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Preface

ANTS – The International Workshop on Ant Colony Optimization and Swarm
Intelligence is now at its fifth edition. The series started in 1998 with the or-
ganization of ANTS 1998. At that time the goal was to gather in a common
meeting those researchers interested in ant colony optimization: more than 50
researchers from around the world joined for the first time in Brussels, Belgium,
to discuss ant colony optimization and swarm intelligence related research. A
selection of the best papers presented at the workshop was published as a special
issue of the Future Generation Computer Systems journal (Vol. 16, No. 8, 2000).
Two years later, ANTS 2000, organized again in Brussels, attracted more than
70 participants. The 41 extended abstracts presented as talks or posters at the
workshop were collected in a booklet distributed to participants, and a selection
of the best papers was published as a special section of the IEEE Transactions
on Evolutionary Computation (Vol. 6, No. 4, 2002).

After these first two successful editions, it was decided to make of ANTS a
series of biannual events with official workshop proceedings. The third and fourth
editions were organized in September 2002 and September 2004, respectively.
Proceedings were published by Springer within the Lecture Notes in Computer
Science (LNCS) series.

The proceedings of ANTS 2002, LNCS Volume 2463, contained 36 contribu-
tions: 17 full papers, 11 short papers, and 8 extended abstracts, selected out of a
total of 52 submissions. Those of ANTS 2004, LNCS Volume 3172, contained 50
contributions: 22 full papers, 19 short papers, and 9 extended abstracts, selected
out of a total of 79 submissions.

Swarm intelligence is a rapidly growing field and the number of papers sub-
mitted to the 2006 edition reflects this growth: we received 115 submissions, a
45% increase with respect to the previous edition. Besides the higher number of
researchers in the field, this increase can also be explained by the higher num-
ber of submitted papers that cover important subjects such as particle swarm
optimization, swarm robotics, or ant-based clustering. ANTS is therefore slowly
removing the initial bias towards ant colony optimization and becoming more
and more the conference of the whole swarm intelligence community.

The higher number of submissions allowed us to increase the selective pres-
sure: only 42% of the submitted papers was accepted for publication (i.e., 27 full
papers and 23 short papers). This high selection threshold has made it possible
to have a program of the highest standards. In addition to the accepted papers,
a small number (12) of extended abstracts was selected for presentation: these
are works that, although in a rather preliminary phase, show high potential and
are therefore worth being discussed at the workshop.

To conclude this preface, we would like to thank all the people who helped
in organizing ANTS 2006. We are very grateful to the authors who submitted
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their works; to the members of the International Program Committee and to
the additional referees for their detailed reviews; to the IRIDIA people for their
enthusiasm in helping with organizational matters; to the Université Libre de
Bruxelles for providing rooms and logistic support; and, more generally, to all
those contributing to the organization of the workshop. Finally, we would like to
thank our sponsors: the IEEE Computational Intelligence Society, COMP2SYS,1

AntOptima,2 the Belgian National Funds for Scientific Research, and the French
community of Belgium.

June 2006 Marco Dorigo
Luca M. Gambardella

Mauro Birattari
Alcherio Martinoli

Riccardo Poli
Thomas Stützle

1 A Marie Curie Early Stage Training Site funded by the European Commission. More
information is available at iridia.ulb.ac.be/comp2sys.

2 More information is available at www.antoptima.com.
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Gianni Di Caro IDSIA, USI-SUPSI, Switzerland
Karl Doerner Universität Wien, Austria
Kathryn Dowsland University of Nottingham, UK



VIII Organization

Hai-Bin Duan Beihang University, P. R. China
Andries Engelbrecht University of Pretoria, South Africa
Alex Freitas University of Kent, UK
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A Comparison of Particle Swarm Optimization
Algorithms Based on Run-Length Distributions

Marco A. Montes de Oca, Thomas Stützle, Mauro Birattari, and Marco Dorigo

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{mmontes, stuetzle, mbiro, mdorigo}@ulb.ac.be

Abstract. In this paper we report an empirical comparison of some
of the most influential Particle Swarm Optimization (PSO) algorithms
based on run-length distributions (RLDs). The advantage of our ap-
proach over the usual report pattern (average iterations to reach a pre-
defined goal, success rates, and standard deviations) found in the current
PSO literature is that it is possible to evaluate the performance of an
algorithm on different application scenarios at the same time. The RLDs
reported in this paper show some of the strengths and weaknesses of the
studied algorithms and suggest ways of improving their performance.

1 Introduction

Since the introduction of the first Particle Swarm Optimization (PSO) algo-
rithm by Kennedy and Eberhart [1,2], many variants of the original algorithm
have been proposed. The approach followed by many researchers to evaluate the
performance of their variants has been to compare the proposed variant with
the original version or, more recently, with the so-called canonical version [3].
In many cases, these new variants are reported to perform better, see for in-
stance [4,5,6,7].

Unfortunately, since there are no cross-comparisons among variants, there is
no general agreement on which PSO variant(s) could be considered the state-
of-the-art in the field. The motivation for conducting the comparison reported
in this paper is the identification of these variant(s). However, determining the
state-of the-art algorithm is not a trivial task. In particular, one must be aware
of the possible application scenarios in which a stochastic optimization algorithm
may be used. Our main concern can be solution quality, time or both. Of course,
in any case, the sooner we get a solution, the better. However, because of the
stochastic nature of these algorithms, finding a high quality solution in a timely
fashion only happens with a certain probability. Characterizing the distribution
of this probability is the purpose of the run-time distribution. Formally, a sto-
chastic optimization algorithm A applied to a problem Π will find a solution of
quality q in time t with probability PA,Π(q, t) = P (RTA,Π ≤ t, SQA,Π ≤ q), and
the bivariate random variable (RTA,Π , SQA,Π) describes the run-time and solu-
tion quality behavior of an algorithm A when applied to problem Π ; the probabil-
ity distribution of this random variable is also known as the run-time distribution
of A on Π [8]. Since in continuous optimization we measure run-time in terms of

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the number of function evaluations, we talk of run-length distributions (RLDs)
rather than run-time distributions. This is the approach followed in this paper.

An RLD completely characterizes the performance of a stochastic optimiza-
tion algorithm on a particular problem, regardless of the actual application sce-
nario in which we may be interested in. We say this because with an RLD we can
estimate the probability of finding a solution of a certain quality given some time
limit. This is the main reason why we chose to evaluate some of the most influen-
tial PSO algorithms using RLDs. As a bonus, an analysis based on RLDs allows
the identification of some strengths and weaknesses of the studied algorithms
and may also be used to design improved versions.

The rest of the paper is organized as follows. Section 2 briefly describes the
PSO technique and the variants compared in this paper. Section 3 describes the
experimental setup adopted for our comparison. Section 4 presents the develop-
ment of the solution quality over time and the RLDs of the studied algorithms.
Section 5 summarizes the main contributions and results presented in the paper.

2 Particle Swarm Optimization Algorithms

In the original PSO algorithm [1,2], a fixed number of solutions (called particles
in a PSO context) are randomly initialized in a d-dimensional solution space.
A particle i at time step t has a position vector xt

i and a velocity vector vt
i.

An objective function f : S → �, with S ⊂ �d, determines the quality of a
particle’s position, i.e., a particle’s position represents a solution to the problem
being solved. Each particle i has a vector pi that represents its own best pre-
vious position that has an associated objective function value pbesti = f(pi).
Finally, the best position the swarm has ever visited is stored in a vector s whose
objective function value is gbest = f(s).

The algorithm iterates updating the velocities and positions of the particles
until a stopping criterion is met. The update rules are:

vt+1
i = vt

i + ϕ1U1(0, 1) ∗ (pi − xt
i) + ϕ2U2(0, 1) ∗ (s − xt

i) , (1)

xt+1
i = xt

i + vt+1
i , (2)

where ϕ1 and ϕ2 are two constants called the cognitive and social acceleration
coefficients respectively, U1(0, 1) and U2(0, 1) are two d-dimensional uniformly
distributed random vectors in which each component goes from zero to one, and
∗ is an element-by-element vector multiplication operator.

The variants we compare in this study were selected either because they are
among the most commonly used in the field or because they look very promising.
In the following subsections, we describe them in more detail.

2.1 Canonical Particle Swarm Optimizer

Clerc and Kennedy [3] introduced a constriction factor into PSO to control
the convergence properties of the particles. This constriction factor is added in
Equation 1 giving
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vt+1
i = χ

(
vt

i + ϕ1U1(0, 1) ∗ (pi − xt
i) + ϕ2U2(0, 1) ∗ (s − xt

i)
)

, (3)

with
χ = 2k/

(∣∣∣2 − ϕ −
√

ϕ2 − 4ϕ
∣∣∣) , (4)

where k ∈ [0, 1], ϕ = ϕ1 + ϕ2 and ϕ > 4. Usually, k is set to 1 and both ϕ1 and
ϕ2 are set to 2.05, giving as a result χ equal to 0.729 [9,10]. This variant has
been so widely used that it is known as the canonical PSO.

2.2 Time-Varying Inertia Weight Particle Swarm Optimizer

Shi and Eberhart [4,11] introduced the idea of a time-varying inertia weight. The
idea was to control the diversification–intensification behavior of the original
PSO. The velocity update rule is

vt+1
i = w(t)vt

i + ϕ1U1(0, 1) ∗ (pi − xt
i) + ϕ2U2(0, 1) ∗ (s − xt

i) , (5)

where w(t) is the time-varying inertia weight which usually is linearly adapted
from an initial value to a final one. In most cases, ϕ1 and ϕ2 are both set to 2.

There are two ways of varying the inertia weight in time: decreasingly (e.g.,
as in [4,12,11]) and increasingly (e.g., as in [13,14]). In this paper, we included
both variants for the sake of completeness. Normally, the starting value of the
inertia weight is set to 0.9 and the final to 0.4. Zheng et al. [13,14], use the
opposite settings. In the results section, these variants are identified by Dec-IW
and Inc-IW, respectively.

2.3 Stochastic Inertia Weight Particle Swarm Optimizer

Eberhart and Shi [15] proposed another variant in which the inertia weight is
randomly selected according to a uniform distribution in the range [0.5,1.0]. This
range was inspired by Clerc and Kennedy’s constriction factor. In this version,
the acceleration coefficients are set to 1.494 as a result of the multiplication
χ·ϕ1,2. Although this variant was originally proposed for dynamic environments,
it has also been shown to be a competitive optimizer for static ones [16]. In the
results section this variant is identified by Sto-IW.

2.4 Fully Informed Particle Swarm Optimizer

In the fully informed particle swarm (FIPS) proposed by Mendes et al. [7], a
particle uses information from all its topological neighbors. This variant is based
on the fact that Clerc and Kennedy’s constriction factor does not enforce that
the value ϕ should be split only between two attractors.

For a given particle, the way ϕ (i.e., the sum of the acceleration coefficients) is
decomposed is ϕk = ϕ/|N | ∀k ∈ N where N is the neighborhood of the particle.
As a result, the new velocity update equation becomes

vt+1
i = χ

[
vt

i +
∑
k∈N

ϕkW(k)Uk(0, 1) ∗ (pk − xt
i)

]
, (6)

where W(k) is a weighting function.
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2.5 Self-organizing Hierarchical Particle Swarm Optimizer with
Time-Varying Acceleration Coefficients

The self-organizing hierarchical particle swarm optimizer with time-varying ac-
celeration coefficients (HPSOTVAC) proposed by Ratnaweera et al. [16] drops
the velocity term from the right side of Equation 5. If a particle’s new velocity
becomes zero (in any dimension), it is reinitialized to some value proportional
to the maximum allowable velocity Vmax. HPSOTVAC linearly adapts the value
of the acceleration coefficients ϕ1 and ϕ2 to enforce the diversification behavior
at the beginning of the run and the intensification behavior at the end. ϕ1 is
decreased from 2.5 to 0.5 and ϕ2 increases from 0.5 to 2.5. Finally, the reinitial-
ization velocity is also linearly decreased from Vmax at the beginning of the run
to 0.1 · Vmax at the end.

2.6 Adaptive Hierarchical Particle Swarm Optimizer

Proposed by Janson and Middendorf [17], the adaptive hierarchical PSO (AH-
PSO) is an example of a PSO with dynamic adaptation of the population topol-
ogy. In AHPSO, the topology is a tree-like structure in which particles with a
higher fitness evaluation are located in the upper nodes of the tree. At each
iteration, a child particle updates its velocity considering its own previous best
performance and the previous best performance of its parent. Additionally, be-
fore the velocity updating process takes place, the previous best fitness value of
any particle is compared with that of its parent. If it is better, child and parent
swap their positions in the hierarchy.

The branching degree of the tree is a factor that can balance the diversifica-
tion-intensification behavior of the algorithm. To dynamically adapt the algo-
rithm to the stage of the optimization process, the branching degree is decreased
by kadapt degrees until a certain minimum degree dmin is reached. This process
takes place every fadapt number of iterations. The parameters that control this
process need to be tuned for each problem [17]. In our experiments, for the
reasons explained in the next section, we set the initial branching factor to 20,
parameters dmin, fadapt, and kadapt were set to 2, 1000 ∗ m, and 3 respectively,
where m is the number of particles.

3 Experimental Setup

All the PSO variants described in the previous section were implemented for this
comparison. To ensure the correctness of our implementations, we tested them
on the same problems with the same parameters as reported in the literature1.
To allow the comparison of the results with previous works, we used some of the
most common benchmark functions in the PSO literature: Sphere, Rosenbrock,
Rastrigin, Griewank, and Schaffer’s F6 functions in 30 dimensions. The mathe-
matical definition of these functions is readily available in the literature (cf. [10]).
1 For space restrictions, we refer the interested reader to the following address:

http://iridia.ulb.ac.be/supp/IridiaSupp2006-003/index.html
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In our runs, these functions were shifted and biased exactly as specified in [18]2.
Because of this, our initializations are, in all cases, asymmetric with respect to
the global optimum.

The reported results are based on 100 independent trials of 1 000 000 func-
tion evaluations. In our experiments, we used swarms of 20 particles using two
different topologies: fully connected and ring with unitary neighborhood size.
The results are organized by population topology. Both topologies included self-
references (i.e., every particle is a neighbor to itself). This separation was needed
to highlight the influence of the used topology in the behavior of the algorithms.
Note that the AHPSO algorithm uses neither a fully connected topology nor a
ring topology and therefore appears in both sets of results.

Before proceeding to the presentation of our results, it is worth noting that
most PSO algorithms are not robust in their parameterization. For example,
in the PSO variants based on a time-varying inertia weight, the slope of the
increasing or decreasing inertia weight function is determined by the maximum
number of function evaluations. Another problem (for comparison purposes)
is that it is also possible to fine-tune the parameters of a variant to solve a
particular problem. A possible solution to this problem is to fine-tune all variants
for the problem at hand and proceed with the comparison; however, if our aim is
to solve real-world problems which generally have a structure we do not know in
advance, we need algorithms with a set of “normally good” parameters. For this
reason, in this study each algorithm used the same parameterization across the
benchmark problems. The actual values chosen for the parameters have already
been mentioned in the preceding sections.

4 Results

Tables 1 and 2 show the average value and standard deviation of the number
of function evaluations needed to achieve a certain solution quality with fully
connected and ring topologies, respectively. For each function, there are three
different solution qualities. The first one corresponds to the usual goal for that
function (cf. [10]). The second and third can be considered medium and high
solution qualities, respectively. The absolute values can be computed as follows:
if, for example, the desired solution quality is 0.01% and the optimum is at
-130.0, it means that the goal to reach is −130− (0.0001×−130.0) = −129.987.

Most variants, most notably FIPS, are greatly affected in their performance by
the used topology. With a fully connected topology, most of the tested variants
reach the specified solution quality faster than with the ring topology. FIPS
performs poorly with this topology: only in 4 out of 15 cases it reaches the
specified solution quality. However, whenever it does, it is the fastest algorithm.

The data shown in Tables 1 and 2 should be taken cum grano salis. The
averages and standard deviations reported there are computed over successful
runs only. Since these data alone can be misleading, the median solution qual-
ity over time (not included in the paper due to space restrictions) is reported
2 The values of the optima are specified in Tables 1 and 2.



6 M.A. Montes de Oca et al.

in the already mentioned URL. However, the good performance of FIPS us-
ing the ring topology is confirmed by the median. FIPS is among the fastest
variants.

HPSOTVAC is the only variant that is able to find the highest solution quality
target in the Rastrigin function. HPSOTVAC succeeds at reaching the goal but
spends many function evaluations to do that.

AHPSO performs relatively better than the other variants when they use the
ring topology. This is expected since AHPSO adapts the population hierarchy
from a highly connected one to a loosely connected one, so it exploits the benefits
of converging faster at the beginning of the run. As seen from the results, fast

Table 1. Average value and standard deviation of the number of function evaluations
needed to achieve a certain solution quality (S.Q.) using the fully connected topology.
Only successful runs are considered. {f1=Griewank (optimum at -130.0), f2=Rastrigin
(optimum at -330), f3=Rosenbrock (optimum at 390), f4=Schaffer’s F6 (optimum at
-300), f5=Sphere (optimum at -450)}.

Function S.Q. (%) AHPSO Canonical FIPS Dec-IW HPSOTVAC Inc-IW Sto-IW

f1

0.077
9641.3 8345.8 – 433036 25741.8 8365.5 9713.8
1413 1271.4 – 24012.3 1647.1 852.8 1483.5

0.01 11613.8 9784.1 – 442995 34474.3 10115.8 11806.7
1508.1 1153 – 15996.2 7430.5 1274.6 1789

0.001
12994.3 11322.7 – 453478 57830 41082.6 13306.2
1481 2120.2 – 21515.5 61113.8 166025 2335.8

f2

30.30
4011 3836.6 960 364350 29852.8 53104.4 4820.7

1478.6 1065.2 56.5 42590.1 21636.7 212169 1534.7

15
6295 5550 – 427895 101322 516798 7758
1123 1400.1 – 30835.2 44487.3 490241 2554.6

1 – – – – 635060 – –
– – – – 133964 – –

f3

25.64 108546 50148.6 – 492989 489920 22381.2 56747.8
150900 58874 – 70214.1 258767 19505.5 105101

10
153596 87750.5 – 548089 665170 67398.8 95153.8
204835 90431.8 – 85071.9 205934 104077 148441

1
353182 168799 – 653042 762488 288477 232858
201800 97989.6 – 116809 218223 208034 152029

f4

3.3 × 10−6 33636.3 21044.6 5230 115876 84893.3 72287.1 56837.6
93014.2 44560.4 3921.3 24171.4 184640 196370 172404

1 × 10−7 34306.1 21478.2 5540 131253 86826 58508.4 57350.8
93024.3 44536.7 3964.9 22963.3 184097 161070 172359

1 × 10−8 34540 21789.6 5724 140434 88095.1 58760.6 57698.4
92995.1 44506.6 3932.1 19112.8 183701 161142 172325

f5

0.0022
11342.8 10913 – 433345 31210.4 8135.1 11127.8
1386.8 2255.7 – 6885.3 1436.4 944.4 1317

0.0002 14000.6 13122.4 – 446824 40913 9772 13680.4
1468.2 2648 – 6707.7 1616.7 946 1919

0.00001
15862.6 14955.8 – 456062 48546.6 11147.4 15469.6
1506.1 2795.7 – 6346.5 1723 1152 1890.7
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Table 2. Average value and standard deviation of the number of function evalua-
tions needed to achieve a certain solution quality (S.Q.) using the ring topology. Only
successful runs are considered. {f1=Griewank (optimum at -130.0), f2=Rastrigin (opti-
mum at -330), f3=Rosenbrock (optimum at 390), f4=Schaffer’s F6 (optimum at -300),
f5=Sphere (optimum at -450)}.

Function S.Q. (%) AHPSO Canonical FIPS Dec-IW HPSOTVAC Inc-IW Sto-IW

f1

0.077
9641.3 12377.8 8030.2 456568 29862 17268.8 15530.2
1413 849 957.8 11431.9 1538.6 1192.3 1538.2

0.01 11613.8 15865.6 12454.5 499384 40342.2 29852.1 23091.9
1508.1 4322.2 7074.7 68132.2 3660.7 50030.8 37164.4

0.001
12994.3 32157.9 21422.5 536619 60952.1 61165.4 35051.8

1481 62991 26631.3 90978.1 36481 115035 71418.5

f2

30.30
4011 30091.3 22599.6 360126 30052.8 34257.8 19767.8
1478.6 89696.1 9998.2 63803.9 12946.6 142877 84546.4

15
6295 – 136648 460690 117057 685132 206669
1123 – 100821 59069.9 37364.8 429521 275732

1 – – – – 811247 – –
– – – – 107569 – –

f3

25.64 108546 104684 226828 518732 361997 127764 151060
150900 130114 252722 70783.1 325196 154960 188680

10
153596 189872 320153 605140 291822 173475 215458
204835 216622 270742 124911 263481 166956 233277

1
353182 426285 443895 734466 – 531935 458950
201800 221124 242211 146611 – 270172 262995

f4

3.3 × 10−6 33636.3 43691.4 40416.9 123649 126988 28014 40241.2
93014.2 89702.5 90967.5 28220.1 204489 32195.1 79386.6

1 × 10−7 34306.1 44897.6 49353.5 139871 129022 29321.8 42340.2
93024.3 89965.7 92344.4 27231.6 204003 32216.9 82079

1 × 10−8 34540 45482.8 54939.6 150797 130576 29771.6 43142.4
92995.1 89856.7 92882.9 27877.7 203686 32327.5 82122.1

f5

0.0022
11342.8 13693.6 8266 459971 35518.2 14923 17148.6
1386.8 572.3 480.3 9304.4 1382.3 894.8 1129.21

0.0001
14000.6 16421.4 9920.8 477006 47480 18077.4 20660.8
1468.2 663.3 491.7 8254.2 1469.7 956.3 1265.5

0.00001 15862.6 18484.2 11169.6 488408 56889 20430.6 23289.4
1506.1 684.3 523.2 7977.2 1923.1 1055 1344.9

convergence is somehow associated to the fully connected topology, or at least
with a highly connected one.

The Canonical PSO and the Increasing Inertia Weight variants perform pretty
well. With the fully connected topology, they are the best performers in 10 out
of 15 cases. With the ring topology, this number drops to only 4. These variants
clearly exploit the convergence properties of the fully connected topology.

In this paper we report qualified RLDs which are cross-sections along the com-
puting time axis of the full joint distribution of the bivariate random variable
(RTA,Π , SQA,Π) described in Section 1. The interested reader is referred to [8]
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for more information about RLDs. Figures 1 and 2 show the RLDs in four
benchmark functions. The shown RLDs correspond to solution qualities of 0.01%
for Griewank function, 30% for Rastrigin function, 10% for Rosenbrock function,
and 0.0001% for Schaffer’s F6 function. The results are organized by population
topology: on the left, the results obtained using a fully connected topology; on
the right, using the ring topology.

The “slope” of the shown curves point out interesting features of the algo-
rithms. If an RLD for a given solution quality is steep (but complete), it means
that the algorithm finds the solution easily. If the demanded solution quality is
high, the algorithm will need more function evaluations to find it. This will cause
the curve to change its position (the higher the quality, the more to the right)
and, possibly, its slope. This is the case with the HPSOTVAC variant using the
ring topology in the Griewank function (Figure 1,(b)). It can be seen, however,
that this is an exception and not the rule. Most variants have curves with low
steepness or steep incomplete curves which is an indication that in some trials
the algorithm gets stuck in some local optima far from the target solution quality.

An analysis based on RLDs allows us to measure the severity of search stag-
nation experienced by optimization algorithms and lets us devise ways to coun-
teract it. For example, all variants suffer from severe stagnation when solving
Griewank and Rastrigin problems. To counteract it, they could use a restarting
mechanism as suggested by Hoos and Stützle [8].

Another related symptom of stagnation can be seen in the RLDs for Rosen-
brock and Schaffer’s F6 functions. In these cases, the RLDs have a low steepness
which highlights the lack of diversification strategies in most of the algorithms.
In these cases stagnation exists but is not as severe as in Griewank and Rastrigin.

The only variant that do not follow the pattern in these two problems is
the one based on a decreasing inertia weight and is the only one designed with
diversification in mind. This variant was designed to explore the search space at
the beginning and intensify the search near the end of a run. This could explain
the steepness of its RLDs in these two problems.

5 Conclusions

In this paper we empirically compared seven of the most influential or promising
variants of the original particle swarm optimization algorithm. Our approach
was to use run-length distributions (RLDs) and statistics of the solution quality
development over time.

Regarding the behavior shown by the tested PSO variants, it is evident how
important is the choice of the neighborhood topology in the performance of PSO
algorithms. This is something already known in the field, but the measurement
of its influence in the stagnation behavior of PSO algorithms had never been
done before. With respect to our initial motivation, we limited ourselves to the
comparison of some of the most influential variants, and from our results we did
not find any dominant variant.

One of the advantages of RLDs is that they allow the evaluation of a stochas-
tic optimization algorithm regardless of the actual application scenario it may be
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used in. Another advantage is that they allow the identification of some strengths
and weaknesses of the studied algorithms that can be used to improve their per-
formance. Future research will focus on exploiting the information provided by
RLDs to the engineering of PSO variants. We sketched how this could be done.
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Abstract. A theoretical framework and model is presented to study the
self-organized behavior of probabilistic routing protocols for computer
networks. Such soft routing protocols have attracted attention for deliv-
ering packets reliably, robustly, and efficiently. The framework supports
several features necessary for emergent routing behavior, including feed-
back loops and indirect communication between peers. Efficient global
operating parameters can be estimated without resorting to expensive
monte-carlo simulation of the whole system. Key model parameters are
routing sensitivity and routing threshold, or noise, which control the
“randomness” of packet routes between source and destination, and a
metric estimator. Global network characteristics are estimated, includ-
ing steady state routing probabilities, average path length, and path
robustness.

The framework is based on a markov chain analysis. Individual net-
work nodes are represented as states. Standard techniques are used to
find primary statistics of the steady state global routing pattern, given
a set of link costs. The use of packets to collect information about, or
“sample,” the network for new path information is also reviewed. How
the network sample rate influences performance is investigated.

1 Introduction

1.1 Overview

Adaptive behavior is one of the fundamental requirements of modern network
routing protocols [1]. Deterministic approaches are able to perform well in rel-
atively static networks by relying on traditional link state or distance vector
shortest path algorithms. Difficulty arises under dynamic conditions when route
costs are highly variable or the topology itself is unstable. Multipath routing
is often cited as a solution, however its implementation is complicated by the
need to manage additional routes; multipath routing does not fit elegantly into a
traditional routing framework. Such a scenario is especially relevant in mesh and
ad-hoc networks, where the communications characteristics of wireless links are
subject to large and frequent variations. Probabilistic routing (here also known as
soft routing or p.routing) is able to maintain route utility estimates on all routes
simultaneously in one unified framework. Good paths are used proportionally
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more than bad ones, and all paths are successively refined based on simple local
interactions between hosts. Adaptive end-to-end routing is an emergent property
of the group. Soft routing is ultimately able to outperform deterministic routing
(see Section 1.2 for details).

Probabilistic routing algorithms contain many parameters that influence
their performance. Though there are several possible formulations of p.routing,
each approach generally has three primary parameters. These are a sensitivity
parameter, which controls the bias towards well performing links and paths, a
noise parameter, which sets a lower bound on the entropy of the routing distri-
bution, and an estimation parameter, which determines how different measure-
ments of the network are combined to determine a single estimate of network
state. Related issues include how often metric estimates are updated and how
fast the network itself changes.

These parameters define interactions at a local level, such as at each network
node, but it is unclear how they affect global behaviors, such as routing patterns.
System properties of interest might include the expected per-packet path cost
between a source and destination, or a robustness measure of the equilibrium
routing solution. Extensive simulation can be used to calculate these charac-
teristics, but an analytical model which can determine (possibly optimal) local
parameter values based on required global behavior is missing. The framework
presented here is the first step towards such a model.

1.2 Previous Work

Little work has been done to analytically model the performance of soft rout-
ing algorithms. The vast majority of the effort in the area has been simulation
based. A variety of protocols have been proposed, primarily biologically inspired,
including Q-Routing [2] (a reinforcement learning approach), Ant-Based Control
(ABC) [3], AntNet [4], Cooperative Asymmetric Forwarding (CAF) [5], Proba-
bilistic Emergent Routing Algorithm (PERA) [6], Ant-based Routing Algorithm
(ARA) [7], Mobile Ant-Based Routing (MABR) [8], Multiple Ant Colony Op-
timization (MACO) [9], Termite [10], Ad-hoc Networking with Swarm Intelli-
gence (ANSI) [11], AntHocNet [12], BeeAdHoc [13], and SAMPLE [14] (also a
reinforcement learning approach). These protocols span the application space
between wired and wireless ad-hoc or mesh networks, usually being compared to
a well known deterministic protocol such as Open Shortest Path First routing
(OSPF) [15] for wired networks or Ad-hoc On-demand Distance Vector routing
(AODV) [16] for ad-hoc networks.

Strictly analytical work is scattered, and focuses on characterizing global be-
havior. [17] considers two different packet forwarding equations and shows that
one type will end up using only the better of two links, regardless of their relative
difference. The other method will split traffic across the two links proportionally
to their utility. [18] develops a model for a node’s estimate of the path utility to
a destination given a metric update equation and its parameters. The model is
used to explain differences in global routing performance when different metric
updates are used, including a normalized exponential filter (also known as the
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pheromone update rule), an exponential filter, and a Dijkstra-inspired update. A
scale free parameter is discovered which determines the maximum link estimate.
[10] develops a heuristic for a good selection of the estimation parameter in the
Termite p.routing algorithm based on the network correlation time. The results
in this paper continue the analytical characterization effort by accounting for all
fundamental aspects of soft routing algorithms.

Some effort towards parameter optimization has also been done in the related
area of biologically inspired optimization (a form of stochastic gradient descent
[19]), such as with Ant Colony Optimization (ACO) [20] and Particle Swarm
Optimization (PSO) [21]. Approaches in this field center on classifying subprob-
lems, and then running tests in order to find an optimal parameter space for
each type of subproblem [22].

1.3 Structure of Paper

Section 2 gives an overview of how a generic probabilistic routing protocol works
and introduces the p.routing framework in this light. The Termite protocol and a
generic ACO based approach are used as examples. Section 3 develops a markov
chain analysis of the framework, which is used to reveal various aspects of the
performance of soft routing algorithms. This includes the equilibrium routing
probabilities, expected path cost, and the frequency and fraction of links being
tested. Section 4 gives simulation results and discussion based on the analysis
methods presented in Section 3. Section 5 concludes the paper, in addition to
providing avenues for future work.

2 Probabilistic Routing Framework

2.1 Framework Overview

A framework for probabilistic routing is presented. The Termite p.routing algo-
rithm and a generic ACO based approach (hereafter referred to simply as ACO)
are used as illustrative examples. Several proposed soft routing algorithms are
based on ACO, including AntHocNet, ANSI, and ARA. The soft routing pro-
tocols proposed to date are essentially probabilistic distance vector protocols.
There are two key components to any p.routing algorithm, the packet forward-
ing equation and the metric estimator. Each node estimates the cost to each
destination through each neighbor based on routing data collected from received
or overheard traffic. This information can be piggybacked on data packets, or
found in control packets such as when using the forward/backward ant mecha-
nism described in [4]. The network is continuously sampled for changes by each
node in order to maintain up-to-date information. The estimated route utilities
are used to generate a probability distribution from which a next hop for a spe-
cific neighbor can be randomly selected. Multipath routing is easily implemented
since the utility of each neighbor to arrive at each destination is maintained by
the metric estimator, and each neighbor is considered as a viable next hop by
the forwarding equation. Soft routing is an application of dynamic optimization.
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2.2 Packet Forwarding

The forwarding equation determines the next hop probability distribution for
each packet, given its destination. The next hop is selected according to this
distribution; this is per-packet probabilistic routing. The pmf, p, is a normaliza-
tion of the current utility estimate, P , for each link to deliver a message to the
destination. Normalization is an intuitive mechanism used to send more packets
over good links, and fewer over lesser links. Two parameters influence the for-
warding equation, including the sensitivity, F ≥ 0, and threshold, K ≥ 0. The
sensitivity modulates the differences between link utilities, making the result-
ing probabilities more or less dependant on them. It controls how much better
paths are used more than worse ones. The threshold parameter determines how
good a link must be before it has a substantial impact on the routing distrib-
ution. This parameter balances the sensitivity by pushing the routing distribu-
tion closer towards uniform for large K. The threshold is alternatively known
as noise, 0 ≤ q ≤ 1, which takes a different form in the forwarding equation,
but serves the same purpose. The balance between sensitivity and threshold (or
noise) determines the tradeoff between network exploitation and exploration.
The forwarding equation is denoted as the function W (P,K, F ) or W (P, q, F ),
whichever is appropriate.

Routing metric estimates become stale as the network changes, requiring them
to be constantly updated. The next hop distribution should reflect the uncer-
tainty of the underlying route metric estimates at the current time. If an esti-
mate is stale, then the corresponding link should be less probable. This intuition
is included in the forwarding equation by multiplying the correlation between
successive metric estimates, R, against the current estimate in the forwarding
equation. The more time between estimate updates yields a lower correlation
and ultimately a smaller routing probability for that link. The correlation func-
tion depends on the type of metric estimator used. Section 2.4 reviews estimate
correlation in more detail.

Termite. Equation 1 shows the Termite forwarding equation. Pn
i,d is the path

utility estimate of node n using neighbor i to arrive at destination d. The nor-
malization is with respect to all neighbors of n, Nn ⊆ V , where V is the set of
all nodes in the network. The threshold must be set according to the expected
range of the metric. R(t − tni,d) is the correlation between the current estimate
(the last sample of which generated at tni,d) and the current time, t.

pn
i,d =

[
Pn

i,dR
(
t − tni,d

)
+ K

]F

∑
j∈Nn

[
Pn

j,dR
(
t − tnj,d

)
+ K

]F
(1)

ACO. A typical ACO type forwarding equation is shown in Equation 2. The
noise parameter balances the routing distribution between a normalization of
the link utilities and a uniform distribution across all outgoing links.
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pn
i,d = (1 − q) ·

[
Pn

i,dR
(
t − tni,d

)]F

∑
j∈Nn

[
Pn

j,dR
(
t − tnj,d

)]F
+ q · 1

|Nn| (2)

2.3 Metric Update

The metric update equation generates an estimate of the routing metric from
each node to each destination through each neighbor. Current routing informa-
tion is gathered either by proactively probing the network with control packets,
or by passively collecting data from received and overheard packets. The re-
turning information is treated as samples of a non-stationary stochastic process
describing the change in link utilities. The samples are filtered to track the mean
of the process, which is the estimate. Relevant parameters include the rate at
which packets (those carrying routing information) are originated, λ, and the
network correlation time, T , which is the period of time over which the network
statistics are assumed to remain constant.

Of course different approaches must be taken to collect information about
asymmetric or symmetric link metrics (assuming that all links are bidirectional).
For this reason there exist mechanisms such as forward/backward ants (ACO)
and data piggybacking (Termite), respectively. For the purposes of this analy-
sis of the presented framework, how the information is collected is irrelevant,
only that it is, and that the probe packets follow a routing rule defined by the
forwarding equation.

There are two commonly used methods for estimating path utility based on
samples of the network, both of which are basically low pass filters. Equation 3
shows the traditional exponential filter (also known as a pheromone filter). It
requires little state but does not make an optimal estimate of the link utility. It
includes information from all received samples in the current estimate (ie., it has
an infinite impulse response). The time constant of the filter, τ , is characterized
by the network correlation time, T . Here, γn

r,s is the arrived utility update at
node n from source node s over previous hop r. Pn

r,s is the estimate at node n
to get to the destination s, which is the source of the arriving packet, through
the previous hop, r.

Pn
r,s ← Pn

r,se
−(t−tn

r,s)τ + γn
r,s

[
1 − e−(t−tn

r,s)τ
]

(3)

Equation 4 shows the optimal path utility estimator in the form of a sliding
window, or box, filter, with length equivalent to the network correlation time,
T . Received utility updates are indexed as γn

r,s[m], and corresponding arrival
times as tnr,s[m]. The optimality of this filter is discussed in more detail in [10],
however it is so because incoming network samples are assumed to be iid over
a time period T , in which case an average is the best estimate of the process
mean.

Pn
r,s ← |{m : t − T ≤ tnr,s[m] ≤ t}|−1

∑
m:t−T≤tn

r,s[m]≤t

γn
r,s[m] (4)
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2.4 Sample Correlation

The value of the correlation function depends on the sort of filter that is used to
estimate the path utility. Because different filters weight received packet values
differently in order to generate their estimates, the correlations between suc-
cessive estimates also differ. Equation 5 shows the output correlations for the
exponential filter.

Rexp (Δt) = e−|Δt|τ (5)

Equation 6 shows the output correlations of the box filter.

R� (Δt) =
{

1 − |Δt|
T , |Δt| ≤ T

0 , |Δt| > T
(6)

Here, Δt is the elapsed time between estimates (packet arrivals). The functions
are calculated according to standard methods by finding the inverse fourier trans-
form of the power spectral density of a filtered uncorrelated random process [23].

3 Markovian Analysis

3.1 Steady State Routing Probabilities

With the general framework defined, it is now necessary to describe how to find
the steady state routing solution based on a given forwarding equation and metric
update scheme. The equilibrium solution can then be used to show how the local
parameters affect the global routing pattern and how they may be adjusted in
order to achieve a given performance level. Each node is represented as a state
in a markov chain, and standard methods are used to find the statistics of paths
from source to destination (represented as an absorbing state in the markov
chain) [24].

First the average cost to a specific destination is calculated from any node.
This determines the link utility estimates based on the routing probabilities. The
per link packet arrival rate is then determined, which allows the average sample
correlation to be set. An iterative algorithm is then shown which arrives at the
equilibrium routing solution. First the average cost to a specific destination is
calculated from any node. This determines the link utility estimates based on
the routing probabilities. The per link packet arrival rate is then determined,
which allows the average sample correlation to be set. An iterative algorithm is
then shown which arrives at the equilibrium routing solution.

Average Cost to Destination. The average number of transitions from a
source to the destination state is calculated. This models the average end-to-end
path cost, and determines the link utility estimate for given routing probabilities.
Suppose that the transition (or routing) probabilities for a network are given in
a matrix p, shown in Equation 7.

p =
[
S T
0 I

]
(7)
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In this matrix, S is a square (α − β) × (α − β) matrix representing the transi-
tion probabilities between the nonabsorbing states, T is a (α − β) × β matrix
representing the transition probabilities between the nonabsorbing states and
the absorbing states, 0 is a β × (α − β) matrix of zeros, and I is a β × β iden-
tity matrix representing the self-transition probabilities of the absorbing states.
In this analysis, α = |V| and β = 1, since there are |V| total nodes and only
one destination node. The fundamental matrix of the system is Q, calculated in
Equation 8. Here, Qi,j describes the expected number of visits to state j, start-
ing in state i, before arriving at an absorbing state. The exponent is the matrix
inverse operator.

Q = (I(α−β)×(α−β) − S)−1 (8)

The expected number of states visited when starting at state i before being
absorbed (at the destination state) is the sum of each row of Q, and is calculated
in Equation 9.

ci =
∑

j∈V−d

Qi,j (9)

If the cost of each link is unity, such as with hop count, then ci is also the
expected cost from node i to the destination. In general, if the link costs are
given in the matrix C such that Ci,j is the cost of the link from node i to j, then
the cost from source to destination is calculated as in Equation 10.

ci =
∑

j∈V−d

[
Qi,j

( ∑
k∈N j

Cj,k · Pj,k

)]
(10)

Equations 8 and 10 will be referred to as the function
c = avgCostT oDestination(C, p).

Per Link Packet Arrival Rates. The next step in calculating the equilibrium
routing probabilities is to include the decay factor, R, since there is a finite packet
arrival rate on each link. It is assumed that packets with routing information
are sent between a single source and destination pair with independently and
identically exponentially distributed interarrival times, with mean λ−1 seconds
between packets. It is further assumed that as these packets make their way
though the network towards the destination, that their arrival rate at any given
node over any link is also independently distributed exponential with a link
dependant mean sample rate, λi,j packets per second. The packet arrival rate at
node j from neighbor i when source s is sending a rate of λT packets per network
correlation time unit to the destination, (λT )s

i,j , is shown in Equation 11.

(λT )s
i,j = Qs,i · pi,j · λT (11)

Expected Per Link Sample Correlation. The expected correlation between
the current time and the previous estimate can then be calculated according
to the filter shape used. Equation 12 shows the expected correlation for the
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exponential filter. The decay rate heuristic of τ = T−1 ln(z) is used [10]. The
constant z is small (ie., z ≈ 0.1). Δt ∼ exp

( 1
λT

)
.

E [Rexp (Δt)] =
λT

λT − ln(z)
(12)

A similar analysis is shown in Equation 13 for the correlation of box filter.

E [R� (Δt)] =
{

λT−1
λT , λT ≥ 1

0 , λT < 1
(13)

The critical parameter influencing the expected drop in correlation from one
sample of the network to the next is the product λT . The units of this term my be
thought of as packets per network correlation time unit, or network samples per
network correlation time unit. Such language makes it clear that the probabilistic
routing framework presented in this paper relies on samples of the network in
order to make decisions, and that performance is improved (this term is used
qualitatively at the moment) with higher sampling rates. This is especially so
in the case of the box filter, where the correlation goes to zero when |Δt| ≥ T ,
therefore a packet interarrival time of less than the network correlation time
(λT ≤ 1) will leave (an average of) no information about the network at any
node. This result is intuitive in the sense that if the network is sampled less often
than the network itself changes, then the network will have never have current
information about itself.

Steady State Algorithm. Algorithm 1 shows the how the steady state routing
probabilities can be computed, based on a given source s and link costs. As long
as certain parameter settings are avoided, such as K = 0, q = 0, or F = ∞,
trivial routing solutions (ie., using only one path) are not generated.

Algorithm 1. Steady State Routing Probabilities with R

intialize p {random, nonzero, unity row sum}
while p not converged do

c ← avgCostToDestination(C,p) {Equations 8 and 10}
for all i, j ∈ (V − d) do

Pi,j ← (Ci,j + cj)−1 {link utilities}
Pi,j ← Pi,j · ER (λT )s

i,j

{ER from Equation 12 or 13 depending on estimator}
{(λT )s

i,j from Equation 11}
end for
p = W (P,K, F ) {forwarding equation}

end while

4 Simulation Analysis

4.1 Analysis Overview

Using the previously described framework, this section examines the relation-
ships between the sensitivity, threshold/noise, and sampling rate parameters on
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the equilibrium expected path cost between a source and destination. Their in-
fluence on each other and on the global routing performance is explained.

4.2 On Sensitivity and Noise

Figure 1 shows how the expected path cost between a source and destination
vary with sensitivity and noise, using the Termite and ACO style forwarding
equations. The network is randomly generated with 50 nodes, where node con-
nectivity is determined by a uniform circular transceiver distance and link cost
is inter-node distance squared, which is similar to an energy conservation metric.
Transceiver range is set such that the average number of neighbors per node is
eight. An infinite sample rate is assumed. The expected path cost approaches the
minimum path cost as the routing sensitivity is increased. Because the threshold
is under the influence of the sensitivity, the Termite forwarding equation will
send all packets on the shortest path if the sensitivity is large enough. This is
not the case for the ACO equation, where the noise and sensitivity are indepen-
dent. For nonzero noise, there is a lower bound on the expected path cost which
is strictly greater than the minimum path cost. The routing solution is tied to
the network topology and associated link costs and source-destination distance.
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Fig. 1. Path Cost Distribution vs. Routing Sensitivity (50 nodes)

4.3 Effect of Network Sample Rate

The network sample rate has a substantial effect on the performance of the rout-
ing algorithm. The samples are responsible for updating each node’s estimate of
how good each link is to arrive at each destination. Figure 2 shows the effect of
the network sample rate on the expected path cost between source and desti-
nation. For clarity, the results are shown varied with F and λT , where K = .1
and q = .05 are held constant, using the box filter. “no λT ” is equivalent to
an infinite λT , as it removes the effect of the sample correlation function. A
lower sample rate causes the algorithm to converge faster towards the shortest
path than with a higher sample rate (assuming constant F ). As good paths
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Fig. 2. Path Cost Distribution vs. Routing Sensitivity (50 nodes)

are found and their associated probabilities increase, the number of times that
less attractive paths are sampled quickly drops (since only a limited number of
samples are available). The infrequent arrival of new metric information on poor
paths makes the currently stored information unreliable, the estimates then have
an even smaller effect on the routing probabilities, according to the correlation
equation, R.

This analysis begs the question of what the optimal sample rate of a func-
tional network is. The question is difficult to answer because no previous work
in this field has focused on the network correlation time. Correlation time de-
pendant parameters are usually adjusted by trial and error to fit the simulation
environment. A reasonable estimate may be on the order of one to ten packets.

5 Conclusion

A framework and model for the analysis of soft routing algorithms has been
presented. Global routing behaviors can be determined based on local parameters
without the need for monte-carlo simulation. Termite and ACO are used as
examples to illustrate a two part framework including a forwarding equation
and a metric updating equation. The continuous time metric update is reviewed,
including the use of the filter correlation function to properly model the loss of
metric information over time. An analysis of the filter correlation shows that
the critical parameter for updating the network with new information is the
network sampling rate, or the number of route metric updates sent per network
correlation time.

A markov chain approach is used to find the steady state routing probabilities
given the routing parameters and network costs. The expected path cost from
source to destination can then be calculated. The cost is examined to reveal
the tradeoffs between sensitivity, threshold, noise, and network sample rate in
the context of average behavior and robustness against cost dynamics. A good
parameter choice is a small threshold, a sensitivity proportional to the minimum
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path utility, and a sample rate proportional to the number of good paths between
source and destination.

Future work should compare the results of the model analysis to monte-carlo
simulation experiements. Steady state convergence time should also be consid-
ered, since dynamic networks may not offer enough time for the soft routing
protocol to converge. The existence of an optimal sampling rate will also be
explored, as the physical effects of a large sampling rate are detrimental to the
network at large.

References

1. Tannenbaum A.: Computer Networks. Prentice Hall PTR (2002)
2. Boyan J., Littman M.: Packet Routing in Dynamically Changing Networks: A

Reinforcement Learning Approach. In: Advances in Neural Information Processing
Systems. Morgan Kaufmann, (1993)

3. Schoonderwoerd R., Holland O., Bruten J., Rothkrantz L.: Ant-Based Load Bal-
ancing In Telecommunications Networks. Adaptive Behavior (1996)

4. Di Caro G., Dorigo M.: Mobile Agents for Adaptive Routing. Technical Report,
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Abstract. In this paper we propose a Stochastic User Equilibrium
(SUE) algorithm that can be adopted as a model, known as a simu-
lation model, that imitates the behaviour of transportation systems. In-
deed, analyses of real dimension networks need simulation algorithms
that allow network conditions and performances to be rapidly deter-
mined. Hence, we developed an MSA (Method of Successive Averages)
algorithm based on the Ant Colony Optimisation paradigm that allows
transportation systems to be simulated in less time but with the same
accuracy as traditional MSA algorithms. Finally, by means of Blum’s
theorem, we stated theoretically the convergence of the proposed ACO-
based algorithm.

1 Introduction

In design problems or in real-time management of transportation systems, it
is necessary to have a simulation model that allows network performances and
features to be defined for each alternative project or each management strategy.
In analyses of real dimension networks, it is important that simulation mod-
els allow solutions to be obtained swiftly such that it is possible to explore a
large number of alternative projects or simulate beforehand consequences of a
strategy in terms of future (minutes or hours) network conditions. Most sim-
ulation algorithms used in the case of steady-state conditions (assumption of
inter-period and intra-period stationarity) are based on the calculation of a se-
quence of network loading (assignment with a fixed-point approach, as proposed
by [1]).

In this paper, we verify the possibility of developing a meta-heuristic algorithm
that allows network flows to be calculated more quickly than by using traditional
algorithms proposed in the literature. In particular, we steered our research into
ant-based algorithms. These algorithms, developed about a decade ago (first
papers were [2], [3], [4]) and based on the food source search of ant colonies,
have shown their efficiency in terms of calculation time in many cases, such
as in travelling salesman problems, quadratic assignment problems, job/shop
scheduling, vehicle routing, and dynamic problems. An extended overview of
ant-based algorithms can be found in [5].

In the literature, ACO algorithms have been developed for solving problems
with many local optima where the initial value of variables could influence final

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 25–36, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



26 L. D’Acierno, B. Montella, and F. De Lucia

solutions. Instead, in the case of the road traffic assignment problem the solution
is unique (as shown in Sect. 3) and traditional algorithms yield solutions regard-
less of the initial values. Therefore, the aim of developing an ACO algorithm for
solving the traffic assignment problem is related to the need to provide more
efficient algorithms in terms of calculation times.

In the case of transportation systems, an algorithm based on the Ant Colony
approach for solving a network design problem, consisting of choosing among a
set of alternative projects, was proposed by [6]. In this case the problem was for-
mulated as a bi-level programming problem where the upper level (the network
design problem) was organised as an ACO-based algorithm and the lower level
(the traffic assignment problem) as a traditional (non-ACO-based) algorithm.

An assignment equilibrium algorithm based on ACO that tends to load mainly
minimum cost paths (deterministic approach) was proposed by [7]; the same
authors compared its performance with that of Frank and Wolfe’s algorithm
([8]), showing the efficiency of the ACO-based approach in simulation problems.
Therefore, this paper can be considered an extension of ACO-based traffic as-
signment algorithms in the case of a stochastic approach.

An important aspect concerning the development of solution algorithms is
the theoretical proof of convergence. Nevertheless, initially most of the literature
analysed convergence properties only from a numerical point of view. However,
in recent papers (such as [9], [10], [11],[12]) convergence is stated for some classes
of ACO-based algorithms. In this context, the aim of the paper is to develop an
ACO-based algorithm to solve the Stochastic User Equilibrium (SUE) problem
and prove its convergence and efficiency. The paper is organised as follows: Sect.
2 describes the problem of traffic assignment and its analytical formulation; Sect.
3 proposes an overview of theoretical properties and solution algorithms of the
traffic assignment problem; Sect. 4 shows the proposed model and the first results
are summarised in Sect. 5; finally, Sect. 6 concludes and comments on prospects
for future research.

2 The Traffic Assignment Problem

A transportation network can be defined as a graph whose links are associated
functions called link cost functions. A graph, indicated as G = (N,L), can be
defined as an ordered pair of sets: the set of nodes, indicated as N , and the
set of links, indicated as L, which is a set of pairs of nodes belonging to N
(L ⊆ N × N). It is possible to define a set N ′ of centroid nodes that are nodes
belonging to N (N ′ ⊆ N) representing the beginning and/or the end of all trips
simulated on the network. Under the assumption of intra-period stationarity, it
is possible to associate to each link l ∈ L a quantity called link flow, fl, that
expresses the average number of homogeneous units using link l in a time unit.
In general, link flows can be user flows (number of travellers utilising the links
considered) as well as vehicle flows (number of cars or buses moving on the links).

In a graph, a path may be defined, indicated with k, as an ordered sequence
of consecutive links connecting two centroid nodes such that the final node of a
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link coincides with the initial node of the following link. In particular, in traffic
assignment problems only acyclic paths are considered.

In general, the cost function of generic link l ∈ L, indicated as cl, can be
expressed as a non-negative function of link flows of the network, that is:

cl = cl (f ) (1)

where f is the vector of link flows fl, of dimensions (nLinks × 1), and
|L| = nLinks. Moreover, it is possible to define a path cost function, Ck, that
is equal to the sum of link costs of all links belonging to path k plus a term of
non-additive costs, CNA

k , i.e. costs that depend only on the path (such as road
tolls at motorway entrance/exit points), that is:

Ck = Ck (f) =
∑

l∈k
cl (f) + CNA

k (2)

It is worth noting that Ck, as defined above, is a non-negative function that refers
only to acyclic paths. Let A be a binary matrix, called a link-path incidence
matrix, of dimensions (nLinks × nPaths) where nPaths is the number of paths of
the considered graph, whose generic element al,k is equal to 1 if link l belongs
to path k and 0 otherwise. Equation (2) can be expressed as:

C = AT c (f ) + CNA (3)

where C is the vector of path costs and CNA is the vector of non-additive path
costs, both of dimensions (nPaths × 1). The above equation is also known as the
supply model of the considered network.

Most mathematical models simulating user choices are based on random util-
ity theory and hypothesise that users are rational decision-makers maximising
utility relative to their choices. In particular, the perceived utility (that is the
utility perceived by each single user moving along path k), Uk, can be expressed
as the sum of a systematic utility, Vk, which represents the mean value of the
utility perceived by all decision-makers having the same choice context, and a
random residual, εk, which represents the difference between the perceived and
systematic utility, that is:

Uk = Vk + εk (4)

With the above assumption, the probability of choosing path k among all feasible
paths, all joining centroid nodes o and d, can be expressed as the probability
that the perceived utility of path k is greater than that of all other available
alternatives, that by means of (4), can be expressed as:

p [k | od] = Prob [Uk > Uh ∀h �= k ∈ Iod] (5)

where Iod is the set of all available paths that join origin node o with destination
node d, and obviously k ∈ Iod. Moreover, it may be stated that, if the random
residuals are independently and identically distributed according to a Gumbel
random variable of zero mean and parameter θ (where the variance of the Gumbel
variable is equal to π2θ2/6), (5) can be expressed as:

p [k | od] = exp (Vk/θ) /
∑

h∈Iod

exp (Vh/θ) (6)
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The flow on path k, Fk, can be expressed as the travel demand flow between
centroid node o and d, dod, multiplied by the probability of choosing path k,
that is:

Fk = p [k | od] dod (7)

Moreover, link flow of generic link l is equal to the sum of all path flows that
utilise link l, that is:

fl =
∑

k:l∈k
Fk (8)

With the assumption that the systematic utility is equal to the opposite of the
path cost (Vk = −Ck), it is possible to define a link flow function, called network
loading function, that expresses link flows as a function of path costs, that is:

f = AP (−C)d (9)

where d is the vector of demand flows, of dimensions (nPairs × 1), nPairs is the
number of available origin-destination pairs, and P is the path choice probability
matrix, known as the path choice map, of dimensions (nPaths × nPairs), whose
generic element pk,od expresses the probability that users travelling between
origin-destination pair od choose path k (this term has been expressed in 5 as
p [k | od]), while pk,od = 0 if path k is not starting from o and/or ending in d. The
above equation is also known as the demand model of the considered network.

Combining demand model (9) with supply model (3), the demand-supply
interaction model, known as the assignment model, is obtained as a fixed-point
model:

f∗ = AP
(
−AT c (f∗) − CNA

)
d (10)

where the equilibrium solution f∗ is a link flow vector that yields costs that
generate a network loading vector that is equal to term f∗.

The traffic assignment problem with the assumption of the rational decision-
maker, expressed by (5), is known also as the Stochastic User Equilibrium (SUE)
problem.

3 Theoretical Properties and Classical Solution
Algorithms of the Traffic Assignment Problem

In the literature, two papers ([1] and [13]) state that the fixed-point problem,
expressed by (10), has at least one solution if:

1. choice probability functions, P (−C), are continuous;
2. link cost functions, c (f), are continuous;
3. each OD pair is connected (i.e. Iod �= Φ ∀od).

The first two conditions are verified by almost all functions proposed in the
literature, and the third is related to the network framework that generally
satisfies that condition. Moreover [1] and [13] state that the above fixed-point
problem has at most one solution if:
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1. route choice models are expressed by strictly increasing functions with re-
spect to systematic utilities, that is:

[P (V ′) − P (V ′′)]T (V ′ − V ′′) > 0 ∀V ′ �= V ′′ (11)

where V is the systematic utility vector, of dimensions (nPaths × 1), whose
k-th element is term Vk;

2. cost functions are expressed by monotone non-decreasing functions with re-
spect to link flows, that is:

[c (f ′) − c (f ′′)]T (f ′ − f ′′) ≥ 0 ∀f ′,f ′′ ∈ Sf (12)

where Sf is the feasibility set of vectors f .

It may be stated that the first condition is always satisfied if path choice models
belong to Logit or Probit families; therefore, (6), known as Multinomial Logit,
allows (11) to be verified. Besides, (12) is always satisfied by almost all functions
proposed in the literature. Therefore with the above assumptions, we may state
that the fixed-point solution exists and is unique.

An extension of Blum’s theorem ([14]) was proposed by [1], where it was
shown that a convergent solution algorithm for solving the fixed-point problem
of a function y = λ (x) with:

– x ∈ Sx and y ∈ Sx where Sx is non-empty, compact and convex set;
– a unique fixed-point x∗ = λ (x∗);
– a function ϕ (x) ≥ 0 ∀x ∈ Sx where ϕ (x) is continuous with first ∇ϕ (x)

and second ∇2ϕ (x) derivative continuous;
– ∇2ϕ (x)T [λ (x) − x] < 0 ∀x ∈ Sx,x /∈ Sx̃ and ∇2ϕ (x̃)T [λ (x̃) − x̃] = 0

∀x̃ ∈ Sx̃ where Sx̃ ⊆ Sx and x∗ ∈ Sx̃;
– |ϕ (x) − ϕ (x∗)| > 0 ∀x ∈ Sx,x /∈ Sx̃ and |ϕ (x̃) − ϕ (x∗)| = 0 ∀x̃ ∈ Sx̃;
– xT ∇2ϕ (x′) x = M < +∞ ∀x,x′ ∈ Sx;

can be formulated by the following recursive equation:

xt+1 = xt + μt

(
λ
(
xt

)
− xt

)
with xt ∈ Sx (13)

if the sequence {μt}t>0 satisfies the following conditions:∑
t>0

μt = +∞
∑

t>0
(μt)

2 = M < +∞ (14)

Moreover, if the sequence {μt}t>0 satisfies the condition:

μt ∈ ] 0, 1 ] (15)

then the elements of the sequence described by (13) belong to set Sx, which
is convex. A sequence {μt}t>0 which satisfies both (14) and (15) is given by
{μt = 1/t}t>0 such that (13) becomes:

xt+1 = xt + (1/t)
(
λ
(
xt

)
− xt

)
= (1 − 1/t)xt + λ

(
xt

)
/t (16)
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With the above assumption we may develop a solution algorithm known as the
Method of Successive Averages (MSA). In particular, [1] proposed a Flow Aver-
aging algorithm (MSA-FA) and a Cost Averaging algorithm (MSA-CA) based
respectively on the following sequences:

f t+1 = f t + (1/t)
(
f
(
c
(
f t

))
− f t

)
∈ Sf with f1 ∈ Sf (17)

ct+1 = ct + (1/t)
(
c
(
f
(
ct
))

− ct
)
∈ Sc with c1 = c

(
f1) ∈ Sc; f1 ∈ Sf (18)

where f (·) is the network loading function described by (9). Moreover, in or-
der to prove the convergence of algorithms, assuming that solution existence
and uniqueness conditions hold, it is necessary to verify that link cost functions
have a symmetric continuous Jacobian Jac [c (f)] over set Sf , for MSA-FA and
choice map functions, which are expressed by (9), are additive and continuous
with continuous first derivative for algorithm MSA-CA. Indeed, [1] shows that
in the case of algorithm MSA-FA with the assumption that λ (·) = f (c (f))
and ϕ (·) : ∇ϕ (·) = c (f) − c∗ where c∗ = c (f∗), it is possible to state that
the Jacobian condition allows all convergence requirements to be satisfied. Like-
wise, in the case of algorithm MSA-CA, [1] shows that the assumption should be
λ (·) = c (f (c)) and ϕ (·) : ∇ϕ (·) = f∗ −f (c) where f∗ = f (c∗). Importantly,
these conditions are generally satisfied by almost all functions proposed in the
literature. For both algorithms, the termination test is:∣∣(fl

(
c
(
f t−1)) − f t−1

l

)
/f t−1

l

∣∣ < ε ∀l ∈ L (19)

where f t−1
l is the flow of link l at iteration (t − 1)-th, fl

(
c
(
f t−1

))
is the network

loading flows associated to link l at iteration t-th and ε is the algorithm threshold.
A network loading algorithm, known as Dial’s algorithm, was proposed by

[15]. This algorithm allows function y = f (c) to be calculated with the use of
the path choice model described by (6), for managing real size networks based
on three phases: path generation, weight calculation and network loading.

In the first phase, a shortest tree algorithm from each destination node d
is performed in order to associate to each node i a value Zd,i that expresses
the cost of reaching the destination node d. A link l = (i, j) can be considered
for a feasible path only if Zd,i > Zd,j. Paths generated with this approach are
called Dial efficient paths. In the second phase, for each destination d, a weight
is associated to each link l = (i, j), indicated as wd,(i,j) , and to each node i,
Wd,i, starting from the destination node d, with Wd,d = 1, and continuing with
the other nodes by increasing Zd,i values, such that:

wd,(i,j) =

{
exp

(−c(i,j)

θ

)
Wd,j if Zd,i > Zd,j

0 if Zd,i ≤ Zd,j

Wd,i =
∑

(i,h)∈FS(i)

wd,(i,h) (20)

where FS (i) is the set of links belonging to the forward star of node i. With the
assumption that the probability of choosing link l, with l = (i, j), at diversion
node i is equal to the ratio of Dial weights, that is:

p [l | i] = wd,(i,j)/Wd,j (21)
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we may develop the third phase that consists, for each destination d, in associ-
ating a term to each link l = (i, j), indicated as ed,(i,j), and to each node i, Ed,i.
These terms can be determined by setting for each origin o the value of Ed,o

equal to dod. Then, starting from the centroid node with the maximum value of
Zd,i and continuing with the other nodes by decreasing Zd,i values, we apply the
following relations:

ed,(i,j) = Ed,i p [l | i] = Ed,i wd,(i,j)/Wd,j Ed,j =
∑

(h,j)∈BS(j)
ed,(h,j) (22)

where BS (j) is the set of links belonging to the backward star of node j.
Finally, network loading flows can be calculated as:

fl=(i,j) =
∑

d
ed,(i,j) (23)

It is worth noting that on applying Dial’s algorithm for calculating network
loading flows, it is necessary to implement the path generation phase (phase 1)
only once to ensure the convergence of MSA algorithms. Indeed, as shown by
[16], if this phase were performed at each iteration, the set of Dial efficient paths
could change at each iteration and therefore (11), which is a necessary condition
for verifying convergence of solution algorithms, could not be verified.

4 The Proposed Assignment Algorithm

In this paper, we propose an ACO solution algorithm for the fixed-point problem
(10) based on the following assumptions:

– for each od pair there is an ant colony with its nest (centroid o) and its
food source (centroid node d). Since every colony has a distinctive kind of
pheromone, ants can recognise only paths utilised by the same colony. This
hypothesis was formerly introduced by [7];

– the initial intensity of the pheromone trail on each link l, associated to ant
colony od, indicated as τ0

od,l, is a function of path costs, that is:

τ0
od,l =

∑
k:l∈k

T 0
od,k with T 0

od,k =
{

exp
(
−C0

k/θ
)

if k ∈ Iod

0 if k /∈ Iod
(24)

where C0
k = Ck

(
f0

)
and f0 ∈ Sf ;

– the probability of choosing link l, with l = (i, j), at diversion node i (known
in the literature as transition probability), at iteration t, can be expressed as:

pt [l | i] = τ t
od,l /

∑
l′∈FS(i)

τ t
od,l′ (25)

where FS (i) is the set of links belonging to the forward star of node i. In
this case, the visibility term (generally indicated as ηod,l) is equal to 1;



32 L. D’Acierno, B. Montella, and F. De Lucia

– the ‘ant’ (or ‘vehicle’) flow on the path k is equal to:

F t
od,k = dod

∏
l∈k,i∈k

pt [l | i] (26)

It may be stated that (26) is equal to the flow expression proposed by [7];
– the updating of the pheromone trail can be expressed as:

τ t+1
od,l = (1 − ρ) τ t

od,l + ρΔτ t+1
od,l (27)

where evaporation coefficient ρ is variable and equal to 1/t. The variability
of this coefficient was introduced by [17], even though the expression was
different;

– each ant is provided with a memory that stores the sequences of used links.
This property allows ants to update the pheromone trail at each iteration
only if they are the first to arrive, after reaching the food source, at their
nest;

– the increase in the pheromone trail is based on a global approach, that is all
links are simultaneously updated. This assumption, in combination with the
ant memory property, can be expressed by a function of path costs, that is:

Δτ t
od,l =

∑
k:l∈k

ΔT t
od,k with ΔT t

od,k =
{

exp (−Ct
k/θ) if k ∈ Iod

0 if k /∈ Iod
(28)

The usefulness of a global approach in transportation problems was high-
lighted by [6].

With the above hypotheses, it may be stated that the application of the proposed
ACO algorithm in the case of a transportation network is equivalent to the
application of an MSA algorithm where the successive averages are applied to
weights of Dial’s algorithm, that is:

wt+1
d,(i,j) = wt

d,(i,j) +
Δwt+1

d,(i,j) − wt
d,(i,j)

k
W t+1

d,i = W t
d,i +

ΔW t+1
d,i − W t

d,i

k
(29)

Indeed, in the simple case of a single od pair joined by only two paths, four cases
may be found: the two paths do not have any link in common; the two paths
share a part between a generic node and the destination node; the two paths
share a part between the origin node and a generic node; the two paths share
two parts: the first between the origin node and a generic node and the second
between a generic node and the destination node.

In the first case, the two paths have only origin and destination nodes in
common, hence the diversion node is the origin node and the diversion node
probabilities are equal because τ t

od,l=(o,i) = wt
od,l=(o,i) for each link leaving origin

node o. In the second case, the diversion node is again the origin one, hence
this case is similar to the previous one. In the third case, the diversion node is
the node at the end of the common part. Hence, if Ct

k1
and Ct

k1
are path costs
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respectively of the first and second path, and Ct
k∗ is the path cost of the common

part, the Ant diversion probability is equal to:

pt
Ant [k1] = 1/

(
1 + exp

(
−

(
Ct

k2
− Ct

k1

)
/θ

))
=

= 1/
(
1 + exp

(
−

((
Ct

k∗ + Ct
k2−k∗

)
−

(
Ct

k∗ + Ct
k1−k∗

))
/θ

))
=

= 1/
(
1 + exp

(
−

(
Ct

k2−k∗ − Ct
k1−k∗

)
/θ

))
(30)

whereas the Dial diversion probability is equal to:

pt
Dial [k1] = 1/

(
1 + exp

(
−

(
Ct

k2−k∗ − Ct
k1−k∗

)
/θ

))
(31)

which is equal to the Ant one. Hence, also in this case, the two approaches
provide the same probabilities. Finally, the last case is similar to the third and
therefore provides the same results.

Similarly, the two approaches may be stated as providing the same probability
even when the number of paths, joining the same OD pair, is greater than
two. Therefore it is possible to state the perfect equivalence of diversion node
probabilities between the Ant approach (25) and the Dial approach (21).

With the use of the extension of Blum’s theorem ([14]) proposed by [1], we
may state the convergence of the proposed ACO-based MSA algorithm, assuming
that existence and uniqueness conditions hold, if Jac [c (τ )] is symmetric and
continuous. Indeed, this condition satisfies all hypotheses of Blum’s theorem in
the case of the fixed-point problem τ = τ (c (f (τ ))) where τ is a vector whose
generic element is the pheromone trail τod,l (or equivalently wod,l), of dimensions
((nPairs · nLinks) × 1), and with the assumption that λ (·) = τ (c (f (τ ))) and
ϕ (·) : ∇ϕ (·) = c (f (τ ))−c∗ where c∗ = c (f (τ∗)). The proof of convergence in
this case is similar to that proposed by [1], hence for brevity it is not reported in
this paper. However, sufficient conditions to verify the Jac [c (τ )] hypothesis are
that link cost functions are separable (i.e. cl = c (fl) ) and have a symmetric and
continuous Jacobian Jac [c (f )] over set Sf , and choice map functions, which are
expressed by (9), are additive and continuous with the continuous first derivative.
Indeed, since Jac [c (τ )] = Jac [c (f )] Jac [f (τ )] the condition on Jac [c (τ )] is
verified. Moreover, the above conditions are generally satisfied by almost all
functions proposed in the literature and therefore convergence of the proposed
algorithm may be postulated.

5 First Results

In order to verify the efficiency of the proposed MSA algorithm based on Ant
Colony Optimisation, it was applied to simulate traffic conditions in the case
of two Italian real dimension networks: the network of Salerno (a city of about
140,000 inhabitants) and the network of Naples (a city of about 1,000,000 inhab-
itants). Table (1) shows features of the analysed networks, whereas Tables (2)
and (3), as well as Figs. (1) and (2), indicate algorithm performances. In both
networks, the proposed algorithm (indicated as MSA-ANT) is shown to provide
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Table 1. Network features

City Number of Number of Number of Number of Number of
name links nodes centroid nodes OD pairs peak–hour trips

Salerno 1,133 529 62 3,844 21,176
Naples 5,750 3,075 167 26,916 118,764

Table 2. Algorithm performance on the Salerno network

Algorithm Number of Convergence Calculation Solution
name interations > 90.0% time [s] error

MSA − FA 54 12 29 Reference
MSA − CA 7 5 5 0.004 %

MSA − ANT 5 3 4 0.004 %

  

 

 

 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

0 5 10 15 20 25 30 35 40 45 50 55

Number of iteractions

Termination test 

value

MSA-FA

MSA-CA

MSA-ANT

85.0%

87.5%

90.0%

92.5%

95.0%

97.5%

100.0%

0 5 10 15 20 25 30 35 40 45 50 55

Number of iterations

Number of 

convergent links

MSA-FA
MSA-CA
MSA-ANT

Fig. 1. Algorithm performance on the Salerno network

Table 3. Algorithm performance on the Naples network

Algorithm Number of Convergence Calculation Solution
name interations > 90.0% time [min] error

MSA − FA 59 11 42.15 Reference
MSA − CA 14 4 11.26 0.013 %

MSA − ANT 9 4 7.65 0.006 %

the same solution as the traditional algorithm (algorithm thresholds being equal
to 0.1% and 1.0% respectively in the case of Salerno and Naples) in lower cal-
culation times. In particular, calculation times of the proposed algorithm are
lower than 86.2% in the first network and 81.9% in the second network with
respect to the case of algorithm MSA-FA. Instead, these values become 20.0%
and 32.1% with respect to the case of algorithm MSA-CA. In terms of number
of iterations, the proposed algorithm requires 90.7% and 84.7% less with respect
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Fig. 2. Algorithm performance on the Naples network

the algorithm MSA-FA; these values become 28.6% and 35.7% in the case of
algorithm MSA-CA. Finally, if we accept that the convergence of algorithm is
achieved when only 90% of links satisfy termination test (19) then the reduc-
tions in number of iterations would be 75.0% and 63.6% in the case of algorithm
MSA-FA, and 40.0% and 0.0% in the case of algorithm MSA-CA.

6 Conclusions and Research Prospects

In this paper we proposed an ACO algorithm that can be utilised for solving
the road traffic assignment problem. In particular, we showed that the proposed
algorithm has an MSA framework where averages are applied to Dial’s weights
(as shown in 29) and stated the perfect equivalence in terms of path choice be-
haviours between artificial ants (with the proposed approach) and road users
(simulated with the traditional algorithms of traffic assignment). Moreover we
stated theoretically the convergence of the proposed MSA-ANT algorithm by
means of the extension of Blum’s theorem ([14]) proposed by [1], and numeri-
cally its efficiency in terms of calculation time with respect to traditional MSA
algorithms. Hence, the proposed algorithm can be considered an extension of
ACO-based assignment algorithms in the case of a stochastic assumption on
the path choice model (the previous paper [7] was based on a deterministic
approach). Moreover, theoretical proof on convergence overcomes limitations re-
sulting from the use of numerical proof in [7]. Finally, the new MSA-ANT could
be used to develop an ACO-based algorithm also in the lower level of paper [6]
in order to speed up solution search.

In terms of future research, we propose an extension of the proposed algorithm
in the case of more complex path choice models (such as C-Logit and Probit) and
in the case of preventive-adaptive choice behaviour that is typical of mass transit
system users (i.e. the hyper-path choice approach proposed by [18]). Finally, we
advocate using the proposed algorithm as a simulation model for imitating the
behaviour of transportation systems in network design problems or in real-time
management in order to highlight the advantages of the ACO approach.
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Abstract. Mobile ad hoc networks are a class of highly dynamic net-
works. In previous work, we developed a new routing algorithm, called
AntHocNet, for these challenging network environments. AntHocNet has
been designed after the Ant Colony Optimization (ACO) framework,
and its general architecture shares strong similarities with the archi-
tectures of typical ACO implementations for network routing. On the
other hand, AntHocNet also contains several elements which are new
to ACO routing implementations, such as the combination of ant-based
path sampling with a lightweight information bootstrapping process, the
use of both reactive and proactive components, and the use of composite
pheromone metrics. In this paper we discuss all these elements, pointing
out their general usefulness to face the multiple challenges of mobile ad
hoc networks, and perform an evaluation of their working and effect on
performance through extensive simulation studies.

1 Introduction

Mobile Ad Hoc Networks (MANETs) [1] are networks in which all nodes are mo-
bile and communicate with each other via wireless connections. Nodes can join
or leave at any time. There is no fixed infrastructure. All nodes are equal and
there is no central control or overview. There are no designated routers: nodes
serve as routers for each other, and data packets are forwarded from node to
node in a multi-hop fashion. MANETs are useful to bring wireless connectivity
in infrastructureless areas or to provide instantaneous connectivity free of charge
inside specific user communities and/or geographic areas. However, the control
of a MANET is very challenging. Its topology and traffic patterns are defined
by the present users, their positions and radio ranges. The effectively available
bandwidth is defined by the characteristics of the wireless signal between the
nodes, and by the amount of simultaneous contention to access the shared wire-
less medium. Due to the mobility and the constant arrival/departure of users,
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all these characteristics, which make up the mode of the network, change over
time, and different modes can coexist in different parts of the network.

Routing is at the core of the functioning of a MANET, and the challenges
mentioned above call for a fully adaptive, multi-modal routing controller. We
believe that the multidimensional complexity of the task makes it necessary to
include multiple learning, adaptive, and behavioral components in the design of
the routing algorithm. This is the approach we followed in AntHocNet [2,3,4,5,6].
It combines Monte Carlo path sampling and learning using ant agents, which
is characteristic of the ACO framework [7], with an information bootstrapping
process, which is typical for dynamic programming and some reinforcement learn-
ing approaches [8]. Operating the two learning mechanisms at different speeds
allows to obtain an adaptivity, robustness and efficiency which neither of the
subcomponents could offer on its own. Moreover, the use of both proactive and
reactive behaviors allows to both anticipate and respond in timely fashion to
sudden disruptive events. AntHocNet’s design also includes the use of multi-
ple metrics (e.g., number of hops and signal quality) in the definition of the
pheromone variables used to guide ant decisions.

AntHocNet was inspired by previous work on ACO routing for wired net-
works [9], but its composite design represents a departure from previous instances
of ACO algorithms for routing. The effective integration of a bootstrapping-
based mechanisms within a typical ACO architecture is in fact an approach
which is innovative in general terms, and not only concerning the application of
ACO to network problems. Furthermore, the way we integrated the two mecha-
nisms in AntHocNet is rather general and could be applied with success also to
different application domains. Moreover, while the combined use of reactive and
proactive ant generation, as well as the use of a composite pheromone metric, are
not totally a novelty in ACO routing algorithms, the way these schemes are used
is original and general (e.g., see [10,11,12] for examples of other ACO algorithms
for MANETs).

The purpose of this paper is to report an experimental analysis of the role
and effect of these different design components of the algorithm. In particular,
we show the effect on performance of using bootstrapping and proactive compo-
nents, of adopting different choices for the composite pheromone metric used to
guide ant activities, and of selecting different levels of exploration. Even if this
sensitivity analysis is specific for AntHocNet, we believe that to a certain extent
the reported results can also provide general insights about all the considered
issues, and in particular about the integration of ant-based path sampling with
pheromone bootstrapping mechanisms.

The general effectiveness of AntHocNet’s integrated approach was assessed in
a number of papers [2,3,4,5,6] and a technical report [13]. Over a wide range
of scenarios with different characteristics in terms of mobility, data traffic load,
modality, etc., AntHocNet always showed excellent performance compared to
state-of-the-art MANET routing algorithms such as AODV [14] and OLSR [15].
In this paper we focus on the sensitivity analysis and we do not report any
further results concerning AntHocNet’s general performance.
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The rest of the paper is organized as follows. In Section 2 we provide a concise
description of AntHocNet (for more details the reader can consult the mentioned
references). Section 3 describes the experimental methodology and the general
characteristics of the simulation environment. In Section 4 and its subsections,
we report the results of the experimental analysis and discuss them.

2 The AntHocNet Routing Algorithm

In MANET jargon AntHocNet is termed a hybrid algorithm since it makes use
of both reactive and proactive strategies to establish routing paths. It is reactive
in the sense that a node only starts gathering routing information for a specific
destination when a local traffic session needs to communicate with the destina-
tion and no routing information is available. It is proactive because as long as
the communication starts, and for the entire duration of the communication, the
nodes proactively keep the routing information related to the ongoing flow up-to-
date with network changes. In this way both the costs and the number of paths
used by each running flow can reflect the actual status of the network, providing
an optimized network response. The reactive component of the algorithm deals
with the phase of path setup and is totally based on the use of ACO ant agents to
find a good initial path. Routing information is encoded in node pheromone ta-
bles. The proactive component implements path maintenance and improvement,
proactively adapting during the course of a session the paths the session is using
to network changes. Path maintenance and improvement is realized by a com-
bination of ant path sampling and slow-rate pheromone diffusion: the routing
information obtained via ant path sampling is spread between the nodes of the
MANET and used to update the routing tables according to a bootstrapping
scheme that in turn provide main guidance for the ant path exploration. Link
failures are dealt with using a local path repair process or via explicit notifi-
cation messages. Stochastic decisions are used both for ant exploration and to
distribute data packets over multiple paths.

In the following we provide a concise description of each of these components.
The component dealing with link failures is not described since it is neither
central for the algorithm nor relevant for the sensitivity analysis reported here.

2.1 Metrics for Path Quality and Pheromone Tables

Paths are implicitly defined by tables of pheromone variables playing the role of
routing tables. An entry T i

nd ∈ R of the pheromone table T i at node i contains a
value indicating the estimated goodness of going from i over neighbor n to reach
destination d. Since AntHocNet only maintains information about destinations
which are active in a communication session, and the neighbors of a node change
continually, the filling of the pheromone tables is sparse and dynamic. Several
different metrics, such as number of hops, end-to-end delay, signal quality, con-
gestion, etc., can be used to define the goodness of a path. AntHocNet makes
use of a combination of these metrics to define the pheromone variables.

The effect of different combinations of metrics is studied in Subsection 4.1.
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2.2 Reactive Path Setup

When a source node s starts a communication session with a destination node d,
and it does not have routing information for d, it broadcasts a reactive forward
ant. At each node, the ant is either unicast or broadcast, according to whether or
not the current node has pheromone information for d. If information is available,
the ant chooses its next hop n with the probability Pnd which depends on the
relative goodness of n as a next hop, expressed in the pheromone variable T i

nd:

Pnd =
(T i

nd)β∑
j∈N i

d
(T i

jd)β
, β ≥ 1, (1)

where N i
d is the set of neighbors of i over which a path to d is known, and β is a

parameter which controls the exploratory behavior of the ants. If no pheromone
is available, the ant is broadcast. Since it is quite likely that somewhere along
the path no pheromone is found, in the experiments we normally use a high
value of β to avoid excessive ant proliferation. Due to subsequent broadcasts,
many duplicate copies of the same ant travel to the destination. A node which
receives multiple copies of the same ant only accepts the first and discards the
other. This way, only one path is set up initially. During the course of the com-
munication session, more paths are added via the proactive path maintenance
and exploration mechanism discussed in the next subsection.

Each forward ant keeps a list of the nodes it has visited. Upon arrival at the
destination d, it is converted into a backward ant, which travels back to the source
retracing the path. At each intermediate node i, coming from neighbor n, the ant
updates the entry T i

nd in the i’s pheromone table. The way the entry is updated
depends on the path quality metrics used to define pheromone variables. For
instance, if the pheromone is expressed using the number of hops as a measure
of goodness, at each hop the backward ant increments an internal hop counter
and uses the inverse of this value to locally assign the value τ i

d which is used to
update the pheromone variable T i

nd as follows: T i
nd = γT i

nd +(1−γ)τ i
d, γ ∈ [0, 1].

For different metrics, the calculation of τ i
d is more complex but follows the same

logic. For instance, if delay is used, the ant needs to incrementally calculate at
each node a robust estimate of the expected delay to reach the destination.

2.3 Proactive Path Maintenance and Exploration

During the course of a communication session, source nodes periodically send out
proactive forward ants to update the information about currently used paths and
try to find new and better paths. They follow pheromone and update pheromone
tables in the same way as reactive forward ants. Such continuous proactive sam-
pling of paths is the typical mode of operation in ACO routing algorithms. How-
ever, the ant sending frequency needed to faithfully keep track of the constant
network changes is in general too high for the available bandwidth. Moreover,
to find entirely new paths, excessive blind exploration through random walks or
broadcasts would be needed. Therefore, we keep ant sending rate low but ant
actions are integrated with a lightweight process combining pheromone diffusion
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and bootstrapping. This process provides a second way of updating pheromone
on existing paths, and can give information to guide exploratory ant behavior.

Pheromone diffusion is implemented using beacon messages broadcast period-
ically and asynchronously by the nodes to all their neighbors. In these messages,
the sending node n places a list of destinations it has information about, includ-
ing for each destination d its best pheromone value T n

m∗d. A node i receiving
the message from n first of all registers that n is its neighbor. Then, for each
destination d listed in the message, it derives an estimate of the goodness of
going from i to d over n, combining the cost of hopping from i to n with the
reported pheromone value T n

m∗d. We call the obtained estimate Bi
nd bootstrapped

pheromone, since it is built up bootstrapping on the value of the path good-
ness estimate received from an adjacent node. The bootstrapped pheromone
can in turn be forwarded in the next message sent out by n, giving rise to a
bootstrapped pheromone field over the MANET. This is the typical way of cal-
culating estimates followed by all approaches based on dynamic programming
such the class of distributed Bellman-Ford routing algorithms [16] and the rein-
forcement learning algorithms derived from Q-learning [8]. However, due to the
slow multi-step forwarding, bootstrapped pheromone does not provide the most
accurate view of the current situation and has difficulty to properly track the
distributed changes in the network. Generally speaking, bootstrapping alone is
not expected to work effectively in highly non-stationary environments. However,
here the bootstrapped pheromone is obtained via a lightweight, efficient process,
and is complemented by the explicit Monte Carlo path sampling and updating
done by the ants. In this way we have two complementary updating frequencies
in the path updating process. Bootstrapped pheromone is used directly for the
maintenance of existing paths. That is, if an entry T i

nd is present in the routing
table, Bi

nd is used as a replacement of it. For path exploration, bootstrapped
pheromone is used indirectly. If i does not yet have a value for T i

nd in its routing
table, Bi

nd could indicate a possible new path from i to d over n. However, this
path has never been sampled explicitly by an ant, and due to the slow multi-step
process it could contain undetected loops or dangling links. It is therefore not
safe to use for data forwarding before being checked. This is the task of proactive
forward ants, which use both the regular and the bootstrapped pheromone on
their way to the destination. This way, promising pheromone is investigated, and
can be turned into a regular path available for data. This increases the number
of paths available for data routing, which grows to a full mesh, and allows the
algorithm to exploit new opportunities in the ever changing topology.

The effect of varying the number of bootstrapping entries in the beacon mes-
sages, the sending rate of proactive ants, and their β exploration exponent is
studied respectively in Subsections 4.3, 4.2, and 4.4.

2.4 Stochastic Data Routing

Nodes in AntHocNet forward data stochastically according to the pheromone
values. When a node has multiple next hops for the destination d of the data,
it randomly selects one of them, with probability Pnd. Pnd is calculated like
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for reactive forward ants, using Eq. 1. According to this strategy, a mesh of
multiple paths is made available to route data. The number of paths to use is
automatically and dynamically selected in function of their estimated quality.
The effect of varying β in Eq. 1 for data forwarding is studied in Subsection 4.4.

3 Experimental Methodology and Characteristics of the
Simulation Environment

For the study of the performance of AntHocNet, we use simulation experiments.
This is the most common approach in MANETs, since the complexity of this
kind of networks makes analytical evaluations difficult and limited in scope, while
the high costs involved in purchasing and configuring hardware limit the use of
real testbeds. As simulation software, we use QualNet [17], a commercial simu-
lation package which comes with correct implementations of the most important
protocols at all layers of the network protocol stack.

All the simulation tests reported in this paper last 900 seconds, and each
data point represents the average taken over 10 runs using different random
seeds. The tests are carried out in open space scenarios (see [13] for evaluations
of AntHocNet in a structured urban scenario). 100 nodes move in an area of
2400×800 m2. The movements of the nodes are defined according to the random
waypoint mobility model [18]. Nodes pick a random destination point in the area,
and move to that point with a randomly chosen speed. Upon arrival, they stay
put for a fixed pause time, after which a new random destination and speed are
chosen. In our experiments, the node speed is chosen uniformly between 0 and
10 m/s, unless stated otherwise. The pause time is always 30 seconds.

Radio signal propagation is modeled with the two-ray ground reflection
model, which considers both the direct and the ground reflection path [19].
The transmission range of each node is 250 meters. At the physical and medium
access control layers of the network protocol stack, we use the IEEE 802.11b
protocol in DCF function with 2 Mbits/s bandwidth. At the application layer,
data traffic is generated by 20 constant bit rate (CBR) sources, sending packets
of 64 bytes. The CBR sessions start at a random time between 0 and 180 seconds
after the start of the simulation, and go on until the end of the simulation. The
data rate is 4 packets per second, unless stated differently. CBR uses the UDP
protocol at the transport layer. All these settings reflect choices widely adopted
in MANET research. Concerning the AntHocNet parameters, if not stated dif-
ferently, the value of β in Eq. 1 is set to 20, the maximum number of entries in
the pheromone diffusion messages is set to 10, and the sending interval for the
proactive ants is 2 seconds.

To evaluate the performance of the routing algorithms, we measure the average
end-to-end delay for data packets and the ratio of correctly delivered versus
sent packets (delivery ratio). These are standard measures of effectiveness in
MANETs. Other metrics which we consider are delay jitter and routing overhead.
Delay jitter is the average difference in inter-arrival time between packets. This
is an important metric in quality-of-service networks and in MANETs provides
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also a measure of the stability of the algorithm’s response to topological changes.
Routing overhead is a measure of efficiency. We calculate it as the number of
control packet transmissions (counting every hop) per data packet delivered.
Due to space limitations we do not show the results for jitter and overhead. In
any case, for all the tests of Section 4, the results for jitter and overhead always
follow the same trends of those for delivery ratio and end-to-end delay.

4 Experimental Analysis of the Different Components of
AntHocNet

In this section, we study how the different components influence the performance
of the algorithm. In 4.1, we investigate the use of different path evaluation metrics
for the definition of pheromone values. In 4.2 we study the effect of the frequency
with which proactive ants are sent out. In 4.3, we study the importance of the
amount of information transmitted in the pheromone diffusion messages and
made available for bootstrapping. Finally, in 4.4, we investigate the effect of
allowing different levels of exploration in proactive forward ants and for data.

4.1 Using Different Optimization Metrics for Pheromone Definition

A pheromone value encodes the adaptive estimated goodness of a routing deci-
sion. Different path evaluation metrics can be used to measure this goodness.
We investigate the use of path length in number of hops (referred to as “hops”
in Figure 1), path end-to-end delay (“delay”), number of hops combined with
the quality of each hop in terms of signal-to-noise ratio (“snr”), and number of
hops combined with end-to-end delay (“hops+delay”). We also plot results for a
version of AntHocNet where proactive learning is switched off (“no proactivity”)
and the “snr” metric is used. Figures 1a and 1b show respectively the delivery
ratio and the average end-to-end delay of the different versions of the algorithm.

A first clear result is that the metric combining hops and signal-to-noise ratio
is the most effective one. On the other hand, the optimization with respect to
the sole number of hops produces the worst results. Even worse than using no
proactivity at all with the “snr” metric. Similar results have been reported in the
MANET community [20]: paths with a low number of hops usually use long hops,
which necessarily have lower signal strength, and can therefore easily loose con-
nection. This diagnosis is confirmed by the fact that combining number of hops
and signal-to-noise ratio leads to large improvement in performance. Finally, we
point out that also the use of the end-to-end delay alone or together with hops
does not give good results. This is partly due to the backoff mechanisms at the
MAC layer, that make the single node experiencing fluctuating delays accessing
the shared wireless channel. This generates large variations in terms of end-to-
end delay. Under these conditions it becomes hard to learn estimates of path
latencies which are robust enough to rank the quality of the different paths.

These results indicate that it is crucial to choose a good path evaluation metric
to use in the pheromone model, based on knowledge of the specific network
environment. A composite metric is the right way to go.
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Fig. 1. (a) Delivery ratio and (b) average end-to-end delay for AntHocNet using dif-
ferent optimization metrics in scenarios with increasing nodes and constant density

4.2 Varying the Proactive Ant Send Interval

The proactive ant send interval is the time between successive proactive ants in
the proactive path maintenance and improvement phase. It defines how often
the algorithm looks for path improvements, and therefore how quickly it can
adapt to changes. We made tests with send intervals of 0.5, 1, 2, 5, 10, 20, and
50 seconds. The test scenario is the basic scenario described in Section 3. The
different curves in Figures 2a and 2b represent tests using different maximum
node speeds (so changing the network mobility).

All tests show a similar pattern. A too low ant send interval leads to bad
performance, because the network gets flooded by ants. At 2 seconds, there seems
to be an optimal send interval. For frequencies lower than that, the performance
decays because the algorithm is not sending enough ants to keep up with the
changes in the network. For low speeds, this decay is slower since the network
changes less fast. However, it is interesting to note that the best send interval
value is independent of the node speed. We also did some tests keeping the speed
constant on 10 m/s, and varying the data traffic load (not presented here due to
space limitations). Although higher traffic load could be expected to leave less
space for ants, also there the best ant send interval was always around 2 seconds.
The general effect of the use of proactive actions was also shown in previous
Figure 1 where it is evident the significant decrease in performance when the
proactive mechanisms are switched off (using “snr” metric) with respect to the
case of using the same metric but switching proactivity on.

4.3 Varying the Number of Entries in Pheromone Diffusion
Messages

The number of maximum entries in the pheromone diffusion messages defines
how much pheromone information is spread at each step of the information boot-
strapping process. Concretely, a low number of entries spreads little information
and determines also a slow running of the bootstrapping process. 0 entries is
the extreme case where the supporting pheromone diffusion function is disabled
and the proactive ants get no guidance. We made tests using 0, 2, 5, 10 and 20
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Fig. 2. (a) Delivery ratio and (b) average end-to-end delay for AntHocNet increasing
the proactive ant send interval in scenarios with different node speeds
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Fig. 3. (a) Delivery ratio and (b) average end-to-end delay for AntHocNet varying the
number of entries in pheromone diffusion messages for scenarios with different speeds

entries. The destinations whose routing information is included in each message
are selected randomly out of the known destinations stored in the pheromone ta-
ble. The test scenario is the basic scenario described in Section 3, with 20 active
CBR sessions. Like in Subsection 4.2, we report results for different maximum
node speeds. Figure 3 reports delivery ratio and average delay.

The graphs show the importance of the supporting pheromonediffusion process:
giving more efficiency to this process allows for better performance. Moreover, for
the tested sizes the benefit of the increase in transmitted information is still greater
than the negative impact due to the generation of largermessages.As was observed
in 4.2, the importance of the efficiency of the learning process decreases for slower
changing networks.

4.4 Varying the Routing Exponent for Ants and Data

The exponent β in Equation 1 defines the amount of exploration allowed to the
ants during their path search phase. As previously mentioned, for the reactive
forward ants β is set to a quite high value (≈ 20) in order to reduce counter-
productive ant proliferation and the establishment of sub-optimal paths at the
start of a new data session. On the other hand, proactive ants are meant to ex-
plore and check the path improvements suggested by bootstrapped pheromone.
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Fig. 4. (a) Delivery ratio and (b) average end-to-end delay for AntHocNet increasing
the proactive ant routing exponent in scenarios with different data traffic send rates
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Fig. 5. (a) Delivery ratio and (b) average end-to-end delay for AntHocNet increasing
the data packet routing exponent in scenarios with different data traffic send rates

Therefore, we studied the effect of varying the degree of exploration allowed to
the proactive forward ants by considering β values of 2, 5, 10, 20 and also the
case of deterministic choice of the best path. We considered scenarios with data
rates of 1, 4 and 8 packets per second for the 20 CBR sessions.

