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Abstract. In this paper, a discrete particle swarm optimization (DPSO)
algorithm is presented to solve the single machine total earliness and tar-
diness penalties with a common due date. A modified version of HRM
heuristic presented by Hino et al. in [1], here we call it MHRM, is also
presented to solve the problem. In addition, the DPSO algorithm is hy-
bridized with the iterated local search (ILS) algorithm to further improve
the solution quality. The performance of the proposed DPSO algorithm is
tested on 280 benchmark instances ranging from 10 to 1000 jobs from the
OR Library. The computational experiments showed that the proposed
DPSO algorithm has generated better results, in terms of both percent-
age relative deviations from the upper bounds in Biskup and Feldmann
[2] and computational time, than Hino et al. [1].

1 Introduction

In a single machine scheduling problem with a common due date, n jobs are
available to be processed at time zero. Each job has a processing time and a
common due date. Preemption is not allowed and the objective is to sequence
jobs such that the sum of weighted earliness and tardiness penalties is minimized.
That is,

f(S) =
n∑

j=1

(αjEj + βjTj) . (1)

When the job j completes its operation before its due date, its earliness is given
by Ej = max(0, d − Cj), where Cj is the completion time of the job j. On the
other hand, if the job finishes its operation after its due date, its tardiness is
given by Tj = max(0, Cj − d) . Earliness and tardiness penalties of job j are
given by parameters αj and βj , respectively. It is well-known that for the case of
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restrictive common due date with general penalties, there is an optimal schedule
given the following properties:

1. No idle times are inserted between consecutive jobs [3].
2. The schedule is V-Shaped. In other words, jobs that are completed at or

before the due date are sequenced in non-increasing order of the ratio pj/αj .
On the other hand, jobs whose processing starts at or after the due date are
sequenced in non-decreasing order of the ratio pj/βj . Note that there might be
a straddling job, that is, a job that its processing is started before its due date
and completed after its due date [2].

3. There is an optimal schedule in which either the processing of the first job
starts at time zero or one job is completed at the due date [2].

The complexity of the restrictive common due date problem is proved to be
NP-complete in the ordinary sense [4]. Feldmann and Biskup [5] applied different
meta-heuristics such as evolutionary search (ES), simulated annealing (SA) and
threshold accepting (TA). In addition, Hino et al. [1] most recently compared
the performance of TS, GA, and their hybridization. PSO was first introduced to
optimize continuous nonlinear functions by Eberhart and Kennedy [6]. Authors
have successfully proposed a DPSO algorithm to solve the no-wait flowshop
scheduling in [7]. Based on the experience above, this study aims at solving the
single-machine total earliness and tardiness penalties with a common due date
problem by the DPSO algorithm.

Section 2 introduces the modified MHRM heuristic. Section 3 provides the
details of the proposed DPSO algorithm. The computational results on bench-
mark instances are discussed in Section 4. Finally, Section 5 summarizes the
concluding remarks.

2 Modified MHRM Heuristic

Consistent with the HRM heuristic in [1], the MHRM heuristic consists of: (i)
determining the early and tardy job sets, (ii) constructing a sequence for each
set, and (iii) setting the final schedule S as the concatenation of both sequences.
In order to ensure that S will satisfy properties (1) and (2), there will be no
idle time between consecutive jobs, and the sequences of SE and ST will be
V-shaped. The following notation consistent with Hino et al. [1] is used:

P : set of jobs to be allocated
g : idle time inserted at the beginning of the schedule
SE : set of jobs completed on the due date or earlier
ST : set of jobs completed after the due date
S : schedule representation S = (g, SE , ST )
e : candidate job for SE

t : candidate job for ST

Ee : distance between the possible completion time of job e and the due date
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T t : distance between the possible completion time of job t and the due date
dT : time window available for inserting a job in set ST

dE : time window available for inserting a job in set SE

pj : the processing time of job j
H : total processing time, H =

∑n
j=1 pj

The procedure of the modified MHRM heuristic is summarized as follows:

Step 1: Let P = 1, 2, , n;SE = ST = φ ,g = max{0, d − H ×
∑n

j=1
βj

αj+βj
};

dE = d − g and dT = g + H − d.
Step 2: Set e = arg maxjεp{pj/αj}and t = arg maxjεp{pj/βj} (in case of a
tie, select the job with the longest pj).
Step3: Set Ee = dE − pe and T t = dT .

If Ee ≤ 0, then go to step 5. If T t − pt ≤ 0 , then go to step 6.
Step 4: Choose the job to be inserted:

If Ee > T t, then SE = SE + {e},dE = dE − pe and P = P − {e}.
If Ee < T t, then ST = SET + {t},dT = dT − pt and P = P − {t}.
If Ee = T t, then if αe > βt then ST = ST +{t},dT = dT −pt and P = P −{t};
else SE = SE + {e}, dE = dE − pe and P = P − {e}. Go to step 7.

