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Abstract. The paper describes a decentralized peer-to-peer multi-agent
learning method based on inductive logic programming and knowledge
trading. The method uses first-order logic for model representation. This
enables flexible sharing of learned knowledge at different levels of abstrac-
tion as well as seamless integration of models created by other agents.
A market-inspired mechanism involving knowledge trading is used for
inter-agent coordination. This allows for decentralized coordination of
learning activity without the need for a central control element. In ad-
dition, agents can participate in collaborative learning while pursuing
their individual goals and maintaining full control over the disclosure of
their private information. Several different types of agents differing in the
level and form of knowledge exchange are considered. The mechanism is
evaluated using a set of performance criteria on several scenarios in a
realistic logistic domain extended with adversary behavior. The results
show that using the proposed method agents can collaboratively learn
properties of their environment, and consequently significantly improve
their operation.

1 Introduction

There are two different perspectives from which learning in multi-agent systems
can be viewed. The first, perhaps the more pragmatic one views multi-agent
systems as a possible tool for solving complex learning problems. The second
perspective is driven by the understanding that adaptivity is one of the fun-
damental properties of any intelligent system. This perspective then considers
machine learning as a set of techniques using which intelligent agents and multi-
agent systems can adapt in changing environments. Although quite different
at the first sight, each emphasizing different priorities and seemingly different
goals, both perspectives should ultimately lead to similar core principles and
techniques, and should be therefore viewed as dual rather than conflicting.

This is exactly the case with the collaborative learning mechanism described in
this article. Although primarily designed to equip multi-agent systems with adap-
tation abilities, it could be also used as a distributed machine learning algorithm.
The algorithm combines first-order logic as a basis for knowledge representation
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and learning with market principles for decentralized inter-agent coordination. Al-
together, the method addresses some of the difficult challenges posed by learning
in the multi-agent environment, including the distribution of learning sub-tasks,
inter-agent communication, and the coordination of the learning activity.

The proposed method has been implemented within the cognitive-reflective
agent framework [1]. In this framework, learned models are represented as en-
capsulated components that can be integrated with agent’s reasoning layer in
a plug-and-play manner. This offers several important advantages. The learned
theory can be immediately operationalized in guiding agent’s behavior. Second,
the theory or its parts can be easily exchanged between agents. Finally, agents
can rapidly reconfigure their reasoning to match the characteristics of the chang-
ing environment.

1.1 Structure of the Paper

In Section 2, we review some of the existing work relevant to our multi-agent
learning method. Section 3 then introduces inductive logic programming, which
forms the basis of our approach. The proposed collaborative multi-agent learning
method based on knowledge trading is described in Section 4. Section 5 evaluates
the method on a set of scenarios and discusses the obtained experimental results.
Finally, we summarize our work in Section 6.

2 Survey of Existing Work

In this section, we give a brief overview of existing work on multi-agent machine
learning and its application to distributed data mining. As our method builds
strongly on logic- and market-based approaches, we examine both of them in
greater detail.

2.1 Machine Learning in Multi-Agents Systems

The majority of research on learning in multi-agent systems focuses on reactive
reward-based approaches and their application to inter-agent coordination [2].
Considerably less work exists on higher-level concept learning and the role of
explicit inter-agent communication in multi-agent learning. Panait and Luke [3]
present an exhaustive review of cooperative methods for multi-agent learning.
They discuss the role of communication in learning, distinguishing between direct
and indirect communication.

Weiss [4] proposes a classification scheme distinguishing between three classes
of multi-agent learning mechanisms, depending on the amount of cooperation
among agents: multiplication, division and interaction. In Weiss’es classification,
the collaborative method presented in this papers uses the interaction mecha-
nism. In contrast to the division mechanism which only allows the exchange of
raw training examples (see also coactive learning [5]), interaction mechanisms
involve higher-level exchange of models created during learning. Apart from
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potentially speeding up the learning process, this has an additional significant
benefit of protecting the privacy of individual agents, and is therefore crucial in
domains where agents have private data sources.

