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Abstract. The exam timetabling problem faces the problem of schedul-
ing exams within a limited number of available periods. The main objec-
tive is to balance out student’s workload by distributing the exams evenly
within the planning horizon. Ant colony approaches have been proven to
be a powerful solution approach for various combinatorial optimization
problems. In this paper a Max-Min and a ANTCOL approach will be
presented. Its performance is compared with other approaches presented
in the literature and with modified graph coloring algorithms.

1 Introduction

The exam timetabling problem faces the problem of scheduling exams within a
limited number of available periods. The main objective is to balance out stu-
dent’s workload and to distribute the exams evenly within the planning horizon.
To evaluate a given schedule Carter et al. [1] proposed a cost function that
imposes penalties Pω whenever one student has to write two exams scheduled
within ω + 1 consecutive periods. ω is called the order of the conflict. In partic-
ular, conflicts of order 0 should be avoided, i.e. that a student has to write two
exams in the same period.

The exam timetabling problem can be formulated as a modification of the well-
known graph coloring problem. Each node represents one exam. Undirected arcs
connect two nodes if at least one student is enrolled in both corresponding exams.
Weights on the arcs represent the number of student enrolled in both exams. The
objective is to find a coloring where no adjacent nodes are marked with the same
color or to minimize the weighted sum of the arcs that connect two nodes marked
with the same color. The exam timetabling problem is a generalization of this
problem as in the objective function also conflicts of higher orders are penalized.
As the graph coloring problem is already NP-hard [2] several heuristics have
recently been developed for solving practical exam timetabling problems, c.f. [3].

Ant colony optimization algorithms represent special solution approaches for
combinatorial optimization problems derived from the field of swarm intelligence.
They were first introduced by Colorni, Dorigo and Maniezzo in the early nineties
[4]. An in depth introduction into ant systems can be found in [5].

The solution approach in ant colony optimization consists of n cycles. In each
of these cycles first each of the m ants constructs a feasible solution. If the
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optimization problem consists of finding an optimal sequence for some nodes,
the probability that an ant ν that has just chosen node i chooses the next node
j is determined by the following formula:

pν
ij =

{
(τij)α(ηij)β

�
k∈Nν

i
(τik)α(ηik)β if j ∈ Nν

i

0 otherwise
(1)

The value ηij is calculated by a constructive heuristic. τij is the amount of
pheromone trail, that represents the learned desirability of choosing node j when
in node i. This information is repeatedly updated by the ants after they have
constructed their solutions. α and β are given weighting factors and Nν

i is the
set of nodes that have not yet been visited by ant ν currently located in node i.
This type of ant colony optimization algorithm is known in the literature as ant
systems (AS).

Different variants of ant colony algorithms have been suggested in the litera-
ture, like e.g. ant colony systems (ACS) or Max-Min ant systems (MMAS), c.f.
[5]. We will compare some of these strategies with respect to their suitability
for our problem. In particular, MMAS, which was first proposed by Stützle and
Hoos [6], generated significantly better solutions for the travelling salesmen prob-
lem. Socha et al. [7] compared the MMAS variant with ACS and found out that
MMAS outperformed the ACS approach for the considered timetabling problem.

The main modification of MMAS are related to the way how the matrix τ
is initialized and how pheromone values are updated. Additionally, MMAS uses
local search to improve the solutions found by the ants. Details will be discussed
in the next section.

As far as the author is aware, ant colony algorithms to scheduling problems have
only been applied by Colorni et al. [4] and by Socha et al. [7]. The former article
focuses on the job shop scheduling problem, the latter one on the timetabling prob-
lems for university classes, which are slightly different from the exam timetabling
problem considered here. Finally, Costa and Hertz [8] used an ant colony approach
to solve assignment type problems, in particular graph coloring problems. Re-
cently, Dowsland and Thomson modified and improved in [9] this graph coloring
algorithm with respect to the examination scheduling problem.

2 An Ant Algorithm for the Exam Scheduling Problem

2.1 General Modifications for the Exam Timetabling Problem

The solution approach consists of n cycles. In each of these cycles first each of the
m ants constructs a feasible solution using therefore the constructive heuristic
and the pheromone trails. These exam schedules are then evaluated according
to the given objective function and the experience accumulated during the cycle
is used to update the pheromone trails.