The results reported in Figure 4 shows a large difference in performance for
the cases of 1 and 4 packets and that of 8 packets per second. Nevertheless, an
equivalent performance response with respect to β is evidenced in all the three
different scenarios. Performance increases reducing exploration. The difference
between the extreme cases of β = 2 and deterministic choices (indicated with ∞
in the plots), is small but clear. These results show that in MANETs, exploration
at the level of the ants do not really pay back due to constant changes and
strong bandwidth limitations that limit the frequency of ant generation and the
number of different paths that can be effectively explored. We observed a similar
behavior also increasing the degree of exploration in reactive forward ants. On
the other hand, in AntHocNet path exploration is implicitly carried out with the
low-overhead mechanisms of pheromone diffusion and bootstrapping. New paths
are built in a multi-step fashion by bootstrapping on the pheromone information
received from the neighbors. Results in Figure 4 says that the best performance
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is obtained when proactive ants are used to test only the best path indicated by
the current combination of regular and bootstrapped pheromone.

Analogous results are reported in Figure 5, that shows the effect of varying
the value of the exponent β for data packets. In this case, β controls the amount
of multiple paths used to spread data. The results suggest that the best choice is
to adopt a deterministic greedy policy for next hop selection. On the other hand,
this does not imply that a single path is used to forward the data packets of a
same traffic flow. We experimentally observed that multiple paths are actually
used even when a deterministic policy is adopted, as the result of the continual
proactive updating and addition/removal of paths made available to the running
flows. However, the results indicate that an excessive use of multiple paths can
easily bring performance down. This is due to the fact that if two paths simul-
taneously used for the same flow are not radio-disjoint they will interfere with a
consequent degradation of performance.

5 Conclusions

MANETs are extremely dynamic network environments. Their multi-modality
represents an important challenge for algorithms at all levels of the network
protocol stack, and specifically for routing. We addressed these challenges with
AntHocNet, a routing algorithm designed after ACO ideas. AntHocNet was in-
troduced in previous work and showed superior performance compared to other
state-of-the-art algorithms over a wide range of MANET simulation scenar-
ios [2,3,4,5,6,13]. In this paper we discussed AntHocNet emphasizing its inno-
vative design, especially with respect to previous ACO algorithms for routing.
In particular, we pointed out the fact that AntHocNet is based on the integra-
tion of reactive and proactive components, and on the integration of the typical
ACO path sampling mechanism with the learning of routing information us-
ing an information bootstrapping process. In a detailed experimental study we
have investigated the role and the importance of these and other different com-
ponents of the algorithm, studying their effect on the overall performance. The
effectiveness of the use of a composite design to deal with the multiple challenges
of MANETs, and in particular the effectiveness of combining ant-based Monte
Carlo sampling with pheromone bootstrapping, has been confirmed by the exper-
imental results. Moreover, the experimental analysis has pointed out the need for
adopting low-overhead and low-interference strategies for exploration and data
forwarding, as well as the importance of defining a composite pheromone metric
taking into account different multiple aspects of the network environment.
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Abstract. Wireless Sensor Networks are characterized by having spe-
cific requirements such as limited energy availability, low memory and
reduced processing power. On the other hand, these networks have enor-
mous potential applicability, e.g., habitat monitoring, medical care, mil-
itary surveillance or traffic control. Many protocols have been developed
for Wireless Sensor Networks that try to overcome the constraints that
characterize this type of networks. Ant-based routing protocols can add
a significant contribution to assist in the maximisation of the network
lifetime, but this is only possible by means of an adaptable and bal-
anced algorithm that takes into account the Wireless Sensor Networks
main restrictions. This paper presents a new Wireless Sensor Network
routing protocol, which is based on the Ant Colony Optimization meta-
heuristic. The protocol was studied by simulation for several Wireless
Sensor Network scenarios and the results clearly show that it minimises
communication load and maximises energy savings.

1 Introduction

Identified as one of the most important technologies of the XXI century, Wireless
Sensor Networks (WSNs), are becoming the next step in information revolution
[1]. This enhancement was only possible due to the recent advances in electronic
sensors, communication technologies and computation algorithms; however, be-
cause of their novelty, WSNs present new challenges compared to custom wire-
less networks. Although they can be considered ad hoc networks, WSNs present
unique characteristics mainly due to their component devices, the sensor nodes.

A sensor node, typically, contains signal-processing circuits, micro-controllers
and a wireless transmitter/receiver antenna, and is characterized by limited re-
sources: low memory, reduced power battery and limited processing capabilities.
Sink-nodes are the devices responsible for managing the communication from the
sensor network to the base station, normally located in the wired network where
the observer keeps record of the sensor data. After receiving packets, sink-nodes
can send them to the base station if it is located inside the communication range,
or send them to other sink-nodes, through known ad hoc techniques. Furthermore,

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 49–59, 2006.
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sink-nodes have distinctive characteristicswhen compared to typical sensor-nodes,
such as more energy capacity, more processing power and more memory, which
makes them perfect to perform high demand processing and storing tasks.

Potential WSNs applications include security, traffic control, industrial and
manufacturing automation, medical or animal monitoring, and many more. This
wide applicability range forces WSN protocols to become application-based,
meaning that it is not feasible to build a WSN algorithm that fulfils all ap-
plication requirements. Instead it is important to build generic algorithms that
somehow can be adapted to some application requirements and at the same time
prolong the network lifetime as long as possible. The lifetime of a sensor network
can be measured based on generic parameters, such as the time when half of the
sensor nodes lose their transmitting capability, or through specific metrics of
each application, e.g. minimum delay.

This paper presents a new communication protocol for WSNs called energy-
efficient ant-based routing algorithm (EEABR), which is based on the Ant
Colony Optimization (ACO) metaheuristic [13]. EEABR uses a colony of ar-
tificial ants that travel through the WSN looking for paths between the sensor
nodes and a destination node, that are at the same time short in length and
energy-efficient, contributing in that way to maximise the lifetime of the WSN.
Each ant chooses the next network node to go to with a probability that is a
function of the node energy and of the amount of pheromone trail present on
the connections between the nodes. When an ant reaches the destination node,
it travels backwards trough the path constructed and updates the pheromone
trail by an amount that is based on the energy quality and the number of nodes
of the path. After some iterations the EEABR protocol is able to build a routing
tree with optimized energy branches.

In this paper we do not consider energy saving techniques based on the man-
agement of the node status [12]. These techniques are normally implemented in
physical and access layers, and allow turning nodes from sleep mode to trans-
mitting/receiving mode.

The remainder of this paper is organized as follows. Section 2 describes the
state-of-the-art of WSN protocols; wellknow algorithms are described as well
as some approaches that combine ant-based algorithm with such networks. In
Section 3 the EEABR protocol is described, in conjunction with two other ap-
proaches. Section 4 presents the studies performed to evaluate the proposed
protocol; these simulation environments try to emulate real WSN deployment,
so that real sensor characteristics can be studied. Conclusions and topics for
further work are presented in Section 5.

2 Related Work

Wireless sensor networks can be considered, as mentioned before, ad-hoc net-
works. However, protocols for mobile ad hoc networks (MANETs) do not offer
some of the sensor networks requirements: sensors typically have low power bat-
tery, low memory, and the routing tables grow up with the network length and
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do not support diffusion communication. These are the main reasons why it
is necessary to design new protocols, built on the most important criterion of
energy-efficiency.

Low Energy Adaptive Clustering Hierarchy (LEACH), described in [2], is
probably one of the more referenced protocols in the sensor networks area. It
is a powerful, efficient protocol created to be used in sensor networks with con-
tinued data flowing (unstopped sensor activity). This is a protocol that uses a
hierarchical topology, randomly creates cluesterheads, and presents data aggre-
gation mechanisms.

Power-Efficient GAthering inSensor Information Systems (PEGASIS), is a
recently developed protocol, which is similar to LEACH but that requires less
energy per round [3]. In PEGASIS, a chain is created so that each node re-
ceives aggregate information and forwards it to a nearby neighbour. It presents
mechanisms that allow the variation of radio communications energy parame-
ters. Compared to LEACH, the PEGASIS protocol obtains up to 100% of energy
cost improvement per round [4]. However these two protocols are not suitable for
mobility, and both assume that data packets can be aggregated at clusterheads.

Direct Diffusion (DD) [5] is a data-centric protocol, which addresses nodes
by the monitored data instead of their network addresses. In this protocol the
application is responsible to query the network for a specific phenomenon value.
Sensor nodes that satisfy the specific query start transmitting their data. Based
on sink-nodes requests this protocol does not consider the node’s available energy
when building their flood-based routing scheme.

Jeon et al. [6] proposed an energy-efficient routing protocol that tries to man-
age both delay and energy concerns. Based on AntNet protocol [7], this algorithm
uses the concept of ant pheromone to produce two prioritized queues, which are
used to send differentiated traffic. However, such approach can be infeasible in
current sensor nodes due to the memory required to save both queues. This
can be even more problematic if the sensor network is very populated, since the
routing table on each device depends on the number of neighbours.

Zhang et al. [8], study three distinct Ant-based algorithms for WSNs. However,
the authors only focus on the building of an initial pheromone distribution, good
at system start-up.

Finally in [9], the authors present an ant colony algorithm for Steiner Trees
which can be ported to WSNs routing. However, no changes are considered
regarding the specific WSNs requirements and also no considerations are made
regarding the energy management essential to the WSNs performance.

The ant-based algorithmspresented above assume that communicationbetween
sensor nodes (end-to-end) is required by the WSN application, and build their al-
gorithms based on such assumption. However this is not the case in most WSNs
scenarios, where the hop-by-hop or single hop communication is performed from
source node (sensor node) to sink node, which is responsible to collect sensor data
from the network. This node presents different characteristics compared with nor-
mal sensor nodes (more energy, more memory and more processing power), and
such differences are not considered in the referred algorithms.
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3 Energy-Efficient Ant-Based Routing Algorithm

Whenever a WSN protocol is designed, it is important to consider the energy
efficiency of the underlying algorithm, since this type of networks have strict
power requirements. In this section we describe a new energy-constrained pro-
tocol, the EEABR protocol, which is based on the Ant Colony Optimization
heuristic and is focused on the main WSNs constraints.

On such networks deployed in real environment it is important to point
out that sensor nodes may not have energy replenishment capabilities. This
assumption forces the use of energy-efficient algorithms in order to maximize
the network’s life time. In contrast, in timely delivery packet networks, a rout-
ing algorithm attempts to find the shortest path between two distinct devices
(source and receiver), which can be easily done by choosing the path with
less communication hops. In WSNs such requirements are relegated to sec-
ond plane, since quality of service and service awareness are not as important
as in normal MANETs, where running protocols required low communication
delays.

The remainder of this section summarizes the idea behind EEABR. First, a
basic ant-based routing algorithm for WSNs is presented that describes the adap-
tation of the ACO metaheuristic to solve the routing problem in WSNs. Next,
an improved algorithm is presented that reduces the memory used in the sensor
nodes and also considers the energy quality of the paths found by the ants. Fi-
nally the EEABR protocol is presented and further improvements are described
to reduce the communication load and the energy spent with communications.

3.1 Basic Ant Based Routing for WSNs

The ACO metaheuristic has been applied with success to many combinatorial
optimisation problems [13]. Its optimization procedure can be easily adapted to
implement an ant based routing algorithm for WSNs. A basic implementation
of such algorithm can be informally described as follows.

1. At regular intervals, from every network node, a forward ant k is launched
with the mission to find a path until the destination. The identifier of every
visited node is saved onto a memory Mk and carried by the ant.

2. At each node r, a forward ant selects the next hop node using the same
probabilistic rule proposed in the ACO metaheuristic:

pk (r, s) =

⎧⎪⎪⎨⎪⎪⎩
[T (r,s)]α[E(s)]β∑

u/∈Mk

[T (r,s)]α[E(s)]β
if s /∈ Mk

0 otherwise

(1)

where pk (r, s) is the probability with which ant k chooses to move from
node r to node s, T is the routing table at each node that stores the amount
of pheromone trail on connection (r, s), E is the visibility function given
by 1

(C−es) (C is the initial energy level of the nodes and es is the actual
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energy level of node s), and α and β are parameters that control the relative
importance of trail versus visibility. The selection probability is a trade-
off between visibility (which says that nodes with more energy should be
chosen with high probability) and actual trail intensity (that says that if on
connection (r, s) there has been a lot of traffic then it is highly desirable to
use that connection.

3. When a forward ant reaches the destination node, it is transformed in a
backward ant which mission is now to update the pheromone trail of the
path it used to reach the destination and that is stored in its memory.

4. Before backward ant k starts its return journey, the destination node com-
putes the amount of pheromone trail that the ant will drop during its journey:

ΔTk =
1

N − Fdk
(2)

where N is the total number of nodes and Fdk is the distance travelled by
the forward ant k (the number of nodes stored in its memory).

5. Whenever a node r receives a backward ant coming from a neighbouring
node s, it updates its routing table in the following manner:

Tk (r, s) = (1 − ρ)Tk (r, s) + ΔTk (3)

where ρ is a coefficient such that (1 − ρ) represents the evaporation of trail
since the last time Tk (r, s) was updated.

6. When the backward ant reaches the node where it was created, its mission
is finished and the ant is eliminated.

By performing this algorithm several iterations, each node will be able to know
which are the best neighbours (in terms of the optimal function represented by
(2)) to send a packet, towards a specific destination.

3.2 Improved Ant Based Routing for WSNs

In this section we propose two improvements in the basic ant-based routing
algorithm described in the previous section in order to reduce the memory used
in the sensor nodes and also to consider the energy quality of the paths found
by the ants.

In the basic algorithm the forward ants are sent to no specific destination
node, which means that sensor nodes must communicate with each other and
the routing tables of each node must contain the identification of all the sensor
nodes in the neighbourhood and the correspondent levels of pheromone trail. For
large networks, this can be a problem since nodes would need to have big amounts
of memory to save all the information about the neighbourhood. Nevertheless,
the algorithm can be easily changed to save memory. If the forward ants are sent
directly to the sink-node, the routing tables only need to save the neighbour
nodes that are in the direction of the sink-node. This considerably reduces the
size of the routing tables and, in consequence, the memory needed by the nodes.



54 T. Camilo et al.

As described in the Introduction, sensor nodes are devices with a very limited
energy capacity. This means that the quality of a given path between a sensor
node and the sink-node, should be determined not only in terms of the distance
(number of nodes of the path), but also in terms of the energy level of that path.
For example, it would be preferable to choose a longer path with high energy
level than a shorter path with very low energy levels.

To consider the energy quality of the paths on the basic algorithm a new func-
tion is proposed to determine the amount of pheromone trail that the backward
ant will drop during its returning journey:

ΔTk =
1

C −
(
avg (Ek) − 1

min(Ek)

) (4)

where Ek is a new vector carried by forward ant k with the energy levels of
the nodes of its path, C is the initial energy level of the nodes, avg (Ek) is the
average of the vector values and min (Ek) is the minimum value of the vector.

3.3 Energy-efficient Ant Based Routing for WSNs

In this section we propose further improvements in the routing algorithm de-
scribed in the previous section in order to reduce the communication load re-
lated to the ants and the energy spent with communications. We also propose
new functions to update the pheromone trail.

It has been proved that the tasks performed by the sensor nodes that are
related with communications (transmitting and receiving data), spend much
more energy than those related with data processing and memory management
[10,11]. Since one of the main concerns in WSNs is to maximise the lifetime of the
network, which means saving as much energy as possible, it would be preferable
that the routing algorithm could perform as much processing as possible in the
network nodes, than transmitting all data through the ants to the sink-node to
be processed there. In fact, in huge sensor networks where the number of nodes
can easily reach more than 1000 units, the memory of the ants would be so big
that it would be unfeasible to send the ants through the network.

To implement these ideas, the memory Mk of each ant is reduced to just two
records, the last two visited nodes. Since the path followed by the ants is no more
in their memories, a memory must be created at each node that keeps record
of each ant that was received and sent. Each memory record saves the previous
node, the forward node, the ant identification and a timeout value. Whenever
a forward ant is received, the node looks into its memory and searches the ant
identification for a possible loop. If no record is found, the node saves the required
information, restarts a timer, and forwards the ant to the next node. If a record
containing the ant identification is found, the ant is eliminated. When a node
receives a backward ant, it searches its memory to find the next node to where
the ant must be sent. The timer is used to delete the record that identifies the
backward ant, if for any reason the ant does not reach that node within the time
defined by the timer.
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The vector Ek was erased from the forward ants k, that now only carry the
average energy till the current node (Eavgk), and the minimum energy level
registered (E mink). These values are updated by each node that receives the
forward ants.

When the forward ant reaches the sink-node these values are used to calculate
the amount of pheromone trail used by the corresponding backward ant:

ΔTk =
1

C −
[

E mink −Fdk

Eavgk−Fdk

] (5)

With these changes it is possible to reduce the ant’s length by ∼=700%, and save
on each ant hop the transmission of ∼=250 bytes. This is a significant achievement,
since it allows the saving of precious energy levels on sensor nodes.

Calculating ΔTkonly as a function of the energy levels of the path, as it is
done in (4), can bring no optimized routes, since a path with 15 nodes can have
the same energy average as a path with only 5 nodes. Therefore ΔTkmust be
calculated as a function of both parameters: the energy levels and the length of
the path. This can be achieved by introducing the parameter Fdk in the (5),
which represents the number of nodes that the forward ant k has visited.

The equation used to update the routing tables at each node is now changed
to:

Tk (r, s) = (1 − ρ)Tk (r, s) +
[

ΔTk

ϕBdk

]
(6)

where ϕ is a coefficient and Bdk is the travelled distance (the number of visited
nodes), by backward ant k until node r. These two parameters will force the ant
to loose part of the pheromone strength during its way to the source node. The
idea behind this behaviour is to build a better pheromone distribution (nodes
near the sink-node will have more pheromone levels) and will force remote nodes
to find better paths. Such behaviour is extremely important when the sink-node
is able to move, since the pheromone adaptation will be much quicker.

4 Experimental Results

In this section we present the experimental results obtained for the three algo-
rithms described in section 3: the basic ant-based routing algorithm (BABR),
described in section 3.1, the improved ant-based routing algorithm (IABR),
presented in section 3.2, and the energy-efficient ant-based routing algorithm
(EEABR), presented in section 3.3. The algorithms were tested using the well
known ns-2 simulator [14], with the two-ray ground reflection model.

To better understand the differences between the three algorithms, three dis-
tinct scenarios were used, each one trying to represent real WSN deployment
environments, as well as possible. On all scenarios the nodes were deployed in
random fashion, since in real sensor networks the device deployment, in general,
cannot be controlled by an operator due to the environment characteristics. The
number of deployed sensor nodes varied between 10 and 100 nodes. In terms of
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(a) Average Energy (b) Minimum Energy

(c) Standard Deviation (d) Energy Efficiency

Fig. 1. Performance in sensor network with static phenomenon

simulated area it also varied, forcing the connectivity between all nodes, from
200x200 m2 (10 nodes), 300x300 m2 (20 nodes), 400x400 m2 (30 nodes), 500x500
m2 (40 nodes) and 600x600 m2 when 50, 60, 70, 80, 90 and 100 nodes were used.
For each environment four metrics were used to compare the performance of the
algorithms: the Average Energy, which gives the average of energy of all nodes
at the end of simulation; the Minimum Energy, which gives the lowest energy
amount of all nodes; the Standard Deviation, which gives the average variance
between energy levels on all nodes; and finally the Energy Efficiency, which gives
the ratio between total consumed energy and the number of packets received by
the sink-node.

The first scenario simulates a static WSN where the sensor nodes were ran-
domly deployed with the objective to monitor a static phenomenon. The location
of the phenomenon and the sink-node are not known. Nodes are responsible to
monitor the phenomenon and send the relevant sensor data to the sink-node. In
this peculiar scenario the nodes near the phenomenon will be affected in terms
of energy consumption, since they will be forced to periodically transmit data.
Figure 1 presents the results of the simulation for the studied parameters. In
the majority of the scenarios (from 10 till 100 nodes) the EEABR protocol gives
the best results. In Figure 1b) the minimum energy in both protocols, BABR
and IABR, present a very low value when the network has 30 nodes, however
in the EEABR protocol this does not happen. This behaviour is also visible in
Figure 1c) where the standard deviation shows us the same distinctive values.
This behaviour can be explained considering the used network topology, where
there exist few communication paths from source to the sink-node.
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(a) Average Energy (b) Minimum Energy

(c) Standard Deviation (d) Energy Efficiency

Fig. 2. Performance in sensor network with mobile phenomenon

The results illustrated in Figure 2 correspond to the second scenario, where
the phenomenon is mobile. Comparing with results from previous scenarios, the
phenomenon mobility decreases the performance of the algorithm, which is un-
derstandable and expected since more nodes become sources of data packets,
increasing the number of packets in the network. Once again the EEABR proto-
col presents the best results when compared to the others protocols, but results
can easily be compared to scenarios where all environment variables are static.

The final study simulates a mesh sensor network. These networks are com-
posed of several nodes with different capabilities. On each network three energy
levels were used: 50, 30 and 20 joules. These levels were uniformly distributed
over the nodes. Figure 3 shows the simulation results. The EEABR protocol
had better final results compared to the previous studies. This can be explained
by the adaptability of the protocol, which efficiently tries to balance the energy
levels on all nodes. This conclusion is more evident in Figure 3d). When com-
pared with the other algorithms the EEABR presents a significant reduction in
relation to the standard deviation. In terms of average energy levels the EEABR
always presents the best results. When compared to the IABR the difference
between the average values varied between 3% and 10%, and when compared
with BABR varied between 17% and 25%. In terms of the minimum energy
of the nodes at the end of the simulation, no algorithm could avoid the exis-
tence of “dead” nodes, however BABR and IABR presented two “dead” nodes
contrasting to only one presented by the EEABR protocol. This is due to the ran-
dom node distribution, where only two nodes were responsible to provide connec-
tivity between the source and the sink-node, since the phenomenon was static.
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(a) Average Energy (b) Minimum Energy

(c) Standard Deviation (d) Energy Efficiency

Fig. 3. Performance in sensor network with different initial energy levels

In relation to energy efficiency, the results were very similar in all scenarios.
EEABR and IABR present the best results, which are also very similar because
both algorithms are energy-aware. However, in terms of the other parameters, the
difference between both protocols became higher, meaning EEABR performance
is better since it significantly reduces the energy consumed in communications.
On the other hand, the BABR algorithm presents the worst results for all the
studied parameters, although in some cases it reaches the same values as the
IABR protocol, due to the inefficiency of the IABR in reducing the overhead in
exchange messages.

5 Conclusions

In this paper we studied the application of the Ant Colony Optimization meta-
heuristic to solve the routing problem in wireless sensor networks. A basic ant-
based routing algorithm was proposed, and several improvements, inspired by
the features of wireless sensor networks (low energy levels, low processing and
memory capabilities), were considered and implemented. The resulting rout-
ing protocol, called Energy-Efficient Ant Based Routing (EEABR), uses “light-
weight” ants to find routing paths between the sensor nodes and the sink nodes,
which are optimised in terms of distance and energy levels. These special ants
minimise communication loads and maximise energy savings, contributing to ex-
pand the lifetime of the wireless network. The experimental results showed that
the algorithm leads to very good results in different WSN scenarios.
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As future work we intend to study the initialization method to populate the
routing tables with initial pheromone levels. As shown in the literature [8], such
mechanisms can increase even more the efficiency of the networks. Another ap-
proach to be studied is the integration of multiple sink-nodes.
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Abstract. In previous papers we proposed an algorithm for real para-
meter optimization called the Aggregation Pheromone System (APS).
The APS replaces pheromone trails in traditional ACO with aggrega-
tion pheromones. The pheromone update rule is applied in a way similar
to that of ACO. In this paper, we proposed an enhanced APS (eAPS),
which uses a colony model with units. It allows a stronger exploitation
of better solutions found and at the same time it can prevent premature
stagnation of the search. Experimental results showed eAPS has higher
performance than APS. It has also shown that the parameter settings
for eAPS are more robust than for APS.

1 Introduction

Ant colony optimization (ACO) has been applied with great success to a large
number of discrete optimization problems [1,2,3,4,5,6,7]. However, up to now, few
ant-colony based approaches for continuous optimization have been proposed in
the literature. The first such method, called Continuous ACO (CACO), was
proposed in [8]. CACO combines ACO with a real-coded GA, with the ACO
approach being largely devoted to local search. CACO was extended in [9,10].
In [11], the behavior of an ant called Pachycondyla Apicalis was introduced as
the base metaphor of the algorithm (API) to solve continuous problems. The
Continuous Interacting Ant Colony (CIAC) in [12] also introduces an additional
direct communication scheme among ants.

In contrast to the above studies, studies that have a purely pheromone based
method were proposed independently in [13,14]. In [13], the pheromone intensity
is represented by a single normal probability distribution function. The center of
the normal distribution is updated at each iteration to the position which has the
best functional value. The variance value is updated according to the current ant
distribution. In [14], a mixture of normal distributions was introduced to solve
multimodal functions. However, both of the above two approaches use marginal
distribution models and the pheromone update rules used are quite different
than those of the original ACO methods.

In [15,16], we proposed a model called the Aggregation Pheromone System
(APS). The APS replaces pheromone trails in traditional ACO with aggrega-
tion pheromones and uses them as the base metaphor of the algorithm. The

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 60–71, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



An eAPS for Real-Parameter Optimization in the ACO Metaphor 61

pheromone update rule is applied in a way similar to that of AS [1], and as a
result, the aggregation pheromone density eventually becomes a mixture of mul-
tivariate normal distributions. APS could solve even hard problems which have
a tight linkage among parameters. However, this model was sensitive to control
parameters.

In this paper, we propose an enhanced APS (eAPS) which is more robust to
the control parameters and has higher performance than APS. This is achieved
by applying stronger exploitation of better solutions found during the search and
by using a colony model with units. The remainder of this paper is organized
as follows. Section 2 gives a brief review of APS. Section 3 describes how the
eAPS is structured. Section 4 presents experimental results. Finally, Section 5
concludes the paper.

2 A Review of Aggregation Pheromone System (APS)

In the real world, aggregation pheromones are used by some insect species to
communicate with members of their community to share information about the
location of food, safe shelter, potential mates, or enemies. Many types of func-
tion of aggregation behavior have been observed. These include foraging-site
marking, mating, finding shelter, and defense. When they have found safe shel-
ter, cockroaches produce a specific pheromone in their excrement which attracts
other members of their species [17].

The difference between ACO and APS is in how the pheromones function in
the search space [15,16]. In ACO, pheromone intensity is defined as a trail on
a node or an edge between nodes of a given sequencing problem. On the other
hand, in APS, the aggregation pheromone density is defined by a continuous
density function in the search space X in Rn.

best          individuals 
from previous cycle

generate m new
individuals

me

best m individuals

t+1,xpheromone
density

update pheromone 
density

Fig. 1. Colony model of the APS

Fig.1 shows the colony model of the
previously proposed APS. Here, the
colony consists of a population of m in-
dividuals. The aggregation pheromone
density τ(t,x) is defined in the search
space X in Rn. Initially (t=0), the
aggregation pheromone is distributed
uniformly. The initial pheromone den-
sity is used to generate the first m
individuals; therefore, the initial indi-
viduals are generated randomly with a
uniform distribution over all possible
individuals. Next, the individuals are
evaluated and aggregation pheromone
is emitted by m individuals depending
on their functional values. Then the pheromone density for the next iteration
τ(t+1,x) is obtained and m individuals for next iteration are generated according
to τ(t+1,x).
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Here the best individuals of e×m from the previous population are added to
the newly generated solutions (the value of e should be rather small, e.g. e= 0.1).
The best m individuals are selected from the combined population of (e+1)×m
to create the next population of m individuals. Setting t ← t+1, this iteration
continues until the predetermined termination criteria are satisfied. Note here
that in APS, the best e × m individuals are retained as candidate individuals
for the next iteration so that APS can perform a stronger exploitation of best
solutions found in the search.

3 Enhanced Aggregation Pheromone System (eAPS)

3.1 The Model of the eAPS

winner

unit m

t+1,x

pheromone
density

Generate new individual for t+1                         

winner

unit 1

update pheromone 
density

new
1,tmx

new
1,tix

new
1,1 tx

*
,1 tx

*
,1 tx

(i = 1, 2, …m)

*
,tmx

*
,tmx

t t+1

t t+1

Fig. 2. Colony model of the eAPS

In eAPS, we use a colony
model as shown in Fig.2.
The colony model consists
of m units, and each unit
consists of only one indi-
vidual. At iteration t+1,
a new individual xnew

i,t+1 (i
= 1, 2, . . . , m) is gen-
erated according to the
pheromone density τ(t +
1, x). It is then compared
with the existing individ-
ual x∗

i,t in the unit. If
xnew

i,t+1 is better than x∗
i,t,

it is replaced with xnew
i,t+1

and is indicated as x∗
i,t+1

(here note that the nota-
tion of individualxnew

i,t (or
x∗

i,t) also represents the vector value of the individual). Thus in eAPS, the best
individual of each unit is always retained. After the best individual for each unit
is obtained and iteration index is updated, aggregation pheromone is emitted by
all x∗

i,t (i =1, 2, . . . , m) depending on their functional values. This colony model
has following two important features:

1. It has a stronger exploitation of the best individuals than APS in Fig. 1 since
each unit maintains the best individual found so far in the unit.

2. The comparison method in each unit is similar to tournament selection in
genetic algorithms (GAs), but it differs from traditional tournament selec-
tion because the comparison is performed only between existing and newly
generated individuals. However, just as tournament selection can maintain
diversity of a population in GAs, this colony model can also maintain the
diversity of x∗

i,t.
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3.2 Updating the Pheromone Intensity and Sampling New
Individuals

Although the methods of updating the pheromone intensity and sampling new
individuals in eAPS are basically the same as with APS, here we describe them
in a more schematic manner.

3.2.1 Probability Density Function of Pheromone
In each iteration, xnew

i,t (i=1,2, . . . , m) individuals are generated based on the
density of the aggregation pheromone. Individuals are attracted more strongly
to positions where the pheromone density is higher, whereas they are attracted
less strongly to positions where the density is lower. More specifically, eAPS
generates new individuals using probabilities proportional to the values of the
aggregation density function. Let τ(t, x) be the density function of the aggrega-
tion pheromone in iteration t in search space X . Initially (t=0), the aggregation
pheromone is distributed uniformly, that is, τ(0, x) = c where c is an arbi-
trary positive constant. The probability density function used to generate new
candidate solutions at iteration t, denoted by pτ (t,x), is defined as

pτ (t, x) =
τ(t, x)∫

X
τ(t, x)dx

. (1)

Note that each individual x∗
i,t emits aggregation pheromone in its neighborhood.

The intensity of aggregation pheromone emitted by individual x∗
i,t is based on

the following properties:

1. The intensity of the pheromone emitted by x∗
i,t depend on its functional value

f(x∗
i,t) – the higher the functional value of x∗

i,t, the higher the pheromone
intensity emitted by x∗

i,t. We use ranking based on functional value to control
pheromone intensity. The best individual has a rank m, whereas the worst
individual has a rank 1.

2. The intensity emitted by x∗
i,t should decrease with distance so that the

pheromone intensity of the points that are closer to x∗
i,t is increased more

than the pheromone intensity of the points that are further from x∗
i,t.

3. In order to alleviate the effects of linear transformations of the search space,
the intensity should consider the overall distribution of individuals in each
unit. To achieve this, the pheromone intensity emitted by x∗

i,t was chosen
to be a Gaussian distribution with covariance equal to the covariance of x∗

i,t

(i=1, 2, . . . , m).

Let us represent the rank value of individual x∗
i,t at iteration t by r(t, x∗

i,t). Then,
the density of the pheromone intensity emitted by x∗

i,t at point x is given by a
scaled multivariate normal distribution as

Δτ ′(t, x∗
i,t, x) = C

(r(t, x∗
i,t))

α∑m
j=1 jα

N(x; x∗
i,t, β

2Σt), (2)

where N(x; x∗
i,t, β

2Σt) is a multivariate normal distribution function (its center is
located at x∗

i,t), Σt is the covariance matrix of all individuals of units at iteration
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t, α (α >0) is a parameter for adjusting the relative importance of rank, β
(β>0) is a scaling factor, and C is the total pheromone intensity emitted from
all units at iteration t. The total aggregation pheromone density emitted by the
m individuals x∗

i,t(i = 1, 2, ..., m) at iteration t is then given by

Δτ(t, x) =
∑m

i=1
Δτ ′(t, x∗

i,t, x). (3)

Note that C is assumed to be constant for all t, that is,∫
X

Δτ(t, x)dx = C for t ≥ 0. (4)

The sampling method in 3.2.2 is based on the assumptions of Eq. 4. The scaling
factor β controls exploration by reducing the amount of variation as the colony
converges to the optimum. The total aggregation pheromone density is updated
according to the following formula as in ACO:

τ(t + 1, x) = ρ · τ(t, x) + Δτ(t, x), (5)

where ρ (0≤ρ<1) controls the evaporation rate.
After the pheromone updating is performed, a new individual xnew

i,t+1 is gen-
erated based on the new pheromone density τ(t+1,x), x∗

i,t+1 is obtained by
comparison between x∗

i,t and xnew
i,t+1 at each unit i, and the next iteration of

eAPS is performed. Since the pheromone density updates increase pheromone
intensity near individuals with better functional value, the pheromone density
in promising regions of the search space is expected to increase over successive
iterations, eventually converging to global optima.

3.2.2 Sampling New Individuals
As described in 3.2.1, new individuals are sampled with probabilities propor-
tional to the aggregation density τ(t+1,x). To perform the sampling, we need to
obtain the probability density function pτ (t+1,x) from τ(t+1,x). Since τ(t+1,x)
in Eq. 5 can be rewritten as

τ(t + 1, x) = ρt+1τ(0, x) +
∑t

h=0
ρhΔτ(t − h, x). (6)

pτ (t+1,x) is obtained from Eqs. 1, 4, and 6 as

pτ (t + 1, x) =
ρt+1∑t+1
k=0 ρk

· τ(0, x)
C

+
∑t

h=0

ρh∑t+1
k=0 ρk

· Δτ(t − h, x)
C

. (7)

Here note that we assume ρ0 = 1 for 0≤ρ<1 for the sake of convenience.
In general, if a probability density function f(x) can be written as a mixture

of other probability density functions

f(x) = p1f1(x) + p2f2(x) + · · · + pSfS(x) (8)

with p1 + p2+...+pS = 1, then the sampling of each point according to the
distribution defined by f(x) proceeds as follows:
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1. Choose which mixture component fs(x) should be used (a mixture compo-
nent fs(x) is chosen with probability ps).

2. Generate a random point according to the density function of the chosen
component.

Since pτ (t+1,x) is indeed a mixture distribution of t + 1 multivariate Gaussian
distributions and one uniform distribution, we can sample it using the standard
sampling procedure for mixture distributions where the probability of the s-th
component of the mixture is

ps = ρs

/∑t+1

k=0
ρk (9)

and the s-th mixture component is given by

fs(x) =
{

Δτ(t − s, x)/C if s ≤ t
τ(0, x)/C otherwise. (10)

This sampling is called iteration sampling. Sampling according to the last mix-
ture component ft+1(x) is simple because ft+1(x) is a constant and thus repre-
sents a uniform distribution over the entire search space. The remaining compo-
nents, fs(x), where s ≤ t, are mixture distributions of m components each:

Δτ(t − s, x)
C

=
∑m

i=1

(r(t − s, x∗
i,t−s))

α∑m
j=1 jα

N(x; x∗
i,t−s, β

2Σt−s). (11)

Sampling according to fs(x), where s ≤ t, can be done in a similar way, i.e., by
using the sampling procedure for mixture distributions where the probability of
the i-th component N(x; x∗

i,t−s, β
2Σt−s) of Eq. 11 is

pi = (r(t − s, x∗
i,t−s))

α
/∑m

j=1
jα. (12)

We call this sampling rank sampling. Since each component is a normal distrib-
ution, it can be sampled using Cholesky decomposition [18].

To perform the sampling based on Eq. 7, using the above sampling method, we
need a large amount of memory to store x∗

r,t−h vector values and the covariance
matrix β2Σt−h when the iteration index t becomes large. In this case ρh →0
for large h since ρ <1. Thus, we can limit the maximum number of iterations
to keep data up to a constant H . For t ≥ H we need to use slightly modified
probability function pτ (t+1,x) from Eq. 7.

Although at each iteration sampling is performed probabilistically according
to Eq. 7 (or its modification for t ≥ H), we also introduce a perturbation, result-
ing from conflict among individuals, or environmental disturbances. Perturba-
tion works to perform the same function as mutation in evolutionary algorithms.
The perturbation rate is represented by Prate. The pseudo-code of eAPS is shown
in Fig. 3.
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1. t ← 0
2. Set the initial pheromone density τ(0, x) uniformly
3. Sample two individuals randomly for each unit i
4. Obtain the rank number r(t, x∗

i,t) for each individual x∗
i,t (m for the best, 1

for the worst l) in the colony
5. Compute the covariance matrix Σt of m individuals of x∗

i,t of i=1,2,. . . , m
6. Update the pheromone density τ(t+1, x) according to Eq. 5
7. Sample new individual xnew

i,t+1 according to Eq. 7 for i=1,2,. . . , m
8. Apply perturbation to xnew

i,t+1 with rate of Prate for i=1,2,. . . , m
9. Compare xnew

i,t+1 and x∗
i,t and set the best one as x∗

i,t+1 for i=1,2,. . . , m
10. t ← t+1
11. If the termination criteria are met, terminate the algorithm. Otherwise, go to 4

Fig. 3. The pseudo-code of eAPS

3.2.3 The Computational Complexity
Here, we consider the computational complexity of the eAPS. Let n be the
problem size. First, let us consider the computational complexity of updating
the pheromone intensity described in 3.2.1. Comparing xnew

i,t+1 and x∗
i,t for m

units is simply performed with O(m). To give the rank number for each indi-
vidual x∗

i,t, we use a quick sort with a complexity of O(m×log(m)). Computing
the covariance matrix Σt of mindividuals is performed with O(m × n2). Next,
the computational complexity of the three samplings to generate m individual
described in 3.2.2 is as follows: The iteration sampling is simply performed with
O(t × m) for t < H or O(H × m) for t ≥ H . The rank sampling is also simply
performed with O(m2). Cholesky decomposition is performed with O(n3) and
the sampling after the Cholesky decomposition is O(m × n2).

Thus the computation time of the algorithm is mainly occupied by computing
the covariance matrix (O(m × n2)), the Cholesky decomposition (O(n3)) and
the sampling after the Cholesky decomposition (O(m × n2)). However, since in
real-world parameter optimization a function evaluation usually needs a much
larger computational time compared to the evolutionary algorithm run time, the
number of function evaluations is the more critical issue. In Section 4, we mainly
evaluate eAPS using the number of function evaluations.

4 Experimental Study

In this section, the search capability and the characteristics of eAPS are studied
in comparison with APS using test functions which are commonly used in the
evolutionary computation community.

4.1 Experimental Methodology

We used the following four test functions: the Ellipsoidal function (FEllipsoidal)
[19], the Ridge function (FRidge), the Rosenbrock function (FRosenbrock), and the
Rastrigin function (FRastrigin).
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FEllipsoidal =
∑n

i=1
ix2

i , ( − 3.12 ≤ xi < 7.12) (13)

FRidge =
∑n

i=1

(∑i

j=1
xj

)2

, ( − 44 ≤ xi < 84) (14)

FRosenbrock =
∑n

i=2
(100(x1 − x2

i )
2 + (xi − 1)2), ( − 2.048 ≤ xi < 2.048) (15)

FRastrigin = 10n +
∑n

i=1
(x2

i − 10 cos(2πxi)) , ( − 3.12 ≤ xi < 7.12) (16)

FRidge has a linkage among variables. FRosenbrock has a strong linkage among
variables. FEllipsoidal and FRastrigin have no linkage among variables. FRosenbrock,
FEllipsoidal, and FRidge are unimodal, and FRastrigin is multimodal. FEllipsoidal ,
FRidge, and FRastrigin have their global optima at (0, 0, . . . , 0). To avoid sam-
pling bias as discussed in [19], search space definitions are altered from the
original definitions.

We evaluated the algorithms by measuring #OPT (the number of runs in
which algorithms succeeded in finding the global optimum) and MNE (the mean
number of function evaluations to find the global optimum in those runs where
it did find the optimum). Problem size n = 20 was used for all test functions.
We assumed the solution to be successfully detected if the functional value was
within n×10−6 of the actual optimum value. 20 runs were performed in each
setting. Each run continued until the global optimum was found or a maxi-
mum of 500,000 evaluations was reached. There are four common parameters
for both eAPS and APS: m, α, β, and ρ. APS contains an extra parameter e
which determines the number of best individuals passed to the next iteration
by e × m (see Fig. 1). In all experiments, the same unit size of m= 120 was
used. Perturbation was applied to each solution with Prate = 0.0005 by adding
a randomly generated number from a zero-mean, unit-normal distribution. For
the value of H , H=100 was used. Here the remaining parameters were set as
follows. For the APS, the following parameters were used in the experiments: β
= 0.6, α = 4, ρ = 0.9, and e = 0.1. For eAPS, the following parameters were
used in the experiments: β = 1.0, α = 32, and ρ = 0.2, except for the value of
β of FRastrigin . For FRastrigin , β = 0.6 was used. These values were obtained
by tuning, using test function FRosenbrock. FRosenbrock was chosen because it is
one of the hardest problems to solve due to a strong linkage among variables.
For a comparison with a real-coded GA (RGA), the results were also compared
to the results obtained with SPX crossover [20], a typical crossover operator for
RGAs, with the population size tuned to 300. Parameters for SPX were also
tuned using FRosenbrock.

4.2 Results

Table 1 shows the results of eAPS, APS, and RGA using the parameter val-
ues described in Section 4.1. Among these three, eAPS showed the best results
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Table 1. Results with default values

F Ellipsoidal F Ridge F Rosenbrock F Rastrigin

#OPT 20/20 20/20 20/20 20/20
MNE 35927.7 43043.5 61768.7 239364.5
STD 1137.9 1510.7 4169.6 55065.9

Time(sec) 1.8 1.4 2.7 9.7
#OPT 20/20 20/20 20/20 16/20
MNE 70001.4 83730.6 126994.4 412560.9
STD 1521.5 1539.9 7325.7 45166.8

Time(sec) 3.1 3.8 5.5 17.4
#OPT 20/20 20/20 20/20 17/20
MNE 113076.9 137996.0 255483.5 406759.0
STD 1716.2 137996.0 21392.3 42639.6

Time(sec) 8.5 7.8 10.6 30.0

Algorithm

eAPS

APS

RGA

with the smallest val-
ues of MNE. For ex-
amples, values of MNE
on FRosenbrock are 61,
768.7,126,994.4, and 255,
483.5 for eAPS, APS, and
RGA, respectively.Values
of #OPT on Frastrigin

are 20, 16, and 17 for
eAPS, APS, and RGA,
respectively. (Time indi-
cates the average time for
successful runs in seconds
on a 2.8G Hz Pentium 4 with 512MB main memory. The code is written in Java).
Fig. 4 shows the convergence processes of eAPS, APS, and RGA on FRosenbrock.
Each dot sequence indicates a change of functional values over 20 runs with each
algorithm. We can see that eAPS converged more rapidly than APS and RGA.
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Fig. 4. Convergence processes on FRosenbrock

In addition to examin-
ing the performance re-
sults with fixed parameter
values, we analyzed the
sensitivity of eAPS and
APS to changing parame-
ters ρ and α. To make the
analysis feasible, the sen-
sitivity of eAPS and APS
with respect to only one
parameter at a time is an-
alyzed, while all the re-
maining parameters being
kept constant.

Fig. 5 shows the variation of MNE and #OPT with ρ for the function
FEllipsoidal (unimodal, no linkage among variables) and FEllipsoidal (unimodal,
strong linkage among variables). The first figure shows the variation with eAPS
and the second one with APS. To explore the effect of the evaporation coeffi-
cient ρ, we varied the value of ρ over the ranges of [0, 0.9] for eAPS and [0.5,
0.95] for APS. We can see that eAPS is robust to the variation of ρ, but APS is
very sensitive to this value. In eAPS, the best individuals are maintained in each
unit. This works as a kind of memory of past searches. This is the reason why
eAPS is robust to variation of ρ. However, on FRosenbrock which has a strong
linkage among variables, ρ still plays an important role. On the other hand, on
FEllipsoidal which has no linkage among variables, ρ = 0 showed the best perfor-
mance. In APS, the appropriate choice of ρ value becomes important for APS
to perform well.
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Fig. 5. Variation of MNE and #OPT with ρ

To see the effect
of the parameter α,
which adjusts the rela-
tive importance of rank
in determining the
pheromone emitted by
an individual, we tested
α in the range of [4,
64] on the same func-
tions (Fig. 6). With
larger values of α,higher
ranked individuals emit
pheromone at increas-
ing rates. With larger
values of α, the per-
formance of eAPS in-
creased, as seen in the results with FEllipsoidal. However, as seen in the results
with FRosenbrock, which has a strong linkage among variables, larger α values
affect convergence. Again in APS, varying α has a strong effect on performance,
especially on FRosenbrock.

Fig. 6. Variation of MNE and #OPT with α

In the above experi-
ment, we analyzed the
algorithms with prob-
lem size (n) fixed at
20. Here we focus on
the scale-up behavior
of eAPS and APS us-
ing function FRosenbrock

with the number of vari-
ables increasing from 10
to 40 with a step size
of 10. We ran the ex-
periment for each num-
ber of variables (n)
increasing the values of
m starting at 100 with
a step size of 20 until
the optimal solution was obtained 5 times in 5 runs. The values of the other
control parameters were the same as those described in Section 4.1. Fig. 7
shows changes of MNEand m. The MNE increased at rate of almost O(n2.6)
and m increased almost linearly. However, we need to undertake a more in-
tensive study on the scaling behavior of the algorithms before drawing firm
conclusions.
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5 Conclusions

Fig. 7. Scale-up behavior

In this paper, we have pro-
posed an enhanced Aggre-
gation Pheromone System
(eAPS), which uses a colony
model divided into units.
Experimental results showed
that eAPS has higher perfor-
mance than the previously
proposed APS. It has also
been shown that in eAPS the parameter settings are more robust.

Although the results obtained with eAPS on standard test problems are
promising, we do not claim that eAPS is the most efficient algorithm for solving
the test problems. However, it provides an alternative approach to the use of
probabilistic model building and sampling in evolutionary algorithms [21] for
solving real-valued problems. There are many important topics for future re-
search:

1. It is important to identify classes of problems for which eAPS outperforms
advanced evolutionary algorithms in continuous domains, such as, CMA-ES)
[22] and PCX [19].

2. Since the model used in eAPS to sample new individuals can contain multiple
attractors, another interesting area for future research is to extend eAPS to
deal with multi-objective problems in the continuous domain.
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Abstract. In this paper we present an estimation of distribution par-
ticle swarm optimization algorithm that borrows ideas from recent devel-
opments in ant colony optimization which can be considered an
estimation of distribution algorithm. In the classical particle swarm opti-
mization algorithm, particles exploit their individual memory to explore
the search space. However, the swarm as a whole has no means to ex-
ploit its collective memory (represented by the array of previous best
positions or pbests) to guide its search. This causes a re-exploration of
already known bad regions of the search space, wasting costly function
evaluations. In our approach, we use the swarm’s collective memory to
probabilistically guide the particles’ movement towards the estimated
promising regions in the search space. Our experiments show that this
approach is able to find similar or better solutions than the canonical
particle swarm optimizer with fewer function evaluations.

1 Introduction

The first Particle Swarm Optimization (PSO) algorithm was introduced by
Kennedy and Eberhart [1,2]. It is a population-based optimization algorithm
inspired by the social behavior of birds and, like other algorithms of its kind, it
is initialized with a population of complete solutions (called particles) randomly
located in a d-dimensional solution space. An objective function f : S → �
where S ⊂ �d, determines the quality of a particle’s position, that is, a parti-
cle’s position represents a solution to the problem being solved. A particle i at
time step t has a position vector xt

i and a velocity vector vt
i. Another vector

pbesti stores the position in which it has received the best evaluation of the
objective function. This vector is updated every time the particle finds a better
position. Finally, the best vector pbest (i.e., the one with the best objective
function value) of any particle belonging to the “neighborhood” of particle i is
stored in vector si. If the neighborhood of particle i is the whole swarm, then si

is the best solution found so far.
The algorithm iterates updating particles’ velocity and position until a stop-

ping criterion is met, usually a sufficiently good solution value or a maximum
number of iterations or function evaluations. The update rules are:

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 72–83, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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vt+1
i = vt

i + ϕ1U1(0, 1) ∗ (pbesti − xt
i) + ϕ2U2(0, 1) ∗ (si − xt

i) , (1)

xt+1
i = xt

i + vt+1
i , (2)

where ϕ1 and ϕ2 are two constants called the cognitive and social coefficients
respectively, U1(0, 1) and U2(0, 1) are two d-dimensional uniformly distributed
random vectors (generated every iteration) in which each component goes from
zero to one, and ∗ is an element-by-element vector multiplication operator.

Clerc and Kennedy [3] introduced the concept of constriction in PSO. Since
it is based on a rigorous analysis of the dynamics of a simplified model of the
original PSO, it became highly influential in the field to the point that it is now
referred to as the canonical PSO. The difference with respect to the original
PSO is the addition of a constriction factor in Equation 1. The modified velocity
update rule becomes

vt+1
i = χ(vt

i + ϕ1U1(0, 1) ∗ (pbesti − xt
i) + ϕ2U2(0, 1) ∗ (si − xt

i)) , (3)

with

χ =
2k∣∣∣2 − ϕ −
√

ϕ2 − 4ϕ
∣∣∣ , (4)

where k ∈ [0, 1], ϕ = ϕ1 + ϕ2 and ϕ > 4. Usually, k is set to 1 and both ϕ1
and ϕ2 are set to 2.05, giving as a result χ equal to 0.729 [4,5]. This is the PSO
version we use in our comparisons1.

From Equations 1 and 3, it is clear that the behavior of every particle is
partially determined by its previous experience (through vector pbesti). This
memory allows a particle to search somewhere around its own previous best
position and the best position ever found by a particle in its neighborhood.
However, during a search different particles move and test (i.e., evaluate the
objective function) over and over again the same, or approximately the same,
region in the search space without any individual improvement. While this is
part of the search process and allows the swarm to explore the search space, it
is also a waste of computing power when the explored regions have been visited
before by the swarm without success. This happens because the swarm as a
single entity does not learn.

In this paper, we present a generic extension to the PSO paradigm that allows
a particle swarm to estimate the distribution of promising regions—and thus
“learn” from previous experience—of the fitness landscape by exploiting the
information it gains during the optimization process. This distribution is in turn
used to try to keep the particles within the promising regions. It is a modular
extension that can be used in any PSO variant that uses a position update
rule based on previously found solutions. The estimation of the distribution is
done by means of a mixture of normal distributions taking into account the
set of pbest vectors. It borrows some ideas from recent developments in Ant

1 Since there is no agreement about which algorithmic variant can be considered the
state-of-the-art in the PSO field, we decided to use this version as our reference.
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Colony Optimization (ACO) [6] in which an archive of solutions is used to select
the next point to explore in the search space. The underlying assumption of
independence between variables common to many Estimation of Distribution
Algorithms (EDAs) for continuous optimization problems (see [7]) is also present
in this work.

The rest of the paper is organized as follows. Section 2 presents some back-
ground information on the class of estimation of distribution optimization algo-
rithms to which our proposed algorithm belongs. Section 3 presents in detail the
estimation of distribution particle swarm optimizer proposed in this paper. In
section 4 we describe the experimental setup we used to assess the performance
of our proposed algorithm. Section 5 presents our empirical results along with
some discussion and finally, in section 6, we conclude.

2 Estimation of Distribution Optimization Algorithms

Evolutionary Algorithms that use information obtained during the optimization
process to build probabilistic models of the distribution of good regions in the
search space and that use these models to generate new solutions are called
Estimation of Distribution Algorithms (EDAs) [7]. The fully joint probability
distribution characterizes the problem being solved. Depending on whether there
is a priori knowledge about the underlying distribution or not, one can either
use a suitable parameterization to get fast convergence rates or use machine
learning methods to approximate this unknown distribution, respectively. The
latter case is the most commonly found in practice.

EDAs differ in three aspects: (i) in the way they gather information during
the optimization process, (ii) in the way they use the gathered information to
build probabilistic models, and (iii) in the way they use these models to generate
new solutions. An experimental comparison of some of the best known EDAs has
been done by Kern et al. [8].

A pseudo-code view of the algorithmic structure behind most EDAs can be
seen in Algorithm 1. An EDA starts with a solution population X0 and a solution
distribution model P0. The main loop consists of four principal stages. The
first stage is to select the best individuals (according to some fitness criteria
f) from the population. These individuals are used in a second stage in which
the solution distribution model Pt is updated or recreated. The third stage
consists of sampling the updated solution distribution model Pt+1 to generate
new solutions Xt+1

offspring. The last stage involves the base population Xt
base, the

new solutions and the fitness criteria. The end result is a new base population
and the process starts over again until the stopping criteria are satisfied.

There has been a growing interest for EDAs in the last years and there are now
some hybrid approaches. One of them is our proposed algorithm. It works as a
canonical PSO but uses information gathered during the optimization process to
keep the particles within the promising regions so that it does not waste function
evaluations. We detail our algorithm in the next section. For a comprehensive
presentation of the EDA field see the work of Larrañaga and Lozano [9].
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Algorithm 1. Algorithmic structure of EDAs.
/* Initialization */
Initialize population of solutions X0

base and solution distribution model P0

/* Main Loop */
while Stopping criteria are not satisfied do

Xt
parent = select(Xt

base, f) /* Selection */

Pt+1 = estimate(Xt
parent, Pt) /* Estimation */

Xt+1
offspring = sample(Pt+1) /* Sampling */

Xt+1
base = replacement(Xt+1

offspring,X
t
base, f) /* Replacement */

t = t + 1
end while

3 Estimation of Distribution Particle Swarm
Optimization Algorithm

PSO algorithms are considered to be part of the emerging field of Swarm In-
telligence [10,11]. Swarm Intelligence is the discipline that studies natural and
artificial systems comprised of multiple simple entities that collectively exhibit
adaptive behaviors. Some examples of natural swarm intelligent systems are ant
colonies, slime molds, bee and wasp swarms.

Besides PSO, the other prominent representative of artificial swarm intelli-
gent systems is Ant Colony Optimization (ACO) [6]. ACO is usually used for
solving combinatorial optimization problems. In ACO, artificial ants build solu-
tions incrementally selecting one solution component at a time. The probabilistic
selection is biased by a trail of “pheromone” deposited by other ants in previ-
ous iterations of the algorithm. The amount of pheromone is proportional to the
quality of the complete solutions, so that ants will prefer to choose solution com-
ponents that are known to yield good solutions. In fact, the role of the so-called
pheromone matrix is to approximate the distribution of good solutions in the
search space. Seen from this point of view, ACO is an EDA.

A recent development of ACO that extends it to continuous optimization
is called ACOR [12,13]. ACOR approximates the joint probability distribution,
one dimension at a time, by using mixtures of weighted Gaussian functions. The
weights try to represent the quality of different search regions. This allows the
algorithm to deal with multimodal functions. Figure 1 illustrates the idea of
approximating the distribution of good regions in a single dimension using a
mixture of weighted Gaussian functions.

The source of information to parameterize these univariate distributions is an
archive of solutions of size k. The i-th component of the l-th solution is denoted
by si

l . For an n-dimensional problem, 1 ≤ i ≤ n and 1 ≤ l ≤ k. For each
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Fig. 1. Mixture of weighted one-dimensional Gaussian functions used to approximate
two promising (but in a different degree) search regions

dimension i, the vector μi =< si
1, . . . , s

i
k > is the vector of means that is used to

model the univariate probability distribution of the i-th dimension. The vector
of weights w =< w1, . . . , wk > is the same across all dimensions because it is
based on the relative quality of the complete solutions. Every iteration, after the
solutions are ranked, the weights are determined by

wl =
1

qk
√

2π
e
− (l−1)2

2(qk)2 , (5)

where q is a parameter that determines the degree of preferability of good solu-
tions. With a small q the best solutions are strongly preferred to guide the search.

Since ACOR samples the mixture of Gaussians, it has to first select one of the
Gaussian functions from the kernel. The selection is done probabilistically. The
probability of choosing the l-th Gaussian function is proportional to its weight
and it is computed using

pl =
wl∑k

j=1 wj

. (6)

Then, ACOR computes the standard deviation of the chosen Gaussian func-
tion as

σi
l = ξ

k∑
j=1

|si
j − si

l |
k − 1

, (7)
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where ξ is a parameter that allows the algorithm to balance its exploration–ex-
ploitation behaviors. ξ has the same value for all the dimensions. Having com-
puted all the needed parameters, ACOR samples the Gaussian function to gen-
erate a new solution component. The process is repeated for every dimension,
for every ant until a stopping criterion is met.

This fast presentation of ACOR was needed to introduce our Estimation of
Distribution Particle Swarm Optimization (EDPSO) algorithm. The reason is
that EDPSO borrows some ideas from ACOR. First, the set of pbest vectors
plays the role of the solution archive in ACOR. In EDPSO, k (i.e., the size of
the solution archive) is equal to the number of particles. The dynamics of the
algorithm, however, is somewhat different. EDPSO works as a canonical PSO
as described in section 1 but with some modifications: after the execution of
the velocity update rule shown in Equation 3, EDPSO selects one Gaussian
function just as ACOR does. Then, the selected Gaussian function is evaluated
(not sampled) to probabilistically move the particle to its new position. If the
movement is successful, the algorithm continues as usual, but if the movement is
unsuccessful, then the selected Gaussian function is sampled in the same way as
in ACOR. The result is a “hybrid” algorithm that explores the search space using
the PSO dynamics but when this approach fails (i.e., when a particle’s tendency
is to move far away from good solutions) a direct sampling of the probability
distribution is used instead. It is important to mention that when the selected
Gaussian function is evaluated, we use an unscaled version of it, so that its range
is [0,1] (i.e., a true probability). A pseudo-code version of EDPSO can be seen
in Algorithm 2.

4 Experimental Setup

To evaluate the performance of EDPSO we used the most commonly used bench-
mark functions in the PSO literature (see [14] for details). We have compared our
algorithm with the canonical PSO as described in section 1. Table 1 shows the
initialization ranges and the goals that had to be achieved by the algorithms in
terms of solution quality, although this goal was not used as a stopping criterion.
We ran 30 independent runs for each function in 30,40 and 50 dimensions for
a maximum of 120 000, 160 000, and 200 000 function evaluations respectively.
The number of particles was equal to 40.

Table 1. Parameters for the test functions

Function Initialization range Goal
Sphere [−100, 100]D 0.01

Rosenbrock [−30, 30]D 100
Rastrigin [−5.12, 5.12]D 100
Griewank [−600, 600]D 0.1
Ackley [−32, 32]D 0.1
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Algorithm 2. Pseudocode version of the EDPSO algorithm

/* Initialization. k is the number of particles,
and n is the dimension of the problem */
for i = 1 to k do

Create particle i with random position and velocity
end for
Initialize gbest and all pbesti to some sensible values /* To a sufficiently large number,
for example, if we want to minimize a function */

/* Main Loop */
t = 0
while gbest is not good enough or t < tmax do

/* Evaluation Loop */
for i = 1 to k do

if f(xi) is better than pbesti then
pi = xi

pbesti = f(xi)
end if
if pbesti is better than gbest then

gbest = pbesti

s = pi

end if
end for
/* Update Loop */
Rank all pbesti according to their quality
Compute w =< w1, . . . , wk > using Equation 5
Compute all pl using Equation 6
for i = 1 to k do

for j = 1 to n do
vij = χ(vij + ϕ1U1(0, 1)(pij − xij) + ϕ2U2(0, 1)(sij − xij))
xcandidate

ij = xij + vij

Select a Gaussian function from the kernel according to pl, name it gi
l .

Compute σi
l using Equation 7

probmove = σi
l

√
2πgi

l (x
candidate
ij ) /* σi

l

√
2π unscales the function */

if U3(0, 1) < probmove then
xij = xcandidate

ij /* The particle moves normally */
else

xij = sample(gi
l) /* New position is a sample from the chosen function */

end if
end for

end for
t = t + 1

end while

All the benchmark functions we used have the global optimum at or very
near the origin, i.e., at the center of the search domain and hence a symmetric
uniform initialization would induce a possible bias [15]. To avoid this problem,
all functions were shifted to a random location within the search range. This
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Table 2. Parameters used by the algorithms

Algorithm Parameter Value

Canonical PSO
ϕ1 2.05
ϕ2 2.05
χ 0.729

EDPSO

ϕ1 2.05
ϕ2 2.05
χ 0.729
q 0.1
ξ 0.85

approach has been used before and does not confine the swarm to a small region
of the search space as is usually done with asymmetrical initializations [16].

Table 2 shows the parameter settings for the algorithms used in our
experiments.

5 Results

The benefits of estimating the probability distribution of good regions in the
search space and to guide the swarm to search them are reflected (in general)
in the quality of the solutions achieved, as well as in the number of function
evaluations needed to achieve a solution of certain quality. Table 3 shows the
average fitness value (of the best particle in the swarm) after the maximum
number of allowed function evaluations.

Table 3. Average fitness value after the maximum number of allowed function evalu-
ations over 30 runs

Algorithm Dimension Sphere Rosenbrock Rastrigin Griewank Ackley

Canonical PSO
30 0.0 37.48 73.52 0.023 13.35
40 0.0 55.06 133.15 0.037 18.78
50 0.0 102.4 203.8 0.1 18.3

EDPSO
30 0.0 22.3 25.6 0.0012 0.000019
40 0.0 37.3 33.43 0.00098 0.00004
50 0.0 48.12 56.18 0.0029 0.7

Table 4. Average number of function evaluations needed to achieve the solution qual-
ities defined in Table 1 and the probability of achieving them

Algorithm Dimension Sphere Rosenbrock Rastrigin Griewank Ackley

Canonical PSO
30 13049,1.0 20969,0.86 7880,0.9 11907,0.93 13980,0.06
40 19365,1.0 38442,0.83 13296,0.16 17563,0.93 –
50 27451,1.0 61124,0.66 – 24584,0.76 –

EDPSO
30 5988,1.0 20921,0.96 18549,1.0 5520,1.0 5656,1.0
40 8717,1.0 24896,0.9 28045,1.0 7866,1.0 8437,1.0
50 11971,1.0 50442,0.86 41659,1.0 10741,1.0 20284,0.96
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Fig. 2. Solution quality over time. Lines represent the average solution value.

In all benchmark functions, except in the case of the Sphere function, a ten-
dency can be immediately recognized: EDPSO can find better solution qualities
after the same number of function evaluations. This is particularly true in the
case of the Rastrigin and Ackley functions.
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Regarding the issues of speed and reliability, Table 4 shows the average num-
ber of function evaluations needed to achieve the solution qualities defined in
Table 1 and the probability of achieving them, defined as the success rate (a suc-
cessful run is one that achieves the specified goal). The average was computed
over the successful runs only and rounded off to the nearest integer number
greater than the actual number.

From Table 4, it can be seen that EDPSO is faster than the Canonical PSO
in getting to the desired objective function value in all functions except in Ras-
trigin. Entries marked with “–” specify cases in which the goal was not reached
in any run. From our experiments, it can be observed that EDPSO shows a
significant improvement in terms of the number of function evaluations it needs
to get to a certain solution quality. It should also be noted that the behavior of
the Canonical PSO is not robust as we go into higher dimensions. In contrast,
EDPSO is quite consistent. The Rastrigin case is better explained after exam-
ining Figure 2 which shows how the solution quality improves over time for the
benchmark problems in 30 dimensions.

The data in Tables 3 and 4 give only a partial view of the behavior of the
algorithms. Specifically, they do not show how the solution quality evolves over
time. Knowing this is particularly useful to identify which algorithm is best suited
for real-time applications in which there are hard time limits or for applications
in which we are interested in the solution quality only. In Figure 2(c) it can be
seen how the goal defined in Table 1 was reached first by the Canonical PSO
but it can also be seen how it stagnates and cannot find better solutions after
some more iterations.

6 Conclusions

In this paper we have introduced an Estimation of Distribution Particle Swarm
Optimization (EDPSO) algorithm. It is in fact a modular extension that can
be used in any other PSO variant that uses a position update rule based on
previously found solutions. In effect, it is a learning mechanism that helps the
particle swarm explore potentially good regions of the search space. It benefits
from the information gathered during the optimization process that is encoded
in the array of pbests. The end result is a PSO variant that not only finds
better solutions than the Canonical PSO, but also does it with fewer function
evaluations. There are some cases, however in which speed is sacrificed for the
sake of finding better solutions.

EDPSO is not a pure Estimation of Distribution Algorithm (EDA). It ex-
plores the search space in the same way as the Canonical PSO but becomes an
EDA whenever particles are pushed further away from good regions (so learnt
by the whole swarm). It remains a research issue the problem of handling in-
teractions between variables and the correct parameterization of the probability
distributions. The results reported here are encouraging enough to continue look-
ing for ways to allow the particle swarm learn from its past experience.
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Abstract. Data mining involves the automated process of finding pat-
terns in data and has been a research topic for decades. Although very
powerful data mining techniques exist to extract classification models
from data, the techniques often infer counter-intuitive patterns or lack
patterns that are logical for domain experts. The problem of consolidat-
ing the knowledge extracted from the data with the knowledge repre-
senting the experience of domain experts, is called the knowledge fusion
problem. Providing a proper solution for this problem is a key success
factor for any data mining application. In this paper, we explain how
the AntMiner+ classification technique can be extended to incorporate
such domain knowledge. By changing the environment and influencing
the heuristic values, we can respectively limit and direct the search of
the ants to those regions of the solution space that the expert believes
to be logical and intuitive.

1 Introduction

Over the past decades we have witnessed a true explosion of data. Although
much information is available in this data, it is typically hidden. Data mining
entails the overall process of extracting knowledge from this data. Different types
of data mining are discussed in the literature [1], such as regression, classifica-
tion and clustering. The task of interest here is classification, which is the task
of assigning a datapoint to a predefined class or group according to its predictive
characteristics. The classification problem and accompanying data mining tech-
niques are relevant in a wide variety of domains such as credit scoring (predicting
whether a client will default on his/her loan or not) and medical diagnosis (e.g.
classifying a breast mass as either benign or malignant). The result of a clas-
sification technique is a model which makes it possible to classify future data
points, based on a set of specific characteristics in an automated way.

Although many powerful classification algorithms have been developed, they
generally rely solely on modeling repeated patterns or correlations which occur
in the data. However, it may well occur that observations, that are very evident
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to classify by the domain expert, do not appear frequently enough in the data
in order to be appropriately modeled by a data mining algorithm. Hence, the
intervention and interpretation of the domain expert still remains crucial. A
data mining approach that takes into account the knowledge representing the
experience of domain experts is therefore much preferred and of great focus in
current data mining research.

2 The Knowledge Fusion Problem

The main performance criterion for data mining models has been accuracy; how-
ever accuracy is often not enough. Domains where the models need to be vali-
dated and justifiable, for instance credit scoring and medical diagnosis, require
that the model is in line with existing domain knowledge. The academically
challenging problem of consolidating the automatically generated data mining
knowledge with the knowledge reflecting experts’ domain expertise, constitutes
the knowledge fusion problem (see Fig. 1). The final goal of the knowledge fu-
sion problem is to provide models that are both accurate, comprehensible and
justifiable, and thus acceptable for implementation.

The most frequently encountered and researched aspect of knowledge fusion
is the monotonicity constraint. This constraint demands that an increase in a
certain input(s) cannot lead to a decrease in the output. More formally (similarly
to [2]), given a dataset D = {xi, yi}n

i=1, with xi = (xi
1, x

i
2, . . . , x

i
m) ∈ X =

X1 × X2 × . . . Xm, and a partial ordering ≤ defined over this input space X .
Over the space Y of class values yi, a linear ordering ≤ is defined. Then the
classifier f : xi �→ f(xi) ∈ Y is monotone if Eq. 1 holds.

xi ≤ xj ⇒ f(xi) ≤ f(xj), ∀i, j (or f(xi) ≥ f(xj), ∀i, j) (1)
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For instance, increasing income, keeping all other variables equal, should yield a
decreasing probability of loan default. Therefore if client A has the same char-
acteristics as client B, but a lower income, then it cannot be that client A is
classified as a good customer and client B a bad one.

Several adaptions to existing classification techniques have been put for-
ward to deal with monotonicity, such as for Bayesian learning [3], classification
trees [2,4] and neural networks [5]; a.o. in the medical diagnosis [6], house price
prediction [7] and credit scoring [8] domains. The aim of all these approaches
is to generate classifiers that are acceptable, meaning they are both accurate,
comprehensible and justifiable. Encountered problems are how to deal with non-
monotonic, noisy data and the assumption that a dataset has to be monotonic
in all its variables.

Knowledge fusion goes beyond monotonicity constraints, as preferred policies
cannot be declared in such a hard format. A policy can show a preference of a
certain value for a variable; e.g. a bank might adopt a policy that focuses on
young, highly-educated clients. Although these clients will tend to have a rather
low income and savings, considering the complete customer lifetime value they
can be very profitable to the bank. Incorporating such policies are of great im-
portance as well, and to the best of our knowledge, not incorporated in data
mining techniques. As we will discuss in the next sections, we can incorporate
existing domain knowledge in an elegant manner using the AntMiner+ classifi-
cation technique.

3 AntMiner+

AntMiner+ is a recently proposed classification technique based on a MAX -
MIN ant system [9,10]. The first application of ant systems for classification
was reported in [11], where the authors introduced the AntMiner algorithm for
the discovery of classification rules. The aim of AntMiner+ is to extract sim-
ple if rule antecedent then rule consequent rules from data, where the rule
antecedent is a conjunction of terms. A directed acyclic construction graph is
created that acts as the environment of the ants. All ants begin in the Start
vertex and walk through their environment to the Stop vertex, gradually con-
structing a rule. To allow for rules where not all variables are involved, hence
shorter rules, an extra dummy vertex is added to each variable whose value is
undetermined, meaning it can take any of the values available. Although only
categorical variables are allowed, we make a distinction between nominal and
ordinal variables. Each nominal variable has one vertex group (with the inclu-
sion of the mentioned dummy vertex), but for the ordinal variables however, we
build two vertex groups to allow for intervals to be chosen by the ants. The first
vertex group corresponds to the lower bound of the interval and should thus be
interpreted as < Vi+1 ≥ V aluek >, the second vertex group determines the up-
per bound, giving < Vi+2 ≤ V aluel > (of course, the choice of the upper bound
is constrained by the lower bound). This allows to have less, shorter and actu-
ally better rules. To extract a ruleset that is complete, such that all future data
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Fig. 2. Example of path described by an ant for the AntMiner+ construction graph

points can be classified, the majority class is not included in the vertex group of
the class variable, and will be the predicted class for the final else clause.

Only the ant that describes the best rule will have the pheromone (τ) of its
followed trail increased. Evaporation decreases the pheromone of all other edges.
Supplementary modifications of the pheromone levels may be needed since the
MAX -MIN approach additionally requires the pheromone levels to lie within
a given interval [12]. Convergence occurs when all the edges of one path have a
pheromone level τmax and all others edges have pheromone level τmin. Next, the
rule corresponding to the path with τmax will be extracted and training data
covered by this rule removed from the training set. This iterative process will be
repeated until early stopping occurs. A credit scoring example of the construc-
tion graph described so far is shown in Fig. 2, where we have three variables:
sex of the applicant, term of the loan and information concerning real estate
property of the applicant. An ant that follows the path indicated in bold from
Start to Stop describes the rule:

if Sex=male and Term≥1y and Term≤5y then customer=bad

The edge probability P(vi,j ,vi+1,k) is the probability that an ant which is in
vertex vi,j (vertex for which variable Vi is equal to its jth value) will go to vertex
vi+1,k. This probability is dependent on the heuristic value ηvi+1,k

(Eq. 3) and
the pheromone value τ(vi,j ,vi+1,k), as defined by Eq. 2. The α and β are weight
parameters that indicate the relative importance of the pheromone and heuristic
value. Although these are typically set by trial and error, the parameters are
included in the construction graph, allowing them to be dynamically chosen and
thus be automatically optimized to the dataset at hand.

P(vi,j ,vi+1,k) =
[τ(vi,j ,vi+1,k)]α.[ηvi+1,k

]β∑pi+1
l=1 [τ(vi,j ,vi+1,l)]α.[ηvi+1,l

]β
(2)

The heuristic value gives for each vertex in the construction graph a notion
of its quality and importance in the problem domain. For the classification task,
we define the importance of a vertex, with a certain value for a variable, by the
number of training cases that are covered (described) by this value. A formal
definition for this heuristic value for the vertex vi,k is given by Eq. 3, with Tik a
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shortened notation for the term Vi = V aluek, and the |c| operator returning the
number of uncovered training data fulfilling condition c. Since the heuristic value
is dependent on the class chosen by the ant (denoted as classant), each vertex has
as many heuristic values as there are class values minus one (the majority class).

ηvi,k
=

|Tik & CLASS = classant|
|Tik|

(3)

Updating the pheromone trail of the environment of an ant system is accom-
plished in two phases, being evaporation and reinforcement (Eq. 4). In a MAX -
MIN ant system, reinforcement of the pheromone trail is only applied to the
best ant’s path.

τ(vi,j ,vi+1,k)(t + 1) = ρ · τ(vi,j ,vi+1,k)(t) + Q+
best (4)

Clearly, the reinforcement of the best ant’s path, Q+
best, should be proportional

to the quality of the path, which we define as the sum of the confidence and the
coverage of the corresponding rule. Confidence measures the fraction of the num-
ber of uncovered data points correctly classified by a rule compared to the total
number of not yet covered data points covered by that rule. The coverage gives an
indication of the overall importance of the specific rule by measuring the number
of correctly classified (not yet covered) data points over the total number of un-
covered data points. A more formal definition is provided by Eq. 5, with ruleant

the rule antecedent (if part) comprising of a conjunction of terms corresponding
to the path chosen by the ant, rulec

ant the conjunction of ruleant with the class
chosen by the ant, and Cov a binary variable expressing whether a data point
is already covered by one of the extracted rules (Cov = 1) or not (Cov = 0).

Q+ =
|rulec

ant|
|ruleant|︸ ︷︷ ︸
confidence

+
|rulec

ant|
|Cov = 0|︸ ︷︷ ︸
coverage

(5)

Previous experiments show that AntMiner+ is competitive with state-of-the-
art classification techniques, such as C4.5, logistic regression and support vector
machines [9,10]. AntMiner+, as C4.5 and other rule-based classifiers, has the sup-
plementary benefit of providing comprehensible rules that are interpretable to the
experts that use the classification model in practice. However, inconsistencies with
previous knowledge can still be present, yet hidden in the rules. As we will show in
the next section, decision tables can assist in easily detecting such anomalies.

4 Visualising and Validating the Models

4.1 Decision Tables

Decision tables are a tabular representation used to describe and analyze decision
situations [13] and consists of four quadrants. The vertical line divides the table
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1. Owns property? 2. Years client 3. Savings amount 1. Applicant=good 2. Applicant=bad

yes
≤ 3 low – ×

high × –

> 3 low × –
high × –

no
≤ 3 low – ×

high × –

> 3 low – ×
high × –

(a) Expanded decision table

1. Owns property? 2. Years client 3. Savings amount 1. Applicant=good 2. Applicant=bad

yes ≤ 3 low – ×
high × –

> 3 – × –

no – low – ×
high × –

(b) Contracted decision table

Fig. 3. Minimizing the number of columns of a lexicographically ordered DT

into a condition (left) and an action part (right), while the horizontal line sepa-
rates subjects (above) from entries (below). The condition subjects are the prob-
lem criteria (the variables) that are relevant to the decision-making process. The
action subjects describe the possible outcomes of the decision-making process;
i.e., the classes of the classification problem. Each condition entry describes a
relevant subset of values (called a state) for a given condition subject (variable),
or contains a dash symbol (‘–’) if its value is irrelevant within the context of
that row. Every row in the entry part of the decision table thus comprises a
classification rule. For example, in Fig. 3a, the final row tells us to classify the
applicant as good if owns property = no, years client > 3 and savings amount =
high. Decision tables can be contracted by combining logically adjacent (groups
of) rows that lead to the same action configuration, as shown in 3b.

Decision tables can easily be checked for potential anomalies, such as incon-
sistency with monotonicity constraints: by placing the assumingly monotone
variable in the last column, adjacent rows are found with data entries that are
equal in all variables except the last one. It can then be easily seen whether or
not the class variable changes in the expected manner. For example, based on
Fig. 3, we can see that it is indeed reflected in the model that a high savings
amount can only have a positive effect on the applicants assessment, if any.

4.2 Using Decision Tables to Validate AntMiner+ Rulesets

An example ruleset that was extracted by AntMiner+ on the german credit
scoring dataset [14] is provided in Table 1. When the rules are transformed into
a decision table, shown by Table 2, an anomaly is revealed. Consider a client
that requests a loan with a maturity of less than 15 months and low savings and
checking amounts; when this client has no credits taken in the past, the client
will be rejected. On the other hand, when he or she has a critical account, the
loan will be granted. This decision policy is counter-intuitive and unwanted.
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Table 1. Example credit scoring ruleset

if (Checking Account < 100e and Duration > 15 m and
Credit History = no credits taken and Savings Account < 500e)

then class = bad
else if (Purpose = new car/repairs/education/others and

Credit History = no credits taken/all credits paid back duly at this bank and
Savings Account < 500e)

then class = bad
else if (Checking Account < 0e and

Purpose = furniture/domestic appliances/business and
Credit History = no credits taken/all credits paid back duly at this bank and
Savings Account < 250e)

then class = bad
else if (Checking Account < 0e and Duration > 15 m and

Credit History = critical account and Savings Account < 250e)
then class = bad
else class = good

Table 2. Discrepancies in the classification model, visualized by decision table

Purpose Duration Checking Account Savings Account Credit History Bad Good

furniture/business ≤15m <0e <250e no credits taken/all × –
credits paid back duly

critical account – ×
≥250e – – ×

≥0e – – – ×
>15m <0e <250e – × –

≥250 and <500e no credits taken/all × –
credits paid back duly
all credits at this bank

– ×paid back duly or
critical account

≥500e – – ×
≥0 and <100e <500e no credits taken/all × –

credits paid back duly
all credits at this bank

– ×paid back duly or
critical account

≥500e – – ×
≥100e – – – ×

car/retraining or ≤ 15m – <500e no credits taken/all × –
others credits paid back duly

critical account – ×
≥500e – – ×

>15m <0e <250e – × –
≥250 and <500e no credits taken/all × –

credits paid back duly
critical account – ×

≥500e – – ×
≥0e <500e no credits taken/all × –

credits paid back duly
critical account – ×

≥500e – – ×

5 Incorporating Domain Knowledge in AntMiner+

We suggest two approaches to incorporate domain knowledge in AntMiner+.
The first approach implements so-called hard constraints, which are constraints
that must not be violated according to the expert. This is done by emitting some
vertex groups all together, thereby limiting the solution space. Alternatively, one
can also consider soft constraints, which are constraints that are preferred but
not mandatory. This only biases our search toward certain regions in the solution
space, but does not limit the search. To do so, we will manipulate the heuristic
values of the vertexes in the AntMiner+ environment. It is up to the domain
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≤ 0
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≤ 5000

≤ 1mill.

Income

(a)

≤ 0

≤ 500

≤ 5000

≤ 1mill.
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(b)
Income

≥ 0η=28

≥ 500η=20

≥ 5000η=10

≥ 1mill.η=12

≤ 0η=50

≤ 500η=45

≤ 5000η=42

≤ 1mill.η=28

(c)

Income

≥ 0η=28+15

≥ 500η=20+10

≥ 5000η=10+5

≥ 1mill.η=12

≤ 0η=50+15

≤ 500η=45+10

≤ 5000η=42+5

≤ 1mill.η=28

(d)

Fig. 4. Vertex groups for variable income without (a) and with (b) environment ad-
justment to reflect hard monotonicity constraint; and without (c) and with (d) heuristic
adjustments to reflect soft constraint

expert to decide for which variables a constraint should be incorporated, and
whether it is hard or soft.

5.1 Hard Constraints to Incorporate Domain Knowledge

The most straightforward manner of avoiding anomalies in the solutions is to
close those parts of the solution space, effectively hard-coding the constraints.
Our AntMiner+ environment allows to elegantly do so, by emitting vertexes
or vertex groups. A typical constraint that can be fulfilled in this manner is
the monotonicity constraint. Referring back to our credit scoring example, we
can make sure that increasing income cannot lead to a customer changing from
good to bad by removing the vertex group corresponding to income ≥ (see
Fig. 4(a,b)): since the ants look only for rules to classify bad customers (only
the final else clause will classify a customer as good), the term with income can
only be in the form income ≤ X . Using hard constraints guarantees that the
resulting classifier is monotone, even when the dataset is not. This is not true for
some of the previous approaches that incorporate monotonicity constraints [2].

5.2 The Use of Heuristics to Incorporate Domain Knowledge

The unique approach of AntMiner+ for the classification task allows for an
easy extension to incorporate soft constraints. As described in Section 3, the
heuristic values provide a problem dependent preference measure for each vertex.
The higher the heuristic, the more probable that it will be chosen by the ant.
Therefore, if we suspect that a variable’s value is monotonically related to the
predicted class, we can adjust the heuristic values to incorporate this preference,
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as done in Fig. 4(c,d). Note that the difference with hard constraints is that the
soft constraints are only preferred, not demanded. Another example of a soft
constraint might be the preference of young, highly-educated clients for banks
which demonstrates that we are not limited to ordinal variables. Soft constraints
are ideal to incorporate a policy, where we increase the heuristics of the preferred
value(s). Fig. 5 gives an example of the influence of the change in heuristic value
on the edge probability (with α and β set to 1, and pheromone values equal
to 1 for all edges to keep the calculations simple). The example concerns the
variable income. For increasing income, we would expect a lowering probability
that the edge is chosen: lower incomes should be more related to bad customers
than high incomes. However, this (rather obvious) intuition is not present in the
data. By increasing the heuristic values in a linear manner, we can see that the
probability increasingly meets our expectations.

5.3 Experiments

To empirically assess the performance of the suggested approach, we applied
AntMiner+ to several publicly available datasets from the UCI data reposi-
tory [14]. The data is split up into a training set (4/9), validation set (2/9)
to implement the stopping criterion and test set (3/9) to obtain an unbiased
performance indicator. To eliminate any chance of having unusually good or
bad training and test sets, 10 runs are conducted where the order of observa-
tions is first randomized before the training, validation and test set are chosen.
For each randomization AntMiner+ is run with and without hard monotonicity
constraints (with 1000 ants and evaporation factor of 0.85 [9]).

The auto dataset concerns the car fuel consumption prediction in gallons-per-
mile (higher or lower than 28), based on 8 car properties. Domain knowledge
states that higher weight and displacement will lead to higher fuel consumption,
where more recent models and cars manufactured in Japan are presumed to be
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Table 3. Classification model fulfilling all monotonicity constraints, visualized by de-
cision table

Duration Purpose Checking Account Savings Account Credit History Bad Good

≤ 15m – – – – – ×
> 15m car(old)/others – – – – ×

furniture/business <0e <250e or – × –
unknown/no savings

≥250e – – ×
≥0 and <100e or <50e all credits paid back duly

– ×no checking account or all credits at this bank
paid back duly

existing credits paid
× –back duly till now or

critical account
≥50e or –

– ×
unknown/no savings

≥100e – – – ×
radio/television <0e – all credits paid back duly

– ×or all credits at this bank
paid back duly

existing credits paid
× –back duly till now or

critical account
≥0e or – –

– ×
no checking account

car(new)/retraining – – – – ×

more fuel-efficient. For the breast cancer ljubljana dataset we need to predict
whether breast cancer will recur, where we expect that an increase in tumor-
size, number of nodes involved and the degree of malignancy will lead to a higher
probability of recurrence. The problem of the pima dataset is to predict whether
a person shows signs of diabetes. Increasing age, number of pregnancies, body
mass index and pedigree risk would suggest a higher chance of being diabetic.
In the already discussed german credit scoring dataset, the classification prob-
lem is to predict clients as either good or bad (defaulted). Expert knowledge
suggests bad customers will have less amount on checking and savings accounts,
and have had more problems with their credit history. Finally, the haberman
dataset concerns the prediction of the survival status of a patient that has un-
dergone breast cancer surgery. Medical knowledge suggests a lower survival rate
for patients that are older, have more detected positive axillary nodes and whose
operation was less recent. As Table 3 shows, the rules extracted for the german
credit scoring dataset are compliant with all monotonicity constraints, making
the ruleset a justifiable credit scoring model.

Table 4 shows the results of our experiments. The performances given are
the average accuracy, standard deviation of the accuracies, average number of
extracted rules (#R) and average number of terms per rule (#T/R). The best
average test set performance over the 10 runs is denoted in bold face for each
dataset. By definition, the rulesets that are extracted by AntMiner+ with hard
constraints no longer show counter-intuitive patterns. A first observation from
Table 4 is that less and shorter rules are extracted when incorporating the hard
constraints, which is of course beneficial to the comprehensibility of the clas-
sifier. Although the overall accuracy increases slightly (but not significantly),
the change depends on the existence of monotonicity in the dataset: if the re-
quired constraints are not fulfilled by the dataset, a ruleset that does comply will
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Table 4. Average out-of-sample AntMiner+ performance

No constraints Hard constraints
Acc

#R #T/R
Acc

#R #T/R
instances Avg σ Avg σ

auto 392 86.3 2.9 3.5 6.4 87.6 2.2 1.9 3.4
bcl 277 79.4 3.2 3.0 7.3 80.0 2.9 2.2 5.6

pima 768 68.9 3.6 5.1 6.2 69.2 2.3 4.6 5.3
ger 1000 72.3 1.3 4.3 4.4 71.5 1.3 4.2 3.6
hab 306 75.0 3.4 3.2 3.8 74.2 3.3 3.6 2.5

naturally experience an accuracy decrease. Note that similar accuracy gains and
losses are observed in [3].

6 Conclusion

As knowledge fusion concerns the acceptability of data mining models, it is of
great relevance for any successful data mining application. Although the gener-
ated models may be very accurate, a lack of comprehensibility or justifiability
will result in a reluctance or rejection to put the models into practice. Pre-
vious research was focused on hard monotonicity constraints, but this fails to
properly address the complete knowledge fusion problem. The unique approach
of AntMiner+, with its use of an environment to represent the solution space,
heuristics to guide the search and the distinction between nominal and ordi-
nal variables allow us to extend the technique to deal with both hard and soft
constraints to respectively limit and direct the search of the ants. Incorporating
hard monotonicity constraints in AntMiner+ provides monotone classifiers, even
when the dataset is not. The soft constraints are very important as well, and are
suitable to incorporate a specific policy in the resulting model.

Our experiments show that, whereas the rules extracted without constraints
did not satisfy domain expert’s intuition, by inserting domain knowledge we are
able to improve both the comprehensibility (less and shorter rules) and justifia-
bility (compliant with monotonicity constraints) of the AntMiner+ rulesets with
a similar level of predictive accuracy.
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Abstract. Assembly line balancing concerns the design of assembly
lines for the manufacturing of products. In this paper we consider the
time and space constrained simple assembly line balancing problem with
the objective of minimizing the number of necessary work stations. This
problem is denoted by TSALBP-1 in the literature. For tackling this
problem we propose a Beam-ACO approach, which is an algorithm that
results from hybridizing ant colony optimization with beam search. The
experimental results show that our algorithm is a state-of-the-art meta-
heuristic for this problem.

1 Introduction

The simple assembly line balancing problem (SALBP) [1] concerns the manu-
facturing of products via assembly lines. An assembly line is a sequence of work
stations that are connected by a transport system moving the product to be man-
ufactured along the line. The product is manufactured by performing a given
set of tasks T = {1, . . . , n}. Each task j ∈ T has a processing time tj > 0. A
solution to a SALBP instance is obtained by the assignment of all tasks to work
stations subject to precedence constraints. The assembly line moves in constant
speed, which leads to a maximum time c (called cyle time) in which the tasks
assigned to a work station must be performed. An assignment of tasks to work
stations is only valid if the the sum of the processing times of the tasks assigned
to a work station does not exceed the cycle time. Among different optimization
objectives, the minimization of the number of necessary work stations is quite
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popular. This particular problem is denoted by SALBP-1 in the literature. It
can be seen as a bin packing problem with additional side constraints (see [2]).

Approaches for solving SALBP-1 include constructive heuristics based on pri-
ority rules (see [3]), complete techniques such as branch & bound approaches
(see [4,5,6,7]), and several metaheuristics such as tabu search [8,9], simulated an-
nealing [10], evolutionary computation [11], and ant colony optmization [12,13].
The current situation for SALBP-1 is quite unusual: Complete techniques such as
SALOME [6] still appear to be at least as successful as metaheuristics. Nonethe-
less, the interest in well-working metaheuristics is high. This is because the ex-
isting complete techniques are limited to academic formulations of the problem.
Even slight differences between a real problem and the academic SALBP-1 make
existing complete techniques unapplicable. In this work we consider a general-
ization of SALBP-1, called TSALBP-1 (the time and space constrained simple
assembly line balancing problem with the objective of minimizing the number
of necessary work stations). This generalization was proposed by Bautista and
Pereira in [13]. The generalization consists in adding space constraints to the
processing time constraints, and was motived by a real assembly line balancing
problem at the Nissan plant in Barcelona, Spain.

Motivation. Many existing metaheuristic techniques for SALBP-1 do not employ
a direct solution approach. They rather solve the SALBP-1 as follows: Given an
initial solution with m work stations, a metaheuristic is applied to find a solution
with a fixed number of m−1 work stations with a cycle time c′ as low as possible
(that is, the cycle time is considered variable). If a solution can be found with
c′ ≤ c (where c is a parameter of the SALBP-1 instance), the found solution is
a valid solution for SALBP-1 with m − 1 work stations. In the next step, the
number of work stations is reduced by one, and the metaheuristic is applied
again. The existing ACO approach for SALBP-1 (see [13]) works in this way.

In this work we wanted to study if a clever ACO hybrid can be directly
applied to solve the SALBP-1 (and its generalization, the TSALBP-1) with
the goal of improving over the indirect approaches. In order to achieve this,
we tackle the TSALBP-1 with an hybrid ant colony optimization (ACO) [14]
algorithm called Beam-ACO [15], which is obtained by hybridizing ACO with
beam search.1 The main idea of Beam-ACO is to allow the extension of partial
solutions in several different ways. An accurate and computationally inexpensive
lower bound is used to limit the number of partial solutions that are visited by
the algorithm. In Beam-ACO, artificial ants perform a probabilistic beam search
in which the extension of partial solutions is done in the ACO fashion rather than
deterministically.

Paper outline. In Section 2 we present a technical definition of the TSALBP-1
problem. In Section 3 we outline Beam-ACO. Finally, in Section 4 we present
the computational results, and in Section 5 we offer conclusions and an outlook
on future work.
1 Beam search is a classical tree search method that was introduced in the context of

scheduling [16].
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2 TSALBP-1

An instance (T,G, c, a) of the TSALBP-1 problem consists of four components.
T = {1, . . . , n} is a set of n tasks that must be processed by a line of work
stations. Each task j ∈ T has a processing time tj > 0, and a space requirement
aj > 0 (both values may be integer or real values). Furthermore, given is a
precedence graph G = (T,A), which is a directed graph without cycles whose
nodes are the tasks. An arc li,j ∈ A indicates that i must be processed before
j. Given a task j ∈ T , we denote by Prej ⊂ T the set of tasks that must be
processed before j. Finally, c is the processing time limit of a work station (called
the cycle time), and a is the available space of a work station. Note that all work
stations are equal with respect to c and a.