Step 5: Adjustment of the idle time (end of the space before the due date):
If g + Ee < 0, then ST = ST + {t}, dT = dT − pt and P = P − {t},
else SE′

= SE ,ST ′
= ST ∪ P ,g′ = d −

∑
jεSE′ pj , S′ = (g′, SE′

, ST ′
);

SE′′
= SE + {e}, ST ′′

= ST ∪ P − {e}, g′′ = d −
∑

jεSE′′ pj ,
S′′ = (g′′, SE′′

, ST ′′
).

If f(SE′
) ≤ f(SE′′

), then ST = ST +{t},dE = 0, dT = dT −pt +g′−g, g = g′

and P = P − {t}.
Else SE = SE + {e},dE = 0, dT = dT + g′′ − g, g = g′′ and P = P − {e}.
Go to step 7.

Step 6: Adjustment of the idle time (end of the space after the due date):
If g < T t, then SE = SE + {e}, dE = dE − pe and P = P − {e},
else ST ′

= ST ,SE′
= SE ∪ P ,g′ = d −

∑
jεSE′ pj , S′ = (g′, SE′

, ST ′
);

ST ′′
= ST + {t}, SE′′

= SE ∪ P − {t}, g′′ = d −
∑

jεSE′′ pj ,
S′′ = (g′′, SE′′

, ST ′′
).

If f(SE′
) ≤ f(SE′′

), then SE = SE + {e},dT = 0, dE = dE − pe + g′ − g,
g = g′ and P = P − {e};

else ST = ST + {t}, dT = 0, dE = dE + g − g′′, g = g′′ and P = P − {t}.
Step 7: If P �= φ then go to step 2.
Step 8: If there is a straddling job (it must be the last job in ), then SE′

= SE ,
ST ′

= ST , g′ = d−
∑

jεSE′ pj, S′ = (g′, SE′
, ST ′

). If f(S′) ≤ f(S) then g = g′.
The main difference between HRM and MHRM heuristics is due to the fact

that the inserted idle time g is calculated in Step 1 such that :

g = max{0, d − H ×
n∑

j=1

βj

αj + βj
} . (2)
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By doing so, the inserted idle time completely depends on the particular
instance. It implies that if the total tardiness penalty of a particular instance is
greater than the total earliness penalty of that instance, that is,

∑
βj >

∑
αj ,

the inserted idle time would be larger for that particular instance. Hence more
jobs would be completed before the due date. In other words, more jobs would
be early. Since

∑
βj >

∑
αj , the total penalty imposed on the fitness function

would be less than the one used in the HRM heuristic. In addition, the following
modification is made in Step 3. If the distance between the possible completion
time of candidate job t and the due date is smaller or equal to zero, both the
start time and the completion time of the job t will be before or at the due date,
i.e., the job t is not a straddling job. In our algorithm, T t − pt ≤ 0 is employed
instead of T t ≤ 0 because T t − pt ≤ 0 implies that the job t is a straddling job.
In this case, the adjustment of the idle time for the end of the space after the
due date through Step 6 should be made. Accordingly, necessary modifications
are also made in Step 5, 6, and 8.

3 Discrete Particle Swarm Optimization Algorithm

It is obvious that standard PSO equations cannot be used to generate a discrete
job permutation since position and velocity of particles are real-valued. Instead,
Pan et al. [7] proposed a new method to update the position of particles as
follows:

Xt
i = c2 ⊕ F3(c1 ⊕ F2(w ⊕ F1(Xt−1

i ), P t−1
i ), Gt−1). (3)

Given that λt
i and δt

i are temporary individuals, the update equation consists
of three components: The first component is λt

i = w ⊕ F1(Xt−1
i ), which repre-

sents the velocity of the particle. F1 indicates the binary swap operator with
the probability of w. In other words, a uniform random number r is generated
between 0 and 1. If is less than w, then the swap operator is applied to generate a
perturbed permutation of the particle by λt

i = F1(Xt−1
i ) , otherwise current per-

mutation is kept as λt
i = Xt−1

i . The second component is δt
i = c1 ⊕F2(λt

i, P
t−1
i )

where F2 indicates the one-cut crossover operator with the probability of c1.
Note that λt

i and P t−1
i will be the first and second parents for the crossover

operator, respectively. It is resulted either in δt
i = F2(λt

i, P
t−1
i ) or in δt

i = λt
i

depending on the choice of a uniform random number. The third component is
Xt

i = c2 ⊕ F3(δt
i , G

t−1) where F3 indicates the two-cut crossover operator with
the probability of c2. It is resulted either in Xt

i = F3(δt
i , G

t−1) or in Xt
i = δt

i

depending on the choice of a uniform random number. The pseudo code of the
DPSO algorithm is given in Fig.1.