2.2 Logic-Based Learning in Multi-Agent Systems

Kazakov [6] discusses the application of ILP for single-agent learning in the multi-
agent setting. Agents individually learn the properties of the environment using
a Progol ILP system. In contrast to our approach, no communication between
agents takes place.

Hernandez [7] discusses the application of the first-order decision tree induc-
tion system ACE to learn about the applicability of plans in the BDI architecture.
There is no inter-agent communication beyond plain observation exchange and
the learning system is not integrated into agent’s reasoning architecture.

Alonso [8] advocates the application of ILP and other logic-based techniques
for learning in complex multi-agent domains such as conflict simulations.

2.3 Market-Based Approaches to Learning

Market-based techniques have become a popular approach to coordination in
multi-agent and multi-robot systems. However, there is currently only a very
limited work on the application of such techniques to multi-agent learning. A
notable exception is the work by Wei et al. [9] presenting a market mechanism
for the aggregation of the output of multiple learning agents.

2.4 Distributed Data Mining

Distributed data mining is an important application area for the proposed method
and multi-agent learning techniques in general. Data mining [10] is concerned with
the analysis of possibly massive amounts of data. Various distributed data mining
methods [11,12,13] have been proposed to address the scalability issues limiting
the applicability of centralized data mining techniques. Klusch et al. [14] analyze
the benefits of the multi-agent approach to distributed data mining, especially
in open, heterogeneous environments with plurality of different data sources and
data mining methods.

3 Inductive Logic Programming

In this section, we introduce inductive logic programming which forms the basis
of our multi-agent learning method. Inductive Logic Programming (ILP) [15]
systems fall into the category of machine learning algorithms. They use domain-
specific background information, encoded by means of a predicate logic theory,
and pre-classified sample data in the form of first-order ground facts, to construct
a predicate logic theory for deriving data classification. In most cases, the first-
order logic language for expressing both the background theory and the learned
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theories is constrained to a list of Horn clauses, i.e., to the grammar of Prolog
programs. In our implementation, the quality of created theories is evaluated
using F1 measure [16].

ILP is a suitable learning method for the use in multi-agent systems (e.g. [6])
because it represents both the input to the learing process, i.e., the examples
and the background knowledge, as well the output learned theory in first-order
logic (or in its Horn fragment). Due to the expressivity and the well-defined
semantics of first-order representations, learned models can be easily exchanged
among agents and reused in agent’s further learning or reasoning processes. This
feature of ILP is particularly important for collaborative multi-agent learning.

In our case, the sets of positive and negative examples are agents’ observations
classifying situations occurring in agent’s environment. The objective of learning
is to create a model which can predict these classifications. Background theory
B contains agent’s common knowledge including the knowledge describing the
context (i.e., relational and temporal properties) of training examples. In addi-
tion, individual Horn rules in the created theory are assigned weights specifying
how many positive and negative observations they cover. These weights are then
used during situation classification to get finer than just binary classification.

4 Collaborative Learning with Knowledge Trading

In this section, we describe our collaborative learning method based on knowl-
edge trading. On the single-agent level, the mechanism uses ILP as an inductive
method for generating predictive models from examples (observations) an agent
receives. On the inter-agent level, the ILP is complemented with a trading mech-
anism through which agents can trade observations and (sub-)theories. Agents
in the system differ with respect to whether they create models and whether and
how they trade them with others.

4.1 Knowledge Trading Protocol

Interaction between agents in the system is governed by a variant of the Contract-
Net-Protocol (Figure 1). The seller, i.e., the agent offering its theory, sends Call-
for-Proposal messages containing the meta-description of its theory to other
agents. The meta-description contains the information used to calculate the F1
measure, i.e., the number of covered positive and negative examples, and the
number of all positive examples in the training set.

