

Lecture Notes in Artificial Intelligence 4149
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Matthias Klusch Michael Rovatsos
Terry R. Payne (Eds.)

Cooperative
Information
Agents X

10th International Workshop, CIA 2006
Edinburgh, UK, September 11-13, 2006
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Matthias Klusch
German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
E-mail: klusch@dfki.de

Michael Rovatsos
The University of Edingburgh
School of Informatics
Appleton Tower 3.12, Edinburgh, UK
E-mail: mrovatso@inf.ed.ac.uk

Terry R. Payne
University of Southampton
Southampton, SO17 1BJ, UK
E-mail: trp@ecs.soton.ac.uk

Library of Congress Control Number: 2006931573

CR Subject Classification (1998): I.2.11, I.2, H.4, H.3.3, H.2, C.2.4, H.5

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-38569-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-38569-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11839354 06/3142 5 4 3 2 1 0

Preface

These are the proceedings of the Tenth International Workshop on Cooperative
Information Agents (CIA 2006), held at the National eScience Centre, Edin-
burgh, UK, September 11–13, 2006. This year, the annual meeting of the IEEE
Computer Society Standards Organisation Committee FIPA on Intelligent and
Physical Agents was co-located with CIA 2006.

In today’s networked world of linked, heterogeneous, pervasive computer sys-
tems, devices, and information landscapes, intelligent coordination and provision
of relevant added-value information at any time, anywhere, by means of coop-
erative information agents becomes increasingly important for a variety of ap-
plications. An information agent is a computational software entity that has
access to one or multiple heterogeneous and geographically dispersed data and
information sources. It pro-actively searches for and maintains information on
behalf of its human users or other agents preferably just in time. In other words,
it manages and overcomes the difficulties associated with information overload
in open, pervasive information and service landscapes. Cooperative information
agents may collaborate with each other to accomplish both individual and shared
joint goals depending on the actual preferences of their users, budgetary con-
straints, and resources available. One major challenge of developing agent-based
intelligent information systems in open environments is to balance the autonomy
of networked data, information, and knowledge sources with the potential payoff
of leveraging them by the use of information agents.

The objective of the international workshop series on Cooperative Informa-
tion Agents (CIA), since its establishment in 1997, has been to provide a small
but very distinguished, interdisciplinary forum for researchers and practition-
ers to get informed about, present, and discuss the state of the art in research
and development of agent-based, intelligent, and cooperative information sys-
tems and applications for the Internet and Web. Each event in the series offers
regular and invited talks of excellence, given by renowned experts in the field, as
well as a selected set of system demonstrations, and honors innovative research
and development of information agents by means of a best paper award and a
system innovation award, respectively. The proceedings of the series are regu-
larly published as volumes of Springer’s Lecture Notes in Artificial Intelligence
(LNAI) series.

In keeping with its tradition, this year’s workshop featured a sequence of reg-
ular and invited talks of excellence given by leading researchers covering a broad
area of topics of interest, such as agent-based information provision, agents and
services, rational cooperation, resource and task allocation, communication and
cooperation, agent-based grid computing, and applications. This year’s special
topic of interest was agent-based semantic grid computing systems and their
applications.

VI Preface

CIA 2006 featured 4 invited and 29 regular papers selected from 58 submis-
sions. The result of the peer review of all contributions is included in this volume:
a rich collection of papers describing interesting, inspiring, and advanced work on
research and development of intelligent information agents worldwide. The pro-
ceedings of previous CIA workshops have been published by Springer as Lecture
Notes in Artificial Intelligence volumes: 1202 (1997), 1435 (1998), 1652 (1999),
1860 (2000), 2182 (2001), 2446 (2002), 2782 (2003), 3191 (2004), 3550 (2005).

This year the CIA System Innovation Award and the CIA Best Paper Award
were sponsored by Whitestein Technologies AG, Switzerland, and the CIA work-
shop series, respectively. There has been limited financial support available to a
limited number of students as (co-)authors of accepted papers to enable them
to present their work at the CIA 2006 workshop; these grants were sponsored
by the IEEE FIPA standards committee and the British Society for the Study
of Artificial Intelligence and Simulation of Behaviour (AISB).

The CIA 2006 workshop was organized in cooperation with the Association
for Computing Machinery (ACM) and the Global Grid Forum (GGF). In addi-
tion, we are very much indebted to our sponsors, whose financial support made
this event possible. The sponsors of CIA 2006 were:

National eScience Centre, UK

Centre for Intelligent Systems and their Applications,
The University of Edinburgh, UK

Whitestein Technologies, Switzerland

British Society for the Study of Artificial Intelligence
and the Simulation of Behaviour (AISB)

IEEE Computer Society Standards Organisation Committee
FIPA on Intelligent and Physical Agents

We are particularly grateful to the authors and invited speakers for contribut-
ing their latest and inspiring work to this workshop, as well as to the members
of the program committee and the additional reviewers for their critical reviews
of submissions. Finally, a deep thanks goes to each of the committed members of
the local organization team from the University of Edinburgh and the eScience
Institute for their hard work in providing the CIA 2006 event, which marked the
tenth anniversary of the series, with a traditionally comfortable, modern, and
all-inclusive location and a very nice social program.

We hope you enjoyed CIA 2006 and were inspired for your own work!

September 2006 Matthias Klusch, Michael Rovatsos, Terry Payne

Organization

General Chair

Matthias Klusch DFKI, Germany

Program Co-chairs

Michael Rovatsos The University of Edinburgh, UK
Terry Payne University of Southampton, UK

Program Committee

Karl Aberer EPF Lausanne, Switzerland
Wolfgang Benn TU Chemnitz, Germany
Federico Bergenti U Parma, Italy
Bernard Burg Panasonic Research, USA
Monique Calisti Whitestein Technologies, Switzerland
Cristiano Castelfranchi U Siena, Italy
John Debenham TU Sydney, Australia
Yves Demazeau LEIBNIZ/IMAG, France
Boi Faltings EPF Lausanne, Switzerland
Fausto Giunchiglia IRST-ITC, Italy
Marie-Pierre Gleizes IRIT Toulouse, France
Rune Gustavsson TH Blekinge, Sweden
Heikki Helin TeliaSonera, Finland/Sweden
Brian Henderson-Sellers TU Sydney, Australia
Michael Huhns U South Carolina, USA
Toru Ishida Kyoto University, Japan
Catholijn Jonker U Nijmegen, The Netherlands
Hillol Kargupta UMBC Baltimore, USA
Ewan Klein U Edinburgh, UK
Christoph Koch U Saarland, Germany
Manolis Koubarakis TU Crete, Greece
Sarit Kraus Bar-Ilan U, Israel
Daniel Kudenko U York, UK
Maurizio Lenzerini U Rome, Italy
Victor Lesser U Massachusetts, USA
Jiming Liu Hong Kong Baptist U, China
Stefano Lodi U Bologna, Italy
Aris Ouksel U Illinois, USA
Sascha Ossowski U Rey Juan Carlos Madrid, Spain
Paolo Petta Medical U Vienna, Austria

VIII Organization

Alun Preece U Aberdeen, UK
Omer Rana U Cardiff, UK
Jeffrey Rosenschein Hebrew U, Israel
Marie-Christine Rousset U Paris-Sud, France
Ken Satoh National Institute for Informatics, Japan
Onn Shehory IBM Research, Israel
Carles Sierra CSIC Barcelona, Spain
Steffen Staab U Koblenz, Germany
Hiroki Suguri Comtech Sendai, Japan
Katia Sycara Carnegie Mellon U, USA
Rainer Unland U Duisburg-Essen, Germany
Gottfried Vossen U Muenster, Germany

Additional Reviewers

Adam Barker
Alexandra Berger
Valérie Camps
Daniel Dahl
Vasilios Darlagiannis
Esther David
Naoki Fukuta
Dorian Gaertner
Roberto Ghizzioli
Andrea Giovannucci
Pierre Glize
Dominic Greenwood
Koen Hindriks
Marc-Philippe Huget
Tobias John
Sindhu Joseph
Ron Katz
Fabius Klemm
Dimitri Melaye
Eric Platon
Annett Priemel
Giovanni Rimassa
Alex Rogers
Roman Schmidt
Joachim Schwieren
Frank Seifert
Sebastian Stein
Eiji Tokunaga
Dmytro Tykhonov

Table of Contents

Invited Contributions

Semantic Web Research Anno 2006: Main Streams, Popular Fallacies,
Current Status and Future Challenges . 1

Frank van Harmelen

A Research Agenda for Agent-Based Service-Oriented Architectures 8
Michael N. Huhns

The Helpful Environment: Distributed Agents and Services Which
Cooperate . 23

Austin Tate

Voting in Cooperative Information Agent Scenarios: Use and Abuse 33
Jeffrey S. Rosenschein, Ariel D. Procaccia

Agent Based Information Provision

Agents for Information-Rich Environments . 51
John Debenham, Simeon Simoff

Information Agents for Optimal Repurposing and Personalization
of Web Contents in Semantics-Aware Ubiquitous and Mobile
Computing Environments . 66

Fernando Alonso, Sonia Frutos, Miguel Jiménez, Javier Soriano

Turn Taking for Artificial Conversational Agents . 81
Fredrik Kronlid

Inducing Perspective Sharing Between a User and an Embodied Agent
by a Thought Balloon as an Input Form . 96

Satoshi V. Suzuki, Hideaki Takeda

Applications

Agent-Based Analysis and Support for Incident Management 109
Mark Hoogendoorn, Catholijn M. Jonker, Jan Treur,
Marian Verhaegh

X Table of Contents

A Distributed Agent Implementation of Multiple Species Flocking
Model for Document Partitioning Clustering . 124

Xiaohui Cui, Thomas E. Potok

Coverage Density as a Dominant Property of Large-Scale Sensor
Networks . 138

Osher Yadgar, Sarit Kraus

Agents and Services

Selecting Web Services Statistically . 153
David Lambert, David Robertson

Conversation-Based Specification and Composition of Agent Services 168
Quoc Bao Vo, Lin Padgham

Evaluating Dynamic Services in Bioinformatics . 183
Máıra R. Rodrigues, Michael Luck

Learning

A Classification Framework of Adaptation in Multi-Agent Systems 198
César A. Maŕın, Nikolay Mehandjiev

Market-Inspired Approach to Collaborative Learning 213
Jan Tožička, Michal Jakob, Michal Pěchouček

Improving Example Selection for Agents Teaching Ontology Concepts . . . 228
Mohsen Afsharchi, Behrouz H. Far

Resource and Task Allocation

Egalitarian Allocations of Indivisible Resources: Theory
and Computation . 243

Paul-Amaury Matt, Francesca Toni

Iterative Query-Based Approach to Efficient Task Decomposition
and Resource Allocation . 258

Michal Pěchouček, Ondřej Lerch, Jǐŕı Bı́ba

Multilevel Approach to Agent-Based Task Allocation
in Transportation . 273

Martin Rehák, Přemysl Volf, Michal Pěchouček

Table of Contents XI

Rational Cooperation (1)

Learning to Negotiate Optimally in Non-stationary Environments 288
Vidya Narayanan, Nicholas R. Jennings

Eliminating Interdependencies Between Issues for Multi-issue
Negotiation . 301

Koen Hindriks, Catholijn M. Jonker, Dmytro Tykhonov

The Distortion of Cardinal Preferences in Voting . 317
Ariel D. Procaccia, Jeffrey S. Rosenschein

Rational Cooperation (2)

Risk-Bounded Formation of Fuzzy Coalitions Among Service Agents 332
Bastian Blankenburg, Minghua He, Matthias Klusch,
Nicholas R. Jennings

A Simple Argumentation Based Contract Enforcement Mechanism 347
Nir Oren, Alun Preece, Timothy J. Norman

A Fuzzy Approach to Reasoning with Trust, Distrust and Insufficient
Trust . 360

Nathan Griffiths

Communication and Cooperation

Performative Patterns for Designing Verifiable ACLs 375
Nicola Dragoni, Mauro Gaspari

Enabling Mobile Agents Interoperability Through FIPA Standards 388
Joan Ametller-Esquerra, Jordi Cucurull-Juan, Ramon Mart́ı,
Guillermo Navarro, Sergi Robles

Characterising Agents’ Behaviours: Selecting Goal Strategies Based
on Attributes . 402

José Cascalho, Luis Antunes, Milton Corrêa, Helder Coelho

A Framework of Cooperative Agents with Implicit Support
for Ontologies . 416

Riza Cenk Erdur, Inanç Seylan

Specifying Protocols for Knowledge Transfer and Action Restriction
in Multiagent Systems . 431

Maŕıa Adela Grando, Christopher David Walton

XII Table of Contents

Agent Based Grid Computing

Flexible Service Composition . 446
Adam Barker, Robert G. Mann

Using Electronic Institutions to Secure Grid Environments 461
Ronald Ashri, Terry R. Payne, Michael Luck, Mike Surridge,
Carles Sierra, Juan Antonio Rodriguez Aguilar, Pablo Noriega

Author Index . 477

Semantic Web Research Anno 2006:
Main Streams,

Popular Fallacies,
Current Status

and Future Challenges

Frank van Harmelen

Vrije Universiteit Amsterdam
Frank.van.Harmelen@cs.vu.nl

Abstract. In this topical1 paper we try to give an analysis and overview
of the current state of Semantic Web research. We point to different in-
terpretations of the Semantic Web as the reason underlying many con-
troversies, we list (and debunk) four false objections which are often
raised against the Semantic Web effort. We discuss the current status of
the Semantic Web work by reviewing the current answers to four cen-
tral research questions that need to be answered, and by surveying the
uptake of Semantic Web technology in different application areas. Fi-
nally, we try to identify the main challenges facing the Semantic Web
community.

1 Which Semantic Web?

It has already been pointed out by Marshall and Shipman in [1] that the term
“Semantic Web” is used to describe a variety of different goals and methods.
They distinguish (1) the Semantic Web as a universal library for human access;
(2) as the habitat for automated agents and web-services 2; and (3) as a method
for federating a variety of databases and knowledge bases. And although we
in no way share their rather pessimistic analysis of the possibilities for each of
these three scenario’s (founded as they are on rather strawman versions of each
of them), we do agree that it is important to unravel the different ambitions that
underly the “Semantic Web” term.

In the current Semantic Web work, we distinguish two main goals. These goals
are often unspoken, but the differences between them often account for many
debates on design choices, on the applicability of various techniques, and on the
feasibility of applications.
1 In the sense of: “of current interest”, “concerning contemporary topics of limited

validity”.
2 Although Marshall and Shipman do not actually use the term web-services.

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 1–7, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 F. van Harmelen

Interpretation 1: The Semantic Web as the Web of Data

In the first interpretation (close to Marshall and Shipman’s third option), the
main aim of the Semantic Web is to enable the integration of structured and
semi-structured data-sources over the Web. The main recipe is to expose datasets
on the web in RDF format, to use RDF Schema to express the intended semantics
of these data-sets, in order to enable the integration and unexpected re-use of
these data-sets.

A typical use-cases for this version of the Semantic Web is the combination
of geo-data with a set of consumer ratings for restaurants in order to provide an
enriched information source.

Interpretation 2: The Semantic Web as an Enrichment of the
Current Web

In the second interpretation, the aim of the Semantic Web is to improve the current
World Wide Web. Typical use-cases here are improved search engines, dynamic
personalisation of web-sites, and semantic enrichment of existing web-pages.

The source of the required semantic meta-data in this version of the Seman-
tic Web is mostly claimed to come from automatic sources: concept-extraction,
named-entity recognition, automatic classification, etc. More recently, the insight
is gaining ground that the required semantic markup can also be produced by
social mechanisms of in communities that provide large-scale human-produced
markup.

Of course there are overlaps between these two versions of the Semantic Web:
they both rely on the use of semantic markup, typically in the form of meta-
data described by ontology-like schemata. But perhaps more noticeable are the
significant differences: different goals, different sources of semantics, different
use-cases, different technologies.

2 Four Popular Fallacies

The Semantic Web is subject to a stream of strongly and often polemically
voiced criticisms3. Unfortunately, not all of these are equally well informed. A
closer analysis reveals that many of these polemics attribute a number of false
assumptions or claims to the Semantic Web programme. In this section we aim
to identify and debunk these fallacies.

Fallacy 1: The Semantic Web Tries to Enforce Meaning from the Top

This fallacy claims that the Semantic Web, enforces meaning on users through
its standards OWL and RDF(S). The repost to this fallacy is easy. The only
meaning that OWL and RDF(S) enforce is the meaning of the connectives in a

3 e.g. http://www.shirky.com/writings/semantic syllogism.html and http://
www.csdl.tamu.edu/∼marshall/mc-semantic-web.html

Semantic Web Research Anno 2006 3

language that users can use to express their own meaning. The users are free
to to choose their own vocabulary, and to assign their own meaning to terms in
this vocabulary, to describe whatever domain of their choice. OWL and RDF(S)
are entirely neutral in this.

The situation is comparable to HTML: HTML does not enforce the lay-out of
web-pages “from the top”. All HTML enforces is the language that people can
use to describe their own lay-out. And HTML has shown that such an agreement
on the use of a standardised language (be it HTML for the lay-out of web-pages,
or RDF(S) and OWL for their meaning) is a necessary ingredient for world-wide
interoperability.

Fallacy 2: The Semantic Web Requires Everybody to Subscribe to a
Single Predefined Meaning for the Terms They Use.

Of course, the meaning of terms cannot be predefined for global use. Of course,
meaning is fluid and contextual. The motto of the Semantic Web is not the
enforcement of a single ontology. It’s motto is rather “let a thousand ontologies
blossom”. That is exactly the reason why the construction of mappings between
ontologies is such a core topic in the Semantic Web community (see [2,3,4] for
some surveys). And such mappings are expected to be partial, imperfect and
context-dependent.

Fallacy 3: The Semantic Web will Require Users to Understand the
Complicated Details of Formalised Knowledge Representation.

Indeed some of the core technology of the Semantic Web relies on intricate
details of formalised knowledge representation. The semantics of RDF Schema
and OWL, and the layering of the subspecies of OWL are difficult formal matters.
The design of good ontologies is a specialised are of Knowledge Engineering.
But for most of the users of (current and future) Semantic Web applications,
such details will be entirely “under the hood”, just as the intricacies of CSS and
(X)HTML are under the hood of the current Web. Navigation or personalisation
engines can be powered by underlying ontologies, expressed in RDF Schema or
OWL, without the user ever being confronted with the ontology, let alone its
representation language.

Fallacy 4: The Semantic Web People will Require the Manual
Markup of all Existing Web-pages

It’s hard enough for most web-site owners to maintain the human-readable con-
tent of their site. They will certainly not maintain a second parallel version in
which they will have to write a machine-accessible version of the same informa-
tion in RDF or OWL. If this were the case, that would indeed spell bad news
for the Semantic Web. Instead, Semantic Web applications rely on large-scale
automation for the extraction of such semantic markup from the sources them-
selves. This will often be very lightweight semantics, but for many applications,
that has shown to be enough.

4 F. van Harmelen

Notice that this fallacy mostly affects interpretation 2 of the Semantic Web
(previous section), since massive markup in the “Web of data” is much easier: the
data is already available in (semi-)structured formats, and is often already organ-
ised by database schema’s that can provide the required semantic interpretation.

3 Current Status

In this section, we will briefly survey the current state of work on the Semantic
Work in two ways. First we will try to assess the progress that has been made in
answering four key questions on which the success of the Semantic Web relies.
Secondly, we will give a quick overview of the main areas in which Semantic Web
technology is currently being adopted.

3.1 The Four Main Questions

Question 1: Where does the Meta-data Come from?

As pointed out in our Fallacy No. 4, much of the semantic meta-data will have
to come from Natural Language Processing and Machine Learning technology.
And indeed, these technologies are delivering this promise. It is now possible with
off-the-shelve technology to produce semantic markup for very large corpora of
web-pages (millions of pages) by annotating them with terms from very large
ontologies (hundreds of thousands of terms), at a sufficiently quality precision
and recall to drive semantic navigation interfaces. Our own work on the DOPE
prototype is only one of many examples that can be given: 5 million web-pages
indexed with an ontology of 235.000 concepts, used for query disambiguation,
narrowing, widening and semantic clustering of query results [5].

More recently (and for many in the Semantic Web community somewhat
unexpected) is the capability of social communities to do exactly what Fallacy
4 claims is impossible: providing large amounts of human-generated markup.
Millions of images, hundreds of millions of manually provided with meta-data
tags on some of the most popular “Web 2.0” sites.

Question 2: Where do the ontologies come from?

As pointed out by [6], the term ontology as used by the Semantic Web community
now covers a wide array of semantic structures, from lightweight hierarchies such
as MeSH4 to heavily axiomatised ontologies such as GALEN5.

The lesson of a decade worth of Knowledge Engineering and half a decade
of Semantic Web research is that indeed the world is full of such “ontologies”:
companies have product catalogues, organisations have internal glossaries, sci-
entific communities have their public meta-data schemata. These have typically
been constructed for other purposes, most often pre-dating the Semantic Web,
but very useable as material for Semantic Web applications.
4 http://www.nlm.nih.gov/mesh/
5 http://www.opengalen.org/

Semantic Web Research Anno 2006 5

There are also significant advances in the area of ontology-learning, although
results there remain mixed: obtaining the concepts of an ontology is feasible given
the appropriate circumstances, but placing them in the appropriate hierarchy
with the right mutual relationships remains a topic of active research.

Question 3: What to do with Many Ontologies?

As stated in our rebuttal to fallacy No. 2, the Semantic Web crucially relies on
the possibility to integrate multiple ontologies. This is known as the problem of
ontology alignment, ontology mapping or ontology integration, and is indeed one
of the most active areas of research in the Semantic Web community. Excellent
surveys of the current state of the art are provided by [2,3,4].

A wide array of techniques is deployed for solving this problem, with ontology
mapping techniques based on natural language technology, based on machine-
learning, on theorem-proving, on graph-theory, on statistics, etc.

Although encouraging results are obtained, this problem is by no means
solved, and automatically obtained results are not yet good enough in terms
of recall and precision to drive many of the intended Semantic Web use-cases.
Consequently, ontology-mapping is seen by many as the Achilles Heel of the
Semantic Web.

Question 4: Wheres the “Web” in the Semantic Web?

The Semantic Web has sometimes been criticised as being too much about “se-
mantic” (i.e. large-scale distributed knowledge-bases), and not enough about
“web”. This was perhaps true in the early days of Semantic Web developments,
where there was a focus on applications in rather circumscribed domains like in-
tranets. This initial emphasis is still visible to a large extent: many of the most
successful applications of Semantic Web technology are indeed on company in-
tranets. Of course the main advantage of such intranet-applications are that the
ontology-mapping problem can to a large extent be avoided.

Recent years have seen a resurgence in the Web-aspects of Semantic Web
applications. A prime example of this is the deployment of FOAF technology6,
and of semantically organised P2P systems (see e.g. the collection of work in [7]).

Of course the Web is more than just textual documents: non-textual media
such as images and videos are an integral part of the Web. For the application of
Semantic Web technology to such non-textual media we must for the foreseeable
future rely on human-generated semantic markup (as discussed above), given
the difficulty of automatically generating meaningful markup for such media.

Main Application Areas

It is beyond the scope of this brief paper to give an in-depth and comprehensive
overview of all Semantic Web applications. We will limit ourselves to a bird’s
eye survey.
6 http://www.foaf-project.org/

6 F. van Harmelen

Looking at industrial events either dedicated events7 or co-organised with the
major international scientific Semantic Web conferences, we observe the following.

A healthy uptake of Semantic Web technologies is beginning to take shape in
the following areas:

– knowledge management, mostly in intranets of large corporations
– data-integration (Boeing, Verison and others)
– e-Science, in particular the life-sciences8

– convergence with Semantic Grid

If we look at the profiles of companies active in this area, we see a distinct
transition from small start-up companies such as Aduna, Ontoprise, Network
Inference, Top Quadrant (to name but a few) to large vendors such as IBM
(their Snobase ontology Management System9, HP (with their popular Jena
RDF platform10, Adobe (with their RDF-based based XMP meta-data frame-
work) and Oracle (now lending support for RDF storage and querying in their
prime data-base product).

However, besides the application areas listed above, there is also a noticable
lack of uptake in some other areas. In particular, promises in the areas of

– personalisation,
– large-scale semantic search (i.e. on the scale of the World Wide Web, not

limited to intranets),
– mobility and context-awareness

are largely unfulfilled.
A pattern that seems to emerge between the succes unsuccessfull application

areas is that the succesfull areas are all aimed at closed communities (employees
of large corporations, scientists in a particular area), while the applications aimed
at the general public are still in the laboratory phase at best. The underlying
reason for this could well be as discussed above, namely the difficulty of the
ontology mapping.

4 Challenges

Many of the challenges that we outlined in an earlier paper [8] are in the mean-
time active areas of research:

– scale (with inference and storage technology are now scaling to the order of
billions of RDF triples,

– ontology evolution and change
– ontology mapping, as outlined above.

7 e.g. http://www.semantic-conference.com/
8 see e.g. http://www2006.org/speakers/stephens/stephens.ppt for some state-of-

the-art industrial work.
9 http://www.alphaworks.ibm.com/tech/snobase

10 http://jena.sourceforge.net/

Semantic Web Research Anno 2006 7

However, a number of items on the research agenda are hardly tackled, but do
have a crucial impact on the feasibility of the Semantic Web vision. In particular:

– the mutual interaction between machine-processable representations and the
dynamics of social networks of human users

– mechanisms to deal with trust, reputation, integrity and provenance in a
semi-automated way

– inference and query facilities that are sufficiently robust to work in the face
of limited resources (be it either computation time, network latency, memory
or storage-space), and that can make intelligent trace-off decisions between
resource use and output-quality

References

1. Marshall, C.C., Shipman, F.M.: Which semantic web? In: HYPERTEXT ’03: Pro-
ceedings of the fourteenth ACM conference on Hypertext and hypermedia, New
York, NY, USA, ACM Press (2003) 57–66

2. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. The
Knowledge Engineering Review Journal (KER) (2003) 1–31

3. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.
The VLDB Journal (2001) 334–350

4. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal
on Data Semantics (2005) 146–171

5. Stuckenschmidt, H., van Harmelen, F., de Waard, A., Scerri, T., Bhogal, R., van
Buel, J., Crowlesmith, I., Fluit, C., Kampman, A., Broekstra, J., van Mulligen, E.:
Exploring large document repositories with rdf technology: The dope project. IEEE
Intelligent Systems 19 (2004) 34–40

6. Jasper, R., Uschold, M.: A framework for understanding and classifying ontology
applications. In: Proceedings 12th Int. Workshop on Knowledge Acquisition, Mod-
elling, and Management KAW. (1999) 4–9

7. Staab, S., Stuckenschmidt, H.: Semantic Web and Peer-to-peer: Decentralized Man-
agement and Exchange of Knowledge and Information. Springer (2005)

8. van Harmelen, F.: How the semantic web will change kr: challenges and opportu-
nities for a new research agenda. The Knowledge Engineering Review 17 (2002)
93–96

A Research Agenda for Agent-Based
Service-Oriented Architectures

Michael N. Huhns

Department of Computer Science and Engineering
University of South Carolina, Columbia, SC 29208, USA

huhns@sc.edu
http://www.cse.sc.edu/~ huhns

Abstract. Web services, especially as fundamental components of
service-oriented architectures, are receiving a lot of attention. Their great
promise, however, has not yet been realized, and a possible explantion is
that significant research and engineering problems remain. We describe
the problems, indicate likely directions and approaches for their solution,
present an agenda for the deployment of such solutions, and explain the
benefits of the resultant deployment. It is our strong expectation that
Web services will eventually have an agent basis, which would be needed
to address the problems.

1 Introduction

The latest paradigm for structuring large-scale applications is a service-oriented
architecture (SOA), which involves the linking of small functional services to
achieve some larger goal. As the central concept in service-oriented architectures,
Web services provide a standardized network-centric approach to making the
functionality available in an encapsulated form.

It is worth considering the major benefits of using standardized services.
Clearly anything that can be done with services can be done without. So the
following are some reasons for using services, especially in standardized form.

– Services provide higher-level abstractions for organizing applications in large-
scale, open environments. Even if these were not associated with standards,
they would be helpful as we implemented and configured software applica-
tions in a manner that improved our productivity and improved the quality
of the applications that we developed.

– Moreover, these abstractions are standardized. Standards enable the inter-
operation of software produced by different programmers. Standards thus
improve our productivity for the service use cases described above.

– Standards make it possible to develop general-purpose tools to manage the
entire system lifecycle, including design, development, debugging, monitor-
ing, and so on. This proves to be a major practical advantage, because with-
out significant tool support, it would be nearly impossible to create and field
robust systems in a feasible manner. Such tools ensure that the components

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 8–22, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Research Agenda for Agent-Based Service-Oriented Architectures 9

developed are indeed interoperable, because tool vendors can validate their
tools and thus shift part of the burden of validation from the application
programmer.

– The standards feed other standards. For example the above basic standards
enable further standards, e.g., dealing with processes and transactions.

To realize the above advantages, SOAs impose the following requirements:

Loose coupling. No tight transactional properties should generally apply
among the components. In general, it would not be appropriate to spec-
ify the consistency of data across the information resources that are parts
of the various components. However, it would be reasonable to think of the
high-level contractual relationships through which the interactions among
the components are specified.

Implementation neutrality. The interface is what matters. We cannot de-
pend on the details of the implementations of the interacting components.
In particular, the approach cannot be specific to a set of programming lan-
guages.

Flexible configurability. The system is configured late and flexibly. In other
words, the different components are bound to each other late in the process
and the configuration can change dynamically.

Long lifetime. to be useful to external applications, components must have
a long lifetime. Morever, since we are dealing with computations among
autonomous heterogeneous parties in dynamic environments, we must always
be able to handle exceptions. This means that the components must exist
long enough to be able to detect any relevant exceptions, to take corrective
action, and to respond to the corrective actions taken by others. Components
must exist long enough to be discovered, to be relied upon, and to engender
trust in their behavior.

Granularity. The participants in an SOA should be understood at a coarse
granularity. That is, instead of modeling actions and interactions at a de-
tailed level, it would be better to capture the essential high-level qualities
that are (or should be) visible for the purposes of business contracts among
the participants. Coarse granularity reduces dependencies among the partic-
ipants and reduces communications to a few messages of greater significance.

Teams. Instead of framing computations centrally, it would be better to think
in terms of how computations are realized by autonomous parties. In other
words, instead of a participant commanding its partners, computation in
open systems is more a matter of business partners working as a team. That
is, instead of an individual, a team of cooperating participants is a better
modeling unit. A team-oriented view is a consequence of taking a peer-to-
peer architecture seriously.

Web services, viewed as encapsulated and well defined pieces of software func-
tionality accessible to remote applications via a network, are expected to be a
fundamental aspect of many future software applications. Many claims have been
made about the benefits of Web services for enterprise information systems and

10 M.N. Huhns

next-generation network-based applications, but the widespread availability and
adoption of Web services have not yet occurred. The development, deployment,
and proliferation of other new computing technologies can be seen as having
occurred in stages as developers and users become familiar with the features of
the technology and learn how to exploit them. The development of Web services
is likely to progress according to the following four stages.

Stage 1. The first stage in the development of Web services, which is the stage
that we are in currently, is that a few specific Web services will be available,
mostly on intranets. There will be little or no semantics describing them. Because
of this, their discovery will occur manually, their invocation will be hardcoded,
and their composition with other Web services will be either nonexistent or
done manually. There will be no fees for their use. The resultant applications
that make use of the Web services will be brittle and static, but large ones can
be crafted relatively quickly. There will be some examples of unexpected uses
and utilities.

Stage 2. The second stage in the development of Web services will be char-
acterized by many services being available across the Internet. There will be
sufficient semantics, via the use of standardized keywords for narrow domains,
to enable semi-automatic discovery. Compostion of services will still be arranged
manually. There might be some fees for use, but they will be negotiated off-line
by humans. The resultant applications might be dynamic via the substitution of
Web services that are explicitly mirrored or via the use of alternative equivalents,
most likely where the service functionality is common and straightforward. The
desirability of this form of dynamism, and its concomitant robustness, might
serve as a major motivation for the further proliferation of Web services and for
improved semantics to enable dynamic discovery and a limited form of compo-
sition. The scope of the dynamic composition would be one-to-one replacement
for a malfunctioning component service.

Stage 3. In the third stage, many Web services will be available, each with
a rich semantic description of its functionality. The semantics will enable Web
services to be discovered and invoked dynamically and on-demand.

Stage 4. During the fourth stage, some of the many available Web services will
be active, instead of passive, and will have many of the capabilities that char-
acterize software agents. By being active, they will be able to bid for their use
in applications, requiring them to be able to negotiate over Quality-of-Service
(QoS) and non-functional semantics. This will include negotiation over fees. In
some applications, a candidate Web service could be tried and tested for ap-
propriate functionality and QoS. Comparable services could not only substitute
for each other, but also be used redundantly for improved robustness. Moreover,
services would self-organize, possible on-demand, into service teams to provide
aggregate functionality.

A Research Agenda for Agent-Based Service-Oriented Architectures 11

The above four stages of development are driven by limitations of current Web
services. These can best be described and understood in the context of the well
known “Web service triangle,” as shown in Figure 1. In a subsequent section,
we consider each of the triangle’s vertices and edges and point out the desired
enhancements, and thus research, needed for advancement to the next stages.

Service
Broker

Service
Provider

Service
Requestor

Bind
(Soap/HTTP)

Publish
(WSDL)

Find
(UDDI)

Fig. 1. The familiar Web service triangle. Its limitations can be revealed by considering
each of its vertices and edges.

2 An Example of Current SOA Success

To put the above stages in perspective, let’s consider a currently successful ex-
ample of a service-oriented architecture, that of Amazon.com, which serves to
explain the great interest in this approach to application development.

Originally, Amazon.com consisted of a large monolithic application that im-
plemented all of the functionality that was made available through its Web site,
including the front-end display, back-end database, and business logic [7]. But
the monolithic reached a point where it could not be easily scaled to handle the
volume of transactions that had to be processed. So, Amazon reengineered it
into what became a service-oriented architecture.

Service orientation meant encapsulating the data with the business ligic that
operates on it, with the only access through a well defined interface. The ser-
vices did not share data and did not allow any direct access to the underlying
database. The result is hundreds of services and a smaller number of servers
that aggregate information from the services. The servers render the Web pages

12 M.N. Huhns

for the Amazon.com application, as well as serve the customer service applica-
tion, the seller interface, the external interface to Amazon’s Web services, and
Amazon-hosted third-party applications. When a user visits the Amazon site,
over 100 services are typically invoked in constructing the user’s personalized
Web page.

The end result is that Amazon can build complex applications quickly out of
primitive services, and then scale them appropriately. Moreover, third parties can
use the services to build their own applications, primarily for e-commerce, but
some for applications unforeseen by Amazon. For example, the Web site “The
Amazing Baconizer” invokes Amazon’s recommendation seervice for entertain-
ment purposes to list the connections between two items. The connections are
done by looking at “people who bought item A also bought item B.” Here is a
sample result for the connection between the book “Surely You’re Joking, Mr.
Feynman!” and the DVD “Real Genius”:

“Surely You’re Joking, Mr. Feynman!” =⇒ “Real Genius” (11 hops):

“Surely You’re Joking, Mr. Feynman!” – R. Feynman
=⇒ “Genius: The Life and Science of Richard Feynman,” – J. Gleick
=⇒ . . .
=⇒ “Weird Science”(DVD) – John Hughes
=⇒ “Top Secret!” (DVD) – Val Kilmer
=⇒ “Real Genius” (DVD) – Val Kilmer

Another interesting third-party service can be accessed from a camera phone.
When shopping, a user can take a photo of the bar code for a product, send it to
the service, and receive via amazon’s services reviews, information on comparable
products, and the price.

3 Needed Research for Each Aspect of Web Services

Figure 1 shows the generic architecture for Web services. Although this is a
simple picture, it radically alters many of the problems that must be solved in
order for the architecture to become viable on a large scale.

– To publish effectively, we must be able to specify services with precision
and with greater structure. This is because the service would eventually be
invoked by parties that are not from the same administrative space as the
provider of the service and differences in assumptions about the semantics
of the service could be devastating.

– From the perspective of the registry, it must be able to certify the given
providers so that it can endorse the providers to the users of the registry.

– Requestors of services should be able to find a registry that they can trust.
This opens up challenges dealing with considerations of trust, reputation,
incentives for registries and, most importantly, for the registry to understand
the needs of a requestor.

A Research Agenda for Agent-Based Service-Oriented Architectures 13

– Once a service has been selected, the requestor and the provider must develop
a finer-grained sharing of representations. They must be able to participate in
conversations to conduct long-lived, flexible transactions. Related questions
are those of how a service level agreement (SLA) can be established and
monitored. Success or failure with SLAs feeds into how a service is published
and found, and how the reputation of a provider is developed and maintained.

Most of the needed enhancements are related to the scaling of Web services,
not only to larger applications but also to more complex environments [1]. That
is, there will be a multiplicity of requestors, providers, and registries, whereas the
current conception of Web services focuses on just one of each. There will also be
more complex interactions than just a simple remote-procedure call to a service:
the interactions will be characterized as peer-to-peer, rather than client-server [3].

When there are multiple requestors, then a service provider might be able
to share the results of a computation among the requestors, and the requestors
might be able to negotiate a “group rate.” Of course, this requires the requestors
to form a cohesive group and to have a negotiation ability.

Multiple equivalent providers present both a problem and an opportunity.
The problem is that a requestor must have and apply a means to choose among
them. This would likely require an ability to negotiate over both functional
and non-functional attributes (qualities) of the services. The opportunity is that
alternatives can yield increased robustness (described more fully below).

Multiple service registries present problems for providers in deciding where to
advertise their services and for requestors in deciding where to search for services
[4,6]. Also, each registry might employ different semantics and organizations of
domain concepts.

Other limitations represented by the current simple model for Web services are

– A Web service knows only about itself—not about its users, clients, or cus-
tomers

– Web services are not designed to use and reconcile ontologies used by each
other or by their clients

– Web services are passive until invoked; they cannot provide alerts or updates
when new information becomes available

– Web services do not cooperate with each other or self-organize, although
they can be composed by external systems.

Another fundamental problem arises when Web services are composed. Con-
sider the simple example in Figure 2 of one Web service that provides stock
quotes in dollars and a second that converts dollars into another currency. Cur-
rent Web services must be invoked sequentially by a central controller.

A significantly better model is shown in Figure 3, where an interaction pro-
tocol under development, WSDL-P, would provide for a continuation by passing
a description of an overall workflow through each Web service participating in
the workflow. In this way, the composed services would interact directly, rather
than through a central intermediary.

14 M.N. Huhns

Stock Quote
Web Service

Currency
Converter

Web Service

Client
Application

1. WSDL
“IBM”

3. WSDL
“$100”

2. “$100”
4. “¥800”

Fig. 2. Composed Web services, which are described traditionally by WSDL

Stock Quote
Web Service

Currency
Converter

Web Service

Client
Application

1. WSDL-P
“IBM”+
OWL-S

2. WSDL-P
“$100” +
OWL-S

3. “¥800”

Fig. 3. WSDL-P: Next-Generation Composition. An OWL-S (or BPEL4WS) descrip-
tion of the workflow is communicated through the services

Solutions to the above described problems are under investigation by many
research teams. The keys to the next-generation Web are cooperative services,
systemic trust, and understanding based on semantics, coupled with a declarative
agent-based infrastructure. These concepts are elaborated in the next sections,
beginning with the notion of commitments as the governing principle for the
complex interactions inherent in the later stages of SOA developments.

A Research Agenda for Agent-Based Service-Oriented Architectures 15

4 Commitments

For services to apply naturally in open environments, they should be modeled
as being autonomous. Autonomy is a natural characteristic of agents, and it is
also a characteristic of many envisioned Internet-based services. Among agents,
autonomy generally refers to social autonomy, where an agent is aware of its
colleagues and is sociable, but nevertheless exercises its independence in certain
circumstances. Autonomy is in natural tension with coordination or with the
higher-level notion of a commitment. To be coordinated with other agents or to
keep its commitments, an agent must relinquish some of its autonomy. However,
an agent that is sociable and responsible can still be autonomous. It would at-
tempt to coordinate with others where appropriate and to keep its commitments
as much as possible, but it would exercise its autonomy in entering into those
commitments in the first place.

The first step to structuring and formalizing interactions among service provi-
ders and requestors is to introduce the notion of directed obligations, which
are obligations directed from one party to another. This is certainly a useful
step. Dignum and colleagues describe a temporal deontic logic that helps specify
obligations and constraints so that a planner can take deadlines into account
while generating plans [2]. However, the approach is based on the notion of
obligations, and it does not give operational methods for obligations. Once a
deadline has passed and a certain rule has been violated, the logic has nothing
to say about the effects on the system. Nevertheless, this approach is semantically
rich and detailed in the kinds of deadlines and constraints it allows agents to
model. For example, the deadline “as soon as possible,” can be modeled.

However, for virtual enterprises and business protocols, it is generally the
case that the obligation of one party to another is bounded by the scope of their
ongoing interaction. In other words, obligations derived from a virtual enterprise
may last no longer than the virtual enterprise in question. Further, there is
always the element of conflict, which means that the parties to a contract may
be in the need for some adjudication. These considerations suggest that there is
an organizational structure to the obligations, which bounds the scopes of the
obligations.

The notion of commitments (for historical reasons, sometimes referred to as so-
cial commitments) takes care of the above considerations. Commitments are a le-
gal abstraction, which subsume directed obligations. Importantly, commitments
(1) are public, and (2) can thus be used as a basis for compliance. Commitments
support the following key properties that make them a useful computational
abstraction for service-oriented architectures.

Multiagency. Commitments associate one agent or party with another. The
party that “owes” the commitment is called the debtor and the other party
is called the creditor. Each commitment is directed from its debtor to its
creditor.

The directionality is simply a representational convenience. In practice,
commitments would arise in interrelated sets. For example, a typical business

16 M.N. Huhns

contract would commit one party to pay another party and the second party
to deliver goods to the first party.

Scope. Commitments arise within a well-defined scope. This scope functions
as the social context of the commitment. In other words, the scope is itself
modeled as a multiagent system within which the debtor and creditor of the
given commitment interact. For example, the parties to a business contract
can be understood as forming and acting in a multiagent system in which
they create their respective commitments and act on them. The multiagent
system may have a short or a long lifetime depending on the requirements of
the application. Conceivably, the multiagent system for a one-off interaction
would be dissolved immediately, whereas some multiagent systems may even
last longer than the specific agents that belong to them.

Manipulability. Commitments can be acted upon and modified. In particular,
commitments may be revoked. If we were to prevent modifying or revoking
commitments, we would end up ruling out some of the most interesting sce-
narios where commitments can be applied. For example, irrevocability would
be too limiting for the kinds of open applications where service-oriented ar-
chitectures make sense. Irrevocability would prevent considering errors and
exceptions that may occur outside of the administrative domain of the given
business partner. For instance, it may simply be impossible for a vendor to
deliver the promised goods on time if the vendor’s factory burns down or
there are difficulties with shipping. However, we must be careful that com-
mitments are not revoked arbitrarily, which would make them worthless.
When restrictions (sensitive to a given context) are imposed on the manip-
ulation of commitments, they can support the coherence of computations.

Services, although collaborative, retain their autonomy. They can exercise their
local policies for most decisions and can be considered as being constrained only
by their commitments.

4.1 A Formalization of Commitments

We write commitments using a predicate C. A commitment has the form

C(x, y, p, G)

where x is its debtor, y its creditor, p the condition the debtor will bring about, and
G a multiagent system, which serves as the organizational context for the given
commitment. A commitment has a simple form, e.g., C(b, s, pay(b, s, $10), D),
where a buyer b commits to pay $10 to a seller s a seller within the context of
a particular business deal D between b and s.

4.2 Operations on Commitments

It helps to treat commitments as an abstract data type. This data type associates
a debtor, a creditor, a condition, and a context. The following are then natural
for commitments.

A Research Agenda for Agent-Based Service-Oriented Architectures 17

– create(x, c) establishes the commitment c in the system. This can only
be performed by c’s debtor x. For example, x promises to pay $10 to y.

– cancel(x, c) cancels the commitment c. This can be performed only by
c’s debtor x, for example, x reneges on its promise to pay $10. Generally,
making another commitment compensates cancellation.

– release(y, c) releases c’s debtor x from commitment c. This only can be
performed by the creditor y or a higher authority. For example, x decides to
waive receiving the $10, or the government steps in to say that the agreement
is null and void.

– assign(y, z, c) replaces y with z as c’s creditor. For example, x is now
committed to pay $10 to y’s friend z.

– delegate(x, z, c) replaces x with z as the debtor for c. For example, now
x’s friend is committed to pay $10 to y.

– discharge(x, c) means that c’s debtor x fulfills the commitment. For ex-
ample, x actually pays $10 to y or the assigned creditor.

Create and discharge are obvious; delegate and assign add some flexibility to
commitments and are also obvious. Cancel and release remove a commitment
from being in effect. Cancel is essential to reflect the autonomy of an agent;
just because it made a commitment does not mean that the commitment is ir-
revocable. However, if commitments could be wantonly canceled, there would
be no point in having them, so cancellations of commitments must be suitably
constrained. Release helps capture various subtleties of relationships among busi-
ness partners. A partner may decide not to insist that another party discharge
its commitments. Alternatively, the organizational context within which the par-
ties interact may find that a commitment should be eliminated. For example,
ordinarily a buyer is expected to pay for goods and a pharmacist is expected to
ship medicines that are paid for. However, if the goods arrive damaged then the
buyer is released from paying for them (but must return them instead); if the
medicine prescription turns out to be invalid, the pharmacist is released from
the commitment to ship the medications.

5 Robust Services Via Agent-Based Redundancy

A major driver behind an agent basis for Web services is the demand for robust-
ness. All approaches to robustness rely on some form of redundancy, and Web
services are a natural source of redundancy for software applications.

Software problems are typically characterized in terms of bugs and errors,
which may be either transient or omnipresent. The general approaches for deal-
ing with them are: (1) prediction and estimation, (2) prevention, (3) discovery,
(4) repair, and (5) tolerance or exploitation. Bug estimation uses statistical tech-
niques to predict how many flaws might be in a system and how severe their
effects might be. Bug prevention is dependent on good software engineering
techniques and processes. Good development and run-time tools can aid in bug
discovery, whereas repair and tolerance depend on redundancy.

18 M.N. Huhns

Indeed, redundancy is the basis for most forms of robustness. It can be pro-
vided by replication of hardware, software, or information, e.g., by repetition
of communication messages. Redundant code cannot be added arbitrarily to a
software system, just as steel cannot be added arbitrarily to a bridge. A bridge is
made stronger by adding beams that are not identical to ones already there, but
that have equivalent functionality. This turns out to be the basis for robustness in
service-oriented systems as well: there must be services with equivalent function-
ality, so that if one fails to perform properly, another can provide what is needed.
The challenge is to design service-oriented systems so that they can accommo-
date the additional services and take advantage of their redundant functionality.

We hypothesize that agents are a convenient level of granularity at which to
add redundancy and that the software environment that takes advantage of them
is akin to a society of such agents, where there can be multiple agents filling each
societal role [8]. Agents by design know how to deal with other agents, so they
can accommodate additional or alternative agents naturally.

Fundamentally, the amount of redundancy required is well specified by infor-
mation theory. If we want a system to provide n functionalities robustly, we must
introduce m×n agents, so that there will be m ways of producing each functional-
ity. Each group of m agents must understand how to detect and correct inconsis-
tencies in each other’s behavior, without a fixed leader or centralized controller.
If we consider an agent’s behavior to be either correct or incorrect (binary), then,
based on a notion of Hamming distance for error-correcting codes, 4×m agents
can detect m− 1 errors in their behavior and can correct (m− 1)/2 errors.

Redundancy must also be balanced with complexity, which is determined by
the number and size of the components chosen for building a system. That is,
adding more components increases redundancy, but also increases the complexity
of the system.

An agent-based system can cope with a growing application domain by in-
creasing the number of agents, each agent’s capability, or the computational
and infrastructure resources that make the agents more productive. That is, ei-
ther the agents or their interactions can be enhanced, but to maintain the same
redundancy m, they would have to be enhanced by a factor of m.

N-version programming, also called dissimilar software, is a technique for
achieving robustness first considered in the 1970s. It consists of N separately de-
veloped implementations of the same functionality. Although it has been used to
produce several robust systems, it has had limited applicability, because (1) N in-
dependent implementations have N times the cost, (2) N implementations based
on the same flawed specification might still result in a flawed system, and (3)
each change to the specification will have to be made in all N implementations.

Database systems have exploited the idea of transactions: an atomic process-
ing unit that moves a database from one consistent state to another. Consistent
transactions are achievable for databases because the types of processing done
are regular and limited. Applying this idea to software execution requires that
the state of a software system be saved periodically (a checkpoint) so the system
can return to that state if an error occurs.

A Research Agenda for Agent-Based Service-Oriented Architectures 19

5.1 Architecture and Process

Suppose there are a number of services, each with strengths, weaknesses, and
possibly errors. How can the services be combined so that the strengths are
exploited and the weaknesses or flaws are compensated or covered?

Three general approaches are evident in Figure 4. First, a preprocessor could
choose the best services to perform a task, based on published characteristics of
each service. Second, a postprocessor could choose the best result out of several
executing services. Third, the services could decide as a group which ones should
perform the task.

Choose service based on: (1) functionality, (2) QoS

Service #1 Service #2 Service #N

Single Task

Single Result

Compare Results and Select Best

. . .

Fig. 4. Improving robustness by combining multiple implementations of a service

The difficulties with the first two approaches are (1) the preprocessor might
be flawed, (2) it is difficult to maintain the preprocessor as services are added
or changed, and (3) the postprocessor wastes resources, because several services
work on the data and their results have to be compared.

The third approach requires distributed decision-making, which is not an abil-
ity of conventional Web services. What generic ability could be added to a service
to enable it to participate in a distributed decision? The generic capability has
the characteristics of an agent, so distributing the centralized functions into the
different modules creates a multiagent system. Each agent would have to know
its role as well as (1) something about its own service, such as its time and space

20 M.N. Huhns

complexity, and input and output data structures; (2) the complexity and relia-
bility of other agents; and (3) how to communicate, negotiate, compare results,
and manage reputations and trust.

5.2 Experimental Results

Huhns and colleagues collected one set of 25 algorithms for reversing a dou-
bly linked list and another set for sorting a list. Different novice programmers
wrote each algorithm. For sorting, no specifications were given to the program-
mers (beyond that the problem was sorting), so the algorithms all have different
data and performance characteristics. For list reversing, the class structure (i.e.,
method signatures) was specified, so the differences among the algorithms are
in performance and correctness.

Each algorithm was converted into an agent, composed of the algorithm writ-
ten in Java and a wrapper written in Jade. The wrapper knows only about the
signature of its algorithm, and nothing about its inner workings.

Our experiments verified that the same wrapper can be used for both the sort-
ing and list-reversing domains. We also verified our hypothesis that more algo-
rithms give better results than any one alone. Further, we investigated both a dis-
tributed preprocessor and a centralized postprocessor for combining the agents’
functionality, and found that the postprocessor is generally better, but performs
worse for large data sets or selected algorithms with long execution times.

The eventual outcome for application development is that service developers
will spend more time on functionality development and less on debugging, be-
cause different services will likely have errors in different places and can cover
for each other.

6 Conclusion and Agenda

Service-oriented computing (SOC) represents an emerging class of approaches
with multiagent-like characteristics for developing systems in large-scale open
environments. Indeed, SOC presents several challenges that cannot be tackled
without agent concepts and techniques. Viewed in this light, SOC offer many
ways in which to change the face of computing.

As services become increasingly like agents and their interactions become in-
creasingly dynamic, theyll begin to do more than just manage information in
explicitly programmed ways. In particular, services acting in concert can function
as computational mechanisms in their own right, thus significantly enhancing our
ability to model, design, build, and manage complex software systems. Think of
such MASs as providing a new approach for constructing complex applications
wherein developers concentrate on high-level abstractions, such as overall be-
havior and key conceptual structures (the active entities, their objectives, and
their interactions), without having to go further into individual agents details or
interactions. This vision becomes more compelling as the target environments
become more

A Research Agenda for Agent-Based Service-Oriented Architectures 21

– populous (a monolithic model is intractable, whereas developers can con-
struct an MAS modularly)

– distributed (pulling information to a central location for monitoring and con-
trol is prohibitive, whereas techniques based on interaction among agents and
the emergence of desired system-level behaviors are much easier to manage)

– dynamic (an MAS can adapt in real time to changes in the target system
and the environment in which it is embedded).

Table 1. Reasons for Complex System Development Based on Multiagent Service-
Oriented Systems

Multiagent System Properties Benefits for System Development
Autonomous, objective-oriented behavior;
agent-oriented decomposition

Autonomous, active functionality that
adapts to the users needs; reuse of whole
subsystems and flexible interactions

Dynamic composition and customization Scalability
Interaction abstractions; statistical or
probabilistic protocols

Friction-free software; open systems; in-
teractions among heterogeneous systems;
move from sophisticated and learned e-
commerce protocols to dynamic selection
of protocols

Multiple viewpoints, negotiation, and col-
laboration

Robustness and reliability

Social abstractions High-level modeling abstractions

Table 1 shows the ways in which MAS properties can benefit the engineer-
ing of complex service-oriented systems. Potential applications and application
domains that can also benefit from this approach include meeting scheduling,
scientific workflow management, distributed inventory control and supply chains,
air and ground traffic control, telecommunications, electric power distribution,
water supplies, and weapon systems.

References

1. Mark Burstein, Christoph Bussler, Tim Finin, Michael Huhns, Massimo Paolucci,
Amit Sheth, Stuart Williams, and Michael Zaremba, “A Semantic Web Services Ar-
chitecture,” IEEE Internet Computing, vol. 9, no. 5, pp. 72–81, September/October
2005.

2. F. Dignum, H. Weigand, and E. Verharen, “Meeting the Deadline: On the Formal
Specification of Temporal Deontic Constraints,” Foundations of Intelligent Systems,
9th Intl Symp., (ISMIS ’96), vol. 1079, Lecture Notes in Computer Science, Springer,
1996, pp. 243–252.

3. A. Eberhart, “Ad-Hoc Invocation of Semantic Web Services,” Proc. IEEE Intl Conf.
Web Services, IEEE CS Press, 2004; www.aifb.uni-karlsruhe.de/WBS/aeb/pubs/
icws2004.pdf.

22 M.N. Huhns

4. K. Sycara et al., “Dynamic Service Matchmaking among Agents in Open Informa-
tion Environments,” J. ACM SIGMOD Record, Special Issue on Semantic Interoper-
ability in Global Information Systems, vol. 28, no. 1, 1999, pp. 47–53; http://www-2.
cs.cmu.edu/ softagents/papers/ACM99-L.ps.

5. M. Singh and M. Huhns, Service-Oriented Computing: Semantics, Processes, Agents,
John Wiley & Sons, 2005.

6. K. Sivashanmugam, K. Verma, and A. Sheth, “Discovery of Web Services in a Feder-
ated Registry Environment,” Proc. IEEE Intl Conf. Web Services, IEEE CS Press,
2004; http://lsdis.cs.uga.edu/lib/download/MWSDI-ICWS04- final.pdf.

7. Werner Vogels, “Learning from the Amazon Technology Platform,” ACM Queue,
May 2006, pp. 14–22.

8. R.L. Zavala and M.N. Huhns, “On Building Robust Web Service- Based Applica-
tions,” in Extending Web Services Technologies: The Use of Multi-Agent Approaches,
L. Cavedon et al., eds., Kluwer Academic, 2004, pp. 293–310.

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 23 – 32, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Helpful Environment: Distributed Agents and
Services Which Cooperate

Austin Tate

Artificial Intelligence Applications Institute, University of Edinburgh,
Appleton Tower, Crichton Street, Edinburgh EH8 9LE, UK

a.tate@ed.ac.uk

Abstract. Imagine a future environment where networks of agents - people,
robots and software agents - interact with sophisticated sensor grids and
environmental actuators to provide advice, protection and aid. The systems will
be integral to clothing, communications devices, vehicles, transportation
systems, buildings, and pervasive in the environment. Vehicles and buildings
could assist both their occupants and those around them. Systems would adapt
and respond to emergencies whether communication were possible or not.
Where feasible, local help would be used, with appropriate calls on shared
services facilitated whenever this is both possible and necessary. Through this
framework requests for assistance could be validated and brokered to available
and appropriate services in a highly distributed fashion. Services would be
provided to individuals or communities through this network to add value and
give all sorts of assistance beyond emergency response aspects. In emergency
situations, the local infrastructure would be augmented by the facilities of the
responder teams at any level from local police, ambulance and fire response, all
the way up to international response. An emergency zone’s own infrastructure
could be augmented when necessary by laying down temporary low cost sensor
grids and placing specialized devices and robotic responders into the disaster
area. These would form the basis for a distributed, adaptable, and resilient
“helpful environment” for every individual and organisation at personal, family,
business, regional, national and international levels.

Keywords: Intelligent agents, distributed systems, collaborative systems,
cooperative systems, sensor grids, emergency response.

1 Introduction

Imagine a future environment where a network of agents - people, robots and
software agents - interact with sophisticated sensor grids and environmental actuators
to provide advice, protection and aid. The systems will be integral to clothing,
communications devices, vehicles, transportation systems, buildings, and pervasive in
the environment. These would form the basis for a distributed, adaptable, and resilient
“helpful environment” for every individual and organisation at personal, family,
business, regional, national and international levels. In natural disaster-prone areas
government legislation, building codes and insurance requirements would ensure that

24 A. Tate

appropriate sensor/actuator systems were included in future communication devices,
vehicles and buildings to assist both their users and those around them. Systems
would adapt and respond to emergencies whether communication were possible or
not. Where feasible, local help would be used, with appropriate calls on shared
services facilitated whenever this is both possible and necessary. Through this
framework requests for assistance could be validated and brokered to available and
appropriate services in a highly distributed market fashion. Services would be
provided to individuals or communities through this network to add value and give all
sorts of assistance beyond the emergency response aspects. In emergency situations,
the local infrastructure would be augmented by the facilities of the responder teams at
any level from local police, ambulance and fire response, all the way up to
international response. An emergency zone’s own infrastructure could be augmented
on demand by laying down temporary low cost sensor grids and placing specialized
devices and robotic responders into the disaster area.

2 Emergency Response Challenges

Local or regional governments are often responsible for the event handling, planning,
coordination and status reporting involved in responding to an emergency. They must
harness capabilities to augment their own by calling on the resources of others when
required. The local authority will often have an emergency response centre which, in
the event of an emergency, will provide information and support to the public
(through emergency phone lines), to the responders and to the decision making
authorities.

Across a range of emergency response scenarios, we can identify a common set for
which intelligent agents might be of assistance:

• Sensor data management and fusion
• Accurate information gathering
• Correlation and validation
• Relevant and understandable communication
• Contact making
• Requests for assistance and matching to available capabilities
• Use of Standard Operating Procedures and Alarms
• Planning and coordination
• Scale and robustness

But one of the biggest challenges is to help these agents and services and the people
using them to communicate and cooperate effectively. There are many instances in
which lack of communication and breakdown in coordination has degraded the
emergency response and in some cases led to further loss of life and property.

3 AI Challenges

There are many AI challenges to be addressed to give such support and to make the
vision a reality. Kitano and Tadokoro (2001) outlined some of this in a 50-year
programme of work for future rescue robotics in Japan. They have also introduced the

 The Helpful Environment: Distributed Agents and Services Which Cooperate 25

annual RoboCup Rescue Simulation competition held to test systems in a simulation of
the 1995 Kobe earthquake. There have been several other proposals for "Grand
Challenges" in computing and AI which take as their theme emergency response
(Safety.net, 2002; I-Rescue Grand Challenges, 2006). As examples, the UK Advanced
Knowledge Technologies (AKT) programme (Aktors, 2005) is addressing emergency
response challenge problems, and a European follow-on programme called
OpenKnowledge (2006) is using emergency response as one of its challenge problems.
The FireGrid project is seeking to link sophisticated and large-scale sensor grids and
faster than real-time simulations to emergency response coordination systems.

We can outline a number of core technologies, many having an essential AI
component, which need to be developed, matured and integrated with other systems
to make this vision of a connected world a reality. Examples of these technologies
include:

1. Sensors and Information Gathering
a. sensor facilities, large-scale sensor grids
b. human and photographic intelligence gathering
c. information and knowledge validation and error reduction
d. Semantic Web and meta-knowledge
e. simulation and prediction
f. data interpretation
g. identification of "need"

2. Emergency Response Capabilities and Availability
a. robust multi-modal communications
b. matching needs, brokering and "trading" systems
c. agent technology for enactment, monitoring and control

3. Hierarchical, distributed, large scale systems
a. local versus centralized decision making and control
b. mobile and survivable systems
c. human and automated mixed-initiative decision making
d. trust, security

4. Common Operating Methods
a. shared information and knowledge bases
b. shared standards and interlingua
c. shared human-scale self-help web sites and collaboration aids
d. shared standard operating procedures at levels from local to

international
e. standards for signs, warnings, etc.

5. Public Education
a. publicity materials
b. self-help aids
c. training courses
d. simulations and exercises

Running through all these is the need for flexible and extendible representations of
knowledge with rapidly altering scope, and with changing versions and refinements.
There cannot be a single monolithically agreed representation of all the knowledge
that will be involved. The science and technology of ontologies and their management
will be vital to sustain this knowledge.

26 A. Tate

The technologies outlined above are drawn from a number of fields, some more
mature than others, with each having its own philosophy and assumptions. However,
the technological and research advances that are necessary to realize this vision are
starting to be made in a number of projects and research programmes which will now
be described.

4 I-Rescue

The I-Rescue project (I-Rescue, 2005) is exploring the use of AI planning and
collaboration methods in rapidly developing emergency response and rescue
situations. The overall aim is the creation and use of task-centric virtual organisations
involving people, government and non-governmental organisations, automated
systems, grid and web services working alongside intelligent robotic, vehicle,
building and environmental systems to respond to very dynamic events on scales from
local to global.

The I-X system and I-Plan planner (Tate et. al., 2004) provide a framework for
representing, reasoning about, and using plans and processes in collaborative
contexts. An underlying ontology, termed <I-N-C-A> (Tate, 2003), is used as the
basis of a flexible representation for the issues/questions to address, nodes/activities
to be performed, constraints to be maintained and annotations to be kept. The I-X
approach to plan representation and use relates activities to their underlying "goal
structure" using rich (and enrichable) constraint descriptions which include the
impact that the activities are meant to have on the state of the environment. This
allows for more precise and useful monitoring of plan execution, allowing plans to
be adjusted or repaired as circumstances change. It can make use of the dynamically
changing context and status of the agents and products involved (e.g. through
emerging geo-location services for people and products). It also provides for the
real-time communication of activities and tasks between both human and automated
resources.

I-X agents and the underpinning <I-N-C-A> ontology can be used in a range of
systems including supportive interfaces for humans and organisations, and potentially
in intelligent sensors and robotic devices. It can thus act as a shared mechanism for
coordinating these and for providing them with intelligent planning and process
support.

I-Rescue and I-X systems aim to be part of a future environment in which there are:

• Multi-level emergency response and aid systems
• Personal, vehicle, home, organisation, district, regional, national, international

levels of assistance
• Backbone for progressively more comprehensive aid and emergency response
• Also used for aid-orientated commercial services
• Robust, secure, resilient, distributed system of systems
• Advanced knowledge and collaboration technologies
• Low cost, pervasive sensors, computing and communications
• Changes in building codes, regulations and practices.

 The Helpful Environment: Distributed Agents and Services Which Cooperate 27

5 Coalition Agents Experiment (CoAX)

As recent world events have shown, multi-national Coalitions play an increasingly
important role in emergency response operations. The overall aim of is to exploit
information better; in Coalitions this requires rapid integration of heterogeneous
information handling and command systems, enabling them to inter-operate and
share information coherently. However, Coalitions today suffer from labour-intensive
information collection and co-ordination, and ‘stove-piped’ systems with incomp-
atible representations of information.

The Coalition Agents Experiment (CoAX, 2006, Allsop et al., 2003) was an
international collaborative research effort involving 30 organisations in four countries.
It brought together a wide range of groups exploring agent technologies relevant to
multi-national and multi-agency operations in the context of a peace-keeping scenario
set in a fictional country – Binni (Rathmell, 1999). The principal research hypothesis
was that the software agent technology and principles of the Semantic Web could help
to initially construct and then use and maintain loosely coupled systems for complex
and very dynamically changing Coalition operations (e.g. as in Wark et al., 2003).
CoAX carried out a series of technology demonstrations based on a realistic Coalition
scenario. These showed how agents and associated technologies facilitated run-time
interoperability across the Coalition, adaptive and agile responses to unexpected
events, and selective sharing of information between Coalition partners.

6 Coalition Search and Rescue Task Support (CoSAR-TS)

Search and rescue operations by nature require the kind of rapid dynamic composition
of available policy-constrained services making it a good experimental basis for
intelligent agent Semantic Web technologies. Semantic Web use within agents in
CoAX was taken further in the CoSAR-TS project which also used the CoAX Binni
scenario (Rathmell, 1999), and events which immediately followed on from those in
the CoAX demonstrations. The KAoS agent domain management framework
(Bradshaw et al., 1997) was used to describe the agent domains and the policies under
which they interoperate. The project showcases intelligent agents and artificial
intelligence planning systems working in a distributed fashion, with dynamic policies
originating from various groups and individuals governing who is permitted or
obligated to do what. The agents use Semantic Web services to dynamically discover
medical information and to find local rescue resources. Semantic Web information
access uses the OWL language (2004) and the rescue services are described in OWL-
S (2005). I-X (Tate et al., 2002) was used as a task support, planning and execution
framework to connect the various participants and services used. In later phases of
the work, an exploration of web services composition using I-X’s planner (I-Plan)
was also included (Uszok et al., 2004).

7 Collaborative Operations for Personnel Recovery (Co-OPR)

Personnel recovery (search and rescue) teams must operate under intense pressure,
taking into account not only hard logistics, but also "messy" factors such as the social
or political implications of a decision. The “Collaborative Operations for Personnel

28 A. Tate

Recovery” (Co-OPR) project has developed decision-support for sensemaking in such
scenarios, seeking to exploit the complementary strengths of human and machine
reasoning. Co-OPR integrates the Compendium (Buckingham-Sum et al., 2006)
sensemaking-support tool for real time information and argument mapping, with the
I-X (Tate et al., 2002) artificial intelligence planning and execution framework to
support group activity and collaboration. Both share a common model for dealing
with issues, the refinement of options for the activities to be performed, handling
constraints and recording other information. The tools span the spectrum with
Compendium being very flexible with few constraints on terminology and content, to
the knowledge-based reliance on rich domain models and formal conceptual models
(ontologies) of I X. In a personnel recovery experimental simulation of a UN
peacekeeping operation, with roles played by military planning staff, the Co-OPR
tools were judged by external evaluators to have been very effective.

8 Collaborative Advanced Knowledge Technologies e-Response

The Collaborative Advanced Knowledge Technologies in the Grid (CoAKTinG)
project (Buckingham Shum et al., 2002) used technologies from the UK Advanced
Knowledge Technologies programme (Aktors, 2006) to support distributed scientific
collaboration in an emergency response situation – in particular in a scenario
involving the management of an oil spill. Focusing on the interchange between
humans in the scenario, CoAKTinG provided tools to assist scientific collaboration by
integrating intelligent meeting spaces, ontologically annotated media streams from
on-line meetings, decision rationale and group memory capture, meeting facilitation,
planning and coordination support, argumentation, and instant messaging/presence.

The focus of AKT as a whole is on the provision of ‘next generation’ knowledge
technologies, particularly in the context of the semantic web as both a medium and a
target domain for these technologies.

New work on the AKT project is focused on a challenge problem dealing with the
aftermath of a civil cargo aircraft crashing on a large city – an actual scenario for
which there are existing contingency plans in place. It looks at how to use the
semantic web to assist in making sense of the situation, both to guide emergency
responders and to find appropriate specialized rescue and medical capabilities.

9 OpenKnowledge e-Response

OpenKnowledge (OpenKnowledge, 2006) is a European Union project involving
Edinburgh, Southampton and the Open Universities in the UK, Amsterdam in The
Netherlands, Trento in Italy and Barcelona in Spain. The goal of the project is to
provide an open framework for agent interaction and coordination in knowledge-rich
environments. It focuses on two challenge problems, one of which is emergency
monitoring and management. This domain has been chosen as a testbed because it
demands a combination of geographical and geo-presence knowledge alongside active
support for collaboration and planning in multi-agent, dynamic situations.

The need to harness electronic communication networks in emergency situations
has been recognised as a European research priority. Quoting from the EU
“Emergency Response Grid” programme (EU, 2006):

 The Helpful Environment: Distributed Agents and Services Which Cooperate 29

“In times of crisis – be it a natural disaster, terrorist attack or infrastructure
failure – mobile workers need to work together in time-critical and
dangerous situations. Real-time access to information and knowledge,
powered by Grids, will help save lives. Crises are complex situations, with
large numbers and varieties of mobile workers – medical and rescue
teams, police, fire fighters and other security personnel – appearing on the
spot at short notice. These different teams come from different
organisations, and generally have incomplete or even contradictory
knowledge of the crisis situation.”

For OpenKnowledge the challenge of a test bed in this domain is in the rapidity of
formation of emergency coalitions – often very intense and opportunistic
“communities of practice” where judging the quality of an answer is critical and
dynamic. OpenKnowledge involves the exploration of peer-to-peer services such as:

• Network data sources: Sensor data flows need to be coordinated in the large.
These data will be classified locally and will need to be made available to
different “experts/peers” on the basis of contextual classification schema.

• Collaborative services: to support planning, communication and coordination
within the expert peers community.

• Mitigation assessment services: as potential emergency situations are
identified, mitigation needs can be determined and prioritized.

• Preparedness services: supporting those activities that prepare for actual
emergencies.

10 FireGrid

A broad vision for an emergency response system in the modern built environment is
being explored with an integrated and inter-disciplinary approach in FireGrid (Berry
et al., 2005; FireGrid, 2006). This is a UK project to address emergency response in
the built environment, where sensor grids in large-scale buildings are linked to faster-
than-real-time grid-based simulations, and used to assist fire responders to work with
the building’s internal response systems and occupants to form a team to deal with the
emergency.
FireGrid will integrate several core technologies, extending them where necessary:

• High Performance Computing involving fire models and structural models
• Wireless sensors in extreme conditions with adaptive routing algorithms,

including input validation and filtering
• Grid computing including sensor-guided computations, mining of data

streams for key events and reactive priority-based scheduling
• Command and Control using knowledge-based planning techniques with

user guidance

I-X will act as a “front-end” for the emergency response chief to access the various
grid and web services which can be called upon to work with the human responders
and those in the affected buildings.

30 A. Tate

11 Helpful Systems and Helpful Organisations

The infrastructure and organisations that would be required to make the vision of the
helpful environment possible are being put in place. The Galileo European Satellite
Navigation System (Galileo, 2006) and its mobile geo-location and emergency
response services programme will be another spur to development. Both commercial
and freely provided emergency response facilities are being interwoven to ensure
active development and support over a long period.

Examples of the type of ‘helpful organisation’ that will enact this vision are
already starting to emerge. An organisation called the Multinational Planning
Augmentation Team (MPAT; Weide, 2006), consisting of 33 nations situated around
the Pacific Rim, has been developing shared knowledge and procedures to assist in
responses to regional crises. MPAT used computer collaboration aids, and a simple
brokering system, during the December 2004 – February 2005 Indian Ocean Tsunami
response to help affected countries gain access the specialized capabilities of response
organisations more effectively. MPAT is an excellent example of people training and
working together to ensure they are ready to respond better to emergencies. It would
be a prime beneficiary and exploiter of any future ‘helpful environment’.

On a smaller scale the Washington DC area is conducting a programme called
Capital Wireless Integrated Network (CapWIN, 2005) led by IBM and the University
of Maryland. This programme works with local services to support responses by all
agencies to incidents occurring on a single freeway interchange in the DC area. Its
aim is to show the potential value of coordinated wireless computing services for
integrated and cohesive response across the police, the ambulance service, emergency
support teams, the fire brigade, hazardous material units and the military.

12 The Helpful Environment

Imagine in the not too distant future that every citizen, vehicle, package in transit and
other "active devices" can be treated as a potential sensor or responder. Individuals or
vehicles that need help, as well as local, regional, national and international emergency
agencies, could look up specialized capabilities or find local assistance through a much
more responsive and effective environment. Systems could inter-operate to enable
preventative measures to be taken so that those in imminent danger could be forewarned
by their own systems, and by the people, vehicles and buildings around them.

These would support a diverse range of uses, such as:

• Disaster response and evacuation
• Terrorism incident response
• Civil accidents
• Disease control
• Business continuity
• Family emergencies
• Transportation aids
• Help desks
• Procedural assistance

A truly "helpful environment" could be created that is accessible by all.

 The Helpful Environment: Distributed Agents and Services Which Cooperate 31

Acknowledgments. This article is based on evidence given to US and UK govern-
ment agencies concerned with responses to emergency situations and with “Grand
Challenges” for computer science research. A version is included in the IEEE
Intelligent Systems special issue on the Future of AI in 2006. Projects mentioned in
this paper have been sponsored by a number of organisations. The University of
Edinburgh and research sponsors are authorized to reproduce and distribute reprints
and on-line copies for their purposes notwithstanding any copyright annotation
hereon. The views and conclusions contained herein are those of the author and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of other parties.

References

1. Aktors (2006) AKT: Advanced Knowledge Technologies.http://aktors.org
2. Allsopp, D.N., Beautement, P., Bradshaw, J.M., Durfee, E.H., Kirton, M., Knoblock, C.A.,

Suri, N., Tate A., and Thompson, C.W. (2002) Coalition Agents Experiment: Multi-Agent
Co-operation in an International Coalition Setting, Special Issue on Knowledge Systems
for Coalition Operations (KSCO), IEEE Intelligent Systems, Vol. 17 No. 3 pp. 26-35.
May/June 2002.

3. Allsopp, D., Beautement, P., Kirton, M., Tate, A., Bradshaw, J.M., Suri, N. and Burstein,
M. (2003) The Coalition Agents Experiment: Network-Enabled Coalition Operations,
Special Issue on Network-enabled Capabilities, Journal of Defence Science, Vol. 8, No. 3,
pp. 130-141, September 2003.

4. Berry, D., Usmani, A., Terero, J., Tate, A., McLaughlin, S., Potter, S., Trew, A., Baxter,
R., Bull, M. and Atkinson, M. (2005) FireGrid: Integrated Emergency Response and Fire
Safety Engineering for the Future Built Environment, UK e-Science Programme All
Hands Meeting (AHM-2005), 19-22 September 2005, Nottingham, UK.
http://www.aiai.ed.ac.uk/project/ix/documents/2005/2005-escience-ahm-firegrid.doc

5. Bradshaw, J M, Dutfield, S, Benoit, P, and Woolley, J D. (1997) KAoS: Toward an
industrial-strength open agent architecture. In Software Agents, AAAI Press/MIT Press,
Cambridge, Massachusetts, editor J M Bradshaw. Pages 375-418.

6. Buckingham Shum, S., De Roure, D., Eisenstadt, M., Shadbolt, N. and Tate, A. (2002)
CoAKTinG: Collaborative Advanced Knowledge Technologies in the Grid, Proceedings
of the Second Workshop on Advanced Collaborative Environments, Eleventh IEEE Int.
Symposium on High Performance Distributed Computing (HPDC-11), July 24-26, 2002,
Edinburgh, Scotland. http://www.aiai.ed.ac.uk/project/ix/documents/2002/2002-wace-
coakting.pdf

7. Buckingham Shum, S., Selvin, A., Sierhuis, M., Conklin, J., Haley, C. and Nuseibeh, B.
(2006). Hypermedia Support for Argumentation-Based Rationale: 15 Years on from gIBIS
and QOC. In: Rationale Management in Software Engineering (Eds.) A.H. Dutoit, R.
McCall, I. Mistrik, and B. Paech. Springer-Verlag: Berlin

8. CapWIN (2006) Capital Wireless Integrated Network. http://capwin.org
9. Co-OPR (2006) Coalition Operations for Personnel Recovery. http://www.aiai.ed.ac.uk/

project/co-opr/
10. CoSAR-TS (2006) Coalition Search and Rescue Task Support. http://www.aiai.ed.ac.uk/

project/cosar-ts/
11. CoAX (2006) Coalition Agents eXperiment http://www.aiai.ed.ac.uk/project/coax/
12. EU (2006) European Union Emergency Response Grid www.cordis.lu/ist/grids/

emergencey_response_grid.htm

32 A. Tate

13. FireGrid (2006) FireGrid: The FireGrid Cluster for Next Generation Emergency Response
Systems. http://firegrid.org

14. Galileo (2006) Galileo: European Satellite Navigation System. http://europa.eu.int/comm/
dgs/energy_transport/galileo/

15. I-Rescue (2006) I-Rescue: I-X for Emergency Response and Related Grand Challenges.
http://i-rescue.org

16. Kitano, H. and Tadokoro, S. (2001) RoboCup Rescue: A Grand Challenge for Multiagent
and Intelligent Systems, Artificial Intelligence Magazine, Spring, 2001, American
Association of Artificial Intelligence.

17. MPAT (2006) Multinational Planning Augmentation Team Multinational Forces Standing
Operating Procedures (MNF SOP) http://www2.apan-info.net/mpat/

18. OpenKnowledge (2006) OpenKnowledge.http://openk.org
19. OWL (2004) Ontology Web Language, World Wide Web Consortium. http://www.

w3.org/2004/OWL/
20. OWL-S (2005) Ontology Web Language for Services. http://www.daml.org/services/owl-s/
21. Rathmell, R A. (1999) A Coalition force scenario ‘Binni � gateway to the Golden Bowl of

Africa’. In Proceedings of the International Workshop on Knowledge-Based Planning for
Coalition Forces, editor A Tate, pages 115-125, Edinburgh, Scotland, May 1999.
Available at http://binni.org.

22. Safety Net (2002) Safety.net Grand Challenge Proposal. CRA Conference on "Grand
Research Challenges" in Computer Science and Engineering Workshop, June 23-26, 2002,
Warrenton, Virginia. http://www.cra.org/Activities/grand.challenges/slides/ubiquitous.pdf

23. Tate, A., Dalton, J., and J. Stader, J. (2002) I-P2- Intelligent Process Panels to Support
Coalition Operations. In Proceedings of the Second International Conference on
Knowledge Systems for Coalition Operations (KSCO-2002). Toulouse, France, April
2002.

24. Tate, A. (2003) <I-N-C-A>: an Ontology for Mixed-Initiative Synthesis Tasks. In
Proceedings of the Workshop on Mixed-Initiative Intelligent Systems (MIIS) at the
International Joint Conference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico,
August 2003.

25. Tate, A., Dalton, J., Siebra, C., Aitken, S., Bradshaw, J.M. and Uszok, A. (2004)
Intelligent Agents for Coalition Search and Rescue Task Support, AAAI-2004 Intelligent
Systems Demonstrator, in Proceedings of the Nineteenth National Conference of the
American Association of Artificial Intelligence (AAAI-2004), San Jose, CA, USA, July
2004. http://www.aiai.ed.ac.uk/project/ix/documents/2004/2004-aaai-isd-tate-cosarts.pdf

26. Uszok, A., Bradshaw, J.M., Jeffers, R., Johnson, M., Tate, A., Dalton, J. and Aitken, S.
(2004) KAoS Policy Management for Semantic Web Services, IEEE Intelligent Systems,
pp. 32-41, July/August 2004.

27. Wark, S., Zschorn, A., Perugini, D., Tate, A., Beautement, P., Bradshaw, J.M. and Suri, N.
(2003) Dynamic Agent Systems in the CoAX Binni 2002 Experiment, Special Session on
Fusion by Distributed Cooperative Agents at the 6th International Conference on
Information Fusion (Fusion 2003), Cairns, Australia, July, 2003.

28. Weide, S.A. (2006) Multinational Crisis Response in the Asia-Pacific Region: The
Multinational Planning Augmentation Team Model, in "The Liaison", Center of
Excellence in Disaster Management & Humanitarian Assistance (COE-DMHA), February
2006. http://www.coe-dmha.org/liaison.htm

Voting in Cooperative Information Agent
Scenarios: Use and Abuse

Jeffrey S. Rosenschein and Ariel D. Procaccia

School of Engineering and Computer Science
Hebrew University, Jerusalem, Israel
{jeff, arielpro}@cs.huji.ac.il

Abstract. Social choice theory can serve as an appropriate foundation
upon which to build cooperative information agent applications. There
is a rich literature on the subject of voting, with important theoretical
results, and builders of automated agents can benefit from this work as
they engineer systems that reach group consensus.

This paper considers the application of various voting techniques, and
examines nuances in their use. In particular, we consider the issue of pref-
erence extraction in these systems, with an emphasis on the complexity
of manipulating group outcomes. We show that a family of important
voting protocols is susceptible to manipulation by coalitions in the aver-
age case, when the number of candidates is constant (even though their
worst-case manipulations are NP-hard).

1 Introduction

Research on the theory of social choice, and in particular on its computational
aspects, has become an important pursuit within computer science (CS). Moti-
vating this work is the belief that social choice theory can have direct implications
on the building of systems comprised of multiple automated agents. This paper
describes some of that research, so it is a paper about voting and manipulation,
but it is also inter alia about how computer science can help scientists and math-
ematicians see questions in new ways, spurring progress in new theoretical and
applied directions.

Computer science occupies a unique position with respect to other fields of
scientific endeavor. Its idiosyncratic nature should be celebrated and strength-
ened; it helps to make computer science in general, and its subfield multiagent
systems (MAS), among the most exciting of scientific research areas today.

Computer Science is, at one and the same time:

1. An independent field with its own set of fundamental questions (both the-
oretical and applied). This distinctive blurring of theoretical and applied
research, in both computer science and MAS, can be a great strength. There
exist established fields of Applied Physics and Applied Mathematics, but
there is no Applied Computer Science. Fundamental research certainly ex-
ists in those parts of CS closest to mathematics, but it is hard to conceive of

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 33–50, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

34 J.S. Rosenschein and A.D. Procaccia

a computer scientist, even one who occupies its most mathematical corners,
uttering anything analogous to the quote attributed to the mathematician
Leonard Eugene Dickson, “Thank God that number theory is unsullied by
any application”.1 It’s the aspiration to be purely theoretical that is absent
in computer science.

2. A contributor to other fields of both technological and conceptual enablers;
as the much-quoted New York Times article provocatively put it, “All Science
is Computer Science” [18]. However, that article was referring mainly to the
use of powerful computing in other fields, which is certainly not the core of
computer science. One could argue that the more important influence of CS
has been in changing how scientists in other fields view their problems: com-
putation becomes a basic conceptual model, part of the intellectual toolset
of other fields. There have been a number of highly visible examples of this
trend, such as in cognitive psychology (e.g., information processing models
of memory and attention [11]), attempts to develop computational models of
the cell [27], and computational statistical mechanics [17]. The type of work
described in this paper has had an influence on political science and sociology.

3. An avid consumer of the results produced by other fields. The interdiscipli-
nary nature of computer science is nowhere more evident than in the area
of artificial intelligence (AI), and perhaps nowhere more evident in artificial
intelligence than in its subarea of multiagent systems. MAS researchers for
the last 20 years have eagerly derived inspiration from fields as diverse as bi-
ology, physics, sociology, economics, organization theory, and mathematics.
This is appropriate (even necessary), and the field takes a justifiable pride
in its interdisciplinary openness.

1.1 Game Theory and Economics in MAS

One of the most exciting trends in computer science (and specifically in MAS)
has been the investigation of game theory and economics as tools for automated
systems.2 Beginning with work in the mid-1980s, researchers have turned out
a steady drumbeat of results, considering the computational aspects of game
theory and economics, and how these fields can be put to appropriate use in the
building of automated agents [23,9,29,24,19,15].

In this paper, we explore the use of preference aggregation in multiagent sys-
tems. Preference aggregation has deep roots in economics, but what distinguishes
the CS work on this issue is the concern for computational issues: how are results
arrived at (e.g., equilibrium points)? What is the complexity of the process? Can
complexity be used to guard against unwanted phenomena? Does complexity of
computation prevent realistic implementation of a technique?

The criteria to be used in evaluating this work (and exploiting its results)
needs to take into account the ultimately applied nature of the endeavor. The
1 Of course, number theory eventually provided the basis for the cryptography embed-

ded throughout the internet, so it was not quite as unsullied as all that (eventually).
2 We use the terms loosely, to encompass related fields and subfields such as decision

theory, mechanism design, and general equilibrium theory.

Voting in Cooperative Information Agent Scenarios: Use and Abuse 35

idealized models of classic game theory might fall short when used normatively
or descriptively with regard to human behavior, but for the most part that might
remain a theoretical concern. Application of these models to automated agents
quite urgently argued for their adjustment. To take one example, if computing
an equilibrium point in a particular interaction is computationally infeasible,
what would be the meaning of telling an agent to choose one?

Much of what follows first appeared in [21,22,20], and we use that material
(particularly from the first of those papers) freely. We present it as a specific
example of how preference aggregation can be handled in automated systems,
and how computational issues come to the forefront.

1.2 The Theory and Practice of Preference Aggregation

In multiagent environments, it may be the case that different agents have di-
verse preferences, and it is therefore important to find a way to aggregate agent
preferences. Even in situations where the agents are cooperative, there may still
be independent motivations, goals, or perspectives that require them to come to
a consensus.

A general scheme for preference aggregation is voting3: the agents reveal their
preferences by ranking a set of candidates, and a winner is determined according
to a voting protocol. The candidates can be entities of almost any conceivable sort.

For instance, Ghosh et al. [12] designed an automated movie recommendation
system, in which the conflicting preferences a user may have about movies were
represented as agents, and movies to be suggested were selected according to
a voting scheme (in this example there are multiple winners, as several movies
are recommended to the user). The candidates in a virtual election could also
be items such as beliefs, joint plans [10], or schedules [14]. In fact, to see the
generality of the (automated) voting scenario, consider modern web searching.
One of the most massive preference aggregation schemes in existence is Google’s
PageRank algorithm, which can be viewed as a vote among indexed web pages on
candidates determined by a user-input search string; winners are ranked (Ten-
nenholtz [26] considers the axiomatic foundations of ranking systems such as
this).

Things are made more complicated by the fact that in many automated set-
tings (as in non-virtual environments) the agents are self-interested, or at the
very least bring different knowledge/perspectives to the interaction. Such an
agent may reveal its preferences untruthfully, if it believes this would make the
final outcome of the elections more favorable for it. In fact, well-meaning agents
may even lie in an attempt to improve social welfare [20].4 In any case, whether
the agents are acting out of noble or ignoble motives, there may be an undesir-
able social outcome. Strategic behavior in voting has been of particular interest
to AI researchers [3,5,8,21]. This problem is provably acute: it is known [13,25]
that, for elections with three or more candidates, in any voting protocol that
3 We use the term in its intuitive sense here, but in the social choice literature, “pref-

erence aggregation” and “voting” are basically synonymous.
4 Though if several do it in parallel there may be unintended negative consequences.

36 J.S. Rosenschein and A.D. Procaccia

is non-dictatorial,5 there are elections where an agent is better off by voting
untruthfully.

Of course, in some systems, particularly centrally-designed systems, strategic
behavior can be effectively banned by fiat. We would argue this covers a distinct
minority of multiagent systems.

1.3 Nuances

Different voting protocols will often have different outcomes, as well as different
properties. Some protocols may be hard to manipulate; others may skew the
preferences of voters in particular ways. Many of these phenomena are well-
known in social choice theory, such as the effects of run-off voting on who wins
an election (a good heuristic: bring your candidate up for a vote as late as
possible in the process). Consider as another example one that comes from a
paper in this collection [20]. There we discuss the concepts of distortion and
misrepresentation, two (related, but distinct) measures of how well (or badly) a
given candidate represents the desires of a voter.

Quoting from [20]:

[T]he misrepresentation of a social choice function. . . can be easily refor-
mulated as distortion. In fact, similar results can be obtained, but the
latter formulation favors candidates that are ranked last by few voters,
whereas the former formulation rewards candidates that are placed first
by many voters.

So depending on whether distortion or misrepresentation is used, we may be
developing a technique that prefers candidates with many first place votes over
one that prefers candidates with few last place votes. The choice is in the hands
of the designer, and one or the other may be more natural for some specific
domain. Continuing from [20]:

Consider the meeting scheduling problem discussed in [14]: scheduling
agents schedule meetings on behalf of their associated users, based on
given user preferences; a winning schedule is decided in an election. Say
three possible schedules are being voted on. These schedules, being fair,
conflict with at most two of the requirements specified by any user. . . In
this case, having no conflicts at all is vastly superior to having at least
one conflict, as even one conflict may prevent a user from attending a
meeting. As noted above, this issue is taken into account in the calcula-
tion of misrepresentation — emphasis is placed on candidates that were
often ranked first.

This type of consideration runs throughout our choices of preference aggrega-
tion techniques. The system put into place may have major ramifications on the
outcomes. In addition (and this is the main concern of the rest of the paper),

5 In a dictatorial protocol, there is an agent that dictates the outcome regardless of
the others’ choices.

Voting in Cooperative Information Agent Scenarios: Use and Abuse 37

the resistance of the system to strategic behavior may influence whether agents
truthfully reveal their preferences, and whether a socially desirable candidate is
elected.

1.4 Complexity to the Rescue

Fortunately, it is reasonable to make the assumption that automated agents are
computationally bounded. Therefore, although in principle an agent may be able
to manipulate an election, the computation required may be infeasible. This has
motivated researchers to study the computational complexity of manipulating
voting protocols. It has long been known [2] that there are voting protocols that
are NP-hard to manipulate by a single voter. Recent results by Conitzer and
Sandholm [6,4] show that some manipulations of common voting protocols are
NP-hard, even for a small number of candidates. Moreover, in [7], it is shown
that adding a pre-round to some voting protocols can make manipulations hard
(even PSPACE-hard in some cases). Elkind and Lipmaa [8] show that the notion
of pre-round, together with one-way functions, can be used to construct protocols
that are hard to manipulate even by a large minority fraction of the voters.

In computer science, the notion of hardness is usually considered in the sense
of worst-case complexity. Not surprisingly, most results on the complexity of
manipulation use NP-hardness as the complexity measure. However, it may
still be the case that most instances of the problem are easy to manipulate.

A relatively little-known theory of average case complexity exists [28]; that
theory introduces the concept of distributional problems, and defines what a
reduction between distributional problems is. It is also known that average-case
complete problems exist (albeit artificial ones, such as a distributional version
of the halting problem).

Sadly, it is very difficult to show that a certain problem is average-case com-
plete, and such results are known only for a handful of problems. Additionally,
the goal of the existing theory is to define when a problem is hard in the average-
case; it does not provide criteria for deciding when a problem is easy. A step
towards showing that a manipulation is easy on average was made in [8]. It
involves an analysis of the plurality protocol with a pre-round, but focuses on
a very specific distribution, which does not satisfy some basic desiderata as to
what properties an “interesting” distribution should have.

In this paper, we engage in a novel average-case analysis, based on criteria
we propose. Coming up with an “interesting” distribution of problem instances
with respect to which the average-case complexity is computed is a difficult task,
and the solution may be controversial. We analyze problems whose instances are
distributed with respect to a junta distribution. Such a distribution must satisfy
several conditions, which (arguably) guarantee that it focuses on instances that
are harder to manipulate. We consider a protocol to be susceptible to manipu-
lation when there is a polynomial time algorithm that can usually manipulate
it: the probability of failure (when the instances are distributed according to a
junta distribution) must be inverse-polynomial. Such an algorithm is known as
a heuristic polynomial time algorithm.

38 J.S. Rosenschein and A.D. Procaccia

We use these new methods to show our main result: an important family
of protocols, called scoring protocols, is susceptible to coalitional manipulation
when the number of candidates is constant.6 Specifically, we contemplate sen-
sitive scoring protocols, which include such well-known protocols as Borda and
Veto. To accomplish this task, we define a natural distribution µ∗ over the in-
stances of a well-defined coalitional manipulation problem, and show that this
is a junta distribution. Furthermore, we present the manipulation algorithm
Greedy, and show that it usually succeeds with respect to µ∗.

We also show that all protocols are susceptible to a certain setting of manip-
ulation, where the manipulator is unsure about the others’ votes. This result
depends upon a basic conjecture regarding junta distributions, but also has im-
plications that transcend our specific definition of these distributions.

In Section 2, we outline some important voting protocols, and properly define
the manipulation problems we shall discuss. In Section 3, we formally introduce
the tools for our average case analysis: junta distributions, heuristic polynomial
time, and susceptibility to manipulations. In Section 4 we present our main
result: sensitive scoring protocols are susceptible to coalitional manipulation with
few candidates. In Section 5, we discuss the case when a single manipulator is
unsure about the other voters’ votes. Finally, in Section 6, we present conclusions
and directions for future research.

2 Preliminaries

We first describe some common voting protocols and formally define the manip-
ulation problems with which we shall deal. Next, we introduce a useful lemma
from probability theory.

2.1 Elections and Manipulations

An election consists of a set C of m candidates, and a set V of n voters, who
provide a total order on the candidates. An election also includes a winner de-
termination function from the set of all possible combinations of votes to C. We
note that throughout this paper, m = O(1), so the complexity results are in
terms of n.

Different voting protocols are distinguished by their winner determination
functions. The protocols we shall discuss are:

– Scoring protocols: A scoring protocol is defined by vector α=〈α1, α2, . . . , αm〉,
such that α1 ≥ α2 ≥ . . . ≥ αm and αi ∈ N ∪ {0}. A candidate receives
αi points for each voter which ranks it in the i’th place. Examples of scoring
protocols are:
• Plurality: α = 〈1, 0, . . . , 0, 0〉.
• Veto: α = 〈1, 1, . . . , 1, 0〉.
• Borda: α = 〈m− 1, m− 2, . . . , 1, 0〉.

6 Proofs can be found in [21].

Voting in Cooperative Information Agent Scenarios: Use and Abuse 39

– Copeland: For each possible pair of candidates, simulate an election; a candi-
date wins such a pairwise election if more voters prefer it over the opponent.
A candidate gets 1 point for each pairwise election it wins, and −1 for each
pairwise election it loses.

– Maximin: A candidate’s score in a pairwise election is the number of voters
that prefer it over the opponent. The winner is the candidate whose minimum
score over all pairwise elections is highest.

– Single Transferable Vote (STV): The election proceeds in rounds. In each
round, the candidate’s score is the number of voters that rank it highest
among the remaining candidates; the candidate with the lowest score is elim-
inated.

Remark 1. We assume that tie-breaking is always adversarial to the manipulator.7

In the case of weighted votes, a voter with weight k ∈ N is naturally regarded
as k voters who vote unanimously. In this paper, we consider weights in [0, 1].
This is equivalent, since any set of integer weights in the range 1, . . . ,polyn can
be scaled down to weights in the segment [0, 1] with O(logn) bits of precision.

The main results of the paper focus on scoring protocols. We shall require the
following definition:

Definition 1. Let P be a scoring protocol with parameters α=〈α1, α2, . . . , αm〉.
We say that P is sensitive iff α1 ≥ α2 ≥ . . . ≥ αm−1 > αm = 0 (notice the strict
inequality on the right).

In particular, Borda and Veto are sensitive scoring protocols.

Remark 2. Generally, from any scoring protocol with αm−1 > αm, an equivalent
sensitive scoring protocol can be obtained by subtracting αm on a coordinate-
by-coordinate basis from the vector α. Moreover, observe that if a protocol is a
scoring protocol but is not sensitive, and αm = 0, then αm−1 = 0. In this case,
for three candidates it is equivalent to the plurality protocol, for which most
manipulations are tractable even in the worst-case. Therefore, it is sufficient to
restrict our results to sensitive scoring protocols.

We next consider some types of manipulations, state the appropriate complexity
results, and introduce some notations.

Remark 3. We discuss the constructive cases, where the goal is trying to make
a candidate win, as opposed to destructive manipulation, where the goal is to
make a candidate lose. Constructive manipulations are always at least as hard
(in the worst-case sense) as their destructive counterparts, and in some cases
strictly harder (if one is able to determine whether p can be made to win, one
can also ask whether any of the other m−1 candidates can be made to win, thus
making p lose).

7 This is a standard assumption, also made, for example, in [6,4]. It does, indeed, make
it more straightforward to prove certain results.

40 J.S. Rosenschein and A.D. Procaccia

Definition 2. In the Individual-Manipulation problem, we are given all the
other votes, and a preferred candidate p. We are asked whether there is a way
for the manipulator to cast its vote so that p wins.

Bartholdi and Orlin [2] show that IM is NP-complete in Single Transferable
Vote, provided the number of candidates is unbounded. However, the problem
is in P for most voting schemes, and hence will not be studied here.

Definition 3. In the Coalitional-Weighted-Manipulation (CWM) prob-
lem, we are given a set of weighted votes S, the weights of a set of votes T which
have not been cast, and a preferred candidate p. We are asked whether there is
a way to cast the votes in T so that p wins the election.

We know [6,4] that CWM isNP-complete in Borda, Veto and Single Transferable
Vote, even with 3 candidates, and in Maximin and Copeland with at least 4
candidates.

The CWM version that we shall analyze, which is specifically tailored for
scoring protocols, is a slightly modified version whose analysis is more straight-
forward:

Definition 4. In the Scoring-Coalitional-Weighted-Manipulation
(SCWM) problem, we are given an initial score S[c] for each candidate c, the
weights of a set of votes T which have not been cast, and a preferred candidate
p. We are asked whether there is a way to cast the votes in T so that p wins the
election.

S[c] can be interpreted as c’s total score from the votes in S. However, we do not
require that there exist a combination of votes that actually induces S[c] for all c.

Definition 5. In the Uncertain-Votes-Weighted-Evaluation (UVWE)
problem, we are given a weight for each voter, a distribution over all the votes,
a candidate p, and a number r ∈ [0, 1]. We are asked whether the probability of
p winning is greater than r.

Definition 6. In theUncertain-Votes-Weighted-Manipulation (UVWM)
problem, we are given a single manipulative voter with a weight, weights for all
other voters, a distribution over all the others’ votes, a candidate p, and a number
r, where r ∈ [0, 1]. We are asked whether the manipulator can cast its vote so that
p wins with probability greater than r.

If CWM isNP-hard in a protocol, then UVWE and UVWM are alsoNP-hard in
it [6]. These problems will be studied in Section 5. We make the assumption that
the given distributions over the others’ votes can be sampled in polynomial time.

2.2 Chernoff’s Bounds

The following lemma will be of much use later on. Informally, it states that the
average of independent identically distributed (i.i.d.) random variables is almost
always close to the expectation.

Voting in Cooperative Information Agent Scenarios: Use and Abuse 41

Lemma 1 (Chernoff’s Bounds). Let X1, . . . , Xt be i.i.d. random variables
such that a ≤ Xi ≤ b and E[Xi] = µ. Then for any ε > 0, it holds that:

– Pr[1t
∑t

i=1 Xi ≥ µ + ε] ≤ e
−2t ε2

(b−a)2

– Pr[1t
∑t

i=1 Xi ≤ µ− ε] ≤ e
−2t ε2

(b−a)2

3 Junta Distributions and Susceptible Mechanisms

In this section we lay the mathematical foundations required for an average-case
analysis of the complexity of manipulations. All of the definitions are as general
as possible; they can be applied to the manipulation of any mechanism, not
merely to the manipulation of voting protocols.

We describe a distribution over the instances of a problem as a collection
of distributions µ1, . . . , µn, . . ., where µn is a distribution over the instances x
such that |x| = n. We wish to analyze problems whose instances are distributed
with respect to a distribution which focuses on hard-to-manipulate instances.
Ideally, we would like to insure that if one manages to produce an algorithm
which can usually manipulate instances according to this distinguished “difficult”
distribution, the algorithm would also usually succeed when the instances are
distributed with respect to most other reasonable distributions.

Definition 7. Let µ = {µn}n∈N be a distribution over the possible instances of
an NP-hard manipulation problem M . µ is a junta distribution if and only if µ
has the following properties:

1. Hardness: The restriction of M to µ is the manipulation problem whose
possible instances are only:⋃

n∈N

{x : |x| = n ∧ µn(x) > 0}.

Deciding this restricted problem is still NP-hard.
2. Balance: There exist a constant c > 1 and N ∈ N such that for all n ≥ N :

1
c
≤ Prx∼µn [M(x) = 1] ≤ 1− 1

c
.

3. Dichotomy: for all n and instances x such that |x| = n:

µn(x) ≥ 2−polyn ∨ µn(x) = 0.

If M is a voting manipulation problem, we also require the following property:

4. Symmetry: Let v be a voter whose vote is given, let c1, c2
= p be two can-
didates, and let i ∈ {1, . . . , m}. The probability that v ranks c1 in the i’th
place is the same as the probability that v ranks c2 in the i’th place.

42 J.S. Rosenschein and A.D. Procaccia

If M is a coalitional manipulation problem, we also require the following
property:

5. Refinement: Let x be an instance such that |x| = n and µn(x) > 0; if all
colluders voted identically, then p would not be elected.

The name “junta distribution” comes from the idea that in such a distribution,
relatively few “powerful” and difficult instances represent all the other problem
instances. Alternatively, our intent is to have a few problematic distributions
(the family of junta distributions) convincingly represent all other distributions
with respect to the average-case analysis.

The first three properties are basic, and are relevant to problems of manipu-
lating any mechanism. The definition is modular, and additional properties may
be added on top of the basic three, in case one wishes to analyze a mechanism
which is not a voting protocol.

The exact choice of properties is of extreme importance (and, as we men-
tioned above, may be arguable). We shall briefly explain our choices. Hardness
is meant to insure that the junta distribution contains hard instances. Balance
guarantees that a trivial algorithm which always accepts (or always rejects) has
a significant chance of failure. The dichotomy property helps in preventing situ-
ations where the distribution gives a (positive but) negligible probability to all
the hard instances, and a high probability to several easy instances.

We now examine the properties that are specific to manipulation problems.
The necessity of symmetry is best explained by an example. Consider CWM
in STV with m ≥ 3. One could design a distribution where p wins if and only
if a distinguished candidate loses the first round. Such a distribution could be
tailored to satisfy the other conditions, but misses many of the hard instances.
In the context of SCWM, we interpret symmetry in the following way: for every
two candidates c1, c2
= p and y ∈ R,

Pr
x∼µn

[S[c1] = y] = Pr
x∼µn

[S[c2] = y].

Refinement is less important than the other four properties, but seems to
help in concentrating the probability on hard instances. Observe that refinement
is only relevant to coalitional manipulation; we believe that in the analysis of
individual voting manipulation problems, the first four properties are sufficient.

Definition 8. [28] A distributional problem is a pair 〈L, µ〉 where L is a decision
problem and µ is a distribution over the set {0, 1}∗ of possible inputs.

Informally, an algorithm is a heuristic polynomial time algorithm for a distrib-
utional problem if it runs in polynomial time, and fails only on a small fraction
of the inputs. We now give a formal definition; this definition is inspired by [28]
(there the same name is used for a somewhat different definition).

Definition 9. Let M be a manipulation problem and let 〈M, µ〉 be a distribu-
tional problem.

Voting in Cooperative Information Agent Scenarios: Use and Abuse 43

1. An algorithm A is a deterministic heuristic polynomial time algorithm for the
distributional manipulation problem 〈M, µ〉 if A always runs in polynomial
time, and there exists a polynomial p and N ∈ N such that for all n ≥ N :

Pr
x∼µn

[A(x)
= M(x)] <
1

p(n)
. (1)

2. Let A be a probabilistic algorithm, which uses a random string s. A is a
probabilistic heuristic polynomial time algorithm for the distributional ma-
nipulation problem 〈M, µ〉 if A always runs in polynomial time, and there
exists a polynomial p and N ∈ N such that for all n ≥ N :

Pr
x∼µn,s

[A(x)
= M(x)] <
1

p(n)
. (2)

Probabilistic algorithms have two potential sources of failure: an unfortunate
choice of input, or an unfortunate choice of random string s. The success or
failure of deterministic algorithms depends only on the choice of input.

We now combine all the definitions introduced in this section in an attempt to
establish when a mechanism is susceptible to manipulation in the average case.
The following definition abuses notation a bit: M is both used to refer to the
manipulation itself, and the corresponding decision problem.

Definition 10. We say that a mechanism is susceptible to a manipulation M if
there exists a junta distribution µ, such that there exists a deterministic/probabi-
listic heuristic polynomial time algorithm for 〈M, µ〉.

4 Susceptibility to SCWM

Recall [6,4] that in Borda and Veto, CWM is NP-hard, even with 3 candidates.
Since Borda and Veto are examples of sensitive scoring protocols, we would like
to know how resistant this family of protocols really is with respect to coalitional
manipulation. In this section we use the methods from the previous section to
present our main result:

Theorem 1. Let P be a sensitive scoring protocol. Then P , with candidates
C = {p, c1, . . . , cm}, m = O(1), is susceptible to SCWM.

Intuitively, the instances of CWM (or SCWM) which are hard are those that
require a very specific partitioning of the voters in T to subsets, where each subset
votes unanimously. These instances are rare in any reasonable distribution; this
insight will ultimately yield the theorem.

The following proposition generalizes Theorem 1 of [6] and Theorem 2 of [4],
and justifies our focus on the family of sensitive scoring protocols. A stronger
version of Proposition 1 has been independently proven in [16].

Proposition 1. Let P be a sensitive scoring protocol. Then CWM in P is NP-
hard, even with 3 candidates.

44 J.S. Rosenschein and A.D. Procaccia

Definition 11. In the Partition problem, we are given a set of integers
{ki}i∈[t], summing to 2K, and are asked whether a subset of these integers
sum to K.

It is well-known that Partition is NP-complete.

Proof (of Proposition 1). All proofs in the paper are omitted, but can be seen
in [21].

Since an instance of CWM can be translated to an instance of SCWM in the
obvious way, we have:

Corollary 1. Let P be a sensitive scoring protocol. It holds that SCWM in P
is NP-hard, even with 3 candidates.

4.1 A Junta Distribution

Let w(v) denote the weight of voter v, and let W denote the total weight of the
votes in T ; P is a sensitive scoring protocol. We denote |T | = n: the size of T is
the size of the instance.

Consider a distribution µ∗ = {µ∗
n}n∈N over the instances of CWM in P ,

with m + 1 candidates p, c1, . . . , cm, where each µ∗
n is induced by the following

sampling algorithm:

1. ∀v ∈ T : Randomly and independently choose w(v) ∈ [0, 1] (up to O(logn)
bits of precision).

2. ∀i∈{1, . . . , m}: Randomly and independently choose S[ci]∈ [(α1−α2)W, α1W]
(up to O(logn) bits of precision).

We assume that S[p] = 0, i.e., all voters in S rank p last. This assumption is
not a restriction. If it holds for a candidate c that S[c] ≤ S[p], then candidate c
will surely lose, since the colluders all rank p first. Therefore, if S[p] > 0, we may
simply normalize the scores by subtracting S[p] from the scores of all candidates.
This is equivalent to our assumption.

Remark 4. We believe that µ∗ is the most natural distribution with respect to
which coalitional manipulation in scoring protocols should be studied. Even if
one disagrees with the exact definition of junta distribution, µ∗ should satisfy
many reasonable conditions one could produce.

We shall, of course, (presently) show that the distribution possesses the proper-
ties of a junta distribution.

Proposition 2. Let P be a sensitive scoring protocol. Then µ∗ is a junta dis-
tribution for SCWM in P with C = {p, c1, . . . , cm}, and m = O(1).

4.2 A Heuristic Polynomial Time Algorithm

We now present our algorithm Greedy for SCWM, given as Algorithm 1. w
denotes the vector of the weights of voters in T = {t1, . . . , tn}.

Voting in Cooperative Information Agent Scenarios: Use and Abuse 45

Algorithm 1. Decides SCWM
1: procedure Greedy(S, w, p)
2: for all c ∈ C do � Initialization
3: S0[c] ← S[c]
4: end for
5: for i = 1 to n do � All voters in T
6: Let j1, j2, . . . , jm s.t. ∀l, Si−1[cjl−1] ≤ Si−1[cjl]
7: Voter ti votes p � cj1 � cj2 � . . . � cjm

8: for l = 1 to m do � Update score
9: Si[cjl] ← Si−1[cjl] + w(ti)αl+1

10: end for
11: Si[p] ← Si−1[p] + w(ti)α1

12: end for
13: if argmaxc∈CSn[c] = {p} then � p wins
14: return true
15: else
16: return false
17: end if
18: end procedure

The voters in T , according to some order, each rank p first, and the rest of the
candidates by their current score: the candidate with the lowest current score is
ranked highest. Greedy accepts if and only if p wins this election.

This algorithm, designed specifically for scoring protocols, is a realization of
an abstract greedy algorithm: at each stage, voter ti ranks the undesirable candi-
dates in an order that minimizes the highest score that any undesirable candidate
obtains after the current vote. If there is a tie between several permutations, the
voter chooses the option such that the second highest score is as low as possible,
etc. In any case, every colluder always ranks p first.

Remark 5. This abstract scheme might also be appropriate for protocols such as
Maximin and Copeland. Similarly to scoring protocols, in these two protocols the
colluders are always better off by ranking p first. In addition, the abstract greedy
algorithm can be applied to Maximin and Copeland since the result of an election
is based on the score each candidate has (unlike STV, for example).

In the following lemmas, a stage in the execution of the algorithm is an iteration
of the for loop.

Lemma 2. If there exists a stage i0 during the execution of Greedy, and two
candidates a, b
= p, such that

|Si0 [a]− Si0 [b]| ≤ α2, (3)

then for all i ≥ i0 it holds that |Si[a]− Si[b]| ≤ α2.

46 J.S. Rosenschein and A.D. Procaccia

Lemma 3. Let p
= a, b ∈ C, and suppose that there exists a stage i0 such that
Si0 [a] ≥ Si0 [b], and a stage i1 ≥ i0 such that Si1 [b] ≥ Si1 [a]. Then for all i ≥ i1
it holds that |Si[a]− Si[b]| ≤ α2.

Lemma 4. Let P be a sensitive scoring protocol, and assume Greedy errs on
an instance of SCWM in P which has a successful manipulation. Then there is
d ∈ {2, 3, . . . , m}, and a subset of candidates D = {cj1 , . . . , cjd

}, such that:

d∑
i=1

(α1W − S[cji])−
d−1∑
i=1

(i · α2) ≤W

d∑
i=1

αm+2−i

≤
d∑

i=1

(α1W − S[cji]).

(4)

Lemma 5. Let M be SCWM in a sensitive scoring protocol P with C =
{p, c1, . . . , cm}, m=O(1). Then Greedy is a deterministic heuristic polynomial
time algorithm for 〈M, µ∗〉.

Clearly, Theorem 1 directly follows.

5 Susceptibility to UVWM

In this section we shall show:

Theorem 2. Let P be a voting protocol such that there exists a junta distri-
bution µP over the instances of UVWM in P , with the following property: r
is uniformly distributed in [0, 1]. Then P , with candidates C = {p, c1, . . . , cm},
m = O(1), is susceptible to UVWM.

The existence of a junta distribution with r uniformly distributed is a very weak
requirement (it is even quite natural to have r uniformly distributed). In fact,
the following claim is very likely to be true:

Conjecture 1. Let P be a voting protocol. Then there exists a junta distribution
µP over the instances of UVWM in P , with r uniformly distributed in [0, 1].

If this conjecture is indeed true, we have that all voting protocols are susceptible
to UVWM. If for some reason the conjecture is not true with respect to our
definition of junta distributions, then perhaps the definition is too restrictive
and should be modified accordingly.

To prove Theorem 2, we require a procedure named Sample, which decides
UVWE. Sample samples the given distribution on the votes n3 times, and
calculates the winner of the election each time. If p won more than an r-fraction
of the elections then the procedure accepts, otherwise it rejects. We omit the
details of the procedure.

Voting in Cooperative Information Agent Scenarios: Use and Abuse 47

Algorithm 2. Decides UVWM
1: procedure Sample-and-Manipulate(w, ν, p, r)
2: for all permutations of the m + 1 candidates do
3: π ← next permutation
4: ν∗ ← the manipulator votes π
5: � others’ votes are always distributed w.r.t. ν
6: if Sample(w, ν∗, p, r) then
7: return true
8: end if
9: end for

10: return false
11: end procedure

Lemma 6. Let P be a voting protocol, and E be UVWE in P with C ={p, c1, . . . ,
cm}. Furthermore, let µ be a distribution over the instances of E, with r uni-
formly distributed in [0, 1]. Then there exists N such that for all n ≥ N :

Pr
x∼µn

[Sample(x)
= E(x)] ≤ 1
polyn

.

We now present an algorithm, Sample-and-Manipulate that decides UVWM;
it is given as Algorithm 2. Here, w denotes the weights of all voters including
the manipulator, and ν is the given distribution over the others’ votes.

Given an instance of UVWM, Sample-and-Manipulate generates (m + 1)!
instances of the UVWE problem, one for each of the manipulator’s possible votes,
and executes Sample on each instance. Sample-and-Manipulate accepts if
and only if Sample accepts one of the instances.

Lemma 7. Let P be a voting protocol, and M be UVWM in P with C =
{p, c1, . . . , cm}, m = O(1). Furthermore, let µ be a distribution over the instances
of UVWM, with r uniformly distributed in [0, 1]. It holds that Sample-and-
Manipulate is a probabilistic heuristic polynomial time algorithm for 〈M, µ〉.

6 Future Research

The issue of resistance of mechanisms to manipulation is important, particularly
in the context of voting protocols. Most results on this issue use NP-hardness
as the complexity measure. One of this paper’s main contributions has been
introducing tools that can be utilized in showing that manipulating mechanisms
is easy in the average case. We were concerned with the likely case of coalitional
manipulation, and showed that sensitive scoring protocols are susceptible to such
manipulation when the number of candidates is constant.

These results suggest that scoring protocols cannot be safely employed. More
importantly, this paper should be seen as a starting point for studying the aver-
age case complexity of other types of manipulations, in other protocols. In addi-
tion, the definitions in Section 3 are deliberately general, and can be applied to

48 J.S. Rosenschein and A.D. Procaccia

manipulations of mechanisms that are not voting mechanisms. One such mecha-
nism of which we are aware, whose manipulation is NP-hard, is presented in [1].

There is still room for debate as to the exact definition of a junta distribution,
especially if Conjecture 1 turns out to be false. It may also be the case that there
are “unconvincing” distributions that satisfy all of the (current) conditions of
a junta distribution. It might prove especially fruitful to show that a heuristic
polynomial time algorithm with respect to a junta distribution also has the
same property with respect to some easy distributions, such as the uniform
distribution.

An issue of great importance is coming up with natural criteria to decide when
a manipulation problem is hard in the average-case. The traditional definition
of average-case completeness is very difficult to work with in general; is there a
satisfying definition that applies specifically to the case of manipulations? Once
the subject is more fully understood, this understanding can be used to design
mechanisms that are hard to manipulate in the average-case.

Acknowledgment

This work was partially supported by grant #039-7582 from the Israel Science
Foundation.

References

1. Yoram Bachrach and Jeffrey S. Rosenschein. Achieving allocatively-efficient and
strongly budget-balanced mechanisms in the network flow domain for bounded-
rational agents. In The Nineteenth International Joint Conference on Artificial
Intelligence, pages 1653–1654, Edinburgh, Scotland, August 2005. Full version
published in The Seventh International Workshop on Agent-Mediated Electronic
Commerce: Designing Mechanisms and Systems (AMEC 2005), Utrecht, The
Netherlands, July 2005.

2. J. Bartholdi and J. Orlin. Single transferable vote resists strategic voting. Social
Choice and Welfare, 8(4):341–354, 1991.

3. J. Bartholdi, C. A. Tovey, and M. A. Trick. How hard is it to control an election.
Mathematical and Computer Modelling, 16:27–40, 1992.

4. V. Conitzer, J. Lang, and T. Sandholm. How many candidates are needed to make
elections hard to manipulate? In Proceedings of the International Conference on
Theoretical Aspects of Reasoning about Knowledge, pages 201–214, Bloomington,
Indiana, 2003.

5. V. Conitzer and T. Sandholm. Complexity of manipulating elections with few
candidates. In Proceedings of the National Conference on Artificial Intelligence,
pages 314–319, Edmonton, Canada, July 2002.

6. V. Conitzer and T. Sandholm. Complexity of manipulating elections with few
candidates. In Proceedings of the National Conference on Artificial Intelligence,
pages 314–319, Edmonton, Canada, July 2002.

7. V. Conitzer and T. Sandholm. Universal voting protocol tweaks to make manip-
ulation hard. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 781–788, Acapulco, Mexico, August 2003.

Voting in Cooperative Information Agent Scenarios: Use and Abuse 49

8. E. Elkind and H. Lipmaa. Small coalitions cannot manipulate voting. In Interna-
tional Conference on Financial Cryptography, Lecture Notes in Computer Science.
Springer-Verlag, Roseau, The Commonwealth of Dominica, 2005.

9. Eithan Ephrati and Jeffrey S. Rosenschein. The Clarke Tax as a consensus mech-
anism among automated agents. In Proceedings of the Ninth National Conference
on Artificial Intelligence, pages 173–178, Anaheim, California, July 1991.

10. Eithan Ephrati and Jeffrey S. Rosenschein. A heuristic technique for multiagent
planning. Annals of Mathematics and Artificial Intelligence, 20:13–67, Spring 1997.

11. Robert M. Gagné and Karen L. Medsker. The Conditions of Learning Training
Applications. Harcourt Brace & Company, 1996.

12. S. Ghosh, M. Mundhe, K. Hernandez, and S. Sen. Voting for movies: the anatomy
of a recommender system. In Proceedings of the Third Annual Conference on
Autonomous Agents, pages 434–435, 1999.

13. A. Gibbard. Manipulation of voting schemes. Econometrica, 41:587–602, 1973.
14. T. Haynes, S. Sen, N. Arora, and R. Nadella. An automated meeting scheduling

system that utilizes user preferences. In Proceedings of the First International
Conference on Autonomous Agents, pages 308–315, 1997.

15. E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Anyone but him: The com-
plexity of precluding an alternative. In Proceedings of the 20th National Conference
on Artificial Intelligence, Pittsburgh, July 2005.

16. E. Hemaspaandra and L. A. Hemaspaandra. Dichotomy for voting systems. Uni-
versity of Rochester Department of Computer Science Technical Report 861, 2005.

17. William G. Hoover. Computational Statistical Mechanics. Elsevier, 1991.
18. George Johnson. All science is computer science, 25 March 2001. The New York

Times, Week in Review, pages 1, 5.
19. Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Eco-

nomic Behavior, 35:166–196, 2001.
20. Ariel D. Procaccia and Jeffrey S. Rosenschein. The distortion of cardinal prefer-

ences in voting. In The Tenth International Workshop on Cooperative Information
Agents (CIA 2006), Edinburgh, September 2006.

21. Ariel D. Procaccia and Jeffrey S. Rosenschein. Junta distributions and the average-
case complexity of manipulating elections. In The Fifth International Joint Con-
ference on Autonomous Agents and Multiagent Systems, pages 497–504, Hakodate,
Japan, May 2006.

22. Ariel D. Procaccia, Jeffrey S. Rosenschein, and Aviv Zohar. Multi-winner elections:
Complexity of manipulation, control and winner-determination. In The Eighth
International Workshop on Agent-Mediated Electronic Commerce (AMEC 2006),
pages 15–28, Hakodate, Japan, May 2006.

23. Jeffrey S. Rosenschein and Michael R. Genesereth. Deals among rational agents. In
Proceedings of the Ninth International Joint Conference on Artificial Intelligence,
pages 91–99, Los Angeles, California, August 1985.

24. T. Sandholm and V. Lesser. Issues in automated negotiation and electronic com-
merce: Extending the contract net framework. In Proceedings of the First In-
ternational Conference on Multiagent Systems (ICMAS-95), pages 328–335, San
Francisco, 1995.

25. M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and cor-
respondence theorems for voting procedures and social welfare functions. Journal
of Economic Theory, 10:187–217, 1975.

26. Moshe Tennenholtz and Alon Altman. On the axiomatic foundations of rank-
ing systems. In Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence (IJCAI’05), pages 917–922, Edinburgh, August 2005.

50 J.S. Rosenschein and A.D. Procaccia

27. Jeffrey D. Thomas, Taesik Lee, and Nam P. Suh. A function-based framework for
understanding biological systems. Annual Review of Biophysics and Biomolecular
Structure, 33:75–93, 2004.

28. L. Trevisan. Lecture notes on computational complexity. Available from http://
www.cs.berkeley.edu/˜luca/notes/complexitynotes02.pdf, 2002. Lecture 12.

29. Michael P. Wellman. The economic approach to artificial intelligence. ACM Com-
puting Surveys, 27:360–362, 1995.

Agents for Information-Rich Environments

John Debenham and Simeon Simoff

University of Technology, Sydney, Australia
{debenham, simeon}@it.uts.edu.au

Abstract. Information-rich environments, such as electronic markets,
or even more generally the World Wide Web, require agents that can
assimilate and use real-time information flows wisely. A new breed of
“information-based” agents aim to meet this requirement. They are foun-
ded on concepts from information theory, and are designed to oper-
ate with information flows of varying and questionable integrity. These
agents are part of a larger project that aims to make informed automated
trading, in applications such as eProcurement, a reality.

1 Introduction

Electronic trading environments are awash with information, including informa-
tion drawn from general resources such as the World Wide Web using smart
retrieval technology [1]. Powerful agent architectures that are capable of flexi-
ble, autonomous action are well known [2]. However there has been little work
on architectures for intelligent agents that are designed the survive and thrive
in these information rich environments. This is the question addressed here.
This paper describes a data mining system and an agent architecture that have
been designed to operate in tandem. These are two components in our e-Market
Framework that is available on the World Wide Web1. This framework aims to
make informed automated trading a reality, and develops further the “Curious
Negotiator” framework [3]. This work does not address all of the issues in au-
tomated trading. For example, the work relies on developments in: XML and
semantic web, secure data exchange, value chain management and financial ser-
vices. Further the design of marketplaces is not described here. We are presently
constructing a “virtual institution” system1 in a collaborative research project
with “Institut d’Investigacio en Intel.ligencia Artificial2”, Spanish Scientific Re-
search Council, UAB, Barcelona, Spain.

The data mining system is described in Sec. 2. The associated intelligent
agents, designed specifically to handle real-time information flows, are described
in Sec. 3. The way in which these agents manage the dynamic information flows
is described in Sec. 4. The interaction of more than one of these agents engaging
in competitive negotiation is described in Sec. 5. Sec. 6 concludes.

1 http://e-markets.org.au
2 http://www.iiia.csic.es/

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 51–65, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

52 J. Debenham and S. Simoff

2 Data Mining

We have designed information dis-

Fig. 1. Information impacts trading

covery and delivery agents that
utilise text and network data min-
ing for supporting real-time nego-
tiation. This work has addressed
the central issues of extracting rel-
evant information from different
on-line repositories with different
formats, with possible duplicative
and erroneous data. That is, we
have addressed the central issues in extracting information from the World Wide
Web. Our mining agents understand the influence that extracted information has
on the subject of negotiation and takes that in account.

Real-time embedded data mining is an essential component of the proposed
framework. In this framework the trading agents make their informed decisions,
based on utilising two types of information (as illustrated in Figure 1):

– information extracted from the negotiation process (i.e. from the exchange
of offers), and;

– information from external sources, extracted and provided in condensed
form.

The embedded data mining sys-

Fig. 2. Pipeline for “focused” data sets

tem provides the information ex-
tracted from the external sources.
The system complements and ser-
vices the information-based archi-
tecture developed in [4] and [5].
The information request and the
information delivery format is de-
fined by the interaction ontology.
As these agents operate with negotiation parameters with a discrete set of fea-
sible values, the information request is formulated in terms of these values. As
agents proceed with negotiation they have a topic of negotiation and a shared
ontology that describes that topic. For example, if the topic of negotiation is
buying a number of digital cameras for a University, the shared ontology will
include the product model of the camera, and some characteristics, like “product
reputation” (which on their own can be a list of parameters), that are usually
derived from additional sources (for example, from different opinions in a profes-
sional community of photographers or digital artists). As the information-based
architecture assumes that negotiation parameters are discrete, the information
request can be formulated as a subset of the range of values for a negotia-
tion parameter. For example, if the negotiator is interested in cameras with 8
megapixel resolution, and the brand is a negotiation parameter, the information
request can be formulated as a set of camera models, e.g. {“Canon Power Shot

Agents for Information-Rich Environments 53

Pro 1”, “Sony f828”, “Nikon Coolpix 8400”, “Olympus C-8080”} and a prefer-
ence estimate based on the information in the different articles available. The
collection of parameter sets of the negotiation topic constitutes the input to the
data mining system. Continuous numerical values are replaced by finite number
of ranges of interest.

The data mining system initially constructs data sets that are “focused” on
requested information, as illustrated in Figure 2. From the vast amount of in-
formation available in electronic form, we need to filter the information that
is relevant to the information request. In our example, this will be the news,
opinions, comments, white papers related to the five models of digital cameras.
Technically, the automatic retrieval of the information pieces utilises the uni-
versal news bot architecture presented in [1]. Developed originally for news sites
only, the approach is currently being extended to discussion boards and company
white papers.

The “focused” data set

Fig. 3. Architecture of data mining system

is dynamically constructed
in an iterative process. The
data mining agent constructs
the news data set accord-
ing to the concepts in the
query. Each concept is rep-
resented as a cluster of key
terms (a term can include
one or more words), defined
by the proximity position
of the frequent key terms.
On each iteration the most
frequent (terms) from the
retrieved data set are extra-
cted and considered to be
related to the same concept. The extracted keywords are resubmitted to the
search engine. The process of query submission, data retrieval and keyword ex-
traction is repeated until the search results start to derail from the given topic.

The set of topics in the original request is used as a set of class labels. In our
example we are interested in the evidence in support of each particular model
camera model. A simple solution is for each model to introduce two labels —
positive opinion and negative opinion, ending with ten labels. In the constructed
“focused” data set, each news article is labelled with one of the values from
this set of labels. An automated approach reported in [1] extends the tree-based
approach proposed in [6].

The data sets required further automatic pre-processing, related to possible
redundancies in the information encoded in the set that can bias the analysis
algorithms. For example, identifying a set of opinions about the camera that
most likely comes from the same author, though it has been retrieved from
different “opinion boards” on the Internet.

54 J. Debenham and S. Simoff

Once the set is constructed, building the “advising model” is reduced to a
classification data mining problem. As the model is communicated back to the
information-based agent architecture, the classifier output should include all the
possible class labels with an attached probability estimates for each class. Hence,
we use probabilistic classifiers (e.g. Näıve Bayes, Bayesian Network classifiers)
[7] without the min-max selection of the class output [e.g., in a classifier based
on Näıve Bayes algorithm], we calculate the posterior probability Pp(i) of each
class c(i) with respect to combinations of key terms and then return the tuples
< c(i), Pp(i) > for all classes, not just the one with maximum Pp(i). In the case
when we deal with range variables the data mining system returns the range
within which is the estimated value. For example, the response to a request for
an estimate of the rate of change between two currencies over specified period
of time will be done in three steps: (i) the relative focused news data set will be
updated for the specified period; (ii) the model that takes these news in account
is updated, and; (iii) the output of the model is compared with requested ranges
and the matching one is returned. The details of this part of the data mining
system are presented in [8]. The currently used model is a modified linear model
with an additional term that incorporates a news index Inews, which reflects the
news effect on exchange rate. The current architecture of the data mining system
in the e-market environment is shown in Figure 3. The {θ1, . . . , θt} denote the
output of the system to the information-based agent architecture. In addition,
the data mining system provides parameters that define the “quality of the
information”, including:

– the time span of the “focused” data set, (defined by the eldest and the latest
information unit);

– estimates of the characteristics of the information sources, including relia-
bility, trust and cost, that then are used by the information-based agent
architecture.

Overall the parameters that will be estimated by the mining algorithms and pro-
vided to the negotiating agents are expected to allow information-based agents
to devise more effective and better informed situated strategies. In addition to
the data coming from external sources, the data mining component of the project
will develop techniques for analysing agent behaviourist data with respect to the
electronic institution set-up.

3 Information-Based Agents

We have designed a new agent architecture founded on information theory. These
“information-based” agents operate in real-time in response to market informa-
tion flows. We have addressed the central issues of trust in the execution of con-
tracts, and the reliability of information [5]. Our agents understand the value
of building business relationships as a foundation for reliable trade. An inherent
difficulty in automated trading — including e-procurement — is that it is gen-
erally multi-issue. Even a simple trade, such as a quantity of steel, may involve:

Agents for Information-Rich Environments 55

delivery date, settlement terms, as well as price and the quality of the steel. The
“information-based” agent’s reasoning is based on a first-order logic world model
that manages multi-issue negotiation as easily as single-issue.

Most of the work on multi-issue negotiation has focussed on one-to-one bar-
gaining — for example [9]. There has been rather less interest in one-to-many,
multi-issue auctions — despite the size of the e-procurement market which typ-
ically attempts to extend single-issue, reverse auctions to the multi-issue case
by post-auction haggling. There has been even less interest in many-to-many,
multi-issue exchanges.

The generic architecture of our “information-based” agents is presented in
Sec. 3.1. The agent’s reasoning employs entropy-based inference and is described
in Sec. 3.2. The integrity of the agent’s information is in a permanent state of
decay, Sec. 4 describes the agent’s machinery for managing this decay leading to
a characterisation of the “value” of information.

3.1 Agent Architecture

This section describes the essence of “information-based agency”. An agent ob-
serves events in its environment including what other agents actually do. It
chooses to represent some of those observations in its world model as beliefs.
As time passes, an agent may not be prepared to accept such beliefs as being
“true”, and qualifies those representations with epistemic probabilities. Those
qualified representations of prior observations are the agent’s information. This
information is primitive — it is the agent’s representation of its beliefs about
prior events in the environment and about the other agents prior actions. It is
independent of what the agent is trying to achieve, or what the agent believes
the other agents are trying to achieve. Given this information, an agent may
then choose to adopt goals and strategies. Those strategies may be based on
game theory, for example. To enable the agent’s strategies to make good use
of its information, tools from information theory are applied to summarise and
process that information. Such an agent is called information-based.

An agent called Π is the subject of this discussion. Π engages in multi-issue
negotiation with a set of other agents: {Ω1, · · · , Ωo}. The foundation for Π ’s
operation is the information that is generated both by and because of its nego-
tiation exchanges. Any message from one agent to another reveals information
about the sender. Π also acquires information from the environment — includ-
ing general information sources — to support its actions. Π uses ideas from
information theory to process and summarise its information. Π ’s aim may not
be “utility optimisation” — it may not be aware of a utility function. If Π
does know its utility function and if it aims to optimise its utility then Π may
apply the principles of game theory to achieve its aim. The information-based
approach does not reject utility optimisation — in general, the selection of a goal
and strategy is secondary to the processing and summarising of the information.

In addition to the information derived from its opponents, Π has access to
a set of information sources {Θ1, · · · , Θt} that may include the marketplace in
which trading takes place, and general information sources such as news-feeds

56 J. Debenham and S. Simoff

accessed via the Internet. Together, Π , {Ω1, · · · , Ωo} and {Θ1, · · · , Θt} make
up a multiagent system. The integrity of Π ’s information, including information
extracted from the Internet, will decay in time. The way in which this decay
occurs will depend on the type of information, and on the source from which
it was drawn. Little appears to be known about how the integrity of real infor-
mation, such as news-feeds, decays, although its validity can often be checked
— “Is company X taking over company Y?” — by proactive action given a co-
operative information source Θj . So Π has to consider how and when to refresh
its decaying information.

Π has two languages: C and L. C is an illocutionary-based language for com-
munication. L is a first-order language for internal representation — precisely it
is a first-order language with sentence probabilities optionally attached to each
sentence representing Π ’s epistemic belief in the truth of that sentence. Fig. 4
shows a high-level view of how Π operates. Messages expressed in C from {Θi}
and {Ωi} are received, time-stamped, source-stamped and placed in an in-box X .
The messages in X are then translated using an import function I into sentences
expressed in L that have integrity decay functions (usually of time) attached to
each sentence, they are stored in a repository Yt. And that is all that happens
until Π triggers a goal.

Π triggers a goal, g ∈ G, in Information
Sources

Ω1 , . . , Ωoθ1 , . . , θt

X

s ∈

Y NI

Agent Π

Institution
agent

ξ

G

T

S

G

Js

Z
bs

t

M

W

z

Other
agents

Principal

Fig. 4. Architecture of agent Π

two ways: first in response to a
message received from an oppo-
nent {Ωi} “I offer you e1 in ex-
change for an apple”, and second
in response to some need, ν ∈ N ,
“goodness, we’ve run out of cof-
fee”. In either case, Π is motivated
by a need — either a need to strike
a deal with a particular feature
(such as acquiring coffee) or a gen-
eral need to trade. Π ’s goals could
be short-term such as obtaining
information “what is the time?”,
medium-term such as striking a
deal with one of its opponents, or,
rather longer-term such as build-
ing a (business) relationship with
one of its opponents. So Π has a trigger mechanism T where: T : {X ∪N} → G.

For each goal that Π commits to, it has a mechanism, G, for selecting a
strategy to achieve it where G : G ×M → S where S is the strategy library. A
strategy s maps an information base into an action, s(Yt) = z ∈ Z. Given a goal,
g, and the current state of the social model mt, a strategy: s = G(g, mt). Each
strategy, s, consists of a plan, bs and a world model (construction and revision)
function, Js, that constructs, and maintains the currency of, the strategy’s world
model W t

s that consists of a set of probability distributions. A plan derives the

Agents for Information-Rich Environments 57

agent’s next action, z, on the basis of the agent’s world model for that strategy
and the current state of the social model: z = bs(W t

s , mt), and z = s(Yt). Js

employs two forms of entropy-based inference:

– Maximum entropy inference, J+
s , first constructs an information base It

s as a
set of sentences expressed in L derived from Yt, and then from It

s constructs
the world model, W t

s , as a set of complete probability distributions.
– Given a prior world model, Wu

s , where u < t, minimum relative entropy
inference, J−

s , first constructs the incremental information base I(u,t)
s of sen-

tences derived from those in Yt that were received between time u and time
t, and then from Wu

s and I(u,t)
s constructs a new world model, W t

s .

3.2 Π’s Reasoning

Once Π has selected a plan a ∈ A it uses maximum entropy inference to de-
rive the {Ds

i }ni=1 [see Fig. 4] and minimum relative entropy inference to update
those distributions as new data becomes available. Entropy, H, is a measure
of uncertainty [10] in a probability distribution for a discrete random variable
X : H(X) � −

∑
i p(xi) log p(xi) where p(xi) = P(X = xi). Maximum entropy

inference is used to derive sentence probabilities for that which is not known
by constructing the “maximally noncommittal” probability distribution, and is
chosen for its ability to generate complete distributions from sparse data.

Let G be the set of all positive ground literals that can be constructed using
Π ’s language L. A possible world, v, is a valuation function: G → {,⊥}. V|Ks =
{vi} is the set of all possible worlds that are consistent with Π ’s knowledge base
Ks that contains statements which Π believes are true. A random world for Ks,
W |Ks = {pi} is a probability distribution over V|Ks = {vi}, where pi expresses
Π ’s degree of belief that each of the possible worlds, vi, is the actual world. The
derived sentence probability of any σ ∈ L, with respect to a random world W |Ks is:

(∀σ ∈ L)P{W |Ks}(σ) �
∑

n

{ pn : σ is in vn } (1)

The agent’s belief set Bs
t = {Ωj}Mj=1 contains statements to which Π attaches

a given sentence probability B(.). A random world W |Ks is consistent with Bs
t

if: (∀Ω ∈ Bs
t)(B(Ω) = P{W |Ks}(Ω)). Let {pi} = {W |Ks,Bs

t} be the “maximum
entropy probability distribution over V|Ks that is consistent with Bs

t ”. Given
an agent with Ks and Bs

t , maximum entropy inference states that the derived
sentence probability for any sentence, σ ∈ L, is:

(∀σ ∈ L)P{W |Ks,Bs
t}(σ) �

∑
n

{ pn : σ is in vn } (2)

From Eqn. 2, each belief imposes a linear constraint on the {pi}. The maximum
entropy distribution: arg maxp H(p), p = (p1, . . . , pN), subject to M + 1 linear
constraints:

gj(p) =
N∑

i=1

cjipi − B(Ωj) = 0, j = 1, . . . , M. g0(p) =
N∑

i=1

pi − 1 = 0

58 J. Debenham and S. Simoff

where cji = 1 if Ωj is in vi and 0 otherwise, and pi ≥ 0, i = 1, . . . , N , is found
by introducing Lagrange multipliers, and then obtaining a numerical solution
using the multivariate Newton-Raphson method. In the subsequent subsections
we’ll see how an agent updates the sentence probabilities depending on the type
of information used in the update.