A binary solution representation is employed for the problem. The xt
ij , the

jth dimension of the particle Xt
i , denotes a job; if xt

ij = 0, the job j is completed
before or at the due date, which belongs to the set SE ; if xt

ij = 1 , the job j is
finished after the due date, which belongs to the set ST .

After applying the DPSO operators, the sets SE and ST are determined from
the binary representation. Then every fitness calculation follows property (2).
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Note that the set ST might contain a straddling job. If there is a straddling job,
the first job in the early job set is started in time zero. After completing the
last job of the early job set, the straddling job and the jobs in the tardy job set
are sequenced. On the other hand, if there is no straddling job, the completion
time of the last job in the early job set is matched with the due date and the
processing in the tardy job set is followed immediately.

Initialize parameters
Initialize population
Evaluate
Do{

Find the personal best
Find the global best
Update position
Evaluate
Apply local search(optional)

}While (Not Termination)

Fig. 1. DPSO algorithm with a local search

s0 = Gt

s=LocalSearch(s0)
Do{

s1=perturbation(s)
s2=LocalSearch(s1)
s=AcceptanceCriterion(s, s2)

}While (Not Termination)
if f(s) < f(Gt) then Gt = s)

Fig. 2. Iterated local search algorithm

At the end of each iteration, the ILS algorithm is applied to the global best so-
lution Gt to further improve the solution quality. The ILS algorithm in Fig.2 was
based on the simple binary swap neighborhood. The perturbation strength was
5 binary swaps to avoid getting trapped at the local minima. In the LocalSearch
procedure, the binary swap operator was used with the size of min(6n, 600) and
the size of the do−while loop was 10. The binary swap operator consists of two
steps: (i) generate two random integers, a and b, in the range [1, n]; (ii) if xt

ia =
xt

ib, then xt
ia = (xt

ia +1)mod2; else xt
ia = (xt

ia +1)mod2 and xt
ib = (xt

ib +1)mod2.

4 Computational Results

The DPSO algorithm is coded in Visual C++ and run on an Intel P IV 2.4 GHz
PC with 256MB memory. Regarding the parameters of the DPSO algorithm,
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the crossover probabilities were taken as c1 = c2 = 0.8, respectively. The swap
probability was set to w = 0.95. One of the solutions in the population is con-
structed with the MHRM heuristic, the rest is constructed randomly. The pro-
posed DPSO algorithm was applied to the benchmark problems developed in
Biskup and Feldmann [2]. 10 runs were carried out for each problem instance
and the average percentage relative deviation was computed as follows:

Δavg =
R∑

i=1

(
(Fi − Fref ) × 100

Fref

)
/R (4)

where Fi,Fref , and R were the fitness function value generated by the DPSO
algorithm in each run, the reference upper bounds generated by Biskup and
Feldmann [2], and the total number of runs, respectively. The maximum number
of iterations was fixed to 50 and the algorithm was terminated when the global
best solution was not improved in 10 consecutive iterations. The computational
results of the MHRM heuristic are given in Table 1 where the MHRM heuris-
tic is superior to its counterpart HRM heuristic in terms of relative percent
improvement.

Most recently, Hino et. al. [1] developed a TS, GA and hybridization of both
of them denoted as HTG and HGT. They employed the same benchmark suite
of Biskup and Feldmann [2]. Table 2 summarizes the computational results of
the DPSO and those in Hino et al. [1]. As seen in Table 2, the DPSO algorithm
outperforms all the metaheuristics of Hino et al. [1] in terms of the minimum
percentage relative devia-tion since the largest improvement of -2.15 on overall
mean is achieved. Besides the average performance of the DPSO algorithm, it is
also interesting to note that even the worst performance of the DPSO algorithm,
i.e., the maximum percentage relative deviation, was better than TS, GA, HGT
and HTG algorithms of Hino et al. [1]. Regarding the CPU time requirement of
the DPSO algorithm, the maximum CPU time until termination was not more
than 1.33 seconds on overall average whereas Hino et al. [1] reported that their
average CPU time requirement was 21.5 and 7.8 seconds for TS and hybrid

Table 1. Statistics for the MHRM Heuristic

h 10 20 50 100 200 500 1000 Mean
0.2 1.53 -3.97 -5.33 -6.02 -5.63 -6.32 -6.68 -4.50

