti) (i = 1,2,…,N)

 Here, Γ is the set of tasks, τi is the i-th task, and N is the number of tasks which are
periodic, independent and preemptive. Ci denotes an execution time vector:
Ci = [c(i,1), c(i,2),…,c(i,M)]. Where c(i, j) denotes the execution time of taskτi on
processor pj. Ti denotes the period of τi.

 A set of backup copy of real-time tasks

BΓ = {β 1 , β 2 , β 3 ,…,β N }
βi = (Di , Ti) i = 1,2,…,N

Here, BΓ is the set of backup copy of real-time tasks Γ. βi is the corresponding
backup copy of τi. Hence, Di is the execution time vector of βi. In our mode, it is as-
sumed that backup copy and primary copy of a task are completely identical, that is:
Di = [c(i,1), c(i,2),…,c(i,M)]. Correspondently, Ti denotes the period of βi.

In our system model, as in [7], the backup copy has two statuses: passive backup-
copy and active backup copy. When we assign a task, we assign its primary copy
before assigning the backup copy. The status of backup copy is determined by the
following:

()

 () ()

i ij ik
i

i ij ik

i j i k

passive T R D
Status

active T R D

where P P and P P

− >⎧
=⎨ − ≤⎩

= =

β

τ β
 (1)

Here, Rij denotes the WCRT(worst case response time) of τi which is assigned to Pj.
For ease of presentation, γi represents a primary copy or a backup copy, namely, γi =τi

or βi.
To concentrate on our concerned problems, we make the following assumptions

about failure characteristic of the hardware:

1. Hardware provides fault isolation mechanism, that is a faulty processor cannot
cause incorrect behaviors in a non-faulty processors;

2. Processors fail in a fail-stop manner, which means a processor is either operational
or cease functioning;

3. The failure of a processor is detected by the remaining ones within the closest
completion time of a task scheduled on the faulty processor.

574 W. Luo et al.

3 Reliability Model Based on Periodic Tasks

In this section, we attempt to address the issue of reliability for periodic tasks in het-
erogeneous systems. In [2], reliability is defined as the probability that the system can
run an entire task set successfully. Furthermore, the definition of reliability costs is
proposed. However, the definition of reliability costs is based on aperiodic, non-
preemptive tasks set which is not applicable for periodic, preemptive tasks set. Be-
cause, usually, the periodic tasks will run periodically and will not cease until we
force it to or external events. To solve this issue, we firstly analyze the characteristics
of periodic tasks and the failure characteristic of heterogeneous processors, and then a
definition of reliability costs based on periodic, preemptive tasks set is investigated.
 It is worth noting that not only the periodic tasks are periodic in nature, but also
the behavior of real-time tasks set as whole is periodic. The hyperperiod H can be
seen as the period of the tasks set. H is defined as the least common factor of periods
of all tasks sets, namely, H = lcm{Ti|τi ∈Γ}).

It is also noted that the processor failures are assumed to be independent and fol-
low a Poisson Process with a constant failure rate. Moreover, because the Poisson
Process is a stable incremental process, the processors have equal fault probability
during any equal time interval on the same processor. Thus, we can study the reliabil-
ity of tasks set in a hyperperiod as the metric of reliability of the system.
 To simplify our discussion without losing generality, we have the following
assumptions:

1. If a processor fails when it is period, the failed processor will be replaced by a
spare processor immediately. So, we do not consider it as a critical failure.

2. If a processor fails while the processor is working, we can use a spare processor
and certain processor replacing mechanism(e.g., FTRMFF-Replacing presented in
[7]) to recover the system to the non-faulty state after some time.

With the above two assumptions along with the single processor failure assump-
tion, we can safely only consider the system reliability in fault-free scenario.
Moreover, we only need to consider the effects of processors failure on tasks while
processor is working. Therefore, we can redefine the system reliability based on peri-
odic task set as the probability of system can run the entire task set in a hyperperiod
while no critical failure occurs. Thus,

(i)=

* * * *

=1 () ()

= exp (- ([,] + [,]))
i k i k

Status activeM

k k
i i

k P P P P

H HReliability C i k D i kT T
= =

∑ ∑ ∑
β

τ τ
λ λ (2)

 (i)=

=1 () ()

[,] [,]= exp(- * (+))
= =

∑ ∑ ∑
i k i k

Status activeM

k
i i

k P P P P

C i k D i kH T T

β

τ τ
λ

According to the above definition of reliability, we can derive the definition of reli-
ability costs based on our system model as.