Given a prior probability distribution q = (qi)n
i=1 and a set of constraints

C, the principle of minimum relative entropy chooses the posterior probability
distribution p = (pi)n

i=1 that has the least relative entropy3 with respect to q:

{W |q, C} � arg min
p

n∑
i=1

pi log
pi

qi

and that satisfies the constraints. This may be found by introducing Lagrange
multipliers as above. Given a prior distribution q over {vi} — the set of all
possible worlds, and a set of constraints C (that could have been derived as
above from a set of new beliefs) minimum relative entropy inference states that
the derived sentence probability for any sentence, σ ∈ L, is:

(∀σ ∈ L)P{W |q,C}(σ) �
∑

n

{ pn : σ is in vn } (3)

where {pi} = {W |q, C}. The principle of minimum relative entropy is a generali-
sation of the principle of maximum entropy. If the prior distribution q is uniform,
then the relative entropy of p with respect to q, p‖q, differs from −H(p) only by
a constant. So the principle of maximum entropy is equivalent to the principle
of minimum relative entropy with a uniform prior distribution.

4 Managing Dynamic Information Flows

The illocutions in the communication language C include information, [info]. The
information received from general information sources will be expressed in terms
defined by Π ’s ontology. We assume that Π makes at least part of that ontology
public so that the other agents {Ω1, . . . , Ωo} may communicate [info] that Π
can understand. Ω’s reliability is an estimate of the extent to which this [info]
is correct. For example, Ω may send Π the [info] that “the price of fish will go
up by 10% next week”, and it may actually go up by 9%.

The only restriction on incoming [info] is that it is expressed in terms of the
ontology — this is very general. However, the way in which [info] is used is
completely specific — it will be represented as a set of linear constraints on one
or more probability distributions. A chunk of [info] may not be directly related to
one of Π ’s chosen distributions or may not be expressed naturally as constraints,
and so some inference machinery is required to derive these constraints — this
inference is performed by model building functions, Js, that have been activated
by a plan s chosen by Π . JD

s ([info]) denotes the set of constraints on distribution
D derived by Js from [info].
3 Otherwise called cross entropy or the Kullback-Leibler distance between the two

probability distributions.

Agents for Information-Rich Environments 59

4.1 Updating the World Model with [info]

The procedure for updating the world model as [info] is received follows. If at
time u, Π receives a message containing [info] it is time-stamped and source-
stamped [info](Ω,Π,u), and placed in a repository Yt. If Π has an active plan,
s, with model building function, Js, then Js is applied to [info](Ω,Π,u) to derive
constraints on some, or none, of Π ’s distributions. The extent to which those
constraints are permitted to effect the distributions is determined by a value
for the reliability of Ω, Rt(Π, Ω, O([info])), where O([info]) is the ontological
context of [info].

An agent may have models of integrity decay for some particular distributions,
but general models of integrity decay for, say, a chunk of information taken at
random from the World Wide Web are generally unknown. However the values
to which decaying integrity should tend in time are often known. For example, a
prior value for the truth of the proposition that a “22 year-old male will default
on credit card repayment” is well known to banks. If Π attaches such prior values
to a distribution D they are called the decay limit distribution for D, (dD

i)n
i=1.

No matter how integrity of [info] decays, in the absence of any other relevant
information it should decay to the decay limit distribution. If a distribution with
n values has no decay limit distribution then integrity decays to the maximum
entropy value 1

n . In other words, the maximum entropy distribution is the default
decay limit distribution.

In the absence of new [info] the integrity of distributions decays. If D = (qi)n
i=1

then we use a geometric model of decay:

qt+1
i = (1− ρD)× dD

i + ρD × qt
i , for i = 1, . . . , n (4)

where ρD ∈ (0, 1) is the decay rate. This raises the question of how to determine
ρD. Just as an agent may know the decay limit distribution it may also know
something about ρD. In the case of an information-overfed agent there is no
harm in conservatively setting ρD “a bit on the low side” as the continually
arriving [info] will sustain the estimate for D.

We now describe how new [info] is imported to the distributions. A single
chunk of [info] may effect a number of distributions. Suppose that a chunk of
[info] is received from Ω and that Π attaches the epistemic belief probability
Rt(Π, Ω, O([info])) to it. Each distribution models a facet of the world. Given
a distribution Dt = (qt

i)
n
i=1, qt

i is the probability that the possible world ωi for
D is the true world for D. The effect that a chunk [info] has on distribution
D is to enforce the set of linear constraints on D, JD

s ([info]). If the constraints
JD

s ([info]) are taken by Π as valid then Π could update D to the posterior
distribution (p[info]

i)n
i=1 that is the distribution with least relative entropy with

respect to (qt
i)

n
i=1 satisfying the constraint:∑

i

{p[info]
i : JD

s ([info]) are all in ωi} = 1. (5)

But Rt(Π, Ω, O([info])) = r ∈ [0, 1] and Π should only treat the JD
s ([info]) as

valid if r = 1. In general r determines the extent to which the effect of [info] on

60 J. Debenham and S. Simoff

D is closer to (p[info]
i)n

i=1 or to the prior (qt
i)

n
i=1 distribution by:

pt
i = r × p

[info]
i + (1− r) × qt

i (6)

But, we should only permit a new chunk of [info] to influence D if doing so gives
us new information. For example, if 5 minutes ago a trusted agent advises Π
that the interest rate will go up by 1%, and 1 minute ago a very unreliable agent
advises Π that the interest rate may go up by 0.5%, then the second unreliable
chunk should not be permitted to ‘overwrite’ the first. We capture this by only
permitting a new chunk of [info] to be imported if the resulting distribution
has more information relative to the decay limit distribution than the existing
distribution has. Precisely, this is measured using the Kullback-Leibler distance
measure — this is just one criterion for determining whether the [info] should
be used — and [info] is only used if:

n∑
i=1

pt
i log

pt
i

dD
i

>

n∑
i=1

qt
i log

qt
i

dD
i

(7)

In addition, we have described in Eqn. 4 how the integrity of each distribution
D will decay in time. Combining these two into one result, distribution D is
revised to:

qt+1
i =

{
(1− ρD)× dD

i + ρD × pt
i if usable [info] is received at time t

(1− ρD)× dD
i + ρD × qt

i otherwise

for i = 1, · · · , n, and decay rate ρD as before.

4.2 Information Reliability

We estimate Rt(Π, Ω, O([info])) by measuring the error in information. Π ’s plans
will have constructed a set of distributions. We measure the ‘error’ in information
as the error in the effect that information has on each of Π ’s distributions.
Suppose that a chunk of [info] is received from agent Ω at time s and is verified
at some later time t. For example, a chunk of information could be “the interest
rate will rise by 0.5% next week”, and suppose that the interest rate actually
rises by 0.25% — call that correct information [fact]. What does all this tell
agent Π about agent Ω’s reliability? Consider one of Π ’s distributions D that
is {qs

i } at time s. Let (p[info]
i)n

i=1 be the minimum relative entropy distribution
given that [info] has been received as calculated in Eqn. 5, and let (p[fact]

i)n
i=1 be

that distribution if [fact] had been received instead. Suppose that the reliability
estimate for distribution D was Rs

D. This section is concerned with what Rs
D

should have been in the light of knowing now, at time t, that [info] should have
been [fact], and how that knowledge effects our current reliability estimate for
D, Rt(Π, Ω, O([info])).

The idea of Eqn. 6, is that the current value of r should be such that, on
average, (ps

i)
n
i=1 will be seen to be “close to” (p[fact]

i)n
i=1 when we eventually

Agents for Information-Rich Environments 61

discover [fact] — no matter whether or not [info] was used to update D, as
determined by the acceptability test in Eqn. 7 at time s. That is, given [info],
[fact] and the prior (qs

i)
n
i=1, calculate (p[info]

i)n
i=1 and (p[fact]

i)n
i=1 using Eqn. 5.

Then the observed reliability for distribution D, R
([info]|[fact])
D , on the basis of the

verification of [info] with [fact] is the value of r that minimises the Kullback-
Leibler distance between (ps

i)
n
i=1 and (p[fact]

i)n
i=1:

argmin
r

n∑
i=1

(r · p[info]
i + (1− r) · qs

i) log
r · p[info]

i + (1− r) · qs
i

p
[fact]
i

If E[info] is the set of distributions that [info] effects, then the overall observed
reliability on the basis of the verification of [info] with [fact] is: R([info]|[fact]) =
1−(maxD∈E[info] |1−R

([info]|[fact])
D |). Then for each ontological context oj , at time

t when, perhaps, a chunk of [info], with O([info]) = ok, may have been verified
with [fact]:

Rt+1(Π, Ω, oj) = (1 − ρ)×Rt(Π, Ω, oj) + ρ×R([info]|[fact]) × Sem(oj , ok)

where Sem(·, ·) : O × O → [0, 1] measures the semantic distance between two
sections of the ontology, and ρ is the learning rate. Over time, Π notes the
ontological context of the various chunks of [info] received from Ω and over the
various ontological contexts calculates the relative frequency, P t(oj), of these
contexts, oj = O([info]). This leads to a overall expectation of the reliability
that agent Π has for agent Ω: Rt(Π, Ω) =

∑
j P t(oj)×Rt(Π, Ω, oj).

5 Negotiation

For illustration Π ’s communication language [11] is restricted to the illocutions:
Offer(·), Accept(·), Reject(·) and Withdraw(·). The simple strategies that we will
describe all use the same world model function, Js, that maintains the following
two probability distributions as their world model:

– Pt(ΠAcc(Π, Ω, ν, δ)) — the strength of belief that Π has in the proposition
that she should accept the proposal δ = (a, b) from agent Ω in satisfaction
of need ν at time t, where a is Π ’s commitment and b is Ω’s commitment.
Pt(ΠAcc(Π, Ω, ν, δ)) is estimated from:
1. Pt(Satisfy(Π, Ω, ν, δ)) a subjective evaluation (the strength of belief that

Π has in the proposition that the expected outcome of accepting the
proposal will satisfy some of her needs).

2. Pt(Fair(δ)) an objective evaluation (the strength of belief that Π has in
the proposition that the proposal is a “fair deal” in the open market.

3. Pt(ΠCanDo(a) an estimate of whether Π will be able to meet her com-
mitment a at contract execution time.

These three arrays of probabilities are estimated by importing relevant in-
formation, [info], as described in Sec. 4.

62 J. Debenham and S. Simoff

– Pt(ΩAcc(β, α, δ)) — the strength of belief that Π has in the proposition
that Ω would accept the proposal δ from agent Π at time t. Every time
that Ω submits a proposal she is revealing information about what she is
prepared to accept, and every time she rejects a proposal she is revealing
information about what she is not prepared to accept. Eg: having received
the stamped illocution Offer(Ω, Π, δ)(Ω,Π,u), at time t > u, Π may believe
that Pt(ΩAcc(Ω, Π, δ)) = κ this is used as a constraint on Pt+1(ΩAcc(·))
which is calculated using Eqn. 3.

Negotiation is an information revelation process. The agents described in
Sec. 3 are primarily concerned with the integrity of their information, and then
when they have acquired sufficient information to reduce their uncertainty to
an acceptable level they are concerned with acting strategically within the sur-
rounding uncertainty. A basic conundrum in any offer-exchange bargaining is: it
is impossible to force your opponent to reveal information about their position
without revealing information about your own position. Further, by revealing
information about your own position you may change your opponents position
— and so on.4 This infinite regress, of speculation and counter-speculation, is
avoided here by ignoring the internals of the opponent and by focussing on what
is known for certain — that is: what information is contained in the signals
received and when did those signals arrive.

5.1 Utility-Based Strategies

An agent’s strategy s is a function of the information Yt that it has at time
t. Four simple strategies make offers only on the basis of Pt(ΠAcc(Π, Ω, ν, δ)),
Π ’s acceptability threshold γ, and Pt(ΩAcc(Ω, Π, δ)). The greedy strategy s+

chooses:

argmax
δ
{Pt(ΠAcc(Π, Ω, ν, δ)) | Pt(ΩAcc(Ω, Π, δ))� 0},

it is appropriate when Π believes Ω is desperate to trade.
The expected-acceptability-to-Π-optimising strategy s∗ chooses:

arg max
δ
{Pt(ΩAcc(Ω, Π, δ)) × Pt(ΠAcc(Π, Ω, ν, δ)) | Pt(ΠAcc(Π, Ω, ν, δ)) ≥ γ}

when Π is confident and not desperate to trade. The strategy s− chooses:

arg max
δ
{Pt(ΩAcc(Ω, Π, δ)) | Pt(ΠAcc(Π, Ω, ν, δ)) ≥ γ}

it optimises the likelihood of trade — when Π is keen to trade without compro-
mising its own standards of acceptability.

An approach to issue-tradeoffs is described in [9]. The bargaining strategy
described there attempts to make an acceptable offer by “walking round” the
4 This a reminiscent of Werner Heisenberg’s indeterminacy relation, or unbes-

timmtheitsrelationen: “you can’t measure one feature of an object without changing
another” — with apologies.

Agents for Information-Rich Environments 63

iso-curve of Π ’s previous offer δ′ (that has, say, an acceptability of γδ′ ≥ γ)
towards Ω’s subsequent counter offer. In terms of the machinery described here,
an analogue is to use the strategy s−:

arg max
δ
{Pt(ΩAcc(Ω, Π, δ)) | Pt(ΠAcc(Π, Ω, ν, δ)) ≥ γδ′}

with γ = γδ′ . This is reasonable for an agent that is attempting to be ac-
commodating without compromising its own interests. The complexity of the
strategy in [9] is linear with the number of issues. The strategy described here
does not have that property, but it benefits from using Pt(ΩAcc(Ω, Π, δ)) that
contains foot prints of the prior offer sequence — estimated by repeated use
of Eqn. 3 — in that distribution more recent data gives estimates with greater
certainty.

5.2 Information-Based Strategies

Π ’s negotiation strategy is a function s : Yt → Z where Z is the set of actions
[see Fig. 4] that send Offer(.), Accept(.), Reject(.) and Quit(.) messages to Ω.
If Π sends Offer(.), Accept(.) or Reject(.) messages to Ω then she is giving Ω
information about herself. In an infinite-horizon bargaining game where there is
no incentive to trade now rather than later, a self-interested agent will “sit and
wait”, and do nothing except, perhaps, to ask for information. The well known
bargaining response to an approach by an interested party “Well make me an
offer” illustrates how a shrewd bargainer may behave in this situation.

An agent may be motivated to act for various reasons — three are mentioned.
First, if there are costs involved in the bargaining process due either to changes
in the value of the negotiation object with time or to the intrinsic cost of con-
ducting the negotiation itself. Second, if there is a risk of breakdown caused
by the opponent walking away from the bargaining table. Third, if the agent
is concerned with establishing a sense of trust [12] with the opponent —this
could be the case in the establishment of a business relationship. Of these three
reasons the last two are addressed here. The risk of breakdown may be reduced,
and a sense of trust may be established, if the agent appears to its opponent to
be “approaching the negotiation in an even-handed manner”. One dimension of
“appearing to be even-handed” is to be equitable with the value of information
given to the opponent. Various bargaining strategies, both with and without
breakdown, are described in [4], but they do not address this issue. A bargaining
strategy is described here that is founded on a principle of “equitable informa-
tion gain”. That is, Π attempts to respond to Ω’s messages so that Ω’s expected
information gain similar to that which Π has received.

Π models Ω by observing her actions, and by representing beliefs about her
future actions in the probability distribution P(ΩAcc(·)). Π measures the value
of information that it receives from Ω by the change in the entropy of this
distribution as a result of representing that information in P(ΩAcc(·)). More
generally, Π measures the value of information received in a message, µ, by the
change in the entropy in its entire representation,

⋃
s W t

s , as a result of the receipt

64 J. Debenham and S. Simoff

of that message; this is denoted by: ∆µ|W t|, where |W t| denotes the value of
the uncertainty (as negative entropy) in Π ’s information in W t. Although both
Π and Ω will build their models of each other using the same data — the
messages exchanged — the observed information gain will depend on the way in
which each agent has represented this information as discussed in [4]. It is “not
unreasonable to suggest” that these two representations should be similar. To
support Π ’s attempts to achieve “equitable information gain” she assumes that
Ω’s reasoning apparatus mirrors her own, and so is able to estimate the change
in Ω’s entropy as a result of sending a message µ to Ω: ∆µ|W t

Ω|. Suppose that
Π receives a message µ = Offer(.) from Ω and observes an information gain of
∆µ|W t|. Suppose that Π wishes to reject this offer by sending a counter-offer,
Offer(δ), that will give Ω expected “equitable information gain”.

δ = {arg max
δ

P(ΠAcc(δ) | Yt) ≥ α | (∆Offer(δ)|W t
Ω| ≈ ∆µ|W t|)}.

That is Π chooses the most acceptable deal to herself that gives her opponent
expected “equitable information gain” provided that there is such a deal. If there
is not then Π chooses the best available compromise

δ = {argmax
δ

(∆Offer(δ)|W t
Ω |) | P(ΠAcc(δ) | Yt) ≥ α}

provided there is such a deal — this strategy is rather generous, it rates infor-
mation gain ahead of personal acceptability. If there is not then Π does nothing.

The “equitable information gain” strategy generalises the simple-minded al-
ternating offers strategy. Suppose that Π is trying to buy something from Ω
with bilateral bargaining in which all offers and responses stand — ie: there is
no decay of offer integrity. Suppose that Π has offered $1 and Ω has refused, and
Ω has asked $10 and Π has refused. If amounts are limited to whole dollars only
then the deal set D = {1, · · · , 10}. Π models Ω with the distribution P(ΩAcc(.)),
and knows that P(ΩAcc(1)) = 0 and P(ΩAcc(10)) = 1. The remaining eight val-
ues in this distribution are provided by the inference procedure — see Sec. 3.2
— and the entropy of the resulting distribution is 2.2020. To apply the “equi-
table information gain” strategy Π assumes that Ω’s decision-making machinery
mirrors its own. In which case Ω is assumed to have constructed a mirror-image
distribution to model Π that will have the same entropy. At this stage, time
t = 0, calibrate the amount of information held by each agent at zero — ie:
|W 0| = |W 0

Ω| = 0. Now if, at time t = 1, Ω asks Π for $9 then Ω gives information
to Π and |W 1| = 0.2548. If Π rejects this offer then she gives information to Ω
and |W 1

Ω | = 0.2548. Suppose that Π wishes to counter with an “equitable infor-
mation gain” offer. If, at time t = 2, Π offers Ω $2 then |W 2

Ω | = 0.2548+0.2559.
Alternatively, if Π offers Ω $3 then |W 2

Ω | = 0.2548+0.5136. And so $2 is a near
“equitable information gain” response by Π at time t = 2. Entropy-based infer-
ence operates naturally with multi-issue offers where this calculation becomes
considerably more interesting.

Agents for Information-Rich Environments 65

6 Conclusions

Electronic marketplaces are awash with dynamic information flows including
hard market data and soft textual data such as news feeds. Structured and
unstructured data mining methods identify, analyse, condense and deliver sig-
nals from this data whose integrity may be questionable. An ‘information-based’
agent architecture has been described, that is founded on ideas from informa-
tion theory, and has been developed specifically to operate with the data mining
system. It is part of our eMarket platform1 that also includes a “virtual institu-
tion” system in a collaborative research project with “Institut d’Investigacio en
Intel.ligencia Artificial”, Spanish Scientific Research Council, UAB, Barcelona.

References

1. Zhang, D., Simoff, S.: Informing the Curious Negotiator: Automatic news ex-
traction from the Internet. In Williams, G., Simoff, S., eds.: Data Mining: Theory,
Methodology, Techniques, and Applications. Springer-Verlag: Heidelberg, Germany
(2006) 176 – 191

2. Wooldridge, M.: Multiagent Systems. Wiley (2002)
3. Simoff, S., Debenham, J.: Curious negotiator. In M. Klusch, S.O., Shehory, O.,

eds.: Proceedings 6th International Workshop Cooperative Information Agents VI
CIA2002, Madrid, Spain, Springer-Verlag: Heidelberg, Germany (2002) 104–111

4. Debenham, J.: Bargaining with information. In Jennings, N., Sierra, C., Sonenberg,
L., Tambe, M., eds.: Proceedings Third International Conference on Autonomous
Agents and Multi Agent Systems AAMAS-2004, ACM Press, New York (2004)
664 – 671

5. Sierra, C., Debenham, J.: An information-based model for trust. In Dignum, F.,
Dignum, V., Koenig, S., Kraus, S., Singh, M., Wooldridge, M., eds.: Proceedings
Fourth International Conference on Autonomous Agents and Multi Agent Systems
AAMAS-2005, Utrecht, The Netherlands, ACM Press, New York (2005) 497 – 504

6. Reis, D., Golgher, P.B., Silva, A., Laender, A.: Automatic web news extraction
using tree edit distance. In: Proceedings of the 13th International Conference on
the World Wide Web, New York (2004) 502–511

7. Ramoni, M., Sebastiani, P.: Bayesian methods. In: Intelligent Data Analysis.
Springer-Verlag: Heidelberg, Germany (2003) 132–168

8. Zhang, D., Simoff, S., Debenham, J.: Exchange rate modelling using news articles
and economic data. In: Proceedings of The 18th Australian Joint Conference on
Artificial Intelligence, Sydney, Australia, Springer-Verlag: Heidelberg, Germany
(2005)

9. Faratin, P., Sierra, C., Jennings, N.: Using similarity criteria to make issue trade-
offs in automated negotiation. Journal of Artificial Intelligence 142 (2003) 205–237

10. MacKay, D.: Information Theory, Inference and Learning Algorithms. Cambridge
University Press (2003)

11. Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Sierra, C., Wooldridge, M.:
Automated negotiation: Prospects, methods and challenges. International Journal
of Group Decision and Negotiation 10 (2001) 199–215

12. Ramchurn, S., Jennings, N., Sierra, C., Godo, L.: A computational trust model for
multi-agent interactions based on confidence and reputation. In: Proceedings 5th
Int. Workshop on Deception, Fraud and Trust in Agent Societies. (2003)

Information Agents for Optimal Repurposing
and Personalization of Web Contents in
Semantics-Aware Ubiquitous and Mobile

Computing Environments

Fernando Alonso, Sonia Frutos, Miguel Jiménez, and Javier Soriano

School of Computer Science, Universidad Politécnica de Madrid
28660 - Boadilla del Monte, Madrid, Spain

{falonso, sfrutos, jsoriano}@fi.upm.es,
mjimenez@pegaso.ls.fi.upm.es

Abstract. Web contents repurposing and personalization is becoming
crucial for enabling ubiquitous Web access from a wide range of mobile
devices under varying conditions that may depend on device capabilities,
network connectivity, navigation context, user preferences, user disabil-
ities and existing social conventions. Semantic annotations can provide
additional information so that a content adaptation engine, based on the
holistic integration of both Information Agents and Semantic Web tech-
nologies, can make better decisions, leading to optimal results in terms
of legibility and usability. Bearing this in mind, this paper presents the
rationale behind MorfeoSMC: an open source mobility platform that en-
ables the development of semantics-aware mobile applications and ser-
vices in order to provide improved Web accessibility and increase social
inclusion. In particular, the paper focuses on how MorfeoSMC information
agents tackle the use of semantic markup in the information rendered for
users through the mobility platform and as part of a user-interest profile-
aware and navigation context-aware Web content adaptation process. It
also presents an innovative semantic matching framework that is at the
core of this semantics-aware Web content adaptation process.

1 Introduction

With the advent of emerging personal computing paradigms, such as ubiqui-
tous and mobile computing, Web contents are becoming accessible from a wide
and evolving range of Web-enabled mobile devices, ranging from WAP-enabled
phones, through PDAs, to in-car navigation devices. All of these devices have
different rendering capabilities than traditional desktop computers and a range
of settings, functionality and rendering options that place heavy demands on
both interoperability and accessibility. This means that Web contents need to
be (a) repurposed for transparent access from a variety of client agents, and
(b) personalized, enabling real-time context-aware delivery of content specific to
and/or of interest to the individual or machine visiting a website. Furthermore,

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 66–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Information Agents for Optimal Repurposing and Personalization 67

Web content repurposing and personalization (e.g. filtering, reformatting, pri-
orizing, rearranging etc.) is useful not only in mobility environments, but also
for improving information access for disabled people, especially if they are using
mobile devices, which have severe accessibility constraints. This content adap-
tation is thus crucial for universal Web access under a variety of conditions that
may depend on device capabilities, network connectivity, navigation context,
user preferences, user disabilities and even existing social conventions.

There are now mechanisms (e.g. [1]) and commercial solutions (e.g. [2]) for
automatically adapting Web contents within mobility, commonly termed trans-
coding [3]. The problem with the existing approaches is that they are based
exclusively on page syntax and not on the specific meaning of the concepts ad-
dressed on these pages or on the semantics associated with the user-interest pro-
file (including both preferences and disabilities) and with the navigation context
(e.g. time, location, connectivity, device capabilities, etc.). Therefore, current
page transcoders for mobile devices only select and transform the content to be
displayed to the user on the basis of the tags that define the page rendering,
leading to suboptimal results in terms of legibility and usability.

Of the available technologies, those associated with the autonomous agent-
based computation paradigm [4,5] are precisely the ones that are better accepted
for dealing with issues associated with ubiquitous and mobile computing, help-
ing to conceive new models, techniques and applications for developing solutions
with a higher level of automation, greater potential for interoperability within
open environments and better capabilities of cooperation and adaptation. In
this respect, intelligent agent technology and, particularly, information agents
provide a series of new and exciting possibilities in the field of mobile and ubiq-
uitous Web access [6]. These include Web content repurposing, and Web content
personalization.

For our purposes, an information agent (i.e. an intelligent agent for the Inter-
net [7]) is supposed to deal with the difficulties associated with the information
overload of the user it represents, and on behalf of whom it pro-actively acquires,
mediates, and maintains relevant information. Their ability to semantically bro-
ker information by resolving the information impedance of both information
consumers and providers, and offering value-added information services and
products to the user is therefore implicit. An approach to Web content repurpos-
ing and personalization that takes into account, among others, semantics-aware
preferences in the user-interest profile preferences and substantive aspects re-
lated to the navigation context for optimal mobile Web access is a prominent
example of such ability in ubiquitous and mobile environments.

Moreover, the success of the process of incorporating information agents, ca-
pable of repurposing and personalizing Web contents for optimal use across the
evolving range of Web-enabled mobile devices in ubiquitous and mobile environ-
ments largely depends on the use of Semantic Web technology. Semantic annota-
tions can provide additional information not only about Web contents, but also
about user profiles [8], navigation contexts [9], and policies representing social
conventions [10] so that a content adaptation engine, based on Semantic Web

68 F. Alonso et al.

technologies, can make better decisions on content repurposing and personaliza-
tion. Nevertheless this sets new challenges for semantic markup and reasoning in
such specific Semantic Web technologies application areas, all of which have di-
rect ramifications on the emerging ubiquitous and mobile computing paradigms:
user profile-awareness, navigation context-awareness and policy modeling and
enforcement [6].

In the light of the advances achieved by the international research community
in both the intelligent agents and the Semantic Web fields, the strategy followed
for building the existing Web content adaptation engines should be reconsidered,
and the possibility of including a holistic integration of information agents and
Semantic Web technologies in the Web content repurposing and personalization
process should be examined, as should the benefits of such a decision.

With this in mind, this paper presents the rationale behind an advanced
components platform, called Morfeo Semantic Mobility Channel (MorfeoSMC),
that enables the development of mobility applications and services and takes
into account the above-mentioned points.

The remainder of the paper is organized as follows. Section 2 presents the
rationale behind the proposed Agent-based architecture. Section 3 reviews the
Morfeo open source mobility platform (MorfeoMC) on which the proposal is
based. Then section 4 describes the MorfeoSMC approach to incorporating se-
mantic annotations about the renderings delivered by mobile applications and
services developed based on this platform. Section 5 introduces the MorfeoSMC
approach to semantics-aware adaptation (i.e. repurposing and personalization)
of such Web contents derived from the notion of user profile-awareness. It then
goes on to present an innovative semantic matching framework based on the
proposed conceptualization of the user profile and gives an example of how it is
used to match user preferences against trade services descriptions delivered in
MorfeoSMC. Section 6 goes a step further by introducing the MorfeoSMC ap-
proach to navigation context-awareness to improve the Web content adaptation
process. To prove the value of the work, section 7 describes how MorfeoSMC is
being used to give such a widespread application as TPIs Yellow Pages mobility,
as well as aiming to offer search results with semantic information. Finally, we
conclude this paper in section 8.

2 Agent-Based Architecture Overview

Separating the structure from the rendering will assist the migration to the
Semantic Web, where agents will not only be able to glean information, but will
also be capable of filtering and selecting relevant content for devices with lower
bandwidth or requiring different navigation approaches, taking into account user
interests and the navigation context, thereby providing improved access and
increasing social inclusion.

Following ideas from [11], the semantic annotation of a Web application of-
fered on MorfeoSMC is done as two separate processes, as shown in Fig. 1. Each
process focuses on a separate semantic annotation process for the Web contents

Information Agents for Optimal Repurposing and Personalization 69

and for the view components in a device-independent rendering. The annotation
process A (see Fig. 1) makes this point and offers a supervised description of the
view components making up the Web applications in MorfeoSMC. The annota-
tion process B shows the process of semantically describing the contents that
will feed the Web applications. Their annotation is also a supervised process
performed by a knowledge engineer. These contents are annotated depending on
their specific domain and a change of contents domain influences the ontologies
used to annotate the view. In the example shown in Fig. 1 contents concern-
ingTrade Services (section 5.1) are annotated. Therefore, the ontologies describ-
ing the trade services are also used to describe the view rendering these services.

Fig. 1. Semantic Annotation Process in MorfeoSMC

To cope with the huge amount of available information and the constrained
capabilities of mobile devices, the MorfeoSMC architecture is populated with a
number of semantics-aware information agents, each one acting on the behalf
of a user for the purpose of filtering and selecting relevant mobile Web con-
tents offered over the platform. These agents take the semantic description of
the Web contents available in the MorfeoSMC contents managers to modify, fil-
ter or rearrange the contents depending on their knowledge of the actual user
(user-interest profile) or the context in which the data are requested (navigation
context).

The personalization of contents will be all the more effective the more knowl-
edge the agent has about the user. However, this server-side approach has a big
disadvantage as regards user privacy and security, which calls for a trade-off
between privacy and personalization. With the aim of optimizing this trade-off,
this paper suggests separating the tasks that are performed by agents on the
MorfeoSMC server from those that are implemented as client device plug-ins.
Heavy-weight or data bandwidth-intensive tasks are carried out by server-side
information agents (e.g. restaurant list prioritizing and page rearranging accord-
ing to user preferences and geographic nearness), whereas light-weight tasks or

70 F. Alonso et al.

tasks requiring more precise knowledge about the user are performed by client-
side information agents (e.g. personal information form filling), always keeping
more sensitive personal information inside the client device.

Fig. 2. Information Agents on the Client Device

Two pairs of agents take part in any user-server interaction: (a) two user-
interest profile related agents (the client-side information agent handles the
user-interest profile and the information about it that it shares with its server-
side peer), and (b) two navigation context-aware information agents perform
the client- and server-side navigation context-based personalization tasks. The
following sections describe in detail how these agents do their jobs and what
knowledge they use to complete their tasks.

3 Foundations of the Morfeo Mobility Channel Platform

The MorfeoSMC platform is based on an earlier release of an open source mo-
bility platform called Mobility Channel (MorfeoMC)1 [13], formerly TIDMobile,
which has proven to be useful for rapidly developing applications and services
that can be used to create comprehensive and integrated mobile solutions while
concealing the complexity involved in managing multiple devices. MorfeoMC
performs all multi-device programming tasks, such as identifying the device,
adapting the page and contents to fit device technology, markup language and
capabilities, and managing sessions using the technology available on each device.

This platform is based on a channel model supported by the principles of Ser-
vice Oriented Architecture (SOA). This means that the channel adapter, which
has been developed to give access to mobile devices, is run on the front-end,

1 Both MorfeoSMC and MorfeoMC are being developed in the context of the Morfeo
open source development community [12], led by Telefónica R & D and undertaken
in collaboration with a number of universities.

Information Agents for Optimal Repurposing and Personalization 71

and does not affect the back-end business logic that it is based on. The con-
tact points between the mobile applications and the business logic are called
Application Operatons (AOs). These AOs are invoked from the mobile applica-
tion to access the back-end services and are, thus, the nexus points between the
front-end channel adapter and the back-end business logic core.

The mobile applications and services are composed of Rendering Operations
(ROs). An RO is a set of renderings or screens that are designed to perform a use
case. The renderings are defined in an XML-based grammar called Rendering
Definition Language (RDL), as is the flow between ROs and calls to any AOs
needed to implement the application. The renderings defined in RDL are made
up of high-level visual controls that will be converted to the markup language
supported by each specific client device.

RDL Visual controls are similar to HTML tags, but their behavior depends on
the capabilities of the target markup language to which they will be translated.
Representative examples of these are head, body, title, menu, table, list, etc. An
example of visual control is given below. It defines a table containing the name,
address and telephone number of restaurants. ${lrest} references an object in
the server context, which is a data warehouse for the mobile application used by
the visual controls to pick up their data.

<table id="restaurants" optionsbind="${lrest}" keymember="id">
<th> <td>Name</td> <td>Address</td> <td>Telephone</td> </th>
<tr> <td member="name"></td>

<td member="address"></td>
<td member="telephone"></td> </tr> </table>

The page style is defined using W-CSS style sheets. A more detailed descrip-
tion of RDL is given in [13]. Fig. 3 shows the result of applying the same RDL
rendering description in three different devices. The illustrated rendering is part
of the ”partner search” use case in a prototype enterprise mobile service.

Fig. 3. Three different screenshots for the same RDL

A key component of MorfeoMC is the Code Generation Tool (CGT). This
component is responsible for generating the JSP-based servers that will cater for

72 F. Alonso et al.

the client device. The devices are organized according to the supported markup
language or technology, and the CGT outputs as many servers as families are
supported by MorfeoMC. If MorfeoMC is to support a new technology, a new
server should be generated based on that technology. However, some Web content
adaption is done at runtime. Runtime content adaption involves data extraction
from databases or Content Management Systems, large content pagination or
media documents adaptation.

This approach to Web content adaptation has been proven to be better, in
terms of performance and resource consumption, than others based on run-time
transcoding. It has also been proven to be more flexible than XSLT sheets-based
transcoding techniques. MorfeoMC source code is distributed under GPL license
and is available from the Morfeo project forge [14].

4 Incorporation of Semantic Annotations About Mobile
Web Contents

Semantic annotations provide additional information about Web contents so that
MorfeoSMC Semantic Web technologies-based content adaptation engine, based
on Semantic Web technologies, can make better decisions on content repurpos-
ing and personalization than its predecesor in MorfeoMC. This, in turn, (along
with the semantic characterization of both the user-interest profile and the nav-
igation context discussed later) leverage the automation of tasks and processes,
leading to an added value for mobile applications and services. This includes
automatically filling in personal particulars on forms, rearranging lists/tables of
elements according to their relevance for the user, filtering search results that
are irrelevant with respect to the user particulars or context, etc.

The mobile contents that are generated by the Mobility Channel are defined
in RDL. Therefore, RDL has been extended in MorfeoSMC to contain semantic
annotations with the aim of describing those mobile contents. It is our aim,
however, to preserve the semantics defined in RDL during the content generation
and adaptation process (the contents are stored in structured data warehouses,
such as databases or content management systems), as well as to incorporate
this process into the final semantic annotations. Hence, the RDL language has
been extended with content descriptions, called semantic bindings, that describe
the content that will be finally sent to the client device.

Therefore, the semantic description of the contents associated with the visual
controls in RDL can be defined in two ways: (1) writing down the semantic
descriptions about the contents to be sent to the client, or (2) defining the
source for the annotations of the contents that will be included in the visual
control. In both cases the semantic annotations can describe the actual contents
that will be displayed to the user and any additional contents that, although
not displayed on screen, are useful for adding to the description of the contents
displayed in the rendering (e.g. as part of a later layout optimization process as
explained in Section 5).

Information Agents for Optimal Repurposing and Personalization 73

4.1 Semantic Extensions to RDL

The RDL grammar is semantically extended by describing the data in any vi-
sual control that can contain information in this language. These extensions are
based on a fixed set of attributes aimed at specifying the semantic informa-
tion that will be generated together with the visual control with which they are
associated:

– about-resid : specifies what identifier one or more resources will take.
– about-class: refers to the identifier of the class to which a concept belongs.
– about-prop: refers to the identifier of a property, whose value is the data

item represented in the visual control.
– about-obj-datatype : defines the data type of an RDF literal, making use

of XML-Schema types. It makes sense when the object is a literal.
– about-link-prop: references the identifier of a property with a link to the

class that contains the data item to be displayed in a column. It is useful for
the table visual control.

A semantic annotation method has been developed for each visual control
that can contain data. In this paper, however, only the Table control, as a repre-
sentative example of the RDL set of visual controls, and its annotation method
will be explained for illustrative purposes. See [15] for a full description of the
semantic extensions made to RDL.

The RDL Table visual control, used to represent tabular data structures, has
been semantically extended with all the semantic attributes described above as
follows. The main concept on which the table is based is referenced by the about-
class attribute, and the resource identifiers for the instances are specified using
the about-resid attribute. Each concept attribute expressed in a table column is
described by means of: (a) an about-prop attribute if it references an attribute of
the main concept of the table, or (b) an about-link-prop attribute if it references
an attribute of a different concept.

Below we show the same example as proposed earlier, now including the pro-
posed semantic annotations and the set of RDF triplets that will be generated
as a result of the described annotation method.

<table id="restaurants"optionsbind="${lrest}" keymember="id"
about-class="travel:restaurant"
about-resid="myapp:restaurants:${lrest.id}">
<th> <td about-prop="travel:restaurant:name">Name</td>

<td about-prop="location:street" about-class="location:address"
about-link-prop="travel:restaurant:address"
about-resid="myapp:locations:${lrest.address.id}">Address</td>

<td about-prop="travel:restaurant:tlfn">Telephone</td> </th>
<tr> <td member="name"></td>

<td member="address"></td>
<td member="telephone"></td> </tr> </table>

As the example shows, the notation can concatenate namespace URIs with
context data (e.g. about-resid=”myapp:restaurants:${lrest.id}”). The above ta-
ble definition automatically generates the following RDF triplets:

74 F. Alonso et al.

(myapp:restaurants/Id1, rdf:type, travel:restaurant)
(myapp:restaurants/Id1, travel:restaurant:name, "Chistu")
(myapp:restaurants/Id1, travel:restaurant:address, myapp:locations:00596)
(myapp:locations:00596, rdf:type, location:address)
(myapp:locations:00596, location:street, "Highland St.")
(myapp:restaurants/Id1, travel:restaurant:tlfn, "912345678")
(myapp:restaurants/Id1, xpath_ont:reference,"...table[n]/tr[m]")
...[more items]...

Note that the last RDF triplet acts as a bridge between the semantic infor-
mation about an item in the data table and a row in the markup table. This
enables the visual elements that are described in the semantic information re-
ceived together with the markup to be associated on the client side.

5 Enabling User-Interest Profile-Awareness

A semantic user-interest profile captures all the information about the user that
the system can use to output the contents that are more relevant to him or her.
This information includes both the user’s personal particulars and interests.

The user’s personal particulars are modeled using relations –or roles in De-
scription Logic (DL)– according to a defined ontological vocabulary (OWL-DL
is also used, but OWL definitions are omitted for brevity). This information
together with its semantic description defined on the basis of an ontology can
be exploited by semantics-aware Web applications or services. For example, a
mobile device would be able to automatically fill in some fields in a form, such as
the user’s date of birth, if the form is semantically annotated and the device has
described the user’s respective personal particulars semantically. This feature
will be all the more effective the more information the agent has about the user.

The semantic user-interest profile also contains information about the user’s
interests [8], including long-term interests, consisting of likes and dislikes, and
short-term interests [16], which are what the user intends to pursue during one
particular interaction with the system. For the sake of simplicity and for reasons
of space, this paper only covers long-term interests, although short-term interests
are dealt with similarly.

The proposed simplification of the semantic user-interest profile is as follows:

Profile ≡ �i ∃hasCharacteristic.Characteristici

�j ∃hasInterest.Interestj

�k ∀hasInterest.(¬Disinterestk)

�l ∃demands.Thing

where the role hasCharacteristic is a super-role of the different relations ex-
pressing the user’s personal particulars, the role hasInterest is used to indicate
the concepts in which the user is interested, covered by the Interesti group,
and the concepts in which the user is not interested, expressed by Disinterestj,
and demands is a super-role of a hierarchy of roles expressing different ways of
demanding something, such as purchasing, swapping, etc.

For example, the profile of a user who is interested in Rioja wines but not in
Ribera del Duero wines would be as follows:

Information Agents for Optimal Repurposing and Personalization 75

User1 ≡ ∃hasInterest.(Wine � (∃hasRegion.Rioja))�
∀hasInterest.(¬Wine
 ¬(∃hasRegion.RiberaDuero))

One of the key features of this approach is that the concepts used in the
user-interest profile can be refined as much as you like to express the inherent
complexity of the user preferences.

5.1 User-Interest Profile-Compatible Description of Semantic Trade
Services

To give a clearer idea about how the semantic personalization of Web content
works, this section focuses on trade services2 offered by enterprises and busi-
nesses, and considers how well the user preferences are satisfied by the trade
service, prioritizing the businesses that offer trade services that better satisfy
user interests.

Trade services are concepts of the following form:

TradeService ≡ ∃provides.Thing

This definition confines a trade service to being anything that provides Things
(goods and products), and also serves as a definition for the Trade Service con-
cept. This simple expression does not explicitly specify the definition of the
special characteristics of the services, which can be defined as features of the
offered Things. The following example makes this point.

RestSrvc1 ≡ ∃offers.(RedWine � (∃hasRegion.Rioja))

RestSrvc2 ≡ ∃offers.(Wine � (∃hasRegion.Rioja))

RestSrvc3 ≡ ∃offers.(RedWine � (∃hasRegion.RiberaDuero))

This example shows a simplification of the trade services offered by several
restaurants, which is, however, expressive enough to convey the potential of the
description.

The semantic information can be gathered during the content adaptation
process, when the semantic annotations related to the visual controls are gener-
ated, as explained in Section 4.

5.2 Semantic Matching for Web Content Adaptation

The semantic annotation of the Web contents delivered by the MorfeoSMC plat-
form and the semantic definition of the user-interest profile are of no use without
a procedure that can determine whether the Web contents fit the profile. This is
done by semantic matching between the concepts expressed in the user-interest
profile and the Web contents. In this paper we present a semantic matching be-
tween user preferences and trade services to determine whether the user-interest

2 This section refers to the semantic description of trade services, which is not the same
thing as the semantic descriptions of Web Services that are dealt with by different
approaches such as OWL-S or WSMO and have a different goal.

76 F. Alonso et al.

profile is semantically compatible with a particular trade service and, if so, how
well the two match. The use of trade services is for illustrative purposes only,
but the framework is applicable for any other sort of Web content delivered by
the MorfeoSMC platform.

In terms of ontologies, the concepts describing a user’s likes and dislikes have
to be compared to the concepts supplied by a trade service:

UsersInterest ≡ ∃hasInterest−.P rofile

ServiceOffer ≡ ∃offers−.Service

The match between UserInterest and ServiceOffer is a measure of how well
the services supplied satisfy the user’s preferences, and needs to be calculated
for every < user, offeredservice > pair. To determine the degree of match we
use the levels proposed in [17], which are listed from best to worst:

– Exact if UserInterest is equivalent to ServiceOffer.
– PlugIn if UserInterest is a sub-concept of ServiceOffer.
– Subsume if UserInterest is a super-concept of ServiceOffer.
– Intersection if the intersection between UserInterest and ServiceOffer is

satisfiable.
– Disjoint if UserInterest and ServiceOffer are completely incompatible.

This procedure scores the elements to be displayed according to their relevance
for the user. Therefore, it provides valuable information that can be used to
arrange the elements on screen, placing the most relevant items at the top.

According to the proposed semantic matching process, the restaurants shown
above would be rearranged as follows: {RestSrvc2, RestSrvc1, RestSrvc3}.

6 Enabling Navigation Context-Awareness

Web browsing is a context-dependent activity, meaning that it is influenced by
the user environment. Given the definition in [18], the environment-related infor-
mation can be referred to as a user’s navigation context. The Navigation Context
defines geographical information (e.g. the city from where the user is accessing
a service), timing information (e.g. the expiry time of a request) and social
information (e.g. information about the position or role the user is playing).

The following are prominent examples of customization needs in the context
of a tourist guide, highlighting the need for navigation context-awareness in
ubiquitous and mobile Web applications:

Time. Display the night-bus schedule or the subway schedule depending on
current time.

Location. Display a map related to the actual position (lattitude, longitude) of
the user.

Network. Render pictures depending on the network throughput.

Information Agents for Optimal Repurposing and Personalization 77

Display. Depending on the device, display full details about an item, or abbre-
viation of first name for WAP.

Ubiquity. Rendering all mayor sights as a list (index) for the Web and as a
guided tour for WAP.

The navigation context can be further described as a set of attributes and a
goal that helps to determine what attributes are relevant any one time. The goal
is the objective for which the context is used at any particular time, the focus of
the ongoing browsing activity. The goal can be viewed as being the information
that is the most interesting for the user at any one time. For example, selecting
an event and filling a form are all goals that determine the way the user will act.

Context-awareness is not a new idea. There are several conceptual represen-
tations of context, each of which has strengths and weaknesses as far as our
needs are concerned. Our proposal is based on ideas from [19] and uses ontolo-
gies to explicitly represent the navigation context and to support reasoning on
its different properties.

In our proposal, a context attribute designates the information defining one
context element, e.g. ”availability” or ”connectivity” for network, ”capability”
for device, ”position” for business, ”country” or ”city” for location, or ”cur-
rentTime” for time. Each context attribute has at least one value at any one
time, but will be multivalued (e.g. ”supportedFormats”). Moreover, an attribute
will have a hierarchical structure of subattributes. For example ”display” and
”markup” are subattributes of the the ”capability” attribute. The subattributes
of the ”display” attribute include ”resolutionWidth”, ”rows”, and ”maxIm-
ageWidth” whereas the ”markup” attribute includes ”preferredMarkup” and
”wml.1.2support”, as defined in the WURFL standard [20] 3. Va denotes the de-
finition domain of a, i.e. all the possible values for a (example: Vtime = [0, 24]).

We can therefore associate an instantiation function, called valueOf , with
each context value. V alueOf is defined for a context attribute as a function
from AxPa to ℘(Va), where A is the set of all attributes, ℘(Va) is the power set
of Va, and Pa is the set of parameters needed to compute the value of a.

Not all attributes are relevant for a goal. If isRelevant(a, g) is a predicate
stating that attribute a is relevant for the goal g, the subset of A that defines
the Relevant Attribute Set (RAS) for the goal g will be expressed as:

RAS(g) = {a ∈ A | isRelevant(a, g) = true}

An instantiation of context attribute a ∈ A will be denoted as a pair (a, v)
where v is the set of values v ∈ P (Va) of a at any one time. For instance,
(maxRows,2), (maxImageWidth, 60), (supportedFormats, wml.1.2, wml.1.3))
are the instantiation of the respective context attributes Day and supported-
Formats. The set I of instantiated context attributes is denoted as:

I = {(a, v) | a ∈ A ∧ valueOf(a) = v}
3 Among others for time, location, etc., MorfeoSMC uses a WURFL-based ontology

developed by the authors for conceptualizing and reasoning on device capabilities.

78 F. Alonso et al.

Let Instantiated Relevant Attribute Set of a goal g, denoted IRAS(g), be the
set of instantiated context attributes relevant to goal g:

IRAS(g) = {(a, v) | a ∈ RAS(g) ∧ (a, v) ∈ I}

The notion of navigation context is what we define as the IRAS, as usually
understood in related work.

What is said to be navigation context is represented using ontologies as a set of
context attributes defined as concepts, which are then regrouped with a number
of properties or roles describing all of the information required to define and
instantiate a particular context attribute. Consequently, more complex context
attributes can be represented than would be possible using mere properties.

For this purpose, we define a class ContextAttribute that specifies the following
information for a particular attribute: the name of the attribute, the type of
needed parameters for the instantiation, the values domain Va, and whether the
attribute can have more than one value, e.g. the PositionInGroup attribute will
need a group parameter and will give a role when instantiated. Each attribute is
represented as a subclass of ContextAttribute, with constraints on each property,
in order to have a clear description of the specified attribute.

The following are prominent examples of context attributes:

PositionInGroup : (Group)→ Role,
T imeZone : (time)→ zone(zone = {GMT, GMT + 1, . . . }),
DayOfWeek : (time)→ day(day = {sunday, monday, . . .}),

CurrentT ime : ()→ time, Location : (IP) :→ city

Context-awareness is based on two main processes: selection of relevant at-
tributes for a certain goal g (RAS(g)) and decision based on instantiated at-
tributes (IRAS(g)). For example, TimeZone and Location are relevant attributes
for a goal related to deciding whether to present an item in the list of suggested
restaurants, but PositionInGroup could be irrelevant.

The decision-making process knows when to include or exclude an item from
the Web page based on the IRAS output from the respective RAS instantiation.
For example, if the cinema is near to the user (same city) as inferred from the IP
and the showing begins one hour from currentT ime, the decision-making process
will decide to include the cinema and the showing in the list of suggestions.

7 Application Example

The MorfeoSMC is being used to give such a widespread application as TPIs
Yellow Pages [21] mobility, as well as aiming to offer search results with semantic
information based on location, services and products ontologies. The objective
is twofold. On the one hand, the aim is to extend service accessibility to the
whole range of mobile devices, which is in line with the philosophy of any yellow
pages service, where mobility services and activities search can account for a
large proportion of accesses to this application. On the other hand, it aims

Information Agents for Optimal Repurposing and Personalization 79

to take this service further, by sending the results with associated semantic
information. In this way, the user is not the only consumer of this information,
but his or her device is able to interpret it, integrate this knowledge with other
applications accessible in the device thereby maximizing the potential for TPI
use, or be proactive and suggest what different actions should be taken in relation
to the concepts handled in navigation. On this point, it is worth highlighting the
potential offered by Semantic Web Services in conjunction with the semantic
information obtained from navigation, integrating access to the SWS in actual
navigation.

8 Conclusions

The problem with existing approaches to the automatic adaptation of Web con-
tents within mobile environments is that they are based exclusively on page
syntax and not on the specific meaning of the concepts addressed on these pages
or on the matching between these concepts and both the user interests and his
or her navigation context. This paper takes a step forward by presenting an
innovative semantics-, user-interest profile- and navigation context-aware Web
content annotation and adaptation process within mobile environments, founded
on an innovative architecture based on the holistic integration of both Informa-
tion Agents and Semantic Web technologies. We have stated how, on the basis
of these ideas, a content adaptation engine can make better decisions on content
repurposing and personalization, therefore improving Web accessibility and in-
creasing social inclusion. It is worth mentioning that the proposed architecture
adopts the principles of the W3C Web Accessibility Recommendations [11] and
therefore (a) provides metadata as semantic markup, (b) separates structure
from presentation both at syntactic and a semantic level, and (c) accomplishes
with the provision of device independence in the generated renderings.

Acknowledgements. This work is being supported by the CAM Education
Council and the European Social Fund under their Research Personnel Train-
ing program, and by the Spanish Ministry of Industry, Tourism and Commerce
under its National Program of Service Technologies for the Information Society
(contract FIT-350110-2005-73).

References

1. M. Hori, G. Kondoh, K. Ono, S. Hirose, and S. Singhal. Annotation-based web
content transcoding. In Proc of the 9th Int World Wide Web Conference (WWW9),
Amsterdam, 2000. Available at http://www9.org/.

2. IBM Corporation. WebSphere Transcoding Publisher, 2001. Available at http://
www.ibm.com/software/webservers/transcoding/.

3. K. H. Britton, Y. Li, R. Case, C. Seekamp, A. Citron, B. Topol, R. Floyd, and
K. Tracey. Transcoding: Extending e-business to new environments. IBM Systems
Journal, 40(1):153–178, 2001.

80 F. Alonso et al.

4. Weiss, G. Multi-Agent Systems: A Modern Approach to Distributed Artificial In-
telligence, MIT Press, Cambridge, MA, 1999.

5. D’Inverno, M., and Luck, M. Understanding Agent Systems, Springer-Verlag, Hei-
delberg, Berlin, 2002.

6. O. Lassila. Using the semantic web in ubiquitous and mobile computing (keynote
talk). IASW 2005, Jyvaskyl, Finland, August 2005.

7. M. Klusch. Information Agent Technology for the Internet: A Survey. Journal on
Data and Knowledge Engineering, Special Issue on Intelligent Information Integra-
tion, D. Fensel (Ed.). Elsevier Science, 36(3), 2001.

8. A. Cali, D. Calvanese, S. Colucci, T. D. Noia, and F. M. Donini. A description
logic based approach for matching user profiles. In Proc. of the 2004 Description
Logic Workshop, Whistler, British Columbia, Canada, June 2004.

9. A. Dey et al. Towards a better understanding of context and context-awareness.
GVU Tech. Report GIT-GVU-00-18, Georgia Institute of Technology, 1999.

10. V. Kolovski, Y. Katz, J. Hendler, D. Weitzner and T. Berners-Lee. Towards a
Policy-Aware Web. Procs. of the Semantic Web and Policy Workshop, Galway,
Ireland, 2005.

11. Developing a Web Accessibility Business Case for Your Organization, S.L. Henry,
ed. World Wide Web Consortium (MIT, ERCIM, Keio), August 2005. http://
www.w3.org/WAI/bcase/

12. Morfeo project: Open Source Community for Software Platforms and Services De-
velopment. Available at http://www.morfeo-project.org/index.php?lang=en.

13. J. M. Cantera, J. J. Hierro, M. Jiménez, and J. Soriano. Delivering Mobile Enter-
prise Services on MorfeoMC Open Source Platform. In proceedings of the 1st Int.
Workshop on Tools and Applications for Mobile Contents (TAMC’06), at the 7th
IEEE/ACM International Conference MDM’06, 2006.

14. Morfeo Mobility Channel Source Code. Morfeo’s Project Forge. http://forge.
morfeo-project.org/projects/mobchannel/.

15. J. Soriano et al. Semantic Web Content Adaptation and Services Delivery on Mor-
feoSMC. In proceedings of the Int. Workshop on Mobile Services and Ontologies
(MoSO’06), at the 7th IEEE/ACM International Conference MDM’06, 2006.

16. A. Hessling, T. Kleemann, and A. Sinner. Semantic User Profiles and their Appli-
cations in a Movile environment. In AIMS workshop Ubicomp Conference 2004,
Nottingham, England, September 2004.

17. L. Li and I. Horrocks. A software framework for matchmaking based on semantic
web technology. In Proceedings of the Twelfth International World Wide Web
Conference (WWW 2003), Budapest, Hungary, May 2003.

18. M. Abe and M. Hori. Visual composition of xpath expressions for external metadata
authoring, rt-0406. Technical report, IBM Research Laboratory, Tokyo, 2001.

19. Beaune, P., Boissier, O., Bucur, O., 2002. Representing Context in an Agent Archi-
tecture for Context-Based Decision Making. International Workshop on Context
Representation and Reasoning CCR-05, Paris (France), July 5-8, 2005.

20. WURFL:WirelessUniversalResourceFile Language. http://wurfl.sourceforge.net/.
21. TPI Yellow Pages service, Telefónica. http://www.tpi.es/.

Turn Taking for Artificial Conversational Agents

Fredrik Kronlid

Graduate School of Language Technology
&

Department of Linguistics
Göteborg University

Box 200
S-405 30 Göteborg

kronlid@ling.gu.se

Abstract. In this paper we describe the design of a turn manager for
deployment in artificial conversational agents, using the Harel statechart
formalism. We show that the formalism’s support for concurrent interre-
lated processes allows a modular design, producing three smaller state-
charts responsible for the turn taking logic. The logic of the turn manager
is inspired by a well-known turn management model for human-human
conversation.

1 Introduction

This work is motivated by our overall aim to build artificial conversational agents
capable of working in a multi-party setting. By an artificial conversational agent
we mean a software agent (possibly with embodiment, personality etc.), capable
of engaging in conversation with other conversational agents (human or artifi-
cial). By a multi-party setting we mean that more than two agents are engaged
in the communication or dialogue.

We imagine an environment where a user interacts with a collective of conver-
sational agents, some of which are artificial, some of which are human, perhaps
in games (where the agents are in-game characters or player characters), per-
haps in an information service (where every agent acts as a representative for
one company, institution or domain). Such agents can collaborate and compete
with each other, using natural language as their communication protocol.

One reason for avoiding a specialized inter-agent communication protocol is
the plug-and-play aspect – as long as an agent has appropriate linguistic coverage
of its domain combined with some basic linguistic-pragmatic (for instance turn
taking) skills it can be plugged into the agent community. Another reason is
increased transparency – a user in this setting can, for example, monitor the
inter-agent communication and interrupt it or provide additional information if
required. Ricordel et al. (in [8]) argue in favour of using a less formal language
for inter-agent communication by stating that formal agent-languages constrain
the agent model, and that cognitive agents should have a cognitive (as opposed
to reactive) interaction model, using their knowledge and beliefs to interpret
messages.

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 81–95, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

82 F. Kronlid

An agent in an two-participant setup can (almost) safely assume that all user
utterances are directed to it, and when the user has finished speaking (or released
a push-to-talk button), the floor is free for the agent to make any contribution
to the dialogue that it wants (see for instance [2] for a state-based two-party
turn management model). In contrast, an agent in a multi-party setting cannot
assume that all user utterances are directed to it, since there are other dialogue
participants present. Still, it is assumed by the other parties that the agent tries
to follow the conversation.

Since the inter-agent communication turns into a natural language conversa-
tion, in which users can participate, it is important that the artificial agents han-
dle turn management analogous to the human agents. Below are listed a few infor-
mally stated guidelines for agent behavior in this setting, in no particular order.

– Try to speak when you can make a relevant contribution
– Do not try to speak when you have nothing to say
– (but) Speak when you are requested to speak.
– Do not speak when someone else is requested to speak.
– Do not speak when someone else is speaking.

These guidelines for an communicative agent touch on two domains of dialogue
system research – Turn Management and Dialogue Management. Turn Manage-
ment is concerned with who has the right to speak at a certain point in time
in a dialogue. Dialogue Management deals with information flow in dialogue –
what information is available to a dialogue participant and how it can be used
to interpret or generate linguistic behavior, etc.

This paper will focus on the parts related to Turn management. The work on
dialogue management will be found in [6].

2 Background

2.1 Turn Taking

An influential and widely accepted model for how turns are managed in human-
human conversation is the so called SSJ 1 model [9]. The essence of the model
is as follows: A Turn Constructional Unit (TCU) is a phrase, clause, sentence
or word with a predictable end (predictability will be described in section 5.1).
A TCU corresponds more or less to an utterance2. The first possible comple-
tion of a TCU constitutes a Transition Relevance Place (TRP) - a place where
speaker-change is possible (or preferred). The turn transitions are governed by
the following two rules:

1. For any turn, at the first TRP of the first TCU
(a) The speaker may select the next speaker. In this case, the person selected

is the only one with the right and obligation to speak.
1 SSJ because of the first letters in the authors last names - Sacks Schegloff Jefferson.
2 The original definition is more complex, but for our purposes this definition suffices.

Turn Taking for Artificial Conversational Agents 83

(b) Else, the next speaker may self-select. The first person to speak acquires
the right to a turn.

(c) Else, the current speaker may, but need not continue.
2. Rules 1 (a–c) apply for each next TRP of this TCU until transfer is effected.

Also repair mechanisms are included in the model, for instance overlap resolution
and clarification of selection problems.

The Ethernet communication model serves as the blueprint for the turn tak-
ing protocol used in [8]. Even though the Ethernet model has been inspired by
human-human conversation turn management, the collision resolution mecha-
nism is incompatible with its human counterpart. Since we want to include both
artificial and human agents in our conversations, the Ethernet model used in [8]
will not be considered for this paper.

The aim of the present paper is to build a turn manager based on the principles
of the SSJ model. In order to do this we will use Harel statecharts described in
the following section.

2.2 Harel Statecharts

D. Harel describes a tool for modeling and visualizing abstract control, called
Harel statecharts, in [4]. The tool is an extension and generalization of ordinary
finite state machines. Some of the important extensions and features are:

– Events – the transitions are mostly event driven. Events are either external,
coming from sources outside the chart, or internal, generated by transitions
or by entering and leaving states. Technically, events are communicated from
and to the states in the chart via an event queue.

– Hierarchy – states can contain states, which means good support for modu-
larization. Any state can be seen as a statechart of its own.

– Orthogonality – there can be parallel states, meaning that the machine can
be in multiple states at the same time. Any parallel state can generate events
that can be read by other states.

– Actions – upon entering or leaving states, or at the time of transitions be-
tween states, actions (outside the statechart) may be carried out. Generating
an event is considered to be an action.

– Conditions – boolean conditions as well as events may trigger or restrict
transitions. It is possible to state as a transition condition that an orthogonal
statechart should be in a certain state.

W3C have decided to include Harel statecharts in the next major release of
VoiceXML, a markup language to define audio dialogues ([7]). It is not clear
what role it will have in VoiceXML, but there is a preliminary specification of
an XML implementation available at the W3C web site ([1]). We hope that this
extension of VoiceXML will make it possible to use this work in combination
with VoiceXML systems.

The major reasons for choosing Harel statecharts as a formalism are that
they have good support for modularization of complex systems and for modeling

84 F. Kronlid

concurrent interrelated processes. In this paper, we will show the usefulness of
these features when designing a turn manager.

3 The Agent Architecture

We are interested in an environment where more than one (artificial) agent is
present. A group of agents can be modeled as one single state chart, or divided
up over several statecharts distributed over several machines. If we make the
event queue known at all machines, the distributed agents can still be seen as
one single statechart.

Each agent can be seen as a statechart. The Agent statechart will, in our
model, contain at least states for turn and dialogue management. Typically, stat-
echarts for parsing, speech recognition, database access, etc. will also be present.

4 Turn Manager Requirements

We assume that there is an entity, somewhere in the agent, which signals certain
events in the dialogue to the turn manager. These events are shown in table 1.

Table 1. Events expected from the dialogue manager or other entity

startSpeaking(X) speaker X starts speaking
stopSpeaking(X) speaker X stops speaking
trp(X D) speaker X will (with probably) stop speaking in D units
addressing(X) speaker X is addressed, meaning that X has been selected

as the next speaker by some other DP

In the rest of this paper, when we describe the turn manager for a conver-
sational agent, we will make the description from the perspective of the agent,
and we will therefore use a first-person perspective in the descriptions. “I” and
“me” will denote the agent for which we are designing the turn manager.

The requirements on a turn manager is that it should signal (to the other
components of the agent)

– if I am the only DP (Dialogue Participant, or Dialogue Partner) with the
right and obligation to speak at this TRP

– if an agent other than me is the only DP with the right and obligation to
speak at this TRP

– if anyone (including myself) may self-select at this TRP
– if the TRP has been cancelled (i.e. someone, with or without the right, has

started speaking)
– if my current contribution is overlapping someone else’s
– when the abovementioned overlapping has been resolved.

Turn Taking for Artificial Conversational Agents 85

The list could be longer, including support for more repair mechanisms than
overlaps etc., but for a prototype, the list is of the right size.

The SSJ model does allow for brief overlaps, but specifies that when two par-
ties start to speak simultaneously, this must be resolved. The SSJ resolution to
simultaneous starts (or pseudo-simultaneous starts, rather) is that “first starter
goes”. Interruptions are another type of overlap that also needs to be resolved.
In this paper, when building our turn manager, we will not be concerned with
how to resolve such conflicts – we just want to know when there is one and when
it has been resolved.

5 Design of a Turn Manager

The list of events in the last section, will be mapped to the events listed in
table 2, and will be emitted by our statechart turn manager.

Table 2. Events expected from the Turn manager

freeTRP anyone may self-select
myTRP I am selected as the next speaker
othersTRP Someone else is selected as the next speaker
noTRP TRP canceled
overlap speech is currently overlapping someone else’s
overlapResolved speech is no more overlapping.

We identify three building blocks in our turn manager. One block deals with
the other participants states – are they speaking or are they silent? – which we
call the Outside chart. The second block deals with the relation between the
other agents and and myself (the agent whose perspective we are taking). We
will call the chart the Inside chart. The last chart deals with identifying TRPs
and signaling them. We call this chart the TRP chart. The hierarchical nature
of the formalism chosen, together with the concurrency support (orthogonality)
allows us to easily model the three components inside one single statechart.

5.1 The Outside Chart

The Outside chart is supposed to keep track of “the world outside”, i.e. if the
other DPs are speaking or if they are silent. Let us start with a simpler imple-
mentation of the Outside chart, where we disregard the predictions of TCUs (and
hence TRPs), and assume that only the startSpeaking(X), stopSpeaking(X)
and addressing(X) events are received.

A Simpler Outside Chart. The simplest solution to the problem would
be to have N + 1 states (N = number of DPs): othersSilent, 1Speaking,
2Speaking, ..., N+1Speaking. This would be impractical, since we then would
need to grow or to shrink the state chart to keep track of the changes in the
dialogue (DPs joining or leaving). Instead, we will use an abstraction - we will

86 F. Kronlid

have one state othersSilent and one state othersSpeaking, since these are the
crucial states for our purposes. We will use an external data structure (a set)
to keep track of how many of the DPs are actually speaking at a given point in
time. DPs are added to the set Speakers when they start speaking and removed
from it when they stop speaking.

The initial state is the othersSilent state. If someone (except me) starts
speaking, we will need to make a transition to the othersSpeaking state. We
will also need to add the speaker to the Speakers set. If someone starts speak-
ing in the othersSpeaking state, we will remain there, but as we need to
add the speaker to the othersSpeaking set, we will need a transition, la-
beled startSpeaking(X) [X != me] / Speakers.add(X) (the label format be-
ing event [condition] / action). Since the action will be the same, wherever
we are in the machine, we add a superstate that encapsulates the two states.
We then add a transition from that superstate to othersSpeaking, labeled as
described above. This means that in whatever state (encapsulated by the su-
perstate) we are when the event/label combination occurs, we will make the
transition to the othersSpeaking state.

When some other agent stops speaking, we will remove that agent from the
Speakers set, and when the set is empty, we will make the transition to the
othersSilent state. Therefore we add a transition with starting and ending
points in the othersSpeaking state labeled stopSpeaking(X) [X != me] /
Speakers.remove(X), and a second transition from othersSpeaking to others-
Silent, labeled [Speakers.isEmpty()]. Now we have a machine that handles
the event subset of startSpeaking(X), stopSpeaking(X) and addressing(X).
The Outside chart can be seen in Figure 1.

Introducing Predictions. An important part of the SSJ model is that TCUs
must be syntactically constructed to be predictable3 in such a way that
non-speakers can predict the end of the TCU with a fairly high precision (also
with the help of intonation and other phonological clues). The existence of the pre-
dictability feature can be explained by the fact that that there are often brief over-
laps (or very short pauses) when speaker-change occurs, but that (longer) pauses
and long overlaps are rare, suggesting that speakers-to-be are aware of when the
utterance will be completed before it actually is. This means that our agents need

1. a mechanism that predicts TRPs
2. a mechanism for deciding how close to a predicted TRP an agent must be

to start speaking – in other words how long before the (predicted) TRP
actually occurs shall we report it

3. a way of handling the predictions
4. a way of handling mispredictions.

The TRP Predictor. We will not try to build a TRP predictor, but merely
state that we need one, describe it from a black-box perspective and give some
ideas of how it can be constructed. The TCU predictor is a device that, given a
3 [9] use the term “projection” instead of “prediction”.

Turn Taking for Artificial Conversational Agents 87

Fig. 1. The Outside Statechart without predictions

description of a language, possibly a dialogue history and an initial chunk of an
utterance, calculates how far away in some unit (time, words, syllables, ’beats’
[10]) the TCU endpoint (TRP) is. The output is a distance and a prediction of
the utterance, and is regularly updated.

The simplest form of TCU predictor, which presupposes a very small language,
uses a language model in the form of a list of strings which enumerates all valid
sentences in the language. The TCU/TRP are then calculated by comparing the
(so far) perceived utterance to the sentences in the language model. The approach,
which we have used when experimenting with our agents, is described in [5].

The /nailon/ application for turn endpoint detection [3] takes a more ad-
vanced approach and uses prosodic cues. It does not output the predictions of
the current TCU. One can imagine other approaches to the task such as sta-
tistical or rule-based machine learning applied to speech signal, string of words
etc. But, as stated earlier, we are satisfied with the potential existence of such a
device, and will not attempt to build one.

The Decision Mechanism. When am I, as an agent, close enough to the TRP to
start speaking, and when can I be certain that the predicted TCU (and thus the
TRP distance) is correct? The authors of [5] use the following model. A variable
TalkFactor is available for all agents. TalkFactor can take a value between 0
and 1, and is to be seen as the agent’s general urgency to start speaking. If U =
TalkFactor/(1.0 + distanceToNearestTRP2) then the agent will start speaking
with a probability of U . This means that the closer we get to the projected TRP,
the higher is the probability that we actually start speaking.

88 F. Kronlid

In [5] it is unclear whether the TalkFactor is constant over time for each agent,
but there is no mention of any action altering the value. However, by altering
the TalkFactor as the dialogue evolves, or by deriving TalkFactor from other
values, we may potentially model the status, self-confidence etc. of each agent
in a simple and straightforward way.

Now, assume that we get events trp(X D) from a TCU predictor, meaning that
with a certain probability speaker X will reach a TRP in D units. By adding a
single-state statechart DescisionMaker with a single transition (loop) we may in-
troduce the decision making functionality of [5]. The DescisionMaker state is
without actions. The transition is labeled with the event trp(X D) and with the
condition [X!=me && TrueWProb(TalkFactor/(1.0+distanceToNearestTRP2))].
If the transition is carried out, an event projTRP(X) is sent, which is to be handled
by the overlap statechart. The decision maker is depicted in Figure 2.

Fig. 2. The Decision Maker Chart

The Full Outside Chart. We will now extend the predictionless implementa-
tion to handle turn-end predictions. The event that we have not considered until
now, projTRP(X), requires a number of changes in the implementation. First,
we need to keep track of the speakers who are about to stop speaking (signaled
with the projTRP(X) event). We use a set, SoonToStop, where speakers who are
about to stop are added. Speakers are removed when it is confirmed that they
have stopped speaking or when we believe that the prediction that they were
about to stop speaking was wrong (a timeout).

The number of transitions between the states is starting to grow, and there-
fore it is time to sort out what it means for us to receive a certain event in a
certain state. The table 3 shows the meanings of the events in our two states.
Table 4 shows the appropriate actions corresponding to the meanings in table 3.
Italics indicate actions that are not already in the Outside Chart, or parts of
actions that need to be added. We use the remove(X) operation in the sense
removeIfMember(X).

Turn Taking for Artificial Conversational Agents 89

Table 3. Meaning of events in othersSilent and speaking

State/Event othersSilent othersSpeaking

startSpeaking(X) Someone who was not speaking,
not member of any of the sets,
started speaking.

Someone who was not speaking,
not member of any of the sets,
started speaking.

stopSpeaking(X) A member of SoonToStop
stopped speaking.

Someone, member of one of the
sets, stopped speaking.

addressing(X) none none
projTRP(X) A member of SoonToStop will

soon stop speaking
Someone, possibly a member of
Speakers, will soon stop speak-
ing

Table 4. Actions when reading events in othersSilent and othersSpeaking

State/Event othersSilent othersSpeaking

startSpeaking(X) Unless X is me, move to the
othersSpeaking state and add X
to the Speaker set.

Unless X is me, move to the
othersSpeaking state and add X
to the Speaker set.

stopSpeaking(X) Unless X is me, remain in the
othersSilent state and remove
X from the SoonToStop set.

Unless X is me, remain in the
othersSpeaking state and re-
move X from the Speakers set
and from the SoonToStop set.

addressing(X) none none
projTRP(X) N/A Unless X is me, remain in

othersSpeaking state, make
sure that X is removed from
the Speakers set, add X to the
SoonToStop set and set a timer
to emit the event timeOut(X) in
D time units.

We will add the missing actions to our statechart as follows (going top-down
left-right in table 4. We add a transition with starting and ending points in
othersSilent, labeled stopSpeaking(X)[X != me]/SoonToStop.remove(X).

We alter the loop transition from/to othersSpeaking by adding the action
SoonToStop.remove(X). Finally we add a loop transition from/to the others-
Speaking state. The label consists of the event projTRP(X), the condition [X
!= me] and the action /timer(D, timeOut(X)).

The event timeOut, introduced in the last paragraph, needs to be handled
appropriately. The meaning of reading the event timeOut is that someone re-
cently was reported to be in the process of stopping to speak, and that the
speaker should be silent by now. If he did stop speaking, he is not a member
of any set, and we should not do anything. If he did not stop speaking, he is a
member of the set SoonToStop. What we want to do when reading this event,
is to check if X is a member of SoonToStop. In that case, we should remove

90 F. Kronlid

X from the SoonToStop set and add X to the Speakers set, since this means
that the speaker did not stop speaking. In whatever state we are in at the
moment, we should move to the othersSpeaking state. Hence, the transition
should go from the enclosing superstate to the othersSpeaking state and the la-
bel should be timeOut(X) [SoonToStop.contains(X)] / Speakers.add(X),
SoonToStop.remove(X), trpTimeOut. The trpTimeOut at the end of the label
means that we are generating an event trpTimeOut in order for other machines
(the TRP chart) to know that a speaker that we believed was about to stop
speaking did not, and therefore possibly canceled a TRP. The complete Outside
chart can be seen in Figure 3.

Fig. 3. The Outside Statechart

5.2 The Inside Chart

A parallel Harel statechart can, as mentioned earlier, listen to events coming
from the outside and to events emanating from other orthogonal states in the
chart. What the Inside Chart needs to do is to signal (to relevant components in
the agent) when there is an overlap and when an overlap has been resolved. The
overlaps that are interesting are the ones where I am involved, which means that
this machine should signal when I am speaking at the same time as someone else.

Since the state we are interested in cannot be reached if I am silent, we start
out with the two states iAmSilent and iAmSpeaking.We add transitions between
the states labeled with the events startSpeaking(X) and stopSpeaking(X) re-
spectively and the condition that X evaluates to be my (the agent’s) name, in the

Turn Taking for Artificial Conversational Agents 91

obvious directions. As embedded states in iAmSpeaking we add nonOverlap and
overlap. Optimistically, we indicate nonOverlap as the initial state.

The second requirement for reaching the state overlap is that someone else is
speaking. Hence we add a transition from nonOverlap to overlap labeled with the
condition [in othersSpeaking], meaning that the transition will only be carried
out if the condition that the orthogonal statechart is in state othersSpeaking
evaluates to true. We simply use the Outside chart to keep track of whether the
other DPs are speaking or silent. We add another transition and label it with
the condition [in othersSilent]. Finally we need the statechart to emit the
events that we are interested in – overlap and overlapResolved. Since enter-
ing overlapmeans that there is an overlap and leaving it (in what way it may be)
means that the overlap is resolved, we add the emission of the events as
onEntry/onExit actions. The Inside Chart can be seen in Figure 4.

Fig. 4. The Inside Statechart

5.3 The TRP Chart

Let us now turn to the TRPs. We assume that the machine starts out in a state
called freeTrp, meaning that we assume that in the start of a dialogue, anyone
has the right to self-select to make contribution. In the freeTrp state we add the
onEntry action to emit the event freeTRP.

When someone starts speaking we will leave the freeTrp state, emitting the
event noTRP. To achieve this, we add an onExit action – to emit the event noTRP.
Unless the current speaker selects the other speaker as the next speaker, the up-
coming TRP will be a free TRP. We introduce the state freeTrpComingUp for this
purpose. It will not have any onEntry or onExit actions.

92 F. Kronlid

As soon as the current speaker(s) stops speaking, we will make a transition to
the freeTrp state. How should we keep track of who is still speaking? We do not
have to, since our Outside chart already does this for us. We simply add a transi-
tion from freeTrpComingUp to freeTrp with the label [in othersSilent].

There is now only one event left to take care of – the myTRP event, signaling that
I am the only DP with the right and obligation to speak. As the SSJ model states,
this occurs when I am selected as next speaker by some other speaker. Selection is
signaled to us with the event addressing(X), so we add two states corresponding
to the two we already have – myTrpComingUp and myTrp and also a transition from
the first to the second with the label [in silence]. We also add a transition from
freeTrpComingUp to myTrpComingUp, labeled with the event addressing(me),
meaning that the addressee must evaluate to my name (or identifier). To emit the
correct events, we add the actions onEntry:myTRP and onExit:noTRP.

Let us take a look at the case when another DP is selected as next speaker. If
we deploy the TM as it looks right now, the TRP occurring when the other DP
is the only one with the right and obligation to speak will show up as a freeTRP,
which is not what we desire. We need to add another state and two transitions.

We add a state otherSelected with a transition from freeTrpComingUp, la-
beled addressing(X) [X!=me], which will ensure that when another party (not
me) is addressed, we will end up in the otherSelected state.

Our TM is almost ready, but there is an important transition missing. Right
now the statechart have three cul-de-sacs from which no transition is possible, and
since we are not interested in having final states, we need to add transitions from
these three states to the freeTrpComingUpstate. In the statechart formalism used,
we accomplish this by wrapping all the TRP states into one superstate and then by
adding a transition going from that superstate to freeTrpComingUp.We label the
transition startSpeaking(). This means that every time someone starts speak-
ing, we will end up in the freeTrpComingUp. The chart can be seen in figure 5.

Two Problems and Their Solutions. There are two problems with the TRP
chart as it looks right now. First, one agent can hold the turn forever as the TRP
chart can get stuck in the otherSelected state. Second, mispredictions of TRPs
can in certain cases cause the TRP chart not to retract a TRP even though the
misprediction is known in other parts of the state chart. We present the problems
and their respective solutions in this section.

One Agent Can Hold the Turn Forever. Say that agent A, equipped with our
turn manager, and some other agent B, are engaged in dialogue. A asks “What
time is it?” and B does not reply. Transcribed to a list of input events it will look
like startSpeaking(A),addressing(C),stopSpeaking(A).At this point in dia-
logue, A’s TM is in state otherSelected. The only way to move the machine out
of the state is to read an event startSpeaking(X).

Say that B did not understand the question, or did not hear it, or maybe did
not even perceive that somebody were trying to tell it something, or even heard
the question, but deliberately did not answer it. In this case, we will not read a
startSpeaking(X) event simply because no-one will start speaking.

Turn Taking for Artificial Conversational Agents 93

Fig. 5. The TRP Statechart

This may be solved either internally in the TRP Chart by adding a othersTrp
state and timers that will trigger transitions from myTrp to othersTrp respec-
tively to the freeTrp state, or external to the TM, for instance elsewhere in the
Dialogue Manager. We will select the first solution, and the TRP Chart with the
necessary changes is shown in Figure 6.

TRP Timeouts. At the end of section 5.1 we mentioned that the Outside chart sig-
nals, by a trpTimeOut event, to the TRP chart when a speaker which we thought
was about to stop speaking actually did not. We need to take appropriate action
when this event occurs. What does this event mean to us? The event is important
only when the TRP states are active, when we have indicated a TRP when there
were actually none. We will add transitions from the TRP states back to the re-
spective “comingUp” states, labeling them with trpTimeOut/noTRP, indicating
that the TRP was canceled. This addition is also shown in Figure 6. This makes
our turn manager complete.

6 Summary and Conclusions

In this paper, we have described the motivations for and the construction of a
turn manager for conversational agents. We have shown that an implementation

94 F. Kronlid

Fig. 6. The improved TRP Chart

using Harel statecharts is possible, and that a transition from the theory described
by [9] to an state-based implementation is straightforward. The result is a highly
modular statechart with three simple substates or modules, each of them dealing
with one well-defined part of the turn taking problem.

The turn manager will be used in [6], which covers dialogue management, using
Harel statecharts, for artificial conversational agents capable of engaging in multi-
party dialogue.

By solving the turn-taking issue, we enable multi-party dialogue with artificial
conversational agents for use in games, information services and chats. By design-
ing (and implementing) the turn and dialogue management components of arti-
ficial conversational agents in Harel statecharts, proposed to become an integral
part of VoiceXML, we hope that our work will become available for VoiceXML
applications.

Acknowledgments

I would like to thank my supervisors Torbjörn Lager and Staffan Larsson for valu-
able comments, input and ideas. I also wish to thank two anonymous reviewers for
valuable input.

Turn Taking for Artificial Conversational Agents 95

References

[1] Barnett, J., Auburn, R., Bodell, M., Helbing, M., Hosn, R., K.R., (eds): State
chart xml (scxml): State machine notation for control abstraction. Web document,
http://www.w3.org/TR/2006/WD-scxml-20060124/ (2006)

[2] Cassell, J., Bickmore, T. W., Vilhjalmsson, H. H., Yan, H.: More than just a pretty
face: affordances of embodiment Intelligent User Interfaces (2000) 52-59

[3] Edlund, J., Heldner, M., Gustafson, J.: Utterance segmentation and turn-taking
in spoken dialogue systems. Computer Studies in Language and Speec 8 (2005)
576–587

[4] Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programmin 8 (1987) 231–274

[5] Hulstijn, J., Vreeswijk, G.A.W.: Turntaking: a case for agent-based programming.
Technical report, Institute of Information and Computing Sciences, Utrecht Uni-
versity (2003)

[6] Kronlid, F.: Turn and Dialogue Management in Multi Party Dialogue Systems
PhD. thesis, Göteborg University. (in prep)

[7] McGlashan, S., Burnett, D. C., Carter, J., Danielsen, P., Ferrans, J.,
Hunt, A., Lucas, B., Porter, B., Rehor, K., Tryphonas, S. (eds): Voice
Extensible Markup Language (VoiceXML) Version 2.0 Web document,
http://www.w3.org/TR/2004/REC-voicexml20-20040316/ (2004)

[8] Ricordel, P., Pesty, S., Demazeau, Y.: About Conversations between Multiple
Agents. 1st International Workshop of Central and Eastern Europe on Multi-Agent
Systems, CEEMAS’99, SPIIRAS, pp. 203-210, Saint Petersburg, (1999).

[9] Sacks, H., Schegloff, E.A., Jefferson, G.: A simplest systematics for the organization
of turn-taking for conversation. Language 50 (1974) 696–735

[10] Schegloff, E.A.: Overlapping talk and the organization of turn-taking for conver-
sation. Language in Society 29(1) (2000) 1–63

Inducing Perspective Sharing Between a User
and an Embodied Agent by a Thought Balloon

as an Input Form

Satoshi V. Suzuki1,2 and Hideaki Takeda2,3

1 DCISS, IGSSE, Tokyo Institute of Technology
2 National Institute of Informatics

3 University of Tokyo

Abstract. Accepting the perspectives of others often provides people
with novel cues for discovering and solving problems. However, human
cognitive limitations and differences in attitude between people make
this difficult. In this study, a psychological experiment was conducted to
examine how blank thought balloons emitted from an embodied agent
encourages perspective sharing between a user and an embodied agent.
In the experiment, participants (N = 39) were asked to do one of these
tasks: reading a thought balloon emitted from an embodied agent, or fill-
ing in a speech balloon, or a thought balloon with predicting its content.
It is suggested that filling in a blank thought balloon promoted the user
to accept the perspective of the embodied agent from the experimental
results. Embodied agent technologies for perspective sharing between a
user and others are discussed through comparison between the experi-
mental environment and practical problems, and degree of participants’
understanding of experimental environment.

1 Introduction

Perspective sharing with others in often needed in ordinary human social activity.
For example, you may discover another perspective when conversing with a child
by bending down to share physical perspective with the child. Developing the
“personal view” of a prospective user can lead to proper interface design [1].
In fact, taking the perspective of minority can often reveal flaws in majority’s
opinion in group discussion [2]. Furthermore, taking perspective of a teacher in
mathematical problem solving can help learners find out the reasons for their
own mistakes [3]. All of this evidence implies that perspective sharing with others
can have an important role in problem discovering and solving.

We tried to discover a way to let a user accept perceived perspective of an
embodied agent by a blank thought balloon emitted from the agent. Embodied
agents are social actors that have potential to change the user’s attitude [4].
Moreover, despite the ability of an embodied agent to interact with a user via
body expression, achieving corresponding modality between the user and the
agent should be difficult in most cases because of device constraints. For exam-
ple, Takeuchi et al. [5] claimed that the user often unconsciously responds to

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 96–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Inducing Perspective Sharing Between a User and an Embodied Agent 97

the agent’s body (e.g., eyes, ears, and mouth) as if the agent’s body was a real
human body in a display, in spite of the existence of devices and sensors to sense
the user’s body (e.g., a Web camera, a microphone, and a speaker). However,
from the viewpoint of interface design, this user’s response to the embodied agent
is inappropriate, since the agent’s body cannot sense the user’s body without
using special devices and sensors. One of the solutions for this modality mis-
match should be perspective sharing between the user and the embodied agent.
In this study, we suggest the strategy of prompting perspective sharing with
blank thought balloons emitted from an embodied agent. We also point out the
problems in this strategy.

In this paper, first, the definition of two levels of perspectives, phenomenal
level and representational level, is described. Then we explain that acceptance
of perceived embodied agents’ perspectives at the representational level by the
user should be driven by perspective sharing either at the phenomenal level or
at the representational level, and that the perspective sharing via blank thought
balloons emitted from the embodied agent occurs at the representational level.
After the argument of roles of balloon interface in user interface design, we
depict a psychological experiment to examine the influence of blank thought
balloons to perspective sharing between a user and an embodied agent at the
representational level. Discussion on the acceptance of perceived perspective of
the embodied agent by the user via the blank thought balloons follows.

2 Perspective Sharing with an Embodied Agent

We introduce the terms on perspective defined by Vogeley and Fink [6]. There
are two levels of description in perspective. One is phenomenal level (P-level)
which mentions perspective in virtual space; the other is representational level
(R-level) which refers to perspective on a cognitive level conceptualized by the
observer. Moreover, first-person-perspective and third-person-perspective respec-
tively refers to the perspective of the user and that of the embodied agent in the
P-level, and egocentric perspective and allocentric perspective respectively men-
tions the perspective of the user and that of the embodied agent in the R-level.
Then, perspective sharing means the acceptance of allocentric perspective by
the user.

Furthermore, triggers of perspective sharing exist at both the P-level and the
R-level as shown in Fig. 1. P-level trigger occurs when the user perceives and
accepts the third-person-perspective in virtual space, while R-level trigger oc-
curs when the user perceives and accepts the allocentric perspective directly.
One of approaches to accomplishing the perspective sharing with the P-level
trigger is the body orientation correspondence between the user and the embod-
ied agent [7, 8]. Arranging the agent’s body orientation to correspond with the
user’s in virtual space, the user can easily know how the agent sees the virtual
space, so the user can easily inspect the allocentric perspective of the agent.
However, perspective sharing with P-level trigger may depend on the user’s de-
gree of perceived immersiveness in the virtual space. That is, it may be hard

98 S.V. Suzuki and H. Takeda

Representational level (R-level) trigger

Phenomenal level (P-level) trigger

Fig. 1. Difference of triggers in perspective sharing

for the user to perceive his/her body as if it existed in the virtual space only
by the body orientation correspondence between the user and the agent. The
perspective sharing with R-level trigger can solve this problem, and one of the
R-level trigger candidates is filling in the blank thought balloon emitted from
the embodied agent.

3 Related Works

In this section, the related works on balloons in comics and comic-like interface,
balloon media and acoustic media in embodied agent interface, and automatic
attitude change of a user by a social actor are discussed.

3.1 Balloons in Comics and Comic-Like Interface

Balloons has been used to express character’s utterance and reflection beyond
time and space [9]. The balloons that express the character’s utterance are
called speech balloons, and those that express the character’s reflection are called
thought balloons. Some comic-like interface (e.g., Comic Chat [10], ComicDi-
ary [11]) adopted balloon interface to express the character’s utterance and re-
flection, and some helps and tips for using software have been displayed with

Inducing Perspective Sharing Between a User and an Embodied Agent 99

pop-up balloons in user interface design [12], but no studies referred to the
influence of blank thought balloons as a means of perspective sharing. Thus, we
attempt to argue this problem.

3.2 Balloon Media Versus Acoustic Media

Some embodied agent interfaces adopt acoustic media to express the utterances
of embodied agents [13]. In addition, another interfaces adopt both acoustic
media and balloon media (e.g., Microsoft Agent). Expressing agent’s reflection
only using acoustic media may be difficult without using special devices. The
influence of thought balloon media is thus worth inspecting.

3.3 Automatic Attitude Change of a User by a Social Actor

Some studies have reported that automatic attitude change of a user when inter-
acting with a social actor (including an embodied agent and a computer) could be
observed in some situations. Moon [14] discovered that the answer of a user who
responded to perceived private information of a computer with keyboard input
contained user’s private information, that is, the user unconsciously reciprocated
private information to the computer. Additionally, Moon also claimed that the
user’s reciprocation of personal information was promoted after some exchanges
of self-introduction between the user and the computer, comparing with the sit-
uation without such exchanges. Sundar [15] found that the quality of interaction
between a user and a computer decreased when the user must consider who
created or operated the computer. Although the quality of interaction could be
kept if the user could have enough interaction with the computer, that the user
knows the structure of the computer at their first contact should be harm to the
relationships between the user and the computer. These phenomena should also
be observed in human-agent interaction, and they suggest that the deep human-
agent interaction at their first contact requires cognitive burden to a user.

4 Psychological Experiment

We conducted a psychological experiment to examine the perspective sharing
between a user and an embodied agent when the user filled in a blank thought
balloon emitted from the embodied agent. Comparing this condition with two
others, one in which a blank speech balloon to be filled in was emitted from
the agent, and another in which no blank balloons appeared, the influence of
the blank thought balloon on relationships between the user and the agent was
investigated.

4.1 Predictions

Based on the argument in Section 3, the hypothesis that a user can improve
understanding the allocentric perspective via filling in a blank thought balloon
was suggested. Then, we predicted the following for the experiment:

100 S.V. Suzuki and H. Takeda

P1 The length of content of thought balloons filled in by the user is longer than
that of speech balloon.

P2 The frequency of perceived real intention of the embodied agent in thought
balloons filled in by the user is higher than that in speech balloons.

P3 The impression of work of the embodied agent by the user is evaluated better
when the user fills in the blank thought balloons emitted from the agent.

Participant

Partner agent (PA) Non-partner agent (NPA)

The same group

competitive
relationship

Predict utterance (SBI condition)
or thought (TBI condition)
of the non-partner agent
by filling in the blank balloon

Fig. 2. Relationship among a participant, a partner agent, and a non-partner agent

4.2 Experimental Design

The two embodied agents shown in Fig. 2, partner agent (PA) and non-partner
agent (NPA), appeared in the experiment. Each agent gave the participant pieces
of advice for the task of the participant. Participants were told to interact with
the PA about preference of pictures before the task. After the participant fin-
ished the task, he/she evaluated the quality of advice from the two agents. Before
the evaluation, each agent had the opportunity to appeal to the participant that
it had made an effort to let the participant finish the work as quickly as pos-
sible. PA expressed this appeal to the participant via a speech balloon. The
reaction to the PA by the NPA was changed dependent on three experimen-
tal conditions. In “no balloon input” (NBI) condition, the NPA just answered
the PA via a speech balloon. In “speech balloon input” (SBI) condition, the
participant was told to fill in a speech balloon input emitted from the NPA, pre-
dicting how the NPA would answer the PA. In “thought balloon input” (TBI)
condition, the participant was told to fill in a thought balloon input emitted
from the NPA, predicting what the NPA would think about PA’s appeal. Then,
there existed one independent variable for these three experimental conditions
(between-participant).

Inducing Perspective Sharing Between a User and an Embodied Agent 101

I gave the user the advice
based on the thought
that ...

Fig. 3. Speech of a partner agent

"I gave the user the advice
based on the thought
that ..."

I gave the user advice
paying attention to ...

Fig. 4. Speech of a non-partner agent
in NBI condition

"I gave the user the advice
based on the thought
that ..."

(fill in this blank)

He will answer ...

Fig. 5. A speech balloon input emit-
ted from a non-partner agent in SBI
condition

"I gave the user the advice
based on the thought
that ..."

He will think ...

(fill in this blank)

Fig. 6. A thought balloon input emit-
ted from a non-partner agent in TBI
condition

4.3 Participants

We collected valid experimental data from thirty-nine participants (20 males
and 19 females, mean age: 22.9 (SD: 3.56) years old). The groups of participants
consisted of Japanese undergraduate and graduate students and post-doctoral
researchers. They were randomly assigned to one of the three experimental con-
ditions, and there were 13 participants for each condition.

4.4 Procedure

Each participant was told that this experiment was to evaluate the quality of
advice in an object-searching task. The experiment consisted of two parts. In
the first part, the PA was introduced to the participant as a partner in the
object-searching task and he/she interacted with PA. Three pairs of pictures
(cat, toy, and beach) were exhibited to the participant, and he/she chose either

102 S.V. Suzuki and H. Takeda

I gave you hints:
1 The frog is lying,
2 to look at the ceiling,
3 and near the right edge of the

screen

Fig. 7. Example of advice from an embodied agent

Points for the PA 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Points for the NPA 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 8. Reward distribution matrix (upper: for the partner agent, lower: for the non-
partner agent)

of the picture for each pair based on his/her preference. Then, the PA told the
participant that the PA liked the same picture that he/she had chosen. In the
second part, the NPA appeared first, and the participant was told that the PA
and the NPA were competing with each other. The participant was told to find
an object instructed on the screen from the picture. While the participant was
searching the object, either the PA or the NPA gave advice for finding the object.
Each piece of advice from the PA or the NPA consisted of three parts. The first
part was shown at the outset, and the second and the third part were shown 20
and 40 seconds, respectively, after the participant started to search for the object
This timing was prepared to let the participant depend on the agent’s advice. If
the participant took beyond 120 seconds to find the object, the location of the
object was displayed to him/her. The PA and the NPA took turns to give the
participant a piece of advice. Each picture contained four objects to be searched
for, and the participant worked on the object-searching task for four pictures.
The pictures were excerpted from Wick [16].

After the participant finished the task for each picture, he/she evaluated the
quality of the advice from the PA and the NPA as the procedure explained in
Section 4.2. The size of the input form and font was the same in the SBI and
the TBI condition. Based on the previous study [17], the participant was told to
distribute 15 points between the two agents as a reward in accordance with the
matrix in Fig. 8, and was told that the quality of the advice would be adjusted
based on his/her evaluation.

Finally, the participant answered a paper-and-pencil questionnaire about the
experiment. Then the participant was debriefed, thanked, and dismissed. Fin-
ishing the experiment took about 30–40 minutes for each participant.

The experimental environment was developed with Macromedia Flash, and
run as a projector application on a laptop PC (OS: Windows XP). This ap-
plication was displayed in full-screen mode in 1024 × 768 display resolution.
Experimental data was collected via the WWW using a CGI program.

Inducing Perspective Sharing Between a User and an Embodied Agent 103

4.5 Measures

These measures were adopted:

Length of balloon content. We counted the number of words in the balloon
content. Since this measure could not be used for the NBI condition, we
compared this between the SBI and TBI conditions.

Depth of balloon content. Two judges who did not know the intent of the
experiment evaluated the depth of the balloon content using a 5-point scale.
The definition of the depth of the balloon was adopted from the depth of
self-disclosure [18], because the content of the thought balloon would contain
self-disclosure of the agent. The depth of the balloon was defined as how
much these conditions satisfied comprehensively:
– Containing comprehensive tendency of behavior rather than specific be-

havior in a certain situation
– Containing original contents
– Containing invisible contents such as motivation, emotion, and imagina-

tion rather than actual actions and events
– Containing weak points of the NPA
– Containing response unfavorable for the PA
– Containing content with strong emotion

Then, averaged value between the two judges was adopted for the variable
of the depth of the balloon content.
The correspondence rate between two judges was 59.6%. The value of cor-
respondence rate was relatively low, but including the data evaluated differ-
ently by the two judges by only one point, the correspondence rate increased
to 86.5%. This measure could not be used for the NBI condition, then the
values in the SBI and TBI conditions were compared.

Reward distribution for NPA. This is the number of points that the par-
ticipant distributed to the NPA. We compared the values in all of the three
conditions.

5 Result

This section describes the results of the experiment.

5.1 Content of Balloons

Table 1 shows the median value of length and depth of balloon content for each
condition. The results of Wilcoxon rank sum test showed that the value of the
depth of balloon content in the TBI condition was consistently larger than in the
SBI condition throughout the experiment. However, while the balloon content in
the TBI condition on object-searching task in the first picture was significantly
longer than that in the SBI condition, the difference between them vanished as
the task went on.

104 S.V. Suzuki and H. Takeda

Table 1. Median value (quartile deviation in parenthesis) of length and depth of
balloon content

SBI cond. (n = 13) TBI cond. (n = 13)
Statistics values of
Wilcoxon rank sum
test

length depth length depth length depth

1st picture 5.0 (1.50) 2.0 (0.25) 9.0 (2.00) 2.5 (0.50) 30.0∗∗ 36.0∗∗

2nd 5.0 (1.00) 2.0 (0.50) 5.0 (1.50) 3.5 (1.00) 80.5 38.5∗∗

3rd 6.0 (0.50) 2.0 (0.25) 6.0 (1.50) 3.0 (1.00) 78.5 37.0∗

4th 6.0 (1.00) 2.0 (0.25) 6.0 (1.50) 3.0 (1.00) 89.0 41.0∗

∗∗: p < .01, ∗: p < .05

Table 2. Mean value (SD in parenthesis) of reward distribution for NPA

NBI cond.
(n = 13)

SBI cond.
(n = 13)

TBI cond.
(n = 13)

Statistics
values of
F (2, 36)

1st picture 8.38 (3.07) 7.00 (3.08) 8.08 (2.47) 0.825
2nd 7.38 (2.06) 7.85 (2.23) 7.15 (3.26) 0.244
3rd 7.77 (2.20) 8.54 (2.30) 6.92 (2.90) 1.37
4th 7.23 (1.36) 8.23a (1.42) 6.77a (1.59) 3.40 ∗

∗: p < .05
a: Difference between them was significant according to

multiple comparison using Holm’s method (p < .05)

5.2 Evaluation of Advice from Two Embodied Agents

Table 2 represents the mean value of reward distribution for the NPA for each
condition. The reward distribution of the PA can be found by subtracting this
value from 15, therefore there were little differences of reward distribution be-
tween the PA and the NPA. As the task went on, while the value in the SBI
condition showed a tendency to increase, the value in the other condition showed
a tendency to decrease. Although there were no significant differences of the val-
ues among these conditions until the task for third picture, significant difference
in the value in the SBI condition and in the TBI condition was observed at the
task for fourth picture.

6 Discussion

Considering the experimental data obtained, the influence of filling in the blank
thought balloon on perspective sharing with R-level trigger is discussed. Possible
applications and future work are also suggested.

Inducing Perspective Sharing Between a User and an Embodied Agent 105

6.1 Perspective Sharing with Representational-Level Trigger

First, the length of the balloon content in the TBI condition was shorten af-
ter the object-searching task in the second picture. This may be because of
fatigue of the participant derived from the object-searching task. Neverthe-
less, the depth of the balloon content in the TBI condition was not influ-
enced by such fatigue, and the participants in the TBI condition kept on try-
ing to write down the allocentric perspective of the NPA in the blank thought
balloons.

The results of analysis of balloon content in Section 5.1 implies that blank
thought balloons emitted from an embodied agent induce a user to inspect the
allocentric perspective of the agent. Although the influence of fatigue derived
from the tasks might exist, the participants in the TBI condition showed the
attitude to inspect allocentric perspective of the NPA. Next, we investigated the
content of the balloons filled in by the participants in detail. When the object-
searching task for the first picture was finished, the PA said “I gave you pieces of
advice while paying attention to the explanation of the shapes of the objects.” In
the SBI condition, the participants filled in the blank speech balloon with “I gave
you pieces of advice while paying attention to the location and things around the
target objects” or “I gave you pieces of information on the location behind which
the target object was hidden.” Additionally, the participants responded to the
question “What did you think when you fill in the balloon?” with answers like “I
filled in the balloon considering the correspondence of the PA’s utterance.” On
the other hand, in the TBI condition, although some participants filled in the
blank thought balloon in a similar way that of the participants in SBI condition,
a different tendency in filling in the blank speech balloon appeared. For example,
when the object-searching task for first picture finished, the participants in the
TBI condition filled in the blank thought balloon with “It did not make sense
to give the advice until it regards to how the target object had posed or what
kind of features the target object had” or “It should be clear that the first piece
of advice regards to the location of target object.” Such competing message by
NPA hardly appeared in SBI condition, notwithstanding the participants have
been repeatedly told that the PA and the NPA were competing with each other.
The participants’ consideration of this competitive situation between PA and
NPA in TBI condition might have influenced the salient decline of the reward
distribution for the NPA.

6.2 User’s Understanding of Situation Around Two Embodied
Agents

Participants seem to have had difficulty to understand both the situation around
the PA and the NPA and relation between human-agent interaction and the
object-finding tasks shown in Fig. 2. Taking into account the previous study [17],
the reward distribution for NPA should be relatively low among the three con-
ditions since the user tends to have prejudice in favor of user’s “teammate” [4].
Therefore, two problems exist in the discussion of the experimental results:

106 S.V. Suzuki and H. Takeda

– The influence of interactivity between a user and an embodied agent did not
explicitly appear in this experiment.

– The understanding of social relationships among the user, the PA, and the
NPA was inadequate except for in some participants in the TBI condition.

The absence of the influence of interactivity is a problem since one of the ad-
vantages of computer-supported environment is interactivity [4]. Without the
interactivity, this experimental results can be easily replicated even without in-
teractivity (e.g. paper media). Thus, investigation of the influence of interactivity
with different approaches from this study should be investigated.

Moreover, the social relationships among the participant, the PA, and the
NPA were not understood by the participants until they filled in the blank
thought balloon considering the situation among them. Consequently, under-
standing social relationships among the participant, the PA, and the NPA only
with cover stories explained in the experiment and the initial interaction between
the participant and PA seem to be hard for him/her. One of the solutions for
these problems is to increase the opportunity for “rapport building” between a
user and embodied agents [19]. Also considering the Moon’s study [14] discussed
in Section 3.3, it should be important to build rapport between a user and em-
bodied agents whose perceived allocentric perspectives were different from the
user’s before the situation to enable a user to accept the agents’ perceived allo-
centric perspective. Another solution should be addressing the procedural issues
in the experiment, since the object-searching tasks were too hard for the par-
ticipants to solve considering the situation among them, the PA, and the NPA.
More understandable scenarios should be explored for the experiment.

6.3 Possible Application and Future Work

In this experiment, we predicted that the user could consider the situation of
his/her “enemy” through filling in a blank thought balloon emitted from the
NPA and that changes would occur in the user’s allocentric perspective, similar
to changes that occur in the opinion of a debate participant after considering the
thought of a “devil’s advocate” [2]. As mentioned in Section 1, there are many
situations in which people need to accept perspective from others in ordinary life.
For example, in the situation that the user needs to try to take the minority’s
allocentric perspective to solve problems, an interface to let the user accept the
minority’s allocentric perspective should contribute to the user’s solving of the
problems. It is worth attempting to induce perspective sharing with the blank
thought balloon emitted from an embodied agent in other real problem solving
situations.

7 Conclusion

In this study, through a psychological experiment that attempted to induce a
user to accept perceived allocentric perspective of an embodied agent by fill-
ing in blank thought balloons, the possibility was explored of embodied agent

Inducing Perspective Sharing Between a User and an Embodied Agent 107

technologies that let the user understand the perspective of others. The experi-
mental results suggested that filling in a blank thought balloon emitted from the
embodied agent may induce the user’s acceptance of perceived allocentric per-
spective, but without establishment of social relationships between the user and
the agent, the user has difficulty inspecting the perceived allocentric perspective.
Finally, through introducing embodied agent technologies into practical situa-
tions, we intend to extract design principles of embodied agents that can let a
user understand others’ allocentric perspective that are different from his/hers.

References

[1] Norman, D.A.: Cognitive artifacts. In Carroll, J.M., ed.: Designing interaction:
Psychology at the human-computer interface. Cambridge University Press, Cam-
bridge (1991) 17–38

[2] Janis, I.L.: Groupthink: Psychological Studies of Policy Decisions and Fiascoes.
2nd edn. Houghton Mifflin Company, Boston, MA (1982)

[3] Morita, J., Miwa, K.: Changes of inferences caused by obtaining different per-
spectives: Analysis based on analogical reasoning. In: Proceedings of the 4th
International Conference on Cognitive Science. (2003) 463–468

[4] Fogg, B.J.: Persuasive Technology: Using Computers to Change What We Think
and Do. Morgan Kaufmann Publishers, San Francisco, CA (2003)

[5] Takeuchi, Y., Watanabe, K., Katagiri, Y.: Social identification of embodied inter-
active agent. In: Proceedings of the 13th International Workshop on Robot and
Human Interactive Communication (RO-MAN 2004), Kurashiki, Japan (2004)
449–454

[6] Vogeley, K., Fink, G.R.: Neural correlates of the first-person-perspective. Trends
in Cognitive Sciences 7(1) (2003) 38–42

[7] Suzuki, S.V., Takeda, H.: Inducing change in user’s perspective with the arrange-
ment of body orientation of embodied agents. In: Proceedings of the 15th IEEE
International Symposium on Robot and Human Interactive Communication (RO-
MAN 2006). (in press)

[8] Okamoto, M., Okamoto, K., Nakano, Y.I., Nishida, T.: Supporting the creation
of immersive CG contents with enhanced user involvement. In: Proceedings of the
Symposium on Conversational Informatics for Supporting Social Intelligence and
Interaction — Situational and Environmental Information Enforcing Involvement
in Conversation, AISB’05: Social Intelligence and Interaction in Animals, Robots
and Agents, Hatfield, UK (2005) 87–96

[9] Harrison, R.P.: The cartoon: Communication to the quick. Sage, Beverly Hills,
CA (1981)

[10] Kurlander, D., Skelly, T., Salesin, D.: Comic Chat. In: Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH96), ACM Press (1996) 225–236

[11] Sakamoto, R., Nakao, K., Sumi, Y., Mase, K.: ComicDiary: Representing indi-
vidual experiences in comics style. In: Proceedings of the 25th International Con-
ference on Computer Graphics and Interactive Techniques (SIGGRAPH 2001).
(2001) 158

[12] Cooper, A., Reimann, R.M.: About Face 2.0: The Essentials of Interaction Design.
Wiley, Indianapolis, IN (2003)

108 S.V. Suzuki and H. Takeda

[13] Cassell, J., Sullivan, J., Prevost, S., Churchill, E., eds.: Embodied Conversational
Agents. MIT Press, Cambridge, MA (2000)

[14] Moon, Y.: Intimate exchanges: Using computers to elicit self-disclosure from
consumers. Journal of Consumer Research 26 (2000) 323–339

[15] Sundar, S.S., Nass, C.: Source orientation in human-computer interaction. Com-
munication Research 27(6) (2000) 683–703

[16] Wick, W.: Can You See What I See?: Picture Puzzles to Search and Solve.
Cartwheel Books, New York (2003)

[17] Tajfel, H., Billig, M.G., Bundy, R.P., Flament, C.: Social categorization and
intergroup behavior. European Journal of Social Psychology 1 (1971) 149–177

[18] Altman, I., Taylor, D.A.: Social penetration: the development of interpersonal
relationships. Holt, Rinehart, and Winston, New York (1973)

[19] Bickmore, T., Cassell, J.: Small talk and conversational storytelling in embodied
conversational interface agents. In: Proceedings of the AAAI Fall Symposium on
Narrative Intelligence, Cape Cod, MA (1999) 87–92

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 109 – 123, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Agent-Based Analysis and Support
for Incident Management

Mark Hoogendoorn1, Catholijn M. Jonker2, Jan Treur1, and Marian Verhaegh3

1 Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{mhoogen, treur}@cs.vu.nl
2 Radboud University Nijmegen, Nijmegen Institute of Cognition and Information

Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
C.Jonker@nici.ru.nl

3 Quartet Consult, Jaap Edenlaan 16, 2807 BR Gouda, The Netherlands
info@quartetconsult.nl

Abstract. This paper presents an agent-based approach for error detection in
incident management organizations. The approach consists of several parts.
First, a formal approach for the specification and hierarchical verification of
both traces and properties. Incomplete traces are enriched by enrichment rules.
Furthermore, a classification mechanism is presented for the different properties
in incident management that is based on psychological literature. Classification
of errors provides insight in the functioning of the agents involved with respect
to their roles. This insight enables the provision of dedicated training sessions
and allows software support to give appropriate warning messages during
incident management.

1 Introduction

The domain of incident management is characterized by sudden events which demand
immediate, effective and efficient response. Due to the nature of incident management,
those involved in such processes need to be able to cope with stress situations and high
work pressure. In addition to that, cooperation between these people is crucial and is not
trivial due to the involvement of multiple organizations with different characteristics
(e.g. police, health care, fire department). As a result of these difficulties, often errors
occur in an incident management process. If such errors are not handled properly, this
may have great impact on the successfulness of incident management.

Research within the domain of computer science and artificial intelligence is being
performed to see whether automated systems can improve the current state of affairs
in incident management (see e.g. [12]). One of the problems is that the information
available is incomplete and possibly contradictory and unreliable. As a result, more
advanced techniques are needed to enable automated systems to contribute an
improvement of the incident management process.

This paper presents an agent-based approach to monitor, analyze and support
incident management processes by detecting occurring errors and providing support to
avoid such errors or to limit their consequences. The approach is tailored towards the
characteristics of incident management. First of all, the approach includes a method
which deals with incomplete information. In addition, a diagnostic method based on

110 M. Hoogendoorn et al.

refinement within the approach can signal whether certain required properties of the
incident management organization are not satisfied, and pinpoint the cause within the
organization of this dissatisfaction. The approach is based on the organizational
paradigm nowadays in use in agent systems [1,4] which allows the abstraction from
individual agents to the level of roles. Such an abstraction is useful as typically
specification of the requirements in this domain is done on the level of roles (e.g. the
police chief should communicate a strategy for crowd control). In case errors are
observed in role behavior, they are classified to have more insight in what kind of
errors are often made by a particular agent participating in the organization, in order to
propose a tailored training program for this agent. In the future the approach as a whole
can be incorporated in cooperating software agents for monitoring and providing
feedback in training sessions, and software agents which can even monitor incident
management organizations on the fly, giving a signal as soon as errors are detected,
and providing support to avoid their occurrence or to limit their consequences.

Section 2 introduces the domain of incident management and, more specifically, the
situation in the Netherlands. Thereafter, Section 3 introduces the formal language used
to specify traces and behavior. Section 4 presents an approach for handling incomplete
information by means of enrichment rules whereas Section 5 presents properties in the
form of hierarchies for incident management organizations. Furthermore, Section 6
presents the classification scheme for errors, including specific incident management
decision rules. Results of a case study are presented in Section 7 and finally, Section 8
is a discussion.

2 The Domain of Incident Management

In this Section, a brief introduction to the domain of incident management in the
Netherlands is given. In the Netherlands four core organizations are present within
incident management: (1) the fire department; (2) the police department; (3) health
care, and (4) the municipalities involved. The first three parties mentioned each have
their own alarm center in which operators are present to handle tasks associated with
the specific organization.

A trigger for starting up an incident management organization is typically a call to
the national emergency number, which is redirected to the nearest regional alarm
center in which all three parties have their own alarm center. The call will be
redirected to the most appropriate alarm center of the three parties. In case the
operator of that alarm center considers the incident to be severe enough to start up the
full incident management organization, he informs the alarm centers of the other
organizations as well. Initially, the three alarm centers will send the manpower they
think is appropriate for the incident reported. After the manpower has arrived on the
scene, each part of the organization in principle acts on its own, each having a
different coordinator of actions. In the case of the fire department this is the
commander of the first truck to arrive, for health care it is the paramedic of the first
ambulance and for the police there is no such coordinator as they have a supporting
role. Each of the coordinators are in charge until the dedicated operational leaders of
the organization arrive at the scene. The responsibilities of the organizations are
briefly described as follows: the fire department takes care of the so called “cause and
effect prevention”, the health care organization is in charge of providing medical care,

 Agent-Based Analysis and Support for Incident Management 111

and the police takes care of routing of the various vehicles and crowd control. After
the initial phase without structural coordination, an organization is formed in order to
coordinate all actions of the individual organizations in case this is still necessary.
The fire department is in charge of the operational side of this organization and the
mayor of the municipality is in charge of the policy part. The mayor is responsible for
the formation of the disaster staff for coordinating policy decisions, and is therefore
informed of the situation. The operational coordination structures are formed after
deliberation between the various parties on the scene has resulted in a mutual demand
for such a coordination structure. In case it is decided to form the operational and/or
disaster staff, the operators of the alarm centers start warning the relevant people. For
more details on the full coordination structure, see [8].

3 Modeling Method Used

This section describes the language TTL (for Temporal Trace Language) [6] used for
expressing dynamic properties as well as the expression of traces. Furthermore, the
language meta-TTL is introduced for second-order dynamic properties.

3.1 The Language TTL for Dynamic Properties

In TTL [6], ontologies for states are formalized as sets of symbols in sorted predicate
logic. For any ontology Ont, the ground atoms form the set of basic state properties
BSTATPROP(Ont). Basic state properties can be defined by nullary predicates (or
proposition symbols) such as hungry, or by using n-ary predicates (with n>0) like
has_temperature(environment, 7). The state properties based on a certain ontology Ont are
formalized by the propositions (using conjunction, negation, disjunction, implication)
made from the basic state properties and constitute the set STATPROP(Ont).

In order to express dynamics in TTL, important concepts are states, time points,
and traces. A state S is an indication of which basic state properties are true and
which are false, i.e., a mapping S: BSTATPROP(Ont) → {true, false}. The set of all possible
states for ontology Ont is denoted by STATES(Ont). Moreover, a fixed time frame T is
assumed which is linearly ordered. Then, a trace γ over a state ontology Ont and time
frame T is a mapping γ : T → STATES(Ont), i.e., a sequence of states γt (t ∈ T) in STATES(Ont).
The set of all traces over ontology Ont is denoted by TRACES(Ont).

The set of dynamic properties DYNPROP(Ont) is the set of temporal statements that
can be formulated with respect to traces based on the state ontology Ont in the
following manner. Given a trace γ over state ontology Ont, a certain state at time point t
is denoted by state(γ, t). These states can be related to state properties via the formally
defined satisfaction relation, indicated by the infix predicate |=, comparable to the
Holds-predicate in the Situation Calculus. Thus, state(γ, t) |= p denotes that state property p

holds in trace γ at time t. Likewise, state(γ, t) |≠ p denotes that state property p does not
hold in trace γ at time t. Based on these statements, dynamic properties can be
formulated in a formal manner in a sorted predicate logic, using the usual logical
connectives such as ¬, ∧, ∨, , and the quantifiers ∀, ∃ (e.g., over traces, time and
state properties). For example, consider the following dynamic property for a pattern
concerning belief creation based on observation:

112 M. Hoogendoorn et al.

if at any point in time t1 the agent observes that the situation is a disaster,
then there exists a time point t2 after t1 such that

at t2 in the trace the agent believes that the situation is a disaster

This property can be expressed as a dynamic property in TTL form with free variable
γ as follows:

 ∀t:T [state(γ, t) |= observes(itsadisaster) ∃t' ≥ t state(γ, t') |= belief(itsadisaster)]

The set DYNPROP(Ont, γ) is the subset of DYNPROP(Ont) consisting of formulae with γ
occurring in which is either a constant or a variable without being bound by a
quantifier. For a more elaborate explanation of TTL, see [6].

3.2 The Language Meta-TTL for Second-Order Dynamic Properties

The formalizations of the properties sometimes take the form of second-order
dynamic properties, i.e., properties that refer to dynamic properties expressed within
TTL. Such second-order dynamic properties are expressed in meta-TTL: the meta-
language of TTL. The language meta-TTL includes sorts for DYNPROP(Ont) and its
subsets as indicated above, which contain TTL-statements (for dynamic properties) as
term expressions. Moreover, a predicate holds on these sorts can be used to express
that such a TTL formula is true. When no confusion is expected, this predicate can be
left out. To express second-order dynamic properties, in a meta-TTL statement,
quantifiers over TTL statements can be used.

4 Handling Incompleteness of Information by Enrichment Rules

The trace of occurrences as logged during or reported from an incident management
process usually is incomplete and therefore difficult to analyze. To overcome this
incompleteness problem, additional assumptions have to be made on events that have
occurred but are not explicitly mentioned in the logged trace. Such assumptions are
addressed in this section. These extra assumptions enrich the trace with elements that
are derived from the information in the trace itself, for example at later time points in
case an analysis is performed afterwards. An example is the assumption that if at
some time point an estimation of the situation is communicated, then at previous time
points the necessary information to make that assessment was received or observed by
the communicating role.

Addition of such elements to enrich a trace are based on rules which express that
given certain trace elements, an additional element can be assumed. These rules in
principle can be of two forms: Strict rules which can always be applied and provide
conclusions that are certain, and defeasible rules which are used in case strict rules are
insufficient to obtain a trace with a reasonable amount of information. However, it is
not always possible to claim that a rule is a strict rule. Therefore, such rules are
considered premises for the whole analysis.

Examples of such rules are presented below. Rule EP1 states that everybody
present on the scene is assumed to have an internal judgment about the seriousness of
the disaster:

 Agent-Based Analysis and Support for Incident Management 113

EP1: Internal judgment at scene
if at time t role R is present at the scene
 and situation S is the case
 and S is classified as being a disaster
then there exists a later point in time t2 < t+d at which R has an internal judgment that this

situation is a disaster

Formal:

∀ R:ROLE, t:TIME, S:SITUATION
[state(γ, t) |= physical_position(R, scene) &
 state(γ, t) |= current_situation(S) &
 state(γ, t) |= disaster(S)]

 ∃t2>t & t2 < t+d [state(γ, t2) |= internal_judgment(R, disaster(S))]

Furthermore, in case a role receives a communication that the situation is a disaster
and this role does not communicate that he does not believe it being a disaster, then it
is assumed that he has the internal judgment that it concerns a disaster:

EP2: Internal judgment based on communication
if at time t R1 communicates to R2 that the current situation S is a disaster
 and there exists no time point at which R2 communicates to R1 he thinks the situation is not

a disaster
then at every time point t2 > t R2 interprets the current state of affairs as being a disaster

∀R1,R2:ROLE, P:POSITION, t:TIME, S:SITUATION
[state(γ, t) |= communication_from_to(R1, R2, disaster(S)) &
 ¬∃t’>t [state(γ, t’) |= communication_from_to(R2, R1, not(disaster(S)))]]

 ∀t2 > t [state(γ, t2) |= internal_judgment(R2, disaster(S))]

5 Property Hierarchies for Incident Management Organizations

This section presents generic properties for incident management organizations in the
Netherlands. The properties are presented in property hierarchies, which has as an
advantage that diagnosis of properties can be done in a top down fashion. Such a
diagnostic process starts by checking highest level property, and in case such a
property is not satisfied pinpoints the error by gradually going down the tree to the
unsatisfied properties.

5.1 Warning of Relevant Parties

The warning of relevant parties by the operator is a high level property stating that:
“the operator should alarm all necessary parties in case it is informed of an incident”:

P1(d): Warn relevant parties
if at time t the operator is informed about an incident type I by a role R1,
 and for incident type I role R2 should be informed according to the disaster plan
then there exists a time t2 later than t and before t + d at which R2 is informed about the

incident type I

∀I:INCIDENT_TYPE, t:TIME, R1, R2:ROLE
[state(γ, t) |= communication_from_to(R1, operator, I) &
 state(γ, t) |= according_to_plan_should_be_involved_in(R2, I)]
 ∃t2 > t & t2 < t + d [state(γ, t2) |= communication_from_to(operator, R2, I)]]

This property can be refined into a number of similar properties restricted to specific
categories of roles that should be informed. For diagnosis, at the highest level
property P1(d) can be checked, for example with the result that P1(d) is not satisfied

114 M. Hoogendoorn et al.

which means that not all relevant parties were informed (but without information on
which specific categories were not informed). At one level lower, the diagnosis can be
refined by checking the refined properties, resulting in an indication of which of the
categories of relevant roles were not informed.

5.2 First Arriving Ambulance

Second, the behavior of the first arriving ambulance is addressed. First, a formal
definition of the first arriving ambulance is given:

first_arriving_ambulance(γ:TRACE, t:TIME, A:AMBULANCE)
An ambulance is the first arriving ambulance if:
the ambulance arrives at the scene of an incident at time t
and there does not exist a time t’ < t at which another ambulance arrived at the scene of the
incident

 [state(γ, t) |=physical_position(A, scene) & ¬∃t’< t, [∃B:AMBULANCE [state(γ, t’) |=physical_position(B, scene)]]

On the highest level, the first arriving ambulance behavior is described by three
important aspects: (1) signaling the green alarm light; (2) communicating a situation
report, and (3) presence of at least one person belonging to the ambulance until the
officer on duty arrives at the scene:

P2: First arriving ambulance global behavior
if at a time t ambulance A is the first to arrive at the scene
 and at time t3 > t the officer on duty arrives at the scene
then for all t2 t and t2 < t3 at least one person belonging to the ambulance should be

present at the ambulance
 and for all t4 t the ambulance is signaling the green alarm light
 and there exists a time t5 later than t at which the driver of that ambulance communicates a

correct interpretation of the situation to the operator.

∀A:AMBULANCE, t, t2:TIME
[first_arriving_ambulance(γ, t, A) &
state(γ, t2) |= physical_position(officer_on_duty, scene) &
 ¬∃t’’’< t2 [state(γ, t’’’) |= physical_position(officer_on_duty, scene)]]

∀t3 < t2
 [t3 ≥ t [∃R:ROLE [state(γ, t3) |= physical_position(R, A)]]]
 & ∀t4 > t [state(γ, t4) |= alarm_lights(A, green)]
 & ∃t5 > t, X:SITUATION[state(γ, t5) |= communication_from_to(driver, operator, situation_description(X)) &
 situtation(X)]]

This property can be related to lower level
properties as shown in Figure 1. When trying
to diagnose why the highest level property is
not satisfied, the properties on the lower
level can be checked. In case such a property
is not satisfied, and it concerns a leaf
property, at least one cause for the non-
fulfillment of the high-level property has
been found. Otherwise, go further down the
tree to find the cause. In the tree a number of
properties are present to enable satisfaction of P2. First of all, the signaling of the
green light, as expressed below.

P2

P3 P5 P4

P6 P7 P8

Fig. 1. Property hierarchy for the first
arriving ambulance

 Agent-Based Analysis and Support for Incident Management 115

P3: First ambulance green light behavior
if at a time t ambulance A is the first to arrive at the scene
then for all later points in time t2 the ambulance is signaling the green light.

∀A:AMBULANCE, t:TIME
 [first_arriving_ambulance(γ, t, A) ∀t2:TIME > t [state(γ, t2) |= alarm_lights(A, green)]]

Second, the presence of a person belonging to the ambulance for the time until the
officer on duty is present:

P4: First arriving ambulance personnel presence
if at a time t ambulance A is the first to arrive at the scene
 and at time t3 > t the officer on duty arrives at the scene
then for all t2 t and t2 < t3 at least one person belonging to the ambulance should be

present at the ambulance

∀A:AMBULANCE, t, t2:TIME
[first_arriving_ambulance(γ, t, A) &
 state(γ, t2) |= physical_position(officer_on_duty, scene) &
 ¬∃t’’’< t2 [state(γ, t’’’) |= physical_position(officer_on_duty, scene)]]

 ∀t3 < t2 [t3 ≥ t [∃R:ROLE [state(γ, t3) |= physical_position(R, A)]]]

Finally, a property expressing the communication of the correct situation to the
operator:

P5(d): First arriving ambulance interpretation
if at a time t ambulance A is the first to arrive at the scene
then at a later point in time t2 < t + d the driver of that ambulance communicates a correct

interpretation of the situation

∀A:AMBULANCE, t:TIME
first_arriving_ambulance(γ, t, A)

 ∃X:SITUATION, t2:TIME < t + d & t2>t
 state(γ, t2) |= physical_position(driver, A) &
 state(γ, t2) |= communication_from_to(driver, operator, situation_description(X)) &
 state(γ, t2) |= situtation(X)]

Note that parameter d includes the time to interpret the situation plus the time to start
communicating that particular interpretation. Testing whether the interpretation was
correct can be performed afterwards (e.g., the amount of casualties). The property P5
can be refined again into three lower level properties. First of all, when arriving at the
scene, the paramedic should investigate the current state of affairs:

P6(d): Paramedic investigation
if at a time t ambulance A is the first to arrive at the scene
 and at time t a paramedic is in the ambulance
then at a later point in time t2 < t + d the paramedic of that ambulance will start an

investigation and not be at the ambulance any more

∀A:AMBULANCE, t:TIME
[first_arriving_ambulance(γ, t, A) &
 state(γ, t) |= physical_position(paramedic, A)]]

 ∃t2:TIME < t + d & t2 > t
 [state(γ, t2) |= not physical_position(paramedic, A) & state(γ, t2) |= investigating(paramedic)]

Second, the paramedic will return, communicating the current situation:

P7(d): Paramedic communication
if at a time t ambulance A is the first to arrive at the scene
 and at time t the paramedic is in the ambulance

116 M. Hoogendoorn et al.

 and at time t2 the physical position of the paramedic is not inside the ambulance
then at a later point in time t3 < t2 + d the paramedic of that ambulance will communicate a

correct interpretation of the situation to the driver

∀A:AMBULANCE, t,t2:TIME
[first_arriving_ambulance(γ, t, A) &
 state(γ, t) |= physical_position(paramedic, A) & t2 > t &
 state(γ, t2) |= not physical_position(paramedic, A) &
 state(γ, t2) |= investigating(paramedic)]

 ∃t3:TIME < t2 + d & t3 > t2, X:SITUATION
 [state(γ, t3) |= physical_position(paramedic, A) &
 state(γ, t3) |= communication_from_to(paramedic, driver, situation_description(X)) &
 state(γ, t3) |= situtation(X)]

Finally, once the driver has received the communication, he will communicate this to
the operator:

P8(d): Driver communication
if at a time t the driver of the first ambulance at the scene receives a situation description

from the paramedic
then at a later point in time t2 < t + d the driver of that ambulance communicates a correct

interpretation of the situation to the operator

∀A:AMBULANCE, t,t2:TIME, X :SITUATION
[first_arriving_ambulance(γ, t, A) &
 state(γ, t2) |= communication_from_to(paramedic, driver, situation_description(X))

 ∃t3:TIME < t2 + d & t2 > t [state(γ, t3) |= communication_from_to(driver, operator, situation_description(X))]

5.3 Disaster Staff Activation

Furthermore, properties have been specified for the formation of the disaster staff and
activities following from the disaster staff. On the highest level the correctness of these
processes in the disaster staff can be described as follows: In case the operator has the
internal judgment that the current situation is a disaster, the operational leader will
eventually output actions belonging to a strategy communicated by the disaster staff.

P9: Successful disaster staff
if at time t the operator judges the current situation as a disaster
then there exists a later point in time t2 at which the disaster staff communicated a strategy
and there exists an even later time at which the operational leader communicates an action

appropriate for the strategy according to the disaster plan.

∀t:TIME
[state(γ, t) |= internal_judgement(operator, disaster)
 ∃t2:TIME > t, S:STRATEGY
 [state(γ, t2) |= communication_from_to(disaster_staff, operational_leader, S) &
 ∃t3:TIME > t2, A:ACTION, R:ROLE
 [state(γ, t3) |= appropriate_action_according_to_plan(S, A) &
 state(γ, t3) |= accompanying_role(A, R)] &
 state(γ, t3) |= communication_from_to(operational_leader, R, perform(A))]

Such properties can be related to lower-level properties as shown in Figure 2. On the
intermediate level, three properties are present. First, the correct initiation of a disaster
staff is expressed:

P10: Correctly activated disaster staff
if at time t the operator interprets the current situation being a disaster
then at a later point in time t2 the disaster staff will be informed (and assumed to be present

as a result)

 Agent-Based Analysis and Support for Incident Management 117

Fig. 2. Property hierarchy for the disaster staff activation and functioning

∀t:TIME, R:ROLE
[state(γ, t) |= internal_judgement(operator, disaster) &
 state(γ, t) |= part_of(R, disaster_staff)
 ∃t2:TIME > t + d [state(γ, t2) |= communication_from_to(operator, R, form_disaster_staff)]]

Thereafter, in case the disaster staff is formed, it should be active, which is
characterized by an output in the form of a strategy:

P11: Active disaster staff
if at time t the organizational unit called disaster staff is informed
then at a later point in time t2 > t the organizational unit outputs a strategy S

∀t:TIME
[state(γ, t2) |= part_of(R, disaster_staff) &
 state(γ, t2) |= communication_from_to(operator, R, form_disaster_staff)
 ∃S:STRATEGY, t2 > t [state(γ, t2) |= communication_from_to(disaster_staff, operational_leader, S)]

Finally, such a strategy should lead to actions be taken by the operational leader:

P12: Active operational leader
if at time t the operational leader is informed of a strategy S to be applied
then at a later point in time t2 > t the operational leader will command the appropriate actions

according to the disaster plan to the roles.

∀t:TIME, S:STRATEGY, A:ACTION, R:ROLE
[state(γ, t2) |= communication_from_to(disaster_staff, operational_leader, S) &
 state(γ, t) |= appropriate_action_according_to_plan (S, A) &
 state(γ, t) |= accompanying_role(A, R)
 ∃t2:TIME > t state(γ, t2) |= communication_from_to(operational_leader, R, perform(A))]

Each of these intermediate properties can again be split up to properties for individual
roles within the organization. In order to obtain property P10 a number of properties
need to hold. First of all, the mayor should be warned by the operator:

P13(d): Warn mayor
if at time t the operator interprets the current situation being a disaster
then at a later point in time t2 > t and t2 < t +d the operator communicates the occurrence of

a disaster to the mayor.

∀t:TIME
[state(γ, t) |= internal_judgement(operator, disaster) &

 ∃t2:TIME > t & t2 < t + d [state(γ, t2) |= communication_from_to(operator, mayor, disaster)]

Thereafter, the mayor should decide to form the disaster staff:

P14: Form disaster staff
if at time point t the mayor interprets the current state of affairs as being a disaster
then at a later point in time t2 > t the mayor forms the organizational unit called disaster staff

P9

P10 P11 P12

P13 P15 P14 P16 P17 P18 P19

118 M. Hoogendoorn et al.

∀t:TIME
[state(γ, t) |= internal_judgement(mayor, disaster) &
 ¬∃t’< t [state(γ, t’) |= internal_judgement(mayor, disaster)] &
 ∃t2 > t [state(γ, t2) |= communication_from_to(mayor, operator, form_disaster_staff)]

Finally, in case the mayor communicates the decision to form the disaster staff, the
operator should warn the appropriate parties:

P15(d): Warn rest disaster staff
if at time t the operator receives the request of the mayor to form the disaster staff
 and role R is part of the disaster staff
then at a later point in time t2 > t and t2 < t +d the operator communicates to role R that the

disaster staff is being formed.

∀t:TIME, R:ROLE
state(γ, t) |= communication_from_to(mayor, operator, form_disaster_staff) &
state(γ, t) |= part_of(R, disaster_staff)

 ∃t2:TIME > t + d [state(γ, t2) |= communication_from_to(operator, R, form_disaster_staff)]]

Regarding the intermediate property P11 the following properties need to hold for
satisfaction of the intermediate property. First, after the mayor has decided to form the
disaster staff he will eventually request advice from his disaster staff.

P16: Start deliberation
if at time t the mayor decides to form the disaster staff
then at a later point in time t2 > t the mayor starts a deliberation within the disaster staff by

requesting advice

∀t:TIME
[state(γ, t) |= communication_from_to(mayor, operator, form_disaster)
 ∃t2:TIME > t [state(γ, t2) |= communication_from_to(mayor, disaster_staff, request_advice)]]

After such advice is received, he should choose the appropriate strategy:

P17: Choose strategy
if at time t starts a deliberation within the disaster staff by requesting advice
then at a later point in time t2 the mayor communicates a strategy to the operational leader

∀t:TIME
[state(γ, t) |= communication_from_to(mayor, disaster_staff, request_advice)
 ∃S:STRATEGY, t2:TIME > t state(γ, t2) |= communication_from_to(mayor, operational_leader, S)]

Finally, the intermediate property P12 is refined to two other properties. First, the
operational leader should discuss the strategy with his operational team:

P18: Choose action
if at time t the mayor communicates a strategy S to the operational leader
then at a later point in time t2 > t the operational leader requests his operational team for

advice how to implement S

∀t:TIME, S:STRATEGY
[state(γ, t) |= communication_from_to(mayor, operational_leader, S)

 ∃ t2:TIME > t state(γ, t2) |= communication_from_to(operational_leader, operational_team, request_advice(S))]

Finally, the operational leader communicates actions to be performed, based on the
advices obtained in the discussion.

P19: Communicate action
if at time t the operational leader request his operational team for advice how to

implement S
then at a later point in time t2 the operational leader will communicate actions appropriate for

strategy S according to the disaster plan

 Agent-Based Analysis and Support for Incident Management 119

∀t:TIME, S:STRATEGY, A:ACTION, R:ROLE
[state(γ, t) |= communication_from_to(operational_leader, operational_team, request_advice(S)) &
 state(γ, t) |= appropriate_action_according_to_plan (S, A) &
 state(γ, t) |= accompanying_role(A, R)
 ∃ t2:TIME > t state(γ, t2) |= communication_from_to(operational_leader, R, perform(A))]

5.4 Ambulance Routing

Finally, properties are specified regarding ambulance routing. The police should act
as follows:

P20: Route plan includes all wounded nests
if at time t there are n wounded nests
and at a later time point t2 > t the police communicates details concerning the route to be

taken by the ambulances to cpa (the central ambulance post)
then this communication should contain such a route description that ambulances will be

sent to all wounded nests.

∀W:WOUNDED_NEST, R:ROUTE_PLAN, t:TIME
[state(γ, t) |= physical_position(W, scene) &
 state(γ, t) |= communication_from_to(police, cpa, R)]
 state(γ, t) |= route_passes_wounded_nest(R, W)

An alternative property not following standard procedure expresses that the routing is
done based explicitly on victim locations:

P21: Send ambulance to all wounded on the scene
if at time t there is a wounded person at a position P
then at a later time point t2 an ambulance will be sent to position P
 and at an even later time point t3 that ambulance will be at position P

∀W:WOUNDED, P:POSITION, A:AMBULANCE, t:TIME
[state(γ, t) |= physical_position(W, P) &

 ∃t2 > t [state(γ, t2) |= communication_from_to(operator, A, goto(P))] &
 ∃t3 > t2 [state(γ, t3) |= physical_position(A, P)

This high-level property can be decomposed into three other properties. First of all, a
wounded person will result in a communication to the operator of the physical
position of this wounded person:

P22: Communicate wounded location
if at time t there is a wounded person at a position P
then at a later time point t2 this position will be communicated to the operator

∀W:WOUNDED, P:POSITION, t:TIME
[state(γ, t) |= physical_position(W, P) &

 ∃R:ROLE, t2 > t [state(γ, t2) |= communication_from_to(R, operator, physical_position(W, P))]]

For every communication received by the operator, he eventually communicates the
location to an ambulance:

P23: Send ambulance to wounded
if at time t a wounded person is communicated to be at a position P
then at a later time point t2 an ambulance will be sent to position P

∀W:WOUNDED, P:POSITION, R:ROLE, t:TIME
[state(γ, t) |= communication_from_to(R, operator, physical_position(W, P))

 ∃t2 > t, A:AMBULANCE [state(γ, t2) |= communication_from_to(operator, A, goto(P))]]

Finally, once the ambulance gets this communication it will arrive at the location at a
later point in time:

120 M. Hoogendoorn et al.

P24: Ambulance arrives at wounded
if at time point t an ambulance is sent to position P
then at a later time point t2 that ambulance will be at position P

∀P:POSITION, A:AMBULANCE, t:TIME
[state(γ, t2) |= communication_from_to(operator, A, goto(P))
 ∃t2 > t [state(γ, t3) |= physical_position(A, P)

6 Human Error Types

This Section presents a classification scheme for the properties in incident
management. Such a classification can help to determine the dedicated training
needed. The human error classification presented by James Reason [9] is therefore
adopted, who introduces a General Error Modeling approach which identifies three
basic error types: (1) skill based slips; (2) rule based mistakes, and (3) knowledge
based mistakes. This classification scheme is also used in [2] in which incident
management is investigated. Rule based, and knowledge based errors come into play
after the individual has become conscious of a problem, which is not the case for skill
based slips. In that sense, skill based errors generally precede detection of the problem
whereas rule based and skill based mistakes arise during subsequent attempts to find a
solution to the problem. Skill based and rule based level error occur when humans use
stored knowledge structures whereas knowledge based errors occur when such
knowledge structures have been exhausted. Errors are much more likely to occur at
the knowledge based level.