HRM 0.4 8.68 0.46 -3.87 -4.42 -3.51 -3.46 -4.26 -1.48
0.6 19.27 9.78 7.59 4.69 3.71 2.53 3.23 7.26
0.8 22.97 13.52 8.10 4.70 3.71 2.53 3.23 8.39

Mean 13.11 5.17 1.62 -0.26 -0.43 -1.18 -1.12 2.42
h 10 20 50 100 200 500 1000 Mean

0.2 1.00 -3.57 -5.45 -6.02 -5.62 -6.32 -6.69 -4.67
MHRM 0.4 5.91 -0.49 -4.03 -4.27 -3.52 -3.45 -4.27 -2.02

0.6 2.77 2.02 1.51 1.50 1.71 1.41 1.55 1.78
0.8 3.95 4.07 2.13 1.43 1.71 1.41 1.55 2.32

Mean 3.41 0.51 -1.46 -1.84 -1.43 -1.74 -1.97 -0.65
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strategies, respectively. To sum up, all the statistics show and prove that the
DPSO algorithm was superior to all the metaheuristics presented in Hino et al.
[1]. Note that the best results so far in the literature are reported in bold in
Table 2.

Table 2. Statistics for the DPSO Algorithm

DPSO TS GA HTG HGT

h Δmin Δmax Δavg Δstd Δmin Δmin Δmin Δmin

10 0.2 0.00 0.00 0.00 0.00 0.25 0.12 0.12 0.12
0.4 0.00 0.00 0.00 0.00 0.24 0.19 0.19 0.19
0.6 0.00 0.00 0.00 0.00 0.10 0.03 0.03 0.01
0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 0.2 -3.84 -3.84 -3.84 0.00 -3.84 -3.84 -3.84 -3.84
0.4 -1.63 -1.63 -1.63 0.00 -1.62 -1.62 -1.62 -1.62
0.6 -0.72 -0.72 -0.72 0.00 -0.71 -0.68 -0.71 -0.71
0.8 -0.41 -0.41 -0.41 0.00 -0.41 -0.28 -0.41 -0.41

50 0.2 -5.68 -5.67 -5.68 0.01 -5.70 -5.68 -5.70 -5.70
0.4 -4.66 -4.58 -4.64 0.03 -4.66 -4.60 -4.66 -4.66
0.6 -0.34 -0.34 -0.34 0.00 -0.32 -0.31 -0.27 -0.31
0.8 -0.24 -0.24 -0.24 0.00 -0.24 -0.19 -0.23 -0.23

100 0.2 -6.19 -6.16 -6.18 0.01 -6.19 -6.17 -6.19 -6.19
0.4 -4.94 -4.88 -4.92 0.02 -4.93 -4.91 -4.93 -4.93
0.6 -0.15 -0.15 -0.15 0.00 -0.01 -0.12 0.08 0.04
0.8 -0.18 -0.18 -0.18 0.00 -0.15 -0.12 -0.08 -0.11

200 0.2 -5.78 -5.73 -5.76 0.02 -5.76 -5.74 -5.76 -5.76
0.4 -3.74 -3.67 -3.72 0.03 -3.74 -3.75 -3.75 -3.75
0.6 -0.15 -0.15 -0.15 0.00 -0.01 -0.13 0.37 0.07
0.8 -0.15 -0.15 -0.15 0.00 -0.04 -0.14 0.26 0.07

500 0.2 -6.42 -6.39 -6.41 0.01 -6.41 -6.41 -6.41 -6.41
0.4 -3.56 -3.49 -3.53 0.02 -3.57 -3.58 -3.58 -3.58
0.6 -0.11 -0.11 -0.11 0.00 0.25 -0.11 0.73 0.15
0.8 -0.11 -0.11 -0.11 0.00 0.21 -0.11 0.73 0.13

1000 0.2 -6.76 -6.73 -6.75 0.01 -6.73 -6.75 -6.74 -6.74
0.4 -4.38 -4.32 -4.36 0.02 -4.39 -4.40 -4.39 -4.39
0.6 -0.06 -0.06 -0.06 0.00 1.01 -0.05 1.28 0.42
0.8 -0.06 -0.06 -0.06 0.00 1.13 -0.05 1.28 0.40

Mean -2.15 -2.13 -2.15 0.01 -2.01 -2.12 -1.94 -2.06

5 Conclusions

A modified version of the HRM heuristic with much better results is developed
along with the discrete version of the PSO algorithm. The DPSO algorithm
is hybridized with the ILS algorithm to further improve the computational re-
sults. The proposed DPSO algorithm was applied to 280 benchmark instances
of Biskup and Feldmann [2]. The solution quality was evaluated according to the
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reference upper bounds generated by Biskup and Feldmann [2]. The computa-
tional results show that the proposed DPSO algorithm generated better results
than those in Hino et. al. [1].
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