Each recipient, i.e., a potential buyer evaluates the offered theory and, if
it finds the theory useful, replies with a meta-description of the knowledge it
wants to offer in exchange. The knowledge offered can be either a set of recipi-
ent’s observations (i.e., a training set and a background knowledge) or its own
generalized theory. Note that agents are not allowed to resell knowledge acquired
from other agents.

Next, the seller evaluates received proposals and selects the sellers that have
proposed attractive knowledge. It then sends them the accept message with its
theory and receives the proposed knowledge as a reply.
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Fig. 1. The knowledge trading protocol used in the collective learning

4.2 Agent Classification

A range of collaborative learning agents can be implemented using the above
trading protocol. In order to categorize them, we introduce several agent classi-
fication properties:

learning: an agent is called learning if it creates its own theory; otherwise it is
called non-learning

offering: learning agents can be further classified as offering or non-offering
depending on whether or not they actively offer the learned model (i.e.,
whether they can play the role of the provider in the trading protocol)

trading: an agent is called trading if it participates in knowledge barter when
asked by an offering agent; otherwise it is called non-trading; furthermore,
an agent can either trade rules or raw observations

Table 1 summarizes possible types of agents under the proposed classification
schema.

4.3 Types of Agents

Not all possible types of agents are used in our collaborative learning mecha-
nism. AD, for example, is a totally non-adaptive agent, and is therefore not an
interesting member of a collaboratively learning agent society. Similarly, agent
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Table 1. Types of agents that can be implemented based on the three introduced
classification properties: learning, offering and trading

Types of Non-Trading Trading

Agents Observations Rules

Non-Learning AD AL N/A

Learning Non-Offering AS AO− AR−

and Offering AP AO AR

AP never participates as a recipient in a knowledge barter. Although its behavior
might be interesting in some heterogeneous societies, it is currently not used in
our system. Finally, as preliminary tests with the agents of type AO− and AR−

have not yield good results, the agents have been excluded from experiments
discussed in this paper.

The remaining agent types (AS , AO , AR , and AL ) have been experimen-
tally evaluated and are described in greater detail below. Experimental results
involving these agents are then provided in Section 5.

AS – Simple Agent. does not communicate with other agents and therefore
does not participate in the collaborative learning process. The agent learns in
isolation, creating its own theory based solely on its own observations. It is
therefore expected to converge more slowly to a target theory than collaborative
agents. It has been implemented for comparison purposes only.

AO – Observation-BasedAgent. offers its created theory for trading and buys
theories offered by other agents in exchange for its observations. It buys theories
of all sizes (i.e., even theories covering only a small number of positive examples),
however, in exchange it offers only a subset of its observations covering the same
number of positive examples as the theory bought does. The agent thus uses the
number of covered positive examples as the measure of theory quality. This is an
appropriate choice in the domain considered (see Section 5.2) as observations rep-
resenting positive examples contain the most valuable knowledge. In other do-
mains, a different theory quality measure can be more suitable.

AR – Rule-BasedAgent. trades theories for theories, both as the offering agent
or as the recipient in a knowledge barter. In both cases, it accepts all theories that
are better than its own. Theories worse than its own theory are accepted only with
the probability equal to the ratio between the quality of the offered theory and the
quality of agent’s own theory (which is always lower than 1).

Bought theories are appended to agent’s own theory, and the positive examples
covered by the newly acquired theory are removed from agent’s observation set.
The ILP learning algorithm is subsequently invoked to derive a theory covering
only the remaining, uncovered observations. This significantly speeds up the
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learning process because the time complexity of ILP grows exponentially with
the size of the training set.

Communication bandwidth required by rule-based agents is significantly lower
than the bandwidth needed by observation-based agents. This is due to compres-
sion performed by the inductive learning algorithm: in most cases, the size of
the generalized model is significantly smaller than the size of the training set
from which it was generated.