Definition 1. When we assign both primary copy set Γ and backup copy set BΓ of a
set of real-time tasks on a set of heterogeneous processors Ω. The system Reliability-
Costs is defined as follows:

 Fault-Tolerant Scheduling Based on Periodic Tasks for Heterogeneous Systems 575

 (i)=

=1 () (i)

[,] [,]e (, ,)= (+)
i k k

Status activeM

k
i i

k P P P P

C i k D i kR liability Costs B T T

β

τ β
Γ Γ λ

= =

Ω ∑ ∑ ∑ (3)

Clearly, in order to increase the reliability of system we have to reduce the reliability
costs as much as possible. The first item in the parentheses of (2) denotes the unreli-
ability contributed by primary copy on their corresponding processors, while the sec-
ond item is due to the active backup copy. This inspires us that allocating primary
copy and active backup copy with greater load to more reliable processors might be
good heuristic to decrease the reliability costs. Moreover, it is highly desirable to
make as many backup copies as possible to be executed as passive status. Because, on
one hand, it can increase the system schedulability, and can decrease the reliability
costs on the other hand.

4 Proposed Scheduling Algorithms

In this section, we propose two algorithms for scheduling periodic tasks set along
with their corresponding backup copy on a heterogeneous distributed system. The
objective of the first algorithm, NRFTAHS, is to maximize the schedulability of the
system and does no take reliability into account. By contrast, the other one,
RDFTAHS, tries to minimize the total reliability costs of the system while retaining
the schedulability of the system.

As [7], before task copies are assigned, both primary copy and backup copy are
ordered by increasing period to simplify our algorithm. Thus, tasks are assigned to
processors following the order:

 τ 1 ,β 1 ,τ 2 ,β 2 , …,τ N ,β N (4)

4.1 NRFTAHS

The main objective of the NRFTAHS is to maximize the schedulability of the system.
The gists of NRFTAHS are:

1. Try to assign primary copy to a processor on which the execution time is shortest.
2. Try to schedule backup copy as a passive copy whenever possible.
3. If a backup copy has to be scheduled as an active backup copy, the algorithm

endeavors to assign backup copy to processor on which the execution time is
minimal.

Before presenting our algorithm, an execution time order vector for each task is in-
troduced.

Definition 2. Given a set of real-time tasks Γ and a set of processors Ω. An execution
time order vector for each task τi is defined as exec_order(i) = [eti1,et i2,…,etiM], where
etij (1≤j≤ M) is the processor number. exec_order(i) is sorted in the order of non-
decreasing execution time of τi on processor set Ω, namely:

[1,], , [1,]: (([,et] [,et]))ij iki N j k M j k C i C i∀ ∈ ∀ ∈ < → ≤

576 W. Luo et al.

 The algorithm NRFTAHS is described as follow:

Algorithm: NRFTAHS
1) Initialization: reorder primary and backup copies following decreasing RM priori-

ties as (4)； generate execution time vector Exec_order(i) of each task i;
2) for i ←1,2,…, N do /* allocating processor to both primary and backup copies of
N tasks*/
3) found_active ← FALSE；
4) for k ← 1, 2, …, M do
5) for s←1, 2, …, M, s≠k do

Step 5.1: Check the schedulability ofτi andβi on processor exec_orer[i, k] and
exec_orer[i, k], respectively. Determine the status of βi according to (1);

 Step 5.2: If bothτi and βi can successfully scheduled on processor exec_orer[i, k]
and processor exec_orer[i, s] respectively, and status(βi) = passive, then go to (2);

Step 5.3: if both τi and βi can successfully scheduled on processor exec_orer[i, k]
and processor exec_orer[i, s] respectively, status(βi) = active and found_active =
FALSE, then found_active←TRUE, save the processor exec_orer[i, k],
exec_orer[i, s] number to temporary variable；

6) end for
7) end for
8) if (found_active = TRUE)
9) Set P(τi), P (βi) to the processor recorded in step 5)；
10) else
11) ret_value ← FAIL; return ret_value;
12) end if
13) end for
14) ret_value ← SUCCESS return ret_value；

4.2 RDFTAHS

RDFTAHS consider the heterogeneities of reliability costs, thereby improving the
reliability of the system without extra hardware costs. The objective of RDFTAHS is
to minimize the reliability costs. The gists of NRFTAHS are:

1. Try to assign primary copy to a processor on which the reliability cost is minimal.
2. Try to schedule backup copy as a passive copy whenever possible.
3. If a backup copy has to be scheduled as an active backup copy, the algorithm en-

deavors to assigned backup copy to processor on which the reliability costs is
minimal.

 Before presenting our algorithm, A reliability costs vector is defined.