A solution is obtained by assigning each task to exactly one work station. In
this work we represent a solution s as an ordered set 〈S1, . . . , Sm〉 of m ≤ n work
stations Sk. Each work station Sk ⊆ T is a set of tasks. A solution s is valid if
the following conditions are fullfilled:

1.
⋃m

k=1 Sk = {1, . . . , n} and
⋂m

k=1 Sk = ∅. These conditions ensure that each
task is assigned to exactly one work station.

2.
∑

j∈Sk

tj ≤ c, for k = 1, . . . ,m. This ensures that no work station has too much

load.
3.

∑
j∈Sk

aj ≤ a, for k = 1, . . . ,m. Herewith is ensured that the space limits of

the work stations are not exceeded.
4. For each j ∈ Sk it is required that

⋃k
l=1 Sl contains Prej , which ensures that

the precedence constraints between the tasks are respected.

All our algorithms exclusively generate valid solutions. Finally, note that each
SALBP-1 instance can be transformed into a TSALBP-1 instance by setting
tj := aj ∀ j ∈ T , and by setting a := c.

Objective function. The objective function of TSALBP-1 is the number of work
stations of a solution, which must be minimized. Given a solution s, this objective
function is denoted by c1(s) = |s|. However, this objective function contains large
plateaus, that is, many different solutions will have the same objective function
value. Therefore, we introduce a second criteria in order to distiguish between
solutions with the same number of work stations. The second criteria concerns
the remaining time and space in the last work station Sm ∈ s. We use the
following notations:

trem(s) := c −
∑

j∈Sm

tj and arem(s) := a −
∑

j∈Sm

aj (1)

Using these notations, the second criteria is defined as c2(s) = trem(s)
c + arem(s)

a .
Having c1 and c2 we can indirectly define a new objective function f(·) as follows.
Given s �= s′,

f(s) < f(s′) ⇔ c1(s) < c1(s′) OR c1(s) = c1(s′) and c2(s) < c2(s′) . (2)
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This means that—in the case of equality concerning the first criteria—a solution
s is regarded as better than a solution s′ if and only if more space and time is
remaining in the last work station of solution s. Note that despite the fact that
Beam-ACO uses the objective function f(·), we will present the results only in
terms of the original objective function.

Reverse problem instances [1]. Given a problem instance (T,G, c, a), the corre-
sponding reverse problem instance (T,Gr, c, a) is obtained by inverting all the
arcs in the precedence graph G. Each solution sr = 〈S1, . . . , Sm〉 to the reverse
problem instance (T,Gr, c, a) can be converted into a solution s to the origi-
nal problem instance (T,G, c, a) by inverting the ordered list of tasks, that is,
s = 〈Sm, . . . , S1〉. It is known from the literature (see, for example, [1]) that the
reverse problem instance may be easier to solve than the original one, or vice
versa.

3 The Algorithm

Our Beam-ACO approach—shown in Algorithm 1—works as follows. First, the
heuristic information for the computation of the transition probabilities is deter-
mined in function DetermineHeuristicInformation(). Then, the pheromone values
are initialized. At each algorithm iteration, ao ants construct solutions to the
original problem instance, and ar ants construct solutions to the reverse prob-
lem instance. The solutions to the reverse problem instance are subsequently
converted to solutions to the original problem instance. During each solution
construction a lower bound is used for detecting situations in which the result-
ing final solution must be worse than the best solution found by the algorithm so
far. In this case the corresponding solution construction is aborted. Finally, the
pheromone values are updated in function UpdatePheromoneTrail(T ,∗). The phe-
romone values are re-initilized in case of algorithm convergence. In Algorithm 1
we use the following notations: T = {τj,k}j,k=1,...,n is the set of pheromone val-
ues. A pheromone value τj,k represents the desirability of assigning task j to
work station k. Furthermore, sib is the best solution constructed at an iteration,
and sbsf is the best solution found since the start of the algorithm. The functions
of our algorithm are outlined in more detail below.

DetermineHeuristicInformation(): The heuristic information is obtained by opti-
mizing the parameters of a so-called parametrized greedy heuristic [17]. The
result is a static heuristic value ηaco

j ∈ (0, 1] for each j ∈ T . A by-product of
this function is the greedy solution that is obtained with the respective heuristic
values. We allowed 0.5 seconds for the application of this function. Even though
the derivation of the heuristic information is one of the innovative parts of our
algorithm we can—due to space limitations—not give a detailed description. We
refer the interested reader to [18] instead.

ConstructSolution(T ) (see Algorithm 2): Solutions are constructed by filling work
stations successively one after the other. Hereby, an ant fills each work station
in kext different ways (see lines 8-11 of Algorithm 2), of which the best one is
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Algorithm 1. Beam-ACO for TSALBP-1
1: input: An instance (T,G, c, a) of TSALBP-1
2: sbsf ← DetermineHeuristicInformation()
3: forall τj,k ∈ T do τj,k := 0.5 end forall
4: cf := 0
5: while termination conditions not satisfied do
6: I := ∅
7: for i = 1 to ao do
8: si ← ConstructSolution(T ) {see Algorithm 2}
9: if si �= null then I := I ∪ {si}

10: end for
11: for i = 1 to ar do
12: sr

i ← ConstructReverseSolution(T )
13: if sr

i �= null then
14: Obtain a solution si to the original instance from sr

i

15: I := I ∪ {si}
16: end if
17: end for
18: if I = ∅ then
19: UpdatePheromoneTrail(T ,sbsf)
20: else
21: sib := min{f(si) | si ∈ I}
22: UpdatePheromoneTrail(T ,sib)
23: if f(sib) < f(sbsf) then sbsf := sib

24: end if
25: cf ← ComputeConvergenceFactor(T )
26: if cf < 0.05 then
27: forall τj,k ∈ T do τj,k := 0.5 end forall
28: end if
29: end while
30: output: sbsf

selected. In the context of beam search, kext is the number of extensions that
may be obtained from a partial solution. For all our experiments we have used
the setting of kext = 50.

Let T av ⊆ T ′ be the set of tasks such that Prej ∩ T ′ = ∅ for all j ∈ T av,
that is, T av is the set of available tasks. Moreover, let T sat ⊆ T av be the set of
available tasks such that crem − tj = 0 or arem − aj = 0; henceforth called the set
of saturating available tasks. A work station is filled by applying the function
FillWorkStation(T, k) which is shown in Algorithm 3. Function ChooseTask(T ′)
of Algorithm 3 is implemented as follows. First, we flip a coin in order to decide
if the construction step is performed deterministically, or probabilistically. In
case of a deterministic construction step, the set of tasks from which to choose
an operation, denoted by T c, is determined as follows: If the set of available
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saturating tasks T sat is non-empty, we set T c := T sat, otherwise T c := T av.
Then, from T c is chosen the task that maximizes

pj =

(
k∑

i=1
τj,i

)
· ηaco

j∑
l∈T c

(
k∑

i=1
τl,i

)
· ηaco

l

. (3)

This formula uses the summation rule introduced by Merkle and Middendorf
for scheduling problems [19]. In case of a probabilistic construction step, T c is
set to T av, and a task is chosen by roulette-wheel-selection with respect to the
probabilities shown in Equation 3.

After filling a work station, a lower bound LB(·) is applied to the current
partial solution s extended by the filled work station (see line 10 of Algorithm 2).
The value of the lower bound indicates the minimum number of work stations
needed by a solution that contains the current partial solution extended by the
filled work station. In this work we used a very simple lower bound: Given a
partial solution s, let T rem be the set of tasks that are not yet assigned to work
stations. Then:

LB(s) = max

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎢

∑
j∈T rem

tj

c

⎤⎥⎥⎥⎥ ,

⎡⎢⎢⎢⎢
∑

j∈T rem
aj

a

⎤⎥⎥⎥⎥
⎫⎪⎬⎪⎭ (4)

Only if the lower bound value is not worse than the number of work stations
of the best solution found so far, the extension of the current partial solution is
considered (see line 10 of Algorithm 2). Finally, from all the possible extensions
of a partial solution, the one with the lowest lower bound value is chosen (see
line 13 of Algorithm 2). Note that this corresponds to a beam search algorithm
with a beam width equal to 1. We decided for this setting, because in this work
we only wanted to test the potential of a beam search approach. However, we
want to make the reader aware of the fact that a proper setting of the beam
width might improve the results of the algorithm even further.

Finally, function ConstructReverseSolution(T ) works in the same way as func-
tion ConstructSolution(T ), just that it constructs a solution for the reverse prob-
lem instance. The same pheromone values are used, just in a slightly different
way. For example, the pheromone value that expresses the desirability to assign
task j to the first work station of the reverse problem instance is pheromone
value τj,|sbsf|, instead of τj,1, and so on.

ComputeConvergenceFactor(T ): Given the current pheromone values, this func-
tion computes a value cf to indicate the state of convergence of the algorithm:

cf = 2 ·

⎛⎜⎜⎜⎝
n∑

j=1

|sbsf|∑
k=1

min{τmax − τj,k, τj,k − τmin}

n · |sbsf| · (τmax − τmin)

⎞⎟⎟⎟⎠ (5)
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Algorithm 2. Function ConstructSolution(T ) of Algorithm 1
1: input: The set of pheromone values T , and sbsf

2: T = {1, . . . , n}
3: k := 0
4: s := 〈〉
5: while T �= ∅ do
6: k := k + 1
7: I := ∅
8: for i = 1, . . . , kext do
9: Si

k =FillWorkStation(T, k) {see Algorithm 3}
10: if LB(s ∪ Si

k) ≤ |sbsf| then I = I ∪ Si
k

11: end for
12: if I �= ∅ then
13: S∗

k := argmax{LB(s ∪ Si
k) | Si

k ∈ I}
14: T := T \ S∗

k

15: Add S∗
k to s, that is, s := 〈S1, . . . , Sk−1, S

∗
k〉

16: else
17: output: null
18: end if
19: end while
20: output: Solution s

When the pheromone values are initialized, cf is 1; on the other side, when all
pheromone values are either equal to τmax or to τmin, cf is 0. We have set τmax to
0.99, and τmin to 0.01. Note that the use of these bounds and their value setting is
motivated by the implementation of MAX -MIN AS algorithms implemented
in the hyper-cube framework (see, for example, [20]).

UpdatePheromoneTrail(T ,∗): This function either uses solution sib or solution sbsf

for updating the pheromone values. sbsf is only used in case no iteration best so-
lution exists, due to solution construction abortions. Let us denote the updating
solution by supd. Then, for j = 1, . . . , n and k = 1, . . . , |supd| the corresponding
pheromone value τj,k is updated as follows:

τj,k = min {max {τmin, τj,k + ρ · (δj,k − τj,k)} , τmax} , (6)

where ρ ∈ (0, 1] is a learning rate (which we have set to 0.1 for all the exper-
iments). Moreover, δj,k is 1, if task j is assigned to work station k in solution
supd, and 0 otherwise.

This concludes the description of our algorithm. The experimental results are
outlined in the following section.

4 Computational Results

We implemented the Beam-ACO algorithm in ANSI C++ using GCC 3.2.2 for
compiling the software. Our experimental results were obtained on a PC with
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Algorithm 3. Function FillWorkStation(T, k) of Algorithm 2
1: input: A set T of tasks, and the index k of the work station to be filled
2: T ′ := T
3: Sk := ∅
4: crem := c
5: arem := a
6: while T ′ �= ∅ and ∃ i ∈ T ′ s.t. crem − ti ≥ 0 and arem − ai ≥ 0 do
7: j ←ChooseTask(T ′)
8: T ′ := T ′ \ {j}
9: Sk := Sk ∪ {j}

10: crem := crem − tj
11: arem := arem − aj

12: end while
13: output: Filled work station Sk

Table 1. Results obtained by Beam-ACO in comparison to the results of solution
techniques from the literature. The second table row provides the number of SALBP-1
instances solved to optimality (out of 269). The third table row contains the average
computation times (in seconds) for finding the best solution of each run. Note that the
computation time comparison is not really useful, because the computers that were used
are quite different. We refer the interested reader to the corresponding publications.

SALOME [6] PrioTabu [8] EurTabu [8] ANTS [13] HGA [11] Beam-ACO
solved 227 200 214 227 214 245
avg. time 98.6 101.8 62.6 13.84 n. g. 1.92

Intel Pentium 4 processor (3.06 GHz) and 1 Gb of memory, running Debian
Linux. We performed three series of computational tests, which are outlined in
the following.

4.1 Results for SALBP-1 Instances

Firstwe applied Beam-ACOto all 269 SALBP-1 instances from the benchmark ob-
tainable from http://www.assembly-line-balancing.de. The results of Beam-
ACO are presented in a summarized form and compared to other approaches in Ta-
ble 1. Beam-ACO was applied 10 times for 120 CPU time seconds to each problem
instance. We can note that Beam-ACO solves more problem instances to
optimality than any other available technique. In particular, we can note that
Beam-ACO solves more instances than ANTS, which is an ACO algorithm that
utilizes the indirect resolution approach as outlined in the introduction.

Exemplary we show the results of Beam-ACO for the 26 difficult instances
based on the precedence graph called SCHOLL in Table 2. The results show
that Beam-ACO can solve more instances to optimaliy (namely, 9) than the
two most recent metaheuristic approaches. The computation times show that,
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Table 2. Results obtained by Beam-ACO in comparison to the results of two of the
best techniques available for SALBP-1: ANTS is a standard ACO approach proposed
in [13], and TABU is a recent tabu search approach proposed in [9]. The comparison is
performed on the 26 difficult instances based on the precedence graph called SCHOLL.
The instances differ in the cycle time, which is indicated in the first table column. The
second column (headed by bks) contains the best known solution, and the third and
fourth column contain the values of the best solutions found by ANTS, respectively
TABU. Finally, the last 3 table columns provide the results of Beam-ACO, concerning
the best solution found in 10 runs (best), the average and standard deviation of the
results (average (std)), and the times including the standard deviation at which the
best solutions were found (average time (std)).

c bks ANTS TABU Beam-ACO
best average (std) average time (std)

1394 50 52 51 51 51.00 (0.00) 0.82 (0.87)
1422 50 51 50 50 50.00 (0.00) 0.29 (0.39)
1452 48 50 49 49 49.00 (0.00) 0.78 (0.99)
1483 47 49 48 48 48.00 (0.00) 1.47 (1.35)
1515 46 48 47 47 47.00 (0.00) 0.39 (0.77)
1548 46 46 46 46 46.00 (0.00) 0.67 (0.26)
1584 44 46 45 45 45.00 (0.00) 1.48 (0.92)
1620 44 44 44 44 44.00 (0.00) 1.27 (0.82)
1659 42 44 43 43 43.00 (0.00) 0.52 (0.57)
1699 42 42 42 42 42.00 (0.00) 2.71 (0.29)
1742 40 41 41 41 41.00 (0.00) 0.47 (0.33)
1787 39 40 40 40 40.00 (0.00) 0.59 (0.27)
1834 38 39 39 39 39.00 (0.00) 0.34 (0.27)
1883 37 38 38 38 38.00 (0.00) 0.022 (0.024)
1935 36 37 37 37 37.00 (0.00) 0.21 (0.15)
1991 35 37 36 35 35.90 (0.32) 0.33 (0.97)
2049 34 35 35 35 35.00 (0.00) 0.013 (0.0057)
2111 33 34 34 34 34.00 (0.00) 0.010 (0.0042)
2177 32 33 33 32 32.90 (0.32) 9.28 (29.31)
2247 31 32 32 32 32.00 (0.00) 0.0090 (0.0054)
2322 30 31 31 31 31.00 (0.00) 0.012 (0.0090)
2402 29 30 30 30 30.00 (0.00) 0.010 (0.0051)
2488 28 29 29 29 29.00 (0.00) 0.011 (0.0047)
2580 27 28 28 27 27.80 (0.42) 14.02 (31.99)
2680 26 27 27 26 26.10 (0.32) 47.14 (36.68)
2787 25 26 26 25 25.20 (0.42) 50.19 (30.97)

in case the optimal solution can be found, this is usally the case after 30 to 40
seconds. In case the optimal solution is not found, the gap is never greater than
1, and the computation times are very low. This means that Beam-ACO finds
very easily near-optimal solutions.
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Table 3. Results obtained by Beam-ACO in comparison to the results of ANTS [13],
which is so far the only available technique for TSALBP-1. The comparison is performed
on the 26 instances based on the precedence graph called SCHOLL. The instances differ
in the cycle time (which is at the same time the space limit). Cycle time, respectively
space limit, are indicated in the first table column. The second column (headed by bks)
contains the values of the best known solution. The arrow indicates that Beam-ACO was
the first algorithm to generate this best known solution value. The third column contains
the values of the best solutions found by ANTS. Finally, the last 3 table columns pro-
vide the results of Beam-ACO, concerning the best solution found in 10 runs (best), the
average and standard deviation of the results (average (std)), and the times including
the standard deviation at which the best solutions were found(average time (std)).

c, a bks ANTS Beam-ACO
best average (std) average time (std)

1394 → 59 60 59 60.00 (0.47) 30.50 (35.27)
1422 58 58 59 59.00 (0.00) 9.21 (10.07)
1452 → 57 58 57 57.40 (0.52) 13.82 (36.23)
1483 → 55 56 55 56.20 (0.63) 34.23 (33.35)
1515 54 54 54 54.40 (0.52) 51.43 (40.23)
1548 53 53 53 53.10 (0.32) 3.22 (5.79)
1584 → 51 53 51 51.70 (0.48) 26.61 (38.82)
1620 → 49 50 49 49.70 (0.48) 15.79 (23.57)
1659 → 48 49 48 48.30 (0.48) 40.80 (34.67)
1699 → 46 47 46 46.90 (0.32) 14.33 (14.77)
1742 → 45 46 45 45.00 (0.00) 38.65 (31.60)
1787 → 44 45 44 44.00 (0.00) 20.90 (21.57)
1834 43 43 43 43.00 (0.00) 13.13 (7.59)
1883 42 42 42 42.00 (0.00) 9.04 (4.05)
1935 41 41 41 41.00 (0.00) 9.36 (5.87)
1991 40 40 40 40.00 (0.00) 6.24 (3.45)
2049 → 38 39 38 38.00 (0.00) 12.64 (10.05)
2111 37 37 37 37.00 (0.00) 2.02 (4.28)
2177 36 36 36 36.00 (0.00) 2.06 (3.70)
2247 → 34 35 34 34.80 (0.42) 10.37 (19.81)
2322 → 33 34 33 33.40 (0.52) 33.66 (36.84)
2402 → 32 33 32 32.70 (0.48) 27.83 (45.99)
2488 → 31 32 31 31.00 (0.00) 42.11 (22.34)
2580 30 30 30 30.00 (0.00) 4.20 (3.00)
2680 29 29 29 29.00 (0.00) 3.83 (3.92)
2787 28 28 28 28.00 (0.00) 4.41 (4.15)

4.2 Results for the TSALBP-1 Instances

We also applied our algorithm to the 269 TSALBP-1 instances that were gener-
ated by Bautista and Pereira (see [13]) from the 269 SALBP-1 instances.2 We
2 This was done by setting aj := tn−j+1 for all j ∈ T , and a := c.
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exemplary show the results concerning the 26 instances based on the precedence
graph called SCHOLL in Table 3. The results are compared to the results of the
standard ACO approach ANTS by Bautista and Pereira (see [13]), which is the
only available technique for TSALBP-1. The results show that in 14 out of 26
cases, Beam-ACO improves the best known solution. In other 11 cases, Beam-
ACO matches the best known solution values. Only in one case Beam-ACO does
not match the performance of ANTS. This case is characterized by a relatively
small cycle time. In general, we noticed the tendency that Beam-ACO—when
applied to TSALBP-1 instances—is better when the cycle time is bigger. This
might be caused by the fact that the quality of the lower bound is higher for
bigger cycle times. Exchanging our simple lower bound for a more sophisticated
lower bound might help to improve the performance of Beam-ACO when smaller
cycle times are concerned.

4.3 Results for the Nissan TSALBP-1 Instance

Finally we applied Beam-ACO to the real-life instance provided by the Nissan
plant in Barcelona, Spain. This instance consists of 140 tasks, a cycle time of
180 seconds, and a space limit of 4. This real-life instance is easily solvable: Our
Beam-ACO approach finds in a fraction of a second an optimal solution with 21
work stations. Also when disregarding space constraints (that is, regarding it as
a SALBP-1 isntance), it is easily solvable. Our Beam-ACO approach finds an
optimal solution with 17 work stations in a fraction of a second.

5 Conclusions and Outlook to the Future

In this work we have proposed a hybrid ant colony optimization approach called
Beam-ACO for the TSALBP-1 problem. Beam-ACO is obtained by hybridizing
ant colony optimization with beam search. Our approach differs from existing ant
colony optimization approaches for TSALBP-1 (and from most existing meta-
heuristics) by the fact that it solves the problem in a direct way. The results
show that Beam-ACO is a state-of-the-art metaheuristics, for example, for the
well-studied SALBP-1 problem, which is a specific case of TSALBP-1.

In the future we plan to study the influence of the different algorithmic com-
ponents on the performance of Beam-ACO. It would be interesting to know, for
example, which influence the heuristic information (obtained by parametrizing
the priority rule) exactly has. Furthermore, we plan to extend the experimental
evaluation of the algorithm to beam widths greater than one. We expect that
this will further improve the algorithms’ performance.
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Abstract. This paper presents a novel boundary approach which is in-
cluded as a constraint-handling technique in an ant colony algorithm.
The necessity of approaching the boundary between the feasible and in-
feasible search space for many constrained optimization problems is a
paramount challenge for every constraint-handling technique. Our pro-
posed technique precisely focuses the search on the boundary region and
can be either used alone or in combination with other constraint-handling
techniques depending on the type and number of problem constraints.
For validation purposes, an ant algorithm is adopted as our search en-
gine. We compare our proposed approach with respect to constraint-
handling techniques that are representative of the state-of-the-art in
constrained evolutionary optimization using a set of standard test
functions.

1 Introduction

One of the first ACO extensions to operate on continuous spaces can be found in
Bilchev et al. [1] in which the whole search space is discretized in order to rep-
resent a finite number of search directions. This approach was validated using a
small set of constrained problems. Since then, several other researchers have pro-
posed schemes to apply the ACO algorithm to continuous search spaces (see for
example [2,3,4]). However, all of these approaches only deal with unconstrained
optimization problems.

In this paper we introduce a boundary approach for solving nonlinear con-
strained problems, which is presented as a possible extension of ACO algorithms
in continuous search spaces. It is worth noting, however, that our proposal can be
coupled to other metaheuristics (e.g., particle swarm optimization or an evolu-
tionary algorithm), and it is expected to be highly competitive in problems with
active constraints. Our ACO approach is mainly based on the work of Bilchev et
al. [1]. The reason for not adopting one of the more recent ACO extensions for
continuous search spaces is that, as indicated before, none of them deals with
constrained optimization problems.

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 108–119, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Constraint-Handling and Boundary Search

Michalewicz et al. [5] is one of the first papers on boundary search through the
use of evolutionary algorithms. The efficiency of this approach was shown by
using two constrained optimization problems: Keane’s function (also known as
G02) [6] and another function with one equality constraint (also known as G03).
For solving G02 the authors proposed two genetic operators: the geometrical
crossover and a special mutation operator. Both operators generate offspring ly-
ing on the boundary between the feasible and infeasible search space. Similarly
for G03, Michalewicz et al. [5] proposed the spherical crossover which only gener-
ates points on the surface of the sphere given as the only constraint. Schoenauer
et al. [7] proposed several evolutionary operators capable of exploring a general
surface of dimension n − 1 (n is the number of variables). The design of these
operators depends on the surface representation: curves-based, plane-based, and
parametric representation. Wu et al. [8] proposed a GA for the optimization of a
water distribution system, which is a highly constrained optimization problem.
The proposed approach co-evolves and self-adapts two penalty factors in order
to guide and preserve the search towards the boundary of the feasible search
space. The reduction of the search space is one of the most relevant character-
istics of the boundary search approach since the exploration considers only the
boundary of the feasible search space. However, many of the test cases considered
so far by other researchers only include problems with one or two constraints
(e.g., G02 and G031, respectively). In these cases, it is possible to define ad hoc
genetic operators that fit perfectly the boundary of the feasible region. How-
ever, this sort of approach is impractical in an arbitrary problem with many
constraints, and it is therefore necessary to define a more general approach for
boundary search which can be as robust as possible to deal with different types
of constraints. This was precisely the motivation for the research reported in this
paper.

3 An Alternative Boundary Search Approach

We are interested in solving the general nonlinear programming problem whose
aim is to find x so as to optimize: f(x) x = (x1, x2, ..., xn) ∈ R

n where x ∈
F ⊂ S. The set S ∈ R defines the search space and sets F ⊆ S and U = S − F
define the feasible and infeasible search spaces, respectively. The search space
S is defined as an n-dimensional rectangle in R

n (domains of variables defined
by their lower and upper bounds): l(i) ≤ xi ≤ u(i) for 1 ≤ i ≤ n whereas the
feasible set F is defined by the intersection of S and a set of additional m ≥ 0
constraints: gi ≤ 0, for j = 1, . . . , q and hj = 0 for j = q+1, . . . ,m. At any point
x ∈ F , the constraints gk that satisfy gk(x) = 0 are called the active constraints
at x. Equality constraints hj are active at all points of F .

1 Keane’s function can be considered as having one constraint since one of them is
ignored focusing the search only on the active constraint.
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3.1 The Boundary Operators

We propose here a general boundary operator which is based on the notion that
each point b of the boundary region can be represented by means of two different
points x and y where x is some feasible point and y is some infeasible one, i.e.,
(x,y) can represent one point lying on the boundary by applying a “binary
search” on the straight line connecting the points x and y. Figure 1 shows a
hypothetical search space including the feasible and infeasible (shadowed area)
regions. We can identify four points lying on the boundary b1, b2, b3, and b4
which are respectively obtained from (x1,y1), (x2,y2), (x3,y3), and (x4,y4).

b′
4 y′

4

x1

x2

x3

x4

y1

y2

y3

y4

b1

b2

b3

b4

p1

p2

(1)

(2)

(3)

F

U

Fig. 1. Given one feasible and one infeasible point, the respective point lying on the
boundary can be easily reached by using a simple binary search

The binary search applied to each pair of points (x,y) is achieved following the
steps described in function BS (see Figure 2). For example, a possible application
of this process can be seen in Figure 1 where we adopt the pair of points (x3,y3)
from which we obtain the point b3, which lies on the boundary. The first step
(labeled (1)) indicates that the first mid point found is infeasible. Consequently,
the left side of the straight line (x3) is moved to point p1. In the next step ((2))
we consider the points p1 and y3 as extreme points for which the mid point is
the feasible point p2. Thus, the new feasible point or right extreme of the line
is now the point p2. Finally, the last point generated is b3 which can be either
lying on or close to the boundary. Condition (dist to boundary(m) > ξ) defines
a threshold to stop the process of approaching the boundary. It is worth noticing
that parameters x and y are local to BS, i.e., function BS behaves as a decoder
of the pair of feasible and infeasible points passed as parameters. Therefore,
the number of “mid points between” x and y before approaching the boundary
within a distance less that ξ is given by log2(r) where r = (dist(x,y)))/ξ. Thus,
the closer to the boundary, the larger log2(r).

So far, we have shown how a point lying on the boundary can be represented
through a pair of points. Now we need to consider the exploration of the search
space. For example, from the perspective of evolutionary algorithms, the candi-
date operators are crossover and mutation. However, for the ACO approach we
only adopt a mutation-like operator. Here, a pair of points is considered (one
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function BS(x,y: real vector): int
begin

do
m = mid point between(x,y);
if ( Is on Boundary(m) ) return m; /* m is a point lying on the boundary */
if ( Feasible(m) ) x = m; else y = m;

while ( dist to boundary(m)> ξ );
return mid point between(x,y); /* The closest point to the boundary */

end

Fig. 2. Given one feasible and one infeasible point, function BS returns either a point on
the boundary or one which is close enough to the boundary according to a parameter ξ

feasible and one infeasible). Alternatively, any of these two points could be mod-
ified. For example, we can consider the pair of points (x4,y4) in Figure 1 which
represents point b4 on the boundary. In this case, the feasible point y4 can be
modified giving as a result a point y′

4 in the feasible search space. After this
process, the new point lying on the boundary is obtained by decoding (x4,y′

4),
which gives us b′

4.

3.2 The Proposed Method

The simplest case to apply the boundary approach is when the problem has only
one constraint which could be either an equality or an inequality constraint. For
the last case, it is important to remember that we are assuming active constraints
at the global optimum to proceed with this method where the search is always
performed on the boundary of the space defined by any of the constraints.

g
2

g
1

g
3

F

U

Fig. 3. Feasible search space defined by 3 inequality constraints

For facing the typical situation in which we have more than one constraint, it
is necessary to define an appropriate policy to explore the boundary as efficiently
as possible. One possibility is to explore in turn the boundary of each constraint.
The selection of the constraints to search for can be determined using different
methods. If the problem includes at least one equality constraint, such equality
constraints are the most appropriate candidates to be selected first. In order
to show the robustness of our method in the absence of information about the
active constraints of a problem, we will show in our experimental study (see
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Section 5) a more general approach to apply the boundary operators. As an
illustrative example, Figure 3 shows a hypothetical search space determined by
three inequality constraints. Let’s suppose that the search proceeds starting on
constraint g1 by using the boundary operator Og1 (filled line in Figure 3). The
application of this operator will eventually produce points violating constraints
g2 and g3 (dotted line in Figure 3). One of the simplest methods to deal with
this situation is the application of a penalty function for the infeasible solutions.
In addition, if g1 is active at the global optimum, the method will focus the
search on the boundary in order to restrict the explored regions of the whole
search space. Note however, that other (more sophisticated) constraint-handling
techniques can also be adopted.

4 Boundary Approach in ACO Algorithms

A possible design to apply the ACO approach in continuous search problems is
by discretizing the continuous search space in some way. In this work we use
a discrete structure to represent a set of different points spread on the search
space. These points are called directions, following Bilchev et al.’s proposal. The
discrete structure can be seen as a set {d1, d2, ..., dk}, where k is a parameter for
the number of directions. Each direction di is represented as a real n-dimensional
vector. A general outline of the ACO algorithm is shown in Figure 4. It is worth
remarking that the original proposal [1] for ACO in continuous domains is used to
proceed with the local exploration after a genetic algorithm has finished with the
global search. However, the algorithm proposed here, is in charge of performing
the entire search process. More precisely, our ACO algorithm starts with a set
of k pairs of points (x,y) randomly generated with x ∈ F ⇐⇒ y ∈ U (when
considering an equality constraint, z ∈ F iff h(z) ≤ 0; otherwise, z ∈ U) . In
addition, a value 0 ≤ R ≤ 1 is considered to define the extent of the search
interval with respect to each variable. Parameter R starting at value 1 will vary
down to 0 in each iteration as described later in this section.

The ACO algorithm displayed in Figure 4 works as follows: initialize A(t)
“distributes” Na ants in the k directions, where Na > k in order to allocate one

ACO algorithm
begin

t = 0; initialize A(t); evaluate A(t);
while ( stop condition not met ) do
begin

t = t + 1
update trail; reallocate ants A(t);
evaluate A(t);

end
end

Fig. 4. General outline of the ACO algorithm for continuous problems adopted in this
paper
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or more ants to the same direction. Each ant randomly generates one possible so-
lution, i.e. a pair (x,y) with x ∈ F and y ∈ U ; evaluate A(t) obtains the objec-
tive value for the new points generated; update trail is in charge of accumulating
pheromone trial in each direction proportionally to the quality of the objective
function values found in the corresponding direction, i.e., τd = (1− ρ) · τd +Δτd

where Δτd is a value proportional to the best objective value in direction d and
0 ≤ ρ ≤ 1 is the pheromone trail evaporation rate; reallocate ants A(t) redistrib-
utes the population of ants in the k directions, proportionally to the accumulated
pheromone trail values. Thus, the ants in direction d ∈ {1, . . . , k} are in charge of
searching in the neighborhood of the respective boundary feasible point in direc-
tion d. The changes on the values of ratio R to control the extent of the search
interval for each dimension can be implemented as ΔR(t) = R(1 − r(1−t/T ))
where r is a random number in the range [0..1]; T is the maximum number of it-
erations. Consequently, the value ΔR(t) falls in the range [0..R] and gets closer to
0 as the elapsed number of iterations t increases. Therefore, the ACO algorithm
can be seen as a trajectory approach which simultaneously searches in different
directions and exploits the past experience to guide the search towards the most
promising regions according to the quality of the results. Furthermore, the accu-
mulated pheromone trail will decrease in the direction that produces low-quality
solutions due to the effects of the evaporation process focusing the ants’ attention
on more promising regions of the feasible search space. In order to avoid prema-
ture convergence of the algorithm, a potentially useful direction can remain as an
alternative search region by bounding with lower and upper values the amount
of pheromone trial in each direction following the principle of the MMAS algo-
rithm [9]. The main characteristics of this method include two abstraction levels:

1. individual search: involves the strategy followed by each ant to search in its
neighborhood (in our case, a mutation-like operator).

2. cooperation: involves information exchange among the ants in order to guide
the search to certain regions of the search space. This information is repre-
sented by the pheromone trial structure (τ) where τj represents the accu-
mulation of pheromone trail on direction j. The distribution of the ants in
the different directions is achieved by the formula: Pd(t) = τd(t)

k
h=1 τh(t)

5 Analysis of Results

The application of our approach (called ACOB) requires minimum changes when
applied to the different test cases considered: the objective function, the number
of variables, the range of each variable, and the constraints. However, the policy
to determine on which constraint the search should focus needs to be considered
when the problems have more than one constraint: a) we can focus the search
on all the constraints, but considering one constraint in turn by controlling the
change through a particular condition (Sall), b) similar to the previous alterna-
tive but considering only the active constraints (Sact), or c) just considering one
constraint during the whole run (Sc where c ∈ {1, . . . ,m}). These three ways
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of exploring the search space are presented first in our experimental study in
order to analyze the performance of the ACOB on each of the considered prob-
lems. In our experiments, the condition to produce a change on the search from
one to another constraint is given by an elapsed number of iterations and it is
represented by the parameter tc. In addition, for problems with more than one
constraint, we incorporate a penalty function of the form:

φ(x, μ) = f(x) + μ(t)(
q∑

j=1

max{0, gj(x)} +
m∑

j=q+1

|hj(x)|) (1)

where μ(t) is a dynamic penalty factor which could change as t, the elapsed iter-
ation, increases with μ(0) ≤ μ(1) ≤ μ(2) . . . ≤ μ(T ). Alternatively, the penalty
factor can be fixed throughout the run, i.e., μ(t) = μ0 for all 1 ≤ t ≤ T . Regard-
less of the penalty function adopted, it is worth remarking that each solution is
always lying on the boundary of the feasible space corresponding to the constraint
under consideration. Note that this approach was adopted due to its simplicity,
since our interest was to assess the advantages of our proposed approach. How-
ever, other constraint-handling techniques are evidently possible. The parameter
values used in the experimental study are the following: 50 ants (population size),
20 directions (number of points), maximum number of iterations 30000, the evap-
oration rate ρ = 0.5, tc > 0 is the number of iterations the ACOB focuses on
one constraint in turn (tc = 200). When tc = 0, the ACOB focuses on only one
constraint throughout the whole run. The penalty factor μ(t) was experimentally
determined for each particular problem and is shown in the corresponding tables
of results. The ACOB was executed 30 times with different seeds for each para-
meter combination. The problems studied include a set of well-known test cases
traditionally adopted in the specialized literature: G01 to G13 [10].

5.1 Study of the Application of ACOB

We have divided the presentation of the results into two groups according to the
following criteria: the first group, is displayed in Tables 1 and 2. Table 1 includes
two special cases since they where the first problems on which the boundary
approach was applied (problems G02 and G03). In addition, these problems
have one and two constraints respectively. However, the second constraint of
problem G02 is not considered since it is not active at the best known value.
The columns in this table show the setting for the number of variables, the best
value found (BF), Mean, Standard Deviation (Std), Worst, number of feasible
solutions out of 30 runs (#F), and the mean number of evaluations, expressed
in thousands, to get the best value found (M(#E)). On the other hand, Table 2
shows two problems both of which include one equality constraint (problems
G11 and G25). Accordingly, no penalty values (μ) need to be applied for this
first group of problems. In the remaining tables, the column “No. of variables” is
replaced by “Cnst”, indicating the criteria adopted to proceed with the boundary
search, i.e., Sc (c ∈ {1, . . . ,m}), Sact, or Sall. In addition, the best known or
global optimum value for each problem is shown in parenthesis.
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Table 1. Results for problems G02 (Keane’s function) and G03

No. of BF Mean Std Worst #F M(#E)
Variables (n)

Problem G02
20 0.8036190867 0.8025656939 0.0032 0.7930839658 30 29
50 0.8352618814 0.8339309692 0.0021 0.8259508014 30 35
100 0.8456841707 0.8446936011 0.0007 0.8423509002 30 46

Problem G03
20 1.0 1.0 0.0 1.0 30 140
50 1.0 1.0 0.0 1.0 30 389

Table 2. For problems G11 and G25 it is unnecessary to use a penalty factor

Cnst. BF Mean Std Worst #F M(#E)
Problem G11 (0.75)

S1 0.75 0.75 0.0 0.75 30 70
Problem G25 (16.73889)

S1 -16.73889 -16.73889 0.0 -16.73889 30 10

We tested G02 setting the number of variables as n = 20, 50, and 100. ACOB
succeeded in finding the best known value for n = 20 [11]. In addition, it was
able to find a better quality result than the best objective reported in [7] where
n = 50 and f(x∗) = 0.831937. For n = 100, we found 0.8456841707 as the
best value in our experimental study. Also, it is worth remarking that all the
solutions found were feasible for all n and very similar among themselves as can
be observed in the columns Mean, Std, and Worst. With respect to problem
G03, we considered n = 20 and n = 50 variables. ACOB found the optimum
feasible solution for both cases in all runs. Similarly to G03, the remaining
problems of this group (G11 and G25), our approach reached the optimum in
all cases.

The second group of the test cases is conformed by some problems having more
than one constraint which have been frequently used in the specialized literature:
G01, G04, G05, G06, G07, G09, G10, and G13. Also we include problem G24 [12]
in this subgroup. Only for G10, we adopted a dynamic penalty (μ(t) = 1.05 ×
μ(t − 1) for t = 0, 1, · · · tmax, with μ(0) = 200000). The static penalty factors
adopted for the remaining problems are (i.e., for t = 0, 1, · · ·T ): G01, μ(t) =
1000; G04, μ(t) = 800000; G05, μ(t) = 10; G06, μ(t) = 10000; G07, μ(t) =
20000; G09, μ(t) = 2000, G13, μ(t) = 0.2; and G24, μ(t) = 1000. The results for
this group of problems are displayed in Tables 3 and 4. It must be noticed that
these problems include different numbers and complexities of the equality and
inequality constraints which are active at the best known or optimum solution.
As indicated in column “Cnst.”, each row shows the results when ACOB is
applied one of the following criteria: search exclusively on constraint j (Sj , j =
1, . . . ,m), on all the active constraints in turn (Sact), and over all the constraints
in turn (Sall). For example, problem G01 has 6 active constraints. Accordingly,
ACOB performs optimally when searching on those active constraints. Similarly,
the algorithm succeeded in finding the optimal solution when using both Sact and
Sall. However, its performance slightly decays when searching on the non active
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Table 3. Results for problems G01, G04, G05, G06, and G07. Column M(#E) is not
showed for these problems due to space constraints.

Cnst. BF Mean Std Worst #F Cnst. BF Mean Std Worst #F
Problem G01 (-15.00) Problem G07 (24.306)

S1 -15.00 -14.99 0.001 -14.996 30 S1 24.37 29.59 4.83 42.97 30
S2 -15.00 -14.96 0.012 -14.995 30 S2 24.51 35.10 23.02 121.56 30
S3 -15.00 -14.99 0.001 -14.965 30 S3 24.56 28.31 5.54 50.83 30
S4 -14.27 -13.54 .38 -13.18 29 S4 24.79 54.17 70.46 380.03 30
S5 -13.84 -13.48 0.32 -13.04 25 S5 24.52 34.52 16.39 77.19 30
S6 -14.22 -13.39 0.47 -13.00 26 S6 24.79 31.12 6.46 48.40 30
S7 -15.00 -14.78 0.2 -14.65 26 S7 33.08 38.86 4.01 46.53 30
S8 -15.00 -14.74 0.49 -14.46 27 S8 41.03 46.86 20.92 127.06 30
S9 -15.00 -14.67 0.76 -13.08 30

Sact -15.00 -15.00 0 -15.00 30 Sact 24.37 24.64 0.15 24.92 30
Sall -15.00 -15.00 0 -15.00 30 Sall 24.38 24.76 0.16 25.22 30

Problem G04 (-30655.539) Problem G05 (5126.49)
S1 -30665.539 -30665.357 0.04 -30665.157 30 S1 - - - - -
S2 - - - - - S2 - - - - -
S3 - - - - - S3 5126.50 5133.29 9.284 5147.81 6
S4 - - - - - S4 5126.51 5134.70 11.219 5164.91 11
S5 - - - - - S5 5126.68 5130.55 3.656 5136.08 11
S6 -30655.539 -30665.302 0.01 -30665.290 30

Sact -30655.539 -30655.539 0.001 -30655.539 30 Sact 5126.50 5138.37 8.20 5132.14 6
Sall - - - - - Sall 5126.50 5143.77 10.60 5163.56 5

Problem G06 (6961.81)
S1 -6961.79 -6961.71 0.075 -6169.54 11
S2 -6961.81 -6961.72 0.097 -6961.34 25

Sact -6961.81 -6961.74 0.070 -6961.71 25

constraints as could be expected. This situation is more dramatic for problem
G04 which has two active constraints. In this case, ACOB only finds the optimum
solution when searching on the respective active constraints and Sact. Although
strategy Sall fails in finding any feasible solution, this strategy worked well for all
the other problems considered. A similar situation can be seen for problem G05
which has three equality constraints. Accordingly, ACOB finds a high quality
solution for this problem (very near to the optimal one) when searching on
the equality constraints, Sact, and Sall. On the other hand, problem G06 has
two inequality constraints which are active at the optimum. ACOB performs
optimally for this problem by following any of the three applicable strategies:
S1, S2, and Sact. The last problem in Table 3 has six active constraints and ACOB
performs similarly to G01 since the best results were obtained when searching
on the active constraints or by using Sact or Sall.

Problem G09 has two active constraints for which ACOB found the optimum
value. However, searching on the non active constraints can give results far from
the expected value (see S2 and S3). G10 constitutes one of the most difficult test
cases not only for our approach, but also for any other constraint-handling tech-
nique. ACOB found feasible solutions with all the search strategies except for S5
and S6. Note the small number of feasible solutions found for this problem, as
well as the large standard deviation value produced (with respect to the devia-
tions of the other problems). Another interesting problem is G13 whose feasible
search space is defined by three nonlinear equality constraints. For this problem
ACOB found the optimal solution following either of the four applicable search
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Table 4. Results for problems G09, G10, G13, and G24

Cnst. BF Mean Std Worst #F M(#E)
Problem G09 (680.63)

S1 680.63 680.66 0.10 681,29 30 80
S2 1664.00 1890.01 119.92 1982.72 5 108
S3 840.00 880.82 15.06 890.56 29 22
S4 680.63 680.96 0.96 681.95 29 43

Sact 680.63 680.67 0.026 680.72 30 7
Sall 680.65 680.75 0.056 680.89 30 19

Problem G10 (7049.331)
S1 7101.50 7346.61 202.15 7682.20 9 147
S2 7063.02 8169.68 1866.32 10325.00 3 131
S3 7057.27 7406.51 148.60 7518.91 9 148
S4 7095.27 7349.83 360.00 7604.39 2 128
S5 - - - - - -
S6 - - - - - -

Sact 7052.30 7199.01 175.01 7943.15 30 42
Sall 7068.04 7141.87 52.27 7239.54 30 9.8

Problem G13 (0.053950)
S1 0.053950 0.054908 0.00054 0.055386 6 29
S2 0.053950 0.054372 0.00044 0.054968 4 7
S3 0.053950 0.054637 0.00017 0.054394 6 7

Sact 0.053950 0.054736 0.001 0.058462 15 19
Problem G24 (-5.508013)

S1 -5.508013 -5.508013 0.0 -5.508013 30 5
S2 -5.508013 -5.508013 0.0 -5.508013 30 24

Sact -5.508013 -5.508013 0.0 -5.508013 30 21

strategies. Finally, it can be seen that ACOB performs optimally on problem
G24 which has two active inequality constraints where the optimal solution was
found for all strategies in each run (see #F).

5.2 Comparison with a State-of-the-Art Algorithm

In this section we compare the best quality results from ACOB (we use Sact

as the most efficient search criteria) with respect to the results of a constraint-
handling technique representative of the state-of-the-art in the area: Stochastic
Ranking (SR) [10]. Table 5 shows for each problem considered, the optimum,
and the corresponding Best value found (BF), average (Mean), and Worst values
respectively from ACOB and SR (reported in [10]2). The performance of ACOB
is comparable in many ways with respect to SR.

From the perspective of the best values (BF) found ACOB reaches similar
values as SR in all the problems considered. For G02, ACOB reached the best

2 Except for problems G24 and G25 for which SR was run by the authors using Thomas
Runarsson’s code.



118 G. Leguizamón, and C.A. Coello Coello

known value reported in [5] by using an ad hoc boundary operator. On the
opposite side, for G10, ACOB did not obtain the optimal solution. However, the
results achieved in all cases are highly competitive.

Table 5. Comparison of ACOB with respect to a constraint-handling technique repre-
sentative of the state-of-the-art in the area: stochastic ranking (SR)

BF Mean Worst
Prob. Opt3 ACOB SR ACOB SR ACOB SR
G01 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000 -15.000
G02 0.803619 0.803619 0.803515 0.802656 0.781975 0.793083 0.726288
G03 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30666.539 -30665.539
G05 5126.498 5126.50 5126.497 5138.37 5128.881 5132.14 5142.472
G06 -6961.814 -6961.81 -6981.814 -6961.74 -6875.940 -6961.71 -6350.262
G07 24.306 24.37 24.307 24.64 24.374 24.92 24.642
G09 680.630 680.63 680.63 680.67 680.56 680.72 680.763
G10 7049.331 7052.30 7054.316 7199.01 7559.192 7943.15 8835.655
G11 0.75 0.75 0.75 0.75 0.75 0.75 0.75
G13 0.053950 0.053950 0.053957 0.054908 0.057006 0.055386 0.216915
G24 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013
G25 -16.73819 -16.73819 -16.73819 -16.73819 - 16.73819 -16.73819 -16.73819

6 Conclusions and Future Work

In this paper we presented an alterative approach to reach the boundary between
the feasible and infeasible search space which could be useful when facing prob-
lems with active constraints. For the initial testing of this method we have used
an ant colony algorithm as a search engine (ACOB ) and a penalty function as
a complementary mechanism for problems with more than one constraint. The
overall performance of ACOB was satisfactory for all of the problems consid-
ered. The comparison with a state-of-the-art algorithm shows the potential of
this method as an alternative or complementary approach for constrained opti-
mization problems. In fact, for some problems, ACOB was able to improve the
respective best known solutions (e.g., G02 (with n = 50 variables)). It is clear
that further improvements should be considered. For example, it is desirable
to implement a self-adaptation mechanisms and to try different search engines
(e.g., differential evolution and evolution strategies). We also plan to study the
performance of our approach in several additional test functions.
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Abstract. In this paper we analyse a previously introduced swarm intel-
ligence control mechanism used for solving problems of robot path forma-
tion. We determine the impact of two probabilistic control parameters. In
particular, the problem we consider consists in forming a path between
two objects which an individual robot cannot perceive simultaneously.

Our experiments were conducted in simulation. We compare four dif-
ferent robot group sizes with up to 20 robots, and vary the difficulty of
the task by considering five different distances between the objects which
have to be connected by a path.

Our results show that the two investigated parameters have a strong
impact on the behaviour of the overall system and that the optimal set
of parameters is a function of group size and task difficulty. Additionally,
we show that our system scales well with the number of robots.

1 Introduction

Environment exploration, navigation, and path formation are a prerequisite for
the accomplishment of a wide range of tasks in the robotics domain. As envi-
ronment exploration is a very general task, there are many different approaches
to it. Often, researchers equip robots with an explicit, map-like representation
of their environment [1,2]. Such a representation may be given a priori, mainly
leaving the robot with the non-trivial task of localizing itself, or the map may
be constructed by the robot itself while moving through the environment. Such
strategies have proven efficient particularly for static environments when us-
ing a single robot. However, problems can arise when an environment changes
dynamically, and in particular when multiple robots are considered. There are
strategies [3] to approach this situation. However, complex navigation strategies
do not naturally scale with respect to the number of robots, and require care-
ful engineering of the controller in order to deal with the difficulties related to
dynamic environments and multiple robots.

In swarm robotics, the goal is to emphasize the cooperation and the collectiv-
ity of a robot group. Rather than equipping an individual robot with a control
mechanism that enables it to solve a complex task on its own, individual robots
are usually controlled by simple strategies, and complex behaviours are achieved
at the colony level by exploiting the interactions among the robots, as well as
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between the robots and the environment. When designing swarm robotics con-
trol algorithms, complex strategies are in general avoided, and instead principles
such as locality of sensing and communication, homogeneity and distributed-
ness, are followed. The main benefits that one can hope for when pursuing a
swarm robotic approach are scalability with respect to the number of robots
used, fault tolerance in case of individual failure, and robustness with respect to
noisy sensory data.

In swarm robotics, inspiration is often taken from social insects, such as ants,
bees or termites. For example, if we consider environment exploration, when for-
aging for food, ants of many species lay trails of pheromone, a chemical substance
that attracts other ants. Deneubourg et al. [4] showed that laying pheromone
trails is a good strategy for finding the shortest path between a nest and a food
source. Similarly, the concept of robot chains relies on the idea of locally ma-
nipulating the environment in order to attract other individuals and to form a
global path. However, due to their lack of a substance such as pheromone, the
robots constituting a chain serve as trail markers themselves.

The concept of robot chains stems from Goss and Deneubourg [5]. In their
approach, every robot in a chain emits a signal indicating its position in the
chain. A similar system was implemented by Drogoul and Ferber [6]. Both works
have been carried out in simulation. Werger and Matarić [7] used real robots to
form a chain in a prey retrieval task. Neighbouring robots within a chain sense
each other by means of physical contact: one robot in the chain has to regularly
touch the next one in order to maintain the chain.

One of the main differences of our approach with respect to the previously
mentioned approaches to robot chains is that we rely on the concept of chains
with cyclic directional patterns in order to give the chains a directionality. In
a previous work [8] we have shown how such chains of real robots can be used
for forming a path, and how such a path is used by other robots to trans-
port a heavy object. In this work we concentrate on the path formation and
omit the transport. We have conducted a series of experiments in simulation
using different robot group sizes and varying the difficulty of the task. Our
goal is to determine the capabilities of our robot chains. We measure the speed
of the environment exploration, and the scalability with respect to the num-
ber of robots. Furthermore, we study the impact of two parameters specifying
the controller: the probability for the robots to aggregate to, and to disaggre-
gate from, a chain. We show that these two parameters have a significant effect
both on the overall behaviour of the robot group in terms of the number of
formed chains and their length, and on the success rate with which they find the
prey.

The remainder of this paper is organised as follows. In Section 2 we give
a description of the considered problem and a short outline of our approach.
In Sections 3 and 4 we give a brief overview of the simulator and the control
algorithm we used. In Section 5 we present the experimental results. Finally, in
Section 6 we draw some conclusions and discuss possible future works.
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Robots

(a) (b) (c)

Fig. 1. (a) Initial situation. Robots are indicated by the small white circles. Their
limited sensing range is indicated by dashed circles. The task is to form a path between
the nest and the prey. (b) The robots search for the nest and once they find it they
start self-organizing into randomly oriented chains. (c) When a chain perceives the
prey a path is formed.

2 The Problem

The task that we have chosen as test-bed to analyse our control algorithm
is illustrated in Figure 1: a group of robots has to form a path between two
objects—denoted as nest and prey. The robots have no a priori knowledge about
the dimensions, or the position of any object within the environment, and a ro-
bot’s perception range is small when compared to the distance between the nest
and the prey. The difficulty of the task can be varied by changing the distance
between nest and prey.

Initially, as displayed in Figure 1a, all robots are placed at random positions.
They search the nest, and once they perceive it, they start self-organizing into
chains (Figure 1b), where robots act as trail markers and attract other robots.
Neighbouring robots within a chain have to be able to sense each other in order
to assure the connectivity of the chain. As the robots have no knowledge about
the position of the prey, the chains are oriented in random directions. Due to
a self-organized process where robots disaggregate from chains and start new
ones into possibly new, unexplored directions, the environment is continuously
explored until eventually the prey is perceived by a chain. As shown in Figure 1c,
a path is then formed, and can for instance be used by other robots to navigate
between nest and prey, or to transport the prey to the nest.

3 The S-bot and Its Simulator

All our experiments have been conducted in simulation. Our simulation plat-
form, called twodee, is a multi-robot simulator based on a custom high-level
dynamics engine optimized for the use with the s-bot, a robot on which we have
previously implemented and tested our controller [8]. Figure 2 shows the physical
implementation of an s-bot. It has a diameter of 12 cm and weighs approximately
700 g. In the following, we briefly overview the actuators and sensors that we
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Fig. 2. The hardware. (a) The s-toy and the s-bot. (b) An image taken with the omni-
directional camera of the s-bot. It shows other s-bots and an s-toy activating their red
LEDs at various distances.

use in this study. For a more comprehensive description of the s-bot ’s hardware
see [9], and for the twodee simulator see [10].

The robot’s traction system consists in a combination of tracks and two ex-
ternal wheels, called treels c©. For the purpose of communication, the s-bot has
been equipped with eight RGB LEDs distributed around the robot.

There are 15 infra-red proximity sensors distributed around the turret. They
are used to avoid crashing into other objects. We have recorded samples of
the proximity sensor activation for various angles and distances towards other
objects. These samples have been integrated into twodee to allow a realistic
simulation of the proximity sensors.

A VGA camera is directed towards a spherical mirror on top of the s-bot, in
this way providing an omni-directional view. The camera is used to perceive the
nest, the prey, and other s-bots emitting a colour with their LED ring. A snapshot
taken from an s-bot ’s camera is shown in Figure 2b. Due to differences among the
robots’ cameras, there are some variations in the perceptual range. The software
we use to detect coloured objects allows a recognition of the red coloured prey
up to a distance of 70 − 90 cm, and of the three colours blue, green and yellow,
up to 35−60 cm (depending on which robot is used). Due to the spherical shape
of the mirror, the distance to close objects can be approximated with good
precision. For objects further away than 30 cm it becomes very difficult to deduce
the distance from the camera image. The differences among the perception of
different colours and among the robots are taken into account in simulation.
Initially, each robot is given a different set of perceptual ranges for the four
colours. Each value is chosen randomly from the ranges mentioned above.

Next to the s-bot, Figure 2a shows the s-toy, an object which we use either as
nest or as prey (depending on its colour). It has a diameter of 20 cm and, like
the s-bot, it is equipped with an RGB LED-ring. In our simulations, the nest
and the prey are represented by coloured cylinders of the size of an s-toy, and
are both immobile.
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4 Controller

We realized our controller using a behaviour based architecture. It consists
of four individual states, each of which corresponds to a different behaviour.
In the following, we first give a global view of the controller, and then de-
tail the behaviours and the conditions that trigger the transitions between the
behaviours.

The robots are initially located at random positions. They have to search the
nest, which can be considered as the root of each chain. A robot that finds the
nest tries to follow an existing chain. If there is no chain, it will, with probability
Pe→c per time step, start a new chain itself. Robots that are part of a chain leave
it with probability Pc→e per time step if they are situated at the chain’s tail.
The process of probabilistically aggregating to, disaggregating from, a chain is
fundamental for the exploration of the environment as it allows the formation of
new chains in unexplored areas. The task is successfully finished when a chain
encounters the prey and thereby establishes a path between nest and prey. The
members of this chain do not decompose any more and are used by the other
robots to reach the prey.

As mentioned in the introduction, our concept of chain relies on cyclic direc-
tional patterns. As displayed in Figure 3a, each robot emits one out of three
signals depending on its position in the chain. By taking into account the se-
quence of the signals, a robot can determine the direction towards the nest. The
main advantage of using a periodically repeating sequence of three signals is
that each signal can be realized by the activation of a dedicated colour with the
LED ring. Previous approaches to directed robot chains require the members of
a chain to broadcast as many different signals as there are robots in a chain. This
leads to increasing complexity of communication for chains of growing length.
Therefore, we expect our approach to lead to better scalability with respect to
the number of robots.

Behaviours. The behaviours are realized following the motor schema para-
digm [11]. One behaviour is executed exclusively at a given control time step.1

For each behaviour, a set of motor schemas are active in parallel. Each motor
schema outputs a vector denoting the desired direction of motion. The vectors
of active motor schemas are added and translated into motor activation at the
beginning of each control time step. Common to all behaviours, and therefore
permanently active, is a motor schema for collision avoidance. It simply returns
vectors which are directed into the opposite direction of each proximity sensors
activation. In the following, the four behaviours are detailed:

– Search: in order to search the nest, the robot performs a random walk
which consists in straight motion and turning on the spot when an obstacle
is encountered. No LEDs are activated.

1 On the real s-bot, a control time step has a length of approximately 120 ms. We
adopted the same value in simulation.
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Fig. 3. (a) A chain with a cyclic directional pattern. The small circles represent robots
that have formed a chain that connects a nest with a prey. Three colours are sufficient
to give a directionality to the chain. The large circles surrounding the robots indicate
their sensing range. (b) Alignment of a chain member. If the angle α is less than 120o,
the central chain member aligns with respect to its closest neighbours.

– Explore: an explorer moves along a chain towards its tail. In case a robot
becomes an explorer by leaving a chain, it moves back to the nest from where
it can then start to follow a different chain. No LEDs are activated.

– Chain: a chain member activates an appropriate colour, which is defined by
the previous neighbour. To avoid loops in chains and to improve the length
of the chains, we implemented an alignment behaviour, that is, the robot
aligns with its two closest neighbours in the chain in case the angle between
them is smaller than 120o (see Figure 3b). Furthermore, a chain member
adjusts his distance with respect to its previous neighbour to roughly 30 cm
in order to avoid breaking up the chain, and to increase the chain length.

– Finished: a path has been established and the robot stays in the vicinity of
the prey.

Behaviour Transitions. The set of rules governing the transition from one
behaviour to another is illustrated in Figure 4, and detailed in the following:

– Search → Explore: if a chain member is perceived. Note that the nest is
perceived as a chain member, and that a robot searching for the nest does
not react when it perceives the prey.

– Explore → Search: if no chain member is perceived.
– Explore → Chain: (i) if the tail of a chain is reached (i.e., only one chain

member is perceived), the robot joins the chain with probability Pe→c per
time step, or (ii) if the prey is detected at a distance larger than 30 cm.

– Explore → Finished: if the prey is detected at a distance of less than
30 cm.

– Chain → Search: if the previous neighbour in the chain is no longer de-
tected.

– Chain → Explore: if a chain member is situated at the tail of a chain, it
leaves the chain with probability Pc→e per time step.
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Fig. 4. State diagram of the control. Each circle represents a state (i.e., a behaviour).
Edges are labelled with the corresponding conditions that trigger a state transition.
The initial state is the search state. Pe→c (and Pc→e respectively) is a boolean variable
which is set to true, if R ≤ Pe→c (R ≤ Pc→e), and to false otherwise, where R is a
stochastic variable sampled from the uniform distribution in [0, 1], and Pe→c (Pc→e) is
the probability per time step to aggregate to (disaggregate from) a chain.

5 Experiments

The main objectives of our experiments are to determine the impact of the two
probabilistic control parameters on the chain formation process, and to find the
optimal parameter combination for a given task. In the following, we explain the
experimental procedure and detail the results.

5.1 Setup

A group of N simulated robots is placed within a bounded arena of size 5 m×5 m.
The nest is placed in the centre of the arena, and the prey is put at distance D
(in m). The initial position and orientation of the robots are chosen randomly,
and defined by an initial seed. We investigated all setups (N,D), with N ∈
{5, 10, 15, 20}, and D ∈ {0.6, 1.2, 1.8, 2.4, 3.0}. For D = 0.6 the task is rather
trivial, as the prey can be perceived from the proximity of the nest and only one
robot is required to form a path. An additional two robots are required for each
distance increase, meaning that it makes sense to test group size N = 5 only up
to distances D ≤ 1.8.

The probabilities per control time step to aggregate to a chain, Pe→c, and to
disaggregate from a chain, Pc→e, are the parameters that we intend to optimize.
For both parameters we have chosen to examine the same logarithmic range of
values defined by 2−x, x ∈ {0, 1, 2, 3, . . . , 10}.

For each combination of the setups (N,D), and of the parameter settings
(Pe→c, Pc→e), we conducted 100 trials with different initial seeds. A trial is
considered to be successful if a chain establishes a connection to the prey which is
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Fig. 5. The three most successful parameter combinations are displayed for all prey
distances ordered by robot group size

kept for at least 100 seconds. The time by which a trial is successfully completed
is denoted completion time. The limit to accomplish this is set to 10,000 seconds.

5.2 Results

Let us first describe the impact of the two probabilistic parameters Pe→c and
Pc→e on the overall behaviour of the robot group. In general, values for Pe→c

close to 0 result in a rather patient behaviour; in most cases a single chain is
formed slowly. For Pe→c close to 1, several chains are formed fast and in parallel.
The second parameter, Pc→e, determines the stability of the formed chains,
directly influencing their lifetime and the frequency of chain disbandment. High
values of Pc→e lead to an impatient behaviour where robots joining a chain more
or less immediately disaggregate from it.

Overall success. For all except one of the considered setups (N,D) there is at
least one parameter set that reaches a success rate of more than 90%. The only
exception is (N,D) = (10, 3.0), where the highest success rate is 77%, still a
reasonable value when considering that for this setup nine out of the ten robots
have to form a chain in the right direction in order to form a path. Adding more
robots increases the success rate to 91% for (N,D) = (15, 3.0), and to 94% for
(N,D) = (20, 3.0). In all other setups the maximum success rate is at least 97%.
Figure 5 summarizes the most successful parameters. Ordered by group size, the
four plots show the three best performing parameter combinations for each prey
distance. If different parameters achieve the same maximum success rate, the
one with the lowest median completion time is chosen.

For the two smallest prey distances, there is a wide range of parameter values
that reach a 100% success rate. It appears that for these rather simple tasks,
combinations of higher values for both probabilities are more successful. They
lead to a fast creation of short chains with often just a single chain member, and
a fast disaggregation of the chain in case it has not already encountered the prey.
However, this can be considered as an advantage only for short prey distances
because a high probability to disaggregate from a chain makes it very unlikely
to form long chains.

For setups with distances d ≥ 1.8 the most successful parameter combinations
employ low values of Pc→e ≤ 2−8. The corresponding value of Pe→c is always
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higher than the one of Pc→e. For both parameters, there appears to be a ten-
dency of smaller values being more successful for growing distances. However, in
particular for what concerns the value of Pe→c, there seems to be a high degree
of robustness, that is, for the same value of Pc→e, usually all values in the range
2−8 ≤ Pe→c ≤ 2−2 achieve a similar performance.

Six selected parameter sets. In order to further investigate the impact of the
two probabilities, we have selected the most successful parameters for each prey
distance when using 10 robots.2 Additionally, after some initial analysis, we have
selected two parameter combinations to allow for a better understanding of the
overall effect of the two probabilities. For each of the selected parameter sets we
run 100 trials for 10,000 seconds in an environment without a prey, and measure
the exploration rate, which we define as the percentage of the explored area
within the arena, and the length of the longest chain. Figure 6 shows the results
for these two measures at nine different temporal instants. For those parameters
which are the most successful in a given setup, the respective setup is indicated
under the probability values.

Looking at the two plots in Figure 6, one would intuitively separate the six
parameters into two groups. The two parameter sets on the left perform quite
poorly, reaching a median exploration rate of less than 25% at the end of the trial.
Comparably high values for both probabilities are employed, and as we stated
earlier, this may lead to an initial speedup for exploring the direct vicinity of
the nest on the one hand, but on the other hand the robot chains remain very
short, often consisting of a single robot.

Differently, the other four parameter sets perform quite well. After 10,000
seconds they all reach exploration rates of more than 85%. The main reason
for the better long term performance is the lower probability to leave a chain,
resulting in a higher fraction of robots aggregated into chains, and therefore
longer chains. The differences among these four parameter sets are less obvious.
The two right ones with lower values for the probabilities reach approximately
30 cm longer distances, which is equivalent to one additional chain member. And
even if their exploration rate is initially lower than for the other parameters, in
the end it is slightly higher.

Scalability. Let us now look more closely at the performance of the most suc-
cessful parameter sets. Figure 7a shows the shortest completion times reached
for all setups. The results are ordered by robot group size, and we can see that
the completion time increases more than linearly with growing prey distance.
This is not surprising, as the area to explore grows quadratically with respect
to the prey distance.

In Figure 7b the normalized completion time, defined as the product of com-
pletion time and robot group size, is displayed. This measure indicates the ef-
ficiency of the system as it represents the added amount of time spent by all

2 Note that the combination (Pe→c, Pc→e) = (0.125, 0.004) is the most successful one
for both setups (N, D) = (10, 1.8) and (N, D) = (10, 2.4).
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Fig. 6. For six selected parameter sets (Pe→c, Pc→e) (a) the exploration rate—defined as
the percentage of the explored area within the arena—and (b) the length of the longest
chain are displayed. The parameters were selected according to their success in the setups
with N = 10 robots. The setup for which a parameter combination is most succesful
is indicated below the probability values. Note that the combination (Pe→c, Pc→e) =
(0.125, 0.004) is the most successful one for both setups (N, D) = (10, 1.8) and (N, D) =
(10, 2.4). Additionally, two parameter sets were selected by hand in order to allow for a
better understanding of the overall effect of the probability values.

robots until completion of a trial. The results are ordered by prey distance, and
show that our system scales quite well with respect to the number of robots.

6 Conclusions and Future Work

We have presented an experimental study of a system that employs robot chain
formation for forming a path between two objects that are too distant from each
other for a single robot to be able to perceive them both at the same time. Our
control system is completely distributed and homogeneous, and makes use of
local information and communication only. Our concept of robot chain relies on
cyclic directional patterns in order to give the chains a directionality.

Our results reveal the impact of the two probabilistic parameters which de-
termine the rate at which a robot aggregates into, and disaggregates from, a
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Fig. 7. (a) The completion time is shown for the most successful parameter combina-
tions of all setups, ordered by the robot group size. (b) The normalized completion
time is shown and ordered by the prey distance. It is an indicator of efficiency, and is
calculated as the product of completion time and robot group size.

chain. We have shown that for simple tasks where a required path is short,
high values for the two probabilities result in a faster success. On the contrary,
for growing difficulty of the task, smaller values, in particular for the probabil-
ity to disaggregate, should be employed in order to allow the chains to grow
longer.

Furthermore, we have shown that our system scales quite well with respect to
the number of robots. However, for growing distances of the prey, it seems to take
at least a quadratically growing amount of time to establish a connection. In the
future, we will extend our controller to improve the performance in particular
for larger prey distances. A simple idea that seems promising is to start chains
not only from the nest, but also from the prey.

Finally, we would like to investigate more complex environments. The problem
of using robot chains the way we currently implemented them is their linear
shape. For this purpose we are interested in studying control algorithms that
allow swarm of robots to spread in the environment in a more uniform way and
form arbitrary shapes.
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Abstract. We look at how the structure of social networks and the
nature of social interactions affect the behaviour of Particle Swarms Op-
timisers. To this end, we propose a general model of communication and
consensus which focuses on the effects of social interactions putting the
details of the dynamics and the optimum seeking behaviour of PSOs into
the background.

1 Introduction

In the standard Particle Swarms Optimiser, there are three features that bias the
particle to look in a better place: 1) the particle remembers its best position, 2) it
identifies its best neighbour, and 3) it knows that neighbour’s best position so
far. However, not all three forms are needed for good performance. For example,
in Mendes’ Fully Informed Particle Swarm (FIPS) model [1,2,3], the first two
are absent. However, the topology of the social network of a PSO is considered
a critical factor in determining performance.

Researchers have investigated how different topologies for the social network
affect performance [1–8]. [4]. For example, it has been reported that with uni-
modal problems a gbest topology provides better performance, while the lbest
PSO topology performs well on multimodal functions. Also, we know that with
an appropriate topology, FIPS performs significantly better than the standard
best-neighbour PSO on an array of test functions.

Albeit several lessons have been learnt in previous research on PSO social
networks, the focus has mostly been on PSO performance rather than behav-
iour. However, it is clear behaviour is what matters, since performance on any
particular fitness function is the result of coupling the features of that function
with the natural behaviour of that particular PSO. If the mode of exploration
fits the features of a problem, we expect good performance and vice versa.

Although PSOs are inspired by natural swarms, shoals, flocks, etc., the social
network in a PSO has some important differences from its natural counterparts.
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In particular, a particle is fully aware of what happens in its neighbourhood. E.g.,
if at one iteration a particle in a neighbourhood achieves an improvement in its
personal best, by next iteration all the other particles in that neighbourhood
will be influenced by this change of state. It is as if the new local or global leader
broadcasted its new state to the whole neighbourhood in one go. In nature this
is not possible. Very often one can acquire information only by one-to-one inter-
actions with another individual in the social network. So, the propagation of in-
formation is a stochastic diffusive process, rather than a deterministic broadcast.

Another feature of a PSO, which is not very common in nature, is that the best
individual in the population, as long as it remains the swarm best, is unaffected
by the others. In a shoal of fish, an individual may know about the presence
of food or of a predator and act accordingly independently of other individuals.
This individual will tend to act as a leader and will be followed by other fish.
However, if, for whatever reasons, the rest of the shoal does not follow, it stops
acting as a leader and rejoins the shoal.

Most researchers consider the social network as the communication medium
through which information is exchanged. An important question is what exactly
we mean by that. Perhaps a way to understand this is to investigate the proper-
ties of social networks as systems for reaching consensus. Ultimately the social
network in a PSO is expected to get all of the particles to “agree” on where
the swarm will search. However, the process and stages through which a global
consensus is reached may be very different in PSOs using different communica-
tion topologies. For example, initially, until some form of consensus emerges, a
population will act as a set of independent individuals. In systems where only
localised interactions are possible (e.g., in a lbest-type of PSO) consensus must
emerge firstly on a local basis and then progressively at larger and larger scales.
However, when groups of individuals reach some local consensus, the group may
start showing emergent properties. To understand the behaviour of the system
as a whole it then becomes important to understand in which ways local groups
(as opposed to single individuals) interact. This is particularly important in sys-
tems and landscapes where different parts of the population can reach different
consensual decisions. If two such domains of agreement can come into contact,
can they both persist? If not, will the consensus reached in one domain invade
the other? Or, will the interaction produce a domain of a third type?

Another unnatural feature of PSOs, is that, once provided with a fitness func-
tion, they are closed systems. I.e. no external signals affect a PSO. In natural
populations and many other systems there are always external influences. For
example, in a social network of human customers or voters, individuals will in-
fluence each other and over time local or global consensus may emerge. However,
the process of consensus formation and its final outcomes may be influenced by
external factors, such as advertisements or broadcast party messages. These fac-
tors have been considered in agent-based models of customer relationship man-
agement where interactions between the social network of agents (customers)
influence the response to marketing and other business activities (e.g., see [5]).
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Naturally, it would be possible to modify PSOs to incorporate these three fea-
tures: non-deterministic communication, democratic (as opposed to dictatorial)
leaders and external influences. The question would then be, in what way would
the search behaviour of a PSO be affected?

Rather than implementing PSO variants and testing them as optimisers for
some set of functions (which we may do in future studies), we prefer to abstract
away from the particular details of the dynamics of a PSO and to model social
networks as consensus machines. In doing so we introduce approximations. So,
in a sense, our model will not represent exactly any particular PSO. However,
in return for these approximations we will gain a much deeper understanding
of the social dynamics in particle swarms for different choices of interaction
mechanisms and external influences.

The paper is organised as follows. In Section 2 we describe how we can abstract
PSOs with very simple models which put many detailed aspects of the particle
dynamics into the background. In Section 3 we consider the elitist communi-
cation strategies used in current PSOs and model them within a more general
framework, which allows us to evaluate other, less-elitist strategies. These models
are executable and so we were able to test them. Section 4 describes the para-
meters and fitness functions used in our experiments, while Section 5 reports on
some key results. These are discussed in Section 6.

2 Abstracting PSO States and State Transitions

Let us consider a standard PSO. For as long as a particle’s best and a neigh-
bourhood best do not change, the particle will swarm around the point where
the forces are zero. That is, around

x∗
i =

xsiRmax1 + xpiRmax2

Rmax1 + Rmax2

where xsi is the ith component of the best point visited by the neighbours of
the current particle, xpi is the ith component of its personal best, and Rmax1

and Rmax2 are the upper bounds of the intervals from which random numbers
are drawn. This means that the points sampled by the PSO will be distributed
about x∗

i until a new personal best or a new neighbourhood best are found.
Because of this, on average a new personal best will tend to be found somewhere
in between xs and the old personal best. If the personal best gets closer to xs,
the new sampling distribution will progress even more towards xs.

Naturally, when the distance between x∗ and xs reduces, the variance of the
sampling distribution also reduces. This is effectively a step-size adjustment,
which may be very important for good optimisation performance. The effect
of this adjustment is that the probability of sampling the region “between” xs

and xp remains high despite this region shrinking. If we took the centre of the
sampling distribution x∗ (rather than xp) to represent the state of a particle, and
approximate the whole swarm as a set of stochastic oscillators, each centred at
its own x∗. We could then approximately model the dynamics of x∗ by imagining
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that, on average, when a particle interact socially with another particle in its
neighbourhood a sort of stochastic interpolation process between the particles’
states takes place.1

A natural modelling choice for PSOs is to consider states as continuous vari-
ables which change with an interpolation rule such as

x∗
new = αx∗

s + (1 − α)x∗
old (1)

where x∗
old is the current state of a particle, x∗

s is the state of the particle with
which interaction takes place (e.g., the neighbourhood best), and α is a random
variable uniformly distributed in [0, 1]. These choices seem particularly suitable
for smooth monotonic landscapes and for PSOs where velocities are limited (e.g.,
when ψ1 and ψ2 are small or friction is high). In highly multimodal landscapes
each particle’s best and, consequently x∗, may change less continuously.

To explore what happens at this other extreme of the behaviour, we idealise
the multi-modal case and imagine that only a finite number, n, of different
states x∗ are possible. State transitions can then be represented using a Markov
chain, where the entries of state transition matrix represent the probability of
x∗ moving from one state to another. The transition probabilities would have to
be such as to effectively implement a stochastic interpolation process between
x∗ and xs like the one in Equation 1.

If n is a power of two, a simple realisation of this is to represent states in binary
form. So, a generic state x could be represented as x1x2 · · ·x� (with � = log2 n).
The interpolation process between states could then be implemented by the
replacement of one or more random bits in x∗ with corresponding bits from xs.
That is, for discrete states we could use the update rule: x∗

newi
= x∗

oldi
with

probability β and x∗
newi

= x∗
si

with probability 1 − β, where β is a constant.
Irrespective of the model used, we can see that state update rules have the

form x∗
new = χ(x∗

s, x
∗
old) where χ is a stochastic function.

In a standard PSO, and also in many natural and artificial systems, an indi-
vidual’s choice as to whom to interact with depends on quality, desirability, or,
more generally, on whatever is an appropriate measure of success for an indi-
vidual. We will just call this fitness. Without any information about the fitness
function it would be impossible to say much about the behaviour of a system.
So, even in our effort to hide the finer details of the dynamics of PSOs, we
will need to keep a notion of fitness. In particular, we will imagine that each
state, x, has an associated fitness value fx. Note that this may be distinct from
the value taken by the fitness function, f , in x (seen as a point in the search
space), f(x). For example, for standard PSOs, we could take this to be the value
of fitness associated with the current particle best, i.e. fx = f(xp), or the ex-
pected fitness value for a sampling distribution centred at x∗. In a maximisation
problem, with any reasonable definition of fx, in a PSO we would expect to see
fxs ≥ fx∗

new
≥ fx∗

old
.

1 This is an approximation which is expected to be reasonably accurate if we look at
states at a suitably coarse time scale, and, of course, as long as xs remains constant.
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External Input

Population

Fig. 1. Extended lbest social network topology

If we use integer states then we can represent the state-fitness function fx

as a table. For example, if the search space was one-dimensional then the table
would look like the following

x 0 1 · · · n − 1
fx f0 f1 · · · fn−1

In order to keep things simple, for our real-valued state representation we will
define fx explicitly only over a discrete lattice of points in the search space and
then use linear interpolation to construct fitness values elsewhere. This allows
us to still represent fx as a table, albeit at the cost of a reduced generality.2

3 Particle Communication as It Is and as It Could Be

We are interested in looking at current forms of inter-particle communication
in PSOs as part of a bigger family of social interactions. To allow the study of
the effects of external sources of information, noise or publicity we extended the
classical lbest ring topology as shown in Figure 1. We imagine that the external
input is simply another individual which is in the neighbourhood of every par-
ticle and which has a pre-defined and constant state xext. Naturally, we don’t
necessarily want the external input to act at all times and for all individuals at
the same time. So we model the effect of the external input using a probabilis-
tic update rule: x∗

new = χ(xs, x
∗
old) with probability γ, and x∗

new = χ(xext, x
∗
old)

with probability 1 − γ, where γ is a constant controlling the intensity of the
action of the external input. When γ = 0 the system is again a closed system.

As we mentioned in Section 1, we want to study the effects of reducing the
ability of individuals to perceive the state of their neighbourhood. This implies
that it is possible for them to decide to have social interactions with individuals
other than the neighbourhood best. We do this by defining a stochastic social-
selection function σ which, given the states x1, x2, etc. of the individuals in
the neighbourhood returns one of such states. For a standard PSO we have
σ(x1, x2, · · · ) = argmax

x∈{x1,x2,··· }f(x). Naturally, this form of selection function
guarantees that, if an individual is the neighbourhood best, the state of that

2 PSOs and other rank based optimisers behave identically on any pair of isomorphic
landscapes f and g such that for every pair of points x and y, f(x) > f(y) if and
only if g(x) > g(y). So, fine details on the shapes of landscapes are often not very
important.
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individual will always be returned by σ. Since the state update functions χ
defined above are such that χ(x, x) = x, in these circumstances

x∗
new = χ(σ(· · · , x∗

old, · · · ), x∗
old) = χ(x∗

old, x
∗
old) = x∗

old

which guarantees that neighbourhood-best individuals are not affected by state
updates.

To explore what happens at the other extreme of the spectrum, while still
favouring social interactions with above average fitness individuals, we intro-
duce another version of σ where the value returned is the result of a binary
tournament. That is, we draw (with repetition) two random states from the set
of neighbouring states {x1, x2, · · · }. Out of these two, we then return the state
with higher fitness. That is

σ(x1, x2, · · · ) =

{
x′ if f(x′) > f(x′′)
x′′ otherwise

(2)

where x′ and x′′ are two randomly (and uniformly) chosen states from the set
{x1, x2, · · · }. With this social-selection rule the neighbourhood best individual
can still be required to interact with some individuals other than itself. This
means that its state may change and it may no longer remain a leader forever.
Unlike the standard PSO, this leadership change can happen even if an individual
with a better state has not been found in the neighbourhood.

4 Experimental Setup

The models described in the previous section are executable models. Once a
fitness table fx, the size of the population and the structure of the social network
are defined, it is possible to iterate the state update and inter-particle interaction
rules for as many iterations (generations) as desired. The objective of running
these models, however, is not to see how well the population can locate global
optima. Rather, we want to see the different qualitative behaviours the different
types of social interactions and states can provide.

For this study we decided to keep the search space one-dimensional. Both
for the integer state representation and the real-valued representation we used
numbers in the range [0,7]. For the integer representation n = 8, so we used � = 3
bits. We used populations of P = 80 individuals (we chose a relatively large
population because this slows down all transients, making it possible to better
see the phenomena we are interested in). Runs lasted for 200 generations. In the
initial generation, binary individuals were given random states. (Since there are
only 8 possible states, with a population of 80, in virtually all runs, all states
had non-zero frequency). In the case of the real-valued representation,to ensure
a wide spread, we randomly initialised individuals by drawing states without
replacement from the set

{7×i
79

}79
i=0 = {0, 7/79, 14/79, . . . , 7}. With our choice

of fitness functions (see below), these initialisation strategies virtually guarantee
that the global optimum is always represented in the initial population. This puts
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Table 1. Fitness functions used in this study

Fitness values
Function f0 f1 f2 f3 f4 f5 f6 f7 Description
flat 1 1 1 1 1 1 1 1 a base line case that reveals the natural biases

associated with the social interactions
linear 1 2 3 4 5 6 7 8 a function where different states are associated

with different fitness, and where individuals that
are neighbours in state space have similar fitness

twopeaks 8 4 4 4 4 4 4 8 a function with two symmetric peaks at opposite
extremes of the state space embedded in a flat
landscape that is useful to study the stability of
consensus domains

nondeceptive 8 2 2 2 2 2 2 7 a function almost identical to twopeak, but where
one peak is actually a local optimum, which pro-
vides a comparative basis for other functions

deceptive
(binary)

8 2 2 4 2 4 4 7 a function with the same optima as nondeceptive,
but where the neighbours of the optima in state
space have different fitness, which allows us to
show why the consensus reached by the popula-
tion may be counterintuitive

deceptive
(float)

8 2 2 2 4 4 4 7 see binary deceptive fitness function

trap 8 1 2 3 4 5 6 7 a variant of linear where the global optimum is in
the area of the search space with the lowest fit-
ness and all gradient information points towards
the local optimum, thereby making the problem
very deceptive

the search for optima in the background, allowing us to focus on the dynamics
of information flows and on consensus/group formation and stability.

We considered lbest-type (ring) topologies for the social network. However, we
tested values for the neighbourhood radius r in the set {1, 2, 3, 4, 5, 10, 20, 40},
thereby going from the most extreme form of local interaction to a gbest-type
of topology (with P = 80, an lbest topology with r = 40 is a fully connected
network).

We tested applying the external input at probabilities of
γ ∈ {0, 0.01, 0.03, 0.05, 0.1, 0.2, 0.5, 1} (per individual). When γ > 0, in both
binary and real-valued state representations, we tested two different values (2
and 7) for xext. We tested both the deterministic social-selection strategy (typical
of PSOs) and the probabilistic one based on tournaments. In the binary represen-
tation, social interaction occur by randomly exchanging bits with a probability
of β = 0.5 (per bit).

For all settings we tested the six fitness functions shown in Table 1.
Combined together the experimental settings described above produce over

3,000 conditions. In each condition, we gathered statistics over 200 independent
runs of the model, for a total of over 600,000 runs. Due to space limitations, we



Communication, Leadership, Publicity and Group Formation 139

are able to report only a tiny subset of our experimental results here. However,
a fuller set of results is provided online in [6].

5 Results

For each of the settings described in the previous section, we did both single runs
and multiple runs to assemble statistically reliable state histograms. The single
runs are represented by 3–D plots of the state of each individual in the population
in each generation. (For space limitations here we do not show any such runs, but
in [6] we plots 144 of them.) The state histograms represent the average behav-
iour of the system over 200 independent runs. These are also represented by 3–D
plots, but this time they represent how the proportion of individuals in each par-
ticular state changed over time (so the topological organisation of the individuals
is not represented). In these plots the x axis represent the generation number, the
y axis the state and the z axis the proportion of individuals in that state at that
generation. For binary states only 8 different states are possible and so we col-
lected statistics for all of them. For maximum comparability, for the continuous
representation, we divided the state space into 8 bins, centred at 0, 1, 2, 3, 4, 5, 6
and 7. States were associated to the nearest bin. (As a consequence, in the initial
generation bins 0 and 7 have only half the number of samples of other bins.)

As shown in Figure 2, with a real-valued representation, deterministic commu-
nication and in the absence of exogenous inputs, the model behaves (as expected)
like a PSO. The only difference between the small neighbourhood (r = 1) case,
shown in Figure 2, and other cases is the speed at which a steady state is reached.
Note: there are dynamics in the system even on a flat landscape. In particular,
the interactions produce an implicit bias towards the average state value (3.5)
(Figure 2 top left). The model produces a distribution which is very similar to
the bell-shaped sampling distribution obtained in real PSOs when xs and xp are
kept constant [7], which corroborates the approach. Note that this bias can be
masked by the presence of fitness gradients, but cannot be removed.

In addition, we can see that local optima have an effect, with initially a part of
the population (except for a fully connected swarm, r = 40) forming a consensus
towards exploring them (Figure 2 middle right, bottom left and right). This slows
down convergence to the global optimum. This effect, however, does not simply
depend on local optima, but is also markedly influenced by the fitness of neigh-
bouring individuals. This is a form of deception. The deception is only partial
since, with real-valued states and deterministic communication, eventually all
individuals settle for the highest fitness state. If we change the social-selection
strategy to tournaments (cf. Equation 2), however, we see that the deceptive
pressure can become predominant and force the population towards a subopti-
mal state, as shown in Figure 3. Even with bigger neighbourhoods the swarm will
be deceived in these conditions. The only difference is that with more global com-
munication the algorithm settles for some neighbour of the local optimum, due
to the implicit bias of the interaction mechanism discussed above (see Figure 4).
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Fig. 2. State evolution histograms for the real-valued model with deterministic com-
munication, r = 1 and no external input, for the 6 fitness functions used in our study

Interestingly, a form of deception has been recently reported in real PSOs [8,9],
which again corroborates our model.

The injection of an external input xext = 2 with a very low probability
(γ = 0.03) has a clear impact on behaviour. Except for flat, for the functions
we considered x = 2 is not a desirable state. So, this input can be considered as
publicity for a suboptimal product (state). We can see the effects of exogenous
inputs by considering the flat fitness case. What happens in this case, is that
the population initially moves towards the natural fixed-point state (3.5), but
later on, with the reiterated introduction of spurious states, eventually converges
to state 2. This bias cannot be completely eliminated in non-flat landscapes,
and it can cause, for example, the breaking of symmetries, as shown in Fig-
ure 5 left, or even the convergence to a low-fitness state, as shown in Figure 5
right.
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Fig. 3. State evolution histograms for the real-valued model with probabilistic commu-
nication, r = 1 and no external input, for the deceptive (left) and trap (right) functions
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Fig. 4. As Figure 3 but for r = 40
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Fig. 5. State evolution histograms for the real-valued model with deterministic (left)
and probabilistic (right) communication (r = 1, xext = 2, γ = 0.1, and fx =twopeaks)

6 Discussion

We have proposed a simplified but general model of communication and con-
sensus dynamics in PSOs. The model was specifically designed to look at how
the structure of the social network and the nature of the social interactions af-
fect the behaviour of these systems. So, we made an effort to conceal as much
as possible of the implementation details, of the dynamics and of the optimum
seeking behaviour of PSOs.

Models are useful tools to understand systems, but, except for very simple
systems, no model can tell everything there is to know. That is, every model
will make it easy to answer certain questions, and hard or impossible to answer
different questions. That is why it is important to build models starting from
different points of view. For PSOs, nothing can replace dynamical system models
of PSOs [10]. However, these models become immensely complex and are difficult
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to study unless one makes simplifications. It is not easy to imagine how one could,
for example, incorporate different topologies, different fitness functions, etc. in
such models and still be able to get qualitative answers, without approximations.

The objective of our model is not to replace the dynamical systems approach.
It is to complement it. The model focuses on social interactions, not fine details
of the dynamics. So, there will be surely many things that this model cannot
capture. In return, however, the model makes it easier to ask and get answers
to other questions.

With all models, they are only as good as the predictions and understanding
they can produce. These need to be checked against empirical data for fur-
ther corroboration. The model has already provided new insights into particle
swarms. For example, it has highlighted how the swarm consensus can be de-
ceived away from the optimal state and how exogenous sources of influence can
break symmetries, modify natural search biases and even lead the PSO to com-
pletely ignore fitness. Some of its predictions match results obtained by other
means. Other predictions will need to be checked by implementing and testing
new PSOs, e.g., PSOs with non-deterministic communication and PSOs with
external inputs.

The model includes the forms of communication currently implemented in
PSOs, but it is significantly more general. As a result, we believe that this model
and our results may be applicable to natural and artificial systems other than
just particle swarms (e.g., social networks of customers). We will explore this in
future research.
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Abstract. We present an algorithm for covering continuous domains
by primitive robots whose only ability is to mark visited places with
pheromone and to sense the level of the pheromone in their neighbor-
hood. These pheromone marks can be sensed by all robots and thus
provide a way for indirect communication between the robots. Apart
from this, the robots have no means to communicate. Additionally they
are memoryless, have no global information such as the domain map,
own position, coverage percentage, etc. Despite the robots’ simplicity,
we show that they are able to cover efficiently any connected domains,
including non-planar ones.

1 Introduction

We say that a domain is covered by a robot if each and every point of the
domain was swept by the robot’s effector. In fact, every time we want to build an
automatic machine suitable for applications such as floor cleaning, snow removal,
lawn mowing, painting, mine-field de-mining, unknown terrain exploration and
so forth, we face the problem of complete covering of corresponding domains by
our machine.

A particular solution of the covering problems depends, of course, on the
capabilities of our robots and various environmental constraints. Hence a vast
number of algorithms can be, and actually have been, developed to accommodate
the numerous constraints of the covering problem.

In this paper we adopt the model used in [1], which assumes that our robots
are anonymous, i.e., any two robots are the same, memoryless, i.e., they have
no ability to “remember” anything from the past and have no means of direct
communication. This model was originally inspired by ants and other insects
that use chemicals called pheromones that are left on the ground and used for
some kind of indirect communication and coordination tasks. Ant colonies, de-
spite primitivism of single ants, demonstrate surprisingly good results in global
problem solving and pattern formation [2,3,4,5,6]. Consequently, some ideas bor-
rowed from these insects are becoming increasingly popular in ant-robotics and
distributed systems [5,6,7,8,9,10]. Such robots are usually capable of perform-
ing quite complex distributed tasks while providing the benefits of being small,
cheap, easy to produce and easy to maintain.

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 144–155, 2006.
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(a) Sensing area (b) Marking area

Fig. 1. Robot’s sensing and marking areas

2 Agent Model

Mathematical formulation of the problem is as follows. The domain will be de-
noted by Ω. At the moment we consider only flat two-dimensional domains;
further extensions will be given in Section 6.4. Given any two points a, b ∈ Ω
we denote the distance between a and b as ‖a − b‖. Again, we assume, initially,
that the distance is the common Euclidean distance in two-dimensional space;
extensions to other distance measures will be given in Section 6.4. The robot is
able to sense the pheromone level at its current position p and in a closed ring of
radii r and 2r around p denoted by R(r, 2r, p). Additionally, our robot is able to
set an arbitrary pheromone level in an open disk of radius r around its current
location p denoted by D(r, p), We assume that our time steps are discrete and
denote by σ(a, t) the pheromone level of point a ∈ Ω at time instance t.

3 The Mark-Ant-Walk (MAW) Algorithm

Initially, no point is marked with the pheromone and thus all σ values are as-
sumed to be equal to zero: σ(a, 0) = 0; ∀a ∈ Ω. A starting point is chosen
(randomly) for the robot and then the MAW step rule is applied repeatedly.
There is no explicit stopping condition for this algorithm; nevertheless, one can
use the upper bound, provided later in this paper, on the cover time in order to
stop robots after a sufficient time period that guarantees complete covering.

Table 1. MAW step rule

Mark-Ant-Walk step rule (current time is t and agent location is p)
(A) x := a point from R(r, 2r, p) with minimal value of σ(x, t)

/* In case of a tie - make an arbitrary decision */
(B) If σ(p) ≤ σ(x) : ∀u ∈ D(r, p) σ(u) = σ(x) + 1

/* we mark open disk of radius r around current location */
(C) t := t + 1
(D) move to x
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4 Related Work

Covering of discrete domains (graphs) is an old problem and thus it has a number
of solutions with a sound mathematical background. Probably, the most known
examples are the Breadth-First Search (BFS) and the Depth-First Search (DFS)
algorithms for graph traversal. Both algorithms provide excellent results in terms
of time complexity.