AL – Lazy Agent. does not create a theory on its own. Instead, similarly to AO

agents, it buys other agents’ theories in exchange for its observations. The lazy
agent is very lightweight regarding its computational requirements. However, it
needs higher communication bandwidth to communicate its observations.

5 Experiments

This section describes the empirical tests we have conducted to evaluate the
performance of the proposed collaborative learning mechanism. First, we briefly
outline the implementation of the method and introduce the domain in which
learning takes place. Next, we describe experiments performed involving different
types of agents and collaborative communities. Finally, we present and discuss
the experimental results obtained.

5.1 Reflective-Cognitive Agent Architecture

The proposed learning method has been implemented within the reflective-
cognitive agent architecture, a modular Java-based architecture for the design
and implementation of autonomous intelligent agents [1]. The reflective-cognitive
agent is composed of two parts (Figure 2):

– the reasoning layer implements agent decision-making. The layer is im-
plemented using a modular approach based on the component architecture.
Agent’s reasoning can be reconfigured by adding/removing new reasoning
components in run-time. ILP model is an example of the reasoning module
that can be integrated with the agent reasoning cycle.

– the reflective-cognitive (RC) layer manages the reasoning layer. It im-
plements closed-loop adaptation by monitoring agent’s performance and
modifying the reasoning layer, in order to optimize agent’s operation in the
changing environment. The modification is of agent’s behavior is achieved
through adding, removing and possibly fine-tuning components of the rea-
soning layer. The RC layer can also communicate with other agents’ RC
layers in order to exchange and integrate components created by other RC
agents in the system.

5.2 Domain Description

The domain ACROSS [17] used in the empirical evaluation is a logistic scenario
extended with adversarial behavior. In the domain, truck transporter agents carry
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Fig. 2. The scheme of Reflective-Cognitive agent’s architecture

goods between producers and consumers. The transporter agents are able to form
coalitions in order to improve their chances when competing for transport tasks.

In addition to the transporter agents, adversarial bandit agents that can at-
tack and rob transporter agents are present in the domain. The activity of bandit
agents is not the same everywhere. Instead, each bandit agent has a set of pref-
erences specifying in which areas and under which conditions it attacks. These
preferences are described by a relational theory taking into account the proper-
ties of the road network in the scenario. Bandit agents also have some restric-
tions on the transporter agents and the situations in which they attack (e.g.,
transporters of tribe Northlanders carrying cargo to a location not producing this
cargo). The situation description is the part of the agent’s observations that
do not belong to the training set used for ILP learning. A training example is
generated whenever an agent is robbed (a positive example represented by pred-
icate holdup), or when it safely passes a road (a negative example represented
by predicate noholdup).

In experiments, transporter agents try to learn bandits’ restrictions in order to
operate more safely. Each transporter agent is provided with an ILP system, us-
ing which it generates a theory predicting bandits’ behavior. It does not attempt
to create a theory covering all possible circumstances but only those relevant to
its properties and regions in which it operates (e.g., transporter’s tribe or its
home city’s region).
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5.3 Example

Let us illustrate learning in ACROSS with an example. In this case, a bandit
agent uses the following rule do decide whether or not to attack:

attack(Transporter):-
endCity(Transporter, C1),
cityRegion(C1, ’Central’),
startCity(Transporter, C2),
cityRegion(C2, ’Central’),
notEqual(C1, C2).

This bandit agent attacks only transporter agents carrying goods between two
different cities in the Central region.

Operating in this domain, a transporter agent could learn the following rule1

representing its view of bandit agent’s behavior:

attack(Transporter):-
endCity(Transporter, C1),
cityTribe(C1, ’Midlanders’),
startCity(Transporter, C2),
cityPopulation(C2, ’village’).