For the properties specified for incident management the following classification
scheme is used. Skill based properties are those properties that are part of the very
basic training of incident management workers. For example, how to start the water
pump on a fire truck. A property is classified as a rule based property in case an
incident management plan literally includes the property. Finally, a property is called
a knowledge based property in case an incident management plan states that a
decision needs to be taken, but does not specify how to come to this solution. Using
this classification scheme, none of the properties from Section 5 are routine based,
whereas properties P1, P3, P5, P6, P8, P13, P14, P15, P16, P19, P22, and P24 are rule
based properties. Finally, properties P7, P17, P18, P20, and P23 are knowledge base
properties. Note that only the leaf properties are categorized as these are the
properties that define the individual role behavior within the organization.

In order to identify which types of error the different participants in the incident
management organization are making, the following formula expressed in meta-TTL
is used:

Type Error ≡
∀γ:TRACE, t1, t2:TIME, A:AGENT, R:ROLE, P:DYNPROP, Q:DYNPROPEXPR, S:SITUATION,
X:PROPERTY_TYPE
[holds_in_period(has_role(A, R), γ, t1, t2) &
 holds_in_period(S, γ, t1, t2) &
 holds_in_period(relevant_for(P, R, S), γ, t1, t2) &
 holds_in_period(type_for(P, R, X), γ, t1, t2) &
 holds_in_period(has_specification(P, Q(R, γ, c1, c2)), γ, t1, t2) &
 ¬holds(Q(R, γ, t1, t2))]

 makes_error_of_type(A, R, P, X, γ, t1, t2)

 Agent-Based Analysis and Support for Incident Management 121

This expresses that if an agent A is allocated to a particular role R in a particular
period between t1 and t2 in trace γ, and a situation S occurs in that same period in
which property P is relevant for role R whereby the type of property P for role R is of
type X (where X is either skill based, rule based or knowledge based), and the
property has a specification which does not hold in the fragment of this trace, then an
error of type X is made concerning property P by role R played by agent A.

7 Case Study

As a means to validate the approach presented above, a disaster which has been
thoroughly investigated in the Netherlands is taken as a case study. The disaster
concerns a bar fire which occurred in Volendam, the Netherlands, at New Years Night
of the year 2001. The logs of the disaster have been thoroughly described in [7] and
have been formalized using the approach presented in Section 3. Thereafter, the trace
enrichment rules from Section 4 have been applied. A part of the resulting trace is
shown in Figure 3, which uses the same ontology as used for the formalization of the
properties in Section 5. On the left side of the Figure, the atoms are shown that occur
during the incident management whereas the right side shows a timeline where a dark
box indicates an atom being true at that time point and a gray box indicates the atom
being false. The trace is used to verify whether the properties as specified in Section 5
indeed hold for the Volendam disaster. The following properties were shown not to
hold: P2, P4, P5, P7, P8, P9, P10, P14, and P20. In other words, in the Volendam case
study the first ambulance did not comply to the global desired behavior because the
information was not communicated properly, and because there exist time points at
which nobody was present at the ambulance. Furthermore, the disaster staff was not
activated properly because the mayor did not communicate that the disaster staff
should be formed, and finally the ambulance routing of the police was incorrect, but
luckily the direct routing of the health care services was satisfied. These results
exactly comply to the conclusions in the disaster report [7] which resulted from a
thorough investigation of a committee specialized in incident management.

8 Discussion

This paper presents an agent-based approach which can be used for error detection in
incident management organizations. The approach consists of several parts. First, a
formal approach for the specification of both traces and properties that can be verified
against these traces is presented. In domains like incident management, traces might
be incomplete. Therefore, enrichment rules for these traces are identified to cope with
this incompleteness. Furthermore, the properties that ought to be verified against these
traces can be specified in a hierarchical fashion: in case the highest level property is
not satisfied, the cause of this dissatisfaction can be determined by looking at the
properties one level deeper in the tree, which continues until a leaf property is found
which is not satisfied. Finally, a classification mechanism is presented for the
different properties based on psychological literature. In case an error is observed
such a classification immediately gives insight in the functioning of a particular agent
playing a role, which enables performing dedicated training sessions or giving
appropriate warning messages.

122 M. Hoogendoorn et al.

In the future, the approach presented can be incorporated in personal agents of

people involved in incident management. Such agents automatically log all incoming
and outgoing information in the form of traces and have knowledge on the property
the particular role the agent is playing is required to fulfill. In case properties are
observed not to be satisfied, a reminder or warning can for instance be given to the
person. Such agents can be useful for training sessions, as it can be observed what
kind of mistakes a person typically makes, but could possibly even be used during
actual incident management.

In the field of information agents, support systems have also been developed for
incident management (see e.g. [11]). In such systems however, the agents do not
check whether errors are made, but simply provide people with information to make
sure they are aware of their tasks. This does however not offer a mechanism to detect
errors and avoid a chain of unwanted events. Approaches for e.g. detection of
protocols (see e.g. [10]), also called overhearing, have been introduced. These
approaches are however more focused on recognizing patterns, not on detection of
errors.

disaster(bar_fire_volendam)
situation(bar_fire_volendam)

physical_position(wounded, zeestraat)
physical_position(wounded, pellersplein)

output(cpa)|communication_from_to(cpa, operator, disaster(bar_fire_volendam))
output(operator)|communication_from_to(operator, rmc, disaster(bar_fire_volendam))

output(operator)|communication_from_to(operator, fd_volendam, disaster(bar_fire_volendam))
output(operator)|communication_from_to(operator, fd_edam, disaster(bar_fire_volendam))

output(operator)|communication_from_to(operator, fd_monnickendam, disaster(bar_fire_volendam))
output(operator)|communication_from_to(operator, vc2, disaster(bar_fire_volendam))

output(operator)|communication_from_to(operator, ladder_truck, disaster(bar_fire_volendam))
output(operator)|communication_from_to(operator, mayor, disaster(bar_fire_volendam))

output(operator)|communication_from_to(operator, ovd, disaster(bar_fire_volendam))
output(rmc)|communication_from_to(rmc, operator, physical_position(wounded, zeestraat))

output(operator)|communication_from_to(operator, ambulance, goto(zeestraat))
output(operator)|communication_from_to(operator, ecf734, disaster(bar_fire_volendam))

output(rmc)|communication_from_to(rmc, operator, physical_position(wounded, pellersplein))
output(operator)|communication_from_to(operator, fd_katwijk, disaster(bar_fire_volendam))

output(operator)|communication_from_to(operator, ambulance, goto(pellersplein))
output(operator)|communication_from_to(operator, second_operator, disaster(bar_fire_volendam))

output(operator)|communication_from_to(operator, fd_commander, disaster(bar_fire_volendam))
physical_position(ambulance, scene)

physical_position(ambulance, pellersplein)
physical_position(driver, ambulance)

physical_position(paramedic, ambulance)
alarm_lights(ambulance, green)

investigating(paramedic)
physical_position(mayor, scene)

physical_position(odh, scene)
output(paramedic)|communication_from_to(paramedic, driver, situation_description(bar_fire_volendam))

output(operator)|communication_from_to(operator, hospital, disaster(bar_fire_volendam))
output(operator)|communication_from_to(operator, doctor_service, disaster(bar_fire_volendam))

output(operator)|communication_from_to(operator, undertaker, disaster(bar_fire_volendam))
output(police)|communication_from_to(police, cpa, route_plan(zuideinde))

physical_position(ambulance, zeestraat)
physical_position(wounded_nest_zuideinde, scene)
physical_position(wounded_nest_pellerplein, scene)

route_passes_wounded_nest(route_plan(pellersplein), wounded_nest_pellersplein)
output(police)|communication_from_to(police, cpa, route_plan(pellersplein))

output(operator)|communication_from_to(operator, civil_servant_disasters, disaster(bar_fire_volendam))
output(operator)|communication_from_to(operator, neighboring_building, disaster(bar_fire_volendam))

time 0 20 40 60 80 100 120 140 160 180 200

Fig.3. Partial trace of the Volendam case study

 Agent-Based Analysis and Support for Incident Management 123

Error detection itself is another related research field. In [3] behavioral properties
for a parallel computing system can be specified, and can be checked on the fly. The
properties are however specified as simple sequences of states, whereas the TTL
language as used in this paper has the ability to express timing parameters between
these states, often a necessity in incident management. In [5] properties for error
detection are specified by means of a finite state machine which again does not allow
for time parameter specification.

Acknowledgements

The authors wish to thank the anonymous reviewers for their useful comments and the
Dutch Ministry of Economic Affairs for funding this research. Finally, the authors
would like to thank the Netherlands Institute for Fire Service and Disaster
Management for sharing their expertise in the domain of incident management.

References

1. Boissier, O., Dignum, V., Matson, E., Sichman, J. (eds.), Proc. of the 1st Workshop From
Organizations to Organization Oriented Programming in MAS (OOOP), 2005.

2. Duin, M.J. van, Learning from Disasters (in Dutch), PhD Thesis, Leiden, 1992.
3. Fromentin, E., Raynal, M., Garg, V.K., and Tomlinson, A., On the Fly Testing of Regular

Patterns in Distributed Computations, Information Processing Letters 54:267-274, 1995.
4. Giorgini, P., Müller, J., Odell, J. (eds.), Agent-Oriented Software Engineering IV, LNCS,

vol. 2935, Springer-Verlag, Berlin, 2004.
5. Jard, C., Jeron, T., Jourdan, G.V., and Rampon J.X. “A general approach to trace-

checking in distributed computing systems”, In Proc. IEEE International Conference on
Distributed Ccomputing Systems, pp. 386-404, Poznan, Poland, June, 1994.

6. Jonker, C.M., Treur, J. Compositional verification of multi-agent systems: a formal
analysis of pro-activeness and reactiveness. International. Journal of Cooperative
Information Systems, vol. 11, 2002, pp. 51-92.

7. Ministry of the Interior, Investigation Bar Fire New Years Night 2001 (in Dutch), SDU
Publishers, The Hague, 2001.

8. Municipality of Amsterdam, Disaster Plan (in Dutch), 2003.
9. Reason, J., Human Error, Cambridge University Press, 1990.

10. Rossi, S., Busetta, P, Towards Monitoring of Group Interactions and Social Roles via
Overhearing, In: Klusch, M., Ossowski, S., Kashyap, V., and Unland, R. (eds),
Cooperative Information Agents VIII, LNAI 3191, Spinger-Verlag, pp. 47-61, 2004.

11. Storms, P.A.A., Combined Systems: A System of Systems Architecture, In: Proceedings
of ISCRAM 2004, pp. 139-144, May 2004, Brussels.

12. Walle, B. van, and Carle, B. (eds.), Proceedings of ISCRAM 2005, 2005.

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 124 – 137, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Distributed Agent Implementation of Multiple Species
Flocking Model for Document Partitioning Clustering

Xiaohui Cui and Thomas E. Potok

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6085

{Cuix, potokte}@ornl.gov

Abstract. The Flocking model, first proposed by Craig Reynolds, is one of the
first bio-inspired computational collective behavior models that has many
popular applications, such as animation. Our early research has resulted in a
flock clustering algorithm that can achieve better performance than the K-
means or the Ant clustering algorithms for data clustering. This algorithm
generates a clustering of a given set of data through the embedding of the high-
dimensional data items on a two-dimensional grid for efficient clustering result
retrieval and visualization. In this paper, we propose a bio-inspired clustering
model, the Multiple Species Flocking clustering model (MSF), and present a
distributed multi-agent MSF approach for document clustering.

Keywords: Swarm, Bio-inspired, Clustering, Agent, Flocking, VSM.

1 Introduction

Currently, more and more digital document data is being generated as part of the
ubiquitous and pervasive use of computing systems, information systems, and sensor
systems. It is a challenge to efficiently and effectively analyze this data. Clustering
analysis is a descriptive data mining task, which involves dividing a set of objects into a
number of clusters. The motivation behind clustering a set of data is to find inherent
structure inside the data and expose this structure as a set of groups [1]. The data objects
within each group should exhibit a large degree of similarity while the similarity among
different clusters needs be minimal [9]. Document clustering is a fundamental operation
used in unsupervised document organization, automatic topic extraction and information
retrieval. It provides a structure for organizing a large body of text for efficient browsing
and searching. There are two major clustering techniques: partitioning and hierarchical
[9]. Many document clustering algorithms can be classified into these two groups. In
recent years, it has been recognized that the partitioning techniques are well suited for
clustering a large document dataset due to their relatively low computational
requirements [18]. The best-known partitioning algorithm is the K-means algorithm and
its variants [17]. This algorithm is simple, straightforward and based on the firm
foundation of analysis of variances. One drawback of the K-means algorithm is that the
clustering result is sensitive to the selection of the initial cluster centroids and may
converge to the local optima, instead of the global one. The other limitation of the K-
means algorithm is that it generally requires a prior knowledge of the probable number

 A Distributed Agent Implementation of MSF Model 125

of clusters for a document collection. Therefore, there is a demand for more efficient
algorithms for document clustering.

New algorithms based on biological models, such as ant colonies, bird flocks, and
swarm of bees etc., have been invented to solve problems in the field of computer
science. These algorithms are characterized by the interaction of a large number of
agents that follow the same rules and exhibit complex, emergent behavior that is
robust with respect to the failure of individual agents. The Flocking model is one of
the first collective behavior models that have been applied in popular applications,
such as animation. In addition to being used to simulate group motion, which has been
used in a number of movies and games, The Flocking model has already inspired
researches in time varying data visualization [12, 20] and spatial cluster retrieval [6,
7]. In this paper, we propose a bio-inspired clustering model, the Multiple Species
Flocking clustering model (MSF), and present a distributed multiple agent MSF
approach for dynamic updated text clustering.

The remainder of this paper is organized as follows: Section 2 provides a general
overview of the basic Flocking model. A new multiple species flocking (MSF) model
is proposed and a MSF model clustering algorithm is described in section 3. In section
4, a Multi-Agent Scheme for Distributed Dynamic Document Clustering is presented.
Section 5 provides detailed experimental design, setup and results in comparing the
performance of the multi-agent implementation for clustering the dynamic updated
document collection on the cluster computer and a single processor computer. Section
6 describes the related works in the traditional and bio-inspired document clustering
area. The conclusion is in Section 7

2 Modeling of Flocking Behavior

Social animals or insects in nature often exhibit a form of emergent collective
behavior known as ‘flocking’. The Flocking model is a bio-inspired computational
model for simulating the animation of a flock of entities. It represents group
movement as seen in the bird flocks and the fish schools in nature. In this model, each
individual makes its movement decisions on its own according to a small number of
simple rules that it reacts to its neighboring members in the flock and the environment
it senses. These simple local rules of each individual generate a complex global
behavior of the entire flock. The basic Flocking model was first proposed by Craig
Reynolds [14], in which he called each individual as “boid”. This model consists of
three simple steering rules that each boid need to execute at each instance over time:
(1) Separation: Steering to avoid collision with other boids nearby; (2) Alignment:
Steering toward the average heading and match the velocity of the neighbor flock
mates (3) Cohesion: Steering to the average position of the neighbor flock mates.

As shown in Figure 1, in the circled area of Figure 1(a), 1(b) and 1(c), the boid’s
(located in the center of the small circle with grey background) behavior shows how a
boid reacts to other boids’ movement in its local neighborhood. The degree of locality
is determined by the range of the boid’s sensor (The semi-diameter of the big circle).
The boid does not react to the flock mates outside its sensor range because a boid
steers its movement based only on local information. These rules of Reynolds’s boid
flocking behavior are sufficient to reproduce natural group behaviors on the computer.

126 X. Cui and T.E. Potok

(a) Alignment (b) Separation (c) Cohesion

Fig. 1. The three basic rules in the boid

3 The Multiple Species Flocking (MSF) Model

Our early experiments [3] indicate these three rules in Reynolds’s flocking model will
eventually result in all boids in the simulation forming a single flock. It can not
reproduce the real phenomena in the nature: the birds or other herd animals not only
keep themselves within a flock that is composed of the same species or the same
colony creatures, but also keep two or multiple different species or colony flocks
separated. To simulate this nature phenomenon, we propose a new Multiple Species
Flocking (MSF) model to model the multiple species bird flock behaviors. In the MSF
model, in addition to these three basic action rules in the Flocking model, a fourth
rule, the feature similarity rule, is added into the basic action rules of each boids to
influence the motion of the boids. Based on this rule, the flock boid tries to stay close
to these boids that have similar features and stay away from other boids that have
dissimilar features. The strength of the attracting force for similar boids and the
repulsion force for dissimilar boids is inversely proportional to the distance between
the boids and the similarity value between the boids’ features.

In the MSF model, we use the following mathematical equations to illustrate these
four action rules for each boid:

Alignment Rule:

=≥∩≤
n

x
xarbxbx v

n
vdPPdPPd

1
),(),(21 . (1)

Separation Rule:

+
=≤

n

x bx

bx
srbx PPd

vv
vdPPd

),(
),(2 . (2)

Cohesion Rule:

−=≥∩≤
n

x
bxcrbxbx PPvdPPdPPd)(),(),(21 . (3)

Feature Similarity Rule:

−−
=

n

x bx

bx
ds PPd

PPTXBS
v

),(

)(*)),((
 . (4)

 A Distributed Agent Implementation of MSF Model 127

where var , vsr , vcr and vds are velocities driven by the four action rules,),(bx PPd is the

distance between boid B and its neighbor X, n is the total number of the boid B’s local
neighbors, vb and vx is the velocity of boid B and X, d1 and d2 are pre-defined

distance values and 21 dd ,
bx PP − calculates a directional vector point. S(B,X) is the

similarity value between the features of boid B and X. T is the threshold for
separating similarity and dissimilarity boids.

(a)

(b)

Fig. 2. Multiple species bird flocking simulation

To achieve comprehensive flocking behavior, the actions of all four rules are
weighted and summed to give a net velocity vector demanded for the active flock
boid.

dsdscrcrararsrsr vwvwvwvwv +++= . (5)

where v is the boid’s velocity in the virtual space and dddscrarsr wwwww ,,,, are pre-

defined weight values.
Figure 2 shows the result of our multiple species bird flock simulation by using

multiple agents system in which the MSF model is implemented in each simulation
agent. In this simulation, there are four different boid species and each species have
200 boids. We use four different colors, green, red, blue and black, to represent
different species. All together, 800 boids are simulated in the environment. At the
initial stage, each boid is randomly deployed in the environment as shown in Figure
2(a). Each color dot represents one boid agent. There is no central controller in the
simulation. Each boid agent can only sense other boids within a limited range and
move in the simulation environment by following these four action rules of the MSF
model. Although there is no intention for each boid to form a same species group and
to separate different species from each other, after several iterations, as shown in
Figure 2(b), the boids in the same species (shown as in same color) are grouped
together and different species are separated. This phenomenon represents an emergent
clustering behavior.

128 X. Cui and T.E. Potok

4 The MSF Clustering Algorithm

The MSF model could offer a new way to cluster datasets. We applied the MSF model
to developing a document collection clustering algorithm called MSF Clustering
algorithm. The MSF clustering algorithm uses a simple and heuristic way to cluster
input data, and at the same time, maps the data to a two-dimensional (2D) surface for
easy retrieval and visualization of the clustering result, processing both tasks
simultaneously. In the MSF clustering algorithm, we assume each document vector is
projected as a boid in a 2D virtual space. Each document vector is represented as a
feature of the boid. Following the simple rules in MSF model, each boid determines its
movement by itself in the virtual space. Similar to the bird in the real world, the boids
that share similar document vector features (same as the bird’s species and colony in
nature) will automatically group together and became a boid flock. Other boids that
have different document vector features will stay away from this flock. In this
algorithm, the behavior (velocity) of each boid is only influenced by the nearby boids.
The boid’s four MSF action rules react to this influence and generate the boid’s new
moving velocity. Although this influence on each bird is locally, the impacts on the
entire boid group is global. After several iterations, the simple local rules followed by
each boid results in generating a complex global behavior of the entire document flock,
and eventually a document clustering result is emerged.

We evaluated the efficiency of the MSF algorithm and the K-means algorithm on
document collection that includes 112 recent news articles collected from the Google
news. This news article collection has been categorized by human and manually
clustered into 11 categories. For the purpose of comparing, the Ant document
clustering [8] and the K-means clustering algorithms were implemented by Java
language and applied to the same real document collection dataset, respectively. The
K-means algorithm implementation was given the exact clustering result number as the
prior knowledge. Our early research [3] shows that the Ant clustering algorithm can
not come out any useful result if the algorithm only given a limited number of iteration
(300 iterations) for refining the result. In this experiment, each algorithm was given
100 fixed iterations to refine the clustering result and only the MSF clustering
algorithm and K-means algorithm can generate reasonable results. As shown in Figure
2(b), the clustering results generated by the MSF clustering algorithm can be easily
recognized by human eyes because of their visual characteristic. In our experiments,
the clustering result of the MSF clustering algorithm is retrieved by human looking at
the visual flock picture that generated by the virtual boids on the screen. We compared
the average results of these two algorithms from ten separate experiments. The results
of the clustering algorithm were evaluated by comparing it with the prior knowledge of
the classification of the document collection. The F-measure was used as the quality
measure. The results are listed in Table 1. The results indicate that the flocking
algorithm achieves better result compared to the K-means for document clustering
although the K-means algorithm has prior knowledge of the exact cluster number.

Table 1. Performance results of the K-means and MSF clustering algorithms

Algorithms Average cluster result number Average F-measure value
MSF 9.105 0.7913
K-means (11) 0.5632

 A Distributed Agent Implementation of MSF Model 129

5 Distributed Agent Implementation of MSF Clustering Algorithm

The MSF clustering algorithm can achieve better performance in document clustering
than the K-means and the Ant clustering algorithm. This algorithm can continually
refine the clustering result and quickly react to the change of individual data. This
character enables the algorithm suitable for clustering dynamic changed document
information, such as the text information stream. However, the computational
requirement for real-time clustering a large amount of text collection is high. In the
information society of today, tremendous amounts of text information are continuously
accumulated. Inevitably, the MSF clustering algorithm approach of using single
processor machine to cluster the dynamic text stream requires a large amount of
memory and a faster execution CPU. Since the decentralized character of this
algorithm, a distributed approach is a very natural way to improve the clustering speed
of this algorithm. In this paper, we present a distributed multi-agent based flocking
approach for clustering analysis of dynamic documents and balance the computation
load on cluster nodes.

5.1 Distributed Agent Scheme for Document Clustering

In the MSF clustering algorithm, the document parse, similarity measurement and boid
moving velocity calculation are the most computational consumption parts. The
distributed implementation can divide these computational tasks into smaller pieces that
may be scheduled to concurrently run on multiple processors. In order to achieve better
performance using distributed computing, several issues must be examined carefully
when designing a distributed solution. First is the load balance. It is important to keep
load balancing among processing nodes to make sure each node have approximately the
same workload. The environment state synchronization is the second issue need to be
considered. It is very important for a distributed implementation to develop a
synchronization algorithm, which is capable of maintaining causality. Third is reducing
the communication between nodes, including communication overhead of the
environment state synchronization and control of message exchange between nodes.
Based on these requirements, we developed a distributed agent based implementation of
the MSF clustering algorithm for clustering analysis of the text datasets. In this
distributed agent based implementation, boids are modeled and implemented in terms of
agents, which makes boids pro-active, adaptive and communicable. The distributed
agent based implementation supports distributed load balance in a very natural way.
Since each boid agent is implemented to perform document retrieval, parse, similarity
comparison and moving velocity calculation independently, it is straight-forward to
have different agents run on different machines to achieve a load balance. Since agent
can be added, removed or moved to other machine without interrupting other agent’s
running, the system can be scalability and pro-activity to the change of work load.

One major concern in designing this distributed agent based MSF implementation
is how to ensure agents be synchronized at any time when they must interact or
exchange data. In a distributed system, environment information is spread out among
the processors involved in the system. An agent doesn’t know other agent’s
information if it is not informed, it has to commute with other agents to collect
enough information, does an exhaustive search to find out which agents are located

130 X. Cui and T.E. Potok

within its range, and calculates the force that it is pushed to travel based on it’s
neighbor agents’ information. All these require that each agent in the system have a
global view of other agents’ status information. As such, it is necessary to develop a
communication schemes to update the agent’s information on different processors.
One easy communication scheme is broadcast. As shown in Figure 3(a), each agent in
the system broadcast its status information to all other agents wherever they are
located in the same node or different nodes. Each agent will also use the information
it received from other agents’ broadcast to find out its neighbor boid mates and
calculate the next moving velocity. In this scheme, each agent has a global view of the
entire system status. However, the broadcast will use so much bandwidth that makes
the network bandwidth in a computer cluster become a bottleneck of the system when
the agent number increased. In this report, we proposed an environment status sharing
scheme by using location proxy agent. As shown in Figure 3(b), there is a location
proxy agent on each node. Each agent will only inform its status to the location proxy
agent in the same node. The agent also inquires the location proxy agent to find out its
neighbor mates. At every time step, after collecting the status of all agents that located
in the same host, location proxy agents will broadcast this information to other proxy
agents that located on different nodes, which enable the location proxy agent on each
node to have global view of the whole system.

(a) Broadcast

(b) Location Proxy

Fig. 3. The architectures of different communication schemes

5.2 Datasets

The document dataset used in this study is derived from the TREC-5, TREC-6, and
TREC-7 collections [10] and represented as a set of vectors X={x1, x2, …., xn}, where
the vector xi corresponds to a single object and is called “feature vector” that contains
proper features to represent the object. The feature value is represented using the
Vector Space Model (VSM) [16]. In this model, the content of a document is
formalized as a point in a multi-dimensional space and represented by a vector x, such

as x= },.....,{ 21 nwww , where wi(i = 1,2,…,n) is the term weight of the term ti in one

document. The term weight value wi represents the significance of this term in a
document. To calculate the term weight, the occurrence frequency of the term within
a document and in the entire set of documents needs to be considered. The most

 A Distributed Agent Implementation of MSF Model 131

widely used weighting scheme combines the Term Frequency with Inverse Document
Frequency (TF-IDF) [15]. The TF-IDF weight wij of term i in document j is given in
following equation:

)(log*)1(log* 22
ji

jijijiji df

n
tfidftfw +== . (6)

Where tfji is the number of occurrences of term i in the document j; dfji indicates the
term frequency in the document collections; and n is the total number of documents in
the collection.

Calculation of the TF-IDF weight value needs the knowledge of word frequency in
the entire document collection and the total number of documents in the collection. If
a single document is added or removed from the document collection, the TF-IDF
scheme will need recalculate the TF-IDF value of all documents processed. It is
difficult to use the TF-IDF scheme to convert streaming textual information into
vectors. To address these issues, a modified TF-IDF scheme, Term Frequency /
Inverse Corpus Frequency (TF-ICF) [13], is adopted to calculate the term weight
value of each term in the document vector. In TF-ICF scheme, the TF portion is same
as the TF portion in TF-IDF. The IDF calculation that uses document collection in
TF-IDF is replaced with information gathered from a large, static corpus of
documents in TF-ICF. The corpus includes more than 250,000 documents that contain
almost all of the typically used English words. The weight wij of term i in the
document j can be calculated by the following TF-ICF equation:

())
1

1
(log*1log 22 +

++=
i

jiji C

n
tfw . (7)

where Ci is the number of documents in the corpus C where term i occurs.
Before translating the document collection into TF-ICF VSM, the very common

words (e.g. function words: “a”, “the”, “in”, “to”; pronouns: “I”, “he”, “she”, “it”) are
stripped out completely and different forms of a word are reduced to one canonical
form by using Porter’s algorithm [11].

As we indicated in the previous session, the nature of the MSF clustering algorithm
enable the algorithm continually refine the clustering results and quickly react to the
change of the document contents. This character makes the algorithm suitable for
cluster analyzing dynamic changed document information. In this report, the
performance of these algorithms on clustering dynamic updated document collections
is studied. To simulate the dynamic updated document collection, the document
vector of each agent is periodically updated with a new document vector and the old
document vector is considered as expired. To easily compare the performance of
different scenario, in this study, each agent’s document feature will be updated for ten
times during the entire life of the system execution. In each experiment, the system
will run 1000 cycles and the average document update gap is 100 time-steps.

5.3 Multi-agent Platform

The distributed MSF clustering algorithm is implemented on a (Java Agent
DEvelopment Framework (JADE) agent platform. JADE is a software framework

132 X. Cui and T.E. Potok

fully implemented in the Java language and is a FIPA compliant agent platform. As a
distributed agent plate form, the JADE agent can be split on several hosts. The OS on
each host is not necessary same. The only required environment is a Java virtual
machine (JVM). Each JVM is a basic container of agents that provide a complete run
time environment for agents and allow several agents to concurrently execute on the
same container, JVM.

5.4 Experimental Design and Results

The simulation experiment in this study is to illustrate the performance enhancement
by comparing the run time of executing the MSF clustering distributed agent
implementation on a three-node cluster machine and a single processor machine.

In the MSF clustering distributed agent implementation, each boid is implemented
as a Jade agent. Each agent has the ability to calculate its moving velocity based on the
four actions rules as we discussed in the previous session. Each agent carries a feature
vector representing a document vector. The environment used in the experiment
consists of a continuous 2D plane, in which boid are placed randomly on a grid within
a 4000×4000 squire unit area. All experiments were carried out on an experiment
Linux computer cluster machine. The cluster machine consists of one head node,
ASER and three cluster nodes, ASER1, ASER2, and ASER3, which are connected
with a Gigabit Ethernet switch. Each node contains a single 2.4G Intel Pentium IV
processor and 512M memory. To compare the performance, we utilize a starter agent
that initiates the boid agent process and measures time. The running times for different
number of agents is recorded using java’s System.currentTimeMillis() method and the
unit is milliseconds.

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25 30 35 40 45

The number of agents

T
im

e
(m

s)

1 container 2 containers

Fig. 4. The running time for boid agents deployed in one JADE container and two JADE
containers

 A Distributed Agent Implementation of MSF Model 133

JADE allows multiple JADE containers (JVM) running on the same host while
agents can be deployed in different containers. Our preliminary experiment is to test
the performance impact when the boid agents running in multiple JADE containers.
The running time of a different number of boid agents executed in one container or
two containers are measured and recorded, separately. The experiment result is shown
in Figure 4. As shown in this figure, the running time for the same amount of agents
in a single container is much less than that in two containers. The main reason is that
the communication between agents located in different JADE containers is much
slower than the communication between agents located in the same JADE container.
To reduce the communication delay, in the following experiments, all agents located
in same host are assigned in the same container. At the same time, to reduce the
impact of the JADE system computational requirement, in all simulation experiments,
the main JADE system container runs on the head node of the cluster, which is not
counted in the simulation nodes. Every simulation experiment will be executed for ten
times. Reported results are the average time over 10 simulation runs of 1000 cycle
each. The running time does not include the time for starting and finishing agents. It
only counts the time consumed during boid agents start moving in the 2D space and
stop moving after 1000 cycles.

(a)

(b)

Fig. 5. The architecture of the single processor model and the distributed model

134 X. Cui and T.E. Potok

In the single processor model, all boid agents are executed on one cluster node. In
the distributed model, the boid agents are equally distributed on three nodes, each
node has one location proxy agent to collect the agent position and the location proxy
agent on each node will exchange agent position information at every step. The
architecture of the single processor model and the distributed model are represented in
Figure 5(a) and 5(b), respectively. Different numbers of boid agents are tested on both
simulation and the boid agent’s execution time to finish 1000 circle is recorded.
Because the distributed model requires three processes to simulate the document
clustering, the time is the average time consumption for all agents running on
different node after 1000 cycles. The experiment results are shown in Figure 6. The
“Three nodes” curve line in Figure 6 indicates the time consumption of the document
clustering simulation executed on the three nodes cluster machine. The “One node”
curve line indicates the time consumption of the document clustering simulation
executed on the single node machine.

0

500000

1000000

1500000

2000000

0 50 100 150 200

The number of agents

R
un

ni
ng

 ti
m

e
(m

s)

Three nodes One node

Fig. 6. The running time for 3 node cluster machine and one single processor machine

As shown in Figure 6, when the number of agents is 30, there is no significant
difference on consumption time between the three node cluster machine and the single
processor machine. When the number of agents is more than 60, it takes the three
node cluster machine much less time than the single node machine. Before the total
boid agent number reach 120, the three nodes simulation didn’t cut the total running
time into one third of the total time of the single node machine because of the
communication overhead when location proxy agent updating status with other
location proxy agents located on the other nodes. However, the running time
consumption on the single node machine increases faster than that on the three node
machine. Once the total boid agent number researches 120, the time required for
running on the single node machine is more than three times of that on the three node
machine. One possible reason is each node having limited memory (512M). In single
node model, when more than 120 agents running on single node, depending on the
documents that these agents represent, the memory requirement for the simulation

 A Distributed Agent Implementation of MSF Model 135

may be larger than the actual memory of the computer node, which cause the
computer system use the virtual memory (hard disk space) and the time requirement
for finishing the simulation is largely increased. In the distributed model, the boid
agents are evenly deployed on three different cluster nodes. Each node only have one
third of the total boid agents and the memory requirement is related smaller than
single node model. This will avoid the agent system exceed the node’s physical
memory limitation.

6 Related Works

To deal with the limitations existed in the traditional partition clustering methods, in
recent years, a number of computer scientists have proposed several approaches
inspired from biological collective behaviors to solve the clustering problem, such as
Genetic Algorithm (GA) [2], Particle Swarm Optimization (PSO) [4, 19], Ant
clustering [8, 22] and Self-Organizing Maps (SOM) [21]. Within these clustering
algorithms, the Ant clustering algorithm is a partitioning algorithm that does not
require a prior knowledge of the probable number to clusters or the initial partition.
The Ant clustering algorithm was inspired by clustering of corpses and eggs observed
in the real ant colony. Deneubourg et al [5] proposed a “Basic Model” to explain the
ants’ behavior of piling corpses and eggs. In their study, a population of ant-like
agents randomly moved in a 2D grid. Each agent only follows one simple rule:
randomly moving in the grid and establishing a probability of picking up the data
object it meets if it is free of load or establishing a probability of dropping down the
data object if it is loading the data object. After several iterations, a clustering result
emerges from the collective activities of these agents. Wu [22] and Handl [8]
proposed the use of the Ant clustering algorithms for document clustering and
declared that the clustering results from their experiments are much better than those
from the K-means algorithm. However, in the Ant clustering algorithm, clustered data
objects do not have mobility by themselves. The movements of data objects have to
be implemented through the movements of a small number of ant agents, which will
slow down the clustering speed. Since each ant agent, carrying an isolated data object,
does not communicate with other ant agents, it does not know the best location to
drop the data object. The ant agent has to move or jump randomly in the grid space
until it finds a place that satisfies its object dropping criteria, which usually consumes
a large amount of computation time. In this paper, we present a novel MSF clustering
approach for document clustering analysis. Similar as the Ant clustering algorithm,
the MSF clustering algorithm is a partitioning algorithm and does not require a prior
knowledge of the cluster number in the datasets. It generates a clustering of a given
set of data through projecting of the high-dimensional data items on a two-
dimensional grid for easy retrieval and visualization of the clustering result. However,
the MSF clustering algorithm is more efficient than the Ant clustering algorithm
because each document object in the collection is projected as an agent moving in a
virtual space, and each agent’s moving activity is heuristic as opposed to the random
activity in the Ant clustering algorithm.

136 X. Cui and T.E. Potok

7 Conclusion

In this study, we proposed a new multiple species flocking (MSF) model and
presented a distributed multi-agent approach for the MSF clustering algorithm. In this
algorithm, each document in the dataset is represented by a boid agent. Each agent
follows four simple local rules to move in the virtual space. Agents following these
simple local rules emerge complex global behaviors of the whole flock and eventually
the agents that carrying document belong to the same class will gradually merge
together to form a flock. All agents are evenly deployed on different nodes in a
distributed computing environment for load balancing purposes. On each node, a
location proxy agent is introduced for maintaining the agents’ location and
synchronizing the status between nodes in the cluster machine.

The advantage of the MSF clustering algorithm is the heuristic principle of the
flock’s searching mechanism. This heuristic searching mechanism helps bird agents
quickly form a flock and reactive to the change of any individual document. Since the
bird agent in the algorithm continues fly in the virtual space and join the flock it
belongs to, new results can be quickly re-generated when the information stream is
continually feed into the system.

Acknowledgments. Prepared by Oak Ridge National Laboratory, P.O. Box 2008,
Oak Ridge, Tennessee 37831-6285, managed by UT-Battelle, LLC, for the U.S.
Department of Energy under contract DE-AC05-00OR22725.

References

1. Anderberg, M.R.: Cluster Analysis for Applications. Academic Press, Inc., New York
(1973)

2. Casillas, A., De Gonzalez Lena, M.T., Martinez, R.: Document clustering into an
unknown number of clusters using a genetic algorithm. 6th International Conference, TSD
2003, Sep 8-12 2003, Vol. 2807. Springer Verlag, Heidelberg, D-69121, Germany, Ceske
Budejovice, Czech Republic 43-49

3. Cui, X., Gao, J., Potok, T.E.: A Flocking Based Algorithm for Document Clustering
Analysis. Journal of System Architecture (2006)

4. Cui, X., Potok, T.E.: Document Clustering Analysis Based on Hybrid PSO+K-means
Algorithm. Journal of Computer Sciences Special Issue (2005) 27-33

5. Deneubourg, J.L., Goss, S., SendovaFranks, N., Detrain, C., Chretien, L.: The dynamics of
collective sorting robot-like ants and ant-like robots. Proceedings of the first international
conference on simulation of adaptive behavior on From animals to animats. MIT Press,
Cambridge, MA, USA 356-363

6. Folino, G., Forestiero, A., Spezzano, G.: Discovering clusters in spatial data using swarm
intelligence. 7th European Conference, ECAL 2003, Sep 14-17 2003, Vol. 2801. Springer
Verlag, Heidelberg, Germany, Dortmund, Germany 598-605

7. Folino, G., Spezzano, G.: Sparrow: A Spatial Clustering Algorithm using Swarm
Intelligence. 21st IASTED International Multi-Conference on Applied Informatics, Feb
10-13 2003, Vol. 21. Int. Assoc. of Science and Technology for Development, Calgery -
Alberta, T3B OM6, Canada, Innsbruck, Austria 50-55

 A Distributed Agent Implementation of MSF Model 137

8. Handl, J., Knowles, J., Dorigo, M.: Ant-based clustering and topographic mapping.
Artificial Life 12 (2006) 35-61

9. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys
31 (1999) 264-323

10. NIST: TREC (Text Retrieval Conference). http://trec.nist.gov (1999)
11. Porter, M.F.: An algorithm for suffix stripping. Program 14 (1980) 130-137
12. Proctor, G., Winter, C.: Information flocking: data visualisation in virtual worlds using

emergent behaviours. Virtual Worlds First International Conference, VW'98 Proceedings,
1-3 July 1998. Springer-Verlag, Paris, France 168-176

13. Reed, J.: TF-ICF: A New Term Weighting Scheme for Clustering Dynamic Data Streams.
Technical Report. Oak Ridge National Laboratory (2006)

14. Reynolds, C.W.: Flocks, Herds, and Schools: A Distributed Behavioral Model. Computer
Graphics (ACM) 21 (1987) 25-34

15. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Information Processing & Management 24 (1988) 513-523

16. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Cornell
Univ., Ithaca, NY, USA (1974) 34

17. Selim, S.Z., Ismail, M.A.: K-Means-Type Algorithms: A Generalized Convergence
Theorem and Characterization of Local Optimality. IEEE Transactions on Pattern
Analysis and Machine Intelligence PAMI-6 (1984) 81-87

18. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques.
KDD Workshop on Text Mining

19. Van D. M., D.W., Engelbrecht, A.P.: Data clustering using particle swarm optimization.
2003 Congress on Evolutionary Computation, 8-12 Dec. 2003, Vol. Vol.1. IEEE,
Canberra, ACT, Australia 215-220

20. Vande Moere, A.: Information flocking: time-varying data visualization using boid
behaviors. Proceedings. Eighth International Conference on Information Visualization, 14-
16 July 2004. IEEE Comput. Soc, London, UK 409-414

21. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on
Neural Networks 11 (2000) 586-600

22. Wu, b., Shi, Z.: A clustering algorithm based on swarm intelligence. 2001 International
Conferences on Info-tech and Info-net. Proceedings, 29 Oct.-1 Nov. 2001, Vol. vol.3.
IEEE, Beijing, China 58-66

Coverage Density as a Dominant Property of
Large-Scale Sensor Networks

Osher Yadgar1 and Sarit Kraus2

1 SRI International, 333 Ravenswood Avenue Menlo Park, CA 94025-3493, USA
yadgar@ai.sri.com

2 Bar Ilan University, Ramat Gan, Israel
sarit@cs.biu.ac.il

Abstract. Large-scale sensor networks are becoming more present in
our life then ever. Such an environment could be a cellular network, an
array of fire detection sensors, an array of solar receptors, and so on. As
technology advances, opportunities arise to form large-scale cooperative
systems in order to solve larger problems in an efficient way. As more
large-scale systems are developed, there is a growing need to (i) measure
the hardness of a given large-scale sensor network problem, (ii) compare
a given system to other large-scale sensor networks in order to extract a
suitable solution, (iii) predict the performance of the solution, and (iv)
derive the value of each system property from the desired performance
of the solution, the problem constraints, and the user’s preferences.

The following research proposes a novel system term, the coverage
density, to define the hardness of a large-scale sensor network. This term
can be used to compare two instances of large-scale sensor networks in
order to find the suitable solutions for a given problem. Given a coverage
density of a system, one may predict the solution performance and use
it jointly with the preference and the constraints to derive the value of
the system’s properties.

1 Introduction

On December 2, 2004, tsunami waves hitting the shores of Sri Lanka, India,
Indonesia, and Thailand caused a loss of 300,000 lives and a tremendous tragedy
for millions. Using current technology, sensors in the ocean could have sensed the
creation and advancement of tsunami waves. A well-organized and well-managed
network of such sensors using wireless communication could have produced an
alarm that would have alerted control centers spread along the shores of the four
countries. This alarm could have saved the lives of many of the victims. Studying
the role of the different properties of such large-scale agent systems and tuning
them according to the system constraints is in the core of this work. We will
refer to large-scale agent systems capable of sensing objects as large-scale sensor
networks.

Large-scale agent systems focus on the behavior of multiagent systems with
many agents. As this is a relatively new research area, the number of agents

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 138–152, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Coverage Density as a Dominant Property of Large-Scale Sensor Networks 139

needed to consider a multiagent system as a large-scale agent system has not
yet been defined [28]. It became clear to us that researchers do not tend to refer
to scale of large scale agent system by means other than the number of agents.
Researchers may discuses system properties, but never include them as part of
their large scale agent system definition. We claim that this system property
is misleading. In this paper we prove that claim and suggest a better system
property. We will introduce the coverage density and will show how this large-
scale sensor network property can be used to predict the performance of a given
instance of a large-scale agent system capable of sensing objects.

In the next section we survey related work. We will then introduce the coverage
density term as a tool for classifying large-scale sensor network. Next we will
demonstrate how to use the coverage density to predict the performance of a
large-scale sensor network and to choose the values of the system properties. A
simulator based on our previous work on large-scale sensor networks’ architecture
and challenges will be introduced. We will then report simulation results of a
total of 50 years of CPU time examining hundreds of thousands of different
agents and goals. We will conclude by showing how these results establish our
claim that coverage density is a dominant property of large-scale sensor networks.

2 Related Work

Focusing on the number of agents forming large-scale agent system, the research
community holds different opinions about how many agents may form a large-
scale agent system. In some cases, thousands of agents are considered to be a
large-scale agent system [7], [22], while in other cases hundreds compose such a
system [3], [4], [23], [24] and there are even cases where only dozens of agents
are considered to be a large-scale system [13].

We suggest that certain large-scale agent systems, i.e. large-scale sensor net-
works, should be measured relative to their context, such as the size of their
problem space, and not simply by the number of participating agents.

Recent technology has made small low-cost devices available to build sen-
sor networks [5], [8], [9], [10], [11], [27]. Wireless sensor networks benefit from
technology advances in micro-electro-mechanical systems (MEMS) [25]. These
advances have facilitated the development of low-cost simple wireless sensors.
Combining the information gathered from thousands of such sensors is a very
difficult problem [12]. However, solving this problem may lead to an efficient way
of producing global information. As we have witnessed, such information could
save lives. We will use the coverage density property to support this technologi-
cal development. Coverage density may be used to (i) measure the hardness of a
given large-scale sensor network problem, (ii) compare a given system to other
large-scale sensor networks in order to extract a suitable solution, (iii) predict
the performance of the solution, and (iv) derive the value of each system prop-
erty from the desired performance of the solution, the problem constraints, and
the user’s preferences.

140 O. Yadgar and S. Kraus

The term sensor coverage is traditionally used to denote the effectiveness of
a sensor network [1], [15], [16], [17], [18], [14], [26]. Previous studies have shown
that increasing the The sensor coverage increases the number of tracked objects.
Gage [6] defines the coverage as a ”spatial relationship that adapts to specific
local conditions to optimize the performance of some function”. Gage distin-
guishes between three basic types of coverage behavior: blanket coverage, where
the objective is to achieve a static arrangement of sensors that maximizes the
detection rate of targets appearing within the coverage area; barrier coverage,
where the objective is to achieve a static arrangement of sensors that minimizes
the probability of undetected targets passing through a barrier; and sweep cov-
erage, where the objective is to move a group of elements across a coverage area
to balance between maximizing the detection rate and minimizing the number of
missed detections. Gage specifies that a sweep is equivalent to a moving barrier.
The coverage density is different from the sensor coverage. The coverage density
considers the many properties of a given system and is related to the problem
space and time as well as to single-agent characteristics, while sensor coverage
is related only to the geometrical alignment of the sensors.

3 The Coverage Density

Many properties influence the-scale and the hardness of a given problem. When
designing a solution for a large-scale sensor network problem the different aspects
of the system’s properties should be considered. Properties such as the number
of agents and the quality of the sensors, may be related to each other. For
instance, given a limited budget, the system designer should consider whether
to use many cheap sensors or a small number of expensive sensors. A classifying
tool, the coverage density, is proposed to classify large-scale sensor networks and
to predict the performance of different property configurations. This predicting
tool can be used to design the system in order to meet imposed constraints such
as budget limitations, battery supply, or technological constraints. The coverage
density defines the time it takes to cover an area equal to the size of the controlled
zone. The following definition formalizes this notation:

Definition 1. i. let A be a set of n agents such that A =
⋃

i∈N ai whereas
N = {0, 1, ..., n− 1}.

ii. let wai(t) be the area covered by the sensor of agent ai at a given time t.
The agent may detect objects in this area at time t.

The measurement units of the area are square meters.
iii. Let agent coverage, wai , be the average area covered by the sensor of agent

ai such that wai = wai
(t)·dt

dt
.

The measurement units of the agent coverage are square meters
second .

iv. Let total coverage, WA, be the average area covered by the sensors of all
the agents such that WA =

∑n−1
0 wai .

The measurement units of the total coverage are square meters
second .

Coverage Density as a Dominant Property of Large-Scale Sensor Networks 141

v. Let Z be the size of the controlled area.
vi. Coverage density ρ is the total coverage divided by the size of the controlled

area such that ρ = WA

Z .
The measurement units of the coverage density, ρ, are 1

second .

The coverage density denotes the amount of the controlled area that can be
covered rather than the area that is actually covered. There may be an overlap
of agent coverage such that, for example, a value of 100% coverage density does
not reflect coverage of all the controlled area. A coverage density of 100% will
result in full coverage only when the sensors have no overlapping coverage. We
do not require such a constraint in sensor alignment.

4 Using the Coverage Density

To examine the role of the coverage density on large-scale sensor networks we
used our hierarchical large-scale agent system architecture, the Distributed Dis-
patcher Manager (DDM) [19], [20], [21], and applied it to the Autonomous Ne-
gotiating Teams (ANTs) [2] problem.

4.1 The DDM Hierarchy

The DDM is designed for efficient coordinated resource management in large-
scale agent systems; the model makes use of a hierarchical group formation to
restrict the degree of communication between agents and to guide processes in or-
der to very quickly combine partial information to form a global assessment. Each
level narrows the uncertainty based on the data obtained from lower levels. DDM
organizes the sensing agents in teams, each with a distinguished team leader
agent. A team is assigned to a specific sector of interest. Each such agent can act
autonomously within its assigned sector of interest while processing local data.
Teams are themselves grouped into larger teams. Communication is restricted
to flow only between an agent (or team) and its team leader agent. Each team
leader is provided with an algorithm to integrate information obtained from its
team members. Each individual information-collecting agent can extend its local
information through the application of causal knowledge. The causal knowledge
may be inaccurate and noisy, and therefore it only constrains the set of possible
solutions that could be associated with a collection of data measurements.

In some cases naive distribution of thousands of agents will not be efficient,
thus a load balancing mechanism may be required. Therefore, a load balancing
mechanism is applied to the hierarchical architecture of the DDM. This mech-
anism dynamically balances the ratio between agents and goals throughout the
controlled area. While applying the load balancing mechanism, the DDM strives
to balance the ratio between agents and goals in each hierarchy level from the
top down. Each level directs only its immediate subordinate level. The directed
level, then, directs its own immediate subordinate level and so on. We will re-
fer to DDM activating the load balancing algorithm as LB and to DDM not
activating the load balancing algorithm as NLB.

142 O. Yadgar and S. Kraus

4.2 The ANTs Challenge

We developed a simulator to study large-scale problems associated with the ap-
plication of DDM. The ANTs challenge [2] was chosen as the test case of DDM,
and simulated Doppler radars were selected as sensors. The key task of the ANTs
challenge is to detect and track moving objects while using low-cost hardware.
The simulation consists of an area of a fixed size in which Doppler sensors at-
tempt to extract the object state functions of moving targets. Doppler sensors
are attached to mobile agents named samplers. The ANTS program uses Doppler
sensors that may activate its beam in three different directions. According to the
ANTS specific Doppler radar, only one direction may be activated at a time. The
orientations of the beams are 0, 120 and 240 degrees. Each of these sensors may
move and spin around its center. Given a measurement of a Doppler radar the
target is located based on the following equation:

R2
i =

k · e
−(θi−β)2

σ

ηi
(1)

Where, for each sensed target, i, Ri is the distance between the sensor and i; θi

is the angle between the sensor and i; ηi is the measured amplitude of i; β is the
sensor beam angle; and k and σ are characteristics of the sensors and influence
the shape of the sensor detecting area.

A sampler agent may sense targets only when it is not moving. While sensing,
a sampler agent may detect targets located within a short distance from it.
We refer to this distance as the range of interaction. The number of sampler
agents, the time spent on detection versus the time spent on movement, and the
range of interaction characterize the system. As we will see, these characteristics
determine the quality of the solution. Balancing these characteristics results in
a desired system quality under given limitations, such as budget.

5 Experiments

One hundred and fifty different personal computers running Windows XP, Win-
dows 2000, and Linux operating systems were used to simulate hundreds of
scenarios for four consecutive months. Each scenario simulated 7 days of target
tracking. A total of 50 years of CPU time were logged, examining hundreds of
thousands of different agents and goals.

While using the basic settings (Table 1) we simulate a 400,000,000 square
meter area. In this area, agents track moving targets. At a given time 1,000
targets are moving in the area. In total, during 7 days, 13,635 targets enter and
exit the controlled area at any given time. Each target has an initial random
location along the border and an initial random velocity as high as 50 kilometers
per hour in a direction that leads inward. Targets leave the area when reaching
the boundaries of the area. Each target that leaves the area causes a new target
to appear at a random location along the border and with a random velocity in

Coverage Density as a Dominant Property of Large-Scale Sensor Networks 143

Fig. 1. Simulation of two sensors

a direction that leads inward. Therefore, each target may remain in the area for
a random time period.

There are 5,000 Doppler agents and each of them contains a Doppler with a
beam range of 50 meters. Since the Doppler beam is essentially a circle while
the range of interaction is its diameter (Figure 1), the area covered by the beam
is 1,963 square meters. Every Doppler senses targets for 10 seconds and then
moves for 5 seconds. That is, on the average, the agent coverage , wai , is 1,309
(m2

s). Using 5,000 similar Dopplers leads to a total coverage, WA, of 6,544,985
(m2

s). Dividing the total coverage by the size of the controlled zone results in a
coverage density of 1.64%. In each experiment, we vary one of the parameters of
the environment, keeping the other values of the environment parameters as in
the basic settings.

As stated earlier, the coverage density ρ characterizes the size of a given large-
scale sensor network problem. As ρ decreases, the size of the problem increases.
In the following sections we present a study on the properties that affect ρ.
We will show how different sets of properties, having similar coverage density
values, achieve similar results. We will establish a strong correlation between
the coverage density and system performance as opposed to the other properties,
such as the number of agents.

We will begin studying the coverage density by changing the number of sensing
agents. As the number of sensing agents increases, the coverage density grows
(Table 2 - left). The number of sensing agents not only influences the coverage

144 O. Yadgar and S. Kraus

Table 1. Experiment basic settings

Z (m2) 400,000,000

Agent properties

Range of
interaction (m) 50

Sensing time (sec) 10

Moving Time (sec) 5

wai(t) when sensing (m2) 1,963

wai(t) when moving (m2) 0

wai (m2

sec
) 1,309

Number of agents 5,000

WA (m2

sec
) 6,544,985

ρ (1
sec) 1.64%

density but also holds an important role in distributing the solution and reducing
the computation load. We will show that up to a certain point, decreasing the
coverage density by reducing the number of agents slightly affects the amount of
tracked targets. In our load balancing algorithm case, having only 3,000 agents,
which is a coverage density of 0.98%, yields results almost equivalent to the
results of situations with a much larger number of agents. Having only 3,000
agents moderately reduces the tracked target percentage in comparison to not
using the load balancing algorithm. Using fewer agents will reduce the tracked
target percentage more dramatically. After focusing on the impact that changing
the quantity of agents has on the system, we proceeded to study the impact of
changing the quality of the sensor agents.

The range of interaction in the basic settings was 50 meters. In the following
section we compare the behavior of DDM while using sensors with different
ranges of interaction. This range reflects the complexity and the cost of the
sensors. As the range of interaction increases, the sensor is likely to be more
complex and expensive. Therefore, there may be an interest in using sensors
with smaller ranges of interaction. However, decreasing the range of interaction
increases the coverage density and therefore increases the scale of the problem.
We will show how decreasing the coverage density by reducing the range of

Coverage Density as a Dominant Property of Large-Scale Sensor Networks 145

Table 2. How changing one property while keeping the other as in the basic settings
influences the coverage density

Agent population Range of interaction Moving vs. sensing time
value ρ value ρ value ρ

1000 0.33% 13 0.11% 2:1 0.82%

2000 0.65% 25 0.41% ∗ 1:2 1.64%

3000 0.98% ∗ 50 1.64%

4000 1.31% 100 6.54%

∗ 5000 1.64% 200 26.18%

7000 2.30%

8000 2.63%

9000 2.95%

∗ belongs to the basic settings

interaction influences DDM performance with and without the load balance
algorithm (Table 2 - middle).

The next property affecting the coverage density is the ratio between the
sensing time and the moving time (Table 2 - right). As in the range of interaction,
the ratio affects the cost of using DDM. Activating the sensor for longer periods
of time is likely to cost more if the energy of producing the electromagnetic beam
is expensive. On the other hand, a more mobile sensor may cost more if the fuel
needed to drive a sensor around the controlled zone is expensive. Activating the
sensor for longer periods of time at the expense of movement time decreases the
coverage density and therefore reduces the scale of the problem. We will show
that this period of time influences the performance of DDM with and without
the load balancing mechanism. We will also show how to compensate for using
simple and less expensive sensors by increasing the period of the sensing time.

6 Results

In the following sections we will show that system performance is strongly cor-
related to the coverage density rather than to the number of agents, the range of
interaction, and the sensing/moving time. In Figures 2 ,3 ,4 the coverage density
value is included below the X axis in parentheses. Results of DDM applying load
balancing are in black, while DDM without load balancing is in gray. The results
of the basic setting are denoted in bold symbols.

146 O. Yadgar and S. Kraus

6.1 Agent Population

We investigated the influence of the coverage density through changing the num-
ber of sensor agents. During this investigation we ran different scenarios. Each
scenario had the same properties (see Table 1) with a different number of sensor
agents. In the first scenario, there were 1,000 agents; in the second, 2,000 agents;
in the third, 3,000 agents; in the fourth, 4,000 agents; in the fifth, 5,000 agents;
in the sixth, 7,000 agents; in the seventh, 8,000 agents; and in the eighth, 9,000
agents. The coverage densities of the scenarios were 0.33%, 0.65%, 0.98%, 1.31%,
1.64%, 2.30%, 2.63%, and 2.95%, respectively, whereas the basic setting trial had
a coverage density of 1.64%.

Fig. 2. Tracking percentage as a function of the number of agents

Following Figure 2, one can see an improvement in performance as the number
of agents increases. Note that an increment of the number of agents reflects a
corresponding increment of the coverage density (Table 2). The improvement
is achieved regardless of whether the a load balancing mechanism is used. The
results show that the system can efficiently utilize additional resources. However,
the improvement is significant only up to a certain number of agents. For NLB
it is 7,000 agents and for LB it is 4,000. In the next paragraphs we will show
that the major influence on the system performance is the coverage density and
not just the number of agents.

6.2 Range of Interaction

Another property influencing the coverage density is the sensor maximum range
of interaction. In this part of the study we varied the range of interaction and
compared the performance with and without load balance. In different settings,
the maximum detection range of each sensor was 13, 25, 50,100, and 200 meters.
This translates to coverage densities of 0.11%, 0.41%, 1.64%, 6.54%, and 26.18%,
respectively.

Coverage Density as a Dominant Property of Large-Scale Sensor Networks 147

Fig. 3. Tracking percentage as a function of the range of interaction

In Figure 3 one can see that the system performs better as the range of inter-
action increases. That may be explained by the fact that each sensor may detect
more targets as its range increases. Once again, the improvement is presented
for both NLB and LB cases and is significant up to a certain point. We can
see that keeping the number of agents constant does not imply that the perfor-
mance of the system will stay constant. However, as in the case of the number
of agents, increasing the range of interaction reflects a corresponding increment
of the coverage density (Table 2). We can see that in both cases increasing the
coverage density leads to better performance.

6.3 Sensing and Moving Time

In the basic settings each agent repeats the following activities: (i) it senses
targets for 5 seconds and then (ii) it moves for 10 seconds. The ratio between

Fig. 4. Tracking percentage as a function of the sensing-moving ratio

148 O. Yadgar and S. Kraus

the moving time and the sensing time is therefore 1:2 in the basic setting case.
In this case the coverage density was 1.64%. To check the impact of the coverage
density on the ratio between the sensing and the moving times we compared the
basic settings to settings with different sensing and moving times. We increased
the sensing period to 20 seconds while the moving period remained at 10 seconds.
The ratio between the sensing time and the moving time in this case was 2:1 and
the coverage density was 0.82%. The fact that the coverage density in this setting
was lower than for the basic settings suggests that the problem of accurately
identifying the targets’ trajectories is harder.

Looking at Figure 4 we can see that once again keeping the number of agents
constant does not ensure achieving the same performance. Moreover, it supports
our findings that decreasing the coverage density decreases performance. In this
case we decreased the coverage density from 1.64% to 0.82%, and the performance
dropped from 98% to 90% while we applied a load balancing and from 85% to
50% while we did not.

Fig. 5. Integrated results: performance vs. the coverage density

6.4 Integration

To establish the importance of the coverage density definition we compared the
tracking percentage of different settings. Figure 5 presents the results reported
in the previous paragraphs as a function of the coverage density. The results are
the aggregation of the results presented above. Looking at Figure 5, one cannot
distinguish between the different scenario sets. The results of all the sets are
situated along the curve of the LB and the NLB graphs. This proves that the
important characteristic of large-scale sensor networks is the coverage density
and not a single component of it. Moreover, Figure 6 demonstrates that the
number of agents does not necessarily predicts system performance. When we
used 5,000 agents with different ranges of interaction or sensing/moving times,
the system performed differently. The same results presented in Figure 6 were
measured for the sensing/moving time and the range of interaction properties.

Coverage Density as a Dominant Property of Large-Scale Sensor Networks 149

Fig. 6. Integrated results: number of agents

To compare the correlation between system performance and its properties,
we calculated the correlation coefficient of each property. We used only the mea-
surements that described a contribution to system performance. For example,
we considered all the results up to 5,000 agents for the Agent population prop-
erty with load balancing (see Figure 2). We did that because there is no sense
in looking for correlation after the system reaches its full utilization. The cor-
relation coefficient for the Agent population property with load balancing was
0.2 and without load balancing was 0.32. For the Range of interaction property
with load balancing the coefficient was 0.79, while without the load balancing it
was 0.68. The Sensing/moving time property had the worst correlation of 0.08
with load balancing and -0.16 without load balancing. The best correlation was
achieved by the coverage density and had the value of 0.86 with load balancing
and 0.89 without load balancing. These results prove that the coverage density
has a strong correlation to system performance.

Fig. 7. Different settings that have the coverage density of the basic settings (1.64%)

150 O. Yadgar and S. Kraus

To further depict the uses of the coverage density, Figure 7 presents the differ-
ent alternatives for the basic settings. The figure illustrates an isogram surface
of a continuous variation of the three property dimensions. Recalling that the
coverage density is correlated to the multiplication of these three properties, each
point on the surface represents a certain number of agents, an interaction range,
and a moving-sensing ratio that result in the same coverage density of 1.64%,
which is the same coverage density of the basic settings.

7 Conclusions

Coverage density defines the time needed to cover an area equal to the size of the
controlled zone. We have shown that there is a strong correlation between the
coverage density of a system and its behavior. In comparing large-scale sensor
networks having different coverage densities, we have proven that system prop-
erties such as the number of agents, the range of detection of each agent, and the
agent’s activation time have the same influence on the number of detected ob-
jects. For instance, by analyzing only the number of objects a large-scale sensor
network successfully detects, one may not know whether there is a large number
of cheap sensors or a small number of expensive ones. Given this fact, we intro-
duced a way to achieve the same system results with different preferences. As a
result, a system designer may find it easier to achieve a certain level of system
performance under given specific constraints, such as budget limits.

References

1. A. Howard, M. J Matarić and G. S. Sukhatme, ’Mobile Sensor Network Deployment
using Potential Fields: A Distributed, Scalable Solution to the Area Coverage Prob-
lem’, Proceedings of the 6th International Symposium on Distributed Autonomous
Robotics Systems (DARS02), pages 299-308, Fukuoka, Japan, 2002.

2. Autonomous Negotiating Teams (ANTs) website, Darpa, http://www.rl.af.mil/
tech/programs/ants/

3. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann and F. Silva, ’Directed
Diffusion for Wireless Sensor Networking’, IEEE/ACM Transactions on Network-
ing, 11(1): 2-16, February 2003.

4. C. Ortiz, K. Konolige, R. Vincent, B. Morisset, A. Agno, Mi. Eriksen, D. Fox, B.
Limketkai, J. Ko, B. Steward and D. Schulz, ’Centibots: Very Large Scale Distrib-
uted Robotic Teams’, AAAI, 1022-1023, 2004.

5. D. Ganesan, A. Cerpa, Y. Yu, W. Ye, J. Zhao and D. Estrin, ’Networking Issues in
Sensor Networks’, Journal of Parallel and Distributed Computing (JPDC), Special
Issues on Frontiers in Distributed Sensor Networks, 64(7), 799–814, 2004.

6. D.W. Gage, ’Command Control for Many-Robot Systems’, Proceedings of AUVS92,
19th Annual Technical Symposium and Exhibition of the Association for Unmanned
Vehicle Systems, Huntsville AL, pages 22-24, June 1992.

7. E. Ogston, B. Overeinder, M. van Steen and F. Brazier, ’A Method for Decentral-
ized Clustering in Large Multi-agent Systems’, AAMAS, pages 789-796, 2003.

Coverage Density as a Dominant Property of Large-Scale Sensor Networks 151

8. G. Asada, M. Dong, T. S. Lin, F. Newberg, G. Pottie, H. O. Marcy and W. J.
Kaiser, ’Wireless Integrated Network Sensors: Low Power Systems on a Chip’,
IEEE ESSCIRC ’98, pages 9-16, September 1998

9. G.J. Pottie and W.J. Kaiser, ’Wireless Integrated Network Sensors’, Communica-
tions of the ACM, 43(5): 551-558, 2000.

10. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, ’Wireless Sensor
Networks: A Survey’, Computer Networks 38(4): 393-422, 2002.

11. J. Liu, L. F. Perrone, D. M. Nicol, M. Liljenstam, C. Elliott and D. Pearson, ’Sim-
ulation Modeling of Large-scale Ad-Hoc Sensor Networks’, Proceedings of Euro-
SIW0́1, European Simulation Interoperability Workshop, 2001.

12. K. Bult, A. Burstein, D. Chang, M. Dong, M. Fielding, E. Kruglick, J. Ho, F.
Lin, T. H. Lin, W. J. Kaiser, H. Marcy, R. Mukai, P. Nelson, F. Newberg, K.
S. J. Pister, G. Pottie, H. Sanchez, O. M. Stafsudd, K. B. Tan, C. M. Ward, S.
Xue and J. Yao, ’Low Power Systems for Wireless Microsensors’, Proceedings of
International Symposium on Low Power Electronics and Design, pages 17-21, 1996.

13. K. H. Low, W. K. Leow and M. H. Ang Jr., ’Task Allocation via Self-Organizing
Swarm Coalitions in Distributed Mobile Sensor Network’,AAAI, pages 28-33, 2004.

14. K. Kar and S. Banerjee, ’Node Placement for Connected Coverage in Sensor Net-
works’, Proceedings of WiOpt 2003: Modeling and Optimization in Mobile, Ad Hoc
and Wireless Networks, March 2003.

15. M. A. Batalin and G. S. Sukhatme, ’Multi-robot Dynamic Coverage of a Planar
Bounded Environment’, IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2002.

16. M. A. Batalin and G. S. Sukhatme, ’Spreading Out: A Local Approach to Multi-
Robot Coverage’, Proceedings of 6th International Symposium on Distributed Au-
tonomous Robotic Systems, 373-382, 2002.

17. M. A. Batalina and G. S. Sukhatmea, ’Sensor Coverage using Mobile Robots and
Stationary Nodes’, Proceedings of the SPIE, volume 4868: 269-276, Boston, MA,
August 2002.

18. M. Cardei and J. Wu, ’Coverage in Wireless Sensor Networks’, Handbook of Sensor
Net, M. Ilyas and I. Mahgoub (eds)̇, CRC Press, 2004.

19. O. Yadgar, ’Efficient Algorithms in Large-scale Agent Systems’, PhD Thesis, Bar-
Ilan University, 2005.

20. O. Yadgar, S. Kraus and C. Ortiz, ’Scaling Up Distributed Sensor Networks: Coop-
erative Large-scale Mobile-Agent Organizations’, in Distributed Sensor Networks:
A Multiagent Perspective, pp. 185-218, Kluwer publishing, 2003.

21. O. Yadgar, S. Kraus and C. Ortiz, ’Hierarchical Information Combination Process
for Large-scale Task and Team Environments’, in Communications in Multiagent
Systems, Springer-Verlag, 2003.

22. P. J. Turner and N. R. Jennings, ’Improving the Scalability of Multi-agent Sys-
tems’, Proceedings of the First International Workshop on Infrastructure for Scal-
able Multiagent Systems, Springer-Verlag, pages 246-262, Barcelona, Spain, June
2000.

23. P. Scerri, R. Vincent and R. Mailler, ’Comparing Three Approaches to Large Scale
Coordination’, Proceedings of the First Workshop on the Challenges in the Coor-
dination of Large Scale Multi-agent Systems, July 2004.

24. P. Scerri, Y. Xu, E. Liao, J. Lai and K. Sycara-Cyranski, ’Scaling Teamwork to
Very Large Teams’, AAMAS, pages 888-895, 2004.

25. R. Niu, P. Varshney, M.H. Moore and D. Klamer, ’Decision Fusion in a Wire-
less Sensor Network with a Large Number of Sensors’, Proceedings of the Seventh
International Conference on Information Fusion, Stockholm, Sweden, June 2004.

152 O. Yadgar and S. Kraus

26. S. Shakkottai, R. Srikant and N. Shroff, ’Unreliable Sensor Grids: Coverage, Con-
nectivity and Diameter’, Proceedings of the IEEE INFOCOM, pages 1073-1083,
2003.

27. T. H. Lin, H. Sanchez, R. Rofougaran and W. J. Kaiser, ’CMOS Front End Compo-
nents for Micropower RF Wireless Systems’, Proceedings of the 1998 International
Symposium on Low Power Electronics and Design, pages 11-15, 1998.

28. V. Lesser, C. Ortiz and M. Tambe (ed)̇, ’Distributed Sensor Networks: A Multia-
gent Perspective’, Kluwer Publishing, 2003.

Selecting Web Services Statistically

David Lambert and David Robertson

School of Informatics, University of Edinburgh
d.j.lambert@sms.ed.ac.uk,

dr@inf.ed.ac.uk

Abstract. Service oriented computing offers a new approach to pro-
gramming. To be useful for large and diverse sets of problems, effective
service selection and composition is crucial. While current frameworks of-
fer tools and methods for selecting services based on various user-defined
criteria, little attention has been paid to how such services act and inter-
act. Similarly, the patterns of interaction might be important at a level
other than that of the user-programmer. Semantic agreement between
services, and the patterns of interaction between them, will be an im-
portant factor in the usability and success of service composition. We
argue that this cannot be guaranteed by logic-based description of in-
dividual services. We have developed a simple but apparently effective
technique for selecting agents and interactions based on evidence of their
prior performance.

1 Introduction

Service oriented computing is already a key part of e-Science, business, and gov-
ernment computing. Web services in particular offer a compelling vehicle for
distributing software functionality, offering a common platform for traditional
remote procedure call, developing Grid services, and nascent agent technologies.
They enable access to distributed resources such as databases, compute servers,
and physical objects like telescopes; obviate the difficulties of distributing, in-
stalling, and ensuring currency of software that must otherwise be deployed on
users’ machines; and allow contracts and virtual organisations to be constructed
between organisationally distinct domains.

Tools like Taverna [1] make it straightforward for users to construct workflows
and select services to perform them. However, the available services are gener-
ally either hard-coded into the tools, or manually acquired from web pages or
uddi registries. The problem of discovering suitable services for a task is known
as the connection problem, and one that the multi-agent community long ago
automated by introducing middle-agents [2], which provide a meeting point for
service providers and clients. Doing this for systems as open as web services, how-
ever, is a challenge that is somewhat greater than that faced by those working
with typically closed, laboratory-bound multi-agent systems.

Web, Grid, and agent services are currently treated as fungible black boxes,
when there is justification to believe they are not. In this paper, we present a

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 153–167, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

154 D. Lambert and D. Robertson

technique which allows matchmakers to construct an effective interaction pattern
and populate it with an optimal set of services, in a manner that makes minimal
demands on the user.

2 The Madness of Crowds

Middle-agents [2] connect clients, as service requesters, with service providers,
by providing some mechanism for matching providers’ capability advertisements
with clients’ requests for service. One of the most common types of such middle-
agents is the matchmaker, on which we focus. A matchmaker is privy to both
advertisements and requests, as opposed to say a yellow-pages like directory
where clients can inspect adverts in privacy. Almost all matchmaking research
to date has focused on the mechanisms for describing services and requirements,
such as capability description languages [3]. This is also the favoured approach
for the semantic web, which uses owl-s [4] descriptions of the service. Using
taxonomies of services, descriptions of inputs and outputs, and planning-like
descriptions of pre-conditions and effects, the idea is that a matchmaker can
reason about the relative merits of advertising services and select those that
best suit the client.

Despite the obvious utility of logic based approaches, it is far from clear that
they can in practice capture all the pertinent system features in a complex world.
Where many individuals, companies, and organisations offer ostensibly similar
services, it is unlikely that many services will fully match their specification,
or perform their task equally well [5]. In open systems, one cannot rely on the
intelligence and familiarity of the expert, the insight of the designers and im-
plementers, nor goodwill between investigators. Some particular reasons for the
insufficiency of logic-based descriptions are:

– The capability description language lacks expressiveness. This does not imply
a criticism of the language: it is unreasonable to expect any general purpose
capability description language to allow the communication of arbitrarily
complex capabilities and restrictions in every imaginable domain. However,
it would frequently be possible for matchmakers, especially domain-specific
ones, to discover such constraints.

– User ignorance of ability of the language to express a characteristic, or of
the effect of declaring it. As expressible features or limitations become more
complex, and services more common, it becomes increasingly likely that a
user would be unaware of her ability to aid the matchmaker.

– User expectation that the information will not be used by clients or match-
makers. In an negative example of ‘early-adopter syndrome’, it is not unrea-
sonable to expect service providers will refrain from supplying this kind of
data until they observe a significant portion of the agent ecosystem using it.

– Not wanting to express particular information. In some instances, there is
an incentive for service providers to keep the description of their services as
general as possible, though not to the extent of attracting clients they has

Selecting Web Services Statistically 155

no possibility of pleasing. Alternatively, the provider may not wish to be
terribly honest or open about her service’s foibles.

– Comprehensive descriptions too expensive to generate or use. Even if none
of the above hold, it would often simply not be worthwhile for the service
provider to analyse and encode the information. Further, in the case of web,
semantic web and Grid services, it is reasonable to expect that users are
discouraged by standards flux from investing much time in this endeavour.

We claim that even with the best will, it will often simply be too expensive
in time, money, computation, or human brainpower, to fully describe services.
Even then, as is shown in [6], it is not unreasonable to expect the reasoners (and
hence any matchmakers using them) to differ in their interpretation in some
cases.

Compounding this difficulty of correctly describing individual services is the
one of finding agents that work well together. Our aim is to enable interactions
between two or more agents, where one or more services must be found to sat-
isfy the interaction’s initiator. Why might this happen, and what can we do
to overcome this obstacle to widespread use of multiple-service interactions in
real-world operation?

– ‘Social’ reasons. For instance, different social communities, or communities
of practice, may each cluster around particular service providers for no par-
ticular reason, yet this would result in improved performance on some tasks
if agents were selected from the same social pool.

– Strategic (or otherwise) inter-business partnerships. For example, an airline
may have a special deal with other airlines or car-hire companies that would
lead to a more satisfied customer.

– Components designed by same group. Organisations that seem to have noth-
ing in common may well be using software created by a single group. Such
software would be more likely to inter-operate well than software from others.

– Different groups of engineers held differing views of a problem, even though
the specification is the same. Thus, the implementations are subtly incom-
patible, or at least do not function together seamlessly.

– Particular resources or constraints shared between providers. For example,
in a Grid environment, a computation server and a file store might share a
very high bandwidth connection, leading to improved service.

– The inter-relationship is not known to the service provider. Some of the
dependencies may be extremely subtle, or simply not obvious.

– Ontology mapping
Sometimes ontology mapping will work perfectly, in other cases, it would be
better to select those services that share a native ontology.

– Gatewaying issues It is quite likely that many services will be provided
via gateways, and that these will make semantic interaction possible and
affordable, but more error prone than systems designed explicitly to interact.

– Malice It is hardly unknown for software vendors to ensure lock in by mak-
ing their software deliberately fail to interact correctly with that of other
vendors.

156 D. Lambert and D. Robertson

And, of course, we have the ever-present problem of bugs, which will often
manifest themselves in such a way that some collaborating services will exercise
them, and others will not.

The interaction is normally seen as secondary. If, instead, we treat it as a
first-class object, neither emergent from agent behaviour, nor fixed by the client
or server’s interaction model, we can begin to examine some of its properties.
Some such techniques include model checking [7], and ontology matching [8].

If, however, we made the interaction pattern known, and used a matchmaker
to select our services, as well as, we could share empirical data about perfor-
mance. This is our approach. It is made possible by our choice of interaction
language, lcc. While conventional agent matchmaking is done by reference to
the client’s service request and the advertised capabilities of the providers, we
make the protocol that drives the interaction the centrepiece. This implies:

– The purpose of the interaction is captured.
– Multi-agent dialogues, far from being impossible, are the norm.
– All agents can reason about the dialogue they are in, not just the initiator

or broker.

What if, instead of simply choosing an agent and using its interaction model,
we chose the interaction model, too? We can then apply our agent selection
technique [9] to the question of how to construct the interaction.

In addressing all these problems we can use the evidence provided by clients
on the effectiveness of services, discovering the actual performance of agents in
the roles they claim to perform. Gathering enough data on any given service or
interaction is hard work, and likely to be beyond the ability of any single agent.
It is, however, a task for which a middle agent is ideally suited.

3 Framework

3.1 Lightweight Coördination Calculus

To describe the interactions, we use a language called the Lightweight Coördina-
tion Calculus (lcc) [10]. lcc is based on the Calculus of Communicating Systems
(ccs) [11], and provides a simple language featuring message passing (denoted
⇒ for sending, and ⇐ for receiving) with the operators then (sequence), or
(choice), and ← (if). An lcc protocol is interpreted in a logic-programming
style, using unification of variables which are gradually instantiated as the con-
versation progresses. The rules governing execution of a protocol are in figure 2.

An lcc protocol consists of dialogue framework, expanded clauses, and com-
mon knowledge. The framework defines the roles necessary to conduct an in-
teraction, along with the allowable messages and the conditions under which
they can be sent. For our astronomy workflow (figure 3), the roles include
astronomer , astronomy-database , and black -hole-finder . The expanded clauses
note where each service has reached in the dialogue. The common knowledge
records conversation-specific state agreed between the services.

Selecting Web Services Statistically 157

Framework ::= Clause∗

Clause ::= Agent :: Def
Agent ::= a(Role, Id)

Def ::= Agent|Message|Def then Def |Def or Def |Def par Def
Message ::= M ⇒ Agent|M ⇒ Agent ← C|M ⇐ Agent|C ← M ⇐ Agent

C ::= Term|C ∧ C|C ∨ C
Id, M, Type ::= Term

Term ::= V ariable|Atom|Number|Atom(Term+)
Atom ::= lowercase-char alphanumeric∗

V ariable ::= uppercase-char alphanumeric∗

Fig. 1. Grammar for the lcc dialogue framework

These rewrite rules constitute an extension to those described in [10]. A rewrite rule

α
Mi,Mo,P,O,C,C′
−−−−−−−−−−−→ β

holds if α can be rewritten to β where: Mi are the available messages before rewriting;
Mo are the messages available after the rewrite; P is the protocol; O is the message
produced by the rewrite (if any); C is set of collaborators before the rewrite; and C′ (if
present) is the—possibly extended—set of collaborators after the rewrite. C is a set of
pairs of role and service name, e.g. col(black -hole-finder , ucsd -sdsc)}. The same rewrite
rules hold regardless of the implementation of the matchmaking function recruit . This
enables us to apply other lcc tools, such as model-checkers and the interpreter itself,
without alteration while allowing us to change recruit , and means clients can use their
own choice of matchmaker and matchmaking scheme.

A :: B
Mi,Mo,P,C,O−−−−−−−−−−→ A :: E if B

Mi,Mo,P,C,O−−−−−−−−−−→ E

A1 or A2
Mi,Mo,P,C,O−−−−−−−−−−→ E if ¬closed(A2) ∧ A1

Mi,Mo,P,C,O−−−−−−−−−−→ E

A1 or A2
Mi,Mo,P,C,O−−−−−−−−−−→ E if ¬closed(A1) ∧ A2

Mi,Mo,P,C,O−−−−−−−−−−→ E

A1 then A2
Mi,Mo,P,C,O−−−−−−−−−−→ E then A2 if A1

Mi,Mo,P,C,O−−−−−−−−−−→ E

A1 then A2
Mi,Mo,P,C,O−−−−−−−−−−→ A1 then E if closed(A1) ∧ A2

Mi,Mo,P,C′,O−−−−−−−−−−−→ E
∧collaborators(A1) = C′

C ← M ⇐ A
Mi,Mi\{M⇐A},P,C,∅−−−−−−−−−−−−−−−−→ c(M ⇐ A, C) if (M ⇐ A) ∈ Mi ∧ satisfied(C)

M ⇒ A ← C
Mi,Mi,P,C,C′,{M⇒A}−−−−−−−−−−−−−−−−−→ c(M ⇒ A, C′) if satisfied(C)∧

C′ = recruit(P, C, role(A))

null ← C
Mi,Mi,P,C,∅−−−−−−−−−→ c(null, C) if satisfied(C)

a(R, I) ← C
Mi,Mo,P,C,∅−−−−−−−−−−→ a(R, I) :: B if clause(P, C, a(R, I) :: B)

∧satisfied(C)

collaborators(c(Term,C)) = C
collaborators(A1 then A2) = collaborators(A1) ∪ collaborators(A2)
collaborators(A :: B) = collaborators(A) ∪ collaborators(B)

Fig. 2. Rewrite rules governing matchmaking for an LCC protocol

While we use lcc as our framework, this paper’s contribution regarding ser-
vice selection does not require it. For our purpose, lcc’s key provisions are

158 D. Lambert and D. Robertson

support for multi-party dialogues, and for enabling the matchmaker and client
to identify an ongoing interaction and determine the agents engaged in it. These
requirements could be met by many other coördination approaches or simple
extensions thereof, whether in Grid or web services domains.

3.2 Incidence Calculus

We use the incidence calculus [12] for our probabilistic calculations, It is a truth-
functional probabilistic calculus in which the probabilities of composite formulae
are computed from intersections and unions of the sets of worlds for which the
atomic formulae hold true, rather than from the numerical values of the proba-
bilities of their components. The probabilities are then derived from these inci-
dences. Crucially, in general P (φ∧ψ)
= P (φ) ·P (ψ). This fidelity is not possible
in normal probabilistic logics, where probabilities of composite formulae are de-
rived only from the probabilities of their component formulae. In the incidence
calculus, we return to the underlying sets of incidences, giving us more accurate
values for compound probabilities.

i(�) = worlds i(⊥) = {}
i(α ∧ β) = i(α) ∩ i(β) i(α ∨ β) = i(α) ∪ i(β)
i(¬α) = i(�)\i(α) i(α → β) = i(¬α ∨ β) = (worlds\i(α)) ∪ i(β)
P (φ) = |i(φ)|

|i(�)| P (φ|ψ) = |i(φ∧ψ)|
|i(ψ)|

The incidence calculus is not frequently applied, since one requires exact inci-
dent records to use it. Fortunately, that’s exactly what the matchmaker has on
hand.

4 The Matchmaker

First, we will explain the overall process of executing an lcc protocol, and
the matchmaker’s place in it. A client has a task or goal it wishes to achieve:
using either a pre-agreed look-up mechanism, or by reasoning about the pro-
tocols available, the client will select a protocol, with possibly more than one
being suitable. This done, it can begin interpreting the protocol, dispatching
messages to other agents as the protocol directs. When the protocol requires a
message to be sent to an agent that is not yet identified, the sender queries a
matchmaker to discover services capable of filling the role. These new agents
we term ‘collaborators’. The matchmaker selects the service that maximises the
probability of a successful outcome given the current protocol type and role in-
stantiations. The protocol is then updated to reflect the agent’s selection, and
the term col(Role, Agent), instantiated to the requested role and newly chosen
agent, is stored in the protocol’s common knowledge where it is visible to the
participants and the matchmaker.

The success of a protocol and the particular team of collaborators is de-
cided by the client: on completion or failure of a protocol, the client informs

Selecting Web Services Statistically 159

the matchmaker whether the outcome was satisfactory to the client. Each com-
pleted brokering session is recorded as an incident, represented by an integer.
Our propositions are ground predicate calculus expressions. Each proposition
has an associated list of worlds (incidents) for which it is true. Initially, the in-
cident database is empty, and the broker selects services at random. As more
data is collected, a threshold is reached, at which point the matchmaker begins
to use the probabilities.

4.1 Selecting Agents

The traditional issue is selecting agents, so we will address this first. In our
scenario, an astronomer is using the Grid to examine a black hole. Having ob-
tained the lcc protocol in figure 3, she instantiates the File variable to the file
she wants to work with, and runs the protocol. The protocol is sent first to a
black -hole-finder service. This service, in turn, requires an astronomy-database
to provide the file. If a black hole is found the black -hole-finder service will pass
the data to a visualisation service. Finally, the client will receive a visualisation
or notification of failure. Where is the inter-service variation? Consider that the
astronomical data file is very large, and thus network bandwidth between sites
will be a crucial factor in determining user satisfaction. Thus, some pairs of
database and computation centre will outperform other pairs, even though the
individuals in each pairing might be equally capable. Indeed, the ‘best’ database
and compute centre may have a dreadful combined score because their network
interconnection is weak.

If we imagine how the matchmaker’s incidence database would look after
several executions of this workflow (most likely by different clients), we might
see something like this:

i(protocol(black-hole-search), [1, 2, . . . , 25])
i(outcome(good), [1, 2, 3, 4, 6, 10, 11, 12, 16, 22, 23, 24])
i(col(astronomy-database, greenwich), [18, 19, 20, 21, 22, 23, 24, 25])
i(col(astronomy-database, herschel), [10, 11, 12, 13, 14, 15, 16, 17])
i(col(astronomy-database, keck), [1, 2, 3, 4, 5, 6, 7, 8, 9])
i(col(black-hole-finder , barcelona-sc), [8, 9, 16, 17, 24, 25])
i(col(black-hole-finder , ucsd-sdsc), [1, 2, 3, 4, 10, 11, 12, 13, 18, 19, 20])
i(col(black-hole-finder , uk-hpcx), [5, 6, 7, 14, 15, 21, 22, 23])
i(col(visualiser , ncsa), [1, 2, . . . , 25])

Each i(proposition, incidents) records the incidents (that is, protocol inter-
actions or executions) in which the proposition is true. We can see that the
black-hole-search protocol has been invoked 25 times, and that it has been
successful in those incidents where outcome(good) is true. Further, by intersect-
ing various incidences, we can compute the success of different teams of agents,
and obtain predictions for future behaviour. Let us examine the performance of
the Barcelona supercomputer:

i(col(black -hole-finder , barcelona-sc) ∧ outcome(good)) = {16}
P (outcome(good)|col(black -hole-finder , barcelona-sc)) = |{16}|

|{8,9,16,17,24,25}|

This performance is substantially worse than that of the other supercomputers
on this task not because barcelona-sc is a worse supercomputer than ucsd -sdsc

160 D. Lambert and D. Robertson

or uk -hpcx , but because its network connections to the databases required for
this task present a bottleneck, reducing client satisfaction.

From this database, the matchmaker can then determine, for a requester,
which services are most likely to lead to a successful outcome, given the cur-
rent protocol and services already selected. That is, the matchmaker tries to
optimise

argmaxsP (outcome(good)|P , col(r, s) ∪ C)
Where P is the protocol, C is the current set of collaborators, r is the role
requiring a new service selection, and s is the service we are to select.

a(astronomer(File),Astronomer) ::
search(File) ⇒ a(black -hole-finder ,BHF) then

success⇐a(black -hole-finder ,BHF) then
receive-visualisation(Thing , V)←visualising(Thing)⇐ a(visualiser , V)

or

failed ⇐ a(black -hole-finder ,BHF)

a(black -hole-finder ,BHF) ::
search(File) ⇐ a(astronomer(File),Astronomer) then
grid -ftp-get(File) ⇒ a(astronomy-database , AD) then

grid -ftp-sent(File) ⇐ a(astronomy-database , AD) then
success ⇒ a(astronomer,Astronomer)

← black -hole-present(File, Black-hole) then
visualise(Black-hole,Astronomer) ⇒ a(visualiser ,V)

or

failed ⇒ a(astronomer(File),Astronomer)

a(astronomy-database ,AD) ::
grid -ftp-get(File) ⇐ a(black -hole-finder ,BHF)
grid -ftp-sent(File) ⇒ a(black -hole-finder ,BHF)←grid -ftp-completed(File,AD)

a(visualiser , V) ::
visualise(Thing, Client) ⇐ a(_, Requester) then
visualising(Thing) ⇒ a(_, Client) ← serve-visualisation(Thing , Client)

Note that lcc is being used only to coördinate the interaction: where appropriate,
individual agents may use domain-specific protocols, such as Grid ftp, to perform the
heavy lifting or invoke specific services outside of the lcc formalism and communication
channel.

Fig. 3. LCC dialogue framework for astronomy workflow scenario

We have developed two algorithms for choosing services, although others are
possible. The first, called recruit-joint, fills all the vacancies in a protocol at
the outset. It works by computing the joint distribution for all possible permuta-
tions of services in their respective roles, selecting the grouping with the largest
probability of a good outcome.

Selecting Web Services Statistically 161

The second approach, recruit-incremental, is to select only one service
at a time, as required by the executing protocol. The various services already
engaged in the protocol, on needing to send a message to an as-yet-unidentified
service, will ask the matchmaker to find an service to fulfil the role at hand.
recruit-incremental computes the probability of a successful outcome for
each service available for role R given C (C being the collaborators chosen so far),
and selects the most successful service. To illustrate recruit-incremental,
imagine the workflow scenario. At first, the astronomer must ask the match-
maker to fill the black -hole-finder role. The BHF service’s first action is to
request the data file from an astronomy database. It therefore returns the pro-
tocol to the matchmaker, which selects the astronomy-database most likely
to produce success, given that the black -hole-finder is already instantiated to
BHF .

Both algorithms support the pre-selection of services for particular roles. An
example of this might be a client booking a holiday: if it were accumulating
frequent flier miles with a particular airline, it could specify that airline be
used, and the matchmaker would work around this choice, selecting the best
agents given that the airline is fixed. This mechanism also allows us to direct the
matchmaker’s search: selecting a particular service can suggest that the client
wants similar services, from the same social pool, for the other roles, e.g. in
a peer-to-peer search, by selecting an service you suspect will be helpful in a
particular enquiry, the broker can find further services that are closely ‘socially’
related to that first one.

We can see from figure 5(a) that using this technique can substantially improve
performance over random selection of agents which can individual meet the re-
quirements. Which algorithm should one choose? In protocols where most roles are
eventually filled, recruit-joint will outperform recruit-incremental, since
it is not limited by the possibly suboptimal decisions made earlier.recruit-joint
is also preferable when one wishes to avoidmultiple calls to the matchmaker, either
because of privacy concerns, or for reasons of communication efficiency. However,
in protocols which rarely have all their roles instantiated, recruit-joint can end
up unfairly penalising those services which have not actually participated in the
protocols they are allocated to. recruit-incremental is therefore more suit-
able in protocols where many roles go unfilled: total work on the broker would be
reduced, and the results would probably be at least as good as for brokering all
services.

4.2 Selecting Roles

So far, we have considered the case where the protocol is defined, and we simply
need to select agents to fill the roles. What if the roles themselves are undefined,
if the protocol is incompletely specified? What if we allowed agents to begin
executing incomplete protocols? If the matchmaker could elaborate protocols at
run time, selecting the elaboration based on prior experience? We will show one
way to do this using the incidence calculus, in a very similar fashion to how we
selected agents.

162 D. Lambert and D. Robertson

Recruit-Joint(protocol , database)
1 roles ← roles-required(protocol)
2 collaborations ← all-collaborations(protocol , database , roles)
3 for c ∈ collaborations
4 do quality [c] ← probability-good-outcome(protocol , database, c)
5 return argmax(collaborations , quality)

Recruit-Incremental(protocol , database , role)
1 for r ∈ active-roles(protocol)
2 do collaborators [r] ← collaborator-for-role(protocol , r)
3 candidates ← capable-agents(database , role)
4 for c ∈ candidates
5 do collaborators [role] ← c
6 quality [a] ← probability-good-outcome(database , collaborators)
7 return argmax(candidates , quality)

Embellish-Incremental(protocol , database , role)
1 for r ∈ role-definitions(protocol)
2 do role-definition[r] ← definition-for-role(protocol , r)
3 candidates ← available-role-definitions(protocol ,database ,role) role)
4 for c ∈ candidates
5 do role-definition[role] ← c
6 quality [c] ← probability-good-outcome(database , role-definitions)
7 return argmax(role-definitions , quality)

argmax as used here does not always select the highest value. To improve the explo-
ration of options, those entries that have low numbers of data points (i.e. have not
often been selected previously) are preferentially chosen, and in other cases a random
selection is sometimes made.

Fig. 4. Algorithms

Roles consist of an ordering of messages, together with constraints, and moves
to other roles. It might be the case that just changing the ordering might make
a large difference. For instance, if one is arranging to travel to a concert, it is
preferable to obtain event tickets first, then organise transport. In our example,
we take to problem of booking a trip involving a flight and hotel room. The
lcc protocol is shown in figure 6. If we suppose that it is a preferable course of
action to book the flight then the hotel room, since hotel room costs are more
flexible that flight ones, we can expect a better outcome using flight -then-hotel
rather than hotel -then-flight . Figure 5(c) shows the improvement in a simulation.
The algorithm used is embellish-incremental, shown in figure 4. embellish-
incremental works similarly to recruit-incremental, adding role definitions
to the protocol as those roles are required at run-time. We have not provided
equivalent to recruit-joint, since this can inflate protocols with many roles
that will remain unused.

Selecting Web Services Statistically 163

In (a), we see the improvement in task achievement using agent selection obtained using
recruit-joint versus random selection. Using the same scenario, but fixing the file
size at 5 Gigabytes, (b) shows the relative performance of recruit-joint, recruit-
incremental, and random selection. We can see similar gains for selection of roles
in (c), using the travel agent scenario. Performance of the underlying set calculus
intersection operation is shown in (d).

Fig. 5. Simulation results

5 Discussion

Performance seems quite reasonable for very large sets. The core operation of this
technique is set intersection, since for every collaboration or set of role definitions,
the intersection of their incidences must be computed. By using a heap-sort like
intersection algorithm, this can be done in order O(n log n). Figure 5(d) shows
that we can quickly calculate intersections over large sets for reasonable numbers
of sizable sets.

We note here two significant problems that seem to be inescapable issues in-
trinsic to the problem: trusting clients to evaluate protocol performance honestly
and in a conventional manner; and the problems of locating mutually coöperative
services in a large agent ecology. Since individual client services are responsible
for the assigning of success metrics to matchmakings, there is scope for services

164 D. Lambert and D. Robertson

a(traveller , Traveller) ::
book-holiday(Src, Dst, Start, End , Money) ⇒ a(travel-agent, Agent)

← travel-details(Src, Dst, Start, End , Money) then
booking(Start, End , Cost) ⇐ a(travel-agent, Agent) then
matchmaking(good) ⇒ a(matchmaker, matchmaker) or

failure ⇐ a(travel-agent, Agent) then
matchmaking(bad) ⇒ a(matchmaker, matchmaker)

Note that the travel -agent role is not specified in the client’s protocol! We leave it
to the matchmaker to find one. The matchmaker, let us say, has the following role
definitions available to it:

role(flight-then-hotel) ≡ a(travel-agent, Agent) ::
book-holiday(Src, Dst, Start, End , Money) ⇐ a(client , Client) then
book-flight(Src, Dst, Start, End , Money) ⇒ a(airline, Airline) then

no-flights ⇐ a(airline, Airline) then
failure ⇒ a(client , Client) or

flight-booking(Flight-Cost) ⇐ a(airline, Airline) then
flight-available(Src, Dst, Start , End , Money) ⇐ a(airline, Airline) then
book-hotel(Location, Start, End , Money) ⇒ a(hotel, Hotel)

← is(Money-Left, Money −Flight-Cost) then
hotel-booking(Hotel-Cost) ⇐ a(hotel, Hotel) then
booking(Total-Cost) ⇒ a(client, Client)

← is(Total-Cost, Flight-Cost +Hotel-Cost)
or

no-vacancy ⇐ a(hotel, Hotel) then
failure ⇒ a(client , Client)

role(flight-then-hotel) ≡ a(travel-agent, Agent) ::
book-holiday(Src, Dst, Start, End , Money) ⇐ a(client , Client) then
book-flight(Src, Dst, Start, End , Money) ⇒ a(airline, Airline) then

no-flights ⇐ a(airline, Airline) then
failure ⇒ a(client , Client) or

flight-booking(Flight-Cost) ⇐ a(airline, Airline) then
flight-available(Src, Dst, Start , End , Money) ⇐ a(airline, Airline) then
book-hotel(Location, Start, End , Money) ⇒ a(hotel, Hotel)

← is(Money-Left, Money −Flight-Cost) then
hotel-booking(Hotel-Cost) ⇐ a(hotel, Hotel) then
booking(Total-Cost) ⇒ a(client, Client)

← is(Total-Cost, Flight-Cost +Hotel-Cost)
or

no-vacancy ⇐ a(hotel, Hotel) then
failure ⇒ a(client , Client)

a(hotel, Hotel) ::
book-hotel(Location, Start, End , Money) ⇐ a(Role, Agent) then
room-available(Location, Start , End , Money, Cost) ⇒ a(Role, Agent)

← room-available(Location, Start, End , Money, Cost) or
no-vacancy ⇒ a(Role, Agent)

a(airline, Airline) ::
book-flight(Src, Dst, Start, End , Money) ⇐ a(Role, Agent) then
flight-available(Src, Dst, Start, End , Money) ⇒ a(Role, Agent)

← flight-available(Src, Dst, Start, End , Money) or
no-flights ⇒ a(Role, Agent)

a(matchmaker, matchmaker) ::
record-matchmaking-outcome(Outcome)

← matchmaking(Outcome) ⇐ a(Role, Agent)

Fig. 6. Booking a holiday with LCC

with unusual criteria or malicious intent to corrupt the database. The second
question, largely unasked, is about the likely demographics of service provision.
For some types of service, like search, we have already seen that a very small

Selecting Web Services Statistically 165

number of providers. For other tasks, a few hundred exist: think of airlines. For
some, though, we may millions of service providers. Further, we must ask how
many service types will be provided. Again, in each domain, we might have a
simple, monolithic interface, or an interface with such fine granularity that few
engineers ever fully understand or exploit it. The answers to these will impact
the nature of our matchmaking infrastructure.

While our technique handles large numbers of incidences, it does not scale
for very large numbers of services or roles. For any protocol with a set of roles
R, and with each role having |providers(ri)| providers, the number of ways of
choosing a team is

∏
ri∈R |providers(ri)|, or O(mn). No matchmaking system

could possibly hope to discover all the various permutations of services in a rich
environment, although machine learning techniques might be helpful in directing
the search for groupings of services. How much of an issue this actually becomes
in any particular domain will be heavily influenced by the outcomes to the issues
discussed above.

6 Related Work

The connection problem arises in agent systems, semantic web, and grid en-
vironments. It is discussed in [2, 13, 14]. We consciously ignored methods like
those found in [15], though they would be crucial in any real-world deploy-
ment: we believe our technique would usefully augment such systems. Similarly,
several groups have attacked the workflow synthesis issue using automated plan-
ning [16]: we again suggest our method as an adjunct to other techniques, not a
replacement.

Two studies have investigated the issue of using previous performance records.
In [5] we first see the use of records to improve selection. In [17] this technique is
combined with description logic concepts to improve matching of owl-s requests.

Most work has been restricted to the case of selecting a single agent for a
single role. Although current interactions are primarily client-server, we can
imagine a future where match-made agent interactions are more distributed,
involve many agents, and operate in a more peer-to-peer manner. It can be ex-
pected that these newer forms of dialogue will make even greater use of, and
demands upon, matchmaking services than do current modes of employment.
Our problem conception—matchmaking multiple roles for the same dialogue—is
anticipated by the self-serv system [18], though we believe our approach is
novel in detecting emergent properties that are not known to the operator, and
is more transparent, requiring less intervention (that is, specification of service
parameters) from the client.

7 Conclusion

Distributed computing is becoming commonplace, and automated discovery of
these systems will become crucial, too. The current, dominant model of service
provision can be characterised by noting that: workflow execution happens on

166 D. Lambert and D. Robertson

one machine dedicated to the purpose, whether the client’s, a workflow server,
or a middle agent, and other services are used as remote procedure calls; that
the workflow is never exported beyond the machine; that services are selected
based only on their capability as advertised through logical descriptions; and
that information recorded about success or otherwise is, at best, held only by
the machine which discovered it.

In this paper we made four claims: that services may not be totally described
by their service advertisements; that services may interact in odd ways; that
interaction patterns may be as important as the interacting objects; and that a
simple, statistical matchmaker can be of help in solving all three problems.

We have shown that the successful completion of a task may depend not
only on the advertised abilities of services but on their collective suitability and
inter-operability. We also showed that the structure of the interaction can be
important. We presented a simple, but effective, technique for detecting suc-
cessful groupings of services, and choosing those interaction patterns that suit
them best. We highlighted the intractability of the problem in environments with
large numbers of available provider services and/or roles. We can sum up the
traditional model of matchmaking as static and action-oriented. Our approach is
dynamic and interaction-oriented, allowing us to respond to actual performance,
and better support agent selection and protocol synthesis.

Further work remains. Practical issues of managing a large database of inci-
dences must be resolved: can the task be distributed, either across clusters, like
current Internet search engines, or in a peer-to-peer way? What scope is there for
applying machine learning? Is our current description of services sufficient, and
if not, how do we integrate more sophisticated notions of service description?

References

1. Oinn, T.M., Addis, M., Ferris, J., Marvin, D., Greenwood, R.M., Carver, T.,
Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and en-
actment of bioinformatics workflows. Bioinformatics 20 (2004) 3045–3054

2. Decker, K., Sycara, K., Williamson, M.: Middle-Agents for the Internet. In:
Proceedings of the 15th International Joint Conference on Artificial Intelligence,
Nagoya, Japan (1997)

3. Wickler, G., Tate, A.: Capability Representations for Brokering: A Survey (1999)
4. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,

Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: Owl-s: Semantic markup for web services (2004)

5. Zhang, Z., Zhang, C.: An improvement to matchmaking algorithms for middle
agents. In: Proceedings of the first international joint conference on Autonomous
agents and multiagent systems, ACM Press (2002) 1340–1347

6. Pan, Z.: Benchmarking DL Reasoners Using Realistic Ontologies. In: OWL: Di-
rections and Experiences, Galway, Ireland (2005)

7. Osman, N., Robertson, D., Walton, C.: Run-time model checking of interaction
and deontic models for multi-agent systems. In: Proceedings of the European
Multi-Agent Systems Workshop, 2005. (2005)

Selecting Web Services Statistically 167

8. Besana, P., Robertson, D., Rovatsos, M.: Exploiting Interaction Contexts in P2P
ontologoy mapping. In: Proceedings of the second international workshop on peer-
to-peer knowledge management. (2005)

9. Lambert, D., Robertson, D.: Matchmaking multi-party interactions using historical
performance data. In: Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS-05). (2005) 611–617

10. Robertson, D.: A lightweight method for coordination of agent oriented web ser-
vices. In: Proceedings of the 2004 aaai Spring Symposium on Semantic Web
Services, California, usa (2004)

11. Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1989)

12. Bundy, A.: Incidence calculus: A mechanism for probabilistic reasoning. Journal
of Automated Reasoning 1 (1985) 263–284

13. Wong, H., Sycara, K.: A Taxonomy of Middle-agents for the Internet. In: 4th
International Conference on Multi-Agent Systems (ICMAS 2000). (2000)

14. Klusch, M., Sycara, K.: Brokering and matchmaking for coordination of agent
societies: a survey. In: Coordination of Internet agents: models, technologies, and
applications. Springer-Verlag (2001) 197–224

15. Paulucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic Matching of Web
Services Capabilities. In: The Semantic Web — ISWC 2002: Proceedings. (2002)

16. Blythe, J., Deelman, E., Gil, Y.: Planning for workflow construction and mainte-
nance on the grid (2003)

17. Xiaocheng Luan: Adaptive Middle Agent for Service Matching in the Semantic
Web: A Quantitative Approach. PhD thesis, University of Maryland, Baltimore
County (2004)

18. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: WWW ’03: Proceedings of the twelfth international
conference on World Wide Web, New York, NY, USA, ACM Press (2003) 411–421

Conversation-Based Specification and Composition of
Agent Services

Quoc Bao Vo and Lin Padgham

School of Computer Science and Information Technology
RMIT University - Australia

{vqbao, linpa}@cs.rmit.edu.au

Abstract. There is great promise in the idea of having agent or web services
available on the internet, that can be flexibly composed to achieve more com-
plex services, which can themselves then also be used as components in other
contexts. However it is challenging to realise this idea, without essentially pro-
gramming the composition using some process language such as BPEL4WS or
OWL-S process descriptions. This paper presents a mechanism for specifying
the external interface to composite and component services, and then deriving
an appropriate internal model to realise a functioning composition. We present a
conversation specification language for defining interaction protocols and inves-
tigate the issue of synchronous and asynchronous communication between the
composite service and the component services. The algorithm presented com-
putes a valid orchestration of components, given the interface specification of the
desired composite service, interface specifications of available components, and
some mapping rules between parameters to deal with ontological issues.

1 Introduction

Web services have been growing enormously in popularity over the last few years, as
people see the potential of the world wide web to provide a repository of program com-
ponents, in much the same way as it currently provides a repository of information
pages. Agent technology for open systems has also had significant activity, with a num-
ber of standards developed by FIPA [16] to support interoperability. As web services
start to incorporate more semantics, and greater focus is put on aspects such as auto-
mated discovery and composition, the gap between agents and web services narrows.
Many of the issues are identical.

A vision of intelligent agents in an open Internet environment is that they would be
able to locate services to assist them in achieving their goals and autonomously combine
them in an appropriate manner forming composite services. In this paper we describe
an approach to provide greater automated support for composition of services, whether
they are seen as web or agent services.

There have been a number of languages for modelling and describing web services
developed as well as frameworks for web service composition. Process modelling lan-
guages such as BPEL4WS [5], BPML [6] or WSCI [19] provide concrete ways for
composite services to be manually described. There has been significant work on using
workflows to support automated composition (e.g. [18,9] and references therein). One

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 168–182, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Conversation-Based Specification and Composition of Agent Services 169

common approach is to map workflows to Petri-nets as a formal model to allow reason-
ing. Using a similar idea, Narayanan and McIlraith [11] propose a framework for web
service composition in which web service descriptions in OWL-S [12] are mapped to
Petri-nets to allow formal verification and simulation and to Situation Calculus [13] to
allow automatic composition. This approach requires that the services to be composed
be atomic. As the process model description of the composite service must be given,
such a mechanism should be more precisely described as service orchestration. On the
other hand, the problem of synthesising the process model of a targeted composite ser-
vice has been largely neglected with the notable exception of the work by Berardi et
al [2,1]. As such, two major goals of the work presented in the present paper are to
introduce an expressive language for describing conversational services and to achieve
a mechanism to synthesise the process models of the composite services.

Several composition frameworks employ finite state machines or transition systems
to formally describe either input/output messages or behaviours with environmental
preconditions and effects. These include: the message-based approach (a.k.a. the Mealy
model), (e.g. [4]) the activity-based approach (a.k.a. the Roman model) (e.g. [2]), and
Traverso and Pistore’s [17] approach which performs composition using an AI plan-
ner (based on a symbolic model checking approach). For a more thorough discussion
of the various approaches, the reader is referred to [1]. Most of these approaches aim
to describe web services using formal models such as process algebras, Petri-nets and
finite state machines, to allow formal properties of the services to be verified. Our aim
is rather to provide a simple language to allow the exported behaviours as well as the
interface of a web service to be described in a way that will enable us to automatically
produce an executable process model that realises a composite service. The descrip-
tion language proposed in our paper takes a major inspiration from a rich literature on
component-based software engineering and communication protocols [20,14].

The main contribution of this paper is a mechanism that allows for automated synthe-
sis of the internal process of a composite service, given the interface description of both
component services and the desired composite service. In order to achieve this we also
(i) specify a conversation specification language that allows specification of interactions
with other entities; (ii) provide a synchronous semantics for the conversations between
services; and (iii) provide a framework of mediation to allow communications between
services to be monitored by a mediator. The mediator synchronises the possibly asyn-
chronous message flow between services to ensure they adhere to a given synchronous
semantics of the entire system.

2 Modelling and Describing Services

Agent or web services are software artefacts whose functionalities are made available
over the Internet by the providing organisation. In order for them to be discovered and
deployed by users or other applications, they must be described in a language inter-
pretable by the users or client applications. Our model of services is an extension of
the model of e-services introduced by Mecella and Pernici [10] as well as descrip-
tion of software components developed within the component-based software engineer-
ing community (see e.g. [20]). The key aspect of these representations of a software

170 Q.B. Vo and L. Padgham

component is that they specify not only the static interfaces of the component but also
its behaviour and evolution over time.

In our model a service is an event-driven component whose events are sending and
receiving of messages. As such, the description of a service comprises an external in-
terface, i.e. the input/output messages that can be exchanged between a service and its
clients, and a system dynamics specification of the service. The system dynamics com-
prises an interaction protocol, i.e. the sequences of actions to be invoked, to allow the
service to converse with its client applications or users. The interaction protocol de-
scribes a set of sequencing constraints, i.e. legal orderings of messages, by means of a
finite-state grammar. The finite-state grammar consists of a set of named states and a
set of transitions, one transition for each message that can be received or sent from a
particular state. Formally, a transition is of the form:
<S> : <dir><msg>-> <S>

where <S> is the symbolic name of a state; <dir> is the direction of the message
which can be either “!” (send) or “?” (receive); <msg> is the name of a message
described in the external interface.

The above description of a service comprises the external schema which is made
available on the Internet to allow a user or a client application to discover the service
and to correctly interact with it.

Example 1. The following gives a Banking Service specification, describing how a
client (of the bank) who has an account with the bank can interact with the service to
carry out certain transactions.

Service Banking {
Interface {
RECEIVE enterPIN(Account acc, EncryptedPIN PIN);
RECEIVE requestTransfer(Account toAcc, float amount);
RECEIVE requestBalance();
SEND invalidPIN();
SEND authorised();
SEND overdrawn();
SEND transactionApproved();
SEND currentBalance(float balance);

};
Protocol {
States { 0(init,final), 1, 2, 3,

4, 5(final), 6(final) };
Transitions {
0 : ?enterPIN -> 1;
1 : !invalidPIN -> 0;
1 : !authorised -> 2;
2 : ?requestTransfer -> 4;
2 : ?requestBalance -> 3;
3 : !currentBalance -> 0;
4 : !transferApproved -> 5;
4 : !overdrawn -> 6;
};

};
};

Note that many transitions of a service also require some preconditions as well as have
certain effects. For instance, the transition !authorised requires the precondition
that the PIN entered is valid for the account. Or, the transition !transferApproved
results in changes in the database including the balance of the current being deducted

Conversation-Based Specification and Composition of Agent Services 171

10
?enterPIN !authorised

3

!invalidPIN ?requestBalance

42

!currentBalance
5 6

!overdrawn

?requestTransfer

!transferApproved

Fig. 1. The interaction protocol of a banking service

the amount entered and the balance of the account to which the money is transferred
being increased by a corresponding amount. Besides the fact that not all transitions
require a precondition or produce some effects, incorporating such conditions to the
protocol description significantly increases the complexity of the framework and makes
reasoning about the protocols and the composite service more difficult.

Let S be the external schema of a service. We denote by States(S) the set of states
of the interaction protocol of S, Transitions(S) the set of transitions of the interaction
protocol of S, and initS the initial state of the interaction protocol of S. As illustrated in
Figure 1, the interaction protocol of a service defines a finite-sate machine (FSM), with
edges between states being labelled by !<message> or ?<message>. A protocol
also has a (possibly empty) set of final states in which it is valid for no further transitions
to be carried out with this service (instance). A mixed state is a state from which at
least one outgoing transition is labelled by a receive message and at least one outgoing
transition is labelled by a send message.

2.1 A Model for Composite Services

There are situations in which a client request can not be satisfied by any single available
service, but a composite service obtained by combining some available services might
fulfill such a request. The services used to form a composite service are referred to
as component services. When an organisation wishes to introduce a composite service
based on a collection of existing services, at least two basic tasks need to be accom-
plished. In the first task, the organisation must produce a specification of how to coor-
dinate the component service to allow the client request to be fulfilled. It is normally
required that the specification be executable, i.e. there is an execution engine to execute
the specification. Secondly the composite service must be made available as a normal
service, i.e. its external schema must be exported and made available on the Internet
to allow potential clients to discover and deploy it. It is the former task which is the
focus of our current work, though we will also briefly discuss how an external schema
is extracted from a composite service at the end of the paper.

Example 2. We now discuss a simple example of service composition involving the
banking service discussed in Example 1 and the following Airline Service:

Service Airline {
Interface {
RECEIVE flightRequest(Flight flightID);
RECEIVE cancelBooking(Flight flightID);

172 Q.B. Vo and L. Padgham

RECEIVE bookFlight(Flight flightID);
SEND flightUnavailable();
SEND pricingInfo(Price price);
SEND confirmTicket(details);

};
Protocol {
States { A(init,final), B, C, D(final), E, F(final) };
Transitions {
A : ?flightRequest -> B;
B : !flightUnavailable -> A;
B : !pricingInfo -> C;
C : ?cancelBooking -> D;
C : ?bookFlight -> E;
E : ?confirmTicket -> F;
};

};
};

A client request to purchase a ticket to fly on one of the flights provided by the above
airline involves both the Airline Service and the Banking Service to allow the following
functionalities: request for availability on a specified flight, information about the ticket
price (in case a seat on the specified flight is available), and purchasing the ticket by
transferring an appropriate amount from the client bank account to the airline (or the
service provider) bank account. The message flow behaviour of this composite service
and its interaction protocol are depicted in Figure 2.

flightRequest(flightID)

pricingInfo(price)

flightUnavailable()

cancelBooking(flightID)

bookFlight(flightID)

requestFlight(flightID)

ack(ticketDetails)

transactionNotApproved()

notAvailable()

enterPIN(account,PIN)

invalidPIN()

authorised()

requestTransfer(toAcc,
amount)

overdrawn()

transferApproved()

confirmTicket(details)

payment(accountInfo, PIN)

offer(price)
AirTicket

Sale

Service

(ATS)

(AL)

Service
Airline

Banking

Service

(BK)

negativeAck()

?requestFlight !offer

!notAvailable

?negativeAck

?payment

!ack !transactionNotApproved

P Q R S

T U

Fig. 2. A simple composite service for online Air Ticketing

To realise the composite service AirTicket Sale Service, on the one hand an external
schema consisting of an interface and an interaction protocol with messages such as
offer(), payment(), transactionNotApproved(), etc. must be exported and made avail-
able to the clients. On the other hand, a mechanism to coordinate the component services
Airline Service and Banking Service must be introduced to allow the functionalities of

Conversation-Based Specification and Composition of Agent Services 173

the composite service to be correctly achieved. This is known as the problem of compo-
sition synthesis which is concerned with producing a specification of how to coordinate
the existing services to realise the functionality of a desired composite service.

2.2 Problem Formalisation

Gerede et al [7] formalise the activity-based composition synthesis problem which was
originally proposed by Berardi [1] based on finite state automata whose transitions be-
tween states are labelled by activities. The problem of message-based service composi-
tion has been discussed in the work of Hull et al [4,8]. Given a set of available services
whose external schemata are made available, we would like to construct a compos-
ite service that meets certain criteria. While there could be several way in which such
criteria could be expressed, we will require that the external schema of the composite
service be provided. This leads us to a similar starting point to that of Gerede et al’s [7]
formalisation of the activity-based composition synthesis problem, viz. the composition
system.

Definition 1. A composition system C is a pair (ST ,S) where ST is the external schema
of the target (or, desired) service to be composed and S = {S1, . . . , Sn} is a set of
external schemata specifying the available component services to be used in the com-
position of the desired service.

Essentially, in a composition system C, the set of component services is fixed with their
external schemata required to be fully specified. We require that the target service to
be composed also be clearly specified in terms of its input/output messages and its
interaction protocol. It is the task of a composer to construct a mechanism to coordinate
the component services so that the specification of the target services is satisfied. We
henceforth refer to this mechanism as the internal model of the target composite service.
For convenience, we introduce the following notations: Given the external schema S of
a service, Messages(S) denotes the set of messages declared in the interface of S, and
let τ ∈ Transitions(S), the function Dir(S, τ) will be ? if τ is a receiving message
in S and will be ! otherwise. We will also write a transition as s : m → s′ where
s, s′ ∈ States(S) and m ∈Messages(S).

The internal model M of a composite service will have both message based tran-
sitions, with which it communicates with component services and the user, and also
internal transitions to allow control of internal processing to capture the required busi-
ness logic of the service.

Definition 2. A realisation of the composite service ST , within a composition system
C = (ST ,S), is a finite state machine (FSM) M = (Q, Σ, δ, q0, F) where Q is a finite
set of states, Σ denotes the set of transitions, δ : Q×Σ → 2Q is the transition function,
q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. The realisation M of a
composite service ST is required to satisfy the following conditions:

1. Σ = commM ∪ transM where commM = {<?|!>m : m ∈ msgM} is the set of
communicative acts such that msgM ⊆ Messages(ST) ∪

⋃
S∈S Messages(S),

and transM consists of the set of transitions denoting the internal computations of
the composite service.

174 Q.B. Vo and L. Padgham

2. There is an isomorphism ı : Q → States(ST) such that: (i) ı(q0) = initST , and
(ii) for each transition (u : m → v) ∈ Transitions(ST), there exist two states

q, r ∈ Q such that ı(q) = u and ı(r) = v, and q
χ∗
→ r, where χ∗ is a sequence of

transitions from Σ \Messages(ST) such that m occurs in χ∗.

Moreover, in order for the composite service to behave correctly, certain properties need
to be guaranteed. A composition state for a composition system C = (ST , {S1, . . . ,
Sn}) with a realisation M = (Q, Σ, δ, q0, F) is a tuple 〈s1, . . . , sn, q〉 where si ∈
States(Si) (i = 1, . . . , n) and q ∈ Q. An execution trace over (C, M) is a (possibly
infinite) sequence σ0 →m1 σ1 →m2 σ2 → . . ., where

– each σi is a composition state for (C, M);
– σ0 = 〈initS1 , . . . , initSn , q0〉, and
– σi+1 = 〈s1

i+1, . . . , s
n
i+1, qi+1〉 iff σi = 〈s1

i , . . . , s
n
i , qi〉, and there exists κ ∈

{1, . . . , n} such that (i) τ = (sκ
i : mi → sκ

i+1) ∈ Transitions(Sκ); (ii) qi+1 ∈
δ(qi,!mi) if Dir(Sκ, τ) = ? and qi+1 ∈ δ(qi,?mi) otherwise; and (iii) for each
� ∈ {1, . . . , n} such that �
= κ, s�

i+1 = s�
i .

By definition, Exec T ree(C, M) = {σ : σ is an execution trace over (C, M)}.
Exec T ree(C, M) is a tree whose root is the initial composition state σ0. Two desir-
able properties of a realisation of a composition system C are freedom of deadlock and
freedom of unspecified receptions.1

Definition 3. A realisation M = (Q, Σ, δ, q0, F) of a composition system C is said
to be free of unspecified receptions iff for all σ ∈ Exec T ree(C, M) such that σ =
σ0 →m1 . . . σk, where σk = 〈s1

k, . . . , sn
k , qk〉, the following hold:

– for all � ∈ {1, . . . , n}, if (i) s = s�
k is not a mixed state in the protocol of S�, (ii)

(s : m → s′) ∈ Transitions(S�), and (iii) Dir(S�, m) = !, then there exists
σ′ = σ0 →m1 . . . σk →m σk+1 such that σ′ ∈ Exec T ree(C, M) and σk+1 is the

same as σk at every position except from the �th position where s�
k is replaced by

s′ and the last position where qk is replaced by q′ for some q′ ∈ Q.
– let u = qk, for all m ∈ msgM , if q′ ∈ δ(q,!m) then there exists σ′ = σ0 →m1

. . . σk →m σk+1 such that σ′ ∈ Exec T ree(C, M) and there exists µ∈{1, . . . , n}
and σk+1 is the same as σk at every position except from the µth position where
sµ

k is replaced by s′ for some s′ ∈ States(Sµ) and the last position where qk is
replaced by q′.

Essentially, a composition system C with a realisation M has no unspecified receptions
if and only if (i) whenever an execution trace σ can reach a point where the realisation
M is in a state where it can send a message m then some service from the composition
system C , be it a component service or the constructed composite service, will be in
a state where it can receive that message, and (ii) whenever an execution trace σ can
reach a point where a service from the composition system C is in a state where (ii.a) it
can send a message m and (ii.b) it can not receive any message, then the realisation M
will be in a state where it can receive that message.

1 The notions of freedom of deadlock and freedom of unspecified receptions was first introduced
by Brand and Zafiropulo [3]. Definition 3 is adapted from [20].

Conversation-Based Specification and Composition of Agent Services 175

Definition 4. A realisation M = (Q, Σ, δ, q0, F) of a composition system C is said to
be free of deadlocks iff for all finite execution trace σ ∈ Exec T ree(C, M) such that
σ = σ0 →m1 . . . σk, where σk = 〈s1

k, . . . , sn
k , qk〉, then either

– s1
k, . . . , sn

k are final states of S1, . . . , Sn, respectively, or
– there exists σ′ ∈ Exec T ree(C, M) such that σ is a strict prefix of σ′.

Definition 5. A realisation M = (Q, Σ, δ, q0, F) of a composition system C is an in-
ternal model of C if M is free of unspecified receptions and free of deadlocks.

Example 3. The following is an internal model of the composition system involving
the Banking Service, the Airline Service and the AirTicket Sale Service in our running
example:2

?rF !fR
α

σ

ρ θ π
ν

λ

κηφ

γ

εχ

δ

β

?fNA
!uA

?pI
!o

?nA

!cB

?p !eP

?au?iP!tNA

!rT?od

?tA
!bF?cT

!ack

µ

Fig. 3. An internal model for online Air Ticketing composite service

Theorem 1. There exists an algorithm to check whether a realisation M is an internal
model of a given composition system C.

3 Asynchronous Communication

Under our formulation of the synchronous semantics, the finite-state machines describ-
ing the protocols of the component services and the composite service on the one side
and the internal model of the composite service on the other side are required to advance
atomically. That is, when a message m is sent, one side must be in a state that enables
it to send m and the other side is in a state that enables it to receive m. Hence, the
finite-state machines describing one of the components and the internal model advance
synchronously, so that the sending and receipt of a message are considered an atomic
action under this abstraction. However, as discussed by Yellin and Strom [20], the syn-
chronous semantics can be implemented without requiring the components to send and

2 The following abbreviations for message names are used: rF (requestFlight), fR
(flightRequest), fNA (flightUnavailable), uA (notAvailable), pI (priceInformation), o (offer),
nA (negativeAck), cB (cancelBooking), p (payment), eP (enterPIN), iP (invalidPIN),
au (authorised), rT (requestTransfer), od (overdrawn), tA (transferApproved), tNA
(transactionNotApproved), bF (bookFlight), cT (confirmTicket).

176 Q.B. Vo and L. Padgham

receive messages atomically. The only requirement is that the communicating compo-
nents always agree on the execution trace, i.e. the order of messages sent and received.

While the synchronous semantics significantly simplifies the reasoning about com-
municating systems, in particular, composite services and their internal models, this
restriction may severely hamper the applicability of our model to most application do-
mains in which services are required to be dynamically discovered and plugged in to
obtain the composite services. The standard way to achieve asynchronism is to use
unbounded memory to store the parameters sent from one component to another with-
out requiring the sending component to halt its process to wait for its mate to receive
the messages it sends. Although the asynchronous semantics are easier to implement in
comparison to the synchronous semantics, it is hard to reason about systems of commu-
nicating components under these semantics. In general, properties of the system such
as deadlock or existence of unspecified receptions are undecidable [3].

Given a composition system C = (ST , {S1, . . . , Sn}) and a realisation
M = (Q, Σ, δ, q0, F) for C, properties of the composite service embodied by M and
C such as deadlock, unspecified receptions, etc. can be investigated by considering the
product automaton constructed from S1, . . . , Sn, and ST and M . This is the approach
taken by, e.g. Gerede et al. [7]. In our representation, we will have to take into account
not only the interaction states the FSMs are in, but also the state of the FIFO channels
containing the (asynchronous) messages exchanged between different components of
the system.3 A configuration is a pair 〈I,M〉 where

– I denotes the (global) interaction state, called i-state, of the production machine
constructed from S1, . . . , Sn, and ST and M ;

– M denotes the (communication) medium state, call m-state, of the composite ser-
vice.

There will be n duplex FIFO channels to allow messages between the components
S1, . . . , Sn and the realisation M to be stored. We denote the content of the queue
storing the messages from M to Si (resp. from Si to M) by ωi (resp. ωi). The symbol
ε denotes the empty sequence. Finally, an i-state is a tuple (s1, . . . , sn, q) where si ∈
Si (i = 1, . . . , n) and q ∈ Q.

Without loss of generality we will assume that the sets of messages of S1, . . . , Sn

and ST are disjoint. A transition from one configuration c=〈(s1,. . ., sn, q), (ωi, ωi)n
i=1〉

to another configuration c′ is labelled by α which is either an activity from the set of
activities Σ of the realisation M or a message from

⋃n
i=1 Messages(Si) satisfying the

following conditions:

1. If α = !m and m ∈Messages(Sk) for some k ∈ {1, . . . , n}, then

(a) If (sk : α → wk) ∈ Transitions(Sk), then (i) the i-state of c′ is the same as
that of c except for sk being replaced by wk; and (ii) the content of the FIFO
queue from Sk to M is updated by m.ωk (was ωk before the update).

3 Another attribute of a configuration is the state of the world, e.g. the content of databases, tick-
eting and reservation systems, etc. This will be part of the future work to extend the framework
introduced in this paper.

Conversation-Based Specification and Composition of Agent Services 177

(b) If q′ ∈ δ(q, α), then (i) the i-state of c′ is the same as that of c except from q
being replaced by q′; and (ii) the content of the FIFO queue from M to Sk is
updated by m.ωk.

2. If (i) α = ?m and m ∈ Messages(Sk) for some k ∈ {1, . . . , n}, (ii) (sk : α →
wk) ∈ Transitions(Sk), and (iii) the content of the FIFO queue from M to Sk is
m.ω for some sequence of messages ω, then (a) the i-state of c′ is the same as that
of c except from sk being replaced by wk; and (b) the updated content of the FIFO
queue from M to Sk becomes ω.

3. If (i) α = ?m and m ∈Messages(Sk) for some k ∈ {1, . . . , n}, (ii) q′ ∈ δ(q, α),
and (iii) the content of the FIFO queue from Sk to M is m.ω for some sequence
of messages ω, then (a) the i-state of c′ is the same as that of c except from q
being replaced by q′; and (b) the updated content of the FIFO queue from Sk to M
becomes ω.

4. Otherwise, the system reaches the special configuration error.

The above definition of configurations constitutes the states of the production FSM
of a composition system C and its realisation. Based on this FSM and its reachability
graph, standard notions such as deadlocks and unspecified receptions can be defined.

Definition 6. (Reachable configurations.) Let C = (ST , {S1, . . . , Sn}) be a composi-
tion system and M = (Q, Σ, q0, δ, F) a realisation of C, a configuration c is reachable
if either c0 = 〈(initS1 , . . . , initSn, q0), (ε2)n

i=1〉, called the initial configuration of C
and M , or for some r ≥ 1, ∃c1, . . . , cr, ∃τ1, . . . , τr such that c = cr and τi is the
transition from ci−1 to ci as defined above, for i = 1, . . . , r.

A deadlock is a reachable configuration where all channels are empty and no compo-
nent is in a state to send a message or move to another state under a non-communicative
act.

Definition 7. (Deadlock.) Let C = (ST , {S1, . . . , Sn}) be a composition system and
M = (Q, Σ, q0, δ, F) a realisation of C, a configuration c = 〈(s1, . . . , sn, q), (ε2)n

i=1〉
is called deadlock if it is reachable and

1.
 ∃i ∈ {1, . . . , n} s.t. ∃m ∈ Messages(Si) and si : !m → w, for some w ∈
States(Si), and

2.
 ∃σ ∈ Σ s.t. ∃q′ ∈ Q and q′ ∈ δ(q, σ) unless σ = ?m for some message m.

An unspecified reception is a reachable configuration c where the head of an in-
coming channel cannot be consumed by the related component at c or any reachable
configuration from c.

Definition 8. (Unspecified reception.) Let C = (ST , {S1, . . . , Sn}) be a composition
system and M =(Q, Σ, q0, δ, F) a realisation of C, a configuration c=〈(s1, . . . , sn, q),
(ωi, ωi)n

i=1〉 is an unspecified reception if it is reachable and ∃k ∈ {1, . . . , n} s.t. either

1. ωk = m.ω for some sequence of messages ω and sk : ?m→ s /∈ Transitions(Sk)
for any s ∈ States(Sk); or

178 Q.B. Vo and L. Padgham

2. ωk = m.ω for some sequence of messages ω and there does not exist any reachable
configuration from c that puts the realisation M into a state q′ where δ(q′,?m) is
defined.

From the above definitions of deadlock configurations and unspecified receptions as
well as the construction of the transition relation between configurations, the following
theorem can be established:

Theorem 2. Let C=(ST, {S1, . . . , Sn}) be a composition system and M = (Q, Σ, q0,
δ, F) a realisation of C, a configuration c is error if and only if c is either deadlock or
an unspecified reception.

4 Synthesis Approach to Service Composition

We now wish to use the results of the semantic definition of asynchronous communica-
tion to define an algorithm which will build an internal model for a specified composite
service, using a provided set of components.

Most existing approaches to service composition are based on a programmer pro-
vided description of the process model for the composite service in a language such as
OWL-S. This is typified, e.g., by Narayanan and McIlraith [11], Sirin et al [15], and
Traverso and Pistore [17]. These approaches aim at producing a sequence of service
instances that meet the provided description for the composite service. Our interest is
in synthesising the process model itself, along similar lines to the work of Berardi et al
[2,1].

To aid in developing the internal model that interacts with component services as
well as exporting the desired behaviour (i.e. the message interface and protocol of the
target service), we introduce rules to allow interface mapping.4 An interface mapping
consists of a set of parameter mapping rules P which essentially express the relation-
ships between the parameters of component services and the parameters of the target
service, given by the following syntax:

<par_mapping> ::=
[when <msg0>] forward <msg1> as <msg2> |
[<Function>] <par_or_const>+ -> <par>;

<msg> ::= <service_name>::<msg_name>;
<par_or_const> ::= <constant> | <par>;
<par> ::= <service_name>::<msg_name>.<par_name>;

Example 4. The parameter mapping rules for our running example include:5

ATS :: requestFlight.flightID → AL :: flightRequest.flightID (1)

AL :: pricingInfo.price → ATS :: offer.price (2)

forward AL :: flightUnavailable as ATS :: notAvailable (3)

forward ATS :: ack as AL :: bookFlight (4)

ATS :: requestFlight.flightID → AL :: bookFlight.flightID (5)

4 Such rules could potentially be derived using an ontology service, however that is outside the
scope of the current work.

5 In this example and the following, we use the following abbreviation for the sake of presenta-
tion: ATS for AirTicket Sale Service, AL for Airline Service, and BK for Banking Service.

Conversation-Based Specification and Composition of Agent Services 179

The idea behind our algorithm is fairly simple. By constructing the (asynchronous)6

execution tree of the product FSM of a composition system we will be able to explore all
possible execution traces as well as the error configurations. After deleting the branches
of the execution trees that lead to error configurations, the remaining tree (if not empty)
provides us with the possible process models for the target service.

The algorithm of constructing the internal model M = (Q, Σ, q0, δ, F) for a given
composition system (ST , {S1, . . . , Sn}) proceeds as follows. First, as M must realise
ST , let A be a set such that there is an isomorphism ı : Q → States(ST). Our algo-
rithm begins with creating a unique name q0 to denote the initial state of M and thus,
ı(q0) = initST . To construct the execution tree for a composition system C and its inter-
nal model M , the common approach is to consider the set of all possible configurations
(see Section 3) and construct all possible transitions between the configurations based
on the messages that can be sent between components and the internal model. This is
the approach taken, e.g. by Gerede et al [7]. The problem with this approach is the space
explosion issue. As the execution of the whole system will either happen within the in-
ternal model or have an effect on the FIFO channels connecting the internal model with
the component services, our approach will actually revolve around the internal model
and the FIFO channels. Thus we will introduce the following set of (incomplete) con-
figurations: Let {θ1, . . . , θk} ⊆ {1, . . . , n}, then c = 〈(sθ1 , . . . , sθk), q, (ωi, ωi)n

i=1〉 is
an i-configuration. Then initially the execution tree T contains only one single node la-
belled by the i-configuration c0 = 〈(), q0, (ε2)n

i=1〉, i.e. no component service has been
taken into account and all FIFO channels are empty.

Definition 9. Let a composition system C = (ST , {S1, . . . , Sn}) be given. If the FSM
M = (Q, Σ, q0, δ, F) is an internal model of C, then the isomorphism ı can be con-
structed as follows:

– ı(q0) = initST ;
– let m ∈Messages(ST) and uT , vT ∈ States(ST) such that uT!m→ vT (resp.

uT?m → vT). If ∃q, r ∈ Q such that r ∈ δ(q,!m) (resp. r ∈ δ(q,?m)) then
ı(q) = uT and ı(r) = vT .

It is straightforward to show that if M is an internal model of C then f ∈ F if and
only if ı(f) is a final state of ST . An i-configuration c = 〈(sθ1 , . . . , sθk), q, (ωi, ωi)n

i=1〉
is final if for each i ∈ {1 . . . k}, sθi is a final state of Sθi and q ∈ F .

Let B be an branch on an execution tree T whose leaf is labelled by the configuration
c = 〈(sθ1 , . . . , sθk), q, (ωi, ωi)n

i=1〉 such that c is non-final, the following rules allow
one to construct an execution tree:

Extension rule on component services: Let Sκ ∈ {Sθ1, . . . , Sθk}, for each m ∈
Messages(Sκ): (i) if sκ : !m → s′ for some s′ ∈ States(Sκ) then any transition

6 We note that we do not provide duplex FIFO channels for the communication between M and
its client. Rather we simply assume that whenever M is in a state that enables it to receive
a message from its client it will repeatedly come back to the same state until the expected
message arrives. Whenever M is in a state that enables it to send a message to its client, it
simply does so, assuming that its client is ready to accept it or that there is a queue where the
message will be stored.

180 Q.B. Vo and L. Padgham

from c to another valid configuration c′ may contain an update by replacing sκ with s′

and enqueueing the message m to ωκ; (ii) if sκ : ?m → s′ for some s′ ∈ States(Sκ)
and the first element of the queue ωκ contains m then any transition from c to another
valid configuration c′ may contain an update by replacing sκ with s′ and removing the
message m from ωκ.

Extension rule on the composite service: (i) if ı maps q to some state s ∈ States(ST)
then for each m ∈ Messages(ST), if s : ?m → s′ for some s′ ∈ States(ST) then
any transition from c to another valid configuration c′ may contain an update by re-
placing q with a new state q′ and storing the message m to an array containing user’s
inputs for future uses; (ii) if the configuration c is such that the constructed model is
required to send a message m then, based on the parameter mapping rules, a set of min-
imal requirements for m will be calculated. Each minimal requirement consists of a set
of service parameters that are used to derive m (according to the parameter mapping
rules). For each minimal requirementMR, we introduce a new branch on the execution
tree indicating the set of services required for this branch of execution. For each service
Sκ ∈ MR, we add its initial state initSκ to the resulting configuration. Note that this
mechanism allows several instances of a single service to be deployed on one execution
trace.

Closure rule: When the configuration c is an error configuration as described in the
preceding section, the transaction leading from the parent node N (on the execution
tree T) to c is deleted and marked as inapplicable. Then, unless there is another trans-
action from N which is not marked inapplicable, the node N also becomes invalid
and the transaction leading to N must also be marked as inapplicable. This process is
recursively carried out further to the predecessors of N .

Observe that the internal model M of the composite service can be straightforwardly
derived from an execution tree as the set of states of M is made explicit in the configu-
rations on the execution tree. In addition to the set of messages sent or received by M ,
the internal computation transitions such as require(Sθ1 , . . . , Sθk) can also be easily
extracted from the execution tree. Furthermore, in the extended version of the paper in
which we take into account the preconditions and effects of transitions, each minimal
requirement (leading to a new branch on the execution tree) is associated with a condi-
tion under which the requirement is applicable. Several minimal requirements may be
applicable under one single condition.