A step toward an odor-oriented model was taken in [11,12] where pebbles were
used to assist the search. Pebbles are tokens that can be placed on the ground
and later removed. The idea of pebbles was further developed in [13] where they
were used for unknown graph exploration and mapping. Two different algorithms
that fit our paradigm entirely, i.e. fully distributed autonomous agents that mark
the ground with pheromones, were suggested for efficient and robust graph cov-
ering. One, called the Edge-Ant-Walk, marks the graph edges [14]. Another one,
called the Vertex-Ant-Walk, leaves marks on graph vertices instead [1,15]. Both
algorithms provided significant improvement over DFS in robustness terms along
with quite efficient cover time.

Random walks are defined for both discrete and continuous domains and
provide unrivaled robustness and scalability; however, they cannot guarantee
complete coverage, providing only expected time. We would like to concentrate
on solutions that can guarantee complete coverage after a limited time period.

One possible approach is to introduce an artificial potential field in order to
accomplish the robot motion planning task (e.g. [16,17]). This approach can eas-
ily be adopted by our robots where the potential is represented by the odor level.
However, it assumes that the potential field is constructed prior to the start of
robot motion and thus requires a global knowledge of the domain boundaries
and obstacles, which is unavailable in our model. Some authors used trails that
mark the path travelled by the agent so far and performed some kind of peel-
ing/milling. This approach often fails with non-convex domains and thus the
whole domain may be approximated as a union of convex non-overlapping cells
[18,19,20], ,however, this approach, in fact, takes us back to a graph whose ver-
tices are associated with the cells and edges between vertices that are defined
according to the corresponding inter-cell connectivity. Another representative of
trail-based algorithms is the Mark-And-Cover (MAC) algorithm [21], which is ac-
tually an adaptation of the DFS to continuous domains. This algorithm provides
efficient and effective coverage with excellent provable cover time. Additionally,
the agent model used in the paper fit our paradigm entirely. Nevertheless, the
problem of the MAC algorithm, and probably all trail-based algorithms, is their
sensitivity to noise and agents failure. Moreover, trails of one agent may hamper
performance of another agent. Another shortcoming of these algorithms is seen
in the situation when the domain is required to be covered repeatedly, e.g., in
surveillance tasks or in the scenario described in [22] where autonomous agents
are used to de-mine minefields using imperfect sensors, i.e. the probability of
a mine detection is less than 1. Our algorithm guarantees that the whole do-
main is covered repeatedly time after time. Furthermore, the time between two
successive visits at any point is bounded (see Section 6.1).
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5 MAW - Formal Proof of Correctness and Upper Time
Bound

Let us show that a single robot governed by the MAW rule covers any connected
bounded domain in a finite number of steps. The outline of the proof is as follows.

First, we prove that at any time instance, any two points that are close enough,
i.e., their distance from each other is less than or equal to r, must have pheromone
levels that differ by one at most. We call this the proximity principle. It has also
been used in several other research studies, e.g., [1,15,14].

Second, we look at the diameter d of the domain that is defined as the length
of the longest geodesic line embedded in the domain, i.e., d = supa,b∈Ω ‖a − b‖.
Assuming that d is finite, we easily conclude with the aid of the proximity
principle that at any time t for any two points a, b ∈ Ω, the difference between
the pheromone levels of these two points is limited by �d/r�. This, in turn,
means that once the value of �d/r� + 1 is reached at any point, no unmarked
point remains and thus the whole domain has been covered. Finally, we show
that we eventually reach value of �d/r� + 1. A formal proof is given below.

Lemma 1
The difference between marker values of close points is bounded.

∀t; ∀a, b ∈ Ω : if ‖a − b‖ ≤ r then |σ(a, t) − σ(b, t)| ≤ 1

Proof: We shall prove the lemma by mathematical induction on the step num-
ber. The lemma is clearly true at t = 0. Assuming it is also true at time t = n, we
shall show it remains true at time t = n + 1. Let us look at two points a, b ∈ Ω,
such that ‖a−b‖ ≤ r. In the trivial case neither a nor b changes its marker value
at the (n + 1)th step; therefore, the lemma holds according to the induction
hypothesis. If both a and b change their values, then σ(a, t + 1) = σ(b, t + 1)
since the algorithm assigns the same values to all the points it changes. Hence
the only interesting case is when only one point (say a) changes its marker value
Assuming the current agent’s location is pt we conclude that a ∈ D(r, pt), oth-
erwise it could not change its marker value. And therefore, ‖a − pt‖ < r. b,
however, does not change its marker value and thus ‖b − pt‖ ≥ r. Combining
these constraints we get r ≤ ‖b− pt‖ ≤ 2r or, equivalently, b ∈ R(r, 2r, pt). Now
let us recall how the new marker value of a is determined. First, we look for the
minimal marker value among all points in R(r, 2r, pt). Assume that this value is
attained at some point x ∈ R(r, 2r, pt). The new marker value of a is then set if
and only if σ(pt, t) ≤ σ(x, t):

σ(a, t + 1) = σ(x, t) + 1. (1)

Since both points x and b belong to R(r, 2r, pt), we have

σ(b, t) ≥ σ(x, t), (2)

because of the way the point x was chosen. Now, on the one hand, we have:{
|σ(a, t) − σ(b, t)| ≤ 1
σ(b, t) ≥ σ(x, t) ⇒ σ(a, t) ≥ σ(x, t) − 1; (3)
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and on the other hand:{
|σ(a, t) − σ(pt, t)| ≤ 1
σ(pt, t) ≥ σ(x, t) ⇒ σ(a, t) ≤ σ(x, t) + 1. (4)

Combining inequalities (3) and (4), we get

|σ(a, t) − σ(x, t)| ≤ 1. (5)

Using the system of inequalities (3), we conclude that

0 ≤ σ(b, t) − σ(x, t) ≤ 2. (6)

Combining the above inequality with the fact that σ(a, t + 1) = σ(x, t) + 1 and
σ(b, t+1) = σ(b, t), we get the desired result: |σ(a, t+1)−σ(b, t+1)| ≤ 1. Thus
the lemma is proven.

Lemma 2
The difference between marker values of any two points is bounded at all times.

∀t; ∀a, b ∈ Ω : |σ(a, t) − σ(b, t)| ≤
⌈
d

r

⌉
where d - diameter of Ω.

Proof: Follows immediately from Lemma 1.

Our next step will be to show that the maximal marker value tends to ∞ as t
goes to ∞. First, we prove that marker values can only grow and never decrease.

Lemma 3
Marker values of any point form a non-decreasing series; that is

∀t; ∀u ∈ Ω : σ(u, t + 1) ≥ σ(u, t).

Proof: Let us assume the contrary, i.e., there exists a point u ∈ Ω and time
instance t such that the pheromone level of u decreases during the t-th step:
σ(u, t + 1) < σ(u, t). Let us now look at point pt – the location of the agent
at time t. Obviously u ∈ D(r, pt) (otherwise it could not change its value),
hence ‖u − pt‖ < r. Assume that the minimal marker value among all points in
R(r, 2r, pt) was attained at some point x. We know also that σ(pt, t) ≤ σ(x, t);
otherwise, the robot does not change the pheromone values. Thus we have⎧⎨⎩

σ(x, t) + 1 = σ(u, t + 1) < σ(u, t)
σ(pt, t) ≤ σ(x, t)
‖u − pt‖ < r

(7)

This implies {
|σ(u, t) − σ(pt, t)| > 1
‖u − pt‖ < r

(8)

which contradicts Lemma 1.
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At this point we are ready to prove the main result of this work.

Theorem 1
The domain Ω will be covered within a finite number of steps.

Proof: Imagine that the domain Ω is tessellated into n cells so that every such
cell can be inscribed into a circle of diameter less than r. Let us examine the
following sum:

St =
n∑

i=1

mi
t − σ(pt, t), (9)

where mi
t is the minimal marker value over the ith cell at time t and σ(pt, t) is

the marker value at the agent’s location pt at time instance t. With the aid of
Lemma 3 one can easily verify that

St+1 > St. (10)

Given that S0 = 0, we easily conclude that

St ≥ t ⇒
n∑

i=1

mi
t ≥ t ∀t, (11)

which leads us to the conclusion that after n�d
r � + 1 steps, at least one of

the mi
nd+1 values will be greater than �d

r � and thus the whole domain will be
covered.

In order to find an approximation to n , we can tile the domain with regular
hexagons of side length r/2. In order to guarantee full coverage by the hexagons
we look at the “augmented” domain Ω̄, which results from Ω that has undergone
morphological dilation with a disk of radius r. Using a development similar to
the one shown in [21], we get the following bound on the area of Ω̄

AΩ̄ ≤ AΩ + rPΩ + πr2, (12)

where AΩ and PΩ are the area and the perimeter of Ω, respectively. Thus we
have

n ≤ AΩ + rPΩ + πr2

3
√

3
8 r2

, (13)

where 3
√

3
8 r2 represents the area of a hexagon of side length r/2.

6 Extensions

6.1 Repetitive Coverage

In some scenarios we might be interested in repetitive coverage of the domain,
e.g., the aforementioned scenario of minefield de-mining with imperfect sen-
sors [22] or tasks such as surveillance and patrolling. In all cases we would like
to bound the time between two successive visits.
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Lemma 4
For any two time instances t1 and t2, if only t2 > t1 then the following inequality
must hold:

St2 − St1 ≥ t2 − t1.

Proof: The proof is very simple. We can always write t2 = t1 + n for some
natural n and prove the lemma by mathematical induction. For n = 1 the
lemma holds due to Equation (10). Assuming that the lemma holds for some n,
we can easily conclude that the lemma holds for n + 1 as well.

Theorem 2
For any point a ∈ Ω, the time period between two successive visits of the robot
is bounded by 2n

(⌈
d
r

⌉
+ 1

)
.

Proof: If we show that after a sufficient time period the pheromone level
changes at all locations in the domain Ω, we can obviously be sure that all
points were re-visited by the robot during this time period. Let us look at time
instance ts when the robot covers our point of interest a. We denote by σmax(ts)
the maximal pheromone level over Ω at that time. If we show that at some time
instance te the minimal pheromone level denoted by σmin(te) becomes greater
than the maximal value that was at time ts: σmin(te) > σmax(ts), then we can
easily conclude that during the time period te − ts the pheromone level changed
at all points and thus all points (including a) were re-covered by the robot. Let
us examine Sts and Ste as defined in the Equation (9). On the one hand:

Sts =
n∑
i

mi
ts

− σ(pti , ti) ≥
n∑
i

mi
ts

≥
n∑
i

σmin(ts) = nσmin(ts) (14)

According to Lemma 2

σmin(ts) ≥ σmax(ts) −
⌈
d

r

⌉
. (15)

Combining Equations (14) and (15) we get

Sts ≥ n

(
σmax(ts) −

⌈
d

r

⌉)
. (16)

On the other hand we want to know the time instance te that guarantees that
σmin(te) ≥ σmax(ts) + 1. Instead of estimating te directly from σmin(te), we
shall look for te that guarantees the existence of σ value greater than or equal to
σmax(ts)+1+�d

r +1�, which guarantees by Lemma 2 that σmin(te) ≥ σmax(ts)+1.
Now, in the same way as the proof of Theorem 1, we can say that once Ste ≥
n(σmax(ts) + 1 + �d

r � + 1), we have σmin(te) ≥ σmax(ts) + 1. Thus we have

Ste−Sts ≤ n

(
σmax(ts)+1 +

⌈
d

r

⌉
+1

)
−
(
σmax(ts)−

⌈
d

r

⌉)
=2n

(⌈
d

r

⌉
+1

)
. (17)
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According to Lemma 4 we have

te − ts ≤ Se − Ss ≤ 2n
(⌈

d

r

⌉
+ 1

)
, (18)

which completes the proof.

6.2 Noise Immunity

Until now we always assumed that there is no noise in the input, i.e., the robot
starts with a domain that does not contain any pheromone marks. Unfortunately,
in the real life such a clear environment is not always available hence, we shall
consider situation when the initial pheromone level is not zero. Unlike trail-based
algorithms that cannot cope with noise our algorithm, can easily overcome this
problem as demonstrated by the experiments in Section 7.3.

6.3 Multiple Robots

As a natural extension we would like to analyze how the MAW algorithm can
be applied to multi-robot environments. First of all, we must address problems
such as collisions both between the robots themselves (if we deal with physical
robots and not programs) and between different pheromone levels when two (or
more) robots try to mark the same point in the domain.

At the moment we assume that the clock phases of all robots are slightly
different so that no two robots are active at the same time. Thus each robot sees
other robots as regular stationary obstacles and acts accordingly. This approach
also resolves the problem of different pheromone levels that might be assigned to
the same point by different robots, since only one robot is active at given time.

Let us find the upper bound for complete coverage provided we have k robots.
Using the same notation as in Equation (9) we have:

St =
n∑

i=1

mi
t −

k∑
j=1

σ(pj
t , t), (19)

where pj
t denotes the location of the j-th robot at time t. Using exactly the same

reasoning as before, we again obtain:

St ≥ t, (20)

which leads us to the same upper bound we got for a single robot. Hence adding
more robots does not necessarily guarantees better coverage time. However our
simulations (see Section 7) demonstrate that there is a substantial improvement
when we use more robots.

6.4 Using Other Metrics

Until now we always used the usual notion of the distance, nevertheless, it is
easy to verify that all the proofs remain valid if we change the Euclidean (L2)
distance to another one. For example, we used L∞ in our simulations. Since
corresponding effector shape is a square in this case.
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Fig. 2. Simulation domains

7 Simulations and Experiments

7.1 General Notes

Experiments were conducted on the domains shown in Figure 2. All domains
are of size 100 × 100 pixels and marking radius in all experiments was set to 3,
i.e., each step robot marks a square of 5× 5 pixels. Figure 3 demonstrates some
stages of covering Domain B by ten robots.

Fig. 3. MAW progress on Domain B

7.2 Comparing MAW to Other Algorithms

In this experiment we studied performance of three different algorithm: MAW,
MAC [21], and Random Walk. All algorithms used the same square effector
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Fig. 4. Cover Time

of size 5 × 5 pixels; additionally, the steps of the Random Walk algorithm were
restricted to be in interval [r, 2r] just like the steps in the MAW algorithm.

In all experiments the robots were modeled as points and multiple robots were
allowed to occupy the same location. We always measured the number of time
steps until the robots covered the domain for the first time, averaged over 100
runs.

As we can see the MAW algorithm is a clear winner when we use three or
more robots. For fewer robots the MAC algorithm performs better on complex
domains. Note that the MAW algorithm in general performs better than the
theoretical upper bound we got in Section 5. Cover time of the Random Walk
was omitted from Figures 4b and 4c because the values were so big that the
difference between the MAC and the MAW algorithms became invisible on this
scale.
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7.3 MAW in Noisy Environments

In this experiment we ran one robot on the Domain A, each time changing the
amount of noisy pixels. Noise values are uniformly distributed in interval [1, 10].
Figure 5 shows cover time as a function of the amount of noisy pixels.
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Fig. 5. Noisy environment

Note that noise does not affect the Random Walk on the one hand and it
destroys completely the MAC algorithm on the other hand, making it unable to
cover the domain completely.

8 Conclusions

In this paper we presented a new ant-inspired algorithm for continuous domain
covering. We provided also a formal proof of complete coverage and upper time
bounds for complete coverage and the time interval between two successive vis-
its of the robot. Additionally a formal proof provided for multi-robot environ-
ments. Algorithm performance and noise immunity were verified by computer
simulations.
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Abstract. Ant colony optimization algorithms are currently among the
best performing algorithms for the quadratic assignment problem. These
algorithms contain two main search procedures: solution construction by
artificial ants and local search to improve the solutions constructed by
the ants. Incremental local search is an approach that consists in re-
optimizing partial solutions by a local search algorithm at regular inter-
vals while constructing a complete solution. In this paper, we investigate
the impact of adopting incremental local search in ant colony optimiza-
tion to solve the quadratic assignment problem. Notwithstanding the
promising results of incremental local search reported in the literature in
a different context, the computational results of our new ACO algorithm
are rather negative. We provide an empirical analysis that explains this
failure.

1 Introduction

Ant colony optimization (ACO) is a recent metaheuristic technique that is in-
spired by the pheromone trail laying and following behavior of some ant species
[1]. In ACO algorithms, artificial ants are stochastic solution construction proce-
dures that generate solutions using artificial pheromones and heuristic informa-
tion; the ants’ solutions are then used to modify the artificial pheromone trails.
This mechanism shifts the stochastic solution construction procedure towards
the construction of solutions similar to the better ones seen previously in the
algorithm. The definition of the ACO metaheuristic includes also the possibility
of using local search [1]: Once ants complete their solution construction phase,
local search algorithms can be used to refine their solutions before using them
for the pheromone update. Various experimental researches have shown that the
combination of solution construction by ants and local search procedures is a
promising approach [1].

There exist a large number of possible choices when using local search in ACO
algorithms. We refer the reader to [1,2] for a recent review of these techniques.
The primary goal of this paper is to investigate the opportunity of adopting
incremental local search in ACO, that is, to improve via a local search algorithm
the ants’ partial solutions at regular intervals during the solution construction

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 156–166, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Incremental Local Search in Ant Colony Optimization 157

process. Previous works on incremental local search in non-ACO algorithms have
reported promising results: Russel [3] introduced a method for re-optimizing
partial solutions by means of an interchange procedure after every k steps of
the solution construction. Gendreau et al. [4] introduced a generalized insertion
heuristic to solve the traveling salesman problem and extended the same ap-
proach to a vehicle routing problem [5]. In a nutshell, generalized insertion can
be described as an insertion procedure that uses a limited form of incremental
local search. Caseau and Laburthe [6] introduced an approach that applies lo-
cal search after each step of the solution construction process to solve a large
constrained vehicle routing problem. This methodology is compared with a cus-
tomary technique that constructs solutions by greedy insertion and uses local
search at the end to improve solutions. The computational results showed that,
in this particular context, incremental local search was not only faster, but also
produced much better solutions. They conclude that incremental local search
is able to perform some improvements during the construction process that full
local search may not be able to perform once the solution is complete. In the
context of constructive methods, Fleurent and Glover [7] proposed a strategy
called proximate optimality principle that consists in re-optimizing partial solu-
tions of a greedy randomized adaptive search procedure to solve the quadratic
assignment problem. They suggest that imperfections introduced during the con-
struction step of the procedure can be removed by applying local search on the
partial solutions. Since the method we investigate here is very similar to this
experimental study, we have also chosen the quadratic assignment problem for
our analysis.

The main motivation behind our research is that a priori the idea of re-
optimizing the partial solutions of the ants during the solution construction
looks promising, since the use of local search in ACO algorithms has already
proven to often lead to a strong improvement of performance, and incremental
local search has been successfully applied in other settings where constructive
methods were used. However, the results of our computational experiments are
negative and, at least for the quadratic assignment problem (QAP), the inclusion
of incremental local search actually worsens the performance. In this paper, we
analyse the possible reasons for this effect by studying the convergence behavior
of the ACO algorithm. In fact, our analysis also gives hints on conditions un-
der which incremental local search may become useful in ACO algorithms. For
instance, since the empirical analysis shows that the incremental local search
introduces a strong exploration in the search process of the ACO algorithm
studied here, one might try to use it to generate new solutions when the search
stagnates.

The paper is organized as follows. Section 2 shows how to use incremental
local search in ACO for solving the quadratic assignment problem. In Section 3,
we report our computational results, which show that incremental local search
in ACO obtains rather poor results. An analysis of why incremental local search
in ACO is not effective for the quadratic assignment problem is presented in
Section 4. Section 5 concludes the paper.
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2 Incremental Local Search in Ant Colony Optimization
for the Quadratic Assignment Problem

The QAP can be described in the following way: Consider a set of n facilities
that have to be assigned to n locations. A matrix A = [ars] gives the distances
between locations, where ars is the distance between locations r and s. A matrix
B = [btu] characterizes the flows among facilities, where btu is the flow between
facility t and facility u. An assignment can be represented by a permutation π of
{1,· · · ,n}, where π(r) is the facility that is assigned to location r. The problem
is to find a permutation π* that minimizes the sum of the products of the flows
among facilities by the distance between their locations.

Among the various metaheuristics, ACO has been shown to be particularly
successful on the QAP as best exemplified by the high performance reached
by MAX − MIN ant system (MMAS-QAP) [8,9]. Hence, we have chosen
MMAS-QAP as a starting point for our analysis. MMAS-QAP constructs
solutions by assigning at each construction step a facility to some location.
Pheromone trails τij refer to the desirability of assigning facility j to location i
and the usual probabilistic choice known from ant system is used; since MMAS-
QAP does not use any form of heuristic information, the probability pij of assign-
ing facility j to location i is directly proportional to τij for feasible assignments.
The pheromone update is done by lowering the pheromone trails by a constant
factor ρ and depositing pheromone on the individual solution components of ei-
ther the best solution in the current iteration (iteration-best), the best solution
found so far by the algorithm (best-so-far), or the best solution found since the
last re-initialization (restart-best) of the pheromone trails. We refer the reader
to [9] for a more detailed description of MMAS-QAP.

MMAS-QAP uses an iterative improvement algorithm based on the 2-
exchange neighborhood, where the set of neighbors of a permutation π com-
prises all permutations that can be obtained by exchanging the location of two
facilities. This iterative improvement algorithm is referred to as 2-opt. When us-
ing 2-opt in MMAS-QAP, each ant constructs a feasible solution and improves
it by this local search.

It is straightforward to include incremental local search in MMAS-QAP.
While in the original MMAS-QAP the local search is applied only to com-
plete solutions, in a version that uses incremental local search, the local search
is performed on an ants’ partial solution. For convenience, let us define some
terminology: We denote for each ant the number of local searches applied to its
(partial) solutions by i, where i, 1 < i ≤ n, is a user defined parameter. We call
MMAS-QAP with incremental local search as MMAS-QAP(i). For example,
MMAS-QAP(2) refers to the MMAS-QAP algorithm with an incremental lo-
cal search in which for each of the m ants the (partial) solution is re-optimized
twice; for MMAS-QAP(3) three local searches are applied. For the sake of
uniformity, we denote the original MMAS-QAP algorithm in which a single
local search is performed at the end of the solution construction by MMAS-
QAP(1). We use the convention that the local searches are applied after equal
sized intervals in the solution construction. Let k be the number of assignments ;
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then, in MMAS-QAP(2) local search is applied after k = 1 · �n/2 assignments
and on the complete solutions, while in MMAS-QAP(3), local search is applied
after k = 1 · �n/3 and k = 2 · �n/3 assignments are done, and again once the
assignment is completed.

In the local search on partial solutions, the cost difference for exchanging two
facilities s and r in the partial solution is obtained by the instance data restricted
to the occupied locations and used facilities of the current partial solution. The
current partial solution is replaced if the local search finds a better neighboring
one, and the local search continues until there is no more improvement. From
this locally optimized partial solution, the particular ant continues its solution
construction process. We expect that the computation time for MMAS-QAP(i)
increases with i, since more local searches need to be applied. However, each lo-
cal search applies to a smaller instance and the final local search on the complete
solution may start from an already improved solution, hence, requiring less im-
provement steps; this counteracts the effect on the computation time incurred
by the increased number of local searches. Thus, the rate of increase in the com-
putation time per solution is expected to be less than the rate of increase of i.

3 Experiments

We studied the impact of incremental local search in MMAS-QAP on ten in-
stances from QAPLIB [10] ranging in size from n = 60 to n = 150. The tested
instances fall into one of the following groups: (i) instances with the distance
and flow matrix entries generated randomly according to a uniform distribution,
(ii) instances whose distance matrix is defined as Manhattan distance between
points on a grid, and (iii) randomly generated instances in which the matrix en-
tries are similar to those of real-life QAP instances. We allowed 10 independent
trials for each algorithm and the code was run on a dual AMD OpteronTM244
1.75GHz processor, 2 GB RAM and 1 MB L2-Cache. The parameter values for
MMAS-QAP are set as proposed in [9] except that the value of ρ is set to 0.1
which results in slightly better performance than the setting ρ = 0.8 proposed
in the literature. (We run additional experiments that verified that the conclu-
sions drawn in the following do not depend on the parameter value for ρ.) For
MMAS-QAP(i), we vary the value of i from 1 to 10 and report the solution
quality obtained as the percentage deviation from the best known solutions.

For each instance, we first run MMAS-QAP(1) for 1000 iterations and mea-
sured the average time over 10 trails. This average time is then taken as the
termination criterion for all algorithms to ensure that we compare the algo-
rithms using a same computation time. Table 1 shows the average solution cost
for all values of i as the percentage deviation from the best known solution.

From Table 1, we can observe that the average solution cost obtained by
MMAS-QAP(i), for i ≥ 2 is worse than that of MMAS-QAP(1) for all in-
stances; the only exception is that MMAS-QAP(2) is better than MMAS-
QAP(1) on instance tai150b. In Table 2, we give the average number of itera-
tions that each of the algorithm variants was able to do in the computation time



160 P. Balaprakash et al.

Table 1. Experimental results of MMAS-QAP(i) algorithms on several QAP in-
stances; given is, for each instance, the average percentage deviation from the best
known solution. All algorithms were stopped after the same computation time. Best
results are in bold-face.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10
tai60b 0.0004 0.0086 0.0335 0.0449 0.0610 0.0557 0.0428 0.0578 0.0694 0.0690
tai80a 1.2304 1.6836 2.0250 2.1809 2.3091 2.2281 2.2934 2.3209 2.3216 2.3115
tai80b 0.0204 0.0535 0.1294 0.0806 0.0932 0.1052 0.1110 0.1107 0.1176 0.1207
sko81 0.0672 0.1433 0.2556 0.2714 0.2786 0.3114 0.3215 0.3125 0.3415 0.3331
sko90 0.1376 0.2089 0.2382 0.2863 0.3469 0.3477 0.3837 0.3436 0.4042 0.4168
sko100a 0.1222 0.1888 0.2193 0.2826 0.3342 0.3517 0.3536 0.3530 0.3505 0.4477
tai100a 0.3579 0.8090 0.9702 1.2808 1.2440 1.1532 1.1214 1.0984 1.0902 1.1808
tai100b 0.0452 0.1009 0.1289 0.1655 0.2456 0.2432 0.2391 0.2540 0.2632 0.2723
tho150 0.2115 0.2909 0.3530 0.3527 0.4230 0.4336 0.4677 0.5053 0.5104 0.5344
tai150b 0.2757 0.1935 0.2858 0.2852 0.4685 0.5319 0.5184 0.6217 0.6654 0.6968

Table 2. Experimental results of MMAS-QAP(i) algorithms on several QAP in-
stances; given is, for each instance, and algorithm pair, the average number of iterations
done in a same computation time

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10
tai60b 983.1 837.3 711.2 614.9 544.4 489.3 373.2 352.0 354.9 354.0
tai80a 987.7 788.9 450.2 584.3 517.2 355.1 338.8 390.9 338.9 337.9
tai80b 991.2 782.2 460.3 569.6 503.6 353.7 333.9 376.0 325.4 325.8
sko81 1082.1 696.4 768.8 482.5 444.3 419.4 399.8 361.3 417.7 323.6
sko90 1097.7 909.9 769.1 486.7 591.1 531.7 408.6 363.0 414.6 387.6
sko100a 1070.6 890.1 522.5 653.5 578.3 411.5 376.8 363.9 333.8 380.7
tai100a 909.1 757.0 426.6 561.5 501.2 349.3 318.6 309.5 279.2 327.9
tai100b 981.7 760.8 455.4 555.5 488.0 344.0 318.2 302.5 280.4 316.2
tho150 998.2 791.2 663.6 416.0 504.7 454.8 329.1 318.9 299.1 330.3
tai150b 979.1 793.1 679.6 465.4 439.0 393.4 286.4 272.3 257.7 284.5

that was determined as described above. As we had conjectured in the previous
section, with increasing value of i, generally also the number of iterations done
by MMAS-QAP(i) decreases.

Taking into account this latter observation on the number of iterations run,
we could tentatively attribute the reason for the worse performance of MMAS-
QAP(i) to the fact that it could generate a smaller number of complete so-
lutions in the same time. Naturally, the question arises: what will happen if
all the algorithms are allowed to generate the same number of complete solu-
tions? To answer this question, we re-run all the MMAS-QAP(i) allowing each
to perform 500 iterations. These results are given in Table 3. As it can easily
been seen, the average solution quality of MMAS-QAP(1) for most instances
is still better than that of MMAS-QAP(i) for i ≥ 2. There are only two excep-
tions: instances tai80b and tai150b. This means that, in general, the usage of
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Table 3. Experimental results of MMAS-QAP(i) algorithms on several QAP in-
stances; given is, for each instance, the average percentage deviation from the best
known solution. All algorithms were stopped after 500 iterations.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10
tai60b 0.0056 0.0195 0.0435 0.0649 0.0564 0.0535 0.0583 0.0729 0.0546 0.0546
tai80a 1.2951 2.0692 2.0393 2.3263 2.3028 2.1805 2.1112 2.2939 2.2204 2.2204
tai80b 0.1287 0.1128 0.1300 0.0734 0.0907 0.0800 0.1495 0.1042 0.1021 0.1021
sko81 0.1279 0.1872 0.2463 0.2573 0.2630 0.3391 0.3224 0.3072 0.3828 0.3074
sko90 0.1391 0.2669 0.2747 0.2925 0.4189 0.3746 0.3730 0.3768 0.3370 0.4409
sko100a 0.1736 0.2115 0.2318 0.3160 0.3307 0.3867 0.3369 0.3849 0.3267 0.3757
tai100a 0.4320 0.8002 1.0031 1.2218 1.3383 1.1167 1.0470 1.0566 1.0507 1.1497
tai100b 0.0748 0.0903 0.1507 0.1397 0.2198 0.2111 0.2164 0.2397 0.2133 0.2555
tho150 0.2347 0.3456 0.3827 0.3633 0.4236 0.4384 0.4236 0.4736 0.4787 0.4615
tai150b 0.3318 0.2598 0.4174 0.3835 0.4508 0.4320 0.4678 0.5603 0.4773 0.6855

incremental local search is actually causing a deterioration of MMAS-QAP’s
performance, although it is allowed much more computation time. Said in other
words, incremental local search is not only computationally expensive but also
interferes negatively with the solution process of the ACO algorithm–at least for
the QAP.

One may stop here and simply report this as a negative result. However,
we were wondering as to why there may be a negative influence of incremental
local search into the ACO algorithm’s search process. A possible answer to this
question is given in the next section.

4 Analysis

In this section, we try to explain why the incremental local search produces
a detrimental effect on MMAS-QAP’s performance. For motivating the main
line of attack of this analysis, let us consider first what is known about the
convergence behavior of MMAS-QAP, a high-performing ACO algorithms. Es-
sentially, the search process of MMAS-QAP shows a transition from an explo-
ration phase, which is characterized by iteration-best update (the best solution
in the current iteration is allowed to update the pheromones) and relatively high
branching factor, to an exploitation phase, where the search is directed towards a
search space region whose center is defined by the best-so-far solution seen by the
algorithm. Interestingly, while in the exploration phase good quality solutions
can already be found, typically the highest quality solutions in a trial of MMAS-
QAP are found when the search is in its exploitation phase–characterized by a
low branching factor and by the fact that the solutions generated by the ants
are relatively close to the best-so-far solution. In fact, MAX–MIN Ant System
was designed with the explicit intention to allow a careful transition between the
exploration and exploitation phases and to further avoid search stagnation in the
exploitation phase [11,8].
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We suspected that the local changes introduced by the incremental local
search disturb the behavior of MMAS-QAP in the exploitation phase. This
suspicion is based on the fact that the local search on the partial solution does
not take into account the pheromone trails and, hence, may lead to significant
changes to the partial solution. As an effect of this, the final complete solution
before the final local search phase may actually be rather far from the best-so-far
solution and, thus, hinder the exploitation phase from being effective. This effect
is certainly increased for an increased frequency of partial re-optimizations. Dif-
ferently, if ants do not apply partial re-optimization, the solutions they construct
are relatively close to the best-so-far solution.

Hence, we decided to examine more carefully the variability of the generated
solutions by the various settings of i in MMAS-QAP(i). The main idea of
our analysis is to examine the distance of the complete solutions generated in
the current iteration from the best-so-far solution before and after the final
application of the local search algorithm on the complete solutions. This is done
for all the 10 settings of i. Since MMAS-QAP(1) has proven to be a state-of-the-
art ACO algorithm for the QAP, we use the computed distance as a yardstick
for the analysis. For our analysis, we compute the distance d(π, π′) between
two solutions π and π′ as the minimum number of applications of 2–exchange
moves that are required to convert one solution into the other one. This distance
measure reflects that deviations in the individual assignments from the best-so-
far solution can be undone by exchanging facilities between locations. Note that
this distance measure can easily be computed using a linear time algorithm [12].

To make our analysis simpler, we consider a variant of MMAS-QAP, de-
noted as rbMMAS-QAP. In this variant, only the restart-best solution, the
best solution found since the last re-initialization of the pheromones, is allowed
to update the pheromones. (Hence, the best-so-far and iteration-best solutions
are not taken into account in the pheromone deposit.) To justify the usage of
rbMMAS-QAP in the analysis, we first tested whether the versions rbMMAS-
QAP(i), i = 1, . . . , 10 shows the same type of behavior as MMAS-QAP(i),
using as stopping criterion again 500 iterations. Table 4 shows that this is es-
sentially the case, although rbMMAS-QAP gives overall slightly worse results
than MMAS-QAP. Nevertheless, we can conclude that rbMMAS-QAP cap-
tures the same trend as MMAS-QAP and that it is safe to limit the analysis
to rbMMAS-QAP.

In our analysis, we compute at each iteration of rbMMAS-QAP(i), i =
1, . . . , 10, the distance between an ants’ complete solution and the restart-best
solution before and after the final local search on the complete solution has been
applied. These distances are then averaged across the m = 5 ants. We denote
these two measures as d− (average distance before the final local search) and
d+ (average distance after the final local search), respectively. Figure 1 illus-
trates the observed results for the values of d− and d+ obtained by rbMMAS-
QAP(i), i = 1, . . . , 10, over 500 iterations for the instance sko100a. The trend
shown in these plots is representative for all the other instances we tested. (We
used Tukey’s (Running Median) Smoothing [13] for plotting the curves. If no
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Fig. 1. Experimental results of rbMMAS-QAP on instance sko100a. Each plot rep-
resents the average distance between the ants’ solutions and the restart-best solution
before and after the final local search on a completed solution for rbMMAS-QAP(i),
i = 1, . . . , 10. The stopping criterion is set to 500 iterations.
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Table 4. Experimental results of rbMMAS-QAP(i) algorithms on several QAP in-
stances; given is, for each instance, the average percentage deviation from the best
known solution. All algorithms were stopped after 500 iterations.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10
tai60b 0.0168 0.0473 0.0562 0.0620 0.0540 0.0745 0.0643 0.0638 0.0585 0.0585
tai80a 1.7958 1.9787 2.1666 2.3629 2.4193 2.1998 2.1897 2.2693 2.2188 2.2188
tai80b 0.1708 0.0952 0.0999 0.1062 0.1342 0.0987 0.1069 0.1454 0.1448 0.1448
sko81 0.1789 0.2312 0.3063 0.2773 0.3072 0.3303 0.3459 0.3134 0.3749 0.3417
sko90 0.2288 0.2835 0.3000 0.3290 0.3664 0.4189 0.3875 0.3720 0.4062 0.4620
sko100a 0.1982 0.2830 0.2665 0.3414 0.3768 0.3519 0.3353 0.3942 0.3725 0.4135
tai100a 0.6073 0.9753 0.9763 1.3606 1.3204 1.1283 1.0974 1.1031 1.0001 1.1883
tai100b 0.0938 0.1231 0.1583 0.2297 0.2368 0.2242 0.2450 0.2811 0.3014 0.3303
tho150 0.2800 0.3405 0.4061 0.3990 0.4490 0.4966 0.4540 0.4924 0.4653 0.5229
tai150b 0.3076 0.3318 0.3907 0.3681 0.4677 0.5531 0.5978 0.6605 0.5857 0.6691

differences among the curves are visible in the plots, this essentially means that
d− and d+ are about the same.)

Several important observations can be made from Figure 1. Firstly, the low-
est values for d− and d+ are reached by rbMMAS-QAP(1). The difference to
the other configurations with i ≥ 2 is smallest for i = 2 but then rises quickly
with i. (Recall that rbMMAS-QAP(2) performs best among the versions that
use incremental local search, as can be seen from Table 1.) Hence, we can con-
clude that incremental local search on the partial solutions eventually leads to
solutions which are very different from restart-best solution. Interestingly, for
rbMMAS-QAP(1) the values for d+ are much larger than d−, which indicates
that rbMMAS-QAP(1) can still explore a significant part of the search space,
despite the fact that it converges quickly to the exploitation phase, as indicated
by the low values of d−.

Overall, these results confirm our hypothesis that the incremental local search
interferes negatively with the exploitation phase of the ACO algorithmand induces
a too strong exploration of the search space. For example, for rbMMAS-QAP(1)
we have that d− is around 30 for instance sko100a, while for rbMMAS-QAP(2)
it increases to about 60—roughly double. Hence, already one incremental local
search that is applied after k = n/2 assignments have been done, leads to a rather
strong perturbation in the exploitation phase, that is, to solutions that are rather
distant from the restart-best one. The raise in the values of d+ is not as strong
as for d−; however, for rbMMAS-QAP(2) d+ is already significantly larger than
for rbMMAS-QAP(1), explaining also rbMMAS-QAP(2)’s worse behavior, in
general.As said, these observations also hold for all other instances; detailed results
are available from http://iridia.ulb.ac.be/supp/IridiaSupp2006-002/.

Finally, we run also experiments for the incremental local search when start-
ing from random initial solutions, to check whether in such an environment the
incremental local search can have some contribution. (We have chosen random
initial solutions, since for the QAP no high-performing construction heuristics
are available.) We run the random restart local search algorithm for the same
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Table 5. Experimental results of the random-restart local search on several QAP
instances; given is, for each instance, the average percentage deviation from the best
known solution. All algorithms were stopped after the same computation time as the
algorithms in Table 1. The best results are in bold-face.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10
tai60b 0.1461 0.1833 0.1991 0.2210 0.1956 0.2202 0.2254 0.2298 0.1716 0.1716
tai80a 2.5402 2.5403 2.4038 2.5176 2.4891 2.2537 2.2732 2.2674 2.3156 2.3156
tai80b 0.6667 0.3876 0.6568 0.6274 0.6334 0.5372 0.6372 0.5625 0.6668 0.6668
sko81 0.7602 0.7085 0.7545 0.6219 0.6211 0.6041 0.6094 0.5591 0.6448 0.6006
sko90 0.8148 0.7860 0.7625 0.7026 0.7263 0.7559 0.7137 0.6285 0.6880 0.6734
sko100a 0.7448 0.7449 0.6419 0.6831 0.6356 0.6355 0.5878 0.6528 0.5590 0.6494
tai100a 1.4651 1.5655 1.2888 1.3980 1.4050 1.1792 1.1433 1.0761 1.0518 1.2299
tai100b 0.6754 0.6708 0.6458 0.5898 0.6056 0.5688 0.6294 0.5817 0.5809 0.5914
tho150 0.9266 0.8679 0.8999 0.8185 0.8746 0.8444 0.7996 0.7739 0.7825 0.8564
tai150b 1.1589 1.2146 1.2039 1.1491 1.234 1.1430 1.1819 1.1388 1.0972 1.0522

average computation time as needed for MMAS-QAP(1) to perform 1000 it-
erations. Table 5 shows the average solution cost as the percentage deviation
from the best known solution, obtained by this random restart local search with
different numbers of local searches performed on the (partial) solutions. These
results clearly show that for almost all instances, the usage of the incremental
local search improves the performance over the version where only once a local
search is run on a complete solutions. Hence, these results agree with the com-
putational results reported in the literature [3,4,6,7] and indicate that the usage
of incremental local search can be, in some situations, helpful. In fact, random
restart has no means to exploit the possibility of learning and exploiting the
most promising region of the search space. This suggests that the usefulness of
the incremental local search depends strongly on the context where it is applied
and the solution construction procedure.

5 Conclusions

Motivated by the promising results of incremental local search reported in the
literature [3,4,6,7], we have investigated its behavior and performance in an ACO
algorithm for solving the QAP. Our computational study has shown, however,
rather poor results for this idea. Next, we have carried out an analysis that can
explain this failure. In fact, we have shown that the incremental local search
somehow destroys the behavior of the ACO algorithm in its exploitation phase
by not allowing it to generate solutions that are rather close to the restart-best
or global-best solutions.

Certainly, our results and explanation is limited to the QAP. However, we con-
jecture that the very same issue arises also in applications of ACO algorithms to
other challenging combinatorial problems. More in general, our results also in-
dicate that probably a more careful study of the behavior of ACO algorithms in
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the exploitation phase should be done to understand, which techniques may be
more promising for improving the performance of ACO algorithms. Finally, our
results indicate that incremental local search could be useful for increasing the
exploration in convergence situations of ACO algorithms. Although this was not
useful on the QAP, it may well be that the careful, occasional addition of incre-
mental local searches in specific situation, could possibly result in improvements
for ACO algorithms.
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Stützle and Marco Dorigo acknowledge support from the Belgian FNRS of which
they are a Research Associate and a Research Director, respectively. The infor-
mation provided is the sole responsibility of the authors and does not reflect the
opinion of the sponsors. The European Community is not responsible for any
use that might be made of data appearing in this publication.

References
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Individual Discrimination Capability and
Collective Choice in Social Insects
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Abstract. In an ant society individuals coming from different groups
(lines, strains) bear it own chemical identity and those individuals present
discrimination capabilities between different chemical profiles. However,
at the collective level these groups may cooperate and act together. To
understand this apparent contradiction we have to keep in mind that am-
plification is the main component of many collective phenomena in social
and gregarious insects. We use a model of food recruitment where each
group of foragers have its own blend of pheromone trail that is partly
recognized by the others groups. We found that a low level of recognition
between signals is sufficient to produce a collaborative pattern between
groups and that beyond a critical value of recognition. The aggregation
of all the groups around the same food source is observed. Such col-
lective response is a generic property of social phenomena governed by
amplification processes.

1 Introduction

1.1 The Individual Discrimination Capabilities

Many social insect are able to discriminate between nestmates and non-nest-
mates [1,2]. In honeybees the queen can mate with up to 20 drones that give rise
to a colony with 20 patrilines or subfamilies [3]. Each sub-family has a hydro-
carbon profile used by workers as sub-family discrimination [4]. In laboratory
condition workers can discriminate between supersisters (same patriline) and
half-sisters (other patriline). In gregarious insects like the cockroaches Blattella
germanica L. the gregarious behaviour is mainly based on the cuticular hydro-
carbons recognition characterising the strain odour and individuals prefer their
own strain odour from those of another strain [5].

But in many collective behaviours it seems that workers behave independently
of their sub-family origin. In bees swarming there is no differences between the
sub-families composition of the primary and the after-swarm [6]. There are nei-
ther evidences for sub-family discrimination between bee dancers and followers
in a colony of two sub-families [7]. In the polygynous ant Lasius acervorum,
Heinze et al [8] have shown that colony fission didn’t lead to the segregation
of different matrilines. In the cockroaches Blattella germanica L., when tested
group came from two different strains with different odours, they aggregated
only on one site [9]. Individuals are facing up a mixing palette of odours coming
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from different lines or strains and in spite of individual kin discrimination capa-
bilities, it seems that when the collective behaviour take place, there is a lack of
sub-group recognition and segregation.

The lack of nepotism or segregation is in some cases, largely due to the mixing
of individual signature. Everaerds et al [10] demonstrated that the mixing of the
individuals of two cockroaches species increases with time and that this mixing is
correlated with the apparition of a new individual cuticular signature. This new
signature is a blend of the two specific signatures. However this process takes
time and other mechanisms could be involved. There is a difference between
the capacity of discrimination at the individual and the collective level. Many of
these collective behaviours are based on amplification processes. These processes,
through positive feed-backs mechanisms, are widespread in group-living organ-
isms [11,12]. Amplification is an essential component of many collective phenom-
ena observed in particular in social and gregarious arthropods e.g. aggregation
[9], collective defence [13], recruitment to a food source or to a new nest [14].

Our hypothesis is that the collective level amplifies a low level of recognition
between groups and is sufficient to lead to a collective response despite individual
discrimination capabilities. To test this hypothesis we will use a model of food
recruitment as a case study.

1.2 Hydrocarbons Profile and Communication in Ants

Insect body, and particularly ants body, is covered by a set of cuticular lipids
including hydrocarbons (HCs). These components ensure a protection to the
animal preventing against desiccation, due to their hydrophobicity, and against
invasion of micro organisms. Several studies indicate that these cuticular
hydrocarbons play a key role in social insect communication. The nest-mate
recognition signal in ants seems to be constituted of an assemblage of cuticu-
lar hydrocarbons [1]. Each member of an ant colony has its reference model of
the chemical signature by which it can discriminate between a member of the
same colony or an alien. The acceptance or rejection of an individual depends on
the degree of overlapping between its own chemical reference (sensory template)
and the chemical signature of the encountered individual. Beside their role in
nest-mate discrimination several lines of evidence indicate that cuticular com-
pounds provide information about fertility status, caste/task recognition or kin
recognition [1,4].

The HCs are biosynthesized in the abdomen close to the integuments prob-
ably in the oenocytes cells as in other insects [15]. They are secreted to the
epicuticule or transported in the hydrophobic core of a lipoprotein: the high
density lipophorin (HDLp) [15]. These long chain HCs are also found in a spe-
cific ant gland: the postpharyngeal gland (PPG). The PPG is an exocrine gland
and allows the secretion or HCs exchanges through oral contact (trophallaxis)
and grooming [16,15]. Generally two models are proposed to explain the elabo-
ration of the colonial identity. The first one is the individualistic model where
each member bears its determined odour and it’s individually recognize by the
other members of the colony. In ant species with large colonies, individual ant
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recognition becomes difficult and evolution favoured the emergence of a colonial
odour where all individuals of the colony share their recognition cues to form a
gestalt colony scent [17]. This gestalt model predicts that ants have to exchange
HCs constantly each other to maintain themselves within the colonial odour. It
was demonstrated that the PPG play a key role in this mechanism constitut-
ing a colonial odour reservoir. The HCs stored on the PPG are congruent with
those find in the cuticule, this suggest that the PPG contains the recognition
cues. An ant bearing alien PPG HCs becomes aggressive to nestmates, whereas
an alien ant treated with PPG HCs from this colony is accepted [18]. The PPG
gland, by facilitating the exchange of substances between members of the nest
particularly by trophallaxis, promotes a fast distribution of the scent within the
colony. In species that don’t perform trophallaxis, grooming/allogrooming and
other physical contacts allow the exchange of the body odour. The social interac-
tions are crucial for the individual integration in the colony. A study of Dahbi et
al [19] in the genus Cataglyphis identifies a total of 242 different hydrocarbons.
The chemical repertoire in ant species is generally comprises between 20 and 60
substances with a minimum of 7 HC in the ant Formica truncarum until more
than 60 HC in Pachycondyla villosa [20,15].

1.3 The Foraging Strategy in Social Insects

The foraging strategies of social insects, especially among ants and bees, show
wide diversity in their organization. There is a series of factors which influences
the choice of a particular foraging strategy, like the colony size (1), the size,
proximity and predictability of food sources (2), the risks of predation and com-
petition with other colonies (3), and variations in the degree of cooperation that
occurs among foraging workers (4).

For the ant Lasius niger, for example, if a sugar solution is placed in the
vicinity of the nest, after some time, a single forager will discover the sugar
then through a recruitment process, a large number of foragers will build up
rapidly at the food source. The increase of the number of individuals to this
food source follows a logistic curve that reaches a plateau. The ants move along
a pheromone trail that they create and they reinforce this trail with additional
pheromone when they have ingested food and return to the nest and when they
are following the pheromone trail on a subsequent journey back to the food
source. The initial exponential growth phase is the consequence of this positive
feedback process: each ant returning from the food source can stimulate many
other nest mates to forage, which in turn stimulate others, and so on. When
all the available foragers have been recruited no new ones are left to join the
foraging system and the plateau phase is reached. This ant’s recruitment system
facilitates efficient collective decision making, allowing the colony to select the
most profitable of an array of food sources in a heterogeneous environment.

But in the field foraging ants are in competition with ants coming from other
colonies and can be in contact with trail pheromone laying by individuals from
other colonies of the same specie or from other ant species. This pheromone can
be recognized partly by the individuals of the considered colony.
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The trail pheromone is generally a mixture of chemicals and different specific
ratio from this chemicals produce different effects on the individuals [21]. Several
compounds can be common to different pheromones produced by different species
and a specific trail pheromone can be recognized and followed by individuals
from other species. Moreover, in number of species it was reported the absence
of species specificity in the chemical recruitment trails [22]. In many Myrmica
ants species, trail fallowing is released by the same 3-ethyl-2,5-dimethylpyrazine
compound. In several myrmicine genera, such as, Tetramorium, Messor, Myrmica
or Atta, the pyrazines have bee identified as trail pheromones. Another example
is giving by the two closely related ant species Aphaenogaster cockerelli and A.
albisetosus. A. cockerelli follows only its own trail whereas A. albisetosus respond
to the trail laying by both species. In addition, it should be said that in many
other species, from the Myrmica genera for example, anonymous recruitment
signals composed of a species-specific mixture of hydrocarbons, are used as home
range markers and recognized by nest-mates [23].

The aim goal of this work is to study which will be the influence, on the
collective food recruitment behaviours, of different and partially recognizable
chemical signals product by individuals coming from different colonies or dif-
ferent species in presence of two equal food sources. We developed a theoretical
model based on a differential system of equations, inspired from the Deneubourg
model in order to analyze the influence of the level of recognition of a foreign trail
pheromone scent on the collective foraging strategies developed by the scouts of
two ant colonies that exploit the same set of food sources. To take in account
the random aspect that characterize the recruitment dynamic, we also made
a series of numerical Monte Carlo simulations based on the same mechanisms
defined in the differential equations model. Recruitment is often seen as the
archetype of amplification mechanism leading to collective decision. We could
have chosen another type of behaviour like aggregation, collective homing or
swarming and colony fission. The main idea is to see which collective behaviour
will emerge when members of sub-groups with their own chemical signal may
interact.

2 The Mean Field Model

The model, based upon empirical findings about the behaviour of the individual
ants, describes the evolution of the concentration of trail pheromone and, as a
consequence, the traffic of ants over each trail. It is an extension of a model
that has already been applied to different types of choice experiments [11]. The
ant departure from the nest to the food source is based on the probability φ
(sec−1) to leave the nest per time unit (the flow of departure). They leave the
nest at a constant rate ingest food and promptly return to the nest laying a
trail pheromone. One can quantify the ant decision at a choice point by equa-
tion (1) that depends on the values of the pheromone concentration ci on each i
trail [11]:
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Pi =
(k + ci)n

s∑
i=1

(k + ci)n

i = 1, ..., s (1)

– n determines the level of nonlinearity in the response.
– k correspond to the intrinsic degree of attraction of a unmarked branch.

On its return journey from a food source, each ant lays a quantity of pheromone
q. Since, in this case the time needed to visit the food sources and return is
equal for both sources; we neglect the time delay between the choice and the
ant’s return. The evaporation rate of the trail pheromone will be proportional to
the pheromone concentration and to a constant ν. This constant is the inverse
of the mean-live time of the trail pheromone. Thus, pheromone concentration is
directly proportional to the flux of individuals (φ) in the system. At each unit
of time a quantity qφPi of pheromone is added to the trail i and νci is the rate
of evaporation of this trail pheromone. We normalize the equation in relation to
ν and k by replacing ci and φ respectively by Ci = ci/k and Φ = qφ/ν. These
relationships can be expressed in the following system of s differential equations
which describe the rate of change in concentration of pheromone on trails 1 to s.

dCi

dt
= ΦPi − Ci i = 1, ..., s (2)

At the following, we will consider that we are in presence of g groups of for-
agers belonging g different strains. Each group have its own blend of pheromone
(for example a mix of trail pheromone and footprint hydrocarbons) that may
influence the decision of the individuals of the others groups. The probabil-
ity to follow a trail increases with the concentration of the pheromone on each
branch deposited by the individuals of the different groups (see Fig. 1). The trail
pheromone of one group can be partially recognized by the other. The influence
of individuals to the same group is more important than that of individuals be-
longing to the other group. To take this in account, we will include to equation
(1) a parameter βjl of inter-attraction between groups l and j.

Pil =

(1 +
g∑

j=1

βjlcil)n

s∑
i=1

(1 + βjlcil)n

j, l = 1, ..., g and i = 1, ..., s (3)

Pil is the probability for an individual of the group l to choose the trail i.
These probabilities will be increase with the concentration of the pheromone

on each branch deposited by the individuals of the different groups adjusted
by the parameter 0 ≤ βjl ≤ 1 that measures the level of recognition between
both trails odour. βjl = 0 corresponds to two independent groups and βjl = 1
to an identical signal for the group j and l (βll = 1). We will suppose that
the inter-attraction of group j on group l is the same that l on j and from
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then βjl = βlj and all the parameters q, n, and ν are identical for the different
groups-pheromones. The rate of change in concentration of pheromone on trail
i for the group l can be expressed with taking into account the expression (2)
and (3):

dCil

dt
= ΦPil − Cil (4)

3 Results

At the stationary states, the flow of individuals of group l choosing the path
i, is proportional to Cil. For two groups and two food sources, the system has
four types of stationary states corresponding to different distributions of the
individuals around the food sources (summarized in Fig. 1).

(1) The Symmetrical State: The pheromone concentrations are equal on
both paths and for both groups: Cij = Φ/2 and the flows of both groups are
equal on each trail. This symmetrical state exists for all the values of Φ and β.
The stability analyse shows that this solution is only stable for low flux values:

Φ <
2

1 + β
(5)

As 0 ≤ β ≤ 1, this implies that for φ > 2, Cij = φ/2 is always unstable.

(2) The Aggregative States: The activity of the two groups is focused on
the same food source meaning both group have selected the same branch. The
pheromone concentrations are equal for both groups on both branches. However,
the selected branch presents a higher concentration than the non selected one.
The selected branch is chosen randomly (i.e. with a probability of 0.5). This is
summarised by the formula C11 = C12 < C21 = C22 or C11 = C12 > C21 = C22.
These solutions are:

C11 = C12 =
Φ

2
± 1

2

√
Φ2 − 4

(β + 1

2

C21 = C22 = Φ − C11

These stationary states exist if Φ > 2/(β +1) and under this condition is always
stable for any value of Φ and β. In this case, the flows of both groups along one
trail are equal.

(3) The Segregative States: The majority of the individuals of one strain
focus their activity on a branch and the individuals of the second strain on the
other one In this case, the segregative steady states are C11 = C22C21 = C12. In
this case the pheromone concentrations are giving by:

C11 = C22 =
Φ

2
± 1

2

√
Φ2 − 4(Φβ + 1)2

(β − 1

2

C21 = C12 = Φ − C11
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The segregative states exist if Φ > 2/(1 − 3β) and never appear for β > 1/3.
They are stable under the condition:

Φ >
2(1 + β)

1 − β2 − 4β
(6)

The stability of the segregative states depends on the level of recognition between
the trails of the groups (β) but also on the flux of individuals. The lower the flux,
the lower must be β to observe a stable split or segregation between both groups.
Moreover, for β >

√
5 − 2 ≈ 0.236, the segregative state are always unstable.

(4) The Mixed States: In this case C11C22C21C12, the pheromone concentra-
tions and the traffic are different on both trails and for both groups. The four
combinations of solutions are:

C11 =
Φ

2
± 1

4

√
−A − 2

√
B

D
C21 = Φ − C11

C12 =
Φ

2
∓ 1

4

√
−A + 2

√
B

D
C22 = Φ − C12 (7)

C12 =
Φ

2
± 1

4

√
−A − 2

√
B

D
C22 = Φ − C11

C11 =
Φ

2
∓ 1

4

√
−A + 2

√
B

D
C21 = Φ − C12

A = 2(β − 1)2(2 + Φ + Φβ)(Φβ3 + 2β2 + 3Φβ2 − Φβ + Φ − 2)
B = (β − 1)3(β + 1)3(2 + Φ + Φβ)2(Φβ2 + 2β + 4Φβ − Φ + 2)

∗(Φβ2 + 2β + 2Φβ + Φ − 2)
D = 1 − 2β2 + β4

These four stationary states are always unstable and exist if Φ > 2(1+β)
(1−β2−4β) .

They never exist for β >
√

5 − 2 .
The bifurcation diagrams show the value of the stationary states (the trail

concentration for one group on one of the two branches) and their stability as
a function of the individual flux Φ for a recognition parameter of β=0.22 (Fig.
2A) and as a function of the recognition factor β for a flux of Φ=10 (Fig. 2B).
For Φ > 2 the solution C11 = C12 ≥ C21 = C22 (aggregative state) exists and is
always stable (Fig. 2). The segregative state (C11 = C22 �= C21 = C12) becomes
stable only for large value of Φ (> 34) when β=0.22. For Φ=10 (Fig. 2B) the
aggregative state is always stable and the segregative states are stable for small
value of β. When β < 0.185, the segregative states become unstable.
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Fig. 1. A: Schema representing the different states of the model. Individuals from the
two strains can choose between the two branches of the bridge leading to two identical
food sources equidistant from the nests (I: the symmetrical state; II: the aggregative
state; III: the segregative state and IV: the mixed state). Areas of the existence of the
solutions (B) and the stability of the solutions (C ) as a function of β and Φ.

Fig. 2. Concentrations values of the trail odour for strain 1 on branches 1 of the bridge
as a function of Φ for β=0.22 (Fig. 2A) and as a function of β for φ=10 (Fig. 2B). - -
- - - - Unstable states

The space phase allows to illustrate the dynamics of the system. Figures 3
represent these spaces phase diagrams putting the values of the trail odour con-
centration on one branch for one group (C11) in function of the trail odour
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concentration on the same branch for the other group (C12). For low flux values
of Φ=1 and low recognition β=0.1 (Fig. 3A) only the symmetrical state exists.
When Φ is large and β small (β=0.1) all the states appear (Fig. 3B). The un-
stable mixed states surround the segregative one and will tend randomly to the
aggregative or the segregative states that are stable for these parameters values.
Figure 3B shows that the basin of attraction of the segregative states is small
compared to those of the aggregative states. So despite the fact that both so-
lutions are stable, the system is characterized by a higher probability to adopt
one of the aggregative states. For Φ=10 and β=0.25 (Fig. 3C) the mixed state
disappears and the system tends to the stable aggregative states. For β > 0.33
(Fig. 3D) just the symmetrical and aggregative states remain and the individuals
from the two groups aggregate using the same path and visiting the same food
source.

Fig. 3. Space phase representing the values of the trail odour concentration on one
branch for one group (C11) in function of the trail odour concentration on the same
branch for the other group (C12) for different values of Φ and β. Agr: aggregative state;
Seg: segregative state, Sym: symmetrical state, Asym: mixed state.

4 Discussion

The choice function Pi (1) implies that the emission of a trail pheromone in-
creases the probability to choose one branch and to lay an additional quantity of
trail odour on it. With one unique strain, a bifurcation appears in the exploita-
tion pattern of the food sources leading to the collective selection of only one
path. In the present model the choice function Pil (3) assumes that the chemical
signal of one group increases the probability of the other group to choose the
same path. The pattern obtained by the recruitment amplification mechanism
depends on the size of the groups in one hand and in the other hand on the
level of discrimination between strain odours. For small population size, the in-
dividuals distribute themselves in a symmetrical way on the two food sources i.e.
both branches are concomitantly exploited by both groups. As soon as the flow
exceeds a certain threshold (= 2/(1+β) ), the pattern switches to an aggregative
or segregative state depending on the β value that measures the level of strain
odours recognition. For low values of β (< 0.25), groups can segregate on the food
sources because the odour signal from the other strain plays only a little role on
the amplification process in comparison with its own trail odour. For these small
values of β, aggregative states are also stable. The choice between segregative
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or aggregative solutions is random. However, the analysis of the model shows
that the selection of the aggregative states is dominant due to the relative size
of their attraction basins. As soon as β reached a critical value (β > 0.24), the
two groups focus their activity on the same food source. To summarize, our re-
sults show that a good discrimination between groups (corresponding to a weak
inter-attraction between them) is unable to keep segregative states between the
groups when the individuals rely solely on the amplification mechanisms pre-
sented here. Moreover, the model shows that a collective behavioural plasticity
occurs without the need of changing the individual behaviour or the communi-
cation system. The analysis for more than two groups and/or more than two
sources (not summarise in this paper) predicts similar collective response and
mainly the systematic aggregation between groups with a weak inter-attraction
between them. This could be the case for many gregarious arthropods species
that form aggregates which persist due to attraction modulated by chemical
and thigmotactic signals or for insect societies that organise items or workers
spatially [12]. Many other collective behaviours in social insects, like swarming,
food recruitment or defence are processes where amplification mechanisms are
involved [14,24,13]. Our results allow to understand why during these collective
behaviours there is no evidence of kin-discrimination even if an individual is able
to perform such discrimination [8,6,7].

The value of the recognition parameter β expresses the capability to respond
to a signal of another individual belonging to a different group. If β =0, the
individual is blind to this signal. We may formulate different hypothesis on the
origin of this recognition factor. For social insects and many other arthropods,
the communications are largely based on pheromones such as trail pheromones,
cuticular hydrocarbons, Values of β may correspond to a certain overlapping
between the chemical signatures of two groups. This chemical profile is under
genetic control but is also determined by the environment and food consumption.
So, genetic proximity or sharing common resource may increase the similitude
between two signals and contribute to large value of β. In recruitment, the am-
plification can be mediated by generic signals common to all individuals (e.g. the
trail pheromone) and specific signals such as the cuticular hydrocarbons (Lasius
sp). In these situations, the value of parameter β is mediated by the relative
contribution of the generic and specific signals.

In this model we considered that β was a constant and mutually equal for
the two groups. In social insects there exist genetic determinants to explain
behavioural differences among workers of a colony. However, the interactions
between individuals may lead to a mixing of the different chemical signatures
and to the apparition of a blended signature one that is also observed between
different species. Our theoretical results suggest that a weak inter-attraction
between groups is enough to increase the interactions between individuals from
the different groups. These interactions will accelerate the apparition of a new
common blend.

One of the main hypotheses of the model is that the resources are abundant
and no crowding reaches significant level. We have shown that in such conditions,
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where competition is weak between individuals, the system adopts aggregative
states. Preliminary analysis of a modified version of the model that includes
crowding effects or limitation of the resource shows that the segregative states
are favoured, but the aggregative states are still possible for a vast region in
parameter space. A second important hypothesis of the model is that there is no
agonistic behaviour between the individuals of the different groups. However, if
such antagonistic behaviours are not too strong, qualitatively similar results are
still found. Its main consequence is the shift of the β threshold leading to the
aggregative state to higher value. A third simplification is the lack of modulation
of the emission of the signals as a function of intensity of the other group’s signal.
Such modulation would favour the aggregative state. The last simplification is
the lack or learning capabilities that seems involved in recognition. However as
for the mixing of the chemical signatures and the modulation of the emission,
learning must favour integration of different groups [25].

This simple model shows that collective choice can be shared by different
groups without the need of specific signals or sophisticated behavioural.
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Abstract. Ant colony optimization (ACO) algorithms construct solu-
tions each time starting from scratch, that is, from an empty solution.
Differently from ACO algorithms, iterated greedy, another constructive
stochastic local search method, starts the solution construction from par-
tial solutions. In this paper, we examine the performance of a variation of
MAX–MIN Ant System, one of the most successful ACO algorithms,
that exploits this idea central to iterated greedy algorithms. We consider
the quadratic assignment problem as a case-study, since this problem was
also tackled in a closely related research to ours, the one on the usage
of external memory in ACO. The usage of external memory resulted in
ACO variants, where partial solutions are used to seed the solution con-
struction. Contrary to previously reported results on external memory
usage, our computational results are more pessimistic in the sense that
starting the solution construction from partial solutions does not neces-
sarily lead to improved performance when compared to state-of-the-art
ACO algorithms.

1 Introduction

Ant colony optimization (ACO) algorithms generate candidate solutions for an
optimization problem by a construction mechanism where the choice of the solu-
tion component to be added at each construction step is probabilistically biased
by (artificial) pheromone trails and heuristic information [1]. In usual ACO al-
gorithms, each (artificial) ant starts from an initially empty solution and adds
solution components to its current partial solution until a complete candidate
solution is obtained.

In this article, we examine the possibility of changing this choice by starting
the solution construction from partial solutions that are obtained by removing
some solution components of an ant’s current solution. This modification of
ACO algorithms is in large part inspired by the iterated greedy (IG) method.
IG algorithms iterate over construction algorithms in the following way. Given
some initial solution s, first some solution components are removed, resulting in
a partial candidate solution sp. Starting from sp a complete candidate solution s′
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is reconstructed by a greedy construction heuristic. An acceptance criterion then
decides from which of the two solutions s and s′ the next iteration continues.
IG algorithms are at the core of high-performing algorithms for the set covering
problem [2,3,4] and are state-of-the-art for the permutation flow-shop problem
[5]. The idea underlying IG can easily be transferred to ACO. The extension
followed here essentially says that some solution components of an ant’s current
solution are removed according to some rule and complete candidate solutions
are reconstructed, following the usual construction rules of ACO algorithms. We
integrate this process into the MAX–MIN Ant System (MMAS) algorithm
[6], resulting into an iterated ants MAX –MIN Ant System (iaMMAS).

Another line of research relevant for this paper is the usage of external mem-
ory in ACO algorithms as proposed in the papers by Acan [7,8]. There, external
memory involves the storage of partial solutions extracted from the best solutions
obtained after each iteration of the ACO algorithm. Essentially, the partial so-
lutions comprise a number of randomly chosen solution components of complete
solutions. From these partial solutions, an ant chooses one according to a selec-
tion scheme that gives preference to better partial solutions. This idea was tested
by Acan using a modified MAX–MIN Ant System algorithm for the Traveling
Salesman Problem [7] and the Quadratic Assignment Problem (QAP) [7,8] as
a case study. Although in these papers the “iterated ants” variant of MMAS
was shown to reach better average solution qualities than a re-implementation of
MMAS, the overall computational results were rather poor (in fact, by far worse
than previously published results with MMAS, as can easily be seen when com-
paring the results across the papers [6] and [7,8]). The reason for this discrepancy
may be that no well performing local search was included to improve the ants’
solutions. Differently, in this article we extend a high-performing ACO algorithm
by the iterated ants idea, namely the MAX–MIN Ant System algorithm for
the QAP by Stützle and Hoos [6], which is known to be a high performing ACO
algorithm for the QAP [9]. This is done because we consider the ability to reach
or surpass state-of-the-art performance a clear-cut and desirable benchmark for
the significance of new features that are introduced in ACO algorithms.

The remainder of this article is structured as follows. In Section 2 we give
the most important details of the MMAS application for the QAP and the
extension we used to implement the iaMMAS algorithm. Section 3 gives the
results of an extensive computational study and we conclude in Section 4.

2 QAP, MAX–MIN Ant System and Iterated Ants

Quadratic Assignment Problem. The QAP is a widely studied NP-hard
problem [10] that models many real-life problems arising in the location of facil-
ities like units in a hospital or the layout of keyboards [11,12]. In the QAP, one
is given two n×n matrices A and B, where aij is the distance between locations
i and j and bkl is the flow (e.g. of material, patients etc.) between units k and
l. The cost contribution of assigning units k and l to locations i and j, respec-
tively, amounts to aij · bkl and the goal is to minimize the cost arising from all
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interactions. A solution for the QAP can be represented by a permutation π,
where π(i) gives the unit assigned to location i. The objective function of the
QAP is

f(π) =
n∑

i=1

n∑
j=1

aij · bπ(i)π(j). (1)

The QAP is one of the hardest optimization problems to solve to optimality.
Currently, Stochastic local search (SLS) algorithms define the state-of-the-art
approaches for finding near-optimal solutions in a reasonable amount of time
[13]. Among the various available SLS methods, ACO has shown to be very
successful on the QAP [9] and MMAS to be among the top performing ACO
algorithms for this problem [6].

MAX–MIN Ant System for the QAP (MMAS-QAP). In MMAS-
QAP, the artificial pheromone trails τij give the desirability of assigning a unit j
to location i. The solution construction of an ant in MMAS-QAP is done by first
ordering the locations randomly and then assigning in the logical construction
step l a unit to the location at the lth position. The probability of assigning a
still unassigned unit j to a location i in this step is given by

pij =
τij∑

k∈N (i) τik
, (2)

where N (i) is the set of still unassigned units, that is, those units that are
still to be assigned to some location. Two remarks are noteworthy here: First,
MMAS-QAP does not use any heuristic information in the solution construc-
tion. Second, two variants of MMAS-QAP were proposed – a first one makes at
each construction step a probabilistic choice according to Equation 2 [6], whereas
a second one uses the pseudo-random proportional action choice rule originally
proposed for Ant Colony System [14]. Here we focus on the first version. The
pheromone update in MMAS-QAP is done by lowering the pheromone trails
by a constant factor ρ and depositing pheromone on the individual assignments
of either the best solution in the current iteration, the best solution found so
far by the algorithm or the best solution found since the last re-initialization
of the pheromone trails. A pheromone reinitialization is triggered if the branch-
ing factor is below a certain threshold and for a given number of iterations no
improved candidate solution has been found. For details on MMAS-QAP and
its parameter settings we refer to [6] (the only difference to the earlier proposed
parameter settings was the usage of a setting of ρ = 0.1 instead of the earlier
ρ = 0.8 because of a slightly improved performance).

MMAS-QAP uses local search for improving each candidate solution gen-
erated by the ants. Here we use an iterative improvement algorithm in the 2–
exchange neighborhood, where two candidate solutions are neighbored if they
differ in the assignment of exactly 2 units to locations. The local search algorithm
uses a best-improvement pivoting rule.

Iterated Ants. In ACO algorithms, candidate solutions are generated by start-
ing each solution construction from scratch. However, other constructive SLS
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procedure Iterated Greedy
s0 := GenerateInitialSolution
s := LocalSearch(s0)
repeat

sp := Destruct (s)
s′ := Construct(sp)
s′ := LocalSearch(s′) % optional
s := AcceptanceCriterion (s, s′)

until termination condition met
end

Fig. 1. Outline of an IG algorithm. sp is a partial candidate solution.

methods are known that use repeated solution constructions as well but start
from partial solutions – this is the central idea of iterated greedy (IG). IG al-
gorithms start with some complete candidate solution and then cycle through
a main loop consisting of three procedures; first, a procedure Destruct removes
from a complete solution s a number of solution components, resulting in a par-
tial candidate solution sp. Starting from sp, a complete candidate solution s′ is
reconstructed by a procedure Construct and finally, a procedure AcceptanceCri-
terion decides whether the next iteration is continued from s or s′. In addition, it
is straightforward to include a local search procedure that improves a candidate
solution once it is completed by Construct. This results in the overall outline of
an IG algorithm that is given in Figure 1.

Iterated ants applies the central idea underlying IG to ACO. This can be done
in a rather straightforward way by considering each ant as implementing an IG
algorithm. That is, an individual ant follows the steps of an IG algorithm and,
hence, the solution construction in the ACO-IG hybrid algorithm starts from
a partial solution that is obtained from deleting solution components from a
complete candidate solution of an ant. The solution construction by the ants
follows the same steps as usual in ACO algorithms, that is, solution components
are added taking into account pheromones and possibly heuristic information.

In this article, we integrated this idea directly into the MMAS algorithm
and tested it for the QAP. We study the behavior of the algorithm consider-
ing various choices for the procedures Destruct, where we varied the choice of
how solution components are removed from complete solutions, how many so-
lution components are removed, and the type of pheromone update chosen in
the algorithm. (Note that removing a solution component for the QAP refers to
undoing an assignment of a unit to a location). For the solution components to
be removed, we study three variants.

– rand: the solution components to be removed are chosen randomly according
to a uniform distribution.

– prob: the probability of removing a solution component is proportional to
the corresponding pheromone trail τij , that is, the higher the pheromone
trail, the more likely it is to remove a solution component.
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– iprob: the probability of removing a solution component is inversely propor-
tional to the associated pheromone trail τij , that is, the lower the associated
pheromone trail, the more likely it is to remove a solution component.

Regarding the number of solution components to be removed we consider two
different possibilities.

– fixed(k): Of each ant exactly k solution components are removed, where k
is a parameter. In the experimental study, various values for k were tested.

– variable: In this case, the number of solution components to be removed is
not fixed a priori, but is maintained variable similar to how the perturbation
strength is modified in the simple variable neighborhood search: if for a
current value k no improved solution is obtained for the ant, we set k := k+1;
otherwise, k is set to some minimum value.

Finally, we also consider two possibilities for the pheromone update rule in
MMAS-QAP.

– gb+: The pheromone update rule is the very same as the one used in the
original MMAS-QAP algorithm.

– gb−: The best-so-far candidate solution and the best candidate solution since
the pheromone re-initialization are not taken into account when depositing
pheromone, that is, only the iteration-best ant deposits pheromone.

3 Computational Study

We tested iterated ants for the QAP on eight instances ranging in size from
n = 30 to n = 100 from QAPLIB [15]. The eight instances are chosen such
that they have different instance characteristics, representative for most of the
available QAP instances that can be found at QAPLIB. The tested instances
include (i) instances where both matrix entries are generated according to a
uniform distribution, (ii) instances where the distance matrix corresponds to the
Manhattan distances between locations on a grid, (iii) some instances derived
from real-life applications of the QAP, and (iv) randomly generated instances
that resemble the structure of real-life QAP instances.

All the experimental results, except where indicated differently, are measured
across 25 independent trials of the algorithms and the code was run on a IBM
X31 ThinkPad-Notebook with a Pentium M 1.5 GHz processor, 512 MB RAM
and 1024 kB L2-Cache. For all instances we first ran the reference strategy,
MMAS-QAP for 500 iterations and measure the average time to finish the
trials. This stopping time was then taken as the termination criterion for all
variants; that is, all variants were given the same computation time. We com-
pare the algorithms using the average percentage excess over the best-known
solutions (proven optimal solutions are only available for two instances kra30a
and ste36a) and for each comparison we use the non-parametric Wilcoxon test
to check the statistical significance of the observed differences in performance.
For each comparison, we give the corresponding p-values (we assume a test-wide
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Table 1. Comparison of variant var-rand-gb+ and var-rand-gb− . The best results
for each instance are indicated in bold-face.

tai60a tai80a sko81 kra30a ste36a tai60b tai80b tai100b
var-rand-gb+ 1.93 1.50 0.23 0.36 0.21 0.23 0.66 0.38
var-rand-gb− 2.03 1.54 0.23 0.21 0.27 0.07 0.48 0.32

p-value 0.2810 0.9062 0.4576 0.9938 0.9062 0.4676 0.1545 0.6994

Table 2. Comparison of variant var-prob-gb+ and var-prob-gb− . The best results
for each instance are indicated in bold-face.

tai60a tai80a sko81 kra30a ste36a tai60b tai80b tai100b
var-prob-gb+ 1.99 1.60 0.27 0.25 0.33 0.26 0.79 0.35
var-prob-gb− 2.04 1.58 0.26 0.19 0.48 0.11 0.54 0.31

p-value 0.4676 0.9062 0.2810 0.9938 0.2810 0.2810 0.1545 0.1545

α-level of 0.05 when speaking of statistical significance). Note that in the case
of multiple, say x comparisons, we assume to use Bonferroni corrections [16],
that is we only speak of statistical significance if the p-values are lower than
α/x. If the hypothesis test on equal performance between two algorithms is to
be rejected, we will indicate this by marking the given p-values in boldface.

3.1 Study of iaMMAS Parameters

In this section, we present the results on the parameter settings for the
iaMMAS-QAP algorithm, while the next will be concerned with a comparison
with MMAS-QAPand an analysis of the run-time behavior of iaMMAS-QAP.
In what follows, we refer to the variants by using abbreviations in dependence
of the choice for the three strategies; for example, var-rand-gb+ refers to the
variant that uses a variable number of components to delete, deletes randomly
chosen components, and uses the usual MMAS pheromone update rule with
the best-so-far update.

Pheromone Update. First, we tested the two possible variants for the pher-
omone update, namely gb+ and gb−. In this test, we used only the variable
strategy for the number of solution components to be removed and we consid-
ered all three possible choices of {rand, prob, iprob}. The results in Tables 1
to 3 show that the differences between the two strategies gb+ and gb− are, in-
dependent of the way solution components are removed, rather minor and most
of the observed differences are statistically insignificant. Since gb+ turned out
to be superior for the few cases where statistically significant differences were
observed, we continue to use this one for the remainder of the paper. (Note
that additional tests confirmed that this conclusion is the same if the fixed(k)
strategy were chosen.)

Strategies for Choosing Solution Components for Removals. As a next
step we examined the influence of the type of deletions of solution components,
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Table 3. Comparison of variant var-iprob-gb+ and var-iprob-gb− . The best results
for each instance are indicated in bold-face.

tai60a tai80a sko81 kra30a ste36a tai60b tai80b tai100b
var-iprob-gb+ 1.77 1.38 0.18 0.45 0.12 0.17 0.52 0.32
var-iprob-gb− 2.00 1.51 0.20 0.37 0.17 0.18 0.49 0.28

p-value 0.0002 0.0148 0.4676 1.0000 0.9062 0.9938 0.6994 0.9062

Table 4. Comparison of the variants var-rand-gb+ , var-prob-gb+ and
var-iprob-gb+

tai60a tai80a sko81 kra30a ste36a tai60b tai80b tai100b
var-rand-gb+ (1) 1.93 1.50 0.23 0.36 0.21 0.23 0.66 0.38
var-prob-gb+ (2) 1.99 1.60 0.27 0.25 0.33 0.26 0.79 0.35
var-iprob-gb+ (3) 1.77 1.38 0.18 0.45 0.12 0.17 0.52 0.32

p-value (1)/(2) 0.4676 0.1545 0.0366 0.9062 0.2810 0.0158 0.2810 0.2850
p-value (1)/(3) 0.0063 0.0056 0.2810 0.6994 0.2810 0.9062 0.1545 0.9938
p-value (2)/(3) 0.0002 ≈ 0 0.0002 0.6994 0.0783 0.0063 0.0023 0.9062

which is one of {rand, prob, iprob}. The computational results in Table 4 in-
dicate that the strategy iprob gives best overall results. On many instances
the performance of iprob is statistically better than that of prob and for all
instances the average solution quality obtained by iprob is better than that
of rand. Note that iprob corresponds to an intensification of the search com-
pared to the other two variants, since assignments that have associated a high
pheromone value are more likely to remain in partial solutions.

Number of Removals. In a final step we examined the influence of the two
strategies for removing solution components (variable vs. fixed(k)) and for
the latter also the setting for the parameter k that determines how many solution
components are removed. (The results of var-iprob-gb+ can be taken from
Table 4.) Ideally, we would see a pattern that suggests good settings for k. Yet,
an inspection of Table 5 shows that there is no clear trend observable (best
average performance is in boldface). One may tentatively conjecture that except
for two instances with uniformly random distance and flow matrices (tai60a
and tai80a) the number of solution components to be removed can be large,
to be on the safe side (note that for four of the instances the lowest average
deviation from the best known solutions is reached for the highest value for the
parameter tested).

3.2 Comparison of MMAS and iaMMAS

As a next step we compare the performance of the original MMAS-QAP with
iaMMAS-QAP. Before the comparison in terms of solution quality reached, we
first consider the difference in the number of iterations applicable in an a priori
fixed computation time for all variants.



186 W. Wiesemann and T. Stützle

Table 5. Comparison of various values for parameter k in variant
fixed(k)-iprob-gb+ . The best results for each instance are indicated in bold-face.

tai60a tai80a sko81 kra30a ste36a tai60b tai80b tai100b
k = 10 1.59 1.24 0.17 0.79 0.24 0.27 0.86 0.61
k = 20 1.68 1.38 0.11 0.22 0.31 0.11 0.25 0.11
k = 30 1.43 1.57 0.07 – 0.06 0.17 0.42 0.10
k = 40 1.53 1.37 0.11 – – 0.25 0.58 0.16
k = 50 1.69 1.36 0.10 – – 0.00 0.47 0.10
k = 60 – 1.32 0.01 – – – 0.31 0.10
k = 70 – 1.28 0.12 – – – 0.38 0.07

Table 6. Execution time for trials of 500 iterations for the reference strategy on the
tested instances. Given are the 0.25, 0.5, and 0.75 quantiles of the measured times.

tai60a tai80a sko81 kra30a ste36a tai60b tai80b tai100b
q0.25 8.57 20.22 25.81 1.30 2.35 10.87 26.15 51.12
q0.5 8.61 20.35 25.89 1.31 2.37 10.97 26.41 52.19
q0.75 8.64 20.49 26.08 1.31 2.37 11.00 26.87 53.05

Speed. Table 6 gives the computation times MMAS-QAP requires to complete
500 iterations, while Table 7 summarizes the number of iterations the three
variants can apply until meeting the termination criterion (median time taken
by MMAS-QAP). The data show that the variable strategy and the setting
k=30 for most instances can do many more iterations than MMAS-QAP in the
same time. This is in part due to the more rapid solution construction. However,
in the QAP the interpretation of this increased number of iterations must be
slightly different, because about 98% of the computation time are taken by the
local search. Hence, an explanation for the increased number of iterations is
rather that the solutions generated by the iterated ants require less iterations of
the iterative improvement local search, probably because a part of the solution
is maintained from a previous local optimum. (Recall that in our algorithm we
make the common use of local search in ACO and that removals of solution
components start from locally optimal solutions.)

Comparison Based on Summary Statistics. Now we compare the perfor-
mance of the reference strategy, MMAS-QAP, to the best performing variant
using the variable strategy and two parameter setting for the fixed(k) strat-
egy – one keeping k = 30 constant and one choosing for each instance the settings
that gave the best average solution quality. The comparison to the latter case
is certainly unfair; however, it is interesting because it gives an impression of
what would be the best-case performance if for each instance we would know
a priori the appropriate parameter setting for the fixed strategy. The average
solution quality reached by each of the four algorithms is given in Table 8. In
Table 9 we give the p-values for the comparisons among the results, indicating
those comparisons where the difference would be statistically significant. As it
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Table 7. Number of iterations for variants var-iprob-gb+ (var),
fixed(30)-iprob-gb+ (k=30) and fixed(kopt)-iprob-gb

+ (k = kopt). Given are
again the corresponding 0.25, 0.5, and 0.75 quantiles.

tai60a tai80a sko81 kra30a ste36a tai60b tai80b tai100b

var

q0.25 864 888 1016 884 991 1006 1033 1030
q0.5 868 890 1019 913 1010 1029 1040 1033
q0.75 872 893 1027 925 1021 1053 1049 1040

k = 30

q0.25 647 418 576 482 574 718 724 700
q0.5 678 420 719 485 578 723 739 729
q0.75 690 558 789 490 583 728 748 761

k =
kopt

q0.25 647 841 600 638 574 563 616 583
q0.5 678 844 607 646 578 566 641 599
q0.75 690 845 611 650 583 570 733 608

Table 8. Average percentage deviation from best known solutions for MMAS-QAP
(ref), the best variable strategy, and two fixed settings. The lowest average percentage
deviations on each instance are indicated in boldface.

.

tai60a tai80a sko81 kra30a ste36a tai60b tai80b tai100b
ref 0.13 0.13 0.09 1.60 0.00 1.29 0.06 0.14

variable 0.45 0.18 0.12 1.77 0.17 1.38 0.52 0.32
k=30 – 0.07 0.06 1.43 0.17 1.57 0.42 0.10
k=kopt 0.22 0.07 0.06 1.43 0.00 1.24 0.25 0.07

Table 9. p-values of the two-sided Wilcoxon tests comparing the algorithms’ per-
formance. We indicate in boldface the results that are statistically significant after
α-corrections according to Bonferroni.

.

tai60a tai80a sko81 kra30a ste36a tai60b tai80b tai100b
r/v 0.4676 0.0366 0.9938 0.0063 0.0158 0.4755 ≈ 0 0.0008

r/k30 – 0.0008 0.4676 0.1545 0.6994 0.0019 0.0063 0.1545
r/kopt 0.9938 0.0008 0.4676 0.1545 0.9999 0.6994 0.0783 0.0158
v/k30 – ≈ 0 0.2810 0.0002 0.2810 0.0056 0.0783 0.0002
v/kopt 0.6994 ≈ 0 0.2810 0.0002 0.0158 0.0783 0.0023 ≈ 0

k30/kopt – 1.0000 1.0000 1.0000 0.6994 0.0006 0.6994 0.6994

can be seen, the performance of iterated ants is roughly on par with the origi-
nal MMAS-QAP algorithm. Focusing on the variant with k = 30, we see that
iterated ants perform statistically superior only on one instance, whereas they
seem inferior on two others (other instances show no statistically significant dif-
ferences). If the best setting of k would be known a priori, the results would be
slightly more positive for the iterated ants. However, this is an ideal case and
unlikely to be reachable in practice. Finally, the variant of iterated ants where
the number of solution components to be removed is kept variable performs
worse than MMAS-QAP on all instances tested, although only on three the
differences are statistically significant.
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Comparison Based on Run-Time Distributions. In a final step we ana-
lyzed the run-time behavior of iaMMAS-QAP and compared it with that of
MMAS-QAP. For doing so, we made use of the methodology based on measur-
ing empirical run-time distributions [13]. The (qualified) run-time distribution
(RTD) characterizes for a given algorithm and instance the development over
time of the probability of reaching a candidate solution within a specific bound
on the desired solution quality. As usual, we have chosen very high quality limits
to be reached by the algorithms. In Figure 2 we show exemplary RTDs measured
across 100 trials of the algorithms on several instances; 100 trials are chosen to
make the RTDs reasonably stable. In the RTD plots we included two exponential
distributions that give an indication of whether an algorithm shows stagnation
behavior or not; one exponential distribution for the original MMAS-QAP and
one for the iaMMAS-QAP algorithm that shows best performance. (For a de-
tailed explanation of how to check for stagnation behavior see [13,17].) As it
can be seen from these plots, the iterated ants variants are somewhat prone to
stagnation behavior on instances kra30a, and tai60b, while no clear sign of
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Fig. 2. RTDs measured with respect to high quality solutions for various of the QAP
instances tested. From top left to bottom right the RTDs are given for instances
tai60a (1.5%), sko81 (0.1%), kra30a (optimum), tai60b (best–known solution value);
in parentheses are given the target solution quality for the qualified RTDs. The expo-
nential distributions in each plot indicate the idealized performance with an optimal
restart strategy (indicated by ed[d], where the value for d refers to a functional form
of ed(x) = 1 − 2−x/d).
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stagnation is detected on the other instances. MMAS-QAP, in contrast, ap-
parently does not suffer from a significant stagnation behavior on any of the in-
stances. For the algorithm variants on which stagnation behavior is observed, the
associated exponential distribution indicates the behavior if an optimal restart-
strategy or some effective diversification features would additionally be included
into the algorithm. Hence, this analysis of the RTDs suggests that the iaMMAS-
QAP algorithm could for some instances strongly benefit from such strategies,
contrary to MMAS-QAP. As a result, by investing some further work, the
iaMMAS-QAP algorithm may become (more) competitive to MMAS-QAP.

4 Discussion and Conclusions

In this paper, we examined the possibility of integrating the essential ideas of
the iterated greedy method into ACO algorithms. The computational results of
this adaptation show that the introduction of the idea of using partial solutions
to seed the solution construction of ants does not necessarily improve the perfor-
mance of a state-of-the-art ACO algorithm. This can be considered as a kind of
negative result on the combination of two SLS methods into a higher performing
algorithm, a combination that looked promising at first sight.

In fact, this negative result is a bit in contrast to the positive results reported
in an earlier, similar approach that mainly differs in the way partial solutions
are chosen by the ants [7,8]. However, these positive results were reported with
respect to a version of MMAS that performed rather poorly and for which the
reported improved performance of the extended algorithm is still far away from
the results reported here. Similarly, earlier research reported positive results for
an “iterated ants” algorithm for the Unweighted Set Covering Problem, where
standard local search algorithms appear not to be extremely high performing
[18]. While the integration of the iterated ants concept into a state-of-the-art
ACO algorithm failed to yield significant improvements, these two researches
indicate that the exploitation of the iterated ants idea could be more promising
if either the final solution quality reached by the ACO algorithm is still far from
optimal or no effective local search for a problem exists.

Acknowledgments. Thomas Stützle acknowledges support of the Belgian
FNRS, of which he is a research associate.
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6. Stützle, T., Hoos, H.H.: MAX–MIN Ant System. Future Generation Computer
Systems 16(8) (2000) 889–914

7. Acan, A.: An external memory implementation in ant colony optimization. In
Dorigo, M., et al., eds.: ANTS’2004, Fourth Internatinal Workshop on Ant Al-
gorithms and Swarm Intelligence. Volume 3172 of LNCS., Springer Verlag (2004)
73–84

8. Acan, A.: An external partial permutations memory for ant colony optimization.
In Raidl, G., Gottlieb, J., eds.: Evolutionary Computation in Combinatorial Opti-
mization. Volume 3448 of LNCS., springer-lncs (2005) 1–11
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Abstract. In this paper, we study the cooperative transport of a heavy
object by a group of robots towards a goal. We investigate the case in
which robots have partial and noisy knowledge of the goal direction and
can not perceive the goal itself. The robots have to coordinate their
motion to apply enough force on the object to move it. Furthermore,
the robots should share knowledge in order to collectively improve their
estimate of the goal direction and transport the object as fast and as
accurately as possible towards the goal.

We propose a bio-inspired mechanism of negotiation of direction that
is fully distributed. Four different strategies are implemented and their
performances are compared on a group of four real robots, varying the
goal direction and the level of noise. We identify a strategy that enables
efficient coordination of motion of the robots. Moreover, this strategy
lets the robots improve their knowledge of the goal direction. Despite
significant noise in the robots’ communication, we achieve effective co-
operative transport towards the goal and observe that the negotiation of
direction entails interesting properties of robustness.

1 Introduction

There are several advantages when using a group of robots instead of a single
one. Ideally, the behaviour of a group of robots is more robust, as one robot can
repair or replace another one in case of failure. Furthermore, a group of robots
can overcome the limitations of a single robot and solve complex tasks than can
not be solved by a single robot.

Within collective robotics, swarm robotics is a relatively new approach to the
coordination of a system composed of a large number of autonomous robots.
The coordination among the robots is achieved in a self-organised manner: the
collective behaviour of the robots is the result of local interactions among robots,
and between the robots and the environment. The concept of locality refers to a
situation in which a robot alone can not perceive the whole system. Each single
robot typically has limited sensing, acting and computing abilities. The strength
of swarm robotics lies in the properties of robustness, adaptivity and scalability
of the group [1].

Foraging has been outlined as a canonical problem by Cao et al. [2] among
those studied in collective robotics and is an important topic in swarm robotics
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too. In foraging, a group of robots has to pick up objects that are scattered
in the environment. The foraging task can be decomposed in an exploration
subtask followed by a transport subtask. Foraging can be applied to a wide
range of useful tasks. Examples of applications are toxic waste cleanup, search
and rescue, demining and collection of terrain samples.

Central place foraging is a particular type of foraging problem in which robots
must gather objects in a central place. Borrowing the terminology from biology,
the central place is also called the nest and the objects are called prey. We focus
on a specific case in which the transport of a prey requires the combined effort of
several robots. This task is called cooperative transport. Several problems need
to be solved to perform this task successfully. The coordination of the movement
of the robots is one of them. This problem has been investigated by Groß et al. [3],
in situations in which either all or some robots are able to perceive the nest.

In this paper we address the case in which all robots completely lose sight of
the nest during the exploration subtask of foraging. We assume that the robots
have partial knowledge of the goal direction. For instance, they may have per-
ceived the nest earlier and kept track of its direction by means of odometry [4].
Odometry is achieved using internal, proprioceptive information [5] (e.g., by
measuring the rotation of the wheels of a robot). The information on the move-
ment of a robot is integrated, thus the error made on localization increases with
the distance covered. In our case, this leads to an erroneous indication about
the direction of the nest. If several robots attempt to transport a heavy prey
in different directions they may fail to move the prey at all. Therefore, we in-
troduce a mechanism to let the robots negotiate the goal direction. In order to
meet the general principles of swarm robotics [1], this system is fully distributed
and makes use of local communication only.