Definition 3. Given a set of real-time tasks Γ, corresponding backup copy BΓ and a
set of processors Ω. A reliability costs vector ofτi and βi is defined as RCVi = [rcvi1,
…, rcviM], where rcvij = (rcij, ρij). rcvij is derived from vector Ci and Ω. Namely, rcij =
(C[i, ρij]/Ti)×λρij. Elements in RCVi is sorted in order of non-decreasing reliability
costs, namely:

ij ik[1,], , [1,]: ((rc rc))i N j k M j k∀ ∈ ∀ ∈ < → ≤ ;

 Fault-Tolerant Scheduling Based on Periodic Tasks for Heterogeneous Systems 577

The algorithm RDFTAHS is described as follow:
Algorithm: RDFTAHS
1) Initialization: reorder primary and backup copies following decreasing RM priori-
ties as (4);generate execution time vector exec_order(i) and reliability costs vector
RCVi for each task i;
2) for i ←1, 2, ……N do
3) found_active←FALS， tmp_rc←0 ;
4) for k ← 1, 2, …,M do
5) for s←1, 2, ……M, s≠k do

Step 5.1: Assign primary copy τi to processor RCVi.ρik, which follows the order
defined by reliability costs vector. Assign backup copy βi to processor
exec_order(i, s), which follows the order defined by execution time order vector;
Status of βi is determined by (1)；

 Step 5.2: if both τi and βi are schedulable, and status(βi) = passive, then assignτi
and βi to processor RCVi.ρik and Exec_order(i, s), respectively; go to (2)；

 Step 5.3: if both τi and βi are schedulable, and status (βi) = active;
Step 5.3.1: if found_active = FALSE, then calculate the reliability costs of βi on

processor exec_order(i, s), tmp_rc; found_active ← TRUE ; save processor
RCVi.ρik and exec_order(i, s) to temporary variable.

Step 5.3.2: if found_active = TRUE, and the reliability costs of βi on processor
exec_order(i, s) is smaller than tmp_rc, then set tmp_rc ← reliability costs of
βi on processor exec_order(i, s); save processor RCVi.ρik and exec_order(i, s)
to temporary variable;

6) end for
7) end for
8) if (found_active = TRUE)
9) Set P(τi) and P(βi) with the processor number saved at Step 5.3; Set status(βi)

←active；
10) else ret_value ← FAIL; return ret_value;
12) end if
13) end for
14) ret_value ← SUCCESS； return ret_value；

5 Performance Evaluation

In this section, a number of simulations are carried out to evaluate the two algorithms
proposed in the paper and compare them in several aspects. Three performance met-
rics are used to capture there aspects of real-time fault-tolerant scheduling. The first
metric is Reliability Costs, defined in (3); The second one is Schedulability, defined to
be the minimal number of processors(MNP) required by a certain number of tasks. In
order to comprehensively measure the performance of our algorithms, we introduce a
new metric, Performability, defined to be the product of the Schedulability and Reli-
ability Costs. Formally:

Performability(Γ, BΓ, Ω)=Schedulability× Reliability Costs(Γ, BΓ, Ω)

578 W. Luo et al.

Here, Schedulability is the MNP of a set of primary copy Γ along with its corre-
sponding backup copy set BΓ scheduled by any algorithms proposed above. Reliabil-
ity Costs is obtained by a scheduling Γ and BΓ on MNP processors. Clearly, the
smaller Performability, the better overall performances.

Our simulations are presented for large task sets with periodic tasks which are gen-
erated according to following parameters:

1) Periods of tasks (Ti)—a value generated randomly distributed in [0,500];
2) Execution time of any task on any processor(C[i, j])—a value taken from a random

distribution in the interval 0<C[i, j]≤αTi, parameter α=
1,..., , 1,...,

max [,]
= =

i
i N j M

C i j T ,

which represents the maximum load occurring in the task set on all processors.
Three values are chosen for α, namely, 0.2,0.5, and 0.8.

3) Size of any task set(L)—a value selected from a specific set, namely, [200, 400,
600, 800, 1000].

Besides, for the heterogeneous systems, the failure rate(FR) for each processor is
uniformly selected between the range 0.95 to 1.05*10-6/hour(10-4)[11].

5.1 Reliability

In this experiment, the Reliability Costs of the two algorithms are evaluated. Fig.1
displays the Reliability Costs obtained by two algorithms as a function of size of task
set. The number of processor (Processor_Num) is in proportional to the size of task
set. Formally:

Processor_Num = (L*15)/200

 From Fig.1, it is clear that all values of Reliability Costs increase as L increase, as
expected. For fixed task set, Reliability Costs also increase as α increase. This is
because the bigger L or α, the more computation time are needed; therefore, the Reli-
ability Costs increase. Most importantly, it is observed that RDFTAHS performs
better NRFTAHS, in terms of reliability costs.