5 Related Work

Our approach is similar to the one taken by Yellin and Strom [20] in which a language
for protocol specification is introduced for software components. Yellin and Strom,
however, only deal with synchronous communication between two processes whose
communication protocols are given, and building an adaptor for collaborating compo-
nents whose protocols may not be directly compatible. We on the other hand deal also
with asynchronous communication between services as well as building an internal

Conversation-Based Specification and Composition of Agent Services 181

model to interact with the component services in a way that satisfies the specification
of the composite service.

Bultan et al. [4] also introduce a formal model for Web services (based on Mealy
finite state machines) to allow conversations between services to be specified and rea-
soned about. Their framework employs a peer-to-peer orchestration mechanism rather
than a mediated approach as pursued in our work. Furthermore, they require a com-
position architecture of the composite service to be given so that the execution of the
composite service can be carried out on a peer-to-peer basis.

Gerede et al’s [7] framework is probably closest to the spirit of our approach. The
delegator of a composition system plays the role of the execution tree presented in our
paper. However, they assume that the messages sent and received by services are iden-
tical and, more importantly, that the communication between services is synchronous.

There has been a vast literature on AI planning-based approaches to Web service
composition (e.g. see [11,15,17]). One major requirement for these approaches to work
is that the description of the process model of the composite service must be given
(usually in OWL-S). These approaches then produce an instantiation for the given
process model to meet the user’s goal by looking for a sequence of applicable instances
of available component services. It is this process model (or, more precisely, its un-
folded execution tree) that we wish to synthesise in the work presented in the present
paper.

Berardi and her group [1,2] appear to tackle a similar problem to the one we are
trying to tackle in this paper. Their composition model, however, is based on a Roman
model. It is not clear how the communication problem, especially in the presence of
asynchronous communication, will be addressed in their framework.

6 Conclusion and Future Work

The approach to the problem of Web service composition introduced in this paper is
based on a rich literature in component-based software engineering. Our composition
algorithm requires service specifications of the component services and the target com-
posite service. We further require that a set of parameter mapping rules be provided to
allow messages to be sent by the internal models of the composite service to be syn-
thesised. We examine the conditions under which a configuration (i.e. the state of the
production FSM) is an error configuration. The algorithm has then been constructed in
such a way that error configurations and execution traces leading to error configurations
are eliminated.

There are several directions we could pursue to extend the framework presented in
this paper: (i) so far we have not taken into account the preconditions and effects of a
service. This requires our model to be augmented to be able to represent the state of
the world and to reason about changes made by services; (ii) the problem of failure
handling is a more challenging problem which requires careful investigation into dif-
ferent mechanisms to fix errors that occur during the execution or instantiation of the
composite process model.

182 Q.B. Vo and L. Padgham

References

1. D. Berardi. Automatic Service Composition: Models, Techniques and Tools. PhD thesis,
Università di Roma, “La Sapienza”, 2005.

2. D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. Automatic Com-
position of E-services That Export Their Behavior. In Service-Oriented Computing - ICSOC
2003, First International Conference, Trento, Italy, December 15-18, 2003, Proceedings,
pages 43–58. Springer-Verlag, 2003.

3. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM,
30(2):323–342, 1983.

4. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: a new approach to design
and analysis of e-service composition. In WWW ’03: Proceedings of the 12th international
conference on World Wide Web, pages 403–410, New York, NY, USA, 2003. ACM Press.

5. Business Process Execution Language for Web Services. http://www-128.ibm.com/
developerworks/library/specification/ws-bpel/, Feb, 2005.

6. Business Process Modeling Language. http://www.bpmi.org/bpml-spec.htm,
March, 2001.

7. C. E. Gerede, R. Hull, O. H. Ibarra, and J. Su. Automated composition of e-services: looka-
heads. In ICSOC ’04: Proceedings of the 2nd international conference on Service oriented
computing, pages 252–262, New York, NY, USA, 2004. ACM Press.

8. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-services: a look behind the curtain. In
PODS ’03: Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 1–14, New York, NY, USA, 2003. ACM Press.

9. S. Lu. The Semantic Correctness of Transactions and Workflows. PhD thesis, Computer
Science Dept., State University of New York at Stony Brook, USA, 2002.

10. M. Mecella and B. Pernici. Building flexible and cooperative applications based on e-
services, 2002.

11. S. Narayanan and S. A. McIlraith. Simulation, verification and automated composition of
web services. In WWW ’02: Proceedings of the 11th international conference on World Wide
Web, pages 77–88. ACM Press, 2002.

12. OWL-S 1.1 Release. http://www.daml.org/services/owl-s/1.1/, November,
2004.

13. R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-
namical Systems. MIT Press, Cambridge, Massachussets, 2001.

14. K. Saleh. Synthesis of communications protocols: an annotated bibliography. SIGCOMM
Comput. Commun. Rev., 26(5):40–59, 1996.

15. E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN planning for web service composi-
tion using SHOP2. Journal of Web Semantics, 1(4):377–396, 2004.

16. The Foundation for Intelligent Physical Agents. http://www.fipa.org/.
17. P. Traverso and M. Pistore. Automated composition of semantic web services into executable

processes. In Proceedings of International Semantic Web Conference 2004, pages 380–394.
Springer-Verlag, 2004.

18. W. M. P. van der Aalst, T. Basten, H. M. W. Verbeek, P. A. C. Verkoulen, and M. Voorho-
eve. Adaptive workflow-on the interplay between flexibility and support. In International
Conference on Enterprise Information Systems, pages 353–360, 1999.

19. Web Service Choreography Interface. http://www.w3.org/TR/wsci/, August, 2002.
20. D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors. ACM Trans.

Program. Lang. Syst., 19(2):292–333, 1997.

Evaluating Dynamic Services in Bioinformatics

Máıra R. Rodrigues1,� and Michael Luck1

School of Electronics and Computer Science, University of Southampton
Southampton SO17 1BJ, UK

Abstract. In dynamic applications characterised by a variety of alter-
native services with the same functionality but heterogeneous results,
agents requesting services must find an efficient way to select a service
provider from alternatives. In this context, this paper proposes an eval-
uation method to analyse the outcome of dynamic service, in order to
provide a guide for agents in future decision-making over alternative in-
teraction partners. We consider the application of the evaluation method
to the bioinformatics domain and present empirical results that support
the need for dynamic evaluation of services in that domain.

1 Introduction

Bioinformatics is a new field of research characterised by the application of
computer technology to the management and analysis of biological data (i.e.,
to gather, store, analyse and merge genome and protein related information)
[1]. Because of the vast quantities of data being generated by several genome
and protein sequencing efforts, a large variety of services have been developed
to analyse such data. These services are not only heterogeneous in terms of
functionalities and results, they are also distributed over the Internet, and in
continuous update. Such a dynamic, distributed and heterogeneous environment
imposes restrictions on the task of managing and analysing biological data and
services, and points to the suitability of an agent-based approach. When an
agent is engaged in this kind of environment and needs to delegate to, or request
a bioinformatics service from, another agent, it is likely that it will find many
alternative agents providing similar services.

In essence, there are three ways of selecting a service provider from alterna-
tives: by random selection; by identifying the best provider based on the service
or provider description given by the providers themselves; or by identifying the
provider with the best outcomes over previous interactions. Random selection
may allow providers offering poor services to be selected over those offering better
services. Selection based on descriptions given by providers does not guarantee
that providers are giving correct information or that the described properties
are valid when services are performed in different contexts. The more efficient
way to select is the third option, by identifying partners with good outcomes

� The first author is supported by Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior (CAPES) of the Brazilian Ministry of Education.

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 183–197, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

184 M.R. Rodrigues and M. Luck

over previous interactions. This method is based on the assumption that, when
services manifest a certain regularity of behaviour, a provider that performed
well in the past is likely to perform well again in a similar situation. If the
aim of evaluation is to provide some criterion for future decision-making over
alternative interaction partners, then this offers a reasonable way to proceed.

In order to determine the best outcome in this way, however, agents requesting
services must perform an evaluation of services after they are executed and the
results are received. This evaluation should reflect the satisfaction of the user
with the service outcome, which can be in relation to the quality of the interface,
the provider’s availability to perform the service when requested, the time taken
to execute, the quality of the content returned, and so on. For example, the
evaluation allows a requester to identify, among the possible providers, the one
with the best attributes in a similar situation, like highest quality of results and
lowest time to complete the request.

Although the application of multi-agent systems to the management and analy-
sis of bioinformatics data has already been proposed [2,3], previous work is con-
cerned with high-level management and integration of bioinformatics tools and
data, and does not address the evaluation of individual bioinformatics services.

In response, this paper proposes an evaluation method to analyse service
outcomes, in order to provide a guide for agents in future decision-making over
alternative interaction partners. This evaluation is needed to determine how
satisfied an agent is with a service it has requested and received.

The paper starts with an analysis of the issues concerning evaluation of dy-
namic services, followed by a description of the proposed evaluation method to
be embedded in the agents’ internal architecture. We introduce a scenario in
the bioinformatics domain in which we evaluate services for protein identifica-
tion, and end by presenting empirical results that support the need for dynamic
evaluation of those services.

2 Evaluation of Dynamic Services

When evaluating a service, independent of the context or domain in which the
evaluation is taking place, we must consider which characteristics may be im-
portant to analyse during evaluation, since evaluators are usually interested in
several aspects of the service. For example, when evaluating the food in a restau-
rant, customers might take into account the quality of the ingredients, the way
the food was presented, and the price. Similarly, to evaluate computing services
like search engines, users must consider, for example, the time taken to complete
the query, the relevance of the content returned to the user in relation to the
query, and the way results were presented. The number of characteristics to be
evaluated in a service varies according to the evaluator and the type of the ser-
vice; that is, the more complex the service, the more aspects might be relevant
to observe.

Dynamic services are considered here both as the services changing constantly
through new versions and updates, and the services that, despite manifesting

Evaluating Dynamic Services in Bioinformatics 185

regular behaviour when working under similar conditions, can vary their per-
formance depending on the parameter configurations used. An example of such
dynamic services are those in the bioinformatics domain, in which the dynamism
is a consequence of the great amount of information resulting from continuing
genomic and proteomics research. Also, some bioinformatics services, like those
related to comparison and search against gene or protein databases, vary their
performance according to both the quality of the input data used for comparison
and search, and the configuration parameters used for execution.

However, because the performance of dynamic services can change from one
execution to another, evaluations have to be undertaken every time a service is
executed. In addition, the evaluation should be associated with context infor-
mation, to allow future analysis of service results under different contexts. More
specifically, we identify four distinct issues to be addressed by an evaluation
method in this context, as follows.

1. Consistency: the evaluation method must deliver an evaluation measure that
allows comparison between evaluations, even if they were generated at dif-
ferent points in time. This is important when interactions between agents
are repeated over time under different conditions, and when new services
appear.

2. Generality: the evaluation method must be general enough to be applied to
different types of service. Having one general method that can be applied in
all situations is more advantageous than having to define specific methods
for different types of services. A consequence of this generality is the need
to support evaluation according to multiple attributes, since agents with
different goals may be interested in evaluating different attributes of the
service.

3. Continuity: the evaluation process must occur every time agents interact,
instead of only once, since the performance of services may change from one
interaction to another if different input configurations are used, if services
are updated, or if new data has been published.

4. Discriminated information: the evaluations provided by the evaluation
method must alow flexible decision-making in the future service selection
process, so services can be selected either by comparing evaluations of par-
ticular attributes, or by comparing a single evaluation that combines the
measures of all attributes.

2.1 Alternative Approaches

Traditional evaluation approaches calculate the evaluation of a service using
scoring or utility functions, which return a quantitative evaluation for the ser-
vice [4,5,6]. Utility functions can be calculated based on observed values only, or
on the comparison of observed and expected values. In the first case, which we
refer to as the absolute evaluation approach, the utility is derived from values
that are observed directly from service outcomes, and the evaluation of a service
depends only on its performance and is not influenced by expected performance

186 M.R. Rodrigues and M. Luck

[4,6]. In the second case, which we refer to as relative evaluation approach, the
utility of a service or attribute is derived from the comparison of values from the
outcome of the service at hand with those of a similar service, or with expected
values [7].

The main difference between these two approaches is that absolute evalua-
tion yields independent measures, while relative evaluation renders comparative
measures which require either information about a similar service, or the iden-
tification of ideal or expected performance.

As an alternatively to quantitative measures, service evaluation can also use
qualitative measures by using classification functions (or rules), which appear
in several approaches in web services literature [8,9,10]. These classify services
or service attributes according to pre-defined quality categories, such as terrible,
poor, acceptable, good, or excellent for services, and low, medium, or high for
attributes response time and cost. The classification function applies pre-defined
thresholds to determine the evaluation of a service or attribute so that, for ex-
ample, the attribute response time is evaluated as high when it is less than 10
seconds, as low when it is more than 100 seconds, and so on. In addition to eval-
uation categories, similar approachers consider probabilistic values to represent
the degree of pertinence to a specific category, as in evaluating service s1 to be
good with a probability of 0.8 [8,10].

If we consider the periodicity of the evaluation process, we can observe that
relative evaluation methods, which are based on the comparison of evaluations
of similar services, are more suitable for low frequency and bootstrapping eval-
uations. Since more than one service must be evaluated during the evaluation
process so that comparison is possible, when evaluations occur more frequently,
it is more costly for agents to evaluate two or more services at once than to
evaluate only one through an absolute evaluation method.

Regarding the characteristics of the evaluated service, it has to be considered
that for services which have several possible variations in parameter configuration
and each of these can yield a distinct result, it is difficult to identify expected mea-
sures of performance. Thus, in this case, absolute evaluation methods are more
suitable than relative evaluation methods which are based on expected values.

Finally, to guarantee consistent comparisons between evaluations generated
at different points in time, it is more appropriate to use absolute measures than
relative ones, because in relative evaluation methods measures are dependent on
another service’s performance or to an expected value. If the services used as
a comparative basis, or the expected values, change from one evaluation to the
other, the comparison of evaluations can lose consistency. For absolute evaluation
methods, however, the evaluation process is independent of other services and
expected performance, so evaluation measures are not biased.

3 General Evaluation Scheme

Considering the issues concerning the evaluation of dynamic services identified
previously and the analysis of alternative evaluation approaches, we propose a

Evaluating Dynamic Services in Bioinformatics 187

general evaluation method based on absolute evaluation measures. This approach
is more suitable for generating evaluations that can be consistently compared,
is less costly over repeated interactions, and does not require the identification
of expected performance values (which is not trivial for services influenced by
different input configurations like bioinformatics services). The approaches to
address the dynamic services’ evaluation issues are described in the following.

First, to provide generality, the evaluation must take place over multiple at-
tributes of a service. Thus, agents requesting services with different function-
alities may have individual sets of evaluation attributes, but follow the same
evaluation scheme.

Second, to ensure continuity and consistency, all attributes must be evaluated
according to an independent utility function, which receives as input values that
are directly observed from the service outcome. The definition of utility functions
based on measures directly observed from results, instead of based on similarity
or expected measures, allows the evaluation to be performed after each interac-
tion, since it is independent of other services or specific input configurations.

The choice for observable measures as input for utility functions instead of
expected or ideal values, also avoids relative evaluations that are not desirable
for two main reasons. If expectation values change, evaluations based on old
expectations will not be correctly compared with those based on a different,
new expectation value. Also, if the service being evaluated is very dynamic and
sensitive to different input conditions, it becomes difficult to determine what
value to expect.

Finally, to have discriminated information, the evaluation method must gen-
erate individual evaluations for each attribute instead of a single evaluation mea-
sure. If necessary, a single evaluation measure should be calculated during the
selection process. This is because, to combine all attributes in one evaluation, the
evaluator would have to consider the relevance of each attribute by assigning dif-
ferent weights according to its preference. However, if the evaluator’s preferences
change over time and, as a consequence, the weights assigned to each attribute,
consistent comparison between evaluations is not possible. The components and
processes that implement the solutions described above are presented in the next
sections.

3.1 Evaluation Attributes

All services need to be evaluated in relation to certain attributes. For example, to
evaluate a database, an evaluator agent usually distinguishes between the aspects
it wants to assess, which could be the quality of the data entries, and data access
performance. We call these aspects evaluation attributes, which indicate what is
relevant to evaluate in a service or resource.

Bioinformatics services deal mainly with the analysis of biological data related
to DNA and protein sequences aiming at identifying their function in living or-
ganisms as well as their structure. From a user’s perspective, these services must
be capable of identifying all information that is related to the biological data be-
ing analysed, so they can have hints about its function and structure. Also, it is

188 M.R. Rodrigues and M. Luck

important that any similarities that are identified by bioinformatics services are
correct by a high degree of confidence. Such data-related aspects are also found
in traditional web search engine evaluation metrics [12], with the difference that
in traditional web search the query data is usually known. In addition, services in
bioinformatics usually handle great amounts of data, and thus service results can
take hours or even days to complete. In this case, performance-related aspects
also have to be evaluated. Although evaluation criteria regarding performance
are generally applied in the evaluation of web services [13], they are not consid-
ered in many benchmarks for bioinformatics services [18,11], which are mainly
concerned with data-driven aspects. Based on this analysis, we have identified
four evaluation attributes for bioinformatics services which consider both data
and performance-related aspects of these services, as described below.

– Sensitivity refers to the ability to identify all significant information that is
related to the input data independent of its quality.

– Accuracy indicates whether result errors were generated from service execu-
tion. An algorithm for comparing the similarity of a protein sequences with
a sequence database, for example, must be accurate enough to return only
matches that are related to the input and to avoid random matches.

– Reliability relates to the capacity of the service to deliver results as expected,
and to recover results when there is a failure during execution. A reliable
service must have a very low frequency of failure.

– Performance indicates the time needed to complete a task.

Depending on the service being evaluated, other attributes, in addition to
those described above, can be considered for evaluation and added to the list
of attributes (see [12] and [13] for an extensive list of possible attributes). We
consider similar services as types, and the only constraint on the choice of eval-
uation attributes is that services of the same type must be evaluated using the
same set of evaluation attributes, to guarantee a consistent comparison between
them. The choice of a set of evaluation attributes for an agent is related to the
objective of the evaluation. For an agent receiving a service, the evaluation is
intended to measure its satisfaction with the service results.

3.2 Result Measures

Evaluation attributes are measured in terms of elements that can be directly
observed from the service results. For example, the sensitivity of a search engine
may be measured in relation to the number of matched hits that are related to
the input query, and its performance may be measured in terms of the time taken
to complete the search. We call these computable elements result measures.

Using a more specific view, we define result measures as pieces of information
derived from service results that can be used to determine the service’s utility.
Result measures are service-dependent, since they relate to the function and
purpose of a service.

We distinguish between two types of measures: static measures and dynamic
measures. Static measures are those whose values do not change, or rarely change,

Evaluating Dynamic Services in Bioinformatics 189

from one execution to another, and dynamic measures are those whose values
tend to change when the inputs or external conditions vary from one execution
to the other. The distinction between these two types of measures is important
when considering the continuity of the evaluation process and the characteristics
of the services being evaluated.

The accuracy attribute, for example, can be defined in terms of both static
and dynamic measures. In case of database search engines, a static measure
for the search engine’s accuracy would be, for example, whether new entries
submitted to the database are verified by human-experts (a curated database is
generally considered more accurate than a non-curated one). This measure does
not change over time and, thus, can be evaluated only once instead of every
time the service is used. A dynamic measure for the search engine’s accuracy
would be the number of matched items returned by the search algorithm that are
not relevant to the input query (the fewer the number of irrelevant matches, the
more accurate the search engine). Different from the static measure, the dynamic
measure can vary from one execution to another when different input data or
parameter configurations are used. Thus, the evaluation of dynamic measures
must be performed every time the service is used.

3.3 Evaluation Functions

An agent that is involved in an interaction and wants to evaluate a service of
type t, uses a set of evaluation attributes represented by At = {ai, .., an}. Each
evaluation attribute ai in a set At has its own evaluation function, which is
expressed in terms of utility. To measure an attribute’s utility, we take into
account the result measures associated with that attribute.

When more than one attribute is evaluated, all utility measures must be on
the same scale to allow their future combination in a single measure by the
selection mechanism. To guarantee that utility measures (Ui) for attributes ai

and i = {1, .., n} are on the same scale, we define a basic, normalized function
which is:
– Ui = bc, for decreasing utility attributes; and
– Ui = b

1
c , for increasing utility attributes.

Where b ∈ (0, 1) defines how strict the range of acceptable values is (it alters the
shape of the curve in Figure 1) and c represents the result measure associated
with attribute ai. The range of acceptable values is higher for b > 0.5 and
smaller for b < 0.5. According to the function, for decreasing utility attributes
the utility will be higher for smaller values of their results measures (c), as shown
in Figure 1. For increasing utility attributes the utility is higher for higher values
of their result measures (c).

3.4 Storing Evaluations

After the evaluation for an attribute is calculated, it is stored by the evaluator
agent as an evaluation tuple:

(r, p, s, Cj , ai, Ui)

190 M.R. Rodrigues and M. Luck

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Result measures

E
va

lu
at

io
n

Fig. 1. General utility function for evaluation attributes with b = 0.5

where r is the agent requesting the service, p is the agent providing the service,
s is the service being evaluated, Cj is the input configuration for service s in the
current interaction, ai is the attribute being evaluated, and Ui is the evaluation
of this attribute.

3.5 Evaluation Process

For each type of needed service, the evaluator must identify a set of attributes
which it considers relevant to evaluate. Also, for each identified evaluation at-
tribute, the result measures that best define that attribute need to be determined
and applied to the utility function for that attribute. For dynamic measures, re-
peated evaluations are more relevant since they allow the analysis of service
behaviour under different input configurations.

Every time an agent receives a service, it initiates an evaluation process for
that service, which is carried out by the evaluation method. The input for the
evaluation method is the service result itself, or information about the service
execution process. The output is a set of evaluations, one for each evaluation
attribute of the service. The evaluation process for an agent r when interacting
with a partner p, and evaluating a service s which was performed using an initial
configuration Cj , follows the steps below.

1. For each evaluation attribute ai in At do
(a) Compute the result measure associated with evaluation attribute ai

based on service result information.
(b) Calculate the evaluation Ui for ai using its associated evaluation func-

tion, which takes as input the result measures.
(c) Store the evaluation for the individual attribute evaluations together

with related information in the evaluation tuple (r, p, s, Cj , ai, Ui).

Evaluating Dynamic Services in Bioinformatics 191

4 Applying the Evaluation Method

In this section we consider the application of the proposed evaluation method
to the bioinformatics domain. In particular, we evaluate services that are used
in proteomics research [1].

Identification of the proteins which are present in particular cells or tissues
of living organisms is one of the main goals of proteomics research. This task
is carried out with the help of what is known as a MS/MS search engine1,
which receives as input a data file containing a list of peptides from an un-
known protein called the spectra, and uses matching algorithms to search the
unknown peptides against a database of known protein sequences. The output
is the list of peptides which matched the database, and the protein sequences
to which they are associated. The premise behind MS/MS search engines is
that if two proteins have similar peptide sequences, they probably have similar
function and structure, even if they come from different organisms or different
cells.

Alternative MS/MS search engines are publicly available, and differ from each
other mainly in the implementation of the matching algorithm. Examples of such
search engines are Mascot[14], Tandem[15], and OMSSA[16], some of which run
on remote servers, while others run as local services.

Although there are alternative MS/MS search engines with the same func-
tionality, they can yield heterogeneous results for the same input data. Thus,
from a user perspective, the evaluation of these search engines can provide a
criterion for future selection. In addition, MS/MS search engines are very sen-
sitive to initial configurations and to the quality of the input data, as shown
in empirical studies described in [17,18,11]. As a consequence, some services
may be more suitable for data with a certain quality or for particular config-
uration setting than others. This means that, even if one search engine per-
forms better when using a particular configuration setting, it may vary its per-
formance when working with a different configuration setting. Thus, MS/MS
search engines need a repeated evaluation process, and in terms of their dynamic
attributes.

In this context, in the following sections we apply the proposed evaluation
method to evaluate MS/MS search engines and show empirical results that sup-
port the need for a repeated evaluation in case of dynamic services.

4.1 Identifying Evaluation Attributes

Experiments for protein identification usually have two focuses: identification of
a single protein from unknown input data, or identification of more than one
protein from multiple, unknown inputs. In both cases, relevant attributes to be
evaluated by the requester are the service sensitivity, accuracy, and performance.
The first attribute evaluates the capacity of the search engine to match relevant
proteins, which are those associated with a higher number of peptides. The
1 MS/MS is a specific type of input received by the search engines, which comes from

mass spectrometry machines.

192 M.R. Rodrigues and M. Luck

second attribute, accuracy, evaluates the capacity of the search engine to identify
true matches and to avoid false positives. Finally, service performance measures
the time taken from the input submission until the results are received.

4.2 Identifying Result Measures

Each evaluation attribute is measured according to concrete values that can be
observed from parsed service results or from the execution process. For MS/MS
search engines, the result measures used to evaluate each attribute are as follows.

Sensitivity. The sensitivity of a MS/MS search engine is related to its ability
to identify all matches that are related to the input spectra. All search engines
have a significance value associated to each protein match, which represents
the chance of that match being a random match. If this value is above a certain
threshold, the protein match is considered a true positive. Thus, for this scenario,
we measure the sensitivity of a MS/MS search engine in terms of the number of
proteins identified above the significance threshold, and the number of peptides
matching the proteins (the peptide ratio). The higher the number of significant
protein matches and the number of peptides per identified protein, the higher
the sensitivity of the search engine.

Both result measures can be directly identified by parsing the search result.
The number of proteins is calculated by counting all protein matches returned
that are above a significance threshold. A simple way of calculating the number
of peptides per protein might be by the simple average of peptide concentrations
per matching protein as follows:

peptide ratio =
1
n
×

n∑
i=1

pp(i)

where n is the total number of proteins, and pp(i) is the number of peptides
matching protein i.

Accuracy. For general Internet search engines like Google or Altavista, a com-
mon approach to measure accuracy is to observe the number of occurrences of
the query in the matching web site [12]. However, the main difference between
MS/MS search engines and general web search engines is that users of the latter
engines submit keywords or expressions with the goal of finding related informa-
tion, while MS/MS search engine users usually submit data with an unknown
identity with the goal of finding similar data that could give a hint about the
identity or origin of the submitted data.

The submission of unidentified data to search engines makes it difficult for
the evaluator to determine the accuracy of the matched results. Unless users
submit data which is already known, they cannot determine whether the match
is a false positive without further investigation or relying on a detailed human
expert analysis.

Although determining whether a result is accurate without further investiga-
tion is a very difficult task, some approaches have been proposed in [18] and [11]
that can provide some kind of result validation, as described below.

Evaluating Dynamic Services in Bioinformatics 193

– Search with multiple input files: this sends multiple input files from the same
protein and analyses each result individually to identify those matches that
were common for all input files and those that were not. The idea is that
searching with multiple input files from the same original protein sample
reduces the chance of false positives from being repeated in all individual
results, so that they can be identified as ‘odd’ (false positive) matches.

– Corroborate results of different services: this repeats the request sent to one
service in a different service and compares the matches given by both. The
premise is that services give top hits similar enough to validate each other’s
results and, thus, the comparison of different results can identify both true
positives and false positives that are between the best hits.

– Compare matched protein masses with expected mass : usually, before starting
a MS/MS search, requesters have some idea of the mass of the protein that
is present in the input file. Thus, the result can be validated by comparing
the mass of top match proteins with the expected mass. True matches must
have similar mass to the expected one.

Apart from the fact that the corroboration approach depends on another ser-
vice, any of these approaches could be adopted to determine the service accuracy,
since all provide concrete, observable result measures to be used by the proposed
evaluation method. For example, if we take the number of false positives as a
result measure for service accuracy, all three validation approaches provide dif-
ferent ways of getting the information, and the choice of which to adopt is left to
specialist users. For the scope if this paper, we do not implement the evaluation
of this attribute in the empirical study.

Performance. The performance of a MS/MS search engine can be measured by
the response time, which represents the amount of time a requester has to wait
for the service result. The response time differs from processing time because
the former considers the influence of network traffic. From the point of view of a
requester, it is more relevant to consider the performance of the MS/MS service
in terms of response time.

As with the other result measures, the response time can be determined dur-
ing the execution process. In the current approach, contextual information that
might be useful in determining external factors like network traffic or provider
overhead are not considered. However, if services are repeatedly evaluated, it
may be possible to identify such variations in performance.

4.3 Evaluation Functions

Since search engines match each individual entry in an input file with the data-
base, the size of the input file (the number of entries) will influence some evalu-
ation attributes like performance and sensitivity. In other words, the larger the
input file, the bigger the expected response time for the service, and the higher
the expected number of matching proteins and peptide ratio.

In this context, the evaluation of each attribute of the MS/MS search engine
considers the size of the input data in addition to the respective result measures.

194 M.R. Rodrigues and M. Luck

Sensitivity. The utility function that evaluates the sensitivity attribute is given
in terms of result measures associated with that attribute, in this case the number
of proteins and peptide ratio. A desirable service is one given a result with
a higher number of significant protein matches and a higher concentration of
peptides per protein, indicating that there was a big coverage of the protein
sequence. The utility function that reflects the desirable result is in the form:

Us = 0.5sm

where sm (sensitivity measure) is the relation between the number of proteins
returned by the service, peptide ratio, and the input size (in Kbytes).

sm =
input size

protein number × peptide ratio

Here, the service sensitivity increases as the number of identified proteins and
associated peptides increase. Thus, the value of sm is calculated in an inverted
form (with a decreasing value for higher result measures) to reflect this behaviour
in the utility function. Since the number of proteins is usually much smaller than
the peptide ratio, the latter has a bigger contribution to the utility.

Performance. A desirable result in terms of performance will have small values
for response time. Thus, the evaluation of service performance is given by the
normalized utility function:

Up = 0.5rt

where rt is the relation between the service response time and the size of the
input file, and is given by the following:

rt =
response time

input size

The response time is given in seconds, and the input size is given in Kbytes.
According to the function, service performance will be higher for smaller values
of rt and, consequently, for smaller response times.

4.4 Results

We apply the proposed evaluation method to evaluate four different search en-
gines, two locally and two remotely accessed. These search engines are Mascot
remote [14], Tandem local and remote [15], and OMSSA local [16].

For this empirical study, the requests were submitted to all services using the
same input spectra (580.8Kb), and two different input configurations, as shown
in Table 1. Configurations C1 and C2 have different settings for parameters
Taxonomy and Fixed Modifications, while the others are kept the same. We
repeated the evaluation process for each input configuration using the same
spectra to observe the changes in evaluation results.

Results for the evaluation of the four different MS/MS search services accord-
ing to the sensitivity attribute are shown in Table 2, and the services with best

Evaluating Dynamic Services in Bioinformatics 195

Table 1. Initial configurations for MS/MS search services

Parameter C1 C2

Database NCBInr NCBInr
Enzyme Trypsin Trypsin
Taxonomy Mammals All entries
Fixed Modifications Carbamidomethyl (C) None
Potential Modifications None None
Peptide Tolerance 2.0Da 2.0Da
Fragment Tolerance 0.8Da 0.8Da
Missed Cleavages 1 1

evaluation for this attribute using each configuration are highlighted in bold.
Here we observe that, for configuration C1 Mascot has a better sensitivity, but
for configuration C2, Tandem local is better. Evaluation results for the perfor-
mance attribute are shown in Table 3. Here, we observe that Tandem local has
better performance when using configuration C1, but Tandem remote is better
when configuration C2 is used. From this results we observe that, if the evalua-
tion process had not been repeated after the first interaction with Tandem local,
a requester interested in finding the best service in terms of sensitivity would
have the wrong information that Mascot would perform better when using con-
figuration C2 as well.

Similarly, if the evaluation process had not been repeated after an interaction
with Tandem remote, a requester interested in finding the best service in terms
of performance would have the incorrect information that Tandem local would
present better performance also for configuration C2.

Moreover, the results show that dynamic services, like those presented on
this empirical study, despite having similar functionally, can yield heterogeneous

Table 2. Evaluating MS/MS search services according to the sensitivity attribute

Service protein number peptide ratio Sensitivity
C1 C2 C1 C2 C1 C2

Mascot 13 40 10 9 0.045 0.327
Tandem Local 8 36 11 51 0.010 0.803
Tandem Remote 2 3 9 6 1.9E-10 1.9E-10
OMSSA Local 31 31 4 4 0.039 0.039

Table 3. Evaluating MS/MS search services according to the performance attribute

Service response time (sec) Performance
C1 C2 C1 C2

Mascot 172 200 0.814 0.787
Tandem Local 11 41 0.986 0.952
Tandem Remote 26 37 0.969 0.956
OMSSA Local 2581 2489 0.045 0.051

196 M.R. Rodrigues and M. Luck

results under different configurations. Thus, there is a need to dynamically eval-
uate services to improve the efficiency of future selection of alternative services.

5 Conclusion and Future Work

We have presented a general evaluation method for dynamic services to be used
by agents in bioinformatics applications. We discuss the issues for efficient eval-
uation of dynamic services, which include the adoption of a repeated evaluation
process, the use of absolute evaluations, and the generation of comparable eval-
uations, and describe the components of the evaluation method.

We apply the evaluation method to evaluate services for protein identifica-
tion, and show the importance of a dynamic evaluation process for those ser-
vices through empirical results. Results show that there is a need to dynamically
evaluate services to have more accurate information about their results, so that
agents requesting services in dynamic environments can improve the selection of
alternative services in the future. Future work aims to develop selection strate-
gies for agents using service evaluation, considering both individual attribute
evaluations and a combined evaluation of different attributes.

Although the evaluation method targets services in the proteomics domain,
it can also be applied to services in other domains that share the same charac-
teristics of dynamism (where different evaluation criteria may be required, but
using the same method).

References

1. Campbell, A.M., Heyer, L.J.: Discovering Genomics Proteomics and
Bioinformatics. Benjamin Cummings, San Francisco CA (2002)

2. Bryson, K., Luck, M., Joy, M., Jones, D.T.: Applying agents to bioinformatics in
geneweaver. In: Cooperative Information Agents IV. Volume 1860 of Lecture Notes
in Artificial Intelligence. Springer-Verlag (2000) 60–71

3. Decker, K., Zheng, X., Schmidt, C.: A multi-agent system for automated genetic
annotation. In: Fifth International Conference on Autonomous Agents, Montreal
(2001) 433–440

4. Edwards, W., Newman, J.R.: Multiattribute evaluation. In Sullivan, J.L., Niemi,
R.G., eds. Volume 26 of Quantitative Applications in the Social Sciences. Sage,
CA (1982) 7–94

5. Russel, S., Norvig, P.: Intelligent Agents. In: Artificial Intelligence: A Modern
Approach. Prentice Hall, New Jersey (1995) 31–50

6. Yoon, K.P., Hwang, C.: Multiple attribute decision making: An introduction. In
Lewis-Beck, M.S., ed. Volume 104 of Quantitative Applications in the Social Sci-
ences. Sage, CA (1995) 1–75

7. Caverlee, J., Liu, L., Rocco, D.: Discovering and ranking web services with BASIL:
a personalized approach with biased focus. In: International Conference on Service-
oriented Computing, New York, ACM Press (2004) 153–162

8. Casati, F., Castellanos, M., Dayal, U., Shan, M.: Probabilistic context-sensitive
and goal-oriented service selection. In: Second International Conference On Service
Oriented Computing, New York USA (2004) 316 – 321

Evaluating Dynamic Services in Bioinformatics 197

9. Chakraborty, D., Jaiswal, S.K., Misra, A., Nanavati, A.A.: Middleware architecture
for evaluation and selection of 3rd party web services for service providers. In: IEEE
International Conference on Web Services, IEEE Press (2005)

10. Day, J., Deters, R.: Selecting the best web service. In: Conference of the Centre for
Advanced Studies on Collaborative research, Ontario Canada, IBM Press (2004)
293–307

11. Kapp, E.A., Schtz, F., Connolly, L.M., et al : An evaluation, comparison, and ac-
curate benchmarking of several publicly available ms/ms search algorithms: Sensi-
tivity and specificity analysis. Proteomics 5(13) (2005) 3475–3490

12. Dhyani, D., Wee, K., Showmick, S.S.: A survey of web metrics. ACM Computing
Surveys 34(4) (2002) 469–503

13. Lee, K., Jeon, J., Lee, W., Jeong, S., Park, S.: Qos for web services: Requirements
and possible approaches. Working group note, W3C (2003)

14. Perkins, D.N., Pappin, D.J.C., Creasy, D.M., Cottrell, J.S.: Probability-based
protein identification by searching sequence databases using mass spectrometry
data. Electrophoresis 20(18) (1999) 3551–3567

15. Craig, R., Beavis, R.C.: A method for reducing the time required to match protein
sequences with tandem mass spectra. Rapid communications in mass spectrometry
17 (2003) 2310–2316

16. Geer, L.Y., Markey, S.P., Kowalak, J.A., et al : Open mass spectrometry search
algorithm. Proteomics Research 3 (2004) 958–964

17. Boutilier, K., Ross, M., Podtelejnikov, A.V., Orsi, C., Taylor, R., Taylor, P., Figeys,
D.: Comparison of different search engines using validated ms/ms test datasets.
Analytica Chimica Acta 534 (2005) 11–20

18. Chamrad, D.C., Korting, G., Stuhler, K., Meyer, H.E., Klose, J., Bluggel, M.:
Evaluation of algorithms for protein identification from sequence databases using
mass spectrometry data. Proteomics 4(3) (2004) 619–628

A Classification Framework of Adaptation in
Multi-Agent Systems

César A. Maŕın and Nikolay Mehandjiev

School of Informatics, University of Manchester
PO Box 88, Sackville St. Manchester M60 1QD, UK

Cesar.Marin@postgrad.manchester.ac.uk,
Nikolay.Mehandjiev@manchester.ac.uk

Abstract. This paper proposes a classification framework to help with
the understanding and integration of contributions in the field of adap-
tive multi-agent systems. This framework is used to highlight gaps in
the field and derive directions for further research. The need for this
framework has arisen from the proliferation of fragmented streams of
research, aiming to enable adaptation of agent systems to rapidly chang-
ing circumstances and requirements. Multi-agent systems are purported
to provide flexible support for users and organisations in dynamic and
complex open environments because of their capabilities of autonomous
problem-solving. However, exploring the boundaries of flexibility quickly
uncovers limitations when agents have to adapt to situations which have
not been considered during design time. This issue has been addressed
by different research groups using approaches such as flexible systems,
evolutionary computation, control systems, and complex adaptive sys-
tems. Nevertheless, exchange of ideas between different groups is rare,
and systematic analysis of achievements is overdue. The classification
framework proposed here is used for such analysis and covers both the
analysis and the results in terms of directions for future work.

Keywords: adaptive multi-agent systems, classification framework, eco-
system.

1 Importance of Adaptive Multi-Agent Systems

Business and organisation environments are characterised with distributed, de-
centralised, and highly dynamic business processes where unpredictable situa-
tions occur frequently [1]. In addition, the increase of unstructured information
and knowledge augments the complexity to these environments, and this has
led to the development of complex systems for organisations’ support. Software
agents are increasingly seen as an appropriate technology to build supporting
systems for such environments because of their ability to build distributed multi-
agent systems (MASs), and their capabilities of autonomous problem-solving
[2]. But MAS cannot easily cope with the increase of complexity and frequent
changes occurring in its environment. For this reason, “agents must possess a
pervasive property of human behaviour: adaptation”[3], which in turn “is not an
emergent property but should be a fundamental characteristic” [4] in MAS.

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 198–212, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Classification Framework of Adaptation in Multi-Agent Systems 199

Building a MAS for complex and dynamic environment is not a straightfor-
ward goal to achieve. It is difficult to anticipate all potential situations an agent
may be involved in, and specify the agents’ optimal behaviour whilst designing
them. This is why in recent years research interest has been attracted to the
field of adaptive MAS (AMAS) [5,6]. A number of researchers work in the area,
following diverse and fragmented approaches, such as flexible systems, evolu-
tionary computation, control systems, and complex adaptive systems. However,
exchange of ideas between different groups is rare, and thus systematic analysis
of achievements is overdue.

To facilitate this systematic analysis of achievements, we propose a classifica-
tion framework of contributions in the field of AMAS. The framework is based on
three key elements of the adaptation nature itself. Other approaches, e.g. system
and user dimensions, are considered out of the scope of this paper. The elements
of the adaptation nature which we consider are: (1) Environment: focusing on
the environmental changes as one of the reasons for adaptation; (2) System: the
interactions within AMAS; and (3) Boundary/Relation: the strength of the rela-
tion between the AMAS and its environment. Combining these three dimensions
leads to five adaptation classes. Using these classes it is possible to analyse past
achievements and set future research goals.

In order to present our classification framework we have organised this paper
as follows: in the next section, a brief definition of AMAS is provided. In Sec-
tion 3, the classification framework is presented along with some representative
examples to illustrate each section of the framework. Section 4 gives a compar-
ison of our framework with another classification approach. Section 5 uses the
framework to derive directions of further research effort in adaptation in MASs.
Finally a brief summary and conclusions are given in Section 6.

2 Definition of Adaptive Multi-Agent System

From the biological point of view, adaptation “is the process whereby an or-
ganism fits itself to its environment. Roughly, experience [and learning] guide
changes in the organism’s structure so that as time passes the organism makes
better use of its environment for its own ends” [7]. The vision of adaptive agent
was defined by Maes [8] as an agent that becomes better at reaching its objec-
tives. In terms of the two main approaches for agent modelling and environment
interaction, Guessoum suggests that an adaptive agent would be that who com-
bines the cognitive and the reactive approaches where the cognitive approach
relates to the traditional artificial intelligence (AI) way to represent the world by
symbolic models and planning; and the reactive approach refers to the simple-
minded agent that reacts rapidly to events without the need to use complex
reasoning [4]. Jacques Pitrat goes further (as cited by [4]) and states that an
adaptive agent is that who has knowledge about its own structure and evolu-
tionary capacities (i.e. meta-knowledge), so that it can dynamically modify its
behaviour by changing its own structure.

200 C.A. Maŕın and N. Mehandjiev

Now, considering Pitrat’s definition of adaptive agent and Guessoum’s consid-
erations for AMASs [4], let us define an AMAS as a MAS situated in an open envi-
ronment and capable to self-modify its structure and internal organisation by vary-
ing its elements’ interactions according to environmental changes. This definition
helps us to identify several key elements in both the AMAS and its environment
upon which we base our framework: environmental changes, AMAS internal inter-
actions and the strength of the relation between the AMAS and its environment.
The rationale for using these elements will be described in the next section in or-
der to establish our classification framework. Then we use it to analyse existing
contributions in the field of AMAS, and to derive directions for future work.

3 Our Contribution: Classification Framework of
Adaptation in Multi-Agent Systems

There have been several attempts to develop AMASs and they have provided
good results for their particular domain. But looking at all of them together
it is not possible to foresee where the research efforts are aiming at. This is
where the importance of this framework surfaces, since it provides a useful tool
to analyse the proliferation of fragmented streams of research aiming to enable
adaptation of agent systems to rapidly changing circumstances and requirements.
The framework is also used to highlight gaps in the field and to derive suggestions
for further research.

The definition of AMAS given in Section 2 helps us to identify key elements
in both the AMAS and its environment upon which we base our framework: (1)
the environmental changes which are clearly the main reason for AMAS to adapt
itself; (2) the AMAS internal interactions which are one of the “guiding”[8] and
“engineering”[9] principles to enable adaptation; and (3) the relation between the
AMAS and its environment because of the obvious need to consider the degree
at which AMAS adaptations affect the environment. Using these key elements
it is now possible to draw the classification framework as follows:

Nature of environmental change: the assumed nature of change can be used
to characterise the environment either as discrete or continuous. A discrete envi-
ronment is that whose events are discrete, i.e., changes does not occur smoothly.
As a consequence, the environment has states assigned to it and possible event
types are known in advance, but occurrence time may be unknown. A continu-
ous environment is that whose events occur gradually, i.e. there are no discrete
changes. Therefore the environment can be modelled as a function agents try
to either manipulate, anticipate or optimise. Additionally, event types might be
unknown as well as occurrence time. We consider other agents as separate from
the environment and a part of the AMAS.

Nature of AMAS internal interactions : the nature of interactions can be used
to characterise the AMAS either as static or dynamic. A static AMAS is that
whose internal interactions are predefined. In other words, agent types are de-
veloped to interact specifically with agents of certain types. Additionally, the
number of agent types is fixed and small, and the agent diversity is low. On

A Classification Framework of Adaptation in Multi-Agent Systems 201

Table 1. Classification framework of adaptation in MASs. Combining environment
types, AMAS internal interaction types, and the strength type of the relation between
AMAS and its environment is possible to group adaptation achievements into five
different classes.

the other hand, a dynamic AMAS is that whose internal interactions are not
predefined. That is, agents are not restricted to interact with agents of specific
types. They interact freely creating complex structures and organisations. More-
over, there is usually a high diversity of agent types which is neither fixed nor
predefined. As a consequence, complex behaviours can emerge [4,7,9].

Nature of the strength of the relation between AMAS and its environment : the
nature of the strength of this relation can be either weak or strong. A strong
relation is that in which a single change in the AMAS behaviour affects the
environment almost immediately. A weak relation is that in which a single change
in the AMAS behaviour does not affect the environment. It gets influenced after
a collection of consecutive changes takes place though. The collection size is
determined by the AMAS itself and depends on the particular implementation.

As a result of combining types of environment, AMAS and relation, five differ-
ent adaptation classes can be obtained as shown in Table 1: Automaton, Control
System, Semi-Isolated Evolution, Complex Interactions, and Ecosystem. Each
adaptation class is explained in the following subsections along with represen-
tative examples from literature. It is important to highlight that we are not
evaluating the results presented in literature, but we are (a) using the examples
to illustrate the classes of the framework, and also (b) analysing and classifying
the different attempts to enable adaptation in MASs.

3.1 Adaptation as an Automaton

The strong relation of a static AMAS with a discrete environment leads to
have adaptation as an Automaton. In this class, agents have a fixed action set
and the environment has a fixed state set. Agent actions and events bring the
environment to different states in a similar way as an automaton works. So, all
possible states in the environment are known in advance, and thus AMAS actions
are predefined and event types are known in advance. Therefore, AMAS adapts
its behaviour according to the current environment state and to the state it wants

202 C.A. Maŕın and N. Mehandjiev

to bring the environment to. Examples of approaches embraced by researchers
working in this category are the following:

A social reasoning for adaptation [10] endows each agent with a knowledge
base in which the environment is modelled in a discrete way. Agents have different
goals and different sets of actions they use to make plans. Agents may not reach
their goals by their own, so they infer they need to cooperate in order to reach
them. Agents re-plan and consider other agents’ goals, i.e. one agent may infer
that it can help other agents to achieve their goals first in order to achieve its
own goal later. So, adaptation is enabled when a logical conclusion dictates a
modification to original plans.

Interaction experience organisation [11] allows agents to acquire proficiency
for further adaptations. It generates agent classes whilst interacting with other
agents. Classes are created explicitly in terms of a deterministic finite automa-
ton. Adaptation is enabled by analysing other agents’ possible actions according
to the current state. An argument-based negotiation example using an imple-
mentation of this framework is explained in [12], where agent conversations are
used to construct discrete models of other agents.

A generic architecture for adaptive agents development [13] manages reusable
software components for adaptation. It selects the proper reusable software com-
ponents, available in advance, according to the current environment situation.
Thus, adaptation is limited to the amount of available components and to the
environment states those components were originally developed for. In [14], a
similar approach is presented for mobile agents.

A memory-based adaptation [15] allows agents to store environment local ob-
servations in a rolling memory window in a discrete manner. Actions are prede-
fined and explicitly represented as states in an automaton. Local observations
trigger transitions and bring the automaton to new states, i.e. agents react to
local observations.

A feature in common to all approaches belonging to the Automaton class of
this framework is the assumption that the environment can be in a number of
discrete states, and that the AMAS can control these states, or at least that
it has correct responses for each of such states. In conclusion, the perception of
adaptation as an Automaton relies on the assumption that only foreseen events
will happen in the environment. This assumption is questionable when MASs are
purported to provide support in open environments.

3.2 Adaptation as a Control System

The strong relation of a static AMAS with a continuous environment lets us
have adaptation as a Control System. In this class, the environment is perceived
by the agents as an input function (or a set of them) instead of states. Environ-
ment alterations are sensed throughout the input function. Agents have a fixed
action set and can tune the degree at which these actions affect the environment.
Thus, agents have to either manipulate, anticipate or optimise the input function
according to their tasks or goals, resembling in this way a control system. In this
class, events might not be unexpected because it could be possible to anticipate

A Classification Framework of Adaptation in Multi-Agent Systems 203

a situation due to input function tendency. Nevertheless, event types might be
unknown because agents cannot see (or do not care) what is causing a specific
function outcome. Examples of approaches followed by researchers working in
this class are the following:

A load balancing framework for distributed environments [16] allows agents
to adapt their structure to optimise load balancing. Agents perform operations
such as composition and decomposition where two agents can merge into a single
one, and one agent can split into two agents, respectively. By performing these
two operations, agents adapt their structure in order to optimise load balancing
of different sites they are performing in whilst task deadlines are met.

An economic model [17] enables agents to make investment decisions in a stock
market environment. Each agent is represented by a learning classifier system
(LCS). And the environment consists of a set of variables about prices, splits and
dividends, etc. The input function is the profit obtained by previous decisions.
Adaptation is reached by tuning internal LCS parameters in order to optimise
the benefits, i.e. get better profits.

An adaptive organisational policy [18] permits agents to allocate tasks and re-
sources in several organisations. A task allocation protocol (TAP) is used within
an organisation to form agent teams and distribute workload among them. This
distribution is made according to current task throughput which is the func-
tion organisations try to optimise. When one organisation needs more resources
(agents) to perform its assigned tasks, it uses a resource allocation protocol
(RAP) to hire agents from other organisations. This quickens an adaptation
process in each organisation where TAP rearranges agent coalitions whilst max-
imising task throughput.

Adaptive economic firms [19] are studied to deal with the exploration-exploita-
tion dilemma. The environment consists of other firms (i.e. agents) in a market
where each of them tries to optimise its own resources. Firms are modelled as
LCSs with meta-rules attached to them. The latter consider current performance
and elapsed time to decide either to explore for new strategies or to exploit
strategies already learnt whilst optimising resources.

A dynamic opponent modelling [20] for football (soccer) simulation environ-
ments allows agents to use statistical information to predict opponents’ behav-
iours. Agents create opponent classes using statistical information about op-
ponents’ movements, such as speed and displacement in several time intervals
according to their relative position with the modelling agent. Classes are used
to adjust agents’ behaviours to those of the opponents’ whilst playing a match.
Adaptation is enabled by selecting the best action from a fixed set, according to
the predicted opponents’ behaviour, i.e. their movements.

A characteristic commonly found in all approaches from the Control Sys-
tem class of our framework is the assumption that environmental events are re-
flected on the input function agents acquire. And therefore, the AMAS assumes
it has all the means to control its environment because it can either manipulate,
anticipate or optimise this function. In conclusion, perceiving adaptation as a
Control System depends on the assumption that only events reflected on the input

204 C.A. Maŕın and N. Mehandjiev

function will happen in the environment. This dependence may be problematic
when MASs have to provide support in open environments.

3.3 Adaptation as a Semi-isolated Evolution

A weak relation of a static AMAS with its environment would, using the pro-
posed framework, classify adaptation as Semi-Isolated Evolution. Examples from
literature of this class show that there is no significant difference for an AMAS
inhabiting in either a discrete or continuous environment. In this class, adapta-
tion is usually accomplished by modifying agents’ internal structure using evo-
lutionary computation. These modifications are made in a separated stage from
operation, and AMAS internal interactions are utilised for adaptation evaluation.
Therefore, AMAS adapts itself semi-isolated from the environment. Examples of
approaches pursued by researchers working in this category are the following:

The evolution of MAS structure [21] concede the creation of new agents using
the idea of a genetic algorithm (GA). The three main GA operators (selection,
crossover and mutation) were changed in order to be applied on agent behaviours
and actions. Agents are selected according to current performance, then their
behaviours are “crossed over” to produce new agents. Finally, a random mutation
process is applied to the new generation. In this way, the original MAS behaviour
is adapted to create a better one throughout generations.

The evolution of behaviours [22] permits micro air vehicles (MAVs) —agents—
to cooperate in surveillance tasks. Each agent’s behaviour is depicted by a pop-
ulation of stimulus-response rule sets. Each individual in the population (i.e. an
entire rule set) is represented by a chromosome as in a classical GA. Stimuli are
acquired by sensors and responses are actions such as speed and turn angle. Rule
sets in each MAV are evolved (adapted) by a modified GA after each simulation
in order to maximise coverage area in following runs.

Strategy evolution [23] for playing the Iterated Prisoner’s Dilemma (IPD)
game in noisy environments allows agents to adapt their strategies throughout
generations. Each agent has a set of strategies which are evolved offline using a
GA, i.e. after playing IPD using the same set of strategies the GA is utilised to
improve the set for following runs. Nothing in the environment is affected whilst
strategies are evolving.

An advice-exchange mechanism [24] in the pursuit domain allows learning
agents to improve their performance by sharing information. Predators (agents)
are considered either as GAs combined with neural networks or as Q-learning
agents. The environment consists of a grid with several predators and a prey they
have to catch. Predators request for and give episodic advice to peers in order to
learn from others’ experience. After each trial, own and others’ experience are
used to produce better performance for following trials.

A common feature in all approaches from the Semi-Isolated Evolution class is
that adaptation is separated in a different stage from operation. In conclusion,
adaptation as Semi-Isolated Evolution assumes that AMAS remains suited to its
environment in-between adaptation stages. This assumption is incompatible with
our view of continuous adaptation.

A Classification Framework of Adaptation in Multi-Agent Systems 205

3.4 Adaptation as Complex Interactions

A weak relation of a dynamic AMAS with its environment leads to have adap-
tation as Complex Interactions. Examples from literature of this class show that
there is no significant difference for an AMAS inhabiting in either a discrete
or continuous environment. The flexibility AMASs can exhibit depends mainly
upon agent interactions because of the complex behaviours they allow to emerge
[4,7,9]. Thus, dynamic AMAS interactions along with a weak relation with the
environment permits a higher degree of adaptation than the previous class (see
Sect. 3.3), but the impact on the environment is still poor. Examples of ap-
proaches are not very common:

Emergent design system [25] is the combination of Complex Adaptive Sys-
tems (CASs) [7] and soft computing for adaptive construction of structures (e.g.
buildings). Adaptive agents represent different types of basic building blocks
(e.g. beams, columns) and their interactions allow the emergence of higher order
building blocks (e.g. walls, rooms) from the bottom to the upper levels of the
structure. The interactions represent both information and connection mech-
anisms between every basic building block, so that when a new one is added
to the structure it propagates its impact through all interactions (i.e. connec-
tions) already established in the structure. This impact is analysed locally and
it can trigger a re-organisation process at different levels. There is no mention
of resource limitations, e.g. the space required for the final structure nor the
availability of basic building blocks.

In summary, AMAS dynamic interactions allow the emergence of complex
behaviours which could be regarded to provide enough flexibility for adapta-
tion to unexpected, unknown situations. But there is a poor consideration of
AMAS adaptation’s impact on the environment. In conclusion, AMA assumes
the environment will provide unlimited resources for AMAS to consume. This as-
sumptions may be far from realistic when MASs are purported to give support
in open environments with limited resources.

3.5 Adaptation as an Ecosystem

A strong relation of a dynamic AMAS with its environment leads to have adapta-
tion as an Ecosystem. An ecosystem has been previously characterised as a CAS
by Holland in [7]. This term is used to refer to a system in which a large number
of individuals or agents exist. These agents interact together and the whole sys-
tem exhibits behaviours beyond those of the agents’. In this class AMAS has a
strong relation with its environment resembling a natural ecosystem. Examples
of approaches from literature of this class show that there is no significant dif-
ference for an AMAS inhabiting in either a discrete or continuous environment.
In a similar way as in previous class (Sect. 3.3), dynamic AMAS interactions
allow complex behaviours to emerge [4,9,7], so that they could be regarded to
provide enough flexibility for adaptation. The strong relation with the environ-
ment removes the assumption of an AMAS having unlimited resources from the
environment. Examples of approaches in this class are the following:

206 C.A. Maŕın and N. Mehandjiev

An ecosystem model called ECHO [7] consists of agents living in an envi-
ronment of spatially distributed sites. Each site contains a different fountain of
diverse resources which allow the proliferation of agent diversity. Agents con-
sist of a chromosome of eleven sub-strings grouped into two sets, one for agent
interactions (external tags) and the other one for resource processing control
(internal conditions). According to the resources agents process from the en-
vironment, agents can either combat, trade or mate. During these interactions
agents consume resources from the agents they interact with as well. The interac-
tion type depends upon the internal conditions and the resources agents consume
due to the current interaction. Because of these interactions, the whole popu-
lation adapts itself until an equilibrium is reached. As a consequence, complex
relationships arise such as symbiosis, food chain, and aggregated individuals. In
the latter, complex structures emerge by having agents forming coalitions which
in turn may form larger organisms. The emergence of complex structures along
with the site distribution grant emergence of different species. If a change occurs
in the environment, the population adapts itself again in order to find a new
equilibrium. Nevertheless, no empirical proof of these claims was presented.

A toolkit for agent application development DIET [26] (Decentralised Infor-
mation Ecosystem Technologies) is based upon the idea of ecosystem dynamics
in order to overcome common MAS issues such as adaptability. It consists of a
three-layered architecture from which the lower one is of our interest: the core
layer. It contains different types of agents (or infohabitants) that are only capable
to communicate locally with peers and migrate from one environment to another.
The environment contains resources (memory and CPU) agents have to share.
One computer may hosts more than one environment and several networked
computers create a distributed world. When an environment (or a computer) be-
comes unavailable agents re-allocate themselves according to available resources
in the remaining environments. Local interactions and agent migrations allow
the whole population to adapt itself to resource variations and the availability
of environments. Nevertheless, a representative example of an application using
the DIET architecture was not presented.

In summary, the dynamic interactions along with the major role the environ-
ment plays in this class allows an AMAS to adapt itself to environmental events
(at least in theory). Adaptation is accomplished by the whole set of agents, not
by single ones, which allows the emergence of complex structures and behav-
iours. In conclusion, the soundness of these examples along with the the lack
of supporting experiments reported by their authors make a gap where further
research efforts is suggested to be allocated.

4 Related Classification and Analysis Approach

The alternative classification framework of Hayes-Roth [3] uses for classification
the aspects of the adaptive intelligent system (AIS) that are to be adapted: (1)
perception strategy; (2) control mode; (3) reasoning tasks; (4) reasoning meth-
ods; and (5) meta-control strategy. Although on first glance these dimensions

A Classification Framework of Adaptation in Multi-Agent Systems 207

are orthogonal to those used in our classification, a deeper analysis of the as-
sumptions and mode of thinking underlying the descriptions of these dimensions
allows us to draw mappings between the two classification frameworks. Indeed,
most of the systems which focus on adapting their perception strategy could be
classified as belonging to the Automaton class of our framework because agents
have to switch its perceptual strategy (from a fixed set of available strategies)
according to information needs and resource limitations. Systems which focus
onto the adaptation of their control mode can be seen as belonging to the Con-
trol System class because the focus is on the degree agents guide its behaviours
according to own-action constraints and environment uncertainty, i.e. the degree
granted by environment uncertainty at which plan actions can be interleaved.
Like the first dimension of perception strategy, the third dimension where the
focus is on adapting reasoning tasks can be mapped onto the Automaton cate-
gory because it relates to the adaptation of potential reasoning tasks to dynamic
objectives, i.e. either to interrupt or resume tasks according current events. The
fourth dimension can, like the second one, be classified as a Control System due
to the adaptation of reasoning methods according to internal model construction
of the world and the demand for model usage. Finally, the meta-control strategy
adaptation can also be mapped onto the Control System class because it relates
to the allocation of computing resources among different internal configurations
of competing and complementary tasks in order to maximise behaviour utility.

These adaptation dimensions for an AIS are sound and give a good first insight
on what agents (and their developers as well) should consider to enable adapta-
tion. Each dimension is well explained with appropriate examples and references
to the classical (non-adaptive) AI approaches. However, Hayes-Roth only con-
siders adaptation in individual agents, i.e. the notion of a MAS is not even taken
into account, and MAS can render trivial the adaptation problems considered,
such as computing resource allocation, diverse task accomplishment because of
the MAS distributed nature and different autonomous problem-solving capabil-
ities. And thus, complex behaviour emergence is not allowed because of the lack
of agent interactions [4,7,9]. In summary, the classification framework proposed
here is a broader view of adaptation because it includes Hayes-Roth’s dimen-
sions of adaptation and adds additional views and considerations about complex
interactions found in MAS.

5 Further Work on Adaptation in MASs: Ecosystem

The analysis in Sect. 3.1–3.5, demonstrates that current research efforts on adap-
tation in AMAS are centred in the five adaptation classes proposed in this pa-
per. And we have presented the main characteristics and flaws of each class along
with representative examples. However there are still gaps in research when tack-
ling adaptation as ecosystems. So, we argue that the Ecosystem class is where
research efforts on AMAS should be concentrated in the future. Holland [7] orig-
inally presented a set of ideas of how adaptation in complex environment can
be accomplished by agents as an ecosystem (or CAS). He presented a set of

208 C.A. Maŕın and N. Mehandjiev

properties for this purpose which other authors have agreed with [9,25,27,28].
The properties are aggregation, non-linearity, flow and diversity. In Sect. 3.5 ex-
amples of approaches from the Ecosystem class were presented (ECHO [7] and
DIET [26]), but not enough experimental support was given by their authors.
Here, we present a few experiments carried out by other authors to support the
original approaches.

In [29] the first experiments carried out with ECHO [7] were presented. They
statistically measured evolutionary activity and diversity throughout several
runs of ECHO simulations whilst expecting complex ecologies to emerge. They
showed that as population increases and stabilises, diversity drops and stabilises.
They concluded that the use of evolutionary activity statistics help to analyse the
emergence in ecological complexity. In addition, they suggest to address research
efforts in this direction.

Smith and Bedau in [28] presented a deeper study on ECHO [7] emergence.
They ran a set of experiments incorporating characteristics explained by Hol-
land such as agent interaction rules (for trading, mating and combating). They
analysed the evolution of population size and variety of different genotypes.
These analyses were made across different mutation rates to variate population
convergence. As a result, they demonstrated complex relationships surface such
as simple trading. However, complex structures did not emerge, as claimed by
Holland. And thus, they argue that Holland’s ideas are correct, the problem is
that we still have to figure out how to address them.

In [30,31], experiments of emergent group formation using the DIET toolkit
[26] are presented. They set a scenario where users have an interest category
and they look for other users who share the same interest, and therefore the
same information. Each user creates a DIET environment with several mobile
agents which in turn know their user’s interests. Agents navigate through other
available environments whilst assessing each of them in order to determine the
best one with more available resources. Then each agent moves to the preferred
environment and spend a specific time there sharing user information with other
agents and acquiring information from other users. Agents store all these data
(preferred environment and agents inhabiting within it) in an internal chro-
mosome. Next, agents return to their original environment for an evolutionary
process, i.e., a GA is applied to all agents, so that a new population of agents
is generated with biased information about preferred environments and agents
living within. Then, the process starts again and continues until the agent popu-
lation converges to set of most preferred environments. As a result, agent groups
are formed whilst optimising resources across all environments. The problem
with these experiments is that the original idea was addressed using a classical
evolutionary computation approach, i.e. a GA, and because of it these exper-
iments can be classified as Semi-Isolated Evolution and not in the Ecosystem
class. As with the previous example, the problem is that we still have to figure
out how to address Holland’s ideas.

The Ecosystem approach seems more suitable where complexity and unpre-
dictability govern environments in which MAS must provide enough flexibility.

A Classification Framework of Adaptation in Multi-Agent Systems 209

Experiments on ECHO and DIET show some feasibility of the Ecosystem ap-
proach, although there is still a lack of ways for addressing Holland’s ideas and
more realistic experiments and applications. Based on the principles underlying
these experiments and ideas, we argue that the Ecosystem class of adaptation is
the most promising foundation for future work on AMAS.

5.1 So, How Could We Address Adaptation as an Ecosystem?

We believe that in order to accomplish adaptation within the Ecosystem class,
it is necessary to draw features from nature and combine ideas and principles
from AMAS and biology communities, rather than take the limited approach of
simulating artificial ecosystems as suggested by [32]. From the AMAS commu-
nity, we can embrace the properties for adaptation introduced by Holland [7].
These properties are aggregation, non-linearity, flow and diversity. Parunak [9]
envisaged a set of engineering principles for MAS development. Some of these
principles dictate that agents should: (1) not be abstract functions; (2) be decen-
tralised; (3) be diverse; (4) dissipate flows in order to orient themselves; (5) have
catching and sharing information mechanisms; and (6) execute concurrently.

The biology community, following a separate research line from the AMAS
community and with different objectives, have been deriving descriptive formu-
lae for analysing Holland’s properties for adaptation. Kolasa [33] presents an
approach for hierarchical structure emergence from sub-components’ aggrega-
tion. Maurer [34] describes how aggregated communities emerge from species
diversity according to environment resources. Otsuka [35] introduces a descrip-
tive model for substance flow among producers, consumers and decomposers
within an ecosystem, and tries to answer the question of how different organ-
isms with different strategies form an ecological system. Green [36] presents a
review on complexity theory in order to explain non-linearity and emergence in
ecological systems.

The AMAS community has been figuring out properties and principles to
develop AMAS. Biology community has been proposing descriptive model of
how ecological systems work in reality whilst giving support to properties and
principles for AMAS. In conclusion, we suggest to build AMAS as ecosystems by
using biology findings about ecological system mechanics which support Holland’s
ideas for adaptation.

6 Conclusions

We analysed different approaches for adaptation in MASs taken by researchers.
We characterise the environment nature as discrete or continuous. And AMAS
is characterised by its internal interactions as static or dynamic. The relation
between the AMAS and its environment was then characterised according to its
strength as weak or strong. Our classification framework contains five adaptation
classes derived by combining environment, AMAS and their relation characteri-
sations: Automaton, Control System, Semi-Isolated Evolution, Complex Interac-
tions, and Ecosystem. The main advantage of our classification framework over

210 C.A. Maŕın and N. Mehandjiev

other analysis approach found in literature is that we actually encompass that
approach within our framework.

Adaptation in MASs is clearly desirable for open environments, such as or-
ganisations, where unexpected situations frequently occur, and complexity and
unpredictability are in constant growing. Seeing adaptation in MASs using the
presented analysis framework helps one to visualise previous attempts and ad-
dress future research according to the required adaptation scope. Our sugges-
tion is to address research efforts on adaptation as Ecosystems. In order to do
this, we suggest to look at biology findings about ecological system mechanics
[33,34,35,36] which support Holland’s [7] ideas for adaptation. We are not claim-
ing to build virtual living organisms (cf. [32]) but to construct systems that
really help users and support organisations under the Ecosystem approach.

There are some open questions in AMAS research field that still need to
be studied: (1) Can an AMAS be always adaptable? Or is there a limit where
adaptation cannot longer continue? (2) How can we predict emergent behaviours
from a collection of adaptive agents? (3) What is the degree at which users would
allow a set of adaptive entities to manipulate sensitive information and processes?

Acknowledgements

César A. Maŕın thanks the support provided by the Consejo Nacional de Ciencia
y Tecnoloǵıa (CONACyT) through contract No. 197297.

References

1. Jennings, N.R., Norman, T.J., Faratin, P.: ADEPT: an agent-based approach to
business process management. SIGMOD Record 27(4) (1998) 32–39

2. Jennings, N., Faratin, P., Johnson, M., Brien, P., Wiegand, M.: Using intelli-
gent agents to manage business processes. In: First International Conference
on The Practical Application of Intelligent Agents and Multi-Agent Technology
(PAAM96), London, UK (1996) 345–360

3. Hayes-Roth, B.: An architecture for adaptive intelligent systems. Artificial Intel-
ligence 72(1–2) (1995) 329–365

4. Guessoum, Z.: Adaptive agents and multiagent systems. IEEE Distributed Systems
Online 5(7) (2004) http://dsonline.computer.org/.

5. Kudenko, D., Kazakov, D., Alonso, E., eds.: Adaptive Agents and Multi-Agent
Systems II. Lecture Notes in Artificial Intelligence. Springer Berlin / Heidelberg,
Heidelberg, Germany (2005)

6. Alonso, E., Kudenko, D., Kazakov, D., eds.: Adaptive Agents and Multi-Agent
Systems: Adaptation and Multi-Agent Learning. Lecture Notes in Artificial Intel-
ligence. Springer Berlin / Heidelberg, Heidelberg, Germany (2003)

7. Holland, J.: Hidden Order: How Adaptation Builds Complexity. Helix books.
Addison-Wesley (1995)

8. Maes, P.: Modeling adaptive autonomous agents. Artificial Life 1(1–2) (1994)
135–162

9. Parunak, H.V.D.: Go to the ant: Engineering principles from natural mutli-agent
systems. Annals of Operation Research 75 (1997) 69–101

A Classification Framework of Adaptation in Multi-Agent Systems 211

10. Sichman, J.S., Demazeau, Y.: Exploiting social reasoning to enhance adaptation
in open multi-agent systems. In Wainer, J., Carvalho, A., eds.: 12th Brazilian
Symposium on Artificial Intelligence (SBIA 95), Campinas, Brazil, Springer-Verlag
(1995) 253–263

11. Rovatsos, M., Weiß, G., Wolf, M.: An approach to the analisys and design of
multiagent systems based on interaction frames. In: First International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2002), Bologna, Italy,
ACM Press (2002) 682–689

12. Rovatsos, M., Rahwan, I., Fischer, F., Weiss, G.: Adaptive strategies for practical
argument-based negotiation. In: Proceedings of the 2nd International Workshop
on Argumentation in Multi-Agent Systems (ArgMAS), Utrecht, The Netherlands
(2005)

13. Splunter, S.V., Wijngaards, N.J., Brazier, F.M.: Structuring agents for adaptation.
In Alonso, E., Kudenko, D., Kazakov, D., eds.: Adaptive Agents and Multi-Agent
Systems: Adaptation and Multi-Agent Learning. Lecture Notes in Artificial Intel-
ligence. Springer Berlin / Heidelberg, Heidelberg, Germany (2003)

14. Amara-Hachmi, N., Fallah-Seghrouchni, A.E.: Towards a generic architecture for
self-adaptive mobile agents. In Alonso, E., Guessoum, Z., eds.: Proceedings of the
Fifth Symposium on Adaptive Agents and Multi-Agent Systems (AAMAS-05),
Paris, France (2005)

15. Lerman, K.: A model of adaptation in collaborative multi-agent systems. Adaptive
Behavior 12(3-4) (2004) 187–197

16. Fatima, S.S., Uma, G.: An adaptive organizational policy for multi agent systems
— AASMAN. In: 3rd International Conference on Multi-Agent Systems (ICMAS
1998), Paris, France, IEEE Computer Society (1998) 120–127

17. Schulenburg, S., Ross, P.: An adaptive agent based economic model. In: Learn-
ing Classifier Systems, From Foundations to Applications, London, UK, Springer
Berlin / Heidelberg (2000) 263–282

18. Fatima, S.S., Wooldridge, M.: Adaptive task resources allocation in multi-agent
systems. In: AGENTS ’01: Proceedings of the Fifth International Conference on
Autonomous Agents, Montreal, Canada, ACM Press (2001) 537–544

19. Rejeb, L., Guessoum, Z.: The exploration-exploitation dilemma for adaptive agents.
In Alonso, E., Guessoum, Z., eds.: Proceedings of the Fifth European Workshop
on Adaptive Agents and Multi-Agent Systems, Paris, France (2005)

20. Maŕın, C.A., Peña Castillo, L., Garrido, L.: Dynamic adaptive opponent modeling:
Predicting opponent motion while playing soccer. In Alonso, E., Guessoum, Z.,
eds.: Fifth European Workshop on Adaptive Agents and Multiagent Systems, Paris,
France (2005)

21. Vacher, J.P., Galinho, T., Lesage, F., Cardon, A.: Genetic algorithms in a multi-
agent system. In: INTSYS ’98: Proceedings of the IEEE International Joint Sym-
posia on Intelligence and Systems, Washington, USA, IEEE Computer Society
(1998)

22. Bassett, J.K., De Jong, K.A.: Evolving behaviors for cooperating agents. In: ISMIS
’00: Proceedings of the 12th International Symposium on Foundations of Intelligent
Systems, London, UK, Springer-Verlag (2000) 157–165

23. O’Riordan, C.: Evolving strategies for agents in the iterated prisoner’s dilemma
in noisy environments. In Kudenko, D., Kazakov, D., Alonso, E., eds.: Adaptive
Agents and Multi-Agent Systems II. Volume 3394 of Lecture Notes in Artificial
Intelligence. Springer Berlin / Heidelberg, Heidelberg, Germany (2005) 205–215

212 C.A. Maŕın and N. Mehandjiev

24. Nunes, L., Oliveira, E.: Advice-exchange between evolutionary algorithms and
reinforcement learning agents: Experiments in the pursuit domain. In Kudenko, D.,
Kazakov, D., Alonso, E., eds.: Adaptive Agents and MultiAgent Systems II. Volume
3394 of Lecture Notes on Artificial Intelligence. Springer Berlin / Heidelberg,
Heidelberg, Germany (2005) 185–204

25. Voss, M.S.: Complex adaptive systems + soft computing = emergent design sys-
tems (EDS). In Hamza, M.K., ed.: Artificial Intelligence and Soft Computing,
IASTED/ACTA Press (2000) 29–35

26. Marrow, P., Koubarakis, M., van Lengen, R., Valverde-Albacete, F., Bonsma, E.,
Cid-Suerio, J., Figueiras-Vidal, A., Gallardo-Antolin, A., Hoile, C., Koutris, T.,
Molina-Bulla, H., Navia-Vazquez, A., Raftopoulou, P., Skarmeas, N., Tryfonopou-
los, C., Wang, F., Xiruhaki, C.: Agents in decentralised information ecosystems:
The DIET approach. In: Proceedings of the AISB’01 Symposium on Information
Agents for Electronic Commerce, York, UK, SSAISB (2001) 109–117

27. Levin, S.A.: Ecosystems and the biosphere as complex adaptive systems. Ecosys-
tems 1(5) (1998) 431–436

28. Smith, R., Bedau, M.A.: Is ECHO a complex adaptive system? Evolutionary
Computation 8(4) (2000) 419–442

29. Smith, R., Bedau, M.: Emergence of complex ecologies in ECHO. In: Proceed-
ings from the international conference on complex systems on Unifying themes in
complex systems, Perseus Books (2000) 473–486

30. Hoile, C., Wang, F., Bonsma, E., Marrow, P.: Core specification and experiments
in DIET: a decentralised ecosystem-inspired mobile agent system. In: First In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS
2002), Bologna, Italy, ACM Press (2002) 623–630

31. Marrow, P., Hoile, C., Wang, F., Bonsma, E.: Evolving preferences among emergent
groups of agents. In Alonso, E., Kudenko, D., Kazakov, D., eds.: Adaptive Agents
and Multi-Agent Systems: Adaptation and Multi-Agent Learning. Lecture Notes in
Artificial Intelligence. Springer Berlin / Heidelberg, Heidelberg, Germany (2003)
159–173

32. Olson, R.L., Sequeira, R.A.: Emergent computation and the modeling and man-
agement of ecological systems. Computers and Electronics in Agriculture 12(3)
(1995) 183–209

33. Kolasa, J.: Complexity, system integration, and susceptibility to change: Biodiver-
sity connection. Ecological Complexity 2(4) (2005) 431–442

34. Maurer, B.A.: Statistical mechanics of complex ecological aggregates. Ecological
Complexity 2(1) (2005) 71–85

35. Otsuka, J.: A theoretical characterization of ecological systems by circular flow of
materials. Ecological Complexity 1(3) (2004) 237–252

36. Green, D.G., Sadedin, S.: Interactions matter–complexity in landscapes and ecosys-
tems. Ecological Complexity 2(2) (2005) 117–130

Market-Inspired Approach to
Collaborative Learning

Jan Tožička, Michal Jakob, and Michal Pěchouček

Gerstner Laboratory
Department of Cybernetics, Czech Technical University

Technická 2, Prague, 166 27, Czech Republic
{tozicka, jakob, pechouc}@labe.felk.cvut.cz

Abstract. The paper describes a decentralized peer-to-peer multi-agent
learning method based on inductive logic programming and knowledge
trading. The method uses first-order logic for model representation. This
enables flexible sharing of learned knowledge at different levels of abstrac-
tion as well as seamless integration of models created by other agents.
A market-inspired mechanism involving knowledge trading is used for
inter-agent coordination. This allows for decentralized coordination of
learning activity without the need for a central control element. In ad-
dition, agents can participate in collaborative learning while pursuing
their individual goals and maintaining full control over the disclosure of
their private information. Several different types of agents differing in the
level and form of knowledge exchange are considered. The mechanism is
evaluated using a set of performance criteria on several scenarios in a
realistic logistic domain extended with adversary behavior. The results
show that using the proposed method agents can collaboratively learn
properties of their environment, and consequently significantly improve
their operation.

1 Introduction

There are two different perspectives from which learning in multi-agent systems
can be viewed. The first, perhaps the more pragmatic one views multi-agent
systems as a possible tool for solving complex learning problems. The second
perspective is driven by the understanding that adaptivity is one of the fun-
damental properties of any intelligent system. This perspective then considers
machine learning as a set of techniques using which intelligent agents and multi-
agent systems can adapt in changing environments. Although quite different
at the first sight, each emphasizing different priorities and seemingly different
goals, both perspectives should ultimately lead to similar core principles and
techniques, and should be therefore viewed as dual rather than conflicting.

This is exactly the case with the collaborative learning mechanism described in
this article. Although primarily designed to equip multi-agent systems with adap-
tation abilities, it could be also used as a distributed machine learning algorithm.
The algorithm combines first-order logic as a basis for knowledge representation

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 213–227, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

214 J. Tožička, M. Jakob, and M. Pěchouček

and learning with market principles for decentralized inter-agent coordination. Al-
together, the method addresses some of the difficult challenges posed by learning
in the multi-agent environment, including the distribution of learning sub-tasks,
inter-agent communication, and the coordination of the learning activity.

The proposed method has been implemented within the cognitive-reflective
agent framework [1]. In this framework, learned models are represented as en-
capsulated components that can be integrated with agent’s reasoning layer in
a plug-and-play manner. This offers several important advantages. The learned
theory can be immediately operationalized in guiding agent’s behavior. Second,
the theory or its parts can be easily exchanged between agents. Finally, agents
can rapidly reconfigure their reasoning to match the characteristics of the chang-
ing environment.

1.1 Structure of the Paper

In Section 2, we review some of the existing work relevant to our multi-agent
learning method. Section 3 then introduces inductive logic programming, which
forms the basis of our approach. The proposed collaborative multi-agent learning
method based on knowledge trading is described in Section 4. Section 5 evaluates
the method on a set of scenarios and discusses the obtained experimental results.
Finally, we summarize our work in Section 6.

2 Survey of Existing Work

In this section, we give a brief overview of existing work on multi-agent machine
learning and its application to distributed data mining. As our method builds
strongly on logic- and market-based approaches, we examine both of them in
greater detail.

2.1 Machine Learning in Multi-Agents Systems

The majority of research on learning in multi-agent systems focuses on reactive
reward-based approaches and their application to inter-agent coordination [2].
Considerably less work exists on higher-level concept learning and the role of
explicit inter-agent communication in multi-agent learning. Panait and Luke [3]
present an exhaustive review of cooperative methods for multi-agent learning.
They discuss the role of communication in learning, distinguishing between direct
and indirect communication.

Weiss [4] proposes a classification scheme distinguishing between three classes
of multi-agent learning mechanisms, depending on the amount of cooperation
among agents: multiplication, division and interaction. In Weiss’es classification,
the collaborative method presented in this papers uses the interaction mecha-
nism. In contrast to the division mechanism which only allows the exchange of
raw training examples (see also coactive learning [5]), interaction mechanisms
involve higher-level exchange of models created during learning. Apart from

Market-Inspired Approach to Collaborative Learning 215

potentially speeding up the learning process, this has an additional significant
benefit of protecting the privacy of individual agents, and is therefore crucial in
domains where agents have private data sources.

2.2 Logic-Based Learning in Multi-Agent Systems

Kazakov [6] discusses the application of ILP for single-agent learning in the multi-
agent setting. Agents individually learn the properties of the environment using
a Progol ILP system. In contrast to our approach, no communication between
agents takes place.

Hernandez [7] discusses the application of the first-order decision tree induc-
tion system ACE to learn about the applicability of plans in the BDI architecture.
There is no inter-agent communication beyond plain observation exchange and
the learning system is not integrated into agent’s reasoning architecture.

Alonso [8] advocates the application of ILP and other logic-based techniques
for learning in complex multi-agent domains such as conflict simulations.

2.3 Market-Based Approaches to Learning

Market-based techniques have become a popular approach to coordination in
multi-agent and multi-robot systems. However, there is currently only a very
limited work on the application of such techniques to multi-agent learning. A
notable exception is the work by Wei et al. [9] presenting a market mechanism
for the aggregation of the output of multiple learning agents.

2.4 Distributed Data Mining

Distributed data mining is an important application area for the proposed method
and multi-agent learning techniques in general. Data mining [10] is concerned with
the analysis of possibly massive amounts of data. Various distributed data mining
methods [11,12,13] have been proposed to address the scalability issues limiting
the applicability of centralized data mining techniques. Klusch et al. [14] analyze
the benefits of the multi-agent approach to distributed data mining, especially
in open, heterogeneous environments with plurality of different data sources and
data mining methods.

3 Inductive Logic Programming

In this section, we introduce inductive logic programming which forms the basis
of our multi-agent learning method. Inductive Logic Programming (ILP) [15]
systems fall into the category of machine learning algorithms. They use domain-
specific background information, encoded by means of a predicate logic theory,
and pre-classified sample data in the form of first-order ground facts, to construct
a predicate logic theory for deriving data classification. In most cases, the first-
order logic language for expressing both the background theory and the learned

216 J. Tožička, M. Jakob, and M. Pěchouček

theories is constrained to a list of Horn clauses, i.e., to the grammar of Prolog
programs. In our implementation, the quality of created theories is evaluated
using F1 measure [16].

ILP is a suitable learning method for the use in multi-agent systems (e.g. [6])
because it represents both the input to the learing process, i.e., the examples
and the background knowledge, as well the output learned theory in first-order
logic (or in its Horn fragment). Due to the expressivity and the well-defined
semantics of first-order representations, learned models can be easily exchanged
among agents and reused in agent’s further learning or reasoning processes. This
feature of ILP is particularly important for collaborative multi-agent learning.

In our case, the sets of positive and negative examples are agents’ observations
classifying situations occurring in agent’s environment. The objective of learning
is to create a model which can predict these classifications. Background theory
B contains agent’s common knowledge including the knowledge describing the
context (i.e., relational and temporal properties) of training examples. In addi-
tion, individual Horn rules in the created theory are assigned weights specifying
how many positive and negative observations they cover. These weights are then
used during situation classification to get finer than just binary classification.

4 Collaborative Learning with Knowledge Trading

In this section, we describe our collaborative learning method based on knowl-
edge trading. On the single-agent level, the mechanism uses ILP as an inductive
method for generating predictive models from examples (observations) an agent
receives. On the inter-agent level, the ILP is complemented with a trading mech-
anism through which agents can trade observations and (sub-)theories. Agents
in the system differ with respect to whether they create models and whether and
how they trade them with others.

4.1 Knowledge Trading Protocol

Interaction between agents in the system is governed by a variant of the Contract-
Net-Protocol (Figure 1). The seller, i.e., the agent offering its theory, sends Call-
for-Proposal messages containing the meta-description of its theory to other
agents. The meta-description contains the information used to calculate the F1
measure, i.e., the number of covered positive and negative examples, and the
number of all positive examples in the training set.

Each recipient, i.e., a potential buyer evaluates the offered theory and, if
it finds the theory useful, replies with a meta-description of the knowledge it
wants to offer in exchange. The knowledge offered can be either a set of recipi-
ent’s observations (i.e., a training set and a background knowledge) or its own
generalized theory. Note that agents are not allowed to resell knowledge acquired
from other agents.

Next, the seller evaluates received proposals and selects the sellers that have
proposed attractive knowledge. It then sends them the accept message with its
theory and receives the proposed knowledge as a reply.

Market-Inspired Approach to Collaborative Learning 217

Fig. 1. The knowledge trading protocol used in the collective learning

4.2 Agent Classification

A range of collaborative learning agents can be implemented using the above
trading protocol. In order to categorize them, we introduce several agent classi-
fication properties:

learning: an agent is called learning if it creates its own theory; otherwise it is
called non-learning

offering: learning agents can be further classified as offering or non-offering
depending on whether or not they actively offer the learned model (i.e.,
whether they can play the role of the provider in the trading protocol)

trading: an agent is called trading if it participates in knowledge barter when
asked by an offering agent; otherwise it is called non-trading; furthermore,
an agent can either trade rules or raw observations

Table 1 summarizes possible types of agents under the proposed classification
schema.

4.3 Types of Agents

Not all possible types of agents are used in our collaborative learning mecha-
nism. AD, for example, is a totally non-adaptive agent, and is therefore not an
interesting member of a collaboratively learning agent society. Similarly, agent

218 J. Tožička, M. Jakob, and M. Pěchouček

Table 1. Types of agents that can be implemented based on the three introduced
classification properties: learning, offering and trading

Types of Non-Trading Trading

Agents Observations Rules

Non-Learning AD AL N/A

Learning Non-Offering AS AO− AR−

and Offering AP AO AR

AP never participates as a recipient in a knowledge barter. Although its behavior
might be interesting in some heterogeneous societies, it is currently not used in
our system. Finally, as preliminary tests with the agents of type AO− and AR−

have not yield good results, the agents have been excluded from experiments
discussed in this paper.

The remaining agent types (AS , AO , AR , and AL) have been experimen-
tally evaluated and are described in greater detail below. Experimental results
involving these agents are then provided in Section 5.

AS – Simple Agent. does not communicate with other agents and therefore
does not participate in the collaborative learning process. The agent learns in
isolation, creating its own theory based solely on its own observations. It is
therefore expected to converge more slowly to a target theory than collaborative
agents. It has been implemented for comparison purposes only.

AO – Observation-BasedAgent. offers its created theory for trading and buys
theories offered by other agents in exchange for its observations. It buys theories
of all sizes (i.e., even theories covering only a small number of positive examples),
however, in exchange it offers only a subset of its observations covering the same
number of positive examples as the theory bought does. The agent thus uses the
number of covered positive examples as the measure of theory quality. This is an
appropriate choice in the domain considered (see Section 5.2) as observations rep-
resenting positive examples contain the most valuable knowledge. In other do-
mains, a different theory quality measure can be more suitable.

AR – Rule-BasedAgent. trades theories for theories, both as the offering agent
or as the recipient in a knowledge barter. In both cases, it accepts all theories that
are better than its own. Theories worse than its own theory are accepted only with
the probability equal to the ratio between the quality of the offered theory and the
quality of agent’s own theory (which is always lower than 1).

Bought theories are appended to agent’s own theory, and the positive examples
covered by the newly acquired theory are removed from agent’s observation set.
The ILP learning algorithm is subsequently invoked to derive a theory covering
only the remaining, uncovered observations. This significantly speeds up the

Market-Inspired Approach to Collaborative Learning 219

learning process because the time complexity of ILP grows exponentially with
the size of the training set.

Communication bandwidth required by rule-based agents is significantly lower
than the bandwidth needed by observation-based agents. This is due to compres-
sion performed by the inductive learning algorithm: in most cases, the size of
the generalized model is significantly smaller than the size of the training set
from which it was generated.

AL – Lazy Agent. does not create a theory on its own. Instead, similarly to AO

agents, it buys other agents’ theories in exchange for its observations. The lazy
agent is very lightweight regarding its computational requirements. However, it
needs higher communication bandwidth to communicate its observations.

5 Experiments

This section describes the empirical tests we have conducted to evaluate the
performance of the proposed collaborative learning mechanism. First, we briefly
outline the implementation of the method and introduce the domain in which
learning takes place. Next, we describe experiments performed involving different
types of agents and collaborative communities. Finally, we present and discuss
the experimental results obtained.

5.1 Reflective-Cognitive Agent Architecture

The proposed learning method has been implemented within the reflective-
cognitive agent architecture, a modular Java-based architecture for the design
and implementation of autonomous intelligent agents [1]. The reflective-cognitive
agent is composed of two parts (Figure 2):

– the reasoning layer implements agent decision-making. The layer is im-
plemented using a modular approach based on the component architecture.
Agent’s reasoning can be reconfigured by adding/removing new reasoning
components in run-time. ILP model is an example of the reasoning module
that can be integrated with the agent reasoning cycle.

– the reflective-cognitive (RC) layer manages the reasoning layer. It im-
plements closed-loop adaptation by monitoring agent’s performance and
modifying the reasoning layer, in order to optimize agent’s operation in the
changing environment. The modification is of agent’s behavior is achieved
through adding, removing and possibly fine-tuning components of the rea-
soning layer. The RC layer can also communicate with other agents’ RC
layers in order to exchange and integrate components created by other RC
agents in the system.

5.2 Domain Description

The domain ACROSS [17] used in the empirical evaluation is a logistic scenario
extended with adversarial behavior. In the domain, truck transporter agents carry

220 J. Tožička, M. Jakob, and M. Pěchouček

Fig. 2. The scheme of Reflective-Cognitive agent’s architecture

goods between producers and consumers. The transporter agents are able to form
coalitions in order to improve their chances when competing for transport tasks.

In addition to the transporter agents, adversarial bandit agents that can at-
tack and rob transporter agents are present in the domain. The activity of bandit
agents is not the same everywhere. Instead, each bandit agent has a set of pref-
erences specifying in which areas and under which conditions it attacks. These
preferences are described by a relational theory taking into account the proper-
ties of the road network in the scenario. Bandit agents also have some restric-
tions on the transporter agents and the situations in which they attack (e.g.,
transporters of tribe Northlanders carrying cargo to a location not producing this
cargo). The situation description is the part of the agent’s observations that
do not belong to the training set used for ILP learning. A training example is
generated whenever an agent is robbed (a positive example represented by pred-
icate holdup), or when it safely passes a road (a negative example represented
by predicate noholdup).

In experiments, transporter agents try to learn bandits’ restrictions in order to
operate more safely. Each transporter agent is provided with an ILP system, us-
ing which it generates a theory predicting bandits’ behavior. It does not attempt
to create a theory covering all possible circumstances but only those relevant to
its properties and regions in which it operates (e.g., transporter’s tribe or its
home city’s region).

Market-Inspired Approach to Collaborative Learning 221

5.3 Example

Let us illustrate learning in ACROSS with an example. In this case, a bandit
agent uses the following rule do decide whether or not to attack:

attack(Transporter):-
endCity(Transporter, C1),
cityRegion(C1, ’Central’),
startCity(Transporter, C2),
cityRegion(C2, ’Central’),
notEqual(C1, C2).

This bandit agent attacks only transporter agents carrying goods between two
different cities in the Central region.

Operating in this domain, a transporter agent could learn the following rule1

representing its view of bandit agent’s behavior:

attack(Transporter):-
endCity(Transporter, C1),
cityTribe(C1, ’Midlanders’),
startCity(Transporter, C2),
cityPopulation(C2, ’village’).

On the first sight, the rule learned by the transporter agent looks quite different
to the actual rule guiding the bandit agent’s behavior. However, because of the
fact that most locations in the Central region belong to the Midlanders tribe
(and vice versa), and some locations next to the border of the Central region
are villages, this rule in fact closely approximates the actual behavior of the
bandit agent.

Note that the rule learned by the agent uses variables and a conjunction of
different predicates to concisely express a condition that covers a large number
of specific situations. The same condition would have to be represented as a long
enumeration of specific cases if relational, logic-based learning was not used.

5.4 Experiment Scenario Setup

We have used simple AS , observation-based AO , rule-based AR and lazy
ALagents in our experiments (see Section 4.3 for the detailed description of
agent types). Using these agents, we have designed two sets of scenarios with (i)
homogeneous, and (ii) heterogeneous societies of agents.

Homogeneous society consists of N agents of the identical type. Only learning
agents are considered for homogenous societies as societies consisting of non-
learning agents only would have no adaptation ability, and are thus not interest-
ing for our study. Altogether, we thus have the following three agent societies:

1 This is just an example, the learned model usually consists of several rules of this
kind.

222 J. Tožička, M. Jakob, and M. Pěchouček

– SC-1 consists of N simple agents
– SC-2 consists of N observation-based agents
– SC-3 consists of N rule-based agents

Note that while observation-based agents solely share their observations, rule-
based agents share created models, and use them to filter out covered positive
examples from their training sets. As a result, each rule-based agent tries to
cover a different area of the whole learning space. This leads to the emergence
of specialization in the agents, and to a spontaneous decomposition of the learn-
ing task based solely on the decentralized knowledge trading mechanism. In all
these scenarios, we have evaluated average properties over all N participating
agents.

Heterogeneous societies have been used in the second set of experiments. Out
of a number of possible combination, we have decided to evaluate societies con-
sisting of a mixture of observation-based and lazy agents. This decision was
motivated by the need to evaluate the performance trade-offs of lazy agents.
Specifically, we have considered the following two societies:

– SC-4 consists of a single lazy agent and observation-based agents as the rest,
i.e., (N − 1)×AO + 1×AL

– SC-5 consists of a balanced mixture of lazy and observation-based agents,
i.e., (N/2)×AO + (N/2)×AL

In the both experimental scenarios we have focused on the behavior of lazy
agents.

5.5 Evaluation Criteria

We have measured the following properties:

prediction quality is defined as the number of robberies. This measure shows
the number of agent’s false negative predictions, i.e., how many times a road
classified as safe was not successfully passed.

communication load is measured as the amount of data transferred during
knowledge exchange.

computational load is measured as the amount of CPU time consumed by the
ILP system. This property generally depends on two factors: (i) the number
of ILP invocations, and (ii) the length of each ILP run.

5.6 Results

Let us now present experimental results obtained on the described scenarios
using the above defined evaluation criteria. All results are summed over tens of
simulation cycles and averaged over five simulation runs.

Results for the Scenarios with Homogeneous Society of Agents. In
the case of scenarios involving homogenous societies, we have measured the av-
erage per-agent value of each evaluation criteria. Each society consisted of five

Market-Inspired Approach to Collaborative Learning 223

Fig. 3. Number of robberies during the simulation. This illustrates how well the learned
theory covers positive examples, i.e., dangerous roads in our scenario. The average
number of robberies for AD agent without learning capability is approximately 0.8.

learning transporter agents and three bandit agents randomly passing the map
and robbing transporters they met whenever their restrictions allowed it.

Graph 3 shows how fast the agents adapt to the domain in the sense of mini-
mizing the number of robberies. We can see that all agents improve their behav-
ior (agents without learning capability have an expected robbery probability of
0.8 approximately), but the agents sharing their knowledge learn much faster,
particularly at the beginning of the simulation – in as little as ten cycles the
number of robberies was decreased to nearly one half. Both these observations
were expected, unlike the rather surprising one that AO agents only slightly out-
performed AR agent during the first half of the experiment. At the end of the
experiment agents perform similarly well.

Graph 4 shows how many bytes were sent on average by each agent commu-
nicating its knowledge. AS agents (in SC-1 scenario) do not communicate at all.
AO agents (in SC-2 scenario) communicate approximately 20-times more on av-
erage then AR agents (in SC-3 scenario). While during the initial 50 cycles this
ratio is less then 10:1 (AO:AR), it rises up to approximately 40:1 in the middle
of the experiment, and finally converges to 20:1.

Finally, Graph 5 shows the computational demand of ILP learning. A theory
induction operation is started after each holdup event to ensure that the agent
would not repeat its misjudgment. AS agents (in SC-1 scenario) consume a lot
of resources because they run time-consuming ILP even if their knowledge is
only slightly improved – this can be improved using batch learning where a new
theory would be created only if the agent has acquired at least some minimal
number of new observations, on the expense of a possible increase in the number
of robberies. AO (in SC-2 scenario) and AR (in SC-3 scenario) agents have similar
computational requirements on average, though in the first half of experiments
AR agents are less time-consuming. This is caused by two factors: first, the

224 J. Tožička, M. Jakob, and M. Pěchouček

Fig. 4. Communication traffic during collective reasoning. It is the number of kilobytes
of contents of messages during knowledge exchange. Note that there is no communica-
tion in SC-1 scenario.

Fig. 5. Time needed to create theories using ILP system on state-of-the-art machine

training set of an AO agent grows much faster as it receives other observations2;
second, the filtration of positive examples used by AR agents very often filters the
positive examples out of the trainig set. A society of AR agents can be therefore
recommended to run on slower machines: even if the ILP ran more often (when
aggregated over all the agents), the time-consumption of individual runs was
smaller than in the case of AO agents.

Results of Scenarios with the Heterogeneous Agent Society. AL agents
in SC-4 scenario always buy new rules offered by other agents in the community
(AO in our case). The better the rules are, the higher number of positive examples
they cover, and therefore the more expensive they are. As a result, AL agents
2 Note that this can lead to flooding in some cases, e.g., when these observations are

irrelevant for the receiving agent.

Market-Inspired Approach to Collaborative Learning 225

Fig. 6. Number of hold-ups during the simulation in SC-4 and SC-5 scenarios. It illus-
trates how well the created theory covers positive examples, or dangerous roads in our
scenario.

Fig. 7. Communication traffic during collective reasoning in SC-4 and SC-5 scenarios.
It is the number of kilobytes of contents of messages during knowledge exchange.

have to send more observations in exchange. This leads to an unlimited growth
in communication traffic until all supplying agents have perfect theories and do
not improve them any more.

The last graph (Figure 6) demonstrates that if there is only a small number
of AL agents in the community (SC-4 scenario), they are fairly successful from
the beginning of the simulation but later they improve very slowly. A higher
proportion of AL agents in the community (SC-5 scenario) causes slower learning
in the beginning, though later it reaches the performance of SC-4 scenario. This
is partially caused by the difficulty of the learning task because N/2 agents were
able to cover dangerous roads with good accuracy.

226 J. Tožička, M. Jakob, and M. Pěchouček

Graph 7 illustrates the growth of communication traffic during the simulation.
Higher communication load in SC-4 scenario corresponds to a higher number of
AO agents offering their knowledge to AL agents. Note that the time needed to
run ILP in SC-4 and SC-5 scenarios is zero as we measured AL (lazy) agents only.

6 Conclusions

In this paper, we have presented collaborative learning agents that can share
their knowledge using a simple trading protocol. Depending on their roles in the
trading protocol, we have identified several types of knowledge trading agents.
We have evaluated the performance of both homogenous and heterogeneous com-
munities of such agents with respect to several criteria, including the quality of
learned models and the communication and computational resources required.
The experiments have shown that agents trading generalized models outperform
agents exchanging raw observations only. Even the latter, however, outperform
non-collaborative agents in terms of model quality and computational resources
required. Altogether, the proposed mechanism allows effective distributing learn-
ing without the need for a central coordinator or other centralized resources. In
consequence, it enables the creation of robust and scalable peer-to-peer learning
systems.

Acknowledgement

We gratefully acknowledge the support of the presented research by Army Re-
search Laboratory project N62558-03-0819.

References

1. Foltýn, L., Tožička, J., Rollo, M., Pěchouček, M., Jisl, P.: Reflective-cognitive
architecture: From abstract concept to self-adapting agent. In: DIS ’06: Proceedings
of the Workshop on Distributed Intelligent Systems, IEEE Comp. Soc. (2006)

2. Kudenko, D., Kazakov, D., Alonso, E., eds.: Adaptive Agents and Multi-Agent
Systems II: Adaptation and Multi-Agent Learning. In Kudenko, D., Kazakov, D.,
Alonso, E., eds.: Adaptive Agents and Multi-Agent Systems II: Adaptation and
Multi-Agent Learning. Volume 3394 of LNCS., Springer (2005)

3. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems 11(3) (2005) 387–434

4. Weiss, G., Dillenbourg, P.: What is ’multi’ in multi-agent learning? In: P. Dil-
lenbourg (Ed) Collaborative-learning: Cognitive and Computational Approaches.
Elsevier, Oxford (1999) 64–80

5. Grecu, D.L., Becker, L.A.: Coactive Learning for Distributed Data Mining. In:
Proceedings of the Fourth International Conference on Knowledge Discovery and
Data Mining (KDD-98), New York, NY (1998) 209–213

6. Kazakov, D., Kudenko, D.: Machine learning and inductive logic programming for
multi-agent systems. In: Multi-Agent Systems and Applications. Volume 2086 of
LNAI., Prague, Czech Republic, Springer Verlag (2001) 246–270

Market-Inspired Approach to Collaborative Learning 227

7. Guerra-Hernandez, A., Fallah-Seghrouchni, A., Soldano, H.: Learning in BDI
multi-agent systems. In: in Proceedings of CLIMA 2003. (2004) 185–200

8. Alonso, E., d’Inverno, M., Kudenko, D., Luck, M., Noble, J.: Learning in multi-
agent systems. Knowledge Engineering Review 16(3) (2001) 277–284

9. Wei, Y.Z., Moreau, L., Jennings, N.R.: Recommender systems: a market-based
design. In: AAMAS ’03: Proceedings of the second international joint conference
on Autonomous agents and multiagent systems, New York, NY, USA, ACM Press
(2003) 600–607

10. Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. A Bradford Book
The MIT Press Cambridge (2001)

11. Kargupta, H., Chan, P., eds.: Advances in Distributed and Parallel Knowledge
Discovery. In Kargupta, H., Chan, P., eds.: Advances in Distributed and Parallel
Knowledge Discovery, MIT/AAAI Press (2000)

12. Park, B., Kargupta, H.: Distributed Data Mining: Algorithms, Systems, and Ap-
plications. In Ye, N., ed.: Data Mining Handbook. IEA (2002) 341–358

13. Giannella, C., Bhargava, R., Kargupta, H.: Multi-agent systems and distributed
data mining. In Klusch, M., Ossowski, S., Kashyap, V., Unland, R., Laamanen, H.,
eds.: Cooperative Information Agent VIII. LNAI 3191, Springer-Verlag, Heidelberg
(2004) 1–15

14. Klusch, M., Lodi, S., Moro, G.: Agent-based distributed data mining: The kdec
scheme. In: AgentLink. Number 2586 in LNCS, Springer (2003)

15. Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19/20 (1994) 629–679

16. van Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)
17. Šǐslák, D., Rehák, M., Pěchouček, M., Rollo, M., Pavĺıček, D.: A-globe: Agent

development platform with inaccessibility and mobility support. In Unland, R.,
Klusch, M., Calisti, M., eds.: Software Agent-Based Applications, Platforms and
Development Kits, Berlin, Birkhauser Verlag (2005) 21–46

Improving Example Selection for Agents
Teaching Ontology Concepts

Mohsen Afsharchi and Behrouz H. Far

Department of Electrical and Computer Engineering,
University of Calgary, Calgary, Canada

{mafsharc, far}@ucalgary.ca

Abstract. We present a method to improve the positive examples selec-
tion by teaching agents in a multi-agent system in which a team of agent
peers teach concepts to a learning agent. The basic idea in this method
is to let a teacher agent expand the features it uses to describe a concept
in its ontology by additional features. This resembles the typical behav-
ior of human teachers who describe concepts from different viewpoints
in the hope that one of these viewpoints comes close to the viewpoint
of a learner. The extended feature set is then used to select positive ex-
amples that together with negative examples are communicated to the
learner agent. The learner uses concept learning techniques to integrate
the new concept into its own ontology. An experimental evaluation shows
a significant learning improvement compared to the previous approach.

1 Introduction

Knowledge sharing is an integral property of multi-agent systems (MAS). In the
past, knowledge sharing among agents was usually assumed to be instantaneous
and fail safe and therefore, if one agent learns something all the others have
learned it. Recently many researchers have argued that if two agents have differ-
ent internal knowledge representations (e.g. distinctive ontologies) the knowledge
sharing is hard to be accomplished. Therefore the idea of having agents learn
concepts from the other agents has been suggested [1,7,9,11]. In our recent work,
we have presented a general method for having an agent learn concepts and their
features from several other agents [1].

In this method an agent (learner agent) that wants to learn a concept will
query the other agents (teacher agents) about this concept by providing features
(and their values) or examples that it thinks are associated with the concept.
Then the teacher agents provide the learner with a set of positive and negative
examples from their understanding of the concepts (i.e. concepts known by them)
that seem to fit the query. These sets are further analyzed by the learner using
several concept learning techniques to get a better understanding of the concept.
Better understanding is equivalent to (a) identifying concepts’ relevant features
and (b) identifying the proper location of the concept in the concept hierarchy.

Note that the effectiveness of the learning strongly depends on the precision
of the positive and negative examples that the peer agents send to the learner.

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 228–242, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improving Example Selection for Agents Teaching Ontology Concepts 229

These examples should be selected in a way that covers the broad area of the
concept being learned from different viewpoints. Of special importance are the
positive examples that they should provide the learner with all features that
discriminate the particular concept from other concepts.

When human tutors teach concepts to human learners, they usually explore
and explain the concept from various viewpoints, so that the learner can select
the viewpoint that fits best into his/her own view of the world. This essentially
means that the teacher should investigate alternative ways to characterize a
concept.

In this paper, we improve our general concept teaching/learning scenario by
devising mechanisms to help teacher agents create alternative viewpoints of a
concept in order to improve the selection of positive examples. More precisely,
we use ideas from the area of feature selection in text classification (see [4,12])
to have a teacher agent find all the characteristic features of a concept using the
examples this teacher associates with the concept. Then the teacher ranks theses
examples associated with the concept based on the characteristic features and
sends the highest ranking example to the learner.

The structure of this paper is as follows. After a brief introduction of the con-
cepts in Section 2 the learning process is described in Section 3 and a method
for positive example selection using added features and example ranking is intro-
duced in Section 4. An intuitive example using real data set is given in Section
5 followed by related works and conclusions in Section 6 and 7.

2 Basic Definitions

In this section, we provide a brief definition of each of the two basic concepts
involved in our system which are ontologies and agents. Also we provide the
instantiations of these concepts that we require for our methods.

2.1 Ontologies and Concepts

The usage of the term ”ontology” in (computer science) literature faces problems
very similar to the usage of the term ”agent”: there is no agreed-upon formal
definition for the term, but nevertheless it is used very intensively and there
are many systems that come with a (somehow) built-in definition of the term.
Common to most usages of the term ontology is that it is considered to be a
way for representing concepts (or objects) in a hierarchy with additional ways
of defining relationships among the concepts (or objects).

This is reflected by Stume’s formal definition (see [9]) who defines a core
ontology as a structure O := (C,≤C , R, σ,≤R). Where C and R are two disjoint
sets and the elements of C are called concept identifiers and the elements of R are
so-called relation identifiers. ≤C is a partial order on C called concept hierarchy
or taxonomy and ≤R ia a partial order on R, named relation hierarchy. σ : R→
C+ is a function providing a signature for a relation such that |σ(r1)| = |σ(r2)|
for every r1, r2 ∈ R with r1 ≤R r2 and for every projection πi (1 ≤ i ≤ |σ(r1)|)

230 M. Afsharchi and B.H. Far

of the vectors σ(r1) and σ(r2) we have πi(σ(r1)) ≤C πi(σ(r2)). If c1 ≤C c2 for
c1, c2 ∈ C, then c1 is called a subconcept of c2 and c2 is a superconcept of c1.
Obviously, the relation ≤C is supposed to be connected with how concepts are
defined. In the literature, taxonomies are often built using the subset relation,
i.e. we have

Ci ≤C Cj iff for all o ∈ Ci we have o ∈ Cj .

This definition of ≤C produces a partial order on C as defined above and we
will use this definition in the following for the ontologies that our agents use.

The Stume’s definition of ontology O lacks the precise treatment of the
conecpts, C. Many works in databases and machine learning define concepts
as collections of objects that share certain feature instantiations. In the follow-
ing we assume that we have a set of features F = {f1, ..., fn} and for each feature
fi we have its domain Di = {vi1, ..., vimi} that defines the possible values the
feature can have. Then an object o = ([f1 = v1], ..., [fn = vn]) is characterized by
its values for each of the features (often one feature is the identifying name of an
object and then each object has a unique feature combination). By U we denote
the set of all (possible) objects. In machine learning, often every subset of U is
considered as a concept. In databases and in this work we want to be able to char-
acterize a concept by using feature values. Therefore, a symbolic concept Ck is
denoted by Ck([f1 = V1], ..., [fn = Vn]) where Vi = {v′i1, ..., v′iji

} ⊆ Di (if Vi = Di

then we often omit the entry for fi). An object o = ([f1 = v1], ..., [fn = vn]) is
covered by a concept Ck, if for all i we have vi ∈ Vi. In an ontology according
to the definition above, we assign a concept identifier to each symbolic concept
that we want to represent in our ontology.

Note that the objects must possess all the features of the concept Ck in order
to be covered by it. But it does not necessarily mean the objects should not
possess other features that not exhibited in the Ck. As we stated previously the
Vi ⊆ Di and that means the Vi is not necessarily equals with Di. This naturally
allows the objects to have an extended set of features resulting in a potential
ability to teach the concept from a different viewpoint.

From the point of view of knowledge representation the really interesting part
of ontologies are the relations R that a particular ontology allows. This is also
the part where we see a lot of discrepencies among different authors. In general,
all possible relations between tuples of concepts can be used in ontologies, but
usually researchers assume a small set of built-in relations and tool develop-
ers sometimes throw in the possibility to have (limited) user-defined relations.
But unfortunately, different ontologies can use the same relation identifiers for
different built-in relations, so that there is quite some confusion in this area.
Therefore, if we have two systems build by different people using ontologies over
the same set U it is very important to either identify those relations that occur
in both ontologies or to find ways the knowledge contained in the (usage of)
relations in one ontology can be used in communications between the systems.
In this work, we will show such a usage for one relation that we have called
is-similar-to with σ(is-similar-to) ∈ C2.

Improving Example Selection for Agents Teaching Ontology Concepts 231

2.2 Agents

A general definition that can be instantiated to most of the views of agents in
literature sees an agent Ag as a quadruple Ag {Sit, Act, Dat, fAg}. Sit is a
set of situations the agent can be in, the representation of a situation naturally
depending on the agent’s sensory capabilities, Act is the set of actions that Ag
can perform and Dat is the set of possible values that Ag’s internal data areas
can have. In order to determine its next action, Ag uses fAg : Sit×Dat→ Act
applied to the current situation and the current values of its internal data areas.

As we want to focus on the knowledge representation used by agents, so we
look more closely at Dat. We assume that every element of Dat of an agent
Ag contains an ontology area OAg as defined in the previous subsection that
represents the agent’s view and knowledge of concepts. For the concepts in the
taxonomy ofOAg there might be additional data, beyond features, that the agent
requires from time to time. Naturally, there will be additional data areas rep-
resenting information about the agent itself, knowledge about other agents and
the world that the designer of the agent may want to be represented differently
than in OAg. In the rest of this paper, we will concentrate on how the agent uses
and manipulates its ontology.

3 Learning Process

In this section we provide a brief discussion about the multi-agent concept learn-
ing we presented in [1]. We will see how we changed this general scheme to
improve positive example selection in Section 4.

We have developed a method that demonstrates how an agent can learn new
concepts for its ontology with the help of other agents. This naturally assumes
that not all agents have the same ontology (otherwise learning would not be
necessary). In fact, we additionally assume that there are only some base features
Fbase ⊆ F that are known and can be recognized by all agents and that there
are only some base symbolic concepts Cbase that are known to all agents by
name, their feature values for the base features and the objects that are covered
by them. Outside of this base common knowledge, individual agents may come
with additional features they can recognize and additional concepts they know.
Given this setting, agents will develop problems in working together, since the
common grounds for communication are not there. To solve this problem, agents
need to acquire the concepts outside of Cbase that other agents have, at least
those concepts that are needed to establish the necessary communication to work
together on a given task. The basic idea is to have an agent learn a required
concept (or at least a good approximation) of it with the help of the other
agents.

3.1 Interaction Scheme

Although we want all agents to be able to learn new concepts, for explaining
our interaction scheme we designate one agent, AgL, as the one that wants to

232 M. Afsharchi and B.H. Far

learn a new concept and the other agents, Ag1,...,Agm, will be its teachers. AgL

has an ontology OL = (CL,≤C , RL, σL,≤RL) and knows a set of features FL.
Analogously, Agi has as ontology Oi = (Ci,≤C , Ri, σi,≤Ri) and knows a set of
features Fi. For a concept c known to the agent Agi, this agent has in its data
areas a set pexc

i ⊆ U of positive examples for c that it can use to teach c to AgL.
Part of ActL are actions QueryConcept, AskClassify, Learn, and Integrate,
while part of the Actis are the actions FindConcept, CreateNegEx, ReplyQuery,
ClassifyEx and ReplyClass; all with appropriate arguments. These actions
form our interaction scheme in the following manner:

1. AgL determines it needs to know about a particular concept cgoal and per-
forms QueryConcept(“cgoal”) to inform the other agents about this need.

2. Each agent Agi reacts to AgL’s query by:
(a) performing FindConcept(“cgoal”), which leads to a set of candidate con-

cepts Ccand
i ,

(b) selecting the “best” candidate ci out of Ccand
i ,

(c) selecting a given number of elements out of pexci

i , thus creating pi,
(d) performing CreateNegEx(ci) to produce a given number of (good) neg-

ative examples for ci, which we call the set ni,
(e) performing ReplyQuery(path(ci),pi,ni).

3. AgL collects the answers (path(ci),pi,ni) from all agents and uses a learner
to learn cgoal from these combined examples (action Learn((p1, n1),...,
(pm, nm))). If there are conflicts, then it resolves them with the help of
the other agents using AskClassify (resp. ClassifyEx and ReplyClass by
the other agents.

4. AgL uses the learned cgoal and the collected path(ci)s from the other agents
to construct an ontology path Cpath leading to cgoal within its ontology OL

(action Integrate(path(c1),...,path(cm))).

The result of this learning/teaching scheme is the description of cgoal in terms of
AgL’s feature set FL and an updated ontologyOnew

L = (Cnew
L ,≤C , RL, σL,≤RL).

AgL will also create a set pex
cgoal

L in case another agent wants AgL to teach it
cgoal.

3.2 Selecting Positive and Negative Examples

While supplying the learner with more examples normally are the better, in our
case we have to take into account that the more objects from the positive and
negative examples are selected, the more expensive the communication becomes
and the more effort AgL will have to spent on learning. On the other hand, less
examples usually means less precise learning result. Therefore the number of
examples communicated to AgL by each agent should be selected as a parameter
of the whole system.

For negative examples, since every concept other than queried concept cj can
be categorized as its counter concept, the number of associated objects (which
naturally are negative examples) could be potentially very high. This big volume

Improving Example Selection for Agents Teaching Ontology Concepts 233

of the negative examples makes the selection of a subset of them a crucial task.As
we elaborated negative example selection and improvement and reported the
result [1], in Section 3.3 we briefly explain this problem.

For positive examples, Since each agent Agi stores for each concept cj a set
pex

cj

i of positive examples , i.e. a set of objects covered by cj , coming up with
positive example objects for a concept known to Agi does not seem to be a big
problem, because selecting the appropriate number of elements for pi could be
realized by randomly sampling pexci

i . But as we will show in Section 4, applying
the viewpoint of the teacher agents to select better positive examples can make
a significant improvement in the learner’s effectiveness. In Section 4 we present
two algorithms to extract discriminative features and ranking positive examples
respectively.

3.3 Selecting Negative Examples by Ontology Guidance

Selecting negative examples for a concept is not easy. Obviously, the set of neg-
ative examples nexc for a concept c is defined as

nexc = U − {o|o covered by c}.
This can be a very large set and usually different elements of this set provide
learners with a different quality of advice. Good negative examples are examples
that “nearly” are in the set covered by the concept, a kind of “near-misses” that
allow to highlight the borders of a concept. The fact that our agents have ontolo-
gies allows us to do a better job in selecting negative examples than randomly
selecting out of nexci (by Agi). The key for this better selection is to make use of
the taxonomy information Agi has and the relations in Ri. The later naturally
depends on what relations are available.

Let us first look at the possibilities that the taxonomy offers. Each supercon-
cept of the concept ci –that Agi sees as the best concept to answer AgL’s query–
can be used to limit the set of negative examples nexci

i that Agi should consider
for its answer. As a superconcept of ci, these concepts share a lot of feature
values with ci, so that the elements in their set of positive examples that are
not covered by ci are good candidates for “near-misses”. In fact, sibling concepts
of ci or its superconcepts are even better source for negative examples since all
their positive examples are not covered by ci.

Since all agents use the same relation ≤C , all agents can use the taxonomy
information to limit the pool of negative examples to choose from. But also
information provided by some other relations can be used. As an example, let
us look at the usage of the relation is-similar-to that we mentioned earlier.
The motivation for is-similar-to is to allow to express the similarity between
two concepts that are far away from each other in the taxonomy tree, but that
share a lot of feature values. This makes is-similar-to a perfect candidate for
helping with the selection of negative examples. After collecting all candidates
in nexci

i , we again select the given number of examples for ni as a random
sample.

Note that an is-similar-to-relation can be automatically computed for a
given Ci and Fi by introducing a similarity measure simf

i on feature values for

234 M. Afsharchi and B.H. Far

each feature f ∈ Fi with domain D: simf
i : D ×D → [0..1]. We can create out

of this a similarity measure simU
i for objects by, for example, summing up the

similarities for each feature. More formally, let o = ([f1 = v1], ..., [fn = vn]) and
o′ = ([f1 = v′1], ..., [fn = v′n]), then

simU
i =

∑n
j=1 sim

fj

i (vj , v
′
j)

where sim
fj

i (x, y) = 0, if fj /∈ Fi.
Out of this, we can create is-similar-toi between two concepts c and c′, if

simU
i (o, o′) ≥ simthreshold for all o ∈ pexc

i and o′ ∈ pexo′
i , with simthreshold

as a given parameter. While it would be better to use all objects covered by c
and c′, this can be impossible or at least very expensive, so that we suggest to
use the examples that are already there.

4 Positive Example Selection by Discriminative Feature
Selection and Example Ranking

Technically, there is a set of objects associated with each concept cj for the
teacher agent Agi as positive examples, and if cj is selected as an answer to
a query, this set is simply available for the teacher to select positive examples
and send it to the learner. Randomly selection of the positive examples is the
most straightforward way which while keeps the selection process easy, does not
guarantee the comprehensiveness of the positive examples. That is because the
set of positive examples should cover the border of the concept as well as the
body of the concept. Therefore good subset of positive examples are examples
that cover the whole space of positive examples.

One very important issue here is that, the selection of positive examples is
the point that the teacher can exert its unique view in the teaching of a specific
concept, therefore, the teacher agent should utilize some methods to reflect its
viewpoint. Similar to the teaching process in human beings we used the feature
describing a concept as a point that the teacher can express its viewpoint. Apart
from the features in the concept definition in the ontology, there might be some
other very characterizing features in the positive examples which the teacher
agent can rely on in the teaching of the concept by selecting the positive examples
using them. We believe that these characterizing features are the features that
are more discriminatory than other features in the examples. Fortunately, there is
a very close relation between the technical problem we mentioned in the previous
paragraph and the teaching from different viewpoints. By selecting the subset
of positive examples using more discriminative features, the teacher agent not
only exerts its unique point of view, but it has a criterion to arrange the selected
subset in a very comprehensive way.

To identify discriminative features and select examples based on them, we in-
troduced a new action SelectPosEx(ci) and replaced the section (c) of step 2 of
our general interaction scheme as follows: performing SelectPosEx(ci) to select
a given number of good elements out of pexci

i , thus creating pi. In SelectPosEx
we use the differences of features between the given positive examples (pexck

i)

Improving Example Selection for Agents Teaching Ontology Concepts 235

and negative examples (nexck

i) to calculate the feature strength in discrimina-
tion between the positive and negative examples. We also use feature strength
to identify more discriminative features which we call them core features, and
denote them by CF . Then we use CF , to extract good positive examples from
pexck

i and we call them distinctive positive examples(pi).

4.1 Identifying Discriminative Features

We identify the discriminative features based on the notion called Relief which
we borrowed the idea from [5] Using ReliefF which is a more robust algorithm
from Relief family we developed an algorithm to identify the discriminative fea-
tures. This algorithm constructs the set of core features of pex, CF , by ranking
the feature strengths among the features that are exhibited in pex and nex.

The key idea of our method , given in Algorithm 1, is to estimate the strength
of features according to how well their values distinguish between examples that
are near to each other. For that purpose, given a randomly selected example
ei (line 3), algorithm searches for its k nearest neighbors from the pex, called
nearest hit P , and k others from the nex, called nearest miss N (line 4). It
updates the strength estimation W [F] for the set of all features F depending on
their values for ei, P , and N (lines 6 and 7). If ei and majority of k examples in
P are different in their values for the feature f then the the feature f separates
examples in the same concept which is not desirable so we decrease the strength
estimation W [f]. On the other hand if ei and majority of k examples in N
are different in their values for the feature f then the feature f separates a
positive example from negative examples which is desirable so we increase the
strength estimation W [f]. The k is a user definable parameter which increase
the robustness of the algorithm against the noisy data. The whole process is
repeated for m times, where m is also a user defined parameter.

Function diff(f, ei, ej) calculates the difference between the values of the
feature f for two instances ei and ej. For nominal features it is define as:

diff(f, ei, ej) =
{

0; value(f, ei) = value(f, ej)
1; otherwise

and for numerical features as:

diff(f, ei, ej) =
|value(f, ei)− value(f, ej)|

max(f)−min(f)

The algorithm then determine φ as the average of W (F). Obviously because
the teacher is interested in the feature in pex it filters the set of features and
add to the CF all features which are seen at least in one e in pex and W (f) > θ.

4.2 Extracting Distinctive Positive Examples

We have shown how to compute feature strengths and determine φ so as to
select a set of discriminative features for formulating the core features (CF) of

236 M. Afsharchi and B.H. Far

Algorithm 1. Calculate the vector of W of estimations of the features strenght
1. set all weights W [F] := 0.0
2. for i = 0 to m do
3. Randomly select an example ei

4. find k nearest hit examples in pex, P
5. find k nearest miss examples in nex, N
6. for all f in F do

7. W [f] = W [f] −
k

j=1

diff(f, ei, Pj)/(m · k) +
k

j=1

diff(f, ei, Nj)/(m · k)

8. end for
9. end for

10. φ 1
|F |

|F |

i=1

W [fi]

11. for all f in F do
12. if f > φ and f ∈ pex then
13. append f to CF
14. end if
15. end for

the positive examples . Another important issue is, given an example, what is
the criterion, in order to consider it a potential distinctive positive example?

Algorithm 2 shows the mechanism that we utilized to select the set of dis-
tinctive positive examples. The key idea of our procedure , given in Algorithm
2, is to estimate the distance of every positive examples from their peers in the
negative side and use this estimation to assess the distribution of the examples
in the whole space of positive examples. For that purpose, for every example
ei (line 3), algorithm searches for its k nearest neighbors from the nex, called
nearest miss N (line 4). To find theses nearest misses we used the similarity
function that we presented in the previous section. the algorithms then updates
the distance estimation D[ei] for the set of all features CF depending on their
values for ei and each example in N using the diff function(lines 5, 6 and 7).
Obviously the examples with minimum value of D[ei] are in the border and as
the value goes higher the examples go farther from the border. In order to se-
lect more comprehensive set of positive examples, the teacher agent selects the
examples that are not very close to each other assuming that the close examples
do not add so much to the learner knowledge and its accuracy. The dist function
calculates the distance of the selected example ej with candidate example ei.
If the value of distance is greater than θ for all selected examples, then teacher
adds it to the set of selected positive example p (line 12 and 13). The value for θ
is selected based on the number of examples the teacher can send to the learner
and the average distance between examples.

Function diff(f, ei, ej) is defined similar to the previous section and function
dist is defined based on the diff function as follows:

dist(ei, ej) =
|CF|∑
k=1

diff(fk, ei, ej)

Improving Example Selection for Agents Teaching Ontology Concepts 237

Algorithm 2. Select the set of p of comprehensive positive examples
1. set all distances D[pex] := 0.0
2. for i = 0 to |pex| do
3. select an example ei

4. find k nearest miss examples in nex, N
5. for all f in CF do

6. D[ei] = D[ei] +
k

j=1

diff(f, ei, Nj)/k

7. end for
8. end for
9. p = ∅

10. while there is ei in pex do
11. take out of pex an example ei such that D[ei] is minimum
12. if dist(ei, ej) > θ for all ej ∈ p then
13. append ei to p
14. end if
15. end while
16. return p

5 Experimental Results

We have conducted several experiments using the general setup of our multi-
agent system from [1], in which the teacher agents have some differences in their
“world view”, simply because there are different ways how to organize the objects
in the world, but where there is nevertheless a large agreement on many things.
We changed the process of positive example selection to enable the teacher agents
to reflect their specific “viewpoint” by selecting some examples that they think
are more distinctive positive examples.

5.1 The University Units and Courses Domain

The Course catalog ontology domain has been chosen as the basic set up for
our multi-agent system. (see [3]). The set of objects U consists of files describing
the courses offered by Cornell University, the University of Washington and the
University of Michigan. The domain is additionally structured according to the
university units of these universities, which creates different ontologies for each
of them. In fact, our teacher agents will be agents that each represents one of
these 3 universities (AgC , AgW , AgM). The course files (and unit structure)
for Cornell and Washington were taken from [3], the ones for Michigan from
their web site at [10]. A course file contains course identifier, course description
and the prerequisites of a course. The three universities together offer 19061
courses(which naturally is the total number of examples in the system) and each
university’s ontology has at least 166 concepts on top of their courses. For each
of the following examples, our agents used their full ontologies even if we report
only on parts of them.

238 M. Afsharchi and B.H. Far

Borrowing some ideas from the field of information retrieval, to represent
the courses in terms of features, we had a little bit of preparation to do. The
course description, that is the main feature in our method of learning, usually
determines by which organizational units a course should be taught and the
descriptions are text-based. Defining concepts based on objects that consist of
natural language texts is not easy, but an area of quite a lot of interest and
practical applications. One way of defining features for such texts to group them
is to look for particular words in the texts or word combinations (see [4]). Unfor-
tunately, there is a lot of substitutivity in these word combinations, so that we
need features that allow us to express this substitutivity. For example, feature
fpicture,photo,figure: text → Boolean is true for a text t, if either picture
or photo or figure occurs in t. For our application domain, it is not clear what
substitutivities should be considered (just synonyms are not what we are looking
for here), so that we base our features for the course descriptions on what we
call a set K of key words. Then we have a feature for each possible subset of K
(excluding the empty set) as described above. Different key sets create different
feature sets.

To instantiate Algorithm 1 and 2 for our context we first used the similarity
function of section 3.3 to find k nearest hit for each document example ei. The
same process is done to find k nearest miss document. To calculate feature
weights, W , we needed to realize a diff function which was compatible with our
context. In the information retrieval domain one common scheme, to weight a
keyword is known as “term frequency inverse document frequency” and originally
for a keyword(i.e term) i in document j is defined as:

ωi,j = tfi,j ∗ ln N
n

where tfi,j is the frequency of the keyword i in document j, N is the total num-
ber of documents which naturally in our context is the number of documents
both in pex and nex, and n is the number of documents where keyword i occurs
at least once. To make this weighting scheme works with our features, we sub-
stitute keywords by the set of keywords that we use for our system. Therefore
for example in addition to ”differential” and ”equation” we also count the oc-
currences of ”differential equation” in documents as a single feature. Based on
this definition we instantiate the diff function as follows:

diff(f, ei, ej) = |ωf,ei − ωf,ej |

5.2 Different Positive Example Selection Comparison

To show the efficiency of the learner when a concept thought from different
viewpoints, we conduct some interesting experiments. For first experiment, sim-
ilar to our experiment in [1], we assumed that the learning agent is supposed
to provide someone at a university with suggestions for how a unit concerned
with Greek should be characterized. This learning agent would pose a query
based on providing a key set out of its own key set of words, in our example this
query key set would be {greek,program,attic,literature}. We also further

Improving Example Selection for Agents Teaching Ontology Concepts 239

Table 1. Classification result for concept greek and mathematics

n% greek mathematics
DPE RS1 RS2 RS3 DPE RS1 RS2 RS3

10 0.006 0.000 0.000 0.000 0.002 0.000 0.000 0.000
20 0.017 0.000 0.000 0.001 0.011 0.000 0.000 0.000
30 0.031 0.001 0.008 0.011 0.078 0.000 0.001 0.000
40 0.093 0.031 0.011 0.021 0.181 0.021 0.012 0.009
50 0.188 0.069 0.083 0.052 0.289 0.105 0.145 0.098
60 0.390 0.128 0.116 0.102 0.366 0.254 0.227 0.191
70 0.510 0.219 0.223 0.190 0.432 0.321 0.309 0.268
80 0.612 0.381 0.350 0.324 0.511 0.390 0.384 0.329
90 0.691 0.439 0.402 0.491 0.580 0.481 0.472 0.448
100 0.780 0.582 0.562 0.577 0.641 0.571 0.521 0.514

assumed that the relevant concepts in Cbase are Cbase= {university} and the rel-
evant concepts in Fbase are created using the key set Kbase = {class, course,
program, literature,modern, attic,classic, culture, prose,
graduate,seminar,grammar,drama,greek}.

Based on the above mentioned assumptions, we enabled our agents to apply
Algorithm 1 to come up with the core features representing the unique viewpoint
of each agent. A subset of the core feature key set which is not common with
Kbase, for each agents were as follows:

CFC ={democritus,religion,english,herodotus,medieval}
CFW = {tragedy,orator,antique,myths,archeology}
CFM = {modern,epic,classic,odyssey, ancient,aristotelian,aeneid}.

Then we let the agents to extract positive examples using CF and Algorithm 2
and send them to the learner. In the learner side and in order to evaluate the ef-
ficiency of our method in selecting distinctive positive examples, we first trained
the learner with the set of distinctive positive examples (DPE) and test it against
the set of all 1016 positive examples associated with concept greek in the world
of three agents. Column DPE of Table 1 shows the percentage of the true clas-
sification that the learner did. To see how our method improves the efficiency
of whole process of learning we also trained the learner with three different
random set(e.g. RS1, RS2 and RS3) of positive examples(which obviously as-
sociated with concept which is being learned). Column greek in the Table 1
shows the major improvement in the classification where the accuracy of DPE
(78 %) is 19.8 more than the best random set(58.2%) . The experiment is re-
peated n times, where n is the percentage of the positive examples used in
training.

We repeated the experiment for the concept mathematics with query key set:
{mathematics,program,science,calculus} and the key set Kbase = {class,
course, program, science, calculus, mathematics, school, graduate,

240 M. Afsharchi and B.H. Far

Table 2. Average classification accuracy for nine concepts

n% DPE RS1 RS2 RS3
10 0.003 0.000 0.000 0.000
20 0.012 0.000 0.000 0.000
30 0.043 0.001 0.003 0.001
40 0.114 0.028 0.016 0.023
50 0.206 0.109 0.091 0.078
60 0.327 0.202 0.190 0.161
70 0.438 0.267 0.274 0.211
80 0.551 0.377 0.361 0.356
90 0.649 0.448 0.421 0.463
100 0.733 0.560 0.549 0.554

seminar,systems,number, solution}. A subset of core features for each agents
were as follows:

CFC= {vector,elementary,statistics,geometry,function,proof}
CFW = {equation,logic,linear,fourier,integral }
CFM = {algebra,matrices,graph,theorem,dynamics,logarithm }.

Column mathematics in the Table 1 shows the major improvement(64.1%-57.1%
=7%) in the classification when we test the learner over 2117 positive examples
associated with concept mathematics in the world of three agents. In addi-
tion to mathematics and greek we repeated our experiment for seven other
concepts: computer science, linguistics, german, japanese, chemistry,
physics and chinese. Table 2 shows the average result for nine concepts. Again
we see a significant improvement in classification accuracy(17.3%)

6 Related Works

Most works in the multi-agent concept learning did not focus on the quality of
the positive and negative examples. The Williams’s work [11] introduced the idea
of using learning to improve the mutual understanding about a concept between
two agents. In contrast to our method, Williams uses only a flat repository of
concepts, not a real ontology. The learning is used to have only two agents
develop a common feature description about a particular concept assuming that
the agents share the same perception of objects. Also there is no concentration on
the quality of examples. [7] presents a method how one agent can train another
agent to recognize a concept by providing selected positive training examples.
while the multi-agent dimension is not addressed and no usage of ontologies is
made, the quality of examples also not addressed.

Researchers have studied various aspects of feature selection. Different fea-
ture selection methods can be broadly categorized into the wrapper model [4]
and the filter model [8,6]. The wrapper model uses the predictive accuracy
of a predetermined learning algorithm to determine the goodness of the

Improving Example Selection for Agents Teaching Ontology Concepts 241

selected subsets. The filter model separates feature selection from classifier learn-
ing and selects feature subsets that are independent of any learning algorithm.
It relies on various measures of the general characteristics of the training data
such as distance, information, dependency, and consistency. According to the
availability of class labels, there are feature selection methods for supervised
learning [5].

7 Conclusion

We presented a method to improve the process of positive example selection
by teaching agent in multi-agent systems that a group of agents try to teach a
concept to a learning agent. We established our method base on the reflection of
the viewpoints of the teacher agents. Similar to the behavior of human beings,
the teacher agents express their viewpoints with the features that they think are
more discriminatory. Then they use these features to extract more distinctive
positive examples which naturally characterize the queried concept better. We
found this method very useful in monotonous distribution over whole positive
example space. Our experimental results revealed the improvement of the learner
effectiveness using this new method of positive example selection. As a future
work we will expand the method for better selection of negative examples and
we will analyze the behavior of the selected subset of the negative examples over
the whole space of negative examples.

References

1. M. Afsharchi, B.H. Far, J. Denzinger: Ontology-Guided Learning to Improve
Communication between Groups of Agents, Proc. AAMAS-06 (in press), 2006.
http://www.enel.ucalgary.ca/ afsharch/aamas06.pdf

2. R. Kohavi and G.H. John. Wrappers for feature subset selection. Artificial Intel-
ligence, 97(1-2): 273324, 1997.

3. Illinois Semantic Integration Archive. http:// anhai.cs.uiuc.edu/archive/, as seen
on Jan 30, 2005.

4. D. Koller, M. Sahami: Hierarchically Classifying Documents Using Very Few
Words, Proc. ICML-97, 1997, pp. 170–178.

5. M. Robnik-Sikonja, I. Kononenko: Theoretical and Empirical Analysis of ReliefF
and RReliefF. Machine Learning Journal, Volume 53, 2003, pp. 23–69.

6. M.A. Hall. Correlation-based feature selection for discrete and numeric class ma-
chine learning. In Proceedings of the Seventeenth International Conference on Ma-
chine Learning, pages 359366, 2000.

7. S. Sen, P.P. Kar: Sharing a concept, AAAI Tech Report SS-02-02, Stanford, 2002.
8. H. Liu, H. Motoda, and L. Yu. Feature selection with selective sampling. In Pro-

ceedings of the Nineteenth International Conference on Machine Learning, pages
395402, 2002.

9. G. Stumme: Using Ontologies and Formal Concept Analysis for Organizing Busi-
ness Knowledge, in J. Becker, R. Knackstedt (Eds.): Wissensmanagement mit Ref-
erenzmodellen – Konzepte für die Anwendungssystem- und Organisationsgestal-
tung, Physica, 2002, pp. 163–174.

242 M. Afsharchi and B.H. Far

10. University of Michigan academic units. http:// www.umich.edu/units.html, as seen
on Jan 30, 2005.

11. A.B. Williams: Learning to Share Meaning in a Multi Agent System, Autonomous
Agents and Multi Agent Systems 8(2), 2004, pp. 165–193.

12. Y. Yang, Y., J.P. Pedersen: A Comparative Study on Feature Selection in Text
Categorization. Proceedings of the Fourteenth International Conference on Ma-
chine Learning (ICML’97), 1997, pp412-420.