The mechanism we introduce is strongly inspired by a natural mechanism
that has been long studied by biologists. We rely on a particular property of
models designed to explain and reproduce fish schools and bird flocks [6,7,8,9].
The models available in the literature are usually composed of three behaviours:
an attraction behaviour that makes the individuals stick together, a repulsion
behaviour that prevents collisions among individuals, and an orientiation be-
haviour that coordinates the individuals’ motion. It is the last of these three
behaviours that we transfer and implement in our robots. Informally, the orien-
tation behaviour lets every individual advertise locally its own orientation and
update it using the mean orientation of its neighbours.

We conduct experiments with a group of four real robots that have to trans-
port a prey moving in a direction about which they have noisy knowledge. We
assess quantitatively the performance of the negotiation mechanism implemented
with respect to different levels of noise and different control strategies.

In Section 2 we detail the task, the hardware, the experimental setup and the
different controllers. Section 3 is devoted to the presentation of the experimental
results. Section 4 concludes the paper with a discussion of the results and some
ideas for future work.
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2 Methods

The Task. The task is the cooperative transport of a heavy prey towards a
nest by a group of four real robots. The robots are physically connected to the
prey using their grippers. The nest is out of sight and the robots have no means
to perceive it. The initial knowledge of each individual about the goal direction
is provided with a given amount of noise.

The mass of the prey is chosen such that a single robot can not transport it. At
least three robots are necessary to move the prey. A high degree of coordination
of the robots’ motion is required to apply enough force to the prey to move it.
If the robots lack coordination, that is, if they pull in different directions, they
may not be able to move the prey at all.

The robots can share knowledge using visual communication in order to col-
lectively improve their estimate of the goal direction and transport the prey as
fast and as accurately as possible towards the goal.

Hardware. The robots: We use the s-bot (Figure 1(a)), a robot of 12 cm of diam-
eter, designed and built within the context of the SWARM-BOTS project [10,11].
An s-bot moves using a combination of two wheels and two tracks, which we call
“treels”. This system notably allows the robot to efficiently turn on the spot. The
robots can physically connect to a prey or to another s-bot using their grippers.
They are supplied with a rotational base that lets them move in an arbitrary di-
rection while maintaining the same physical connection pattern. The robots can
send visual information by means of eight triplets of red, green and blue LEDs.
The LEDs are positioned on a ring around the robot. An s-bot activating its
LEDs can be perceived by another s-bot by means of an omnidirectional camera
which provides a 360◦ view.

The prey: The mass of the prey is 1.5 kilograms. At least three robots are
necessary to effectively pull the prey. This weight of the prey makes the transport
by a group of robots very difficult if the robots are not well synchronised.

Experimental Setup. The experiments take place in an open space. Initially,
four robots are connected to the prey in a regular arrangement, thus forming a
cross pattern as shown in Figure 1(c). We test four levels of noise on the robots’
initial estimate of the goal direction: no noise (0 ), low noise (L), medium noise
(M ) and high noise (H ). In the case of no noise, the initial direction of the
robots is the same and points towards the nest.

The initial imprecise knowledge of the robots about the direction of the nest
is modeled by a random number drawn from a von Mises distribution, which
is the equivalent of the Gaussian in circular statistics [12], and well suited for
directional data. This distribution is characterised by two parameters μ and κ.
The direction to the nest is indicated by μ, the mean of the distribution. The
level of noise is indicated by κ. The smaller κ, the more the distribution resembles
a uniform distribution in [−π, π]. When κ is large, the distribution resembles a
Gaussian of mean μ and standard deviation σ, when κ → ∞ the relationship
σ2 =

√
1/κ holds. The three levels of noise L, M, H correspond to κ = 3, 2, 1,

as displayed in Figure 2(a).
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After each trial, the robots are randomly permuted, so that the possible dif-
ferences among robots are averaged out and can be neglected in this study. We
tested 4 possible goal directions of 0, 22.5, 45 and 67.5◦. Any direction above 90◦

is redundant as the pattern of connected robots (a cross) is symmetrical on the
two perpendicular axes, and the robots are permuted at each trial. Finally, we
have tested 4 possible strategies for the robots to transport the prey towards the
goal (see next section for more details). In total, we performed 256 replications:
we tested 4 goal directions, 4 levels of noise and 4 distinct strategies for transport.
Each combination of the aforementioned parameters was tested 4 times.

To extract the results, we used a camera placed above the initial position of
the prey to record videos of each trial. The experiment is stopped either when
the prey has been transported to a distance of 1 meter from its initial position
or after 60 seconds (an average transport takes approximately 20 seconds). A
trial can also be stopped if we judge that the robots are stuck in a situation that
is potentially harmful to their hardware. Indeed, if the robots do not manage to
coordinate their movements, they may pull in opposite directions and thus induce
a high torque to their grippers. One gripper was broken during the experiments
reported here, and we wished to avoid as much as possible any further damage.
Any experiment stopped without the prey being transported for more than 1
meter of distance from the initial position is considered as a transport failure.

For each trial, we have extracted the position of the prey at each time step
(5 pictures per seconds) using a simple tracking software. Using these data, we
have categorized the trials in transport failure or success, and measured the
duration of all trials. Furthermore, we measured the angular difference between
the direction in which the prey has been moved and the goal direction, as shown
in Figure 2(b). Later on, we also use the term deviation to refer to this angular
difference.

Robot’s Controller. Vision software: We employ a specific vision software
that allows a robot to perceive the direction pointed by a neighbour in his visual
range. The perception algorithm implemented in the software is probabilistic
and approximates the directions communicated by the local neighbours using
a triangular pattern shown by the LEDs (see Figure 1(b)). In order to assess
the quality of the vision software, we have performed a series of basic tests. We
have run in total 8000 times the vision software on 8 different pictures to obtain
a distribution of direction estimates. Figure 3 summarises the pooled results of
the tests for a communicated direction pointing towards direction 0. The tests
show that it is possible to achieve a reliable estimate of the direction pointed
by neighbouring robots. As the mechanism of negotiation of direction should be
robust to noise, there is no need to improve the output of the vision software
with any kind of signal filter. We directly feed the negotiation mechanism with
a single estimate.

Negotiation mechanism: The negotiation mechanism is bio-inspired and imple-
mented in a straightforward manner, following closely the rules used to model
the orientation behaviour of fish schools or bird flocks [9]. Let n be the total
number of robots. For each robot i ∈ [1, n], let Ni(t) be the set of robots in the
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(a) (b) (c)

Fig. 1. (a) The s-bot. (b) An s-bot displaying a direction using a triangular LED pat-
tern. (c) Star-like formation of four s-bots around the prey as used in the experiment.

(a) (b)

Fig. 2. (a) The effect of parameter κ on a von Mises distribution. (b) A snapshot
describing the final situation of a successful transport. Note how the deviation of the
transport direction from goal direction is measured.

visual range of robot i at time t. This defines the topology of the communication
network. Let di(t) ∈ [−π, π] be the goal direction estimated by robot i at time
t. Let Di

j(t) = dj(t) + εi
j(t) with j ∈ Ni(t) the direction of robot j perceived by

robot i assuming noise εi
j(t).

If robot i communicates and exchanges information with his neighbours, it
will calculate what we call a desired direction di by using Equation 1 that basi-
cally computes a mean direction. To do so, we use the sum of unit vectors, which
is a classical method in circular statistics [12]:

di(t) = arctan

(
sin (di (t)) +

∑
j∈N (i)

(
sin(Di

j(t))
)

cos (di (t)) +
∑

j∈N (i)

(
cos(Di

j(t))
)) . (1)
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Fig. 3. We used four robots arranged in a circular pattern to display a common di-
rection and a central robot to take pictures and estimate the direction pointed by the
surrounding robots. For eight distinct directions, the central robot produced 1000 es-
timates each. The resulting pooled distribution of errors shows that the vast majority
of the estimates matches the direction pointed by the surrounding robots.

The estimate of the goal direction of a particular robot is not updated di-
rectly. Indeed, the noise present in perception might induce oscillations if the
update of the robots’ estimates is done too fast. Therefore, we use a damping
factor δ to stabilise the system (we chose δ = 0.05 for our experiments). The
update of the estimate of the goal direction for robot i is described by Equation 2:

di(t + Δt) = (1 − δ) · di(t) + δ · di(t). (2)

The motion control of each robot is implemented by a simple algorithm [3]
that sets the speed and orientation of the robot’s treels to pull the prey in the
estimated direction d of the nest.

Control strategies: We have defined and implemented four distinct strategies.
To refer to the strategies, we employ a notation in which T means transport, N
means negotiation, and : marks the end of an optional and preliminary negotia-
tion phase. If this preliminary phase takes place, it lasts 30 seconds. The second
phase always involves transport and lasts 60 seconds.

– Transport directly (T): a naive strategy that we use as a yardstick to
show the improvement brought by the negotiation mechanism. The robots
move along their initial direction. No communication and no update of the
estimated direction is done.

– Negotiate then transport (N:T): robots first negotiate their estimate of
the direction of the goal for 30 seconds without moving. Afterwards, they all
start moving without either communicating or updating their estimates.

– Negotiate then transport and negotiate (N:NT): robots start by ne-
gotiating the direction of the goal for 30 seconds without moving. After this
preliminary negotiation, they all start moving and at the same time they
keep on negotiating together.
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– Negotiate and transport (NT): from the very beginning of the experi-
ment, the robots start both moving and negotiating.

At the beginning of the experiments, robots have each a rough estimate of the
direction of the goal, but they never perceive directly the goal. The three last
strategies may appear identical to the reader, but in fact two important aspects,
namely time and noise in communication should be considered. On one hand,
the duration of the negotiation process affects the degree of synchronisation
of the robots. On the other hand, visual communication is imperfect. When
robots don’t move, errors in visual communication are persistent and may have
a strong impact on the outcome of the negotiation process. When robots move,
they modify slightly their relative locations and this results in a reduction of the
errors in visual communication.

3 Results

We report here the experimental results of the task of cooperative transport for
all the strategies and levels of noise tested. We examine three different aspects
of the system: the ability of the system to succeed in transporting the prey for
a certain distance, the duration of transport and the accuracy in direction of
transport. Data analysis was performed with the R software and the package
circular [13].

Success in Transporting. We first study the ability of the robots to transport
the prey. If the robots are not able to move the prey over a distance of at least
1 meter from the initial position within 60 seconds, we consider the trial as a
transport failure. Figure 4 presents the performances in transport of the four
strategies for the different levels of noise.

First, we observe that in absence of noise (level 0 ), the robots manage very well
to transport the prey without negotiating the direction. Therefore, negotiation
is not necessary and it is desirable that strategies employing the negotiation
mechanism do not perform worse. The strategy N:T yields only 75% of successful
transports when there is no noise in the initial direction of the nest. When this
strategy is employed, it is possible that negotiation is stopped while robots are
not perfectly coordinated and no further correction can be done on the direction
of the robots. The two other strategies N:NT and NT do not decrease the
capability of the group of robots to transport the prey with respect to strategy T.
We have observed that during motion, the formation of robots can alter slightly,
mainly due to slippage of the grippers on the prey. Strategies using negotiation
during transport allowed robots to quickly correct their direction and remain
coordinated. Conversely, the strategies T and N:T were very sensitive to small
errors.

When noise is present, the performance of the group of robots using strat-
egy T decreases. For medium and high noise it is close to 10%. This result
was expected as robots are not able to coordinate their motion at all and are
initialised with different initial directions. We also notice that, although noise
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Fig. 4. The percentage of successful and failed transports grouped by strategy and by
level of noise

has a non neglectable impact on the transport capability, the performances stay
quite similar for different levels L, M and H of noise considering the strategies
N:T, N:NT and NT. All strategies relying on the negotiation mechanism achieve
better performances, and especially strategy NT is much less sensitive to noise
than the others.

Duration of Transport. We focus now on the duration of the transport. For all
the trials, we consider whether or not transport is successful. Figure 5 shows for
all strategies and all levels of noise boxplots of the duration of the 16 transport
tasks. Note that we do not take into account the preliminary negotiation period
that lasts 30 seconds when strategies N:T or N:NT are employed.

Once again, the performance of strategy T in absence of noise is the best
with respect to any other pair of strategy and level of noise. Only strategy NT
reaches a comparable performance.

When the level of noise increases, the duration of transport of the strategy T
increases too, in a quasi linear manner. Strategies that rely on the negotiation
mechanism are much less sensitive to noise. The duration of transport using
those strategies is very similar for the different levels of noise L, M and H, but
strategy N:T has produced more failures. Because robots can not correct their
coordination with this strategy, they easily rotate while transporting the prey.
This constant error produces round or even circular trajectories and prevents
the robots to quickly move the prey away from its initial position. Strategies can
be clearly ranked: the slowest (N:T ), the average (N:NT ) and the fastest (NT ).

Deviation From the Direction of the Nest. The last measure we study is
the deviation of the direction of transport with respect to the direction of the
nest. Again, we take into account all trials. The study of deviation from the
direction of the nest confirms all previous observations (see Figure 6).

In absence of noise, the naive strategy T performs very well, and the only other
strategy with a comparable result is strategy NT. When noise is introduced, the
performance of strategy T decreases. The strategies that make use of negotiation
perform better, and show only small differences for the different levels of noise
tested. Among these strategies, the best is NT.

We have fitted von Mises distributions with the distributions of deviations in
order to study strategy NT in further detail. The fit with a von Mises distribution
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Fig. 5. Box-and-whisker plot [14] showing the duration of transport of the prey (in
seconds), taking into account successful and failed transports. The distributions are
grouped by strategy and by level of noise.

yields an estimate of κ, which corresponds to the error of the transport direction.
The robots start with an initial knowledge affected by a noise that corresponds to
an individual error of respectively 33.1◦, 40.5◦ and 57.3◦. After the application of
the strategy NT, the final values of the error of transport direction for the levels
of noise L, M, H are respectively 42.8◦ ± 76.2◦, 42.3◦ ± 75.5◦ and 42.5◦ ± 75.7◦

(degrees ± standard error). These values are not significantly different. Moreover,
it is observed that for the level of noise H, the strategy NT improves the robots’
estimate of the direction of the nest.

4 Discussion

Achievements. We have compared different strategies to achieve efficiently
the cooperative transport of a prey with partial knowledge of the direction of
the nest. We performed systematic experiments to evaluate the characteristics
of the different strategies under study for four distinct levels of noise. The com-
parison of the strategies has shown that negotiation during transport of a prey
improves the coordination of motion. It has also been shown that negotiation
without moving prior to transport (N:NT ) performs worse than the straight-
forward strategy NT consisting in negotiating and transporting the prey at the
same time.

It has been observed that the strategy NT is neutral: if negotiation is not
mandatory to achieve efficient transport, making use of this strategy does not
alter the transport performances with respect to the naive strategy T. Hence, it
is not necessary to choose which strategy to employ depending on the level of
noise affecting robots’ knowledge of the direction of the nest. The strategy NT
can be used at any time.

Besides the coordination of motion, our experimental results have also shown
that the group of robots could improve their knowledge of the direction of the
nest by means of visual negotiation. Strategy NT improves the robots’ estimate
of the direction of the nest and shows no discernible difference of the errors for
the levels of noise L, M, H. The improvement of the accuracy of direction of
transport with respect to the s-bots initial knowledge is most striking when the
level of noise is high.
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Improvements. With respect to mechanisms of coordination of motion that
use a traction sensor [3,15], our system appears to be more flexible, as visual
communication is also available when the prey is not in motion, and it is not dis-
tracted if the prey moves in irregular steps. Additionally, visual communication
leaves the door open to collective motion with or without transport or physical
connections. The topology of the network of communications is also likely to be
more flexible, allowing the robots to school in very diverse patterns.

The negotiation mechanism we have introduced is not only able to supply a
group of robots with collective motion, but also to let each individual improve
its own estimate of the goal direction by sharing knowledge with its neighbours.
This mechanism may also be used to correct measures of odometry in multi-
robot experiments, in a fully distributed fashion. This self-organised negotiation
is likely to display properties of scalability besides the robustness shown in this
paper.

Perspectives and Future Work. The difference in performance between
strategies N:NT and NT is counter-intuitive, as the negotiation in the first
strategy lasts in total longer and thus the robots are expected to achieve a
better performance because they are granted more time to negotiate. However,
the preliminary phase of negotiation without movement negatively affects the
performance of the robots. This might be due to persistent errors in visual com-
munication in absence of movement. It is also possible that transport is more
efficient when robots align their tracks gradually, and not immediately as it hap-
pens with strategy N:NT. We plan to further investigate the exact reasons for
this phenomenon.

We plan to integrate the cooperative transport in a more complex and chal-
lenging scenario of foraging, such as for instance the one used by Nouyan et
al. [16]. This scenario would include an exploration phase preliminary to trans-
port, in which robots lose sight of the nest before finding the prey. In this context,
robots have a rough estimate of the direction of the nest by means of odometry.
Improvement of this knowledge by means of negotiation is a critical feature of
the scenario, necessary to let the robots transport the prey efficiently to the nest,
even in presence of noisy communications and failed robots.
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Abstract. The impact of the values of the most meaningful parame-
ters on the behavior of MAX–MIN Ant System is analyzed. Namely,
we take into account the number of ants, the evaporation rate of the
pheromone, and the exponent values of the pheromone trail and of the
heuristic measure in the random proportional rule. We propose an an-
alytic approach to examining their impact on the speed of convergence
of the algorithm. Some computational experiments are reported to show
the practical relevance of the theoretical results.

1 Introduction

The assignment of values to the parameters of ACO algorithms is analyzed for the
first time in [1]. In the following, a growing number of papers have been produced
for finding the optimal values, or more in general for identifying the influence of
the parameters on the behavior of the algorithms. These studies can be divided
into two groups: the ones that propose a method for finding suitable parameter
settings, and the ones that propose experimental analysis from which a sort of
general trend can be deduced. Among others, we can locate in the first group the
works by Botee and Bonabeau [2], Pilat and White [3], and Zaitar and Hiyassat
[4] who use genetic algorithms for setting the parameters of ACO algorithms, and
Randall [5] who uses an ACO algorithm itself. In the second group we can include
Gaertner and Clark [6], who try to find a correlation between the structure of a
problem instance and the optimal values of the parameters, and Socha [7] and
Solnon [8], who propose computational studies concerning some parameters.

Another branch of the literature has considered the problem of tuning the
parameters of metaheuristics, more in general. Among others, these include:
Adenso-Dı́az and Laguna [9] and Coy et al. [10] whose approaches are based
on the response surface methodology. Bartz-Beielstein and Markon [11] propose
a method to determine relevant parameter settings, based on statistical design
of experiments, classical regression analysis, tree based regression and DACE
(design and analysis of computer experiments) models. Birattari et al. [12] pro-
pose a procedure based on the Friedman two-way analysis of variance by ranks.
Finally, Battiti and Tecchioli [13] propose to tune the parameters while solving
an instance, and Lau et al. [14] present a methodology called the Visualizer for
Metaheuristics Development Framework (V-MDF).

Following this interest in the configurations of the parameters, the objective
of this paper is to formalize the impact of the value chosen for the parameters of

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 203–214, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



204 P. Pellegrini, D. Favaretto, and E. Moretti

MAX–MIN Ant System [15,16] on the speed of convergence to the best solution
ants are able to find. In the following the term convergence will be used with
this meaning.

Gaining understanding in this sense is important for two main reasons. First
of all we want to stress the fact that it is not possible to define an optimal set
of values for the parameters. While in general it is accepted that the values to
assign depend from the problem and from the particular instances, it is not so
infrequent to observe that some parameters are considered either good or bad
(in terms of the average quality of the solution achieved) in absolute, without
any reference to the computational time (t). The problem with this approach is
that the optimal speed of convergence depends both on the instance and on the
computational time available: If the solution is needed very fast, one might prefer
a configuration of the parameters that reaches a local optimum, with respect to
one that keeps exploring the search space and that probably in a longer time
would reach a better local minimum. In this sense, analyzing the influence of
each parameter on the searching behavior of the algorithm can be a way for
emphasizing this element.

On the other hand, by gaining a deeper understanding of the dynamics un-
derlying the algorithm, one might focus on a range of values of the parameters
for the tuning phase. In this way, a finer choice would be possible.

For this analysis we consider a problem that can be represented on a graph
G = (N,A) with N set of nodes (|N | = n) and A set of arcs. For representing
the time available we use an approximation: we suppose that the pheromone
update is not time consuming. In other words, we consider the time in terms of
number of solutions that can be built (T ).

The paper is organized as follows. In Section 2 the relevant formulas charac-
terizing MAX–MIN Ant System are presented. In Sections 3, 4 and 5 the pa-
rameters of the algorithm are studied. Finally in Section 6 some computational
results are presented. The well known traveling salesman problem is considered
as case study.

2 MAX–MIN Ant System

In MAX–MIN Ant System the pheromone update is performed after the activity
of each colony of ants according to τij = (1− ρ)τij +Δτb

ij , where Δτb
ij = 1/Cb if

arc (i, j) belongs to the best solution b, and Δτb
ij = 0 otherwise. Cb is the cost

associated with solution b, and solution b is either the iteration-best solution
or the best-so-far solution. Intuitively, if the iteration-best solution is used, the
level of exploration is greater. The schedule according to which the solution to
be exploited is chosen, is described by Dorigo and Stützle [17].

Another element characterizing ACO algorithms is the random-proportional
rule. In particular, ant k being in node i and not having visited the nodes belong-
ing to the set Nk ⊂ N , randomly chooses node j ∈ Nk to move to. Each node
j ∈ Nk has a probability of being chosen described in the random proportional
rule: pij = [τij ]

α [ηij ]
β
/(
∑

h∈Nk
[τih]α [ηih]β), where ηij is a heuristic measure
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associated with arc (i, j) [17]. It is important to notice that this probability
depends on the set of nodes not yet visited.

Finally, it is important to remember that the pheromone trail in MAX–MIN
Ant System is bounded between τMAX and τmin . Following [17], we use the
following values: τMAX = 1/(ρCbest−so−far ), and τmin = [τMAX (1 − n

√
0.05)]/

[(n
2 − 1) n

√
0.05]. At the beginning of a run, the best solution corresponds to the

one found by the nearest neighbor heuristic (NN ).

3 Number of Ants m

Let us first of all analyze the effect of the number of ants on the behavior of
the algorithm. One thing to notice is that, given a certain number of solutions
T that can be built in the available run time, the number of ants m determines
the number of iterations S that can be performed as S = T/m. A part from
this element, the value of m affects the behavior of the algorithm for what is
concerned the level of exploration. Given the pheromone update rule and the
update schedule, the level of exploration mainly decided by the solutions used
for the update. This is due to the fact that if only few solutions are used, after
few iterations, only the arcs belonging to them will have a significant probability
of being chosen. If the variation of the iteration best solution is small, then, the
convergence will be fast. Let brs be the iteration best solution at iteration s,
and BR = {r1, r2, ..., r|BR|} the set of previous iteration best solutions. If a
solution has been the iteration best more than once, obviously it will be inserted
in BR only the first time. Let us analyze the probability of having as iteration
best solution at iteration s a solution belonging to BR. Note that, given the
solution construction procedure, we can easily associate to each feasible solution
r a probability of being built (p̄r).

Let Ω be the set of all the possible solutions and Rr = {q ∈ Ω : Cq ≥ Cr}.
The probability of having as iteration best solution at iteration s a solution r is:

p(brs = r) = p̄r

(∑
q∈Rr

p̄q

)(m−1)
. It is the product of the probability of having

one ant constructing exactly r and all the other ants constructing solutions
q ∈ Rr. In the following we consider all the solutions as having different costs,
so that the ordering of the solutions is not ambiguous. Since

∑
q∈Rr

p̄q ≤ 1 (the
case of equality is true only if r is the global optimum), p(brs = r) is decreasing
in m. The meaning of this conclusion is that the higher the number of ants,
the lower the probability of selecting as iteration best solution a specific one.
This reasoning can be extended considering that at iteration s, |BR| solutions
(ri, i = 1, ..., |BR|) have already been selected. In particular, the probability of
selecting as iteration best at iteration s a solution in BR is equal to:

p(brs ∈ BR) =
∑

r∈BR

p̄r

( ∑
q∈Rr

p̄q

)(m−1)
. (1)

This value is decreasing in m and increasing in |BR|. For the first property
it is sufficient to observe that

∑
q∈Rr

p̄q < 1 (we do not consider the global
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optimum). For the property related to |BR|, it is clear that the result of a sum
of non negative terms is increasing in the number of addends, the probabilities
p̄r being equal. Obviously |BR| is non decreasing in s.

The conclusion of this reasoning is that the higher the number of ants, the
greater the exploration. On the other hand, the higher the number of iterations,
the greater the exploitation of the cumulated knowledge. Moreover, given the
available computational time, the greater the number of ants, the smaller the
number of total iterations. It is clear, then, that there is a trade-off to be solved.
Remark that this reasoning is independent from the probability of choice of any
particular solution p̄, if this probability is not null for all the solutions. This
property is ensured by MAX–MIN Ant System through the imposition of a
positive lower bound of the pheromone.

4 Evaporation Rate ρ

The parameter ρ is present in the pheromone update rule. It fixes how much
pheromone evaporates. The relevance of this parameter is related to the level of
exploration of the search space performed: If ρ is high, the pheromone on the
arcs belonging to solutions built a few iterations before will be roughly equal to
the one on the arcs that have never been selected. In this way, the search will
not be much biased toward the already visited areas.

On an arc (i, j) which has never been used, the pheromone at iteration s̄ is
equal to (1 − ρ)τij = (1 − ρ)s̄τ0 = (1 − ρ)s̄/(ρCNN ). Clearly this is a decreasing
function of ρ. What we are interested in is the influence of the value of this
parameter on the level of exploration. In particular, we want to know what are
the conditions for having the minimum probability of choosing, after s̄ iterations,
an arc that has never been part of an iteration best solution, and is then supposed
to be of bad quality. This objective is achieved by setting the pheromone in arc
(i, j) equal to τmin . As an approximation for this value we use τmin at iteration
0, i.e. [1/(ρCNN )(1− n

√
0.05)]/[(n

2 −1) n
√

0.05] . The investigation is then referred
to the value of ρ such that τij ≤ τmin :

(1 − ρ)s̄ 1
ρCNN

≤
1

ρCNN
(1 − n

√
0.05)

(n
2 − 1) n

√
0.05

⇒ ρ ≥ 1 − s̄

√
(1 − n

√
0.05)

(n
2 − 1) n

√
0.05

. (2)

In this way, it is possible to fix a relation between ρ, the number of nodes of the
graph (n) and the number of iterations (s̄) after which an arc that has never
been part of a solution used for the pheromone update has the minimum possible
probability of being chosen.

Proposition 1. If, given n, s̄ is such that ρ ≥ 1 − s̄

√
(1− n√0.05)

( n
2 −1) n√0.05

, then ρ ≥

1 − s̄′
√

(1− n√0.05)
( n

2 −1) n
√

0.05
, ∀ s̄′ ≥ s̄ .
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Proof. ρ ≥ 1 − s̄

√
(1− n√0.05)

( n
2 −1) n√0.05

, 0 < ρ < 1 ⇒ (1 − ρ)s̄ ≥ (1 − ρ)s̄′
, ∀ s̄′ ≥ s̄ ⇒

(1 − ρ)s̄′ ≤ (1− n√0.05)
( n

2 −1) n√0.05
⇒ ρ ≥ 1 − s̄′

√
(1− n√0.05)

( n
2 −1) n√0.05

, ∀ s̄′ ≥ s̄. "#

Proposition 2. If, given s̄, n is such that ρ ≥ 1 − s̄

√
(1− n

√
0.05)

( n
2 −1) n√0.05

, then1 ∀n′

such that 3 ≤ n′ ≤ n, ρ ≥ 1 − s̄

√
(1− n′√

0.05)

( n′
2 −1) n′√

0.05
.

Proof. ρ ≥ 1 − s̄

√
(1− n√0.05)

( n
2 −1) n√0.05

⇒ n
√

0.05
[
(1 − ρ)s̄

(
n
2 − 1

)
+ 1

]
≤ 1.

n
√

0.05 is an increasing function of n, then

n′√
0.05

[
(1 − ρ)s̄

(n

2
− 1

)
+ 1

]
≤ n

√
0.05

[
(1 − ρ)s̄

(n

2
− 1

)
+ 1

]
. (3)

Moreover, ∀n′ ≤ n

n′√
0.05

[
(1 − ρ)s̄

(
n′

2
− 1

)
+ 1

]
≤ n′√

0.05
[
(1 − ρ)s̄

(n

2
− 1

)
+ 1

]
, (4)

from which the thesis is verified. "#

Given propositions 1 and 2, it is quite easy to fix a lower bound for the value of
ρ, both in a quite general case and in a specific one. For the first observation,
one can compute the value of ρ which allows the algorithm to neglect the bad
arcs (in terms of the average quality of the solutions they belong to) after a
small number of iterations when dealing with a very big instance. To this aim,
let s̄ = 100 and n = 1000, which implies ρ ∼ 0.1. If one sets ρ = 0.1, after s̄′ > s̄
iterations, for sure the algorithm will have neglected the bad arcs. In the same
way, if n decreases, ρ = 0.1 will imply that after s̄ iterations, the algorithm will
have neglected the bad arcs.

In addition to this general purpose observation, if one needs to tackle instances
of equal (or similar) size, one can fix a meaningful value for ρ after estimating s̄.
Clearly this estimate will depend on the available computational time. Figure 1
represents the trend followed by the value of this parameter when s̄ and n vary.
It is easy to see that the number of iterations is the leading force, at least until
a certain threshold. Nonetheless, the number of nodes has a remarkable impact
as well.

5 Exponent Values α and β

The last parameters we are going to consider for MAX–MIN Ant System are
α and β. They represent the exponent of the pheromone level and the heuristic

1 If n < 3 the value of τmin is not defined.
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(a) 3 ≤ s̄ ≤ 500 (b) 100 ≤ s̄ ≤ 500

Fig. 1. Value of ρ necessary for having τij = τmin on a never reinforced arc (i, j)

measure in the random proportional rule, respectively. Their main role consists
in emphasizing the differences between arcs.

Instead of studying the trend of the probability of choosing the single arc, we
consider the ratio between the probability of choosing two arcs (i, j) and (i, k).
By analyzing this element it is possible not to consider the set of nodes still to
visit. Let us write β as cα, with c ≥ 0. The ratio we want to study, then, is
reported in formula (5).

pij

pik
=

[τij ]
α [ηij ]

cα

[τik]α [ηik]cα =
[
τij

τik

]α [
ηij

ηik

]cα

=
[
τij

τik

(
ηij

ηik

)c]α

= f(α, c). (5)

Remark that being the pheromone limited by a positive lower bound, and being
the length of the arcs a finite number, τ(·) and η(·) are always strictly posi-
tive. Then, the sign of the first partial derivative with respect to α depends on
ln [(τij/τik) (ηij/ηik)c]. This quantity is positive if and only if (τij/τik)(ηij/ηik)c

>
1. On the other hand, the sign of the first partial derivative with respect to c
depends on ln [ηij/ηik], which is positive if and only if ηij/ηik > 1. A graphical
representation of its trend is shown in Figure 2. The value of c determines both
the magnitude of the variation, and the increase or decrease of the function.
Then, let us have a look at function g(c) = (τij/τik) (ηij/ηik)c

. In particular we
are interested in knowing in which cases the function is greater than 1.

g(c) > 1 ⇒ ln
τij

τik
+ c ln

ηij

ηik
> 0 ⇒ c

{
> − ln τij/τik

ln ηij/ηik
if ηij > ηik

< − ln τij/τik

ln ηij/ηik
if ηij < ηik

(6)

Following the literature we consider only α, β ≥ 0. Let us first of all analyze the
first inequality of (6). If τij > τik, then ln [τij/τik] > 0 and the whole quantity
on the right hand side of the inequality is negative, so there is no restriction on c
for having g(c) positive. If τij < τik, instead, there is a meaningful lower bound
for c. A similar and opposite reasoning holds for the second inequality of (6):
if τij < τik, then ln [τij/τik] < 0 and the whole quantity on the right hand side
of the inequality is negative, so there is no possible value of c such that g(c) is
positive. If τij > τik, instead, there is a meaningful upper bound for c.

Clearly the ratios between τ(·)’s and between η(·)’s depend on the arcs we
choose as (i, j) and (i, k). Moreover, as for what τij/τik is concerned, it depends
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Fig. 2. Ratio of the probabilities related to the choice to arc (i, j) and arc (i, k)

on the behavior of the algorithm. Figure 3 represents the variation of g(c) as a
function of τ and η. In particular, we keep constant through the graphics the
value of ηij/ηik and we vary the ratio between the pheromone levels. This schema
follows the behavior of ACO algorithms in cases the heuristic measure is static.
The values selected are ηij/ηik = 1.1 for Figure 3(a) and ηij/ηik = 0.9 for Figure
3(b). As it can be seen, there is an interval in which, even if the position with
respect to 1 of τij/τik and ηijηik are opposite, for a while g(c) keeps on following
the sign of 1− (ηij/ηik). The greater c, the wider this interval. This observation
is robust with respect to the value of ηij/ηik.

To sum up the reasoning on α and β, α amplifies the differences between the
good and the bad arcs. The value of c = β/α, instead, tells us how to distinguish
the good from the bad arcs in case the heuristic information and the pheromone
values lead to discordant orders. In particular, the higher the value of c, the
more the order is driven by the heuristic information.

6 Experiments

The experimental analysis proposed is based on the traveling salesman problem
(TSP). We consider the ACOTSP program implemented by Thomas Stützle as
a companion software for [17]. The code has been released in the public domain
and is available for free download on www.aco-metaheuristic.org/aco-code/. The
TSP has been object of many studies, both practical and theoretical (see for
example [18,19,20]). We consider this problem as a case study.
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ηik
> 1 (b) ηij

ηik
< 1

Fig. 3. Ratio of the probabilities related to the choice of arc (i, j) and arc (i, k)

The experiments proposed aim at showing that the implications of the previ-
ous sections are clearly detectable in practise. In this sense, we need a method
for identifying good combinations of values of the parameters when the compu-
tational time available changes. We will read the configurations selected in terms
of the speed of convergence they imply.

We chose the F-Race procedure [21,12] for selecting the values of the para-
meters. F-Race is a racing algorithm for choosing a combination of values (a
candidate configuration) from a predefined range. A racing algorithm consists
in generating a sequence of nested sets of candidate configurations to be consid-
ered at each step. The set characterizing a specific step is obtained by possibly
discarding some configurations that appear to be suboptimal on the basis of the
information available. This cumulated knowledge is represented by the behavior
of the algorithm for which the tuning is performed, when using different candi-
dates configurations. For each instance (each representing one step of the race)
the ranking of the results obtained using the different configurations is computed
and a statistical test is performed for deciding whether to discard some candi-
dates from the following experiments. F-Race is based on the Friedman two-way
analysis of variance by ranks [22].

The range of values considered for each parameter is the one that in our
eyes one would test after the analysis of the literature. In particular the can-
didate configurations are 192. They are all those obtainable from combining
the following values: m ∈ {50, 100, 200, 300}, ρ ∈ {0.02, 0.04, 0.06, 0.08}, α ∈
{1, 2, 3}, β ∈ {2, 3, 4, 5}. Two sets of 220 instances are used. In one set each
instance includes 300 customers. In the other one 600 customers are considered.
The instances are generated through portgen, the instance generator adopted
in the DIMACS TSP Challenge. In particular, the ones we consider here consist
of two dimensional integer-coordinate cities grouped in clusters that are uni-
formly distributed in a square of size 106 × 106. They are available on the web
page www.paola.pellegrini.it. On each set of instances, the F-Race is applied six
times, varying the computational time available t in the set {5, 10, 30, 60, 90, 120}
seconds. The experiments are run on a processor AMD Athlon 1000 Mhz, 772
MB of memory, running GNU/Linux 2.4.20. No local search is applied, due
to the fact that we want to investigate the relation between the values of the
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Table 1. Configurations chosen by F-race with different computational time available

n t m ρ β α ⇒ T S = T/m c

300 5 100 0.08 5 2 7000 70 2.5
300 10 100 0.08 4 2 14000 140 2
300 30 100 0.08 4 1 42000 420 4
300 60 100 0.08 3 1 84000 840 3
300 90 200 0.08 3 1 126000 630 3
300 120 200 0.08 3 1 168000 840 3
600 5 50 0.08 5 3 1700 34 1.66
600 10 50 0.08 5 3 3400 68 1.66
600 30 100 0.08 5 2 10200 102 2.5
600 60 200 0.08 4 2 20400 102 2
600 90 200 0.08 4 2 30600 153 2
600 120 200 0.08 4 2 40800 204 2

parameters and the speed of convergence, and we are not interested in the ab-
solute quality of the solution. The candidate configuration chosen by F-Race for
each set of instances/computational time are reported in Table 1. Beside the
values of the parameters selected, the table reports the approximate number of
tours that can be built in the available time (T ), the total number of iterations
performed (S), and the value of c = β/α. The heuristic measure we consider is
the typical one used for the TSP, i.e. the inverse of the length of arcs.

The trend followed by the values of the parameters are clear. They respect
the expectations coming from the previous analysis. In particular it can be ob-
served that the value of m increases with the increase of the computational time
available. According to Section 3 this can be read as an increase of the level of
exploration of the search space. The values of m are quite different through the
cardinality of the set of nodes n. This is due to the fact that given the time
available, the number of tours that can be constructed is noticeably different.
Moreover, when considering different computational times which lead to the con-
struction of a similar number of solutions, one can observe that the number of
ants increases with n (see for example n = 300, T = 42000 ⇒ m = 100 and
n = 600, T = 20400 ⇒ m = 200). This can be read as a greater need of explo-
ration in case of a greater number of nodes. The explanation for this phenomenon
can be found in the fact that the greater the number of nodes, in general the
more complex the search space, and so the greater the risk of being entrapped
in a local minimum.

The trend followed by the values of α mimics the prediction of Section 5. In
fact, it is decreasing with the time available, reflecting the postposition of the
need of convergence. For what concerns c, we can observe that, α being equal, its
value is inversely correlated with the number of solutions that can be constructed.
When α varies, the value of c changes in the opposite direction. When the value
of α is high, the convergence is fast even if we do not consider the value of c.
As a consequence, keeping c quite low is a way for smoothing the trend. On the
other hand, speeding up the convergence is not the only role of c. As discussed
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Fig. 4. Value of (Cb) found by the different configurations depending on t

in Section 5, it implies whether it is the heuristic information or the pheromone
trail to state the distinction between the good from the bad arcs in case the
respective indications are discordant. The higher the value of c, the more the
decision is driven by the heuristic information. When we consider this element
with the negative correlation between c and T , we can deduce that the earlier the
algorithm needs to converge, the more it has to give importance to the heuristic
measure, which has a more immediate link with the instance than the pheromone
trail. In a similar way, let us consider the relation of c with the value of α. If the
latter implies a very fast convergence, in general the algorithm will be reluctant
to accept the indications of previous ants (and so of the pheromone trail) in case
they are in contrast with the ones of the heuristic information. This is due to
the fact that if they are misleading it will not be able to neglect them very soon.

Finally, it is not possible here to observe the trend followed by the value of ρ.
The value selected, in fact, is always the same (ρ = 0.08), and it corresponds to
the maximum value in the range set. Nonetheless, the choice has been motivated
by the analysis of the literature and in particular of Dorigo and Stützle [17],
where a value of 0.02 is proposed. By considering formula (2) it is possible
to compute the number of iterations after which the pheromone on bad arcs
becomes equal to τmin with ρ = 0.08 and instances of 300 and 600 nodes. This
quantity is equal to 116 and 132, respectively. These values are probably quite
good when the total number of iterations is higher than 400-500, while it may
be too low for shorter runs.

Figure 4 represents the trends followed by the values of the best solutions
(Cb) found by MAX–MIN Ant System with the configurations of parameters
reported in Table 1 as function of the computational time (t). As it can be seen,
the configurations selected by F-Race are the best performing up to the time
available for the respective runs.

7 Conclusion

The relevance of the values of the parameters when dealing with metaheuris-
tics is recognized in the literature. In this paper we analyze MAX–MIN Ant
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System: Theoretical aspects of the impact of the values of the parameters on
its behavior are investigated. Some relations between the values chosen and the
speed of convergence of the algorithm are proposed. Computational experiments
are reported to show the practical reflections of the theoretical results.

Once fixed the constraints that one must satisfy, such as the characteristics of
the instances to tackle and the computational time available, the comprehension
of the impact of the parameters can give some indications about the range to
use for the tuning phase. Further possible developments of this study can be the
analysis of different problems and other ACO algorithms.
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Abstract. It is often believed that the performance of ant system, and
in general of ant colony optimization algorithms, depends somehow on
the scale of the problem instance at hand. The issue has been recently
raised explicitly [1] and the hyper-cube framework has been proposed to
eliminate this supposed dependency.

In this paper, we show that although the internal state of ant system—
that is, the pheromone matrix—depends on the scale of the problem
instance under analysis, this does not affect the external behavior of
the algorithm. In other words, for an appropriate initialization of the
pheromone, the sequence of solutions obtained by ant system does not
depend on the scale of the instance.

As a second contribution, the paper introduces a straightforward vari-
ant of ant system in which also the pheromone matrix is independent of
the scale of the problem instance under analysis.

1 Introduction

The hyper-cube framework [1] has been recently introduced with the aim of im-
plementing ant colony optimization algorithms (ACO) [2] that are invariant with
respect to a linear rescaling of problem instances. The need for the introduction
of the hyper-cube framework has been explicitly motivated by the observation
that

in standard ACO algorithms the pheromone values and therefore the per-
formance of the algorithms, strongly depend on the scale of the prob-
lem. [1]

In this paper, we formally show that this statement is only partially correct:
Indeed, in standard ant colony optimization algorithms the pheromone trail and
the heuristic values depend on the scale of the problem. Nonetheless, for an
appropriate initialization of the pheromone, the sequence of solutions they find
is independent of the scaling.

For definiteness, the paper focuses on ant system [3,4,5] for the traveling
salesman problem. The theorems we enunciate in the paper are proved first for
this specific algorithm and for this specific problem. The conditions under which
these results extend to other problems are discussed in the following.

Although this paper shows that the main motivation for the introduction of
the hyper-cube framework does not hold, the work of Blum and Dorigo [1] has the
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main merit of having explicitly attracted the attention of the research community
on some important issues. Indeed, the fact that pheromone and heuristic values
depend on the scale of the problem complicates the analysis of the algorithm
and might cause numerical problems in the implementations. The hyper-cube
framework is definitely a solution to this problem. Nonetheless, the hyper-cube
version of ant system is effectively a new algorithm which shares with the orig-
inal ant system the underlying ideas but that produces a different sequence of
solutions. In other words, the hyper-cube ant system and the original ant sys-
tem are not functionally equivalent. In this paper we propose siAS which is a
trivial modification of ant system. Similar to the hyper-cube ant system, siAS
has the property that the pheromone and the heuristic values do not depend on
the scaling of the problem. Nevertheless, contrary to the hyper-cube ant system,
siAS is functionally equivalent to the original ant system. This last property is
particularly desirable: all theoretical and empirical studies previously performed
on ant system immediately extend to siAS.

In this paper, we focus our attention on ant system. Nonetheless the same
invariance property can be proved for other ACO algorithms. We refer the reader
to [6] for an analysis of the invariance of MAX–MIN ant system [7,8] and of
ant colony system [9]. Moreover, in [6] the algorithms siMMAS and siACS are
defined, which are functionally equivalent to MAX–MIN ant system and ant
colony system, respectively, and in which the pheromone and the heuristic values
do not depend on the scaling of the problem.

The rest of the paper is organized as follows. Section 2 introduces some prelim-
inary concepts. Section 3 defines ant system and formally proves its invariance.
Section 4 introduces the siAS algorithm. Finally, Sect. 5 concludes the paper.

2 Preliminary Definitions

This section introduces a number of fundamental concepts that will be needed
in the following.

Definition 1 (Linear transformation of a problem instance). If I is an
instance of a generic combinatorial optimization problem, Ī = fI, f > 0, is a
linear transformation of I if Ī is obtained by multiplying all costs in I by the
coefficient f . In particular, it results that the cost C̄ of a solution T̄ of instance
Ī is f times the cost C of the corresponding solution T of instance I.

Definition 2 (Linear transformation of a traveling salesman instance).
With Ī = fI, f > 0, we indicate that the instance Ī is a linear transformation
of the instance I: The two instances have the same number of cities and the cost
c̄ij of traveling from city i to city j in Ī is f times the corresponding cost cij in
instance I. Formally:

c̄ij = fcij , for all 〈i, j〉. (1)
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Remark 1. The cost C̄ of a solution T̄ of instance Ī is f times the cost C of the
corresponding solution T of instance I. Formally:

(Ī = fI) ∧ (T̄ = T ) =⇒ C̄ = fC. (2)

Remark 2. In the following, if x is a generic quantity that refers to an instance
I, then x̄ is the corresponding quantity for what concerns instance Ī, when Ī is
a linear transformation of I.

Ant colony optimization algorithms are stochastic: Solutions are constructed in-
crementally on the basis of stochastic decisions that are biased by the pheromone
and by some heuristic information. The following hypothesis will be used in the
paper.

Hypothesis 1 (Pseudo-random number generator). When solving two in-
stances I and Ī, the stochastic decisions taken while constructing solutions are
made on the basis of random experiments based on pseudo-random numbers
produced by the same pseudo-random number generator. We assume that this
generator is initialized in the same way (for example, with the same seed) when
solving the two instances so that the two sequences of pseudo-random numbers
that are generated are the same in the two cases.

Definition 3 (Invariance). An algorithm A is invariant to linear transfor-
mations if the sequence of solutions SI generated when solving an instance I and
the sequence of solutions SĪ generated when solving an instance Ī are the same,
whenever Ī is a linear transformation of I.

If A is a stochastic algorithm, it is said to be invariant if it is so under
Hypothesis 1.

Definition 4 (Strong and weak invariance). An algorithm A is said to be
strongly-invariant if, beside generating the same solutions on any two lin-
early related instances I and Ī, it also enjoys the property that the heuristic
information and the pheromone at each iteration are the same when solving I
and Ī. Conversely, the algorithm A is weakly-invariant if it obtains the same
solutions on linearly related instances but the heuristic information and the phe-
romone assume different values.

If A is stochastic, it is said to be strongly-invariant (or weakly-invariant) if it
is so under Hypothesis 1.

3 Ant System

Ant system is the original ant colony optimization algorithm proposed by Dorigo
et al. [3,4,5]. The pseudo-code of the algorithm is given in Fig. 1. In our analysis,
we refer to the application of ant system to the well-known traveling salesman
problem, which consists in finding the Hamiltonian circuit of least cost on an
edge-weighted graph.



218 M. Birattari, P. Pellegrini, and M. Dorigo

Ant system:

Initialize pheromone trail
while (termination condition not met) do

Construct solutions via the random proportional rule
Update pheromone

end

Fig. 1. Pseudo-code of ant system

Definition 5 (Random proportional rule). At the generic iteration h, sup-
pose that ant k is in node i. Let N k

i be the set of feasible nodes. The node j ∈ N k
i ,

to which ant k moves, is selected with probability:

pk
ij,h =

[τij,h]α[ηij ]β∑
l∈Nk

i
[τil,h]α[ηil]β

,

where α and β are parameters, τij,h is the pheromone value associated with arc
〈i, j〉 at iteration h, and ηij represents heuristic information on the desirability
of visiting node j after node i.

Definition 6 (Heuristic information). When solving the traveling salesman
problem, the heuristic information ηij is the inverse of the cost of traveling from
city i to city j:

ηij =
1
cij

, for all 〈i, j〉.

Definition 7 (Pheromone update rule). At the generic iteration h, suppose
that m ants have generated the solutions T 1

h , T 2
h , . . . , Tm

h of cost C1
h , C

2
h , . . . , C

m
h ,

respectively. The pheromone on each arc 〈i, j〉 is updated according to the follow-
ing rule:

τij,h+1 = (1 − ρ)τij,h +
m∑

k=1

Δk
ij,h,

where ρ is a parameter called evaporation rate and

Δk
ij,h =

{
1/Ck

h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise.
(3)

Definition 8 (Ant system). Ant system is an ant colony optimization algo-
rithm in which solutions are constructed according to the random proportional
rule given in Definition 5, and the pheromone is updated according to the rule
given in Definition 7. The evaporation rate ρ, the number of ants m, and the
exponents α and β are parameters of the algorithm.

When ant system is used for solving the traveling salesman problem, it is cus-
tomary to initialize the pheromone as follows.
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Definition 9 (Nearest-neighbor pheromone initialization). At the first
iteration h = 1, the pheromone on all arcs is initialized to the value:

τij,1 =
m

Cnn , for all 〈i, j〉,

where m is the number of ants considered at each iteration, and Cnn is the cost
of the solution T nn obtained by the nearest-neighbor heuristic.

The following theorem holds true.

Lemma 1. The random proportional rule is invariant to concurrent linear
transformations of the pheromone and of the heuristic information. Formally:

(τ̄ij,h = g1τij,h) ∧ (η̄ij = g2ηij), for all 〈i, j〉 =⇒ p̄k
ij,h = pk

ij,h, for all 〈i, j〉.

where p̄k
ij,h is obtained on the basis of τ̄ij,h and η̄ij, according to Definition 5.

Proof. According to Definition 5:

p̄k
ij,h =

[τ̄ij,h]α[η̄ij ]β∑
l∈Nk

i
[τ̄il,h]α[η̄il]β

=
[g1τij,h]α[g2ηij ]β∑

l∈Nk
i

[g1τil,h]α[g2ηil]β

=
[g1]α[g2]β [τij,h]α[ηij ]β∑

l∈Nk
i

[g1]α[g2]β[τil,h]α[ηil]β
=

[g1]α[g2]β [τij,h]α[ηij ]β

[g1]α[g2]β
∑

l∈Nk
i

[τil,h]α[ηil]β

=
[τij,h]α[ηij ]β∑

l∈Nk
i

[τil,h]α[ηil]β
= pk

ij,h.

"#

Theorem 1. The ant system algorithm for the traveling salesman problem is
weakly-invariant, provided that the pheromone is initialized as prescribed by De-
finition 9.

Proof. Let us consider two generic instances I and Ī such that

Ī = fI, with f > 0.

The theorem is proved by induction: We show that if at the generic iteration h
some set of conditions C holds, then the solutions generated for the two instances
I and Ī are the same and the set of conditions C also holds for the following
iteration h + 1. The proof is concluded by showing that C holds for the very
first iteration. With few minor modifications, this technique is adopted in the
following for proving all theorems enunciated in the paper.

According to Definition 6, and taking into account (1), it results:

η̄ij =
1
f
ηij , for all 〈i, j〉.
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According to Lemma 1, if at the generic iteration h, τ̄ij,h = 1
f τij,h, for all 〈i, j〉,

then p̄k
ij,h = pk

ij,h, for all 〈i, j〉. Under Hypothesis 1,

T̄ k
h

= T k
h
, for all k = 1, . . . ,m,

and therefore, according to (2),

C̄k
h

= fCk
h
, for all k = 1, . . . ,m.

According to (3):

Δ̄k
ij,h =

{
1/C̄k

h , if 〈i, j〉 ∈ T̄ k
h ;

0, otherwise;
=

{
1/fCk

h , if 〈i, j〉 ∈ T̄ k
h = T k

h ;
0/f, otherwise;

=
1
f

{
1/Ck

h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise;
=

1
f
Δk

ij,h,

and therefore, for any arc 〈i, j〉:

τ̄ij,h+1 = (1 − ρ)τ̄ij,h +
m∑

k=1

Δ̄k
ij,h = (1 − ρ)

1
f
τij,h +

m∑
k=1

1
f
Δk

ij,h

= (1 − ρ)
1
f
τij,h +

1
f

m∑
k=1

Δk
ij,h =

1
f

(
(1 − ρ)τij,h +

m∑
k=1

Δk
ij,h

)
=

1
f
τij,h+1.

In order to provide a basis for the above defined induction and therefore to
conclude the proof, it is sufficient to observe that at the first iteration h = 1,
the pheromone is initialized as:

τ̄ij,1 =
m

C̄nn =
m

fCnn =
1
f
τij,1, for all 〈i, j〉.

"#

Remark 3. Theorem 1 holds true for any way of initializing the pheromone,
provided that for any two instances Ī and I such that Ī = fI, τ̄ij,1 = 1

f τij,1, for
all 〈i, j〉.

Remark 4. Theorem 1 extends to the application of ant system to problems
other than the traveling salesman problem, provided that the initialization of
the pheromone is performed as prescribed in Remark 3 and for any two instances
Ī and I such that Ī = fI, with f > 0, there exists a coefficient g > 0 such that
[η̄ij ]β = [gηij ]β , for all 〈i, j〉. In particular, it is worth pointing out here that one
notable case in which this last condition is satisfied is when β = 0, that is, when
no heuristic information is used.
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4 Strongly-Invariant Ant System

A strongly invariant version of ant system (siAS) can be easily defined. For
definiteness, we present here a version of siAS for the traveling salesman problem.

Definition 10 (Strongly-invariant heuristic information). When solving
the traveling salesman problem, the heuristic information ηij is

ηij =
Cnn

ncij
, for all 〈i, j〉. (4)

where cij is the cost of traveling from city i to city j, n is the number of cities, and
Cnn is the cost of the solution T nn obtained by the nearest-neighbor heuristic.

Definition 11 (Strongly-invariant pheromone update rule). The phero-
mone is updated using the same rule given in Definition 7, with the only differ-
ence that Δk

ij,h is given by:

Δk
ij,h =

{
Cnn/mCk

h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise;

where Cnn is the cost of the solution T nn obtained by the nearest-neighbor heuris-
tic and m is the number of ants generated at each iteration.

Definition 12 (Strongly-invariant pheromone initialization). At the first
iteration h = 1, the pheromone on all arcs is initialized to the value:

τij,1 = 1, for all 〈i, j〉.

Definition 13 (Strongly-invariant ant system). The strongly-invariant
ant system (siAS) is a variation of ant system. It shares with ant system the
random proportional rule for the construction of solutions, but in siAS the heuris-
tic values are set as in Definition 10, the pheromone is initialized according to
Definition 12 and the update is performed according to Definition 11.

Remark 5. In the definition of siAS given above, the nearest-neighbor heuristic
has been adopted for generating a reference solution, the cost of which is then
used for normalizing the cost of the solutions found by siAS. Any other algorithm
could be used instead, provided that the solution it returns does not depend on
the scale of the problem.

Remark 6. It is worth noting here that the presence of the term n in the de-
nominator of the left hand side of (4) is not needed for obtaining an invariant
heuristic information. It has been included for achieving another property. In-
deed, ηij as defined in (4) assumes values that do not depend on the size of the
instance under analysis—that is, on the number n of cities. If this term were not
present, since the numerator Cnn grows with n, ηij would have been relatively
larger in large instances and smaller in small ones.
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Remark 7. Similarly, it should be noticed that by initializing the pheromone to
τij,1 = 1/m, for all 〈i, j〉, and by defining Δk

ij,h as:

Δk
ij,h =

{
Cnn/Ck

h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise;

one would have obtained nonetheless an invariant algorithm. The advantage of
the formulation given in Definitions 11 and 12 is that the magnitude of the
pheromone deposited on the arcs does not depend on the number m of ants
considered.

The strongly-invariant ant system is functionally equivalent to the original ant
system, that is, the two algorithms produce the same sequence of solutions for
any given instance, provided that the pheromone is properly initialized, their
respective pseudo-random number generators are the same, and these generators
are initialized with the same seed. Formal proofs of the functional equivalence
of siAS and ant system and of the strong invariance of siAS, are given in [6].

5 Conclusions

We have formally proved that, contrary to what previously believed [1], ant
system is invariant to the rescaling of problem instances. The same holds [6] for
the two main other members of the ant colony optimization family of algorithms,
namely, MAX–MIN ant system and ant colony system.

Moreover, we have introduced siAS, which is a straightforward strongly-
invariant version of ant system. In this respect, siAS is similar to the hyper-cube
ant system [1] which is the first strongly-invariant version of ant system ever
published in the literature. The main advantage of siAS over the hyper-cube ant
system is that, while the latter is effectively a new algorithm, siAS is functionally
equivalent to the original ant system. As a consequence, one can immediately
extend to siAS all understanding previously acquired about ant system and
all empirical results previously obtained. Following the strategy adopted in the
definition of siAS, a strongly-invariant version of any ACO algorithm can be
defined. In particular, siMMAS and siACS are introduced in [6]. These two al-
gorithms are the strongly-invariant versions of MAX–MIN ant system and ant
colony system, respectively. Like siAS, also siMMAS and siACS are functionally
equivalent to their original counterparts.

Acknowledgments. This work was supported by the ANTS project, an Action
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Abstract. There are two reasons for parallelizing a metaheuristic if one
is interested in performance: (i) given a fixed time to search, the aim is to
increase the quality of the solutions found in that time; (ii) given a fixed
solution quality, the aim is to reduce the time needed to find a solution
not worse than that quality. In this article, we study the impact of com-
munication when we parallelize a high-performing ant colony optimiza-
tion (ACO) algorithm for the traveling salesman problem using message
passing libraries. In particular, we examine synchronous and asynchro-
nous communications on different interconnection topologies. We find
that the simplest way of parallelizing the ACO algorithms, based on
parallel independent runs, is surprisingly effective; we give some reasons
as to why this is the case.

1 Introduction

A system of n parallel processors is generally less efficient than a single n-times-
faster processor, but the parallel system is often cheaper to build, especially if we
consider clusters of PCs or workstations connected through fast local networks
and software environments such as Message Passing Interface (MPI). This makes
at the time of this research clusters one of the most affordable and adopted
parallel architectures for developing parallel algorithms.

The availability of parallel architectures at low cost has widened the interest
for the parallelization of algorithms and metaheuristics [1]. When developing
parallel population-based metaheuristics such as parallel genetic algorithms and
parallel ant colony optimization (ACO) algorithms, it is common to adopt the
“island model” approach [2], in which the exchange of information plays a major
role. Solutions, pheromone matrices, and parameters have been tested (see for ex-
ample [3,4,5,6]) as the object of such an exchange. In [3] solutions and pheromone
levels are exchanged, producing a rather high volume of communication which
requires a significant part of the computational time. In [6] the communication
of the whole pheromone matrix leads to a decrease in solution quality as well
as worse runtime behavior, while the exchange of best-so-far and elite solutions
produces the best results w.r.t. solution quality. In this paper, we study how
different interconnection topologies affect the overall performance when we want
to increase, given a fixed run time, the quality of the solutions found by a multi-
colony parallel ACO algorithm to solve the traveling salesman problem (TSP).

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 224–234, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We use the TSP, an NP-hard problem [7], as a case study, that also has been a
central test bed in the development of the ACO field. For each interconnection
topology, we implement both synchronous and asynchronous communication. In
the first case, the sender waits for the receiver to exchange messages. In the
second case, the sender forwards the message and continues, not waiting for
the receiver. The communication strategy we adopt involves the exchange of
the best-so-far solutions every r iterations, after an initial period of “solitary”
search. The main advantage of using best-so-far solutions over pheromone ma-
trices is that less data has to be exchanged: for the smallest instance that we
consider, each pheromone matrix requires several megabytes of memory space,
while a solution requires only some kilobytes.

For this study, we use MAX−MIN Ant System (MMAS) [8]—currently
one of the best-performing ACO algorithms—as a basis for our parallel imple-
mentation. Our implementation of MMAS is based on the publicly available
ACOTSP code.1

Some research has been done on the parallelization of ACO algorithms, but,
surprisingly enough, only few works used as a basis for the study of the effec-
tiveness of the parallelization a high-performing ACO algorithm. An example is
[9], where the effect of parallel independent runs was studied.

The article is structured as follows. Section 2 describes the details of our im-
plementation of MMAS, and describes the different interconnection topologies
adopted. In Section 3, we report details about the experimental setup, and Sec-
tion 4 contains the results of the computational experiments. Finally, in Section 5
we discuss the limitations of this work and summarize the main conclusions that
can be drawn from the experimental results.

2 Parallel Implementation of MAX−MIN Ant System

ACO is a metaheuristic introduced in 1991 by Dorigo and co-workers [10,11].
For an overview of the currently available ACO algorithms see [12]. In ACO,
candidate solutions are generated by a set of stochastic procedures called arti-
ficial ants that use a parametrized probabilistic model which is updated using
the previously seen solutions [13].

As said in Section 1, for this research, we use MMAS as a basis for our parallel
implementation. We extended the ACOTSP code by quadrant nearest neighbor
lists. To have a version that is easily parallelizable, we removed the occasional
pheromone re-initializations applied in the MMAS described in [8], and we use
only a best-so-far pheromone update. Our version also uses the 3-opt local search.

We aim at an unbiased comparison of the performance produced by commu-
nication among multiple colonies on five different interconnection topologies. In
order to obtain a fair and meaningful analysis of the results, we have restricted
the approaches to the use of a constant communication rate among colonies to
exchange the best-so-far solutions. A colony injects in his current solution-pool a
received best-so-far solution if and only if it is better than its current best-so-far
1 http://www.aco-metaheuristic.org/aco-code/public-software.html
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solution, otherwise it disregards it. In the following, we briefly and schematically
describe the principles of the communication on each interconnection topology
we considered. For each topology, with the exception of the Parallel independent
runs, we have two versions: a first one, where the communication is synchronous,
and a second one, where the communication is asynchronous. The topologies we
studied are:

Fully-connected. In this parallel model, k colonies communicate with each
other and cooperate to find good solutions. One colony acts as a master and
collects the values of the best-so-far solutions found by the other k − 1 colonies.
The master then broadcasts to all colonies the identifier of the colony that owns
the best solution among all k colonies so that everybody can get a copy of this
solution. We consider a synchronous and an asynchronous implementation of
this model identified by SFC and AFC, respectively, in the following.

Replace-worst. This parallel model is similar to the fully-connected, with the
exception that the master identifies also the colony that owns the worst solution
among the k colonies. Instead of broadcasting the identity of the best colony,
the master sends only one message to the best colony, containing the identity of
the worst colony, and the best colony sends its best-so-far solution only to the
worst colony. We consider a synchronous and an asynchronous implementation
of this model identified by SRW and ARW, respectively, in the following.

Hypercube. In this model, k colonies are connected according to the hypercube
topology (see [14] for a detailed explanation of this topology). Practically, each
colony is located on a vertex i of the hypercube and can communicate only with
the colonies that are located in the vertices that are directly connected to i.
Each colony sends to each of its neighbors its best-so-far solution. We consider
a synchronous and an asynchronous implementation of this model respectively
SH and AH in the following.

Ring. Here, k colonies are connected in such a way that they create a ring. We
have implemented a unidirectional ring, so that colony i sends his best-so-far
solution only to colony [(i+1) mod k], and receives only the best-so-far solution
from colony [(i−1+k) mod k]. We consider a synchronous and an asynchronous
implementation of this model, called SR and AR in the following.

Parallel independent runs. In this model, k copies of the same sequential
MMAS algorithm are simultaneously and independently executed using differ-
ent random seeds. The final result is the best solution among all the k runs. Using
parallel independent runs is appealing as basically no communication overhead
is involved and nearly no additional implementation effort is necessary. In the
following, we identify the implementation of this model with the acronym PIR.

These topologies allow us to consider decreasing communication volumes,
moving from more global communication, as in fully-connected, to more local
communication, as in ring, to basically no communication, as in parallel inde-
pendent runs.
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3 Experimental Setup

As said in Section 1, all algorithms are based on the ACOTSP software, which
is coded in C. The parallel algorithms add, w.r.t. the sequential code, the com-
munication capability, using MPI libraries. Experiments were performed on a
homogeneous cluster of 4 computational nodes running GNU/Linux Debian 3.0
as Operating System and LAM/MPI 7.1.1 as communication libraries. Each
computational node contains two AMD OpteronTM 244 CPUs, 2 GB of RAM,
and one 1 Gbit Ethernet network card. The nodes are interconnected through a
48-ports Gbit switch.

The initial computational experiments are performed with k = 8 colonies of
25 ants each that exchange the best-so-far solution every 25 iterations, except
for the first 100 iterations.

We consider 10 instances from TSPLIB [15] with a termination criterion based
on run time, dependent on the size of the instance, as reported in Table 1. For
each of the 10 instances, 10 runs were performed. In order to have a reference
algorithm for comparison, we also test the equivalent sequential MMAS algo-
rithm. We considered two cases: in the first one (SEQ), it runs for the same
overall wall-clock time as a parallel algorithm (8-times the wall-clock time of a
parallel algorithm), while in the second one (SEQ2), it runs for the same wall-
clock time as one CPU of the parallel algorithm. It is reasonable to request that
a parallel algorithm performs at least not worse than SEQ2 within the compu-
tation time under consideration.

The parameters of MMAS are chosen in order to guarantee robust perfor-
mance over all the different sizes of instances; we use the same parameters as
proposed in [8], except for the pheromone re-initializations and the best-so-far
update, as indicated in Section 2.

To compare results across different instances, we normalize them with respect
to the distance from the known optimal value. For a given instance, we denote
as cMH the value of the final solution of algorithm MH, and copt the value of the

Table 1. Instances with run time in seconds and average number of total iterations in
a run done by the sequential algorithm SEQ2

instance run time SEQ2 average iterations
pr1002 900 11831
u1060 900 10733

pcb1173 900 10189
d1291 1200 11325

nrw1379 1200 8726
fl1577 1500 15938

vm1748 1500 6160
rl1889 1500 6199
d2103 1800 12413
pr2392 1800 8955
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optimal solution; the normalized value is then defined as

Normalized Value for MH =
cMH − copt

copt
· 100. (1)

This normalization method provides a measure of performance that is indepen-
dent of the values of the different optimal solutions, allowing us to aggregate
results form different instances.

4 Results

As stated in Section 2, we aim at an unbiased comparison of the performance
produced by communication among multiple colonies on different interconnec-
tion topologies. The hypothesis is that the exchange of the best-so-far solution
among different colonies speeds up the search for high quality solutions, having a
positive impact on the performance of the algorithms. In order to test the effects
of communication, we implement versions of MMAS algorithm that differ only
in the communication behavior. This setup allows us to use statistical techniques
for verifying if differences in solutions quality found by the algorithms are sta-
tistically significant. Figure 1 contains the boxplot of the results2 grouped by
algorithm over all instances after the normalization described in Section 3. The
boxplot indicates that, on average, all the parallel models, except SFC, seem able
to do better than SEQ and SEQ2, but that the best performing approach is PIR.
We check whether the differences in performance among the parallel models with
exchange of information and PIR are statistically significant. The assumptions
for a parametric method are not met, hence we rely on the Wilcoxon rank sum
test [16] with p-values adjusted by Holm’s method [17].

As can be seen from Table 2, the differences in performance of all the parallel
models with information exchange from those of PIR are statistically significant;
this confirms that PIR is the best performing approach under the tested con-
ditions. We also check whether the differences in performance are statistically
significant once we group the algorithms by interconnection topology, using again
the Wilcoxon test with p-values adjusted by Holm’s method and we report the
results in Table 3. Differences in performance among interconnection topologies
are not statistically significant.

Even though the boxplot indicates that parallel algorithms achieve, on aver-
age, better performance than the sequential ones, the impact of communication
on performance seems negative. One reason might be that the run times are
rather high, and MMAS easily converges in those times. PIR can count on
multiple independent search paths to explore the search space, reducing the
effects of the “stagnation” behavior. In fact, the other parallel algorithms accel-
erate the convergence toward a same solution, due to the frequent exchange of
information, as can be verified by the traces of the algorithms’ outputs.

2 We refer the reader interested in the raw data to the URL: http://iridia.ulb.ac.
be/supp/IridiaSupp2006-001/
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Fig. 1. Aggregate results over all instances. Boxplot of normalized results

Table 2. p-values for the null hypothesis “The distribution of the % distance from
optimum of solutions for all instances is the same as PIR”. The alternative hypothesis
is that “The median of the PIR distribution is lower”. The significance level with which
we reject the null hypothesis is 0.05.

SFC AFC SRW ARW SH AH SR AR
5.4e-4 0.01 0.02 0.02 1.2e-3 0.02 0.02 0.02

Table 3. p-values for the null hypothesis “The distributions of the % distance from
optimum of solutions for all instances are the same”. The significance level with which
we reject the null hypothesis is 0.05.

FC RW H
RW 0.55 - -
H 1 1 -
R 0.55 1 1

Run time distributions. To examine the possibility of the “stagnation” be-
havior, we analyze the run-time distribution (RTD) of the sequential algorithm.
A qualified run-time distribution measures the distribution of the time a stochas-
tic local search algorithm requires to reach a specific target of solution quality,
for example the optimal solution value. In Figure 2 we give plots of the mea-
sured RTDs for reaching the known optimal solution value for the two instances
pr1002 and d2103. As explained in [18], the exponential distribution that is given
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Fig. 2. Run-time distribution over 80 independent trials of the sequential MMAS
algorithm for the instances pr1002 and d2103

in these plots indicates that this version of MMAS may profit from algorithm
restarts (essentially, restarting after an appropriately chosen cutoff time, one
can force the empirical RTD to follow the exponential distribution due to its
statistical properties) and, hence, this is an indication of stagnation behavior.
This explains to a large extent the good perfomance of parallel independent run
given that PIR can count on multiple independent search paths to explore the
search space, reducing the effects of the stagnation behavior.

Performance for reduced run-times. In order to check if our doubt on the
“stagnation” behavior has some fundament, we re-analyze the results considering
run times that are 1/4, 1/16, and 1/64 of the values reported in Table 1, showing
the resulting boxplots in Figure 3. We observe that the more we reduce the
run time, the smaller are the differences between the performance of the SEQ
algorithm and the others, up to the reduced time of 1/64, for which SEQ performs
on average better than all the parallel models (remember that SEQ has a run
time that is 8-times the wall-clock time of a parallel algorithm).

Frequency of communication. As indicated, an apparent problem of our
communication scheme is that communication is too frequent. To better under-
stand the impact that the frequency of communication has on performance, we
change the communication scheme to an exchange every n/4 iterations, except
during the first n/2, where n is the size of the instance. We test this new com-
munication scheme on the parallel models replace-worst (SRW2) and ring (SR2).
Figure 4 shows the boxplots of the results. Once more, we rely on the Wilcoxon
test with Holm’s adjustment to verify whether the differences in performance are
statistically significant. With the adoption of the new communication scheme,
under the same experimental conditions, we are not able to reject the null hy-
pothesis “The distributions of the % distance from optimum of solutions for
all instances is the same as PIR” with a significance level of 0.05, given that
the p-values relative to SRW2 and SR2 are both equal to 0.30. The reduced
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(b) Reduced time - 1/4
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(c) Reduced time - 1/16
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(d) Reduced time - 1/64

Fig. 3. Aggregate results over all instances. Boxplots of normalized results restricted
to values in [0,1]. (a) full time is used; (b) run time reduced to 1/4 of full time; (c) run
time reduced to 1/16 of full time; (d) run time reduced to 1/64 of full time.

frequency in communication has indeed a positive impact on the performance of
the two parallel algorithms SRW2 and SR2, even though this is not sufficient to
achieve better performance w.r.t parallel independent runs. We strongly believe
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Fig. 4. Aggregate results over all instances. Boxplot of normalized results.

that to achieve better results than PIR we need to develop a more sophisticate
communication scheme, that is dependent not only on the instance-size, but also
on the run time.

5 Conclusions

The main contribution of this paper is the study of the impact of communica-
tion among multiple colonies interconnected with various topologies on the final
solution quality reached. We initially restricted the algorithms to the use of a
constant communication rate among colonies to exchange the best-so-far solu-
tions. For each topology, with the exception of the parallel independent runs, we
have developed two versions: a first one in which the communication is synchro-
nous, and a second one in which the communication is asynchronous. We have
shown that all the parallel models perform on average better than the equivalent
sequential algorithms (SEQ and SEQ2).

As stated in Section 2, to have a version that was easy to parallelize, we
removed from the MMAS implementation the occasional pheromone re-initia-
lization and we used only a best-so-far pheromone update. These modifications
result in a stagnation behavior of the sequential algorithm; this stagnation be-
havior can be avoided to a large extent by parallel independent runs, which
also explains its overall good behavior, biasing the performance in favor of PIR
over all the other parallel models. We believe that better performance than PIR
can be obtained by the parallel models either adding the restarting feature, or
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implementing communication schemes that avoid early convergence. This sec-
ond approach could be achieved implementing the acceptance of solutions from
other colonies only when they “differ” less than a certain number of components,
leading to the creation of groups of colonies that search in different areas of the
search space, or by exchanging the solutions with a frequency that depends on
both, instance size and run time.
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Abstract. This paper presents a macrocell placement constraints and
overlap removal methodology using particle swarm optimization (PSO).
The authors adopted several techniques along with PSO as to avoid
the floorplanning falling into the local minimum and to assist in finding
out the global minimum. Our method can deal with various kinds of
placement constraints, and consider them simultaneously. Experiments
employing MCNC and GSRC benchmarks show the efficiency and ro-
bustness of our method for restricted placement and overlap removal
obtained by the ability of exploring better solutions. The proposed ap-
proach exhibited rapid convergence and led to more optimal solutions
than other related approaches, furthermore, it displayed efficient pack-
ing with all the constraints satisfied.

1 Introduction

The physical placement of circuits in VLSI chips or System on Chips (SoCs) has
been given sustained attention in recent years. The major objective of placement
is to allocate the modules of a circuit into a chip to optimize some design metric
such as chip area and wire length etc. However, in nature, placement is an NP-
complete problem. Early research on the placement problem applied force to
reduce the overlap betweens cells [1]. For non-slicing structure, many packing
representation methods have been proposed in recent years, such as [2,3,4]. On
the other hand, [5] and [6] show the generated layouts with cell overlaps. Allowing
overlaps during placement process were shown to obtain a better solution, but
will increase the cost at the end of for reduce amount of overlap and cannot
guarantee entire elimination.

The most recent approach for macrocell overlap removal and placement was
conducted by Alupoaei and Katkoori, whose algorithm was based on the ant
colony optimization method (ACO) [7]. Each ant generated a placement based
on the relative macrocells’ positions and information regarding the optimal place-
ment obtained by previous colonies. The disadvantage to this macrocell move-
ment procedure was that the initial relationship between macrocells will influence
the final result directly and/or fall into the local minimal.

Although, all the approaches mentioned above have their advantages and dis-
advantages, they do not cover placement constraint problems. Due to the analog
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design, designers will also be interested in a particular kind of placement con-
straint called symmetry, and some recent literature on this problem can be found
in [8] and [9]. The floorplanner in [10] can handle alignment constraint which may
arise in bus-based routing. The floorplanners in [11,12,13] can handle pre-place
constraint in which some modules are fixed in position. Different approaches
are used to handle the different kinds of constraints, but there are no unified
methods that can handle all constraints simultaneously.

As opposed to these previously mentioned methods, this paper adopts Particle
Swarm Optimization (PSO) with an overlap detection and removal mechanism
to search for the optimal placement solution. PSO is a swarm intelligence method
that roughly models the social behavior of swarms. The consequence of modeling
this social behavior is that the search process allows particles to stochastically
return toward previously successful regions in the search space. It has proved to
be efficient on a plethora of problems in science and engineering.

We incorporated PSO with a disturbance mechanism [14] to avoid the solu-
tion from falling into the local minimum, furthermore, our method can handle
different kinds of placement constraints simultaneously, including boundary con-
strains, pre-place constraint, range constraint, abutment, alignment, and clus-
tering, etc.. Users can dictate a mixed set of constraints and their preferred way
of arrangement for the assigned macrocell. Our floorplanner will then be able to
place all of them simultaneously.

Section II defines various placement constraint problems definition. Section
III describes the original PSO methodology. Section IV presents the proposed
methods. Section V presents the experimental results. Aside from the com-
parisons with ACO, SA and B*-tree in un-constrainted conditions. Section V
also exhibits the results of situation involving different kinds of randomly se-
lected multi-constraint in floorplanning. Section VI of the paper contains the
conclusion.

2 Placement Constraints

During floorplanning, we gave some information for a set of macrocells, including
their width, length and cell numbers. We addressed the floorplanning problem
with a number of placement constraints, i.e., besides the module information,
we also gave some placement constraints between the modules. Our goal was
to plan their positions on a chip such that all the placement constraints can be
satisfied and the area and interconnection cost is minimized.

2.1 Cell Definition

We used the notation c(i, x, y) to denote the ithcell’s location, where x and y
are presented ithcell’s position on x-axis and y-axis respectively. Note that the
cell positions are defined as the cell’s lower left corner. Fig. 1 illustrates these
definitions.
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Fig. 1. Cell Definition

2.2 Relative and Absolute Constraints

Placement constraints can be classed as relative and absolute. A relative place-
ment constraint describes the relationship between two modules, and an absolute
placement constraint describes the relationship between a module and the chip.
i.e., with relative placement constraints, users can restrict the horizontal or verti-
cal distance between two modules to a certain range of values, and with absolute
placement constraints is the absolute placement of a module is restricted with
respect to the whole chip. Users can restrict the placement of a module such that
its distance from the boundary of the chip is within a certain range of values.
The modules under both kinds of constraints can be set as restriction conditions
for the particle movement in the PSO evolution process. About the detail of the
definition and applications will be described in the following section.

2.3 General Use Placement Constraints

Head Using the above specifications for absolute and relative placement con-
straints, we can describe many different kinds of placement constraints. In this
section, we will pick a few commonly used ones and show how each can be spec-
ified using a combination of the relative and absolute placement constraints.

Fig. 2. Example of Alignment Constraint

Alignment: To align module A, B, C and D vertically (Fig. 2), we can impose
the following constraints:

xA = xB = xC = xD
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We restricted the vertical axes of each module to be same; they will thus all align
vertically. A similar definition can be applied to their horizontal alignment.

Fig. 3. Example of Abutment Constraint

Abutment: To abut module A, B andC horizontally (Fig. 3), we impose the
following constraints:

xB = xA + wA

xC = xB + wB

yA = yB = yC

where wA and wB are the widths of module A and B, respectively. In this
formulation, the horizontal axes of each module are the same; so they will align
horizontally. On the other hand, it restricted the module B to being placed next
to module A on the right hand side, and so on. So they will be abutting with
each other horizontally.

Fig. 4. Example of Pre-Place Constraint

Pre-place Constraint: To pre-place module A with its lower left corner at
axis (x1, y1) and module B with its lower left corner at axis (x2, y2) (Fig. 4),
we can impose the following constraints:

xA = x1, yA = y1
xB = x2, yB = y2

We restricted module Ato be x1 units from the left boundary and y1 units from
the bottom boundary. The similar definition can be applied to module B. Each
restricted module will be pre-placed with its lower left corner in the final packing.
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Fig. 5. Example of Range Constraint

Range Constraint: To restrict the position of module A in the range {(xA, yA)|
x1 ≤ xA ≤ x2, y1 ≤ yA ≤ y2} (Fig. 5), we can impose the following constraints:

xA = [x1, x2], yA = [y1, y2]

In this formulation, we restrict module A to be x1 to x2 units from the left
boundary and to be y1 to y2 units from the bottom boundary, therefore, module
A will be laid in the required rectangular region.

Fig. 6. Example of Boundary Constraint

Boundary Constraint: To place module A along the left boundary and place
module B along the bottom boundary of the final packing (Fig. 6), we can impose
the following constraints:

xA = xC + wC , yA = [yC , yC + hC ]
xB = xC + wC , yB = [yC , yC + hC ]

In this formulation, we restrict module A to be 0 units from the left boundary,
so module A will be abut with the left boundary in the final packing. Module
B is restricted to be 0 units from the bottom boundary, so module B will abut
with the bottom boundary as required.

Clustering Constraint: Clustering Constraint: To cluster module A and B
around C at a distance of most units away vertically. (Fig. 7), we can impose
the following constraints:

xA = xC + wC , yA = [yC , yC + hC ]
xB = xC + wC , yB = [yC , yC + hC ]
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Fig. 7. Example of Cluster Constraint

In this formulation, we restrict the vertical distances of A and B from C to be
at most units in vertical directions, so they will cluster around C at a vertical
distance of at most hC units away. We can also restrict the horizontal distances
of A and B from Cin a similar way.

3 Particle Swarm Optimization (PSO)

The PSO is a population based optimization technique that was proposed by
Kennedy and Eberhart [15] in 1995, which the population is referred to as a
swarm. The particles express the ability of fast convergence to local and/or
global optimal positions over a small number of generations.

A swarm in PSO consists of a number of particles. Each particle represents
a potential solution of the optimization task. All of the particles iteratively
discover a probable solution. Each particle generates a position according to the
new velocity and the previous positions of the cell. This is compared with the
best position which is generated by previous particles in the cost function and
the best one is kept; i.e., each particle accelerates in the direction of not only
the local best solution but also the global best position. If a particle discovers a
new probable solution, other particles will move closer to it to explore the region
more completely in the process.

Let sdenote the swarm numbers. In general, there are three attributes, current
position xi, current velocity vi and past best position Pbi, for particles in the
search space to present their features. Each particle in the swarm is iteratively
updated according to the aforementioned attributes. Assuming that the function
f is to be minimized so that the dimension consists of nparticles, the new velocity
of every particle is updated by (1).

vi,j(t + 1) = wvi,j(t) + c1r1,i,j(t)[Pbi,j(t) − xi,j(t)]
+ c2r2,i,j(t)[Gbj(t) − xi,j(t)]

(1)

where vi,j is the velocity of the ith particle of the jth swarm for allj ∈ 1... s, w
is the inertia weight of velocity, c1 and c2 denote the acceleration coefficients, r1
and r2are elements from two uniform random sequences in the range (0, 1), and
tis the number of generations. The new position of the ithparticle is calculated
as follows:

xi(t + 1) = xi(t) + vi(t + 1) (2)
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The past best position of each particle is updated by (3).

Pbi (t + 1) =
{

Pbi (t) , if f (xi (t + 1)) ≥ f (Pbi (t))
xi (t + 1) , if f (xi (t + 1)) < f (Pbi (t)) (3)

The global best position Gb found from all particles during previous three steps
is defined as:

Gb(t + 1) = arg min
Pbi

f(Pbi(t + 1)), 1 ≤ i ≤ n (4)

4 PSO Algorithm for Macrocell Overlap Removal and
Placement

The first step of using PSO to handle the macrocell overlap removal and place-
ment is defining each module as a swarm that consists of a number of particles.
The particle’s move will lead the module to find another potential better so-
lution for placement. For the initial state of the placement, each module was
randomly generated in the floorplanning and overlap was allowed. After a num-
ber of generations, distance between each of the module will shrink, i.e. the chip
size will get smaller. The overlap of between two modules will be eliminated by
our overlap detection and removal mechanism.

4.1 Handling Placement Constraints by PSO

We consider two general kinds of placement constraints, absolute and relative.
For relative placement constraint, users can restrict the horizontal or vertical
distance between two modules to a certain value, or to a certain range of values.

We adopted a master-slave concept to define the relationship between cells.
One cell is defined as ‘master’, the other cells as ‘slaves’. All the slave cells will
be moved only after the master cell has moved. i.e., the master and slave cells
will be moved by PSO. Furthermore, the movement strategy of slave cells will
also obey the cell’s relationship defined by the constraints. For example, if we
define cell A and cell B, constrain their vertical alignment, and define cell A as
the master cell, then cell B will be moved only after cell A, and the x-axis of cell
B is set according to cell A’s current position. Absolute placement constraint is
similarly specified except it does not involve master-slave concept.

4.2 Extend PSO Searching Space

In the original PSO, the moving vector of velocity would be decided according to
the past best solution and the global best solution. This procedure seems make
sense in evolutional computing, where all the new generations would inherit the
past generations’ experience or ability and move all particles around to the global
best solution. In dynamic problems, optimal solution may change in each time
slot but not fix at a specific position. According to pervious experiment may not
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be able to find optimal solutions. Thus the algorithm should be modified to meet
this requirements. For example, in overlap detection and removal mechanism,
all existing macrocells were regarded as forbidden regions. On the other hand,
in when searching for better solutions, the modules may not just only move
forward but also backward for possible arrangements. Thus, in some cases when
using original PSO, the particle may not be able to find a feasible solution in
each generation. It could ignore other potential solution in searching space, and
spend more time moving towards the global minimum solution.

To enhance the particles’ searching ability and save evolution time, we modi-
fied the velocity update equation as follow:

vi,j(t + 1) = T {wvi,j(t) + c1r1,i,j(t)[Pbi,j(t) − xi,j(t)]
+ c2r2,i,j(t)[Gbj(t) − xi,j(t)]}

(5)

where T denotes the turn-around factor. Normally, the T would be set at 1 (move
forward). The particle’s movement will follow the original PSO. If the particle
can not find a feasible solution however, the T of the regenerated macrocell will
be switched to -1 (move backward) for this generation. When a feasible solution
has been found, the T will be restored as 1.

Fig. 8. The distance measure between two macrocells mechanism

4.3 Overlap Detection and Removal Mechanism

After the global best position Gb is updated to lead the macrocell to move
to a new position, we should detect if the current macrocell overlaps with the
existing macrocells. The horizontal distance dh and vertical distance dv between
two macrocells depicted in Fig. 8 are measured via the macrocells’ center. Then,
they are compared with the half sum of two macrocell’s height sh and half sum
of two macrocell’s width sw to estimate the occurrence of overlap by (6).

Overlap =
{

1, if dh < 0.5sw and dv < 0.5sh

0, otherwise (6)

The positions for the existing macrocell were regarded as forbidden regions.
However, if the newly generated macrocell overlapped with forbidden regions,
it would be discarded and regenerated until the overlaps were free. While this
process requires more time for computation, it guarantees that each macrocell’s
movement is overlap free.
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4.4 PSO for Placement Constraint and Overlap Removal

The minimized chip area and wire length are required and estimated by the
objective function (7). The swarm numbers sdenotes the number of macrocells,
and the particle number is defined as 1 ≤ i ≤ m. The macrocells were ran-
domly placed on the floorplan and the overlap was allowed initially. The xi

represents the macrocell current position and the initial state of vi,j , Pbi and
Gb were set as 0. After that, particles were moved by (5) and (2), and through
the constraints handling process, illegal moving vectors were cut off. The overlap
detection and removal mechanism will also eliminate the cells that overlap with
other macrocell(s). Then, the newly local best position would be updated by
(3) and the global best position would be updated by (4). To guarantee that
each constrained macrocell would not violate placement constraints, we set all
the constrained modules as having higher priority in each movement for ear-
lier generations to ensure that all set constraints were reached, i.e., while other
non-constrained modules overlap constrained modules, these modules would be
removed and regenerated. Thus, all the particles would keep moving to find a
better solution until it reached the goal or met the termination condition.

Table 1. Compared our method with other approaches without placement constraints

Circuits Cells

Our method Ant Colony [7]
(10 Particles) (100 Colony 200 Ants)

Chip Size Wire Length Run Time Chip Size Wire Length Run Time
(mm2) (mm) (mm2) (mm)

ami49 49 51.46 179.28 1m52s 63.32 218.36 7m58s
n 50 50 0.27 12.8 1m40s 0.41 18.01 7m12s
n 100 100 0.24 24.17 3m43s 0.45 40.36 15m01s
n 200 200 0.24 47.74 8m48s 0.46 73.68 45m59s
n 300 300 0.38 89.84 15m43s 0.57 119.43 1h24m12s

Circuits Cells
Simulated Annealing B*-tree [4]

Chip Size Wire Length Run Time Chip Size Wire Length Run Time
(mm2) (mm) (mm2) (mm)

ami49 49 69.5 237.79 3m4s 50.71 208.38 1m49s
n 50 50 0.5 17.68 1m50s 0.27 14.97 1m40s
n 100 100 0.47 35.10 4m1s 0.27 31.75 11m39s
n 200 200 0.56 72.68 10m55s 0.28 84.01 1h36m12s
n 300 300 0.63 132.91 23m12s 0.49 204.44 5h26m50s

5 Experiments

The experiments in this study employed GSRC and MCNC benchmarks [16] for
the proposed placement constraints and overlap removal procedures and com-
pared the results with other related research. All the macrocells were set as
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hard IP modules and without rotation. The simulation programs were written
in MATLAB, and the results were obtained on Pentium 4 1.7 GHz with 512MB
RAM. The PSO experiments with w, c1 and c2 initializations were 0.12, 0.25
and 0.25, respectively. We ran each floorplanner 10 times and calculated their
average outcomes of wire length, chip area and run time.

Table 2. Using our method to deal with placement constraints

Circuits Cells

8 macrocells under 4 random 12 macrocells under 4 random
selected constraints selected constraints

Chip Size Wire Length Run Time Chip Size Wire Length Run Time
(mm2) (mm) (mm2) (mm)

ami49 49 51.91 177.67 2m51s 52.21 186.82 3m2s
n 50 50 0.29 13.65 3m21s 0.3 13.86 3m56s
n 100 100 0.27 26.17 5m23s 0.28 31.75 5m50s
n 200 200 0.28 52.47 11m18s 0.28 52.95 12m25s
n 300 300 0.43 97.09 20m6s 0.43 97.79 20m35s

The experiment results of placement without constraint are shown in Table I.
Compared with related research, our method is more efficiency in finding better
solutions with respect to chip area or wire length and can avoid being trapped in
the local minimum. This is due to the ACO method allowing overlap in the initial
stage. It not only has to execute the ACO procedure, detect and remove overlaps,
but also has to deal with constraint graph for each macrocell. Besides this, in
worse case, the time complexity of this method is O(n3), whose ability shows
a feasible result for the floorplan. The convergence of SA method is quite slow.
An acceptable solution would be found only after a great deal of computation
time. On the other hands, although all the macrocells under B*-tree structure
were overlap free, which could seemingly save a lot of time to detect and remove
overlap between macrocells, it would spend more time arranging all cells while
one cell was removed, exchanged or placed. In a minority of macrocells cases, it
could still be more efficiency on placement. Once the cells number was increased,
the computation burden of this method would increase nonlinearly, furthermore,
it would likely fall into the local minimal. In unconstrained cases, our method
expressed more optimal results for wire length and chip area, and shorter run
times than ACO, SA and B*-tree.

The placement constraint experimental results are shown in Table II. Even
restricted to different numbers of macrocells for placement; our method exhibited
reasonable outcomes for chip size, wire length and run times to fit all selected
constraints and with solutions that are acceptable. Furthermore, our method
has no cases of constraint violations in each experiment. We can also find out
that the variation in computation times of our method with different restricted
cells is very small. A multi-constraint floorplanning example in GSRC n100 is
illustrated in Fig. 9.



Placement Constraints and Macrocell Overlap Removal Using PSO 245

Fig. 9. Cell 0-3 cluster at lower corner of the chip, cell 4, 6 and 7 cluster around cell
5, cell8-10 abut vertically and cell11-12 align horizontally

6 Conclusions

In this paper, we presented a method to handle various placement constraints in
floorplanning simultaneously. The experimental results proved that our method
can lead to more optimal solutions in reasonable computation times for the hard
IP modules in either constrained or unconstrained placement. Several bench-
marks were adopted for testing and the results were very reliable. Placements
with all the constraints satisfied can be obtained efficiently by our method.
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2 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
stuetzle@ulb.ac.be

Abstract. A central part of the rational drug development process is
the prediction of the complex structure of a small ligand with a protein,
the so-called protein-ligand docking problem, used in virtual screening
of large databases and lead optimization. In the work presented here,
we introduce a new docking algorithm called PLANTS (Protein-Ligand
ANT System), which is based on ant colony optimization. An artifi-
cial ant colony is employed to find a minimum energy conformation of
the ligand in the protein’s binding site. We present the effectiveness of
PLANTS for several parameter settings as well as a direct comparison to
a state-of-the-art program called GOLD, which is based on a genetic al-
gorithm. Last but not least, results for a virtual screening on the protein
target factor Xa are presented.

1 Introduction

Finding new drugs is notoriously time-consuming and expensive taking up to
15 years [1] and costing several hundred million dollars. Today’s drug discovery
process pursued by major pharmaceutical companies begins with the identi-
fication of a suitable protein, the target, in whose function a potential drug
could interfere to fight a disease. For this target, specific assays are developed,
which are then used in high-throughput screening experiments to test the biolog-
ical activity of large databases of possible drug candidates. Molecules with high
affinity, so-called lead structures, are then chemically varied (lead optimization
cycle) and the most potent ones of the resulting candidates are transferred to
the preclinical and finally the clinical development phase. In this way, out of
hundreds of thousands to millions of molecules, which have to be synthesized,
a drug can be identified. To speed up the process and save money, computer
methodologies have become a crucial part of these drug discovery projects, from
hit identification to lead optimization. Approaches such as ligand- or structure-
based virtual screening techniques are widely used in many discovery efforts
[2]. One key methodology, the docking of small molecules (ligands) to a protein
(receptor), remains a highly active area of research. In this, a complex struc-
ture, i.e. the orientation and conformation of the ligand within the active site
of the protein, should be predicted. This was first described by Emil Fischer
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in terms of the lock-and-key metaphor [3]. To identify the correct pose of a
specific ligand and to rank different ligands according to their binding affin-
ity, an estimate of the binding free energy of the complex formation should
also be calculated. Altogether, this is called the protein-ligand docking problem
(PLDP) for which we propose a new algorithm based on ant colony optimization
(ACO) [4].