5.2 Schedulability

Another important metric for real-time fault-tolerant scheduling algorithms is Sched-
ulability. Here, the Schedulability is defined as the minimal number of proces-
sors(MNP) to which all tasks, together with their corresponding backup copy, can be
scheduled to finish before their specific deadlines. Therefore, we devise an algorithm,
called Find Minimal Number of Processors, to find the MNP of a give task set[13].
 Fig.2 illustrates the simulation results. Actually, RDFTAHS requires only one
more processor than NRFTAHS in most cases. This result indicates that NRFTAHS is
a little inferior to RDFTAHS.

5.3 Performability

In order to compare the overall performance, the third experiment is carried out to
compare the two algorithms in terms of Performability.

 Fault-Tolerant Scheduling Based on Periodic Tasks for Heterogeneous Systems 579

Size of Task set,L

Fig. 1. Comparison of the Reliability Costs between NRFTAHS and RDFTAHS.

Size of Task set,L

M
N

P

Fig. 2. Comparison of the MNP between NRFTAHS and RDFTAHS.

Size of Task set,L

Pe
rf

or
m

ab
ili

ty

Fig. 3. Comparison of the Performability between NRFTAHS and RDFTAHS

Fig.3. reveals the Performability as a function of the size of task set. The number of
processors used for each task set is MNP obtained in the previous experiment. As can
be observed, RDFTAHS outperforms NRFTAHS considerably.

580 W. Luo et al.

6 Conclusions

In this paper, we developed two real-time fault-tolerant scheduling algorithms for
heterogeneous distributed systems and conduct extensive simulations about them in
several aspects.Future studies in this area are two folders. First, we intend to study
more efficient scheduling algorithms in the context of heterogeneous distributed sys-
tems. Second, we plan to extend our scheduling algorithms by incorporating prece-
dence constrains and communication heterogeneities in distributed systems.

References

1. S. Ranaweera, and D.P. Agrawal. Scheduling of Periodic Time Critical Applications for
Pipelined Execution on Heterogeneous Systems. In Proceeding of the 2001 International
Conference on Parallel Processing, Spain, 2001

2. S. Srinivasan, and N.K. Jha. Safety and Reliability Driven Tasks Allocation in distributed
Systems. IEEE Trans. Parallel and distributed systems, 10: 238-251, 1999

3. A. Dogan, and F. Ozguner. Reliable matching and scheduling of precedence-constrained
tasks in heterogeneous distributed computing. In Proceeding of 29th International Confer-
ence on Parallel Processing, Spain, 2001.

4. C.H. Yang, G. Deconinck, and W.H. Gui, Fault-tolerant scheduling for real-time embed-
ded control systems. Journal of Computer Science and Technology, 19:191-202, 2004.

5. H. Liu, and S.M. Fei. A Fault-Tolerant Scheduling Algorithm Based on EDF for Distrib-
uted Control Systems. Chinese Journal of Computers, 14:1371-1378, 2003.

6. A.l. Omari R, A.K. Somani, and G. Manimaran. An adaptive scheme for fault-tolerant
scheduling of soft real-time tasks in multiprocessor systems. Journal of Parallel and Dis-
tributed Computing, 65: 595-608, 2005.

7. A.A Bertossi, L V Mancini, and F. Rossini. Fault-tolerant rate-monotonic first-fit schedul-
ing in hard-real-time systems. IEEE Trans. Parallel and Distributed Systems, 10: 934-945,
1999.

8. X. Qin, Z.F Han, and L.P Pang. Towards Real-time Scheduling with Fault-tolerance in
Heterogeneous Distributed Systems. Chinese Journal of Computers, 25: 121-124, 2002.

9. X Qin, and J. Hong, Dynamic, Reliability-driven Scheduling of Parallel Real-time Jobs in
Heterogeneous Systems. In Proceeding of the 2001 International Conference on Parallel
Processing, Spain, 2001.

10. X.Qin, J. Hong, and R.S. David, An Efficient Fault-tolerant Scheduling Algorithm for
Real-time Tasks with Precedence Constraints in Heterogeneous Systems. In Proceeding of
the 31st International Conference on Parallel Processing (ICPP), Canada, 2002.

	Introduction
	Systems Model
	Reliability Model Based on Periodic Tasks
	Proposed Scheduling Algorithms
	NRFTAHS
	RDFTAHS

	Performance Evaluation
	Reliability
	Schedulability
	Performability

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