Egalitarian Allocations of Indivisible Resources:
Theory and Computation

P.-A. Matt and F. Toni

Department of Computing, Imperial College London,
South Kensington Campus, London SW7 2AZ, UK

{pmatt, f.toni}@imperial.ac.uk

Abstract. We present a mechanism for collaboration and coordination
amongst agents in multi-agent societies seeking social equity. This mech-
anism allows to compute egalitarian allocations of indivisible resources
to agents, reached via progressive revisions of social consensus. Egali-
tarian allocations are allocations with maximal egalitarian social wel-
fare, where the egalitarian social welfare is given by the minimum worth
(utility) assigned by agents to the resources they are given by the allo-
cation. Egalitarian allocations are useful in a number of applications of
multi-agent systems, e.g. service agents, satellite earth observation and
agent oriented/holonic manufacturing systems. The mechanism we pro-
pose is distributed amongst the agents, and relies upon an incremental
construction whereby agents join progressively in, forcing a revision of
the current set of agreements amongst the prior agents. The mechanism
uses search trees and a reduction operator simplifying the search for egal-
itarian allocations. We finally show how to reduce the negotiation time
using social order-based coordination mechanisms and make agents find
consensus efficiently using well-suited resource-preference orders.

1 Introduction

The emergence of societies of artificial agents, such as software agents, domestic
or industrial robots, is a development with huge potential significance in the near
future. For this significance to materialise, it is important that agent-designers
render agents as autonomous as possible, by specifying decision-making strate-
gies and rules of interaction. It is also important, from a global perspective,
to clarify the properties a society of agents should exhibit in order to benefit
applications.

To tackle this issue, we follow a worth-oriented paradigm adapted from the
area of social choice theories [1,2,3] and welfare economics [4,5,6]. In this
paradigm, agents assign a measure of worth to each of the possible states of
affairs they may encounter, to represent, intuitively, the notion of goal satisfac-
tion. In particular, we focus on states of affairs resulting from the allocation
of indivisible resources to agents. Resources serve as an abstraction for objects,
commodities, tasks, services, computational power etc.

Research in multi-agent systems so far focused mostly on utilitarianism, i.e.
selfish agents trying to maximise their own good without concern for the global

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 243–257, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

244 P.-A. Matt and F. Toni

good of the society. Although appropriate for applications such as combinator-
ial auctions [7], utilitarian principles dangerously threaten cooperation between
agents working in teams, because they are highly elitist by often generating
situations where only a small percentage of agents detain the totality of the re-
sources, preventing the others to achieve their goals. Moreover, purely artificial
‘servants’ may have no particular need of behaving selfishly and agent-designers
do have the power to enforce specific interaction protocols and chosen reasoning
strategies, in particular cooperative ones.

In our opinion, self-interest, natural within human societies, may be counter-
productive in artificial societies. By shifting from natural to artificial societies,
it is possible, and beneficial in some applications of resource allocation for co-
operative agents, to abandon the utilitarian model. Egalitarian allocations allow
to maximise the welfare of the agent that is less ‘well-off’ in the society, in terms
of the worth it assigns to resources it is allocated. When agents are endowed
with egalitarian strategies, they combine their actions for the global good of the
society. This can be a fruitful approach in the resource allocation case: agents’
cooperation allows better repartition of the resources, resulting in simultane-
ous quality improvements in the wide panel of services offered or set of tasks
performed by the agents [8].

A recent overview of socially optimal allocations of resources achieved by
means of negotiation can be found in [9]. Interestingly, the paper proves that
any sequence of strongly equitable deals (see [9] for a definition) will eventu-
ally result in an egalitarian allocation. This purely theoretical result provides
however no indication to designers of multi-agent systems on how agents can
compute these deals. In this paper, we provide a new negotiation mechanism
for solving in a distributed manner, and without any approximation, indivisible
resource allocation problems so that the egalitarian social welfare of the multi-
agent system is maximised, in the case where the worth of resources to agents
is represented in terms of semi-linear utility functions. It is assumed that agents
are willing to fully cooperate when working in teams. One may think of agents
serving or acting for the interest of a common symbolic ‘master’ that in practice
could correspond to an individual, company or institution of any kind.

Egalitarian allocations correspond to natural solutions in a number of applica-
tion areas, and in particular for service-oriented multi-agent systems, where for
example control of or access to services needs to be negotiated amongst agents.
In this application, worth and utilities may respectively correspond to agents’
competence in managing services and using the services. Then, the egalitarian
approach would allow maximising the minimum competence in managing/using
services in the system. Another application is earth observation via satellites
[18,16], where an egalitarian approach is advisable as observation satellites are a
scarce and highly expensive resource, usually co-exploited by several entities all
expecting fairness in the exploitation process. A third field for application and
perhaps the most obvious one, is agent-oriented [19,20] or holonic manufactur-
ing systems [21]: agents can play the role of flexible self-organizing production
units in a factory, where production platforms, raw materials and semi-finished

Egalitarian Allocations of Indivisible Resources: Theory and Computation 245

products are utilised in function of the market’s conditions. Factories are typi-
cally environments where no agent should be under-exploited and it is thought
egalitarian principles can bring better productivity. A very interesting list of
other practical applications has been given in [13].

The remainder of this paper is structured as follows. In section 2, we give a
formal introduction to the resource allocation problem we tackle. In section 3,
we introduce a general method to solve the problem efficiently and distributedly.
Section 4 is dedicated to experiments on the time complexity required for solving
allocation problems and the comparison of several social order-based coordina-
tion techniques for conducting negotiations and decision-making heuristics based
on resource-preference orders. Section 5 draws some conclusions, compares our
approach with related work and identifies some directions for future research.

2 Preliminaries

When several agents within a multi-agent system compete for the same resources,
they need to overcome a complex conflict of interest, especially when agents need
(or lack) many resources and have similar preferences. Autonomous agents need
to solve the resulting resource allocation problem on their own, but cooperative
agents also aim at finding a solution which is socially acceptable.

In this paper, we will refer to the agents and resources involved in a resource
allocation problem as a1, a2, . . . , an and r1, r2, . . . rm, respectively, where the
number of agents (n) and resources (m) are assumed to be strictly positive
integers. We will assume that the resources are indivisible, so that a resource
may be allocated only entirely and to one agent at most. We will use the following
definition of allocation of resources to agents.

Definition 1. Let G = {ai1 , . . . , aig} be a non-empty subset of {a1, ..., an} of
cardinality g ≤ n. G represents a group of g agents. An allocation for G is a
Boolean table A = ((Ai,j))g×m of g lines and m columns

A{i1,...,ig} =

 i1 : Ai1,1 Ai1,2 . . . Ai1,m

.
ig : Aig ,1 Aig ,2 . . . Aig,m

 s.t. ∀j ∈ {1, ..., m} :
∑

i,ai∈G

Ai,j ≤ 1.

We say that ai gets rj if and only if Ai,j = 1.

The inequalities in definition 1 sanction that each resource is allocated to one
agent at most and indivisibility is expressed by the Boolean quantities. When
clear from the context, we omit the agents indexes in the allocations, as done
here-after. As an example, given the group G = {a1, a2, a3} and resources
r1, r2, r3, r4, a possible allocation is

A =
1 0 0 0
0 0 1 1
0 0 0 0

According to it, a1 gets r1, a2 gets r3 and r4 and a3 gets no resource.

246 P.-A. Matt and F. Toni

In our framework, agents in a multi-agent systems are abstractly characterised
by their own preferences concerning the resources to be distributed. These pref-
erences are given via a global utility table:

Definition 2. A utility table is a matrix U = ((ui,j))n×m with n lines and m
columns of coefficients ui,j ∈ IR+. For each 1 ≤ i ≤ n and 1 ≤ j ≤ m, ui,j is
referred to as the utility of resource rj for agent ai.

The utility of a resource for an agent provides a measure of its contribution to
the agent’s welfare.

A reasonable and convenient assumption is to consider that the welfare of an
agent resulting from an allocation of resources is semi-linearly distributed over
the resources, as given by the following definition:

Definition 3. For any 1 ≤ i ≤ n, the welfare of agent ai resulting from alloca-
tion A is given by the equation wi(A) = ci +

∑m
j=1 ui,jAi,j where ci ∈ IR+.

The coefficient ci intuitively represents the welfare of ai prior to any allocation
of resources. By our definition of welfare, basically all the resources that are
given to ai increase its welfare: the individual utilities of resources sum up.
This simple model captures the idea that: the more resources agents get the
higher their welfare, and agents prefer resources that contribute most to their
welfare. However, this model does not capture the synergies resources may have
when put together. This simplification enables us to avoid having to treat the
allocation problem as a complex combinatorial one, as is for instance the case in
combinatorial auctions.

Let us now introduce an optimality criterion on allocations, borrowed from the
areas of social choice theories and welfare economics and having an egalitarian
flavour. Informally, we are after allocations that maximise the egalitarian social
welfare of the multi-agent system, defined metaphorically as the welfare of the
‘unhappiest’ agent in the system. Formally:

Definition 4. The egalitarian social welfare of an allocation A for {a1, . . . , an}
is swe(A) = Min{wi(A)|i = 1, . . . , n}. An egalitarian allocation is an allocation
A∗ with maximal egalitarian social welfare.

As an example, given agents a1, a2, a3, resources r1, r2, r3, r4, and tables

U =

0.9 0.3 0.0 1.2
0.2 0.5 0.7 0.3
0.4 0.4 0.9 0.8

 ,

 c1
c2
c3

 =

0.6
0.2
0.5

then, A∗ =

1 0 0 0
0 1 1 0
0 0 0 1

 with swe(A∗) = 1.3, since

w1(A∗)
w2(A∗)
w3(A∗)

 =

1.5
1.4
1.3

.

We will use this example as a running example throughout the paper.
Note that there may be multiple egalitarian allocations within a society, but

they all have the same egalitarian social welfare that we will denote sw∗
e .

Egalitarian Allocations of Indivisible Resources: Theory and Computation 247

Intuitively, by maximising the egalitarian social welfare in a society, we in-
crease the chances that all agents are given enough resources to achieve their
objectives. The notion of egalitarian social welfare contrasts with the more pop-
ular notion of utilitarian social welfare, amounting to the sum (or average) of all
agents’ welfare values. When utilitarian social welfare is maximised, resources
are given to the agents that best use them, in terms of their individual welfare.
But this may cause that other agents become inactive and incapable of achiev-
ing their objectives, which can be very ineffective, especially when the artificial
society is supposed to provide a wide panel of services at the same time, as is
the case e.g. in grid computing.

In the next section we give a method for constructing egalitarian allocations.
Note that finding an egalitarian allocation of resources is a very hard search
problem since there are exactly (n + 1)m possible allocations to explore (that is
the number of Boolean matrices of size n×m with at most one 1 per column).
This means, for example, that even for a small multi-agent system with 9 agents
and 10 resources to share, there are ten billions possible allocations to consider!
Thus, the complexity of the decision-making problem the agents are confronted
with when trying to compute an egalitarian allocation is huge.

3 Computation of Egalitarian Allocations

In this section we present an algorithm allowing agents to compute egalitar-
ian allocations by working together, while taking autonomous decisions. When
building an egalitarian allocation, two problems need to be solved at once: 1)
finding the value sw∗

e of the optimal egalitarian social welfare and 2) actually
finding an egalitarian allocation for the whole set of agents, with welfare sw∗

e .

3.1 Computing the Optimal Egalitarian Social Welfare

To solve the first problem, we will perform a dichotomous search. Dichotomy is a
simple and elegant mechanism guaranteeing arbitrary precision and enabling fast
estimation of the optimal social welfare. In this dichotomous search, an upper
bound (ub) and lower bound (lb) for this optimal value are updated iteratively.
These bounds are initialised as follows:

ub0 = Min{ci +
n∑

j=1

ui,j |i = 1 . . . n} ; lb0 = Min{ci|i = 1 . . . n}

Roughly, the upper bound corresponds to an allocation where the eventually
unhappiest agent is given all the resources and the lower bound corresponds to
an allocation where it is given no resource. Clearly, the value of the optimal
egalitarian social welfare lies somewhere between those bounds. The imprecision
of our estimation is equal to their difference.

Definition 5. Let k ∈ IN. Let ubk and lbk denote estimated upper and lower
bounds of sw∗

e at iteration k: lbk ≤ sw∗
e ≤ ubk. Let mk be the mean of ubk and

248 P.-A. Matt and F. Toni

lbk, defined as mk = (ubk + lbk)/2. A is a satisfying allocation at iteration k iff
its egalitarian social welfare is greater than mk:

swe(A) ≥ mk.

Assume now that the agents are endowed with reasoning capabilities that enable
them to detect whether the set of satisfying allocations is empty or not. If this
set is empty, i.e. the optimal egalitarian social welfare cannot be greater than
the mean, then the upper bound can be updated with the value of the mean:

ubk+1 = mk ; lbk+1 = lbk ; mk+1 = (ubk+1 + lbk+1)/2

Otherwise, the optimal social welfare is at least equal to the mean and the lower
bound can be assigned to the value of the mean:

ubk+1 = ubk ; lbk+1 = mk ; mk+1 = (ubk+1 + lbk+1)/2

In both cases, one of the bounds is updated and the estimation imprecision is
divided by two. After k iterations, the imprecision on sw∗

e is divided by 2k. The
constructed sequences all converge to the same limit:

Theorem 6 (Convergence). limk→∞ lbk = limk→∞ ubk = limk→∞ mk = sw∗
e

Proof. The sequences (lbk)
k∈IN and (ubk)

k∈IN are adjacent sequences, respectively
monotonic increasing and monotonic decreasing. This proves they converge to the same
limit, so (mk)

k∈IN also converges and its limit is the same. The common value of these
three sequences is obviously sw∗

e .

We therefore dispose of an efficient estimation procedure in which the imprecision
converges towards zero at exponential speed. Note that theorem 6 can actually
be strengthened. Indeed, in practice the agents would represent the utilities ui,j

and the parameters denoted ci by means of a finite number of digits d, i.e. with
a precision of 10−d. Then:

Theorem 7 (Fast termination). The optimal egalitarian social welfare is com-
puted after a number of dichotomous search steps equal to floor(log2

ub0−lb0
10−d) + 1.

Proof. Since sw∗
e is a sum of parameters represented with d digits it also has the same

number of digits. The interval Ik = [lbk, ubk] can contain a maximum of Nmax such
numbers, where Nmax = floor((lb − ub)/10−d)) + 1. When Nmax equals 1, the target
sw∗

e can be precisely identified as the unique real number with d digits in this interval.
As long as the length of Ik, i.e. L(Ik) = ubk − lbk = 2−k(ub0 − lb0), is strictly smaller
than 10−d, Nmax is equal to 1. Basic calculus shows that this happens for the smallest
integer k such that k > log2(ub0−lb0

10−d).

3.2 Computing an Allocation with Optimal Egalitarian Social
Welfare

Having shown how to compute the value of the optimal egalitarian social welfare
in a society, we now turn to how to best construct satisfying allocations for this

Egalitarian Allocations of Indivisible Resources: Theory and Computation 249

value. These correspond to egalitarian allocations. We present a method whereby,
at each iteration k of the dichotomous search, the agents will go through a
multiple-phase process (up to n phases), by constructing groups of increasing
size: the first group contains one agent, the second contains two agents, etc.

In the dichotomous search process, the set of satisfying allocations for the
society, at any iteration, need not be explicitly constructed, as only the
(non-)emptiness of the set of all satisfying allocations matters. Thus, trivially,
the agents are allowed to restrict the search to any subset of the set of satisfying
allocations obtained by applying an invariance operator, namely an operator on
sets preserving the properties of emptiness and non-emptiness.

Then, basically, our idea is to use an invariance operator that reduces as much
as possible the search space. We will use an invariance operator defined in terms
of the following binary relation on allocations for groups:

Definition 8. Let A and B be two allocations for a group G. Then B � A if
and only if for all resources j, 1 ≤ j ≤ m:∑

i,ai∈G

Bi,j ≤
∑

i,ai∈G

Ai,j

The inequality means that if a resource j is allocated according to B then it is
also allocated according to A. The relation � is reflexive and transitive. Also, not
all allocations can be compared with this relation (i.e. � is not a total relation).
Moreover, � is not anti-symmetrical, so � is not an order relation.

Definition 9. Let A and B be two allocations for a group G. Then B minors A
if and only if B � A and A is equivalent to B if and only if B � A and A � B.

When considering the satisfying allocations, we eliminate every allocation that
is either minored by or equivalent to another one. We repeat these simplifica-
tions until a fix point is reached. This process enables to construct/implement a
reduction operator with the property of being an invariance operator:

Definition 10. Let S be a set of allocations. A frugal reduction F (S) of S is a
subset of S such that (i) any allocation in S is minored by a allocation in F (S),
and (ii) no allocation in F (S) is minored by another one in F (S).

Note that frugal reductions are not guaranteed to be unique, but the frugal
reduction operator has the merit of being an invariance operator.

Theorem 11 (Invariance of F). The frugal reduction operator F is an in-
variance operator.

Proof. Since F (S) ⊆ S trivially holds for all S, the frugal reduction of the empty set is
the empty set. If S is not empty, it contains an element that is minored by an element
in F (S), so F (S) is not empty either.

The problem of determining an egalitarian allocation then amounts to determin-
ing whether the frugal reduction of the satisfying set for the final iteration of

250 P.-A. Matt and F. Toni

the dichotomous search, giving the optimal egalitarian social welfare, is empty
or not and, if not, to find one of its elements. In fact, we compute all of them.

Note also that, by using frugal reductions, resources are not wasted since
only minimal allocations are kept (see example in figure 1). This is particularly
useful when resources are scarce or expensive because leftovers can be re-used
for other allocations. Note that utilitarianism does not have this property: any
available resource is systematically consumed. In a nutshell, strict egalitarianism
implicitly captures resource management policies.

F ({
1 0 1 0
0 1 0 0
0 0 0 1

,
0 1 0 0
0 0 1 0
0 0 0 1

,
0 1 0 0
0 0 1 0
1 0 0 0

,
0 0 1 0
0 1 0 0
1 0 0 0

}) = {
0 1 0 0
0 0 1 0
0 0 0 1

,
0 1 0 0
0 0 1 0
1 0 0 0

}

Fig. 1. The frugal reduction operator filters both redundancies (superfluous agree-
ments) and allocations that over-consume resources (inefficient solutions). The agents
save memory and time and the society manages its resources better (here either r1 or
r4 is preserved).

Below, the term (minimal collection of) agreements for a group G, denoted
Ag(G), will stand for a frugal reduction of the set of satisfying allocations for G.
Now we present an efficient decision-making procedure to build minimal collec-
tions of agreements for the full set of agents at each iteration of the dichotomous
search, via a multi-phase process whereby agents progressively join in, starting
from an initial group consisting of a single agent. At each phase, a minimal
collection of agreements is built for the current group, if possible, and, when a
new agent joins the group, the prior set of agreements is revised to provide a
minimal collection for the newly formed group. If no agreements can be found
the search is abandoned. In order to collect the minimal collection of agreements
for a group to which a new agent has been added, we will use sets of trees, or in
other words forests.

Suppose an agent ai′ wants to start a new group G′ = {ai′} or join an existing
group G = {ai1 , ai2 , ..., aig} to form the new group or G′ = G ∪ {ai′}. In order
to build the minimal collection of agreements for G′, ai′ constructs a forest of
trees whose nodes are pairs of the form (Z, w(Z)), where Z is a fuzzy allocation
for G′ and w(Z) is its welfare, defined below.

Definition 12. A fuzzy allocation is a table Z = ((zi,j))(g+1)×m with g+1 lines
and m columns and whose coefficients zi,j belong to {1, 0,−1}:

F =

i1 : zi1,1 zi1,2 . . . zi1,m

.
ig : zik,1 zik,2 . . . zig,m

i′ : zi′,1 zi′,2 . . . zi′,m

Egalitarian Allocations of Indivisible Resources: Theory and Computation 251

The set of allocations encoded by a fuzzy allocation Z is the set of allocations
for G′ according to which each agent ai in the group G′ gets rj if zi,j = 1 and
does not get rj if zi,j = −1.

The coefficients equal to 0 in a fuzzy allocation leave the information as to which
agents gets the corresponding resource unspecified.

Definition 13. The signature of a fuzzy allocation Z is obtained by replacing
in Z all the coefficients equal to −1 by 0.

Intuitively, the signature of a fuzzy allocation is the allocation in the set encoded
by Z that allocates fewest resources.

Definition 14. The welfare of a fuzzy allocation Z, denoted w(Z), is the egal-
itarian social welfare of the signature of Z. If w(Z) is greater than mk, at some
iteration k, then Z is said to be satisfying.

Definition 15. A node (Z, w(Z)) in a tree is called

– positive iff w(Z) ≥ mk (i.e. Z is satisfying)
– open iff it is not positive but the allocation in the set encoded by Z in which

all the resources not used by the agents in G are used by the new agent ai′

is satisfying (if G′ = {ai′} any resource can be used)
– negative iff it is neither positive nor open.

The trees are constructed as follows. The roots of the trees constituting the forest
of a phase are constructed from the positive leaves of the trees in the previous
phase. More precisely, Ag(G′), the minimal collection of agreements for G′, is
computed from the positive leaves of the trees in the forest for G′ (as we will
see below). The roots of the trees in the forest for G′ are pairs (Z, w(Z)) where
the first g lines of Z take their values in (one of) the agreements in Ag(G) and
all the coefficients in the last line (corresponding to the newly added agent ai′)
are equal to zero. Negative and positive nodes have no children, only open nodes
do. Consider an open node N = (Z, w(Z)). Let j0 be the index of a resource
rj that ai′ could use, i.e. zi′,j0 = 0 and that does not have a null utility. Such
an index exists since the node is open. Then the left and right children of N ,
denoted (ZL, w(ZL)) and (ZR, w(ZR)), respectively, are defined as follows:

ZL;i′,j0 = 1, ZR;i′,j0 = −1 and ∀j

= j0 : ZL;i′,j = ZR;i′,j = Zi′,j

The agents build the tree by constructing the descendants of all open nodes.
Thus, the trees all have a strictly binary structure. The process terminates fi-
nitely because there is a finite number of resources. In fact, the depth of a tree
is bounded by the number of resources ai′ can use.

Figures 2 and 3 illustrate the construction of trees in a forest, for our running
example at step k = 1, where the allocations must have a welfare greater than
m1 = 1.225. Here and in the rest of the paper, we ignore the index of agents in
fuzzy allocations if clear from the context.

We will refer to fully constructed trees (namely trees whose only leaves are
positive or negative nodes) as frugal trees. Frugal trees have an interesting prop-
erty: their leaves ’hide’ a frugal reduction of their root:

252 P.-A. Matt and F. Toni

(0 0 0 0 , 0.6)open

����
����

(1 0 0 0 , 1.5)+ (−1 0 0 0 , 0.6)open

����
����

(−1 1 0 0 , 0.9)open ((−1 −1 0 0 , 0.6)open

����
����

(−1 1 0 1 , 2.1)+ (−1 1 0 −1 , 0.9)−

����
����

(−1 −1 0 1 , 1.8)+ (−1 −1 0 −1 , 0.6)−

Fig. 2. a1 finds first three satisfying allocations (1 0 0 0), (0 1 0 1) and (0 0 0 1). The
second one, which is minored by the third one, will be eliminated by frugal reduction.

(
1 0 0 0
0 0 0 0 , 0.2)open

(
1 0 0 0
0 1 0 0

, 0.7)open (
1 0 0 0
0 −1 0 0

, 0.2)−

(
1 0 0 0
0 1 1 0 , 1.4)+ (

1 0 0 0
0 1 −1 0 , 0.7)−

���
���

���
���

Fig. 3. a2 examines the first allocation found by a1 and this search leads to one agree-
ment between the two agents: a1 takes r1 and a2 takes r2 and r3

Theorem 16 (Frugal tree). Given a fuzzy allocation Z, let L be the set of
positive leaves of a frugal tree with root (Z, w(Z)), and let S be the set of signa-
tures for all elements of L. Then, there exists a frugal reduction F (Σ) of the set
Σ of satisfying allocations encoded by Z such that F (Σ) ⊆ S.

Proof. By construction of the tree, the union of the sets encoded by its leaves is equal to
the set encoded by the root. A property of negative nodes is that they encode sets that
do not contain satisfying allocations. So, all the satisfying allocations are in the union
of the positive nodes (recall that open nodes are not leaves). By �-minimality of the
elements in the frugal reduction, they can only be the allocation in the positive node
consuming least resources, i.e. be signatures of positive nodes. Hence the inclusion.

Applying the frugal reduction operator after having collected the signatures for
the leaves enables the agents to ignore superfluous agreements. The reason why
we do not lose any useful agreement by working only on the positive nodes is
justified by the following lemma, where the role of the set of signatures is played
by S and the set of satisfying allocations for the root is played by Σ:

Lemma 17 (Elimination). If F (Σ) ⊆ S ⊆ Σ then F (S) = F (Σ) (namely, a
frugal reduction of S is also one of Σ).

Egalitarian Allocations of Indivisible Resources: Theory and Computation 253

Proof. Any allocation in Σ is minored by an allocation in F (Σ) which in turn is minored
by an allocation in F (A). No allocation in F (A) is minored by another in F (A).

This lemma justifies the idea that the agents should apply the reduction operator
on the positive leaves of the frugal trees so as to minimise the computational
effort in the next phase, by minimising the number of trees to explore/construct
and therefore save both time and memory.

By virtue of the following theorem, harvesting the positive leaves of a frugal
tree and filtering through the frugal reduction operator, one ends up with a
minimal collection of agreements for the new group.

Theorem 18 (Agreements coverage). There exists a frugal reduction of the
minimal collection of agreements for G′ that is included in F (X), where X is
the union of all positive nodes in all trees in the forest constructed for G′.

Proof. We will prove that indeed, the frugal reduction of the union is also a frugal
reduction of the satisfying agreements for G′. We simply check that the two points
defining a frugal reduction hold. The second point is trivial since the frugal reduction
of the union is a frugal reduction. The first point holds because we started from a
complete set of minimal agreements for G and have taken a complete set of their
minimal extensions.

As an illustration of the overall mechanism, consider our running example with
three agents, four resources and the tables in section 2. Then

– at iteration k = 0: lb0 = 0.2 ub0 = 1.9 m0 = 0.55

Ag({1}) = { 0 0 0 0 } ; Ag({1, 2}) = { 0 0 0 0
0 1 0 0 ,

0 0 0 0
0 0 1 0 ,

0 0 0 0
1 0 0 1 };

Ag({1, 2, 3}) = {
0 0 0 0
0 1 0 0
1 0 0 0

,
0 0 0 0
0 1 0 0
0 0 1 0

,
0 0 0 0
0 1 0 0
0 0 0 1

0 0 0 0
0 0 1 0
1 0 0 0

,
0 0 0 0
0 0 1 0
0 0 0 1

}

– at iteration k = 1: lb1 = 0.55 ub1 = 1.9 m1 = 1.225

Ag({1}) = { 1 0 0 0 , 0 0 0 1 } ; Ag({1, 2}) = { 1 0 0 0
0 1 1 0 ,

0 0 0 1
0 1 1 0 };

Ag({1, 2, 3}) = {
1 0 0 0
0 1 1 0
0 0 0 1

}

– at iteration k = 2: lb2 = 1.225 ub2 = 1.9 m2 = 1.5625

Ag({1}) = { 0 0 0 1 } ; Ag({1, 2}) = { 0 0 0 1
1 1 1 0 } ; Ag({1, 2, 3}) = {}

– at iteration k = 3: lb3 = 1.225 ub3 = 1.5625 m3 = 1.39225

Ag({1}) = { 1 0 0 0 , 0 0 0 1 } ; Ag({1, 2}) = { 1 0 0 0
0 1 1 0 ,

0 0 0 1
0 1 1 0 };

Ag({1, 2, 3}) = {}

254 P.-A. Matt and F. Toni

– at iteration k = 4: lb4 = 1.225 ub4 = 1.39225 m4 = 1.308625

Ag({1}) = { 1 0 0 0 , 0 0 0 1 } ; Ag({1, 2}) = { 1 0 0 0
0 1 1 0 ,

0 0 0 1
0 1 1 0 }

Ag({1, 2, 3}) = {}

– at iteration k = 5: lb5 = 1.225 ub5 = 1.308625 m5 = 1.2668125

Ag({1}) = { 1 0 0 0 , 0 0 0 1 } ; Ag({1, 2}) = { 1 0 0 0
0 1 1 0 ,

0 0 0 1
0 1 1 0 }

Ag({1, 2, 3}) = {
1 0 0 0
0 1 1 0
0 0 0 1

}

At this point the algorithm terminates (as ub5 − lb5 < 10−1) correctly computing
A∗ given in section 2.

4 Consensus Search and Coordination Heuristics

Two issues have been left open regarding the computation of egalitarian alloca-
tions: (i) the choice of resource indexes for splitting open nodes (in the search for
consensus) and (ii) the election criterion for an agent to join the current group
(referred to as coordination criterion). In this section we provide solutions to
these issues in an experimental setting, as they play no role at the theory level.
The solutions will be stated in the form of heuristics.

The way an agent performs consensus search is determined by a node-splitting
strategy, i.e. a rule for choosing the resource index on which to split an open
node in the search tree. In our experiments, the reference strategy consists in
following the order of appearance of the (yet un-allocated) resources in their
natural order r1, r2, r3, etc. We call this the random node strategy (RN). This
strategy is compared to two other strategies based on resource preferences. These
strategies are called least-useful strategy (LU) and most-useful strategy (MU).
The splitting index chosen when following LU (resp. MU) is the one of the
unused resource having the lowest (resp. greatest) utility for the new agent.

Coordination is determined by the election criterion/order applied for select-
ing the next agent to join the group and enter in negotiation with it. The sim-
plest order, that we call random order (RO), is the natural order of the agents
a1, a2, ..., an. This criterion serves as a reference for performance comparisons.
We define two other orders, based on the welfare of the agents, which enables
to order them socially. The lowest welfare strategy (LW) gives priority to the
remaining agent with lowest welfare, whereas the highest welfare strategy (HW)
gives priority to the remaining agent with highest welfare.

Figure 4 summarises some experiments comparing, in the first three columns,
the consensus search strategies (RN, LU and MU) while keeping the coordina-
tion heuristic fixed to RO, and, in the last two columns, the social orders LW and
HW for coordination, while keeping MU for the consensus search. We evaluate
in seconds the average computational time needed to solve randomly generated
problems whose sizes are indicated in the (n, m) column. The number of agents

Egalitarian Allocations of Indivisible Resources: Theory and Computation 255

(n, m) RO − RN RO − LU RO − MU HW − MU LW − MU

(1, 1) 0.0945 0.1065 0.1010 0.0110 0.0060
(2, 2) 0.3635 0.4075 0.3145 0.0245 0.0180
(3, 3) 0.9600 1.1345 0.8640 0.0320 0.0365
(4, 4) 2.4090 2.8825 2.0175 0.1000 0.1110
(5, 5) 7.4655 9.6015 6.0310 0.2450 0.1405
(6, 6) 20.7670 27.6690 15.6435 0.8785 0.7125
(7, 7) 74.6614 105.4960 51.6125 4.4810 2.2935

Fig. 4. Influence of the nodes-splitting strategy for social consensus (RN, LU, MU) and
the agents selection order for coordination (RO, HW, LW) on the total decision-making
time. The combined LW-MU heuristic divides the negotiation time by nearly 30.

is taken equal to the number of resources and this number varies from 1 to 7.
The table U and coefficients ci are generated according to a uniform distribu-
tion between 0 and 1. We use 2 digits of precision for the utilities (d = 2). The
computational time is averaged over 20 problems for each dimension and the
different strategies are systematically assessed with respect to the same cases for
fair comparisons. The experiments have been carried with Maple 10 on a 1.07
GHz G4 processor. The first three columns show that for a fixed random order
of negotiation, following the MU strategy gives the best results. When splitting
open nodes with respect to most useful resources first, the depth of the search
tree’s branches is minimised. Then keeping the MU strategy (last two columns),
we discover that using monotonic social orders to coordinate negotiations leads
to solutions very fast, with a slight superiority of the increasing order over the
decreasing one. The agents that must join the group first are those with lowest
welfare (LW). When these two best strategies are combined (LW-MU), the im-
provement is considerable: the total time required for the negotiations is divided
by nearly 30.

5 Conclusion

We presented a sound method that guarantees agents to find an allocation of
resources that exactly maximises the egalitarian social welfare of the society
they constitute. The method relies upon a dichotomous search terminating after
a ‘small’ number of steps. In the search process, agents examine and update the
value of the optimal egalitarian social welfare that can be collectively achieved
given their personal preferences, expressed in terms of utilities they assign to sets
of resources. Our method uses binary search trees and forests of Boolean fuzzy
allocations as well as a frugal reduction operator that simplifies the reasoning
process of the agents by eliminating appropriately any superfluous agreements
they might come up with. The solutions are efficient as far as they never over-
consume resources.

The proposed mechanism allows consensus to be found with ‘minimal’ disclo-
sure of information about the agents’ preferences. Also, the mechanism can be

256 P.-A. Matt and F. Toni

nicely be distributed over the agents, with important computational advantages:
the agents themselves carry the computational burden and the agents’ master is
relieved of all supervising work.

We proved empirically that the agents reason collectively much faster when
giving priority to the most useful resources and can efficiently coordinate the
sequence of their negotiations by using monotonic increasing social orders.

Dall’Aglio and Maccheroni [10] recently proved the existence of fair divisions
between agents in the case of strongly subadditive and strongly continuous utility
functions. In this paper, we have assumed additivity (semi-linearity) of the util-
ity functions but have considered a finite set of indivisible resources. As Golovin
[12] puts it: ‘little is known about the computational aspects of finding [...] fair
allocations [...] with indivisible goods’ and ‘early work in operations research fo-
cused on special cases that are tractable, or on exponential time algorithms for
general models [13]’. In this family of models [13,14], resources are allocated to
activities, not agents. Under such formalism, the problem comes down to deter-
mining the appropriate levels of activity (represented as simple scalar variables).
But when resources are allocated to agents, this notion collapses and one is led
to handle vectorial variables with components for each resource, as in our case.
Hence, although those models and our own all aim at solving the same ulti-
mate application, they are not formalised as equivalent mathematical problems.
Our intuition is that agents should first be assigned to tasks considering their
capabilities (e.g. via coalition formation [8]) and then be allocated the resources.

The computational aspects of fair allocations of indivisible goods have been
studied by [11]. This work however differs from ours in that in [11] fairness is
achieved by minimising envy. According to Brams and King [15], ‘while envy
may be ineradicable if one desires to help the worst off, it is not clear that
abandoning the maximin criteria to avoid it is a better alternative’.

[12] and [16] investigated the complexity of finding fair allocations of indi-
visible goods. [17] considered the problem of finding approximate max-min fair
allocations for agents with additive utilities. In this paper, we have given a new
negotiation mechanism for solving in a distributed manner, and without any
approximation, indivisible resource allocation problems in the extended case of
semi-linear utility functions.

Future work will be dedicated to the design of protocols and policies for
implementing the allocation mechanism in distributed settings, to the study
of complexity and scalability issues and to an experimental comparison to other
methods.

Acknowledgements

This work was partially funded by the Sixth Framework IST programme of the
EC, under the 035200 ARGUGRID project. The second author has also been
supported by a UK Royal Academy of Engineering/Leverhulme Trust senior
fellowship.

Egalitarian Allocations of Indivisible Resources: Theory and Computation 257

References

1. K. J. Arrow: Social Choice and Individual Values. John Wiley and Sons (1963)
2. A. K. Sen: Collective Choice and Social Welfare. Holden Day (1970)
3. H. Moulin: Axioms of Cooperative Decision Making. Cambridge University Press

(1988)
4. J. Rawls: A Theory of Justice. Harvard University Press (1971)
5. J. C. Harsanyi: Can the Maximin Principle Serve as a Basis for Morality? American

Political Science Review 86:2 (1996) 269–357
6. U. Endriss, N. Maudet, F. Sadri and F. Toni: Resource Allocation in Egalitarian

Agent Societies. MFI (2003) 101–110
7. T. Sandholm: Algorithms for Optimal Winner Determination in Combinatorial

Auctions. Artificial Intelligence 135 (2002)
8. O. Shehory and S. Kraus: Methods for task allocation via agent coalition formation.

Artificial Intelligence 101:1–2 (1998) 165–200
9. U. Endriss, N. Maudet, F. Sadri and F. Toni: Negotiating Socially Optimal Allo-

cations of Resources. Journal of Artificial Intelligence Research 25 (2006) 315–348
10. M. Dall’Aglio and F. Maccheroni: Fair division without additivity. The American

Mathematical Monthly 112 (2005)
11. R. Lipton, E. Markakis, E. Mossel and A. Saberi: On approximately fair allocations

of indivisible goods. Proceedings of EC’04 (2004)
12. D. Golovin: Max-Min Fair Allocations of Indivisible Goods. CMU-CS-05-144 (2005)
13. H. Luss: On equitable resource allocation problems: A lexicographic minimax ap-

proach. Operations Research 47:3 (1999) 361–378
14. G. Yu: On the max-min 0-1 knapsack problem with robust optimization applica-

tions. Operations Research 44 (1996) 407–415
15. S.J. Brams and D.L. King: Efficient Fair Division: Help the Worst Off or Avoid

Envy? Rationality and Society 17:4 (2005) 387-421
16. S. Bouveret, M. Lemâıtre, H. Fargier and J. Lang: Allocation of indivisible goods:

a general model and some complexity results. AAMAS (2005) 1309–1310
17. I. Bezakova and V. Dani: Allocating indivisible goods. ACM SIGecom Exchanges

5:3 (2005) 11–18
18. M. Lemâıtre, G. Verfaillie and N. Bataille: Exploiting a Common Property Re-

source under a Fairness Constraint: a Case Study. IJCAI (1999) 206–211
19. S. Bussmann: Agent-Oriented Programming of Manufacturing Control Tasks. IC-

MAS (1998) 57–63
20. S. Bussmann and K. Schild: Self-Organizing Manufacturing Control: An Industrial

Application of Agent Technology. ICMAS (2000) 87–94
21. R. Babiceanu and F. Chen: Development and Applications of Holonic Manufactur-

ing Systems: A Survey. Journal of Intelligent Manufacturing 1:17 (2006) 111–131

Iterative Query-Based Approach to Efficient
Task Decomposition and Resource Allocation

Michal Pěchouček1, Ondřej Lerch2, and Jiřı́ Bı́ba1

1 Department of Cybernetics, Faculty of Electrical Engineering
Czech Technical University in Prague

Technická 2, Prague, 166 27, The Czech Republic
{pechouc, biba}@labe.felk.cvut.cz

2 Department of Software Engineering, Faculty of Nuclear Engineering
Czech Technical University in Prague

Břehová 7, Prague, 115 19, The Czech Republic
ondrej.lerch@gmail.com

Abstract. Intelligent coordination in complex multi-agent environments requi-
res sophisticated mechanisms for suboptimal task decomposition and efficient
resource allocation provided by the the agents. Besides the quality of coordina-
tion (i.e. efficiency of decomposition and resource allocation) we need to handle
also computational efficiency restriction such as fast response time and limited
communication traffic among the agents as well as optimization of the amount of
private knowledge disclosure, during collaboration patterns negotiation among
the semi-collaborative agents. We present a novel contracting mechanism based
on the use of the approximated acquaintance model, a structure where the agents
store the information about the states, capabilities and resources of possible col-
laborators. We suggest an approach of iterative construction of the partially-linear
acquaintance models that is beneficial mainly in complex agent communities.

1 Introduction

This paper presents a novel contracting mechanism based on the use of the acquain-
tance model, a knowledge structure representing agents’ mutual awareness. An appro-
priate use of the acquaintance models reduces the communication traffic requirements
and reduces the computational requirements on agent’s decision making. This approach
provides the most significant benefits in system with larger amount of agents (tens to
hundred of agents) and with very high number of operational alternatives (i.e. ways
how a single request can be handled). Besides operational efficiency improvements, the
use of acquaintance models also provides an elegant mechanism for avoiding private
knowledge disclosure.

The presented approach has got its applicability potential in the logistics and supply
chain management domains, where complex business interaction needs to be optimized.
Especially the knowledge disclosure aspect is very important in this domain. The ac-
quaintance model based contracting has been deployed in the OOTW (operations other
then war) humanitarian relief provision scenarios [1]. Besides, this efficient coordina-
tion mechanism can be used in manufacturing domains (illustrated in [2]), resource

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 258–272, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Iterative Query-Based Approach to Efficient Task Decomposition 259

leverage in larger (possibly ad-hoc) networking environment [3], telecommunication,
and others.

We will be working with a community of agents where each agent can act as a service
provider (agent that provide some service or product) or a service requester (agent that
request services or products). The algorithm will be illustrated on a single contract case,
where there is only one requester and n providers. However, the algorithm is designed
so that each agent can be a provider and a requester at the same time and the agents
can also contract each other (similar to [4]). The problem is to find best decomposition
of a specific task into granular services and the most optimal contracting among the
community of possible service providers.

As mentioned earlier, the presented problem integrates two deliberation activities (i)
decomposition and (ii) contracting (delegation). The main difficulty is that efficiency
of decomposition depends on how well the subtasks can be contracted, while contract-
ing depends on how the task is decomposed. Both deliberation processes are deeply
interlinked.

1.1 Existing Contracting Mechanisms

Contracting is one of the most important problems that has been studied in the field of
multi-agent system. The most widely used approaches to contracting are based on the
contract-net-protocol [5]. Here the requester broadcasts the call for proposals within a
community of potential providers. The providers reply with a collaboration bids. The
requester selects the most optimal bid and sets a contract. The contract-net-protocol
can be also multi-staged, that is understood as an auction. There are several auction-
ing mechanisms available in the community: English auction, Dutch auction, seal-bid
auction, Vickery auction [4].

The problem with the classical contract-net-protocol is that it may get stuck in local
optimum. This happens primarily if we are trying to balance a load in a nontrivial
network of n requester and n providers. That is why several variants of the original O-
contract-net-protocol have been suggested. C-contract-net-protocol works similarly to
the classical protocol while the subject of negotiation is not a single task but a collection
of tasks. The S-contract-net-protocol works with agents who are not selling and buying
tasks but they swap the tasks between two agents instead. Similarly, the M -contract-
net-protocol arrange swapping among several (more than 2) agents. It has been proved
that with a finite number of agents and tasks, the OSCM -contract-net-protocol protocol
that combines all these variants can always find a globally optimal solution in a finite
number of steps [6].

While the concept of delegation, task decomposition and commitments have been
also widely studied in the multi-agent community [7], [8] [9] our focus will be mainly
centered around linking the contracting and decomposition activities within the com-
munity of collaborating agents.

1.2 Acquaintance Models

As mentioned previously, use of the acquaintance models is going to be a central con-
cept of the presented contracting mechanism. The acquaintance model is computational

260 M. Pěchouček, O. Lerch, and J. Bı́ba

model of agents’ mutual awareness, built by each of the agents. The acquaintance model
is a collection of agent’s social knowledge [10] available from previous interaction or
provided by independent monitoring mechanisms. The acquaintance model may con-
tain both the inevitable information for setting any kind of collaboration (such as the
white-page information – IP addresses, ACL, port-number) and an optional informa-
tion that can improve the quality of collaboration (such as information about the ser-
vices available, free capacities, overall load of the agents and others). The acquaintance
model can also contain non-public information such as trust models or models of the
other agent’s internal mental states (e.g. commitments, intentions).

There have been several specific architectures of the acquaintance model designed in
the past – tri-base (3bA) acquaintance model [11], twin-based model [12], acquaintance
model in ARCHON [13]. In the remaining parts of the article the specific architecture
of the acquaintance model is unimportant, as we will be discussing how the knowledge
is maintained and exploited on an abstract level. However, there is one clear distinc-
tion between the existing acquaintance models and the abstract acquaintance model we
will be using in our experiments. Unlike the listed models, we will be using the con-
cept of acquaintance models for representing an approximate social knowledge. Such
knowledge is an estimated information about the other agents and may be constructed
by various approximation mechanisms and limited interaction among the agents.

1.3 Task Decomposition and Resource Allocation Approaches

A task decomposition and a resource allocation is one of the most crucial points of inter-
agent cooperation. There have been proposed various approaches based on concepts like
market mechanisms, task/resource clustering, load balancing, etc. Both the problems
of the task decomposition and the resource allocation are often substantially mutually
dependent and generally belong to class of NP-complete or even NP-hard tasks. This
is caused by complex dependences between subtasks that particular tasks consist of
(e.g. precedence constraints) as well as by a need for sharing different special resources
among more tasks.

Interesting results are obtained by means of combining the agent approach with non-
deterministic optimization approaches like genetic algorithms in order to obtain solu-
tions of complex problems in a reasonable time and quality. An approach combining
the agent paradigm with genetic algorithms (GA) was presented in [14]. Resource allo-
cation in a computational grid is done in three steps: (i) rough task clustering negotiated
by the agents “possessing” (representing) particular resources – the tasks are clustered
so that tasks with a more intensive messaging are assigned to nodes inter-connected by
means of better communication lines , (ii) optimal mapping of task clusters to resource
clusters by means of GA and (iii) recursive distribution of the task clusters to appropri-
ate resource clusters. The tasks could require specific resources and were assumed to
be inter-connected.

Another approach exploiting hierarchical grid topology and execution time prediction
was presented in [15]. In a task farming problem (i.e. several independent tasks are to be
executed in parallel so that the execution time is minimized) an execution time prediction
is used to choose resources/nodes for their execution and the job scheduling is done by
means of GA. The tasks may be generally of different kinds (i.e. require different types

Iterative Query-Based Approach to Efficient Task Decomposition 261

of resources/services). When considering only one-service tasks, the scheduling is done
by means of a Roulette Wheel Selection according to predicted execution times of the
jobs at particular nodes.

An agent-oriented solution exploiting market mechanisms was introduced in [16].
The system TRACE consists of multi-agent organizations that are allowed to allo-
cate dynamically task and resources in order to efficiently process incoming stream
of tasks. Each agent may be assigned only a task that is capable to handle (i.e. the agent
is equipped with resources/abilities required for the particular task). There are distin-
guished permanent and marketable agents and each organisation has own resource man-
ager agent. The tasks arrive arbitrarily to permanent agents who become responsible for
the tasks. If an agent determines that the task cannot be proceeded within a given dead-
line, the task is decommitted within the organization. The resource manager collects an
information about decommitted tasks and handles renting or offering marketable agents
from or to other organizations. The decommitted tasks are then sent to permanent agents
again. The determination of need for marketable agents is carried out by means of a
market mechanism. Together with the decommitted task the resource manager is paid
a decommitment penalty by the permanent agent. The higher is the contribution, the
higher priority has the decommitted task. The resource manager calculates an equilib-
rium task allocation and participates in a market competition for available marketable
agents. As soon as the market approaches an equilibrium (number of all offered mar-
ketable agents at given price is equal to number of required ones), it hires the agents
and provides them with a necessary amount of domain information concerning the tasks
they are hired for.

Another market mechanism was presented in [17]. There was provided an explicit
formal description of an agent utility which differs in the subject of minimization when
allocating the tasks on the resources, i.e. either (i) the total-duration or (ii) the total-
price. While the one objective function is minimized the other is considered as a con-
straint. The grid task agents compete for resources handled by grid resource agents.
The grid resource agents aim to maximize their utility as well as the grid task agents do
– thus the grid resource agents update the prices with respect to a demand and the grid
task agents offer prices with respect to demanded amount of resources and available
budget. The bargaining process is finished when an equilibrium between demanded and
offered resources is achieved. The negotiation between grid task agents and grid re-
source agents is held indirectly by means of a grid market that gathers information of
all the actual negotiations (a global market view) and provides it to negotiating parties
while multiple independent negotiations are facilitated.

In special cases the task decomposition and resource allocation problems may be
solved polynomially or pseudo-polynomially provided the properties and requirements
of the tasks are restricted. A simplification consists e.g. in reducing the number of avail-
able resources (e.g. scheduling only for two dedicated processors) or in relaxation of
task inter-dependences (e.g. there are missing precedence constraints among the sub-
tasks). An interesting simplification consists in reducing the number of resource types
required to an only type while multiple resources are available for processing. In this
paper we focus on an ”as-soon-as-possible” task decomposition and resource allocation
of tasks requiring only one type of resource/service while minimizing the total duration.

262 M. Pěchouček, O. Lerch, and J. Bı́ba

2 Problem Definition

In this section we will formally define the coupled problem of decomposition and con-
tracting. We will denote R as a requester agent, S as a type of service that requester R
request in order to complete its task, at as a total amount of service S that requester R
requests, n as a number of providers offering the service type S, Pj as a provider agent
offering service S, where j = {1, ..., n} and dj(a) as a duration for the agent Pj to
deliver the amount a of service S.

The decomposition of the service S in amount at to agents P1, . . . , Pn is an arbitrary
vector of non-negative integers (a1, . . . , an), where

aj ∈ Z+,

n∑
j=1

aj = at. (1)

If aj equals 0, then the provider Pj is not contracted at all.
The overall duration of decomposition (a1, . . . , an) is defined as

d(a1, . . . , an) = max
j

dj(aj) j ∈ {1, . . . , n}, aj > 0. (2)

The explanation of (2) is as follows: if the requester agent contracts the service S in total
amount at using the decomposition (a1, . . . , an), then it means that each agent Pj ∈
{P1, . . . , Pn} has to perform S in amount aj . The whole task is therefore performed
when the last agent performs its sub-task. Those agents for which aj = 0 are not
contracted at all, and therefore duration dj(0) is not taken into account.

Our primary effort is to find optimal decomposition that minimizes (2), that is to
find the vector (amin

1 , . . . , amin
n) such that

(amin
1 , . . . , amin

n) = arg mina1,...,an
d(a1, . . . , an), (3)

where (a1, . . . , an) fulfill (1).
In this work, we focus on the task decomposition to minimize the overall duration

(2). Another important task is to decompose the task to minimize the overall price. Let
us assume that the price of service S in amount a equals pj(a) if the task is performed
by the provider Pj .The overall price of decomposition (a1, . . . , an) is defined as

p(a1, . . . , an) =
∑

j

pj(aj) j ∈ {1, . . . , n}, aj > 0. (4)

The difference between the overall duration (2) and overall price (4) is that the over-
all duration is the maximum of durations d1(a1), . . . , dn(an) while the overall price
is the sum of prices p1(a1), . . . , pn(an). In our work, we focused on overall dura-
tion minimization since in the real-world scenario, the lowest price decompositions
are (0, . . . , 0, aj = at, 0, . . . , 0) where Pj is the cheapest provider. This is caused by
the fact that providers offer better price per 1 amount if contracted for more amounts.

In this work we consider an only type of service to be decomposed (in contrast to
decomposing a bunch of different services). While the choice of the overall price as the
only objective function makes the decomposition rather trivial, the choice of the overall

Iterative Query-Based Approach to Efficient Task Decomposition 263

duration remains still reasonable in a case of need for meeting a deadline (it is necessary
to get the service as soon as possible and the price is less important).

Though, in the real-world scenarios the price is hardly completely ignored – more
likely it is set as an optimization constraint and a constrained decomposition prob-
lem is solved: we minimize the duration d(a1, . . . , an) under the condition that the
price p(a1, . . . , an) is smaller or equal than predefined constant pmax. An even more
probable constrained decomposition problem is introduced by the vice versa setting: a
deadline is set as the constraint and the subject of optimization is the price: we minimize
the price p(a1, . . . , an) under the condition that the duration d(a1, . . . , an) is smaller
or equal than the predefined constant dmax. Finally, an interesting problem is also com-
bined decomposition problem that takes into account both decomposition duration
and price and uses a joint minimization criterion

fα(a1, . . . , an) = α · d(a1, . . . , an) + (1− α) · p(a1, . . . , an),

0 ≤ α ≤ 1, which includes both the duration and the price. The coefficient α determines
if we prefer the minimization of duration or price.

However, in our work, we actually do not cover neither the combined decomposition
problem nor the constrained decomposition problem and minimize the overall duration
only (i.e. we cover cases when it is necessary to obtain the service as soon as possible).

3 Solution

We have designed a straightforward decomposition mechanism that finds the most op-
timal decomposition given the right objective function and available data [18]. The
decomposition algorithm is polynomial and easy to construct. Its behavior, however,
depends strongly on the data stored in the acquaintance models of the agents. In the fol-
lowing we will discuss the decomposition algorithms and two approaches how the ac-
quaintance model can be constructed and maintained – Batch-Query AM Construction
and Iterative-Query AM Construction. The decomposition algorithm and acquaintance
model construction are demonstrated on a simple scenario of decomposition a service
between two providers (see section 4).

3.1 Decomposition Algorithm

For purposes of this paper, we introduce a decomposition algorithm derived from the
algorithm presented in [18], however, with significantly smaller complexity. We assume
that durations dj(a) can only take discrete values, that is dj(a) ∈ Z+, and that the
functions dj(a) are extended to the point a = 0 by dj(0) = 0. We can now construct
pseudo-inverse function aj(d) as

aj(d) = max {a ∈ {0, . . . , at} | dj(a) ≤ d }, a ∈ Z+. (5)

The meaning of (5) is as follows: if aj(d) = ã then the provider Pj is able to produce
ã pieces of S in the duration d̃ ≤ d, but he is not able to produce more pieces than ã.
Function aj is queried pseudo-inverse to dj since if dj is injective, then aj(dj(a)) = a.
Let us point out that we do not assume so far that functions dj are increasing.

264 M. Pěchouček, O. Lerch, and J. Bı́ba

Now in the time d, provider Pj produces service S in the amount of aj(d), therefore
all providers can produce amount of

a(d) =
n∑

j=1

aj(d). (6)

If we want to produce service S in the amount a ≥ at in the shortest possible duration
d = dmin, we simply search for a decomposition (a1(d), . . . , an(d)) which provides
the smallest d such that a(d) ≥ at, that is

dmin = min {d ∈ {0, 1, 2, . . .} | a(d) ≥ at}. (7)

For simplicity, let the amount provided by the provider j is denoted as

amin
j = aj(dmin) j = {1, . . . , n}, (8)

i.e. (amin
1 , . . . , amin

n) = (a1(dmin), . . . , an(dmin)) and the overall provided amount is
denoted

amin = a(dmin). (9)

Then the found n-tuple (amin
1 , . . . , amin

n) is the optimal decomposition of service S in
amount amin ≥ at. Let us prove this simple assertion. First of all,

∑n
j=1 amin

j has to be
equal to amin which holds according to (6), (8) and (9). Second of all, (amin

1 , . . . , amin
n)

is really optimal for amount amin ≥ at. In any duration d̃ < dmin all providers cannot
altogether produce ã ≥ amin amounts as dmin is chosen according to (7). Therefore at

pieces of service S cannot be produced in duration smaller than dmin
1.

The problem is that amin may be generally greater than the desired amount at. Let
us make further assumption that functions dj(a) are increasing, that is

dj(a) ≤ dj(ã) a < ã.

According to previous algorithm, for a given at we can construct a decomposition
(amin

1 , . . . , amin
n), which is optimal decomposition of amount amin ≥ at. If amin >

at, we may decrease amounts amin
1 , . . . , amin

n arbitrarily till the decreased amounts
â1, . . . ân fulfill

∑n
j=1 âj = at. Of course, (â1, . . . ân) is the decomposition for at,

but assuming that functions dj(a) are increasing, it is also optimal. Explanation is as
follows: according to the construction of (amin

1 , . . . , amin
n), we cannot produce ã ≥ at

pieces of S in the duration d̃ < dmin. As âj ≤ amin
j , then also d(âj) ≤ d(amin

j) and
therefore d(â1, . . . , ân) ≤ d(amin

1 , . . . , amin
n), which proves that (â1, . . . , ân) is the

optimal decomposition for amount at. Duration d(â1, . . . , ân) cannot in fact be smaller
than duration d(amin

1 , . . . , amin
n), as it would be in contradiction to the construction of

(amin
1 , . . . , amin

n), therefore d(â1, . . . , ân) = d(amin
1 , . . . , amin

n).

Let us summarize the algorithm that finds optimal decomposition (â1, . . . , ân) of ser-
vice S in amount at. We assume that there are n agents P1, . . . , Pn that perform S

1 Note that both the amounts and durations are considered to be non-negative integers.

Iterative Query-Based Approach to Efficient Task Decomposition 265

and that the requester knows durations dj(a) for all amounts a ∈ {1, . . . , at} and all
agents P1, . . . , Pn. We also assume that the functions dj(a) are increasing. The algo-
rithm works as follows:

1. We gradually take d = {0, 1, 2, . . .} and calculate a(d) according to (6) till we find
d = dmin such that a(d) ≥ at. Such smallest d we denote dmin and corresponding
amount a(dmin) we denote amin.

2. We put amin
j = aj(dmin), if amin =

∑n
j=1 amin

j is already equal to at, then
(amin

1 , . . . , amin
n) is the optimal decomposition for at. Otherwise, we decrease

amounts (amin
1 , . . . , amin

n) arbitrarily till the decreased amounts (â1, . . . , ân) ful-
fill

∑n
j=1 âj = at.

3. Amounts (â1, . . ., ân) create optimal decomposition of S in amount at for providers
P1, . . . , Pn.

The operation of the decomposition algorithm is based on an assumption that the
objective function (i.e. delivery times) d(aj) are known for all the possible amounts
of services aj . The main argument of this article is that these data are not available in
the complex or semi-trusted domains. Instead of working with a data-structure repre-
senting all possible d(aj), we will work with approximated knowledge stored in the
acquaintance models.

In the following we present two ways how to construct, maintain and use an approx-
imated acquaintance model.

3.2 Batch-Query AM Construction

The simplest approach to building a well informed acquaintance model representing the
agent’s services is to send several query messages asking ’what if I wanted this amount
of that service’:

(query
:requester R
:provider P
:content (deadline S a(k) d(a(k))))

where a(k) are amounts corresponding to an uniform division of space of the total re-
quired amount at into N different amounts a(1), . . . , a(N) while N ∈ N and to find
out about the corresponding delivery times for these amounts. The remaining part of
the acquaintance model would be approximated by partially linear function. It is easy
to see that the quality of such model would strongly depend on N , the number of query
messages sent between the provider and requester.

The batch-query acquaintance model construction algorithm where the requester
wants to find an optimal decomposition of service S in the amount at works in the
following steps:

1. Requester agent finds all agents that provide service S, let us suppose that those
agents are P1, . . . , Pn.

2. Requester agent queries all providers P1, . . . , Pn for amounts a(1), . . . , a(N), where
a(k) is defined by

266 M. Pěchouček, O. Lerch, and J. Bı́ba

[!t]a(1) = 1, a(k) = � (k − 1) · at

N − 1
�, (10)

where k ∈ {2, . . . , N} and N ∈ N is a predefined constant equal for all providers
3. Requester agent collects all responses from the providers. This allows us to define

approximate durations d̃j(a), approximate amounts ãj(d) and the approximate total
amount ã(d). In our case, we approximate the function dj(a) by partially linear
function d̃j(a) according to

d̃j(a) = l(a|a(1), . . . , a(N), dj(a(1)), . . . , dj(a(N))). (11)

ãj(d) = max {a ∈ {0, . . . , at} | d̃j(a) ≤ d }. (12)

ã(d) =
n∑

j=1

ãj(d), (13)

provided that function l(x) produces partially liberalization function with parame-
ters x1, . . . , xk, y1, . . . , yk and is defined as

l(x|x1, . . . , xk, y1, . . . , yk) =
yj+1 − yj

xj+1 − xj
· (x− xj) + yj . (14)

for xj ≤ x ≤ xj+1 and l0(x) = l(x) for x
= 0 and l0(x) = 0 for x = 0.
4. We gradually take d = {0, 1, 2, . . .} and calculate ã(d) according to (13) till we

find d = d̃min such that ã(d) ≥ at.

d̃min = min {d ∈ {0, 1, 2, . . .} | ã(d) ≥ at}.

Such smallest d we denote d̃min and corresponding amount ã(d̃min) we denote
ãmin.

5. We put ãmin
j = ãj(d̃min). We decrease amounts (ãmin

1 , . . . , ãmin
n) arbitrarily till

the decreased amounts (â1, . . . , ân) fulfill
∑n

j=1 âj = at.
6. Amounts (â1, . . . , ân) create decomposition found by the algorithm that approxi-

mates optimal decomposition of service S in amount at for requesters P1, . . . , Pn.

3.3 Iterative-Query AM Construction

The above presented algorithm has proved to be efficient and pragmatic solution for our
contracting/decomposition problem. The key difficulty is that its behavior is parameter-
ized by the constant N determining the amount of messages sent in the acquaintance
model construction phase. As there is no a priori knowledge about the distribution of
the providers’ services2 dj(a), the appropriate granularity (and hence the parameter N)
is unknown before the requests are broad-casted. This property makes the algorithm
rather inflexible.

If N is reasonably high the model is very precise, while it also represents substantial
amount of unneeded information. If the implementation does not allow parallel query-
ing, this algorithm may also increase the communication traffic substantially. Not only

2 By when which amount of service is available.

Iterative Query-Based Approach to Efficient Task Decomposition 267

communication traffic matters. We may also assume that every piece of information
that provider discloses has to be payed for by the requester (this assumption reflects the
fact that a high amount of information disclosure is likely to be just unwanted by the
provider).

This is why we suggest a novel approach to building the acquaintance model based
on flexible approximation of the available information. Only one specific amount of
the requested service is queried before contracting is initiated. This value is used for
very imprecise approximation that is encoded in the acquaintance model. Based on
this imprecise model decomposition is computed and appropriate providers are queried
for availability their resources. If the bids provided by the providers are close enough
to the values approximated by the acquaintance model, the providers are contracted
accordingly. If the bids are different then expected, the information provided in the bid is
used for refinement of the acquaintance model. New decomposition is computed again
and all the process is repeated until the bids are close to the values in the acquaintance
model. See below for more detailed specification of the iterative-query acquaintance
model construction algorithm:

1. Let us set N equal to 2 and query all providers P1, . . . , Pn for a = {1, at}, where
at is desired total amount. We therefore estimate the real distributions dj(a) by
linear distributions d̃j(a) = αja + βj which match with dj(a) for a = 1, at.

2. For those approximations we find optimal decomposition amin
1 , . . . , amin

n and set

a
(s)
1 , . . . , a

(s)
n equal to amin

1 , . . . , amin
n .

3. For the amounts a
(s)
j the requester broadcasts appropriate queries to the providers

and collects the replies with the values dj(a
(s)
j).

4. Provided that |dj(a
(s)
j) − d

(e)
j (a(s)

j)| ≤ ∆, the acquaintance model is regarded as

precise enough for the specific contract and the decomposed amounts (a(s)
1 , . . ., a

(s)
n)

can be contracted3. The algorithm terminates here.
5. If the algorithm did not terminate in the step 4, the requester inserts new dj(a

(s)
j)

value into its acquaintance model and carries out new linear approximation and
return to step 2.

4 Experiments

Properties and efficiency of the listed contracting mechanisms have been empirically
tested on a high number of experimental settings. In the following we will show how
precise gets the requester’s acquaintance model with an increasing number of query
messages sent to providers. In other words, how much of providers social knowledge
needs to be disclosed for a specific quality of this acquaintance model. We will com-
pare the batch-query AM construction with iterative-query AM construction in a simple
scenario where a service requester is building the acquaintance models of two differ-
ent service providers. We will show how difficult is for the requester to construct the
acquaintance model with:

3 ∆ is an a priori defined error of the admissible acquaintance model precision.

268 M. Pěchouček, O. Lerch, and J. Bı́ba

– piecewise linear objective function: a real provider’s resource availability is rep-
resented by a piecewise linear function – such a function may represent duration of
processing a certain amount of data in dependence on the tasks already scheduled
at a specific node of a computational grid – let say that the tangent of the objective
function is given by the computational load of the node in time – thus during the
time when the node is less loaded the same amount of data is processed quicker
than during a time when the node is more loaded (see Figure 1a) and

– piecewise constant objective function: a real provider’s resource availability is
represented by a piecewise constant function – such a function can represent e.g. to-
tal delivery time of a specific order that may be transportees in a number of batches
(trucks) and delivery time is identical for several different volumes of the cargo (see
Figure 1b).

Let the decomposition and acquaintance model construction be demonstrated on the
following simple scenario: let a requester requires 1000 items to be jointly delivered
from two providers – seller1 and seller2, whose objective functions are given
in Figure 1a. The requester thus needs to approximate in its acquaintance model the

(a) (b)

Fig. 1. (a) Piecewise linear objective function — (b) Piecewise constant objective function

(a) (b)

Fig. 2. (a) Composed piecewise linear objective function — (b) Composed piecewise constant
objective function

Iterative Query-Based Approach to Efficient Task Decomposition 269

functions seller1(amount) and seller2(amount). According to (2) the function
to be minimized (i.e. total duration) is given by max(seller1(amount),
seller2(1000− amount)) – see Figure 2a.

If this function is supposed to be minimized the optimal solution would be to contract
seller1 for 520 units and seller2 for 480 units. This contract can be delivered
within 512 time units. In Figure 3a the straight solid line shows the optimum decom-
position. The thick dashed line gives the solution suggested by the batch-query AM
construction mechanism. In the horizontal axis there is N – the number of queries sent
to the providers. It is seen that the batch-query AM construction mechanism provides
results close to optimum with N around the value 40. The thick solid line gives the solu-
tion suggested by the iterative-query AM construction mechanism. The iterative-query
AM construction mechanism provides optimal solution after 8 iteration of the algo-
rithm. Similar argument is demonstrated on the graph in Figure 3b. Here the acquain-
tance model provides an estimation of the delivery due time of the optimal contract as
defined above.

(a) (b)

Fig. 3. Approximation of piecewise linear objective function in acquaintance model: (a) decom-
position — (b) delivery time

The optimal delivery time 512 unites is estimated by the batch-query AM constructed
model after sending 40 queries (i.e. 20 iterations – in each iteration queries are sent to
both the providers) while iterative-query AM construction mechanism requires only 8
queries.

An interesting result has been obtained when working with the piecewise constant
functions. Here the optimal decomposition - seller1 providing 600 items and
seller2 400 items – is hard to detect by the batch-query algorithms. The graph in
Figure 2b (that is again a composition of the partially constant objective functions of
the two sellers) shows that this optimal solution lies on the specific pike.

The graphs on Figures 4a and 4b show that batch-query algorithms have not find an
optimal decomposition even after 40 queries and delivery due date has been estimated
380, while the optimal delivery is 312 units. The iterative-query algorithm managed to
find the optimal solution by means of 14 queries.

270 M. Pěchouček, O. Lerch, and J. Bı́ba

(a) (b)

Fig. 4. Approximation of piecewise constant objective function in acquaintance model: (a) de-
composition — (b) delivery time

5 Conclusions and Future Work

This partially theoretical and in parts experimental paper introduces a novel mecha-
nism for efficient task decomposition and subcontracting in non-trivial communities of
agents. The key novel idea is centered around an assumption that the quality of the
acquaintance model can be iteratively improved by learning from obtaining unsatisfac-
tory bids. Efficiency of the presented mechanism have been illustrated on two different
examples – partially linear and partially constant distribution of services. The whole
formal model and substantially richer set of experiments is available in [18].

It needs to be noted that besides obvious advantages, there also several disadvantages
of the iterative-query algorithm. Mainly, the iterative-query algorithm is for the same
quantity of message exchange generally slower. It is caused by the fact that in the case
of batch-query algorithm, messages are sent to every provider in parallel (or perhaps in
a single message). In the case of iterative-query algorithm, new queries are generated on
the ground of previously received proposals. Therefore, we think that the iterative-query
algorithm is particularly suitable in the domains, where:

– (i) the service amount granularity is very fine and it is technically impossible to
enumerate all the amounts and (ii) the N parameter is not known a priori

– where the providers are motivated to minimize the amount of disclosed information
(or the requester needs to pay for every information it receives when building the
acquaintance model)

– getting the right dj(aj) values takes the providers specific amount of time (e.g.
given by measurement or non-trivial computation)

In real-life the dj(aj) values in competitive environments also often depend on vari-
ous other aspects such as past contracting track record, other providers providing to the
same requester, providers not providing the respective requester, trust, etc.

A major disadvantage of the presented decomposition method is the fact that its re-
sults substantially depend on the chosen accuracy of the acquaintance model (i.e. the
choice ∆ for the iterative-query AM construction mechanism). Both the underestima-
tion and overestimation of the objective functions may cause a deviation of the achieved

Iterative Query-Based Approach to Efficient Task Decomposition 271

decomposition from the optimum that possibly result in an increase of the real delivery
time with respect to the expected dj(aj).

The goal of the introduced contracting mechanism was a minimization of the overall
duration of the service delivery. While a complementary problem may be a minimiza-
tion of the overall price, in real-world environments both the duration and price are
rather mutually inter-dependent and balance each other. In our future work we would
like to explore such settings in which the price and duration are mutually dependent
– this results in solving either a constraint decomposition problem, i.e. (i) minimiza-
tion of duration under a maximum price constraint or (ii) minimization of price under
maximum duration constraint or a combined decomposition problem when (iii) both the
price and duration are minimized. In our future work we would like to carry out also
experiments on scalability and to run the system populated with a substantially greater
number (tens to hundreds) of negotiating agents.

Acknowledgement

This work was supported by the Ministry of Education, Youth and Sports of the Czech
Republic under the grant no. MSM6840770013.

References

1. Pěchouček, M., Mařı́k, V., Bárta, J.: A knowledge-based approach to coalition formation.
IEEE Intelligent Systems 17(3) (2002) 17–25

2. Pěchouček, M., Tožička, J., Mařı́k, V.: Meta-reasoning methods for agent‘s intention mod-
elling. In: Autonomous Intelligent Systems: Agents and Data Mining. Berlin: Springer
(2005) 134–148

3. Rehák, M., Pěchouček, M., Tožička, J., Šišlák, D.: Using stand-in agents in partially accessi-
ble multi-agent environment. In: Proceedings of Engineering Societies in the Agents World
V, Toulouse, October 2004. Number 3451 in LNAI, Springer-Verlag, Heidelberg (2005) 277–
291

4. Sandholm, T.: Distributed Rational Decision Making. In: Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence. MIT Press, Cambridge, MA. (1999) 201–258

5. Smith, R.G.: The contract net protocol: High level communication and control in a distributed
problem solver. In IEEE Transactions on Computers C-29(12) (1980) 1104–1113

6. Sandholm, T., Lesser, V.: Coalitions among computationally bounded agents. Artificial
Intelligence 94(1-2) (1997) 99–137

7. Tambe, M.: Towards flexible teamwork. Journal of Artificial Intelligence Research 7 (1997)
83–124

8. Sycara, K., Decker, K., Pannu, A., Williamson, M., Zeng, D.: Distributed intelligent agents.
IEEE Expert 11(6) (1996) 36–46

9. Grosz, B., Kraus, S.: Collaborative plans for complex group action. Artificial Intelligence
86(2) (1996) 269–357

10. Mařı́k, V., Pěchouček, M., Štěpánková, O.: Social knowledge in multi-agent systems. In
Luck, M., Mařı́k, V., Štěpánková, O., eds.: Multi-Agent Systems and Applications. LNAI,
Springer-Verlag, Heidelberg (2001)

11. Pěchouček, M., Mařı́k, V., Štěpánková, O.: Role of acquaintance models in agent-based
production planning systems. In Klusch, M., Kerschberg, L., eds.: Cooperative Infromation
Agents IV - LNAI No. 1860, Heidelberg, Springer Verlag (2000) 179–190

272 M. Pěchouček, O. Lerch, and J. Bı́ba

12. Cao, W., Bian, C.G., Hartvigsen, G.: Achieving efficient cooperation in a multi-agent system:
The twin-base modeling. In Kandzia, P., Klusch, M., eds.: Cooperative Information Agents.
Number 1202 in LNAI, Springer-Verlag, Heidelberg (1997) 210–221

13. T., W.: ARCHON: An Architecture for Multi-agent System. Ellis Horwood, Chichester
(1992)

14. Sanyal, S., Jain, A., Das, S., Biswas, R.: A hierarchical and distributed approach for mapping
large applications to heterogeneous grids using genetic algorithms. In: Proceedings. IEEE
International Conference on Cluster Computing, Los Alamitos, CA, USA, IEEE Comput.
Society (2003) 496–9

15. Gao, Y., Rong, H., Huang, J.Z.: Adaptive grid job scheduling with genetic algorithms. Future
Generation Computer Systems 21(1) (2005) 151–61

16. Fatima, S.S., Wooldridge, M.: Adaptive task and resource allocation in multi-agent systems.
In: Proceedings of the Fifth International Conference on Autonomous Agents, New York,
NY, USA, ACM (2001) 537–44

17. Li, C., Li, L.: Competitive proportional resource allocation policy for computational grid.
Future Generation Computer Systems 20(6) (2004) 1041–54

18. Lerch, O.: Effcient contraction mechanisms for virtual enterprises operation. Master’s thesis,
Czech Technical University (2005)

Multilevel Approach to Agent-Based Task
Allocation in Transportation

Martin Rehák, Přemysl Volf, and Michal Pěchouček

Department of Cybernetics and Center for Applied Cybernetics
Czech Technical University, Technická 2, Prague, 166 27, Czech Republic

{mrehak, volf, pechouc}@labe.felk.cvut.cz

Abstract. We present a hybrid algorithm for distributed task alloca-
tion problem in a cooperative logistics domain. Our approach aims to
achieve superior computational performance by combining the classic
negotiation techniques and acquaintance models from agent technology
field with methods from the operation research and AI planning. The
algorithm is multi-stage and makes a clear separation between discreet
planning that defines the tasks and allocation of resources to available
tasks. Task allocation starts with centralized planning based on acquain-
tance model information that prepares a framework for efficient distrib-
uted negotiation. The subsequent distributed part of the task allocation
process is parallel for all tasks and allows the agents to optimally allocate
their resources to proposed tasks and to further optimize the allocation
by negotiation with other agents. Parallel execution of the task alloca-
tion mechanism allows the algorithm to answer the planning request in
predictable time, albeit at expense of possible non-optimality. In the ex-
periments, we evaluate the relative importance of OR and negotiation
parts of the task allocation process.

1 Introduction

In this contribution, we present a hybrid approach to distributed planning and
task allocation problem in the domain of cooperative logistics. The key use case
of the suggested planning algorithm is to organize the transport of large quanti-
ties of humanitarian aid sent to the disaster area, using the available resources –
vehicles. The vehicles are operated by several self-interested transporter agents
who are reluctant to provide complete information about their capabilities, ser-
vices and current status. On the other hand, the transporters are ready to share
the necessary amount of information (referred to as semiprivate knowledge) and
negotiate with others about available delivery services and contracts’ acquisi-
tion. The effort is planned and organized by requestors (humanitarian agents)
who decompose the aid distribution into appropriate tasks and allocate these
tasks among the transporters in an efficient manner. This planning and task al-
location problem (formally specified in Section 2) is obviously computationally
very complex and there is no easy way how to identify an optimal solution, even
with complete and centralized knowledge.

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 273–287, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

274 M. Rehák, P. Volf, and M. Pěchouček

Existing multi-agent approaches tackle the problem using the negotiation and
auction based approaches [1,2], where each agent retains its own private infor-
mation and task definition and allocation is negotiation-based. Even though the
Contract-Net-Protocol [3] (CNP) based solutions are widely used in industrial
environment and provide rather efficient mechanisms for distributed task allo-
cation they suffer from important limitations in our application domain:

– undesirable need to implicitly communicate substantial amount of private
knowledge (when initiating a contract-net-protocol and when replying with
a proposal),

– they found locally optimal solution for a single specific contract while being
inefficient for a batches of contracts and

– the need to backtrack and re-negotiate if the problem features a set of inter-
dependent actions

The problems with undesirable knowledge disclosure can be partially ad-
dressed by forming alliances and other organizational structures that structure
the information dispersion in the community. Semiprivate information (see 2.1)
shared within the alliance in its effect reduces future requirements for sharing
private information outside the alliance [4]. The problems related to optimiza-
tion of higher number of requests were addressed in parts by extension of the
original CNP to OSCM -CNP that can always find a globally optimal solution
in a finite number of steps [5]. In our work we have combined the concept of
semi-private knowledge sharing (as defined in [4]) and Extended Contract-Net-
Protocol (ECNP) as described in [1] and further extended towards practical
application by [2]. This protocol achieves the result by using the negotiation
between the requestor and perspective providers.

When the perspective requestor wishes to solve the task by ECNP, it asks
other agents to cover the task completely or at least partially. Agents submit
their bids, the best ones are selected and provisionally granted the task. The
rest of the task is auctioned again and new auctions are organized until the
whole task is covered. If the remaining task can not be covered, the algorithm
must achieve consistency by backtracking – revocations of provisionally granted
tasks and auctioning new ones, as the tasks may be mutually dependent. For
example, in case of transport from A to C via B, we have to allocate either the
complete trajectory, or BOTH A → B and B → C. If we provisionally grant
the A → B and later fail to allocate B → C, A → B must be revoked. Prob-
lem gets more complex when we consider the consistency of quantities between
dependent actions, parallelism of actions and limitations regarding the use of
single resource contributing to several subtasks. Even with a unique central re-
questor, the planning problem is completely decentralized and requires intensive
communication. Consequently, this approach introduces computational perfor-
mance problems when it plans in large state spaces. Such planners outperform
manual planning [6], but mathematical programming techniques will typically
offer better performance. On the other hand, mathematical programming-based
solutions require centralized knowledge and precise problem formulation. The
agent-based approach brings more flexibility than classical approaches as the

Multilevel Approach to Agent-Based Task Allocation in Transportation 275

agents may combine many sources and types of knowledge to prepare the plan,
each agent contributing its knowledge, reasoning and resources. Agents don’t
need to be aware of each other’s resource availability, provided that they are
syntactically and semantically interoperable. This allows the agents to avoid ex-
plicit disclosure of their private information, while not completely solving the
implicit disclosure problem stated above.

The main contribution of this paper is the integration of classical AI and op-
erational research ’heavy-duty’ solvers with multi-agent techniques to efficiently
address the existing limitations of multi-agent approach, while not compromis-
ing the solution flexibility. We argue that the abstract models of collaboration in
agent systems as they are now used within the multi-agent system community
have severe drawbacks – they are well suited for simple reasoning and limited
amount of knowledge, while little scalable. Their performance tends to degrade
with increasing problem complexity and shift of the focus from qualitative to
quantitative reasoning. Therefore, we suppose that the AI/OR techniques are
a very good fit for agent reasoning due to their high performance and little or
no scalability problems. The traditional problems related to their application
– restrictive applicability conditions (e.g. linearity and certainty) are solved by
modern methods [7] and on the other side, acquaintance models [8] provide the
necessary knowledge inputs for the model, as well as an efficient mechanisms for
its maintenance.

Specifically, the main difference when comparing our approach with ECNP is
the separation of planning and task allocation. In the planning phase, we elabo-
rate and merge alternative plans how to accomplish the task (e.g roads to take
and intermediary storage locations), so that we obtain a directed bipartite graph
with all the alternatives included and merged – an abstract plan as formally de-
fined in section 2. AI planners perform very well in this task. Then, in the task
allocation phase, we alternate the use of OR techniques and negotiation to per-
form the task allocation, as described in Section 3. In Section 4 we empirically
evaluate the algorithm by measuring the influence of negotiation step on the
quality of the solution.

2 Problem Statement

In the logistics planning problem we consider (see Fig 1), we address the transport
of goods from single start location to terminal location1 using the resources be-
longing to self-interested agents. Therefore, we must (i) prepare a sequence/graph
of actions to perform and (ii) allocate resources to these actions in order to maxi-
mize the expected amount of delivered goods. In the formal problem presentation
below, we present the problem from the perspective of the requestor – the agent
denoted A0 that leads the collaborative planning and task allocation process.
1 This formal simplification doesn’t reduce the generality of our approach - in case of

need, we may define formal zero-cost actions between the initial/terminal objective
and the real terminal objective for each part of the cargo, provided that we impose
appropriate restrictions on these actions.

276 M. Rehák, P. Volf, and M. Pěchouček

Fig. 1. Domain Map With Plan Example

To describe the plan we follow the approach proposed by [9] and instead
of decomposing the plan into the action-state graph, we will describe it using
actions and objectives (called objects in [9]). In this representation, the global
state is defined as a combination of local state of all objectives.

An abstract plan (e.g. route plan), typically prepared by AI techniques
in the first phase of the planning, is a directed bipartite graph, where one
side is composed of objectives (corresponding to locations in our case), de-
fined by the set O = {o0(start), o1, on(terminal)}, with each member defined
as oi = (preroi , allowsoi). Both the preroi and allowsoi are subsets of the ac-
tion set Ac = {a1, a2, ...am} that forms the other side of the bipartite graph.
Ac contains actions ai (transports) linking the objectives, where each action is
defined as ai = (prerai , allowsai). The sets prerai and allowsai are subsets of
O. By definition, we always start from a single start objective o0 (with no pre-
requisites: prero0 = ∅) and terminate in a terminal objective that corresponds
to the achieved goal state: allowson = ∅. 2

Batches constitute the cargo that is transported. Each batch pi from the set
P is defined by its size size(pi) and type (liquid, bulk, etc...) that defines the
resources (e.g. type of the vehicle) that may carry it. We assume that all batches
can be split during transport; we denote p

aj

i the part of the batch allocated to
action aj .

The transport problem is being solved by agents from the set Ag={A0...Ak},
including the requestor A0. Each agent is modelled by other agents as a tuple
2 Therefore, in our graph, the nodes are defined as Ac ∪ O, while the directed edges

describe the relations expressed in allows and prer sets of each action or objective.
We may also note that the global state of the system is defined by the state of all
objectives.

Multilevel Approach to Agent-Based Task Allocation in Transportation 277

of its resources Ai = (resA0(Ai)) – in our case, aggregate information about
its vehicles. All resources, regardless of their owner agent form a set RA0 =
{rAi

1 , r
Aj

2 , r
Aj

l }, where the super index of each resource denotes the agent to
which this specific resource belongs. Each resource is described by a tuple r

Aj

i =
(Aj , allowedri , capri), where the Aj denotes the owner agent of the resource,
allowedri is a set of actions (transports) to which the resource can be assigned,
and capri defines its capacity.

Tasks are a result of the planning process. They form a set T = {ta1 ...tam},
and each task corresponds to a single action ai of the abstract plan. It is defined
as tai = (batchtai

, comtai
), where batchtai

is a set of batches (or their fractions)
transported in the scope of the task and comtai

is a set of commitments – each

commitment3 c = (ai, Aj , r
Aj

k , pai

l , cap) is an assignment of a specific resource rk

(and consecutively its owner Aj) to one partial batch pai

l from the set batchtai

and cap determines the assigned capacity. If the resource capacity allows it,
one resource rk can be committed to more than one batch/action and a single
partial batch pai

l can be covered by several commitments – in such case, we
denote cap(rai

k) the aggregate size of all commitments from the task tai to which
the resource rk is committed. Commitments of agents’ resources relative to a
single task define a team working on the task as a set E = {ea1 , ea2 , ..., eam}.
Each such team eai ⊂ Ag contains all the agents contributing their resources to
the task tai . A union of all teams from the set E contains all agents participating
at project solution. According to [4], it is equivalent to the coalition.

2.1 Public, Semi-private and Private Information

In order to plan efficiently, the agents must share appropriate information.
The amount of shared knowledge must be carefully sized with respect to self-
interestedness of the agents. They are not ready to provide their competitors
with more information than necessary. This principle leads us towards definition
of several knowledge sharing levels defined in [4]:

– Public knowledge is accessible to any agent in the system.
– Semi-private knowledge is mutually shared within groups of trusted agents.
– Private knowledge is accessible only to the owner agent and never shared

with anyone else

While public knowledge includes information about agent identity, existence,
location and basic annotation of provided services–type of the resources resA0(Ai)
it offers, but without any information concerning their capacity, number or
restrictions, private knowledge contains the detailed information about its re-
sources, including their individual capacity, restrictions, locations and other
information. Semi-private knowledge collects information that facilitates the
planning process and enables collaborators to prepare the plans easier than by
3 Formally, until being evaluated and updated by bidding agents, commitments must

be regarded to as mere commitment opportunities.

278 M. Rehák, P. Volf, and M. Pěchouček

negotiating all possible options. For each agent Ai, it includes the information
about its resources aggregated by type and including the restrictions regarding
their use on the set Ac – typically, we include a set of roads that this specific
vehicle/group can cover. Such compromise provides enough knowledge for the
first stage of the planning process, and detailed task allocation is then finalized
in the course of negotiation without exposing more data than necessary4.

3 Algorithm Presentation

This section provides an overview of the planning algorithm we suggest, combin-
ing the social model and linear programming planner with bounded and well-
focused negotiations in the later stages of the process. The planning process
proceeds as follows (see also Fig 2):

1. Initial Planning: Requestor uses its social knowledge and planning capabil-
ities in order to prepare the initial plan. This happens in two phases:

(i) abstract plan construction and
(ii) task allocation to the agents.

2. Local Plan Evaluation: Initial plan is evaluated by the respective agents:

(i) the members evaluate the plan and match the proposed commitments with
their available resources and

(ii) make an attempt to trade the proposed commitments within teams working
on the same tasks to optimize the allocation of their resources.

3. Coherence & Verification: The requestor incorporates the proposals, in-
cluding the traded tasks information, into the task allocation problem from the
initial planning phase and solves the problem again.

4. Plan Execution: Final commitments are received by members, may be
swapped and the plan is executed.

3.1 Initial Planning

In the first phase of the plan, we assume that the requestor (denoted A0 and
materialized as a humanitarian agent in our scenario) has a goal to accomplish
and is obliged to cooperate with other agents. It uses its social knowledge to
draft a preliminary plan in the following steps.

Constructing the Abstract Plan. The first step is a preparation of the ab-
stract plan – an action-objective bipartite graph capturing the relationship be-
tween initial and terminal objectives (states). This graph typically describes

4 Note that the sets R as perceived by various agents are not identical due to the fact
that they don’t have the access to the same information.

Multilevel Approach to Agent-Based Task Allocation in Transportation 279

Fig. 2. Overview of the protocol phases: Agent A0 is a requestor and has decomposed
the global task into three tasks

and integrates several alternative solutions of the abstract planning problem.
Shared objectives of these solutions allow flexible task assignments to actions
from different original sub-plans and their seamless combination. Abstract plan
must contain at least one path connecting the initial and terminal objective
– if no such path can be identified, agent A0 is unable to solve the planning
problem.

Constructing the abstract plan is a computationally exponential problem in
complex domains. Recent advancements in the field of AI planning provided
very efficient techniques for constructing the plans in reasonable amount of time
such as GraphPlan [10], SAT-Plan or their variants. These techniques implement
a sophisticated breadth-first search based on expansion of the bipartite graph
or iterative propositionalization of the planning problem. In the experiments
presented in Section 4, we have used a pre-prepared static plans in order to
achieve repeatability between various configurations tested. In the general case,
the choice of the appropriate algorithm for this stage of planning depends on
the complexity of the domain and specific requirements regarding computational
efficiency and desired solution quality.

Task Allocation. Once an acceptable abstract plan is established, requestor
proceeds with the allocation of batches and resources to individual actions in the
plan, while respecting the constraints defined in the objectives. Note that for sake
of computational efficiency, some actions and objectives from the abstract plan
can be removed during this phase if there are no resources or batches to allocate
to them. Then, we use a linear programming (or its variants [7]) that either
provides an acceptable initial task allocation T , or identifies the constraints that
prevent the agent from finding the solution.

280 M. Rehák, P. Volf, and M. Pěchouček

The constraints we define for the problem are the following. The first equation
expresses the node equilibria - conservation of goods in each node.

∀oi ∈ O \ {o0, on}, ∀pj ∈ P :
ak∈prer(oi)

size(pak
j) =

al∈allows(oi)

size(pal
j) (1)

The initial node has a simpler relation, declaring that we can’t take away
more cargo than available:

∀pj ∈ P : size(pj) ≥
al∈allows(o0)

size(pal
j) (2)

while the terminal node doesn’t introduce any constraint.
Furthermore, for each action ai (elementary transport) and each batch pj , we

must ensure that the commitments cover the whole partial batch pai

j (size(pai

j ≤
pj) due to the possible parallelism):

∀ai ∈ Ac, ∀pj ∈ P : pai
l =

c∈comtai
:batch(c)=p

ai
l

cap(c) (3)

then, we must also make sure that no resource is used beyond its capacity. To
do so, we must determine the sets of actions that may share a resource in the
scope of the plan. Therefore, we introduce an ordering on the set of actions Ac
in the abstract plan. This partial ordering relationship is defined by causality in
the plan: we say that ai < aj iff aj belongs to the transitive closure of the set
allowsai , meaning that ai shall be completed before aj starts. Partiality of the
ordering relation defines the relation of resource allocation compatibility between
two actions. Actions ai and aj are compatible, iff ai < aj or aj < ai. Otherwise,
they are incompatible and can’t share single resource. The set incompatible(aj)
used below includes all actions from Ac incompatible with the action aj .

∀ri ∈ R∀aj ∈ Ac : cap(ri) ≥
ak∈aj∪incompatible(aj)

cap(rak
i) (4)

In practice, the above relationships generated for different actions is often
identical and duplicate restrictions are removed from the problem specifica-
tion for sake of performance. Alternatively, we may decide that the resources
can be used only for single action within the plan, and then the set ak ∈
aj ∪ incompatible(aj) encompasses the whole Ac. This restriction can reflect
maintenance and required downtime requirements.

Besides the restrictions, we need to set-up the utility function for which we
optimize:

Um =
pi∈P

size(pon
i) (5)

where pon

i denotes the part of the batch pi delivered to the terminal objective on

and ag(c) the agent committing to c. This simple function maximizes the amount
of the cargo delivered to the objective. Extension of this function to more specific
forms that may include transport prices and/or trustfulness of individual agents

Multilevel Approach to Agent-Based Task Allocation in Transportation 281

is straightforward, even if the formulation must be kept strictly linear. Linearity
limitations can be partially addressed by iterative application of the solver and
the use of FLP methods [7] that allow us to handle the uncertainty in social
knowledge. These methods are especially relevant when we also consider the
trustfulness of individual agents.

Once the solution of the above problem is identified, requestor determines
all perspective participants (owners of resources assigned to various tasks) and
queries each perspective member whether it is capable and willing to partici-
pate. Therefore, each perspective participant Ai is sent a structure: cmaAi =
(coalmem, assign), where the set coalmem lists all coalition members and the
set assign lists the relevant information about tasks the agent’s resources are
assigned to, defined as (eaj , comtaj

(Ai)), where j is an action (task) index and
comtaj

(Ai) are commitments suggested to agent Ai on task taj .

3.2 Local Plan Evaluation

When the agents Ai (selected by the requestor in the previous step) receive the
proposals from the requestor, they must use their private knowledge to create
the bid reflecting their preferences and local situation. At this level, we handle
several issues that are ignored by the requestor’s first-level planning – resource
granularity (unknown to the planning agent due to the privacy issues) and rela-
tions between the resources assigned to different tasks. In the first round, each
agent assigns its resources to the commitments that are the best fit for available
resources, trying to cover all commitments. Then, it will offer the excess capacity
of the resources assigned to the task taj to all members of the team eaj using the
multi-phase auction mechanism described in [1]. This step is designed to elimi-
nate the resource allocation inefficiencies that are due to the possible requestor’s
lack of knowledge about actual resources or a side effect of selected planning
method. More formally (see also Fig. 3), to start the the negotiations, each agent
Ai working on task taj broadcasts a CFP message containing its free capacity
to all team etaj

. If the other team members are interested in using this capacity
for the task they were allocated, they submit their bid. Agent Ai selects one or
more bids and answers them with a temporary grant, making them binding for
the bidders; other are refused. When the agent Ai participates in several teams,
it can now reshuffle its resources between the tasks to use them in an optimal
manner. Once the resource reallocation is terminated, all compatible temporary
grants are confirmed, while the others may be refused (In case the agent has
replaced the original resource with a lower-capacity one.). If appropriate, agent
can now offer the new free capacity for trading using the same protocol.

Note that the auctioning and negotiation takes place only within the single
task team, therefore minimizing the knowledge dispersion and communication
load. On the other hand, agents may therefore miss a better task allocation.
Once the negotiation is finished, all team members send their answers to the
requestor. The answer is a list of commitments that are actually binding for
each agent, but may differ from those originally assigned to the agent as: (i) the
agent is not always able to cover the whole assigned commitment and commits

282 M. Rehák, P. Volf, and M. Pěchouček

Fig. 3. Use of the ECNP to allocate agent’s resources across two different teams. Agent
A1 first temporarily accepts the offer from A5, but later on finds a better resource
allocation and prefers to commit larger resource to team 1. Therefore, it rejects the bid
from A5.

only to a part of the original commitment or (ii) it notifies the requestor about
the transfer of the whole commitment or its part to other team member (this
member lists this commitment in its turn as covered). When the agents submit
their binding commitments to the requestor, they have an alternative to offer
the free capacity of the resources they’ve allocated to the task to the requestor
- the requestor may include use it to cover other batches from the same task,
as specified by relation 6. While this remains an attractive optimization feature,
this approach has two major drawbacks – the requestor can easily guess the
capacity of agent’s resources and the free resources can not be used on another
task. Positive influence of the negotiation in this step is clearly visible while
analyzing the experimental results presented in Section 4.

3.3 Coherence and Verification Phase

In this phase, requestor receives the answers from the participants and must
re-combine them into a globally coherent plan. As the initial planning has pro-
duced a coherent plan, the plan is coherent when all proposed commitments
were covered by members. If not, the requestor must add all updated commit-
ments/refusals from the agents to the initial plan and perform the new calcula-
tion to make sure that the condition 1 is valid for the final plan.

Updated commitments are included as follows (refusals or previously unas-
signed commitments are considered as commitments with 0 capacity):

∀ai ∈ Ac, ∀rj ∈ R : cap(rai

j)prop ≥ cap(rai

j)final (6)

Multilevel Approach to Agent-Based Task Allocation in Transportation 283

It is at this stage of planning process when we also detect the failure to execute
the plan altogether – the proposals (or actually refusals) from the members may
be mutually incompatible. If the requestor manages to find an acceptable plan-
ning outcome, it prepares the final commitments (with the quantities assigned
that are less or equal to the binding ones proposed by members) and re-submits
them to the participants.

3.4 Plan Execution

As the proposals by the agents were binding, participating agents shall be all
able to start performing the assigned tasks immediately. Alternatively, when the
final commitments are lower than the ones they have proposed, they may change
their resource allocation or trade the assignments with their peers in the team in
the same way as in the Local Plan Evaluation phase, provided that they manage
to honor their commitments.

4 Experiments

In order to evaluate the significance of team-wide negotiation phase (e.g during
Local Plan Evaluation), we have compared the performance of the algorithm
with and without this feature. The experiment provides a comparison of our
distributed hybrid approach with centralized planner working with the same
information, while the role of the participating agents is reduced to the allocation
of tasks to their specific resources (vehicles).

To perform the experiment, we have used the ACROSS scenario [11] based on
A-globe multi-agent platform. In this scenario, we simulate a population dis-
persed in communities on an island. These communities need to trade their pro-
duction to satisfy their needs, creating the demand for transport. This demand
is covered by Transporter agents, representing transport companies owning
one or more vehicles, each company with its own private preferences regarding
the cooperation rules, transport actions it can perform and vehicles of various
type and capacity. Into this setting, we introduce a humanitarian catastrophe
that partially disables a local production in a predetermined area. Humanitar-
ian Agent then tries to address the emergency using its own stock of goods,
that must be transported to the affected area. Transport is organized by the
Humanitarian Agent as a requestor (with centralized planning capability) and
Transporters, who provide their resources.

The scenarios we compare differ by the abilities of the plain transporter agents
- in one case, they only use their own resources to cover the assigned transport
requests. In the second case, they perform the peer-to-peer ECNP-based nego-
tiation as described in Section 3.2. In the result of our experiments, we will see
to which extent this extension increases the performance, while keeping the ex-
plicit (shared social knowledge) or implicit (disclosed as a negotiation side effect)
private information disclosure low.

As a reasonably domain-independent measure of planning quality, we use
the resource utilization efficiency: the ratio of the actual cargo loaded on the

284 M. Rehák, P. Volf, and M. Pěchouček

54 55 56 57 58 59 60
Time (simulation step)

0.76

0.77

0.78

0.79

0.80

0.81

0.82

V
eh

ic
le

 L
o
ad

/C
ap

ac
it
y

ra
ti
o

Fig. 4. Performance of the various variants of the algorithm evaluated by resource us-
age. Full lines represent the solution with Formula 4 in its nominal form, while the
dotted lines present the planner performance when all actions are considered incom-
patible for resource sharing aspects. Values with circular points were obtained with
ECNP, crossed points without.

individual vehicles compared to their capacity. Such metrics evaluates the whole
task allocation part of the planning process, from the initial planning down to
the assignment of batches to individual vehicles within transporter fleet. On the
other hand, it doesn’t reflect the abstract planning phase quality. We consider
this as a correct decision, because we concentrate on task allocation and the
abstract planning is (i) highly domain dependent and (ii) easy to validate inde-
pendently of the rest of the planning process. The experiments were performed
in the situations differing by the requested quantity of the cargo to transport
and the results were aggregated. However, in all cases, the demand exceeds the
supply of available resources given their limitations.

As we can see in Fig 4, the overall behavior of the system is stable (except
for a brief startup period not represented in figure) and the differences between
the quality of the solution are relatively minor, with the use of the ECNP nego-
tiation phase as a biggest differentiator. Even if the difference due to the ECNP
use is only about 3 percentage points, this modest improvement is caused by
the fact that in most cases, there is only a limited potential for improvement.
Most contracts require simply the use of the full available capacity, and the ra-
tio of plans where the negotiation can improve the results is relatively small. In
the similar manner, we can see that the difference due to the introduction of
more or less restrictive approach to resource planning is negligible, less than a
fraction of percentage point. However, we feel that even these improvements are
crucial. Besides their clear economic interest, they improve the planning process
by pushing the solution closer to Pareto-optimality and while the heavy duty

Multilevel Approach to Agent-Based Task Allocation in Transportation 285

methods still do most of the planning work (as we can clearly see from the re-
sults), the negotiation process reaches the locally optimum solution that can not
be further easily improved. This feature is important for industrial applications,
as the clients are often not satisfied by solutions that are not locally optimal,
even if the overall result approximates the global optimum close enough.

Please note that with respect to the framework described in this paper, we
have omitted the last phase of the ECNP negotiation and used a fixed base of
abstract plans to achieve repeatability between experimental runs.

5 Conclusions and Future Work

In this paper, we have presented an algorithm for cooperative task allocation
in an environment with self-interested agents. While our algorithm remains a
distributed solution, it uses the concept of social knowledge to delegate important
part of the planning to single agent in the community. In the same time, the
individual agents still retain control of their resources and protect their private
information.

The algorithm presented in this paper has several properties that make it
interesting for industrial applications:

Reduced communication is a result of the use of the social knowledge in
the initial planning step of the algorithm. Instead of several rounds of auctions,
action decomposition and backtracking, requestor uses its social knowledge to
compose balanced task teams and pre-assign commitments to each potential
member.

Increased parallelism is also a consequence of the initial planning intro-
duction and separate abstract planning step. Pre-assigned teams of agents ne-
gotiate in parallel on the problem that was already decomposed and tentatively
allocated, instead of sequential negotiation in the ECNP, where the tasks are
allocated successively, one after another, and frequent backtracking is required.

Iterative reduction of the solution space is another key feature – each step
of the planning, centralized or distributed, reduces the solution space. Initial
planning performs the greatest reduction, as the actions/tasks are selected, re-
sources pre-allocated and agent teams created. Local planning phase then further
clarifies resource allocation and team composition and the results of this phase
are incorporated as additional restrictions for the planning problem solved in the
coherence and validation phase – we ensure that any overall solution will respect
the commitments received from participating agents and can be executed. The
final solution is restricted by the boundaries of the initial planning with addi-
tional restrictions. If the plan can not be implemented due to the member refusal
or resource incompatibility, the situation is detected in the coherence planning
step. In the algorithm as suggested, we don’t allow any backtracking (except
the team-scale negotiation), increasing the outcome predictability. On the other
hand, the algorithm as presented doesn’t guarantee that the result it returns will
be the optimal plan. We don’t consider this as a serious drawback, because none
of the comparably efficient algorithms currently in use can guarantee such result.

286 M. Rehák, P. Volf, and M. Pěchouček

Thanks to the above features, our solution offers fast response times. We
assume that the centralized planning steps (e.g. initial planning and coherence
phase) can be performed rapidly in most practical setups, as the separate tasks
of route finding (abstract planning) and linearized task allocation can be solved
in polynomial time. During the negotiation and local plan evaluation phase,
the size of the problem is already significantly reduced, and the agents only
allocate the assigned (or traded) tasks to available resources. While this problem
is NP complete in general case of indivisible batches, its relatively small size and
batch divisibility make this problem easily solvable by application of appropriate
heuristics (as in our implementation) or standard search algorithms5. In practice,
as we always restrict the time to answer in the each stage of interaction protocol
(as a protection against communication failures), the time to return the solution
is determined by twice the negotiation timeout plus the time required to solve
the centralized planning.

In our future work, we plan to benchmark the results against an implemen-
tation of the ECNP-based planning and task allocation mechanism. However,
such benchmark presents several important challenges to tackle – we must make
sure that the implementation of the ECNP is good enough for a fair compar-
ison and that the underlying planning problem (or a set of problems) will not
disadvantage any of the evaluated solutions.

Acknowledgment

Effort sponsored by the Air Force Office of Scientific Research, Air Force Mater-
ial Command, USAF, under grant number FA8655-04-1-3044. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Government purpose
notwithstanding any copyright notation thereon. The views and conclusions con-
tained herein are those of the author and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of
the Air Force Office of Scientific Research or the U.S. Government.

References

1. Fischer, K., Muller, J.P., Pischel, M., Schier, D.: A model for cooperative transporta-
tion scheduling. In: Proceedings of the First International Conference on Multiagent
Systems., Menlo park, California, AAAI Press / MIT Press (1995) 109–116

2. Perugini, D., Lambert, D., Sterling, L., Pearce, A.: A distributed agent approach
to global transportation scheduling. In: The 2003 IEEE/WIC International Con-
ference on Intelligent Agent Technology (IAT 2003), Halifax, Canada (2003) 18–24

3. Smith, R.G.: The contract net protocol: High level communication and control in a
distributed problem solver. In IEEE Transactions on Computers C-29(12) (1980)
1104–1113

5 Required quality of this algorithm depends on the number of available resources
and assigned batches (for each cargo type), but even relatively large problems
can be solved using mixed-integer programming approaches like branch-and-bound
algorithm [12].

Multilevel Approach to Agent-Based Task Allocation in Transportation 287

4. Pěchouček, M., Mař́ık, V., Bárta, J.: A knowledge-based approach to coalition
formation. IEEE Intelligent Systems 17(3) (2002) 17–25

5. Sandholm, T.: Contract types for satisficing task allocation: I theoretical results.
In: Proceedings of the AAAI Spring Symposium. (1998)

6. Perugini, D., Lambert, D., Sterling, L., Pearce, A.: Agent-based global transporta-
tion scheduling in military logistics. In: AAMAS ’04: Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems,
Washington, DC, USA, IEEE Computer Society (2004) 1278–1279

7. Carlsson, C., Fullér, R.: Fuzzy Reasoning in Decision Making and Optimization.
Physica Verlag, Springer, Heidelberg (2002)

8. Pěchouček, M., Mař́ık, V., Štěpánková, O.: Role of acquaintance models in agent-
based production planning systems. In Klusch, M., Kerschberg, L., eds.: Coopera-
tive Infromation Agents IV - LNAI No. 1860, Heidelberg, Springer-Verlag, Heidel-
berg (2000) 179–190

9. Witteveen, C., Roos, N., van der Krogt, R., de Weerdt, M.: Diagnosis of single and
multi-agent plans. In: AAMAS ’05: Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems, New York, NY, USA,
ACM Press (2005) 805–812

10. Miguel, I., Jarvis, P., Shen, Q.: Flexible graphplan. In Horn, W., ed.: Proceedings
of the Fourteenth European Conference on Artificial Intelligence. (2000) 506–510

11. Šǐslák, D., Rehák, M., Pěchouček, M., Rollo, M., Pavĺıček, D.: A-globe: Agent
development platform with inaccessibility and mobility support. In Unland, R.,
Klusch, M., Calisti, M., eds.: Software Agent-Based Applications, Platforms and
Development Kits, Berlin, Birkhauser Verlag (2005) 21–46

12. Lawler, E.L., Wood, D.E.: Branch-and-bound methods: A survey. Operations
Research 14(4) (1966) 699–719

Learning to Negotiate Optimally in Non-stationary
Environments

Vidya Narayanan and Nicholas R. Jennings

Intelligence, Agents, Multimedia
School of Electronics and Computer Science
University of Southampton SO17 1BJ, UK
{vn03r, nrj}@ecs.soton.ac.uk

Abstract. We adopt the Markov chain framework to model bilateral negotia-
tions among agents in dynamic environments and use Bayesian learning to enable
them to learn an optimal strategy in incomplete information settings. Specifically,
an agent learns the optimal strategy to play against an opponent whose strategy
varies with time, assuming no prior information about its negotiation parame-
ters. In so doing, we present a new framework for adaptive negotiation in such
non-stationary environments and develop a novel learning algorithm, which is
guaranteed to converge, that an agent can use to negotiate optimally over time.
We have implemented our algorithm and shown that it converges quickly in a
wide range of cases.

1 Introduction

Automated negotiation plays a key role in resolving conflicts in multiagent systems in
which individual agents have different stakes in a joint operation. Now, in many such
cases, agents have little information about one another, and, in addition, the environ-
ment changes as a result of interactions between them [4]. Thus, learning about the
other agents in the system and about their common environment becomes essential for
effective performance. In particular, while an agent is engaged in negotiations, it has
to learn about the negotiation parameters and strategies [10] of its opponents if it is to
bargain optimally in such non-stationary environments.

Generally speaking, reinforcement learning, in particular Q-learning, is often used in
multiagent systems since it does not need a model for learning and can be used online
[4], [11]. In this vein, several researchers have adopted the stochastic game framework
for multiagent reinforcement learning and have developed solution techniques like Nash
Equilibrium [4], [9] and best response strategies [12]. Others, like [2], have used ficti-
tious play techniques to analyse learning in games. However our problem is different.
We are not trying to model learning in multiagent systems using game theory, but rather,
we are trying to develop negotiation techniques for multiagent systems for which learn-
ing is necessary. Therefore, we believe that reinforcement learning, in which agents
learn to maximize a reward signal, is not best suited for our purposes. Moreover, rein-
forcement learning algorithms rely on the assumption that the underlying environment
is stationary (i.e., the parameters and strategies of the opponent do not change over time,

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 288–300, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Learning to Negotiate Optimally in Non-stationary Environments 289

they are simply unknown). Now, this is clearly not the case in many realistic negotiation
encounters, so we need to look at other learning methods.

Some of the first models to discuss the need for learning in negotiations among
agents were [5] and [7]. However, while these papers discuss the concept of reasoning
based on experience among negotiating agents, they do not explicitly develop a learning
model. In [13] this notion is formally modelled, as a sequential learning mechanism
based on a Bayesian belief update process. Specifically, a very general framework is
adopted for the negotiation in which multiple agents bargain for multiple items. The a
priori model that the agents have of their opponents is constantly updated using current
information which is received as a signal from the environment. In particular, given
the prior knowledge of an agent and the newly incoming information, the posterior
distribution of the knowledge of the agents is computed using Bayesian rules. However,
this model does not capture the non-stationarity in the environment. By this, we mean
that, although the agents are assumed not to know the distribution of players’ strategies
and their negotiation parameters, it is assumed that this distribution does not change
over time. Now, this is a serious shortcoming in the types of open environment in which
multiagent systems are often deployed and is something that we wish to rectify in this
work. Thus, in our case, the agent has to learn how its opponents change their strategies
and then respond optimally to them. We have used Bayesian learning in our model
because we believe it is more suitable than other forms of learning, like reinforcement or
supervised learning, to represent uncertainties in the negotiation process as a probability
function and then update this based on signals received from the environment.

In particular, we consider negotiation between a pair of agents over a single issue
(price). We use the non-stationary Markov chain framework to model the negotia-
tion process and prove, for the first time, an important estimation property for these
processes (namely that the future distribution of the states can be obtained given their
initial distribution and the probabilities of state change during the process). Within this
framework, at each stage in the negotiation process, the agent uses Bayesian updating
to learn the strategy that its opponent is most likely to use and, based on this, determines
what it should adopt to maximise its payoff at that stage of the negotiation process. In
so doing, we analytically prove that in repeated negotiations our algorithm converges to
the actual optimal strategy at every stage of the negotiation process. We verify this by
means of an example problem, and have shown that our algorithm is at least 200% more
effective than random estimation. Our empirical results also show that, on average, the
algorithm converges within 24 iterations and that each iteration takes 18.92 seconds.

The rest of the paper is organized as follows: Section 2 presents the basics of our ne-
gotiation model, Section 3 the learning model, Section 4 our empirical results. Finally,
Section 5 concludes.

2 The Negotiation Model

In this section, we detail the basic concepts that we will use in our model. First, we de-
fine the notion of a stochastic process and the corresponding notion of a Markov Chain
in order to use it to capture the uncertainty in our domain. Then, to provide a grounding
for our learning algorithm, we give the Bayesian probability rule and explain how it is

290 V. Narayanan and N.R. Jennings

used in Bayesian learning techniques. Finally, we present the concept of mixed strategy
profiles in the context of classical game theory which we will use as a framework to
describe the strategies that our negotiating agents will use.

Turning first to stochastic processes and Markov Chains, let the real random vari-
able (r.r.v), X , be defined as a function that maps a space of events to a real number.
Formally, if Ω represents the space of events and � represents the set of all real num-
bers, then X : Ω → �. The probability that X = a where a ∈ � is represented as
Pr(X = a). A sequence of r.r.vs that is indexed by some parameter, n, where n ∈ T
and T is a suitable index set, is represented as Xn and is called a Stochastic Process.
A realization of a stochastic process Xn, n ∈ T , is an assignment to each n ∈ T ,
of a possible value of Xn. Now, there are two important sets associated with stochastic
processes:

– State Space S: This is the space in which possible values of Xn lie. If S =
0, 1, 2, 3, .. then the associated process is called a discrete state process. In our
model the state space is discrete.

– Index Parameter T : If T = 0, 1, 2, 3, ... (i.e., if T takes only discrete values) then
Xn is called a discrete time stochastic process. Again, in our model, we assume
that T is discrete.

We also need to define the concept of the conditional probability of random variables.
Thus, if A and B represent two events, then the conditional probability of event A given
that event B occurred is defined by:

Pr{A|B} =
Pr{A and B}

Pr{B} (1)

We now move onto Markov processes.

Definition 1. A first order Markov process is a stochastic process that satisfies the
following condition:

Pr{Xn+1 = x|Xn = xn, Xn−1 = xn−1, ...} = Pr{Xn+1 = x|Xn = xn} (2)

Intuitively, this means that the probability of any future behaviour of the process, when
its present state is known exactly, is not changed by any additional information about its
past states. That is, the Markov Process is memoryless. This property of the stochastic
process enables elegant mathematical analysis. Now, it is not unreasonable to suppose
that the negotiation strategy at a particular stage is dependent only on the immediately
preceding stage, since a single offer captures the entire decision making that preceded it.
Therefore we model the negotiation process as a Markov process. Here, the probability
P = Pr{Xn+1 = x|Xn = xn} is called the one-step transition probability function
and it is fundamental to the study of Markov processes and, as such, to our model.
This function P is usually represented as a matrix where each entry (i, j) is given by
Pij = Pr{Xn+1 = j|Xn = i}. A Markov process, for which S and T are discrete, is
called a Markov chain and, so therefore, can our model.

Having introduced Markov chains, we now define the notions on which the learning
component of our model is based. Specifically, our agent updates its beliefs using a

Learning to Negotiate Optimally in Non-stationary Environments 291

Bayesian update rule. Such Bayesian analysis is often used to estimate the most prob-
able underlying model for a random process, based on some observed data or infer-
ence [13], and we choose it here because it enables us to represent the uncertainty in
the environment as probability functions and it gives us a formal procedure to update
these functions based on our observations. Now, let A1, A2, ..., An, represent n random
events. Then, we let Xn, t = 0, 1, ... be the stochastic process we are trying to estimate.
Each of these n events can be thought to represent the hypothesis that the parameters
of {Xn, t = 0, 1, ...} belong to sets T1, T2, ..., Tn. Finally, we let the event B represent
the set of observed data. Now, Bayes rule can be stated as:

Pr{Ai|B} =
Pr{B|Ai} × Pr{Ai}∑
Pr{B|Ai} × Pr{Ai}

(3)

where Pr{Ai} is the prior probability of model Ai in the absence of any information,
Pr{B|Ai} is the likelihood that observation B was produced given that the model was
Ai, and Pr{Ai|B} is the posterior probability of the model being Ai given the obser-
vation is B. Our learning agent will use these inference rules to estimate the underlying
randomness of the negotiation process.

Our final discussion in this section refers to the strategies that the agents will use
in the negotiation process. In classical game theory, a Strategic-Form game has three
elements:

1. the set of players i ∈ I , where I = 1, 2, ..., n
2. the pure-strategy space Si, for each player i, and
3. payoff functions ui that give player i′s utility ui(s) for each profile, s = (s1, s2, ...,

sn), of strategies

Therefore in game theory a strategy is perceived as an action choice of a player that has
a utility associated with it. Often the objective in games is to determine a strategy si that
will maximise player i′s payoff given the strategy set, s−i, that the other players use.
Also, notice that the ui that player i receives depends on the strategies of all the players
in the game and is not related to an isolated strategy that i may use. In the definition
of a strategic game we called the strategy space a pure-strategy, this is because game
theorists often refer to an alternate strategy space called the mixed-strategy space. The
mixed-strategy space is a probability distribution over the space of pure-strategies and
for mathematical ease of analysis it is often more convenient to deal with the mixed-
strategy space [3]. Thus in our problem the agent will learn the mixed-strategy profile
of its opponent and evolve a strategy in response to that strategy that earns it maxi-
mum payoff. In this sense, our negotiation problem can be considered as a two-player
strategic game.

Having introduced the main concepts that we use in our model, we are now ready to
describe the learning component and outline the solution procedure we have developed.

3 The Learning Model

The main objective of our agent is to learn the mixed-strategy profile of its opponent
and determine a strategy in response to this profile that maximises its pay-off at each

292 V. Narayanan and N.R. Jennings

stage of the negotiation process. This learning problem is complicated by the fact that
the agent has no information about its opponent and that the strategy that the opponent
uses may well change during the course of the negotiation. Now, to model this process
of change in the strategies of the opponent, we use a non-stationary Markov chain.
Formally, a non-stationary Markov chain is a Markov chain (see Section 2) whose one-
step transition probability function, P(t) = Pr{Xn+1 = x|Xn = xn}, varies with
time [8]. If we define the state space, S, associated with this non-stationary Markov
chain to be the space of all possible strategies that the opponent can employ, and the
corresponding time dependent transition probability function, Pn(t), to represent the
probability that the strategy of the opponent changes at each step n of the game and
that this probability function itself is a function of time, then this framework gives us
a powerful tool to describe and analyse the non-stationary negotiation process that we
are trying to model. Therefore, we adopt this mathematical formulation in this work.

Now, if Pn(t) were specified as a function of time, then we could obtain the strategy
profile of the opponent at each stage of the negotiation process using standard sto-
chastic process analysis [6] and then obtain a strategy that maximises our own payoff
using maximization algorithms [1]. But since this function is unknown in our problem,
the agent has to learn it from interactions with the opponent and the environment. In
Bayesian learning, as explained in Section 2, the probability of a hypothesis being true
is continuously updated by signals that are received from the environment and, as such,
is well suited to modelling uncertainty in the environment. In our problem, in order
to learn the function, Pn(t), we propose that the learning agent initially has a finite
number of hypotheses 1 of the possible distributions of Pn(t) which it updates using
Bayesian inference rules. This means that in successive negotiations, by updating the
different hypotheses, the agent comes closer to estimating the true value of Pn(t) and,
therefore, to estimating the true optimal strategy in response to its opponent’s play.

Formally, we consider two agents say buyer X and seller Y , negotiating over price.
We assume that the buyer is learning to respond to the strategy of the seller. Now, we
assume that there is a payoff function, un

sx
(t), associated with X , which depends on the

strategy s that X uses in response to Y at each step, n, of the negotiation. X ′s objective
in the negotiation is to find a strategy profile that maximises un

sx
(t) which we assume

is known to X . Therefore, X must learn the strategy profile of Y in order to determine
an optimal response strategy. To describe how X learns this strategy within the Markov
chain, we need to first define some of its properties. In stationary Markov chains, the
probability of moving from state i to state j in n time steps is represented as Pn

ij and is
given by [6]:

Pn
ij =

m∑
k=0

P r
ik × P s

kj (4)

where m is the total number of states, k is some intermediate state and r + s = n.
Intuitively, this means that the probability of moving from one state to another in a
certain number of steps, n, is equivalent to the probability of moving from the first
state to an intermediate state, k, in r steps together with the probability of moving from

1 This assumption reduces the search space while allowing us to represent the uncertainty in the
problem.

Learning to Negotiate Optimally in Non-stationary Environments 293

k to the final state in the remaining number of steps. Now, from matrix algebra, we
recognise equation 4 as the formula for matrix multiplication, so the n-step transition
matrix, represented by Pn, is equal to P (n) or that the entries Pn

ij in Pn are equal to
the entries in the matrix P (n), which is the nth power of the one-step transition matrix
P . It follows that if the probability of the process initially being in state j is pj , (i.e.,
Pr{ X0 = j}), then the probability of the process being in state k, at time n is:

pn
k =

m∑
j=0

pjP
n
jk (5)

where m is the total number of states. Thus in our problem if we know the initial dis-
tribution of the opponent’s strategies we can calculate the probability that the opponent
uses a certain strategy after n time steps. This is the main reason for using the Markov
chain framework to model the negotiation process. In our model, however, the Markov
chain is non-stationary and, therefore, we need to prove, an equivalent result for the
non-stationary case (this has not previously been done). Here, since Pn(t) is a func-
tion of time, at each step of the process we have a different transition probability matrix.
Here, we propose that to obtain pn

k as a function of time, we need to multiply n different
transition matrices. We now formally state and prove this result.

Theorem 1. In non-stationary Markov chains, the probability of moving from state i to
state j in n time steps, during time instant t, is represented as Pn

ij(t)
2 and is given by:

Pn
ij(t) =

∑m
k=0 P r

ik(u)× P s
kj(v)

where m is the total number of states, k is some intermediate state, r + s = n and u, v
are time instants at which the transitions occur.

Proof. We prove the result when n = 2. The event of moving from state i to state
j can happen in mutually exclusive ways, of going to some intermediate state k ∈
{0, 1, 2..., m} in the first transition and then moving from state k to state j in the next
transition. Now, because of the Markovian assumption that the transition probability
is independent of the history of the process, the probability of the second transition is
simply Pkj(v) and, by definition, the probability of the first transition is Pik(u). There-
fore, by the law of total probability: P 2

ij(t) =
∑m

k=0 P 1
ik(u) × P 1

kj(v). In the general
case, by breaking up the first r steps and then the next s steps into a series of single
step transitions and again by using, the law of total probability for each transition, the
proof is obtained. ��

Thus, in the non-stationary case also, given the probability that initially the process was
in, say state j (i.e., p0

j(0) = Pr{X0(0) = j}), then the probability that it is in state
k after n time steps and at time t is represented as pn

k (t) = Pr{ Xn(t) = k} and is
given by:

2 Here n represents the number of time steps and t represents the fact that the transition proba-
bility P n

ij(t) is a function of time.

294 V. Narayanan and N.R. Jennings

pn
k (t) =

m∑
j=0

[p0
j(0)]× [Qn

jk(t)] (6)

where Qn
jk(t) = [P 0(0)]× [P 1(1)]...× [Pn−1(t− 1)].

Therefore, we now have a means of obtaining the probability distribution of the
process and, thereby, the probability distribution of strategies at any stage in the nego-
tiation process given an initial distribution of strategies and the transition probability
matrices.

Now, we come to the main issue of learning the transition probability matrices. As
already stated, we propose to do this using Bayesian inference rules. However, to do this
we must assume that the learning agent, in our case the buyer X , has some knowledge
about the negotiation process. Specifically, in order to update its hypothesis about the
strategy distribution of Y from the offers that it receives, it has to know how the offer
generation process depends on the strategy selection process. To this end, let us assume
that S, the set of all possible strategies that Y can use, and as such constitutes the state
space of our Markov chain, is given by S = {so

0, s
o
1, ..., s

o
m}. Therefore, Y switches

between the strategies in S according to the transition probability matrix Pn(t), which
varies with time. We let On(t) represent a sequence of offers made by Y and Op

n(t)
represent the event that the offer at the nth step of the process at time t is p. We also let
Hn(t) represent a sequence of finite sets of hypotheses about Pn(t) during the negoti-
ation process. Therefore Hn(t) = {H1

n(t), ..., Hk
n(t)}, where k is some finite positive

integer. We assume that the hypothesis representing the true value of the transition prob-
ability function also belongs to Hn(t). Then the objective of our learning algorithm is
to update each of these hypotheses {Hi

n(t) ∈ Hn(t)} at every step n of the negotiation.
The steps of the algorithm are detailed in Algorithm 1. In more detail, using Bayes rule
we have for each hypothesis, at step n of the process that:

Pr{Hi
n(t)|Op

n(t)} =
Pr{Hi

n(t)} × Pr{Op
n(t)|Hi

n(t)}∑i=0
k [Pr{Hi

n(t)}]× [Pr{Op
n(t)|Hi

n(t)}]
(7)

We call Pr{Hi
n(t)|Op

n(t)} the likelihood function, L. Thus each Hi
n(t) is updated

in the light of the incoming offer Op
n(t). Now, B uses the hypothesis Hnew

n (t) =∑i=0
k {Pr{Hi

n(t)|Op
n(t)} × Hi

n(t)} to find the strategy used by the opponent. There-
fore the learning agent weights the different hypotheses by the probabilities of their
occurring in order to form a new hypothesis about Pn(t). Because of this construc-
tion of the new hypothesis we can show that, as t → T where T is sufficiently large,
Hnew

n (t) approaches the true value of Pn(t) (see theorem 2 for details). Then, accord-
ing to un

sx
(t), the agent determines the strategy sn

max(t) that maximises un
sx

(t) at each
step of the negotiation process. We denote this maximum value of the payoff function
by un

smax
(t). This completes the solution procedure for determining the best response

strategy to the opponent’s play and consequently the maximum payoff at each step of
the negotiation process.

Here, it is important to note that according to this algorithm, the agent learns across
successive negotiations and not within a single negotiation process. Therefore, we claim
that in repeated negotiations using our algorithm, the agent learns to use the optimal

Learning to Negotiate Optimally in Non-stationary Environments 295

Algorithm 1. The Adaptive Negotiation Algorithm
1. for (t = 0, 1, 2, ..., T)

2. for (n = 0, 1, 2, ..., tterminal)

3. initialize Hi
n(t) ∈ Hn(t) as an arbitrary distribution.

4. input opponent offer p ∈ Domain{On(t)}

5. Pr{Hi
n(t + 1)} ← Pr{Hi

n(t)|Op
n(t)} using equation 7

6. assign Hnew
n (t) = k

i=0{Pr{Hi
n(t)|Op

n(t)} × Hi
n(t)}

7. assign [P n(t)] = Hnew
n (t)

8. compute [(so
1, s

o
2, ..., s

o
m)]n(t) using equation 6

9. compute sn
max(t) = max [(s1, s2, ..., sm)]n(t)×un

x(t)× [(so
1, s

o
2, ..., s

o
m)]n(t)]T s.t

m
i=0 si = 1 and si ≥ 0 ∀i

10. compute un
smax

(t)

11. next n

12. next t

strategy and earn maximum payoff at each stage of the negotiation process. In order to
prove this claim we need the following lemma.

Lemma 1. After a sufficiently large time T , the real probability distribution over the
future rational play of a game is ε-close to what player i believes the distribution is [5].

Here, ε-close implies that we can approach arbitrarily close to the actual distribution
and rational play means that at each stage of the negotiation the players take the action
that maximises their pay-offs. Having stated Lemma 1, we are now ready to prove our
main result.

Theorem 2. In the non-stationary negotiation process, the sequence of nth step strate-
gies {sn

max(0), ..., sn
max(t), sn

max(t + 1), ..., } and the corresponding sequence of nth

step payoff functions, {un
max(0), ..., un

max(t), un
max(t + 1), ..., }, after a sufficiently

large time T , are ε-close to the true optimal strategy and the corresponding maximum
payoff function at the nth step of the negotiation process.

Proof. According to Lemma 1, in a systematic belief update process, the learner even-
tually comes arbitrarily close to the true distribution after a sufficiently large time
T. Since the process by which our learning agent estimates the strategy of the oppo-
nent is constructed as a Bayesian belief process, the sequence of updated probabilities,

296 V. Narayanan and N.R. Jennings

{Pr{H0
n(t)|Op

n(t)}, ..., P r{Hi
n(t)|Op

n(t)}, ..., P r{Hk
n(t)|Op

n(t)}} comes arbitrarily
close to {0, ..., 1, ..., 0} for some i ∈ {0, 1, 2, ..., k} as t → T . This implies that Hi

n(t)
is the true hypothesis. Therefore, Hnew

n (t) =
∑i=0

k {Pr{Hi
n(t)|Op

n(t)} × Hi
n(t)}, by

construction, and, therefore, Hnew
n (t) → Hi

n(t) as t → T . Since the opponent de-
termines its strategy at each step using Hnew

n (t) and since our agent determines its
optimal strategy and the maximum payoff at each step in response to this updated op-
ponent strategy, the result is proved. ��

Thus we have analytically shown that our algorithm converges. We now present an
example to illustrate this operation (and in section 4 we explore the actual speed of
convergence). Specifically, in this problem, we make the following assumptions:

1. The strategy space S of the opponent consists of two strategies, S = {s1, s2}.
2. At each time step n of the negotiation, the learning agent has a set of three hypothe-

ses about the possible value of Pn(t).

We now describe the solution procedure in our problem.

– Here as specified in Step 3 of algorithm 1, we initialize, Hi
0(0) ∈ H0(0).

H1
0 (0) =

[
0.5 0.5
0.5 0.5

]

H2
0 (0) =

[
1 0
0 1

]
H3

0 (0) =
[
0 1
1 0

]
Now the agent is unaware of the true value of Pn(t), but has arbitrary probabilities
assigned to each of these hypotheses about Pn(t).

– Let {Pr(H1
0 (0)) = 0.5},{Pr(H2

0(0)) = 0.25}, {Pr(H3
0 (0)) = 0.25} and offer

of opponent, O0(0) = 100.
– Then according to Step 4 in algorithm 1, we observe the offer of the opponent and

assume that Pr{O0(0)|H1
0 (0)} = 0.6, Pr{O0(0)| H2

0 (0)} = 0.2 and Pr{O0(0)|
H3

0 (0)} = 0.2 (here we assume arbitrary values for Pr{O|H}, but we are in the
process of studying the offer patterns of traders in different domains in order to get
an accurate representation for these values).

– Using Step 5, we update probabilities as Pr{H1
0 (0)|O0(0)} = 0.75, Pr{H2

0 (0)|
O0(0)} = 0.125 and Pr{H3

0 (0)|O0(0)} = 0.125.
– From Step 6, we determine Hnew

0 (0) = (0.75) × H1
0 (0) + (0.125) × H2

0 (0) +
(0.125)×H3

0 (0).
– Step 7 specifies the strategy profile of the opponent. The initial profile is assumed

to be given as [0.2, 0.8] (i.e., Pr{S = so
1} = 0.2, P r{S = so

2} = 0.8) and the
payoff function of the agent is:

u0
x(0) =

[
1 0
−2 3

]

Learning to Negotiate Optimally in Non-stationary Environments 297

– From Step 8, to determine its strategy profile, [s1, s2] and the corresponding payoff
function, the agent solves the linear program:
max [s1, s2]× u0

x(0)× [0.2, 0.8]T s.t s1 + s2 = 1 and s1, s2 ≥ 0.
The strategy profile thus obtained is denoted as s0

max(0) and the payoff function is
un

max(0).
– We do this for every time step n of the negotiation process and obtain {s0

max(0),
s1

max(0), ...} and {u0
max(0), u1

max(0), u2
max(0), ...}

– We then repeat this for every negotiation during time instants t = 0, 1, 2, 3, ...
and obtain the sequences {s0

max(0), s0
max(1), s0

max(2), ...}, {s1
max(0), s1

max(1),
s1

max(2), ...}, {s3
max(0), s3

max(1), ...} and the corresponding payoff sequences.

In this case the two sequences converge within 4 iterations to the optimal values at each
step of the negotiation process. Having proved that our algorithm converges, we need to
determine the rate of this convergence and the factors that influence this. This can only
be done empirically and our results are presented in the next section.

4 Empirical Results

We have run experiments by varying the number of hypotheses for Pn(t). Specifically,
we have experimented with both 2 × 2 and 3 × 3 matrices representing the strategy
profiles. We have found that using our algorithm, the agent on an average (computed by
varying the number of hypotheses ie., the number of 2 × 2 and 3 × 3 matrices) learns
the maximum payoff within 13.6 iterations for 2× 2 matrices and on an average within
23.6 iterations for 3 × 3 matrices. On an average, each iteration takes 7.44 seconds to
complete for 2× 2 matrices and 18.92 seconds for 3× 3 matrices. We have also exper-
imented by changing the elements of the transition matrices. Our results indicate that
the rate of convergence is independent of variations in the patterns of the opponent’s
offers. But it depends on the number of hypotheses for Pn(t) at each step of the nego-
tiation. However, since the computation of updated probabilities is a simple arithmetic
operation and since this computation alone is affected by the number of matrices, the
time for convergence does not drastically increase with the number of matrices. This
is shown in tables 1 and 2 and figure 1 shows the actual convergence of the algorithm
during successive iterations at a single step of the negotiation process. In figure 1 the
optimal value line for the payoffs is computed by assuming that the opponent’s strat-
egy profile is known to the agent. The other line corresponds to the agent learning the
opponent’s strategy profile and therefore the optimal payoff value, using our algorithm,
as illustrated in the example problem. In figure 1 we used 2 × 2 matrices to represent
the opponent’s strategy profiles and assumed 2 hypotheses for Pn(t) at each step of the
negotiation.

Now, in general, if we assume that there are k hypotheses for Pn(t), then in the
random case the probability of finding the true hypothesis is always 1/k (i.e., this prob-
ability does not improve with time). However, the convergence of our algorithm is guar-
anteed by theorem 2 and therefore our estimation of the true Pn(t) improves with each
iteration and eventually converges. With this and the fact that the algorithm converges
on an average within 1315 seconds even with 10 hypotheses and 3 strategies, we claim
that our algorithm is k times more effective than random estimation. Therefore even in

298 V. Narayanan and N.R. Jennings

Table 1. Dependence of rate of convergence on number of hypotheses for 2 × 2 matrices

No of Hypotheses Offer Distribution Average Iterations Average Time for Iteration in secs
2 Arbitrary 2 2.7
4 Arbitrary 4 4.6
6 Arbitrary 11 7
8 Arbitrary 21 10.1
10 Arbitrary 30 12.8

Table 2. Dependence of rate of convergence on number of hypotheses for 3 × 3 matrices

No of Hypotheses Offer Distribution Average Iterations Average Time for Iteration in secs
2 Arbitrary 7 6.2
4 Arbitrary 15 12
6 Arbitrary 25 18.4
8 Arbitrary 29 26.7
10 Arbitrary 42 31.3

the case when there are only 2 hypotheses at each step n for Pn(t) our algorithm is
200% more effective than random estimation. Obviously, as we increase the number of
hypotheses, which allows for a more general representation of Pn(t) and therefore of
the uncertainty in the problem, the effectiveness of our algorithm over random estima-
tion increases proportionally.

5 Conclusions and Future Work

In this work we have developed a new framework, using Markov chains, for studying
negotiation in non-stationary environments. This is a general framework which can be
used to study decision making in many stochastic systems like market places and auc-
tions. Within this framework, we have derived, for the first time, an important result for
non-stationary Markov chains that computes the distribution of the random variable,
which defines it, at any future step of the process given its initial probability distrib-
ution and the transition probability matrices at each step of the process. Then, using
this framework we have developed an algorithm to learn a strategy in response to a
non-stationary opponent’s play and proved that it converges to the optimal strategy in
repeated negotiations. Unlike previous work in this area, our algorithm does not assume
knowledge of the opponent’s strategy profile and, as such, is a powerful tool to analyse
negotiations in real world environments where such uncertainty is common. Our algo-
rithm is also explicitly designed to deal with cases in which the strategy profile is not
only unknown, but changes with time during the course of the negotiation process it-
self. This significantly extends the state of the art in the field of automated negotiations
in non-stationary, real world environments. For such cases, we have proved, analyti-
cally, that our algorithm converges. Our empirical results indicate that the algorithm
converges within reasonable timeframes to the true hypothesis even when the number
of hypotheses is large. Also, in our algorithm, the states of the Markov chain represent

Learning to Negotiate Optimally in Non-stationary Environments 299

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.45

0.5

0.55

Time

P
ay

of
f

Performance of Learning Algorithm

Optimal Value Line
Learning Algorithm

Fig. 1. Convergence to Optimal Strategy

the strategies that are available to the opponent and the actual uncertainty in the prob-
lem is represented by the number of hypotheses. Therefore we need not increase the
number of states to represent greater uncertainty in the domain. The algorithm is also
vastly more accurate than random estimation.

In our future work, we intend to use the structure of the Markov chain to develop
a more formal model for the likelihood function in the Bayesian belief update process
which would help us to reduce the computation effort involved in updating the agent’s
knowledge even in complicated real world scenarios. We are also in the process of
doing statistical analysis to estimate the number of hypotheses that are required to get
an accurate representation of the dynamism in exemplar real world domains like mobile
communications and we also intend to extend the algorithm to learn the opponent’s
negotiation parameters along with its strategy profile and to study negotiation when the
opponent is also changing its strategies in response to our agent’s adaptivity. Finally, we
intend to do a detailed comparative study between other machine learning techniques,
like Reinforcement learning and Bayesian methods in automated negotiations, for non-
stationary environments. This study would also provide a more effective benchmark
than random estimation for our algorithm.

References

1. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1996.
2. D. Fudenberg and D.K Levine. The Theory of Learning in Games. The MIT Press, 1998.
3. D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
4. J. Hu and M.P. Wellman. Multiagent reinforcement learning: Theoretical framework and an

algorithm. Proceedings of the 11th International Conference on Machine Learning: 242-250,
1998.

300 V. Narayanan and N.R. Jennings

5. E. Kalai and E. Lehrer. Rational learning leads to nash equilibrium. Econometrica,
61(5):1019–1045, 1993.

6. S. Karlin and H. Taylor. First Course in Stochastic Processes. Academic Press, 1974.
7. S. Kraus and V.S. Subrahmanian. Multiagent reasoning with probability, time, and beliefs.

International Journal of Intelligent Systems 10(5): 459-499, 1995.
8. V. Kulkarni. Modelling and Analysis of Stochastic Systems. Chapman Hall/CRC, 1996.
9. M.L. Littman. Markov games as a framework for multi-agent reinforcement learning. Pro-

ceedings of the 11th International Conference on Machine Learning: 157-163, 1994.
10. V. Narayanan and N. R. Jennings. An adaptive bilateral negotiation model for e-commerce

settings. Proc. 7th Int. IEEE Conf on E-Commerce Technology, Munich, Germany: 34-39,
2005.

11. R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
1998.

12. M. Weinberg and J. Rosenschein. Best-response multiagent learning in non-stationary envi-
ronments. The Third International Joint Conference on Autonomous Agents and Mutli-Agent
Systems:506-513, 2004.

13. D. Zeng and K. Sycara. Bayesian learning in negotiation. Int. J Human-Computer Stud-
ies(1998), 48:125-141, 1998.

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 301 – 316, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Eliminating Interdependencies Between Issues for
Multi-issue Negotiation

Koen Hindriks, Catholijn M. Jonker, and Dmytro Tykhonov

Nijmegen Institute for Cognition and Information, Radboud University, Montessorilaan 3,
6525 HR Nijmegen , The Netherlands

{C.Jonker, K.Hindriks, D.Tykhonov}@nici.ru.nl}

Abstract. In multi-issue negotiations, issues may be negotiated independently
or not. In the latter case, the utility associated with one issue depends on the
value of another. These issue dependencies give rise to more complex, non-
linear utility spaces. As a consequence, the computational cost and complexity
of negotiating interdependent issues is increased significantly compared to the
case of independent issues. Several techniques have been proposed to deal with
this increased complexity, including, for example, introducing a mediator in the
negotiation setting. In this paper, we propose an alternative approach based on a
weighted approximation technique to simplify the utility space. We show that
given certain natural assumptions about the outcome of negotiation the applica-
tion of this technique results in an outcome that closely matches with the out-
come based on the original, interdependent utility structure. Moreover, using
the approximated utility structure, each of the issues can be negotiated inde-
pendently which ensures that the negotiation is computationally tractable. The
approach is illustrated by applying and testing it in a case study.