Depending on the choice of a constructive heuristic and the way the phero-
mone values are used, there are different ways how this basic solution approach
can be adapted to the exam timetabling problem.
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– At each stage of the construction process in the approach of Costa and
Hertz [8] called ANTCOL the ant chooses first a node i and then a feasible
color according to a probability distribution equivalent to (1). The matrix
τ provides information on the objective function value, i.e. the number of
colors required to color the graph, which was obtained when nodes i and j
are colored with the same color.

In contrast to elite strategies where only the ant that found the best
tour from the beginning of the trial deposits pheromone, all ants deposit
pheromone on the paths they have chosen. According to [5] this strategy is
called ant cycle strategy.

Different priority rules were tested as constructive heuristic. Among those
chosen in each step, the node with the highest degree of saturation, i.e. the
number of different colors already assigned to adjacent nodes, achieved the
best results with respect to solution quality and computation times.

– In Socha et al. [7] a pre-ordered list of events is given. Each ant chooses
the color for a given node probabilistically similar to the formula (1). The
pheromone trail τij contains information on how good the solution was, when
node i was colored by color t. The constructive heuristic employed in their
approach is not described.

For the exam timetabling problem the way the information in matrix τ is used
in both approaches is not meaningful. Due to the conflicts of higher orders the
quality of a solution does not depend on how a pair of exams is scheduled nor
on the specific period an exam is assigned to. For example, assigning two exams
i and j with cij = 0 to the same period can either result in a high or in a low
objective function value as the quality of the solution strongly depends on when
the remaining exams are scheduled. In the following we implemented a two step
approach.

Step I: Determine the sequence according to the exams is scheduled. We will
assume that an ant located in a node, corresponding to an exam, has to
visit all other nodes, i.e. it has to construct a complete tour. The sequence
according to this ant constructs the tour corresponds to the sequence in
which the exams are scheduled.

Step II: Find the most suitable period for an exam which should be scheduled.
Therefore, all admissible periods are evaluated according to the given penalty
function.

Following this two step approach probabilities pν
ij for choosing the next node

j that has to be scheduled are computed according to (1). Pheromone values τij

along the ants’ paths are updated by the inverse of the objective function value.
For the heuristic value ηij the following simple priority rule for graph coloring
was implemented. The exam with the smallest number of available periods is
selected. A period would not be available for an exam if it caused a conflict of
order 0 with another exam that has already been scheduled. This priority rule
corresponds to the saturation degree rule (SD) which was tested in [1]. The value
ηij is chosen to be the inverse of the saturation degree.
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2.2 MMAS Specifications

MMAS approaches mainly differ from AS algorithms in the way they use the
existing information (c.f. [6]):

– Pheromone trails are only updated by the ant that generated the best solu-
tion in a cycle. The corresponding values τij are updated by ρτij + 1/f best

where f best is equal to the best objective function value found so far. For
all other arcs (i, j) that are not chosen by the best ant τij is updated by
(1 − ρ)τij . ρ ∈ [0, 1] represents the pheromone evaporation factor, i.e. the
percentage of pheromone that decays within a cycle.

– Pheromone trail values are restricted to the interval [τmin, τmax], i.e. when-
ever after a trail update τij < τmin or τij > τmax then τij is set to τmin or
τmax, respectively. The rationale behind this are that if the differences be-
tween some pheromone values were too large, all ants would almost always
generate the same solutions. Thus, stagnation is avoided.

– Pheromone trails are initialized to their maximum values τmax. This type of
pheromone trail initialization increases the exploration of solutions during
the first cycle.

The solution quality of ant colony algorithms can be considerably improved
when it is combined with additional local search. In hybrid MMAS only the best
solution within one cycle is improved by local search. For the exam timetabling
problem a hill climber procedure has been implemented. Within an iteration of
the hill climber two sub-procedures are carried out in succession. The hill climber
is stopped if no improvement can be found within an iteration.

Within the first sub-procedure of the hill climber for all exams the most
suitable period is examined. Beginning with the exam that causes the biggest
contribution to the objective function value, all feasible periods are checked and
the exam is assigned to its best period. The first sub-procedure is stopped if
all exams have been checked without finding an improvement. Otherwise the
contributions to the objective function value are recalculated and the process is
repeated.