2 Computational Approaches to the Docking Problem

A large variety of different approaches for a solution of the PLDP has been
proposed. These can be broadly classified as fragment-based, as stochastic opti-
mization methods for finding the global minimum, or as multiconformer docking
approaches. Recent studies [5,6] compared different docking tools on a large
test set of experimentally determined complex structures. They reported suc-
cess rates of 30 to 60%, where the success rate is defined as the percentage of
complexes, for which the predicted structure with the lowest energy is very close
(root mean square deviation (RMSD) within 2.0 Å) to the experimentally de-
termined structure. This shows that a universal docking tool that has excellent
predictive capabilities across many complexes is not available at the moment.
Concentrating on stochastic optimization methods, this can be attributed to the
scoring problem and the sampling problem. Given a protein and a ligand struc-
ture, a scoring function measures the binding strength of the ligand at a specific
position of the protein. Currently, there exists no perfect scoring function, which
is able to perform correct measurements for all given input structures. But even
if there was a perfect scoring function, there would still be the problem, that
there is no guarantee that the correct binding mode of the ligand is actually
found by the sampling algorithm. Given one of these scoring functions f and
the protein’s and ligand’s degrees of freedom, the PLDP can be formulated as
searching for the values to be assigned to the degrees of freedom that globally
minimize the scoring function. In the most approaches, the protein is kept rigid,
in which case only the ligand’s 3 translational, 3 rotational and r torsional de-
grees of freedom, describing rotations of single bonds that are not part of a
ring system, need to be optimized. Thus, the total number of variables, that
is the dimension of the optimization problem, equals n = 6 + r. In the actual
implementations given in the literature (see [7] and references therein), a wide
repertoire of optimization strategies is used to find the global minimum cor-
responding to the complex structure. E.g., genetic algorithms are used in the
programs GOLD and AutoDock, Monte Carlo minimization in the programs
ICM and QXP, and simulated annealing, evolutionary programming, and tabu
search in PRO LEADS.

3 PLANTS

We present a new algorithm, called Protein–Ligand ANT System (PLANTS)
for sampling the search space. PLANTS is based on ACO, a technique that was



PLANTS: Application of ACO to Structure-Based Drug Design 249

Fig. 1. Degrees of freedom for the docking problem. The origin of the ligand’s coor-
dinate system is shown as a sphere. The ligand’s translational degrees of freedom are
shown as large arrows, which also constitute the axes of rotation. The small arrows
mark the ligand’s rotatable bonds as well as a rotatable donor group in a single protein
side-chain (upper right corner), which originates from the schematic protein surface
shown in the background.

not yet tested for tackling the PLDP. PLANTS treats the ligand flexible, which
means that there are 6 + r degrees of freedom for the ligand as described above.
The flexibility of the protein is partially considered by the optimization of the
positions of hydrogen atoms that could be involved in hydrogen bonding. Both
the ligand’s and the protein’s degrees of freedom are illustrated in Figure 1.
The search space with respect to the ligand’s translational degrees of freedom is
defined by the size of the binding site given for each protein.

Pheromone model. The displacement of the ligand and the torsion angles are
continuous variables. Since ACO was originally designed to tackle combinator-
ial optimization problems, we decided to discretize the continuous variables such
that we can directly apply existing ACO techniques to the problem. To do so, we
used for each of the three translational degrees of freedom an interval length of
0.1Å, while for the three rotational degrees of freedom and all torsional degrees
of freedom an interval of 1◦ was taken. Each degree of freedom i has associated a
pheromone vector τi with as many entries as values result from the discretization.
Hence, each pheromone vector associated with rotational or torsional degrees of
freedom has 360 entries, while the number of entries of the pheromone vectors
corresponding to the three translational degrees of freedom depends on the di-
ameter of the binding site. A pheromone trail τij then refers to the desirability
of assigning the value j to degree of freedom i.

ACO algorithm. PLANTS is based on MAX–MIN Ant System (MMAS) [8].
The (artificial) ants construct solutions by choosing, based on the pheromone
values and heuristic information, one value for each degree of freedom. The order
of the degrees of freedom in the solution construction is arbitrarily fixed, since
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each degree of freedom is treated independently of the others. The probability
that an ant chooses value j for a ligand’s torsional degree of freedom i or for
each other degrees of freedom k, is given by

pij =

(
1 − 1

1+γ·τij

)
·
(

1
1+δ·ηij

)β

∑ni

l=1

(
1 − 1

1+γ·τil

)
·
(

1
1+δ·ηil

)β
and pkj =

τkj∑nk

l=1 τkl
, (1)

respectively. In these equations, γ = 200
τmaxi

as well as δ = 0.3 are experimentally
determined scaling parameters, τmaxi

is the maximum pheromone value and ni

(nk) the number of values for degree of freedom i (k). The heuristic information η
is given by the torsional potential for each rotatable bond. The rationale behind
that information is, that the construction of high energy ligand conformations
should be avoided. The nonlinear influence of the pheromone trails on the selec-
tion probabilities for the torsional degrees of freedom was chosen to account for
the imperfectness of the heuristic information. As usual in MMAS, only one
solution is used to deposit pheromone after each iteration; in PLANTS, this is
the best solution generated in the current iteration, sib. The pheromone update
is defined as

τij(t + 1) = (1 − ρ)τij(t) + Iib
ij (t)Δτ ib (t), (2)

where

Δτ ib(t) =
{

|f(sib)| if f(sib) < 0
0 otherwise (3)

and f(sib) is the scoring function value of sib. For a translational degree of
freedom i, Iib

ij (t) is one, if sib assigned a value in {j − 1, j, j + 1} to i; for
rotational and torsional degrees of freedom, Iib

ij (t) is one if a value in {j − 2, j −
1, j, j + 1, j + 2} mod ni was taken; otherwise Iib

ij (t) is zero. The rationale for
the choice of Equation 3 is that our scoring function indicates high affinity by
strongly negative energy values, which means that the larger the absolute value
the better; positive energies would actually correspond to negative affinity and,
hence, do not receive any positive feedback. If f(sib) is positive, no pheromone is
deposited in an iteration. The upper pheromone trail limit in PLANTS is set to
τmax = |f(sgb)|/ρ, where f(sgb) is the score of the best solution found since the
start of the algorithm. τmin is set using the formulas given in [8] with a setting
of pbest = 0.9.

Local search. As in most applications of MMAS and, more in general, of ACO
algorithms to NP-hard problems, we improve candidate solutions by a local
search algorithm. We use the simplex local search algorithm described by Nelder
and Mead for continuous function optimization [9]. The simplex algorithm is a
geometrically inspired approach, which transforms the points of a given start
simplex by using the operations reflection, expansion and contraction until the
fractional range from the highest to the lowest point in the simplex with respect
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to the function value is less than a tolerance value, which we choose as 0.01; for
details see [10]. In the simplex algorithm we use Δtrans = 2Å, Δrot = 90◦ and
Δtors = 90◦ as the parameter setting for the construction of the initial simplex.
Once all ants have improved their solution, the simplex algorithm is used again
to refine the best of these ants. This refinement local search is restarted as long as
the improvement in the scoring function through one application of the simplex
local search is larger than 0.2.

Algorithmic outline of PLANTS. A high-level outline of the PLANTS algorithm
is given in Algorithm 1. Most details of the algorithm follow what is usually
done in ACO algorithms; necessary details are explained next. The number of
iterations is determined by the formula

iterations = σ · 10
m

· (100 + 50 · lrb + 5 · lha), (4)

where σ is a parameter used for scaling the number of iterations, m is the colony
size, lrb is the number of rotatable bonds and lha the number of heavy atoms in
the ligand. Because of the usage of lrb and lha, the number of iterations depends
on the properties of the ligand. As can be seen from this formula, very flexible
and large ligands get more time for searching than rigid and small ones. The
function RefinementLocalSearch applies the refinement local search as described
in the previous paragraph and the procedure UpdatePheromones applies the
pheromone update as described above and includes also the check regarding the
pheromone trail limits. Noteworthy are the diversification features applied by the
algorithm. PLANTS memorizes the best solution found, sdb, since the last search
diversification. If more than 10 iteration-best solutions found in PLANTS since
the last search diversification differ from sdb by less than 0.02 · |f(sdb)|, again a
search diversification is invoked. For the search diversification, one of two differ-
ent possibilities is applied. The first is a pheromone trail smoothing, as proposed
in [8], using a smoothing factor of 0.5. If three subsequent smoothings have been
applied, the search is restarted by erasing all pheromone trails and resetting them
to their initial value. This second type of diversification actually corresponds to
a complete restart of the algorithm. Once the algorithm terminates, it returns
the best solution found during the whole search process and the set M of all
solutions returned by the procedures LocalSearch and RefinementLocalSearch,
which are used for further processing by a clustering algorithm.

Clustering algorithm. The clustering algorithm is used as a means of post-
processing the output of PLANTS. It first sorts all the solutions in M according
to increasing scoring function values. Then it extracts a number of ligand struc-
tures given by rankingStructures, a parameter which is set typically to 10, that
satisfy the condition that the minimal RMSD between any of these extracted
solutions is larger than 2 Å. These solutions can then be used for rescoring with
other scoring functions in order to increase the chance of finding a ligand con-
formation that is similar to the experimental binding mode. This feature is es-
pecially interesting for virtual screening applications.
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Algorithm 1. PLANTS
InitializeParametersAndPheromones()
for i = 1 to iterations do

for j = 1 to ants do
sj ← ConstructSolution()
s∗

j ← LocalSearch(sj)
M ← M ∪ s∗

j

end for
sib ← GetBestSolution()
sib ← RefinementLocalSearch(sib, 0.2)
M ← M ∪ sib

UpdatePheromones(sib)
if diversificationCriteriaMet then

ApplySearchDiversification()
end if

end for
return best solution found, M

Empirical scoring function. The empirical scoring function used in PLANTS is a
combination of parts of published ones [11,12]. The first part of the intermolec-
ular score is based on a modified version of the piecewise linear potential (PLP)
scoring function [11]. This part is mainly used to model steric interactions be-
tween the protein and the ligand. The second part introduces directed hydrogen
bonding interactions between both complex partners as published in GOLD’s
CHEMSCORE implementation [12]. The intramolecular ligand scoring function
consists of a simple clash term and a torsional potential as described in [13]. Ad-
ditionally, if the ligand’s reference point is outside the predefined binding site,
a penalty term is added. Throughout this paper, this scoring function will be
referred to as CHEMPLP.

4 Parameter Optimization and Validation of PLANTS

The clean list of the comprehensive CCDC/ASTEX dataset [14] has been used
for the validation of PLANTS. From these 224 complexes, 11 include covalently
bound ligands and these had to be removed, because they cannot be handled
by PLANTS at the moment. Hence, our test set consists of 213 non-covalently
bound complexes, we call clean listnc. The number of rotatable bonds of the
ligands in clean listnc ranges from 0 to 28. For all experiments, the spherical
binding site defined for each protein-ligand complex was used to determine the
search space for the ligand’s translational degrees of freedom. Before docking, the
ligand structures were randomized with respect to the translational, rotational
and torsional degrees of freedom. The randomized structures were then passed
to PLANTS in order to prevent biased parameter settings. Here, we examine
the influence of some of PLANTS’ parameters. We have chosen a subset of
33 complexes with 0 to 10 rotatable bonds (3 complexes for each number of
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rotatable bonds) to reduce the high computation times required when testing
across the complete test set. We varied the parameters σ, m (the number of
ants), ρ and β considering three or four values for each, which resulted in 144
distinct parameter configurations. On each complex, PLANTS was run for 10
independent trials. We measured for each configuration the average success rate,
computation time and the average number of function evaluations. The success
rate is defined as the percentage of complexes for which the top-ranked docking
solution is within 2.0 Å of the experimentally determined binding mode as given
in the CCDC/ASTEX dataset. The computation times in this section are given
in seconds on a single Pentium 4 Xeon, 2.8GHz CPU; protein setup time (6 s on
average) and ligand setup time (0.01 s on average) are excluded.

The plots in Figure 2 allow for a detailed, graphical analysis of the results (note
that the issues discussed below could easily be confirmed when discussed in terms
of numerical results and statistical significance – here we are more interested in
the general behavior implied by the parameter settings); in the plots, each data
point gives the average computation time (x-axis) and the average success rate
(y-axis) for one PLANTS parameter configuration.

In a first step, the data were plotted in dependence of the number of ants (pa-
rameter m) that was used as a blocking factor; see Figure 2a. As can be clearly
seen in this plot, the configurations with only a single ant are clearly dominated
by the other configurations using more ants. The high computation times for the
configurations with only one ant can be attributed to the larger number of iter-
ations (see Equation 4) and the resulting large number of times the procedure
RefinementLocalSearch was executed. Hence, in the further analysis, we exclude
the configurations with one ant. As can be seen in Figure 2a, the preferable
parameter setting for m appears to be 20 or 50, since mainly these configura-
tions are part of the curve including the non-dominated configurations. Next,
the parameter σ was used as a blocking factor and the plot in Figure 2b shows
that the points clearly fall into three clusters with respect to the docking time
in dependence of the value of σ. This plot (together with the observations made
below), also suggests that the parameter σ may be used, as expected, to tune the
tradeoff between computation time and solution quality if required. In a next
step, we analyzed the data in dependence of the evaporation rate ρ. As shown
in Figure 2c, for each value of σ, the four values of ρ define four clearly distinct
clusters: With a decrease of the value for ρ, the computation times increase.
This effect can be explained, since the higher ρ, the faster will MMAS converge
towards the best solutions seen so far; this convergence again typically leads to
less iterations of the local search, since it will start from better initial solutions.
In general, evaporation factors of ρ = 0.25 or ρ = 0.5 seem to be favorable when
considering both, the success rate and the docking time. In a final step, we exam-
ined the influence caused by the value of β, which determines the influence of the
heuristic information on the computational results. As can be seen in Figure 2d,
the influence of β appears to be minor. This impression can also be confirmed
by computing the average success rates and times across all configurations with
a same value of β, which are, essentially, all the same. This may be the case
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Fig. 2. Influence of different parameter settings on the other parameter configurations
with respect to the average success rate and docking time. For further explanations see
the text.

because in general a ligand can engage many low energy conformations with
respect to the torsional potential, which is used as the heuristic information.

Starting from this analysis, PLANTS was tested with several settings on the
whole clean listnc. The applied parameter setting as well as the success rate for
the (i) top-ranked solution, (ii) up to rank 3 and (iii) up to rank 10 (ranks w.r.t.
the solutions in the order as returned by the clustering algorithm—a success is
obtained if among these highest ranked ligands we have the desired one) and
the average docking time along with the number of scoring function evaluations
are presented in Table 1 (see upper part marked with PLANTS). As already
observed for the subset consisting of 33 complexes, parameter σ controls the
tradeoff between success rate and docking time.

The success rates for the top-ranked solutions range from about 63% at dock-
ing times of approximately 25 s (σ = 0.25) to 75% at docking times of 290 s
(σ = 3) for each complex, on average. However, because of the high docking
time, parameter setting σ = 3 is not really applicable in virtual screening ap-
plications where thousands of ligands may have to be docked. Interestingly, for
σ = 0.5 and σ = 1 the use of 20 ants seems to be preferable over the 50-ants set-
ting. An explanation for this may be the higher number of iterations carried out
by PLANTS with 20 ants (see Equation 4) and the possibly positive benefits of
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Table 1. Results on the clean listnc for PLANTS and GOLD for selected parameter
settings averaged over 25 independent experiments. Standard deviations for the success
rates are given in parentheses.

PLANTS

success rate (%) up to rank
σ ants ρ β 1 3 10 time (s) eval. (106)

0.25 50 0.25 1 63.86 (1.86) 75.18 (1.73) 80.59 (1.34) 27.01 0.93
0.25 20 0.25 3 63.57 (1.68) 73.71 (2.13) 78.84 (2.16) 25.10 0.86
0.50 50 0.25 3 67.53 (2.22) 78.39 (2.00) 83.31 (1.95) 51.56 1.76
0.50 20 0.25 3 68.90 (1.97) 79.57 (1.76) 84.64 (1.15) 49.27 1.69
1.00 50 0.50 1 71.19 (1.47) 82.40 (1.60) 87.64 (1.40) 88.76 2.99
1.00 20 0.25 3 72.34 (1.27) 83.62 (1.55) 88.62 (1.32) 97.68 3.36
3.00 20 0.25 3 75.19 (1.10) 87.92 (1.11) 92.66 (0.89) 290.13 9.96

GOLD

success rate (%) up to rank
autoscale 1 3 10 time (s) eval. (106)

0.1 67.27 (1.62) 73.75 (1.26) 78.12 (1.47) 42.45 n.a.
0.3 69.43 (1.66) 75.42 (1.65) 81.03 (2.01) 115.21 n.a.
1.0 73.69 (1.44) 78.10 (1.37) 82.35 (1.14) 308.98 n.a.

more pheromone smoothings and restarts. We also compared PLANTS to GOLD
(Genetic Optimisation for Ligand Docking) [15], a state-of-the-art docking pro-
gram that is frequently used in the pharmaceutical industry. Detailed information
about GOLD can be found in [15,12]. For the experiments presented in this sec-
tion, GOLD version 3.0.1 has been employed. The maximum number of GA runs
per ligand was set to 10 and early termination as well as cavity detection was acti-
vated. Different time settings for both PLANTS and GOLD were compared with
respect to the programs’ success rate and docking time. In the case of PLANTS,
the CHEMPLP scoring function was used, while the GOLD scoring function was
used for GOLD. The results for both programs on the clean listnc are presented
in Table 1. As can be observed, except for autoscale set to 0.1, PLANTS’ results
dominate those of GOLD; this can be seen by the fact that for PLANTS we al-
ways have configurations that achieve higher success rates in shorter time. When
considering the success rates up to ranks 3 or 10, we even have that configura-
tions of PLANTS reach higher success rates than the highest achieved by GOLD
(of 82.35%) in about one sixth of the time; this is a very encouraging result for
virtual screening applications.

5 Virtual Screening

As mentioned in the introduction, virtual screening of large compound libraries
is one of the main applications of current docking tools. Therefore, PLANTS was
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Fig. 3. Enrichments for the virtual screening against coagulation factor Xa with
PLANTS and GOLD. The plot uses a logarithmic scaling for the x-axis. For further
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also tested with respect to its ability to discriminate between biologically active
and inactive ligands. Factor Xa was chosen as the protein, which is a target for
antithrombotics, developed to treat imbalances between clotting, clotting inacti-
vation, and thrombolytic processes in the blood coagulation cascade. A database
of 43 active and 817 inactive ligands was docked into PDB-entry 1FAX (coag-
ulation factor Xa inhibitor complex) from the CCDC/ASTEX dataset. The 43
active ligands taken from [16] are publicly available. The ZINC database [17] was
used to retrieve inactive ligands that approximately match the properties (num-
ber of rotatable bonds, hydrogen bond donors, acceptors and heavy atoms) of
the active ligands to ensure a screening under realistic circumstances as carried
out in the pharmaceutical industry. Prior to docking, all ligands were minimized
in vacuo using the MMFF94 force-field [18] to prevent the use of poor ligand
geometries during docking. All 860 ligands were then docked with PLANTS using
the CHEMPLP scoring function and GOLD using the GOLD scoring function.
For both programs the default settings (σ = 1 for PLANTS and autoscale = 1
for GOLD) were used. The computations were carried out on an AMD Opteron
processor with 2 GHz. The average docking time per complex was 68.9 s and
297.14 s for PLANTS and GOLD, respectively. However, it may be noted that
faster search settings for GOLD may have provided similar results. After the
docking, all ligand configurations were ranked according to their scoring func-
tion value starting with the best scoring configurations (PLANTS minimizes the
scoring function while GOLD maximizes the fitness value). The results of the
virtual screening are shown in Figure 3. The x-scale was set logarithmically to
emphasize the part of the ranked database that contains the candidate ligands
for in vitro tests for biological activity; hence, for an algorithm to be useful in
virtual screening it is important that within a small percentage of its top-ranked
ligands is an as high as possible percentage of active ligands. The figure shows
the percentage of biologically active ligands for each percentage of the ranked
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database as identified by PLANTS and GOLD as well as the theoretically opti-
mal curve and the curve for a random selection strategy. Both programs perform
clearly better than random selection but not as good as the optimal selection.
PLANTS performs slightly better up to the 5% top-ranked ligands of the data-
base while GOLD finds more active ligands in relation to PLANTS beyond 10%;
however, this is not relevant for practice.

6 Conclusions

In this study, we presented a new docking algorithm based on the ACO meta-
heuristic. Several parameter settings were studied to assure high success rates
in pose prediction for different timings. Default settings (σ = 1) are able to re-
produce ligand geometries similar to the crystal geometry in about 72% of the
cases at average docking times of 97 seconds. Furthermore, it could be shown
that PLANTS is competitive in terms of pose prediction accuracy as well as
docking times to the state-of-the-art docking program GOLD, which is based on
a genetic algorithm. Last but not least, PLANTS was able to identify biologically
active ligands at the top-ranked positions of a ligand database targeting coagu-
lation factor Xa. Besides these promising results, there is still significant space
for improvement. Especially the CHEMPLP scoring function used in PLANTS
is currently one of the limiting factors. This scoring function could either be im-
proved to model e.g. metal-ligand interactions more appropriately or be replaced
by an other scoring function. Additionally, almost the whole receptor except ro-
tatable hydrogen bond donors is currently kept rigid. This is of course a hard
approximation which especially influences the results of virtual screenings. In a
next step, protein side-chain flexibility will be introduced, which fits well into
the proposed ACO algorithm. In this case, simply additional pheromone vec-
tors are introduced for each degree of freedom of the flexible protein side-chains.
Because of the high computational demands when considering side-chain flexi-
bility, a port of PLANTS from the CPU to the GPU is planned to exploit the
computational power of today’s graphics processing units.
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Abstract. This paper presents a novel glowworm metaphor based dis-
tributed algorithm that enables a minimalist mobile robot swarm to ef-
fectively split into subgroups, exhibit simultaneous taxis towards, and
rendezvous at multiple source locations. The locations of interest could
represent radiation sources such as nuclear and hazardous aerosol spills
spread within an unknown environment. The glowworm algorithm is
based on a glowworm swarm optimization (GSO) technique that finds
multiple optima of multimodal functions. The algorithm is in the same
spirit as the ant-colony optimization (ACO) and particle swarm opti-
mization (PSO) algorithms, but with several significant differences. A
key feature of the GSO algorithm is the use of an adaptive local-decision
domain, which is used effectively to detect the multiple optimum loca-
tions of the multimodal function. We conduct sound source localization
experiments, using a set of four wheeled robots (christened Glowworms),
to validate the glowworm approach to the problem of multiple source
localization. We also examine the behavior of the glowworm algorithm
in the presence of uncertainty due to perceptional noise. A comparison
with a gradient based approach reveals the superiority of the glowworm
algorithm in coping with uncertainty.

1 Introduction

Localization of multiple radiation sources using mobile robot swarms has received
some attention recently [1,2,3,4,5] in the collective robotics community. In partic-
ular, the goal of the above problem is to drive groups of mobile agents to multiple
sources of a general nutrient profile that is distributed spatially on a two dimen-
sional workspace. This problem is representative of a wide variety of applications
that include detection of multiple radiating sources such as nuclear/hazardous
aerosol spills and origins of a fire-calamity and localization/decommissioning of
hostile transmitters that are scattered over a landscape, by sensing signals ra-
diating from them. For instance, several forest fires at different locations give
rise to a temperature profile that peaks at the locations of the fire. Similar phe-
nomenon can be observed in nuclear radiations and electromagnetic radiations
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from signal sources. In all the above situations, there is an imperative need to
simultaneously identify and neutralize all the multiple sources using a swarm
of robots before they cause a great loss to the environment and people in the
vicinity. The above problem presents several challenges such as multiplicity of
sources, time-varying nature of the sources, dynamically changing environment,
and perceptional noise. Thus the objective is to devise local control strategies
that allow a swarm of mobile robots − equipped with only rudimentary and
noisy sensors − to perform the task of multiple source localization while coping
well with the challenges described above.

Multimodal function optimization has been addressed extensively in the re-
cent literature [2,5,6,10]. Most prior work on this topic focussed on developing
algorithms to find the global optima of the given multimodal function, while
avoiding local optima. However, there is another class of optimization problems
which is different from the problem of finding only the global optimum of a mul-
timodal function. The objective of this problem class is to find multiple optima
having either equal or unequal function values [2,6,7,8].

In this paper, we describe a novel glowworm metaphor based distributed al-
gorithm that enables a minimalist mobile robot swarm to split into subgroups,
exhibit simultaneous taxis towards, and rendezvous at multiple unknown radia-
tion source locations. The algorithm is based on a glowworm swarm optimization
(GSO) technique [2] that finds multiple optima (not necessarily equal) of mul-
timodal functions. The significant difference between our work and most earlier
approaches to rendezvous problems is the use of a variable local-decision domain
by the agents in order to compute their movements. We show that the glowworm
algorithm originally designed for solving optimization problems could be applied
directly (with almost no modifications) to the specific collective robotics task of
simultaneously localizing multiple sources of interest. The preliminary results
of this method were presented in [2]. We have reported the related theoretical
foundations, by posing the objective of the glowworm algorithm as a problem
of rendezvous of visibility limited mobile-agents at multiple locations, in [3] and
the results of a preliminary real-robot-implementation of the glowworm algo-
rithm (using four mobile robots) to achieve a sound source localization task was
described in [4]. Comparisons of the GSO algorithm with established nature-
inspired algorithms such as ACO and PSO, simulation test results of the GSO
algorithm on a series of standard multimodal functions, dependence of GSOs
performance on the critical parameters in the algorithm, and simulation results
for problems in higher dimensional spaces were reported in [5].

2 The Glowworm Algorithm

2.1 Overview

The GSO algorithm is in the same spirit as the ACO [11] and PSO [13] techniques
but is different in many aspects that help in achieving simultaneous detection
of multiple local optima of multimodal functions. This is a problem not directly
addressed by ACO or PSO techniques. Generally, ACO and PSO techniques are
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used for locating global optima. However, our objective is to locate as many of
the peaks as possible. This requirement is the main motivation for formulat-
ing the GSO technique. In the GSO algorithm, the agents are initially deployed
randomly in the objective function space. Similar to how agents in the ACO
technique use pheromonal deposits to effect stigmergic communication among
the members of the ant colony, the agents in our algorithm carry a lumines-
cence quantity called luciferin along with them for a similar purpose. Agents
are thought of as glowworms that emit a light whose intensity of luminescence
is proportional to the associated luciferin. Each glowworm uses the luciferin to
(indirectly) communicate the function-profile information at its current location
to the neighbors. The glowworms depend on a adaptive local-decision domain,
which is bounded above by a circular sensor range, to compute their movements.
Each glowworm selects a neighbor that has a luciferin value more than its own,
using a probabilistic mechanism, and moves towards it. That is, they are at-
tracted to neighbors that glow brighter. These movements, that are based only
on local information, enable the glowworms to split into subgroups and exhibit
a simultaneous taxis-behavior towards the optimum locations leading to the de-
tection of multiple optima of the given objective function. Comparisons of the
GSO algorithm with ACO and PSO techniques are summarized in Tables 1 and
2 (Refer to [5] for a more detailed description).

Table 1. ACO versus GSO

Standard ACO GSO
1 Effective in discrete setting [11] Applied to continuous domain
2 Global optimum or multiple global Multiple optima of equal or unequal values

optima of equal value [9,10]
Special variant of ACO [12]

1 Cannot be applied when ants (agents) Useful for applications where robots have
have limited sensing range limited sensor range

2 Global information used Local information used
3 Pheromones associated with paths Luciferin carried by and associated with

from nest to regions glowworms
4 Pheromone information used to Luciferin information used to select

select regions neighbors
5 Shifting of selected region’s center Deterministic movements towards selected

in a random direction neighbor

2.2 Algorithm Description

The GSO algorithm starts by placing the glowworms randomly in the workspace
so that they are well dispersed. Initially, all the glowworms contain an equal
quantity of luciferin (�j(0) = �0, ∀ j). Each iteration consists of a luciferin-
update phase followed by a movement-phase based on a transition rule.

Luciferin-update phase: The luciferin update depends on the function value at
the glowworm position and so, even though all glowworms start with the same
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Table 2. PSO versus GSO

PSO GSO
1 Direction of movement based on Agent movement along line-of-sight

previous best positions with a neighbor
2 Dynamic neighborhood based on Local decision domain based on varying

k nearest neighbors range
3 Neighborhood range covers the Maximum range hard limited by finite

entire search space sensor range
4 Limited to numerical Effective detection of multiple peaks/sources in

optimization models addition to numerical optimization tasks

luciferin value during the initial iteration, these values change according to the
function values at their current positions. The luciferin update rule is given by:

�j(t + 1) = (1 − ρ)�j(t) + γJj(t + 1) (1)

where, ρ is the luciferin decay constant (0 < ρ < 1) and γ is the luciferin
enhancement constant and Jj(t) represents the value of the objective function
at agent j’s location at time t.

While the first term in (1) represents the decaying nature of the luciferin
that indirectly allows the agents to escape inferior regions and move towards
promising regions of the objective functions space, the second term represents
the fitness of the agent j’s location at time t + 1.

Movement-phase: During the movement-phase, each glowworm decides, using a
probabilistic mechanism, to move towards a neighbor that has a luciferin value
more than its own. For each glowworm i, the probability of moving towards a
neighbor j is given by:

pj(t) =
(�j(t) − �i(t))∑

k∈Ni(t)(�k(t) − �i(t))
(2)

where, j ∈ Ni(t), Ni(t) = {j : di,j(t) < ri
d(t); �i(t) < �j(t)}, t is the time (or

step) index, di,j(t) represents the euclidian distance between glowworms i and j
at time t, �j(t) represents the luciferin level associated with glowworm j at time
t, ri

d(t) represents the variable local-decision range associated with glowworm
i at time t, and rs represents the radial range of the luciferin sensor. Let the
glowworm i select a glowworm j ∈ Ni(t) with pj(t) given by (2). Then the
discrete-time model of the glowworm movements can be stated as:

xi(t + 1) = xi(t) + s

(
xj(t) − xi(t)

‖xj(t) − xi(t)‖

)
(3)

where s is the step size.

Local-decision range update rule: Since we assume that a priori information
about the objective function is not available, in order to detect multiple peaks,
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the sensor range must be made a varying parameter. For this purpose, we asso-
ciate each agent i with a local-decision domain whose radial range ri

d is dynamic
in nature (0 < ri

d ≤ ri
s). A suitable function is chosen to adaptively update the

local-decision domain range of each glowworm. This is given by:

ri
d(t + 1) = min{rs,max{0, ri

d(t) + β(nt − |Ni(t)|)}} (4)

where, β is a constant parameter and nt is used as a threshold parameter to
control the number of neighbors.

3 Modelling of Perceptional Noise

We examine the behavior of the algorithm in the presence of uncertainty due to
perceptional noise. We use a gaussian distribution N(μ, σ2

f ) with mean μ and
variance σ2

f to model the sensor noise ω(t). Since the noise introduced affects
the quality of measurements of the function values, (1) is modified as follows:

�j(t + 1) = (1 − ρ)�j(t) + γ(1 + ω(t))Jj(t + 1) (5)

Note from (5) that the noise is made a function of the sensor measurements at
each agent’s location. We compare the glowworm algorithm with the following
gradient-based algorithm and noise introduced into the gradient measurements:

Let Δ(x,y)(t) =
(
Δx Δy

)T represent the gradient vector measured at the
location (x, y) by a glowworm i for some i = 1 · · ·n at time t, with ωx(t)Δx and
ωy(t)Δy being the noise levels in the measurements of Δx and Δy, respectively.
Let ωx(t) and ωy(t) follow a gaussian distribution N(μ, σ2

g) with mean μ and
variance σ2

g . Therefore, the noisy gradient measurements are given by:

Δ̃x = (1 + ωx(t))Δx

Δ̃y = (1 + ωy(t))Δy (6)

From (6), the gradient based movement model of each glowworm i is given by:

Xi(t + 1) = Xi(t) +
δ

|Δ̃(x,y)|
(
Δ̃x Δ̃y

)T
(7)

where Xi =
(
xi yi

)
and |Δ̃(x,y)| =

√
Δ̃x

2
+ Δ̃y

2
From (5) and (6), it is clear

that while noise is present in sensing of values of the function profile in the
case of glowworm algorithm, noise occurs in gradient measurements in the latter
case. Therefore, the comparison of performance between the two algorithms is
not straightforward. For this purpose, we derive a simple relation between the
variances involved in both the cases. Figure 1 (a) shows the variation of J with
respect to x. The quantities ΔJmin and ΔJmax represent the minimum and
maximum values of Δ̃J for a corresponding value of Δx = x2 − x1, where Δ̃J
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Fig. 1. a) Graph of J versus x serving to find the relationship between variance in the
function values and the variance in the gradients computed by using a finite-difference
method. b) ±δ1 and ±δ2 represent the angular dispersions in the directions of the
nominal gradient when the same amount of noise is introduced into the function values
(glowworm algorithm) and gradient values (gradient algorithm), respectively.

represents the difference between noisy function values measured at x1 and x2.
From the figure we have,

ΔJmin = J2 − J1 − σf (J1 + J2)
ΔJmax = J2 − J1 + σf (J1 + J2) (8)

⇒ =
Δ̃J

Δx
∈

(
ΔJ

Δx
− σf

J1 + J2

Δx
,
ΔJ

Δx
+ σf

J1 + J2

Δx

)
(9)

Assuming J1 ≈ J2 for small variation in the function values with respect to small
deviation in x, we get

σg ≈
(

2J1

Δx

)
σf (10)

From (10), it is clear that a small variance in the function value leads to a very
large variance in gradient value obtained by a finite-difference method, especially
as Δx → 0. In our simulations, we use variance values in the gradient algorithm
that are of the same order as the variance values in the glowworm algorithm.
This means that we are actually dealing with far less noise in the gradient algo-
rithm than in the glowworm algorithm. The gradient-cone interpretation given
in Figure 1 (b) explains the above fact in the following manner. Here, ±δ1 and
±δ2 represent the angular dispersions in the directions of the nominal gradient
when the same amount of noise is introduced into the function values (glow-
worm algorithm) and gradient values (gradient algorithm), respectively. Clearly,
δ1 > δ2. Note that for small values of Δx, the angle of the outer cone can actually
become much larger, leading to the condition δ1 % δ2.

4 Simulation Experiments

Results demonstrating the capability of glowworm algorithm to capture mul-
tiple peaks of a number of complex multimodal functions have been reported
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in [3,5] for constant and variable local-decision range cases with no noise. We
have shown that when constant decision range is used, the number of peaks
captured decreases with increase in the value of decision range. Interestingly,
when the decision-range is made adaptive, even though ri

d(0) is chosen to be
greater than the maximum distance between the peaks, all the peaks are
captured.

In this work, we initially demonstrate the capability of the glowworm algo-
rithm to capture multiple peaks of a multimodal function, under perfect sens-
ing conditions. Later, we report the algorithm’s performance in the presence of
noise.

4.1 Performance of the Algorithm in the Absence of Noise

We consider the following function to model the multimodal nature of the sources
in the environment:

J(x, y) = 3(1 − x)2 exp(−(x2) − (y + 1)2)
− 10(x/5 − x3 − y5) exp(−x2 − y2)
− (1/3) exp(−(x + 1)2 − y2) (11)

The function J(x, y) consists of a set of three peaks (Figure 2 (a)) at locations
(−0.0093, 1.5814), (1.2857,−0.0048), and (−0.46,−0.6292). The nominal values
of various parameters used in the simulations are shown in Table 3 where n is
the number of glowworms. A set of 50 glowworms are randomly deployed in a
two-dimensional workspace of size 6X6 square units.

Table 3. List of parameters used in the simulations

Function n ρ γ β ri
s s

J 50 0.4 0.6 0.01 3 0.01

Figure 2 (b) shows the emergence of the solution when the local-decision
domain range is made to vary according to (4). A value of ri

d(0) = 3 is chosen
during the simulation. Figure 2 (c) shows the co-location (at final time) of all
the glowworms on the iso-value contours of the multimodal function.

4.2 Performance of the Algorithm in the Presence of Noise

We consider the same multimodal function given in (11) and the noise models
described in the previous section to test the algorithmic response to uncertainty
conditions. The noise ω(t) follows a gaussian distribution N(0, σ2

f ) with zero
mean and variance σ2

f . We use the mean minimum distance to the sources dminav

as a performance metric in our simulations. This quantity gives a very use-
ful insight in the present context, considering the multiplicity of the sources and
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Fig. 2. a) Function J(x, y) with local maxima at (−0.0093, 1.5814), (1.2857, −0.0048),
and (−0.46, −0.6292). b) Emergence of solution. c) Initial placement and final co-
location of glowworms on the iso-value contour of the objective function.

the need to evaluate the deviation of the agent’s final locations from the source
locations. In particular, dminav is given by:

dminav =
1
n

n∑
i=1

min{di1, · · · , dim} (12)

where dij = ‖Xi − Sj‖, i = 1, · · · , n, j = 1, · · · ,m, Xi is glowworm i’s location
and Sj is source j’s, and m is the number of source locations.

Figure 3 (a) shows the plots of dminav(t), for several values of standard devi-
ation σf , averaged over a set of 20 simulation trials for each σf , in the case of the
glowworm algorithm. The standard deviation of dminav(t) in each case is rela-
tively very less when compared to that of the introduced noise (≈ 0.02 × σf ).
The glowworm algorithm shows good performance with fairly high noise levels.
There is graceful degradation of performance only with significant increase in
levels of measurement noise. Whereas, gradient based algorithm degrades rather
fast in the presence of noise (Figure 3 (b)). Note that the behavior of dminav in
the case of glowworm algorithm, that occurs when σf = 10, is relatively better
than the behavior of dminav in the case of gradient based algorithm, that occurs
when σg = 0.1. Multimodal optimization could also be achieved by distributing
the agents uniformly in the solution space and allowing them to perform gradient
descent to the local peaks, using no communication at all. However, we notice
that a random initial placement results in most of agents moving away from the
peaks and settling at the edges of the solution space. This is evident in Figure
3 (b) where the mean minimum distance to the peaks dminav(t) doesn’t reduce
to zero even in the absence of noise (σg = 0).

5 Glowworms

Four small-wheeled robots christened Glowworms (named after the glowworm
algorithm) were built to conduct our experiments [4]. Each Glowworm has been
designed to provide features of basic mobility on plain/smooth surfaces, obsta-
cle sensing, relative localization/identification of neighbors, and infrared-based
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Fig. 3. a) Plots of dminav(t) (averaged over 20 trials), for various values of σf , in the
case of glowworm algorithm. b) Plots of dminav(t) (averaged over 20 trials), for various
values of σg, in the case of gradient based algorithm.

luciferin glow/reception. A circular array of sixteen infrared transmitters placed
radially outward is used as the glowworm’s beacon to obtain a near circular emis-
sion pattern around the robot. The glow consists of an infrared light modulated
by an 8-bit serial binary signal that is proportional to the Glowworm’s luciferin
value at the current sensing-decision-action cycle (Refer to [4] for a description
of the Glowworm hardware modules).

6 Sound Source Localization

In this experiment, the glowworms localize a sound source which is a loud speaker
activated by a square wave signal of frequency 28 Hz. A microphone based sound
sensor enables each Glowworm to measure the intensity of sound at its current
location. We place a Glowworm (A) near the source and a dummy Glowworm
(B) away from the source which is kept stationary but made to emit luciferin
proportional to the intensity measurement at its location. Since A is already
located at the source, it doesn’t get a direction to move. Therefore, it remains
stationary at the source location. Initially, since B is in the vicinity of C (while
A is not), it moves towards B. However, as it reaches closer to B it senses A
and hence, changes direction in order to move towards A. Since D is closer to
A, it makes deterministic movements towards A at every step. In this manner,
the glowworms localize the sound source eventually. Snapshots from a video of
the above experiment are shown in Figure 4.

A dummy glowworm was placed at the source location only for the purpose
of demonstration and is not a necessary requirement for the algorithm working.
According to the glowworm algorithm, a glowworm with the maximum luciferin
at a particular iteration remains stationary during that iteration. Ideally, the
above property leads to a dead-lock situation when all the glowworms are located
such that the peak-location lies outside the convex-hull formed by the glowworm
positions. Since the agent movements are restricted to the interior region of the
convex-hull, all the glowworms converge to a glowworm that attains maximum
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luciferin value during its movements within the convex-hull. As a result, all the
glowworms get co-located away from the peak-location. However, the discrete
nature of the movement-update rule automatically takes care of this problem
which could be described in the following way. During the movement phase,
each glowworm moves a distance of finite step-size s towards a neighbor. Hence,
when a glowworm i approaches closer to a glowworm j that is located nearest
to a peak such that the inter-agent distance becomes less than s, i crosses the
position of j and becomes a leader to j. In the next iteration, i remains stationary
and j crosses the position of i thus regaining its leadership. This process of
interchanging of roles between i and j repeats until they reach the peak. This
phenomenon was supported by simulations in [2] and [5]. However, since real
robots cannot move over each other, the robot’s behavior should be modified
such that it emulates the above phenomenon when it encounters another robot.

t = 21t = 10

t = 28 t = 32 t = 36 t = 41

t = 0 t = 7

Sound source

A

B
C

D

Fig. 4. Demonstration of a sound-source localization task

7 Conclusions

We describe a novel glowworm algorithm that allows a group of minimalist mo-
bile robots to simultaneously localize multiple source locations of interest. The
low-cost constraint on various hardware modules of the robots used for our
experiments gives rise to considerable amount of noise in their perceptional ca-
pabilities, offering a good platform to test the performance of algorithm in the
presence of sensor-noise. Simulations show that the algorithm exhibits good per-
formance in the presence of fairly high noise levels. We observe graceful degrada-
tion only with significant increase in levels of perceptional noise. A comparison
between the glowworm algorithm and the gradient based algorithm reveals the
superiority of the glowworm algorithm in coping with uncertainty. Results of
the sound-localization experiment conducted with a set of four glowworms sup-
port the claim that the algorithm performs fairly well under uncertainty. The
response of the algorithm in the presence of a forbidden region was described in
[2] using simulations. It was shown that the agents not only escape entry into,
but also take a de tour about the forbidden region and eventually reach the
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source location. However, we need to conduct the same experiment using real
robots in order to determine additional behaviors, like obstacle avoidance, that
are needed to achieve a similar response. Our future work involves a thorough
qualitative and quantitative comparison of GSO with other competing nature-
inspired algorithms.
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Abstract. This paper presents the application of the Ant Colony Op-
timization (ACO) meta-heuristic to a new NP-hard problem involving
the replication of multi-quality database-driven web applications (DAs)
by a large application service provider (ASP). The ASP must assign DA
replicas to its network of heterogeneous servers so that user demand is
satisfied at the desired quality level and replica update loads are min-
imized. Our ACO algorithm, AntDA, for solving the ASP’s replication
problem has several novel or infrequently seen features: ants traverse a
bipartite graph in both directions as they construct solutions, pheromone
is used for traversing from one side of the bipartite graph to the other
and back again, heuristic edge values change as ants construct solutions,
and ants may sometimes produce infeasible solutions. Testing shows that
the best results are achieved by using pheromone and heuristics to tra-
verse the bipartite graph in both directions. Additionally, experiments
show that AntDA outperforms several other solution methods.

1 Motivation and Related Work

An Application Service Provider (ASP) (e.g., Akamai or ASP-One) is a company
that specializes in hosting web applications on behalf of clients. Database-driven
web applications (DAs) are a particular kind of web application hosted by an
ASP in which responses to user requests are built, in part at least, by query-
ing a database. The database allows the DA to customize responses based on
user input and enables the DA’s content to change dynamically. Some DAs can
provide multiple freshness/quality levels of service in order to meet the needs of
different types of users [1,2]. For example, consider an on-line brokerage where
users have been grouped into two categories: high-quality and low-quality. High-
quality users expect very fresh (timely) quotes. Low-quality users, on the other
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hand, are pleased with the default or moderately-fresh content. Note that low-
quality users can be satisfied by high-quality results, but the reverse is not true.

In order to furnish each DA with enough processing capacity to meet demand,
an ASP replicates the DAs on its network of servers. For a DA replica to function,
the replica’s local database needs to be updated with fresh content and/or kept
synchronized. The load on a server hosting a DA replica has two components: (1)
the request load incurred by responding to user requests and (2) the update
load stemming from database changes. To simplify real DA behavior, request
complexity is assumed to be independent of quality level. Thus the request load
for each quality offered by a DA is solely dependent on the number of requests
received. However, since database freshness determines a replica’s quality level,
higher quality levels require more frequent database updates. Thus, for a given
DA, update loads increase with quality level.

The ASP must establish replicas so that demand for each quality of each DA
is met and update burdens (costs) are minimized. Obviously, the ASP cannot
allow any server to become overloaded. That is, the sum of the request loads
and update loads of the replicas hosted by a server cannot exceed the server’s
capacity. We have chosen the sum of all replica update loads, system update
burden, as the cost to be minimized as it also indirectly minimizes the num-
ber of replicas and network bandwidth. The ASP’s replication problem, the DA
Replication Problem (DArep), is formalized as an mixed integer linear pro-
gram (MILP) in Fig. 1. This problem is shown to be NP-hard in [3]. DArep is
similar to several multi-commodity facility location problems [4,5] and multidi-
mensional knapsack problems [6,7]. Though algorithms for solving these similar
problems have been proposed, the differences are significant enough that they
cannot be easily adapted for DArep.

In this paper, inspired by the success of multidimensional knapsack ACO
algorithms [8,9] and other ACO algorithms for solving problems similar to DArep
[10,11,12,13], we have implemented an ACO-style algorithm called AntDA that
has several novel or rarely seen features.

1.1 Ant Colony Optimization

Ant Colony Optimization (ACO) is a meta-heuristic based on the natural be-
havior of real ants and their seeming ability to efficiently solve (what we can
call) minimization problems obeying just a few simple rules. In ACO, the min-
imization problem structure is represented as a (directed or undirected) graph
and agents acting as ants traverse this graph’s edges as they link the graph’s
vertices together to construct a solution. After finding a solution, pheromone is
deposited on the edges used in its solution in proportion to the solution’s quality.
That is, edges critical to the best solutions receive more pheromone than other
edges. Pheromone evaporation makes edges less attractive over time and, hence,
acts to weed out solutions that are not preferred.

To move from one vertex to another, each ant computes a value for outgoing
edges by combining the edge’s pheromone concentration and heuristic desirabil-
ity. The ant randomly selects an outgoing edge to traverse with higher-valued
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The Database-driven Application Replication Problem

Definitions: The ASP has m servers, S = {1, . . . , m}. Each server s ∈ S has
a processing capacity denoted by Cs. The ASP has n customer-provided DAs
to be hosted, D = {1, . . . , n}, on its m servers. Each d ∈ D operates at one
or more service quality levels, Qd = {1, . . . , q, . . . , qmax(d)}, where qmax(d) is
the highest level offered by DA d. There is a request load for each quality of
each DA: rld = {rld,1, . . . , rld,q, . . . , rld,qmax(d)}. For each service quality of a
DA d there is a certain update load required to maintain that service quality:
uld = {uld,1, . . . , uld,q, . . . , uld,qmax(d)}. Let xs,d,q ∈ {0, 1} be a binary variable that
indicates that server s is hosting a replica of a certain 〈d, q〉 pair where “〈d, q〉 pair”
is shorthand for “quality q of DA d.” Let λs,d,q ∈ [0, 1] denote the fraction of the
request load of a 〈d, q〉 pair, rld,q, assigned to server s. The update load experienced
by server s depends on the quality level of the DA replicas it hosts:

uls =
d∈D q∈Qd

xs,d,q · uld,q. (1)

Server s’s request load is the fraction of each 〈d, q〉 pair’s request load sent to it:

rls =
d∈D q∈Qd

λs,d,q · rld,q. (2)

Objective and Constraints: The ASP seeks an assignment of DA replicas to
servers that minimizes the system-wide update burden, UB, subject to the four
constraints enumerated below.

min UB = min
s∈S d∈D q∈Qd

uld,q · xs,d,q, (3)

1. Request load for each quality, q, of each DA, d is satisfied: s∈S λs,d,q = 1.
2. For each server s, a replica of DA d operates at no more than one quality:

q∈Qd
xs,d,q ≤ 1.

3. A server’s processing capacity cannot be exceeded: uls + rls ≤ Cs.
4. Requests processed by a replica must meet or exceed the request’s quality ex-

pectation, qr: qp|qp,qr∈Qd∧qp≥qr
xs,d,qp ≥ λs,d,qr .

Fig. 1. DArep formalized as an mixed integer linear program

edges selected more often. Making random decisions using both pheromone (rep-
resenting past good solutions) and heuristics (which guides ants in the absence
of pheromone) encourages exploration near known good solutions and allows for
enough variability that distant solutions are unlikely to go unnoticed. The books
[14] and [15] contain excellent explanations of the ACO meta-heuristic.

Structurally, ACO algorithms usually consist of a doubly-nested loop. The
outer loop controls the number of trials executed. A trial represents a separate
solving of the problem. The inner loop governs the time steps in each trial. During
a time step each ant traverses the graph and constructs a solution, ants deposit
pheromone on the graph’s edges, and pheromone evaporates. The updated graph
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is then used as the basis for the next time step. Being a stochastic process, ACO
requires multiple trials each consisting of many time steps.

ACO algorithms have been implemented for many NP-complete combinator-
ial problems such as traveling salesman [16,17], job-shop scheduling [18], graph
coloring [19,20], sequential ordering [21], and multidimensional knapsack [8,9].
Many of the ACO algorithms cited above produce solutions that compare favor-
ably with the best-known solutions for the aforementioned problems.

1.2 Contributions of the Paper

As stated before, in this paper, ACO is adapted to solve the a new NP-hard DA
Replication Problem (DArep). The resulting algorithm, AntDA, has several
novel or rarely seen features that set it apart from other ACO implementations:

– Ants traverse a bipartite graph consisting of a set vertices representing the
DAs (things to be assigned) and a set of vertices representing the servers
(where things can be assigned). Ants move back-and-forth between the two
sets of vertices along directed edges as they construct solutions. Other ACO
algorithms for solving problems of a bipartite nature use either a bipartite
graph in which ants travel in only one direction (e.g., [9,11,12]) or transform
the problem so that vertices represent potential assignments (fully enumerate
the solution space) and are all of the same type (e.g., [13,20]).

– Pheromone on DA-to-server edges and server-to-DA edges is used for travers-
ing the graph in both directions. Although not the first to use pheromone for
dual purposes [14,15,20], AntDA is one of the few that do. Moreover, exper-
iments show that pheromone in both directions produces the best solutions
in terms of both update load (cost) and convergence rates.

– Heuristic values of the edge selection equations change as the ants construct
their solutions. Other ACO algorithms with this feature include [8,9].

– In DArep ants may produce infeasible solutions. Since an infeasible solution
may be a stepping-stone to feasible solutions, ants with infeasible solutions
can also deposit pheromone. Unlike [12] where infeasible solutions pay a
constant penalty in terms of pheromone deposited, AntDA’s penalty is pro-
portional to the infeasibility.

The rest of this paper is organized as follows. Section 2 presents the AntDA al-
gorithm and the Server-Filling local optimization heuristic. Experimental results
of AntDA’s performance and the impact of bi-directional bipartite pheromone
and the Server-Filling optimization heuristic (a local optimizer introduced just
for AntDA) are given in Section 3.

2 AntDA: An ACO Algorithm for DArep

In AntDA, ants operate on a bipartite graph representing an instance of DArep
(Fig. 2). The graph, G = (V,E), consists of a set of vertices, V , and edges
connecting vertices, E. The vertices are divided into two groups, DQ and S, such
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S vertices (servers)

DQ vertices (<d,q> pairs)

s: m

d: n
q: -

s: 1 s: 2 s: 3

d: 1
q: 1

d: 2
q: 1

d: 1
q: 2

Fig. 2. The bipartite problem graph used by AntDA. Although all 〈d, q〉 pairs are
connected to servers via directional edges and vice-versa, single non-directional edges
are shown here for simplicity.

that V = DQ∪S and DQ∩S = ∅. Each vertex in DQ represents a 〈d, q〉 pair. The
vertices in S represent the servers. Directed edges connect each vertex in DQ with
each vertex in S and vice versa: E = {(dq, s), (s, dq) | dq ∈ DQ ∧ s ∈ S}. Each
(dq, s) edge has a pheromone level, τdq,s, that represents the learned desirability
of having server s handle request load for 〈d, q〉 pair dq. Similarly each (s, dq)
edge has an associated pheromone level, τs,dq, that is used by ants to select the
next 〈d, q〉 pair to be assigned to a server. Each edge e ∈ E begins a trial with
a default level of pheromone, τ0.

Within a time step, ants construct solutions by moving back and forth be-
tween vertices in DQ (〈d, q〉 pairs) and vertices in S (servers). An ant works on
a solution until either server capacity is exhausted or all request load has been
assigned to the servers. Ants work independently (maintain their own solution
spaces) but start each time step with identical graphs. When all ants have con-
structed a solution, pheromone is deposited, pheromone evaporates, each ant’s
graph is updated with the new pheromone values, and then the next time step
begins. Ants are randomly placed at server vertices at the start of a time step.

The following subsections provide the details of AntDA. Note that the de-
scription uses terms defined in the DArep formulation of Fig. 1.

2.1 Transitioning from 〈d, q〉 Pairs to Servers

When at vertex dq, ant k must find a server on which it will create a replica
and/or assign request load for the 〈d, q〉 pair represented by dq. Let Sk

dq be the
set of servers (vertices) on which request load of the 〈d, q〉 pair represented by
vertex dq can be assigned. Let rem(Cs) = Cs − rls −uls represent the remaining
(unused) capacity of server s. Server s can be assigned by ant k if the net change
in update load on s caused by its hosting DA d at quality q is less than rem(Cs)
(i.e., s will have capacity to handle request load for the 〈d, q〉 pair). This is the
server hosting condition.



Replicating Multi-quality Web Applications 275

The probability that ant k selects edge (dq, s) for traversal is

pk
dq,s

(t) =

⎧⎪⎨⎪⎩
[τdq,s(t)]α·[ηdq,s]β

s∈Sk
dq

[τdq,s(t)]α·[ηdq,s]β , when s ∈ Sk
dq

0, when s /∈ Sk
dq.

(4)

τdq,s(t) is the pheromone concentration on edge (dq, s) at time step t. α and β
are constants governing the relative importance of pheromone to the heuristic
desirability, ηdq,s, of traveling along edge (dq, s)

ηdq,s =
rem(Cs)∑

s∈Sk
dq

rem(Cs)
. (5)

The heuristic is based on the idea that greedily selecting the server with the
most remaining capacity should reduce the number of replicas created and, thus,
update burden produced. Note that ηdq,s values are not constant. Instead, they
change as server capacity is consumed.

After selecting edge (dq, s) the ant moves from vertex dq to vertex s. Once
at s, the ant checks to see if a replica of DA d exists on server s. If not, one is
created at service level q by setting xs,d,q = 1. If a replica of d already exists on
s at a lower quality r < q, the replica’s quality level (update load) is increased
by setting xs,d,r = 0 and xs,d,q = 1. After establishing a replica at the correct
quality level, the ant assigns as much remaining (unassigned) request load of
the 〈d, q〉 pair, rem(rld,q), to s as possible, stopping when rem(rld,q) = 0 or
rem(Cs) = 0. The request load assignment is accomplished by setting λs,d,q to
the fraction of the 〈d, q〉 pair’s request load, rld,q that s will handle. Any time
an assignment is made, the server’s remaining capacity, rem(Cs), is decreased
based on the amount of update load of the replica and request load assigned.

After creating a replica of DA d at quality level q on server s, the ant invokes
following two-step Server-Filling (SF) heuristic.

1. SF first tries to avoid the creation of extra replicas of d by finding other
qualities of d that will completely fit on s. More specifically, SF looks for
another quality r ∈ Qd such that all of rem(rld,r) can be assigned to s. SF
assigns the highest r found by setting xs,d,∗ and λs,d,∗ variables as needed,
repeating with lower qualities of d if possible. Note that replica quality may
have to be increased since it may be that r > q and hence uld,r > uld,q. This
is done by setting xs,d,q = 0 and xs,d,r = 1. Let y be the highest quality of
d assigned to s at the end of this step.

2. If s still has spare capacity after step 1, SF looks for the highest quality
u ∈ Qd of DA d such that u < y and assigns as much request load of quality
u as possible to the replica (by setting λs,d,u).

The SF heuristic is an optional, but beneficial, part of AntDA; SF reduced update
burdens by over 4% versus not using it (Section 3).
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2.2 Moving from Servers to 〈d, q〉 Pairs

An ant at vertex s must decide which 〈d, q〉 pair should be assigned next. Let
DQk

s be the set of dq vertices which are still capable of being assigned to servers.
A 〈d, q〉 pair can be assigned if

1. it has some amount of unassigned request load (rem(rld,q) > 0), and
2. there is at least one server s ∈ S for which the server hosting condition (first

paragraph of Section 2.1) is satisfied with respect to the 〈d, q〉 pair.

If DQk
s = ∅, the ant’s walk terminates. Otherwise, the probability that ant k

selects edge (s, dq) is given by:

pk
s,dq

(t) =

⎧⎪⎨⎪⎩
[τs,dq(t)]α·[ηs,dq]β

s∈DQk
s

[τs,dq(t)]α·[ηs,dq]β , when dq ∈ DQk
s

0, when dq /∈ DQk
s .

(6)

τs,dq(t) is the pheromone concentration on (s, dq). α and β again control the
relative importance of pheromone and heuristic desirability, in this case ηs,dq:

ηs,dq =
uld,q · rem(rld,q)∑

dq∈DQk
s

uldq · rem(rld,q)
. (7)

Dividing uld,q · rem(rld,q) by a server’s remaining capacity, rem(Cs), estimates
the update burden incurred by creating replicas on servers of size rem(Cs). Eq.
(7) is an appropriate heuristic since it prefers 〈d, q〉 pairs most likely to produce
high update burdens (no matter which servers are used). Note that ηs,dq values
change as the ant constructs its solution.

After making its selection, the ant traverses the edge to the selected 〈d, q〉
pair and then transitions back to a server node (Section 2.1).

2.3 Pheromone Update Rule

When each ant has constructed a solution, it is time to deposit pheromone.
By finding a solution, an ant has assigned values for the xs,d,q and λs,d,q

variables from the formal version of DArep given in Fig. 1. Since better solu-
tions have lower update burdens, the amount of pheromone deposited should
be inversely proportional to a solution’s update burden. However, low update
burdens are not always better – some ants’ solutions may be infeasible (i.e.,
they do not assign all request load). Therefore, we differentiate between feasible
and infeasible solutions when deciding how much pheromone to deposit on the
edges used in a solution: Let UBk(t) be the update burden of ant k’s solution
after time step t as computed by (3). We adjust UBk(t) to account for infeasible
assignments as follows:

UB′
k(t) =

UBk(t)(
RLk(t)

RL

)ω (8)



Replicating Multi-quality Web Applications 277

where RLk(t) =
∑

d∈D

∑
q∈Qd

λs,d,q ·rld,q is the amount of request load assigned
by ant k in time step t, RL =

∑
d∈D

∑
q∈Qd

rld,q is the total amount of system-
wide request load, and ω is a constant scaling factor.

Once UB′
k(t) has been determined, it is used to calculate the amount of new

pheromone ant k will deposit. We allow the ants with the m best solutions to
deposit pheromone after each time step. More specifically, if edge e ∈ E was
traversed in the ith best solution and i ≤ m, then the amount of pheromone
deposited on e by the ant that produced the ith best solution is

Δi
e(t) =

γ

UL′
i(t)

(9)

where γ is a constant. We set γ = 1 during our experiments as we found it had
little, if any, impact on performance. If an edge e was not used by ant i, then
Δi

e(t) = 0.
Let Δτe(t) =

∑m
i=1 Δi

e(t) be the amount of new pheromone to be deposited
on edge e because of the m solutions chosen. The amount of pheromone on the
edges in graph G is then updated as is typically done in ACO [14,15]:

τe(t + 1) ← (1 − ρ) · τe(t) + ρ · Δτe(t) (10)

Note that pheromone updates apply to both kinds of edges: those leading from
DQ to S and from S to DQ.

3 Experimental Validation of AntDA

This section presents the results of experiments that compare AntDA with other
solution methods, reveals the importance of the Server-Filling (SF) optimization
heuristic, and demonstrates the importance of pheromone and heuristics on ants
traversing the bipartite graph.

Experimental Configuration. Unless otherwise noted, AntDA was run with
the parameter values and conditions shown in Table 1. Not reported in this pa-
per, our efforts to tune the parameters revealed that, for the most part, changing
any particular value had only minor effects. Only the number of ants allowed to
deposit pheromone, m, was observed to have a significant impact on solution val-
ues and convergence rates. Setting m to be 10% of the number of ants increased
the convergence rate six-fold and improved solutions by 5% versus the worst
case in which pheromone was deposited on all tours. Test cases were subjected
to fifty trials of 400 time steps each.

Results for performance comparisons were obtained by using a random as-
signment algorithm, Random, a greedy algorithm, Greedy, and the LINGO solver
[22]. Random randomly picks a 〈d, q〉 pair with non-zero remaining request load
and assigns it to a random server capable of hosting it. Random reports the best
solution found out of 1000 trials. The Greedy algorithm makes assignments by
choosing the 〈d, q〉 pair with the highest predicted update burden. This is the



278 C.B. Mayer et al.

Table 1. Parameter and condition values for AntDA experiments

α = 1 β = 8 ρ = 0.8 # Ants = |DQ| + |S|
γ = 1 ω = 4 τ0 = 0.1 m = �# Ants · 0.1

Table 2. AntDA solutions compared to other methods. Smaller numbers are better.

AntDA
Case # Random LINGO Greedy Min Max Avg Std Dev

1 1057 1025 842 784 800 793.86 5.77
2 1135 1168 884 811 824 817.94 2.94
3 1048 1066 788 764 771 766.06 2.78
4 1099 1199 849 813 822 818.98 2.02
5 1137 913 867 811 823 814.64 2.60

same as computing the numerator of (7) for each 〈d, q〉 pair still capable of
being assigned to some server. The 〈d, q〉 pair selected is then assigned to the
server with the most remaining capacity. The Greedy algorithm also executes
the Server-Filling optimization heuristic. Both Random and Greedy algorithms
stop once all request load has been assigned or when no more request load can be
assigned to any server. LINGO solves DArep using the MILP formulation of Fig. 1.
Although MILP solvers such as LINGO are the only known method besides com-
plete enumeration that can find guaranteed optimal solutions, execution times
can be prohibitive. Therefore, we allotted four hours for LINGO to work on prob-
lems. This was sufficient time for LINGO to produce feasible, but not necessarily
optimal, solutions and provides a notion of DArep’s complexity.

Due to space limitations, experimental results are shown for just five test
cases (hypothetical DArep instances) involving five DAs of three quality levels
each.1 The update load for quality levels 1, 2, and 3 were randomly generated
within the bounds of [5, 14], [16, 25], and [27, 36], respectively. The update loads
for quality three make it impossible to assign request load to the smallest of
the servers. Request load increased in conjunction with quality level and was
randomly generated in the ranges of [34, 100], [133, 200], [233, 300], respectively.
Once the DAs were generated, servers were added to complete each test case.
Servers were added in sets of five servers having sizes {25, 50, 75, 100, 125} until
the Greedy algorithm produced feasible solutions. The number of vertices in the
test case graphs were either 70 or 75.

Results and Analyses. Table 2 shows the performance of AntDA and the
other solution methods for the five test cases. Clearly AntDA produces better
solutions than the other three methods.

1 Although we have a suite of over 70 test cases with three or fewer quality levels per
DA and varying update loads and request loads, we display only the most difficult
cases. Results for the other test cases are similar to those shown here.
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Table 3. The effect of the Server-Filling heuristic on AntDA update burdens. Smaller
numbers are better.

Server-Filling Off Server-Filling On difference of
Case # Min Max Avg Std Dev Min Max Avg Std Dev min solutions

1 823 840 830.76 4.58 784 800 793.86 5.77 4.74%
2 841 878 863.56 6.94 811 824 817.94 2.94 3.57%
3 793 820 805.66 7.63 764 771 766.06 2.78 3.66%
4 852 875 862.54 7.91 813 822 818.98 2.02 4.58%
5 852 891 870.64 9.81 811 823 814.64 2.60 4.81%

Note that, while it produces the lowest update burdens, AntDA has higher
solution times than Random and Greedy; Greedy can produce a solution in mil-
liseconds, Random needed about 1.5 minutes, while AntDA took just under four
hours to complete a test case.

We, however, also note that AntDA found its best solution by the 18th time
step on average with a standard deviation of 10.17. Using the rule-of-thumb that
95% of values fall within two standard deviations of their mean, this means that
AntDA will find its best answer within 50 time steps (18+ (2 · 10.17) ≤ 50) 95%
of the time for the five test cases. Constraining the number of time steps as such
brings AntDA down to a half hour per test case (about 30 seconds per trial),
which is a realistic time bound in DA replication scenarios.

The next set of results show the impact of the Server-Filling (SF) optimization
heuristic on AntDA. Table 3 clearly shows that using SF results in lower min-
imum, maximum, and average update burdens versus not using it. Comparing
just minimum solution values, SF caused solution values to improve by 3.57%
to 4.81% (rightmost column of Table Table 3). In all but test case #1, SF’s
solutions also experienced much lower standard deviations.

The use of a bipartite graph in which the ants follow pheromone and heuris-
tics in order to traverse from one set of vertices to the other and back raises
the question of how important pheromone and heuristics are to AntDA perfor-
mance. Table 4 shows the impact of all possible cases of turning pheromone and
heuristics off for the fifth of the five test cases. Similar results were obtained
from the other four test cases. For example, line 1 of Table 4 shows performance
results when pheromone is turned off when moving from an application vertex
to a server (the pheromone components (4) are removed). Similarly, line 4 shows
the impact of ignoring heuristics when moving from a server to a 〈d, q〉 pair
caused by removing the heuristic components of (6).

Line 9 of Table 4 contains the statistics for normal AntDA operation. Note
that lines 2, 4, and 5 come close to meeting the minimum update burden (UB)
of line 9 yet have higher maximum and average update burdens. Also, lines
4 and 5 converge on their best solution (rightmost column) after 221.22 and
148.30 time steps on average, respectively, which is much worse than the normal
mode of operation (line 9). Line 2 fares much better with respect to convergence
rate and minimum update burden, but still has a higher maximum and average
update burden than the normal mode. Altogether, Table 4 indicates that using
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Table 4. The importance of pheromone and heuristics on AntDA update burdens.
Smaller numbers are better.

Line Pheromone Off Heuristic Off Min Max Avg Std Dev Conv. Avg.
1 DQ-to-S - 838 866 864.78 9.13 198.55
2 S-to-DQ - 812 836 824.48 4.83 4.84
3 - DQ-to-S 830 887 854.16 14.36 44.22
4 - S-to-DQ 815 864 841.68 9.55 221.22
5 both - 815 826 822.24 2.60 148.30
6 - both 835 896 863.40 11.23 121.56
7 DQ-to-S S-to-DQ 874 874 858.20 9.25 204.04
8 S-to-DQ DQ-to-S 833 973 911.24 23.08 17.30
9 - - 811 822 816.26 2.90 25.28

pheromone and heuristics to make edge selections in both directions (normal
operating mode) gives the best overall performance.

4 Conclusion

In this paper the Ant Colony Optimization (ACO) meta-heuristic was success-
fully applied to a new NP-hard problem, DA Replication Problem(DArep), in
which an application service provider must replicate multi-quality database-
driven web applications on its network of servers at minimal cost. The ACO
formulation for DArep, AntDA, is the first to use a fully bipartite graph. Ants
deposit and follow pheromone on directed edges connecting a set of application
vertices with a set of server vertices and then back from servers to applications.
Other interesting aspects of AntDA include dynamically changing heuristic val-
ues and the possibility of infeasible solutions. Experiments showed that AntDA
outperforms several other solution methods. Moreover, the use of the Server-
Filling optimization heuristic by AntDA decreased costs by over 4%. Tests in
which pheromone and heuristic values were removed from the ants’ decision-
making process as they traveled the bipartite graph showed that pheromone and
heuristics in both traversal directions delivers the best performance.
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Abstract. CE-ants is a distributed, robust and adaptive swarm intel-
ligence strategy for dealing with path management in communication
networks. This paper focuses on various strategies for adjusting the over-
head generated by the CE-ants as the state of the network changes. The
overhead is in terms of number of management packets (ants) generated,
and the adjustments are done by controlling the ant generation rate that
controls the number ants traversing the network. The link state events
considered are failure and restoration events. A simulation scenario com-
pares restoration performance of rate adaptation in the source node with
rate adaptation in the intermediate nodes close to the link state events.
Implicit detection of failure events through monitoring ant parameters
are considered. Results indicate that an implicit adjustment in the source
node is a promising approach with respect to restoration time and the
number of ants required.

1 Introduction

Paths between all source destination pairs in a communication network should be
chosen such that an overall good utilisation of network resources is ensured, and
hence high throughput, low loss and low latency achieved. The available spare
capacity in the network must be utilised in such a manner that a failure results in
a minimum disturbance on traffic flows. The combinatorial optimisation aspects
of this task are typically NP-hard, see for instance [1]. Nevertheless, consider-
able knowledge has been acquired for planning paths in networks and insight and
practical methods for obtaining such paths by mathematical programming are
available. For an overview, see the recently published book by Piro and Medhi
[2] and references therein. Several stochastic optimisation techniques have been
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proposed [3,4,5,6]. Common to these are that they deal with path finding as an
optimisation problem where the “solution engine” has a global overview of the
problem and that the problem is unchanged until a solution is found. To ensure
system robustness and be in-line with the “Internet philosophy” path manage-
ment is required to be truly distributed and adaptive. However, one should be
aware that applying truly distributed decision-making typically yields solution
which are less fine tuned with respect to optimal resource utilisation.

In addition to finding good paths, proper path management requires that:
a) the set of operational paths should be continuously updated as the traffic
load changes, b) new paths should become almost immediately available between
communication nodes when established paths are affected by failures, and c) new
or repaired network elements should be put into operation without unnecessary
delays. Near immediate and robust fault handling advocates distributed local
decision-making on how to deal with failures.

Schoonderwoerd & al. introduced a system applying multiple agents with a
behaviour inspired by ants to solve problems in telecommunication networks [7].
Their system belongs to a group of systems today known as swarm intelligence
[8] systems, and has been studied further by others, see for instance [9,10,11]
and references therein. Self-management by swarm intelligence is a candidate to
meet the aforementioned requirements and to overcome some of the drawbacks
of the current path and fault management strategies. Heegaard, Wittner, and
Helvik [12] describes CE-ants (cross-entropy ants), a swarm intelligent based
method for dealing with path management in communication networks. This
paper focuses on reducing the overhead in terms of the number of management
packets (ants) generated in a CE-ants based system. The system applies adaptive
multi-path load sharing and stochastic routing, denoted CE-ants with adaptive
path in [12], which results in robust and adaptive forwarding. The number of
ants are reduced by controlling the ant generation rate according to the link
state of the network.

A description of the general system model applied in the paper is given in
Section 2 followed by a brief presentation of the foundations of CE-ants with
adaptive path in Section 3. A set of different rate adaptation strategies are
presented in Section 4, and results from a comparative study of their performance
are given in Section 5. The study involves simulations of a scenario where a
nationwide communication infrastructure is applied. Future work and concluding
remarks are found in Section 6.

2 System Model

The system is a bidirectional graph G(v, l) where v is the set of nodes and l is the
set of links. The objective is to find a virtual connection V C[s,d] between source
node s and destination node d with a minimum cost, e.g. minimum delay between
s and d. V C[s,d] is realised by one or more paths, ω[s,d] = {s, · · · , d} ∈ Ω[s,d]
where Ω[s,d] is the set of all feasible paths between s and d. A link l[i,j] is specified
by its end nodes i and j. The end nodes of link closest to the source and closest
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to the destination of path ω[s,d] are denoted the lower node and the upper node
respectively. See Figure 1 for an illustration.

Discovery and maintenance of paths for virtual connections are handled by
the CE-ants method and is governed by determining the cost of paths. In this
paper link cost is delay that includes queuing and processing delay in a node,
and transmission and propagation delay of a link. The cost of a link is denoted
c(l) and will vary with traffic load and over time. The cost of a path is c(ω) =∑

∀l∈ω c(l). The cost of a virtual connection is either c(V C) = minω∈Ω c(ω) when
the minimum cost path is used, or c(V C) =

∑
ω∈Ω p(ω) · c(ω) when stochastic

routing is applied over the feasible paths ω ∈ Ω with path probability p(ω). The
near optimal or best paths are denoted the preferred paths of a VC.

The CE-ants system described in this paper is generating signalling packets,
denoted ants, at VC source s with rate λt at time t. The suffix t is ignored in
the following for notation simplicity. The initial rate λ0 in the exploration phase
is λ0 > λ > λs where λs is the ant generating rate in steady state. The ants are
identified by their destination d and a species identity id, i.e. a tuple < d, id >.
The ant species identity refers to an ant species with a designated task, in this
paper typically finding the minimum cost path from s to d.

3 Cross Entropy Ants (CE-ants)

A CE-ants system is a swarm intelligent system originally inspired by the for-
aging behaviour of ants. The idea is to have a number of simple ant-like mobile
agents, denoted just ants in this paper, iteratively searching for paths in a net-
work. Having searched for and found a path, an ant backtracks and revisits all
nodes in the path. The ant leaves markings at each node. The markings, denoted
pheromones, resembling the chemicals left by real ants during ant trail develop-
ment. The strength of the pheromones left depends on the quality of the path
found. Hence, nodes hold distributions of pheromones pointing toward their neigh-
bour nodes. A new ant in its searching phase selects the next node to visit stochas-
tically based on the pheromone distribution seen in the visited node. Using such
trail marking ants, together with evaporation of pheromones, the overall process
converges quickly towards having the majority of the ants following the trails that
tend to be a near optimal path. Due to limited space the foundations for CE-ants
are only outlined in the following paragraphs. See [11] for more details.

In [6] Rubinstein presents an algorithm that finds near optimal solutions to
hard combinatorial problems by an iterative method. The algorithm is founded
on the recognition of that finding the optimal solution by random selection is an
extremely rare event. Rubinstein represents the total allocation of pheromones
in a network by a probability matrix Pt where an element Pt,ij reflects the
normalised intensity of pheromones pointing from node i toward node j. An ant’s
stochastic search for a sample path resembles a Markov Chain selection process
based on Pt. By importance sampling in multiple iterations Rubinstein alters the
transition matrix (Pt → Pt+1) and increases, as mentioned, certain probabilities
such that ants eventually find near optimal paths with high probabilities. Cross
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entropy is applied to ensure efficient alteration of the matrix. To speed up the
process further, a performance function weights the path qualities such that
high quality paths have greater influence on the alteration of the matrix. A
“temperature” parameter γt in the performance function controls the focus of
the overall search towards high quality paths. Focus is tightened gradually, i.e.
γt−1 > γt > γt+1, to avoid local optima (cf. simulated annealing.)

A distributed and asynchronous version of Rubinstein’s CE algorithm, referred
to as CE-ants, is developed and described in details in [13]. On the contrary to
Rubinstein’s CE algorithm where all ants must produce sample paths before
Pt can be updated, in CE-ants an optimised update of Pt can be performed
immediately after every new path ωt (where t is the t’he ant) is found, and a
new probability matrix Pt+1 can be generated. Hence CE-ants may be viewed as
an algorithm where search ants evaluate a path found (and re-calculate γt) right
after they reach their destination node, and then immediately return to their
source node backtracking the reverse path. During backtracking, pheromones
are placed by updating the relevant probabilities in the transition matrix. Due
to the compact autoregressive schemas applied in a CE-ants system, the system
becomes both computationally efficient, requires limited amounts of memory and
is simple to implement.

In [14] elitism is introduced in the CE-ants system to reduce the overhead
by reducing the number of ant updates. The basic idea is that only the ants
that find paths with cost values amongst the best (so far) should lead to an
update and send backtracking ants. This has been shown in [14] to reduce the
overhead and the convergence time. The elitism criterion is a function of the
“temperature” and does not introduce any additional parameters and it is self-
tuning and handles dynamic network conditions.

In [12] different path management strategies based on CE-ants were discussed.
This paper adopts the adaptive path strategy that is designed for fast restoration
and adaptation to both link failures and changes in traffic load.

4 Rate Adaptation Strategies

On most link state events the multi-path CE-ants method with load sharing,
denoted adaptive path in [12], will almost immediately provide alternative paths
to the virtual connections that are effected. The performance of the VC manage-
ment depends on the number of ants sent. It is a trade-off between reactive path
management and overhead in terms of ant messages. This paper studies a set of
strategies where the refresh rate λ in stable state is rather low, but is increased
as link state events are detected. This rate adjustment can be initiated either
in the source of the virtual connections, or locally in the end-points where the
link state event takes place, see Figure 1 for an illustration. (Figure 1 is further
described in the following sections.)

The remaining of this section presents the metrics applied for performance
evaluation, and introduces a reference strategy denoted fixed rate and two alterna-
tive rate adaptation strategies denoted implicit adaptation and local adaptation.
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Fig. 1. Illustration of the two main rate adaptation schemes: implicit adaptation and
local adaptation

4.1 Performance Metrics

The rate adaptation strategies evaluated in Section 5 are compared by applying
the following performance metrics. Note that chances in link states are termed
link state events, and that shutting down and restoring links generate such events
during the simulation experiments.

1. tr - the path detection time, is the time to detect a working path for the
virtual connection. This is the time it takes from a link state event te occur
to a new path from the source to the destination of a virtual connection is
found, i.e. to the first packet from source s arrives at destination d.

2. to - the convergence time, is the time it takes to converge to a new near
optimal, or at least good, solution after a link state event. A VC is considered
converged when 80% of all packets follow the same path.

3. n - the number of ants generated per VC per time unit.
4. A - steady state service availability. The service is a virtual connection with

guaranteed packet delay less than tmax [sec.]. If the guarantee is violated the
service is not available.

4.2 Fixed Rate

The path finding ability of our CE ants based system is robust and adaptive
when the ant rate is high. When no rate change actions are taken on a link state
event, the rate will stay high also in steady state when the paths have converged
and the VC is established. For such a system configuration the management
overhead is independent of the dynamics in the system. However, the obvious
downsides are an unnecessary high overhead in stable situations if the rate is
high, or too long convergence times (to) if the rate is low.

In Section 5 three levels of fixed rates are considered, high rate with 500 ants/s,
medium rate with 200 ants/s, and low rate with 50 ants/s. These rates may in
general seem high, especially since they concern signalling traffic for managing
a single VC. However, in systems realising CE-ants path management, a single
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VC would typically carry a number of traffic flows. The overall data rate of a VC
would far exceed the ant-signalling rate. Due to the nature of the CE-ants system
piggy-backing ant information (typically less than 50 bytes) onto data packets
is also an option, and by that a limited number of separate (non-piggy-backed)
signalling packets would be required.

4.3 Implicit Adaptation

The convergence time to depends on ant generation rate λ from the VC source,
and the corresponding update rate λe from the VC destination. To reduce to,
λ must be increased. However, to minimise the overhead, λ should only be in-
creased after a link state event and decreased again on convergence to steady
state.

A link state event can either be signalled explicitly towards the source node
or handled by implicit notification. We consider implicit notification only since
explicit notification would require a separate notification protocol, carefully de-
signed to avoid route flapping (i.e. avoid sending notifications on transient link
failures), to avoid unnecessary overhead (i.e. avoid sending notifications on link
state events not affecting the performance of the VC in question), and to ensure
that notification messages are not lost (i.e. ensure that rate change take place
when it should).

The link state events along a preferred path can be implicitly detected in the
source node s by monitoring changes in the difference between the outgoing ant
rate λ (forward ants) and the incoming ant rate λe (backtracking elite ants).
Based on the fact that in a steady state λ ≈ λe while in a failure state λe ≈ 0,
we design the following autoregressive expression for λ

λ ← λ0 · min(ε,
λ − λ̂e

λ
) (1)

where λ0 is the initial intensity, ε ∈ (0, 1] is a parameter that ensures a minimum
ant generator rate. λ̂e is an estimator of λe produced by recording the time
epochs, tk, for the k’th incoming ant and averaging over a window of the last α
epochs,

λ̂e,tk
= α/(tk − tk−α) (2)

where the memory term, α, should be between 10 and 30 to enable quick adap-
tation to changes in incoming ant rates. In a scenario with no link state events,
the system will converge towards a near optimal solution, and ε may be set to 0
to force the generation of ants to stop on convergence. However, in a system with
link state events changing the operational conditions, a minimum of ants must
be generated to detect changes, hence ε > 0. The optimal value of ε depends
on the frequency of the system dynamics, the memory factor (β) configured in
the CE-ants system, the topology, the expected number of hops in a path, the
number of (equal) solutions and the number of parallel VC setups. In Section 5
λ0 is set to 500 ants/s, i.e. equal to high rate, ε is set to 0.1, which results in a
minimum rate of 50 ants/s, i.e. equal to low rate.
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4.4 Local Adaptation

An alternative to notifying the source node of a link state event, is to increase the
rate of outgoing ants at the lower node of the link effected by the state change.
At the lower node, ants < d, id > that are coming from node s and heading
towards node d are replicated in nr copies and sent towards d on alternative links
(including the incoming link). See Figure 1 for an illustration. The replication
of < d, id > ants can be initiated immediately after the detection of a link state
event, or when the next forward ant has arrived after the event was detected.
The advantage with the former is fast reaction time, while the latter will avoid
unnecessary replication of ants in low impact nodes as well as damp the effect
of transient link state events. The latter approach is applied in Section 5.

The number of replica, nr, and the replication rate, λr, must be set to re-
flect the impact a detected link state event has on the performance of the VC
maintained.

Replication Rate. The rate of forwarding ants λf in the lower node can be
estimated as in (2) by recording the time epochs, tk, for k’th incoming ant and
averaging over a window of the last α epochs

λ̂f,tk
= α/(tk − tk−α) (3)

where the memory term, α, should be between 10 and 30 to enable quick
adaptation to changes in node visit rates. The replication rate λr could be
close to λf when the lower node is part of a single preferred path, and close
to 0 otherwise. However, to enable fast recovery in the simulations in Sec-
tion 5, ants are transmitted back-to-back as soon as they are replicated, i.e.
λr = link bandwidth/ant packet size.

Replication Number. When the replication is done on arrival of a forwarding
ant, a fixed number of replica, nr, are sent. The number of replica reflects the
importance of the lower node by

nr,t = n0(1 + (ν − 1)
λf,t

λ
) (4)

where n0 is the minimum number of replica (design parameter), and ν is the
number of edges in the lower node. If the lower node is along the preferred path,
then λf,t ≈ λ and nr,t ≈ νn0, otherwise nr,t ≈ n0. In Section 5 the generation
rate λ at source node s is set to 50 ants/s, i.e. equal to low rate, and n0 is set
to 10 ants which results in replication burst sizes for 10 to approximate 200, i.e.
maximum burst rates of at least the size of high rate.

5 Case Studies of a National-Wide Internet Topology

To compare the different rate adaptation strategies proposed in Section 4, a series
of simulation experiments have been conducted applying the backbone topology
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of a Norwegian Internet provider. The topology, illustrated in Figure 2, consists
of a core network with 10 core routers in a sparsely meshed topology, ring based
edge networks with a total of 46 edge routers, and a dual homing access network
with 160 access routers. The relative transmission capacities are 1, 1/4 and 1/16
for core, edge and access links, respectively.

Fig. 2. The simulated backbone network. A virtual connection V C[74,164] is estab-
lished and monitored. The preferred path in stable phase is ω

(1)
[74,164] = {74, 69, 13, 4,

2, 41, 164}. To the right, the distribution of the number of hops of all paths between
access nodes is given. The average number of hops is 6.37. The preferred path ω

(1)
[74,164]

of V C[74,164] consists of 6 hops.

The management of a single virtual connection, V C[74,164], and its corre-
sponding paths are studied in details. As indicated in Figure 2 V C[74,164] is a
typical connection in the topology applied. The paths of V C[74,164] are exposed
to link state events like failures and restoration. Data traffic is routed according
to the (multi)paths provided by the management algorithm. The performance
of the data traffic stream between node 74 and 164 is monitored while different
rate adaptation strategies are applied. The simulation series runs over a period
[0,300] simulated real-time seconds divided in a number of phases where different
link state events occur affecting links along the preferred paths of V C[74,164]. In
phase [0,10] the network is initialised followed by a stable phase [10,90] where
all links are operational. In phase [90,120] l[2,4]has failed and in phase [120,150]
l[1,42] has also failed. l[2,4] is restored in phase [150,180]. The most critical phase
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is [180,210] where l[2,4], l[1,42] and l[1,3] have failed simultaneously. Finally, in
phase [210,240] l[2,4] is restored again.

All results presented are based on 20 simulation replications. Figure 3 shows
the rate of ants in ants per second for the different rate adaptation strategies.
To the upper right the rate of ants sent from the source are shown, and to
the lower left the rate of ants backtracking and leading to updates of routing
information. Rates are averaged over one-second windows and 95%-confidence
limits are given. In Figure 4 path detection times tr and convergence times to
are summarized. The path detection axis is to the right and the convergence
time axis to the left. tr and to are measured starting at the beginning of each
simulation phase (i.e. at the occurrence of link state events). Averages with 95%-
confidence limits are shown. In Figure 5 the service availability of V C[74,164] is
given with tmax set to 110% of the delay of the optimal solution in the most
critical phase [180,210].

Note that results from simulations with high rate, medium rate, implicit adap-
tation and local adaptation are included, while results from fixed low rate were
left out because they were essentially indistinguishable from the results of local
adaptation.

Fig. 3. Ant rate (ants/sec) sent forward (upper right) and backwards (lower left)

From the results in Figure 4 it can be observed that the path detection times
are significantly less than the convergence times, averaged over all less than 0.1%.
This implies that service interruptions are very short. It is hardly noticeable on
the interval service (un)availability estimates in Figure 5.



Restoration Performance vs. Overhead 291

Fig. 4. Path detection and convergence times for all schemes

The implicit adaptation and local adaptation strategies generate significantly
fewer ants than the high and medium fixed rate strategies (Figure 3). However,
in the critical phase [180,210] a significant number of ants are required to find
a set of new good paths. In this phase the source rate is adjusted to exceed the
medium fixed rate.

It was expected that the higher (overall) rate the better the performance, and
this hold for most of the phases. The only exception is in phase [120,150] where
l[1,42] has failed. In Figure 4, it can be seen that the implicit adaptation strategy
is very good and outperforms the fixed rate strategies. A possible explanation
is that the fixed rate strategies in the phase preceding [120,150] have strong
convergence to solutions that include l[1,42]. Strong convergence in one phase
would increase the convergence times in the following phase if the preferred
solution is affected by the link state event between the phases. A strategy that
has a high ant generation rate will have strong convergence in terms of strong
pheromone values. This further motivates the use of rate adaptive strategies,
and further testing of these are required.

Compared to the fixed medium rate strategy, the implicit adaptation strat-
egy generates on average of 50% less ants, and shows very good performance
compared to the medium rate. As can be seen in Figure 5, the overall service
availability and restoration times are almost identical, while the convergence
times of the implicit adaptation strategy is 18% better. However, in the critical
phase [180,210], the medium fixed rate has 5% better service availability and
17% shorter convergence times.

The current implementation of the local adaptation strategy generates too
small and short-lived bursts to make an impact on the path detection and con-
vergence times. The local adaptation strategy has overhead and performance
equal to the fixed low rate strategy (the results are not included in this paper).
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Fig. 5. Availability of V C[74,164] where the service level requirement tmax is set to 10%
above the delay of the optimal path in period [180,210] with three link failures

6 Concluding Remarks

CE-ants is a distributed, robust and adaptive swarm intelligence system for
dealing with path management in communication networks, and is based on
Cross Entropy for stochastic optimisation. In this paper different strategies are
studied to control and reduce the overhead in terms of number of management
packets (denoted ants) generated in this CE-ants system. Overhead reduction
is achieved by controlling the ant generation rate and the number of elite ants
that update routing information in the network. A series of link state events
are simulated and the performance of four strategies compared. Results indicate
that an implicit adjustment in the source is a promising approach with respect
to path detection and convergence times and the number of ants required. A
50% reduction of overhead may be achieved without loss of performance.

More case studies should be conducted with different transient periods and
combinations of link state events, with multiple VCs, background traffic, chang-
ing topology, and comparisons with non-swarm based systems. It is also of inter-
est to study how the local adaptations strategy can be made more responsive in
order to reduce the path detection and convergence times even further. A com-
bination of local adaptation of the rate and implicit adaptation of the source
rate is expected to be a robust strategy. It would also be interesting to study
scenarios where differentiated service and dependability requirements lead to
differentiated restoration strategies.

Flooding a network under global overload should be avoided, hence strategies
where ant information is piggy-backed on data-packets will be considered as well
as strategies where a maximum capacity for ant packets is set. Since the CE-
ants system tends to be robust to loss of management information, dropping ant
packets on congestion may also be an option.
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Abstract. In this paper we investigate the performance of pareto ant
colony optimization (PACO) in solving a bi-objective permutation flow-
shop problem. We hybridize this technique by incorporating path relink-
ing (PR) in four different ways. Several test instances are used to test
the effectiveness of the different approaches. Computational results show
that hybridizing PACO with PR improves the performance of PACO.
The hybrid algorithms also show competitive results compared to other
state of the art metaheuristics.

1 Introduction

In the permutation flowshop scheduling n jobs have to be sequentially processed
on m machines. Each job i has release date ri, a due date di, and a processing
time tij on machine j. The performance of each possible schedule is measured ac-
cording to some functions like makespan which is defined as f1 = max

i
{sim+tim}

and total tardiness f2 =
n∑
i

max(sim+tim−di, 0) where sim is the schedule time

of job i in the last machine m. In this paper, we try to find job sequences such that
two objectives, (i) to minimize makespan and (ii) to minimize total tardiness, are
accomplished. We call this problem as bi-objective flowshop scheduling problem
(BOFSP). In general, there is no single solution that simultaneously accomplish
the objectives of a bi-objective optimization problem. Hence, the Pareto optimal
set or sometimes called the set of nondominated (efficient) solutions is consid-
ered. We say that a solution x is Pareto optimal or nondominated solution if
there exists no other feasible solution y such that fk(y) ≤ fk(x), for k = 1, 2
and fk(y) < fk(x) for some k. Otherwise, we say that x is dominated by y and
we denote this by y & x.

BOFSP is an NP-hard problem since makespan minimization has been proven
NP-hard for more than two machines [1]. Furthermore, the minimization of total
tardiness for one machine has been proven NP-hard as well [2]. Therefore, the
use of metaheuristics is appropriate.

The Ant Colony Optimization (ACO) [3,4] metaheuristic is inspired by the
ability of real ants to determine the shortest path that leads to their food source.

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 294–305, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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When applied to a scheduling problem, this constructive metaheuristic selects
the next unscheduled job to be appended in the partial schedule based on the
cost of adding the job (heuristic information) and the desirability of the job
(pheromone). After all the ants have constructed their solutions, all or some of
them update the pheromone according to their fitness values. This will allow the
succeeding ants to select a better path.

ACO has been used successfully in solving several single objective combinato-
rial problems like in [5,6,7] and it also has become an alternative approximation
method for solving a wide range of multiobjective combinatorial optimization
problems. It has been applied in scheduling [8,9], portfolio selection [10,11], ac-
tivity crashing [12], engineering [13,14,15], travelling salesman [16] and in vehicle
routing and transportation [17,18] problems.