1 Introduction

Negotiation is a process by which a joint decision is made by two or more parties
[7]. The parties first express contradictory demands and then move towards agree-
ment by a process of concession making. Negotiation is an important method for
agents to achieve their own goals and to form cooperation agreements, see e.g.
[2,10,11]. Raiffa [8] explains how to set up a preference profile for each negotiator
that can be used during negotiation to determine the utility of exchanged bids. For
more information on utility and other game theoretic notions the reader is referred to
e.g. [3]. Representing agent’s preferences in terms of mathematical formulae ex-
pressing relationships between values of issues and the utility of bids allows the
development of software support for negotiations. The complexity of these relation-
ships determines the computational complexity of the negotiation process. One way
to avoid such computational complexity is, as proposed in e.g. [4], to build up pro-
files as combinations of independent and simple evaluation functions per issue. This
approach corresponds to the way the average human tackles negotiation. Humans
tend to simplify the structure of their preferences ([12]) and prefer to negotiate one

302 K. Hindriks, C.M. Jonker, and D. Tykhonov

issue at a time, which means that issues influence the utility of a bid independently
from each other. Absence of issue dependencies allows for the use of efficient nego-
tiation strategies. Until now this approach is only applicable if the values of the dif-
ferent attributes in the domain are independent from each other. However, in some
domains the issues are interdependent.

In some domains, however, issue dependencies influence the overall utility of a
bid. In such cases it is no longer possible to negotiate one issue at a time and Klein at
al in [5] argue that there is no efficient method that an agent can use to negotiate mul-
tiple issues, even if the agent tries to guess the opponent’s profile. The authors pro-
pose to use a mediator who uses a computationally expensive evolutionary algorithm
that can solve non-linear optimization tasks of high dimensionality. Bar-Yam [1]
shows that in a multi-issue negotiation with issue dependencies the utility can only be
described by non-linear functions of multiple issue variables.

In this paper, we present a new approach to tackle the complexity problem of a
utility space with interdependent issues that is based on the following observations.
First, not all bids are equally important for negotiation: there are some bids which are
not acceptable for the agent or are too optimistic to be an outcome of the negotiation.
In effect, it is possible to indicate an expected region of utility of the outcome. Sec-
ond, in real life cases a profile can be modeled by utility functions that are far from
“wild”; they have a structure that is far from random. This paper proposes weighted
averaging as a method to approximate complex utility functions with simpler func-
tions that is based on these observations. Furthermore, the method provides a way to
check the adequacy of the approximation by a measure of the introduced error.

The paper is organized as follows. The next section provides a formal definition of
utility spaces containing interdependencies between issues. Section 3 describes the
approximation method for eliminating such dependencies. A leading case study is
used throughout the paper to illustrate the method. The theme of Section 4 is the
analysis of the approximation with respect to the original utility space in the same
negotiation setup. Section 5 summarizes the paper with conclusions about the pro-
posed approximation method.

2 Utility of Interdependent Issues

The overall utility of a set of independent issues can be computed as a weighted sum
of the values associated with each of the separate issues. As is common (see e.g.
[4,8]), an evaluation function is associated with each issue variable and the utility of a
bid then is computed by the following weighted sum of the issue evaluation functions:

)()(),(22211121 xevwxevwxxu += (1)

In equation (1), the (weighted) contribution of each issue to the overall utility only
depends on the value associated with that issue and the contribution of a single issue
can be modeled independently from any other issues. Evaluation functions for inde-
pendent issues thus have the same properties as the utility function associated with the
bids that consist of multiple issues: it maps issue values on a closed interval [0; 1].

 Eliminating Interdependencies Between Issues for Multi-issue Negotiation 303

This setup can be used for issue values that are numeric (e.g., price, time) as well as
for issue values taken from ordered, discrete sets (e.g., colors, brands).

Bid utility functions that are weighted sums of the contribution of single issue val-
ues to the overall utility cannot be used, however, for modeling dependencies between
issues. The value of one issue may depend on that of another, thus influencing the
utility of a bid that includes both issues. For two issues, dependencies between these
issues give rise to a generalization of equation (1) to:

),(),(),(2122211121 xxevwxxevwxxu += (2)

It is easy to generalize (2) to more than two issues. In that case, dependencies be-
tween selected subsets of issues instead of all issues may have to be considered.

As an illustrative example of dependent issues, in this paper, we consider the nego-
tiation of an employment contract where two important issues are at stake: the number
of days that have to be worked and the number of days that childcare will be provided
by an employer. In the example, the candidate employee additionally has to take into
account a dependency between these two issues: working time (issue variable x1)
needs to be balanced with the time s/he needs to spend with his/her child (issue vari-
able x2). Assuming that the partner of the candidate is working too and can take re-
sponsibility for only part of the childcare, the candidate has promised that s/he will
take care of the child for at least 2 days, either by taking care in person, or by finding
professional childcare. Thus the child care issue is really important and in case the
employer proposes a contract for 5 days our candidate will try to negotiate a result
which includes at least 2 days of childcare. In terms of utility, bids with 5 working
days and less than 2 days of childcare have a low utility (e.g. u(5,0) 0.1, u(5,1) 0.5).
In case the employer proposes a contract for only 4 days, the candidate will need to
negotiate a result including only one day of childcare and a bid of 4 working days and
one day of childcare has an acceptable utility value associated with it (e.g.
u(4,0) 0.25, u(4,1) 0.55) though the candidate would prefer to work more. With
respect to bids of the employer that require the candidate to work 3 days or less, there
is no problem regarding the caretaking of the child. In that case, the childcare issue
has much less influence on the value of the bid (e.g. u(3,0) 0.35, u(3,1) 0.55. Even
in this relatively simple example, the values associated with each of the issues cannot
be modelled independently and overall utility cannot be calculated using equation (1).
The contribution of the childcare issue to overall utility depends on the number of
working days associated with the other issue and vice versa in a way that introduces
non-linear dependencies between the issues. Such non-linear dependencies can only
be modelled by equation (2). To make the example concrete, the candidate’s prefer-
ences are modelled using the following evaluation functions:

2
221

2
1211 028.003.001.0),(xxxxxxev ++= (3)

111.013.004.0),(2
221

2
1212 +−+−= xxxxxxev (4)

Figure 1 shows the utility space of the candidate employee defined by the evalua-
tion functions (3) and (4) and weights w1 = w2 = 0.5.

304 K. Hindriks, C.M. Jonker, and D. Tykhonov

0

1

2

3

4

5

0

0,9

1,8

2,7

0,0
0,2

0,4
0,6
0,8
1,0

w orking days

child care

0,800-1,000

0,600-0,800

0,400-0,600

0,200-0,400

0,000-0,200

Fig. 1. Utility space of the candidate employee with issue dependencies

The representation of a complex, interdependent utility space by evaluation func-
tions as in equation (2) is similar to the model proposed in [5]. In contrast with Klein
et all., who discuss binary issues only, however, we allow multi-valued, discrete, as
well as continuous issues. Even so, they show that the computational complexity of
searching through a utility space based on issue dependencies grows exponentially
and cannot be handled efficiently by either agent when the opponent’s utility function
is unknown. Such complex negotiations are most efficiently handled by revealing the
utility functions of the negotiating agents to a mediator that is trusted by both parties
(cf. [5]). Computationally simple and efficient approaches covered in [6] mostly rely
on the independence of issues to determine their next bid and are not applicable.1

3 A Method for Approximating Complex Utility Spaces

Due to the inherent computational complexity and the limited number of negotiation
strategies that can be used to handle issue dependencies in negotiations, it would be
beneficial to have methods that simplify the negotiation process of dependent issues
without using a mediator. One particularly interesting option is to investigate the
complexity of the utility space itself and try to eliminate the dependencies between
issues. In case issue dependencies can be eliminated, various alternatives for efficient
negotiation become available: Searching through the utility space of multi-issue bids
becomes feasible and negotiation strategies for independent issues can be applied.

In this section, a method based on weighted approximation is proposed to eliminate
issue dependencies. It uses an averaging technique in which some general observa-
tions about negotiation have been integrated and which can take available knowledge
about a negotiation domain into account. In particular, knowledge about the relative
importance of bids and about outcomes which reasonably can be expected are part of
the weighted averaging method.

1 As we discuss below, however, the approach can be adapted by using exhaustive search

through the utility space, but becomes intractable and in practice works only for small utility
spaces.

 Eliminating Interdependencies Between Issues for Multi-issue Negotiation 305

Although elimination of issue dependencies implies a loss of information and accu-
racy with regard to utility, it is shown in this paper that if the influence of one issue on
the associated value of another issue is “reasonable” (i.e., the utility space is not too
wild) a good approximation of the complex utility space can be obtained.

The averaging technique proposed in this paper for eliminating dependencies is
valid for utility spaces that have a certain “smooth” structure. The technique averages
the values of bids close to each other. Therefore, utilities should not fluctuate too
much from one bid to another within the proximity range set by the technique. In real
life, common negotiations, this limitation on the applicability of the method is not
seen as a problem considering that it is cognitively hard to make sense of wildly fluc-
tuating utility spaces. As an indication, we think that the techniques are applicable to
utility functions that can be modeled by polynomial functions of modest power. If the
nature of the utility space is not clear, the applicability of the proposed techniques has
to be tested for that case. A case study illustrates that the elimination of dependencies
does not result in significant changes of the negotiation outcome. Additionally, a
method for analyzing and assessing the difference between the original and approxi-
mated utility space is provided. This method analyze and assess the results can always
be applied to arbitrary utility spaces.

Our main objective thus is to find and present a method for transforming a utility
space u(x1,x2) based on dependent issues that can be represented by equation (2) to a
utility space u’(x1,x2) without such dependencies that can be represented by equation
(1). There exist various techniques to transform complex (utility) spaces with non-
linear functional dependencies between variables to spaces which are linear combina-
tions of functions in a single variable [13]. For our purposes, we are particularly inter-
ested in the linear separability of non-linear evaluation functions of dependent issues.
The main idea is to transform a utility space u(x1,x2) into an approximation u’(x1,x2)
of that space by approximating each of the evaluation functions evi(x1,x2) by a func-
tion ev’i(xi) in which the influence of the values of other issues xj, j i, on the associ-
ated value evi(x1,x2) have been eliminated. Mathematically, the idea is to “average
out” in a specific way the influence of other issues on a particular issue.

The weighted averaging method takes as input a utility space based on non-linear
issue dependencies (i.e. issues cannot be linearly separated2 and transforms it into a
utility space that can be defined as a weighted sum of evaluation functions of single
issues (i.e. issues are independent). The weighted averaging method consists of the
following steps:

1. As a first step, estimate the utility of an expected outcome that is reasonable
(given available knowledge). This estimate is called the “m-point” and is used
to define a region of utility space where the actual outcome is expected to be.

2. Select a type of weighting function. The selection of a weighting function is
based on the amount of uncertainty about the estimated m-point (expected out-
come) in the previous step.

2 In geometry, when two sets of points in a two-dimensional graph can be completely

separated by a single line, they are said to be linearly separable. In general, two groups are
linearly separable in n-dimensional space if they can be separated by an n − 1 dimensional
hyperplane.

306 K. Hindriks, C.M. Jonker, and D. Tykhonov

3. Calculate an approximation of the original utility space based on non-linear is-
sue dependencies using the m-point and the weighting function determined in
the previous step. The result of this step is a utility space that can be defined as
a weighted sum of evaluations of independent issues (a function of the form of
equation (1)).3

4. Perform an analysis of the difference of the original and approximated utility
space by means of a -function to assess the range of the error for any given
utility level. In this final step, based on the assessment, thresholds for breaking
off the negotiation or accepting opponent’s bids can be reconsidered.

Finally, the results of the approximation method can be used in combination with a
particular negotiation strategy. In section 4, we study the results of using an approxi-
mated utility space for the child care example in a negotiation strategy and compare
the results with an approach based on the original utility space. The sections below
explain each of the steps in more detail and illustrate how these steps achieve the
objective of eliminating issue dependencies.

3.1 Estimate an Expected Outcome

Any approach based on using uniform arithmetical averaging methods has the effect
of discarding information uniformly. Such an approach does not take the final goal of
negotiation into consideration: the negotiation outcome. A uniform averaging method
is indifferent to the fact that even before negotiation starts it can be assumed that
certain regions of the utility space are more relevant to the negotiation than others.
Some general observations about the structure of utility spaces that can be associated
with negotiations taken from actual practice provide additional insight that can be
used to increase the effectiveness of an approximation technique.

Consider, to make clear what we mean, a worst case scenario in which two agents
A and B associate completely opposite utilities with bids. In other words, what is
valuable for agent A is of no value for agent B. Formally, we can express this opposi-
tion in terms of utility functions as follows:

() ()2121 ,1, xxuxxu BA −= (5)

Given these utility functions, it is easy to see that the Nash product is 0.25 with as-
sociated utility values uA(x1,x2)=uB(x1,x2)=0.5 and the same point within the utility
space is an efficient negotiation outcome when using Kalai-Smorodinsky criteria, that
is, a Pareto-optimal outcome with equal utilities for both parties. Assuming such op-
posite interests, none of the agents would accept a bid which has a utility below 0.5.

Typically, however, negotiations do not fit such worst case scenarios and there is
something to gain for both parties. Formally, this means that there exist acceptable
negotiation outcomes, i.e. bids, with associated utilities that are higher than 0.5. In
such cases, the utility spaces of the negotiating opponents are not completely opposite
as expressed by (11). This line of reasoning makes clear that in general we may as-

3 In the more general case of more than two issues, an evaluation function may depend on

more than two issues and one of those issues has to be selected to be separated from the other
issues.

 Eliminating Interdependencies Between Issues for Multi-issue Negotiation 307

sume that the expected outcome of the negotiation is located somewhere in the open
utility interval (0.5; 1) and this region in the utility space is generally of more impor-
tance in a negotiation.

It follows from the previous considerations that some regions within the utility
space are more important for obtaining a good negotiation outcome than others and in
the approximation method proposed should be approximated as good as is possible.
As a first step to identify these regions, an agent can estimate an expected outcome
which would identify with some probability one of the more relevant points in the
utility space. We call this point the “m-point”.

An agent will be able to estimate an expected outcome with reasonable exactness
only if it has some knowledge about the opponent’s profile. In that case, as we illus-
trate below, the m-point can be computed in two steps. But even if an agent lacks
any information whatsoever about its opponent an m-point can be based on consid-
erations of the agent’s own utility space. In the latter case, we propose that the m-
point can be identified with the average of the break-off point (an agent breaks off a
negotiation in case any utility with a lower utility is proposed) and the maximum
utility in the utility space. In the childcare example, the break-off point equals 0.37,
which is equal to the minimum utility that still satisfies the candidate employee’s
childcare constraint.

A second, more informed method to determine an expected outcome can be used
when the agent does have some information, e.g. based on previous experience, con-
cerning the opponent’s profile. In the childcare example, assuming that the employer
will take the child care request seriously into consideration, but will try to minimize
his contribution in this regard, bids with 1-2 child care days are reasonable to expect.
Additionally, it may be more or less certain that the employer prefers the employee to
work as much as possible and that these issues are independent from the other. Then,
as an estimated model of the opponent’s profile, the following evaluation functions
can be used, which, using equal weights of .5, specified by:

() 5111 xxev = (6)

() () 33 222 xxev −= (7)

An estimate of the expected outcome can now be computed from the agent’s own
utility space and the educated guess of the opponent’s utility space using Kalai-
Smorodinsky criteria, which ensures that a Pareto-optimal outcome is selected and the
expected outcome is not strongly biased in favour of either one of the parties (see
figure 8). Calculating the utility in our example yields m=0.74. This estimate may still
be quite uncertain, but we will discuss this issue more extensively below. The esti-
mated outcome only defines one parameter of the approach.

3.2 Select Weighting Function

As discussed above, not all points within the utility space are equally important for
obtaining a good negotiation outcome. To take into account the relative importance of
certain regions within the utility space, we introduce a weighting function associating
a weight with each point (its “importance”) in the utility space. In general, there are

308 K. Hindriks, C.M. Jonker, and D. Tykhonov

two useful considerations that can be made which provide clues for constructing an
appropriate weighting function.

The first consideration is that a certain range of utility values are of particular in-
terest in the negotiation. Also, certain bids may be more “appropriate” than others in a
negotiation. As an example, bids with utility values below a break-off point are less
significant than other bids and do not have to be approximated as well as others. In
the childcare example, provided with the relevant domain knowledge, it is moreover
unreasonable for our candidate employee to propose to do no work and at the same
time to request 5 childcare days.

The first consideration concerning the approximation of the utility space can be
given a formal interpretation by associating the highest weight with the expected
outcome (the “m-point” identified above, located within the (0.5;1) interval).

The second consideration is the fact that an agent may be more or less uncertain
about its estimate of the utility of the negotiation outcome. To take this into ac-
count, we propose to use two different functions depending on the level of uncer-
tainty that the agent has about the estimate of the m-parameter. In case the agent
does not have information about the opponent, nor any past experience with the
particular negotiation domain and is quite uncertain about the most probable out-
come, a relatively broad range of utility values around the expected outcome should
be assigned a high weight. As a consequence, bids in a rather wide neighborhood of
the m-point are equally important for the negotiation and only extreme points (with
utilities close to one or zero) do not have to be approximated very accurately. Given
a relatively large uncertainty, we propose to use a polynomial function of the sec-
ond order, which is rather flat near the m-point and declines closer to the extreme
utilities (see figure 2a). The corresponding weighting function then can be com-
puted as follows:

()),(
1

),(
2

, 21
2

22121 xxu
m

xxu
m

xx −=ψ (8)

In the case the agent is reasonably certain about the estimate, for example, when
the most probable region of the negotiation outcome is well defined on the basis of
domain knowledge, knowledge about the opponent or experience gained in previous
negotiations, a weighting function with a stronger differentiation of utilities values
can be used. In that case, a Gaussian function that is defined in terms of a maximum
point m and spread can be used that assigns high weights only to bids with a utility
close to the expected outcome m (see figure 2b):

()
()

2

2
21),(

21, σψ
mxxu

exx
−−

=
(9)

The spread parameter provides an indication of the agent’s certainty about expected
outcome. In both cases, the m-parameter represents the expected outcome and is a
point in the interval (0.5; 1); assigns the m-point the maximal weight of 1.0.

 Eliminating Interdependencies Between Issues for Multi-issue Negotiation 309

0.2 0.4 0.6 0.8 1
utility value

0.2

0.4

0.6

0.8

1

weight

A

0.2 0.4 0.6 0.8 1
utility value

0.2

0.4

0.6

0.8

1

weight

b

Fig. 2. Example of function for m=0.74

In our example, an educated guess of the opponent’s profile could be made and
therefore a Gaussian weighting function is selected and a value for the “spread”
needs to be determined. To this end, we use the 3 rule (or “Empirical rule”), which
says that (most likely) 99,7% of all outcomes will be in the interval (m -3 ,m +3),
which gives us =(0.37+0,74)/(2*3) = 0,19.

3.3 Compute Approximation of Utility Space

Using the weighting function a weighted approximation technique can be defined.
The weighted approximation technique proposed here first multiplies each evaluation
value with its corresponding weight and then averages the resulting space by integra-
tion. In the equation below, a function is introduced instead of since the weight-
ing must be normalized over the interval of integration. The range of integration is
identical to the range of the integrated issue.4

() ()=′
2

1

2212121),(,
ξ

ξ

ω dxxxevxxxve ii (10)

Formally, the weighting function is defined by:

() =
2

1

221

21
212

),(

),(
, ξ

ξ

ψ

ψω
dxxx

xx
xx

(11)

So far we have been assuming a negotiation with only two issues. It is not difficult,
however, to generalize the approximation technique to arbitrary numbers of issues. In
case a negotiation involves N issues with interdependencies between these issues, and

4 If the issue has discrete values, integration simply means summation over all these values.

310 K. Hindriks, C.M. Jonker, and D. Tykhonov

evaluation functions evi(x1,x2,…,xN) for the ith issue are given, equation 14 general-
izes to the equation below:

() () ()=′
V

NNiii dVxxxevxxxxve ,..,,,..,, 2121ω (12)

Here V is a volume of N-1 dimensionality build on the dimensions {x1,x2,…,xi-

1,xi+1,…,xN}. Of course, not all issues have to depend on all others. The approxima-
tion technique can be applied sequentially for each evaluation function in the negotia-
tion setup, which involves dependencies between issues.

As an illustration, we apply the weighted averaging technique to our employment
contract negotiation. Figure 4 shows the -functions for the original utility space
using a polynomial function (8) for the left chart and a Gaussian function (9) for the
right one. The flat section in the middle of the left chart represents a rather wide
neighborhood of the m-point: this corresponds to the expected outcome and weights
in its neighborhood are high. Outside this region the weighting function slowly de-
clines to zero. For the Gaussian function (right chart) we obtain a different picture: the
function has high values (close to 1) for the small band of bids with utility values
close to the m-point and declines rapidly for the remainder of the utility space.

0

0.25

0.5

0.75

1

working days

0

0.25

0.5

0.75

1

child care

0.6
0.7
0.8
0.9
1

0

0.25

0.5

0.75

1

working days

a

0
20

40
60

80

100

working days

0

20

40

60

80

100

child care

0
0.25

0.5

0.75

1

0
20

40
60

80

100

working days

b

Fig. 3. Examples of -functions for the employee’s utility space: (a) polynomial function with
m=0.74; (b) Gaussian function with m=0.74 and =0.19

We apply expressions (10) and (11) to the evaluation functions of our employment
contract negotiation example to derive an approximated utility space without interde-
pendencies from the original utility space. Figure 5 shows the utility spaces obtained
by approximation with a polynomial weighting function (a) and a Gaussian weighting
function (b).

The utility spaces obtained by approximation with the polynomial and Gaussian
weighting functions have a similar structure. However, the Gaussian weighting func-
tion due to its stronger utility discrimination power makes it more precise in the vicin-
ity of the m-point. This is explained in more detail in the next section.

 Eliminating Interdependencies Between Issues for Multi-issue Negotiation 311

0

1

2

3

4

5

0

0,9

1,8

2,7

0,00
0,20
0,40
0,60
0,80

1,00

w orking days

child care

0,80-1,00

0,60-0,80

0,40-0,60

0,20-0,40

0,00-0,20

a

0

1

2

3

4

5

0

0,9

1,8

2,7

0,00
0,20
0,40
0,60
0,80

1,00

working days

child care

0,80-1,00

0,60-0,80

0,40-0,60

0,20-0,40

0,00-0,20

b

Fig. 4. The approximation by (a) the weighted averaging method using a polynomial weighting
function with m=0.74 and (b) the Gaussian weighting function with m=0.74, sigma=0.19

3.4 Analyze Difference with Original Utility Space

The technique presented approximates the original utility space and consequently,
introduces an error in the utility associated with bids. To obtain a measure for the
distance of the values of bids in the original utility space compared to the bids in the
approximated utility space, a difference function δ can be defined as follows:

),(),(),(212121 xxuxxuxx ′−=δ (13)

As is to be expected, the δ-values for the approximation using the Gaussian
weighting function shift the utility considerably for some bids. For certain bids in the
childcare example, the difference is almost 0.5. However, this only is the case for bids
that are unreasonable and are not relevant for reaching a negotiation outcome. In
particular, this shift in utility occurs for bids that involve more days of child care than
working days. Approximations of the utility of bids that are close to the m-point are
very good and close to zero.

To see the effect of the weighted averaging method near the m-point we take a sec-
tion in the original utility space for the m-point (m=0.74 for our negotiation example).
By fixing the utility to 0.74, an expression can be obtained for the value of one of the
issues as a function of another one:

() ()2121 74.0, xfxxxu == (14)

The function thus obtained can be substituted into the expression of the delta func-
tion (10). This provides us with the values of δ for a fixed utility as a function of only
one of the issues, and can be obtained for other utility values in a similar way.

The δ-values obtained by weighted averaging with the polynomial weighting func-
tion and the Gaussian weighting function for utility equal to 0.74 are rather small for
both (see Figure 6b), but weighted averaging with a Gaussian function produces
smaller approximation errors: it is almost twice as good. For bids with utilities of 0.9
the δ-values (see Figure 6c) rise in comparison with that of 0.7, however, the Gaus-
sian weighting function still gives a better result. For bids with a utility of 0.5 (see
Figure 6a) the δ-values are quite similar.

312 K. Hindriks, C.M. Jonker, and D. Tykhonov

20 40 60 80 100
working days

-0.125

-0.1

-0.075

-0.05

-0.025

0.025

delta

a

70 80 90 100
working days

-0.2

-0.1

0.1

0.2

delta

b

Fig. 5. Graphs depicting values of the δ functions for utility equal to (a) - 0.5, (b) – 0.7 in the
original space based on a polynomial weighting function (solid line), and a Gaussian weighting
function (dashed line).

0,0

0,2

0,4

0,6

0,8

1,0

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

working days

original,child care = 0 days
original, child care = 3 days
averaged, child care = 3 days

a

0,0

0,2

0,4

0,6

0,8

1,0

0 0,3 0,6 0,9 1,2 1,5 1,8 2,1 2,4 2,7 3

child care

original,w ork = 0 days
original,w ork = 5 days
averaged, child care = 3 days

b

Fig. 6. Original and averaged utility values running through maximum δ-point

In figure 7, a worst case analysis is illustrated. It presents the utilities for extreme
values of childcare (figure 7a) and for the number of working days (figure 7b) that run
through the maximum δ-value, corresponding to the bid with 0 working days and 3
days of childcare. It shows that the evaluation function associated with 0 days of child
care (0 working days) is almost mirrored with respect to the evaluation function asso-
ciated with 3 days of child care (5 working days). In effect, this shows that our child
care example presents a serious test for our approximation method that somehow has
to average these differences.

4 Case Study

In this section, a particular negotiation strategy is used to study the bids that an agent
will offer during a negotiation using the original as well as the approximated utility

 Child
 care = 0 days

Child
care =
3 days

work = 0 days

work = 5 days

 Eliminating Interdependencies Between Issues for Multi-issue Negotiation 313

space. The negotiation strategy that an agent decides to use should not only fit the
agent’s personality profile and culture, its experience in general and the current do-
main and negotiation partner, but it also has to be applicable given the utility space.

A transformation of the utility space will have an effect on the negotiation process
as well as on the negotiation outcome. To assess the impact of the weighted averaging
approximation method, a negotiation strategy is applied to the employment contract
example. Here, we use the ABMP-strategy proposed by Jonker and Treur [4].

The ABMP-strategy determines a bid in two steps: the strategy first (a) determines
the target utility for the next bid, and then (b) determines a bid that has that target
utility. The (b) part of the strategy is very efficient for independent utility spaces. For
the purpose of comparison, however, we can use exhaustive search through the com-
plete utility space to find a bid in the second step, provided that the space is discre-
tized in a suitable manner (using small enough steps). In this way, the first step (a) in
the ABMP-strategy followed by the second step (b) using exhaustive search can be
applied to the original utility space whereas the original ABMP strategy can be ap-
plied to its approximation.

An additional check is incorporated into the strategy when the approximated utility
space is used to avoid the risk of accepting bids with low utilities in the original space
that have much higher utilities in the approximated space. The bids with high δ-
values, that have shifted significantly due to application of the averaging method, can
be filtered out in this additional step. The check applies both to a received bid as well
as to the computation of a proposal for a new bid. When the agent receives a bid from
its opponent, the agent has to calculate the associated original utility as well and com-
pare it with the bid acceptance threshold. When a new bid is send to the opponent, the
agent also has to check the associated utility in the original space to ensure that the
bid is not worse than the current utility acceptance level. If the bid does not satisfy
this condition, then agent has to find an alternative bid with the same utility value but
with different issue values. These new values can be selected by systematically going
through the bid space using (variants of) equation (12). This procedure guarantees that
the agent will never propose or accept a bid which has a very low utility in the origi-
nal utility space.

This additional check is computationally cheap, involving only a simple calcula-
tion using the original utility equations. Still, the computational costs may increase
again since an agent may repeatedly need to find new bids that are acceptable. The
probability of finding an appropriate bid, however, is high in regions close to the m-
point. Adding a check thus still results in significant reduction of the computational
costs compared with exhaustive search.

In our experiments, the same profile of the employer was used in the original as
well as in the approximated case.

Figure 8a shows the outcome space build up out of the utilities of the employer and
employee per bid. Each point on the chart represents one bid. The coordinates of the
bid are the utilities of the opponents (x-coordinate is the employer’s utility of the bid,
y-coordinate is the employee’s utility of the bid). The Nash product, see e.g., [8],
representing a bid with the highest utilities simultaneously for both opponents of the
original utility space equals 0.53 and corresponds to a bid of 5 working days with 2.5
days of childcare, which satisfies the employee’s constraints. The Kalai-Smorodinsky
solution is 1.5 days of child care and 5 working days. This bid is found by locating a

314 K. Hindriks, C.M. Jonker, and D. Tykhonov

bid on the Pareto-optimal frontier, which is closest to the line drawn from points with
utilities of (0; 0) to points with utilities (1; 1), see e.g., [8]. This bid represents a nego-
tiation outcome where both parties get the same utility. Using the ABMP strategy
with exhaustive search for both parties, the negotiation lasts 4 rounds (4 bids from
each side, the employer starts) and finishes when the employee accepts a bid of 2 days
of childcare with 4.5 working days.

Figure 8b presents the result using the original ABMP strategy for both parties,
where the profile of the employee has been approximated. The bids in the utility space
are now concentrated around the employees original and approximated utility level of
0.7 (the m-point) with some spread towards lower utilities. The Nash product shifts to
the bid of 5 working days and 1.5 days of childcare and the Kalai-Smorodinsky solu-
tion now is 4 working days and 1.5 days of childcare.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,0 0,2 0,4 0,6 0,8 1,0
employer

em
p

lo
ye

e

All possible bids
Employer's negotiation path
Employee's negotiation path
Pareto-optimal frontier
Kalai-Smorodinsky

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,0 0,2 0,4 0,6 0,8 1,0employer

em
p

lo
ye

e

All possible bids
Employer's negotiation path
Employee's negotiation path
Pareto-optimal frontier
Kalai-Smorodinsky

a b

Fig. 7. Outcome space, optimality criteria, and negotiation paths (a) for the original utility
space of the employee, and (b) for the approximated utility space of the employee

The original outcome space and the approximated one are significantly different.
However, the difference is not critical for the negotiation itself due to the fact that
most of the bids for which the difference is significant will not be used in a negotia-
tion and we basically aim for the efficient solutions (Kalai-Somorindinsky point, and
Nash Product). Also note that the bids are shifted only on the vertical axis (em-
ployee’s utility), because the employer’s profile remains the same.

The negotiation performed for the same setup but using the approximated em-
ployee’s utility space is also finished in 4 rounds as in the previous experiment and
also results in a deal of 4.5 working days and 2 days of childcare.

This example shows that the approximation procedure leads to some shifts in the
efficient outcomes of the negotiation with respect to Nash and Kalai-Smorodinski.
However, it also confirms that these bids and those around them preserve their mean-
ing for the negotiator. Negotiation outcomes for both utility spaces are rather close
even though the negotiation paths are different.

Nash
product

Nash
product

Nash Product
of the original
utility space

 Eliminating Interdependencies Between Issues for Multi-issue Negotiation 315

5 Conclusion

In this paper we introduced a new approach that allows agents to deal with complex
utility functions in a negotiation environment with interdependent issues. Instead of
representing the negotiation task as an optimization task for interdependent issues we
propose an approximation method to simplify the agent’s utility using the observation
that in common negotiation settings the expected negotiation outcome is approxi-
mately known and the insight that the nature of utility spaces for such common nego-
tiation settings has enough structure to make our approach applicable. The method
provides a means to analyze the impact of the approximation on a particular utility
space, thereby making it possible to determine up front, whether or not the approxi-
mation is useful in any particular domain.

The main advantage of the proposed method is that it enables applicability of a
wider range of computational negotiation strategies without introducing a mediator
into the negotiation. Available information about the domain and the most probable
negotiation outcome can be used to increase the accuracy of the method in the utility
area around the expected outcome, which is most important for the negotiation. The
additional check that compares the utility of exchanged bids with the utility of the
original utility space during a negotiation prevents an agent from accepting low-utility
bids in the original space with a high δ (error) in the approximated space. This check
in itself is computationally cheap and ensures reasonable negotiation performance.

Robu at al. in [9] propose a graph-based technique to learn complex opponent’s
profiles. The authors propose an algorithm of exponential computational complexity
for searching through a learned utility space of the opponent. The main interest in [9],
however, is the scalability of a model for representing an opponent’s profile which is
different from the approach proposed here to simplify an agent’s profile.

In future research, we want to identify in more detail which classes of utility func-
tions can be approximated by weighted averaging sufficiently accurate. Another inter-
esting direction for research would be a modeling experiment with humans, to gain a
better understanding of the nature of the complexity of human preferences and the
ways in which humans simplify the negotiation task.

References

[1] Bar-Yam, Y., (1997). Dynamics of complex systems. Reading, Mass., Addison-Wesley.
[2] Barbuceanu, M., Lo, W.K., (2001), Multi-attribute Utility Theoretic Negotiation for Elec-

tronic Commerce. In: Dignum, F, and Cortés, U., (eds.), Agent-Mediated Electronic Com-
merce III, Lecture Notes in Computer Science, Vol. 2003, Springer – Verlag, pp.15-30.

[3] Binmore, K., (1992), Fun and Games: A Text on Game Theory, D.C. Heath and Com-
pany, Lexington.

[4] Jonker, C.M., Treur, J., An Agent Architecture for Multi-Attribute Negotiation. In: B.
Nebel (ed.), Proceedings of the 17th International Joint Conference on AI, IJCAI'01,
2001, pp. 1195 – 1201.

[5] Klein, M., Faratin, P., Sayama, H., and Bar-Yam, Y., (2002), Negotiating Complex Con-
tracts. In: Autonomous Agents and Multi-Agent Systems, Bologna, Italy: AAAI Press.
Paper 125 of the Center for eBusines@MIT. http://ebusiness.mit.edu.

316 K. Hindriks, C.M. Jonker, and D. Tykhonov

[6] Lai, G., Li, C., Sycara, K., and Giampapa, J., (2004). Literature Review on Multi-
attribute Negotiations. Technical Report CMU-RI-TR-04-66, Cornegie Mellon Univer-
sity, Robotics Institute.

[7] Pruitt, D.G., (1981), Negotiation Behavior, Academic Press.
[8] Raiffa, H., Richardson, J., and Metcalfe, D., (2002). Negotiation Analysis: The Science

and Art of Collaborative Decision Making, Cambridge, MA: Belknap Press of Harvard
University Press.

[9] Robu, V., Somefun, D.J.A., La Poutre, J.A., (2005). Complex Multi-Issue Negotiations
Using Utility Graphs, Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS’05), Utrecht, The Netherlands,
July 2005, pp. 280-287.

[10] Rosenschein, J.S., and Zlotkin, G., (1994). Rules of Encounter: Designing Conventions
for Automated Negotiation Among Computers. MIT Press.

[11] Sierra, C., Faratin, P., and Jennings, N.R., (1997), A service-oriented negotiation model
between autonomous agents. In: Boman, M., and Velde, W. van de (eds), Multi-Agent
Rationality: Proceedings of the 8th European Workshop on Modelling Autonomous
Agents in Multi-Agent World, MAAMAW’97, Lecture Notes in Artificial Intelligence,
Vol.1237, Springer-Verlag, pp. 17 – 35.

[12] Thompson, Leigh, (2000), The Mind and Heart of the Negotiator, Prentice-Hall.
[13] Wang, I-J., Chong, E. K. P., Kulkarni, S. R., (1996), Weighted Averaging and Stochastic

Approximation, Proceeding of the 35th Conference on Decision and Control, Kobe, Ja-
pan, December 1996, pp. 1071-1076.

The Distortion of Cardinal Preferences in Voting

Ariel D. Procaccia and Jeffrey S. Rosenschein

School of Engineering and Computer Science
Hebrew University, Jerusalem, Israel

{arielpro, jeff}@cs.huji.ac.il

Abstract. The theoretical guarantees provided by voting have distinguished it
as a prominent method of preference aggregation among autonomous agents.
However, unlike humans, agents usually assign each candidate an exact utility,
whereas an election is resolved based solely on each voter’s linear ordering of
candidates. In essence, the agents’ cardinal (utility-based) preferences are em-
bedded into the space of ordinal preferences. This often gives rise to a distortion
in the preferences, and hence in the social welfare of the outcome.

In this paper, we formally define and analyze the concept of distortion. We
fully characterize the distortion under different restrictions imposed on agents’
cardinal preferences; both possibility and strong impossibility results are estab-
lished. We also tackle some computational aspects of calculating the distortion.
Ultimately, we argue that, whenever voting is applied in a multiagent system,
distortion must be a pivotal consideration.

1 Introduction

Social choice mechanisms have long been in the service of computer-scientists, a tool in
the quest to reach consensus among agents. The problem is especially acute, as multiple
heterogeneous, self-interested agents may (and often do) have conflicting preferences.
Voting is a well-studied and well-understood method of preference aggregation, with
numerous applications in multiagent systems. In practice, an election is held, and the
winning candidate is declared to be the agreed choice; the candidates can be beliefs,
joint plans [7], schedules [9], movies [8], or indeed entities of almost any conceivable
sort.

A social choice function, also known as a voting protocol, is used to determine the
winner of an election. The agents specify their preferences by reporting a linear order
relation on the candidates. Such ordinal preferences are only natural when the voters are
humans; a human might prefer, say, Ehud Olmert to Benjamin Netanyahu as the prime
minister of Israel, but would probably find it impossible to evaluate each candidate
precisely in terms of utility.

For computational agents, on the other hand, calculating utilities is a way of (ar-
tificial) life. In fact, even in settings where voting is used, it is usually assumed that
agents compute the utility of each alternative. For instance, Ghosh et al. [8] describe
a movie recommender system that relies on voting; with the guarantees provided by
voting schemes, the system is able to generate convincing explanations for different
recommendations, and is robust to small errors in the evaluation of the user’s prefer-
ences. Aspects of these preferences are represented as dimensions, and every movie has

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 317–331, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

318 A.D. Procaccia and J.S. Rosenschein

a value (or utility) with respect to each dimension. The exact utilities are not taken into
account: one movie is preferred over another with respect to a dimension if the former’s
utility is greater than the latter’s.

So in some settings, designers of multiagent systems do away with exact cardinal
(utility-based) preferences in order to exploit different properties of voting. Essentially,
the cardinal preferences of agents are embedded into the space of ordinal preferences
over candidates, in a way somewhat reminiscent of embeddings of metric spaces [10].
This embedding of preferences entails a degree of distortion, which depends on the
properties of the social choice function used in the election.

Informally, we define the distortion of a social choice function to be the maximal
ratio between the total utility of the candidate that maximizes social welfare, and the
total utility of the candidate that is elected. The maximum is taken over all possible
cardinal preference profiles, subject to certain restrictions.

We first explore distortion when the only restriction imposed on cardinal preferences
is that all voters have the same sum of utilities for candidates. We establish some strong
impossibility results regarding the degree of distortion in this model. Further, we show
that these results also hold in an alternative model, where utilities are not constrained,
but weighted voting is used. Another impossibility result is computational in nature: we
prove that a decision problem associated with the computation of distortion isNP-hard.1

The impossibility results mentioned above suggest that distortion is an obstacle that
should be taken into account when applying voting in multiagent systems. Nevertheless,
they motivate us to examine a model where the preferences of users are more restricted;
in this context, we reformulate distortion as misrepresentation. We examine the mis-
representation of different well-known social choice functions. In addition, we analyze
complexity issues related to calculating misrepresentation.

The paper proceeds as follows. In Section 2 we review some relevant issues in so-
cial choice theory. In Section 3, we put forward results concerning the distortion of
social choice functions in models where preferences are little constrained. In Section 4,
we examine the more specific setting of misrepresentation, especially with respect to
important social choice functions. Finally, we give our conclusions in Section 5.

2 Preliminaries

In this section we give a brief introduction to classic social choice theory. Readers are
urged to consult [3] for more information.

Let N be the set of voters, |N | = n, and let C be the set of candidates, |C| = m;
we assume that n ≥ 2 and m ≥ 3, unless explicitly stated otherwise. We usually use
the index i to refer to voters, and the index j to refer to candidates. When we discuss
attributes of voters or candidates, the index of a voter usually appears in superscript,
whereas the index of a candidate appears in subscript.

Let L be the set of all linear orders2 on C. Each voter has ordinal preferences�i∈ L.
We refer to �= 〈�1, . . . ,�n〉 ∈ LN as an ordinal preference profile.

1 Many recent articles have explored other computational aspects of voting; see for exam-
ple [5,6,12,2].

2 Binary relations that satisfy antisymmetry, transitivity, and totality.

The Distortion of Cardinal Preferences in Voting 319

Given �i, let j1, . . . , jm be indices of candidates such that j1 �i j2 �i · · · �i jm;
we denote by pi

l the candidate that voter i ranks in the l’th place, i.e., pi
l = jl. We denote

by lij the position in which candidate j is ranked by voter i; it holds that pi
lij

= j.

2.1 Social Choice Functions

A social choice function, also known as a voting protocol,3 is a function F : LN → C,
i.e., a mapping from preferences of voters to candidates. We shall consider the following
voting protocols:

– Scoring protocols are defined by a vector α = 〈α1, . . . , αm〉.4 Given �∈ LN ,
the score of candidate j is sj =

∑
i αlij

. The candidate who wins the election is

F (�) = argmaxjsj . Some of the well-known scoring protocols are:
• Borda: α = 〈m− 1, m− 2, . . . , 0〉.
• Plurality: α = 〈1, 0, . . . , 0〉.
• Veto: α = 〈1, . . . , 1, 0〉.

Some of our results (in particular regarding complexity) concentrate on scoring
protocols, as these voting protocols can be concisely represented by the vector α.

– Copeland: we say that candidate j beats j′ in a pairwise election if |{i ∈ N : lij <

lij′}| > n/2. The score sj of candidate j is the number of candidates that j beats in
pairwise elections, and Copeland(�) = argmaxjsj .

– Maximin: the maximin score of candidate j is the candidate’s worst performance
in a pairwise election: sj = minj′ |{i ∈ N : lij < lij′}|, and Maximin(�) =
argmaxjsj .

– Single Transferable Vote (STV): the election proceeds in rounds (a total of m − 1
rounds); in each round, the candidate with the fewest votes ranking him first among
the remaining candidates is eliminated.

– Plurality with Runoff : similar to STV, but there are only two rounds. After the first
round, only the two candidates that maximize |{i ∈ N : lij = 1}| survive. In the
second round, a pairwise election is held between these two candidates.

– Bucklin: for any candidate j and l ∈ {1, . . . , m}, let Bj,l = {i ∈ N : lij ≤ l}. It
holds that Bucklin(�) = argminj(min{l : |Bj,l| > n/2}).

It is also to possible to consider weighted voting. A voter i with weight K and pref-
erences �i is taken into account as K voters, each with preferences�i.

2.2 Properties of Social Choice Functions

In this subsection we formulate several criteria that are commonly used to compare
social choice functions.

– Majority criterion: [∃j ∈ C s.t. |{i ∈ N : lij = 1}| > n/2]⇒ F (�) = j.
– Participation: if F (�) = j and one adds a ballot that ranks j above j′, then the

winner is not j′ (it is better to vote honestly than not to vote at all).

3 We use the two terms interchangeably.
4 More formally, a scoring protocol is defined by a sequence of such vectors, one for each value

of m, but we abandon this formulation for clarity’s sake.

320 A.D. Procaccia and J.S. Rosenschein

– Monotonicity: If F (�) = j, and �′ is an ordinal preference profile where some of
the voters rank j higher compared to � (but none rank j lower), then F (�′) = j.

– Consistency: if the electorate is partitioned in two and a candidate wins in both
parts, then he wins overall.

3 Distortion of General Cardinal Preferences

Let U = (N ∪ {0})C be the set of all possible cardinal preferences on C. Each voter is
associated with preferences in U , ui = 〈ui

1, . . . , u
i
j〉, where ui

j ∈ N ∪ {0} is voter i’s
utility for candidate j; denote uj =

∑
i ui

j , and denote the cardinal preference profile
by u = 〈u1, . . . ,un〉 ∈ UN .

When voting is used to aggregate preferences, agents’ cardinal preferences are trans-
lated into ordinal preferences in the natural way.

Definition 1. Let u ∈ UN and �∈ LN . � is derived from u iff both of the following
conditions hold:

1. ∀i ∈ N, j1, j2 ∈ C : ui
j1

> ui
j2
⇒ j1 �i j2.

2. ∀i ∈ N, j1, j2 ∈ C : ui
j1

= ui
j2
⇒ j1 �i j2 ∨ j2 �i j1, but not both.

Definition 2. Let F be a social choice function. The distortion of F with n voters and
m candidates, denoted ∆n

m(F), is max maxj uj

uF (�)
, where the first maximum is taken over

all u ∈ UN and �∈ LN , under the restrictions that there exists K ∈ N such that for
all voters i,

∑
j ui

j = K ≥ 1, and � is derived from u. It is additionally assumed that
in case several candidates are tied in the election, the one that minimizes social welfare
is elected.5 If the denominator is 0 but the numerator is not 0, we write ∆n

m(F) = ∞,
where∞ > k for all k ∈ N.

Less formally, the distortion of F with n voters and m candidates is the worst-case
ratio between the utility of the candidate that maximizes social welfare and the winner
according to F , when one considers all possible cardinal preference profiles u with
fixed utility-sum for each voter, and derived ordinal preference profiles �.

Remark 1. Clearly, when one eschews the assumption that
∑

j ui
j = K for all i, it is

not possible to bound the distortion even when a small number of voters and candidates
is considered. For example, assume n = 3 and m = 2, and F is the plurality protocol.
Let u1

1 = c for some c > 2, u1
2 = 0, u2

1 = u3
1 = 0, u2

2 = u3
2 = 1. The derived ordinal

preference profile is 1 �1 2, 2 �2 1, 2 �3 1, therefore candidate 2 is chosen by the
plurality protocol. The distortion is c/2.

The following proposition is a strong impossibility result; it implies that no voting pro-
tocol is optimal in terms of distortion, even for very small values of n and m.

Proposition 1. Let F be a social choice function. Then ∆3
2(F) > 1.

5 This assumption is justified as we engage here in a worst-case analysis.

The Distortion of Cardinal Preferences in Voting 321

Proof. Consider the cardinal utility profile u1
1 = 3, u1

2 = 2, u2
1 = 0, u2

2 = 5, u3
1 = 3,

u3
2 = 2. The only derived ordinal preference profile is 1 �1 2, 2 �2 1, 1 �3 2. Since

u1 < u2, if F (�) = 1 then we are done. Otherwise, suppose F (�) = 2, and consider
the cardinal preference profile u1

1 = 5, u1
2 = 0, u2

1 = 0, u2
2 = 5, u3

1 = 5, u3
2 = 0.

Again, the only derived preference profile is �, but now u1 > u2. ��

Definition 3. Let F be a social choice function. We say that F has unbounded distortion
if there exists m ∈ N such that for all k ∈ N, ∆n

m(F) > k for infinitely many values
of n.

Proposition 2. Let F be a scoring protocol with

α2 ≥
1

m− 1

∑
l �=2

αl (1)

for some m. Then F has unbounded distortion.

Proof. Let n such that m− 1 divides n. Consider the profile u ∈ UN where for every
candidate j
= 1, exactly n/(m− 1) voters i have utility ui

j = 1 and ui
j′ = 0 for every

j′
= j. Let � be a derived ordinal preference profile; define for all

Pj,l = {i ∈ N : pi
l = j}.

It must hold that for all j
= 1, |Pj,1| = n/(m − 1). Moreover, it is possible to derive
an ordinal preference profile such that for all j
= 1 and l
= 2, |Pj,l| = n/(m − 1),
and with respect to candidate 1, |P1,2| = n. Without loss of generality, let � be such
a profile. The score of candidate 1 in this election is nα2, and the score of every other
candidate is n

m−1

∑
l �=2 αl. Further, it holds that u1 = 0, and uj = n/(m − 1) for

all j
= 1. By Equation (1) and the assumption that in case of a tie the candidate that
minimizes utility wins, it follows that candidate 1 wins the election, but for any other
candidate, say candidate 2, u2

u1
= n/(m−1)

0 . Thus, the distortion of F is unbounded. ��

It follows from Proposition 1 that in many reasonable scoring protocols, the distortion
is unbounded. In particular:

Corollary 1. The Borda and Veto Protocols have unbounded distortion.

3.1 An Alternative Model

So far, we have analyzed the distortion with respect to cardinal preference profiles that
satisfy, for all voters, i:

∑
j ui

j = K . If one allows for weighted voting, it is possible

to obtain a generalization of this model. Indeed, let Ki =
∑

j ui
j , possibly Ki
= Ki′

for i
= i′. However, when an election is held based on a derived ordinal preference
profile �, voter i has weight Ki. The definition of distortion can be reformulated in
the obvious way to apply to this model; we denote the worst-case ratio between the
candidate that maximizes utility and the one that wins the weighted election governed
by F , when different Ki are allowed, by ∆̃n

m(F).
The next proposition shows that the two models are equivalent with respect to dis-

tortion.

322 A.D. Procaccia and J.S. Rosenschein

Proposition 3. For all social choice functions F , n1 and m, ∆n1
m (F) ≤ ∆̃n1

m (F), and
there exists n2 ≥ n1 such that ∆̃n1

m (F) ≤ ∆n2
m (F).

Proof. For the first inequality, let n1, m ∈ N. Let u ∈ UN and �∈ LN that maximize,
in the first model, the ratio maxj uj

uF (�)
, subject to: for all i,

∑
j ui

j = K , and � is derived

from u. In the second model, F (�) is as before, since all voters have identical weights
in the election (K). Therefore maxj uj

uF (�)
in the second model is at least as large as in the

first.
Regarding the second inequality, let n1, m ∈ N, and let ũ ∈ UN and a derived

�̃ ∈ LN that maximize the ratio maxj uj

uF (�)
(with weighted voting). ũ may not be a valid

cardinal preference profile in the first model, but we construct a profile that is. Let
n2 =

∑
i Ki; for each one of the original voters ĩ = 1, . . . , n1, consider Ki voters i

whose utility is ui
j = ui

j ·
∏

i′ �=i Ki′
. Let K =

∏
i Ki; it holds that for all i,

∑
j ui

j = K ,
hence u is valid in the first model. Further, for every candidate j it holds that uj =

K · ũj . Notice that �̃i
can be derived from ui for every voter i that corresponds to

ĩ; denote the ordinal preference profile that is obtained by replicating �i Ki times,
once for each voter that corresponds to ĩ, by �. In the new election, we have Ki voters
casting identical ballots to the one cast by voter ĩ, and this voter had weight Ki in the
original election. Therefore, F (�̃) with weighted voting is identical to F (�) without.
To conclude, we have obtained that:

maxj uj

uF (�)
=

K maxj ũj

KũF (�̃)
=

maxj ũj

ũF (�̃)
. ��

Corollary 2. Let F be a social choice function. Then ∆̃3
2(F) > 1.

Corollary 3. Let F be a social choice function. F has unbounded distortion in the first
model iff F has unbounded distortion in the second model.

3.2 Complexity Issues

The existence of an algorithm that efficiently computes (or approximates) the distortion
of a given voting protocol is, clearly, a basic prerequisite for comparing voting protocols
in terms of distortion. As we shall see in Subsection 4.1, one of the building blocks of
such an algorithm is a procedure that efficiently decides the following problem:

Definition 4. In the MIN-SCORE-MAX-UTIL (MSMU) problem, we are given the
number of voters n, the number of candidates m, a scoring protocol F defined by
parameters α1, . . . , αm, for each voter i, a sequence of nonnegative integers bi =
〈bi

1, . . . , b
i
m〉, and y, z ∈ N. We are asked whether there are n permutations on C,

π1, . . . , πn, such that for the cardinal preference profile u defined by ui
j = bi

πi(j) and a
derived ordinal preference profile �, it holds that u1 ≥ y but s1 ≤ z.

To put it less formally, we are given a scoring protocol, and for each voter, a sequence
of m numbers. We know what the utilities of each voter are in general, but it is still

The Distortion of Cardinal Preferences in Voting 323

left to determine how each voter assigns these utilities to candidates. Essentially, this is
equivalent to choosing an ordinal preference relation for each voter, and then assigning
the maximal element in bi to pi

1, the second largest element to pi
2, etc. — and this is the

approach that will later become relevant.

Remark 2. It is not assumed here that
∑

l bi
l = K for all i.

Proposition 4. MSMU is NP-complete.

Proof. Reduction from KNAPSACK; omitted due to space constraints.

4 Misrepresentation

Impossibility results regarding the general model, manifested above as Propositions 1,
2, and (to a lesser degree) 4, motivate us to impose restrictions on agents’ possible
cardinal preference profiles. In this section, we examine a slight variation on the concept
of distortion that allows for possibility results.

Monroe [11] defines a measure of misrepresentation; using our notations, voter i’s
misrepresentation with respect to candidate j is µi

j = lij−1. To put it differently, if voter
i ranks candidate j first, then i’s misrepresentation w.r.t. to j is 0, the misrepresentation
w.r.t. the second highest-ranked candidate is 1, and so forth. The misrepresentation of
candidate j is µj =

∑
i µi

j .

Definition 5. Let F be a social choice function. The misrepresentation of F with n
voters and m candidates, denoted µn

m(F), is max µF (�)

minj µj
, where the maximum is taken

over all ordinal preference profiles�i and their associated misrepresentation values. If
several candidates are tied in an election, the one that maximizes misrepresentation is
elected.

Misrepresentation values can, of course, be interpreted as cardinal preferences (e.g.,
ui

j = m−µi
j −1), albeit restricted ones: a voter’s ordinal preference relation�i fixes a

(perfect) matching between candidates and the utilities 0, 1, . . . , m− 1.6 Consequently,
the misrepresentation of a social choice function F can be easily reformulated as distor-
tion. In fact, similar results can be obtained, but the latter formulation favors candidates
that are ranked last by few voters, whereas the former formulation rewards candidates
that are placed first by many voters.

When is misrepresentation an issue? The following scenario provides a compelling,
albeit somewhat artificial, example. Consider the meeting scheduling problem discussed
in [9]: scheduling agents schedule meetings on behalf of their associated users, based
on given user preferences; a winning schedule is decided in an election. Say three pos-
sible schedules are being voted on. These schedules, being fair, conflict with at most
two of the requirements specified by any user. In other words, a user’s misrepresenta-
tion with respect to a certain schedule is 0 if there are no conflicts, 1 if there is a single

6 Unlike the general model, in the current setting there is a unique derivation of misrepresenta-
tion values from ordinal preferences, and vice versa.

324 A.D. Procaccia and J.S. Rosenschein

conflict, and 2 if there are two conflicts.7 In this case, having no conflicts at all is vastly
superior to having at least one conflict, as even one conflict may prevent a user from
attending a meeting. As noted above, this issue is taken into account in the calculation
of misrepresentation — emphasis is placed on candidates that were often ranked first.

Proposition 1 stated that there is no social choice function with distortion 1. Clearly
this is not the case here:

Proposition 5. Let m ∈ N, and let F be a scoring protocol with parameters α1 ≥
α2 ≥ . . . ≥ αm. Then µn

m(F) = 1 for all n iff there exist a and b such that αl = −a·l+b
for all l = 1, . . . , m.

Proof. Assume first that there exist a and b such that αl = −a·l+b for all l = 1, . . . , m,
and let n ∈ N, �∈ LN . Candidate j’s score is:∑

i

αlij
=

∑
i

[−a · lij + b] =
∑

i

[−a(µi
j + 1) + b] = n[b− a]− a

∑
i

µi
j ,

so the candidate that maximizes the score is the one that minimizes misrepresentation.
In the other direction, assume there do not exist a and b such that αl = −a·l+b for all

l = 1, . . . , m. It follows that there exist l0, a and a′ such that a
= a′, and α1 − α2 = a
but α1 − αl0 = a′(l0 − 1), and a, a′ > 0.8 Assume w.l.o.g. that a > a′. Consider the
following ballot: n′ voters vote 2 �i 1 �i . . ., n′ − x voters rank 1 �i 2 �i . . ., and y
voters cast their ballots in a way that pi

1 = 1, pi
l0

= 2, for some x, y ∈ N (we have that
n = 2n′ − x + y). When comparing the scores of candidates 2 and 1, we have:

s2 − s1 = xa− ya′(l0 − 1). (2)

Further, it holds that:
µ2 − µ1 = −x + y(l0 − 1). (3)

It is sufficient to show that it is possible to make candidate 2 win the election, and
in particular guarantee that candidate 2’s score be higher than 1’s, but simultaneously
ensure that candidate 2’s misrepresentation be higher than 1’s. Indeed, by Equations (2)
and (3) both conditions are satisfied whenever

x

l0 − 1
< y <

a

a′ ·
x

l0 − 1
. (4)

Choosing x > 3(l0 − 1) a′
a−a′ , it is possible to choose y that satisfies Equation (4).

Moreover, it is clearly now possible to choose n′ large enough so as to guarantee that
candidate 2 wins the election, since for all candidates j
= 1, 2, there are at most y voters
such that pi

2 = j, and α1 > αl for all l
= 1. ��

Corollary 4. For all n, m, µn
m(Borda) = 1.

7 We implicitly assume that for each user there is one schedule with no conflicts, one with a
single conflict, and one with two conflicts.

8 It is safe to assume that a > 0 (and therefore a′ > 0), because if α1 = α2 then the result is
obvious.

The Distortion of Cardinal Preferences in Voting 325

Corollary 4 establishes the optimality of the Borda protocol in terms of misrepresen-
tation. Unfortunately, this protocol is notoriously easy to manipulate, and is plagued
by other disadvantages. Therefore, it is worthwhile to explore the misrepresentation of
other protocols.

The concept of unbounded misrepresentation can be defined analogously to Defini-
tion 3. In the framework of misrepresentation, we have the following proposition.

Proposition 6. Let F be a scoring protocol with parameters α1 ≥ α2 ≥ . . . ≥ αm.
Then F has unbounded misrepresentation iff α1 > α2.

Proof. Suppose first that α1 > α2. Let n, m ∈ N, �∈ LN , and assume w.l.o.g. that
argminjµj = 1 and F (�) = 2. Let k = |{i ∈ N : li1 = 1}| be the number of
voters that ranked candidate 1 first. The number of points candidate 2 received is at
most s2 ≤ (n − k)α1 + kα2, and the number of points candidate 1 received is at least
s1 ≥ kα1. We have:

(n− k)α1 + kα2 ≥ s2 ≥ s1 ≥ kα1.

Therefore, k ≤ n α1
2α1−α2

; this implies that µ1 ≥ n α1−α2
2α1−α2

. As µ2 ≤ n(m − 1), we
have that

µ2

µ1
≤ n(m− 1)

n α1−α2
2α1−α2

=
(m− 1)(2α1 − α2)

α1 − α2
.

For a fixed m, this expression is a constant, even as n grows.
In the other direction, suppose α1 = α2, and consider �∈ LN where for all voters

i, 1 �i 2 �i · · · . It holds that µ1 = 0, µ2 = n. We can assume w.l.o.g. that F (�) = 2,
since in case of a tie a candidate that maximizes misrepresentation is elected, hence
the winner must have misrepresentation at least as high as µ2. The proposition follows
from the fact that µ2

µ1
=∞. ��

Corollary 5. The Veto protocol has unbounded misrepresentation.

Remark 3. Corollary 5 implies that the Participation, Monotonicity, and Consistency
properties (even together) do not guarantee that a voting protocol has bounded misrep-
resentation, as the Veto protocol satisfies all three properties.

Proposition 7. For all n, m, µn
m(Plurality) = µn

m(Plurality with Runoff) = m− 1.

Proof. Omitted due to space constraints.

Proposition 8. For all n, m, µn
m(Copeland) ≤ m− 1.

Proof. Let �∈ LN ; w.l.o.g. suppose argminjuj = 1 and Copeland(�) = 2. Addi-
tionally, denote by C′ the set of candidates that candidate 2 beats in a pairwise elec-
tion, |C′| = k. For each candidate j ∈ C′, at least !n/2" voters have li2 < lij . Let
Ci = {j ∈ C : li2 < lij}; for all i, li2 = m− |Ci|. It holds that

∑
i |Ci| ≥ k!n/2", but

this implies that:

µ2 =
∑

i

µi
2 =

∑
i

(li2 − 1) =
∑

i

[(m− 1)− |Ci|] ≤ n(m− 1)− k!n/2".

326 A.D. Procaccia and J.S. Rosenschein

We distinguish two cases:

Case 1: k = m. In this case, candidate 1 has not won the pairwise election against
2, and thus there are at least !n/2" voters i such that li2 < li1. This implies that µ1 ≥
!n/2", and hence µ2

µ1
≤ n(m−1)−m�n/2�

�n/2� ≤ m− 2.
Case 2: k ≤ m− 1. Candidate 1 won at most k pairwise elections. In each pairwise

election that 1 did not win against candidate j, at least !n/2" voters voted lij < li1. By
the same reasoning as before, µ1 ≥ (m− k)!n/2". Therefore,

µ2

µ1
≤ n(m− 1)− k!n/2"

(m− k)!n/2" ≤ 2m− k − 2
m− k

. (5)

The ratio in Equation (5) on the right is monotonic increasing as a function of k when
1 ≤ k ≤ m− 1, and thus is bounded by m− 1. ��

Proposition 9. For all n, m, µn
m(Bucklin) ≤ m.

Proof. Let �∈ LN ; assume w.l.o.g. that argminjuj = 1, and Bucklin(�) = 2. Let
l0 = min{l ∈ {1, . . . , m} : ∃j s.t. Bj,l > n/2}. At least !n/2" voters i have pi

l = 2
for l ≤ l0. Therefore, µ2 ≤ !n/2"(l0−1)+�n/2�(m−1). We now examine two cases.

Case 1: l0 = 1. It cannot be the case that B2,1 > n/2 and B1,1 > n/2 simultane-
ously. Therefore, it must be true that at least !n/2" voters i have li1 ≥ 2, and hence
µ1 ≥ !n/2". We have that µ2

µ1
≤ m− 1.

Case 2: l0 ≥ 2. At most �n/2� voters i have li1 ≤ l0 − 1, therefore µ1 ≥ !n/2"(l0−
1). It holds that

µ2

µ1
≤ !n/2"(l0 − 1) + �n/2�(m− 1)

!n/2"(l0 − 1)
.

The ratio is maximized when l0 = 2; it follows that µ2
µ1
≤ m. ��

Proposition 10. For all n, m, µn
m(Maximin) ≤ 2√

5−1
(m− 1) ≈ 1.62(m− 1).

Proof. Let �∈ LN . Assume w.l.o.g. that argminjuj = 1, and Maximin(�) = 2. Ad-
ditionally, suppose that candidate 2’s Maximin score is k. With foresight, we denote
c = 3−√

5
2 . We distinguish two cases:

Case 1: k > cn. At least cn voters i have li2 < li1. In the worst case, (1 − c)n voters
i vote li1 = 1, li2 = m, and cn voters have li2 = 1 and li1 = 2. Therefore, in this case,

µ2

µ1
≤ (1− c)

c
(m− 1) ≈ 1.62(m− 1).

Case 2: k ≤ cn. There exists a candidate, w.l.o.g. candidate 3, s.t. at most k voters i
have li1 < li3, i.e., at least (1 − c)n voters do not rank 1 first. Since µ2 ≤ n(m − 1), it
holds that

µ2

µ1
≤ n(m− 1)

(1− c)n
=

1
1− c

(m− 1) ≈ 1.62(m− 1).

This concludes the proof.9 ��
9 c was chosen such that 1−c

c
= 1

1−c
.

The Distortion of Cardinal Preferences in Voting 327

Algorithm 1
1: procedure MIN-MISREP(n,m,α, y)
2: for l ← 0, y do � Initialization
3: a0,l ← 0
4: end for
5: for k ← 1, n do
6: for l ← 0, y do
7: q ← min{l, m − 1}
8: ak,l ← minp=0,...,q(ak−1,l−p + αp+1) � Induces rankings for candidate 1
9: end for

10: end for
11: return an,b

12: end procedure

Proposition 11. For all n, m, µn
m(STV) ≤ 3

2 (m− 1).

Proof. Omitted due to space constraints.

Remark 4. It is easy to show that if F is a voting protocol that satisfies the majority
criterion, then µn

m(F) ≤ 2(m− 1).

4.1 Complexity Issues

In this subsection we address complexity issues related to calculating misrepresentation.
We begin by reformulating the MSMU problem, presented in Section 3, in the context
of misrepresentation.

Definition 6. In the MIN-SCORE-MIN-MISREPRESENTATION (MSMM) problem, we
are given the number of voters n, the number of candidates m, a scoring protocol F
defined by parameters α = 〈α1, . . . , αm〉, and y, z ∈ N. We are asked whether there
exists �∈ LN such that it holds that µ1 ≤ y but s1 ≤ z.

Unlike the general formulation of the problem, here we have:

Lemma 1. MSMM can be decided in time polynomial in n and m.

Proof. We describe a dynamic programming algorithm MIN-MISREP, given as Algo-
rithm 1. The algorithm keeps a matrix A = (akl)k∈{0,...,n},l∈{0,...,y}; entry akl is the
minimal score candidate 1 may have under the constraints that k voters have cast their
vote, and µ1 ≤ l.

The correctness of the algorithm can be easily proven by induction on k. As y =
O(nm), the running time of the algorithm is O(n2m2). Now, the given instance of
MSMM is a “yes” instance iff the output of MIN-MISREP is at most z: an,y ≤ z. ��

We now consider the following problem:

Definition 7. In the LOSER-WITH-MIN-MISREPRESENTATION (LWMM) problem, we
are given the number of voters n, the number of candidates m, a scoring protocol
F defined by parameters α1, . . . , αm, and y ∈ N. We are asked whether there exists
�∈ LN such that it holds that µ1 ≤ y but candidate 1 loses the election.

328 A.D. Procaccia and J.S. Rosenschein

Lemma 2. LWMM can be decided in time polynomial in n and m.

Proof. Algorithm 1 can easily be adapted to return candidate 1’s minimal score, under
the former constraint that µ1 ≤ y, and the additional constraint that exactly n′ voters,
0 ≤ n′ ≤ n, satisfy li1 = 1. This can be accomplished, for example, by running MIN-
MISREP once for each value of n′, and assuming that n′ voters have already cast their
vote (ranking candidate 1 first), whereas the remaining n− n′ cast their vote according
to the algorithm.

For each value of n′, it is possible to assume the remaining voters rank candidate 2
as high as possible, i.e., candidate 2 receives s2 = (n − n′)α1 + n′α2 points. Clearly,
there exists a value of n′ such that s2 ≥ s1 iff the given instance of LWMM is a “yes”
instance.10 ��

Given n, m, and α, we have shown so far that it is possible to find rankings li1
ALG

for
candidate 1, such that the associated misrepresentation of candidate 1 satisfies:

µALG
1 = min{µ : ∃ �∈ LN s.t. µ1 = µ ∧ candidate 1 loses the election}.

Ultimately, we would like to be able to compute µ(F) = max µF (�)

minj µj
; let �∗∈ LN

that maximizes this ratio, let µ∗
j be the associated total misrepresentation values of

candidates, s∗j be the associated scores, and lij
∗

be the associated rankings; assume
w.l.o.g. that argminju

∗
j = 1, and F (�∗) = 2.

Definition 8. Let F be a scoring protocol. F has the popular loser property iff the
rankings li1

ALG
are identical to the rankings li1

∗
, up to the order of the voters.

Definition 9. Let F be a scoring protocol. F has the even match property iff, given s∗1,
the rankings li2

∗
are the ones that maximize µ∗

2, under the constraint s∗2 ≥ s∗1.

In other words, a scoring protocol has the popular loser property if any ordinal prefer-
ence profile such that candidate 1 has maximal misrepresentation, under the constraint
that candidate 1 is not the winner, is optimal in the sense that candidate 1’s ranking
by voters is identical to candidate 1’s ranking in the preference profile that maximizes
misrepresentation. A scoring protocol has the even match property if, once the above
rankings for candidate 1 are known, in order to find the misrepresentation of the protocol
it is sufficient to find rankings for candidate 2 that maximize candidate 2’s misrepresen-
tation, while guaranteeing that 2 has a higher score than 1.

Certainly, if F has both properties, then Lemma 2 is a step forward towards calcu-
lating the misrepresentation of F . But are there protocols that possess both properties?

Example 1. The Plurality and Veto protocols have the popular loser property and the
even match property.

If so, some important protocols possess the properties. Characterizing more fully the
protocols that possess both properties remains an open question.

10 It is enough to demand a weak inequality in s2 ≥ s1, as candidate 1 is the candidate that
minimizes the score while achieving misrepresentation µ1; if s2 = s1 then it must hold that
µ2 ≥ µ1, hence candidate 2 still wins the election.

The Distortion of Cardinal Preferences in Voting 329

Theorem 1. Let F be a scoring protocol with the popular loser property and the even
match properties. Then the problem of calculating µn

m(F) has a Fully Polynomial Time
Approximation Scheme (FPTAS).

Proof (Sketch). Observe the rankings li1
ALG

fixed by the algorithm from the proof of
Lemma 2, on the given input. By the assumptions, it is sufficient to find rankings li2 for
candidate 2 in a way that µ2 is maximal, under the constraint s2 ≥ sALG

1 .
The above problem reduces to the exact KNAPSACK problem with cardinality con-

straints (E-kKP). In this problem, we are given n items, each with a weight wi and a
value vi, and a weight limit K; the goal is to find a subset S of items of size k, that
maximizes

∑
i∈S vi, subject to

∑
i∈S wi ≤ K .

In our setting, li2 can take any value in {1, . . . , m} \ {li1
ALG}; let there be an item

associated with each possible value of li2, i = 1, . . . , n (there are n(m− 1) items). The
value of the item associated with li2 = l is µi

2 = l−1, and its weight is α1−αl. Exactly
n items are to be chosen; the weight limit is nα1 − sALG

1 .
This is a polynomial time reduction. Indeed, given rankings li2, i = 1, . . . , n such

that s2 ≥ sALG
1 , choose n corresponding items in the knapsack instance. The items’

total value is exactly µ2. Moreover, the total weight associated with the items is at most
nα1 minus the total score of the associated rankings, which is at least sALG

1 . The other
direction is similar.

Caprara et al. [4] present an FPTAS for E-kKP. Therefore, for any ε > 0, it is possible
to find (in polynomial time) µ2 such that µ2 ≤ µ∗

2 ≤ (1 + ε)µ2. In addition, recall that
µALG

1 = µ∗
1. Therefore: (

µ∗
2

µ∗
1

)
(

µ2
µALG

1

) =
µALG

1 µ∗
2

µ∗
1µ2

=
µ∗

2

µ2
≤ 1 + ε.

��

5 Conclusions

We have defined the distortion of a social choice function as the worst-case ratio be-
tween the total utility of the candidate that maximizes social welfare, and the elected
candidate. At first, we have focused on a model where, for all voters, the sum of utilities
is identical. We have shown that every social choice function is distorted, even when
the number of voters and the number of candidates are small. Moreover, we have es-
tablished a sufficient condition for unbounded distortion — a result which implies that
several well-known scoring protocols have unbounded distortion in the general model.
We have shown our model to be equivalent, in terms of distortion, to another model
where the voters’ cardinal preferences are unconstrained, but each voter’s weight is the
sum of its utilities. Finally, we have proven that a problem associated with calculating
distortion is NP-complete when utilities are unconstrained.

Motivated by the impossibility results mentioned above and the work of Monroe
[11], we have reformulated the concept of distortion as misrepresentation. The main
difference between the two settings is, essentially, that in the misrepresentation setting
voters’ cardinal preferences are quite restricted. We have established a necessary and

330 A.D. Procaccia and J.S. Rosenschein

Table 1. The misrepresentation of common voting protocols

Voting Protocol Misrepresentation

Borda 1
Veto Unbounded

Plurality = m − 1
Plurality with Runoff = m − 1

Copeland ≤ m − 1
Bucklin ≤ m
Maximin ≤ 1.62(m − 1)

STV ≤ 1.5(m − 1)

sufficient condition for a social choice function to be optimal in terms of misrepre-
sentation, and have also characterized the scoring protocols with unbounded misrepre-
sentation. More importantly, we have given bounds — in some cases tight — for the
misrepresentation of specific voting protocols; these bounds are summarized in Table 1.

Last, we have tackled the problem of calculating misrepresentation. Moving through
several sub-problems, we have ultimately demonstrated that there is a fully polynomial
time approximation scheme (FPTAS) for this problem, when the voting protocol is a
scoring protocol that possesses the popular loser and even match properties. It remains
an open issue to characterize the scoring protocols that have these properties.

The results presented in Section 3 suggest that distortion may be a major obstacle for
designers of multiagent systems who wish to apply voting. This is true, however, only if
the agents’ cardinal preferences are almost unconstrained. On the other hand, we have
seen in Section 4 that restricting the preferences overturns some of the impossibility
results.

In the context of restricted preferences, the results imply that the distortion of a vot-
ing protocol should be a major criterion in the comparison of different protocols —
alongside other classical criteria like manipulability. For instance, whenever misrepre-
sentation is a concern (as in the meeting scheduling example discussed in Section 3),
one might prefer to employ the Borda protocol, which is optimal in terms of misrep-
resentation but highly manipulable, rather than the STV protocol, which is difficult to
manipulate [1] but has high misrepresentation. In a three candidate example, STV’s
misrepresentation might be 3 times higher than Borda’s; in the scheduling domain, this
might imply three times as many conflicts with user preferences — certainly a steep
price to pay for preventing strategic behavior.

We briefly mention two directions for future research. Our computational complex-
ity analysis of distortion is rather rough. It seems true that calculating distortion (or
even misrepresentation) in scoring protocols is NP-complete, but currently there is no
proof. Second, our approximation scheme relies on the popular loser and even match
properties; it remains an open issue to characterize the scoring protocols that have these
properties. Further, can these assumptions be abandoned?

Acknowledgment

This work was partially supported by Israel Science Foundation grant #039-7582.

The Distortion of Cardinal Preferences in Voting 331

References

1. J. Bartholdi and J. Orlin. Single transferable vote resists strategic voting. Social Choice and
Welfare, 8:341–354, 1991.

2. J. Bartholdi, C. A. Tovey, and M. A. Trick. How hard is it to control an election. Mathemat-
ical and Computer Modelling, 16:27–40, 1992.

3. S. J. Brams and P. C. Fishburn. Voting procedures. In K. J. Arrow, A. K. Sen, and K. Suzu-
mura, editors, Handbook of Social Choice and Welfare, chapter 4. North-Holland, 2002.

4. A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger. Approximation algorithms for knap-
sack problems with cardinality constraints. European Journal of Operational Research,
123:333–345, 2000.

5. V. Conitzer and T. Sandholm. Complexity of manipulating elections with few candidates. In
Proceedings of the National Conference on Artificial Intelligence, pages 314–319, 2002.

6. E. Elkind and H. Lipmaa. Small coalitions cannot manipulate voting. In International Con-
ference on Financial Cryptography, Lecture Notes in Computer Science. Springer, 2005.

7. E. Ephrati and J. S. Rosenschein. A heuristic technique for multiagent planning. Annals of
Mathematics and Artificial Intelligence, 20:13–67, 1997.

8. S. Ghosh, M. Mundhe, K. Hernandez, and S. Sen. Voting for movies: the anatomy of a rec-
ommender system. In Proceedings of the Third Annual Conference on Autonomous Agents,
pages 434–435, 1999.

9. T. Haynes, S. Sen, N. Arora, and R. Nadella. An automated meeting scheduling system
that utilizes user preferences. In Proceedings of the First International Conference on Au-
tonomous Agents, pages 308–315, 1997.

10. J. Matousek. Lectures on Discrete Geometry, chapter 15. Springer, 2002.
11. B. L. Monroe. Fully proportional representation. American Political Science Review,

89(4):925–940, 1995.
12. A. D. Procaccia and J. S. Rosenschein. Junta distributions and the average-case complexity

of manipulating elections. In Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 497–504, 2006.

Risk-Bounded Formation of Fuzzy Coalitions Among
Service Agents

Bastian Blankenburg1, Minghua He2, Matthias Klusch1, and Nicholas R. Jennings2

1 German Research Center for Artificial Intelligence, Stuhlsatzenhausweg 3,
66123 Saarbrücken, Germany

{blankenb, klusch}@dfki.de
2 School of Electronics and Computer Science, University of Southampton,

Southampton, SO17 1BJ, UK
{mh, nrj}@ecs.soton.ac.uk

Abstract. Cooperative autonomous agents form coalitions in order to share and
combine resources and services to efficiently respond to market demands. With
the variety of resources and services provided online today, there is a need for
stable and flexible techniques to support the automation of agent coalition forma-
tion in this context. This paper describes an approach to the problem based on
fuzzy coalitions. Compared with a classic cooperative game with crisp coalitions
(where each agent is a full member of exactly one coalition), an agent can partic-
ipate in multiple coalitions with varying degrees of involvement. This gives the
agents more freedom and flexibility, allowing them to make full use of their re-
sources, thus maximising utility, even if only comparatively small coalitions are
formed. An important aspect of our approach is that the agents can control and
bound the risk caused by the possible failure or default of some partner agents by
spreading their involvement in diverse coalitions.

1 Introduction

In today’s increasingly networked and competitive world, the appropriate utilization of
pay per use Web services are considered as one major key to the success of commer-
cial service oriented business applications in domains such as e-logistics, tourism, and
entertainment. In the near future, intelligent service agents are not only supposed to
search for, interact with, and compose, but also negotiate access to, and execute such
Web services on behalf of its user, or other agents. In fact, they may exhibit some
form of economically rational cooperation by forming coalitions to share the created
joint monetary value while at the same time maximizing their own individual payoff.
According to classical microeconomics, means and concepts of cooperative game the-
ory are inherently well suited to this purpose. In this paper, we propose a protocol for
resource-bounded computational rational agents to automatically form risk-bounded
fuzzy coalitions in order to fulfill service requests with deadlines.

As opposed to traditional cooperative games, games with fuzzy coalitions allow the
agents to be members of multiple coalitions with varying degrees of involvement. The
notion of fuzzy coalitions was first introduced by Aubin and Butnariu (see [2,5]) to
overcome some problems of traditional cooperative games in real-world settings. For

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 332–346, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Risk-Bounded Formation of Fuzzy Coalitions Among Service Agents 333

example, suppose that agent a1 can independently benefit from cooperations with agent
a2 as well as with agent a3. To realise both opportunities, a coalition of all three agents
has to be formed, requiring a2 and a3 to agree on a coalition contract although they do
not cooperate otherwise. Another drawback of non-overlapping coalitions emerges in
the case of failure. If, in the above example, a2 fails its task, thus reducing the coalition
value, all members of the coalition are affected, including a3, although it is not actually
working together with a2. In contrast, with fuzzy coalitions makes it is possible to
form a coalition for each service request, without preventing other requests from being
satisfied. This approach has the advantage that there are no unnecessary negotiations
and contracts between agents which actually do not work together.

Additionally, using fuzzy coalitions allows the agents to lower their individual risk
of monetary losses by participating in a number of coalitions, if coherent risk measure
are considered. Assuming that agents are able to assess other agent’s risk of failure in a
coalition, we show how such risk-bounded coalition formation can be done. In partic-
ular, we consider the membership of an agent in a coalition as an investment, since the
costly service execution takes place first. Rewards are received later only for success-
ful and timely execution. We thus allow the agents to specify individual risk bounds
in terms of the coherent financial risk measure tail conditional expectation (TCE). The
adherence to these bounds is guaranteed by the proposed coalition formation protocol
RFCF.

But as it turns out, we cannot directly use the existing solution concepts for coop-
erative games with fuzzy coalitions. The approaches taken by Aubin, Butnariu as well
as Nishizaki and Sakawa (see [9]) all assume that the coalition value is a proportional
function of the agents’ membership degrees. As this assumption does not hold in our
setting, we introduce appropriate extensions of the excess and surplus. We then show
that it is possible to compute the surplus in polynomial time under some additional as-
sumptions, similar to the approach taken in [10]. Stearns transfer scheme can then be
used to compute Kernel-stable solutions for the game (see [11]).

The remainder of this paper is organized as follows: in section 2 we introduce our ser-
vice agent and coalition model. In section 3, we introduce our notion of fuzzy coalition
games among service provider agents. We then show how to compute the risk of fuzzy
coalitions and fuzzy coalition structures in section 4. Section 5 is concerned with the
stability of risk-bounded fuzzy coalitions. We propose our coalition formation protocol
RFCF in section 6. In section 7 we discuss related work and conclude in section 8.

2 Agent Model

In this section we specify more precisely the environment of service agents that we
consider in this paper.

We consider two types of agents: service request agents and service provider agents.

Definition 1. Service Request Agent
A service request agent sra requests exactly one (possibly complex) service s and

some deadline d. It will pay a certain monetary reward r ∈ R for a successful execution
of s before d. Otherwise, no reward is paid.

SRA denotes the set of all service request agents in the system.

334 B. Blankenburg et al.

On the other hand, service provider agents offer the execution of exactly one type of
service. They are assumed to be computationally bounded, i.e. to have only limited
resources per time for the execution of their service. For simplicity, we assume that the
execution time for a service instance is a linear function of the resources devoted to it.
This is reasonable in the case where the bounded resources are computing power and/or
memory, for example.

Definition 2. Service Provider Agent
A service provider agent spa offers the execution of exactly one service sspa and has

the following properties:

1. Service Composition
(a) spa is able to send service advertisements for sspa.
(b) given a requested service s and a set of service advertisements, spa has the

ability to compute service composition plans; each such plan is a list of adver-
tised services whose execution implements the requested service s.

(c) each element of a plan P is called a service instance of the respective service.
2. Service Execution

(a) spa can spend only some max. amount of resources per time in service execu-
tions.

(b) the minimum execution time of an instance i of sspa is denoted tmin
i (i.e. this is

the execution time if spa devotes all its resources to it).
(c) spa can split its resources and execute multiple instances of sspa at the same

time. The fraction of resources per time (wrt. the maximum) devoted to the
execution of service instance i is denoted ri.

(d) the execution time ti of service instance i is

ti =
1
ri
× tmin

i .

(e) spa might not be able to detemine tmin
i exactly in advance, but is able to specify

a probability density function (PDF) pdftmin
i

over the values it might take.
(f) there is a monetary cost for resource consumption of spa. We assume this is

constant, so that because of Definition 2.2(d) the cost costi for executing ser-
vice instance i is also constant and does not depend on ri.

SPA denotes the set of all service provider agents in the system.

Note that because of the linear relationship assumed in Definition 2.2(d), it is easy to
obtain the PDF of the execution time of a service instance i with a given fraction of
resources per time ri:

pdfti(x) = pdftmin
i

(ri ∗ x) (1)

Example 1. As an example, we consider a medical service provider agent scenario. We
assume that there are a number of these agents in the system, each offering medical
information in one or more specific medical domains. A specific set of symptoms of
a patient might have possible diagnosis in several domains. Thus, a full diagnosis as
response to a request from e.g. a medical doctor might require a set of provider agents

Risk-Bounded Formation of Fuzzy Coalitions Among Service Agents 335

to collaborate. We assume that the medical personnel will request this information with
specific deadlines to ensure the timely treatment of patients. Suppose that agent spa1
gets a request from a doctor and realizes that it also needs spa2 to provide a feasible
diagnosis. spa1 then estimates the runtime for its own service on the request and sends
coalition proposal to spa2. spa2 then likewise estimates its runtime and sees that this
coalition might actually fail, producing high costs. However, spa2 has a further request
from agent spa3. While forming just the coalition spa1 is too risky for spa2, it is ac-
ceptable if the coalition with spa3 is also formed.

3 Fuzzy Coalition Games of SPA Agents

In our setting, the capability of service provider agents to split their resources among
different service instance executions makes it possible for them to take part in several
service composition plan executions. This suggests to allow the agents to be a (par-
tial) member of several coalitions. For this purpose, a number of authors (most notably
Aubin, Butnariu and Nishizaki and Sakawa [2,5,9]) extended concepts from coopera-
tive game theory to allow for fuzzy coalitions, where each agent is a member only to
a certain membership degree. In our model, each fuzzy coalition will execute exactly
one service composition plan. The membership degree represents the relative amount
of resources they spend for their respective service instance executions in the plan. If
the same group of agents decides to execute an additional plan, it simply forms an addi-
tional fuzzy coalition. We also disallow any members that are not actually involved in
the execution of P .

Definition 3. Fuzzy Coalition of Service Provider Agents
Let there be a request for a service ws from a service request agent sra and a plan

P whose execution satisfies ws.

1. SPAP ⊆ SPA is the set of service provider agents involved in P .
2. The fuzzy coalition of service provider agents C̃ for sra and P is written as

C̃ = (spa1/mem1, . . . , spak/memk, sra,P)

with k = |SPAP |, spaj ∈ SPAP , 1 ≤ j ≤ k; memj ∈ [0, 1] is a guaranteed
minimum for the fraction of resources per time ri devoted by spaj to any i of its
service instances in P .

3. mem(spa, C̃) is agent spa’s membership in C̃ .
4. We write spa ∈ C̃ if spa is a member of C̃ with some positive membership, i.e.

mem(spa, C̃) > 0.
5. C̃⊆̃C̃′ if ∀spa ∈ C̃ : mem(spa, C̃) ≤ mem(spa, C̃′), where C̃ and C̃′ are fuzzy

coalitions for the same service request agent and plan.
6. C̃(sra, plan) denotes the set of all fuzzy coalitions C̃ = (., sra, plan).
7. |C̃| is the number of agents in C̃ .

We also denote “fuzzy coalition” or just “coalition” instead of “fuzzy coalition of ser-
vice provider agents” where the context is clear.

336 B. Blankenburg et al.

Because of the deadlines for service requests, C̃ either earns the reward r for the
successful and timely execution of P from the requesting agent, or nothing otherwise.
To specify coalition values for fuzzy service provider agent coalitions, we thus need
to consider its probabilities of failure and success. For simplicity, we assume that the
execution times of service instances are independent of each other and that the services
in a plan P are executed sequentially. Then, the total execution time of P is the sum of
the execution times of the individual service instances:

tP =
∑
i∈P

ti (2)

The PDF of the sum of two independent random variables A and B is given by the
convolution integral over their individual PDFs pdfA and pdfB(see, e.g., [8], p. 113).
I.e., with x ∈ R:

pdfA+B(x) = (pdfA ∗ pdfB)(x)

=
∫ ∞

0
pdfA(y)pdfB(x− y)dy (3)

For a plan P with m ∈ N service instances, the PDF of its execution time is therefore
an m − 1 fold convolution over the individual service instance execution time PDFs.
With x ∈ R+ (it is sufficient to consider only positive values since execution times are
always positive).

pdftP (x) = (· · · (pdfti1
∗ pdfti2

) · · · ∗ pdftim
)(x) (4)

For specific cases, there exist simple analytical solutions of the convolution. E.g., the
convolution of two normal PDFs is again normal, as is the convolution of a normal
PDF with an exponential one. But this is not the case for arbitrary distribution types.
Fortunately, there are alternative ways to obtain the convolution, such as the pointwise
multiplication of the Fourier Transform F of the PDFs:

f ∗ g = F−1(F (f)F (g)) (5)

The Fast Fourier Transform algorithm efficiently approximates the Fourier Transform
with complexity k log k, where k is the number of sample points taken from the func-
tions.

Suppose the agents executing a planP agree to start the execution at time ts. With the
PDF of the execution time of a plan P and the deadline given for the respective service
request, it is then easy to determine the probability that the plan execution exceeds this
deadline, which we call the probability of failure (PoF):

PoF (P , ts, d) =
∫ ∞

d−ts

pdftP (x)dx (6)

Note that for d < ts, we always have PoF (P , ts, d) = 0, since the plan execution time
must be positive. Similarly, the probability of success (PoS) is:

PoS(P , ts, d) = 1− PoF (P , ts, d) (7)

Risk-Bounded Formation of Fuzzy Coalitions Among Service Agents 337

Given the membership degrees, the PDF over the upper bound t̂i for the execution
time of a service instance i ∈ P of agent spak is, analogous to 1,

pdft̂i
(x) = pdftmin

i
(memk ∗ x) (8)

According to 4, we can then obtain the PDF of the upper bound t̂P for the execution
time of the complete plan, and thus the probabilities of failure and success of the fuzzy
coalition, denoted PoF (C̃) and PoS(C̃), resp. This enables us to determine a lower
bound for the expected reward for C̃ , denoted rC :

rC = PoS(C̃)× r (9)

To specify a value for the fuzzy coalitions, we further have to consider the costs that are
generated by the service executions. The agents should reasonably stop the execution
once the deadline is reached, since no additional reward can be obtained by any further
work. However, to simplify things, we consider only the worst case, i.e. the case where
maximum costs have been produced even if the coalition fails.

Definition 4. Value of a Fuzzy Service Provider Agent Coalition
Let there be a fuzzy coalition C̃ with plan P . The value v(C̃) of C̃, also called

coalition value, is defined as

v(C̃) = rC −
∑
i∈P

costi

Although fuzzy coalition structures allow the agents to be a member in several coali-
tions at the same time, we still have to require that each agent does not allocate more
resources to coalitions than it can actually provide. Formally, we have

Definition 5. Feasible Fuzzy Coalition Structure
For a fuzzy coalition C̃ , let memC

spa denote the membership degree of spa in C̃, with

memC
spa = 0 if spa is not member of C̃. A feasible fuzzy coalition structure S for the

agents in SPA is defined as a set of fuzzy coalitions with

∀spa ∈ SPA :
∑
C∈S

memC
spa ≤ 1 (10)

4 Risk of Fuzzy Coalition Structures

Given a variety of combination of coalitions that the agent can possibly join, rational
agents will prefer coalitions with a high reward and a low PoF , i.e. a high expected
value. But assume there is a coalition with a high expected value, but which also in-
volves very high costs. If an agent cannot afford to lose more than some amount with-
out compromising liquidity, even a low PoF of the coalition might be still too risky.
To control and avoid such situations, a number of financial risk measures have been
introduced in the literature (for a recent overview, see [7] and references therein).

338 B. Blankenburg et al.

For the definitions in the remainder of this section, we follow Artzner et al.[1], omit-
ting certain details which are not important in our setting. Also, where Artzner et al.
speak of positions (meaning investment positions), we speak of strategies, meaning an
agent’s decision with whom to coalesce and service requests to work on. Lastly, note
that the definitions of V aR and other measures in [1] include the reward of a reference
investment (e.g. interest rates) as a scaling factor, which we omit here for simplicity.

Definition 6. Risk and Measure of Risk
Let Ω denote the set of states of nature, and assume it is finite. Considering Ω as the

set of outcomes of an experiment, we compute the final net worth of a strategy for each
element of Ω. Risk is the investor’s future net worth, which is described by a random
variable. Let G be the set of all risks, that is the set of all real valued functions on Ω. A
measure of risk r is a mapping r: G #→ R.

According to [7], a widely known and used one is the Value-at-Risk (V aR), which
also has become part of financial regulations. V aR calculates how much one may lose
during a specified period given a probability and the capital should be used to control
the risk.

Definition 7. Value-at-Risk (V aR)
Given α ∈ [0, 1], the Value-at-Risk V aRα at level α of the final net worth X ∈ G

with distribution P is

V aRα(X) = − inf{x ∈ R : P (X ≤ x) > α}

Artzner et al. also introduce the notion of coherent risk measures.

Definition 8. Coherent risk measure
With X, Y ∈ G, z ∈ R, a risk measure r is called coherent if it satisfies

1. subadditivity: for all X, Y ∈ G: r(X + Y) ≤ r(X) + r(Y)
2. translation invariance: r(X + z) = r(X)− z
3. positive homogeneity: ∀z ≥ 0, r(zX) = zr(X)
4. monotonicity: if X ≤ Y then r(Y) ≤ r(X)

As has also been shown in [1], V aR is not coherent, since it does not fulfill subadditiv-
ity. As it turns out (see below), this lack of superadditivity constitutes a major drawback
in the design of a risk-bound coalition formation algorithm. Fortunately, a number of
coherent measures which are derived from V aR have been proposed. Here, we employ
the tail conditional expectation (TCE) which is coherent for continous distributions.

Definition 9. Tail Conditional Expectation: given a probability measure P on Ω and a
level α, the tail conditional expectation is defined by:

TCEα(X) = −EP {X |X ≤ −V aRα(X)}

Using this measure, each agent spai may individually specify a parameter αi and a
TCE-threshold tTCEi, expressing that it will only accept coalition structures which
satisfy

TCEαi(ui) ≤ tTCEi

Risk-Bounded Formation of Fuzzy Coalitions Among Service Agents 339

where ui is agent spai’s final net worth, i.e. the total net result from all coalitions it is
involved in.

Proposition 1. Let service provider agent spai be a member in a fuzzy coalition C̃, let
costi be the cost for spai if C̃ fails, and let ui(C̃) > −costi be the payoff obtained by
spai if C̃ is successful. The TCEαi(C̃), i.e. the TCEα restricted to consider only spai

and C̃, can be computed as follows:

TCEαi(C̃) =

{
PoF (C̃)costi(C̃) + PoS(C̃)(−ui(C̃)) PoF (C̃) ≤ αi

costi(C̃) PoF (C̃) > αi

Proof. Let Xi be spai’s net result from C̃, with Xi = ui in case of success of C̃ and
Xi = −costi in case of failure. Consider the first case, i.e. assume that PoF (C̃) ≤
αi. Then the Value-at-Risk, i.e. the TCEα restricted to consider only spai and C̃, is
V aRαi(C̃) = −ui because P (Xi ≤ −costi) = PoF (C̃) ≯ αi, but P (Xi ≤ ui) = 1
(since PoS(C̃) = 1 − PoF (C̃)). Thus, the set of relevant outcomes considered in
TCEα includes both Xi = −costi and Xi = ui. In the second case, with PoF (C̃) >

αi, we have V aRαi(C̃) = costi because P (Xi ≤ −costi) = PoF (C̃) > αi. Thus,
the set of relevant outcomes considered in TCEα contains only Xi = −costi, and the
case Xi = ui is disregarded.

To obtain the TCEαi for a fuzzy coalition structure, we have to consider the proba-
bility of failure for each subset of fuzzy coalitions that spai is involved in, as well as
the payoffs and costs for spai in these cases. The following follows directly from the
independency of the PoF of different coalitions and the definition of V aR.

Corollary 1. Let there be a fuzzy coalition structure S and let Sspai ⊆ S be the subset
of all coalitions involving spai. For each S∗

spai
∈ 2Sspai (including the empty set) let

costi(S∗
spai

) be the cost for spai if all coalitions in S∗
spai

fail, and let ui(S∗
spai

) be the
net payoff obtained by spai from the coalitions in Sspai ∪ S∗

spai
(i.e. the reward minus

costs for the successful coalitions).
The probability PoF (S∗

spai
) that the coalitions in S∗

spai
fail while those in Sspai ∩

S∗
spai

succeed is

PoF (S∗
spai

) =
∏

C∈S∗
spai

PoF (C̃)×
∏

C∈Sspai
∩S∗

spai

PoS(C̃)

The V aRαi(S), i.e. the V aRα restricted to consider only spai and S, is then

V aRαi(S) = −minS∗
spai

∈2Sspai
{ui(S∗

spai
) :

∑
S′

spai
∈2Sspai

ui(S′
spai

)≤ui(S∗
spai

)

PoF (S∗
spai

) > αi}

Having V aRαi(S), the computation of the TCEαi(S) is straight-forward. Please note
that V aRαi(S) and thus also TCEαi depend on the agent’s payoff. But as becomes
clear in section 5, computing a stable payoff depends on the risk. Also, we have to

340 B. Blankenburg et al.

consider each element in the power-set of coalitions that spai is involved in, making
the complexity of this computation exponential. However, by bounding the number of
coalitions an agent might be involved in, we obtain polynomial complexity. This is also
shown in section 5.

5 Stability of Fuzzy Coalitions Structures

In this section, we finally show how a coalition’s payoff should be distributed among
its members. Cooperative game theory traditionally deals with the question how this
can be done in a stable way. Stable means that no agent has a reasonable incentive to
break its coalition(s). For games with fuzzy coalitions, several such solution concepts,
including the Core and the Shapley Value, have been introduced in the literature[2,5,9].
Unfortunately, these assume a linear or even proportional relationship of the member-
ship and coalition values. This does not hold in our case, because the coalition either
gets the payoff or not, while the membership values determine the involved risk. But
even considering the expected values does not help, since (a) the execution time of a
service instance is characterized by an 1

x -relationship wrt. to the membership (see De-
finition 2.2(d)) and (b) the actual probability of failure also depends on the underlying
distributions of the service instance runtimes which might be arbitrary. We thus intro-
duce a new variant of the excess which is compliant with out setting. Since the excess
is the basis for a number of solution concepts including the Core, Kernel and Nucleo-
lus, this allows us to use these concepts. In this paper, however, we consider only the
Kernel.

In crisp games, the excess of a coalition C wrt. a given coalition structure S with
C /∈ S quantifies the difference in payoff that the agents in C obtain by forming C and
leaving their resp. coalitions in S. Because each agent can be a member of only one
coalition in a crisp coalition game, they then do not obtain any payoff from their former
coalitions. But this is not the case in fuzzy coalition games. Here, it is possible to with-
draw just some membership and put it into a new coalition. However, not all coalitions
might be feasible wrt. the involved agents’ individual risk bounds. We consider such
coalitions not to be a feasible threat. Also, we exclude the case that an agent threatens
to withdraw any amount membership from an existing coalition such that its own risk
bound would be exceeded. While this makes sure that the hard risk bounds are taken
into account, we also have to consider that more membership means a better chance of
success. Thus, we regard the expected coalition values.

Definition 10. Excess of a fuzzy coalition
Let there be fuzzy coalition C̃ and fuzzy coalition structures S and S′ with C̃ ∈ S′,

C̃
∈ S, S′ is feasible, and ∀C̃′ ∈ S′, C̃′
= C̃ : ∃C̃′′ ∈ S : C̃′⊆̃C̃′′. Further, let there
be a payoff distribution u. We define

ẽ(C̃, S′, ũ)|TCE := v|TCE(C̃, S′)−
∑

spai∈C

di(S, S′)

with

v|TCE(C̃, S′) =
{

v(C̃) if ∀spai ∈ C̃ : TCEαi(S′ ∪ C̃) ≤ tTCEi

0 otherwise

Risk-Bounded Formation of Fuzzy Coalitions Among Service Agents 341

and
di =

∑
C∗∈S,C′∈S′,C′⊆C∗

v(C̃′)− v(C̃∗)

In crisp games, for a given configuration (S, u), the surplus of an agent ai over another
agent ak with ai, ak ∈ C ∈ S is then defined as the maximum excess of all coalitions
including agent ai but without agent ak. For games with fuzzy coalitions, however, it is
possible to threaten with a number of alternative coalitions at the same time. Also, only
a membership transfer from coalitions that include both ai and ak should be considered.
Finally, we require that all membership of ai from such coalitions is transferred.

Definition 11. Fuzzy coalition surplus
Let there be a fuzzy coalition structure S and payoff distribution u and agents ai

and ak.

1. A feasible fuzzy coalition structure S′ with ∀C̃ ∈ S′, C̃ /∈ S : ai ∈ C̃, ak /∈ C̃,
∀C ∈ S, ak
∈ C : C ∈ S′ and �C̃ ∈ S′ : ai, ak ∈ C̃ is called an ik-fuzzy surplus
structure.

2. The set of all ik-fuzzy surplus structures wrt. S is denoted SSik(S)
3. The fuzzy coalition surplus of ai over ak is

s̃ik|TCE := max
S′∈SSik(S)

{
∑

ai∈C∈S′

ẽ(C̃, ũ)|TCE}

To compute a fuzzy coalition surplus it is thus not only necessary to identify the best
set of agents that should form alternative coalitions when excluding the other agent,
but also to find the best membership values for them wrt. feasibility and the individual
agent risk thresholds.

Definition 12. Let Qik denote a set of pairs (sra,P) with P satisfies the request
from sra, ai ∈ SPAP and ak
∈ SPAP . For a feasible coalition structure S, let
SSik(Qik) denote the set of all ik-fuzzy surplus structures S′ wrt. S such that for all
pairs (sra,P) ∈ Qik there exists C̃ ∈ C̃(sra,P) with C̃ ∈ S′. We define the func-
tion MaxS(Qik, S, u) to return S∗ ∈ SSik(Qik) such that

∑
ai∈C∈S∗ ẽ(C̃, ũ)|TCE is

maximized wrt. all other elements in SSik(Qik).

Because the service instance runtime depends on the spent resources and thus the mem-
bership values by a 1

x -relationship (see Definition 2.2(d)), MaxS has to solve a non-
linear optimization problem. The complexity to compute a fuzzy coalition surplus is
thus even worse than in the crisp case, where we have exponential complexity wrt. the
number of agents in the system because of the exponential number of possible coalitions
and excesses. Shehory and Kraus proposed to reduce this to a polynomial complexity
by limiting the maximum coalition size[10]. We achieve the same effect for the fuzzy
coalition surplus by not only bounding the number of agents in a coalition, but also the
number of coalitions that an agent threatens to transfer membership to as well as the
number of plans per set of agents.

342 B. Blankenburg et al.

Proposition 2. Let aMax ∈ N be an upper bound for the number agents in a coali-
tion and C̃Max ∈ N be an upper bound for all sets |Qik|, i.e. the number of new
coalitions including agent ai and excluding agent ak in the computation of s̃ik|TCE .
Let further PMax be an upper bound for the number of plans that involve the same
set of agents and let n ∈ N be the number of agents. Then the number of sets Qik,
constrained by C̃Max and ∀(sra,P) ∈ Qik : P ∈ PLANS, is less or equal than

n(aMax×PMax)CMax

.

Proof. It was shown in [10] that the number of crisp coalitions with maximum size
aMax among n agents is bounded by naMax. Because each set of agents might be
involved in multiple plans, this has to be multiplied PMax to obtain the upper bound
for the number of considered coalitions. By the same argument as in the proof in [10],
the number of sets of these coalitions with maximum size C̃Max is then bounded by

n(aMax×PMax)CMax

.

In crisp games, the kernel of a cooperative game (A, v) with respect to a given coalition
structure S is a set of configurations (S, u) wherein each pair of agents ai, ak in each
coalition C ∈ S is in equilibrium wrt. their surplusses. That is the case if the agents
cannot outweigh each other in (S, u) by having the option to get a better payoff in
coalition(s) not in S excluding the opponent agent (agent i outweighs k, if sik > ski

and uk > wi(C)). Fortunately, having defined the surplus also for fuzzy coalitions, we
can substitute it in this definition to obtain a definition for the kernel for games with
fuzzy coalitions.

Definition 13. Let there be a fuzzy coalition structure S and payoff distribution u.
(S, u) is in the kernel of the fuzzy coalition game iff each pair of agents ai, ak in each
fuzzy coalition C ∈ S is in equilibrium wrt. their fuzzy coalition surplusses.

To make a payoff distribution kernel-stable for a given coalition structure, Stearns trans-
fer scheme can be used in the case of crisp games. The same can be applied here, since
a side-payment from one agent to another will increase the former agent’s payoff while
lowering the latter agent ones.

6 Coalition Formation Protocol RFCF

In this section, we propose a fuzzy coalition formation protocol that guarantees to form
coalitions which are in compliance with the agents’ individual risk bounds. The negoti-
ation is to be finished in a fixed amount of time in order to ensure a timely start service
executions. In order to achieve polynomial complexity in the negotiation, some compro-
mises have to be made. In particular, upper bounds for the risk of a coalition structure
can be obtained by either considering only the self-values of the agents instead the
actual utilities or by computing the risk for subsets of the structure and utilizing the
subadditivity of TCE. The main drawback of using upper bounds for the risk is that it
might prevent the formation of some coalitions which are then considered too risky al-
though they are acceptable. We thus propose to execute a parallel process to continually
improve the bound as long as there is time.

Risk-Bounded Formation of Fuzzy Coalitions Among Service Agents 343

Before we give the actual definition of RFCF, we here provide a short outline of
the protocol to emphasize the main ideas of the individual steps. In RFCF, each agent
performs multiple tasks in parallel:

– Composition Planning - Composition plans are generated. Since only agents that
can execute a plan together will form coalitions, this step is necessary to identify
possibly worthwhile coalitions.

– Coalition Negotiation
1. Proposal generation - The agent computes fuzzy coalitions such that their for-

mation certainly leads to a feasible coalition structure while minimising the
membership values. This way, no more membership (i.e. resources) than nec-
essary is used, allowing the involved agents to possibly form additional coali-
tions later. A proposal is then send to the agents of the fuzzy coalition which
maximises the value per membership.

2. Proposal evaluation - From the received proposals, form feasible coalitions
with acceptable risk the and maximal value per membership

3. Payoff distribution and risk bound update - Use the transfer scheme to compute
the Kernel-stable payoff distribution. Compute the single-coalition TCE and
add it to previous coalition structure TCE bound to obtain an updated bound
on the coalition structure TCE.

– Risk Measure Computation - Compute TCE for a new random subset of coalitions
to obtain a tighter bound for the coalition structure TCE.

In the following definition of the algorithm, we use the following functions and
constants:

– PMax: the maximum number of plans to be considered for a set of agents
– aMax: the maximum coalition size
– C̃Max: the maximum number of coalitions that an agent threatens to transfer mem-

bership to in the surplus computation
– sra(P) Returns the service request agent for whose request P was generated.
– findFuzzyCoalition(S,P , risk): Computes a fuzzy coalition C̃ such that the

membership degrees in C̃ are minimized while S ∪ C̃ is acceptable for all agents
wrt. risk. Use C̃(sra(P),P) as a starting point. If risk = nil then compute
an upper bound for TCEαa(S ∪ C̃(sra(P),P)), otherwise use risk as this up-
per bound. It is possible to efficiently implement this function by exploiting the
monotonicity of the TCE wrt. to the membership values. If this is not possible or
|C̃| > MaxCSize, return nil

– makeStable(S): Computes a new stable payoff distribution u∗ for the fuzzy coali-
tion structure S using the transfer scheme (see 5) and the bounds PMax, aMax
and C̃Max.

Algorithm 1. RFCF
Each agent a performs:

Initialization:

1. setPLANS := ∅
2. setPPPLANS := ∅

344 B. Blankenburg et al.

3. setPPPLANSRISK := ∅
4. setPROPS := new priority queue
5. setriska := TCE({a}/1)

Parallel Execution:

– Composition plan generation: repeat (until terminated)
1. Generate a new composition plan P for a random service request and for a

set of agents for which the number of previously generated plans is less than
PMax.

2. PLANS := PLANS ∪ P
– Coalition negotiation: repeat (until terminated)

1. Proposal generation
(a) set BestCoalition := nil, BestPayoffperMembership := 0
(b) for each P in PLANS do:

i. C̃ := findFuzzyCoalition(S,P , nil)
ii. if C̃ = nil then PLANS := PLANS \ P;

POSTPONEDPLANS := ∪P ;next 1b
iii. if v(C̃)/|C̃| > BestPayoffperMembership then

PLANS := PLANS \ P; BestCoalition := C̃;
BestPayoffperMembership := |C̃|

(c) if BestCoalition = nil then for each P in POSTPONEDPLANS
do:

i. if PPPLANSRISK contains (P , .) then
C̃ := findFuzzyCoalition(S,P , PPPLANSRISK(P))

ii. if C̃ = nil then next 1b
iii. if v(C̃)/|C̃| > BestPayoffperMembership then

PPPLANSRISK := PPPLANSRISK \ P;
BestCoalition := C̃; BestPayoffperMembership := |C̃|

2. send (BestCoalition, BestPayoffperMembership) as a proposal to all
other agents

3. Proposal evaluation
(a) receive coalition proposals from all other agents and self
(b) for each non-nil proposal (C̃, ppm), put C̃ in PROPS with priority ppm.
(c) set S∗ = ∅
(d) while PROPS is not empty do

i. get and remove the highest priority coalition C̃ from PROPS
ii. if C̃ is feasible, set S∗ := S∗ ∪ C̃

4. Payoff distribution and TCE update
(a) set u∗ = makeStable(S ∪ S∗)
(b) do atomically: set S := S ∪ S∗ and u := u∗

(c) set riska := riska +
∑

C∈S∗
a
(TCEa(C̃))

– Risk measure computation of current structure: repeat (until terminated)
1. randomly choose a previously unconsidered subset S∗ from Sa

2. riska := riska −
∑

C∈S∗ TCEa(C̃) + TCEa(S∗)

Risk-Bounded Formation of Fuzzy Coalitions Among Service Agents 345

– Risk measure computation of potential structures for postponed plans: repeat (until
terminated)

1. Randomly chooseP from PPPLANS such that (P , .) /∈ PPPLANSRISK

2. Compute exact TCEαa(S ∪ C̃(sra(P),P)) and
put (P , TCEαa(S ∪ C̃(sra(P),P))) into PPPLANSRISK

– Termination of negotiation

1. Wait(ExecutionStartTime)
2. terminate all other tasks
3. start service instance execution in my coalitions; terminate

Proposition 3. The runtime of the coalition negotiation section of the RFCF is
polynomial.

Proof. In the proposal evaluation, each agent orders the coalition proposals in the same
way in the priority queue since the priority is defined as payoff per membership which
is a global measure. Because of the bounds used in the surplus computation, the payoff
distribution is done in polynomial time (see 5). All other steps in the coalition negotia-
tion section are of less complexity.

7 Related Work

In the research field of fuzzy coalition formation, Nishizaki and Sakawa in [9] pro-
posed a number of algorithms to compute solutions according to their concepts. They
did however not propose a protocol that enables a coalition negotiation among compu-
tational autonomous agents. Also, as we have pointed out in section 1, they assume that
the coalition value is a proportional function of the agents’ membership degrees, which
does not hold in our case.

Shehory and Kraus considered the formation of overlapping but non-fuzzy coali-
tions. They however focus on maximising the joint payoff of all agents rather than
individual payoffs or minimising potential individual losses. In contrast, our approach
focuses especially on the latter points. Thus, the motivations and the properties of the
obtained solutions are very different.

There also exist approaches for the formation of non-overlapping coalitions which
take uncertainty in the coalition values into account. These are also suitable to tackle
the problem of reduced coalition values due to (partial) coalition failure in some cases.
Probabilistic approaches, such as [6], usually consider the expected values of coalitions.
This might lead to the case that a number of risk-neutral agents decide to form a high-
risk coalition, excluding risk-averse agents to cooperate with them because overlap-
ping coalitions are not allowed. In contrast, our approach allows for such cooperations
by forming additional coalitions. Approaches that employ fuzzy coalition values, such
as [3], account for a range of possible coalition values. However, the fuzzy coalition
values are assumed to actually be fuzzy numbers or intervals. But this assumption is
not compatible with our setting where a coalition value either produces a specific profit
or a specific loss.

346 B. Blankenburg et al.

8 Conclusions

We have studied a setting of cooperative service provider agents that form fuzzy coali-
tions in order to share and combine resources and services to efficiently respond to
market demands while bounding individual risk. We showed how a coherent risk mea-
sure, the TCE, can be used to assess the risk for agents when taking part in coalitions
to satisfy service requests with deadlines. By splitting resources among different coali-
tions, an agent might lower its overall risk. Despite previous work on fuzzy coalitions in
the literature, we found it necessary to give our own definitions for the fuzzy coalition
game, including the excess and surplus for fuzzy coalitions. This is because of unre-
alistic assumptions in the cited models that do not hold in our setting. In the surplus
computation, sets of alternative fuzzy coalitions have to be considered. As a conse-
quence, we had to bound not only the maximum coalition size, but also the number of
coalitions in these sets as well as the number of plans for a set of agents to obtain a
polynomial computation time for the fuzzy coalition surplus.

References

1. P. Artzner, F. Delbaen, S. Eber, and D. Heath. Coherent measures of risk. Mathematical
Finance, pages 203–228, 1999.

2. J.-P. Aubin. Mathematical Methods of Game and Economic Theory. North-Holland, 1979.
3. B. Blankenburg, M. Klusch, and O. Shehory. Fuzzy kernel-stable coalitions between ratio-

nal agents. In Proc. 2nd Int. Conference on Autonomous Agents and Multiagent Systems,
Melbourne, Australia, 2003.

4. R. N. Bracewell. The Fourier Transform and Its Applications. McGraw-Hill Sci-
ence/Engineering/Math, New York, 3rd edition, 1999.

5. D. Butnariu. Stability and shapley value for an n-persons fuzzy game. Fuzzy Sets and
Systems, 4:63–72, 1980.

6. G. Chalkiadakis and C. Boutilier. Bayesian reinforcement learning for coalition formation
under uncertainty. In Proc. 3rd Int. Conference on Autonomous Agents and Multiagent Sys-
tems, New York, USA, 2004.

7. S. Cheng, Y. Liu, and S. Wang. Progress in risk management. Advanced Modelling and
Optimization, 6(1):1–20, 2004.

8. G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Oxford University
Press, 3rd edition, 2001.

9. I. Nishizaki and M. Sakawa. Masatoshi Fuzzy and multiobjective games for conflict reso-
lution, volume 64 of Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg,
2001.

10. O. Shehory and S. Kraus. Feasible formation of coalitions among autonomous agents. Com-
putational Intelligence, 15(3):218–251, 1999.

11. R. E. Stearns. Convergent transfer schemes for n-person games. Transactions of the Ameri-
can Mathematical Society, 134:449–459, 1968.

A Simple Argumentation Based Contract Enforcement
Mechanism

Nir Oren, Alun Preece, and Timothy J. Norman

Department of Computing Science, University of Aberdeen, Aberdeen, AB24 3UE, Scotland
{noren, apreece, tnorman}@csd.abdn.ac.uk

Abstract. Agents may choose to ignore contract violations if the costs of en-
forcing the contract exceed the compensation they would receive. In this paper
we provide an argumentation based framework for agents to both decide whether
to enforce a contract, and to undertake contract enforcement actions. The frame-
work centers around the agent reasoning about what arguments to put forth based
on a comparison between the utility it would gain for proving its case and the
utility it loses for probing environment state.

1 Introduction

Open environments may contain self–interested agents with different levels of trust-
worthiness. While self–interested, these agents may both cooperate and compete so as
to increase their own utility. Many mechanisms have been proposed to ensure correct
agent behaviour in such environments, and most make use of some form of implicit or
explicit contract between the agents[1,17,6]. The purpose of such a contract is to lay
out what is expected from each contracting party. Given norm-autonomous agents, i.e.
agents which are able to decide whether to fulfil their normative requirements, con-
tracts also allow for the imposition of penalties and compensation to the wronged party
if any deviations from the agreed upon behaviour occurs. Sanctioning of agents often
takes place through the use of a trust or reputation framework[11], or some monetary
mechanism.

In the real world, minor contract violations are often ignored, either due to the loss
in trust that would arise between the contracting parties, or due to the small compen-
sation the wronged party would receive when compared to the overhead of enforcing
the contract. Even major violations might not result in the wronged party being (fully)
compensated, or the guilty party being penalised as the cost of proving the violation
might exceed the compensation which would have been obtained by the victim, result-
ing in them not attempting to enforce the contract. While the former behaviour might
be useful to replicate within multi-agent systems (due to increased efficiency), at first
glance the latter behaviour seems undesirable. Such behaviour is however rational (and
thus desirable in many settings), as it maximises an agent’s gain. It could be argued that
loss making contract enforcement actions, which might increase the society’s welfare
as a whole, are the responsibility of some “pro-bono” third party agents, rather than
contract participants.

Contract enforcement costs are not constant in many scenarios. Referring again to a
typical real world example, if a contract case goes to court, extra costs are incurred due

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 347–359, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

348 N. Oren, A. Preece, and T.J. Norman

not only to lawyer’s fees, but also due to the cost of gathering evidence. As the case
progresses, additional evidence might be needed, leading to further escalating costs.
Some legal systems avoid this by having the loser of a case pay its opponent’s fees.

The increasing complexity of artificial agent environments means that many of these
scenarios have analogies within the agent domain. Agents interacting with each other
on the web, virtual marketplace or a Grid do not trust each other and sign contracts
before providing and consuming services. If one agent believes another did not fulfil its
obligations, it may need to verify its belief by gathering large amounts of evidence. This
evidence gathering might cost it not only computational, but also monetary resources
as it might have to purchase information from other agents. In a similar manner, it
might cost the accused agent resources to defend itself. Allowing for such behaviour
can increase both the efficiency and robustness of agent environments.

In this paper we examine multiple issues related to this type of contract enforcement.
We provide an argumentation/dialogue game based framework which allows agents
to both decide and undertake contract enforcement actions. We also look at how as-
pects of this framework can tie into contracting languages. Our work forms part of the
CONOISE-G project [12]. CONOISE-G centers around the creation and implemen-
tation of technologies designed to improve the performance and robustness of virtual
organisations. Agents operating within the environment have their behaviour regulated
by contracts, and contract monitoring and enforcement thus form a major part of the
project focus.

When an agent believes that a contract it is participating in has been violated, it
calculates the amount of utility it would (lose) gain by (not) enforcing the contract.
While a net utility gain exists, the agent maintains its enforcement action, bringing up
evidence as required. The action of presenting evidence decreases the agent’s utility.
The accused agent follows a similar process, computing how much utility it would lose
by not defending itself, and paying for evidence it uses in its defence. This process ends
when one agent either capitulates or has no further evidence to present, after which a
decision regarding the status of the contract can be reached. While simple, we believe
that this approach can both be useful in a large number of scenarios as well as provide
the basis for more complicated techniques.

In the next section we formalise our framework, after which an small example is
presented. Section 4 looks at the features of our framework, and places it within the
context of related work. Finally, possible extensions to this work are discussed.

2 The Formalism

In this section, we describe our approach in detail. We are primarily interested in only
one section of the contract enforcement stage, namely the point at which an agent at-
tempts to prove that another agent has (or has not) broken a contract. Informally, the
agent begins by determining how much utility it would gain by proving that it has been
wronged, as well as what the net utility gain would be for not being able to prove its
claims. A dialogue then begins between the accuser and the accused. In the course
of this dialogue, evidence is presented from outside sources. Presenting this evidence
costs, imposing an ordering on the best way to present the evidence, as well as possibly

A Simple Argumentation Based Contract Enforcement Mechanism 349

causing an agent to give up on its claims. Once the agents have made all the utter-
ances they desire, an adjudication process can take place, determining whether an agent
has been able to prove its case. The work presented here is an extension of the work
described in [9,8].

We begin by describing the logical layer in which interaction takes place, and the way
arguments interact with each other. We decided against using an abstract argumentation
framework (such as the one described by Dung [3]) or a legal based argumentation
framework (such as Prakken and Sartor’s [15]) as our arguments are grounded and do
not make use of any default constructs. Making use of our own logical formalism also
helps simplify the framework.

After describing the logical level, we specify the dialogue game agents can use to
perform contract monitoring actions, examining strategies agents can use to play the
game, as well as looking at how to determine the winners and losers of an instance
of the game. It should be noted that we discuss very few of our design decisions in
this section, instead simply presenting the framework. An in depth examination of the
framework is left for Section 4. The section concludes by describing how to transform
a contract into a form usable by the framework.

2.1 The Argumentation Framework

Argumentation takes place over the language Σ, which contains propositional literals
and their negation.

Definition 1. Argument. An argument is a pair (P, c), where P ⊆ Σ∪{} and c ∈ Σ
such that if x ∈ P then ¬x /∈ P . We define Args(Σ) to be the set of all possible
arguments derivable from our language.

P represents the premises of an argument (also referred to as an argument’s support),
while c stands for an argument’s conclusion. Informally, we can read an argument as
stating “if the conjunction of its premises holds, the conclusion holds”. An argument
of the form (, a) represents a conclusion requiring no premises (for reasons detailed
below, such an argument is not necessarily a fact).

Arguments interact by supporting and attacking each other. Informally, when an ar-
gument attacks another, it renders the latter’s conclusions invalid.

An argument cannot be introduced into a conversation unless it is grounded. In other
words, the argument ({a, b}, c) cannot be used unless a and b are either known or can
be derived from arguments derivable from known literals. Care must be taken when
formally defining the concept of a grounded argument, and before doing so, we must
(informally) describe the proof theory used to determine which literals and arguments
are justified at any time.

To determine what arguments and literals hold at any one time, let us assume that all
arguments refer to beliefs. In this case, we begin by examining grounded beliefs and de-
termining what can be derived from them by following chains of argument. Whenever
a conflict occurs (i.e. we are able to derive literals of the form x and ¬x), we remove
these literals from our derived set. Care must then be taken to eliminate any arguments
derived from conflicting literals. To do this, we keep track of the conflicting literals in a

350 N. Oren, A. Preece, and T.J. Norman

separate set, and whenever a new conflict arises, we begin the derivation process afresh,
never adding any arguments to the derived set if their conclusions are in the conflict set.

Differentiating between beliefs and facts makes this process slightly more compli-
cated. A literal now has a chance of being removed from the conflict set if it is in the
set of known facts.

More formally, an instance of the framework creates two sets J ⊆ Args(Σ) and
C ⊆ Σ, while making use of a set of facts F ⊂ Σ such that if l ∈ F then ¬l /∈ F and
if ¬l ∈ F then l /∈ F (i.e. F is a consistent set of literals). J and C represent justified
arguments and conflicts respectively.

Definition 2. Derivation. An argument A = (Pa, ca) is derivable from a set S given a
conflict set C (written S, C % A) iff ca /∈ C and (∀p ∈ Pa(∃s ∈ S such that s = (Ps, p)
and p /∈ C) or Pa = {}).

Clearly, we need to know what elements are in C. Given the consistent set of facts F and
a knowledge base of arguments κ ⊆ Args(Σ)1 , this can be done with the following
reasoning procedure:

J0 = {A|A ∈ κ such that {}, {} % A}
C0 = {}

Then, for i > 0, j = 1 . . . i, we have:

C∗
i = Ci−1 ∪ {cA,¬cA|∃A = (PA, cA), B = (PB,¬cA) ∈ Ji−1}

Ci = C∗
i \(C∗

i ∩ F)
Xi0 = {A|A ∈ κ and {}, Ci % A}
Xij = {A|A ∈ κ and Xi(j−1), Ci % A}
Ji = Xii

The set X allows us to recompute all derivable arguments from scratch after every
increment of i2. Since i represents the length of a chain of arguments, when i = j
our set will be consistent to the depth of our reasoning, and we may assign all of these
arguments to J . Eventually, Ji = Ji−1 (and Ci = Ci−1) which means there are no
further arguments to find. We can thus define the conclusions reached by a knowledge
base κ as K = {c|A = (P, c) ∈ Ji}, for the smallest i such that Ji = Ji+1. We
will use the shorthand K(κ) and C(κ) to represent those literals which are respectively
derivable from, or in conflict with a knowledge base κ. C∗

i represents the conflict set
before facts are taken into account.

2.2 The Dialogue Game

Agents make use of the argumentation framework described above in an attempt to
convince others of their point of view. An agent has an associated private knowledge

1 We assume that κ contains all our facts, i.e. ∀f ∈ F, f ∈ κ.
2 This allows us to get rid of long invalid chains of arguments, as well as detect and eliminate

arbitrary loops.

A Simple Argumentation Based Contract Enforcement Mechanism 351

base (KB) containing its beliefs, as well as a table listing the costs involved in probing
the system for the value of literals (M). An instance of the argumentation dialogue is
centred around agents trying to prove or disprove a set of goals G. Utility gains and
losses are associated with succeeding or failing to prove these goals. The environment
also contains a public knowledge base recording the utterances made by the agents.
This knowledge base performs a role similar to a global commitment store, and is thus
referred to as CS below.

Definition 3. Environment. An environment is a tuple (Agents, CS, F, S) where
Agents is the set of agents participating in the dialogue, CS ⊆ Args(Σ) is a pub-
lic knowledge base and F ⊂ Σ is a consistent set of literals known to be facts. S ⊆ Σ
contains literals representing the environment state.

Definition 4. Agent. An agent α ∈ Agents is composed of a tuple
(Name, KB, M, G, Uwin, Udraw, Ulose, T) where KB ⊆ Args(Σ), G ⊆ Σ, M is a
function allowing us to compute the cost of probing the value of a literal. Uwin, Udraw,
Ulose ∈ are the utilities gained for winning, drawing or losing an argument. T ∈
keeps track of the total costs incurred by an agent during the course of the argument.

The monitoring cost function M expresses the cost incurred by an agent when it must
probe the environment for the value of a literal. It maps a set of literals to a real number:

Definition 5. Monitoring costs. The monitoring cost function M is a domain depen-
dant function M : 2Σ →

Representing monitoring costs in this way allows us to discount multiple probing ac-
tions, for example, it might be cheaper for an agent to simultaneously determine the
cost of two literals than to probe them individually in turn.

Agents take turns to put forward a line of argument and ascertain the value of a literal
by probing the environment. For example {((, a), (a, b)), b)} is a possible utterance
an agent could make, containing the line of argument {(, a), (a, b)} and probing the
environment for whether b is indeed in the environment state. Alternatively, an agent
may pass by making an empty utterance {,}. The dialogue ends when CS has remained
unchanged for as many turns as there are players, i.e. after all players have had a chance
to make an utterance, but didn’t. Once this has happened, it is possible to compute the
literals derivable from CS, determine the status of an agent’s goal expression, and thus
compute who won the dialogue.

Definition 6. Utterances. The utterance function

utterance : Environment×Name→ 2Args(Σ) ×Σ

accepts an environment and an agent name, returns the utterance made by the agent.
The first part of this utterance lists the arguments advanced by the agents, while the
second lists the probed environment states.

Given an agent with a monitoring cost function M , we may compute the cost to the
agent of making the utterance (Ar, Pr), where Ar is the line of argument advanced by
the agent and Pr is the set of literals the agents would like to probe, as M(Pr).

352 N. Oren, A. Preece, and T.J. Norman

Definition 7. Turns. The function

turn : Environment×Name→ Environment

takes an environment and an agent label, and returns a new environment containing the
effects of the agent’s utterance.

Given an environment Env = (Agents, CS, F, S) and an agent
α = (Name, KB, M, G, Uwin, Udraw, Ulose, T) ∈ Agents, we define the turn func-
tion as follows

turn(Env, Name) = (NewAgents, CS ∪Ar, F ∪ (Pr ∩ S), S) where Ar, Pr

are computed from the function utterance(Env, Name) = (Ar, Pr), and

NewAgents = Agents\α ∪ (Name, KB, M, G, Uwin, Udraw, Ulose, T + M(Pr))

We may assume that the agents are named Agent0, Agent1, . . . , Agentn−1 where n
is the number of agents participating in the dialogue. It should be noted that the inner
workings of the utterance function are dependant on agent strategy, and we will de-
scribe one possible game playing strategy below. Before doing so however, we must
define the dialogue game itself. Each turn of the dialogue game results in a new envi-
ronment, which is used during later turns.

Definition 8. Dialogue game. The dialogue game can be defined in terms of the turn
function as follows:

turn0 = turn((Agents, CS0, F0, S), Agent0)
turni+1 = turn(turni, Agenti mod n)

The game ends when turni . . . turni−n+1 = turni−n.

CS0 and F0 contain the initial arguments and facts, and are usually empty. Note that
the agent may make a null utterance {, } during its move to (eventually) bring the game
to an end. If we assume that our agents private knowledge bases contain only a finite
number of arguments, it can easily be seen that the dialogue game will eventually end.

To conclude the dialogue game definition, we need to determine how much utility
an agent gains at the end of a dialogue instance. An agent wins the game if it is able
to prove all its goals. A draw occurs when the status of an agent’s goals are unknown
(either due to being indeterminable or in the conflict set).

Definition 9. Agent utility. Given an environment = (Agents, CS, F, S), and ab-
breviating an agent definition (Name, KB, M, G, Uwin, Udraw, Ulose, T) as α, the
winning set of agents is defined as

Agentwin = {α|α ∈ Agents such that G ⊆ K(CS)}

The set of drawing agents is then defined as

Agentdraw = {α|α ∈ Agents such that

∀g ∈ G, (g ∈ C(CS) or {g,¬g} ∩K(CS) = {})}

A Simple Argumentation Based Contract Enforcement Mechanism 353

All other agents are in the losing set: Agentlose = Agents\(Agentwin∪Agentdraw).
An agent α may calculate its utility in such an environment by computing

U(α) =

Uwin − T if α ∈ Agentwin

Udraw − T if α ∈ Agentdraw

Ulose − T if α ∈ Agentlose

Note that drawing (or even losing) a dialogue game may provide an agent with more
utility than winning the game. At the end of the game, K(CS) contains all literals
which are agreed to be in force by the agents, while C(CS) contains all conflicting
literals.

2.3 The Heuristic

We are now in a position to define one possible technique for taking part in the dialogue
game. We assume that our agent is rational and will thus attempt to maximise its util-
ity. By using the reasoning procedure described in Section 2.1 over the environment’s
knowledge base CS, its knowledge base KB and the set of known facts F , an agent
can both determine what literals are currently in force and in conflict, as well as deter-
mine the effects of its arguments. Given all possible arguments to advance PA ∈ 2KB ,
we can define the resultant commitment store by computing RCS = PA ∪ CS. If we
call PF the set of possible facts which the agent an probe, we can compute the set of
possible utterances as PU = RCS × PF . By then performing the move for each PU
and computing the agent’s utility as if the game had ended, an ordering based on utility
of the elements of PU can be generated. The agent then returns the element of PU
which maximises its utility.

Given a set of possible utterances with equal utility, we use a secondary heuristic
(as described in [9]) to choose between them: the agent will make the utterance which
reveals as little new information to the opponent as possible. More formally,

Definition 10. Making utterances. For an environment Env and an agent
α = (Name, KB, M, G, Uwin, Udraw, Ulose, T), let PA ∈ 2KB , RCS = PA ∪ CS.
We compute a set of possible facts accessible by the agent (PF) as3

PF = {f,¬f |f ∈ (K(RCS) ∪ C(RCS))\F} and {f,¬f} ∩ S
= {}

The set of all possible utterances is thus PU = RCS × PF . Let Envnew(Utt) =
turn(Env, Name) where Utt is the utterance function used within the turn function.
We can compute the utility of Utt as Uutterance(Utt) = U(α, Envnew).

Then the agent will make the utterance Utt = (Ar, Pr) ∈ PU such that
maxUtt∈PU (Uutterance(Utt)). If multiple such possible utterances exist, we will
choose one such that K(Ar ∪CS)−K(CS) + C(Ar ∪CS)−C(CS) is minimised.

Assuming that every probing action has an associated utility cost, such an agent would
begin by attempting to argue from its beliefs, probing the environment only as a last

3 The second part of the condition allows us a way of limiting the probing to only those facts
which are in fact accessible, without having to know their value.

354 N. Oren, A. Preece, and T.J. Norman

resort. This behaviour is reminiscent of the idea put forward by Gordon’s pleadings
game [4], where agents argue until certain irreconcilable differences arise, after which
they approach an arbitrator to settle the matter.

It should also be noted that our framework allows for different probing costs to be
associated with probing for a value or its negation. This makes sense in a contracting
environment, as different sensors might be used to perform these two types of probing
actions.

2.4 Contracts

To utilise such a framework in the context of contracting requires a number of additional
features:

1. S, the set of facts which can be probed, must be defined.
2. T the agent’s cost for performing the probing must also be determined.
3. G the set of agent goals must be computed.
4. The agent’s winning, drawing and losing utilities must be set appropriately.
5. The agent’s knowledge bases KB must be created to reflect the content of the

contract, as well as any initial beliefs held by the agents regarding the environment
state.

6. F0, the set of known facts must be generated.

While all of these are contract specific, some guidelines can be provided due to
the features of the framework. Given a two party contract, we can assign our agents
plaintiff and defendant roles. Usually, they will have opposite goals, initially determined
by a combination of the contract clauses and the the plaintiff’s beliefs regarding the
environment state. The set S, as well as the cost of performing the probing is determined
by the contract, and the contract clauses, together with an agent’s beliefs about the state
of the world are used to determine an agent’s KB. F0 (and thus CS0) will not be empty
if certain facts about the environment state are already known.

Item 4 is interesting. Most legal systems operate under the requirement that a plaintiff
prove their case either on the balance of probabilities, or beyond reasonable doubt.
Given the binary nature of our framework, both reduce to the same level. This means
that the winning and drawing utilities for the defendant will be the same, while the
drawing and losing utilities of the plaintiff will be identical. For many contracts, The
winning utility of the plaintiff will be the same as the losing utility of the defendant
(reflecting the fact that the defendant will have to pay the plaintiff in the case of a loss).

To simplify matters, we assume that a contract is enforced in its entirety, i.e. all issues
must be settled in favour of the plaintiff for them to win. We thus define a contract as
follows:

Definition 11. Contract. A contract consists of the tuple
(Plaintiff ,Defendant , Clauses, Monitors, Issues, Penalty) where Plaintiff and
Defendant are labels, Clauses ∈ Args(Σ), Monitors : {Plaintiff ,Defendant} ×
2σ → , Issues ⊆ Σ, and Penalty ∈ .

Given such a contract, as well as a set of states S, we can instantiate our framework as
follows:

A Simple Argumentation Based Contract Enforcement Mechanism 355

Environment = ((Agents0, Agents1), , , S)

Agents0 = (Plaintiff , Clauses, MPlaintiff , Issues, Penalty, 0, 0, 0)

Agents1 = (Defendant , Clauses, MDefendant , Issues, 0, P enalty, Penalty, 0)

Where MPlaintiff and MDefendant are computed by partially parameterising the
Monitors function with the appropriate label. Note that the defendant’s goals are the
same as the plaintiff’s goals, but that it gains utility for “losing” or drawing the game,
as this would mean it had successfully defended it’s stance.

At this stage, contract enforcement is possible using the framework. We will now
provide a short example to illustrate the framework in operation.

3 Example

We will look at a very simple scenario (taken from the service provision scenario de-
scribed in [12]) where a provider agent has agreed to provide a movie service to a
consumer agent, subject to restrictions on the movie framerate.

Given the following contract clauses

fr25→ payPerson

¬fr25→ giveWarning1
wrongMovie→ giveWarning2
giveWarning1 ∧ giveWarning2→ penalty

We assume that monitors exist for fr25, giveWarning1 and giveWarning2 at a
cost of 5,10 and 20 respectively. Finally, let the penalty for contract violation be 30
units of currency.

Now let us assume that the consumer believes that it has been given the incorrect
movie, and when the movie finally arrived, its framerate was below 25 frames per sec-
ond (i.e. the literal ¬fr25 evaluates to true). Furthermore, the provider disputes all of
this, believing that it provided the right movie at an appropriate framerate. After cre-
ating the agents using the method described in Section 2.4, the following conversation
might take place (omitting brackets for the sake of readability where necessary):

(P1) ({(¬fr25, giveWarning1), (wrongMovie, giveWarning2),
({giveWarning1, giveWarning2}, penalty)}, {})

(D2) ((, fr25), {})
(P3) ({}, {¬fr25, fr25})
(D4) ((,¬wrongMovie)
(P5) ({}, {¬giveWarning2, giveWarning2})
(D6) ()
(P7) ()

The plaintiff first puts forward its case, based on its beliefs. Since the agent attempts
to reveal as little as possible, the defendant utters just enough to counter the plaintiff’s
argument. The plaintiff responds by giving proof for its argument, as that is all it can

356 N. Oren, A. Preece, and T.J. Norman

do. Note that the state of fr25 rather than giveWarning1 was probed due to its lower
utility cost. This process repeats itself for wrongMovie, but since this literal is not
directly observable, the agent must probe its conclusion instead. Finally, no more argu-
ments are put forward, and the case is decided in favour of the plaintiff, who earns a net
utility of 5.

Had the defendant attempted to argue for its beliefs regarding the state of fr25 in an
earlier contract enforcement episode, then this round of argument may have begun with
¬fr25 already being an established fact (i.e. part of F0). As can be seen it is difficult
to provide an all encompassing domain independent set of rules to convert a contract,
agents, and environment into a form suitable for a contract enforcement action.

While simple, the example should serve to illustrate how contract enforcement can
take place using our framework. In the next section we will discuss the framework’s
properties in more detail, as well as look at related work and possible directions for
future research.

4 Discussion

While we have focused on using our framework for contract enforcement, it can also
be used in other settings. For example, given a non-adversarial setting where probing
sensors still has some associated cost (for example, of network resources or time), an
agent can reason with the framework (by generating an argument leading to its goals)
to minimise these sensing costs.

The contract enforcement stage is only part of the greater contracting life-cycle. With
some adaptation, our framework can also be used in the contract monitoring stage:
by constantly modifying its beliefs based on inputs from the environment, an agent
could continuously attempt to prove that a contract has failed; once this occurs contract
enforcement would begin.