The second sub-procedure tries to decrease the objective function value by
swapping all exams within two periods, i.e. all exams assigned to period t′ are
moved to period t′′ and the exams of that period are moved to period t′. There-
fore all pairs of periods are examined and the first exchange that leads to an
improvement is carried out. Again, the process is repeated as long as the objec-
tive function value is decreased.

3 Computational Experiments

The proposed Max-Min algorithm was implemented in Borland Delphi 7.0. It will
be referred to as M-ET in the sequel. Test runs were carried out on a computer
with 3.2 GHz clock under Windows XP.
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3.1 Test Cases

To benchmark algorithms test cases of twelve practical examination problems
can be found on the site of Carter (c.f. [10]). To make a comparison meaningful
all algorithms must use the same objective function. Therefore, Carter proposed
weighting conflicts according to the following penalty function: P1 = 16, P2 =
8, P3 = 4, P4 = 2, P5 = 1, where Pω is the penalty for the constrain violation
of order ω. The cost of each conflict is multiplied by the number of students
involved in both exams. The objective function value represents the costs per
student. As the proposed M-ET algorithm does not guarantee that no conflicts
of order 0 occur, additionally, the penalty P0 was imposed and set to 10000.

3.2 Adjustment of the Parameters

The required parameters were specified as follows. The number of cycles was
set to 50. Within each cycle 50 ants were employed to construct solutions. Sev-
eral test runs were carried out in order to determine the required parameters
appropriately:

– The evaporation rate ρ was set to 0.3. Like in [6] it turned out that this
parameter is quite robust, i.e. the parameter ρ does not clearly influence the
performance.

– For the restrictions of the pheromone interval values to strategies were tested.
Setting τmax = 1/ρ obtained slightly better results than in the case of vari-
able τmax and τmin as proposed in [6]. Best results were obtained with τmin

equal to 0.019.
– Different values for the weighting factors α and β were tested. It turned out

that the approach performed best when α was set to one and β was chosen
high. Best results were obtained for β equal to 24. But the difference was on
the average less than one percent when β was bigger than eight. A high β
forces that exams which can be scheduled, due to zero order conflicts, only in
a few remaining periods are scheduled first as they are given a much higher
probability in (1). Remember that ηij is the inverse of the saturation degree
as explained in section 4.1. Thus, a high β value has the same effect like a so
called candidate list [5]. Whereas, values for β lower than 5 solutions with
zero order conflicts could not always be avoided.

– As the approach is non-deterministic each test case was solved twenty times.

After determining the parameters in such a way, it turned out that less than
2 % of the solutions were generated more than once. Thus, stagnation, that is
caused by the fact that many ants generate almost the same solutions, could not
be observed.

3.3 Comparison with Other Exam Timetabling Approaches

The proposed M-ET approach was compared with different other approaches.
The results of the benchmarks are taken from the literature [11,12]. Table 1
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displays the best solution and the average solution achieved when each test case
was solved twenty times.

Additionally, the results were compared with a modified version of the
ANTCOL graph coloring algorithm of Costa and Hertz [8], called A-ET in the
sequel. Within this approach the ANT DSATUR(1) procedure was used as a
constructive method as described in [8]. The objective function was modified in
order to consider conflicts of higher order too. In addition the hill climber al-
ready incorporated in the M-ET approach was also implemented. The parameter
α was set to 1, β to 35. ρ was set equal to 0.3.

Table 1. Best and average solution after twenty test runs for the benchmark test
cases from Carter et al.[1,10,12] (Best value and best average value for each instance
is written in bold)

test case [11] [13] [14] [15] [16] [17] [18] [19] M-ET A-ET
car-f-92 best 4.6 5.2 6.0 4.0 4.3 - - 4.4 4.8 4.3

avg. 4.7 5.6 6.0 4.1 4.4 - - 4.7 4.9 4.4
car-s-91 best 5.7 6.2 6.6 4.6 5.1 5.7 - 5.4 5.7 5.2

avg. 5.8 6.5 6.6 4.7 5.2 5.8 - 5.6 5.9 5.2
ear-f-83 best 45.8 45.7 29.3 36.1 35.1 39.4 40.5 34.8 36.8 36.8