To solve the BOFSP, two implementations of ant colony optimization are
proposed in this paper. The first method is a version of Pareto Ant Colony
Optimization (PACO) proposed by Doerner et al. in [10]. The second imple-
mentation is also PACO but a Path Relinking (PR) approach is incorporated.
Furthermore, four ways of implementing PR are examined.

This paper is organized as follows. Section 2 describes the implementation of
PACO in BOFSP. Section 3 presents the numerical results of the study and Sect.
4 provides a short conclusion and future direction of the study.

2 Solution Procedures

2.1 Pareto Ant Colony Optimization

Solution Construction. In PACO [10], each objective function fk has its
own pheromone matrix [τij ]k which describes the desirability of scheduling job
i at position j [7,19]. Hence we store the pheromone values in a job×position
pheromone matrix. Given the set U of unscheduled jobs, i ∈ U is selected for the
jth position according to the pseudo-random-proportional rule given by

i =

{
arg maxi∈U

∑2
k=1 wk

i

[∑j
l=1 τk

il

]α

·
[
ηk

ij

]β if q ≤ q0

î otherwise ,
(1)

where the random variable î has a probability distribution given by

Pr(i) =

⎧⎨⎩
2
k=1 wk

i [ j
l=1 τk

il]
α[ηk

ij ]
β

u∈U
2
k=1 wk

u[ j
l=1 τk

ul]
α[ηk

uj ]
β i ∈ U

0 otherwise .
(2)

Note that this rule is a straightforward extension for multiple pheromone ma-
trices of the rule used in Ant Colony System [20] . The parameters α and β
determine the relative influence of the pheromone and heuristic information, re-
spectively, ηk

ij is the heuristic information of objective k, wk
i ∈ [0, 1] are weights

which are uniformly distributed such that
∑2

k=1 wk
i = 1. In each iteration, every

ant is assigned its own weight vector. The parameter q is a random number
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uniformly distributed in the interval [0, 1], and q0 ∈ [0, 1] is a parameter that
defines the intensification and diversification properties of the algorithm. Higher
value of q0 prefers intensification over diversification while lower q0 prefers oth-
erwise. Observe that the summation rule is applied in evaluating the pheromone
values, i.e., a job is selected based on the pheromone values up to jth position.
This rule was introduced in [21] and was implemented in [9,7,22].

Heuristic Informations. Each objective function fk has its own heuristic
information ηk

ij that measures the “attractiveness” of assigning job i to position
j. For the objective of minimizing the total tardiness, the heuristic information
is expressed by

ηij =
1

maxi∈U
(
di, makespanj

)
− makespanj−1

(3)

where makespanj is the makespan of the partial schedule with j jobs. This
heuristic information is an extension of the same heuristic information used
in [9].

The heuristic information of makespan minimization makes use of the Liu and
Reeve’s (LR) heuristic [23]. LR heuristic uses an index function to construct a
schedule which minimizes the total flowtime. It consists of two parts, one for
measuring the influence of the machine idle time and another for measuring the
effects on the completion times of later jobs.

Let S be the sequence of a partial schedule having s jobs and C(i, h) be
the completion time on machine h of a job i ∈ U if it is scheduled to be the
(s + 1)th job. Then the expression for the weighted machine idle time between
the processing of job i and the sth job is given by:

ITis =
m∑

l=2

wls max (C(i, l − 1) − C([s], l), 0) , (4)

where the weights wls = m
l+s(m−l)/(n−2) and [s] is the index of the job at the sth

position.
For the second component of LR, calculate the average of the processing times

of jobs in U on each machine j and consider these as the processing times tpj of
an artificial job p. The values of the processing times are given as follows:

tpj =
∑

q∈U , q �=i

tqj/(n − s − 1) . (5)

Then the artificial flow time ATis is given by the sum of the completion time
of job i and the completion time of the artificial job p which is assumed to be
processed after job i:

ATis = C(i,m) + C(p,m) . (6)

Finally, the index function fis for choosing job i ∈ U as the (s + 1)th job to be
scheduled is the aggregate of the weighted machine idle time and total artificial
flow time:

fis = (n − s − 2)ITis + ATis . (7)
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The job with the smallest index function value is preferred. Observe that the
machine idle time has more weight when selecting the early jobs of the schedule.
This is necessary since the accuracy of average processing times in measuring the
effects unscheduled jobs is poor due to the fact that there are many unscheduled
jobs [23].

Local Pheromone Update. Two types of pheromone updates are applied in
PACO. The first update is a local pheromone update which occurs after an ant
completes its solution. This update evaporates the pheromone values along the
edges visited by the ant in order to allow the succeeding ants to explore other
edges. It updates the pheromone matrices according to (8)

τk
ij = (1 − ρ) · τk

ij + ρ · τmin ∀k (8)

where ρ is the evaporation rate (with 0 ≤ ρ ≤ 1) and τmin is a small number
that serves as the minimum value of the pheromone values.

Local Search. After locally updating the pheromone, each ant undergoes local
search. A move operator is applied, i.e., a job is selected and inserted in another
position. If the solution created after the move is not dominated by the set of
nondominated solutions generated by this local search, this solution becomes
the new solution of the ant. The process of move is repeated until a maximum
number of iterations has been reached.

The set L of all nondominated solutions found by the local search updates the
external set G which contains all efficient solutions found so far by the algorithm.
The solutions in L that are not dominated by the solutions in G are stored in G
and the solutions in G that are dominated by L are removed.

Global Pheromone Update. The second update is the global pheromone
update. The pheromone values of an objective are updated by the iteration’s
best and second-best schedules (after local search) with respect to that objective.
This global pheromone update rule is defined as follows:

τk
ij = (1 − ρ) · τk

ij + ρ · 'τk
ij , (9)

where the quantity 'τk
ij is given by

'τk
ij =

⎧⎪⎨⎪⎩
15, (i, j) is an edge in the best and 2nd best schedules of objective k
10, (i, j) is an edge only in the best schedule of objective k

5, (i, j) is an edge only in the 2nd best schedule of objective k .

(10)

2.2 PACO with Path Relinking

Path Relinking (PR) is a population based method which is a generalization of
an evolutionary approach called scatter search. This method links good solutions
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and the trajectories that result from the connections comprise the new solutions.
Linking the solutions may be performed either in decision or objective space.

In this study, the path relinking approach is incoporated in PACO before the
global pheromone update of each iteration. The iteration-best solutions of each
objective are linked to some of the solutions in G. Two ways of doing this are
examined. The first method links the iteration-best of objective f1 (f2) in the
direction of the best solution in G with respect to objective f2 (f1). The other
method is to connect each of the iteration-best towards a randomly selected
solution in G. Figure 1(a) illustrates the link in the first method while Fig. 1(b)
represents the link in the second method. Note that in Fig. 1(b) the target
solutions can be any of the solutions in G.

Fig. 1. Direction of the links in PR

There are two strategies of linking two solutions. The first strategy applies
the concept of longest common substring (LCS). This strategy is implemented
according to the implementation of such strategy in [24]. From the starting
solution x, a move neighborhood operator generates paths that connect this
solution to the target solution y. Only the neighbor solutions that increase LCS
with the target solution y are considered.

The other strategy uses Hamming distance (HD) to guide the construction
of the paths that connect solution x to solution y. Hence the distance between
solution x and solution y is the number of positions in which the two solutions
have different assigned jobs. The solutions along the path from solution x to
solution y have decreasing values of HD to the target solution y.

In both strategies, there are several possible paths that connect one solution
to another. Instead of exploring all these paths, only the paths that generate so-
lutions which are nondominated by all the neighborhood are exploited. However,
there are still plenty of these paths. Thus a random aggregation of the objectives
is applied to select a single path1.

The set P of all nondominated solutions generated in PR undergo local search
described in Sect. 2.1. Furthermore, the set P and the nondominated solutions
evaluated in the local search update the set G.
1 Basseur et al. applied the same mechanism in [24].
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In summary, we tested four different ways of incorporating PR in PACO. The
first implementation combines the concept of LCS and the random selection of
the target solutions (PLCSR) and the second implementation combines LCS and
the non-random selection of the target solutions (PLCSN). The third method
uses HD and the random selection (PHDR) and the last method applies HD and
the non-random selection (PHDN).

3 Numerical Results

The proposed algorithms are tested using eight instances which we divided into
two groups, small and medium-size test instances. The small-size instances have
20 jobs while the medium-size instances have 50 jobs. The number of machines
are either 5, 10 or 20. These instances are taken from some Taillard benchmarks
[25] which were extended into bi-objective case in [26]. The performances of al-
gorithms are compared to three other metaheuristics which have been applied
to the same instances. These algorithms are the hybridization of a Genetic Al-
gorithm by a Memetic Algorithm (GA+MA) introduced in [27], an Adaptive
Genetic/Memetic Algorithm (AGMA) proposed in [28], and the Pareto Iterated
Local Search (PILS) described in [29,30]. One common characteristic of these
three algorithms is the presence of several neighborhood structures. GA+MA ap-
plied two mutation operators, AGMA had four mutation operators while PILS
used three neighborhood structures.

We performed all our methods on a personal computer with a Pentium 3.2 Ghz
processor, 1 Gb RAM, and the operation system Windows XP; the algorithms
were coded in C++ and compiled using Borland 5.5.1 compiler.

3.1 Evaluation Metrics

The traditional approach of assessing the performances of different algorithms for
solving bi-objective problems is by graphical visualization of their Pareto fronts.
However this approach is not effective when the graphs overlap each other. Hence
the use of quantitative measures has become the standard approach. Following
[31], this study considered two quantitative measures namely, the distance from
reference set and the coverage metric.

Metric 1. Czyzak and Jaszkiewicz [32] proposed the distance from reference
set (DRS). Suppose R is the reference set and A is an approximation set. Then
DRS takes the average distance from each reference point x ∈ R to its closest
neighbor in A. Hence its formula is given by:

DRS =
1
|R|

∑
y∈R

min
x∈A

{c(x, y)} (11)

where c(., .) is any distance in the objective space. In this study, we considered
the Tschebycheff metric given by:

c(x, y) = max
k

{0, 1
'k

· |fk(x) − fk(y)|} . (12)
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where 'k is the range of objective fk in the reference set. In the evaluation, the
reference set is defined as the set of all nondominated solutions extracted from
all the Pareto solutions found by all the methods.

Metric 2. The coverage metric C proposed by Zitzler and Thiele in [33] assigns
numbers to pairs of approximation sets, say A and B, by giving the fraction of
B that are covered by A. The formula for this metric is given by:

C(A,B) =
|{b ∈ B : ∃a ∈ A such that a ( b}|

|B| . (13)

where a ( b if a & b or a = b. If C(A,B) = 1 and C(B,A) < 1 then A is said to
be better than B and if C(A,B) = 1 and C(B,A) = 0 then A dominates B.

3.2 Analysis

Five runs with different random seeds were performed for each of the different
PACO variants and each test instance. For small instances with 5 machines, each
run of PACO is terminated after 300 generations have been performed and 400
generations for instances with 10 and 20 machines. For the medium instances,
PACO makes 600 generations. In order to have comparable run times, the four
PACO variants only perform 150 generations. The settings for the other para-
meters are: α = 1, β = 1, ρ = 0.05, τ0 = 1, τmin = 0.00001, number of ants =
20, q0 = 0.75.

Tables 1, 3 and 4 show the results of the DRS and C metric of the algorithms.
The test instance T N M n corresponds to Taillard’s benchmarks having N jobs
and M machines. The number n indicates the test instance number.

In Table 1, one may observe the following: First, incorporating path relinking
improves the performance of PACO; on average, the distances of the hybrid
algorithms from the reference sets are smaller compared to the distances of
PACO. Significant improvements are realized when one uses the concept of HD in
path relinking. On the other hand, although PACO may have better DRS values
in some test instances than that of PLCSN and PLCSR, the latter methods
perform much better in large instances (50 jobs with 10 and 20 machines).

Second, it may seem that PLCSN and PLCSR do not offer much big im-
provement for PACO but looking at the average computational speed of the
runs given in Table 2, it is clear that these algorithms converge more quickly. It
should be noted that for larger instances, PLCSN and PLCSR only need about
50% of the average runtime of PACO to generate the much improved results.
Perhaps increasing the number of generations of PLCSN and PLCSR for the
other instances will greatly outperform PACO in terms of DRS. In addition, it
is also worth noting that the results of PHDN, which are superior than that of
PACO, were generated at smaller running time than PACO.

Third, one may observe that AGMA is the best algorithm having zero DRS
in all instances and this may indicate that the solutions of AGMA coincide
with the reference set. Fourth, the simple implementation PACO is superior
than GA+MA and PILS in almost all small instances. PACO’s DRSs for these
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Table 1. Evaluation on metric DRS

Instance PACO PHDN PHDR PLCSN PLCSR GA+MA AGMA PILS

T 20 5 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0956 0.0000 0.0000
T 20 5 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0468 0.0000 0.0370
T 20 10 1 0.0061 0.0017 0.0065 0.0058 0.0077 0.0166 0.0000 0.0053
T 20 10 2 0.0148 0.0115 0.0129 0.0158 0.0158 0.0448 0.0000 0.0308
T 20 20 1 0.0044 0.0003 0.0028 0.0042 0.0032 0.0249 0.0000 0.0169
T 50 5 1 0.0861 0.0388 0.0254 0.1492 0.1556 0.0987 0.0000 0.0290
T 50 10 1 0.1088 0.0437 0.0386 0.0623 0.0584 0.0818 0.0000 0.0712
T 50 20 1 0.1098 0.0787 0.0504 0.0718 0.0732 0.7120 0.0000 0.0733

Average 0.0413 0.0218 0.0171 0.0387 0.0393 0.0601 0.0000 0.0330

instances are also not that far from the reference set as shown by its small DRS
values. But for a much better performances and for medium-size instances, one
may consider incorporating PR. For instance, PHDR outperforms both GA+MA
and PILS in all but one test instances (it has the same DRS value as PILS in
T 20 5 1).

Finally, the use of random target solution in path relinking seems more ben-
eficial in terms of DRS value and computational speed. This implementation
converges faster than when we select the target solution by following some rigid
rule like using the best solution of each objective found so far. The advantage of
setting random target solution is more prominent in path relinking that uses HD.

Table 2. Average running time in seconds

Instance PACO PHDN PHDR PLCSN PLCSR

T 20 5 1 119.7 107.5 92.4 69.2 66.6
T 20 5 2 114.5 88.0 98.1 66.3 66.2
T 20 10 1 333.3 331.5 275.8 222.7 206.5
T 20 10 2 319.2 331.5 265.9 182.8 183.2
T 20 20 1 671.6 709.2 599.5 425.6 468.4
T 50 5 1 12241.7 7755.2 6248.4 3814.9 3662.0
T 50 10 1 23792.5 31454.2 19566.2 10299.6 9772.7
T 50 20 1 46470.6 60204.9 40910.8 26091.8 21598.3

Tables 3 and 4 summarize the coverage metric between different algorithms
and they validate most of the findings of DRS. In Table 3, all of the nondominated
points generated by PACO in all medium size instances are dominated by PHDR.
PACO is also dominated by PHDN and PLCSN in the T 50 10 1 instance and by
PLCSN and PLCSR in the T 50 20 1 instance. The small row-values and high
column-values of PACO, especially in the medium size instances, also indicate
that using the PACO variants generate better results. Thus, this confirms the
advantage of incorporating PR in PACO when solving BOFSP for medium size
instances.

In Table 4, only PHDR is compared against the other metaheuristics to sim-
plify the comparison. PHDR is chosen to represent the PACO variants since
it performs relatively better than the others. This table shows that PHDR
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outperforms GA+MA and PILS in most cases. For example in the small in-
stances, PHDR covers at least 92% of PILS but PILS only covers at least 82% of
PHDR. For the medium instances, PILS performs better than PHDR in T 50 5 1
but PHDR is much better in T 50 10 1 and T 50 5 1 covering at least 80% of
PILS. Unlike GA+MA and PILS, PHDR is not dominated by AGMA in all
instances. GA+MA and PILS are dominated by AGMA in instances T 50 10 1
and T 50 5 1 respectively.

Table 3. Evaluation on Metric C

T 20 5 1 PACO PHDN PHDR PLCSN PLCSR

PACO - 1.000 1.0000 1.0000 1.0000
PHDN 1.0000 - 1.0000 1.0000 1.0000
PHDR 1.0000 1.0000 - 1.0000 1.0000
PLSCN 1.0000 1.0000 1.0000 - 1.0000
PLSCR 1.0000 1.0000 1.0000 1.0000 -

T 20 5 2 PACO PHDN PHDR PLCSN PLCSR

PACO - 1.000 1.0000 1.0000 1.0000
PLCSR 1.0000 - 1.0000 1.0000 1.0000
PLCSN 1.0000 1.0000 - 1.0000 1.0000
PHDR 1.0000 1.0000 1.0000 - 1.0000
PHDN 1.0000 1.0000 1.0000 1.0000 -

T 20 10 1 PACO PHDN PHDR PLCSN PLCSR

PACO - 0.9286 0.9231 0.9024 0.9211
PHDN 0.9750 - 0.8974 0.9024 0.9211
PHDR 0.9750 0.9286 - 0.9512 0.9737
PLCSN 0.9750 0.9524 0.9744 - 1.0000
PLCSR 0.9250 0.9048 0.9231 0.9268 -

T 20 10 2 PACO PHDN PHDR PLCSN PLCSR

PACO - 0.8966 0.9310 0.9643 0.9643
PHDN 0.9655 - 0.9655 1.0000 1.0000
PHDR 1.0000 0.9655 - 1.0000 1.0000
PLCSN 0.9655 0.9310 0.9310 - 1.0000
PLCSR 0.9655 0.9310 0.9310 1.0000 -

T 20 20 1 PACO PHDN PHDR PLCSN PLCSR

PACO - 0.8974 0.9500 0.9737 0.9500
PHDN 1.0000 - 1.0000 1.0000 1.0000
PHDR 1.0000 0.9487 - 1.0000 1.0000
PLCSN 0.9474 0.8718 0.9000 - 0.9000
PLCSR 0.9474 0.8974 0.9500 0.9474 -

T 50 5 1 PACO PHDN PHDR PLCSN PLCSR

PACO - 0.1000 0.0000 0.2857 0.1250
PHDN 0.9167 - 0.2000 0.2857 0.5000
PHDR 1.0000 0.9000 - 0.8571 1.0000
PLCSN 0.8333 0.5000 0.3000 - 0.3750
PLCSR 0.9167 0.6000 0.3000 0.5714 -

T 50 10 1 PACO PHDN PHDR PLCSN PLCSR

PACO - 0.0000 0.0000 0.0000 0.1282
PHDN 1.0000 - 0.4186 0.8276 0.6154
PHDR 1.0000 0.5625 - 0.8621 0.7179
PLCSN 1.0000 0.2188 0.1395 - 0.2308
PLCSR 0.9189 0.375 0.3023 0.7931 -

T 50 20 1 PACO PHDN PHDR PLCSN PLCSR

PACO - 0.0172 0.0000 0.0000 0.0000
PHDN 0.9800 - 0.0612 0.5000 0.2093
PHDR 1.0000 0.9483 - 0.8750 0.9070
PLCSN 1.0000 0.6724 0.1633 - 0.5349
PLCSR 1.0000 0.5517 0.1837 0.6667 -

4 Conclusion and Future Direction

In this study we have shown that PACO is a competitive method for solving bi-
objective flowshop scheduling problems; it is easy to implement and yielded good
results. In addition, one may greatly improve its performance by incorporating
path relinking mechanism in it. The different hybrid approaches generated better
results at a shorter computational time and yielded more significant improve-
ments in medium-size instances. Their performances are even better relative to
the performances of some recent state of the art metaheuristics. These hybrid
approaches are indeed very promising and further studies must be conducted in
order to exploit the potential of PACO and PR in solving the BOFSP. Hence
in the future, we will investigate other ways of incorporating the path relinking
mechanism. We believe that there is a big area for improvement in the hybridiza-
tion of PACO and PR and the methods we presented here are a good start in
developing a more efficient and robust algorithm.
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Table 4. Evaluation on Metric C

T 20 5 1 PHDR GA+MA AGMA PILS

PHDR - 1.0000 1.0000 1.0000
GA+MA 0.7500 - 0.7500 0.7500
AGMA 1.0000 1.0000 - 1.0000
PILS 1.0000 1.0000 1.0000 -

T 20 5 2 PHDR GA+MA AGMA PILS

PHDR - 0.6667 1.0000 1.0000
GA+MA 1.0000 - 0.6667 0.6000
AGMA 1.0000 1.0000 - 1.0000
PILS 0.8333 0.8571 0.8333 -

T 20 10 1 PHDR GA+MA AGMA PILS

PHDR - 1.0000 0.9286 0.9268
GA+MA 0.3846 - 0.3571 0.3659
AGMA 1.0000 1.0000 - 1.0000
PILS 0.9048 1.0000 0.9286 -

T 20 10 2 PHDR GA+MA AGMA PILS

PHDR - 1.0000 0.9355 1.0000
GA+MA 0.3448 - 0.3226 1.0000
AGMA 1.0000 1.0000 - 1.0000
PILS 0.8966 0.8387 0.8387 -

T 20 20 1 PHDR GA+MA AGMA PILS

PHDR - 1.0000 0.9250 0.9714
GA+MA 0.5000 - 0.5000 0.6000
AGMA 1.0000 1.0000 - 1.0000
PILS 0.8250 0.9000 0.7750 -

T 50 5 1 PHDR GA+MA AGMA PILS

PHDR - 1.0000 0.2000 0.3333
GA+MA 0.0000 - 0.0000 0.0000
AGMA 1.0000 1.0000 - 1.0000
PILS 0.8000 1.0000 0.5000 -

T 50 10 1 PHDR GA+MA AGMA PILS

PHDR - 0.3636 0.0333 0.9091
GA+MA 0.2790 - 0.0833 0.6364
AGMA 1.0000 1.0000 - 1.0000
PILS 0.0000 0.0000 0.0000 -

T 50 20 1 PHDR GA+MA AGMA PILS

PHDR - 0.8182 0.0111 0.8095
GA+MA 0.1429 - 0.0000 0.3968
AGMA 1.0000 1.0000 - 1.0000
PILS 0.2245 0.5682 0.0000 -

Acknowledgements. This research was supported in part by the Austrian
Exchange Service.

References

1. Lenstra, J., Kan, A., Brucker, P.: Complexity of machine scheduling problems.
Annals of Discrete Mathematics 1 (1977) 343–362

2. Du, J., Leung, J.: Minimizing total tardiness on one machine is np-hard. Mathe-
matics of operations research 15 (1990) 483–495

3. Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics - Part
B 26(1) (1996) 29–41

4. Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic. In Corne,
D., Dorigo, M., Glover, F., eds.: New Ideas in Optimization. McGraw-Hill, New
York (1999) 11–32

5. Blum, C.: Beam-ACO - hybridizing ant colony optimization with beam search: an
application to open shop scheduling. Computers & OR 32 (2005) 1565–1591

6. Doerner, K., Gronalt, M., Hartl, R.F., Reimann, M., Strauss, C., Stummer, M.:
Savingsants for the vehicle routing problem. In Cagnoni, S., et al., eds.: Proceedings
of Applications of Evolutionary Computing : EvoWorkshops 2002. Volume 2279 of
Lecture Notes in Computer Science. (2002) 11–20

7. Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-
constrained project scheduling. IEEE Transactions on Evolutionary Computation
6 (2002) 333–346
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Abstract. We have constructed a minimal cellular automaton model for
simulating traffic on preexisting ant trails. Uni- as well as bidirectional
trails are investigated and characteristic patterns in the distribution of
workers on the trail are identified. Some of these patterns have already
been observed empirically. They give rise to unusual flow characteris-
tics which are also discussed. The question of possible functions of the
observed traffic patterns and the resulting flow characteristics will be
treated for simplified biological scenarios.

1 Introduction

The use of cellular automaton models is well established in various fields. Appli-
cations reach from purely physical systems [1], like models of surface growth to
multi-agent systems like vehicular traffic [2,3,4]. The Nagel-Schreckenberg model
[2] and its extensions [3] have proved to be very useful tools for improving flow
e.g. by reducing the frequency of jams in vehicular traffic. Similar results also
exist in pedestrians dynamics [5,6].

In biology various traffic-like problems are known. On a microscopic scale,
namely in a living cell [7,8], the movement of motor proteins can be found.
On a larger scale the behaviour of social insects has attracted a lot of interest
[9,10,11,12]. Beside pure behavioural biology, colonies of social insects can be seen
as a multi-agent system, facing and solving various kinds of problems [11,12,13].
For that reason the social insect metaphor has already been employed with
great success in computer sciences [14,15]. Recently concepts like chemotaxis
[16], known from ants have been adopted for incorporating the mutual interac-
tion in models of pedestrians dynamics [6]. Implementing these interactions by
a ’virtual chemotaxis’ mechanism allows to reproduce the collective phenomena
observed empirically in the dynamics of large crowds. But also the investigation
of ants themselves employing computer simulations is of interest. This is done
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for various reasons. One is the rich physics displayed even by simple cellular au-
tomaton models [17,18]. From a biologists’ point of view, some mechanisms like
the very complex chemical communication system are difficult to access experi-
mentally [16,19]. Although the formation of trails can be reproduced quite well,
the organisation of traffic flow itself seems to be understood [13,20] less clearly.

Taking account of these aspects we have developed a minimal cellular automa-
ton model for traffic flow on preexisting uni- and bidirectional ant trails [21,22].
We will focus here on aspects like possible advantages of certain spatio-temporal
organisations of workers on the trail and the resulting flow characteristics. Com-
plementary aspects like non-equilibrium physics or application to pedestrian
dynamics are treated in [23,24,25].

2 The Model

We employ a one-dimensional cellular automaton model for bidirectional trails
which also includes the unidirectional case. In absence of counterflowing ants in
one direction the full bidirectional model reduces to the one for unidirectional
trails. So we first start constructing the simpler unidirectional model which will
finally be extended to the bidirectional case.

One important way of characterising a traffic-like system is the fundamental
diagram. As important properties like mutual blocking depend on the number of
agents in the system, average velocity V and flow F are plotted versus density �.
Although both are equivalent due to the hydrodynamic relation F = �V the uni-
as well as the bidirectional model will exhibit features, which can be discused
most easily using both descriptions. In addition we will make use of space-time
plots, showing the spatio-temporal distribution of ants on the trail.

Fig. 1. Illustration of the definitions for the uni- and bidirectional model: ants moving
to the right (�), ants moving to the left (�), pheromone marks (•). Although a natural
trail is two dimensional, movement itself takes places in one dimension. With respect to
reality the trail is mapped onto a one-dimensional lattice with L sites. The movement
of ants is incorporated by the stochastic hopping of N particles along the lattice. Java
applets can be found at www.thp.uni-koeln.de/ant-traffic.

2.1 Unidirectional Case

The model for the unidirectional case [21] can be seen as an extension of the so-
called totally asymmetric simple exclusion process (TASEP) [26,3] a well studied
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stochastic model for non-equilibrium physics. So we start constructing the uni-
directional model by defining the TASEP. Adding certain extensions will finally
lead to the unidirectional ant trail model. But the TASEP will still be recovered
for an appropriate choice of parameters.

TASEP Regime. The TASEP is a model well-known in computational and
non-equilibrium physics [26,3]. Particles hop in one fixed direction from one
lattice-site i to the next one i+1 (see Fig. 1 left). Each site can be occupied only
by one particle (exclusion principle). Also time evolution is discrete (Δt → 0 for
L → ∞) . In each update step, one site is chosen at random.

If site i is occupied and i+1 is empty, hopping takes places with probability q.
If site i+1 is blocked, i.e. occupied by another particle, nothing happens (exclu-
sion principle) and another site is chosen randomly. A particle leaving site L will
hop to site 1. So effectively hopping takes places on a ring. More complicated
treatments of the lattice boundaries are possible and can have a crucial impact
on the physics of the system. But the main effects in our models are quite stable
against a change of boundary conditions [18]. Also the definition of the update
procedure itself can have a strong influence. For modelling vehicular traffic a so
called time-parallel update is widely used which performs a synchronous update
of all lattice sites [3]. As only the occupation of the lattice at the moment of up-
dating is used, a synchronous update incorporates time latencies of the drivers.
But in case of ants the perception range is limited to their immediate environ-
ment. So we make use of the random-sequential update, described above. But
unlike for some models of vehicular traffic [2,3] the generic effects of the model
do not depend on the choice of a particular update procedure.

In case of the TASEP with random sequential dynamics, flow F and average
velocity V as a function of density � are given by:

V (�) = q(1 − �), F (�) = q�(1 − �). (1)

Mutual blocking is the only mechanism of interaction, leading to a strictly
monotonically decrease of average velocity with increasing density (see Fig. 2
left). Flux and average velocity are directly linked to the spatio-temporal dis-
tribution of particles, ants in our case. The density � gives the probability of
finding a particle at a site i, whereas 1 − � gives the probability of finding a
particular site being unoccupied. Neglecting correlations, the average velocity
is just the product of the hopping probability and the probability of finding
site i + 1 being unoccupied. The corresponding distribution of particles is obvi-
ously homogenous on time-average (see Fig. 3 left) as particles are distributed
randomly at any instance of time.

Cluster Regime. The model for unidirectional ant-trails [21] is constructed as
an extension of the TASEP. This is done in order to incorporate the attractive
impact of pheromone marks which are one of the most important forms of com-
munication in ant colonies [16,19]. Now each lattice site can also be occupied by
a pheromone-mark and/or one ant (see Fig. 1 left). If only a pheromone mark
but no ant is present at site i + 1, an ant at site i will hop to site i + 1 with
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Fig. 2. Fundamental diagrams for the unidirectional model: Q = 0.9, q = 0.2 and
f = 0(◦), 0.0002(�), 0.0008(�), 0.002(�), 0.008(�), 0.02 (×), 0.08(�), 0.2(∗), 1(•). In
case of f = 1 and f = 0 the average velocity V (�) and flux F (�) are exactly known
from the TASEP. At low to intermediate densities, average velocity stays constant for
a suitable choice of evaporation probability f .

probability Q. If neither an ant nor a mark are present, hopping will take place
with probability q < Q. Also the evaporation of pheromones is incorporated. If
one site is marked but no ant is present, this mark will be removed (evaporated)
with probability f . If an ant is present and the site is chosen for updating, the
mark will not evaporate, reflecting the reinforcement of the trail by the ants.

In the case f = 0 (f = 1) pheromones will never (immediately) evaporate.
The TASEP is recovered with hopping probability Q (q) (see Fig. 2). But more
interesting properties arise in case of f �= 0, 1. The most surprising feature
is the non-monotonic dependence of the average velocity on density for small
evaporation rates f (see Fig. 2 left).

At low to intermediate densities, the average velocity stays constant. Beyond
a certain threshold value a sharp increase of velocity can be seen. In the regime
of high densities, the monotonic decrease known from the TASEP is found.
Both regimes are a generic effect of the incorporation of pheromone marks. Each
particle is followed by a trace of marks. A succeeding ant perceiving this trace
will hop with probability Q > q. If the preceding ant sees no pheromone mark,
it will hop with probability q < Q. Finally the faster ants will catch up with the
slower one, forming a moving cluster (see Fig. 3 right). Similar results are known
from systems with particle-wise [27] defects where each particle j has its own
individual hopping probability qj . Corresponding to the existence of clusters,
the average velocity stays constant v = q. At very low evaporation rates or at
high densities (small average distance), all ants perceive pheromone marks. So on
average their hopping probabilities reaches the same value Q, leading to TASEP-
like features. Also the corresponding distribution of ants becomes homogeneous
(see Fig. 3 left).

These rules reflect not only similarities, but also the differences between ant
trails and vehicular traffic. One is the lack of some kind of velocity memory. In
our model, ants reach their walking speed within one single update step. This
is similar to the motion of pedestrians where the walking speed is also reached
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Fig. 3. Space-time plots for the unidirectional model: Q = 0.9, q = 0.2, f = 0.002,
� = 0.2. On the left the TASEP case (p = 0.9) is shown. Beside fluctuations, particles
are distributed randomly. The plot on the right shows the stationary state of the cluster
case in the unidirectional ant trail model.

within a time less than 1 sec. In vehicular traffic cars cannot accelerate instan-
taneously to the maximum velocity and so velocity is only increased gradually.
Furthermore the behaviour of ants is much more homogeneous [22] than that
of drivers on a highway, where also a mixture of different vehicles with differ-
ent maximum speeds, acceleration capabilities etc. influences the behaviour. As
a consequence of the speed homogeneity, overtaking is rarely observed on ant
trails and has therefore not been incorporated into our model.

The stochasticity in the model has mainly two reasons. First many influencing
factors are not known or difficult to include directly since the model would
become too complicated. Thus they are included in a statistical sense through
probabilities for a certain behaviour. The second reason lies in the behaviour
of the ants themselves. It seems as if they possess some intrinsic stochasticity
depending on the evolution of the particular species [16]. This is also widely used
in applications [14,15,20]. In vehicular traffic stochasticity is used to incorporate
fluctuations in the driver’s behaviour which can lead to spontaneously formed
phantom jams [2].

2.2 Bidirectional Case

For extending the unidirectional model to the bidirectional case several models
have been proposed [25,28,29]. As one common requirement they should reduce
to the unidirectional model in case of vanishing counterflow. The extension dis-
cussed here is achieved just by adding one lattice for ants moving in the opposite
direction (see Fig. 1 right). Both lattices for ants are treated with the same set
of rules. For simplicity also the number of ants is the same in both directions.
Already in this special case, the generic properties of this model can be observed.
Ants in both directions share the same lattice for pheromones. Although this al-
ready induces one mechanism of coupling (interaction) a more direct one is also
used. Ants facing each other in opposite directions hop with probability K (see
Fig. 1 right). Overall one deals with three hopping probabilities depending on
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Fig. 4. Fundamental diagrams for the unidirectional model: Q = 0.9, q = 0.2 and
f = 0(◦), 0.0002(�), 0.0008(�), 0.002(�), 0.008(�), 0.02 (×), 0.08(�), 0.2(∗), 1(•). The
average velocity shows the same non-monotonicity already known from the unidirec-
tional model. The main property of the bidirectional model can only be observed in
flux. For intermediate densities the flux is nearly independent of the density � and the
evaporation rate f .

the occupation of the nearest neighboring site in hopping direction. With respect
to reality workers facing each other in opposite directions have to slow down due
to information exchange or just in order to avoid collisions [10,13]. So we choose
hopping probabilities satisfying K < q < Q. Overall this is a crucial difference
to most models of vehicular traffic which usually neglect the coupling of lanes in
different directions [3]. One related example is the organisation of traffic flow at
bottlenecks e.g. inside a nest [12]. In that case traffic flow is organised such that
the number of encounters inside the bottleneck, namely a narrow corridor, is
reduced. In our model the main effect originates from head-on encounters. Also
some similarities to models of pedestrians dynamics can be drawn [3,5]. Under
crowded conditions separated lanes for each direction are formed dynamically.
These lanes are stabilised by incorporating the desire of pedestrians to reduce
the number of encounters with others in the counterflow.

Cluster Regime. At low densities the average velocity roughly shows the same
behaviour already known from the unidirectional case (see Fig. 5 left), including
the anomalous density dependence (see Fig. 4 left). As the average lifetime of the
pheromone-marks is determined by the mean distance of ants in both directions,
this regime only exists at very low densities. With increasing density the lifetime
of the marks increases and they obviously loose their function as they are present
at any site.

Plateau Regime. The generic property of this model is found in flux and
cannot be observed directly in the average velocity. For all values of f , the flux
roughly stays constant over certain density regimes depending on f (see Fig. 4
right). Due to the behaviour of the average velocity one observes a shift of the
beginning of the plateau in flux to lower densities with decreasing f . But at
intermediate to high densities, there is obviously no dependence on f . Also the
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Fig. 5. Space-time plots for the bidirectional model: Q = 0.9, q = 0.2, K = 0.1,
f = 0.002. The left plot shows the formation of small moving clusters for � = 0.03.
With increasing density this regime vanishes and a large localised cluster appeares
(plotted for � = 0.2).

value of flux seems to be nearly independent of � in that regime. It obviously
stays constant. Unlike in the unidirectional model this effect is not caused by the
pheromone marks. It has its origin in the mutual hindrance by counterflowing
ants. Similar effects are known from systems with lattice-wise disorder [30] where
the hopping probabilities depend on the position. In our case we find several
localised clusters of ants on the lattices in both directions (see Fig. 5 right).
They form some kind of dynamically induced defect, as ants facing this clusters
move with reduced hopping probability K.

3 Summary and Discussions

We have introduced minimal cellular automaton models for traffic on uni- and
bidirectional ant trails. The stationary state in both models was characterised
by the spatio-temporal distribution of ants on the trail. We have shown that this
distribution is linked to the fundamental diagram, describing the flow properties
of the system. The predictions of both descriptions can be tested experimentally
[22]. First observations for one particular species of ants seem to confirm at least
the spatio-temporal patterns (see Fig. 6), produced by the models qualitatively.
On a quantitative level, measuring time headways, velocity distributions and
also fundamental diagrams will be the next step [10,22]. In general, clustering
phenomena seem to be a common feature in ant colonies [16].

Overall the question regarding an possible advantage of organising traffic in
the discussed way arises. Both models produce moving clusters for an appropriate
choice of parameters. In the unidirectional model this happens for a relatively
wide density regime. The existence of these clusters corresponds to the regime of
constant average velocity. In the TASEP the average velocity decreases strictly
monotonous with increasing density as ants are distributed homogeneously along
the trail. So moving in clusters enables the ants the keep on moving at a higher
velocity in comparison to a homogenous distribution in TASEP. This is obviously
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Fig. 6. These photographs show a bidirectional trail of weaver ants (Oecophylla
smaragdina) on a cable at the Centre for Ecological Sciences of the Indian Institute
of Science in Bangalore. In absence of counterflow, workers are moving in clusters
along the cable. In presence of counterflow, head-on encounters are used to exchange
information.

achieved by reducing mutual blocking. One might argue that the fundamental
diagram shows a maximum value of average velocity. This maximum is attained
at the point of sharp increase from the cluster- to the homogenous distribution.
Nevertheless a maximum of the average velocity at this point would be quite
unstable. Even small fluctuations in density would lead to large fluctuations in
the average velocity. In comparison, the cluster-regime is quite stable against
fluctuations in density. With respect to natural systems, clustering leads to an
decrease of travel time. Unidirectional trails occur for example at the beginning
or the end of a swarm raid [16,9,10]. At the beginning a food source has to be
occupied as fast as possible. Like at the end of the raid, the density of workers
on the trail is quite low. Thus an minimisation of travel time also minimises the
time of being extremely vulnerable.

In the bidirectional case, moving clusters only occur at very low densities.
But the underlaying mechanism is still the same as in the unidirectional model.
At intermediate to high densities the main feature namely the localised cluster,
leading to a constant value of flow emerges. Although we have restricted our
investigations to the case of equal numbers of ants in both directions, the main
effect is not changed. In a natural system one might encounter bidirectional trails
during the exploitation of a food source [16,9,10]. In this situation flow is the
crucial quantity. The outbound flow determines the number of ants, travelling to
the food source, whereas inbound flow is related to the amount of food carried
back to the nest. Strongly different values of inbound and outbound flow would
lead to a too lage or too small number of ants at the source. So a constant flow
which is roughly independent of density fluctuations also ensures a constant
number of workers at a particular destination.
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Abstract. In this paper, a continuous Particle Swarm Optimization
(PSO) algorithm is presented for the Uncapacitated Facility Location
(UFL) problem. In order to improve the solution quality a local search
is embedded to the PSO algorithm. It is applied to several benchmark
suites collected from OR-library. The results are presented and com-
pared to the results of two recent metaheuristic approaches, namely Ge-
netic Algorithm(GA) and Evolutionary Simulated Annealing (ESA). It
is concluded that the PSO algorithm is better than the compared meth-
ods and generates more robust results.

1 Introduction

The Particle Swarm Optimization (PSO) is one of the recent metaheuristics
invented by Eberhart and Kennedy [1] based on the metaphor of social inter-
action and communication such as bird flocking and fish schooling. In PSO,
the potential solutions, so-called particles, move around in a multi-dimensional
search space with a velocity, which is constantly updated by the particle’s own
experience and the experience of the particle’s neighbors or the experience of
the whole swarm. PSO has been successfully applied to a wide range of appli-
cations such as function optimization, neural network training, task assignment,
and scheduling problems.

Location problems are one of the most widely studied problems in NP-hard [2]
combinatorial optimization problems thus there is a very rich literature in opera-
tions research (OR)[3]. In addition, the bank account location problem, network
design, vehicle routing, distributed data and communication networks, computer
network design, cluster analysis, machine scheduling, economic lot sizing, port-
folio management are some instances without facilities to locate problems that
is modelled as an UFL problem in the literature.

UFL problems have been studied and examined extensively by various at-
tempts and approaches. All important approaches relevant to UFL problems
can be classified into two main categories: exact and metaheuristics based algo-
rithms. There is a variety of exact algorithms to solve the UFL problem, such
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as branch and bound [4], linear programming, Lagrangean relaxation [5], dual
approach (DUALLOC) of Erlenkotter [6] and the primal-dual approaches of Körkel
[7]. Although DUALLOC is an exact algorithm, it can also be used as a heuristic
to find good solutions. It is obvious that since the UFL problem is NP-hard [2]
exact algorithms may not be able to solve large practical problems efficiently.
There are several studies to solve UFL problem with metaheuristics. Some of
recent studies are tabu search [8,9], genetic algorithms [10], neighborhood search
[11], and simulated annealing [12].

In an UFL problem there are a number of sites, n and a number of customers,
m. Each site has a fixed cost fci. There is a transport cost from each site to
each customer cij . There is no limit of capacity for any candidate site and the
whole demand of each customer has to be assigned to one site. We are asked to
find the number of sites to be established and specify those sites such that the
total cost will be minimized(1). The mathematical formulation of UFL can be
stated as follows [2]:

Z = min

⎛⎝ m∑
j=1

n∑
i=1

cij .xij +
n∑

i=1

fci.yi

⎞⎠ . (1)

subject to
n∑

i=1

xij = 1 . (2)

0 ≤ xij ≤ yi ∈ {0; 1} . (3)

where
i = 1, ..., n; j = 1, ...,m;

xij : the quantity supplied from facility i to customer j;

yi : whether facility i is established (yi = 1) or not (yi = 0).

Constraint (2) makes sure that all demands have been met by the open sites,
and (3) is to keep integrity. Since it is assumed that there is no capacity limit
for any facility, the demand size of each customer is ignored, and therefore (2)
established without considering demand variable.

The organization of this paper is as follows. Section 2 introduces the proposed
PSO algorithm for UFL together with the details about local search procedure.
In Section 3 the experimental results are provided and Section 4 presents the
conclusions driven.

2 PSO Algorithm for UFL

2.1 A Pure PSO Algorithm

The PSO algorithm proposed here for the UFL problems considers each particle
based on three key vectors; position (Xi), velocity (Vi), and open facility (Yi).
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Xi = [xi1, xi2, xi3, , xin] denotes the ith position vector in the swarm, where
xik is the position value of the ith particle with respect to the kth dimension
(k = 1, 2, 3, , n). Vi = [vi1, vi2, vi3, ..., vin] denotes the ith velocity vector in the
swarm, where vik is the velocity value of the ith particle with respect to the
kth dimension. Yi = [yi1, yi2, yi3...yin] represents the opening or closing facilities
identified based on the position vector(Xi), where yik represents opening or
closing the kth facility of the ith particle. For an n-facility problem, each particle
contains n number of dimensions.

Initially, the position(xij) and velocity(vij) vectors are generated randomly
and uniformly as continuous sets of values between (-10.0,+10.0) and (-4.0,+4.0)
respectively that is consistent with the literature[13]. The position vector Xi =
[xi1, xi2, xi3, ..., xin] corresponds to the continuous position values for n facilities,
but it does not represent a candidate solution to calculate a total cost. In order
to create a candidate solution, a particle, the position vector is converted to a
binary variables, Yi ← Xi, which is also a key element of a particle. In other
words, a continuous set is converted to a discrete set for the purpose of creating a
candidate solution, particle. The fitness of the ith particle is calculated by using
open facility vector (Yi). For simplicity, fi (Yi ← Xi) is from now on be denoted
with fi.

In order to ascertain how to derive an open facility vector from position vector,
an instance of 5-facility problem is illustrated in Table 1. Position values are
converted to binary variables using following formula:

yi = �|ximod2| . (4)

In equation (4) a position value is first divided by 2 and then the absolute value of
the remainder is floored; and the obtained integer number is taken as an element
of the open facility vector. For example, fifth element of the open facility vector,
y5, can be found as follows: �| − 5.45mod2| = �| − 1.45| = �1.45 = 1 .

Table 1. An illustration of deriving open facility vector from position vector for a
5-facility to 6-customer problem

Particle Dimension(k)
ith Particle Vectors 1 2 3 4 5
Position Vector(Xi) 1.8 3.01 -0.99 0.72 -5.45
Velocity Vector(Vi) -0.52 2.06 3.56 2.45 -1.44
Open Facility Vector (Yi) 1 1 0 0 1

For each particle in the swarm, a personal best, Pi = [pi1, pi2, pi3, ..., pin], is de-
fined, whereby pik denotes the position value of the ith personal best with respect
to the kth dimension. The personal bests are determined just after generating Yi

vectors corresponding to their fitness values. In every generation,t, the personal
best of each particle is updated if a better fitness value is obtained. Regarding
the objective function, fi (Yi ← Xi), the fitness value for the personal best of the
ith particle, Pi , is denoted by fpb

i . The personal best vector is initialized with
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position vector (Pi = Xi) at the beginning. Where Pi = [pi1, pi2, pi3, ..., pin] is
the position vector and the fitness values of the personal bests are equal to the
fitness of positions,fpb

i = fi .
Then, the best particle with respect to fitness value in the whole swarm is

selected with the name global best and denoted as Gi = [g1, g2, g3, ..., gn]. The
global best, fg = f (Y ← G), can be obtained as the best of personal bests over
the whole swarm, fg = min{fpb

i }, with its corresponding position vector, Xg,
which is to be used for G = Xg, where G = [g1 = xg1, g2 = xg2, g3 = xg3, , gn =
xgn] and Yg = [yg1, yg2, yg3, ..., ygn] denotes the Yi vector of the global best found.

Afterwards, the velocity of each particle is updated based on its personal best
and the global best in the following way(5):

v
(t+1)
ik =

(
w.v

(t)
ik + c1r1

(
p
(t)
ik − x

(t)
ik

)
+ c2r2

(
g
(t)
k − x

(t)
ik

))
. (5)

where, w is the inertia weight to control the impact of the previous velocity
on the current one. In addition, r1 and r2 are random numbers between [0,1]
and c1 and c2 are the learning factors, which are also called social and cognitive
parameters respectively. The next step is to update the positions with (6).

x
(t+1)
ik = x

(t)
ik + v

(t+1)
ik . (6)

After getting position values updated for all particles, the corresponding open
facility vectors are determined with their fitness values in order to start a new
iteration if the predetermined stopping criterion is not satisfied. In this study,
we apply the gbest model of Kennedy and Eberhart [14], which is elaborated in
the pseudo code given below.

Begin
Initialize particles positions
For each particle

Find open facility vector (4)
Evaluate(1)
Do{

Find the personal best and the global best
Update velocity(5) and position(6) vectors
Update open facility vector (4)
Evaluate(1)
Apply local search(in (PSOLS))

}While (Termination)
End

Fig. 1. Pseudo code of PSO algorithm for UFL problem

2.2 PSO with Local Search

Apparently, PSO conducts such a rough search that it produces premature re-
sults, which do not offer satisfactory solutions. For this purpose, it is inevitable
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to embed a local search algorithm into PSO so as to produce more satisfactory
solutions. In this study, we have employed local search to neighbors of the global
best position vector. For the UFL problem, flip operator is employed as a neigh-
borhood structure. Flip operator can be defined as picking one position value of
the global best randomly, and then changing its value with using following:

gi =
{

0 ≤ ρ ≤ 1 , gi + 1
0 ≤ ρ ≤ 1 , gi − 1

Where ρ is a uniformly generated number between 0 and 1. This function is used
for opening a new facility or closing an open one. The local search algorithm ap-
plied in this study is sketched in Figure 2. The global best found at the end of
each iteration of PSO is adopted as the initial solution by local search algorithm.
In order not to loss the best found and to diversify the solution, the global best
is randomly modified in which two facilities are flipped based on both random
parameters generated, η and κ. Then, flip operator is applied as long as it gets
better solution. The final produced one is evaluated and replaced with the old
global best if it is better than the initial one.

Begin
Set global best position vector (Yg) to s0
Modify s0 based on η, κ and set to s
Set 0 to loop
Apply Flip to s and get s1

if f(s1) ≤ f(s)
Replace s with s1

else loop=loop+1
Until (loop < n )
if f(s) ≤ f(s0)

Replace Yg with s
End.

Fig. 2. Pseudo code for local search

3 Experimental Results

This experimental study has been completed in two stages; PSO and PSOLS .
Experimental results provided in this section is carried out with two algorithms
over 15 benchmark problems that are taken from the OR Library [15], a collection
of benchmarks for OR studies. The benchmarks are introduced in Table 2 with
their sizes and the optimum values. Although the optimum values are known, it
is really hard to hit the optima in every attempt of optimization. Since the main
idea is to test the performance of PSO algorithm with UFL benchmark, the
results are provided in Table 2 with regard to solution quality indexes: Average
Relative Percent Error (ARPE) which is as defined in (7), Hit to Optimum Rate
(HR) and Computational Processing Time(CPU).
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ARPE =
R∑

i=1

(
(Hi − U) × 100

Ui

)
/R (7)

where Hi denotes the ith replication solution value whereas U is the optimal
value provided in literature and R is the number of replications. HR provides

Table 2. Experimental results gained with PSO and PSOLS

PSO PSOLS

Problem Size Optimum ARPE HR CPU ARPE HR CPU

Cap71 16 × 50 932615.75 0.05 0.87 0.12 0.00 1.00 0.01
Cap72 16 × 50 977799.40 0.07 0.80 0.16 0.00 1.00 0.01
Cap73 16 × 50 1010641.45 0.06 0.63 0.27 0.00 1.00 0.01
Cap74 16 × 50 1034976.98 0.07 0.73 0.21 0.00 1.00 0.01
Cap101 25 × 50 796648.44 0.14 0.53 0.67 0.00 1.00 0.08
Cap102 25 × 50 854704.20 0.15 0.40 0.85 0.00 1.00 0.02
Cap103 25 × 50 893782.11 0.16 0.20 1.08 0.00 1.00 0.07
Cap104 25 × 50 928941.75 0.18 0.70 0.47 0.00 1.00 0.02
Cap131 50 × 50 793439.56 0.75 0.07 4.26 0.00 1.00 0.57
Cap132 50 × 50 851495.33 0.78 0.00 4.56 0.00 1.00 0.18
Cap133 50 × 50 893076.71 0.73 0.00 4.58 0.00 1.00 0.42
Cap134 50 × 50 928941.75 0.89 0.10 4.15 0.00 1.00 0.09
CapA 100 × 1000 17156454.48 22.01 0.00 13.64 0.00 1.00 3.03
CapB 100 × 1000 12979071.58 10.75 0.00 16.58 0.00 1.00 5.18
CapC 100 × 1000 11505594.33 9.72 0.00 24.18 0.02 0.50 8.43

the ratio between the number of runs yielded the optimum and the total numbers
of experimental trials. The higher HR the better quality of solution, while the
lower ARPE the better quality. Obviously, spent CPU for both algorithms
are obtained when the best value is got over 1000 iterations for PSO and 250
iterations for PSOLS . All algorithms and other related software were coded in
Borland C++ Builder6 and run on an Intel Pentium IV 2.6 GHz PC with
256MB memory. The parameters used for the PSO algorithm are as follows:
The size of the population set to the number of facilities, the social and cognitive
parameters were taken as c1 = c2 = 2 consistent with the literature[13]. Inertia
weight, w, is taken as a random number between 0.5 and 1. For every benchmark
suite both algorithms are conducted for 30 replications.

The performance of PSO does not look that impressive as the results produced
within the range of time over 1000 iterations. The PSO without local search
found 10 optimal solution whereas the PSO with local search algorithm found
15 among 15 benchmark problems. The ARPE index for PSO is very high for
CapA, CapB and CapC benchmarks and none of the attempts hit the optimum
value. It may be possible to improve the quality of solutions by carrying on
with PSO for further number of iterations, but, then the main idea and useful
motivation of employing the heuristics, getting better quality within shorter
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time, will be lost. This fact imposed that it is essential to empower PSOLS

algorithm to mature the proposed PSO.
The performance of PSOLS algorithm looks very impressive compared to

PSO algorithm with respect to all three indexes of solution quality. HR is 1.00
which means 100% of the runs yield with optimum for all benchmark except
CapC. The experimental study is carried out as a comparative work with a GA

Table 3. Summary of results gained from different algorithms for comparison

Deviation from Optimum Average CPU
Problem GA ESA PSOLS GA ESA PSOLS

Cap71 0.00 0.00 0.00 0.287 0.041 0.010
Cap72 0.00 0.00 0.00 0.322 0.028 0.010
Cap73 0.00033 0.00 0.00 0.773 0.031 0.010
Cap74 0.00 0.00 0.00 0.200 0.018 0.010
Cap101 0.00020 0.00 0.00 0.801 0.256 0.080
Cap102 0.00 0.00 0.00 0.896 0.098 0.020
Cap103 0.00015 0.00 0.00 1.371 0.119 0.070
Cap104 0.00 0.00 0.00 0.514 0.026 0.020
Cap131 0.00065 0.00008 0.00 6.663 2.506 0.570
Cap132 0.00 0.00 0.00 5.274 0.446 0.180
Cap133 0.00037 0.00002 0.00 7.189 0.443 0.420
Cap134 0.00 0.00 0.00 2.573 0.079 0.090
CapA 0.00 0.00 0.00 184.422 17.930 3.030
CapB 0.00172 0.00070 0.00 510.445 91.937 5.180
CapC 0.00131 0.00119 0.00 591.516 131.345 8.430

introduced by Jaramillo et al. [10] and a ESA proposed by Aydin and Fogarty
[12].The results of the first two approaches and PSOLS are summarized in Table
3. The performance of PSOLS algorithm looks more impressive compared to
the both GA and ESA in both two indexes. Especially, in respect of CPU time
PSOLS much more robust than GA. Comparing with ESA, especially for CapA,
CapB and CapC ESA consumes more CPU time than PSOLS algorithm. In
conclusion, we can say that PSOLS algorithm is more robust than not only pure
PSO algorithm but also both GA and ESA.

4 Conclusion

In this paper, a PSO and a PSOLS algorithm applied to solve UFL problems.
The algorithm has been tested on several benchmark problem instances and op-
timal result are obtained in a reasonable computing time. The results of PSOLS

are compared with the results of two recent metaheuristic approaches, namely
Genetic Algorithm and Evolutionary Simulated Annealing. It is concluded that
the PSOLS algorithm is better than the compared methods and generating more
robust results. In addition, to the best of our knowledge, this is the first appli-
cation of PSO algorithm reported for the UFL in the literature.
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Abstract. This paper proposes a direct application of Ant Colony Op-
timization to the function optimization problem in continuous domain.
In the proposed algorithm, artificial ants construct solutions by selecting
values for each variable randomly biased by a specific variable-related
normal distribution, of which the mean and deviation values are repre-
sented by pheromone modified by ants according to the previous search
experience. Some methods to avoid premature convergence, such as local
search in different neighborhood structure, pheromone re-initialization
and different solutions for pheromone intensification are incorporated
into the proposed algorithm. Experimental setting of the parameters are
presented, and the experimental results show the potential of the pro-
posed algorithm in dealing with the function optimization problem of
different characteristics.

1 Introduction

Ant Colony Optimization (ACO) is a stochastic meta-heuristic for solutions to
combinatorial optimization problems. Although ACO has been proved to be one
of the best meta-heuristics in some combinatorial optimization problems [1,2],
the application to the function optimization problem appears a little difficult,
since the pheromone laying method is not straightforward, specially in the con-
tinuous domain. There have been several ant-based algorithms proposed for the
function optimization problem, they are CACO [3,4,5,6], API [7], CIAC [8,9],
the extended ACO [10], and BAS [11].

This paper proposes DACO, a Direct application of ACO for tackling the
function optimization problem in continuous domain. DACO is motivated and
developed from Socha [10], specially by the idea of using the normal distribution.
Different from other ACO applications to the function optimization problems,
pheromone in DACO are directly associated to the mean and deviation value of a
specific normal distribution for every variable. Artificial ants construct solutions
by generating stochastically the value of every variable according to the nor-
mal distribution. Experimental results over various benchmark problems show
the potential of DACO for solving function optimization problems of different
characteristics.

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 324–331, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 ACO in Continuous Domain

2.1 Solution Construction

In DACO, a number of artificial ants are managed in searching the continuous
domain of the problem instance at each iteration. Each artificial ant constructs
a solution x = [x1, · · · , xn] by generating a real number for each variable xi

stochastically decided by a special normal distribution N(μi, σ
2
i ), of which the

characteristics are modified by the ants during iterations in a form of pheromone
maintenance procedure.

DACO incorporates a number of n normal distributions, with each normal
distribution N(μi, σ

2
i ), i ∈ {1, · · · , n} associated to each variable xi, where n is

the number of variables in the function optimization problem. And two kinds of
pheromone are incorporated: one is associated to μ = [μ1, · · · , μn], the other is
associated to σ = [σ1, · · · , σn]. The amount of pheromone associated with μ and
σ directly represent the value of μ and σ respectively. In the following, we will
use the term μ and σ as the pheromone representation as well.

The solutions generated according to the normal distribution are checked and
modified to fit into the constraint range:

xi =

⎧⎨⎩ai xi < ai

xi ai ≤ xi ≤ bi

bi xi > bi

(1)

where bi and ai are the top and lower limit of variable xi.

2.2 Pheromone Update

Initially, pheromone are set as μi(0) = ai+rand(i)(bi−ai), and σi(0) = (bi−ai)/2
for i = 1, · · · , n, where rand(i) is a randomly generated number with an even
distribution in the range of [0, 1].

After all the ants have finished their solution construction, the pheromone
evaporation phase is performed first, in which all the pheromone evaporate:

μ(t) ← (1 − ρ)μ(t − 1)
σ(t) ← (1 − ρ)σ(t − 1) (2)

where ρ ∈ [0, 1] is the pheromone evaporation parameter and t is the iteration
number.

Then, the pheromone intensification procedure is performed as:

μ(t) ← μ(t) + ρx
σ(t) ← σ(t) + ρ|x − μ(t − 1)| (3)

where x = [x1, · · · , xn] is the solution used for pheromone intensification, which
is normally the global best solution Sgb found by the previous search.
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3 Methods to Avoid Premature Convergence

Local Search. Local search has been testified to be of great improvement in
ACO metaheuristic [1,2], the result of a local search is often a better solution
found in the neighborhood of the current solution, where the structure of the
neighborhood is specially designed. In DACO to the continuous function opti-
mization problem, a simple local search is designed, in which a random bidirec-
tional movement is performed one by one for every variable. The local search for
every variable xi contains two phases: the first phase increase xi with a random
distance di, and continues until a worse solution is found or the constraint limi-
tation are violated. The second phase reverse the process by decrease xi with a
random distance di. The random distance di moved at every step is biased by σi:

di = rand() ∗ σi (4)

The local search process is performed to the iteration best solution Sib and
the global best solution Sgb during every iteration cycle.

Pheromone Re-initialization. The main idea is to re-initialize all the phero-
mone once the algorithm gets near to premature convergence. In DACO, a con-
vergence factor, cf , is defined to monitor the status of premature convergence:

cf =

∑n
i=1

2σi

bi−ai

n
(5)

Initially, since σi is set as σi = (bi −ai)/2, thus that cf = 1; when the algorithm
gets into some local optima, σ will be decreased to be close to 0, such that
cf → 0. According to the definition of cf , we can see that as the algorithm gets
near to a local optima, cf changes from 1 to 0. We can set a threshold cfr as a
trigger for the re-initialization: once cf ≤ cfr, the algorithm is considered to be
in some state of premature convergence, then a re-initialization procedure will
be performed, in which the pheromone μ is set equal to Sgb, σi is set to the initial
value (bi − ai)/2, followed directly by a pheromone intensification phase using
all the previous re-initialized best solutions Srbs as a weighted combination for
pheromone intensification:

μ ← μ + ρ
nr∑

j=1
wjS

rb(j)

σ ← σ + ρ
nr∑

j=1
wj |Srb(j) − Sgb|

(6)

where nr is the number of previous Srb, wj is the weight for the jth Srb, which
is calculated according to the fitness value of every Srb:

wj =
f(Srb(j))∑nr

l=1 f(Srb(l))
(7)
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Using Different Solutions for Pheromone Intensification. Using different
solution for pheromone intensification is another method for diversification. We
use the method introduced by Blum and Dorigo [12], where different combination
of the iteration best solution Sib, re-initialized best solution Srb and global
best solution Sgb are selected for the pheromone intensification according to
the current status of convergence, that is, a weighted combination of solutions
is selected depending on the value of cf . The details of the selecting strategy is
described in Tab.1, where wib, wrb and wgb are the weights for the solution Sib,
Srb and Sgb respectively. cfis are the threshold parameters.

Table 1. Pheromone Intensification Strategy for DACO

cf > cf1 cf ∈ [cf2, cf1) cf ∈ [cf3, cf2) cf ∈ [cf4, cf3) cf ∈ [cfr , cf4)
wib 1 2/3 1/3 0 0
wrb 0 1/3 2/3 1 0
wgb 0 0 0 0 1

4 Experimental Results

In all the experiments performed in this paper, a test is considered to be suc-
cessful and stopped if it observes the following condition:

|f∗ − fknown best| < ε1 · |fknown best| + ε2 (8)

where f∗ is the optimum found by DACO, fknown best is the global optimum of
the test function. ε1 and ε2 are two accuracy parameters, which are set to be:
ε1 = ε2 = 10−4.

4.1 Primary Experiments for Parameter Setting

We set the parameters one by one with other parameters being fixed with the
default values: m = 10, ρ = 0.1. The test functions used are R2, SM, GP, MG
and ST. Due to space limitation, all the test functions used in this paper are not
listed, for more detailed description, please refer to [8] and [10].

Parameter Setting for the cfi Threshold. To get a good cfi setting, a set of
25 combinations of cfi are designed for test considering a wide range of different
combinations. Figure.1 shows the test results, which includes the accumulated
best and average evaluation numbers for all the test functions over 100 runs.

From the test results we can see that several combinations of the cfi settings
have better performance than others. Among them, the combination 9 is the
best, which is cfi = [1.0, 0.5, 0.1, 0.05, 0.01].

Parameter Setting for m. Parameter m is tested with a range from 1 to 20
for all the 5 test functions. Figure.2 shows the test results of average evaluation
number over 100 runs for each test function. Overall, more m needs more evalu-
ation number, but a number of 1 or 2 do not definitely get the best performance.
For the following experimental tests, we will use m = 3 as the parameter setting.
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Parameter Setting for ρ. Parameter ρ is tested with a range from 0.01 to 1
with a step of 0.01. The accumulated average evaluation of the five test function
is presented in Figure.3. From Figure.3 we can see that the proper setting of ρ
would be 0.85.

4.2 Comparison with Other Algorithms

Table 2 displays the test results of DACO comparing to other Ant Systems
in continuous domain. Some information of the test results of other Ant Sys-
tems are unavailable, so the relative places are blank. The brackets indicate the
tests are performed under a fixed evaluation number. For all the test functions,
DACO outperforms other Ant Systems both in success rate and the average



A Direct Application of ACO to Function Optimization Problem 329

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

ρ

A
cc

um
ul

at
ed

 A
ve

ra
ge

 E
va

lu
at

io
ns

 o
ve

r 
10

0 
R

un
s

Fig. 3. Test Results of Parameter ρ

Table 2. Comparison of DACO with Other Ant Systems

f
CACO API CIAC ExtendedACO DACO

% ok evals % ok evals % ok evals % ok evals % ok evals
R2 100 6842 [10000] 100 11797 2905 100 1946.77
SM 100 22050 [10000] 100 50000 695 100 264.87
GP 100 5330 56 23391 364 100 229.53
MG 100 1688 20 11751 100 169.49
ST [6000] 94 28201 100 33.33

Table 3. Comparison of DACO with Non-Ant Systems

f DACO
Non-Ant Systems

CGA [13] ECTS [14] ESA [15]
SM 264.87 750 338
GP 229.53 410 231 783
R2 1946.77 960 480 796
Z2 92.28 620 195 15820
H3,4 164.45 582 548 698

evaluation number. For all the functions tested, DACO finds all the known-
optimal solutions.

Table 3 displays the comparison results of DACO with some other non-ant
algorithms. Except the test function R2, DACO outperforms all the other non-
ant algorithms in all the rest of test functions.

Overall, DACO greatly improves the ability of ACO in quickly finding the op-
timal solutions of function optimization problems with different characteristics,
it can be considered as a optional method in dealing with function optimization
problems.
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5 Conclusions

This paper presented DACO, a direct application of ACO to handle continuous
optimization problems. In the proposed version of the system, pheromone trails
represent the mean and deviation of the normal distribution for every variable,
and they are modified according to the previous search experience. Ants con-
struct solutions by randomly selecting values for each variable biased by the
normal distribution. Some methods to escape from local optima are presented.
Experimental results show that DACO outperforms other previous ant related
algorithms in success rate and the number of function evaluation, and is quite
competitive comparing to other non-ant algorithms.

The new version of the ACO algorithm improves the capabilities of the ACO
to the function optimization field. Further research is under work for the principle
parameter setting and quicker convergence speed.
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Abstract. This paper presents and implements an approach to paral-
lel ACO algorithms. The principal idea is to make multiple ant colonies
share and utilize only one pheromone matrix. We call it SHOP (SHaring
One Pheromone matrix) approach. We apply this idea to the two cur-
rently best instances of ACO sequential algorithms (MMAS and ACS),
and try to hybridize these two different ACO instances. We mainly de-
scribe how to design parallel ACS and MMAS based on SHOP. We
present our computing results of applying our approach to solving 10
symmetric traveling salesman problems, and give comparisons with the
relevant sequential versions under the fair computing environment. The
experimental results indicate that SHOP-ACO algorithms perform over-
all better than the sequential ACO algorithms in both the computation
time and solution quality.

1 Introduction

Being a successful metaheuristic, Ant Colony Optimization (ACO) performs ex-
cellently in solving most combinatorial optimization problems (COPs). Because
the ants in one colony behave in fact in parallel and the parallel computing
platform is gradually popular, the research of parallel ACO has its inherent ad-
vantages. It is natural that studying parallel ACO has been active in recent
years.

There are a lot of categories of strategies of parallel metaheuristics. Parallel
ACO strategies also fall into some of them, e.g., fine-grained and coarse-grained
parallel. It seems that the fine-grained parallel strategies have not been proved
suitable for parallel ACO. On the contrary most literature of parallel ACO show
that the coarse-grained strategies are much better than the existing fine-grained
strategies.

In order to reduce the communications between the processors, Bullnheirmer
et al. [1] presented a new PAPI (Partially Asynchronous Parallel Implementa-
tion). In PAPI, after a fixed number of iterations the multi-colony exchanges
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pheromone. Middendorf et al. [2] categorized parallel ant colonies into heteroge-
neous colony and homogeneous colony. They studied and compared four differ-
ent communication models between ant colonies. Stützle [3] presented a simple
strategy for parallel ACO, that is to make the ant colonies run independently
on processors. Talbi et al. [4,5] applied the master/slave approach to parallel
AS to solve QAP. The master thread collects the solutions from the parallel
ant colonies, and broadcasts the update information to every colony for their
pheromone matrices. Randall et al. [6] proposed five strategies of parallel ACO.
They implemented parallel ACS by the parallel ants strategy and tested on
some small scale TSP instances. Chu et al. [7] also made p ACS colonies run on
p processors, with three communication models between these colonies. Delisle
et al. [8] put forward the only work on parallel ACO on a shared memory ar-
chitecture using OpenMP. Their target problem was a large scale industrial
scheduling problem. They concluded that a shared memory architecture also
provided a good platform for parallel ACO.

We draw some outlines, which are important for this paper, from the literature
as follows:

– Coarse-grained parallel ACO strategy performs better than fine-grained
strategy.

– All current parallel ant colonies keep their own data structures, especially
pheromone matrices.

– Being guided by the traditional strategies of parallel metaheuristics, the
literature of parallel ACO focused on the communication models between
the parallel search threads.

– The experimental results analysis focused more on time speedup, less on
solution quality.

– Most of the work is done on connected computers, only the work of [8] is on
SMP via openMP.

The biological attributes and the design of ACO suggest that parallel ACO is a
natural research trend. The original idea of ant algorithms employs cooperations
between ants in one colony to fulfill the optimization tasks. This paper introduces
a new approach of employing cooperations between the colonies to finish the
tasks. It is obvious that ant colonies can work in parallel. We call our approach
SHOP (SHaring One Pheromone matrix), which makes p ant colonies run on p
processors with the same sharing pheromone matrix.

This paper is organized as follows: Section 1 is the brief introduction and
related work; Section 2 is the description of the design of SHOP strategy; Sec-
tion 3 is the experimental results and comparison analysis; and Section 4 is the
conclusion and our future agenda.

2 Design of SHOP

2.1 General Ideas

We do think the communication model of parallel metaheuristics is the com-
mon problem for all parallelization issues, and therefore it is not the feature
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problem of parallel ACO. Being a metaheuristic, parallel ACO also may pay
much attention to the parallel strategy of the cooperations between the parallel
ant colonies. Pheromone matrix is the critical data structure of ACO, which
accumulates the experiences of ants tours and guides ants to search towards
solutions with good qualities. The reasons for varieties of ACO algorithms are
due to the different design of pheromone and update policies of the pheromone
matrix, problem-dependent of course. As far as the current research of parallel
ACO, all designs assign an independent pheromone matrix to each colony. So all
the ants within one colony or across the parallel colonies are consistent from the
view of pheromone consistency.

Our approach also exploits the pheromone matrix for all parallel colonies.
Inspired by the work [3,8], we make independent ant colonies share the same
pheromone matrix. We describe the design of how to apply SHOP to the two
best ACO algorithms, MMAS and ACS, and try to hybridize the two. As a re-
sult we naturally adopt SMP as our parallel computing platform. The program-
ming environment is Pthread, and the target problem is TSP. After initializing
data, each ant colony runs on an independent processor with sharing the same
pheromone matrix. We tackle TSP by both the cooperations between the ants
within a colony (ACO mechanism) and the cooperations between the colonies
(our SHOP mechanism).

2.2 Parallel MMAS (PMMAS)

PMMAS distributes ant colonies to parallel processors, running each colony as
one thread with the same pheromone matrix. After getting a feasible solution,
the colony updates the common pheromone matrix as MMAS usually behaves,
except for the synchronization with other colonies.

The master thread is responsible for PMMAS initialization. Although not
necessarily, all colonies have the same parameter settings as in MMAS.

Each ant within its host colony constructs its solution in parallel based on
the sequential MMAS algorithm, that is, each processor runs the same MMAS
algorithm in parallel, and optimizes the solution found by 3-opt local search.

In PMMAS design, each search thread updates the pheromone matrix exactly
once after every iteration, which is the original update scheme of MMAS. For
p colonies, each colony updates the pheromone synchronously and uses its own
iteration-best and best-so-far solution. p best-so-far ants in every generation
update the pheromone matrix: on their tours the pheromone are increased, on
other tours the pheromone are decreased p times. In the ideal situation, the
update speed of pheromone on every edge is p times that of its sequential version,
though we have the same total number of ants in sequential version.

An alternative pheromone update method is to create a pheromone update
thread. Additionally we can build two structures, colony-best-so-far ant and
colony-iteration-best ant, to record proper ants’ solutions. Thus after every gen-
eration the colony-iteration-best ant is responsible for the pheromone update.
According to the original pheromone update rule of MMAS, after every fixed
number of generations the pheromone update thread chooses the colony-best-so-
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far ant to release a certain amount of pheromone on its tour, i.e., Δτij = 1/Lcb

where Lcb stands for the length of the tour which was found by the colony-best-
so-far ant. Meanwhile, according to evaporation factor ρ, there is a decrease
of pheromone on all nearer adjacent edges which connect to each node of the
colony-best-so-far tour. We do not evaporate pheromone of all edges in order
to avoid the unnecessary computation and therefore the algorithm efficiency is
improved.

Like MMAS, PMMAS also limits the pheromone values into an interval.
But we make a little modification on how to determine the pheromone inter-
val [τmin, τmax], with τmin = τmax/(2n) unchanged but τmax = 1/(ρLcb) where
Lcb is the length of the tour which was found by the colony-best-so-far ant.

Pheromone re-initialization is a creative idea of MMAS. Such mechanism
works also well for PMMAS. When one of the parallel colonies meets the re-
initialization conditions, the best-so-far solution will be recorded (if the solution
is worthy to do so) as the colony-best-so-far and the pheromone matrix will be
initialized to τmax. Then this colony restarts to construct solutions as usual. If
the other colonies also meet the re-initialization conditions but get less better
solution than the colony-best-so-far solution, they restart by updating the new
initial pheromone value produced by the other colonies. In this way, PMMAS
takes much more advantage of re-initialization efficiency than MMAS.

2.3 Parallel ACS (PACS)

In addition to releasing pheromone on the tour of the iteration-best ant, ACS is
designed to increase pheromone on the visited edges while an ant is constructing
its tour. Such local updating of pheromone will directly influence the subsequent
tours of other ants within the same iteration.

PACS has almost the same parallel idea as PMMAS. Multi-colony runs in
parallel the sequential ACS algorithm with the same settings (although same
settings are not necessary.). The results for PACS algorithm are obviously dif-
ferent from those for sequential ACS. Because of the shared pheromone matrix,
after the ants have finished the local pheromone update, the subsequent ants in
the same colony, as well as the ants in other parallel colonies, will be affected in
making their selection based on the pheromone matrix.

Compared with the parallel strategy in [7], PACS makes the information feed-
back more effective between colonies. After an ant in one colony has updated the
pheromone on one edge, ants in other colonies will immediately sense the change,
and make some adjustments for their future tours or even for their next cities.

Whether such perturbation is for or against the direction towards the optimal
solution, there is no theoretical answer now. But one point seems to be confirmed
that the whole colony moves towards a good direction because PACS matches
much more the nature behavior of real ants than ACS does. We therefore declare
that the performance of PACS will not be worse than ACS, because real ants re-
lease pheromone in a real time way. We need more empirical study to justify it.
The negative side of PACS is that it will need too much synchronization caused by
very frequent access to pheromone matrix for the demand of pheromone update.
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2.4 Parallel Hybridizing MMAS and ACS (MMACS)

MMAS and ACS have their own unique features respectively, and have been
successfully applied to COPs. MMACS tries to parallel hybridize the two algo-
rithms and take the advantages of the two. Of course such hybridization finally
will be focused on the design of pheromone and its update mechanism.

To make the description easily understood, we only discuss the situation of
two threads running two colonies in parallel, with MMAS and ACS respectively.

First, we have to make some adjustments for combining the pheromone set-
tings of MMAS and ACS . For MMAS, we have τij ∈ P1 = [τmin, τmax], τmax =
1/(ρLcb), τmin = τmax/(2n), τ0 = 1/(ρLbest). For ACS, τij ∈ P2 = [τ0, 1/Lcb],
τ0 = 1/(ρLbest), where Lcb varies dynamically with the running of algorithm.
When the solution evolves towards good quality, Lcb is decreasing but with
a lower bound of Lopt. Thus the upper limit of P2 is up to 1/Lopt and that
of P1 up to 1/(ρLopt). Because ρ is a small positive real number, we have
τmin > τ0, τmax > 1/Lopt. So for MMACS we take τij ∈ P1 ∩P2 = [τmin, 1/Lcb],
and the initial values τ0 = τmax = 1/(ρLbest). Evaporation factor ρ takes the
same settings as it has in MMAS and ACS respectively.

In MMACS, the parallel ACS colony is also applied the same re-initializing
mechanism as MMAS. Just record the current result and expect the algorithm to
find a better one to replace it. ACS benefits from this and has more opportunities
to find a better solution or even the best one, and its performance and efficiency
of the intensification and diversification are therefore improved. The condition
of re-initialization here is as the same as in PMMAS, i.e., one of the two colonies
reaches the presetting iteration number or convergence estimation.

Besides increasing the pheromone on the shortest tour after every iteration,
the ACS colony of MMACS releases some pheromone on the corresponding edges
at each move during the construction procedure, and this will immediately af-
fect selection behavior of the MMAS colony of MMACS and direct the MMAS
towards better solutions. Vice versa, the MMAS colony affects the ACS colony
positively by re-initializing pheromone matrix.

3 Experimental Results

3.1 General Description

In this section when we compare the solution quality of the SHOP-ACO algo-
rithms with that of the sequential ACO algorithms, we take the average solution
of each algorithm running k (=10 in all our experiments) times under the fair
running-time. By saying fair running-time, we mean that when we assign tmax

to the compared sequential algorithms, respectively we restrict the running-time
of our SHOP-ACO algorithms to tmax/p, where p is the number of colonies or
parallel processors. Thus, we unify the time-cost of parallel algorithms and se-
quential algorithms into a fair criterion. Accordingly we assign 1/p the number
of the ants of the sequential colony to every parallel colony.
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From the view of taking computing resources, SHOP-ACO algorithms use
less memory resource than the sequential algorithms. So theoretically speaking,
SHOP wins if it achieves almost the same solution quality as the sequential
algorithms.

The computing environment for conducting the experiments here is IBM p-
server with 2 Power5-CPU (1.5GHz) and 6.0GB memory. The operating system
is AIX 5.3 and the programming tool is PThread+gcc. Because of this hardware
environment, we just implement two parallel ant colonies in our experiments. 10
typical problem instances randomly chosen from the TSPLIB [9] are divided into
small scale (less than 1000 cities) group and large scale (less than 6000 cities)
group.

The target sequential ACO algorithms are SMMAS (Sequential MMAS) and
SACS (Sequential ACS). The common parameter settings, except for indicating
explicitly, are as follows: α = 1, β = 2, ρ = 0.2, λbranch = 1, and q0 = 0.98 (if
ACS-concerned).

SHOP does not focus on parallelizing the local search and ACO algorithms.
SHOP adopts the same strategy about local search as that of ACS and MMAS,
that is, PMMAS, PACS and MMACS all adopt 3-opt local search.

3.2 Comparison with the Sequential Algorithms

Table 1 lists some of the results collected from our experiment.
From Table 1 we can see, all the optimal of the small scale instances can be

caught by all the 5 algorithms. So let us focus on the average quality of solutions
each algorithm achieved. Figure 1 indicates eavg plots of the 5 algorithms testing
on small scale problems over 10 runs. From Fig. 1 we have clearly found that
PACS performs better than SACS, but SMMAS is the best. It seems to us
that transfusing the mechanism of local pheromone update into SMMAS does
not work very well because SMMAS is designed to have only global pheromone
update.

Table 1 tells us that for the large scale TSP instances the 5 algorithms can
hardly find the optimal. The only little exception is the result on pr2392 - only
PMMAS found the optimal. So let us focus on the excess of the best solution
found by these algorithms. Fig. 2 indicates ebst plots of the 5 algorithms testing
on large scale problems over 10 runs. This time we have noticed that PMMAS
performs better than others. It seems to us that integrating some sort of pertur-
bations into SMMAS will make PMMAS perform better on large scale problems.

So based on the above illustration we conclude that SHOP algorithms overall
achieve comparatively better solution quality than sequential ones. It is not
reasonable to interpret such performance as being caused by the memory-sense
tasks [10], because the space complexity of SHOP-ACO algorithms is almost
p times the size of the sequential ones. On the contrary the synchronization
of SHOP-ACO takes additional time in SHOP implementations. By now we
temporarily attribute the performance to SHOP strategy. Of course we need
more numerical analysis to justify this statement. We hope that SHOP strategy
affects positively on the improvement of solution quality.
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Table 1. SHOP testing on 10 TSP instances

instance algorithm Iteravg Solstd tavg eb eavg instance Iteravg Solstd tavg eb eavg
lin318 pmmas 210 37.82 4.54 0 0.000393 rl1304 594.4 420.74 101.54 0 0.001782
(20) smmas 289.7 36.05 5.33 0 0.000271 (30) 1022.3 171.07 149.53 0 0.00042
(20) pacs 88.5 52.18 2.85 0 0.001651 (300) 539.5 339.84 93.69 0 0.001415

sacs 106.9 61.3 1.72 0 0.002099 296.7 492.93 42.08 0 0.00177
mmacs 158.8 75.93 2.94 0 0.001228 441.3 293.34 69.19 0 0.001469

pcb442 pmmas 504.2 42.31 10.51 0 0.002371 fl1577 980.8 28.76 130.5 0.002427 0.004571
(20) smmas 906 66.53 17.01 0 0.00139 (30) 1859.9 13.62 202.51 0.002742 0.003564
(40) pacs 516 68.63 9.58 0 0.001069 (300) 717.6 82.34 99.21 0.000315 0.002683

sacs 487 93.98 7.6 0 0.001719 1661.6 67.54 174.19 0.000225 0.002068
mmacs 825.8 66.18 13.25 0 0.001617 733.9 449.39 205.88 0.003029 0.004685

d657 pmmas 362.3 34.77 35.87 0.00002 0.00094 pr2392 448.9 1724.63 223.86 0 0.008381
(20) smmas 1394.4 23.87 64.92 0.00002 0.000599 (50) 722.6 599.85 271.68 0.000251 0.003131
(100) pacs 617.5 31.09 30.71 0.00002 0.000961 (500) 500.6 727.36 230.21 0.001754 0.00427

sacs 684.7 28.23 24.64 0.000368 0.001288 1143.4 518.74 391.93 0.000635 0.002961
mmacs 515.2 43.34 20.77 0.00002 0.001157 553.9 117.25 404.54 0.006604 0.012029

gr666 pmmas 437.4 171.18 41.65 0.000156 0.00078 fl3795 704.1 1087.25 467.18 0.007264 0.023735
(20) smmas 1101 88.57 44.41 0 0.000229 (50) 1085.5 72.5 681.78 0.007924 0.011577
(100) pacs 320.4 215.81 29.76 0.000166 0.000843 (1000) 366.2 193.95 415.14 0.003441 0.009568

sacs 1664.3 299.04 79.1 0.00232 0.003382 1591 54.34 885.81 0.000382 0.002468
mmacs 833.2 188.91 34.81 0 0.000983 553.9 117.25 404.54 0.006604 0.012029

rat783 pmmas 826.9 8.08 45.6 0 0.00117 rl5915 87.7 7699.91 515.12 0.029273 0.034468
(20) smmas 1848.3 3.87 76.89 0 0.000284 (100) 493.5 1638.72 1956.81 0.006905 0.011835
(140) pacs 625.1 5.22 35.11 0 0.000784 (2000) 75 2288.76 793.3 0.015997 0.022486

sacs 1715 11.7 62.43 0 0.002044 348.8 1054.5 1441.59 0.01914 0.022142
mmacs 1213.5 12.91 51.71 0.001022 0.002714 256.5 7345.55 864.57 0.006811 0.015136

The first number in bracket indicates the number of ants of the sequential colony. The second is the
maximum computing time allowed (in seconds).
Iteravg : Average iterations for getting all the best solutions. Solstd : Standard deviation of all the
best solutions. tavg : Average time for getting all the best solutions. eb : The excess from the optimal
of the Best solution. eavg : The excess from the optimal of Solavg .
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4 Conclusion and Future Work

SHOP presents a very simple but efficient parallel approach to ACO. Future
work will be carried on, such as,

– More fine synchronization. The current implementation of SHOP just locks
the pheromone matrix as a whole when one ant needs to access even one ele-
ment of the matrix. This will be a heavy negative factor for the performance.
Obviously, it is not necessary for ants to lock the matrix as a whole. But
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more control logic will have to be introduced if more fine synchronization is
implemented. So the next question will be:

– Investigating how synchronization affects the performance. More detailed
analysis in terms of quantity relationship between synchronization and per-
formance will be required to guide a fine synchronization.

– With the number of processors increasing, does our results show the same
dominance? How about groups sharing pheromone matrix?

– Are the results reported here fortuitous or certain? We are applying SHOP
implementation to more applications, such as learning Bayes Network, MCP,
QAP, MKP, Chinese Word Segmentation and so on.

Our work illustrates that the biological features of ACO provide us much more
research ideas on parallel hybrid metaheuristics. The behavior of parallel ACO
is naturally close to the original behavior of natural ants.
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Abstract. Data clustering is one of important research topics of data
mining. In this paper, we propose a new clustering algorithm based on
ant colony optimization, called Ant Colony Optimization for Clustering
(ACOC). At the core of the algorithm we use both the accumulated
pheromone and the heuristic information, the distances between data
objects and cluster centers of ants, to guide artificial ants to group data
objects into proper clusters. This allows the algorithm to perform the
clustering process more effectively and efficiently. Due to the nature of
stochastic and population-based search, the ACOC can overcome the
drawbacks of traditional clustering methods that easily converge to local
optima. Experimental results show that the ACOC can find relatively
good solutions.

1 Introduction

The data clustering problem considers grouping a data set into several non-
empty subsets of some similarity. Many clustering methods have already been
devised, for examples, partitioning methods, hierarchical methods, density-based
methods, grid-based methods, and model-based methods [1]. In this paper, we
will focus on the partitioning methods, especially on the k-means algorithm. In
this algorithm, k data objects are randomly selected to represent initial cluster
centers, and then each data object is assigned into its closest clusters, based on
the distance between the data and the cluster center. After assignments, cluster
centers are determined again by computing the mean value of the objects for each
cluster. This process iterates until the cluster centers do not change anymore.
Although a good clustering quality can be obtained, the k-means algorithm has
some drawbacks [2]. For example, the selection of initial cluster centers may affect
the goodness of clustering results. Besides, the k-means algorithm sometimes falls
into the trap of local minima.

To overcome the weaknesses of traditional partitioning methods, this paper
proposes a new data clustering algorithm which is based on the concept of ant
colony optimization. The rest of this paper is organized as follows. Section 2
presents a brief introduction to ant algorithms and their applications to data
clustering problems. Section 3 provides the details of the proposed clustering
algorithm, ACOC. Section 4 reports experimental results and analysis. A con-
clusion is drawn in Section 5.

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 340–347, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Ant Algorithms

Ant algorithms are a class of the algorithms based on artificial swarm intelligence,
which is inspired by the collective behavior of social insects. For real ants, they have
two important types of behavior: foraging and clustering. The algorithms of ant
colony optimization (ACO) have their origins in the ant foraging behavior. They
were proposed by Dorigo et al. [3,4] and are useful in solving discrete optimization
problems. The ant clustering algorithms originated from the studies of ant cluster-
ing of dead bodies. They were introduced by Deneubourg et al. [5] and improved
by Handl et al. [6] and are mainly applied to solve data clustering problems.

In the ACO algorithm, an artificial ant colony simulates the pheromone trail
following behavior of real ants. Artificial ants move on a synthetic map (construc-
tion graph [9]) representing a specific problem to construct solutions successively.
The artificial pheromone that corresponds to the record of routes taken by the
ant colony is accumulated at run-time through a learning mechanism. Individual
ants concurrently collect necessary information, stochastically make their own
decisions, and independently construct solutions in a stepwise procedure. The
information required for making a decision at each step include pheromone con-
centration, problem data and heuristic function values. The pheromone laid on
the path belonging to the iteration-best solution will be positively increased to
become more attractive in the subsequent iterations. Because of autocatalytic
and collective behavior, ACO can effectively and efficiently solve a wide class of
combinatorial optimization problems [9]. In this paper, we will apply the ACO
to the data clustering problem.

The data clustering problem is an NP-hard problem when the number of clus-
ters is larger than three [8]. In the past, different meta-heuristic approaches have
been applied to solve the data clustering problem. For example, Al-Sultang in-
troduced a tabu search-based algorithm [7] and Maulik et al. proposed a genetic
algorithm-based approach [10]. They all showed that their own algorithms were
superior to the traditional k-means method. An ACO-based algorithm for data
clustering problems was first introduced by Shelokar et al. [11]. They did not
give a name to their algorithm, so we call it the Shelokar algorithm hereafter.
The algorithm mainly relies on pheromone trails to guide ants to select a clus-
ter for each data object, and a local search is required to randomly improve
the iteration-best solution before updating pheromone trails. They defined that
the trail value, τ ij , at node (i, j) represents the pheromone concentration of
object i associated to the cluster j. In the algorithm artificial ants visit data
objects one by one in sequence and select clusters for data objects by consid-
ering pheromone information only. Their experimental results showed that the
algorithm can effectively solve a variety of clustering problems. However, based
on our experimental observation, premature convergence may occur, infeasible
solutions that contain empty clusters may be produced, and longer computation
times are often required. These problems may result from that the algorithm
relies on pheromone trails only.

In this paper, attempts were made to improve the Shelokar algorithm by
introducing the concept of dynamic cluster centers in the ant clustering process
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and by considering pheromone trails and heuristic information together at each
solution construction step.

3 ACOC Algorithm

In this section we mathematically formulate the data clustering problem, con-
ceptually introduce our ACO-based clustering algorithm and briefly describe the
computing procedure of the proposed algorithm.

3.1 Mathematical Formulation

We model the data clustering problem as a clustering optimization problem.
Given a data set containing m data objects with n attributes and a predeter-
mined number of clusters (g), the proposed algorithm has to find out an optimal
cluster configuration such that the total sum of clustering errors for all data
objects can be minimized. Equation (1) is the objective function. Constraint (3)
states that each data object belongs to only one cluster, and constraint (4) states
that no cluster is empty.

Minimize J(W,C) =
m∑

i=1

g∑
j=1

wij ‖Xi − Cj‖ (1)

Where ‖Xi − Cj‖ =

√√√√ n∑
v=1

(xiv − cjv)2 (2)

Subject to

g∑
j=1

wij = 1, i = 1, ..., m (3)

g∑
j=1

wij ≥ 1, j = 1, ..., g (4)

wij =

{
1, if data i is clustered into cluster j

0, otherwise
i = 1, ...,m and j = 1, ..., g (5)

Cj =
∑m

i=1 wijXi∑m
i=1 wij

, j = 1, ..., g (6)

Where, xi is the vector of ith data object and xi ∈ Rn; xiv is the value of vth
attribute of ith data object, cj is the vector of jth cluster center and cj ∈ Rn;
cjv is the value of vth attribute of jth cluster center, wij is the associated weight
value of xi with cj , X is the data matrix of size m × n, C is the cluster-center
matrix of size g × n, and W is the weight matrix of size m × g.
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Basic Idea. In the ACOC algorithm, the solution space is modeled as a graph
of object-cluster node matrix. The number of rows equals m, and the number
of columns equals g. Each node denoted by N(i, j) means that data object i
would be assigned to cluster j. Artificial ants can stay only one of g nodes for
each object. Fig. 1 illustrates an example of construction graphs for clustering
problems, where hollow circles denote unvisited nodes and solid circles represent
visited nodes. A string is used to represent solutions built by ants. Considering
the clustering result of Fig. 1, the corresponding solution string is (2, 1, 2, 1, 3, 3).

On the graph, each ant moves from one node to other, deposits pheromone on
nodes, and constructs a solution in a stepwise way. At each step, an ant randomly
selects an ungrouped object and adds a new node to its partial solution by
considering both pheromone intensity and heuristic information. The memory
list (tbk) can prevent a data object from being clustered more than once by
an ant. When the memory list is full, it means that the ant completes solution
construction. The moving sequence of the example in Fig. 1 is marked by the
numbers next to the dotted arcs.

In the ACOC, ants deposit pheromone on nodes. The nodes with stronger
pheromone would be more attractive to ants. The ACOC uses a pheromone
matrix (PM) to store pheromone values. The heuristic information indicates
the desirability of assigning a data object to a particular cluster. It is obtained
by calculating the reciprocal of the Euclidean distance between the data object to
be grouped and each cluster center of some ant. The nodes with higher heuristic
values would be more likely to be selected by ants. Each ant carries a cluster-
center matrix (Ck) to store its own cluster centers and updates them right after
each clustering step.