Contract enforcement and monitoring has been examined by a number of other re-
searchers. Given a fully observable environment in which state determination is not
associated with a utility cost, the problem reduces to data mining. Research such as
[19] operates in such an environment, but focus more on the problem of predicting
imminent contract failure. Daskalopulu et al. [2] have suggested a subjective logic [5]
based approach for contract enforcement in partially observable environments. Here,
a contract is represented as a finite state machine, with an agent’s actions leading to
state transitions. A central monitor assigns different agents different levels of trust, and
combines reports from them to determine the most likely state of the system. While
some weaknesses exist with this approach, most techniques for contract enforcement
are similar in nature, making use of some uncertainty framework to determine what the
most likely system state is, then translating this state into a contract state, finally de-
termining whether a violation occurred. An argumentation based approach potentially
has both computational as well as representational advantages over existing methods.
In earlier work[10], we described a contracting language for service level agreements
based on semantic web standards (called SWCL). One interesting feature of that work
is the appearance of an explicit monitoring clause describing where to gather informa-
tion regarding specific environment states. Most other contracting languages lack such

A Simple Argumentation Based Contract Enforcement Mechanism 357

a feature, and the addition of a monitoring cost would allow SWCL to be used as part
of our framework. A related feature of our framework which, in a contracting context
would require a language with appropriate capabilities, is the ability to assign differ-
ent monitoring costs for determining whether a literal or its negation holds. In an open
world environment, such a feature is highly desirable.

Argumentation researchers have long known that a dialogue should remain relevant
to the topic under discussion [7]. This trait allows dialogue based systems to rapidly
reach a solution. The approach presented here enforces this requirement due to the na-
ture of the heuristic; any extraneous utterances will lead to a reduction in an agent’s
final utility. One disadvantage of our approach is that, as presented, the computational
complexity of deciding what utterance to make is exponential in nature. Simple opti-
misations can be implemented to reduce the average case complexity, but in the worst
case, all possible arguments must still be considered. Mitigating this is the fact that
the number of clauses involved in a contract enforcement action is normally relatively
small, making its use practical in the contracting domain.

Many different argumentation frameworks have been proposed in the literature ([16]
provides an excellent overview of the field). We decided to design our own framework
rather than use an existing approach for a number of reasons. First, many frameworks
are abstract in nature, requiring the embedding of a logic, and then making use of some
form of attacking relation to compute which arguments are, or are not in force. Less
abstract frameworks focus on the non–monotonic nature of argument, often requiring a
default logic be used. The manner in which agents reason using our heuristic, as well as
the grounded nature of the subject of arguments in our domain makes the argumentation
framework presented here more suitable than others for this type of work. However,
we intend to show the relationship between our framework and sceptical semantics in
existing argumentation frameworks in future work.

Legal argumentation systems often grapple with the concept of burden of proof (e.g.
[13,14,18]). We attempt to circumnavigate the problem of assigning responsibility for
proving the state of a literal to a specific agent by having agents probe for the value
themselves as needed. This approach will not work in more complicated scenarios
with conflicting sensors, and extending the framework to operate in such environments
should prove interesting.

One quirk of our framework is that we do not do belief revision when agents are
presented with facts. While adapting the method in which NewAgents are created in
Definition 7 is possible by setting the new agent’s KB to be KB ∪ (, f)∀f ∈ F , and
even remove any “obviously conflicting” beliefs, we are still unable to remove beliefs
that arise from the application of chains of arguments. We would thus claim that an
agent’s beliefs are actually a combination of its private knowledge base KB, the public
knowledge base CS and the set of presented facts F , rather than being solely a product
of KB. Overriding beliefs with facts means our framework assigns a higher priority to
fact based argument than belief based argument. This is reminiscent of many existing
priority based argumentation frameworks such as [15].

Another possible area of future work involves reasoning about contracts with multiple
weakly related clauses. Currently, an agent wins or loses an argument based on whether
it can prove all its goals. This (unrealistic) assumption simplifies the problem greatly.

358 N. Oren, A. Preece, and T.J. Norman

By enriching the framework with a more complicated reward function, an agent would
be able to gain (or lose) utility by proving only some of its goals. Such work would
probably need other enhancements such as opponent modelling and the integration of
a planner to allow the agents to plan arguments further than just its next utterance.

Finally, the procedure used to transform a contract into an environment and agents for
argumentation is very simple. Enhancing this procedure to make use of the full power
of the argumentation framework requires further examination. This enhancement will
allow for both the representation of, and dialogue regarding, more complex contracts,
further increasing the utility of the framework. Another area of future work involves
n–party contracts. While our framework provides support for such dialogue, agents, we
have not examined what such contracts would look like, and this might be an interesting
research direction to pursue.

5 Conclusions

Explicit or implicit contracts are the dominant method for specifying desired agent be-
haviour within complex multi-agent systems. Contract enforcement is necessary when
agents are able to renege on their obligations.

In this paper we have presented an argumentation based framework for contract en-
forcement within partially observable environments for which querying sensors has an
associated cost. This work can prove useful in a variety of settings, including untrusted
(and trusted) distributed computing environments such as the Grid. While many in-
teresting research questions remain, we believe that our framework provides a good
starting point to model, and reason about such environments.

Acknowledgements

This work is partly funded by the DTI/EPSRC E-Science Core Program and BT, via a
grant for the CONOISE-G project (http://www.conoise.org), a multi-university collab-
oration between Aberdeen, Cardiff and Southampton universities, and BT.

References

1. R. K. Dash, N. R. Jennings, and D. C. Parkes. Computational–mechanism design: A call to
arms. IEEE Intelligent Systems, 18(6):40–47, 2003.

2. A. Daskalopulu, T. Dimitrakos, and T. Maibaum. Evidence-based electronic contract perfor-
mance monitoring. Group Decision and Negotiation, 11(6):469–485, 2002.

3. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357,
1995.

4. T. F. Gordon. The pleadings game: formalizing procedural justice. In Proceedings of the
fourth international conference on Artificial intelligence and law, pages 10–19. ACM Press,
1993.

5. A. Josang. Subjective evidential reasoning. In Proceedings of the 9th International Con-
ference on Information Processing and Management of Uncertainty in Knowledge-Based
Systems, pages 1671–1678, July 2002.

A Simple Argumentation Based Contract Enforcement Mechanism 359

6. M. J. Kollingbaum and T. J. Norman. Supervised interaction – creating a web of trust for
contracting agents in electronic environments. In Proceedings of the First International Joint
Conference on Autonomous Agents and Multi–Agent Systems, pages 272–279, 2002.

7. D. Moore. Dialogue game theory for intelligent tutoring systems. PhD thesis, Leeds
Metropolitan University, 1993.

8. N. Oren, T. J. Norman, and A. Preece. Arguing with confidential information. In Proceedings
of the 18th European Conference on Artificial Intelligence, Riva del Garda, Italy, August
2006. (To appear).

9. N. Oren, T. J. Norman, and A. Preece. Loose lips sink ships: a heuristic for argumentation. In
Proceedings of the Third International Workshop on Argumentation in Multi-Agent Systems
(ArgMAS 2006), pages 121–134, Hakodate, Japan, May 2006.

10. N. Oren, A. Preece, and T. J. Norman. Service level agreements for semantic web agents.
In Proceedings of the AAAI Fall Symposium on Agents and the Semantic Web, pages 47–54,
2005.

11. J. Patel, W. Teacy, N. Jennings, and M. Luck. A probabilistic trust model for handling
inaccurate reputation sources. In Proceedings of Third International Conference on Trust
Management, pages 193–209, 2005.

12. J. Patel, W. T. L. Teacy, N. R. Jennings, M. Luck, S. Chalmers, N. Oren, T. J. Norman,
A. Preece, P. M. D. Gray, Shercliff, P. J. G., Stockreisser, J. Shao, W. A. Gray, N. J. Fiddian,
and S. Thompson. Agent-based virtual organisations for the grid. International Journal of
Multi-Agent and Grid Systems, 1(4):237–249, 2005.

13. H. Prakken. Modelling defeasibility in law: Logic or procedure? Fundamenta Informaticae,
48(2-3):253–271, 2001.

14. H. Prakken, C. A. Reed, and D. N. Walton. Argumentation schemes and burden of proof.
In Workshop Notes of the Fourth Workshop on Computational Models of Natural Argument,
2004.

15. H. Prakken and G. Sartor. A dialectical model of assessing conflicting arguments in legal
reasoning. Artificial Intelligence and Law, 4:331–368, 1996.

16. H. Prakken and G. Vreeswijk. Logics for defeasible argumentation. In D. Gabbay and
F. Guenthner, editors, Handbook of philosophical logic, 2nd Edition, volume 4, pages 218–
319. Kluwer Academic Publishers, 2002.

17. Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies: Off-line design.
Artificial Intelligence, 73(1–2):231–252, 1995.

18. D. N. Walton. Burden of proof. Argumentation, 2:233–254, 1988.
19. L. Xu and M. A. Jeusfeld. Pro-active monitoring of electronic contracts, volume 2681 of

Lecture notes in Computer Science, pages 584–600. Springer-Verlag GmbH, 2003.

A Fuzzy Approach to Reasoning with Trust,
Distrust and Insufficient Trust

Nathan Griffiths

Department of Computer Science, University of Warwick,
Coventry, CV4 7AL, UK

nathan@dcs.warwick.ac.uk

Abstract. Multi-agent systems are based upon cooperative interactions
between agents, in which agents provide information, resources and ser-
vices to others. Typically agents are autonomous and self-interested,
meaning that they have control over their own actions, and that they
seek to maximise their own goal achievement, rather than necessarily
acting in a benevolent or socially-oriented manner. Consequently, inter-
action outcomes are uncertain since commitments can be broken and the
actual services rendered may differ from expectations in terms of cost or
quality. Cooperation is, therefore, an uncertain interaction, that has an
inherent risk of failure or reduced performance. In this paper we show
how agents can use trust to manage this risk. Our approach uses fuzzy
logic to represent trust and allow agents to reason with uncertain and
imprecise information regarding others’ trustworthiness.

1 Introduction

Cooperation is the foundation of all multi-agent systems. Agents typically lack
the knowledge, capabilities or resources needed to achieve their objectives alone,
and it is through cooperation that they are able to function effectively. Individual
agents provide information, resources and services to others in exchange for
some form of payment. In order to achieve flexibility and robustness, agents are
typically given the autonomy to control their own individual goals and actions.
By definition, however, this autonomy implies that agents have control over
how they cooperate. In particular, agents determine for themselves when to
initiate cooperation or assist others, when to rescind cooperative commitments,
and how to conduct cooperative tasks. Consequently, where agents cooperate
any one of them may change the nature of their contribution, or even cease to
cooperate, at any time. For example, an agent may choose to delay the provision
of information, perform a processing task to a reduced quality, or simply fail
to fulfil its commitments. Such failures are costly to the remaining cooperating
agents since their goals may not be achieved, or not achieved as effectively (i.e.
to a lower quality or with an increased cost).

On entering into cooperation an agent begins an uncertain interaction in which
there is a risk of failure (or reduced performance) due to the decisions and
actions of another. To function effectively, an agent needs to manage this risk.

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 360–374, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Fuzzy Approach to Reasoning with Trust, Distrust and Insufficient Trust 361

In this paper we show how agents can use the notion of trust, based on their
individual experiences, to manage this risk by selecting appropriate interaction
partners. Our approach uses fuzzy logic to represent trust and to allow agents to
reason with uncertain and imprecise information. In addition to positive trust, we
introduce the notions of negative trust (distrust) and insufficient trust (untrust
and undistrust), and show how agents can use these concepts to increase the
effectiveness of their interactions. Our approach to using fuzzy logic to represent
trust was initially described in [4]. In this paper, we describe a refinement of the
reasoning process, discuss how negative and insufficient trust can be incorporated
into an agent’s reasoning, and present our initial experimental results.

2 Background

2.1 Trust and Reputation

Trust and reputation are related, but distinct, concepts. The former represents
an agent’s individual assessment of the reliability, honesty etc. of another, while
the latter is a social notion corresponding to a group assessment of such is-
sues. Reputation is generally built by combining trust assessments (or recom-
mendations) given by a group of agents to obtain a single value representing
an estimate of reputation. The process of combining individual assessments or
recommendations into a group notion generally requires agents to make their
private assessments of others publicly available. Agents do not necessarily need
to reveal the full details of their private assessments but they do need to reveal
whether a given agent is considered trustworthy or not1. In some situations this
can be undesirable from an individual’s perspective, since it involves revealing
private information that may reduce future effectiveness. For example, suppose
that an agent α frequently cooperates with β, who reliably provides high qual-
ity and timely information. If α were to make its assessment of β’s reliability
and quality (i.e. its trustworthiness) public, then β may become overloaded and
unreliable for α’s future interactions.

In providing trust information to establish reputation, an agent might reduce
the effectiveness of its own future interactions. For an agent to provide such
information, there must be some intrinsic motivation for information sharing. In
the absence of such a motivation, there will be insufficient information to assess
reputation. There are also general issues with reputation concerning the subjec-
tivity and context-specific nature of feedback [5]. Although in many situations
the benefits of reputation might outweigh the individual cost of trust informa-
tion sharing, it is useful in general to consider trust and reputation as separate,
enabling agents to use trust without considering reputation.

Many of the existing applications of trust combine the notions of trust and
reputation by using a global aggregation of individual trust into a reputation

1 Other potential approaches, such as a polling mechanism, remove the need to make
such private information public, however most existing approaches require the shar-
ing of individual “trust recommendations”.

362 N. Griffiths

assessment [13, 14, 15, 16]. Such research tends not to address how trust itself
can be used in an individual’s decision making. In this paper we focus specifically
on trust from an individual’s perspective, and do not consider reputation fur-
ther. Our approach is complimentary to reputation-based models, and we view
trust and reputation as both playing an important role in a complete system.
Moreover, existing approaches also do not account for the roles of distrust and
insufficient trust in the decision making process.

Existing models of trust can be categorised according to how trust is used: for
achieving security or for enhancing quality of service [3]. In this paper we focus
on the quality of service perspective to enable agents to maximise the “quality”
of their interactions according to their current preferences.

2.2 Fuzzy Logic for Trust

Trust represents an individual’s assessment of the reliability, honesty etc. of an-
other, and the level of trust ascribed to an agent is based on the individual’s ex-
periences with that agent: positive experiences lead to positive trust and negative
ones to distrust. However, although based on the known outcomes of previous
experiences there is inherent uncertainty regarding the level of trust ascribed to
an agent. For example, there is no guarantee that a previously reliable agent will
continue to be so. Fuzzy logic offers the ability to handle uncertainty and im-
precision effectively [12], and is therefore ideally suited to reasoning about trust.
Inference using fuzzy logic copes with imprecise inputs, such as assessments
of quality, and allows inference rules to be specified using imprecise linguistic
terms, such as “very high quality” or “slightly late”. Existing approaches have
successfully used fuzzy logic to represent trust in multi-agent systems [8, 11]
and peer-to-peer systems [14]. However, these existing techniques use trust as a
means of establishing reputation, rather than focusing on individual trust in its
own right. In this paper we aim to show how agents can enhance their interac-
tions by using trust based on their individual experiences. Moreover, the existing
approaches do not adequately consider the notions of negative and insufficient
trust. We describe, in this paper, a method that uses fuzzy logic to make as-
sessments about various aspects of trust, and allows agents to make decisions
based on trust, distrust and insufficient trust. Before presenting our approach,
however, we introduce some basic fuzzy concepts.

2.3 Basic Fuzzy Concepts

In classical set theory the membership of an object in a set is clearly defined: it is
either a member or it is not. For example, a person of age 10 might be a member
of the set young , and not of the set old . Such sets are required to have well-defined
boundaries. However, the concept of young does not have a clear boundary, and
in some contexts age 30 might be considered to be young, and not in others.
Fuzzy sets are based on the notion of a membership function, µ(x), which defines
the degree to which a fuzzy variable x is a member of a set. Full membership
is represented by 1, and no membership by 0. The membership function µ(x)

A Fuzzy Approach to Reasoning with Trust, Distrust and Insufficient Trust 363

maps x into the interval [0, 1]. For example, age 35 might have a membership of
0.8 in a fuzzy set ỹ , representing young ages, and a 0.1 membership in the set
õ representing old ages. We use a tilde accent, x̃, to indicate that a set x is a
fuzzy set. The universe of discourse of a fuzzy set corresponds to the range of
values that are considered, such as [0, 130] for age.

Fuzzy sets are used to define terms with respect to a variable. For example,
the sets ỹ and õ define the terms ˜young and õld respectively, on the variable age.
Terms can be subjected to modifiers (also called linguistic hedges), such as very
or slightly, which serve to modify, or hedge, the membership function from its
original definition. The former example concentrates the membership function,
while the latter dilates it. A discussion of the mathematical definition of such
modifiers is beyond the scope of this paper, but we adopt Zadeh’s definitions
which follow the intuitive linguistic meanings [17]. For example, if we define
α =

∫
Y

µα(y)
y then very α =

∫
Y

[µα(y)]2

y and slightly α =
∫

Y
[µα(y)]0.5

y (for further
details see [12, 17]).

Relations between variables can be defined using fuzzy inference rules of the
form:

if input1 is [modifier1] ˜term1 and input2 is [modifier2] ˜term2

then output is modifier′ ˜term′

which define the relationship between antecedents (input1 and input2) and con-
sequent (output), described by terms ˜term1, ˜term2 and ˜term′ and optional mod-
ifiers modifier1, modifier2 and modifier′. For example, we might have rules such
as the following.

(R1) if age is ˜young and income is very h̃igh
then customerPotential is h̃igh

(R2) if age is õld and income is l̃ow
then customerPotential is ˜medium

Rules are applied in parallel, and the conclusion membership degrees are ag-
gregated by superimposing the resultant membership curves (i.e. by taking the
fuzzy union of the resulting fuzzy sets). We adopt a Mamdani min-max approach
to inference, such that the membership degree of the rule conclusions is clipped
at a level determined by the minimum of the maximum membership values of
the intersections of the fuzzy value antecedent and input pairs [7]. This ensures
that the degree of membership in the antecedents is reflected in the output. We
give an example of how Mamdani min-max inference operates for fuzzy trust in
Section 5.

A crisp value can be obtained from the result of inference by defuzzifying the
aggregated consequents. There are many methods for defuzzification, but for
simplicity we take the centre of the area bounded by the membership curve.
(Further discussion of the concepts introduced in this section can be found
in [12].)

364 N. Griffiths

TUTUDD(b)

0 1

D UT T(a)

0 1

−1

−1

Fig. 1. (a) Marsh’s notions of trust and, (b) our addition of undistrust, where D, UD,
UT, and T correspond to distrust, undistrust, untrust, and trust respectively

3 Trust

Our proposed mechanism builds on existing work using service-oriented trust
in agent-based systems. Trust is generally taken to be the belief that an agent
will act in the best interests of another (i.e. that it will cooperate), even if
given the opportunity to do otherwise (i.e. to defect) [1, 2]. When entering
into cooperation an agent can use its trust of potential partners to evaluate
the risk of failure. Most previous work on trust has concentrated the positive
side of trust (analogous to assessing the extent to which an agent is reliable),
and has largely ignored the notion of distrust (analogous to assessing the ex-
tent to which an agent is unreliable). Distrust is not simply the negation of
trust [6], but rather it is an explicit belief that an agent will act against the
best interests of another [9]. Alternatively, untrust corresponds to the space
between distrust and trust, in which an agent is positively trusted, but not
sufficiently to cooperate with. This view of trust, proposed by Marsh, is il-
lustrated in Fig. 1(a). Marsh argues that distrust is an important concept,
that can play an important role in an agent’s reasoning, complimenting trust
itself [9].

We concur with Marsh’s view regarding the importance of distrust, and in
this paper we provide a mechanism for agents to make use of distrust in their
decision making. In addition to distrust, untrust and trust, however, we propose
a new notion of undistrust. Untrust is defined as positive trust, but insufficient
to support cooperation. For distrust to play a useful role in an agent’s reasoning,
we argue that a similar region of undistrust is needed, namely, a region of nega-
tive trust but insufficient to make definite conclusions in the reasoning process.
Fig. 1(b) illustrates our definition of the notions of trust, distrust, untrust and
undistrust. Although agents can not use untrust and undistrust to make definite
conclusions regarding trust, they can still make use of the notions of untrust and
undistrust in their reasoning regarding cooperation. For example, if there are no
trusted agents with whom to interact then an agent may choose to interact with
an untrusted, or even an undistrusted, agent provided that the cost of failure is
relatively low (i.e. where it is better to have tried and failed that not to have
tried at all).

A Fuzzy Approach to Reasoning with Trust, Distrust and Insufficient Trust 365

4 Interaction Histories

Trust is based on an agent’s individual experiences (since in this paper, as noted
above, we do not consider reputation), and so each agent must keep track of
its previous interactions. Some interactions may simply have a binary result of
success or failure. However, typical cooperative interactions are more complex
than simple succeed or fail tasks, and tasks may partially succeed, or be com-
pleted with different characteristics than expected. For example, an agent that
has agreed to provide information may provide it late or with less detail than
expected. This might not cause the goal of the receiving agent to completely fail,
but it may cause the receiving agent’s level of performance to reduce. Therefore,
to enable agents to make effective use of trust we require them to represent more
than a simple expectation about success or failure. We take a multi-dimensional
view of trust as comprising the combination of the different dimensions of an
interaction, such as the quality of a task or the cost imposed for executing it,
in addition to whether an interaction was successful or not. Agents model such
characteristics as dimensions of trust, which taken together give an assessment
of an agent’s trustworthiness. For illustrative purposes, in this paper we con-
sider the dimensions of success, cost, and quality, although other dimensions are
equally possible. The multi-dimensional approach provides a mechanism that
allows agents to reason about the specific characteristics of an interaction where
appropriate.

In order to assess trust an agent must evaluate its experiences in each of
the trust dimensions. For each interaction, and in each dimension, an agent’s
expectations will have either been met or not met. Agents maintain a history
of the interactions that they have had with each other agent, and track the
number of successful and unsuccessful interactions for each dimension, in terms of
whether their expectations were met. Thus, for each dimension, d, and agent that
has been cooperated with, α, an agent maintains a value Id+

α which corresponds
to the number of interactions in which its expectations were met, and a value
Id−
α in which they were not met. From these values, the experience, ed

α, in each
dimension d, for each agent α, can be calculated as:

ed
α =

Id+
α − Id−

α

Id+
α + Id−

α

Such experience values are the basic information from which an agent can as-
sess the trustworthiness of others. They are crisp values in the interval [−1, 1] and
must be translated into fuzzy values in order to reason about trust. Experience
values are based directly on an agent’s interaction histories, and so they are not
uncertain in themselves. Rather, the uncertainty for trust comes from a lack of
information about other agents’ future actions. Therefore, each experience value
is fuzzified by translating it into a fuzzy value defined by the singleton fuzzy set
whose membership function is 0 at all points except for ed

α which has a member-
ship of 1. Thus, the fuzzified experience is given by Ed

α = fuzzySingleton(ed
α).

366 N. Griffiths

4.1 Purging Old Interactions

Agents keep track of the outcomes of their interactions by using a window of
experiences that is maintained for each other agent. This window is bounded,
such that there is an upper limit on the number of interactions that are recorded
for any agent. The interaction window acts as a first-in first-out queue, and
when full it is the earliest experiences that are removed to be replaced by new
ones. Over time, however, the information stored may become outdated if the
environment (particularly in terms of the character of the other agents) has
changed and previous experiences are no longer relevant. Agents may change,
and an agent that was reliable previously may no longer be so. To address this
problem an agent purges outdated experiences from its interaction windows after
a certain predefined period. Thus, even if an interaction window is not full, the
record of experiences will be removed over time.

The delay between the occurrence of an interaction and the removal of its
record from the interaction window is called the purge lag, and has a direct in-
fluence on how quickly an agent’s trust assessments respond to changes in its
environment. A small purge lag means that interaction records do not persist for
long and so the effect of previous experiences decays quickly and trust assess-
ments respond quickly to changes. However, a small purge lag also reduces the
extent of the experiences that can be used to determine trust. If the purge lag is
too small there will be insufficient experiences on which to base trust, and any
small perturbations in others’ reliability and honesty will have a significant ef-
fect on trust. Conversely, a large purge lag avoids magnifying the effects of small
perturbations in others’ reliability, but increases the number of interactions that
are required to react to changes in the environment. Thus, trust assessments are
slow to respond to change.

In determining trust it is important that an agent has sufficient experience
on which to calculate trust. We define the confidence level in the experience for
a particular dimension as the total number of interactions on which it is based.

confidenced
α = Id+

α + Id−
α

If this confidence level is below a predefined threshold then either a value of
untrust or undistrust will be ascribed (for the success dimension), or a default
value will be used (for other dimensions) as described in the following section.
Note that there may be different levels of confidence for different dimensions.
For example, there are likely to be fewer interactions relevant to quality than
success, since only successful interactions will contribute to the quality dimension
whereas all interactions will contribute to the success dimension.

5 Fuzzy Trust

We define fuzzy terms for experience in each of the dimensions in which agents
record their interactions, in our case success, cost, and quality. Fuzzy terms
are defined in reference to fuzzy variables, and for experience we define fuzzy

A Fuzzy Approach to Reasoning with Trust, Distrust and Insufficient Trust 367

NM
NB

PM
NS PS PB

1

0
−1 −0.5 0 0.5 1

Z

Fig. 2. Definition of fuzzy terms for experience, where NB, NM, NS, Z, PS, PM, and
PB correspond to negative big, negative medium, negative small, zero, positive small,
positive medium and positive big respectively

D T
HTUTUDHD

−1 −0.5 0 0.5 1

1

0

Fig. 3. Definition of fuzzy terms for trust, where HD, D, UD, UT, T, and HT corre-
spond to high distrust, distrust, undistrust, untrust, trust, and high trust respectively

variables for each trust dimension. Thus, for our chosen dimensions we introduce
Es

α, Ec
α, and Eq

α corresponding to the experiences in the dimensions of success,
cost, and quality for agent α respectively. The universe of discourse of these fuzzy
variables is [−1, 1], i.e. ranging from expectations never being met to expecta-
tions always being met. For each of these variables we define the terms: negative
big, negative medium, negative small, zero, positive small, positive medium, and
positive big. Other terms are possible, but these are sufficient for our purposes.
The fuzzy sets that describe these terms are illustrated in Fig. 2.

In order to use fuzzy inference to determine trust, Tα, in an agent α we must
also define trust as a fuzzy variable, with an associated set of fuzzy terms. The
universe of discourse for trust is also [−1, 1], i.e. complete distrust to complete
trust, and we define the terms: high distrust, distrust, undistrust, untrust, trust,
and high trust. These terms allow us to represent that there is insufficient trust
for reasoning, in the form of untrust and undistrust, along with representing
two degrees of trust and distrust. Again, other definitions are possible, but these
are sufficient for our application. The fuzzy sets that describe these terms are
illustrated in Fig. 3.

For each dimension we define a set of fuzzy inference rules that take the
fuzzified experiences as antecedents and make conclusions regarding trust. The
definition of these rules is the responsibility of the system developer, and we do
not prescribe a particular rule set. In the experiments described in Section 6 we

368 N. Griffiths

(RUT 1) if confidenced
α < minConfidence and Ed

α is positive then Tα is untrust
(RUT 2) if confidenced

α < minConfidence and Ed
α is negative then Tα is undistrust

. . .
(RT 1) if Ed

α is negativeBig then Tα is highDistrust
(RT 2) if Ed

α is negativeMedium then Tα is very distrust or undistrust
(RT 3) if Ed

α is negativeSmall then Tα is undistrust
(RT 4) if Ed

α is zero then Tα is undistrust or untrust
(RT 5) if Ed

α is positiveSmall then Tα is untrust
(RT 6) if Ed

α is positiveMedium then Tα is very trust or untrust
(RT 7) if Ed

α is positiveBig then Tα is highTrust
. . .

(RRn) if Tα is highTrust and F c
α is medium and F q

α is very high then Rα is high
(RRm) if Tα is low distrust and F c

α is medium and F q
α is high then Rα is low

Fig. 4. Example fuzzy inference rules

use the rules RT 1–RT 7 given in Fig. 4 along with additional rules of the form
of RRn. Other rules are, of course, possible and can be easily incorporated into
the system.

5.1 Determining Trust

Before determining the trustworthiness of an agent the assessor must check
whether there have been sufficient previous interactions to calculate trust. All
previous interactions will either have succeeded or failed (there is no notion of
a ‘partial’ success), and so we use the success dimension to determine whether
there is sufficient information to calculate trust. If there have not been sufficient
interactions in the success dimension then the agent is ascribed a value of un-
trust or undistrust according to whether the interactions that have taken place
are positive or negative overall, i.e. whether ed

α is positive or negative. Thus, the
first step in determining the trust of an agent α is to check whether there is
sufficient confidence, i.e. that confidences

α ≥ minConfidence. If there is not suffi-
cient confidence then trust Tα is defined by the fuzzy terms ˜untrust or ˜undistrust
with a membership degree determined by the level of confidence and value of
experience, as defined in rules RUT 1 and RUT 2. (Note that before firing rules
RUT 1 and RUT 2 in fuzzy inference confidence is fuzzified in a similar manner to
that described above for experience.)

Provided that there have been sufficient previous experiences, then fuzzy infer-
ence is used to calculate trust. To determine the trustworthiness of the potential
interaction partners we must consider the inference rules for each of the trust
dimensions. Each rule is considered in turn, and if there is a match between the
input (i.e. Ed

α) and the fuzzy set defined by the antecedent of the rule, then the
rule is fired. For example, if there is an overlap between the input Ed

α and the
area defined by the term negativeBig then rule RT 1 is fired. If there is insufficient
confidence in a particular dimension, the agent uses a default “experience” value

A Fuzzy Approach to Reasoning with Trust, Distrust and Insufficient Trust 369

T

0 0.50.50

UT

0.25 0.5

PM

0

0

1

0 0.25 0.5

PS

0

1

0
0.22

0.5

65TR TR

Fig. 5. A simple inference example showing the firing of rules RT 5 and RT 6

for that dimension, defaultd. This value is determined by the the agent’s trust
disposition, with optimists using higher values than pessimists.

By way of example, suppose that for the success dimension we have deter-
mined that Es

α = 0.25 for agent α based on the experiences recorded in the in-
teraction window. This crisp value is fuzzified as described above, and the fuzzy
rules are then applied. In this case the input set matches with the antecedents
of rules RT 5 and RT 6, i.e. fuzzySingleton(0.25) overlaps with the sets defined
by the terms positiveSmall and positiveMedium . Using Mamdani min-max in-
ference the membership of the conclusion fuzzy set is clipped by the degree of
membership of the antecedent. The outputs of the rules are then aggregated by
taking the fuzzy union. This is shown graphically in Fig. 5. The process is then
continued for the other dimensions, with the outputs from any matching rules
being combined with the existing output by taking the fuzzy union. Once rules
RT 1–RT 7 have be applied for all dimensions we have determined a fuzzy value
for trust Tα. A crisp value can be determined by defuzzifying as shown in Fig. 5,
in this case resulting in a trust of 0.22.

5.2 Distrust

Once the potential cooperative partners have been ascribed trust values, the se-
lecting agent can filter out all those that are distrusted. Since trust is a fuzzy value,
checking for distrust is not a crisp operation, but instead involves considering the
extent that trust is a member of the fuzzy set ˜highDistrust . A small membership
in this set is (typically) insufficient to reject a partner whilst a high membership,

370 N. Griffiths

indicating definite high distrust, should cause the agent to be rejected. Our ap-
proach is to check the similarity2 of the fuzzy value Tα with the fuzzy value
whose membership function is defined solely by the ˜highDistrust fuzzy set. This
can be thought of as checking the similarity of the Tα and ˜highDistrust member-
ship graphs. If the similarity is above a threshold, maxDistrust , then the agent
concerned is rejected, and is no longer considered to be a potential cooperative
partner.

5.3 Untrust and Undistrust

If the trust level ascribed to an agent is untrust or undistrust, then the trust
level is considered insufficient to directly make a decision regarding the agent’s
suitability (i.e. to reject the agent or to cooperate). Intuitively, each agent who
is ascribed untrust or undistrust should not be directly considered for selection
(although it should not be completely rejected either). However, in hostile or
highly dynamic environments this can lead to problems, since all agents may be
either distrusted and so explicitly rejected, or untrusted and undistrusted and so
not considered for cooperation. This gives rise to deadlock. To avoid this situation
we provide the facility for untrusted and undistrusted agents to be considered
for a proportion of interactions. If there are no trusted agents that have the
required capabilities then with some probability, called the rebootstrap rate, the
agent with the highest trust level from the set of untrusted and undistrusted
agents will be selected.

5.4 Selecting an Cooperative Partner

Assuming that there is a set of trusted (i.e. with a trust level above untrust)
agents, then one of them can be selected for cooperation. Agents might simply
use trust alone to select which agent to cooperate with by selecting the most
trusted. However, typically there is additional information with which to make
a decision. For example, each of the alternative agents may advertise a cost and
quality for the interaction. In this case, the selecting agent can incorporate such
information into its decision making. Since these advertised values represent
uncertain information (i.e. the actual cost and quality are unknown at the point
of making a decision), they also lend themselves to fuzzy inference. Thus, we
introduce fuzzy rules that combine trust with each of the other decision factors
and determine a rating for each alternative potential interaction partner. Each

2 The experiments described in Section 6 are obtained using the NRC FuzzyJ
Toolkit [10]. We adopt the definition of similarity given in FuzzyJ, namely:

similarity(a, b) = if necessity(a, b) > 0.5
then possibility(a, b)
else (necessity(a, b) + 0.5) × possibility(a, b), where

necessity(a, b) = 1 − possibility(not a, b), and
possibility(a, b) = maxx(min(µa(x), µb(x))).

A Fuzzy Approach to Reasoning with Trust, Distrust and Insufficient Trust 371

of these factors Fi is a crisp value, which can be fuzzified as a singleton set.
We define a set of inference rules that have fuzzy trust and the fuzzy decision
factors as antecedents and the rating for an agent as conclusions. These factors
are domain specific. In our example, we use the advertised cost and quality from
an agent α, denoted F c

α and F q
α respectively. Suppose that we have defined the

fuzzy terms low , medium and high for these factors, according to the universe
of discourse defined by the range of potential advertised cost and quality values.
Similarly, suppose that we have terms low , medium, high and reject defined for
ratings, which has a universe of discourse of [0, 1]. We then define a set of rules of
form illustrated by RRn and RRm in Fig. 4. Rule RRn states that if an agent is
trusted, has a medium advertised cost and a high advertised quality, then it has
a high rating. Similarly, rule RRm states that if an agent is ascribed low distrust
(insufficient distrust to cause a rejection), has a medium advertised cost and
high advertised quality, then it has a low rating. Similarly to calculating trust,
each of these rules is applied in parallel using Mamdani min-max inference, and
a crisp rating value for agent α is obtained by defuzzifying the fuzzy rating. To
balance the importance of the various decision factors (including trust), agents
can scale the inputs before performing inference. For example, if cost is not
currently important then the input Ec

α would be multiplied by some reduction
factor, r, where 0 < r < 1.

In order to select an agent to cooperate with, the selecting agent calculates
the rating value for each alternative, and selects the one with the highest rating.
After the interaction, the interaction window is updated according to whether
the interaction was successful, and whether the expected (as determined by
advertised value) cost and quality were met.

5.5 Bootstrapping

Initially agents have insufficient experience for reasoning. Therefore, each agent
goes through a bootstrapping phase in which partners are chosen randomly by
way of exploration. During this bootstrapping phase agents that are distrusted,
undistrusted, untrusted, and trusted have an equal chance of being selected.

6 Experimental Results

Our approach has been validated experimentally, using the NRC FuzzyJ Tool-
kit [10] to implement the fuzzy decision mechanism. We constructed a test stub
to generate the complete set of possible interactions that an agent might have, i.e.
the outcome that would result for each choice of potential cooperative partner.
Using this set we can then evaluate the effectiveness of different configurations
of the decision mechanism for each set of possible interactions. Thus, we can
make direct comparisons about how effective a given configuration of the fuzzy
decision mechanism is given exactly the same set of possible interactions. In this
section we describe initial results obtained by simulating an agent using fuzzy
trust to select its cooperative partners in an environment of 50 others from whom

372 N. Griffiths

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

Success rate

fuzzy
fuzzy - no distrust
fuzzy - no untrust

fuzzy - no untrust or distrust
random

Fig. 6. The effect of reasoning with untrust and distrust on the success rate

a cooperative partner must be chosen each iteration (or cooperation avoided due
to distrust or insufficient trust). The vertical line after 100 interactions signifies
the end of the bootstrapping phase, and so to the left of this line agents are
chosen randomly (from the set of agents that have the required capabilities). To
the right of the bootstrapping line fuzzy trust is used to select a partner from
the agents that have the required capabilities.

Fig. 6 shows the effectiveness of our decision mechanism on the success rate of
cooperative interactions, and illustrates the usefulness of untrust and distrust.
A random selection of cooperative partners is also shown for control purposes.
The agents in the system were initially generated to be of average reliability, but
were made less reliable after 1000 iterations. It can be seen that each of the fuzzy
approaches give a significant increase in success rate. (Note that exactly the same
generated “environment history” is used to obtain results for each approach.)
Fig. 6 also shows that making explicit use of the notions of distrust, undistrust
and untrust in decision making results in an increased success rate. The use
of distrust alone (i.e. not using untrust and undistrust) gives a better result
than using untrust and undistrust alone, and using positive trust alone (i.e. not
using distrust, undistrust or untrust) gives the lowest success rate, although still
significantly higher than a random selection.

The results shown in Fig. 6 are for a single generated “environment history”.
However, the actual success rate changes with the environment, since agents’
reliability is different across environments. Fig. 7 shows the success rate and the
rate that cost and quality expectations are met across a set of environments.
The figures shown are averaged for 20 separate environments. It can be seen

A Fuzzy Approach to Reasoning with Trust, Distrust and Insufficient Trust 373

Selection mechanism Success rate Cost rate Quality rate
Fuzzy trust 0.64 0.73 0.84
Fuzzy trust (no distrust) 0.63 0.68 0.81
Fuzzy trust (no untrust or undistrust) 0.63 0.58 0.79
Fuzzy trust (no distrust, untrust or undistrust) 0.61 0.56 0.78
Random (control) 0.42 0.39 0.64

Fig. 7. Success rate and the rate that cost and quality expectations are met, averaged
over a set of environments

that, as in Fig. 6, using trust gives a significant improvement in success rate
over a random selection. Similarly, the use of distrust, undistrust and untrust
also improves the success rate. When averaged over a set of environments the
effect on the success rate of distrust, undistrust and untrust are similar. The
use of fuzzy trust for decision making also has a significant effect on the rate at
which cost expectations are met, with nearly a 35% improvement over a random
selection. In the cost dimension, the use of untrust and undistrust has a greater
effect than distrust, but the best results are again obtained by using distrust,
untrust and undistrust together, giving a rise of 17% over using fuzzy trust that
considers positive trust only (i.e. not using distrust, undistrust or untrust). We
have obtained similar results in the quality dimension, as also shown in Fig. 7.

7 Conclusions

In this paper we have shown how fuzzy logic can be used to represent trust, and se-
lect appropriate agents for cooperation. We have proposed a new notion of undis-
trust and incorporated this, along with the notions of untrust and distrust pro-
posed by Marsh [9], into the reasoning process. Our system is flexible; the fuzzy
rules are specifiable by a system designer, and agents are able to scale inputs ac-
cording to their current preferences regarding the relative importance of the trust
dimensions. We have described initial experimental results that demonstrate the
effectiveness of our approach in increasing the success rate, and the rate at which
an agent’s expectations are met in other trust dimensions. There are many areas
of ongoing work, with our primary focus being additional experimentation to in-
vestigate different fuzzy rulesets and to consider the effect of different populations
of reliable and unreliable agents. We also aim to integrate the model of individual
fuzzy trust presented in this paper with existing models of reputation.

References

[1] C. Castelfranchi and R. Falcone. Principles of trust for MAS: Cognitive anatomy,
social importance, and quantification. In Proceedings of the Third International
Conference on Multi-Agent Systems (ICMAS-98), pages 72–79, Paris, France, 1998.

[2] D. Gambetta. Can we trust trust? In D. Gambetta, editor, Trust: Making and
Breaking Cooperative Relations, pages 213–237. Basil Blackwell, 1988.

374 N. Griffiths

[3] N. Griffiths. Trust: Challenges and opportunities. AgentLink News, 19:9–11, 2005.
[4] N. Griffiths. Fuzzy trust for peer-to-peer systems. In Proceedings of the P2P Data

and Knowledge Sharing Workshop (P2P/DAKS 2006), to appear.
[5] N. Griffiths and K.-M. Chao. Experience-based trust: Enabling effective resource

selection in a grid environment. In P. Herrman, V. Issarny, and S. Shiu, editors,
Proceedings of the Third International Conference on Trust Management (iTrust
2005), pages 240–255. Springer-Verlag, 2005.

[6] N. Luhmann. Familiarity, confidence, trust: Problems and alternatives. In
D. Gambetta, editor, Trust: Making and Breaking Cooperative Relations, pages
94–107. Basil Blackwell, 1988.

[7] E. H. Mamdani and S. Assilian. An experiment in linguistic synthesis with a fuzzy
logic controller. International Journal of Man-Machine Studies, 7(1):1–13, 1975.

[8] D. W. Manchala. E-commerce trust metrics and models. IEEE Internet Comput-
ing, 4(2):36–44, 2000.

[9] S. Marsh and M. R. Dibben. Trust, untrust, distrust and mistrust — an ex-
ploration of the dark(er) side. In P. Herrman, V. Issarny, and S. Shiu, editors,
Proceedings of the Third International Conference on Trust Management (iTrust
2005), pages 17–33. Springer-Verlag, 2005.

[10] NRC Institute for Information Technology. The FuzzyJ toolkit.
www.iit.nrc.ca/IR public/fuzzy/fuzzyJToolkit2.html, 2006.

[11] S. D. Ramchurn, C. Sierra, L. Godo, and N. R. Jennings. Devising a trust model
for multi-agent interactions using confidence and reputation. Artificial Intelli-
gence, 18(9–10):833–852, 2004.

[12] T. J. Ross. Fuzzy Logic With Engineering Applications. John Wiley & Sons, 2nd
edition, 2004.

[13] J. Sabater and C. Sierra. REGRET: A reputation model for gregarious societies.
In Proceedings of the First International Joint Conference on Autonomous Agents
in Multi-Agent Systems (AAMAS-02), pages 475–482, 2002.

[14] S. Song, K. Hwang, R. Zhou, and Y.-K. Kwok. Trusted P2P transactions with
fuzzy reputation aggregation. IEEE Internet Computing, 9(6):24–34, 2005.

[15] N. Stakhanova, S. Basu, J. Wong, and O. Stakhanov. Trust framework for P2P
networks using peer-profile based anomaly technique. In Proceedings of the Sec-
ond International Workshop on Security in Distributed Computing Systems, pages
203–209, 2005.

[16] L. Xiong and L. Liu. PeerTrust: Supporting reputation-based trust in peer-to-peer
communities. IEEE Transactions on Knowledge and Data Engineering, 16(7):843–
857, 2004.

[17] L. A. Zadeh. A fuzzy-set-theoretic interpretation of linguistic hedges. Journal of
Cybernetics, 2(3):4–34, 1972.

Performative Patterns for Designing Verifiable ACLs

Nicola Dragoni and Mauro Gaspari

Dipartimento di Scienze dell’Informazione
via Mura Anteo Zamboni 7

40127 Bologna, Italy

Abstract. When people hear two actors reciting a conversation in a poem, they
become attuned to the kinds of sounds that they are producing, which may not
be apparent in the printed text of the poem. This result depends on certain habit-
ual patterns of how people read or how things should be read in a performance.
Performative patterns suggest certain kinds of rhythmic possibilities, time, timbre
and intonation, which are not written on the page. Although their scope is quite
different we claim that agents’ conversations are subject to similar principles. In
the same way agents’ conversations are not completely specified by the logical
description of the involved performatives and rules governing speech act interac-
tion are needed to guarantee a reproducible and thus verifiable behaviour. In this
paper we present a set of performative patterns for ACLs which specify how per-
formatives should be executed in a concurrent and reactive way with respect to a
given logical semantics. We provide a classification of the KQML and FIPA per-
formatives in these patterns and we show how several properties of Multi-Agent
Systems can be inferred and verified if an ACL adopt this approach.

1 Introduction

When people hear two actors reciting a conversation in a poem, they become attuned to
the kinds of sounds that they are producing, which may not be apparent in the printed
text of the poem. This result depends on certain habitual patterns of how people read
or how things should be read in a performance. Performative patterns suggest certain
kinds of rhythmic possibilities, time, timbre and intonation, which are not written on
the page.

Similar patterns are also used by humans in conversation. Although a conversation
might appear casual and confused, not related to a performance, it is normally ruled out
by a given rhythm of turnover and accommodation. Basically people needs to coordi-
nate their talk becoming speaker in interaction in a well-timed way [1].

Here we claim that agents’ conversations are subject to similar principles. In the
same way of a poem agents’ conversation are not completely specified by the logical
description of the involved performatives and rules governing speech act interaction are
needed to guarantee a reproducible and thus verifiable behaviour.

In this paper we present a set of performative patterns for Agent Communication
Languages (ACLs), which specify how performatives should be executed in a concur-
rent and reactive way with respect to an intended logical semantics. Our aim is to show
that a mapping of ACLs performatives in these patterns is essential in order to design
verifiable ACLs.

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 375–387, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

376 N. Dragoni and M. Gaspari

The rationale behind the introduction of performative patterns can be illustrated by
means of a simple example. Suppose that we want to prove a simple knowledge shar-
ing property “two agents (A and B) know proposition p” (KS(p)) in an asynchronous
Multi-Agent System M (i.e., a Multi-Agent System where agents communicate using
an asynchronous ACL). Suppose that M uses KQML as a communication language and
that agent A already knows p.

If agent A executes the KQML performative insert(B, A, p) (which informally means:
agent A asks agent B to insert a proposition p in its Knowledge Base (KB)) is it pos-
sible to demonstrate that KS(p) will hold in M? Intuitively the answer is yes, if certain
conditions are verified. More precisely, if we assume that agent B is sincere, agent A
does not unassert p, and both agent A and B do not terminate, we can prove that ex-
ists a time t after that KS(p) will hold in M. However, starting from the above informal
specification, we have no way to calculate t exactly. We just know that this time exists.

The consequence of this is that it is not possible to use KS(p) to determine the future
behaviour of agent A, when agent A needs to know the value of KS(p) to select its next
action. Thus it is not possible to verify that A behaves correctly.

Several types of semantics for ACLs have been introduced to solve these problems.
For example the KQML semantics defined in [2] introduces a set of conditions which
specify when a given performative is enabled and define its effects on the mental states
of agents. The most relevant information for our purpose is given by postconditions of
the sender agent, that describe the state of the sender after the utterance of a performa-
tive. Informally, the postcondition of A is “A knows that B believes p”, which means in
other words that A knows that B has inserted p in its knowledge base.

Given this semantics agent A can infer KS(p) as soon as the insert performative is
executed. Indeed agent A knows p and the insert postcondition states that: B knows
that A knows p. However, since the ACL is asynchronous a mechanism to acknowledge
agent A that agent B inserted p in its KB is needed. More precisely, when B receives
an insert message it must execute an action (to assert p in its KB) and it must send
back an acknowledgment to A. Agent A will be able infer KS(p) as soon as it receives
this ack. This is an example of a Do Action with Ack pattern which is described in
details in the next Section. If the performative is realized according to this pattern agent
A will be able to select its next action using KS(p), and the behaviour of A will be
verifiable.

An additional problem arises if we consider possible failures of agents involved in
this conversation. In similar way to actors that are able to improvise when unexpected
events occur in a performance, agents should be able to react to failures of other agents.
For example if agent A unexpectedly crashes, then KS(p) does not hold any more in M
and agent B should be able to react properly to this event. Performative patterns deal
with this issue introducing a failure continuation in each pattern which reacts to unex-
pected significant agent crashes1. If agent B crashes a failure continuation is activated
and agent A will be informed that KS(p) does not hold any more. Thus, the behaviour
of A will be still verifiable.

1 Note that considering only crash failures is a common fault assumption in distributed systems,
since several mechanisms can be used to detect more severe failures and to force a crash in
case of detection [3].

Performative Patterns for Designing Verifiable ACLs 377

In the next Section we give a detailed description of the performative patterns we
propose and, successively, we provide a classification of KQML and FIPA conversa-
tion performatives in these patterns. Finally we show how properties of Multi-Agent
Systems can be inferred and verified if an ACL adopts this approach.

2 Performative Patterns

A performative pattern has a name and is described by the following schema:

– A natural language description of the pattern’s intuitive meaning.
– A success condition which describes a property that must hold when a pattern

succeeds.
– A success continuation for a performative which specifies the behaviour (program)

executed by an agent when a response or acknowledge is received from another
agent or in general when a communication performative succeeds.

– A failure continuation for a performative which specifies the program executed by
an agent when a critical crash failure occurs. In one-to-one performatives a critical
failure occurs when the receiving agent has crashed. In one-to-many performatives
a critical failure occurs when all the receiving agents have crashed.

– One or more performative templates that show an example of performatives in-
volved in the pattern. For associating continuations to a performative we follow this
form:

performative(...)[success continuation + failure continuation]

Informally the semantics of the + operator is that only one of the two continuations
can be called according to the concurrent behaviour of the performative pattern
associated to the performative.

– One or more predicates which give a view at the agent level of significant concur-
rent events.

– A concurrent behaviour which describes the interactions among agents involved
in the pattern. We use the following graphical notation:

A

= inactive continuation or main program

= crash
= message

= active continuation or main program
= end of a continuation

failure

success
continuation

continuation

main
program

agent
name

P2

P2

= program

Following the above schema we describe each of the six performative patterns we
propose for ACLs. Empty items are omitted.

– Pattern: Assert
• Description: Agent A sends some content to agent B.
• Performative Templates:
∗ perf name(B, A, content)

• Concurrent Behaviour: Agent A sends an asynchronous message to B.

378 N. Dragoni and M. Gaspari

perf_name

A B

– Pattern: Assert with Ack

• Description: Agent A sends some content to agent B. When B receives this
message it sends a receipt notification to A.
• Success Condition: Agent A knows that B has received the content.
• Success Continuation: on ack(P1)
• Failure Continuation: on fail(P2)
• Performative Templates:

∗ perf name(B, A, content)[on ack(P1) + on fail(P2)]

• Concurrent Behaviour: Agent A sends an asynchronous message to B. If B
is alive (1), a receipt notification is sent to A. This acknowledge is handled
by the success continuation of A and the program P1 is executed. Otherwise,
if B crashes before receiving A’s message (2), then sooner or later the failure
continuation of A will be executed (program P2).

1
A B

perf_name

ack
P1

2
A

perf_name

B

P2

– Pattern: Do Action with Ack

• Description: Agent A tells an agent B to perform some action. When B re-
ceives this message it sends a receipt notification to A.
• Success Condition: Agent A knows that B has executed the actions.
• Success Continuation: on ack(P1)
• Failure Continuation: on fail(P2)
• Performative Templates:

∗ perf name(B, A, actions)[on ack(P1) + on fail(P2)]

• Concurrent Behaviour: Agent A sends an asynchronous message to B. If
B is alive (1), a receipt notification is sent to A after B has executed the ac-
tions requested by A. This acknowledge is handled by the success continuation
of A (program P1). Otherwise, if A does not receive an ack because B has
crashed (2), then sooner or later the failure continuation of A will be executed
(program P2).

Performative Patterns for Designing Verifiable ACLs 379

1
A B

ack

perf_name

Execute actions

P1

2
A

perf_name

P2

– Pattern: Request and Answer
• Description: Agent A asks an agent B for some knowledge K. Agent B an-

swers to the request of A.
• Success Condition: Agent A knows B’s answer.
• Success Continuation: on answer(P1)
• Failure Continuation: on fail(P2)
• Performative Templates:
∗ request name(B, A, K)[on answer(P1) + on fail(P2)]
∗ answer name(A, B, K)

• Concurrent Behaviour: Agent A sends an asynchronous message to B. If B
is alive (1), then it answers to the A’s request. This reply is handled by the
success continuation of A (program P1). Otherwise, if A does not receive an
answer because B has crashed (2), then sooner or later the failure continuation
of A will be executed (program P2).

1
A

answer_name

request_name

B

Prove K

P1

2
A

request_name

P2

– Pattern: Request and Answers
• Description: Agent A asks an agent B for some knowledge K. Agent B replies

with one or more answers.
• Success Condition: Agent A receives all the answers of B.
• Success Continuation: on answer(P1)
• Failure Continuation: on fail(P2)
• Performative Templates:
∗ request name(B, A, K)[on answer(P1) + on fail(P2)]
∗ answer name(A, B, K)
∗ end name(A, B, K)

• Concurrent Behaviour: Agent A sends an asynchronous request for knowl-
edge to B which reply with one or more answers. Each reply is handled by
the success continuation of A (program P1) which remains active until A re-
ceives an end message (1). If A does not receive this message due to a crash
of B (2), then the failure continuation is called (program P2) and the success
continuation is deactivated.

380 N. Dragoni and M. Gaspari

1
A

Prove K

answer_name

request_name

B

answer_name
Prove K

end_name

Prove K failP1

P1

A

P1

Prove K

answer_name

request_name

B
2

P2

– Pattern: Request to Everybody
• Description: Agent A asks all the available agents2 which can provide some

knowledge K for that knowledge. These agents answer to the request of A.
• Success Condition: Agent A knows the answers of all the available agents.
• Success Continuation: on answer(P1)
• Failure Continuation: on fail(P2)
• Performative Templates:
∗ request name(A, K)[on answer(P1) + on fail(P2)]
∗ answer name(A, B, K)

• Predicates:
∗ all-answers(K): returns true if all the replies about K have been received.

• Concurrent Behaviour: Agent A sends an asynchronous request for knowl-
edge to available agents which reply with an answer. Each reply is handled
by the success continuation of A (program P1). Note that A does not wait
for replies of crashed agents (1). If A does not receive any answer because
all the agents have crashed (2), then the failure continuation of A is executed
(program P2).

1
A

request_name

Eval(K)

answer_name

answer_name Prove K

all−answers(k) = true

Prove K

P1

P1

B0 B1 B2 B3 B4 A
2

request_name

Prove K

P2

B0 B1 B2

3 Classification of Standard Performatives

In Table 1 we provide a classification of KQML and FIPA performatives according
to our performative patterns. For space constraints, we focus on standard conversation

2 “Available agents” means agents which have not crashed when the multicast query is per-
formed.

Performative Patterns for Designing Verifiable ACLs 381

performatives only and therefore here we present a classification of a representative
subset of their performatives3. However, all the omitted primitives could be mapped
into our patterns.

Table 1. Classification of the KQML/FIPA ACL/FT-ACL communication performatives into per-
formative patterns (possible answers to queries are enclosed in curly braces)

Communication Performatives

Pattern KQML FIPA ACL FT-ACL

Assert inform, agree, inform
failure, cancel,
confirm,
disconfirm,
accept proposal,
reject proposal

Assert with advertise, tell, inform[... + ...]
Ack untell, error,

sorry, deny

Do Action insert, uninsert, insert
with Ack delete-one, delete-all,

undelete, achieve,
unachieve

Request ask-if, ask-all, request, query if, ask-one
and ask-one query ref {tell}
Answer {tell, untell, {inform, agree,

deny} cancel, failure}
propose
{accept proposal,
reject proposal}

Request stream-all, subscribe
and subscribe {inform, cancel}
Answers {tell, untell,

deny, eos}
Request to ask-everybody
Everybody {tell}

The criterion used to classify the performatives has been to consider the formal and
informal semantics provided in the KQML/FIPA ACL specifications [2,4] trying to
identify which pattern should be applied for verifying a performative. We have shown
that the most relevant information for this purpose is given by postconditions and the

3 More in detail, we omit some of the intervention and mechanics primitives and all the facil-
itation and networking primitives of KQML. We also omit some FIPA ACL macros (that is,
primitives obtained as composition or extension of other communication primitives).

382 N. Dragoni and M. Gaspari

role of preconditions is not relevant, intuitively because performative patterns concern
how communication acts should be executed and not if they should be executed or not.

In case of KQML, we have classified the insert(B,A,p) performative as a Do Action
with Ack pattern. Note that the KQML primitive tell(B,A,p) (untell) belongs to a differ-
ent pattern: Assert with Ack. The meaning of this performative is that “an agent A states
to an agent B that A believes the content to be true”. The postcondition of A is that “A
knows that B knows that A believes p”, which requires a receipt notification from B
only (because A must only know that B has received the tell message about p). This is
the reason because the performative is classified in the Assert with Ack pattern.

The classification of FIPA ACL performatives has been more problematic. FIPA
ACL’s semantic model is mainly based on the rational effect of each performative,
which represents the purpose of a message (informally, what the sender agent hopes to
obtain by sending the message). For instance, the rational effect of the query-if perfor-
mative is that “the receiving agent has replied to the query of the sender agent”. The
problem with this semantic model is that, differently from KQML, the FIPA rational
effect of a performative is not a postcondition of uttering the communicative act, but it
represents just a constraint on the intentions of the sender. As a consequence, while the
FIPA rational effect has been useful for understanding the intuitive meaning of a perfor-
mative (what is the goal of the performative), on the contrary it has been useless from
the point of view of verifying concurrent properties of the ACL. Therefore the classifi-
cation of FIPA performatives has been mainly based on our “concurrent interpretation”
of each performative.

3.1 Discussion

The classification of FIPA ACL performatives have been problematic for the main rea-
son that some concurrent properties are not specified in the formal semantics of FIPA
ACL primitives. As a consequence, often we had to understand the semantics of the
primitives reasoning on their informal description. Moreover, the lack of specifications
about conversation policies among FIPA agents made the classification task more dif-
ficult. A representative example could be the primitive accept proposal. The informal
meaning of this primitive is “the action of accepting a previously submitted proposal to
perform an action”. The rational effect is: “the receiving agent (which previously made
the proposal of performing an action) believes that the sender intends that the receiving
agent will perform the action”. But the information concerning the previous submission
of a proposal is completely missing in the formal model. From a concurrent point of
view this means that we have no way to constrain the execution of the accept proposal
performative as a subsequent action to be performed for replying to a proposal. In other
words, following the formal semantics of accept proposal we could use this performa-
tive independently from having received a proposal. Moreover, it is not clear (at least in
the FIPA ACL’s semantic model) which performatives enable the execution of an accept
proposal.

Two main comments could be done observing the FIPA ACL column of Table 1.
The first one concerns the absence of FIPA ACL performatives in the Do Action with
Ack pattern. The reason of this lack is that, in FIPA ACL’s semantic model, agents are
not allowed to directly manipulate another agent’s KB. This is also the reason because

Performative Patterns for Designing Verifiable ACLs 383

KQML-like performatives such as insert, uninsert, delete-one, delete-all and undelete
are absent in FIPA ACL.

The second comment is that, differently from KQML, none of the FIPA ACL per-
formatives belongs to the Assert with Ack pattern. This is due to the meaning of the
rational effect of the FIPA ACL’s semantic model. As already remarked, the rational
effect of a performative is not a postcondition on the sender (which must be true after
the message has been sent/delivered) but it is just a constraint on the “intentions of the
sender agent” [4]. In other words, a sender must intend the rational effect of the com-
municative acts it sends out. This is the key difference between KQML postconditions
and FIPA ACL rational effect. For instance, the rational effect of the FIPA performative
inform (which is used by a sender to inform the receiver that a given proposition is true)
is that the receiver believes the content of the message. This represents the meaning
of the performative inform in the intentions of the sender. Therefore we don’t need a
notification message from the receiver to the sender. Note that the analog KQML perfor-
mative tell belongs instead to the Assert with Ack pattern because of its postcondition
(the sender knows that the receiver knows that the sender believes some knowledge).

Finally, note that both the KQML and FIPA performatives do not deal with possible
failures of agents. Thus despite they can be classified into our patterns their specification
is not strictly conform to them. The consequence of this is that FIPA/KQML based
Multi-Agent Systems are not verifiable in the presence of agent crashes.

4 Verifying Concurrent Properties in FT-ACL

In this Section we show how properties of Multi-Agent Systems can be inferred and ver-
ified if an ACL is fully conform to our patterns. To this purpose we use FT-ACL [5], an
asynchronous ACL designed for specifying fault tolerant protocols in open Multi-Agent
Systems, and we provide a fault tolerant specification of a confident selection protocol.
The choice of FT-ACL instead of KQML or FIPA ACL is forced. Indeed FT-ACL has
been designed and implemented taking into account the proposed performative patterns
including failures.

FT-ACL Performatives. The FT-ACL conversation performatives (Table 2) are a small
subset of those defined in KQML. Because of space constraints, we discuss only the FT-
ACL performatives used in the subsequent protocol specification. Readers interested in
a formal specification of FT-ACL can find it in [6], while an implementation is presented
in[7].

The ask-everybody performative realizes a one-to-many anonymous interaction pro-
tocol which allows an agent A to ask all agents in the system which are able to deal
with a knowledge p for an instantiation of p which is true in their KB. When A executes
ask-everybody, an ask-one message is sent to all the agents interested in p. According to
the Request to Everybody pattern the performative is associated with a success continu-
ation on answer(P1) which is called each time A receives a reply to the multicast query
and remains active until all the replies of not crashed agents have arrived. Instead, if
no agents are able to reply because they have all crashed, then the failure continuation
on fail(P2) is called. An agent replies to a query using the performative tell. Finally,

384 N. Dragoni and M. Gaspari

Table 2. FT-ACL conversation performatives

ask-one(B, A, p)[on answer(P1) + on fail(P2)]

inform(B, A, p)[on ack(P1) + on fail(P2)]

insert(B, A, p)[on ack(P1) + on fail(P2)]

ask-everybody(A, p)[on answer(P1) + on fail(P2)]

tell(B, A, p)

executing the performative insert, an agent A tells an agent B to insert p in its KB. This
performative belongs to the Do Action with Ack pattern (Table 1). Therefore a success
continuation on ack(P1) is called after B has inserted p in its KB and A has received
an acknowledgment of this event. As a consequence, the program P1 is executed by
A. Instead, if p cannot be inserted in B’s KB because B has crashed, then the failure
continuation on fail(P2) is activated and A executes the program P2.

Protocol Specification. The confident selection protocol is a contract net [8] based
protocol for sharing knowledge with a selected agent only in a dynamic Multi-Agent
System. A manager agent A selects an agent B from a set of agents to share with it some
knowledge p. The selection is performed by means of negotiation.

If we assume that both the manager and the first selected agent do not crash4, the
following property can be considered at the end of this protocol:

Weak Confidentiality. The manager agent knows that one agent (the confident)
knows p5.

In Figure 1 we provide a FT-ACL based specification of the protocol using a prolog-
like notation as in [9]. Agents react to messages received from other agents. Each agent
has an associated handler function which maps the received message into the list of
communication actions which must be executed when that message is received. HA and
HCi are the handler functions of the manager A and of the ith agent in the Multi-Agent
System respectively. The manager A starts the protocol executing an ask-everybody
performative (line 2). Each reply to this multicast query is handled by the continuation
get bids (lines 4-8) which stores the answer in A’s KB (line 5) and checks if all the
replies have arrived (line 6). If this is the case, then the best agent is selected (line 7)
and an insert performative is executed to share the knowledge with it (line 8). An agent
Ci replies to the multicast query of A with a bid for getting the knowledge (line 13).
The winner agent receives an insert message from A (line 14) and consequently updates
its KB (line 15).

Verification of the Weak Confidentiality Condition. To verify that the above protocol
specification satisfies the weak confidentiality condition we have to show that:

4 This assumption has been inserted for the sake of simplicity of the protocol specification (Fig-
ure 1). However, a similar property could be proved relaxing this constraint with the assump-
tion that “at least one agent does not crash” (and not necessarily the “first selected agent”).

5 A stronger version of this property can be defined requiring that “only” the confident agent
knows p. Due to space constraints we have chosen the weaker version.

Performative Patterns for Designing Verifiable ACLs 385

1. The protocol terminates: it never goes in a deadlock situation despite crashes of
agents.

2. At the end of the protocol, the manager agent (A) knows that one agent (B) knows p.

To show 1 we have to prove that agent A will never endlessly wait for answers from
crashed agents. This deadlock situation could occurs when A is waiting for replies to
its multicast query. But a deadlock in this situation is impossible because the multicast
query is performed by means of the ask-everybody performative (line 2) which belongs
to the Request to Everybody pattern. Therefore, we are sure that, if all the agents in the
Multi-Agent System are crashed, then the failure continuation on fail of A is executed.
In this case a message of failure is sent to the starter of the protocol (line 11). Moreover,
we are sure that each reply is handled by the success continuation of A which remains
active until all the replies of not crashed agents have arrived (according to the Request
to Everybody pattern). Thus if the manager and at least one agent do not crash the
protocol terminates.

To show 2 we have to prove that, if at least one agent has not crashed, then sooner
or later A will execute the success continuation (line 10) of the insert primitive (line 8).
Since we have proved that the protocol cannot go in a deadlock situation, then we are
sure that sooner or later the insert primitive will be executed by A. Therefore it remains
to prove that A will receive the acknowledge message from the selected agent B, which
for hypothesis it does not crash. This property holds because the insert performative be-
longs to the Do Action with Ack pattern. Therefore agent A will receives a notification

HA:
1 handler(ask-one(A, Y, startCN(t))) ←
2 ask-everybody(A, bid(t, z))[on answer(get bids(m)) +

on fail(P2)]
3

4 get bids(tell(A, w, bid(t, z))) ←
5 update(bid(t, w, z)) ∧
6 all-answers(bid(t,)) ∧
7 best bid(t, B) ∧
8 insert(B, A, t)[on ack(P1) + on fail(P2)]
9

10 P1
def
= tell(Y, A, ProtocolOK)

11 P2
def
= tell(Y, A, ProtocolFailed)

HCi :
12 handler(ask-one(Ci , X, bid(t, z))) ←
13 bid(t, z) ∧ tell(X, Ci, bid(t, z))

14 handler(insert(Ci , x, t)) ←
15 updateKB(t)

Fig. 1. FT-ACL based specification of the Confident Selection protocol

386 N. Dragoni and M. Gaspari

message after B has inserted the content of A’s message to its KB. In other words, at the
end of the protocol the manager agent knows that a confident knows p. Thus the weak
confidentiality property holds.

5 Related Work

One of the main challenges in agent communication is the design of verifiable seman-
tics for ACLs. In [10] Wooldridge introduces this problem and presents a strong notion
of verifiability: given a semantic framework for an ACL it must be possible to deter-
mine whether or not an agent is respecting this semantics for all the communication
action it executes. In our approach we introduce a weaker notion of verifiability for
an ACL which concerns the verifiability (with respect to a given semantics) of some
properties of a Multi-Agent System specification in the presence of failures. Although
the two approaches are complementary, we argue that a classification of performatives
in concurrent patterns is necessary to extend the Wooldridge notion of verifiability to
asynchronous Multi-Agent Systems where crash failures of agents may occur. The main
advantages of FT-ACL with respect to current ACLs such as KQML [11] and the FIPA
ACL [4] are that: it supports almost all the performative patterns (as shown in Table
1); it provides a set of fault-tolerant communication primitives; it is well integrated at
the Knowledge Level [5]; it is the only ACL which supports an anonymous interac-
tion protocol (ask-everybody performative) fully integrated with the dynamic nature of
Multi-Agent Systems [5].

Some authors ([12,13,14]) propose conversation patterns to model the structure of di-
alogues in MAS. In these approaches the defined patterns constrain the set of
admissible message sequences in agents’ interaction. Although performative patterns
may also have an influence on the sequence of admissible messages in a dialogue, they
work at a different granularity. Performative pattern in general involve a single perfor-
mative or two tigthly related performatives and state how these communication actions
should be executed, with respect to a given ACL semantics. Additionally, performative
patterns indicate when agent should react to unexpected significant agent crashes.

6 Conclusions

The main contribution of this work is to set up a criteria for defining verifiable ACL
performatives for asynchronous Multi-Agent Systems where failures of agents may oc-
cur. We show that, if an ACL conforms to performative patterns, it is verifiable (i.e., it
is possible to verify some properties of Multi-Agent System specifications written in
this language despite crashes of agents). Performative patterns can be effectively used
by ACL designers and implementors to realize verifiable ACLs as soon as a mapping
of ACLs performatives in these patterns is provided.

Acknowledgements

This work was partially funded by Ricerca Fondamentale Orientata - University of Bolo-
gna, Tecnologie e strumenti software per l’intrattenimento online (PI: Marco Roccetti)

Performative Patterns for Designing Verifiable ACLs 387

and by the Italian Ministry of University and Research, PRIN Project 2005015785 004:
Linguaggi e verifica per Global Computing. The authors would like to thank the anony-
mous referees for their valuable comments on a draft of this paper. Also, the authors
would like to thank Dr. Davide Guidi for his essential contribution to the design and
implementation of the FT-ACL primitives.

References

1. Agliati, A., Vescovo, A., Anolli, L.: Conversation patterns in Icelandic and Italian people:
Similarities and differences in rhythm and accomodation. In Anolli, L., Jr., S.D., Magnusson,
M., Riva, G., eds.: The hidden structure of interaction. From neurons to culture patterns.
Amsterdam: IOS Press. (2005) 223–236

2. Labrou, Y.: Semantics for an Agent Communication Language. PhD thesis, Computer
Science and Electrical Engineering Department (CSEE), University of Maryland Graduate
School (1997)

3. Mullender, S.: Distributed Systems. Addison Wesley (1993)
4. Foundation for Intelligent Physical Agents: FIPA Communicative Act Library Specification.

(2002) Document number: SC00037J, document status: standard.
5. Dragoni, N., Gaspari, M., Guidi, D.: An ACL for Specifying Fault-Tolerant Protocols. In:

Proceedings of AIIA Conference. Volume 3673 of Lecture Notes in Artificial Intelligence.,
Springer Verlag (2005) 237–248

6. Dragoni, N., Gaspari, M.: Crash Failure Detection in Asynchronous Agent Communication
Languages. To appear in Journal of Autonomous Agents and Multi-Agent Systems, Springer
Verlag, DOI 10.1007/s10458-006-0006-y (2006)

7. Dragoni, N., Gaspari, M., Guidi, D.: A Reasoning Infrastructure to Support Cooperation of
Intelligent Agents on the Semantic Grid. International Journal of Applied Intelligence 25
(2006) 159–180 (In Press).

8. Smith, R.G.: The Contract Net Protocol: High Level Communication and Control in a Dis-
tributed Problem Solver. IEEE Transactions on Computers 29(12) (1980) 1104–1113

9. Gaspari, M.: Concurrency and Knowledge-Level Communication in Agent Languages. Ar-
tificial Intelligence 105(1-2) (1998) 1–45

10. Wooldridge, M.: Semantic Issues in the Verification of Agent Communication Languages.
Autonomous Agents and Multi-Agent Systems 3(1) (2000) 9–31

11. Finin, T., Labrou, Y., Mayfield, J.: KQML as an Agent Communication Language. In:
Software Agents. MIT Press (1997) 291–316

12. Fan, X., Yen, J.: Conversation Pattern-based Anticipation of Teammates? Information Needs
Via Overhearing. In: Proceedings of the IEEE/WIC Intelligent Agent Technology conference
(IAT-05), IEEE Computer Society (2005) 316–322

13. Rovatsos, M., Fischer, F., Weiss, G.: An integrated framework for adaptive reasoning about
conversation patterns. In: AAMAS ’05: Proceedings of the fourth international joint con-
ference on Autonomous agents and multiagent systems, New York, NY, USA, ACM Press
(2005) 1123–1124

14. Stergiou, C., Arys, G., Wooldridge, M.: A policy based framework for agents: on the speci-
fication of an agent policy language including roles, relationships, conversation patterns and
co-operation patterns. In: AAMAS ’03: Proceedings of the second international joint con-
ference on Autonomous agents and multiagent systems, New York, NY, USA, ACM Press
(2003) 1126–1127

Enabling Mobile Agents Interoperability Through
FIPA Standards

Joan Ametller-Esquerra, Jordi Cucurull-Juan, Ramon Martí,
Guillermo Navarro, and Sergi Robles

Department of Information and Communications Engineering,
Autonomous University of Barcelona,

08193 Bellaterra - Spain
{jametller, jcucurull, rmarti, gnavarro, sergi}@deic.uab.cat

Abstract. Mobility offers important advantages to information agent applica-
tions, specially those related to information retrieval. However, problems like se-
curity and interoperability are important barriers to the adoption of this technol-
ogy. This paper focuses its attention to interoperability. Over the years, several
solutions for mobile agents have been proposed, but each one covering specific
problems leaving others unsolved. In this paper we analyse the problem of inter-
operability of mobile agents as a whole. We present an approach based on the use
of FIPA ACL as the foundations to reach interoperability between different mo-
bile agent system implementations at different levels. The implementation of the
proposed solution has been adopted by JADE as the default mechanism to move
agents among platforms and it has been widely used by its community.

Keywords: Mobile Agents, Interoperability, FIPA, JADE, Code Mobility.

1 Introduction

Mobility is a feature from which information agents can get a lot of benefits. For in-
stance, information retrieval applications [5] show that agent mobility enables a uni-
form, distributed, autonomous and efficient way to process vast and heterogeneous
amounts of information at Internet scale.

However, mobile agent technology seems not to be mature enough, having a set of
core problems braking its adoption [21]. While great part of the community tends to
think that mobile agent-based infrastructures could help building powerful and flexi-
ble distributed applications, everybody concludes that current knowledge is not mature
enough to solve some of the main challenges presented by this technology.

In the development of mobile agent-based applications we are facing two main prob-
lems: security and interoperability. Security is mandatory in any reliable application
based on mobile agents. No commercial application will be built until security in mo-
bile agents can be assured. However, the lack of applications also causes a lack of
security requirements, which forces researchers to build holistic security models trying
to cover all security threats.

Interoperability is also an important problem for this technology. Since the initial
proposals of mobile agent systems, a wide number of platforms have been implemented.

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 388–401, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Enabling Mobile Agents Interoperability Through FIPA Standards 389

The platforms, typically developed by research groups, focus their implementation on
several areas of mobile agents research. While some of the platforms focus their im-
plementation on bringing security, others try to build high-performance mobile agents,
methods to attain resource access control, communication among agents, and so on.
These differences in these platforms design goals cause differences in programming
languages, architectures or patterns chosen to design the frameworks and, also, the use
of different communication protocols to transport agents or messages among platforms.
This set of heterogeneous platforms is one of the main obstacles to agent interoperabil-
ity and movement through different platform implementations. This fact is critical in
some mobile agent applications, specially on the information retrieval ones, where a
great number of reachable platforms are supposed to be present, each one with several
resources for agents.

These interoperability problems also concern security because there is no standard set
of protection mechanisms for mobile agents. Moreover, some of these protection mecha-
nisms proposed in the literature, restrict the possibilities of interoperability among agent
systems, as we showed in [2].

In the security area, several issues are well known and there are some protection
mechanisms to face them. Other problems have no solutions yet, but a clear scenario of
threats and possible vulnerabilities has been defined [14]. Probably, security in mobile
agents has reached a limit where it needs more inputs from application requirements in
order to produce effective protection mechanisms. In contrast, the case of interoperabil-
ity is not like this.

Although several proposals have been presented to provide interoperability among
mobile agent systems, this is not an area with as much maturity as in security. In the fol-
lowing sections different research works trying to cover interoperability are discussed.
Most of these works are focused in software engineering techniques to provide portabil-
ity of agents between platforms. However, these works often suppose a common pro-
gramming language and a common communications infrastructure. Others like IEEE
FIPA [10] (Foundation for Intelligent and Physical Agents), try to standarize some as-
pects of communication between mobile agent platforms to provide a minimum degree
of interoperability to those systems implementing this standard. Finally, standarisation
efforts also come from OMG with MASIF [17] (Mobile Agent System Interoperability
Facility). This is an specification based on CORBA (Common Object Request Broker
Architecture), which uses a standard communications and distributed objects infrastruc-
ture to attain interoperability.

From all reviewed works, there is no aim to properly define mobile agents interop-
erability, a complex capability affecting the different levels at which mobile agents can
interact, and at which different degrees of interoperability can be reached using current
techniques. Moreover, most of the research works provide partial solutions to specific
problems, sometimes leaving others aside.

Our goal in this paper is to present all the issues related to interoperability of mobile
agents, defining it, reviewing proposed solutions and presenting a global approach to
the interoperability problem based on the use of FIPA standards. The main reason pre-
sented for such an approach is that important interoperability problems solved by FIPA

390 J. Ametller-Esquerra et al.

specifications are isomorphic to mobile agents interoperability problems, what justifies
as we will see, the use of FIPA solutions to make mobile agent systems interoperable.

The rest of the paper is structured as follows. Firstly, in section 2, we will define
interoperability in mobile agent systems not as a whole, but through the different lev-
els at which mobile agents must be able to interact with a host system. After that, in
section 3 we analyse the related work done in FIPA about mobile agents, and in sec-
tion 4 an approach to attain interoperability based on FIPA specifications is proposed.
Section 5 presents experimental results extracted from the implementation over JADE
[13] of preliminary work. The paper finishes with conclusions about the work done and
results obtained from the implementation.

2 Interoperability

Interoperability is one of the most desirable capabilities of any software component.
Software agents are probably the best programming paradigm to ease the creation of
distributed applications with the ability to interoperate with others. However, agent sys-
tems need to set a first substrate for enabling its capacity to interoperate on higher levels.
This initial layer has been set by efforts like FIPA [10] specifications or KSE (Knowl-
edge Sharing Effort) defining the KQML language [7]. The main goal of both has been
the definition of standard ways to communicate agents of different agent system imple-
mentations. In the case of FIPA this effort has been presented as a set of specifications
offering standardisation on different levels of the agent-to-agent communication. For
instance, communication protocols, message format, content languages, ontologies and
interaction protocols.

Mobile agents are a special case of software agents in which interoperability is re-
ally critical. In contrast to static agents, mobile agent systems interaction with other
implementations is not only restricted to send, receive and interpret messages, but also
to interact with unknown environments. Moreover, this is not the only new challenge
of mobile agents in front of static ones. Code mobility protocols used to transport
agents through different platforms, are additional barriers to interoperability, because
they are often built taking into account different design goals (performance, security,
fault-tolerance and others) or data formats used to encode transmitted information.

In order to propose effective mechanisms for a better interoperability of mobile
agents, it is needed to study the different levels of interaction and the different inter-
operability problems which may arise on them. Secondly, a study of which degrees of
interoperability can be achieved on each level, depending on the conditions imposed by
the desired interaction, is needed too. Finally, it is obvious that some aspects must be
standardised in order to get the basis for interoperability, but such standardisation must
not be restrictive to differential aspects of each implementation.

In the following lines we will define the mobile agents interoperability levels that
can be considered. Each level presents several problems and solutions to allow different
implemented mobile agents to interact. The whole mobile agent’s interoperability will
be threaten if all of them cannot be guaranteed.

Executable Code Level. This first level shows a common problem not only present in
mobile agents, but also in software deployment in general. The existing architectures

Enabling Mobile Agents Interoperability Through FIPA Standards 391

and operating systems make impossible a unique executable code format. Moreover,
each operating system has its own system calls, libraries and so on, making also
difficult a unique source code distribution. Interpreted or intermediate languages
have been the most widely used approach to overcome this problem. This is probably
one of the main reasons for which Java has become a de facto standard to write
mobile agent systems. Its support to several architectures and operating systems and
its abstraction of the underlying operating system resources has been, together with
the portability of its bytecode, one of the reasons to choice it. Despite these reasons,
probably it is not the best suited language to implement mobile systems with strong
migration support, mainly because its poor management on handling threads state.
Research works like [22] or [3] illustrate how difficult it can be.

Platform Level. When interoperability at previous level is guaranteed, for example
because both are build using Java, we may face the problem of fitting agents from
different platform implementations. In the existing ones, agents are heavily linked
to the platform. Libraries and interfaces (agent and platform) are directly used by
each other in order to facilitate internal platform operations management. Futher-
more, agent interfaces are very diffrent from a system to another. If agent interfaces
were more general and the interactions with the platform were done through less-
restrictive interfaces (CORBA or Web Services) this problem would be less sig-
nificant. However, most of the platforms have focused its design in efficiency and
simplicity instead of interoperability. The reality is that different platforms have
different interfaces, different toolkits and different implementations of the same
concepts. Several works exist addressing interoperability at this level, tipically pro-
viding solutions based on software engineering patterns to adapt different interfaces
or encapsulating agent implementations inside other agents. For instance, [4], [18],
[16], [20] or [12] are clear samples of this kind of solutions. It is interesting to note
that most of interoperability work in mobile agents has been done at this level.

Communication Protocol Level. Within the communication level we can identify
several critical points directly related to data exchange between agent systems. To
make this interaction possible, agent systems involved in the communication must
agree on several layers:

– Underlying data transfer network protocols
– Syntactical Level (Data format)
– Semantic Level (Data interpretation)
– High Level Protocols

Without agreement, at least at the first three levels, information exchange between
different implementations is not possible. The efforts of FIPA have been focused
on setting specifications to cover these four levels by means of MTP (Message
Transport Protocols), ACL (Agent Communication Language) Messages definition
and content languages, ontologies to structure message information, and Interaction
Protocols to build complex agent interactions.
The most interesting feature is that current standardisation permits that agents with
different ontologies may attempt to interact. Of course, if they do not share the same
ontology, one will not “understand” messages sent by the other but they will be
always able to interact at some degree, at least, to communicate to the other part its
inability to understand the message. This is possible due the specifications provided

392 J. Ametller-Esquerra et al.

by FIPA, and permits the sender to initiate alternative ways of communication, in
order to be understood.

It is interesting to note the rapid analogy we can make between the problem of trans-
ferring mobile agents and transferring messages. In both cases, we must agree in some
data transfer protocols, data must be written in a common agreed language, we must be
able to, at least, attempt to interpret transmitted data. Furthermore, both need some kind
of high level protocols providing the foundations for sophisticated ways of interaction
in one case, and efficient, fault-tolerant and secure ways of transmitting agents in the
other.

To conclude, it is clear that several solutions exist to provide some kind of interop-
erability at each of the levels we have seen. The only problem, when interoperability
solutions exist, is to establish a process by which interested parts on interoperating de-
cide which mechanisms to use and how to use them.

This reason and the fact that FIPA standards are a good solution, and also the most ac-
cepted ones, to attain interoperability on communications and information interchange
level, clearly suggests defining mobility in terms of FIPA specifications. The flexibility
in interchange of knowledge with different implementations and negotiation capabili-
ties perfectly enables expressing mobility protocols with a high level of interoperation.

3 FIPA-Based Mobility: Related Work

In the previous section an analogy between sending messages and sending agents has
been presented as the main reason to build a FIPA-based agent mobility. We stated that
benefits in terms of interoperability given by FIPA specifications in message sending,
may give also benefits to agent mobility.

In that sense, the FIPA Agent Management support for Agent Mobility specification
[8] was proposed several years ago, but it was deprecated due to the lack of implemen-
tations. Our aim in this paper is to continue with that work. More precisely, our work
has started with the study of the deprecated specification, trying to redefine those issues
that were more poorly handled and implementing a proof of concept over JADE.

3.1 The Old Specification

The basic idea behind the FIPA specification about agent mobility is sending agents
with their characteristics inside ACL Messages using a given ontology. Two types of
protocols are presented:

Simple Migration Protocol. This protocol delegates the conversation necessary to ex-
change agent data to the local platform. Basically, the agent sends a request to the
local platform by means of an ACL message and the platform is responsible of lo-
cating the agent’s code and data, and forwarding agent’s request to the destination
platform.

Full Migration Protocol. In this case, the whole protocol is driven by the agent itself,
which contacts the remote platform to recreate itself on it, transfering its identity to
destination at the end of the process.

Enabling Mobile Agents Interoperability Through FIPA Standards 393

It is assumed that messages based on the presented ontology provide enough infor-
mation to decide whether is possible to execute an incoming agent to the destination
platform.

The proposed ontology defines two actions, move and transfer and several concepts
like mobile-agent-description which contain all agent information, including its code,
data, and its mobile-agent-profile. This last one defines agent characteristics to assure
compatibility with the receiver platform, like the name of its native agent system, lan-
guage in which it has been written and operating system in which it was running.

This ontology is presented as the basis to gain interoperability in the sense we have
expressed in the previous section. By means of mobile-agent-description and mobile-
agent-profile the ontology transmits the characteristics of the environment for which the
moving agent has been built. It permits to set up interoperability mechanisms according
to the received agent thanks to this specification. When not all mechanisms do not exist,
mobility cannot be done but both platforms have been able to interoperate, although in a
low degree. The idea is transmitting all the needed knowledge to trigger, when they are
present, the necessary mechanisms to adapt both systems, allowing always a minimum
degree of interaction.

3.2 Specification Drawbacks

Although the specification goals are quite interesting its scope is very limited and it
has been written very ambigously. This is not surprising taking into account that it was
a first version which fell in deprecated state. Nevertheless, the philosophy it suggests,
consisting in using the standardised ACL level as a base layer to gain in interoperabil-
ity for mobile agents, is probably the most logical way to operate. Some lacks of this
specification are, for instance, the following ones.

First, no interaction protocols are used at all. FIPA-request interaction protocol can
be perfectly used as a building block to define both proposed protocols for mobil-
ity. It would help to handle special cases and situations where interoperability cannot
be assured. Inform messages, not present in the simple protocol, would help, for in-
stance, the local platform on deciding whether an outgoing agent has been restarted
correctly or not in the destination one, avoiding agent duplicates. Agree messages of
this protocol can be used isomorphically to access control directives from destination
platform.

Secondly, code migration is not only a matter of shipping code and agent data from
origin to destination. For instance, works like [19] show how complex can be mobile
agent mobility protocols in order to get an acceptable performance in different envi-
ronments and circumstances. The fixed behaviour of the proposed protocols, having no
possibility of negotiating protocol type or configuration parameters, vastly simplifies
agent mobility despite ACL and FIPA are providing necessary foundations for this kind
of negotiations.

If we look at performance issues, maybe protocols based on ACL messages are
not the best suited for this matter. Nevertheless standardisation of some other MTP
(Message Transport Protocols) designed to improve performance in sending/receiving
messages, and using for instance, light and fast Content Encodings like [9], may signif-
icantly improve efficiency keeping interoperability goals.

394 J. Ametller-Esquerra et al.

Moreover, sending agent code and data in the first protocol message, the same that
contains the agent description, will not allow devices with limited resources to decide
whether they have enough storage capabilities to store the transmitted agent.

Finally, it is not clear how the protocol operates with a single message sent from
the source to the destination platform. For example, it is not clear what happens if the
agent’s restarting process fails at the destination. There is no message informing about
the result of that process. On the other hand, the phrase “...the AP upon which the agent
is executing will have to implement the necessary protocol to realise the entire migra-
tion operation” does not clarify whether this protocol implies another communication
process not described here.

4 FIPA-Based Mobility: Our Proposal

Instead of starting a new specification from scratch, we have used the groundwork pro-
vided by the FIPA specification on Agent Management support for Mobility. Our pro-
posal wipes out the main drawbacks shown in the obsoleted specification, and described
in section 3. Moreover, it enhances mobility by conceiving migration between different
types of platforms, provided they all observe the FIPA standards.

One of the main drawbacks of the old specification, which restricts the possibilities
for interoperability if used, is its lack on performing negotiation. The agent is sent
on the first message of the migration, excluding any possibility to negotiate mobility
parameters. This lack of negotiation is also noted in the protocol part, totally imposed
by the sender part, and giving to the destination no possibility to configure nor impose
any parameter to it.

We propose to redefine the specification by designing, instead of a protocol, a frame-
work protocol to negotiate specific mobility parameters and configuration. This will
enable migration between different types of platforms. The framework protocol is de-
fined in three phases:

Negotiation Phase. Using a FIPA-Proposal Interaction protocol, the origin platform
can propose a set of mobility protocols to use with the destination platform. These
sub-protocols must be also standardised by FIPA and their negotiation can be per-
formed exchanging a set of standard names. This operation also enables the pos-
sibility of negotiate sub-protocols, even if they are not standard, provided they are
known by the communicating platforms.

Configuration Phase. Once the two parts have agreed the mobility protocol to use,
they must negotiate a set of protocol parameters in order to enhance interoperability,
efficiency, fault-tolerance, security and other issues, depending on the requirements
of both.

Execution Phase. By using the agreed protocols and their parameters an agent is trans-
fered from source to destination.

The specification must be concluded by defining a minimal subset of basic protocols,
which, for instance, can be the presented in the old specification with its corresponding
ontologies and parametrisation capabilities. The power of this new approach does not lie
in standardised sub-protocols but in the possibility to express new protocols following

Enabling Mobile Agents Interoperability Through FIPA Standards 395

the main framework proposed. Like ontologies, giving the ability to express relations
about concepts which are not standardised in any specification, the framework would
allow to specify and negotiate a rich set of user-defined protocols.

4.1 Preliminary Proposal

In the time of writing, our experimental work has not produced a whole implementation
of the previous framework protocol. Although the roadmap is clear, we have started by
overcoming some of the worst drawbacks of the specification to make its implementation
easier. This implementation, done using one of the most widely used FIPA-compliant
Agent Platforms, JADE, follows previous works of our group on this topic [1].

Basically, we have extended the simple mobility protocol proposed in the FIPA spec-
ification, enforcing it to follow the FIPA-Request Interaction Protocol [11] which we
call Power-Up protocol. Figure 1 illustrates the sequence of messages.

Fig. 1. FIPA-based mobility protocol

Basically, the agent is sent in the request message to the destination platform, as
described in current FIPA specification. Destination platform tries then to extract it
from the ACL message, taking into account the parameters sent within the message. If
this operation can be performed, an inform message is sent to the home platform, which
definitively kills the requesting agent. Then, the home platform sends a second request
(Power Up request) to the destination platform, which starts the agent.

The purpose of this first implementation has been to experiment with the old FIPA
specification, to identify drawbacks, to evaluate performance of an ACL-based mobility
with respect to others, and to evaluate its flexibility to interoperate with different types
of platforms and how it could be implemented. In the next section these results are
described in more detail.

5 Implementation

As we have previously said we have implemented a preliminary proposal based on the
FIPA mobility specifications. In this section we describe the structure of our mobility
service, its integration with the intra-platform mobility service provided by JADE, and
the tests used to evaluate its performance.

396 J. Ametller-Esquerra et al.

5.1 Mobility Service Structure

Our implementation is built on top of the JADE agent platform. This platform already
had a mobility service, but it only supported intra-platform migration among contain-
ers. A container is a non standard abstraction defined in JADE to support distributed
computing and consisting in an agent execution environment. Every container usually
runs on an independent Java virtual machine, and it communicates via RMI with the
rest of containers belonging to the same platform.

Despite having already a basic mobility service in JADE, we have implemented a
new one based on our preliminary proposal, which adds new functionalities and im-
provements to this service. Firstly, our service allows agents to migrate between differ-
ent platforms, whereas the former service only permits to migrate between containers
in the same platform. Secondly, our service takes advantage of the preliminary inter-
operable protocol proposed on section 4, that is the first step to allow, in the future,
applications exploiting the mobility between many heterogeneous platforms.

Since we have chosen JADE, we have made our service in accordance with its ser-
vices architecture [6]. This architecture, thanks to its flexible structure based on vertical
and horizontal commands, makes it possible to add new services to the platform with-
out modifying it. Moreover, it has the benefit of allowing interaction and collaboration
between other services. This architecture is very flexible, but it is also quite complex,
because it has to manage all platform services and to coordinate their instances over all
platform containers.

The inter-platform mobility service in JADE is a complex piece of software, specially
taking into account that it coexists with the existing intra-platform mobility service
built into the platform, as we explain in section 5.2. In order to simplify the service
organization and its tasks it has been structured into these parts: main service, code
analyser, class analyser and packer, code warehouse, and migration protocol. As we can
see in figure 2 each one of these service parts has an instance in each container, except
for the migration protocol. This protocol only resides in the platform main container,
which is the only one visible according to FIPA specifications.

Fig. 2. Inter-Platform mobility service parts

Enabling Mobile Agents Interoperability Through FIPA Standards 397

The main component offers a JADE service image of our migration software. It deals
with the coordination of all service parts over one or more containers, with the intra-
platform mobility service integration and with agent interactions. In short, it is the inter-
platform migration manager.

The class analyser, implemented as a standalone library called Class Analysis Li-
brary (CAL), is a key component to ease the agent dependant classes collection. As
JADE does not have class spaces differentiated for agents, a search of the dependant
classes has to be done in order to decide which classes must be packed to be sent to the
destination platform. The CAL recursively searches dependencies for a given class by
including them on the agent’s code package.

To analyze each class the code analyser component is used. It loads the constant pool
[15] table of a Java class in memory, being able to easily access to it. This table shows
the relationships between the analysed class and the dependant ones.

The CAL, by using the code analyser, first gets the direct dependencies of the agent
class, then it searches for the dependencies of these direct dependencies, and so on. It is
easy to see the enormous amount of classes that can finally be found. This is a problem,
because most of the classes will be in the mobile agent target platform, and it is not
needed to transfer so much data. In order to fit the classes transferred to the real needed,
we have made a filter based on the class package names to exclude some of them from
the analysis. Finally, with the dependency list, all needed classes are packed into a
JAR file (known as a JAR agent) ready to be got and sent by the migration protocol
component to the destination platform.

Another important component of the service is the code warehouse. It is implemented
by a class called CodeLocator that is placed inside the JADE Agent Management Ser-
vice. This component is used to maintain a binding between all mobile agents of the
platform and their code (the JAR files). Has to be noted that the first time a mobile
agent is executed, previously to migrate, it is not generally packed in a JAR file and,
because of that, it is not registered in the code warehouse. It is from the first migration
that, by using the code analyser component, the JAR file is made and registered.

Furthermore, a method preventing from duplicated JARs, in case of the existence of
many equal code agents, has been implemented. A unique identifier is included in each
one according to the code inside them. Together with the code warehouse, a specific
ClassLoader to dynamically load classes from the JAR files has been developed. It
allows to have a separated class space for every JAR agent avoiding class conflicts.

And the last component, the migration protocol, is in charge of running the dialogue
between platforms involved in an agent migration. It defines the steps needed for a
successful migration and the data structures used in them.

To exchange messages the interaction protocols proposed by FIPA have been used,
which contribute to standarize communications. More precisely, the chosen one has
been the FIPA Request Interaction Protocol [11], as it has previously said at section 4,
that allows to make a request to an agent and to be answered accordingly to the result
(with an inform or a failure message).

Basically two steps have been defined, each one implemented with one instance of
the FIPA Request Interaction Protocol with an action associated. The first step sends
a “move” action with the agent code and instance and waits for the success. Then,

398 J. Ametller-Esquerra et al.

the second step only sends a “power-up” action to start the agent previously sent (the
messages exchanged can be seen in figure 1):

1. A “move” request message with the agent code and data is sent.
2. An acknowledge of the agent creation is received from the target platform.
3. The receiver is requested with a “power-up” message to start the agent sent.
4. An acknowledge of the agent startup is received from the target platform.

A migration ontology similar to the one proposed by FIPA [8] has been used for
data structure. The ontology used includes code and data of the agent and, moreover,
information about the agent platform, the language of the agent, and the migration pro-
tocol used. This prevents the platform to execute an agent incompatible with some of
the mentioned characteristics.

5.2 Integration with JADE Mobility Service

The mobility service currently presented has been integrated with the Intra-Platform
Mobility Service of JADE, allowing an agent to migrate between containers and plat-
forms by using the same methods.

In JADE the destination of an agent migration is indicated by using an object
implementing the Location interface. With the intra-platform migration service the Con-
tainerID class, implementing the Location interface, is used as agent container destina-
tion representation. Then, with the inter-platform migration service a PlatformID class
has been implemented to represent the destination platform. That’s the fact that allows
the user to use the same methods to start a migration. When an agent needs to migrate,
it just has to call the doMove method with a ContainerID or a PlatformID depending on
the desired kind of migration (inside or outside of the agent platform).

Moreover in current service special attention has to be paid to the agent’s code lo-
cation among the platform’s containers. When an agent decides to migrate to another
platform its code could be in another container because an older intra-platform mi-
gration of the agent. On this kind of migration, the agent’s code is not pushed to the
destination container. Instead of that, the code is requested on demand, remaining the
original code all the time in the same container. For this reason a service horizontal
command has been implemented to ask the source agent container to generate a JAR
with the agent code.

5.3 Performance Tests

Reaching the end of the implementation we have made tests to evaluate our service
performance in comparison with the non interoperable Intra-Platform Mobility Service
provided by JADE. Our efforts have been focused on testing the time spent by migrating
agents under different conditions. In order to do that a test agent in charge of launching
other migration agents has started and time measures have been done.

The agents launched migrate from one site to another and then come back to the
first one, in what it is called a round trip. This has been done a fixed number of times
(1, 10, 100, and 1000 times), called from now on iterations. Moreover, these agents
have launched concurrently, with 1, 10, and 100 instances running simultaneously.

Enabling Mobile Agents Interoperability Through FIPA Standards 399

Fig. 3. Performance test of two migration services

These tests have been done with the Intra-Platform Mobility Service and with the Inter-
Platform Mobility Service, where a site respectively is a container or a platform.

The results are shown in figure 3. We have used two Pentium IV at 2 GHz, with 256
MB of RAM, 40 GB on an ATA 100 hard disk, and a GNU/Linux based operating sys-
tem (Fedora Core 2 distribution) with kernel version 2.6.10 each, both using a 100 Mbps
switched Ethernet network. We used JADE Snapshot few days before it was released
as JADE 3.4. The tests with our Inter-Platform Mobility Service (IPMS) use a Message
Transport Protocol based on HTTP, while the tests based on the Intra-Platform Mobility
Service of JADE (IPMS-J) use an Internal Message Transport Protocol based on RMI.

As it can be appreciated in the figure, performance increases with the number of
agent instances. This is because moving an agent is a process that implies many steps.
If there are many agents migrating concurrently, these steps can be parallelised and a
lower average time per migration can be got.

But the most noticeable issue is the performance variation between inter-platform
migration and the JADE intra-platform migration as can be appreciated in figure 3.
From such result it can be seen that inter-platform mobility service is not as efficient
as Intra-Platform Mobility Service provided by JADE. However, the new service has
an important advantage: it follows standard FIPA methods for communication and a
protocol that is a standard proposal. Interoperability has an inherent cost due to the
required mechanisms, as it has been seen. Albeit of this, this cost is affordable and
not as expensive as it could seem in advance. Moreover, as has previously been said,
performance can be improved by defining new MTPs and content encodings.

6 Conclusions

This paper studies the problem of interoperability in mobile agent systems, probably,
one of the main obstacles to the deployment of this technology. Despite that, several

400 J. Ametller-Esquerra et al.

research works on interoperability exist, most of them are focused on specific levels
and a few of them tackle the problem as a whole.

In this paper we define interoperability in mobile agent systems at three different lev-
els, reviewing existing solutions proposed for each level. Through this work we show
that mobile agents mobility and static agents communication have analogous problems.
For this reason we have adopted one of the most widely extended interoperability mod-
els (FIPA specifications) for communicating static agents as foundations proposing a
solution to mobile agents interoperability.

This solution sets a first layer of interoperability in communications level. More-
over, the expressivity of ACL Messages and protocols can be used, not only to build
extensible, negotiable and highly configurable mobility protocols but to set the basis to
attain interoperability at other levels, at least to express the conditions to reach it, in a
powerful way.

In this directions went a deprecated FIPA specification (due to a lack of implemen-
tation) that we, in this work, try to extend and discuss about. From the study of the
drawbacks of this specification, and following the same philosophy, we propose the
standardisation of a framework protocol, rather than a specific protocol which enables
the possibility of handling several mobility protocols based on ACL and enhance inter-
operability capabilities of the platforms.

An experimental work has also been done, implementing preliminary ideas enhanc-
ing some present specification and evaluating some performance results. This work has
been implemented over the JADE platform and its community is starting to exploit it in
order to build mobile agent based applications.

The performance results show that a lot of work must be done in the transport area,
defining fast MTPs, and using lightweight content languages in order to make ACL
based migration more competitive in terms of performance.

Acknowledgments

This work has been partially funded by the Spanish Ministry of Science and Technology
(MCYT) though the project TIC2003-02041.Also with the support of the Departament
d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya and
of the European Social Fund (ESF).

We want also to give special thanks to Fabio Bellifemine and Giovanni Caire from
the JADE Team for their invaluable help and contributions to the development.

References

1. J. Ametller, S. Robles, and J. Borrell. Agent Migration over FIPA ACL Messages. In Mobile
Agents for Telecomunication Applications (MATA, volume 2881 of Lecture Notes in Com-
puter Science, pages 210–219. Springer Verlag, 2003.

2. J. Ametller, S. Robles, and J. A. Ortega-Ruiz. Self-protected mobile agents. In AAMAS
‘04: Proceedings of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 362–367, Washington, DC, USA, 2004. IEEE Computer Society.

3. S. Bouchenak. Pickling threads state in the java system. In Third European Research Seminar
on Advances in Distributed Systems (ERSADS’99), 1999.

Enabling Mobile Agents Interoperability Through FIPA Standards 401

4. F.M.T. Brazier, V.J. Overeinder, M. van Steen, and N.J.E. Wijngaards. Agent factory: Gener-
ative migration of mobile agents in heterogeneous environments. In Proceedings of the 2002
ACM Symposium on Applied Computing (SAC 2002), pages 101–106, Madrid, Spain, March
2002.

5. B. Brewington, R. Gray, K. Moizumi, D. Kotz, G. Cybenko, and D. Rus. Mobile agents for
distributed information retrieval. In Matthias Klusch, editor, Intelligent Information Agents,
chapter 15, pages 355–395. Springer-Verlag, 1999.

6. G. Caire. Jade: The new kernel and last developments. Technical report, Telecom Italia,
2004. http://jade.tilab.com/papers/Jade-the-services-architecture.pdf.

7. T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent Communication
Language. In N. Adam, B. Bhargava, and Y. Yesha, editors, Proceedings of the 3rd Interna-
tional Conference on Information and Knowledge Management (CIKM’94), pages 456–463,
Gaithersburg, MD, USA, 1994. ACM Press.

8. FIPA. Agent management support for mobility specification. Technical report, Foundation
for Intelligent and Phisical Agents, 2002.

9. FIPA. Fipa agent message transport envelope representation in bit efficient specification.
Technical report, Foundation for Intelligent and Phisical Agents, 2002.

10. FIPA: Foundation for Intelligent and Physical Agents. http://www.fipa.org, 2002.
11. FIPA. Fipa request interaction protocol specification. Technical report, Foundation for Intel-

ligent and Phisical Agents, 2002.
12. A. Grimstrup, R. Gray, D. Kotz, M. Breedy, M. Carcalho, T. Cowin, D. Chacón, J. Barton,

C. Garrett, and M. Hofmann. Toward interoperability of mobile-agent systems. In 6th Inter-
national Conference on Mobile Agents, volume 2535 of Lecture Notes on Computer Science,
pages 106–120. Springer Verlag, October 2002.

13. JADE, Java Agent DEvelopment Framework. http://jade.cselt.it, 2004.
14. W. Jansen and T. Karygiannis. Nist special publication 800-19 - mobile agent security, 2000.
15. Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 1999.
16. L. Magnin, T. Viet Pham, A. Dury, N. Besson, and A. Thiefaine. Our guest agents are

welcome to your agent platforms. In Seventeenth ACM Symposium on Applied Computing
(SAC), 2002.

17. OMG Mobile Agent Systems Interoperability Facilities Specification (MASIF), OMG TC
Document ORBOS/97-10-05 .

18. P. Misikangas and K. Raatikainen. Agent migration between incompatible agent platforms.
In Twentieth International Conference on Distributed Computer Systems. IEEE Computer
Society Press, April 2000.

19. W. Rossak P. Braun. Mobile Agents. Basic Concepts, mobility models & the tracy tookit.
Morgan Kaufmann, Elsevier, 2005.

20. U. Pinsdorf. A formal approach for interoperability between mobile agent systems and com-
ponent based architectures. In 11th IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems, pages 536–542, 2004.

21. V. Roth. Obstacles to the adoption of mobile agents. In IEEE International Conference on
Mobile Data Management, 2004.

22. E. Truyen, B. Robben, B. Vanhaute, T. Coninx an W. Joosen, and P. Verbaeten. Portable
support for transparent thread migration in java. In ASA/MA, pages 29–43, 2000.

Characterising Agents’ Behaviours: Selecting Goal
Strategies Based on Attributes

José Cascalho1, Luis Antunes3, Milton Corrêa2, and Helder Coelho3

1 Departamento de Ciências da Educação
Universidade dos Açores

9701-801 Angra do Heroismo, Portugal
jmc@notes.uac.pt

2 Coordenação da Ciência da Computação e Laboratório Nacional de
Computação Cientı́fica

Av. Gertúlio Vargas, 333
Petrópolis, RJ-Brasil
mcorrea@lncc.br

3 Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Bloco C6, Piso 3, Campo Grande
1749-016 Lisboa, Portugal

hcoelho@di.fc.ul.pt, xarax@di.fc.ul.pt

Abstract. The growth in the demand of autonomous agent systems which take
decisions on behalf of other agents or human users, increases the necessity to
study systems which use affective elements to manage their resources and to take
decisions in order to become more efficient and to facilitate human-machine in-
teraction. In this paper we present an architecture that allows an agent to select
a sequence of actions based on a previously predefined planning structure, by
using a tree of goals and a set of informational beliefs. The affective elements
which we call attributes, such as urgency, insistence and intensity, have the ca-
pacity to alter the agents’ behaviours, modifying their priorities with regard to
resource consumption, the implicit costs of action execution and even their capa-
bilities to execute an action. In a preliminary experiment made in a multi-agent
system environment, a modified predator-prey workbench, we show how the at-
tributes linked to these beliefs change the agents’ behaviour and improve their
global performance.

1 Introduction

The introduction of affective elements in an architecture has previously been discussed
by Sloman [1][2], Minsky and others [3]. The need for a more effective management of
resources along with mechanisms to prioritise goals are the fundamental reasons evoked
by those who advocate their use and investigation [4]. In our previous investigation
we worked with different affective elements, which we call attributes, and which are
associated to the definition of a mental state[5]. In [6] we explained how these attributes
can increase the plasticity of the agents’ reasoning process. In this paper we study the
role of the attributes in the selection of adequate behaviours and we show how attributes
improve agents’ global performance.

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 402–415, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Characterising Agents’ Behaviours: Selecting Goal Strategies Based on Attributes 403

G2: chase_prey G3: search_prey

OR

OR

kh3

kh6

kh5

kh4

G1

G6: chase_low_intensity

G5: chase_medium_intensity

G4: chase_high_intensity

Fig. 1. The agent with CIS strategy

In the BDI-like implementation architectures, an agent commits to an intention and
then selects a plan in order to satisfy a goal. The plan is usually partial, meaning that
there are steps that correspond to sub-goals that must be satisfied during its execution
(for a survey in programming BDI-style agents see [7]). Although the selection of sev-
eral possible ways of achieve a goal is implicit in the BDI design, rarely this selection
is considered (or it is only considered as a meta-reasoning process like in dMars [8]).
On the other hand Castelfranchi [9] describes how after selecting a goal G1 out of two
incompatible goals, it is necessary to choose between (sub)goals G11 or G12, using a
cost belief (how much the agent should spend to pursue G11 or G12), or a convenience
belief (the value of G1 exceeds its cost and G11 is better than G12). And to finally ar-
rive at the status of ‘execution‘, an agent first should test the conditional beliefs. Thus,
he suggests to explore more deeply the process of intention selection. This description
is a source of inspiration for the model of architecture we implemented and use in the
experiments we describe in this paper.

In this paper, we first succinctly describe the elements of the architecture for the
agents we implemented. Then we discuss the experimental part, the pursuit domain en-
vironment we adapted to our experimentations, and the role of the intensity and urgency
in the agent’s architecture. Finally, we present the experimental conclusions and discuss
future work.

2 The Description of the Agent’s Architecture

Our agents form a goal governed-system [10], that is, the agents have goals explicitly
represented which they want to satisfy. We are interested in studying the agents’ inner
mechanism for selecting behaviours.

The agents’ mind architecture has a set of goals which are linked by an OR-connector
or an AND-connector (AND/OR decomposition [11]). These connectors allow the
agents’ designer to create a tree (AND/OR tree) which makes possible to define ‘and-
goals‘ (the leaves of an AND-connector) or ‘or-goals‘ (the leaves of an OR-connector).
Both constitute alternative paths to satisfy a goal. The former means that a goal can
be satisfied if all the and-goals are executed successfully, while the latter means that

404 J. Cascalho et al.

G2: chase_prey G3: search_prey

OR

OR

kh3

kh6

kh5

kh4

G1

G6: search_low_intensity

G5: search_medium_intensity

G4: search_high_intensity

Fig. 2. The agent with SIS strategy

the goal can be satisfied, if one of the or-goals is satisfied. In figures 1 and 2 we show
the two different AND/OR trees as tested in the experiments we describe in the next
sections. Goals G4, G5 and G6 represent the alternative strategies to satisfy the goal G2
(for the tree in figure 1) or the goal G3 (for the tree in figure 2). The tree in figure 1
corresponds to the experiment in which agents have different strategies to chase their
prey (chase intensity strategies or CIS experiment) while the tree in figure 2 corresponds
to the experiment where agents have different strategies to search for the prey (search
intensity strategies or SIS experiment).

In figure 3 a schematic representation of the architecture shows the different classes
and their main connections. Next, we explain succinctly some of the beliefs supporting
the agent’s decision process:

– The accomplishment belief defines the conditions in which a goal is satisfied.
– The know-how belief links a goal to an Action, i.e. a plan to satisfy a goal. In our

architecture this corresponds to a sequence of atomic actions.
– The beliefs condition belief defines the (pre-)conditions that support the execution

of the goals and the actions of a plan.
– The cando belief evaluates the internal agents’ capabilities. The difference between

a condition belief and a cando belief is that the former is part of the goal (or action)
external condition to the goal’s (or action’s) execution while the latter is an eval-
uation of the agents’ ability (an agent can have the conditions but not the ability
to reach a goal)1. The attribute intensity is evaluated with respect to the agents’
ability to execute or not execute a goal.

– The preferences belief defines the order in which a sub-goal is chosen. The ur-
gency influences this order.

– The means-end belief test the conditions for a goal execution (see below for a
detailed explanation of the role of this belief).

Let’s now describe the main cycle (reasoning-cycle) of the agent’s mind. The agent
keeps a pointer to the goal that is executing. In the means-end belief, a test is made to

1 Both beliefs evaluate if the goal can be satisfied if the action associated to the know-how belief
is executed.

Characterising Agents’ Behaviours: Selecting Goal Strategies Based on Attributes 405

Know-how belief

 Goal

Action

#bActivity: State

#bState: bool

know-how

Means-end Belief

CanDo Belief

has

0..1

1..*

Intensity

Insistense

Condition Belief

Impossibility Belief

AndConnector OrConnector

Uncertainty

Action 1

Action 2

Action

1

1

has

has

0..1

support

support

ActionHeaderList

+CreateIterator()
1

Mentality

+Execute()

has

1..*

ActionIterator

+First()

+Next()

+Current()

Connector
1..*0..1

ConnectorIterator

+First()

+Next()

+Current()

ConnectorHeader

+CreateIterator()

0..* targets

hasconnects

Condition belief

Preferences belief

Accomplishment belief

Intensity

+Evaluate()

1

has

Urgency

+Evaluate()

Insistence

+Evaluate()

Urgency

1

Uncertainty

+Evaluate()

Fig. 3. The agent’s architecture

evaluate whether a goal is satisfied or not by calling the accomplishment belief. If it
is satisfied, he looks for another goal in the AND/OR tree. Otherwise, he checks if the
condition belief is true and verifies if there is a plan to execute the goal (know-how
belief). Finally the agent evaluates the Impossibility belief and the Cando belief. If all
conditions return true, he selects an action to execute, following the plan attached to the
goal. An agent search for another goal in the AND/OR tree when there is at least one
condition, from the conditions enumerated above, returning false.

After each reasoning-cycle in which the mental state is updated, an agent will execute
an action (possibly a NULL action).

Fig. 4. Parameters related to agent’s energy

3 The Experimental Setup

We adapted a pursuit simulator [12] by adding the energy resource to the predators.
This new parameter changes the way the simulator ends a game., i.e., a game ends after

406 J. Cascalho et al.

the death of all predators2 before they could catch all preys launched in the game’s
beginning. When a new game starts, the energy is restored to initial values.

In the original simulator, an unspecified number of predators tries to catch one or
more prey agents. A game in the simulator is defined by episodes and cycles. In each
cycle the simulator receives information through sockets about the moves of predator
and prey agents, and messages exchanged among predators. An episode ends when all
prey is caught and a new episode starts with all predator and prey agents randomly
repositioned in the field. Data about how long agents take to catch all prey agents are
kept as a statistical measurement of predator efficiency. We run the simulator about 40
to 80 times per experiment.

The pursuit domain was introduced in [13]. It has been widely used testbed for mul-
tiagent systems. Several variations of the original descriptions have been studied over
the years (see [14] for more details). The domain we used in our experiments con-
sists of a discrete, grid world of 20X20, in which the predators catch a prey when
predator and prey share the same cell (one of the predefined capture criteria in the sim-
ulator [12]). Predators and prey can move to north, south, east and west or maintain
their position. They consume more energy when they move than when they main-
tain their position. Moreover, their total energy is incremented by a certain prede-
fined amount of energy after they catch a prey. In experiments we made, prey moves
randomly.

In the experimental environment the density of prey agents is equal to 0.03 (12 preys
per 400 places) and the number of predators corresponds to 1/4 of the total of preys (4
predators for 12 prey).

Agents tested were all included in what we called the ’obsessed type’ because they
persist in chasing a prey (the first they see) even if another prey comes nearer than the
prey they are chasing.

An agent’s decision for starting to search or to start chasing, obeys to the following
strategy:

– The condition belief for ChasePrey returns true (SearchPrey returns false) if an
agent sees a prey. Otherwise, ChasePrey returns false (SearchPrey returns true).

– After seeing a prey, if an agent has not yet got a fixed prey, he fixes that prey and
returns true.

– An agent fixes a prey is removed
– The agent removes a fixed prey if he does not see the prey for a time interval longer

than δt cycles,

For each experiment we recorded the following statistical measurements:

– the number of episodes the set of predators survives;
– the average and standard deviation of the number of episode cycles;
– the average energy of all the surviving predators (at the end of the episode);
– the average and standard deviation of the average energy.

2 They die after their energy decreases below a survival threshold.

Characterising Agents’ Behaviours: Selecting Goal Strategies Based on Attributes 407

1. INTENSITY associated to
 ENERGY resource:

Test different
 values of intensity

2.Intensity connected to
the goal CHASE_PREY
(CIS).

Test different values
of intensity

Test different values of
intensity

"An high intensity value means to

select actions with a high rate

energy/cycles value."

7. URGENCY associated to
the TIME and to the number
of PREY CAUGHT:

"Low urgency means to save

 energy and, as a consequence,

to select actions with low rate

energy/cycles value."

8. Intensity and urgency connected
to the goal SEARCH_PREY (SIS).

9. Performance is better for
intensity equals to 1.0 .

10. Compare results.6. Compare results:
SIS has better performance than CIS.
The results for CIS were predictable.

4. Intensity connected to the
goal SEARCH_PREY (SIS).

5. Performance is better
for an intensity equal to 0.5

3. Performance is better
for the highest intensity

Fig. 5. The rationale in the experimental design

With this setup we had two main goals in mind:

– To measure the capacity of the survival of agents with different strategy trees;
– To test how an agent can change its behaviour by changing the attributes;
– To evaluate how the attributes can contribute to a better adaptation of the agents to

the environment (improving their performance).

In the next sections we will discuss the experimental work (see the graphical repre-
sentation in the figure 5). We first endowed agents with only an intensity attribute and
then tested agents possessing both intensity and urgency attributes. In the former we test
the agents for the CIS and SIS strategies. In the latter we test the agents while adding
the urgency parameter only for the SIS strategies, and finally, we compare the results
with the set of agents with the best performance in the last experiment.

3.1 The Intensity Attribute

An intensity measures the ‘potential‘ an agent applies to satisfy a goal. The idea of
potential comes from physics and in on our research we link this idea to the resources
that an agent uses to satisfy his goals, i.e., the energy [15].

An high intensity agent(IA) is a predator that selects a strategy that corresponds to
a high energy consuming behaviour. This selection is made by the ’Preference belief’
following the rules:

408 J. Cascalho et al.

– The agent has an initial level of intensity, the innate intensity level.
– For different values of innate intensity level, different goals will be selected as the

total energy of the agent decreases.
– Attached to each defined goal (G4,G5 and G6) there is a different behaviour with a

specific consumption of energy per step rate.
– We calculate the percentage of energy usage with respect to the total energy the

agent has (rate%energy), e.g., when agent’s energy equals 1000 and he is execut-
ing goal G4 behaviour, the percentage of energy usage equals 1.1%.

– The agent selects a strategy that fits the interval of percentage of the total energy
usage. The strategy selected is calculated using the expression:

0% ≤ intensity ∗ rate%energy < 5%− > G4

5% ≤ intensity ∗ rate%energy < 10%− > G5

10% ≤ intensity ∗ rate%energy < 50%− > G6

intensity ∗ rate%energy ≥ 50%− > Nome

Fig. 6. Agent’s strategy selection simulation for different values of intensity and energy

In figure 6 we present simulated results of the strategy selection for different levels
of energy and intensity. Note that as the energy decreases the agent tends to choose
G5 and G6, which correspond to the least energy consuming actions. The same can be
observed with regard to the decreasing intensity.

3.2 Discussing the Results for the First Experiment

We compare here the results of the two approaches: CIS and SIS. As expected, for CIS
experiment a high intensity gives better results, i.e., the average of survivors increments
with the intensity (see the left side of figure7). With regard to the SIS, the better perfor-
mance is achieved at intermediate value of intensity. This is somewhat unexpected. In

Characterising Agents’ Behaviours: Selecting Goal Strategies Based on Attributes 409

Fig. 7. Number of episodes of 20 CIS and SIS experiments

the SIS experiment an agent with the lowest level of intensity crosses the field slowly
while searching for a prey and we had anticipated that this was the cleverest way of
doing it because with this strategy the agent could still find a prey, while at the same
time he was saving energy. Instead, we found out a trade-off between the speed with
which the agent moves and the finding of the prey. If the agent moves fast, he spends
too much energy, and if he moves slowly, he takes too much time in finding prey to
catch. Consequently the best result lies in the medium intensity value. Figure 8 shows
for each experiment the average energy of all predators at the end of each episode. This
value shows the level of energy of the predators after catching all the prey. The higher
levels of energy correspond to experiments in which agents ‘live longer‘.

3.3 The Urgency Attribute

We define urgency as the level of time pressure an agent has to satisfy a goal. He
dynamically changes the value of urgency based on the information in the world. In
the last experiment we assume that agents should always select the most expensive
strategy in terms of energy rate consumption and controlled the applicability of those
strategies using intensity. But during the experimentation we noticed that the agents
could improve their energy management. For example, let us suppose that agents catch
all the preys except two in the first 20 cycles (a value well above the average). The
agents could now calm down and reduce the rate of energy consumption. We propose

410 J. Cascalho et al.

Fig. 8. Average predator energy at the end of each episode for CIS and SIS experiments

to do this with the urgency attribute. Thus, for a scenario in which predators capture
quickly almost all prey, i.e., below a certain average capture time value, they should
have a reduced value of urgency.

An average capture time is measured as the simulation runs. This dynamic value
converges with the increment of the number of episodes. We use this value as a reference
for the urgency level (the urgency to finish an episode increases as the number of cycles
per episode increases as well).

We also consider the number of prey caught in a certain episode as a measure of the
urgency level. We can assume two possible scenarios:

– Agents communicate to others the preys they already caught and so every predator
knows how many preys are still alive in the scene.

– Agents do not communicate, but they assume an initial optimum number of prey
each one should catch. This number can be fixed or can change dynamically de-
pending on average of prey agents caught in each cycle of all the episodes.

We implemented the second scenario: the agents do not communicate and they have
an optimum fixed value for the number of preys to be caught in each episode.

Using these two variables (the optimum value for the number of preys to be caught
and the average capture time) we manage the value of urgency to satisfy the goal
‘searching a prey‘. The urgency value is calculated using the following expression:

Characterising Agents’ Behaviours: Selecting Goal Strategies Based on Attributes 411

urgency = weight ∗ (bias + 1−Nr.PreyCaught/PreyTarget)+

(1 − weight) ∗ (bias + Nr.Cycles/CyclesAverage− 1),

where bias gives a ‘value of reference‘ for the urgency when the number of prey caught
is equal to the value PreyTarget and the the number of cycles in the episode is equal to
the value CyclesAverage. As shown in figure 9 the reference values for PreyTarget
is 4 and for CyclesAverage is 100 cycles. weight gives the relative weight of the two
dimensions in the evaluation of the final urgency value. In the simulation we used a
bias value of 0.45 and the weight value of 0.3.

Our goal is to allow the agent to select the strategies that reveal the greatest efficacy.
While applying the attribute urgency to the preference belief we do the following:

– If the urgency is low, the agent tends to save resources and so it will use the strate-
gies with which the energy/steps rate is smaller.

– If the urgency is high, the agent must use all the resources he has to quickly solve
the problem he has at hand, so he admits to select the best strategy even if he has to
spend the rest of the resources he has got.

In figure 9 the bottom table shows the selection policy of strategies. For values higher
than 0.6 the urgency will suggest the agent to select a strategy that corresponds to an ac-
tion with a high energy/steps rate. For values between 0.3 and 0.6 the urgency suggests
an action with a medium energy/steps rate and finally for values above 0.3, it suggests
an action with low energy/steps rate.

Fig. 9. The different simulated urgency values (high,medium or low) for the two dependent vari-
ables, the number of cycles and the number of prey caught

412 J. Cascalho et al.

Fig. 10. Strategy simulation decision for maximum urgency and different levels of intensity

Fig. 11. Plotting the episodes per game in the IA agent

In figure 10 the policy for saving resources is simulated. When comparing figures 6
and 10 we notice that when the urgency is highest (the second table counting from the
top of figure 10) the agent selects the same strategies. But for lower values of urgency
the agent will select strategies with a small energy/steps rate.

With the urgency attribute we expect to manage the energy in order to surpass the
critical moments, i.e. the urgency could be used as a regulator for the agent’s resources
(the intensity is an attribute characterising an agent’s type).

3.4 Discussion of the Results of the Second Experiment

Results presented in figures 11 and 12 show that agents with mental attribute urgency
and intensity (UIA) have a better performance than agents with just intensity attribute
(IA). As a matter of fact, the average number of episodes per experiment for UIA
predators is 140 episodes which is an improvement of about 55% when compared to
experiment with IA predators. This clearly shows a better performance of UIA agents.

Characterising Agents’ Behaviours: Selecting Goal Strategies Based on Attributes 413

Fig. 12. Plotting the episodes per game in the UIA agent

Fig. 13. Scenario with IA agents with intensity equal to 0.5

Fig. 14. Scenario with UIA agents with urgency and intensity equal to 1.0

Our guess concerning the improvement of an agent’s performance was correct. Urgency
attribute dominates over intensity attribute resulting in a less consuming behaviour, i.e.,
urgency rationalizes an energy consumption by letting agents select behaviours with
higher consuming rates only in urgency situations. With this constraint imposed by the
urgency attribute, we have noticed a diversity of behaviours in our game scenario. We
hypothesize that this diversity of behaviours can also be responsible for the success of
this approach, but this needs further investigation3.

Density curves of figures 13 and 14 show the shift of the mean from less than 50 to
a value around 100. This curve seems to fit a Poisson distribution. In the future several
statistical relevance tests should be made to evaluate this conjecture.

4 Discussion

With the set of experiments presented in this paper, we tried to understand how at-
tributes could affect the agents’ behaviour. We linked the attributes to agents’ context.
Thus, we first looked for a connection between attributes and the environmental re-
lated variables. For intensity we chose energy resource and for urgency we selected the
number of prey caught and the number of cycles average per episode. We also added
two guiding principles related to the attributes definition. An agent with a high value

3 Agents tend to spread over the whole game board and this helps them finding prey.

414 J. Cascalho et al.

of intensity is an agent which selects the most energetic behaviours, i.e., the behaviours
with the highest consuming rate energy per step, while an agent with a low value of
urgency saves resources. We found that agents using both attributes, urgency and inten-
sity, performed better. The selection of behaviours supported by the attributes urgency
and intensity improved the efficacy of the agents in the tested environment.

This line of research is concerned with a deep understand of how agent behaviour can
be tuned with the help of attributes. In fact, looking back to the way we operationalized
the attributes insistence and urgency, we notice that both can be helpful in the definition
of an agent’s character. Examples of characters are, for instance, an impetuous agent,
having a high value of intensity and a low sensitivity toward the parameters that incre-
ments the urgency level, or an anxious agent which has a high sensitivity to the parame-
ters which increment the urgency level. Other researchers have been discussing the idea
of type, but they use the interaction between mental components of a higher level [16].

Some of the parameters used for attributes calculation were not fixed during the
experiment. Instead their values changed in each episode, allowing agents to tune their
behaviour in real-time fashion 4. This resembles the valence control model proposed in
[3] connected to the idea of motives and in which the concepts of intensity and urgency
have been associated to affective part of an agent’s mentality [1].

Like in Tropos metamodel, our agent’s architecture uses an AND/OR tree[17][11]
to model agent’s goals and a means-end analysis to evaluate if the plan attached to the
goal can be executed. Expanding the tree corresponds to expand the possible behaviours
to be used by the agent. Thus it is easy to add more goals (and consequently more
behaviours) to an already tested agent. This was one of the main reasons to select this
reasoning strategy.

The decision to persist or to drop a goal, the evaluation of the worth of an effort,
and other measures belong to the affective part of an agent’s mind mechanism. For
example, in the search for information in the Internet, the affective domain has a role
in the relative success of the search [18]. In our research, the study of how affective
elements as uncertainty, intensity and urgency can be inserted in the agent’s strategy
selection mechanisms (the micro-level described in [18]) can give the agents the ability
to interact with an end user, giving clues about the easiness of a task, or how long it will
take or can even serve as a measure that can help the user to predict the worth of the
effort to be successful.

5 Conclusion

In this paper we have drawn on our previous work with regard to applications of the
Mental State Framework [5,6,19] in order to experiments in highly dynamic and
complex settings, to focus on the idea of using mind attributes such as insistence and
urgency to help illuminate the selection of the correct strategies for goal selection.

We have used the pursuit workbench and classical predator/prey scenario to show
that the urgency attribute helps enhance the performance of the overall system by as
much as 50%. In these experiments the agent mentality and decision is based on in-
dividual motivations whereas our evaluations are global, taken from the whole set of

4 Actually we don’t discuss in what extent this adaptation has influence in the agent’s perfor-
mance, this is an issue postponed for future work.

Characterising Agents’ Behaviours: Selecting Goal Strategies Based on Attributes 415

agents in the system. In the future we plan to take these social measures into the agents’
minds and endow our agents with both individual and social motivations as well as a
conflict management to sort out those motivations.

References

1. Sloman, A. In: Motive Mechanisms Emotions, M.A. Boden (ed), The Philososphy of Artifi-
cial Intelligence. Oxford University Press (1990) 231–247

2. Sloman, A.: Varieties of affect and the cogaff architecture schema (2001)
3. Davis, D., Lewis, S.C.: Affect and affordance: Architectures without emotion. (2004)
4. Cohn, A.C., Jennings, N.R.: Interaction, planning and motivation. In: Cognitive systems:

Information processing meets brain science. Springer (2005) 163–188
5. Cascalho, J., Nobrega, L., Correa, M., Coelho, H.: Exploring the mechanisms behind a bdi-

like architecture. In: Conceptual Modeling Simulation Conference. (2005) 153–158
6. Cascalho, J., Antunes, L., Coelho, H.: Toward a motivated bdi using attributes embedded in

mental states. In: XI Conferencia de la Asociación Española para la Inteligencia Artificial
(CAEPIA 2005). Volume 2. (2005) 215–224

7. Bordini, R., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J., Leite, J.,
O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages and platforms for
multi-agent systems. In: Informatica 30. (2006) 33–44

8. D’Inverno, M., Luck, M., Georgeff, M., Kinny, D., Wooldridge, M.: The dmars architecture:
A specification of the distributed multi-agent reasoning system. Autonomous Agents and
Multi-Agent Systems 8 (2004) 5–53

9. Castelfranchi, C.: Reasons: Belief support and goal dynamics. Mathware and SoftComputing
(1996) 233–247

10. Castelfranchi, C., Conte, R.: Cognitive and Social Action. UCL Press (1995)
11. Susi, A., Perini, A., Mylopoulos, J.: The tropos metamodel and its use. Informatica 29 (2005)

401–408
12. Kok, J., Vlassis, N.: The pursuit domain package. Technical report, Informatics Institute,

University of Amsterdam, The Netherlands (2003)
13. Benda, M., Jagannathan, V., Dodhiawala, R.: On optimal cooperation of knowledge sources.

Technical report, Boeing Artificial Intelligence Center, Boeing Computer Services (1985)
14. Haynes, T., Sen, S.: Evolving behavioral strategies in predators and prey. In Sen, S., ed.:

IJCAI-95 Workshop on Adaptation and Learning in Multiagent Systems, Montreal, Quebec,
Canada, Morgan Kaufmann (1995) 32–37

15. Morgado, L., Gaspar, G.: Emotion based adaptive reasoning for resource bounded agents.
In: AAMAS ’05: Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems, New York, NY, USA, ACM Press (2005) 921–928

16. Dastani, M., van der Torre, L.: A classification of cognitive agents. In: Procs. of Cogsci02,
Fairfax (VA). (2002)

17. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An agent-
oriented software development methodology. Journal od Auronomous Agents and Multi-
Agent Systems 8 (2004) 203–236

18. Nahl, D.: Measuring the affective information environment of web searchers. In: Proceedings
of the 67th ASSIS&T Annual Meeting. Volume 41. (2004) 191–197

19. Corrêa, M., Coelho, H.: Collective mental states in an extended mental states framework.
In: International Conference on Collective Intentionality IV, Certosa di Pontignano. (2004)
13–15

A Framework of Cooperative Agents with
Implicit Support for Ontologies

Riza Cenk Erdur and Inanç Seylan

Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey

{cenk.erdur, inanc.seylan}@ege.edu.tr

Abstract. W3C’s OWL has gained wide acceptance in the agent com-
munity and it has already been used in many agent applications which
we think syntactically. By taking advantage of OWL’s description logic
foundation, this paper defines a hybrid description logic language which
facilitates the use of ontologies as first class entities in agent communi-
cation. Using this language, we axiomatize cooperative agent behavior.
Then we suggest an operational model to implement this behavior. As a
case study, we present an application from software package management
domain that tests the model’s usability.

1 Introduction

The Semantic Web is built on the vision of giving explicit meaning to infor-
mation, making it easier for machines to automatically process and integrate
information available on the Web. Ontologies play a central role in this vision.
The Semantic Web standards, especially the W3C’s1 ontology language OWL2,
have drawn the attention of many agent researchers. This is most probably the
outcome of the emphasis on ontologies since the early work on agent communi-
cation languages [1] which led to the current standards3.

OWL and its predecessor DAML+OIL has already been used in many agent
applications, middleware and platforms [2,3,4]. It is a repeating pattern of these
implementations to use it as a content language and/or a knowledge represen-
tation formalism thus storing agent’s knowledge with it. It is generally accepted
that an agent’s knowledge representation language can also be the content lan-
guage it uses inside an agent communication language. This decision though is
not as easy as one might think because it is highly related to the formal model
of agent communication.

Botelho et. al. has reviewed content languages that are suitable for agent to
agent communication[5]. DAML+OIL, which OWL is based on, is among the
languages that were reviewed. There are some several points that are worth
to mention of the conclusion about DAML+OIL. First, DAML+OIL is good
1 http://www.w3.org
2 http://www.w3.org/TR/owl-ref/
3 http://www.fipa.org

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 416–430, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Framework of Cooperative Agents with Implicit Support for Ontologies 417

for expressing class and individual declarations. Since it is an ontology definition
language, it is a good way to define languages. Despite this advantage, a language
defined in DAML+OIL needs to have its own semantics for the new terms and
operators defined. In case of the agent domain, the new language must provide
semantics for actions, beliefs, goals, etc. It is also not clear how defined logical
operators could be conveniently composed. Finally, it does not allow referential
expressions. With the introduction of SWRL[6] and the standardization effort of
an RDF query language SPARQL4, the last point could be overcome. But the
actual problem is bigger than that.

Carrying domain specific information with an OWL-based content language
is easier compared to FIPA SL, KIF or Prolog. Nevertheless, the underlying
semantic model of FIPA ACL messages, which is given in terms of the mental
attitutes (belief, uncertainty, desire, goal, intention) of BDI agents, can not be
used. Even if the mental attitudes can be modelled as OWL assertions, this is
verbose and insufficient. It requires additional semantics as stated by the first
conclusion of Botelho et. al.’s work. In [3] for example, Belief itself is a concept
and such propositions are given inside person (agent) individuals. This usage is
rather cumbersome and it raises questions about how multiple levels of modal
operators could be applied to propositions.

Our previous work [7] contains a detailed evaluation of OWL’s insufficiency
to capture the ACL semantics of BDI agents and our solution to that by taking
advantage of OWL’s description logic foundation. We have extended OWL in
order to elaborately integrate it with a formal agent communication framework.
In the literature, there has been a particular effort that facilitates the program-
ming of agents that attempt to conform to the semantics of FIPA ACL[8]. The
authors come up with an operational model that allows agents to interpret mes-
sages by its semantics rather than hardcoding the agents to conform to a limited
set of interaction protocols. However, this approach, being based on FIPA ACL,
is geared towards the use of FIPA SL5 which is an expressive first order modal
language. The language we propose is specialized for ontology-based information
agents on the Semantic Web. As well as the static characteristics of traditional
description logic languages that represent the knowledge about an application
domain, this language also represents more dynamic knowledge such as beliefs
and intentions. This in turn allows to normalize agent communication to the
knowledge representation level for agents that work on the Semantic Web.

In this paper, we focus on our operational model of cooperative agent commu-
nication which emphasizes the use of our extension to OWL, and a case study
that is being developed with it. The first half of the paper is concentrated on the
theory behind our work and the second half is about the application. The paper
is organized as follows. In Section 2, we present a DL based language with modal
operators of belief and intention. In Section 3, we discuss our operational model.
In Section 4, we provide a case study using the operational model. Section 5
concludes the work.

4 http://www.w3.org/TR/rdf-sparql-query/
5 http://www.fipa.org/specs/fipa00008/

418 R.C. Erdur and I. Seylan

2 The ALCBI Language

As proved by [9], the description logic ALC is in fact a notational variant of
the propositional modal logic K(m). In addition to the correspondance between
two logics, there have been efforts in the literature to integrate modal operators
into description logic languages (see e.g. [10] and for a survey [11]). [12] lists the
properties that determine the design of such a language.

The language that we’ll define is an extension of ALC [13] that includes modal
operators for belief and intention. We name it ALCBI . OWL is based on SH
family of description logics. Our approach can be expanded to it as well. The
SH family is basically ALC extended with transitive properties and a property
hierarchy[14].
ALCBI is used for defining the formal semantics of communicative acts (in

terms of feasibility precondition and rational effect). Similar to FIPA SL, it is also
designed as a content language for use in conjunction with FIPA ACL. Note that
the logic under consideration has neither dynamic nor temporal characteristics
(see [15] for a survey of temporal extensions of description logics and [9,16] for
the correspondance between description logics and propositional dynamic logics).
Being such, this might raise e.g. the question of how actions and accordingly
requests can be modelled. We think of actions as entities in the domain of an
executor (for instance a HTN [17] planner), therefore instances of an action
concept are exchanged between agents in order to request for acts to be done.
Accordingly, it is not a full agent programming language in the sense that it
allows agent plans to be defined. Writing plans is still done with a lower level
programming language.

In the rest of this section, we will first give the syntax and semantics of our
hybrid language so that it’s formally defined. Then we will discuss the framework
of communication by listing the set of axioms between mental attitutes and for
the cooperation of agents. Finally we will talk about the satisfiability.

2.1 Syntax and Semantics

First we give the syntax of this multi-dimensional DL with modal operators. The
alphabet of the language is defined as follows.