avg. 46.4 46.7 29.3 37.1 35.4 43.9 45.8 35.0 38.6 36.3
hec-s-92 best 12.9 12.4 9.2 11.3 10.6 10.9 10.8 10.8 11.3 11.1

avg. 13.4 12.6 9.2 11.5 10.7 11.4 12.0 10.9 11.5 11.4
kfu-s-93 best 17.1 18.0 13.8 13.7 13.5 - 16.5 14.1 15.0 14.5

avg. 17.8 19.5 13.8 13.9 14.0 - 18.3 14.3 15.5 14.9
lse-f-91 best 14.7 15.5 9.6 10.6 10.5 12.6 13.2 14.7 12.1 11.3

avg. 14.8 15.9 9.6 10.8 11.0 13.0 15.5 15.0 12.7 11.7
pur-s-93 best - - 3.7 - - - - - 5.4 4.6

avg. - - 3.7 - - - - - 5.6 4.6
rye-s-93 best 11.6 - 6.8 - 8.4 - - - 10.2 9.8

avg. 11.7 - 6.8 - 8.7 - - - 10.4 10.0
sta-f-83 best 158.0 161.0 158.2 168.3 157.3 157.4 158.1 134.9 157.2 157.3

avg. 158.0 167.0 158.2 168.7 157.4 157.7 159.3 135.1 157.5 157.5
tre-s-92 best 8.9 10.0 9.4 8.2 8.4 - 9.3 8.7 8.8 8.6

avg. 9.2 10.5 9.4 8.4 8.6 - 10.2 8.8 9.1 8.7
uta-s-92 best 4.4 4.2 3.5 3.2 3.5 4.1 - - 3.8 3.5

avg. 4.5 4.5 3.5 3.2 3.6 4.3 - - 3.8 3.5
ute-s-92 best 29.0 29.9 24.4 25.5 25.1 - 27.8 25.4 27.7 26.4

avg.29.1 31.3 24.4 25.8 25.2 - 29.4 25.5 28.6 27.0
yor-f-83 best 42.3 41.0 36.2 36.8 37.4 39.7 38.9 37.5 39.6 39.4

avg. 42.5 42.1 36.2 37.3 37.9 40.6 41.7 38.1 40.3 40.4

The results of table 1 can be summarized as follows: Although, the M-ET
approach does not generate outstanding results its performance is comparable
with other approaches. It finds better solutions than the approaches in [11], [13],
[18], [17] and [19] for most test cases. In addition, it is striking that no approach
outperforms all other approaches for all test cases. Thus, there are some test
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cases where M-ET finds better solutions than the approaches [14], [15] and [19],
although one must confirm that these three approaches generate better solutions
for most of the test cases. For example, M-ET found better solutions than the
approach [14] in four out of the 13 test cases.

Surprisingly, the simple AS approach A-ET outperformed the M-ET for al-
most all test cases. Even without using the hill climber better results were ob-
tained. In particular, this result is contrary to other results presented in the
literature where MMAS algorithms obtained better results for various combina-
torial optimization problems (c.f. [5,6]).

Computing times for the M-ET approach lay in the range of 10 seconds for the
smallest test cases, i.e. hec-s-92, to 2.5 hours for the pur-s-93 problem. Compared
to the M-ET approach the computing time of the A-ET combined with the hill
climber was on the average 80 % higher. Thus, one can conclude that A-ET
takes more time but gets a better solution quality than M-ET. Please note that
the same stopping stopping criteria was used for both algorithms, namely, 2500
solutions. Of course one could argue that the time saved by the M-ET approach
could be used to generate more solutions. But, increasing the number of ants
and the number of cycles to 100 did not result in achieving better solutions.

4 Conclusion

In this paper different strategies for solving exam timetabling problems were
tested. Ant colony approaches are capable of solving large real world exam
timetabling problems. The implemented algorithms generated comparable re-
sults like other high performance algorithms from the literature.

Unlike for other combinatorial optimization problems like the TSP or the QAP
for the exam timetabling problem the MMAS approach did not outperform the
simpler AS strategy. Of course, it goes without saying but proper adjusting
parameters can improve the performance of an algorithm considerably.

A self-evident extension would be to incorporate additional constraints and
requirements like e.g. scarce room resources or precedence constraints between
exams.
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