On the first sight, the rule learned by the transporter agent looks quite different
to the actual rule guiding the bandit agent’s behavior. However, because of the
fact that most locations in the Central region belong to the Midlanders tribe
(and vice versa), and some locations next to the border of the Central region
are villages, this rule in fact closely approximates the actual behavior of the
bandit agent.

Note that the rule learned by the agent uses variables and a conjunction of
different predicates to concisely express a condition that covers a large number
of specific situations. The same condition would have to be represented as a long
enumeration of specific cases if relational, logic-based learning was not used.

5.4 Experiment Scenario Setup

We have used simple AS , observation-based AO , rule-based AR and lazy
ALagents in our experiments (see Section 4.3 for the detailed description of
agent types). Using these agents, we have designed two sets of scenarios with (i)
homogeneous, and (ii) heterogeneous societies of agents.

Homogeneous society consists of N agents of the identical type. Only learning
agents are considered for homogenous societies as societies consisting of non-
learning agents only would have no adaptation ability, and are thus not interest-
ing for our study. Altogether, we thus have the following three agent societies:

1 This is just an example, the learned model usually consists of several rules of this
kind.
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– SC-1 consists of N simple agents
– SC-2 consists of N observation-based agents
– SC-3 consists of N rule-based agents

Note that while observation-based agents solely share their observations, rule-
based agents share created models, and use them to filter out covered positive
examples from their training sets. As a result, each rule-based agent tries to
cover a different area of the whole learning space. This leads to the emergence
of specialization in the agents, and to a spontaneous decomposition of the learn-
ing task based solely on the decentralized knowledge trading mechanism. In all
these scenarios, we have evaluated average properties over all N participating
agents.

Heterogeneous societies have been used in the second set of experiments. Out
of a number of possible combination, we have decided to evaluate societies con-
sisting of a mixture of observation-based and lazy agents. This decision was
motivated by the need to evaluate the performance trade-offs of lazy agents.
Specifically, we have considered the following two societies:

– SC-4 consists of a single lazy agent and observation-based agents as the rest,
i.e., (N − 1) × AO + 1 × AL

– SC-5 consists of a balanced mixture of lazy and observation-based agents,
i.e., (N/2) × AO + (N/2) × AL

In the both experimental scenarios we have focused on the behavior of lazy
agents.

5.5 Evaluation Criteria

We have measured the following properties:

prediction quality is defined as the number of robberies. This measure shows
the number of agent’s false negative predictions, i.e., how many times a road
classified as safe was not successfully passed.

communication load is measured as the amount of data transferred during
knowledge exchange.

computational load is measured as the amount of CPU time consumed by the
ILP system. This property generally depends on two factors: (i) the number
of ILP invocations, and (ii) the length of each ILP run.

5.6 Results

Let us now present experimental results obtained on the described scenarios
using the above defined evaluation criteria. All results are summed over tens of
simulation cycles and averaged over five simulation runs.

Results for the Scenarios with Homogeneous Society of Agents. In
the case of scenarios involving homogenous societies, we have measured the av-
erage per-agent value of each evaluation criteria. Each society consisted of five
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Fig. 3. Number of robberies during the simulation. This illustrates how well the learned
theory covers positive examples, i.e., dangerous roads in our scenario. The average
number of robberies for AD agent without learning capability is approximately 0.8.

learning transporter agents and three bandit agents randomly passing the map
and robbing transporters they met whenever their restrictions allowed it.

Graph 3 shows how fast the agents adapt to the domain in the sense of mini-
mizing the number of robberies. We can see that all agents improve their behav-
ior (agents without learning capability have an expected robbery probability of
0.8 approximately), but the agents sharing their knowledge learn much faster,
particularly at the beginning of the simulation – in as little as ten cycles the
number of robberies was decreased to nearly one half. Both these observations
were expected, unlike the rather surprising one that AO agents only slightly out-
performed AR agent during the first half of the experiment. At the end of the
experiment agents perform similarly well.