Definition 1. As for standard DL, we assume a set of concept names (C0, C1, ...),
role names (R0, R1, ...), and a set of object names (x0, x1, ...) to be given. and
⊥ denote top and bottom concepts respectively. ∧ and ¬ represent standard logi-
cal connectives. C → D is an abbreviation for ¬(C ∧ ¬D). Let AG = {i, j, k, ...}
be the set of agents. Then to every i ∈ AG, the modal operators of belief Bi and
intention Ii are associated.

Concept descriptions are defined as follows.

Definition 2. All concept names, as well as and ⊥ are concepts. If C and D
are concepts, and R is a role name then a) ¬C(concept negation), C�D(concept
conjunction), and C � D(concept disjunction) b) ∀R.C(value restriction) and
∃R.C(exists restriction) are concepts.

A Framework of Cooperative Agents with Implicit Support for Ontologies 419

New formulas are introduced according to the definition below.

Definition 3. Let C and D be concepts, R a role name, x and y object names
and m a (possibly empty) sequence of modal operators from {B, I} × AG. Then
axioms of the form C = D (terminological), R(x, y) and C(x) (assertional) are
atomic formulas. If ϕ and ψ are formulas then so are mϕ, ¬ϕ, and ϕ ∧ ψ.

A formula Biϕ is read “agent i believes ϕ”. The formula Iiϕ is read “agent i in-
tends ϕ”. The modal operators will be interpreted by“possible worlds”semantics
using an extended multi-relational Kripke model.

Definition 4. A Kripke model M = 〈W, Γ, KI〉 consists of a set W of possible
worlds, a set of accessibility relations on the worlds in W (in order to model
beliefs and intentions), and a K-interpretation KI over W .

Γ contains for every i ∈ AG a) an accessibility relation γBi , which is a func-
tion γBi : W → 2W and b) a function ηIi : W → 22W

.
The K-interpretation KI consists of a domain ∆KI and an interpretation

function ·KI . ∆KI is the union of non-empty domains ∆KI(w) for all worlds
w ∈W . The interpretation function ·KI associates with each w a structure

·KI(w) =
〈
∆KI(w),RKI(w), CKI(w),XKI(w)

〉
where ∆KI(w) is the domain of w, RKI(w) are binary relations on ∆KI(w), CKI(w)

subsets of ∆KI(w), and XKI (w) are objects in ∆KI (w).

The relation γBi is transitive, serial and Euclidean. The belief operator of FIPA
SL has the same logical model6. In contrast to the formal model of FIPA where
intention is explained in terms of the goals of an agent, here it is a primitive
mental attitude. ηIi is a neighborhood function of the classical modal logic E
[18] with the only rule:

RE :
ϕ↔ ψ

Iiϕ↔ Iiψ

To work in a more uniform model consisting of only accessibility relations,
we use the idea of translation from minimal models into Kripke models [19].
According to this translation, the formula Iiϕ is valid in classical modal logic E if
and only if the formula ¬Ii,1¬(Ii,2ϕ∧Ii,3¬ϕ) is valid in normal multi-modal logic.
Hence Γ contains the three accessibility relations for intention γIi,1 , γIi,2 , γIi,3

along with γBi for each i ∈ AG. The reason behind providing such semantics
for belief and intention is because of the formal framework of communication we
chose that will be explained in the following two subsections.

The extension of the interpretation function for concept descriptions is as in
standard DLs (see e.g. [13]). The satisfiability of a formula is defined next.

Definition 5. For a model M = 〈W, Γ, KI〉 and a world w ∈ W , a formula ϕ
is satisfied (written as (M, w) |= ϕ) in the following way:
6 http://www.fipa.org/specs/fipa00037/

420 R.C. Erdur and I. Seylan

(M, w) |= C = D iff CKI (w) = DKI(w)

(M, w) |= C(x) iff xKI (w) ∈ CKI(w)

(M, w) |= R(x, y) iff (xKI (w), yKI(w)) ∈ RKI(w)

(M, w) |= Biϕ iff (M, v) |= ϕ ∀v.(w, v) ∈ γBi

(M, w) |= Ii,nϕ iff (M, v) |= ϕ ∀v.(w, v) ∈ γIi,n

(M, w) |= ¬ϕ iff (M, w)
|= ϕ

2.2 Axiomatization

In this section, we define the axioms holding in the language. We adopt the
work of Herzig et al. in which they try to obtain a minimal logic of intention
that can be mechanized in a simple way[20]. The aim of the authors is to define
the simplest dynamic doxastic logic. For this reason, their semantics is easier to
implement than FIPA ACL’s.

The FIPA ACL semantics has some severe problems which limit its practical
applicability. [21] is a good discussion of these problems wherein the authors share
their experience on trying to implement such semantics and examine how the se-
mantics for some standard communicative acts can be improved. The discussion
of social agency vs mental agency is out of the scope of this paper though [22].

Also in their work, Herzig et al. use assertive speech acts which serve to make
an assertion that, in the speaker’s belief, some proposition is true. They show
that the request communicative act and yes-no questions can be inferred from
literal communicative acts indirectly. In our opinion, assertive speech acts are
helpful because by using them agents only inform each other about their mental
states. They do not need to know the explicit semantic specification of all the
communicative acts. Agents deduce these acts by the communication axioms.
The relations between mental attitudes is given below.

Bi(ϕ→ ψ) → Biϕ→ Biψ (K)
Biϕ → ¬Bi¬ϕ (D)
Biϕ → BiBiϕ (4)
¬Biϕ → Bi¬Biϕ (5)
Iiϕ → Bi¬ϕ (A1)
Biϕ → ¬Iiϕ (T1)
¬Biϕ → ¬Ii¬Biϕ (T2)

(IiBiϕ ∧Bi¬ϕ)↔ Iiϕ (A2)
Iiϕ → IiBiϕ (A3)

BiIiϕ ↔ Iiϕ (A4)
Bi¬Iiϕ ↔ ¬Iiϕ (A5)

Axiom (A1) defines the simplest relation between intention and belief. Thus,
if agent i intends ϕ, then it believes that ¬ϕ holds. In other words, it drops its
intention to achieve ϕ as soon as it believes that ϕ holds. (see [20] or [7] for the
explanation of other axioms).

A Framework of Cooperative Agents with Implicit Support for Ontologies 421

2.3 Cooperation Principles

Consistent with the aim of a simpler logic, the cooperation among agents is
explained in terms of two principles: belief adoption and intention generation.

Belief Adoption. In order to constrain the adoption of any belief that has been
uttered by another agent, Herzig et. al. use the notion of competency. Basically,
an agent adopts i ’s belief if it believes that i is competent at that belief. i � ϕ
means that i is competent at ϕ. Using this relation, they formulate the following
axiom:

Biϕ→ ϕ if i � ϕ ∧md(ϕ) = 0

where md(ϕ), modal depth of a formula ϕ, means the maximal depth of nested
modal operators in ϕ. If md(ϕ) = 0, then the formula ϕ is said to be objective.

Intention Generation. These principles explain how an agent e.g. i can adopt
the intention of another agent e.g. j in order to satisfy its (j ’s) goals. They are
related to the basic axiom, (A1), in that i should only generate the intention
that ϕ if it believes ¬ϕ.

(BiIjϕ ∧ ¬Biϕ ∧ ¬IiBi¬ϕ)→ IiBiϕ (GI1)
(BiIjϕ ∧Bi¬ϕ) → Iiϕ (T3)

BiIjϕ → IiBjϕ (T4)

Axiom (GI1) is the main principle of intention generation. It expresses that
when i knows that j intends something i has no idea about, i should first intend
to believe it.

It is then according to the result of this intention (Bi¬ϕ or Biϕ) that i can
choose to intend ϕ (T3) or intend to make believe j about it (T4).

2.4 Testing Satisfiability of ALCBI Formulas

We allow modal operators only in front of terminological and assertional axioms.
Let ALCM be the name of such an arbitrary modal extension of the DL ALC.
According to Theorem 7 in [12], if the modal logic characterized by a class of
frames C is decidable, then the satisfiability problem is decidable for the sets
of formulas in ALCM that are satisfiable in the classes of all models based on
frames in C. Thus by choosing a decidable DL component such as ALC (or OWL
DL), the decidability of ALCM depends on the decidability of the modal logic
component.

A satisfiability algorithm for ALCB (ALC augmented with only multiple belief
operators) has been presented in [23]. In ALCBI , we have three more normal
modal operators for each agent i. General completeness results for most of the
axioms characterizing belief, intention and their interactions exist [20]. It is our
goal to design a tableau algorithm that extends the one given in [23].

422 R.C. Erdur and I. Seylan

3 An Operational Model

The reasoning algorithm that we work on considers only the semantics that we
have given up to Section 2.3. What we so call “operational model” is actually
a compensation for the semantics of the terms that we won’t include in this
algorithm. For example, we asked ourselves how we could take into account the
competence of an agent without representing such a notion in the knowledge
base. Speech acts are another example because they are not formalized in the
KB either. But their pre and post conditions are given as ALCBI formulas which
we can reason about from the KB. Therefore speech acts could be kept in an
ontology as templates of actions that an agent is capable of performing.

As we have said in the introduction, this approach is similar to [8] in which
we try to approximate the communication semantics of a framework we chose.
The modal operators are used to define the rules of introspection of an agent and
cooperation between agents. Inside modal operators are definitions and assertions
in OWL, thus satisfying our goal of representing domain-dependent knowledge
with it. The rationale for such a design is that OWL is a web standard and there
are many tools (being) developed for it. Therefore we want to make use of these
tools in order to reduce the development time.

Acts are defined in terms of two semantic features: feasibility precondition
(FP) and rational effect (RE). The former characterizes the conditions that have
to be satisfied for the act to be planned and the latter the reasons for which the
act is selected7. This is in fact same as the FIPA semantic model. RE in FIPA’s
terminology also means the effect of the speech act on the addressee as expected
by the sender. However we don’t assume that kind of specialization. Here, one
can also feed an ALCBI formula to the interpretation process as shown in Figure
1 which could then lead to the planning of a local action, i.e. no speech act.
Therefore, RE here means a local action’s post condition too and intending to
achieve the RE results in the execution of the local action.

An agent has to take the cooperation principles into account when it observes
a communicative act. It first generates the sincerity precondition (corresponds
to the ability precondition in FIPA terminology) of the speech act. Because our
speech acts are of assertive type, the sincerity precondition describes the hearer’s
belief that the utterer believes what it has asserted. For example, assume that
the speech act that has just been performed is 〈i, j, ϕ〉, ϕ being an objective
formula. The sincerity condition of this act is BjBiϕ. If i � ϕ, then agent j will
adopt i’s belief, hence we get the formula Bjϕ.

To summarize, we came up with the following five types of behavior that
the interpretation process exerts. Figure 1 depicts how communicative acts and
formulas are processed.

1. Belief checking: It corresponds to Bifiϕ and means that the agent i consults
its knowledge base whether Biϕ or Bi¬ϕ.

2. Rational behavior: When the agent intends the RE of an act, then it performs
the act.

7 http://www.fipa.org/specs/fipa00037/

A Framework of Cooperative Agents with Implicit Support for Ontologies 423

3. Sincerity condition generation: The agent i asserts BiBjϕ after it receives
the speech act 〈j, i, ϕ〉.

4. Belief adoption: For agent i to adopt the belif of agent j at a formula, i first
decides whether j is competent at that formula.

5. Intention generation: It allows an agent to decide how to adopt the intention
of another agent by considering intention generation axioms.

Interpretation
Process

Comm. Act

ALC Formula
BI

Act x
FP:
RE:

Agent i
Formula A

c

Knowledge
Base
(OWL DL)

Rational behavior

Sinceriy Cond. Gen.

Belief checking

BI
ALC Formulas

Intention generation

Belief adoption

Fig. 1. An operational model for agent interaction semantics

As shown in Figure 1, the knowledge base of the agent is in OWL DL. One
might ask how modal formulas are stored in the knowledge base then. The answer
is that they are not. We use an approach analogous to working memory and
long-term memory. The knowledge base corresponds to the long-term memory
of the agent but unlike a real long-term memory is not subject to the natural
forgetting process. What we mean by the working memory of an agent is a place
to temporarily store and manipulate information. The five behaviors we have
listed above correspond to the processes that manipulate information and they
underlie the general intelligence of the agent. One can add more behaviors to
improve an agent’s “intelligence”. The temporality of the working memory comes
from the consumption of the formulas in the memory by these behaviors. The
interaction between these two types of memory is done via the belief checking
behavior where an assertion in the knowledge base is brought to the working
memory.

At this point, we want to give some insight to the implementation. The in-
terpretation function is a thread inside the agent. Each behavior conforms to
an interface that allows the interpretation thread to check if the current for-
mula matches with the type of formula the behavior modifies. The interface also
requires the implementation of a behavior to be specified. The working mem-
ory is implemented as a FIFO queue where the behaviors have modification
access. In the knowledge base we use the Jena Semantic Web Framework8. For
8 http://jena.sourceforge.net

424 R.C. Erdur and I. Seylan

example, assume that agent i is processing Bifiϕ. If ϕ is an objective formula
(md(ϕ) = 0), then it is translated into a SPARQL“ask”query that returns either
true or false. Otherwise it’s a search in the working memory. It is determined by
pattern matching whether ϕ is objective or not.

Pattern matching is used extensively in expressions. Another example would
be its use in rational behavior. An agent has a table of actions defined by the FP
and RE. Let the formula an agent is processing at any time t during the inter-
pretation I be IiBj(Colleague(mary)∧currentStatus(mary, onThePhone)).

If there is an action with the RE pattern such as Bj(Colleague(?x)∧
currentStatus(?x, onThePhone)) in the action table, then it would match with
the formula, binding ?x to the mary individual. After that, the actual program-
ming language code corresponding to that action will be executed.

4 Case Study

For us, the engineering point of view and applicability is top priority. Therefore
we want to provide here a test application that is being developed by our frame-
work. The aim is to implement a Linux package management system using our
operational model. In this section, we will first give a very brief introduction
to Linux package management. Then we will describe the abtract view of the
system which will be followed by the anatomy of a package. Finally we will il-
lustrate the coding of agents for a scenario in the system. This scenario and the
application as a whole require cooperative agent behavior which is in accordance
with the general agent behavior in the framework.

A Linux package is a piece of software (program, library, etc.) packed together
with its related resources such as configuration files, documentation, etc in a
single (and most probably compressed) file. These packages are used to install
software to a Linux box by means of a package manager. Some examples of
package managers are Red Hat’s rpm, Debian’s dpkg, Slackware’s pkgtool and
Gentoo’s portage. We want to use the distribution specific package management
on the local site as much as possible.

In fact, the local package manager can be abstracted in a way to make our
system work on different Linux distributions. So the question is what the advan-
tages of this work are in terms of the used technologies. In terms of multi-agent
systems, the packages are distributed among different agents so there is no need
for a central package repository. For example, the agent of a package maintainer
can be responsible for the distribution of the packages of its owner. As for the
semantic web point of view, the packages are categorized according to applica-
tion types, dependencies, etc. This allows semantic searches on the packages,
recommendation of alternatives, etc.

We distinguish two roles that can be played by agents in the system. An
agent can play the role of a package maintainer, thus producing packages and
sharing it with other agents. Alternatively, it can be a package user that installs/

A Framework of Cooperative Agents with Implicit Support for Ontologies 425

updates/removes packages created by maintainers. A maintainer will most prob-
ably play the two roles because it must have in its system some prebuilt packages
to build a package. Package users register with producers so that new packages
can be notified to users immediately.

The platform services are similar to that of FIPA Abstract Architecture9.
There is an agent communication channel that transports all the messages within
the platform and an agent management system that maintains agents’ lifecycles
and resolves addresses. There are multiple directory facilitators (DF) to where
the package provider agents register their services (in other words their roles)
and the information about the packages they provide. FIPA allows the existence
of multiple DFs within an agent platform and their federation10. In our plat-
form, each DF represents the providers of a general software category such as
Development, Graphics & Design, Internet & Network. All these DFs in turn
register to the main DF where all the categories are managed. Assigning a DF
to a general category helps balancing the search requests.

We have chosen Slackware Linux11 to implement this system. Slackware’s
package management is rather simple in the sense of implemented features. For
example, there is no dependency checking while installing a package unlike in
rpm. A normal Slackware package is a compressed tar archieve that has all
the binaries, documentation, etc. related to a software organized into a relative
directory structure. In the standard format, a package has a directory named
“install”. This directory can be thought as a meta directory with package specific
information. It contains a “slack-desc”file in which the package information (it’s
name, version, a textual description and the maintainer if it’s not included in the
standard distribution) is written. This information is shown when the package is
being installed and doesn’t have much value for the package management task.
We propose not to interfere with the inner workings of the standard package
manager but add the metadata about a package in a file named “metadata.owl”
in the“install”directory. We give here a part of the package management ontology
in DL syntax although it’s actually in OWL because this form of syntax is less
verbose. It’s the responsibility of the maintainer to manage a well-defined file.
Notice that the definition of Package is circular, it refers to another package for
the depends role. Although this might be a problem for a restricted ALC TBox,
it is not for a DL as expressive as OWL.

Package ' ∃hasVersion.Version � ∃category.Category � ∃hasCreator.Maintainer

�compiler.Compiler � ∀depends.Package� ∀description.String

Version ' ∃no.Integer � ∃arch.Architecture � ∃state.State

Maintainer ' ∃name.String � ∀email.EMail� ∀homepage.URL

Compiler ' ∃version.Version � ∃language.Language

9 http://www.fipa.org/specs/fipa00001/
10 http://www.fipa.org/specs/fipa00023/
11 http://www.slackware.com

426 R.C. Erdur and I. Seylan

4.1 A Scenario: Installing/Updating a Package from a Known
Provider

In this subsection, we describe the interaction between agents for the scenario of
updating a package. We provide here a less formal and verbal description that is
supported by an illustration in the end. A key point to note is that, the content
of the messages exchanged between agents have instances of the concepts from
the package management ontology we have just shown. This will be better seen
in the next subsection.

Suppose that agent i is the provider of a software package named x. Agent j
knows from before that i maintains x and it has registered with i to be informed
about the updates on x. When there is an update on x, i notifies all its registered
agents along with j about the properties of its new package. Agent j while
processing this information recognizes that x depends on the package y but is
unaware of its supplier. So j asks i about the supplier of package y which is most
likely to be known by i. i knows this because the build process of x depends on
y. Hence i informs j that package y is maintained by k.

After requesting package y from k (and assuming that there is no other de-
pendency), j finally requests package x from i. After all packages have been
downloaded, then j coordinates the local package manager of the Linux box
to install/upgrade x in the dependency order. Although we exemplified here a
single dependency, this scenario can be propagated to multiple dependencies.

Figure 2 shows the order of the messages sent between agents. The numbers
near the acts are identifiers for the tables which will be given next.

Updating a Package From a Known Provider

Package UserPackage ProviderPackage Provider

Act 1

Act 2

Act 3

Act 4

Act 4

Act 5 (package)

Act 5 (package)

Fig. 2. Updating a package from a known provider

4.2 Coding the Agents

Here we want to give a grasp of how an agent is programmed. The program-
ming model we chose is not as high as an agent programming language such as
AgentSpeak(L) [24] and a popular (extended) implementation of it, Jason12. It
is neither pure Java code such as in Jade [25] or SEAGENT [4]. Actions are pro-
grammed in Java, but the interpreter decides on which action to execute based
12 http://jason.sourceforge.net

A Framework of Cooperative Agents with Implicit Support for Ontologies 427

on its FP and RE. These are encapsulated in the definition of an action. An
agent can be customized to adopt a specific type of belief from a given agent
but the use of patterns allows flexibility in this. All knowledge at any level is
represented with a description logic foundation, thus allowing a tight integration
between the execution model and the knowledge representation formalism.

For the sake of clarity, we explain each communicative act with two tables.
This first table is related to the planning of an act. We give a sequence number
to the act regarding when it is performed during the protocol. Role defines the
producer of the act. Description is a textual explanation in natural language. FP
and RE are similar to FIPA ACL semantics. The second table is for showing the
steps in the consumption of the act on the receiver side. It is not related to the
programming of agents; it is only given to explain the interaction axioms better.

Act (1): 〈i, j, ϕ1〉

ϕ1 = Package(?p) ∧ V ersion(?v) ∧

hasV ersion(?p, ?v) ∧ no(?v, ?n)

Role: Package provider

Desc.: Agent i’s intention to make j believe about

a newer version of a package results in this

speech act.

FP: RegisteredUser(j)

RE: Bjϕ1

Operation Explanation

1. BjBiϕ1 1. Sincerity condition

2. i � ϕ1? 2. Check if i is competent.

3. Bjϕ1 3. i is competent so adopt i’s

belief.

4.

+IjBrefj ϕ2

4. Assert that j wants to know

the creator of the package that

is depended on.

Comp. Formula i � ϕ1 Execute: +IjBrefjϕ2

Act (2): 〈j, i, IjBrefjϕ2〉

ϕ2 = P ackage(?p2) ∧

hasCreator(?p2, ?m)

Role: Package user

Desc.: Agent j intends to know the creator of pack-

age ?p2. Informing i about this intention

will be indirectly interpreted by i as “tell

me the creator”.

FP: hasCreator(?p1, i) ∧ depends(?p1, ?p2) ∧

installed(?p2, false) ∧

¬BjhasCreator(?p2, ?m)

RE: Brefj ϕ2

Operation Explanation

1. BiBjIjBrefj ϕ2 1. Sincerity condition

2. BiIjBrefj ϕ2 2. (A4)

3. BiBj¬Brefj ϕ2 3. (A1)

4. Bi¬Brefj ϕ2 4. (5)

5. BiIjBrefj ϕ2 ∧

Bi¬Brefj ϕ2 →

IiBrefjϕ2

5. By 3, 4 and (T3)

Act (3): 〈i, j, ϕ2〉

Role: Package provider

Desc.: Agent i’s intention to make j believe about

the maintainer of the package that is de-

pended on results in this speech act.

FP: ϕ2

RE: Brefj ϕ2

The consumption of this act is similar to Act

1 .

428 R.C. Erdur and I. Seylan

Act (4): 〈j, i, Ijϕ3〉

ϕ3 = Action(download) ∧

package(download, ?p) ∧

done(download, true)

Role: Package user

Desc.: Agent j ’s intention to do the download ac-

tion results in an indirect request to the

maintainer of the package .

FP: hasCreator(?p, k) ∧ installed(?p, false)

RE: ϕ3

Operation Explanation

1. BiBjIjϕ3 1. Sincerity condition

2. BiIjϕ3 2. (A4)

3. (Biϕ3 ∨

Bi¬ϕ3 ∨

¬Biϕ3)?

3. Check which formula is sat-

isfied.

4. BiIjϕ3 ∧

Bi¬ϕ3 →

Iiϕ3

4. By 2, 3 and (T3)

The expressions in the tables above contain variables (e.g. ?p) for individual
names and property values. It would be unreasonable to specify concrete values
(unless needed) because these acts are generic. The variables would bind to values
during execution.

One can customize the adoption process of a formula and define a piece of
code to be executed when the formula is adopted. The fourth step in the second
table for Act 1 above is the execution of the code specified in the customization
table shown beneath it.

After Act 3, it’s time for the agent to download the packages since it knows
the maintainer of all the dependencies. This will result in a request (Act 4) to all
the maintainers collected so far, plus the maintainer of the goal package (agents
i and k in our scenario).

Unfortunately, because of the space limitation we could only show a part of
a scenario here. But we think that it gives an understanding of how agents are
programmed.

5 Concluding Remarks

We believe that it is not a trivial claim when one says that he uses OWL in a
BDI style of multi-agent system. Therefore, the first half of the paper focused on
the reasons for that and the theory behind our framework. In general though,
we did not want to lose the application oriented view. Nevertheless, we are
investigating a formal satisfiability decision algorithm for our logic that has a
termination property.

The Linux package management case study will provide us a testbed for this
cooperative agent framework. We are currently implementing services from the
FIPA Abstract Architecture such as message transport service, agent manage-
ment system and directory facilitator as agents upon which we will build the
actual system. The implementation model is similar to the one presented in
Section 4.2.

A Framework of Cooperative Agents with Implicit Support for Ontologies 429

Acknowledgements

This work has been financially supported in part by Netsis Software. It is grate-
fully acknowledged. We also thank Jean-Philippe Bürckert for providing us a
resource from the DFKI Library.

References

1. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communica-
tion Language. In Adam, N., Bhargava, B., Yesha, Y., eds.: Proceedings of the 3rd
International Conference on Information and Knowledge Management (CIKM’94),
Gaithersburg, MD, USA, ACM Press (1994) 456–463

2. Chen, H., Perich, F., Chakraborty, D., Finin, T., Joshi, A.: Intelligent agents meet
semantic web in a smart meeting room. In: AAMAS ’04: Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems,
Washington, DC, USA, IEEE Computer Society (2004) 854–861

3. Zou, Y., Finin, T., Ding, L., Chen, H., Pan, R.: Using Semantic web technology in
Multi-Agent systems: a case study in the TAGA Trading agent environment. In:
Proceeding of the 5th International Conference on Electronic Commerce. (2003)

4. Dikenelli, O., Erdur, R.C., Kardas, G., Gümüs, Ö., Seylan, I., Gürcan, Ö., Tiryaki,
A.M., Ekinci, E.E.: Developing multi agent systems on semantic web environment
using seagent platform. In Dikenelli, O., Gleizes, M.P., Ricci, A., eds.: Proceedings
of ESAW’05. Volume 3963 of Lecture Notes in Computer Science., Springer Verlag
(2006) 1–13

5. Botelho, L., Willmott, S., Zhang, T., Dale, J.: Review of content languages suitable
for agent-agent communication. Technical Report 200233, EPFL I&C (2002)

6. Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., Tsarkov, D.: OWL rules: A
proposal and prototype implementation. J. of Web Semantics 3 (2005) 23–40

7. Erdur, R.C., Seylan, I.: An extended description logics approach to agent com-
munication language semantics. In: Proceedings of the AAMAS 2006 Workshop
on Agent Communication (AC2006), http://www.cs.uu.nl/people/rogier/AC2006/
(2006)

8. Louis, V., Martinez, T.: The jade semantic agent: Towards agent communication
oriented middleware. AgentLink News (2005) 16–18

9. Schild, K.: A correspondence theory for terminological logics: preliminary report.
In: Proceedings of IJCAI-91, 12th International Joint Conference on Artificial In-
telligence, Sidney, AU (1991) 466–471

10. Baader, F., Laux, A.: Terminological logics with modal operators. Technical Report
RR-94-33, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, Erwin-
Schrödinger Strasse, Postfach 2080, 67608 Kaiserslautern, Germany (1994)

11. Baader, F., Küsters, R., Wolter, F.: Extensions to description logics. [26] 219–261
12. Wolter, F., Zakharyaschev, M.: Satisfiability problem in description logics with

modal operators. In A.G. Cohn, L. Schubert, S.S., ed.: Proceedings of the 6th
International Conference on Principles of Knowledge Representation and Reasoning
(KR’98), Montreal, Canada, Morgan Kaufman (1998) 512–523

13. Baader, F., Nutt, W.: Basic description logics. [26] 43–95
14. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to

OWL: The making of a web ontology language. J. of Web Semantics 1 (2003) 7–26

430 R.C. Erdur and I. Seylan

15. Artale, A., Franconi, E.: A survey of temporal extensions of description logics.
Annals of Mathematics and Artificial Intelligence 30 (2000) 171–210

16. Calvanese, D., Giacomo, G.D.: Expressive description logics. [26] 178–218
17. Sycara, K., Williamson, M., Decker, K.: Unified information and control flow in

hierarchical task networks. In: Working Notes of the AAAI-96 workshop ”Theories
of Action, Planning, and Control. (1996)

18. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

19. Gasquet, O., Herzig, A.: From classical to normal modal logics. In Wansing, H.,
ed.: Proof Theory of Modal Logics. Number 2 in Applied Logic Series. Kluwer
Academic Publishers (1996) 293–311

20. Herzig, A., Longin, D.: A logic of intention with cooperation principles and with
assertive speech acts as communication primitives. In: AAMAS ’02: Proceedings
of the first international joint conference on Autonomous agents and multiagent
systems, New York, NY, USA, ACM Press (2002) 920–927

21. Pitt, J., Mamdani, A.: Some remarks on the semantics of fipa’s agent communica-
tion language. Autonomous Agents and Multi-Agent Systems 2 (1999) 333–356

22. Singh, M.P.: Agent communication languages: Rethinking the principles. IEEE
Computer 31 (1998) 40–47

23. Laux, A.: Representing belief in multi-agent worlds via terminological logics. Tech-
nical Report RR-93-29, DFKI, Deutsches Forschungszentrum für Künstliche In-
telligenz GmbH, Erwin-Schrödinger Strasse, Postfach 2080, 67608 Kaiserslautern,
Germany (1993)

24. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In van Hoe, R., ed.: Seventh European Workshop on Modelling Autonomous Agents
in a Multi-Agent World, Eindhoven, The Netherlands (1996)

25. Bellifemine, F., Rimassa, G.: Developing multi-agent systems with a fipa-compliant
agent framework. Softw. Pract. Exper. 31 (2001) 103–128

26. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., eds.:
The Description Logic Handbook: Theory, Implementation, and Applications. In
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: Description Logic Handbook, Cambridge University Press (2003)

Specifying Protocols for Knowledge Transfer and
Action Restriction in Multiagent Systems

Maŕıa Adela Grando1,� and Christopher David Walton2,��

1 Research Group on Mathematical Linguistics,
Rovira i Virgili University, Tarragona, Spain

2 Centre for Intelligent Systems and their Applications,
School of Informatics, University of Edinburgh, UK

Abstract. In this paper we present the MAPa language for expressing
knowledge transfer and action restriction between agents in multiagent
systems. Our approach is founded on the definition of patterns of dia-
logues between groups of agents, expressed as protocols. Our protocols
are flexible and directly executable. Furthermore, our language allow us
to specify the connection between communication and knowledge trans-
fer in a way that is independent of the specific reasoning techniques used.

1 Introduction

Communication in a multiagent system is necessary because agents are indepen-
dent and autonomous entities. By this, we mean that an agent has the freedom
to make decisions, and these decisions are not controlled externally to the agent.
If the agents in a multiagent system were not autonomous, then all of the de-
cisions could be centrally managed, and there would be no need for inter-agent
communication. In order to maintain autonomy and independence, an agent is
typically designed with decision-making machinery and knowledge that is local
and private to the agent. For example, the local knowledge of the agent may
contain the beliefs, desires, and intentions of the agent. This local knowledge
allows the agent to reason in a way that is independent of the behaviour of any
other agent in the system. Nonetheless, an agent will often be unable to com-
plete certain tasks due to insufficient local knowledge or ability. To overcome this
limitation, the agent must communicate with other agents in order to convey its
requests, and to update its knowledge with the outcome of these requests. As a
result, an autonomous agent must be equipped with a communicate ability in
order to interact in a multiagent environment.

To illustrate the need for local knowledge, we may consider a pair of agents
who wish to negotiate on the price of an item. In this setting, each agent is
seeking to maximise the outcome of the negotiation from their own perspective.
� Sponsored by the Research Grant “Programa Nacional para la Formación del Profe-

sorado Universitario” from the Ministry of Education, Culture and Sports of Spain.
�� Sponsored by the Open Knowledge Project (www.openk.org), European Union Sixth

Framework Programme, Information Society Technologies.

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 431–445, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

432 M.A. Grando and C.D. Walton

If the decision making processes and local knowledge of each agent were freely
available, then the negotiation process could be readily subverted. Therefore, in
this situation, each agent will keep its knowledge private, and only release parts
of this knowledge as necessary during the negotiation process. There is clearly a
close relationship between the knowledge of an agent, and any communication
that it performs. In effect, when a pair of agents communicate, they are effectively
exchanging knowledge. In performing a communicative act, and agent may be
revealing part of its own local knowledge to another, and its own local knowledge
may be extended as a result of the communication.

In this paper we define a language that makes explicit the relationship be-
tween agent communication and the exchange of knowledge. In particular, our
language enables us to state precisely the exchange of knowledge between one
agent and another, and to define common knowledge. Our language is founded
on the definition of protocols that express patterns of dialogue between groups of
agents. If a group of agents follow a particular dialogue then they should reach
a particular well-defined outcome. Nonetheless, our protocols contain decision
points that allow the agents to behave autonomously. The protocols that we de-
fine are executable specifications. That is, the formalisms that we use to specify
our protocols are exactly the same as those used for enactment.

Our language defines Multi-Agent Protocols, and is called MAPa. This lan-
guage is an extension of the MAP language which we previously presented in [12].
The extensions in this paper make the protocols more flexible and dynamic, but
retain the lightweight nature of the previous definitions. In MAPa, we treat
protocols as first-class objects which can be passed between agents as opposed
to our previous static definition. We also permit the organisation of roles in
hierarchies, structuring role definitions in a modular and reusable way. Most
importantly, we permit the management of knowledge to be expressed in our
protocols, which enables a better connection between the protocol and the agent
reasoning processes at the decision points.

There are many existing approaches to the definition of protocols for express-
ing dialogues in multiagent systems. Conversation policies [4] represent agent dia-
logues using finite-state automata. Electronic Institutions [2] are a more expressive
approach, which define graphs of finite-state automata (state-charts) to express
multi-agent protocols. Virtual organisations [9] are another approach to defining
patterns of communication between independent agents. However, none of these
approaches enable the relationship between knowledge and communication to be
precisely stated. The usual approach to the formal definition of knowledge ex-
change in multiagent systems is the use of epistemic logics, e.g. [10]. However,while
this work is very important from a theoretical perspective, it is difficult to imple-
ment these proposals in real multiagent systems. By contrast, the purpose of this
work is to describe knowledge and communication in a formal and unambiguous
way, which nonetheless takes into account pragmatic considerations found in real
implementations. In doing so, we avoid the issues with other formal approaches,
such as FIPA-ACL, which are both ambiguous and not readily implementable, i.e.

Specifying Protocols for Knowledge Transfer and Action Restriction 433

due to the sincerity assumption between agents. We are currently implementing
the MAPa language within our MagentA framework [13].

The remainder of the paper is organised as follows. In section 2 we define
the abstract syntax of MAPa. To illustrate the language, we present a detailed
protocol example in section 3. We define an operational semantics of MAPa in
section 4 that may be used to implement the language. Finally, we conclude in
section 5 with an overview and discussion of future work.

2 MAPa Language Definition

MAPa is a lightweight language-based formalism for the definition of protocols,
which express social interactions between groups of agents. The language is a
sugared process-calculus, which is a common approach to the formal definition
of concurrent systems. In particular, MAPa has many similarities to the π-
calculus [6] though it has an asynchronous semantics. The extensions to the
core calculus are designed to make the language more suited to the concepts
found in multi-agent systems and dialogues.

The key concepts in MAPa are scenes, roles and protocols that we now de-
scribe. A scene is conceptually a bounded space in which a group of agents
interact on a single task. We assume that a scene is initialised with a set of
active agents who start the dialogue and is concluded when there are no ac-
tive agents remaining, i.e. when all the agents have exited the scene. The scene
definition comprises a set of roles required to accomplish the task, and the set
of performatives and knowledge to be shared and understood by all the agents
playing a role within. An example scene is shown in Figure 2 where a buyer
agent interacts with a set of sellers with the purpose of buying some items.

The concept of an agent role is also central to the definition of our protocols.
Agents entering a scene assume an initial role, though this role may change
during the scene. By adopting a specific role, an agent obtains the capacity to
perform certain operations and to know certain facts associated with the role.
For our example in Figure 2 agents with the roles of buyer (B) and seller (S) are
defined. When adopting the role of buyer an agent knows the market situation
and some commercial strategies that guide him in taking decisions. Roles are
defined as a hierarchy, where more specialised roles appear further down in the
graph of roles and inherit knowledge and decision procedures from upper roles.
For example, an agent may initially assume the role buyer but may change to
the more specialised role car buyer during a scene. This will allow the buyer
to obtain knowledge and perform actions related specifically to the car market,
which a generic buyer does not need to know.

For each role in a scene, a protocol is defined that describes the sequence of
operations that an agent performing that role needs to follow. It is important to
note that a protocol only contains operations that are specific to the mechanisms
of communication and coordination between agents. This makes it straightfor-
ward to understand the operation of the protocol without extraneous details,
and makes it possible to verify the protocols using automated means, e.g. model

434 M.A. Grando and C.D. Walton

checking [11]. All of the other agent facilities, e.g. the reasoning processes, are
encapsulated by decision procedures that are external to the protocol. In effect,
the decision procedures provide an interface between the communicative and the
rational process of the agent. In MAPa we distinguish two levels of decision pro-
cedures: those private to the agent, and those shared between all of the agents
in the same role.

Interaction between the agents in a scene is performed by the exchange of
messages. Every message has an associated performative that is used to indicate
the type of the message and parameters. For convenience, we do not assign any
fixed semantics to these performatives. However, individual agents can agree on a
semantics for a particular scene. In this way, we can readily represent FIPA-style
agent communication, e.g. the contract-net protocol.

The final concept in MAPa is the representation of knowledge. The language
allows to define knowledge as sets of axioms at the scene level, the role level, and
the level of a particular agent. In this way we can clearly establish differences
between the knowledge. Scene and role knowledge is common knowledge that
can be accessed by all agents in the scene or role respectively. By contrast, the
private knowledge of the agent cannot be accessed externally.

We now define the syntax of MAPa more formally. A BNF-style syntax is
shown in Figure 1. Superscripts are used to indicate a set, e.g. P (i) is a set with
elements P of size i.

S ::= 〈R(i), P (i), K(b), M(k)〉 (Scene)
R ::= 〈id, Proc(l), K(m), r(n)〉 (Role)
P ::= agent(id, r, Proc(l), K(m), φ(f)) = op.
K ::= axiom (Knowledge)
Proc ::= type :: id((φ, type)(g)) (Procedure)
M ::= id((φ, type)(h)) (Performative)
op ::= v (Variable)

| op1 then op2 (Sequence)
| op1 or op2 (Choice)
| op1 par op2 (Parallel)
| (op) (Precedence)
| α (Action)

α ::= null (No Action)
| v = p(φ(g)) (Decision)
| id(φ(x)) ⇐= agent(id, r) (Receive)
| id(φ(y)) =⇒ agent(id, r) (Send)
| agent(id, r, Proc(w), K(v), φ(d)) (Invocation)

φ ::= c | | v (Term)

Fig. 1. MAPa Language Syntax

A conversational environment, called a scene, comprises a role hierarchy R(i),
a set of protocols P (i) that are parameterised on these roles, a set of axioms K(b)

that is the common knowledge in the scene, and finally a set of performatives
M (k) which defines the dialogic structure (i.e. all of the allowed performatives)
for the scene. The role hierarchy is defined as a set of role definitions. Each of
these definitions R has a unique identifier id, a set of decision procedures Proc(l)

which are shared within the role, a set of axioms K(m) which are common to the

Specifying Protocols for Knowledge Transfer and Action Restriction 435

role, and lastly a set of upper roles identifiers r(n), which appear above the role
in the hierarchy. This set will be empty for a top-level role.

A protocol P is defined by a set of parameters and a body op. The parame-
ters comprise a unique identifier for the protocol id, a role r, a set of procedures
Proc(l) and axioms K(m) which are private to the agent. The remaining para-
meters φ(f) are terms φ, which are constants c, variables v, or wild-cards _.

As previously noted, knowledge K is represented by axioms within a protocol.
These axioms represent facts which are believed to be true. The reasoning over
this knowledge is performed by decision procedures Proc which are formally
defined giving the type of their incoming an outgoing parameters. Decision pro-
cedures are external to the protocol and have full access to the scene knowledge,
the knowledge of the played role and upper roles, and the agent private knowl-
edge. The result of the procedure evaluation is bound to a variable v.

The core of the protocols are constructed from operations op which control
the flow of execution, and actions α which have side-effects and can fail. The
operations can be defined by a variable or by a sequence then, choice or or
parallel composition par of operations, and parenthesis can be used to enforce
precedence. It is possible to introduce operational variables during design time,
which are replaced during run-time by operations. This feature provides MAPa

protocols with dynamism and with the possibility of defining protocols where
part of the behaviour is not known beforehand but depends on agents inter-
action during the scene execution. With respect to the other operations, they
have a standard interpretation. A sequence means that the first operation op1 is
evaluated before the second operation op2. The non-deterministic choice means
that either op1 or op2 is evaluated. Finally, parallel composition means that both
operations are evaluated at the same time.

The actions an agent can perform are: null action, invocation of decision pro-
cedures, receiving and sending messages, and introducing agent invocations. A
null action is included which is convenient for protocol termination. Decision pro-
cedures are interfaces between the dialogue protocol and the rational processes
of the agent. The interchange of messages requires the indication of the identifier
id and the role r of the agents that sends or receives the message, respectively.
It also requires the content or performative id(φ(x)). With respect to the action
of introducing agent definitions is a very powerful mechanism that can be used
for creating new agent instances, changing the agent role or keeping the current
role for simulating recursive calls.

3 A Protocol Example

To illustrate the use of MAPa we define in Figure 2 two protocols for the de-
scription of a selling scene. One protocol definition corresponds to the Buyer
(B) role and the other to the Seller (S) role. The buyer needs to buy products
satisfying the conditions stated in Bc. He has to choose the best offer from a set
of bids Bids, each bid introduced by a seller with selling conditions Sc. If a bid
is chosen the interchange of products take place.

436 M.A. Grando and C.D. Walton

agent(id, B, Pb, Bids ∪ Bc ∪ R) ::=
(id1, Sc) = choose(Bids ∪ Bc ∪ R) then
(accept(Sc) =⇒ agent(id1, S) then
sold(Sc) ⇐= agent(id1, S) then
R = add(R, buy(Bids, Bc) = (id1, Sc))
(protr, prots) = getprot(buy, Sc, Pb) then
protocol(prots) =⇒ agent(id1, S) then
(protr par agent(id, B, Pnb, Bids ∪ Bc ∪ R))
or
(R = add(R, buy(Bids, Bc) = failed) then
nconds = getnewcond(Bids ∪ Bc ∪ R) then
Bc = add(Bc,ncond) then
agent(id, B, Pnb, Bids ∪ Bc ∪ R)).

agent(id,S, Ps, Sells ∪ Sc) ::=
(accept(Sc) ⇐= agent(id1, B) then
sold(Sc) =⇒ agent(id1, B) then
Sells = add(Sells, sold(id1, Sc) = T)
then protocol(prots) ⇐= agent(id1, B)
then
prots par agent(id, S, ∅, Sells ∪ Sc))
or
(Sells = add(Sells, sold(id1, Sc) = F)
then agent(id, S, ∅, Sells ∪ Sc)).

Fig. 2. Example Negotiation Protocol

In Figure 2, the buyer (B) is defined with a private set of decision procedures
Pb and a set of facts that correspond to its private knowledge. These facts have
been classified in three sets. A set of conditions Bc that the buyer expects the
products to have in order to buy them, a set of offers Bids received from sellers
before adopting buyer role, and a set of results R that record the history of his
commercial transactions.

According to the result of the rational procedure choose, the buyer has two
options. In the first option, the buyer has to find a suitable bid with conditions Sc
from a seller with identifier id1. The buyer then communicates acceptance to the
selected seller. After receiving a confirmation from the seller, the buyer actualises
his record R of transactions. Finally, according to the agreed conditions Sc and
his private decision procedures Pb the buyer decides (by getprot) the way to
perform the interchange of products. The buyer communicates to the seller the
operational description prots of what to do to deliver the products and get the
payment. The buyer then fulfils the commitments in the transaction by behaving
in the way described by protr , and restarts the protocol. The second option
means that the buyer has not found any bid that fulfils his buying conditions. In
this case the buyer records in R that the transaction failed and then tries again
with more relaxed conditions Bc.

The seller (S) protocol is defined with a set of decision procedures Ps. The
sellers’ private knowledge is the union of two sets: a record Sells of the results
of his participation in selling transactions and a set Sc of conditions over the
products offered for sale.

The seller protocol is a choice between two options. In the first case, the
seller receives a notification of acceptance of its bid. After sending to the buyer
a message of confirmation he actualises his record of operations Sells. Finally
he receives from the buyer a description prots of the operations to perform in
order to deliver and receive the payment for the products. Simultaneously, while
behaving as described by prots he restarts his participation in the scene as a
buyer. The second case is performed by the seller when a decision is made not
to wait more for a bid acceptance from the buyer. He records in Sells that the
selling process failed and then restarts the protocol.

To illustrate the selling protocol in operation we present an example instantia-
tion in Figure 3. The scene starts with a factory F as a buyer and two chemistry

Specifying Protocols for Knowledge Transfer and Action Restriction 437

agent(F,B, PSpain, Bids ∪ Bc ∪ R1) ::=
(M, ScM) = choose(Bids ∪ Bc ∪ R1) then
accept(ScM) =⇒ agent(M, S) then
sold(ScM) ⇐= agent(M, S) then
R1 = add(R1, result(Bids, Bc) = (M, ScM))
(eprotb, eprots) = getprot(buy, ScM, PSpain)
then protocol(eprots) =⇒ agent(M, S) then
par eprotb par
agent(F, B, PSpain, Bids ∪ Bc ∪ R1) . . .

agent(M, S, ∅, TM ∪ ScM) ::=
accept(ScM) ⇐= agent(F, B) then
sold(ScM) =⇒ agent(F, B) then
TM = add(TM , sold(ScM, F) = T) then
protocol(eprots) ⇐= agent(F, B) then
eprots par agent(M, S, ∅, TM ∪ ScM) . . .

agent(N, S, ∅, TN ∪ ScN) ::=
TN = add(TN , sold(ScN, F) = F)
then agent(N, S, ∅, TN ∪ ScN) . . .

Fig. 3. Example Protocol Instance

industries N and M as sellers. Factory F wants to buy a formula fla to get a chem-
ical component Q from substances S1, . . . , Sn. The conditions under which F
starts the buying process are Bc = {delivery ≤ 15 days, cash = 800, checks =
1000, item = fla, country = Spain}. F gets bids from chemistry industries M
and N, Bids = {M, N}, and has a record of transactions R = R1. Because fac-
tory F is in Spain and performs transactions with sellers from European Union, it
needs to know how to perform buying and selling processes that respect Spanish
commerce and security laws. For this purpose F is defined with a set of private
decision procedures PSpain. Industry M offers to provide the formula under the
conditions ScM = {delivery = [10 . . . 13 days], price = 1000, payment =
(cash50%, check50%), item = fla, country = Scotland}, and has already per-
formed transactions with F according to TM = {sold((condt, F)) = true}. While
the conditions of chemistry N are ScN = {delivery = [7 . . . 10 days], price =
900, payment = (cash100%), item = fla, country = Italy} and it has not per-
formed any transaction with F according to TN = {sold((condy, Y)) = true}. It
is not required for M or N to know Spanish commercial laws, because the factory
F will provide them with the protocol in case of successful transaction, for this
reason PN = ∅ and PM = ∅. Finally, factory F decides to buy from industry M
because it offers better payment conditions.

The example that we have presented shows the practical importance of the
new features that we have included in MAPa. The formalisation of the concepts
of knowledge and decision procedures clarify the protocol definitions. Now we
can define explicitly the influence of certain facts or decision procedures over
agent rational processes. Also the effects that agent action have over the sets of
agent beliefs and presuppositions.

In the example we have shown the use of protocols as first-order objects.
The buyer can decide (through rational procedure getprot depending on cur-
rent condition ScM) the next actions to perform to complete the transaction.
In this case the buyer decides to perform the executable protocol eprotb =
agent(F, Mana, ∅, Bc) and to communicate to the seller the executable protocol
eprots = delivery(v(w)) ⇐= agent(F, Manager) then r = deliver(v(w)). This
means that he chooses to change to Manager role in order to select the best
way to perform delivery process. And he asks the seller to wait for the deliv-
ery details v(w) like day, transport company, etcetera and perform the delivery.
From this example it is clear that the use of protocols as first order objects allows
to define dialogues highly flexible and adaptable. In MAPa it is not necessary

438 M.A. Grando and C.D. Walton

Scene Environment Θ ::= s
map�→ (R(i), K(e), M (t), OP)

OP ::= (a, r, φ(k))
map�→ op

Role Environment Υ ::= r
map�→ (Proc(u), K(q), r(g))

Agent Environment ∆ ::= a
map�→ (r, s, V, K(o), IM (j), OC)

V ::= (v, c)(w)

IM ::= (a′, r′, M)
OC ::= op

Fig. 4. MAPa Execution Environments

to contemplate all the possible scenarios in advance, but agents can rationally
choose during run time what to do next, according to current conditions. This
new feature of MAPa provides agents with the capacity to react better to open
and non-deterministic environments and to deal with more realistic situations.
And the use of roles and change of roles allow to get simple, modular and reusable
behavioural descriptions.

4 MAPa Operational Semantics

The provision of a clean and unambiguous semantics for our MAPa language was
a primary consideration in the design process. The purpose of the semantics is
to formally describe the meaning of the different language constructs, such that
protocols expressed in the language can be interpreted in a consistent manner.
We consider this to be a failing of the formal semantics of FIPA-ACL [3], which
is expressed in a BDI-like logic. The FIPA semantics is an abstract descrip-
tion, which neglects practical aspects such as a definition of the communication
primitives. Furthermore, the BDI modalities can be interpreted in a number of
different ways, e.g. [5,7,8], meaning that implementations of BDI agents have
typically been ad-hoc in nature.

To define the MAPa semantics, we capture the state of a scene definition by a
number of structures called environments. We define the evaluation environments
for MAPa in Figure 4. There are three kinds of environment which track the state
of evaluation at a scene, role, and individual agent level respectively. During
evaluation, there will be a single scene environment which is shared between
all agents in the scene, and a role environment for each role which is shared
between agents of that role. By contrast, the agent environment is private to
each agent in the scene. Thus, each environment tracks the evaluation at a
different level of detail. While scene and role environment remain unchangeable
during execution time, agent environments change with the execution of every
operation that define their behaviour. We define a transition function to specify
the changes produced in agent environments by the execution of operations. But
before we introduce in Figure 4 the formal definitions of scene, role and agent
environments.

Specifying Protocols for Knowledge Transfer and Action Restriction 439

The scene environment is a function that given a scene s returns its set of roles
R(i), the scene knowledge K(e), the dialogic structure M (t) and a function OP .
Function OP takes as argument an agent identifier a, a role r and parameters
φ(k) and returns the corresponding operational clause op.

A role environment is a function that provided a role identifier returns the set
of role decision procedures Proc(u), the common knowledge for the role K(q),
and a set of upper roles identifiers r(g).

The agent environment is an function that given the agent identifier returns
the state specific to that agent. This environment records the role r and the
scene s in which the agent is present. The values of the bound variables are in
V . The decision procedures which are local to the agent are referenced in the
set Proc(j), and the private knowledge of the agent is recorded in the set K(o).
Any incoming messages are stored in IM (j), where a′ and r′ identify the sender
identifier and role and M is the actual message. Finally, the current operation
under evaluation is recorded in OC.

To describe the effect that the execution of MAPa operations and actions have
over the agent environment we define a transition function. This function takes
as argument an agent environment and an operation or action and returns the
agent environment resulting after the performance of the corresponding opera-
tion or action. We divide the definition of the transition function in evaluation
rules for the operations, and rules for actions. These evaluation rules are pre-
sented in a standard proof-rule style with the premises above the line, and the
conclusions below the line. The premises must be satisfied before the conclusion
may hold. Satisfying the premises may involve the evaluation of further rules.
Thus, applying these rules to an entire protocol will result in a proof tree.

Before we define the rules, it is necessary to explain the workings of a number
of auxiliary functions which we use in these rules. These functions are defined in
Figure 5. Function getProced in Rule 1 retrieves the procedures accessible by a
role through a recursive traversal of the hierarchy of roles. The base case applies
when there is no upper role. In this case, the procedures are simply retrieved
from the role environment. When the recursive case happens the procedures are
retrieved from all of the upper roles. Function getKnowledge defined in Rule 2
behaves like function getProced but retrieves all the knowledge accessible by a
role.

The unify function, defined in Rule 3, performs pattern matching, and binds
matching variables to values. This function is evaluated against an environment
V , and the result is a new environment containing V and any newly bound
variables. The arguments of this function are a pair of terms, or a pair of sets
of terms. There are four cases in this definition. The first case states that the
wild-card _ matches any term. The second case states that two identical terms
match together. The third term states that a variable v will be bound to the
term φ in the current environment V , provided that the types match. The final
case breaks a set of terms into individual matches which are then composed
to produce the resulting environment. The final subst function from Rule 4 is

440 M.A. Grando and C.D. Walton

getProced(r) =

Proc(l), if Υ (r) = (Proc(l), , ∅)
Proc(l) ∪ getProced(ur(1)) ∪ . . . ∪ getProced(ur(k)),

if Υ (r) = (Proc(l), , ur(1) ∪ . . . ∪ ur(k))

(1)

getKnowledge(r) =

K(l), if Υ (r) = (, K(l), ∅)
K(l) ∪ getKnowledge(ur(1)) ∪ . . . ∪ getKnowledge(ur(k)),

if Υ (r) = (, K(l), ur(1) ∪ . . . ∪ ur(k))
(2)

unify(φ1, φ2, V) = V ∪ {(φ1, φ2)}, if type(φ1)=type(φ2)

unify(φ(k)
1 , φ

(k)
2 , V) = unify(φ1

1, φ1
2, V) ∪ · · · ∪ unify(φk

1 , φk
2 , V)

(3)

subst(φ1, V) = φ2, if (φ1, φ2) ∈ V (4)

Fig. 5. Auxiliary Execution Functions

defined similarly to unify, but substitutes variables for their values from the
environment V .

We also consider functions rewrite and eval whose definitions we do not give
but whose behaviour we explain. Function Rewrite(v, op1, op2) = op3 returns the
operational expression op2 resulting of rewriting each occurrence of variable v by
the operational expression op1 in op2. Function eval(proc, values, vble, V, K) =
(newV, newK) returns a tuple. First component of the tuple is the set newV
resulting of adding to the set of matching pairs V the pair (vble, proc(values)).
This new pair represents the association to the variable vble of the value obtained
from applying procedure proc to the parameter values values. The second com-
ponent of the tuple is the set newK resulting of modifying the set of axioms K
after the evaluation of proc.

Now we can introduce the rules that define the transition function for MAPa

operations. There is a separate rule for each of the different kinds of operation
in the language.

According to Rule 5 the sequential execution of operations produces the se-
quential composition of agent environment. The operation op1 is evaluated fol-
lowed by op2, unless op1 involves an action which fails.

Rules 6 and 7 state that any of the operational component of an or-expression
can be chosen for its execution. Action failures are handled by the or operator.
Such that if one operator fails then the other operator is evaluated, otherwise it
is ignored.

Rule 8 says that if two agent environments ∆(a) and ∆′ are equivalent, any
agent environment ∆′′ that can be reached from one of them can be also reached
from the other.

Rule 9 states that the effect of the execution of an operational variable v is
the replacement in the agent operational clause OC of all the occurrences of
that variable v for its bounded operational expression value op, according to the
agent set of matching pairs V . We use the notation ∆φ1, ..., φn

σ1, ..., σn
to mean the state

Specifying Protocols for Knowledge Transfer and Action Restriction 441

∆(a)
op1−→ ∆′

∆′ op2−→ ∆′′

∆(a) op1 then op2−→ ∆′′

(5)

∆(a)
op1−→ ∆′

∆(a)
op1 or op2−→ ∆′

(6)

∆(a)
op2−→ ∆′

∆(a)
op1 or op2−→ ∆′

(7)

∆(a) ≡ ∆′

∆′ op−→ ∆′′

∆(a)
op−→ ∆′′

(8)

∆(a) = (, , V, , , , OC)

subst(v, V) = op′

rewrite(v, op′, OC) = OC′

∆(a) v−→ ∆(a)OC
OC′

(9)

resulting of the simultaneous substitution in ∆ of each of the terms φi for the
corresponding term σi.

We now turn our attention to the evaluation of the actions. According to
Rule 10, the null action introduces no change in the agent environment. Rule 11
explains the effects that the adoption of a new role by an agent has over its
environmental state. When an agent playing role r adopts a new role r1 it keeps
its set of matching pairs V , the set of role decision procedures Proc

(x)
ur and the

set of private decision procedures Proc
(u)
p . It also keeps the knowledge associated

to role r, K
(y)
ur , and the agent set of input messages IM (g). And it incorporates

the set of decision procedures associated to new role r1, Proc
(t)
ur1 , and a set of

new decision procedures, Proc
(h)
q . Besides it incorporates a set of axioms Kur1

corresponding to the knowledge associated to role r1.
Rule 12 explains the effects of the introduction of a new agent instance with a

role different from the role of the agent that makes the invocation. The new agent
instance playing role r1 is assigned an initial environmental state composed by
the set of decision procedures of role r1, Proc

(t)
ur1 , plus the set of decision proce-

dures assigned in the invocation, Proc
(h)
q . Analogously it adopts the knowledge

of role r1, K
(z)
ur1 , and private knowledge K

(i)
q . The created agent instance partic-

ipates in the dialogue through the execution of the operational clause associated
to the role it adopts, OP (b, r1, φ

(k)
1).

Rule 13 explains the effect that the execution of a decision procedure p belong-
ing to the agent set of decision procedures Proc(q) has over the set of matching
pairs V and set of agent private knowledge K

(i)
p . The procedure p is evaluated

with the arguments φ1
(h) replaced by the matching values subtracted from V by

442 M.A. Grando and C.D. Walton

∆(a) null−→ ∆(a)

(10)

Θ = (R(i), OP, ,)
∆(a) = (r, s, V, Proc(x)

ur ∪ Proc(u)
p , K(y)

ur ∪ K(s)
p , IM(g), OC)

∃r1 ∈ R(i) |
Υ (r1) = (Proc(t)

r1
, K(ñ)

r1
, ur(v))

V ′ = {(r1, subst(r1, V)}
φ

(k)
2 = subst(φ(k)

1 , V)
V ′′ = unify(φ(k)

1 , φ
(k)
2 , V ′)

getProced(r1) = Proc(t)
ur1

getKnowledge(r1) = K(z)
ur1

Proc(x)
ur ∪ Proc(t)

ur1
∪ Proc(u)

p ∪ Proc(h)
q = Proc

(x+t+u+h)
d

K(y)
ur ∪ K(z)

ur1
= K(y+z)

r

∆(a) null−→ ∆(a)
(r,V,P roc

(x)
ur ∪Proc

(u)
p ,K

(y)
ur ∪K

(s)
p ,IMg,OC)

(r1,V ′′,P roc
(x+t+u+h)
d

,K
(y)
ur ∪K

(s)
p ∪K

(i)
q ∪K

(z)
ur1 ,OP (a,r1,P roc

(h)
q ,K

(i)
q ,φ

(k)
1))

OP (a,r1,Proc
(h)
q ,K

(i)
q ,φ

(k)
1)−→ r1, s, Q, Proc

(x+t+u+h)
d , K(y)

ur ∪ K(z)
ur1

∪ NK(f)
p , IM ′(j) , null

∆(a)
agent(a,r1,P roc

(h)
q ,K

(i)
q ,φ

(k)
1)−→ ∆(a)

V,K
(y)
ur ∪K

(s)
p ,IM(g)

Q,K
(y)
ur ∪NK

(s)
p ,IM′(j)

(11)

Θ(s) = (R(i), OP, ,)
∆(a) = (, , V, , , ,)
∃r1 ∈ R(i) |

Υ (r1) = (Proc(t)
r1

, K(ñ)
r1

, ur(v))

V ′ = {(b, subs(b, V)), (r1, subst(r1, V)}
φ

(k)
2 = subst(φ(k)

1 , V)
V ′′ = unify(φ(k)

1 , φ
(k)
2 , V ′)

getProced(r1) = Proc(t)
ur1

getKnowledge(r1) = K(z)
ur1

∆(b) null−→ r1, s, V ′′, Proc(t)
ur1

∪ Proc(h)
q

K(z)
ur1

∪ K(i)
q , ∅, OP (b, r1, Proc(h)

q , K(i)
q , φ

(k)
1)

OP (b,r1,P roc
(h)
q ,K

(i)
q ,φ

(k)
1)−→ ∆′

∆(a)
agent(b,r1,Proc

(h)
q ,K

(i)
q ,φ

(k)
1)−→ ∆(a)V

V ′′

(12)

invocation of operation subst(φ(h)
1 , V). The result of the evaluation of p is the

inclusion in V of the pair that bounds the variable v with the value resulting
of performing p. In case v includes an axiom, the agent knowledge set K

(i)
p is

modified getting a new knowledge set NewKp.
Rule 14 explains the conditions under with an agent simulates the reception

of a message m that it is in his set of agent input messages IM (l). In case the
received message is a proper performative, it means it belongs to the set of scene
performatives M (t), it is checked whether the sender is already known by the
agent or not. In the first case the agent subtracts from the set of matching pairs
V the identifier and role of the sender. If they are the same as the sender identifier
id and role r, the message reception is simulated. While in the second case no
substitution of terms is possible because the message is sent by an unknown
agent. In this case a unification of terms is performed (unify(id, a′, V) = V ′ ∧

Specifying Protocols for Knowledge Transfer and Action Restriction 443

Θ(s) = (, ,)
∆(a) = (, , V, Proc(q), K(i)

p , ,)
∃rtype :: p((φ1, type)(h)) ∈ Proc(q) |

eval(p, subst(φ(h)
1 , V), v, V, K(i)

p) = (V ′, NewKp
(t))

∆(a)
v=p(φ1

(h))−→ ∆(a)
V,K

(x)
r ∪K

(i)
p

V ′,K
(x)
r ∪NewKp

(t)

(13)

Θ(s) = (, , M(t))
∆(a) = (, , V, , , IM(l),)
∃ρ((φ1, type)(h)) ∈ M(t) |

∃m = (a′, r′, ρ(φ(h)
3)) ∈ IM(l) |

(subst(id, V) = a′ ∧ subst(r, V) = r′ ∧ V = V ′′)∨
(unify(id, a′, V) = V ′ ∧ unify(r, r′, V ′) = V ′′)
unify(φ(h)

1 , φ
(h)
3 , V ′′) = Q

∆(a)
ρ(φ1

(h))⇐=agent(id,r)−→ ∆(a)V,IM(l)

Q,IM(l)−m

(14)

Θ(s) = (, , M(t))
∆(a) = (t, , V, , , ,)
∃ρ((φ1, type)(k)) ∈ M(t) |

subst(id, V) = a′

subst(r, V) = r′

∀(a′, r′) |

subst(a, V) = b

subst(t, V) = q

subst(φ(h)
1 , V) = φ

(h)
3

∆(a′) null−→ ∆(a′)IM(l)

IM(l)∪(b,q,ρ(φ(h)
3))

∆(a)
ρ(φ1

(h))=⇒agent(id,r)−→ ∆(a)

(15)

unify(r, r′, V ′) = V ′′). In both cases the message reception is completed by
deleting the incoming message m from IM (l).

Finally, Rule 15 explains the effect of sending a message over the recipients.
We check that the outgoing message m is a proper message, i.e. it belongs to the
scene set of performatives M (t). The message terms a, t and φ

(h)
1 are replaced by

the corresponding values b, q and φ
(h)
3 obtained by substitution from the set of

matching pairs V . The resulting message is included into the set of input mes-
sages IM (l) of all the agents to whom the message is destined. The semantics of
message passing corresponds to reliable, buffered, non-blocking communication.
Broadcast and multi-cast communication modes are possible when the result of
the substitution of recipient agent identifier or role is the wild-card value.

5 Conclusions

In this paper we have presented an overview of our MAPa language. The pur-
pose of this language is the specification of the communication and transfer of
knowledge between groups of agents in a multi-agent system. This is accom-
plished by the definition of protocols which express social behaviours between
the agents. In particular, these protocols define social norms which agents must
observe if they are to participate in, and benefit from, the society. The use of

444 M.A. Grando and C.D. Walton

protocols ensures that the interactions between agents in the society happen in
a controlled and predictable manner. Nonetheless, these protocols do not overly
restrict the individual autonomy of the agents.

Our approach differs from previous work on multi-agent protocols in a num-
ber of important ways. Our protocols are executable specifications, and we have
constructed a meta-interpreter for our protocols in Java. This direct execution
eliminates a potentially error-prone refinement task between the specification
and implementation. Our protocols are defined separately from the reasoning
processes. This enables our protocols to be independently examined and verified
before an agent subscribes to the society. Furthermore, it permits a range of rea-
soning strategies to be adopted, e.g. reactive or planning systems, rather than
restricting us to a single rational model. We have noted that MAPa is an exten-
sion of our previous MAP language. The first of these extensions is the ability
to express knowledge management within protocols. This gives us the ability to
state precisely the exchange of knowledge between one agent and another, and
to define different levels of shared (i.e. common) and private knowledge. The
second extension is the ability to define restrictions on the actions that an agent
can perform according to their role or private capacities. Ours is a simple al-
ternative for defining agent authorisations to perform tasks. Finally, the ability
to pass protocol fragments between agents. Previously our protocols were stat-
ically defined. This allows an agent to inform another “what to do” in a given
situation, as illustrated in our worked example.

The semantics of MAPa in this paper are defined in the operational style.
This style is appropriate as it states precisely how the language should be im-
plemented. It is a straightforward process to take these rules and evaluate them
in a meta-interpreter, or refine them into a full implementation. At the present
time, we are involved in extending our previous implementation [13] with the
new facilities of MAPa. With regard to future work, we plan to use MAPa in
conjunction with Web Services, to perform service composition on the Semantic
Web. We also plan to use the language with eco-grammars [1] to perform auto-
matic agent-based grammar generation. Our future plans for extensions to the
language include facilities for constraint satisfaction and the inclusion of deontic
relationships between agents.

References

1. A. H. Dediu and M. A. Grando. Simulating evolutionary algorithms with eco-
grammar systems. In Proceedings of the First International Work-Conference on
the Interplay Between Natural and Artificial Computation (IWINAC05), number
3562 in Lecture Notes in Computer Science, pages 112–121, Las Palmas, Spain,
June 2005. Springer Verlag.

2. M. Esteva, J. A. Rodŕıguez, C. Sierra, P. Garcia, and J. L. Arcos. On the Formal
Specification of Electronic Institutions. In Agent-mediated Electronic Commerce
(The European AgentLink Perspective), number 1991 in Lecture Notes in Artificial
Intelligence, pages 126–147, 2001.

3. Foundation for Intelligent Physical Agents. Fipa specification part 2 - agent com-
munication language. Available at: www.fipa.org, April 1999.

Specifying Protocols for Knowledge Transfer and Action Restriction 445

4. M. Greaves, H. Holmback, and J. Bradshaw. What is a Conversation Policy? In
Proceedings of the Workshop on Specifying and Implementing Conversation Poli-
cies, Autonomous Agents ’99, Seattle, Washington, May 1999.

5. N. R. Jennings. Specification and Implementation of a Belief-Desire-Joint-Intention
Architecture for Collaborative Problem Solving. Journal of Intelligent and Coop-
erative Information Systems, 2(3):289–318, 1993.

6. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes (Part 1/2).
Information and Computation, 100(1):1–77, September 1992.

7. A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practise. In Proceedings
of the First International Conference on Multiagent Systems (ICMAS-95), pages
312–319, San Francisco, USA, June 1995. AAAI Press.

8. M. D. Sadek. A Study in the Logic of Intention. In Proceedings of the 3rd Con-
ference on Principles of Knowledge Representation and Reasoning (KR92), pages
462–473, Cambridge, MA, 1992.

9. Y. B. Udupi and M. P. Singh. Contract Enactment in Virtual Organizations: A
Commitment-Based Approach. In Proceedings of the 21st National Conference on
Artificial Intelligence (AAAI-06), Boston, USA, July 2006.

10. W. van der Hoeck and M. Wooldridge. Cooperation, Knowledge, and Time:
Alternating-time Temporal Epistemic Logic and its Applications. Studia Logica,
75(1):125–157, October 2003.

11. C. Walton. Model Checking Multi-Agent Web Services. In Proceedings of the 2004
AAAI Spring Symposium on Semantic Web Services, Stanford, California, March
2004. AAAI.

12. C. Walton. Multi-Agent Dialogue Protocols. In Proceedings of the Eighth Inter-
national Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale,
Florida, January 2004.

13. C. Walton and A. Barker. An Agent-based e-Science Experiment Builder. In
Proceedings of the 1st International Workshop on Semantic Intelligent Middleware
for the Web and the Grid, Valencia, Spain, August 2004.

Flexible Service Composition

Adam Barker1 and Robert G. Mann2

1 Centre for Intelligent Systems and their Applications (CISA)
School of Informatics, University of Edinburgh, UK

a.d.barker@ed.ac.uk
2 Institute for Astronomy, University of Edinburgh, UK

Abstract. Both the agent and Grid communities develop concepts for
distributed computing, however they do so with different motivations.
This paper demonstrates how the flexible coordination technique of in-
teraction protocols, from the field of multiagent communication, can be
used to model the processes found in scientific workflow, a typical compo-
sition problem faced by the Grid community. Our approach is founded on
the adaptation of the MultiAgent Protocol (MAP) language to perform
web service composition. A definition of the language and framework
is presented, in order to solve a detailed scientific workflow taken from
the field of time-domain astronomy. MAP offers a flexible, adaptable
approach, allowing the typical features and requirements of a scientific
workflow, to be understood in terms of pure coordination and executed
in an agent-based, decentralised, peer-to-peer architecture.

1 Introduction

Scientists are increasingly sharing their data and computational resources, as a
direct result of this, new knowledge is acquired from analysing existing data;
which would not have been previously so readily available. This information ex-
plosion has helped to shape new multi-disciplinary fields such as bio-informatics,
geo-informatics and neuro-informatics [10]. The term ‘Grid’ refers to the in-
frastructure that builds on today’s Internet and Web to enable and exploit large-
scale sharing of resources within distributed, often loosely coordinated groups,
commonly termed Virtual Organisations [4]. The Grid is the machinery which
enables e-Science. Grid computing has attracted a great deal of interest and
funding firstly from the computer science community, but also from the applica-
tion of this computing research to problems in the engineering and the physical
sciences.

Both the agent and Grid communities develop concepts for distributed com-
puting, however they do so from differing points of view. The agent community’s
focus lies with creating autonomous, flexible software components. Agents are
designed to operate in dynamic and uncertain environments, making decisions at
run-time. Communities of agents exhibit flexible cooperation and coordination
through techniques such argumentation and social laws. The Grid community
however, has focused on the development of middleware, which provides reli-
able, scalable and secure access to distributed resources. It is clear that these

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 446–460, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Flexible Service Composition 447

two communities of research are starting to see a convergence of interests. The
typical features of each community are illustrated by figure 1. In practise how-
ever, the application of techniques from the multiagent systems community to
the Grid is a relatively new research area, as highlighted in [7]. Although the
field is starting to see an increased level of interest, demonstrated by the recent
series of workshops [3], [2] and new journal publication [9].

Fig. 1. A Convergence of Interests

The research presented in this paper addresses the problem of composing
multiple services to form an e-Science experiment, or workflow [8]. There are
a plethora of organisations creating Business Process Modelling languages. The
current front runner is BPEL (Business Process Execution Language) [1] for
web services, but there are many competing standards which occupy the same
space [16]. Although scientific and business workflows have an overlapping set
of requirements, it is also true that they each have their own domain specific
requirements, and therefore need consideration separately. There are however,
very few languages which deal with the flexible knowledge acquisition and dis-
covery processes found in the sciences. Kepler [5], ICENI [11] and myGrid [14]
are the current state of the art in scientific workflow composition, all using a
dataflow modelling paradigm in order to capture the series of steps required to
describe a distributed e-Science experiment.

This paper aims to demonstrate how the flexible coordination technique of in-
teraction protocols, from the field of multiagent communication, can be used to
model the processes found in scientific workflow, a problem from the Grid com-
munity. Allowing the typical features and requirements of a scientific workflow,
to be understood in terms of pure coordination and executed in an agent-based,
decentralised, peer-to-peer architecture.

The remainder of this paper is structured as follows. Sections 2 and 3 introduce
a motivating scientific workflow, taken from the Large Synoptic Survey Telescope
(LSST). This scenario demonstrates the need for of agent-based techniques, as
the systems which perform this computation need to be reactive, collaborative

448 A. Barker and R.G. Mann

and flexible systems. In section 4 a proposed framework and interaction protocol
languageisdiscussed,asawaytoaddresstherequirements laiddownbythescenario.
This language and framework is then applied to the motivating scenario in section
5, demonstrating the use of interaction protocols to model scientific workflow.
Conclusions and current implementation work are then discussed in section 6.

2 Virtual Observatory Technology

Breakthroughs in telescope, detector, and computer technology allow astronomi-
cal instruments to produce terabytes of images and catalogs; astronomy is facing
a data explosion. The data sets produced cover the sky in multiple band widths,
from gamma and X Ray, optical, infrared through to radio. With such vast
quantities of data being archived, it is becoming easier to ‘dial up’ a piece of
the sky, rather than waiting for expensive, scarce telescope time. The software
which allows the integration of astronomical resources has been slow to catch up
with the ever increasing astronomy data volumes. Virtual Observatories (VO)
are the technology frameworks which aim to fill this gap, allowing transparent
access to astronomical archives, databases, analysis tools and computational ser-
vices. Real science has already been demonstrated using VO technologies, and as
the middleware develops it will give astronomers seamless access to image and
catalogue data on remote computer networks.

2.1 Change in the Universe

Observations of change in the universe are difficult to obtain. Most change in
the universe is so slow, that it can never be directly observed, taking place over
millions of years; much like the evolutionary processes taking place on Earth.
However many of the most remarkable astronomical events occur on human, and
even daily, time scales; these changes have proven the most difficult to observe.
Current observatories are able to look very deeply at very small parts of the sky.
This small field of view means that any one observation is not likely to catch
a transient event in the act, as the observatories are always looking somewhere
else. A small field of vision means that an impractically large number of separate
observations are required to map the entire night sky. Observational facilities are
also in great demand, astronomers must apply for scarce telescope time, with the
assignment of only a few nights per year to each astronomer. This means that
with the lack of continuous observatory access and a global view, astronomers
are almost certainly missing out on what’s going on in the universe.

3 Time-Domain Astronomy Scenario

The Large Synoptic Survey Telescope (LSST) [15] has been proposed to address
many of these difficulties and open up ‘time domain’ astronomy, the telescope
will be able to tile the entire night sky over a three night period, generating 36

Flexible Service Composition 449

gigabytes of data every 30 seconds. This section introduces a motivating scenario
taken from the LSST science use cases, an influential factor behind the devel-
opment of the LSST program. The data reduction and analysis in LSST will be
done in a way unlike that of most observing programmes. The data from each
image will be analysed and new sources detected before the exposure for the next
tile is ready. This means that if anything unusual is detected, normal observation
can be interrupted, in order to follow up any new or rapidly varying events. Other
observing resources can then be queried instantly, providing a different perspec-
tive on the event. As data is collected it will be added to all the data previously
detected from the same location of sky to create a very deep master image.

Fig. 2. An example of a Subtracted Image

Every time a new image of the sky is obtained, the master image will be sub-
tracted from it. The result is an image which only contains the difference between
the sky at that time and its average state; in other words a picture of what has
changed, this image is known as the subtracted image. Figure 2 illustrates two
images of a cluster of galaxies, taken three weeks apart, the far right plate is the
subtracted image, revealing that a supernova has exploded in one of the galax-
ies. This subtracted image is then processed by a cluster of computers. The first
task involves computing which objects are expected to appear in the subtracted
image, given the area of sky, time of day, and the current state of knowledge
of known orbits. A query is made to the orbit catalogue, which contains data
about all known orbits. The results of this query are then cross matched with
the subtracted image, leaving only objects which cannot be classified, and hence
may be a new object discovery, or orbit. Further processing is performed, to try
and compute smaller sections of orbit, known as a tracklets. If these smaller sec-
tions of orbits can be extrapolated (by cross referencing them with observations
at earlier points in time), these new orbits, along with re-detections of known
objects are updated in the orbit catalogue. With each re-detection of a known
object, more information is provided, increasing the accuracy and further con-
straining the orbit. This process allows an accurate map of the sky to be built
up, catching transient events in the act.

3.1 An Agent-Oriented Approach

The classification process described in section 3 is for known classes of object,
but the hope is that, since LSST will provide a first attempt at time domain

450 A. Barker and R.G. Mann

astronomy, it will discover new classes of object, previously undetected. Once
the initial processing has finished, there will be some data which is left over.
This data includes objects and orbits which can’t be classified by the processing
software. Typically, most of these objects will simply be junk, but this may only
be revealed on the basis of comparison with other detections made from the
same night. The systems which attempt to classify this data need to be reactive,
collaborative, intelligent systems. On this basis, agent based techniques have
been applied to the classification problem. It is important to note that certain
details are left intentionally abstract, the moving objects scenario serves as a
motivating factor, illustrating the kinds of features that our interaction protocol
language and framework are required to model.

It is intended that agents will take over where the subtracted image process-
ing left off. Groups of agents form a multiagent system, working on behalf of
an observatory, in an attempt to classify whatever data is left over from the
automated processing stage. Agents are initially set up with a certain amount
of knowledge about properties of the data, and a number of statistical tests to
perform. Agents need to cooperate and coordinate with one another, hence they
are also set up with some rules about when and how to share information. Engi-
neers can focus on developing individual, intelligent agents which are specialised
in their own right. For example certain agents will have expertise on pixel failures
on the camera, others contain data and a hypothesis about a certain kind of un-
classified object. Figure 3 is an overview of the example scenario. Observatories
are defined within the dotted circle, inside each observatory is a certain amount
of local data (illustrated by databases), and a group of agents (illustrated by
the square). Web services are shown as rounded rectangles. Communication be-
tween agents is shown by arrowed solid lines, web service invocations are shown
as single arrowed dotted lines. An example interaction between a group of agents
could be viewed as the following.

Agents at observatory A are attempting to classify objects left over from the
image processing, one of the agents has located an item which cannot be classi-
fied locally. This anomaly appears on several plates of the sky on the subtracted
image, so it wasn’t present on the master image. The object and orbit classifi-
cation algorithms cannot identify the anomaly, so it could potentially be a new
species of object, or some kind of equipment failure. The agent has exhausted
the possibility of solving the problem locally and needs to compare similar ob-
servations made on the same night with distributed observatories, databases and
repositories. It wants to ask a question equivalent to ‘has anybody else found
anything strange in this particular area of sky, at time t, which could solve this
possible anomaly?’.

In order to discover which observatories can offer the required data, the con-
tract net protocol [13] is executed over a group of observatory agents known to
have possible data about the area of sky we are interested in, at time t. This is
illustrated by steps 1 to 4 of figure 3. A contract net agent (on behalf of the obser-
vatory) issues a call for participation over the set of possible observatory agents.
The call for participation contains a proposal, defining the terms of agreement.

Flexible Service Composition 451

Fig. 3. Overview of LSST Scenario

452 A. Barker and R.G. Mann

The observatory agents then communicate within their local multiagent system
to try and reach some form of conclusion about participation, issuing either an
accept or reject message to the proposal. The set of agents who returned accept
(in this case observatories B and C) are returned to the classification agent, who
locally decides (based on some internal local knowledge and runtime conditions)
which agent to obtain the data from. Step 5 of figure 3 shows an accept-proposal
message being issued to the selected observatory (in this case B) and the re-
maining observatories are issued a reject-proposal message. It is then up to the
observatory agent to locally retrieve and process the data in accordance to the
agreed contract net proposal (step 6 of figure 3), this will involve negotiation of
agents local to observatory B and a set of external web service calls. Once this
process has finished, the data is sent back to observatory A. Here the agents can
use the evidence gathered from the distributed observatories and databases to
reach a conclusion regarding the unknown object, reporting anything to human
scientists which may require closer inspection. Agents then continue to process
the remainder of the junk data, following the same process again if an object
cannot be classified locally. The paper now proposes an Agent Coordination
Framework to address the problem of communication and web service invoca-
tion by agents in a distributed open, environment in order to solve the scenario
detailed in this section.

4 Agent Coordination Framework

Multi Agent Protocols or MAP for short is an interaction protocol [12]. An inter-
action protocol is essentially a collection of conventions which allow agents in an
open multiagent system to interact with one another. The term open multiagent
system means that any agent can take part in the interaction, regardless of their
internal implementation details; such as the language they are programmed in,
or operating system they are run on.

The work of the MAP language builds upon the foundations laid down by the
Electronic Institutions [6] framework; a popular technique for providing structure
and organisation in an open multiagent system. It is designed as a light weight
language to coordinate agents in an open multiagent system. Being lightweight
it is therefore relatively sparse in features, however more complex semantics can,
if required be layered on top of the basic MAP language. The abstract syntax
of the MAP language is shown in figure 4.

The division of agent interactions into scenes is a key concept in the MAP
language. Scenes can be thought of as a bounded space in which a group of agents
interact on a single shared task. Scenes also allow the division of a large and
complex protocol to be broken up into more manageable chunks. Scenes allow
a measure of security to be places on a protocol, allowing agents which are not
relevant to the protocol to be excluded from the scene. The most basic component
in this framework is an agent, which is defined by a unique name:n and a role:r.
The role of an agent is fixed until the end of the scene and determines which
parts of the protocol code an agent can execute. Roles allow agents to be grouped

Flexible Service Composition 453

together, many agents can share the same role, which means the agents have
the same capabilities. Roles also allow us to specify multicast communication
in MAP. For example, we can broadcast messages to all agents of a specific
role.

An Agent’s behaviour is defined by a set of Methods {M}, which can option-
ally take a list of Terms as arguments φ(k). Methods are constructed from an
Operation Set op, which enforce control flow in the agent and a set of actions α,
which allow the agent to communicate and interact with a reasoning layer.

P ∈ Protocol ::= n (r{M}) + (Protocol)

M ∈ Method ::= method(φ(k)) = op (Method)

op ∈ Operation ::= α (Action)
| op1 then op2 (Sequence)
| op1 or op2 (Choice)
| op1 par op2 (Parallel Composition)
| waitfor op1 timeout op2 (Iteration)
| invoke(φ(k)) (Recursion)

α ∈ Action ::= ε (No Action)
| φ(k) = p(φ(l)) fault φ(m) (Decision Procedure)
| p(φ(k)) => agent(φ(1), φ(2)) (Send)
| p(φ(k)) <= agent(φ(1), φ(2)) (Receive)

φ ∈ Term ::= v | a | r | c | _ (Terms)

Fig. 4. MAP Abstract Syntax

Actions α, can have side-effects and fail. Failure of actions causes backtrack-
ing of the protocol. The action set firstly consists of the decision procedure. The
decision procedure set is implemented as a set of methods, exposed as a reason-
ing web service. When an agent needs to make an internal decision, it invokes
methods on this web service; for example the logic deciding which observatory
agent to choose after the initial round of the contract net protocol. Given a list of
input Terms φ(l), a procedure will invoke the required method on the reasoning
web service p, using the terms as input. If required it will produce a list of out-
put terms φ(k) (results from the procedure) which can be referenced throughout
the duration of the agents execution cycle. A procedure can raise an exception,
in which case the fault terms φ(m) are bound to the exception parameters and
backtracking of the protocol occurs.

The remaining two actions that an agent can reference are the send and
receive actions. Interaction between the agents is performed by the exchange of
messages, defined as performatives ρ , ie. message types. Messages take a list of
terms as input φ(k). Terms are defined as either a wildcard () , an agent name
(a), a role type (r), a constant (c), or a variable (v). The send and receive

454 A. Barker and R.G. Mann

actions contain two arguments φ(1) and φ(2). Agents can send a message to a
specific agent (if φ(1) contains an agent name), to any agent which is subscribed
to a particular role (if φ(1) is a wildcard and φ(2) contains a role type), or
simply send a message to any agent (if φ(1) and φ(2) are both wildcard types).
Message passing between agents is assumed to be reliable, non blocking, buffered
communication.

Control-flow in the protocol can be enforced in three ways. Firstly the sequence
operator op1 then op2, evaluates op2 only if op1 did not contain an action that
failed, otherwise it is ignored. The choice operator op1 or op2, handles failure
in the protocol and evaluates op2 only if op1 contained an action that failed. The
parallel operator op1 par op2, executes op1 and op2 in parallel. A waitfor loop
allows repetition of parts of the protocol. If any action inside the loop body fails
or the loops times out then the actions contained within the timeout body will
be executed.

4.1 Protocol Execution

The MAP language is a specification designed to be directly executed by a
group of agents. The typical process of executing a MAP interaction protocol is
illustrated by figure 5.

Fig. 5. MAP Protocol Execution

Once an engineer has designed a MAP interaction protocol, each agent taking
part in the coordination must obtain a copy. This copy is stored locally to each
agent, illustrated by step 1 of figure 5. Agents are represented as a circle with
(A) inside and the interaction protocol as a grey rectangle with (P) inside. The
only requirement on an engineer designing an agent is a layer of software which

Flexible Service Composition 455

can translate and execute the steps in the protocol, and a reasoning web service
which implements the decision procedures of a particular role type. Each agent
maintains its own internal state. This internal state records which steps of the
protocol it is currently executing and any variables which may be needed for
sending/receiving messages and decision procedures.

Each agent taking part in the interaction must adopt a role, by adopting
a role the agent must reference a reasoning web service which implements all
the decision procedures required for that role type. This concept is illustrated
by step 2 on figure 5: the reasoning web services are represented as a rounded
rectangle containing (WS). This reasoning web service can be different for each
agent. Once agents have obtained a copy of the protocol and have reference to a
reasoning web service, enactment of the interaction protocol can begin. Agents
follow the protocol as a script, calling the web services if and when required.
Step 3 on figure 5 shows a pattern of interaction taking place, with the agent
in the top left invoking its web service (hashed out on the diagram). A further
pattern of interaction takes place, resulting in the agent on the bottom right
invoking a method on its reasoning web service, illustrated by step 4 of figure
5. Execution terminates when all the protocol steps have been enacted, or the
protocol fails. Failures can be classified as external failures, due to faulty web
services invocations; or internal failures, due to a badly written protocol.

5 Application of Framework to Scenario

This section further illustrates the MAP protocol language by applying it to the
motivating scenario presented in section 3. Figure 6 is a MAP protocol definition
of an agent attempting to classify some of the left over data from the subtracted
image processing. For simplicity the protocol contains just one agent definition,
the role of classification, however it interacts with agents who have adopted
the scientist, contractnet and observatory roles. Firstly it is important to
note that different types of term are represented by prefixing variable names
with $, role names with % and agent names with !

The classification protocol, shown in figure 6 implements the classification
agent process described in section 3.1 and proceeds as follows. A list of un-
classified objects ($junk) is received from a scientist agent (line 3). This list
contains pointers to objects which cannot be classified by the automated al-
gorithms discussed in the scenario. The agent then recursively traverses the
list, attempting to classify the items locally. If at any time the agent cannot
classify an object, calls to distributed observatories need to be made (line 14).
This is achieved by making a request to an agent who has adopted the con-
tractnet (line 21) role, supplying as parameters to the message: a list of suit-
able agents ($potential agents, line 18) and a proposal ($proposal, line 19).
The contractnet agent (not described in this example) executes the contract
net protocol, contacting all observatory agents in the list $potential agents.
When finished the contractnet agent returns a list of observatory agents (line
23) who returned propose to the protocol. The list of open proposals is then

456 A. Barker and R.G. Mann

%classification{
1 method() =
2 waitfor
3 (request($junk) <= agent($scientist, %scientist)
4 then invoke (localanalysis, $junk)
5 then invoke())
6 timeout (e)
7
8 method(localanalysis, $junk) =
9 (($head, $tail) = ExtractNext($junk)
10 then $result = StatTest($head)
11 then UpdateKnowledge($result)
12 then (QueryKnowledge($head)
13 then invoke(localanalysis, $tail)
14 or invoke(contractnetsend, $head, $tail))
15 or e)
16
17 method(contractnetsend, $unknown, $objects) =
18 $potential_agents = LookUp(%observatory, $unknown)
19 then $proposal = GenerateProposal($unknown)
20 then $cn = LookUp(%contractnet)
21 then request($potential_agents, $proposal) => agent($cn, %contractnet)
22 then waitfor
23 (response($open_proposals) <= agent($cn, %contractnet)
24 then ($accept, $reject) = Evaluate($open_proposals)
25 then invoke(contractaccept($accept, $objects, $unknown))
26 par invoke(contractreject($reject, $objects)))
27 timeout(e)
28
29 method(contractaccept, $accept, $objects, $unknown) =
30 ($observatory, $proposal) = ExtractProposal($accept)
31 then accept-proposal($proposal) => agent($observatory, %observatory)
32 then waitfor
33 (inform-result($opinion) <= agent($observatory, %observatory)
34 then $combined_opinion = GenerateOpinion($opinion)
35 then inform($combined_opinion) => (_, %scientist)
36 then invoke(localanalysis, $objects))
37 or (inform-failure() <= agent($observatory, %observatory)
38 then invoke(contractnetsend, $unknown, $objects))
39 timeout(e)
40
41 method(contractreject, $reject) =
42 ($head, $tail) = ExtractNext($reject)
43 ($observatory, $proposal) = ExtractProposal($head)
44 then reject-proposal($proposal) => agent($observatory, %observatory)
45 then invoke(contractreject, $tail)}.

Fig. 6. LSST Agent Protocol

Flexible Service Composition 457

evaluated locally (line 24), generating a list of rejected agents: $reject and
a single suitable agent: $accept. An accept-proposal message is sent to the
selected agent. If the observatory agent completes the tasks specified in the pro-
posal an inform-result message is received (line 33). The data $opinion is
used to generate a combined opinion which is forwarded to the original sci-
entist agent; informing a human scientist if anything unusual has occurred. A
recursive call is then made, in an attempt to classify the remaining objects (line
36). However, if the observatory agent has been unsuccessful in completing its
task, an inform-failure message is received (line 37). In this case, another
attempt must be made to find suitable data from distributed observatories (line
38). In parallel to this task taking place, the agents who were unsuccessful in
the proposal bid are rejected by the reject-proposal message (line 44).

The classification protocol is a straight forward implementation of the re-
quired functionality of the scenario, however there are some subtle issues in the
protocol which require explanation. Role definitions can be divided up into a
set of methods, allowing protocol code to be separated into smaller, manageable
code chunks. Our protocol contains five method declarations. Protocols always
begin execution with the default method, which is shown in this example from
lines 1-6. Methods can be called by using the invoke operator, passing the nec-
essary set of Terms as parameters to the method. For example, line 4 of the role
definition shows an agent invoking the localanalysis method, using the list
of unclassified objects, stored in the variable $junk as a parameter. An empty
invoke() operation (line 5) will restart the default method when the protocol
execution has terminated, effectively restarting the agent.

Agents connect to their internal reasoning layer by making invocations to a
set of functions exposed as a reasoning web service. This set of functionss imple-
ments a given role definition, so for our classification agent the web service
contains the following functions: ExtractNext, StatTest, UpdateKnowledge,
QueryKnowledge, LookUp, GenerateProposal, Evaluate, ExtractProposal
and GenerateOpinion. Line 12 shows the QueryKnowledge function being in-
voked, using the $head variable as a parameter. As discussed briefly in section
4, control flow is enforced by the sequence (then), choice (or) or parallel (par)
operators. The use of the sequence and choice operators is illustrated in the
localanalysis method. The agent extracts the head: $head and tail: $tail
of the list and attempts to classify the head of the list locally, by invoking the
StatTest function (line 10). It then proceeds to query its local knowledge based
on the updated information (line 12). If the QueryKnowledge function fails, the
or branch of the protocol is executed, invoking the contractnetsend method,
which begins to seek assistance from distributed observatory agents. However, if
the QueryKnowledge function succeeds (the agent can classify the data) a recur-
sive call invoke(localanalysis, $tail) is made, using the tail of the list as
input. If the function ExtractNext fails, meaning that the list is now empty the
second or branch will be executed, in this case the empty action: e. The parallel
operator is used in lines 25 and 26, in order to execute the contractaccept and
contractreject methods.

458 A. Barker and R.G. Mann

The semantics of message passing corresponds to non-blocking, reliable and
buffered communication. Sending a message succeeds immediately if an agent
matches the definition, and the message will be stored in a buffer on the recip-
ient. Receiving a message involves an additional unification step. The message
supplied in the protocol definition is treated as a template to be matched against
a message in the buffer. A unification of terms against the definition agent(φ(1),
φ(2)) is performed, where φ(1) is matched against an agent name and φ(2) to the
agent role. For example, in line 3 of the protocol, the agent will receive the list of
unclassified objects from any agent whose role is %scientist, and the name of
this agent will be bound to the variable $scientist, for later reference. However
in line 23, the classification agent will only receive the response from an agent
of role observatory and in particular, the agent we sent the original request to,
which is bound to the variable $cn. If the unification is successful, variables are
bound based on the content of the message. For example, $open proposals is
stored locally upon receiving the message response($open proposals), shown
in line 23. This unification is particulary useful when we do not know the exact
name of the agent in question and simply want to receive a message from a
particular role type.

Sending will fail if no agent matches the supplied terms, and receiving will
fail if no message matches the template defined in the protocol. Send and re-
ceive actions complete immediately (i.e. non blocking) and do not delay the
agent. Race conditions are avoided by wrapping all receive actions in waitfor
loops. For example in line 3, the agent will continue to loop until a request
message is received. If this loop was not present the agent may fail to receive
the reply and the protocol would terminate prematurely. A further advantage
of using non blocking communication is that we can check for a number of dif-
ferent messages. Inside the waitfor loop (lines 32-39) the agent waits for either
an inform-result message, indicating the observatory agent has fulfilled the
original proposal, or an inform-failure message. The flow of the protocol is
very different, depending on which message is received. Timeouts, which have
not been used in this protocol implementation, specify what to do if a timeout
(specified by a time limit) is reached.

6 Conclusions and Further Work

This paper has demonstrated how scientific workflow, a problem from the Grid
community can be elegantly modelled with the use of interaction protocols, a
technique from the multiagent systems community. Our scenario demonstrates
a number of runtime decisions which need to be taken, highlighting why a pre-
defined static workflow cannot solve the service composition problem. Interaction
protocols offer a flexible, adaptable solution to scientific workflow modelling.

In particular, the MAP language and framework allows complex multiagent
interactions and web service invocations through the use of a relatively simple
formalism. It offers a number of advantages over the coordination techniques
used by existing projects focused at scientific workflow composition:

Flexible Service Composition 459

– Reasoning Models: The MAP approach allows the rules of interaction
to be explicitly expressed, while allowing individual agents to subscribe to
their own reasoning models. MAP protocols do not sacrifice the self interest
and autonomy of individual agents, although agents follow the protocol as
a script each agent can adopt their own personalised strategy within the
protocol. Reasoning web services can be mapped on an individual agent
basis (providing personalised behaviour) or on role type (providing generic
role behaviour). It is up to the engineer of the agent to provide the set of
methods which form this reasoning web service.

– Inter-operability: Agents built by different organisations, using different
software systems, written in different languages are able to communicate
with one another in a common language with agreed semantics. The only
requirement on an engineer wanting to build an agent that can coordinate
within an open system, is a layer of software which can translate the protocol
and a set of methods which make up the agents reasoning web service.

– Layered Structure: This model of interaction fills the gap between the low
level transport issues of an agent and its high level rational processes. This
layering removes some of the complications of designing large multiagent
systems; ultimately helping in the design process.

– Abstraction: Agents add an extra level of abstraction, acting as stubs or
proxies to the web services which are taking part in the coordination. This
means that the agents can use their rational layer to make decisions at run-
time when the web service coordination is actually taking place. Decisions
can be taken for example about: which services to call, what to do if a
particular service is down, how to react if an expected message is not received
etc. This approach offers more than ‘just coordination’, provided by most
web service composition frameworks and languages.

– Rapid Prototyping: As the protocols provide an executable specification of
the coordination, they serve as an excellent mechanism for rapidly prototyp-
ing a sequence of interaction. Protocols can be used to engineer a prototype
system from a scenario, even if the services or interaction model, or even
both are undefined at the design stage. Services can be stubbed.

– Compatibility: The coordination mechanism defined using the MAP lan-
guage is entirely external to the web services which are being coordinated.
The web services themselves need no alteration or knowledge that they are
even taking part in coordination. Therefore no modification of web services
needs to take place and the protocol does not need to be disseminated be-
tween the web services themselves.

This work forms part of an on going research and implementation process.
Many enhancements to the language are in the process of being made that make
it more suited to e-Science computation. These enhancements include: support
for large datasets through an extension of the type language; support for long-
lived computation, e.g. by allowing break-points in the protocols; database inte-
gration for better handling of experiment data; and support for the composition
of protocols into larger experiments at the scene level.

460 A. Barker and R.G. Mann

References

1. Business Process Execution Language for Web Services Specification, Version 1.1.
Technical report, BEA Systems and IBM Corporation and Microsoft Corporation
and SAP AG and Siebel Systems, July 2002.

2. Smart Grid Technologies Workshop. In Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, Utrecht, The Netherlands, July 2005.

3. Agent-Based Grid Computing Workshop. In 6th IEEE International Symposium
on Cluster Computing and the Grid, Singapore, May 2006.

4. The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann
Publishers, November 2004.

5. I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludaescher, and S. Mock. Kepler:
An Extensible System for Design and Execution of Scientific Workflows. In 16th
International Conference on Scientific and Statistical Database Management, June
2004.

6. M. Esteva, J. Rodriguez, J. Arcos, C. Sierra, and P. Garcia. Formalising Agent
Mediated Electronic Institutions. In Catalan Congres on AI (CCIA’00), pages
29–38, 2000.

7. I. Foster, N. R. Jennings, and C. Kesselman. Brain meets Brawn: Why Grid and
Agents Need Each Other. In Proc. 3rd Int. Conf. on Autonomous Agents and
Multi-Agent Systems, New York, USA, 2004.

8. David Hollingsworth. The Workflow Reference Model. Workflow Management
Coalition, Document Number tc00-1003 edition, January 1995.

9. Professor Dr. Huaglory and Dr. Rainer Unland, editors. Multiagent and Grid
Systems. IOS Press.

10. B. Ludäscher, I. Altintas, and E. Jaeger-Frank M. Jones E. Lee J. Tao Y. Zhao
C. Berkley, D. Higgins. Scientific Workflow Management and the Kepler System.
Concurrency and Computation: Practice & Experience, Special Issue on Scientific
Workflows, 2005.

11. A. Mayer, S. McGough, M. Gulamali, L. Young, J. Stanton, S. Newhouse, and
J. Darlington. Meaning and Behaviour in Grid Oriented Components. In Lecture
Notes in Computer Science, volume 2536, pages 100–111. Springer-Verlag Berlin
Heidelberg, 2002.

12. Interaction Protocol Specifications. http://www.fipa.org/repository/ips.php3.
Technical report, Foundation for Intelligent Physical Agents, 2002.

13. R. Smith. The Contract Net Protocol: High-level Communication and Control in
a Distributed Problem Solver. IEEE Transactions on Computers, C-29(12):1104–
1113, 1980.

14. Robert Stevens, Robin McEntire, Carole Goble, Mark Greenwood, Jun Zhao, Anil
Wipat, and Peter Li. myGrid and the Drug Discovery Process. Drug Discovery
Today: BIOSILICO, 4(2):140–148, 2004.

15. Large Synoptic Survey Telescope. http://www.lsst.org.
16. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.

Workflow Patterns. In Distributed and Parallel Databases, pages 5–51, July 2003.

Using Electronic Institutions to Secure
Grid Environments

Ronald Ashri1, Terry R. Payne1, Michael Luck1, Mike Surridge2, Carles Sierra3,
Juan Antonio Rodriguez Aguilar3, and Pablo Noriega3

1 University of Southampton, UK
{ra, trp, mml}@ecs.soton.ac.uk

2 IT Innovation, Southampton, UK
ms@it-innovation.soton.ac.uk

3 IIIA-CSIC, Spain
{sierra, jar, pablo}@iiia.csic.es

Abstract. As the technical infrastructure to support Grid environments matures,
attention must be focused on integrating such technical infrastructure with tech-
nologies to support more dynamic access to services, and ensuring that such
access is appropriately monitored and secured. Such capabilities will be key in
providing a safe environment that allow the creation of virtual organisations at
run-time. This paper addresses this issue by analysing how work from within the
field of Electronic Institutions (EIs) can be employed to provide security sup-
port for Grid environments, and introduces the notion of a Semantic Firewall
(SFW) responsible for mediating interactions with protected services given a set
of access policies. An overarching guideline is that such integration should be
pragmatic, taking into account the real-life lessons learned whilst developing, de-
ploying and using the GRIA infrastructure for Grid environments.

1 Introduction

The Grid Computing paradigm [8] is aimed at supporting access to a variety of com-
puting and data resources across geographical and organisational boundaries, to en-
able users to achieve (typically) complex and computationally intensive tasks. More
specifically, the “Grid Problem” has been articulated as providing the means to support
virtual organisations that can draw together different capabilities from across the Grid
domain, to deliver services that might not otherwise be possible [6]. In attempting to re-
alise this vision, research and development over recent years has focussed on directing
Grid environments towards establishing the fundamentals of the technical infrastruc-
ture required, as represented by infrastructure development efforts such as the Globus
toolkit [9], and standardisation efforts such as OGSA [16] and WS-Resource [2].

However, while such technical infrastructure is necessary in providing an effective
platform to support robust and secure communication, this largely omits consideration
of the other higher-level issues that need to be addressed before we can achieve the
goal of formation and operation of virtual organisations at run-time based on a dynamic
selection of services [8]. In particular, whilst low-level security concerns (including
encryption, authentication, etc) are addressed, the problems of describing authorised

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 461–475, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

462 R. Ashri et al.

processes and the policies that are associated with those processes is largely ignored at
this level. The requirement here is to specify which services are allowed to participate
in the virtual organisation and what they are permitted to do.

If we consider virtual organisations in the context of agent-based computing, we can
regard this problem as analogous to that of defining an Electronic Institution (EI). Elec-
tronic Institutions, as defined in [3], can provide the necessary conceptual framework
for describing the allowed participants in a virtual organisation as well as the permitted
interactions in any given state. As such, they have proven useful in providing structured
regulatory environments for heterogeneous external agents or users (in a broader sense).
Furthermore, they are supported by tools such as ISLANDER [4], which can facilitated
the process of defining an institution.

In this paper, we present a way of making use of such technologies in response to
a specific set of needs for Grid applications, identified following practical experience
gained through the development of the GRIA (Grid Resources for Industrial Applica-
tions) infrastructure [14]. Unlike Globus, GRIA was designed to support business in-
teractions, and although it does not currently make explicit use of agent technologies,
some of its underlying concepts resonate well with an agent approach. As such, it pro-
vides an ideal and flexible framework that could exploit agent technology to provide
effective solutions for some of its current limitations.

In particular, we describe how EIs can be applied within the context of a Grid security
device, and introduce the notion of a Semantic Firewall. The purpose of the Semantic
Firewall is to protect Grid services by monitoring all external interactions with those
services. Its key functionality is to ensure that all interactions with protected services
fulfil the following criteria:

– The encountered interactions are those expected, given the agreed aims of the in-
teraction and the current state of execution of a defined interaction protocol [1];

– The interactions must satisfy any security requirements associated with the interac-
tion protocol.

The application of EIs for describing and subsequently monitoring interactions with-
in the context of a Grid application represents one of the primary efforts in demon-
strating (in practical terms) how agent technologies can be used in Grid environments.
Whilst the perceived benefit of doing so has already been argued by Foster et al [7], this
work represents a tangible example that realises this vision. In addition, it also demon-
strates how such technologies can be pragmatically applied without requiring a drastic
reconfiguration of existing Grid infrastructure, or the way in which Grid-developers
design services. This is a significant issue since uptake of agent technologies is noto-
riously hard to achieve in new environments [17]. Thus, the ability to introduce agent-
based principles without a significant shift in the status quo, whilst adding value within
a Grid Infrastructure is a key contribution.

The paper is structured as follows. In the next section we briefly describe the GRIA
infrastructure and provide an example of its operation (section 3) that we use through-
out the paper. Subsequently, in sections 4 and 5 we introduce the notion of the Semantic
Firewall, and briefly describe Electronic Institutions. We then discuss in section 6 how
we map GRIA concepts on to EI concepts and provide a concrete example of that map-
ping (section 7). The paper concludes in section 8.

Using Electronic Institutions to Secure Grid Environments 463

2 The GRIA Framework

The GRIA framework is a Grid infrastructure developed using just the basic web ser-
vice specifications, as part of the EC IST GRIA project [14]. It provides the necessary
infrastructure for exposing computationally intensive applications across the Grid, with
ancillary facilities for data staging and quality of service negotiation. A Grid service
within GRIA can be considered as a contextualised web service, which exposes its func-
tionality through a well-defined interface. It is contextualised since interactions with
the web service are based on a well-defined process, with a context that is maintained
throughout the lifetime of the process. It is the interaction protocols associated with
these long-lived processes that we aim to make explicit through an appropriate formal
description, so that they can be specified to an external access control and monitoring
system.

In GRIA, a number of services and systems, both external and internal, are used.
Internal systems and services include resource schedulers, accounting systems and data-
bases, while external services include data staging services, certification authorities, and
so forth. GRIA also provides features such as negotiation over the quality of service and
long-term accounts with service providers. We do not discuss these issues in detail here,
but the interested reader is referred to [14], in which a more complete description of the
GRIA system is available.

Rather, what we present here is a simplified example of the operation of GRIA, and a
description of how these concepts are mapped to an electronic institution. Our example
is based on a straightforward usage scenario for Grid applications that is supported by
GRIA. It involves a client that submits a computation job (such as rendering a short,
animated video clip) to a job service, where the computation job specifies a particular
application to execute, such as a renderer. Now, in order for a client to be able to submit
a computation job it must first have an account open where the computation job is
able to bill for services. Furthermore, it must have the resources of the computation job
allocated to it via a resource allocator.

In typical Grid scenarios, accounts are opened by Budget Holders (e.g. the manager
of a research group), who then allow Account Users (e.g. the individual researchers
planning and running jobs) access to the account so that they can allocate resources and
run jobs charged to the account, etc.

The main limitations of the current GRIA implementation are as follows:

– Currently, the service interaction model is fixed as a static factory pattern. The busi-
ness processes linking the Account Service, Resource Allocation and Job Service
cannot be changed to fit local policies or business models.

– The interactions between services are encoded through a shared state held within
the services themselves. This means that services cannot exist in different domains.
While it is entirely reasonable for the Resource Allocation service to be collocated
with the Job Service that uses its resources, it should not be necessary for the Ac-
count Service also to be operated by the same domain.

– There is no explicit description of the service interactions. This means that one
cannot provide any external monitoring to detect any corruption of the services,
which might become evident through some change in the interaction with them.

464 R. Ashri et al.

3 A Desired Scenario

Consider the collection of services and service clients shown in Figure 1, which il-
lustrates the example described above. In this figure, we represent the different web
services involved, whereas the functional statements positioned above the arrows rep-
resent the methods that could be used to interact with the services on the right of the
organisational boundary.

Account
Service

Client

Budget
Holder

Resource
Allocation
Service

Job
Service

bill()

organisational
boundary

trust_biller()
untrust_biller()

request_resource()
get_request_status()

start_job()
get_status()
get_results()

open_account() get_status()
get_statement() trust_user()
untrust_user() trust_biller()
untrust_biller()
close_account()

41

2

6

3

5

Fig. 1. Grid Interaction Example

This scenario is based heavily on GRIA, but significantly simplified to make it clear
and tractable enough for our purposes. However, in one way, Figure 1 is more sophis-
ticated than the current GRIA implementation: some interactions that would be hidden
in the “back office” within a GRIA deployment have been included in the service inter-
faces, so that we can construct a scenario in which the Account Service is not collocated
with the Resource Allocation Service and the Job Service.

The interactions between clients and services are as follows:

– A Budget Holder is able to interact with the Account Service (1). It first requests the
account to be opened and, once the account is active it can, amongst other actions,
delegate or revoke access to the account by account users and allow billers to charge
for their services to the account.

– A Client is able to interact with the Resource Allocation service (2) so as to request
access to a computation services.

– Once a resource has been allocated, the Client can interact with the Job Service (3),
requesting the computation to be run.

– Before starting to run a job, the Job Service must be able to charge, or bill some
entity for performing the job. The Job Service does this by getting a contextualised

Using Electronic Institutions to Secure Grid Environments 465

endpoint for the Account Service (4) representing an Account, and billing the Ac-
count for the job using an operation of the specified Account Service in the specified
context.

– The contextualised endpoint for billing the Account must be obtained from the
Account Service. To get one, the Client must be authorised by the Budget Holder
(5), who must call an operation of the Account Service (6) to inform it of the Client’s
trusted status.

– In the case where the account credit has run out, or the account has been closed, all
Account Users should not be allowed to initiate any further resource allocations or
jobs. However, it should still be possible for Billers to bill for any outstanding jobs
remaining until the account has been properly cleared.

In trying to describe these interactions, we must also take note of other more practical
challenges.

– Some interactions, such as the opening of an account, are lengthy processes that
necessarily involve both online and offline actions. For example, an Account Man-
ager may need to perform credit checks offline before approving a Budget Holder’s
account.

– It is likely that the Budget Holder and Client are behind opposed conventional fire-
walls. Bearing in mind that on the Grid, interactions may persist for a long time,
this means all interactions must be initiated by clients, because if the services try to
do so, their attempt may be blocked by the client-organisation’s firewall.

This second point means that the interactions are one-sided, with clients polling ser-
vices for the current status of the interaction where necessary. For example, a Budget
Holder should be able to poll the Account Service to find out when their account has
been approved, and the Client must poll the Job Service to find out when a job starts or
terminates. In the context of an agent-oriented approach to modelling this scenario, we
note that there are services that cannot initiate interactions. This is different to the more
general agent models, in which agents are both proactive and reactive.

4 Semantic Firewall

Our goal is to enhance security in a services-oriented environment whilst addressing
the challenges and limitations described above. We aim to decouple services by pro-
viding well-defined interaction protocols, and eliminating the need for the services to
deal with undesired messages by filtering out such messages at the organisational level.
Furthermore, we want to provide network administrators with the ability both to al-
low flexible interaction with Grid services (something not possible using conventional
firewall technologies) and to maintain careful control over those interactions.

To achieve these goals, we introduce the notion of a security device which is able
to reason about the current state of interaction between external services, and those
services protected by the security device, and also to ensure that all messages sent to
these services are consistent with the current state. We use the term Semantic Firewall
(SFW) to describe the device since, as opposed to a normal firewall, it monitors traffic

466 R. Ashri et al.

at the level of messages exchanged between web services and takes into account the
context of interaction. It is important to emphasise that the SFW is only concerned
with, and protects, the interests of the protected service, and thus does not require a
global view of all the interactions taking place within the context of a client attempting
to achieve a task in which the protected service is also involved. For example, in the
above example, the SFW does not need to be aware of the interactions between the
Budget Holder and the Client.

The requirements for the SFW are divided into description and reasoning, and in-
frastructure requirements. The former refers to what we should be able to describe
about the services and interactions between them and what type of reasoning we should
be able to perform, while the latter refers to what the infrastructure should be able to do
given the descriptions and reasoning over them.

1) Description and Reasoning Requirements
Allowed Participants: The first step is for the SFW to have an appropriate set of

descriptions of what entities are allowed to interact with protected services, and for
the SFW to be able to appropriately identify the services attempting to communicate
with protected services. In part, the solution involves the use of “conventional” secu-
rity technologies such as PKI and X.509 for user authentication. However, beyond such
technologies we must also look at the context of interaction and the intent of the inter-
action, which is an issue that the SFW, rather than lower-level security technologies,
will handle.

Allowed Interactions: Subsequently, based on who is attempting to interact, we
require a description of a currently permissible interaction protocol. The possible in-
teractions in a web services environment are based on the methods described within
the WSDL (Web Services Definition Language)1 interfaces for each service. However,
WSDL interfaces do not provide any information about permitted processes for any
given instant. Instead, developers typically rely on documentation associated with the
services to determine the appropriate process through which methods in the WSDL
interface should be called. Our aim is to ensure that this process is adhered to, by pro-
viding the SFW with the descriptions of the process.

Dependencies between parties: The SFW must be aware of the dependencies be-
tween interaction protocols for different parties. This includes both the manner in which
actions from one party can limit what another party can do, and how actions from one
party can enable another to interact with a protected service.

2) Infrastructure Requirements
Transparent protection: The infrastructure should take into account the fact that

the SFW should be invisible to services outside the protected domain. Whilst we may
foresee a future situation in which several SFWs, each operating within a different or-
ganisational domain, play an active part in defining and supporting the context through
which services from those domains can interact, we must begin with the assumption
that external services are not aware of the existence of such a device.

Informing users on reasons for failure: In order for both system administrators
and users to accept any actions taken by the SFW (such as rejecting messages, etc), the

1 http://www.w3.org/TR/wsdl

Using Electronic Institutions to Secure Grid Environments 467

device should be able provide justifications about its actions, such as why an interaction
was accepted or rejected. A clear trace of the reasoning of the device is necessary to
achieve this requirement.

5 Electronic Institutions

Given the set of requirements described in the previous section, an essential component
is the existence of an interaction protocol and a means of defining the protocol and
its dependencies. Although there are a variety of technologies that enable us to define
interaction protocols (e.g. [11,1]), as well as a significant amount of work on describing
appropriate policies [15], what we require is something that take a more integrated view
of the situation. In this regard, EIs are able to address several of the concerns raised
above. Below we provide a brief overview of this work before moving on to describe
how the concepts of Electronic Institutions can be mapped to those in GRIA, so as to
provide appropriate descriptions that the SFW can use to monitor interactions.

To define an EI, it is necessary first to define a common language to allow agents to
exchange information, the activities that agents may perform within the institution, and
the consequences of their actions. Our model of electronic institutions is thus based on
four principal elements: a dialogical framework, a set of scenes, a performative structure
and a set of normative rules [3,10,12].

The dialogical framework defines the valid illocutions that agents can exchange, and
the participant roles and relationships. In the most general case, each agent that exists
within in a multi-agent environment is endowed with its own inner language and ontol-
ogy. In order to allow agents to successfully interact with others we must address the
fundamental issue of relating their languages and ontologies to each other. EIs solve this
problem simply by establishing acceptable illocutions, communication primitives and
knowledge representation concepts through a common, well defined ontology (vocab-
ulary) — the common language to represent the “world” — that all the agents adhere
to. Moreover, the dialogical framework defines the participant roles within the EI and
the relationships among them. Each role defines a pattern of behaviour within the in-
stitution, and any agent within an institution is required to adopt a subset of them. In
the context of an EI, we distinguish between two types of roles, internal and external
roles. The internal roles can only be played by what we call staff agents which are
those pertaining to the institution. These are analogous to workers within human in-
stitutions. Since an institution delegates their services and duties to the internal roles,
an external agent can never play an internal role. By sharing a dialogical framework,
we enable the heterogeneous community of agents to exchange knowledge with each
other.

The set of possible activities within an electronic institution is defined by the com-
position of multiple, distinct, and possibly concurrent dialogic activities, where each
activity involves different groups of agents playing different roles. For each activity, in-
teractions between agents are articulated through agent-group meetings, which follow
well-defined communication protocols; we refer to such meetings as scenes. Thus, all
agent interactions that take place within an EI exist within the context of a scene. In
addition, the protocols for each scene model the possible dialogic interactions between

468 R. Ashri et al.

roles instead of agents; thus, scene protocols define patterns of multi-role conversa-
tion, and hence can be multiply instantiated by different groups of agents. A distin-
guishing feature of scenes is that they allow agents either to enter or to leave a scene
at certain particular moments (states) of an ongoing conversation depending on their
role.

A scene protocol is specified by a directed graph, where the nodes represent the dif-
ferent states of the conversation, and the arcs are labelled with illocution schemes or
timeouts that allow the conversation state evolve. Thus, at each point of the conversa-
tion, the EI defines what can be said, by whom and to whom. As we want the protocol to
be generic, state transitions cannot be labelled by grounded illocutions. Instead, illocu-
tion schemes have to be used where, at least, the terms referring to agents and time must
be variables, whilst other terms may be either variables or constants. Thus, the protocol
is independent of concrete agents and time instants. Moreover, arcs labelled with illo-
cution schemes can have some associated constraints which impose restrictions on the
valid illocutions, and on the paths that the conversation can follow.

While a scene models a particular multi-agent dialogic activity, more complex ac-
tivities can be specified by establishing relationships among scenes, captured in the
performative structure. In general, the activity represented by a performative structure
can be depicted as a collection of multiple, concurrent scenes. Agents navigate from
scene to scene, constrained by the rules defining the relationships among scenes. In or-
der to capture the relationships between scenes, we use a special type of scene, known
as transitions. Transitions allow the expression of agent synchronisation points (i.e. se-
lection points where agents can decide which path to follow), or parallelisation points
(i.e. where agents are sent to more than one scene). They can be seen as a type of router
in the context of a performative structure. Moreover, the very same agent can possi-
bly participate in multiple scenes at the same time. Likewise, there may be multiple
concurrent instantiations of a scene, so we must also consider: 1) whether the agents
following the arcs from one scene to another are allowed to start a new scene execu-
tion; 2) whether they can choose to join just one or a subset of the active scenes; or 3)
whether they can choose to join all active scenes.

A performative structure can be seen as a network of scenes in which their con-
nections are mediated by transitions that determine the role flow policy. Finally, from
the set of scenes, the initial and final scenes determine the entry and exit points of the
institution respectively.

In the context of an institution, agent actions have consequences, usually in the shape
of compromises which impose obligations or restrictions on dialogic actions of agents
in scenes in which they are acting (or will be acting in the future). Normative rules
affect the behaviour of agents by imposing obligations or prohibitions.

Note that we are considering dialogic institutions, and the only actions considered
are the utterance of illocutions. Therefore, we can refer to the utterance of an illocution
within a scene or when a scene execution is at a concrete state. The intuitive meaning
of normative rules is that if illocutions are uttered in the corresponding scene states
(and some predefined expressions are satisfied), then other illocutions satisfying other
expressions must be uttered in the corresponding scene states.

Using Electronic Institutions to Secure Grid Environments 469

To summarise, the notions presented above define the regulatory structure of an EI as
a “workflow” (i.e. performative structure) of multi-agent protocols (scenes) along with
a collection of (normative) rules that can be triggered off by an agent’s actions (speech
acts).

Note also that the formalisation of an EI focuses on macro-level (societal) aspects,
instead of on micro-level (internal) aspects of agents. This allows us to more easily
map the concepts between Grid environments and EIs. Since no assumptions are made
about internal aspects of agents, it is possible to define one-to-one mappings between
actions (or services) provided by each agent, and web services defined within a Grid
environment.

6 Using Electronic Institutions in GRIA

Given the descriptions of the requirements for the Semantic Firewall in section 4 and
the overview of the main Electronic Institution concepts in section 5, it is now possible
to investigate how such concepts can be applied within the SFW. This is achieved by
defining each scenario of interaction with the protected domain as an Electronic Insti-
tution. A scenario will typically be associated with a specific business model, such as
described in Section 3.

6.1 Mapping GRIA Models to Electronic Institutions

Services: Each service that is expected to interact in a well-defined scenario with a
protected service is associated with a role within the electronic institution. External
roles are used to represent services that are not protected by the SFW, whereas internal
roles are used for the protected services. This allows us to clearly distinguish between
those services that perform institutional services and that the SFW has a responsibility
of protecting, and external services that may be providing the client with a service but do
not form part of the institution. In our running example, the Account Service, Resource
Allocation and Job Service occupy internal roles, whereas the Budget Holder and Client
occupy external roles.

Interactions and Business Process: The allowed interactions between services and
the entire business process can be encoded as individual scenes within an EI. The par-
ticipants in the scene are the relevant services, whilst the illocutions being uttered are
mapped to the corresponding WSDL methods. In addition, in those situations where
the SFW itself needs to be made aware of events that occur within protected services,
it appears as a participant within a scene. To illustrate this, consider the case where a
request is sent by a Budget Holder to close the account. In this case, the Account Ser-
vice may still allow Billers to bill the account up to the point where the account has
been settled (which may involve offline actions). When the account is finally closed,
the SFW needs to informed about this closure explicitly by the Account Service, since
there is no illocution that will enable it to understand that. In this case the SFW is an
active participant in the scene.

The wider business process, with regards to a particular task and the protected ser-
vices, is described by the performative structure of the electronic institution. This allows

470 R. Ashri et al.

Protected
Services

Outside
 Services

GRIA Concepts EI Concepts

Internal
Roles

External
Roles

Service A

Client B

WSDL
Interface

Scene

Service C WSDL
Interface

* Allowed
Participants
* Illocutions
* Constraints

GRIA Business Process
+

Business Rules

EI Performative Structure
+

Normative Rules

EI OntologyApplication Domain Concepts

Fig. 2. Mapping GRIA concepts to EIs

us to define the appropriate flow of roles between scenes as well as impose a particular
process or workflow to the entire set of interactions with different parties.

Cross-party dependencies: We have already mentioned that an important goal of the
SFW is that of managing the dependencies between interacting parties. Returning to
the example mentioned above, once a Budget Holder has requested that an account
should be closed, access should be restricted to all clients associated with the closed
account to prevent them from assigning other billers. Thus, an action within a scene
that involves both the Budget Holder and the Account Service also has an implication
on the permissible actions within scenes involving the Account Service and Clients.
Within an EI, this can be modelled by defining a set of norms, to ensure that specific
actions can hold only as long as some constraints hold true.

Domain Ontology: The application domain concepts that are relevant to the interac-
tions between protected and external services are encoded within the EI ontology. The
ISLANDER editor supports the management of such ontologies, thereby facilitating

Using Electronic Institutions to Secure Grid Environments 471

the creation of mappings between the datatypes used within the EI definition and the
datatypes used by the web service interface.

6.2 Semantic Firewall Core Modules

Given the discussion of the mapping between the EI concepts and SFW concepts in the
previous section, it is now proceed to address the structure of the SFW itself, illustrated
in Figure 3.

Semantic Firewall Modules

SFW Runtime

SFW Administration

Auditing

Institution Authoring Institution Verification

Institution Definition Store

Constraint
Evaluation

State Model
Execution

Action Processor

Message Enforcement

Event Processing
(AMELI)

(ISLANDER) (ISLANDER+SimDEI)

Fig. 3. Semantic Firewall Core Modules

The SFW has two main components: the Administration and the Runtime Environ-
ment. The SFW Administration deals tasks such as authoring, verification and storage
of electronic institutions, whereas the SFW Runtime Environment is responsible for the
verification of messages based on the electronic institution definitions. We discuss each
of these in more detail below.

Semantic Firewall Administration: SFW Administration is divided into three differ-
ent modules:

– Authoring: The ISLANDER tool provides a graphical interface to facilitate the de-
finition of an institution. It allows for the definition of a common ontology, the
performative structure and related scenes, as well as related norms.

– Verification: For verification of the electronic institution, ISLANDER can provide
verification of the structural properties while verification of the dynamic behaviour
can be achieved through simulation in the SIMDEI tool [13].

– Storage: A verified definition of the SWF is stored in the Institution Definition Store
for use by the SFW Runtime.

472 R. Ashri et al.

Semantic Firewall Runtime: The SFW Runtime consists of several modules, and is
primarily concerned with the verification of each message passing to protected services.

– The Message Enforcement Module: This is responsible for receiving messages and
dealing with all lower level issues, such as parsing the SOAP structure of messages
and providing the relevant part of the message to the Action Processor, which per-
forms the mapping between the WSDL message and the definition within the elec-
tronic institution.

– The State Model Execution and Constraint Evaluation Modules: These modules
are queried to determine whether the message is a valid one based on the electronic
institution definition. This functionality can be provided by the AMELI run-time
engine [5] which can directly accept a definition of an EI and can reason about
what are the next allowable steps according to the definition.

– The Event Processing Module: At the same time as the State Model Execution and
Constraint Evaluation modules are being queried, the Event Processing module
collects information sent by the protected services to the SFW, whenever that is
appropriate as discussed earlier.

– The Auditing Module: This module is responsible for keeping a record of the vari-
ous actions so provide a trace as to why messages may have been rejected.

7 Evaluation Case Study

In order to better illustrate the use of Electronic Institutions within the SFW, this sec-
tion presents a case study which includes a description of the performative structure,
followed by a simplified definition of the scene dealing with account management.

Fig. 4. GRIA Performative Structure

Figure 4 illustrates the GRIA business process as an electronic institution’s perfor-
mative structure. It contains a collection of scenes (represented as boxes) relating to

Using Electronic Institutions to Secure Grid Environments 473

each of the GRIA services2. We differentiate between internal roles representing the
GRIA protected services; in this case the services behind the organisation boundary as
depicted in Figure 1, Account Manager (AM), Job Manager (JM), Resource Manager
(RM), and Semantic firewall (SF); and external roles representing the GRIA external
users, which include the Budget Holder (BH), Account User (AU), and Job User (JU).
Agents playing these roles migrate from service to service after synchronising at tran-
sitions (represented by triangles).

Access to services is controlled through several scenes (see Table 1). All these scenes
are specified to realise a client-server model. Thus, for instance, when a JU agent re-
quires a job execution, it first synchronises with a JM agent that is continuously listening
to agents’ requests at the JobServer scene. Thereafter, the two agents progress to-
gether through the transition to create a new execution of the JobExecution scene.
Note that the scenes offering the GRIA protected services are specified so that they can
be multiply instantiated, and thus serve multiple agents’ requests simultaneously. Note
also that there are scenes (JobServer, ResourceServer,AccountServer, and
AccUserServer particularly devoted to the listening functions of the agents playing
the internal roles.

Table 1. Various services offered through different scenes

Service Offered through Scene

Resource Allocation Service ResourceAllocation Scene
Job Service JobExecution Scene
Accounting Service Service AccountCreation Scene

AccUserMgt Scene
AccManagement Scene

Next, we examine the AccManagement scene, illustrating how the specific inter-
actions with services are managed. There are three participant roles in this scene, the
Account Manager (AM) represented by the Account Service, the Budget Holder (BH)
and the Semantic Firewall (SF). The boxes represent different states of the dialog, while
the arcs between them represent possible illocutions.

At W0 all roles are allowed to enter the scene. At this state the BH is allowed to re-
quest a statement of the account (arc 0), to which the AM can reply with a statement.
In addition, the BH can request for the AM to trust a biller (arc 1), which the AM can
either acknowledge positively (arc 2) or refuse (arc 5). If the request is accepted
this will enable a Client, matching the criteria of the user that should be trusted to enter
the institution and also assign billers to this account, as we discussed in Section 3. The
BH can also request for an account to be closed (arc 4). This lead the scene to a state
where the only thing the BH can do is request the status of the account and once the
account has been closed, which as we already mentioned may involve offline actions,

2 Note that the connections between scenes are labelled with the roles migrating from service to
service along with agent variables that are expected to be bound to actual agent identifiers at
run-time.

474 R. Ashri et al.

Fig. 5. Account Management Scene

the SF is informed of this so that is can reflect this change on the allowed actions of
other interested parties such as billers.

8 Conclusion

In this paper we proposed a method for enhancing security within Grid environments
by making use of Electronic Institutions to support the specification, verification and
monitoring of permissible interactions within a protected (i.e. firewalled) environment.
This is achieved though a dedicated device, the Semantic Firewall, which maintains a
set of mappings between entities within Electronic Institutions and Grid Services. The
Semantic Firewall facilitates the integration of agent technologies within a Grid envi-
ronment, without requiring radical changes to the infrastructure or the way developers
build Grid services. As such, this work represents a pragmatic example of how the
worlds of Grid infrastructure and agent research can come together to provide effective
solutions to the existing limitations for Grid infrastructure.

The work described in this paper provides several avenues for further development.
In the short-term, we can begin to define more flexible business models within GRIA,
since we can take advantage of the flexible description and monitoring capabilities to
ensure that they are adhered to. Subsequently, we can begin to examine how such in-
stitutions can be agreed upon at run-time between different organisations, where each
protected by a Semantic Firewall. Finally, we must also begin to investigate the pos-
sibility of making deployment of services within a Grid environment more flexible by
providing high-level definition of allowed processes (as EIs) which developers can then
ensure they adhere to.

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council
(EPSRC) Semantic Firewall project (ref. GR/S45744/01).

Using Electronic Institutions to Secure Grid Environments 475

References

1. R. Ashri, G. Denker, D. Marvin, M. Surrdige, and T. R. Payne. Semantic Web Service
Interaction Protocols: An Ontological Approach. In S. A. McIlraith, D. Plexousakis, and
F. van Harmelen, editors, Int. Semantic Web Conference, volume 3298 of LNCS, pages 304–
319. Springer, 2004.

2. K. Czajkowski, D. F. Ferguson, Foster I, J. Frey, S. Graham, I. Sedukhin, D. Snelling,
S. Tuecke, and W. Vambenepe. The WS-Resource Framework. Technical report, The Globus
Alliance, 2004.

3. M. Esteva. Electronic Institutions: from specification to development. PhD Thesis Universitat
Politècnica de Catalunya (UPC), 2003. Number 19 in IIIA Monograph Series. IIIA, 2003.

4. M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER: an electronic institutions editor. In
The First Int. Joint Conf. on Autonomous Agents and Multiagent Systems, pages 1045–1052.
ACM Press, 2002.

5. M. Esteva, J. A. Rodriguez-Aguilar, B. Rosell, and J. L. Arcos. AMELI: An agent-based
middleware for electronic institutions pages 236-243, new york, usa, july 19-23 2004. In
N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe, editors, 3rd Int. Conf. on Autonomous
Agents and Multi-Agent Systems, pages 236–243. ACM Press, 2004.

6. I. Foster. The Anatomy of the Grid: Enabling Scalable Virtual Organisations. In R. Sakel-
lariou, J. Keane, J.R. Gurd, and L. Freeman, editors, 7th International Euro-Par Conference,
volume 2150 of LNCS. Springer, 2001.

7. I. Foster, N. R. Jennings, and C. Kesselman. Brain meets Brawn: Why Grid and Agents need
each other. In N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe, editors, 3rd Int. Conf.
on Autonomous Agents and Multi-Agent Systems, pages 8–15. ACM Press, 2004.

8. I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 2003.

9. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid Services for Distributed System
Integration. IEEE Computer, 35(6):37–46, June 2002.

10. P. Noriega. Agent-Mediated Auctions: The Fishmarket Metaphor. PhD Thesis Universitat
Autònoma de Barcelona (UAB), 1997. Number 8 in IIIA Monograph Series. IIIA, 1999.

11. S. Paurobally, J. Cunningham, and N. R. Jennings. Developing Agent Interaction Proto-
cols Using Graphical and Logical Methodologies. In M. Dastani, J. Dix, and A. El Fallah-
Segrouchni, editors, PROMAS, volume 3067 of LNCS, pages 149–168. Springer, 2003.

12. J. A. Rodriguez-Aguilar. On the Design and Construction of Agent-mediated Electronic
Institutions, PhD Thesis, Universitat Autònoma de Barcelona (2001), 2001. Number 14 in
IIIA Monograph Series. IIIA, 2003.

13. Carles Sierra, Juan Antonio Rodriguez-Aguilar, Pablo Noriega, Marc Esteva, and Josep Lluis
Arcos. Engineering multi-agent systems as electronic institutions. European Journal for the
Informatics Professional, V(4):33–39, August 2004.

14. S. Taylor, M. Surridge, and D. Marvin. Grid Resources for Industrial Applications. In 2004
IEEE Int. Conf. on Web Services (ICWS’2004), 2004.

15. G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok. Semantic web
languages for polic representation and reasoning: A comparison of kaos, rei and ponder.
In D. Fensel, K. Sycara, and J. Mylopoulos, editors, Proceedings of the 2nd International
Semantic Web Conference, volume 2870 of LNCS, pages 419–437. Springer, 2003.

16. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T. Sand-
holm, D. Snelling, and P. Vanderbilt. Open grid services infrastructure. Technical report,
Global Grid Forum, 2003.

17. M. J. Wooldridge and N. R. Jennigns. Software engineering with agents: Pitfalls and pratfalls.
IEEE Internet Computing, 3(3):20–27, 1999.

Author Index

Afsharchi, Mohsen 228
Alonso, Fernando 66
Ametller-Esquerra, Joan 388
Antunes, Luis 402
Ashri, Ronald 461

Barker, Adam 446
B́ıba, Jǐŕı 258
Blankenburg, Bastian 332

Cascalho, José 402
Coelho, Helder 402
Corrêa, Milton 402
Cucurull-Juan, Jordi 388
Cui, Xiaohui 124

Debenham, John 51
Dragoni, Nicola 375

Erdur, Riza Cenk 416

Far, Behrouz H. 228
Frutos, Sonia 66

Gaspari, Mauro 375
Grando, Maŕıa Adela 431
Griffiths, Nathan 360

He, Minghua 332
Hindriks, Koen 301
Hoogendoorn, Mark 109
Huhns, Michael N. 8

Jakob, Michal 213
Jennings, Nicholas R. 288, 332
Jiménez, Miguel 66
Jonker, Catholijn M. 109, 301

Klusch, Matthias 332
Kraus, Sarit 138
Kronlid, Fredrik 81

Lambert, David 153
Lerch, Ondřej 258
Luck, Michael 183, 461

Mann, Robert G. 446
Maŕın, César A. 198

Mart́ı, Ramon 388
Matt, Paul-Amaury 243
Mehandjiev, Nikolay 198

Narayanan, Vidya 288
Navarro, Guillermo 388
Noriega, Pablo 461
Norman, Timothy J. 347

Oren, Nir 347

Padgham, Lin 168
Payne, Terry R. 461
Pěchouček, Michal 213, 258, 273
Potok, Thomas E. 124
Preece, Alun 347
Procaccia, Ariel D. 33, 317

Rehák, Martin 273
Robertson, David 153
Robles, Sergi 388
Rodrigues, Máıra R. 183
Rodriguez Aguilar, Juan Antonio 461
Rosenschein, Jeffrey S. 33, 317

Seylan, Inanç 416
Sierra, Carles 461
Simoff, Simeon 51
Soriano, Javier 66
Surridge, Mike 461
Suzuki, Satoshi V. 96

Takeda, Hideaki 96
Tate, Austin 23
Toni, Francesca 243
Tožička, Jan 213
Treur, Jan 109
Tykhonov, Dmytro 301

van Harmelen, Frank 1
Verhaegh, Marian 109
Vo, Quoc Bao 168
Volf, Přemysl 273

Walton, Christopher David 431

Yadgar, Osher 138

	Frontmatter
	Invited Contributions
	Semantic Web Research Anno 2006: Main Streams, Popular Fallacies, Current Status and Future Challenges
	A Research Agenda for Agent-Based Service-Oriented Architectures
	The Helpful Environment: Distributed Agents and Services Which Cooperate
	Voting in Cooperative Information Agent Scenarios: Use and Abuse

	Agent Based Information Provision
	Agents for Information-Rich Environments
	Information Agents for Optimal Repurposing and Personalization of Web Contents in Semantics-Aware Ubiquitous and Mobile Computing Environments
	Turn Taking for Artificial Conversational Agents
	Inducing Perspective Sharing Between a User and an Embodied Agent by a Thought Balloon as an Input Form

	Applications
	Agent-Based Analysis and Support for Incident Management
	A Distributed Agent Implementation of Multiple Species Flocking Model for Document Partitioning Clustering
	Coverage Density as a Dominant Property of Large-Scale Sensor Networks

	Agents and Services
	Selecting Web Services Statistically
	Conversation-Based Specification and Composition of Agent Services
	Evaluating Dynamic Services in Bioinformatics

	Learning
	A Classification Framework of Adaptation in Multi-Agent Systems
	Market-Inspired Approach to Collaborative Learning
	Improving Example Selection for Agents Teaching Ontology Concepts

	Resource and Task Allocation
	Egalitarian Allocations of Indivisible Resources: Theory and Computation
	Iterative Query-Based Approach to Efficient Task Decomposition and Resource Allocation
	Multilevel Approach to Agent-Based Task Allocation in Transportation

	Rational Cooperation (1)
	Learning to Negotiate Optimally in Non-stationary Environments
	Eliminating Interdependencies Between Issues for Multi-issue Negotiation
	The Distortion of Cardinal Preferences in Voting

	Rational Cooperation (2)
	Risk-Bounded Formation of Fuzzy Coalitions Among Service Agents
	A Simple Argumentation Based Contract Enforcement Mechanism
	A Fuzzy Approach to Reasoning with Trust, Distrust and Insufficient Trust

	Communication and Cooperation
	Performative Patterns for Designing Verifiable ACLs
	Enabling Mobile Agents Interoperability Through FIPA Standards
	Characterising Agents' Behaviours: Selecting Goal Strategies Based on Attributes
	A Framework of Cooperative Agents with Implicit Support for Ontologies
	Specifying Protocols for Knowledge Transfer and Action Restriction in Multiagent Systems

	Agent Based Grid Computing
	Flexible Service Composition
	Using Electronic Institutions to Secure Grid Environments

	Backmatter