Graph 4 shows how many bytes were sent on average by each agent commu-
nicating its knowledge. AS agents (in SC-1 scenario) do not communicate at all.
AO agents (in SC-2 scenario) communicate approximately 20-times more on av-
erage then AR agents (in SC-3 scenario). While during the initial 50 cycles this
ratio is less then 10:1 (AO:AR), it rises up to approximately 40:1 in the middle
of the experiment, and finally converges to 20:1.

Finally, Graph 5 shows the computational demand of ILP learning. A theory
induction operation is started after each holdup event to ensure that the agent
would not repeat its misjudgment. AS agents (in SC-1 scenario) consume a lot
of resources because they run time-consuming ILP even if their knowledge is
only slightly improved – this can be improved using batch learning where a new
theory would be created only if the agent has acquired at least some minimal
number of new observations, on the expense of a possible increase in the number
of robberies. AO (in SC-2 scenario) and AR (in SC-3 scenario) agents have similar
computational requirements on average, though in the first half of experiments
AR agents are less time-consuming. This is caused by two factors: first, the
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Fig. 4. Communication traffic during collective reasoning. It is the number of kilobytes
of contents of messages during knowledge exchange. Note that there is no communica-
tion in SC-1 scenario.

Fig. 5. Time needed to create theories using ILP system on state-of-the-art machine

training set of an AO agent grows much faster as it receives other observations2;
second, the filtration of positive examples used by AR agents very often filters the
positive examples out of the trainig set. A society of AR agents can be therefore
recommended to run on slower machines: even if the ILP ran more often (when
aggregated over all the agents), the time-consumption of individual runs was
smaller than in the case of AO agents.

Results of Scenarios with the Heterogeneous Agent Society. AL agents
in SC-4 scenario always buy new rules offered by other agents in the community
(AO in our case). The better the rules are, the higher number of positive examples
they cover, and therefore the more expensive they are. As a result, AL agents
2 Note that this can lead to flooding in some cases, e.g., when these observations are

irrelevant for the receiving agent.
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Fig. 6. Number of hold-ups during the simulation in SC-4 and SC-5 scenarios. It illus-
trates how well the created theory covers positive examples, or dangerous roads in our
scenario.

Fig. 7. Communication traffic during collective reasoning in SC-4 and SC-5 scenarios.
It is the number of kilobytes of contents of messages during knowledge exchange.

have to send more observations in exchange. This leads to an unlimited growth
in communication traffic until all supplying agents have perfect theories and do
not improve them any more.

The last graph (Figure 6) demonstrates that if there is only a small number
of AL agents in the community (SC-4 scenario), they are fairly successful from
the beginning of the simulation but later they improve very slowly. A higher
proportion of AL agents in the community (SC-5 scenario) causes slower learning
in the beginning, though later it reaches the performance of SC-4 scenario. This
is partially caused by the difficulty of the learning task because N/2 agents were
able to cover dangerous roads with good accuracy.
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Graph 7 illustrates the growth of communication traffic during the simulation.
Higher communication load in SC-4 scenario corresponds to a higher number of
AO agents offering their knowledge to AL agents. Note that the time needed to
run ILP in SC-4 and SC-5 scenarios is zero as we measured AL (lazy) agents only.

6 Conclusions

In this paper, we have presented collaborative learning agents that can share
their knowledge using a simple trading protocol. Depending on their roles in the
trading protocol, we have identified several types of knowledge trading agents.
We have evaluated the performance of both homogenous and heterogeneous com-
munities of such agents with respect to several criteria, including the quality of
learned models and the communication and computational resources required.
The experiments have shown that agents trading generalized models outperform
agents exchanging raw observations only. Even the latter, however, outperform
non-collaborative agents in terms of model quality and computational resources
required. Altogether, the proposed mechanism allows effective distributing learn-
ing without the need for a central coordinator or other centralized resources. In
consequence, it enables the creation of robust and scalable peer-to-peer learning
systems.
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