3.2 Computing Procedure

The complete procedure of ACOC is described as follows.
Step 1 Initialize the pheromone matrix: The elements of the pheromone matrix

(PM) are set to arbitrarily chosen small values (τ0).
Step 2 Initialize all ants: Start a new iteration. Reset the memory list (tbk),

cluster center matrix (Ck) and weight matrix (Wk) for each ant, where k =
1∼ R. R is the total number of ants, R ≤ m.

Step 3 Select data object i: Each ant randomly selects a data object, i, that
is not in its memory list.

Step 4 Select cluster j: To determine j for a selected i, two strategies, exploita-
tion and exploration, can be applied. The former is to allow ants to move in a
greedy manner to a node whose product of pheromone level and heuristic value
is the highest (see equation (7)). The latter is to allot probabilities to candidate
nodes, and then let an ant choose one of them in a stochastic manner accord-
ing to equation (8). The more promising a node, the higher probability it has.
Ants choose one of these strategies by using equation (7) with a priori defined
probability q0 and a randomly generated probability q. Based on equations (7)
and (8), ants can determine the value of j. Note that ηk

ij = 1/dk(i, j) and is the
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Fig. 1. Construction graph for ACOC

heuristic value of N(i, j) for ant k. The distance between object i and center j
of ant k, dk(i, j), is defined in equation (9).

j = {arg maxu∈Ni{[τ(i,u)][ηk(i,u)]β} if q≤q0

S otherwise (7)

where Ni is the set of g nodes belonging to data object i, and the value of S is
chosen according to equation (8).

P k (i, j) =
[τ (i , u)] [ηk(i , u)]β∑g

j=1 [τ (i , u)] [ηk(i , u)]β
(8)

where β is the parameter specifying the relative weight of ηk
ij , β > 0.

dk (i, j) =

√√√√ n∑
v=1

(
xiv − ck

jv

)2 (9)

where ck
jv refers to the value of attribute v of cluster centerj of ant k.

Step 5 Update ants’ information: Update the memory list (tbk), weight matrix
(Wk, use equation (5)) and cluster center matrix (Ck, use equation (6)) of each
ant.

Step 6 Check memory list of each ant: Check if the memory list of each ant
is full. If it is not, then go back to step 3; otherwise, go to step 7.
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Step 7 Calculate objective function values: Calculate the objective function
value of each ant, Jk, by using equation (1). After that, rank R ants (solutions)
in the ascending order of Jk values. The best solution is called iteration-best
solution. It is compared with the best-so-far solution, and the better one will be
the new best-so-far solution.

Step 8 Update pheromone trails: Update the pheromone matrix, PM. The
global updating rule is applied, and only the elitist ants are allowed to add phero-
mone at the end of each iteration. The trail updating equation is defined below.

Where ρ is the pheromone evaporation rate, (0.0 < ρ < 1.0), t is the iteration
number, r is the number of elitist ants, and Δτh

ij = 1/Jh.
Step 9 Check termination condition: If the number of iterations exceeds the

maximum iteration number, then stop and output the best-so-far solution, oth-
erwise go to step 2.

4 Numerical Experiments

The proposed algorithm has been coded in Visual Basic and executed on a
Pentium M 1.6 GHz notebook computer. The performance of the proposed ant
algorithm was evaluated by testing on four datasets. For the artificial datasets,
the two problems reported in Shelokar [11] were selected in this paper. The first
dataset is composed of three clusters and each cluster has 50 data objects, while
the second dataset has six clusters with 25 data objects in each cluster. For the
real life datasets, iris and wine were selected from the website of UCI repository
of machine learning databases [12].

The study compared the performance of the k-means, Shelokar and ACOC. For
each test problem, these three algorithms were performed 10 times individually.
The parameter values used in Shelokar and ACOC were:R = 10, r = 1, q0 = 0.0001,
τ0 = uniform distribution [0.7, 0.8], β = 2.0, ρ = 0.1, local search rate = 0.01
and the maximum number of iterations = 1000. Besides, we modified the way of
pheromone updating used in the Shelokar algorithm to avoid solution premature.

Table 1 summarizes the quality and efficiency of solutions for all selected
problems obtained by three algorithms, respectively. For each test problem, the
best, average and worst objective function values found in 10 distinct runs are
sorted in the table. The corresponding computation times to attain the best
solution in 10 runs are also listed.

For the three algorithms, the best experimental results have been put as bold
in Table 1. The results show that the ACOC algorithm is the best in terms of
the quality of solutions for all selected problems. The standard deviations of
ACOC are also very small. On the other hand, the ACOC algorithm is better
than the Shelokar algorithm but worse than the k-means algorithm in terms of
the processing time required attaining the best solutions. Fig. 2 illustrates that
the ACOC finds very good solutions very quickly, compared to the Shelokar
algorithm,. The data values are obtained from one of 10 runs of each method
applied over the first dataset. However, the ACOC has larger standard deviations
of processing time (see Table 1), and it is worth solving this problem in the future.
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Table 1. Comparison of three algorithms applied to four test problems

Objective function value CPU time(seconds)
K-means g Best Avg Worst Stdev Best Avg Worst Stdev
Prob. 1 3 144.69 148.47 156.28 5.42 0.01 0.012 0.03 0.006
Prob. 2 6 109.50 113.59 127.10 5.14 0.01 0.015 0.03 0.007
Iris 3 97.33 99.84 122.28 7.89 0.001 0.01 0.02 0.007
Wine 3 16555.68 16900.54 18436.96 730.79 0.01 0.03 0.06 0.014
Shelokar g Best Avg Worst Stdev Best Avg Worst Stdev
Prob. 1 3 144.46 146.20 150.73 2.25 112.34 13.05 13.84 0.44
Prob. 2 6 199.68 207.02 211.95 3.48 9.21 12.09 13.52 1.77
Iris 3 97.22 97.78 98.74 0.56 14.58 15.53 16.10 0.54
Wine 3 16860.17 18022.16 19818.06 817.40 31.50 32.70 33.57 0.77
ACOC g Best Avg Worst Stdev Best Avg Worst Stdev
Prob. 1 3 144.46 144.46 144.46 0.00 1.51 4.12 10.55 3.05
Prob. 2 6 108.75 109.34 114.44 1.79 2.08 11.47 16.75 4.41
Iris 3 97.22 97.22 97.23 0.00 3.58 8.52 19.22 4.59
Wine 3 16530.54 16530.54 16530.54 0.00 4.88 19.04 43.37 11.69

Fig. 2. Comparison of ACOC with Shelokar

5 Conclusion

This paper proposes a new algorithm based on ant colony optimization to solve
the data clustering problem. In the ACOC algorithm, the solution space is mod-
eled as an array-based construction graph on which artificial ants randomly move
from node to node to construct solutions successively. Through many ants con-
currently and stochastically searching for the best solution, the possibility of
falling into local optima is decreased. At an iteration level, each ant will gradu-
ally form its own cluster centers for calculating heuristic values. When selecting
the next node, ants consider not only the pheromone levels but also heuristic
values of candidate nodes. This allows ants to find better solution in a shorter
time. Numerical experiments showed that the ACOC algorithm can find better
solutions than its counterparts and is faster than the Shelokar algorithm in terms
of the processing time required.



An ACO-Based Clustering Algorithm 347

References

1. Han, J. and Kamber, M.: Data mining: Concepts and Techniques. Morgan Kauf-
mann Publisher, San Francisco (2001)
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Abstract. The Capacitated Fixed Charge Location Problem (CFCLP)
consists of selecting a set of facilities that must completely supply a set
of customers at a minimum cost. The CFCLP is NP-hard thus solution
methods are often obtained by using sophisticated techniques. However,
if a set of facilities is known a priori then the CFCLP reduces to a trans-
portation problem (TP). Although this can be used to derive solutions
by randomly selecting sufficient facilities to be fixed open and noting
any cost improvements, it is perceived as a poor technique that does not
guarantee solutions near the optimal. This paper presents an adaptive
sampling algorithm using Ant Colony Optimization (ACO). We hypoth-
esize that random selection of facilities using ACO will generate at least
near-optimal solutions for the CFCLP. Computational results for a series
of standard benchmark problems are presented which appear to confirm
this hypothesis.

1 Introduction

The Capacitated Fixed Charge Location Problem (CFCLP) considers the prob-
lem of obtaining a subset from a set of potential facilities that have to supply
a set of customers at a minimum cost, where each customer has an associated
demand to be met and each facility has a finite amount of supply available. Fa-
cility location has applications in various domains: public sector, private sector
and in environmentally sensitive areas [1,2,3].

There are various solution techniques available for the CFCLP which fall into
two classes: exact or approximate methods. A review of most of the common
techniques is given in [4]. A great deal of success in solving location problems has
been achieved using Lagrangean relaxation combined with various local search
strategies [5,6] and more recently [7,8]. These methods are usually designed for
specific types of CFCLPs and are dependent on problem size and definition of
the allocation variables. However, these techniques often involve high levels of
sophisticated skills to develop and implement successfully.

The aim of this paper is to develop a method in which Ant Colony Opti-
mization (ACO) plays a principal role in solving the CFCLP. The methodology
is iterative and consists of three phases. The first is an adaptive construction
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phase concerned with obtaining facilities required to be opened that are selected
according to their likelihood of being in a solution. The second phase attempts
to make improvements to the current solution using a “drop” local search proce-
dure. The third phase is to update certain variables associated with ACO. The
whole process is repeated until some stopping criteria are met. The ACO algo-
rithm used in the construction and update phases is adapted from the MAX-MIN
Ant System [9,10].

2 Formulation of the CFCLP

A fixed charge location problem incurs some one off charges associated with
opening a facilities and has a similar structure to the Transportation Problem
(TP). If the set of facilities is known a priori then the problem often gives an
unbalanced TP. Let us define:

m = the number of potential facilities,
n = the number of customers,
qj = the demand of customer j,
Qi = the capacity at facility i,
cij = the cost of supplying all of the demand from customer j to facility i,
fi = the fixed charge associated with opening facility i,
xij = the fraction of the demand of customer j supplied from facility i,

and the decision variable associated with opening a facility i

yi =
{

1 if facility i is opened,
0 otherwise.

The capacitated fixed charge location problem is defined as

min z =
m∑

i=1

n∑
j=1

cijxij +
m∑

i=1

fiyi (1)

such that
m∑

i=1

xij = 1 j = 1, . . . , n . (2)

n∑
j=1

qjxij ≤ Qi i = 1, . . . ,m . (3)

xij ≤ yi i = 1, . . . ,m, j = 1, . . . , n . (4)

yi ∈ {0, 1} i = 1, . . . ,m . (5)

0 ≤ xij ≤ 1 i = 1, . . . ,m, j = 1, . . . , n . (6)

where (1) is the objective function used to minimize the total fixed and trans-
portation costs associated with facility and allocation variables yi and xij . Con-
straint (2) ensures that the demand qj of each customer j is satisfied, (3) ensures
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that an open facility i does not supply more than its capacity Qi, (4) further
strengthens (3) by only allowing the assignment of customer j to a facility i that
is open, (5) is the integral condition, concerned with a facility i being selected
as opened or closed and finally (6) refers to the fractional assignment condition
that allows the demand of customer j to be allocated to more than one facility.

3 Ant Colony Optimization for the CFCLP

This study attempts to use the ACO paradigm, based on the behaviour of for-
aging ants [9,11,12], to solve the CFCLP by exploiting pheromone intensities
corresponding to opening facilities using a MAX-MIN Ant System (MMAS) al-
gorithm [10]. Although little literature is available on the use of ACO to solve
capacitated location problems, MMAS was employed successfully to the Gen-
eralized Assignment Problem (GAP) by integrating an iterative local search
procedure using a single ant approach [13]. GAP is a derivative of the 0− 1 CF-
CLP when facilities are fixed open. This study considers the effects of a single
ant in obtaining a solution to the CFCLP. We represent the CFCLP as a fully
connected graph whose nodes are facilities. Initially all facilities are closed and
a single ant tour consists of walking on the graph so that each facility is visited
only once; to determine if facilities should remain closed or be opened. Ants
are guided to facilities by some combined pheromone intensity, τi, and a priori
information about the problem instance that is known as visibility, ηi, [9].

If the potential of a facility being in the optimal is obtainable directly from the
problem instance then this would provide a useful measure for an ant’s visibility.
One way of dealing with this issue is to consider relaxing the integral constraint
(9) as illustrated in [14]. To achieve this the CFCLP is transformed into the
Source Induced Fixed Charge Transportation Problem (SIFCTP), then a “total
opportunity-cost” concept based on [15] is applied to the relaxed version, which
allows visibility values associated with facilities to be calculated prior to use of
the MMAS algorithm.

Derivation of the Ant’s Visibility

It is possible to rewrite the CFCLP as a SIFCTP by redefining cij to be the
cost of assigning a unit of demand from customer j to facility i, and xij becomes
the amount of demand assigned from j to i. The objective function in (1) is
unchanged whereas, the demand constraint (2) becomes

m∑
i=1

xij = qj j = 1, . . . , n . (7)

The capacity constraint (3) is now

n∑
j=1

xij ≤ Qi i = 1, . . . ,m . (8)
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The strengthening constraint (4) associated with only assigning demand to open
facilities is no longer required as a fixed cost is only incurred if some demand is
assigned to a facility.

yi =
{

1 if
∑n

j=1 xij > 0,
0 otherwise.

(9)

Finally, the fractional assignment condition given in (6) is replaced with

xij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n . (10)

The relaxed integral condition (9) is yi =
∑n

j=1 xij/mij where mij =
min(qj , Qi) and is written into the objective function (1) to give an unbalanced
TP as used by [14]:

min z =
m∑

i=0

n∑
j=0

Cijxij , (11)

subject to (7), (8) and (10) with unit transportation costs

Cij = cij + fi/mij . (12)

Although this relaxed version could be easily solved, integral relaxation is seen as
unreliable [16]. However, we use these relaxed costs combined with a method orig-
inally designed to give an approximate solution to the TP [15] to derive an ant’s
visibility. The approximate TP method initially calculates a “total opportunity-
cost” matrix Tij , where i and j are supply and demand points. Allocations are
then made by considering the smallest Tij values and assigning as much demand
as allowed to the supply point without exceeding its capacity until all demand
is assigned. The matrix is calculated:

Tij = Eij + Fij i = 1, . . . ,m, j = 1, . . . , n . (13)

Where Eij and Fij are the unit cost matrix row and column opportunity costs;

Eij = cij − cij∗ i = 1, . . . ,m, j∗ = argminj∈J {cij} , (14)

and
Fij = cij − ci∗j j = 1, . . . , n, i∗ = argmini∈I {cij} . (15)

Rather than obtain the approximate solution to the TP described in (11) by
using the method of [15], we consider the notion that demand assignments are
assigned by using the lowest Tij values. Thus an ant’s visibility is related to
those facilities having low Tij values as they are more likely to be in the optimal
solution. Define

ηi =
1
Ti

i = 1, . . . ,m . (16)

Where

Ti =
n∑

j=1

Tij i = 1, . . . ,m . (17)

Equation (16) refers to the ant’s visibility ηi. Effectively, those facilities with a
greater visibility value are more likely to be found in the optimal solution.
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MAX-MIN Ant System

Each facility i has a pheromone τi and a visibility ηi value made available to
an ant. Moves on the graph are made from facility to facility according to a
probabilistic decision rule based upon the pheromone intensity and visibility of
those moves permitted. Each move is examined to see if an improvement in the
objective function is observed; if so, then the corresponding facility is set to be
open. This approach is essentially an ACO based ADD heuristic, where facilities
are added to the current solution if an overall cost improvement occurs.

The selection process for making a move on the graph is based upon a pseudo-
random proportional rule as used by [9]. A move is made with some probability
q0 and the facility with the greatest combined pheromone and visibility is chosen,
otherwise a facility is chosen by using a probability function. The parameter q0
predetermines the level of exploitation of strongest combined values whereas its
complement allows for exploration of the solution space. Each move to a new
potential facility i is determined using the decision rule:

i =

{
argmaxl∈L

{
[τl]

α [ηl]
β
}

, if q ≤ q0,

I, otherwise.
(18)

Where q is a random variable uniformly distributed in [0, 1], 0 ≤ q0 ≤ 1, L is the
set of unopened facilities, and I is a random variable that is selected according
to the following probability distribution:

pi =
[τi]

α [ηi]
β∑

l∈L [τl]
α [ηl]

β
. (19)

Where α and β are parameters corresponding to the influential roles of phe-
romone intensity τi and visibility information ηi. Once a move is made on the
graph, based on this and previous moves, we approximate the corresponding TP
using the method of [15] to determine if a facility is to be opened. A facility
is opened if there is reduction in the objective function. A complete tour or
iteration is when all facilities have been visited and their status determined.

Once a tour is complete then pheromone update takes place, which includes
some evaporation and deposit of pheromone at each facility. Pheromone per-
sistence at a facility is denoted by a parameter, 0 < ρ ≤ 1, that represents the
rate of evaporation at each iteration which allows the algorithm to “forget” poor
tours [9]:

τi ← (1 − ρ)τi i = 1, . . . ,m . (20)

Pheromones are deposited on those facilities belonging to the best tour to-date:

τi ← τi + Δτbest
i i = 1, . . . ,m , (21)

where Δτbest
i = 1/zbest and zbest is the overall cost of the best tour. Upper

and lower limits τmax and τmin are placed on the pheromones in an attempt
to avoid convergence to a local optimum. These are set as τmax = 1/ρzbest
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and τmin = τmax/a where a is a parameter. Also, τmax is updated whenever
an improvement is made in the best overall cost zbest . If the procedure begins
to converge to a local optimum, or there is no improvement in the overall cost
after a chosen number of iterations, then the pheromones are reset to the current
value of τmax. This is an attempt to encourage a new exploratory search away
from the region of stagnation [10]. The method we use to measure stagnation is
based on [9] which observes:∑

τi∈T min{τmax − τi, τi − τmin}
m

→ 0 , (22)

as the algorithm approaches stagnation, where T is the set of pheromones for
the current tour and m is the number of facilities.

Local Improvement Phase

During the construction phase facilities are either fixed open or remain closed.
This may result in some facilities being fixed open early on in the process that
may later only play a minor role in accommodating customer demand. Improve-
ments may be made locally by closing one or more facilities in the current solu-
tion by using a DROP heuristic. The facility that gives the best improvement is
set to be closed. Thus, if the current solution has facilities Y = {yi | yi ∈ {0, 1}}
with a total cost z (Y ) we select facility i∗ | yi∗ = 1 that gives the least total cost
and reset yi∗ = 0 and Y accordingly by approximating as series of TPs using
the method of [15]. This process is repeated until no further improvements can
be made.

4 Computational Experience

Experiments for a series of benchmark capacitated location problems whose op-
timal solution are known were used to test our hypothesis. They were coded
in C++ and experiments were executed on a Dell Inspiron 8600 with a 1.60
GHz Pentium M processor and 786Mb RAM. The problems used are available
from the OR-Library (http://people.brunel.ac.uk/ mastjjb/jeb/info.html). The
following parameters were found to be robust to small changes: α = 2.5, β =
0.8, ρ = 0.06, q0 = 0.5 and a = 2n, where n is the number of customers.
The number of iterations in each experiment was limited to two hundred as
testing displayed little significant change in the best solution beyond this value.
Pheromones are initialized to 1/ρz0, where z0 is an initial feasible solution ob-
tained using a technique based on [15], they are reset to the current value of
τmax should there be no overall improvement after fifty iterations.

The results obtained support the use of the local search “drop” heuristic as out
of 31 problems considered solutions were generated for 23 in a shorter time, 26
required fewer iterations and 19 benefited from the local search giving improved
objective values, which is reinforced with lower errors from known optimal val-
ues. Without the “drop”, the average error was 5.83% with a standard deviation
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Table 1. Non-local search (ZNLS) and facility “drop” local search (Zdrop) results for
a selection of problem instances

ZNLS Zdrop

Problem m×n secs iters % err secs iters % err
cap81 25×50 4.777 30 15.34% 4.267 5 11.48%
cap82 4.907 31 15.04% 3.605 4 9.75%
cap83 4.947 32 14.33% 5.88 9 9.09%
cap131 50×50 61.368 89 0.61% 129.216 115 0.33%
cap132 61.218 95 0.41% 11.877 10 0.41%
cap133 57.763 94 0.70% 2.593 2 0.26%
cap134 89.74 160 0.10% 55.149 82 0.10%

of 11.33%, whereas corresponding values including the “drop” were 3.16% and
3.94% respectively, which indicates significant improvements and greater relia-
bility. Best and worst case performances were 0.10% and 12.45%. Solutions to
74% of the problems achieved an error of less than 5%, whilst 52% achieved an
error of less than 1% indicating some worthy merit in the ACO application with
local search. Table 1 displays the results obtained for two classes of problems as
examples of good and poor performance.

5 Conclusions

The following conclusions are based on the results presented in the previous
section. The results indicate convergent behaviour of the ACO algorithm and
near optimal solutions within 1% error for most of the problems tested, which
suggests the algorithm does have the potential to solve CFCLPs. The algorithm
would benefit from employing an interchange heuristic in the improvement phase
similar to those used by [5,6].

We adopted a visibility strategy based on the relaxation of facility integral
constraints combined with a “total opportunity-cost” method which was aided
by reformulating the CFCLP to a SIFCTP. Interestingly, linear relaxation of the
integral condition for capacitated location problems was previously found it to
be unreliable [16]. However, on the contrary, we found this to be useful in deter-
mining solutions because during parameter setting tests, better solutions were
obtained with the inclusion of visibility. The strategy we adopted approximates
a TP for every step in the construction and local search phases which is likely
to be computationally inefficient. This is reflected in the CPU times.

Our results are certainly encouraging and thus we postulate that our hypoth-
esis “random selection of facilities using ACO will generate at least near-optimal
solutions for the CFCLP” is achievable in most of the cases. However, we do
note that a better local search algorithm may reinforce this hypothesis. Future
research should concentrate on addressing these issues raised concerning solution
improvement and efficiency.
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10. Stützle, T., Hoos, H.: The MAX − MIN Ant System. Future Generation Com-
puter Systems 16(8) (2000) 889–914

11. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

12. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artificial Life 5 (1999)
97–116

13. Lourenço, H., Serra, D.: Adaptive search heuristics for the generalized assignment
problem. Mathware & Soft Computing 9 (2002) 209–234

14. Adlakha, V., Kowlaski, K.: A simple algorithm for the source-induced fixed-charge
transportation problem. Journal of the Operational Research Society 55(12) (2004)
1275–1280

15. Kirca, O., Satir, A.: A heuristic for obtaining an initial solution for the transporta-
tion problem. Journal of the Operational Research Society 41(9) (1990) 865–867

16. Baker, B.: Linear relaxation of the capacitated warehouse location problem. Jour-
nal of the Operational Research Society 33 (1982) 475–479



An Ant Colony System for the Open Vehicle
Routing Problem

Xiangyong Li and Peng Tian

Antai College of Economics & Management
Shanghai Jiaotong University, Shanghai, P.R. China

lixiangyong@163.com, ptian@sjtu.edu.cn

Abstract. This paper studies the open vehicle routing problem (OVRP),
in which the vehicles do not return to the starting depot after serving the
last customers or, if they do, they must make the same trip in the reverse
order. We present an ant colony system hybridized with local search for
solving the OVRP (ACS-OVRP). Additionally, a Post-Optimization pro-
cedure is incorporated in the proposed algorithm to further improve the
best-found solutions. The computational results of ACS-OVRP compared
to those of other algorithms are reported, which indicate that the ACS-
OVRP is another efficient algorithm for solving the OVRP.

1 Introduction

The open vehicle routing problem (OVRP) is a special variant of the standard
vehicle routing problem (VRP). The most important feature consists in that
the route of VRP is hamiltonian cycle, whereas that of OVRP is hamiltonian
path. Such a different can be attributed to that the vehicles in the OVRP are
not required to return to the depot, or if they are required to do so, they must
return exactly along the same trip in the reverse order. The OVRP is a basic
distribution management problem that can be used to model many real-life prob-
lems. It can be encountered in many real-word problems, for example, a delivery
company without its vehicle fleet contracts its delivery to the hired vehicles. In
such instance, the delivery company is not concerned with whether the vehicles
return the depot and does not pay any traveling cost between the last delivery
customer and the depot. It can be modeled as a OVRP. Other applications fit-
ting the OVRP framework include the newspaper home delivery problem[1] etc..

The earliest publication about the OVRP can trace back to the article by
Schrage in 1981[2]. But in the following 20 years since 1981, OVRP received lit-
tle study and there is no related publication. Since 2000 some researchers began
to study the solutions and several methods have been developed. Sariklis and
Powell[3] proposed a two-stage heuristic, i.e. clustering and routing phases. In the
clustering phase, the customers were first assigned to the clusters by taking into
account vehicle capacity constraints and then the clusters were improved by re-
assignments of customers among these clusters. In the second phase, the clusters
are transformed into an open vehicle route by solving a minimum spanning tree
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problem (MSTP). A tabu search algorithm was presented in[4]. Brandão gener-
ated initial solutions by using the nearest neighbor heuristic and the heuristic
based on a pseudo lower bound. The initial solution was then submitted to either
the nearest neighbor method or the unstringing and stringing procedure to im-
prove the solution cost. The neighborhood structure was defined based on insert
and swap operators. Fu et al.[5] built another tabu search. The initial solution
was generated by a farthest first heuristic and the neighborhood structure was
defined on four different neighborhood moves, i.e., vertex reassignment, vertex
swap, 2-Opt, and trail swap. Tarantilis et al.[6] developed an adaptive mem-
ory programming algorithm for the OVRP. The set of the OVRP solutions was
stored in an adaptive memory that was dynamically updated during the search
process. The sequences of vertices of these solutions were periodically extracted
from the adaptive memory, giving a larger weight to the routes belonging to the
best solution. The algorithm had two phases. In pool generation phase, the initial
pool of routes was generated using the weighted savings. The solutions were then
improved using a standard tabu search. In pool exploitation phase, promising
sequences of vertices of the solution are extracted, a solution was generated and
improved using tabu search, and the set of solutions was updated. In[7], a list
based threshold accepting (LBTA) was presented for solving the OVRP. It was
an annealing-based method using a list of threshold values to guide intelligently
local search. Local search are performing by using 2-opt, 1-1 exchanges (swap
two customers from either same or different routes), and 1-0 exchanges (move a
customer from its position on one route to another position on the same route or
a different route). Recently Li et al.[1] develops a variant of the record-to-record
travel algorithm developed to handle the very large standard VRP[8] to solve
the OVRP. The record-to-record travel was a deterministic variant of simulated
annealing. For the detailed description, we refer the reader to Li et al.[8,1].

Because of the intrinsic complexity, it is impractical to find an optimum for
many combinatorial optimization problems, e.g. OVRP in a moderate compu-
tation cost. A reasonable choice is to apply metaheuristic to quickly produce
good solutions. One of the most successful metaheuristics is Ant Colony Opti-
mization (ACO), which was a common framework for the existing applications
and algorithmic variants of ant algorithms. Ant Colony System (ACS), a par-
ticular instance of ACO, has proved to be competitive compared with other
metaheuristics. In this paper, we apply ACS to OVRP and propose an ACS
hybridized with local search and a post-optimization procedure for solving the
OVRP (ACS-OVRP). The rest of this paper is organized as follows. Section 2
describes ACS-OVRP in detail. The experimental results are reported in section
3. Section 4 concludes this paper.

2 Ant Colony System for the OVRP

2.1 Problem Definition

The OVRP is a relaxation of the classical VRP. From a point of view of graph,
the OVRP can be defined by a complete weighted graph G=(V , E), where
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V = {0, 1, · · · , n} is the node set, and E = {(i, j)|i, j ∈ V, i �= j} is the edge
set. Node 0 is the depot, and C = {1, 2, · · · , n} denotes customer set. n is the
number of customers. Each arc (i, j) is associated with a traveling distances
dij . Each customer i, has a fixed demand qi, to be delivered and a service time
δi. Each vehicle serves a subset of customers on its route, which begins at the
depot and ends at the last customer. Each vehicle has the same capacity Q
and the traveling cost constraint L. The objective of the OVRP is to determine
a set of minimum routes with minimum total traveling cost, which satisfy the
constraints: (i) Each vehicle starts at the depot. It doesn’t return to the depot, or
if it do so, it must go back to the depot along the same trip in the opposite order;
(ii) The service of each customer can only be fulfilled by one vehicle; (iii) The
total demand of each route can not exceed the vehicle capacity; (iv) The total
traveling cost of each route can not exceed the restriction L. The OVRP has
multiple objectives, i.e. minimizing not only the number of vehicles required,
but also the corresponding total traveled distanced. In general, a hierarchical
objective is considered in the literatures, the number of routes is the primary
objective and then the total travel distance is minimized for the obtained number
of vehicle routes.

2.2 Ant Colony System for Solving the OVRP

Ant Colony System (ACS) is first proposed by Dorigo and Gambardella[9] and
has proved to be one of the most promising ACO metaheuristics. In this section,
we propose an algorithm based on ACS for OVRP. It works as follows. At each
iteration, first a set of artificial ants probabilistically build the solutions, exploit-
ing a given pheromone model. Then the generated solution can be improved by
applying local search. After each ant builds its solution, the best-so-far solution
is used to update the pheromone trail. Unlike AS, a local pheromone update pro-
cedure is included in ACS. The main procedures are iterated until termination
condition is met. Additionally, a post optimization procedure is implemented to
further improve the obtained optima. The main procedures are as follows.

Solution Construction. In ACS, m ants concurrently build the solutions
of the OVRP by exploiting a probability model indicated by pheromone trail
and heuristic information. Each ant starts from the node 0 (the depot) and
probabilistically choose the next node until all customer nodes have been visited.
When ant k is located at customer node i, it probabilistically chooses next city j
to visit in the set of feasible nodes by using a pseudorandom proportional rule[9]:

j =
{

argmaxl∈Nk
i
{τα

il η
β
il}, if q ≤ q0

J, if q > q0
(1)

J is the customer node determined over the following probability distribution:

pk
ij =

τα
ijη

β
ij

Σl∈Nk
i
τα
il η

β
il

, if j ∈ Nk
i (2)
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where Nk
i is the set of all feasible nodes j still to be visited. τij is the pheromone

trail indicating the desirability of visiting customer j directly after customer i.
ηij is the heuristic information and it shows the heuristic desirability of choosing
customer j as the next city. In the context of OVRP, we consider ηij = 1/dij

as in TSP, where dij is the travel distance between node i and j. α and β are
two parameters indicating the relative importance of the pheromone trail and the
heuristic information. q is a random number uniformly distributed in the interval
[0, 1]; q0 is a control parameter and 0 ≤ q0 ≤ 1. From equation (1), the node j

maximizing the product τα
il η

β
il will be chosen as the next city with probability q0.

While with probability 1−q0, the city j is chosen with the probability defined in
equation (2). q0 is an important parameter, which controls the tradeoff between
the exploration and exploitation[9].

Local Search. The vast literatures indicate that ACO hybridized with a local
search can obtain better solution. In this section, we consider some local search
algorithm embedded in the ACS-OVRP. Our implementation of local search
oscillates between the inter-route as well as intra-route improvements. For the
intra-improvement, we use a method similar to 2-Opt for each vehicle route of
the OVRP. When implementing 2-Opt to each vehicle route, the termination
condition used is the best-accept (BA) strategy, i.e. all the neighbors are ex-
amined until no improvement can be obtained. In order to get an inter-route
improvement, an exchange similar to 2-Opt*[10] is used. But it is modified in
consideration of the property of OVRP, namely the route is not a tour. Another
local search is swap operator, which performs by exchanging the customer in
one route with other customer in another route. In the implementation for the
OVRP, one customer or two adjacent customers are considered for swapping. We
also use another local search, relocate operator. The basic idea is to eject a small
sequence of customers (here we consider one customer) at the current location
and try to improve the solution by reinserting the sequence at another location.
Relocate operator is suitable for inter-route and intra-route improvements.

Except for the 2-Opt, other operators are implemented with FA criteria, i.e.
they will stop if the first improvement is obtained. Local search is implemented
in a random order. After the ants finish solution construction, we first produce
a random permutation of integers 1-4 and then the local search is implemented
in turn according to the permutation. Here we gradually increase the number
of ants applying local search, to obtain a tradeoff between solution quality and
computation time. ACS-OVRP first allows only the iteration-best ant to apply
local search. Then the number Elitist num of ants applying local search is in-
creased by one every num iter iterations and a upper bound is set to 10. When
triggering local search, the ants are first ranked in terms of travel cost, and then
only the Elitist num best-ranked ants are chosen to apply local search.

Pheromone Trail Update. In the ACS-OVRP, the pheromone trail is up-
dated by two updating procedures, local updating and global updating.

The local pheromone trail update rule is triggered immediately after the ant
chooses a next city. The updating equation is as follows:
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τij = (1 − a) · τij + a · τ0 (3)

where a (0 < a ≤ 1) is the evaporation rate. τ0 is the initial pheromone trail
and a good choice is to set τ0 = 1/(n · Lf). Lf is the length of initial solution
generated by the nearest neighbor heuristic, and n is the number of customers.
The effect of local updating is to reduce the pheromone trail on the visited arcs
at current iteration, making these arcs less attractive for the following ants.

After all ants finish constructing their solutions the best-so-far ant is then
allowed to deposit additional pheromone trail. The basic idea is that the in-
formation of the best-so-far solution is indicated by the pheromone trail and
the arcs included in the best-so-far solution will be biased by other ants in the
following iterations. The updating equation is as follows:

τij = (1 − ρ) · τij + ρ/Lbs (4)

where Lbs is the length of the best found solution. 0 < ρ ≤ 1 is pheromone evap-
oration rate. In this updating equation, both pheromone evaporation and new
pheromone deposit are only applied to the arc (i, j) included in the best solution.
In consideration of property of OVRP, pheromone trail on the arc connecting
the last customer and the depot, i.e. the arc (i, 0), i ∈ C, will not be updated.

Post-Optimization. In our ACS-OVRP, we consider a post-optimization pro-
cedure to further improve the best found solutions. When the termination con-
dition of the main loop is met, the post-optimization procedure is performed to
further improve the solution. Our Post-Optimization procedure consists of the
above four operators mentioned in the subsection “Local search”. The operators
are implemented in different orders to obtain the best possible improvement.

3 Experiment and Results

3.1 Experiment Setting

In this section, ACS-OVRP was tested on a set of problems. The problems C1-
C14 were taken from Christofides et al.[11] and the data can be downloaded from
the web (http://people.brunel.ac.uk/˜mastjjb/jeb/info.html). The properties of
the problems are summarized in Table 1. L is the maximum route length re-
striction which is the original route length restriction multiplied by 0.9 because
the original problems were designed for VRP, not for OVRP[4,5]. For the vehi-
cle without driving time limit, we set L = ∞. n is the number of customers.
Q is the vehicle capacity. Kmin is the estimated minimum number of route by
�Σn

i=1di/Q�. δ is service time. All the experiments were implemented on a Pen-
tium IV 1.8GHz with Matlab 7.0 simulation platform.

In the preliminary experiment, we checked the performance of ACS-OVRP
under different parameters and found that ACS-OVRP performed better under
the following parameters: ρ = a = 0.1, number of ants, 20; the size of candidate
list, �n/5�; the maximum iterations, 300. num iter = 50, α = 1, and β = 2.
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Table 1. Characteristics of the testing problems

No n Q L δ Kmin No n Q L δ Kmin

C1 50 160 ∞ 0 5 C8 100 200 207 10 8
C2 75 140 ∞ 0 10 C9 150 200 180 10 12
C3 100 200 ∞ 0 8 C10 199 200 180 10 16
C4 150 200 ∞ 0 12 C11 120 200 ∞ 0 7
C5 199 200 ∞ 0 16 C12 100 200 ∞ 0 10
C6 50 160 180 10 5 C13 120 200 648 50 7
C7 75 140 144 10 10 C14 100 200 936 90 10

3.2 Computational Results and Comparison with Other Algorithms

We tested the performance of ACS-OVRP and compared it with other methods
in the literatures. The algorithms compared with ACS-OVRP are as follows.
SP: the method of cluster first, route second in[3]. TSB1 and TSB2: tabu search
algorithm in[4]. TSB1 and TSB2 denote the tabu search algorithms with dif-
ferent initial solutions, namely the initial solutions produced by K-tree with
unstringing and stringing, and by nearest neighbor heuristic. AMP: adaptive
memory programming algorithm (AMP)[6]. BATA: the backtracking adaptive
threshold accepting algorithm[12]. LBTA: the list based threshold accepting
(LBTA) algorithm[7]. TSF and TSR: tabu search algorithm with different initial
solutions[5]. In TSF, the initial solutions are produced by a farthest first heuris-
tic. The ones of TSR are randomly generated. We note that some results are not
correct in[5] because of some errors in program. We got the corrected results and
reported them here. ORTR: the record-to-record travel algorithm[1]. All meth-
ods consider the number of routes as the primary objective. As in Brandão[4],
the reported solutions contain only the traveling cost without service time.

We first studied the effect of post-optimization procedure. The results are
reported in Table 2. It can be seen that the effect of the post-optimization is
slightly significant and the obtained improvement is quite obvious, especially for
large-scale testing problem. In particular, the solution quality of problem C1 and
C2 can not be further improved. It is probably due to the fact that ACS-OVRP
has found the best solutions for these problems. But it is an interesting observa-
tion that the solution quality of big problem, e.g. C4 and C5, has been improved
by using post-optimization procedure. The results show that it is valuable to
incorporate post-optimization procedure to further improve the solution quality.

Table 2. Summary of the effects of Post-Optimization

C1 C2 C3 C4 C5 C6 C7
Post-Opt 5/416.1 10/571.7 8/649.0 12/748.4 16/1017.3 6/413.0 11/568.5
No Post-Opt 5/416.1 10/571.7 8/654.9 12/917.3 16/1083.2 6/413.1 11/568.5

C8 C9 C10 C11 C12 C13 C14
Post-Opt 9/647.9 14/764.2 17/903.1 7/685.3 10/536.3 11/903.8 11/593.1
No Post-Opt 9/653.7 14/770.5 17/936.4 7/692.0 10/538.3 12/924.4 11/597.6
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Table 3. Comparison of the optimums produced by ACS-OVRP and other algorithms

Problem SP TSB1 TSB2 AMP BATA
C1 5/488.20 5/416.1 5/438.2 6/412.96 6/412.96
C2 10/795.33 10/574.5 10/584.7 11/564.06 11/564.06
C3 8/815.04 8/641.6 8/643.4 9/641.77 8/642.42
C4 12/1034.14 12/740.8 12/767.4 12/735.47 12/736.89
C5 16/1349.71 16/953.4 16/1010.9 17/877.13 16/879.37
C6 6/412.96 6/416.00
C7 10/634.54 11/580.97
C8 9/644.63 9/652.09
C9 13/785.2 14/827.6
C10 17/884.63 17/946.8
C11 7/828.25 7/683.4 7/713.3 10/679.38 9/679.60
C12 10/882.27 10/535.1 10/543.2 10/534.24 10/534.24
C13 11/943.66 11/994.26
C14 11/597.3 12/651.92
Problem LBTA TSF TSR ORTR ACS-OVRP
C1 6/412.96 5/416.1 5/416.06 5/416.06 5/416.06
C2 11/564.06 10/569.8 10/567.14 10/567.14 10/571.70
C3 9/639.57 8/641.9 8/643.05 8/639.74 8/649.02
C4 12/733.68 12/742.4 12/738.94 12/733.13 12/748.40
C5 17/870.26 17/879.9 17/878.95 16/924.96 16/1017.28
C6 6/413.0 6/412.96 6/412.96 6/412.96
C7 11/568.5 11/568.49 11/568.49 11/568.49
C8 9/648.0 9/647.26 9/644.63 9/647.94
C9 14/767.1 14/761.28 14/756.38 14/764.15
C10 17/904.1 17/903.10 17/876.02 17/903.10
C11 10/678.54 7/717.2 7/724.46 7/682.54 7/685.32
C12 10/534.24 10/537.8 10/534.71 10/534.24 10/536.33
C13 12/917.9 12/922.28 12/896.50 12/903.82
C14 11/660.2 11/600.66 11/591.87 11/593.08

In Table 3, we compared the best found solutions of ACS-OVRP with those
of other algorithms. The best solution corresponding to each problem among all
the algorithms is marked in bold face. The results show that:

(a) No algorithm can dominate other algorithms in terms of the number of the
vehicles and the corresponding traveling cost over all the problems. But ORTR
performs well over most of the problems.

(b) ACS-OVRP outperforms some algorithms in some problems. For example,
for C2 ACS-OVRP found better solutions with less vehicle than AMP, BATA
and LBTA. Similar results can be observed on C3 and C5. Especially for problem
C11, the best solutions found by AMP and LBTA respectively have 3 and 2 vehi-
cles more than the one by ACS-OVRP. It can also be seen that our proposed algo-
rithm outperforms TSR and TSF on some problems e.g. C5, C11, C13 and C14.

(c) ACS-OVRP appears to be very competitive with other algorithms on
many problems. But for some large problem, for example, C5 and C10, ORTR
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outperforms our approach. The best found solution of ACS-OVRP has the same
fleet size as that of ORTR, but higher traveling cost. It may be due to that
ORTR is specially designed for large-scale VRPs and OVRPs.

4 Conclusions

In this paper, we propose a metaheuristic coupled ACS with local search for
the OVRP. Moreover, a Post-Optimization procedure is introduced to further
improve the solutions. The effects of Post-Optimization procedure were proved
by the computation results. Finally, we compare the performance of ACS-OVRP
with those of other algorithms. The comparison results show that ACS-OVRP
is an efficient algorithm for solving the OVRP. During the implementation, we
found that the computation cost of local search accounted for a large proportion
of total time consumption because of their intrinsic computation complexity.
How to speed up the implementation of local search in ACS-OVRP and other
efficient local search need to be studied in the future work.
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9. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Massachusetts
(2004)

10. Potvin, P., Rousseau, J.: An exchange heuristic for routing problem with time
windows. Journal of the Operational Research Society 46(1433-1446) (1995)

11. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In
Christofides, N., Mingozzi, A., Toth, P., Sandi, C., eds.: Combinatorial optimiza-
tion. Chichester, UK: Wiley (1979) 315–338

12. Tarantilis, C., Ioannou, G., Kiranoudis, C., Prastacos, G.: A threshold accepting
approach for the open vehicle routing. RAIRO Opeartions Research 38 (2004)
345–360



An Ant-Based Approach to Color Reduction

Avazeh Tashakkori Ghanbarian and Ehasanollah Kabir

Department of Electrical Engineering, Tarbiat Modarres University, Tehran, Iran
a t ghanbarian@hotmail.com

Abstract. In this article a method for color reduction based on ant
colony algorithm is presented. Generally color reduction involves two
steps: choosing a proper palette and mapping colors to this palette. This
article is about the first step. Using ant colony algorithm, pixel clusters
are formed based on their colors and neighborhood information to make
final palette. A comparison between the results of the proposed method
and some other methods is presented. There are some parameters in the
proposed method which can be set based on user needs and priorities.
This increases the flexibility of the method.

1 Introduction

Researchers in the field of artificial intelligence are inspired by the nature for
many years. We can point to neural networks, evolutionary algorithms and arti-
ficial immune system as well-known examples. Also some algorithms have been
introduced based on swarm behavior studies [1,2].The first clustering method
based on ant colony was introduced by Deneubourg et al. in 1990 [2]. They mod-
eled ants as simple agents which move randomly in a square grid. Data items
are scattered randomly on this grid and can be picked up, moved and dropped
by ants. In this model ants are likely to pick up the items which are surrounded
by dissimilar items and have tendency toward dropping them near similar items.
By iterating these actions, the distribution of items on the grid will change. This
distribution is used as a feedback and by repeating these operations, the items
are clustered on the grid.

In 1994 Lumer and Faieta expanded Deneunbourg’s model for data analysis
[3]. They presented a modified method on numeric data and improved conver-
gence time. They described data items through numeric vectors and used Euclid-
ean distance to calculate the distance between them. Generally this algorithm
can be used on any data set to which a function can be declared as a measure-
ment of dissimilarity. Also they deployed a short-term memory to memorize last
transmitted items and the position they were dropped. Indeed they introduced
the inhomogeneous populations of agents for the first time which are the agents
with different individual initialized parameters.

After Lumer and Faieta, Kuntz et al. proposed a method using ant-based clus-
tering for graph partitioning [4]. Also other studies proceeded ant-based clustering
applicability in document retrieval and visualization. In [5] Deneunbourg’s basic
algorithm was deployed on web page categorization and visualization. Handl and
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Meyer used ant-based clustering to create topic maps dynamically [5]. Other ap-
proaches combine ant colony with other methods like c-means. Ant-based cluster-
ing makes initial clusters for c-means instead of having no primary information.
On the other hand c-means easily handles misplaced or free items and improves
quality [6]. In another approach real ants’ behavior is simulated by a hybridiza-
tion of ant-based clustering and fuzzy if-then rules [7]. [8] proposes a new model
based on ants’ chemical recognition system to cope with unsupervised clustering
problems.

Image color reduction or quantization is one of the basic image processing
techniques. Color reduction has two main steps: 1- K colors are chosen from the
original ones to form the color palette. 2- The output image is reconstructed using
this palette. Obviously quality of the output image depends on the first step,
palette design. In this article a method for palette design with pre-determined
number of colors using ant-based clustering is introduced. The rest of the paper
is organized as follows. Section 2 presents the principal characteristics of the
proposed method and also introduces the color reduction algorithm. Parameters
are described in Section 3. Section 4 compares the results with 5 other methods
and finally Section 5 draws the conclusion.

2 The Proposed Method

In this section general arrangement, block diagram and the algorithm of the pro-
posed method is introduced. Figure 1 shows the block diagram of the proposed
method. In the first phase, a modified ant-based clustering algorithm is applied
to image pixels. The second phase is dedicated to choosing a representative for
each cluster. In the third phase, pixels are mapped to the formed palette and
color reduction is completed. The simplest method is used for mapping pixels to
the palette. In this method the closest item to each color in the palette replaces
it in the final reconstructed image. Modified ant-based clustering algorithm is
discussed in the following.

Fig. 1. Color reduction method

2.1 Modified Ant-Based Clustering

This method is based on the algorithm presented by Handl [5]. This algorithm
is modified to apply to color clustering and color reduction problem. The most
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important modification is that in the database related applications, first the
data items are randomly spread on the grid. However in the proposed method
the algorithm is applied on the image itself. One advantage is that color and
adjacency information are considered simultaneously in the clustering process.
Functions used in this method are introduced as follows.

d(i, j) = |Ri − Rj | + |Gi − Gj | + |Bi − Bj | (1)

f(i) = max(0,
1
δ2

∑
j

(1 − d(i, j)
α

)) (2)

d (i,j) defines dissimilarity between items i and j in RGB space. f(i) is a neigh-
bourhood function for pixel i. Parameter α determines the influence of dissim-
ilarity function on f(i). δ is the radius of perception. In this method, δ is set
to 1 so that 8 pixels around each pixel are considered in calculating f(i). Some
neighbours to i may be empty since their pixels have been picked up previously.
Consequently less items are involved in calculating f(i), thus f(i) is smaller in
sparse areas than it is in dense areas. Likewise similarity in dense areas is more
than the similarity in sparse areas; therefore ants prefer to drop their items in
dense areas rather than in sparse areas. This leads to condensing areas.

The main algorithm is presented in Alg.1. The first step includes initialization
of the parameters. These parameters are discussed in details later. Then the
algorithm’s main loop starts. In the beginning of each iteration, ant picks up
an item randomly, then it searches its memory to find a similar item. The best
match for pixel i is the one with the least dissimilarity to it. If dissimilarity is
less than the memory threshold, MTh, ant will directly drop the pixel in place
of the best match and update its memory. Otherwise it will start the inner loop.
This loop starts with taking a step towards the best neighbour, which is a pixel
with the lowest d(i,j). This method has chosen due to meaningfulness of pixel
neighbourhood in the image. Then neighbourhood function,f(i), is calculated for
the carried pixel, according to the new position, and its value is compared to
the drop threshold, DTh. If it is greater than DTh , the current position is
suitable for dropping the carried pixel, so ant drops the pixel. Otherwise ant
keeps on performing the inner loop instructions. This is repeated until ant drops
the carried pixel on a better point or it passes K steps, in this case the carried
pixel is deleted, in the case that the picked up pixel is a noisy pixel or the ant has
chosen a wrong path. At the end, when the ant repeats the outer loop sufficiently,
its memory is filled with the information needed to form the palette. Simply we
will use the heaps’ representatives which are in the ant’s memory to form the
palette.

In our method, unlike Handl’s method, which allows one item per cell, there
can be more than one item in one cell. In other words in this method each cluster
is created by gathering data items in a cell, making a heap. The idea of heaps
have also been used in some ant-based clustering approaches [6, 7].Using heaps
will lead to simplicity in dropping items, spatial discrimination of clusters and
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1- Initialize ant parameters
2- For #iteration do
3- Pick up a random pixel
4- Check memory for similar item
5- If similar item exists then update the memory and drop the item
6-else repeat

(a) Move to the best match neighbor
(b) If f(i) > DTh then drop pixel

until item has been dropped or K moves has done
7-End for
Alg. 1. The proposed algorithm

simpler color assignment at the end of the algorithm (Alg. 1). As a consequence
random picking will be used not only to increase the variety of the pixels seen
by the ant but also to decrease the execution time.

Fig. 2. Two clusters made in Handl method are shown on the left. The items of two
clusters locating beside each other can be hardly recognized. Two clusters created by
the proposed method are shown in the right.

3 Parameters Analysis

As described before, the proposed algorithm starts with random picking of the
image pixels which is simply a sampling phase. The result is directly affected
by this phase. We used large number of pixels in all samples to avoid oscillating
result due to different samples. Furthermore in order to increase the precision and
reliability, the average of some consecutive results is used in analyses. 4 images
which have been used for analysis are shown in Fig. 5, 3 of these images are from
USC1 database and the last one, Flower image, is an arbitrary image chosen as a
representative of images with large number of colors. In diagrams demonstrated
in this section, reduced size images have been used because average result of at
least 5 runs should be calculated for each point shown in the diagrams. ACDSee
3.1 with lanczose filter and highest quality was deployed for size reduction of
images to 256 × 256. However reported AQE2 is very close or equal to AQE of
the original images in every case. The test platform was a Pentium III 800 MHz
with 256 MB RAM. The algorithm was implemented by Visual Basic 6.0. For
statistical comparison we used AQE as a measure for the amount of distortion
1 http://sipi.usc.edu/services/database/Database.html
2 Average Quantization Error.
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in the quantized image. If A(i,j,k) is k’th color element of (i,j) pixel of original
image and B(i,j,k) is the corresponding color element in the quantized image,
then AQE is defined as follows:

AQE =
1

MN

M∑
i=1

N∑
j=1

√√√√ 3∑
k=1

(A (i, j, k) − B (i, j, k))2 (3)

3.1 Parameter α

Parameter α in Eq. 2, determines the influence of dissimilarity function on f(i).
Mean results of 5 runs are shown in Figs. 3a. and 3b. Other parameters are
MTh=35 and DTh=0.6 and ant memory size is 64. When α increases, the number
of steps ant passes before dropping the item is reduced. This is because the
dissimilarity influence on f(i) is reduced and the ant is more likely to find a
similar pixel sooner. On the other hand Fig. 3a. shows that increasing α has
little effect on the quality. Therefore it is recommended to use bigger α unless
the quality of the image is highly important. Also Fig. 3b. shows that the more
different colors are in the image, the more the execution time will be.

3.2 Drop Threshold

Drop threshold, DTh, determines whether a point is a proper point for dropping
or not (Alg. 1). As it was demonstrated for α, different values between 0.1 and 1.1
was tested for DTh which is a meaningful range. Results showed that ant must
pass more steps due to increment of DTh, because it should find more similar
pixel each time which gets eventually harder. This leads to longer execution. On
the other hand, increasing the DTh does not have much effect on result’s quality
and AQE remains almost constant.

3.3 Memory Threshold

Memory threshold, MTh, determines whether the picked up pixel is similar
enough to its closest item in the memory or not (Sec. 2). Figs. 3c. and 3d.
show MTh effect on the mean of AQE and execution time for 5 runs. Other
parameters are set to α=1 and DTh=0.6. In most images AQE is reduced until
MTh=35 and image quality improves. Just in Lenna image, the quality improves
until MTh=20 then it deteriorate gradually. That’s because the color spectrum
is limited in Lenna image and lower thresholds result in least distortion. In other
cases, due to increasing MTh, more pixels can be dropped by using items in ant’s
memory which leads to more memory updates. The more the items in memory be
updated, the better the cluster representative will be and finally the AQE will be
reduced. Also dropping pixels by remembering items in the memory reduces the
execution time. On the other hand by increasing MTh more than 35, the pixels
which should form separate memory items are mixed with the previous items in
memory so AQE increases. Thus MTh=35 results in better quality of images.
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Fig. 3. a) Effect of α on AQE (MTh=35, DTh=0.6) b) Effect of α on execution time
(MTh=35, DTh=0.6) c) MTh effect on AQE (α=1, DTh=0.6) d) MTh effect on exe-
cution time in seconds (α=1, DTh=0.6)

4 Experimental Results

In this section the results of the proposed algorithm are compared with 4 other
color reduction methods. Fig. 4 shows the results of Octree, Center-cut, C-Means,
Bing’s method and our method. Also Table 1 lists AQE of these results for
more precise comparison. All results reported here for other methods are from
reference [10]. It is worth noting that all parameters of the algorithm, as shown
in Fig. 6, are set based on the experiments on 4 images of Fig. 5. As it can be
seen in Fig. 4 and Table 1 resulting images from Octree, center-cut and C-means
methods show obvious degradations. This is mainly because these methods do
not use pixel neighborhood information in clustering. Also Bing’s method does
not use neighborhood information efficiently enough to produce high quality
results with the least amount of distortion (Table 1).

Fig. 4. Comparison of color quantization methods a) Original Image b) Octree c)
center-cut d) C-means e) Bing’s method f) proposed method (as α=1, DTh=0.6,
MTh=35)



370 A. Tashakkori Ghanbarian and E. Kabir

Table 1. AQE comparison of 5 methods

Method Octree Center-cut C-Means Bing’s Method Proposed Method
AQE 14.26 12.08 13.78 13.36 10.52

Fig. 5. Original Images

Fig. 6. Result images reduced to 64 colors by the proposed algorithm (α=1, DTh=0.6,
MTh=35, X=20, Y=10

5 Conclusion

In this paper ant-based clustering ability for color reduction was demonstrated.
Parameters in this method can be simply set to consider user priorities. This
increases flexibility of the algorithm and also makes it easy for nonprofessional
users. Also with some changes, like just replacing the dissimilarity function, this
solution can be extended to reduce colors in gray scale images.

Basically using color information together with pixels’ neighborhood informa-
tion in the proposed method is the main cause of improving results. Neigh-
borhood information is deployed in 3 ways in our method: 1. in neighbor-
hood function. 2. in ant movement for finding a proper place to drop the car-
ried pixel. 3. limiting maximum number of steps the ant can pass to drop a
pixel.

Since all solutions based on behavior of ants are inherently parallel, more re-
search can be done on parallelizing the proposed methods. Also as it has been
shown in data clustering, for example [6] and [7], combining ant-based cluster-
ing with other methods like fuzzy methods or C-means improves the execution
time.
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Abstract. Ant colony optimization has been one of the most promis-
ing meta-heuristics since its appearance in early 1990s but it is special-
ized in discrete space optimization problems. To explore the utility of
ACO in the filed of continuous problems, this paper proposes an orthog-
onal search embedded ACO (OSEACO) algorithm. By generating some
grids in the search space and embedding an orthogonal search scheme
into ACO, the search space is learned much more comprehensively with
only few computation efforts consumed. Hence, solutions are obtained in
higher precision. Some adaptive strategies are also developed to prevent
the algorithm from trapping in local optima as well as to improve its per-
formance. Moreover, the effectiveness of this algorithm is demonstrated
by experimental results on 9 diverse test functions for it is able to obtain
near-optimal solutions in all cases.

1 Introduction

Ant Colony Optimization (ACO) was first proposed by Marco Dorigo in the
early 1990s in the light of how ants manage to establish the shortest path from
their nest to food sources [1]. By now, the idea of ACO has been used in a
large number of intractable combinatorial problems and become one of the best
approaches to traveling salesman problem [2], quadratic assignment problem [3],
data mining [4], and network routing [5].

In spite of its great success in the field of discrete problems, the uses of ACO
in continuous problems are not significant. G. Bilchev and I. C. Parmee [6] first
introduced an ACO metaphor for continuous problems in 1995. Later, several ant
algorithms were proposed. E.g., Mathur et al. [7] improved Bilchev and Parmee’s
idea and proposed a bi-level search scheme using global ants and local ants. In
this algorithm, crossover and mutation operators derived from GA were also
adopted for global search. Based on some other behaviors of ants, two algorithms
called API [8] and CIAC [9] were proposed, but they did not follow the framework
of ACO strictly. In another approach described in [10], the probability density
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No.60573066 and NSF of Guangdong Project No. 5003346 and Guangdong Key Lab
of Information Security.
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functions are applied for pheromone maintenance. Overall, though some good
performances have been achieved, there is still a long way before truly success
in exploiting the utility of ACO in continuous space optimization problems.

This paper aims at proposing an orthogonal search embedded ACO (OS-
EACO) algorithm for continuous function optimization problems. Different from
the above algorithms, a number of stochastic and dynamic grids are generated
in the search space. The main idea of ACO is used to handle the global search
procedure of the algorithm. By embedding the orthogonal design technique, the
grids could be learned more comprehensively by the ants. Also, an elitist scheme
and an adaptive radius scheme are designed to avoid stagnation situations as
well as to improve performance. The experimental results from 9 test functions
demonstrate the effectiveness of the algorithm as near-optimal solutions could
be obtained in all test cases.

2 Background

2.1 Ant Colony Optimization

The idea underlying ACO algorithms is to simulate the autocatalytic and pos-
itive feedback process of the forging behavior of real ants. Once an ant finds a
path, pheromone is deposited to the path. By sensing the pheromone ants can
follow the path discovered by other ants. This collective pheromone-laying and
pheromone-following behavior of ants has become the inspiring source of ACO.

Informally, the mechanism underlying ACO can be considered as the inter-
play of the following three procedures [11]: 1) Solution Construction, in which
solutions are built by ants using pheromone (and heuristic information). 2)
Pheromone Management, in which pheromone is deposited or evaporated. 3)
Daemon Actions, in which centralized controls are executed, e.g., local search
procedure or the procedure that finds the best-so-far ants. Daemon actions are
optional.

2.2 Orthogonal Experimental Design

Experiments are carried out to study the effects of different factors. However, it
takes lots of time and resources to accomplish a complete factorial experiment
which makes measurements at each of all possible combinations. The goal of
the orthogonal design is to perform a minimum number of tests but acquire
the most valuable information of the considered problem [12][13]. It performs
by judiciously selecting a subset of level combinations using a particular type
of array called the orthogonal array (OA). As a result, well-balanced subsets
of level combinations will be chosen as representative members. Each column
in the OA represents a specific factor (variable) in the considered problem and
each row corresponds to a single test. The OA is notated as Ln(Sm), where n is
the number of rows and also the number of tests, m is the number of columns,
S represents the number of levels in each factor. More details about the OA can
be found in [12][13]. Fig.1 gives two examples of orthogonal arrays.
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Fig. 1. Orthogonal arrays L4(23) and L9(34)

Based on the OA, orthogonal design can be implemented as follows. For ex-
ample, we consider a function optimization problem:

max f(x1, x2, x3) = x1 + 10x2 − 100x3, x1 ∈ {1, 2}, x2 ∈ {3, 4}, x3 ∈ {5, 6} (1)

The factors of the problem are x1, x2, x3 which are denoted as A,B,C in Table
1. Each factor has two levels, e.g. x1 has levels {1, 2}. The OA L4(23) is used, so
the corresponding values to the array can be shown in Table 1. Fig. 2 shows the
placement of the selected four combinations of factors. The complete arrange-
ment of the three factors are shown as AiBjCk (i = 1, 2; j = 1, 2; k = 1, 2) in
the cubic. By using the orthogonal design technique, only four vertexes A1B1C1,
A1B2C2, A2B1C2 and A2B2C1 are chosen, which are marked by solid notes in
Fig. 2. Nevertheless, these represented combinations of factor levels are sepa-
rated evenly so that they can help us to study the effectiveness of each factor
and to reduce the cost of the experiment.

Table 1. An example of orthogonal experimental design using L4(23)

test factors values
number A B C x1 x2 x3

1 1 1 1 1 3 5
2 1 2 2 1 4 6
3 2 1 2 2 3 6
4 2 2 1 2 4 5

A1B1C1 A2B1C1

A1B2C1

A1B1C2

A1B2C2

A2B1C2

A2B2C1

A2B2C2

Fig. 2. An example of orthogonal experimental design

3 The Orthogonal Search Embedded ACO Algorithm

The characteristics of OSEACO are mainly in the following four aspects: 1) ap-
plying ACO to the global search; 2) incorporating an orthogonal search scheme;
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3) generating stochastic and dynamic grids; and 4) employing an elitist strategy
and an adaptive radius scheme.

Informally, its procedural steps are summarized as follows.

Step 1) Initialization: Grids are created and pheromone values are initialized.
Step 2) Grid Selection: Each ant chooses a grid to build its solution according

to a grid selection rule in which pheromone values in each grid are made use of.
Step 3) Orthogonal Search: Once an ant chooses a grid to explore, this grid

will be improved by an orthogonal search strategy.
Step 4) Elitist Set Construction: After all ants have built their solutions, the

best grids are protected in an elitist set and the other grids will be regenerated.
Step 5) Pheromone Updating: Pheromone values are updated on elitist grids.
Step 6) Termination Test: If the test is passed, stop; otherwise go to step 2).

Below, the algorithm will be described in detail. To facilitate understanding
and explanation of the proposed algorithm, we take the optimization work as
minimizing an d-dimension object function f(X), X = (x1, x2, . . . , xd). The
lower and upper bounds of variable xi are lowi and upi. Nevertheless, without
loss of generality, this scheme can also be applied to other continuous space
optimization problems.

3.1 Initialization

At first, N grids (G1, G2, . . . , GN ) are created in the search space randomly.
Here, a grid Gi(1 ≤ i ≤ N) is defined as a hyper-geometric solid with several
attributes, including its center point Xi = (xi1, xi2, . . . , xid), search radius of
each factor Ri = (ri1, ri2, . . . , rid), and its fitness value vi = f(Xi). There are
three main characteristics of these grids. First, they are stochastic, for they are
initialized randomly. Second, they are adaptive, for the radiuses of their variables
can be changed in terms of need. Third, they are movable, for they can move
to areas with higher potential. In other words, the center point of Gi can vary
from Xi to X ′

i if f(X ′
i) ≤ f(Xi). Grids are also the carriers of pheromone. The

pheromone values on grid i is notated as τi(1 ≤ i ≤ N). Therefore, we should
set τ1 = τ2 = = τN = τinitial in this step where τinitial is a constant value we
set previously as the initial pheromone values on all grids.

3.2 Grid Selection

Let it be M ants in the colony. Each ant builds a solution to the considered
problem by applying the grid selection rule. The rule is given by (2), which is
the stochastic greedy selection scheme. A random number q ∈ [0, 1] is generated
and is compared to a parameter q0(0 ≤ q0 ≤ 1). If q is not larger than q0, the
grid with the largest pheromone value will be selected. Otherwise, a stochastic
proportion rule S according to the probability distribution given by (3) is per-
formed. This rule is always referred to as the roulette wheel selection rule, in
which the probability of selecting a grid is in direct proportion to the value of
the grid’s pheromone trails.
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s =
{

arg max{τi}, 1 ≤ i ≤ N, if q ≤ q0
S, otherwise (2)

ps = τs/
∑N

i=1
τi (3)

3.3 Orthogonal Search

Once a grid is selected, orthogonal search is applied to improve this grid. In
order to introduce the orthogonal design technique to this case, we first consider
that each variable of the object function corresponds to a single factor of the
experiment. In other words, d factors can be acquired from (x1, x2, . . . , xd). Then,
l levels are obtained in each factor. Considering the jth (1 ≤ j ≤ d) vector of grid
Gi, its search range is [xij−ran·rij , xij+ran·rij ], where ran is a random number
distributed in [0, 1]. We divide this range into l−1 segments and acquire l dividing
values as l levels. The value of the kth (0 ≤ k ≤ l−1) level is xij −rij +2krij/(l−
1). By doing this, the optimizing task is transformed into a d-factor experiment
with l levels in each factor. Hence, the idea of orthogonal design can be used.
After choosing an OA in terms of d and l, a small fraction of combinations of
factor levels are selected. We call these combinations as the orthogonal points.
A simple example of orthogonal search has been shown previously in Fig. 1. In a
3-dimension grid, we obtain 2 levels from each vector simply by using two ends
of each edge. Then OA L4(23) is applied and 4 orthogonal points are selected.

Soon after all orthogonal points have been selected, they are evaluated in the
object function f . Assume that X ′

i is the orthogonal point that has the best
fitness value. If f(X ′

i) < f(Xi), X ′
i will be the new center point of the grid. That

is, the grid moves from Xi to X ′
i if better points are found during the orthogonal

search procedure.
Another characteristic of a grid is adaptive, that is, the radiuses of all variables

(ri1, ri2, . . . , rid) in grid Gi would adjust themselves during the algorithm by
applying (4), where δ(0 ≤ δ ≤ 1) is a parameter.

for all j(1 ≤ j ≤ d) rij =
{

rij/δ, if the center point of Gi is replaced
rij · δ, otherwise (4)

This can effectively help us to improve the grid by deciding whether to move it
faster or to let it shrink. If the center point of the grid is not substituted, it is
probably that the best region of the grid is around its center so we decrease its
radius to obtain a more precise solution. Otherwise, the grid may be out of the
trough of a function. In this case, we enlarge the grid to make it move faster to
a better area.

3.4 Elitist Set Construction

After all ants have built their solutions, an elitist strategy is employed to reserve
the most valuable grids. N is the number of grids. We only reserve μN grids
for further exploitation in an elitist set, where μ(0 ≤ μ ≤ 1) is a parameter.
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All grids are ranked according to their fitness values and only the best N grids
are preserved. All other grids would be deserted and regenerated randomly. All
attributes of a deserted grid should be reinitialized, including its center point,
radiuses, and pheromone values. Additionally, redundant identical members in
the elitist set should be deleted. That is, if two or more grids in the elitist set
appear to be located in the same area of the search space (the Euclid distances
between the center points of two grids become smaller than a small enough
value), we preserve one of them and desert the others.

3.5 Pheromone Updating

As the pheromone trails on non-elitist grids have been reinitialized, we only apply
this step to the grids in the elitist set. A fraction of pheromone would evaporate
and the ants which visit the elitist grids are allow depositing pheromone on
the grids using a rank-based scheme. Grids have been ranked at the elitist set
construction step.

Pheromone values of elitist grids are updated by applying rule (5) where τi

is the pheromone values on grid i, τinitial is the initial pheromone values to all
grids, ρ(0 ≤ ρ ≤ 1) is a parameter, μN is the size of the elitist set, ranki is
the rank of grid i, and counti is the number of ants that choose grid i in that
iteration.

τi ← (1 − ρ)τi + ρτinitial(μN − ranki + counti), if gridi ∈ Elitist Set (5)

In terms of this rule, a better grid that visited by more ants will receive larger
amount of pheromone.

4 Computational Results and Discussing

To demonstrate the effectiveness of the proposed algorithm, 9 test functions
in table 2 are selected from [14] where we can obtain more information about
these functions (e.g., search domains and minimum function values). f1 − f4 are
unimodel functions and f5 − f9 are multimodel functions. The performances of
OSEACO are compared with two other heuristic approaches, i.e., PSO [15] and
API. Parameters of OSEACO are set as: M = 100, N = 30(in unimodel cases)
or 200(in multimodel cases), τinitial = 0.001, δ = 0.9, μ = 0.1, q0 = 0.3, ρ = 0.2
and the initial radius of the jth vector of grid Gi is set to rij = (upj − lowj)/10.
These configurations are based on a series of experiments. The parameter Vmax in
PSO is set to different values in different functions and the one that has the best
results are used in the comparison. Parameters of API are set as: n = 20, T = 50,
and Plocal(αi) = 50, (i = 1, 2, . . . , n). These configurations are based on [8]. The
maximum number of function evaluations is set to 100000 in all algorithms. The
solutions averaged over 50 independent runs and the best solutions among all 50
runs are shown in Table 2. Obviously, the performances of OSEACO are much
better than the performances of PSO and API in both unimodel and multimodel
functions. The effectiveness of OSEACO can also be seen in Fig. 3. OSEACO
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manages to obtain the precision of 0.3 on f6 in less than 2000 evaluations and
obtain the precision of 10−10 on f1 in less than 17500 evaluations. These reveal
that solutions with higher-precision can be obtained by OSEACO with fewer
evaluations compared with PSO and API.

Table 2. The comparison between PSO, API, and OSEACO on 9 Test Functions

test functions d PSO API OSEACO

f1(x) = d
i=1 x2

i 4
2.2e−5

(2.8e−6)
0.0326
(0.072)

1.8e−88

(9.0e−95)

f2(x) = d
i=1 |xi| + d

i=1 |xi| 4
7.62e−4

(2.59e−4)
0.0939

(0.0525)
1.1e−61

(2.6e−69)

f3(x) = d
i=1(

i
j=1 xj)2 4

2.72e−5

(2.87e−6)
1.944

(0.153)
4.9e−99

(1.7e−122)

f4(x) = maxi(|xi|, 1 ≤ i ≤ d) 4
5.12e−4

(1.58e−4)
0.449

(0.211)
2.6e−69

(2.7e−76)

f5(x) = d
i=1 −xi sin(

√
xi) 4

−1393.52
(−1671.55)

−1324.22
(−1674.88)

−1621.87
(−1675.93)

f6(x) = d
i=1[x

2
i − 10 cos(2πxi) + 10] 4

0.570
(0.022)

5.062
(1.231)

0.1052
(0)

f7(x) Ackley’s function 4
0.506

(0.0219)
0.868

(0.397)
0.0338

(5.9e−16)

f8(x) Generalized Penalized function 4
1.84e−4

(3.22e−5)
3.61e−3

(2.68e−4)
8.45e−7

(1.6e−32)

f9(x) = − 5
i=1[(x − ai)(x − ai)T + ci]−1 4

−7.414
(−10.037)

−6.1048
(−10.1365)

−10.1518
(−10.1532)
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Fig. 3. The best fitness found by OSEACO and PSO in function of evaluation times

5 Conclusion

The OSEACO algorithm for continuous space function optimization problems
has been proposed. The general idea underlying this algorithm is to use the or-
thogonal design scheme to improve the performance of ACO in the filed of contin-
uous optimization problems. An Elitist strategy and an adaptive radius scheme
are also proposed. Experimental results on 9 diverse functions demonstrate the
effectiveness of the algorithm compared with two other heuristic approaches.
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Abstract. Many emergency situations involve injured people who need
medical help and evacuation to a safe area. Usually there is not enough
time to provide medical help to all the victims. So medical doctors have
to make choices to help as much victims as possible, taking care of the
distribution of victims in the crisis area and the priority of the victims
related to the severity of the injuries. This paper describes an ant colony
optimization algorithm to route medical doctors along the victims in a
crisis area. We tested the algorithm in a simulated crisis environment.
Two different routing strategies were implemented and compared with
our algorithm.

1 Introduction

Recent terrorist attacks and natural disasters have forced humanity to respond
to crisis situations in the most effective ways [1]. In these situations usually many
victims are distributed over a large area and doctors entering the field are faced
with the problem to provide medical help in an optimal way. They don’t want
to waste time in finding the victims and spending time to less injured victims
while other victims are dying because of deprivation of medical help. Because
of the heavy time constraints they are able to handle only a limited number of
victims. So they have to make terrible choices.

Immediately after the onset of a disaster there are calls for medical help.
A common procedure is that emergency persons enter the field to localize the
victims. They use a simple method, called triage, of quickly identifying victims
who have immediately life-threatening injuries and who have the best chance of
surviving. There are several triage algorithms applied in different parts of the
world. A comparison between such algorithms can be found in [2].

In this paper we base our assumptions on the START system [3]. The triage
portion of START, relies on making a rapid assessment (taking less than a minute)
of every patient, determining which of four categories patients should be in:

– Green: Minor delayed care / can delay up to three hours
– Yellow: Delayed urgent care / can delay up to one hour
– Red: immediate care / life-threatening
– Black: victim is dead / no care required

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 380–387, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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After the victims are classified in one of the four categories, this information
is send to a central point. Based on this information a multiple route is designed
for the medical doctors entering the field to provide medical help. The goal is
of course to help as much victims as possible, taking care of the priority of the
casualties. The problem we have to solve is the following:

– how to route the doctors along the victims,
– how to take care of the priority of the victims,
– how to handle the dynamic aspects (new victims are localized in the course

of the time; different medical doctors are entering or leaving the area). So
the routes have to be adapted continuously,

– how to handle the time limitations (some victims need help in the shortest
time).

1.1 Related Work

Our proposed solution is the Ant Based Control algorithm, which uses a stigmer-
gy-based coordination. This strategy is inspired by the coordination mechanisms
found in the ants communities.

The First Aid Case described in this paper can be perceived as a special class
of the vehicle routing problem, the Dynamic Vehicle Routing Problem with Time
Windows (DVRPTW) [4]. Each medical doctor acts as a vehicle, trying to serve
as many customers (casualties) as possible. Mobile agents imitate the trail-laying
behavior of ants and try to find the longest cycle which contains each medic and
the maximum number of casualties. Each agent constructs a partial solution
where each casualty is visited at most once. The ant-based coordination strategy
to this problem is very similar to the ant-based routing approach described in [5],
[6] and [7] where the static VRPTW is discussed. Still our problem differs from
the ones mentioned before. The number of casualties (customers) is not fixed
and is changing continuously. The number of doctors (vehicles) is a constraint
that also changes in time. In [8] and [9] we found the closest problem to our case.
Here an ant heuristic algorithm was applied to a Dynamic Traveling Salesman
Problem (DTSP) with insertion and deletion of the cities.

2 The First Aid Problem

In our Ant Based Control approach model to the First Aid problem we use the
following concepts:

– Casualties C = {1, 2, ..., n}. Every casualty has a fixed location, a triage level
and, depending on this level, a precise time of death Tdi.

– Triage level: is a representation of the diagnosis of a casualty, i.e. red, yellow,
green. Every level corresponds to a treatment time T ti (e.g. red takes 30
minutes). At regular times the triage goes to the next level (e.g. if yellow
untreated for 40 minutes - switch to red) and as a consequence the time
necessary for the treatment of the patient also grows.
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– Medics M = {1, 2, ...,m}: they need to give the first aid to the casualties.
Their main objective is to minimize the number of deaths. A second objective
is to reduce the total effort time of the medics: the time travelled between
patients plus the time spent with their treatment. This is because they have
a limited effort capacity E.

– Ants: ants are generated by the medics and travel between the nodes in the
graph of casualties. They try to optimize the path followed by the doctors
to help the casualties. As a quality of their generated solution, they leave
pheromone trails in the form of routing tables.

As already mentioned, we represent the environment as a graph G=(V,A),
where V denotes the set of all vertices in the graph; it consists of the subsets
C and M (the initial position of the medics) (Figure 1). A travel time Tij is
associated with each arc in A. Tij is the time necessary for a medic to move
from the casualty i to the casualty j.

Fig. 1. Graph representation of the problem

G is a fully connected graph. At each casualty node a routing table is main-
tained. These routing tables are updated by the ants on the basis of pheromone
trails. The higher the level of pheromone the more attractive, for example see
C1 and C5.

3 Ant Colony System Model

Ants are generated periodically at each node where a medic is. Each ant tries to
find the longest cycle which contains each medic and the maximum number of
casualties. Each ant constructs a partial solution where each casualty is visited
at most once.

Travelling between nodes in G the ant selects the next node to go using the
following formula:
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j =

⎧⎨⎩
max τiuηiu, q ≤ q0

J, q ≥ q0

(1)

Pij =
τiJηiJ∑
l∈J τilηil

(2)

where J represents the set of unvisited nodes and q0 = 0.5.
η is the ’urgency’ function. T tj is the treatment necessary for the casualty j at

the time when the medic is expected to arrive according to this partial solution.
In the formula below we tried not to make use of the time Td when the patient
will die. This is because although the triage is known, the exact time the patient
will die can’t be known in advance.

ηij =
T tj

T tj + Tij
(3)

Each time an ant makes a step, it removes some quantity of pheromone lay
down along the link:

τij = (1 − ρ)τij (4)

In this way the selected path becomes less attractive for the other ants helping
the exploration search for new and better solutions.

After no more casualties can be inserted in the partial solution, this is com-
pared with the best solution found so far. We tried to maximiz the number of
total rescued victims. This is the sum of the already rescued victims and the
number of victims expected to be rescued (L the length of the cycle). In case
the partial solution is better it replaces the global solution. A better solution is
considered also if the number of the rescued victims is constant but they have a
lower triage level score.

In case we found a new or same global solution an update is done for all the
links on the paths:

τij = τij +
ρ|L|
|Ca|

(5)

Ca represents the total number of alive casualties which haven’t received the
first aid yet. L is the length of the partial solution and represents the estimate
number of victims that can still be rescued. We choose ρ = 0.1.

When a medic has to move to another patient, the selection is made following
the path stored in the global solution.

3.1 Reacting to a Change

An important issue in our algorithm is how to deal with the insertion of a new
doctor or casualty. When a new node in the graph is introduced the pheromone
table in this node is initialized with values proportional with the distance to
the other nodes. A new element corresponding to the new node is introduced in
the pheromone table of each of the other nodes already existent in the graph G.
The pheromone value set on this field is equal with the maximum value found in
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the routing table. This is because we want that new solutions containing the new
element to be fast generated. When casualty dies or its treatment is completed,
the links corresponding to this node are removed from the graph.

4 Experiment Environment

Consider a disaster area of 1 km x 1 km (Figure 2). The simulation starts at T=0
and will stop at T=360 minutes (6 hours). In this area casualties will appear
at random locations, at random intervals in a period of three hours. After three
hours, there are no new casualties.

Fig. 2. Area with casualties and doctors

At the moment a new casualty appears, the triage level is known and will
either be green (minor), yellow (delayed) or red (immediate). New casualties do
not have triage level black (morgue). Casualties will stay in one place. Medics
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can enter the area from the up or the left border and will move around in the
disaster area by foot. It will take 15 minutes a medic to walk 1 kilometer (i.e. 4
km/h). All the medics have a fixed effort time of 3 hours. After this time passes
they have to leave the area.

In Figure 2 the dark signs represent victims which are waiting for help or
are under the treatment. The empty figures represent patients that already have
been treated. The death of patient 6 can be noticed by the cross sign ”+”. We
used circle for green, diamond for yellow and square for red. The best available
schedule is displayed. The solid lines draw the paths the medics will follow. The
dotted lines are connecting the scheduling paths of different medics. The patient
35 is not part of the solution and eventually will be let to die. In our case the
schedule plan is:

– for Dr Kim: 29, 27, 9.
– for Dr Pieter: 32, 12, 22, 24.
– for Dr Jorn: 28, 33, 15, 19.
– for Dr Thomas: 25, 34, 31.
– for Dr Seine: 30, 36, 11.

The condition of casualties will get worse in time if they are not treated.
Degeneration intervals are as follows:

– Triage level green to yellow after 120 minutes.
– Triage level yellow to red after 40 minutes.
– Triage level red to black after 20 minutes.

As soon as a medic starts paying attention to a casualty, the condition of that
casualty will remain stable (i.e. the triage level will remain the same over time).
Each medic will spend a certain amount of time to each casualty, depending on
the triage level:

– Triage level green: treatment time = 5 minutes
– Triage level yellow: treatment time = 15 minutes
– Triage level red: treatment time = 30 minutes

In order to compare our Ant Based Control algorithm (ABC) we implemented
two greedy approaches. The first selects the next victim in the nearest neigh-
bourhood (nearest neighbour NN). The second approach treats the victims based
on the triage level (reeds first RF).

5 Tests and Results

First we run a ”middle of the road” scenario. An area with 25 casualties was
simulated: 5 green, 10 yellow and 10 red. Two medics were sent into the field.
The results in Figure 3 show that using the ABC algorithm 2 more patients can
be saved.

For the second ”escalation scenario” we raised the number of casualties to
50: 10 green, 20 yellow and 20 red. We tested now a case with 5 medics in the
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Fig. 3. Middle of the road scenario: 25 ca-
sualties and 2 doctors

Fig. 4. Escalation scenario: 50 casualties
and 5 doctors

field. The results are shown in Figure 4. Again the ABC algorithm saves 2 more
victims than NN and 5 more than the RF strategy.

The third scenario we used was a ”saturation scenario”. 100 casualties are
discovered during the first three hours after the disaster. 20 have the green
triage level, 40 yellow and 40 red. This time we tested 2 situations, one with 10
medics available and one with 20 medics available. The results are displayed in
Figure 5 and Figure 6.

Fig. 5. Saturation scenario: 100 casualties
and 10 doctors

Fig. 6. Saturation scenario: 100 casualties
and 20 doctors

The results of the Ant Based Control algorithm are better then the other
two in all the cases. Choosing always the nearest neighbour proved to be more
efficient than making the choice based on the triage level especially when there is
a lack of rescuers. In the current version of our algorithm, once a medic is assigned
to a patient, it stays there until the complete treatment is done. Allowing the
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medics to leave the patients, without finishing their treatment, and to switch to
a new discovered patient might improve the results.

6 Conclusion

In this paper we applied an ant based algorithm to solve the problem of schedul-
ing doctors to casualties in a crisis area. The approach proved to be suitable
to solve such a dynamic optimization problem. The First Aid Case enables us
to conduct comparative experiments, but also allows us to illustrate how co-
ordination strategies can help crisis response organizations to deal with com-
plex, dynamic crisis situations. In the near future we are planning to compare
our algorithm with the Self Managing Distributed System (SMDS) and with a
negotiation-based approach described in [1].
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Abstract. They appeared in our life some years ago with the awak-
ening of the PC and now the are everywhere : computers have become
ubiquitous and, almost, irreplaceable. Classical ways of creating, man-
aging and exchanging information have been progressively replaced by
electronic means. In spite of this plebiscite, computer supported collab-
orative work (CSCW) softwares can be blamed for requiring the user to
do an effort to use them. This paper describes an artificial ant based au-
tonomous information dissemination algorithm. It constitutes the com-
munication layer of our framework PIAF (“Personal Intelligent Agent
Framework”) intended to help users transparently sharing information.
The algorithm uses message gossiping strategy to transfer information
items between users.

1 Introduction

Computer based technology occupy an important place in our daily life and now
are considered to be ubiquitous [1]. During the last decades, using computers
modified users habits. Electronic documents have changed the way to write,
archive and diffuse content while Internet has changed the way we collaborate.
Now, it’s possible to work on a same project, exchanging documents or chatting
regardless the physicals positions of the co-workers. In this collaboration context,
information gathering may consist in ”ask a program” or ”ask a person” [2].
Programs are able to deliver indexed content (data files) while persons may
give some recommendations (knowledge). Supposing it is possible to represent
knowledge as a data file to share, from now on, we will use the generic term of
”resource” to design both shared data and knowledge.

Resource sharing can be implicit or explicit. Sending an email is an explicit act
while using a software to share idle CPU time is implicit for the user. Explicit
sharing is the most challenging task for the user. Let us suppose a user finds
an interesting website and wants to have all other, potentially interested, peers
know about it. The strategy may be either 1) within the set of known peers,
inform the subset of peers more likely to be interested by the website 2) inform
all peers and let them decide if they are interested or not. In the first case,
the risk for the sender is to omit some interested peers while in the second,
the risk is to Spam (ie: sending unwanted messages to some peers). Such a
simple task belongs to Computer Supported Collaborative Work (CSCW) and
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highlight the 3 main problems related to their use [3]. First is the need for a
mutual awareness so every peer is aware of other’s interests. Depending on the
size of the collaboration team, this can be difficult to maintain. Secondly, users
must be motivated enough in using a software helping them sharing resources.
The user has to make an effort to send emails or learn how to use a new software
dedicated to CSCW. This may weaken their motivation and dissuade them from
diffusing resources they have. The third and last problem is the difficulty for
users to define precisely what they are interested in. If we take the example
of web browsing, users are most likely to jump from page to page looking for
interesting links rather than follow a precise and predetermined path.

We believe a resource sharing system based on implicit sharing could cope
with those problems. The PIAF software we design is based on this idea. PIAF
stands for Personal Intelligent Agent Framework, this framework is divided in
two main layers: communication and dialog. The communication layer takes in
charge the information flows within the network. The dialog layer is the interface
between the user and the network. Personal agents are settled in this layer, along
with sensors softwares to create new information items from users’ activities
and help them use the network. An information is a data structure used to
inform peers of an available resource. This shared resource may be located on the
source of the information or elsewhere, the network itself is only seen as a space
where information items are exchanged. Resources exchanges are performed in
the dialog layer. In this paper, we focus on the communication layer.

The reminder of this paper is organized as follows. In section 2, we discuss
some existing solutions for communications in P2P networks. The following sec-
tion 3 contains a description of the different algorithms we developed. Finally,
we present experimental results in sections 4 and 5 before concluding on the
perspectives for this work in section 7.

2 Communications in a P2P Network

Information flows are generated by exchanges between a server having the in-
formation and a client asking for it. Considering a group of collaborators, every
one may have resources he wants to share or fetch. Hence, the tricky task for a
client is mainly to find a relevant server to contact. Supposing the client asks
for something, several solutions have already been proposed to perform queries
routing in structured [4] and unstructured P2P networks [5]. To inform a group
of peer, publish/subscribe mechanisms like social web portals [6] or event based
systems [7] can be considered. This paper deals with the problem of automatic
dissemination. Hence we consider no queries are specified by user nor they get
subscribed on publication service. Therefore, we choose a gossip-based scheme
for exchanging information items [8].

2.1 Gossip-Based Diffusion

Gossips protocols consists in sending a message to a subset of the connected
peers, according to a probability p. Flooding is in fact a particular type of Gossip
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with p = 1. Gossiping is particularly suited for diffusing information within
a defined group of peers. Unlike solutions aimed at globally replicate a data
structure [9], that is, ensure all peers recover all existing information items, our
algorithm does directed and focused diffusion. A given information is gossiped
to peers more likely to be interested of it.

To estimate neighboors’ interest in an information item, the de facto strategy
consists in using similarity between profiles. a data structure summarizing peer’s
interests. In order for each peer to keep up-to-date peer’s profiles, two strategies
can be used: 1) Whenever a peer changes its profile, it pushes this update to other
peers [10]. 2) Peers periodically browse the network to fetch profiles [11]. Both
solutions have pros and cons but share two main drawbacks. First, since they
are supposed to summarize what a peer is interested in, profiles are not easy to
define. Although we can have them automatically constructed [12] problems can
appear if a user has changing or spurious points of interest. Secondly, a profile
is related to the unique peer it describes whereas, in real life communications, a
given person can act has a referral and suggest an other peer to contact. Hence,
one peer profile also compromise profiles of other peers he knows.

We propose another new solution to profiles managing inspired by the ideas
of overhearing [13] and use of information trails [14] in a network. We consider
that whenever a peer sends a message over the network, he gives an hint about
what he is interested in. Hence, instead of inquiring about the profiles of one’s
peers, we guess them from traffic they generate over the network. The use of es-
timated profiles differentiate our work from other solutions proposed to perform
autonomous gossiping of information [15].

2.2 Topology Management

It has been observed that a network of collaborators exhibits small world proper-
ties: the network is made of many dense groups loosely connected to each other.
Those groups appear when individuals congregate as they found themselves hav-
ing shared interests. Considering a peer x, a clustering coefficient γx quantifies
how dense its neighborhood is. If γx ) 1, x is part of a dense group. Dynamically
adjusting the topology of the P2P network in order to make it similar to the
underlying small world can improve sharing efficiency. Using estimated profiles,
we propose an algorithm aimed at identifying such group and dynamically ad-
just connections. A criteria is used to decide if two peers have similar interests
or not. Depending on this criteria, a given connection may be dropped or kept.

3 Artificial Ant for Information Dissemination

One can view the P2P network as a directed graph G(V,E). Each node of V is
associated to a peer. An edge exy ∈ E, with E ⊆ V ×V , represents a connection
from a peer x to a peer y. We define the neighborhood Γ (x) of a peer x as the
subset of peers x is connected to: Γ (x) = {y ∈ V \{x} | exy ∈ E}. Although
exy �= eyx we will consider ∀exy ∈ E ⇒ eyx ∈ E. This model defines a social
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network, that is a network which edges define relations between nodes. The
relation here is some shared interests concerning some information items.

Artificial ants are used to move information items. We also use artificial
pheromones defined on a vector space R

n . The dimension n depends on the
semantic of pheromones. For instance, if pheromones results from a TFIDF en-
coding, n would be the dictionnary size. In this paper, no assumption is made
concerning this semantic. Each information X has an associated pheromone vec-
tor τX . An other vector τxy is associated to a connection exy. We suppose the
existence of a similarity s defined on this vector space s : R

n×R
n �→ [0, 1]. Thus,

it is possible to evaluate the similarity between two connections, as well as the
similarity of a connection and an information. For the simulations, the similarity
used is the standard cosine.

Pheromones associated to connections are used as a global network memory
and store traces about information exchanged. Peers stores pheromones related
to incoming connections so they ”remembers” what other peer sends to them
over the time. This is why an ant going from a peer x to a peer y, pheromones
on the link from y to x are updated.

3.1 Ant’s Gossiping Activity

Ants work as follows when disseminating an information X . Every Tg unit of
time, the ant will push this information from its nest (a peer x) to another nest
(peer y) chosen randomly in the neighborhood of x. A stochastic algorithm is
used to select y among Γ (x). According to a similarity threshold λ, neighbors
are first sorted in two groups : interested peers VI and non interested peers VI .
In this step, already visited peers ψ are ignored. Two counters I(y) and I(y),
respectively used to store good and bad evaluations for a connection, are also
adjusted. If y goes into VI , I(y) is incremented.

VI(x,X) = {y ∈ Γ (x) \ ψ | s(τxy, τX) ≥ λ} VĪ(x,X) = Γ (x) \ VI(x,X) (1)

For an interested peer, its chances to being chosen as a destination are propor-
tional to its relative similarity. Meanwhile, non interested peers may be equipro-
portionally chosen. A strategy aimed at having an optimal information flow
would lead to always sending an information only to the most interested peer.
On the other hand, in order to find new peers to connect to, network exploration
involves trying to send information items to some other neighbors even if they
does not seem to be interested. A trade-off hence must be found. We grant ants
with a notion of freewill : when it is about to send an information, an ant toss
a coin to choose whether it will contact a peer interested or not (η being the
probability of choosing a peer within VI(x,X)).

∀y ∈ Γ (x), px→y(X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η

s(τxy, τX)∑
z∈VI(x,X) s(τxz, τX)

if y ∈ VI(x,X),

(1 − η)
1

|VI(x,X)| if y ∈ VI(x,X)

0 if y ∈ ψ.

(2)
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Whenever an information is carried from a peer x to a peer y, pheromones vector
of eyx is updated. The amount of pheromones laid depends on the activity on the
link and information’s origin. The more information items are transfered through
a connection, the more pheromones deposit will be important. Pheromones de-
posit should also decrease as the information is farther away from its source.
We have chosen to model this using two Gaussian (see equation 3). As seen in
equation 4, ρ is used to both evaporation and deposit of pheromones. ρmax, α
and σ are regulation factors. r(X) is the number of peers X has crossed by from
its origin up to y. t

′
designs present time and t last time an information was

transfered through this connection.

ρ = ρmax · exp−αr(X) · exp−( t′−t
σ )2 = ρmax exp−( t′−t

σ )2−αr(X) (3)

τ (t′)
yx = (1 − ρ)τ (t)

yx + ρτX (4)

3.2 Topology Management

Moving the nest consists in modifying is neighborhood by adding or removing
some links. To establish a new connection a peer x grab an other peer y from
his address book D(x). Only not already connected nor in standby peers may
be picked up from this directory.

A peer may have a maximum of kmax opened connections. Hence if |Γ (x)| =
kmax a connection must be dropped before contacting y. For each connection, a
quality score f(y) is defined as the ratio between the number of time the neigh-
bor was estimated to be interested I(y) and the total number of estimations
performed by ants, I(y) + I(y). If f(y) falls under a given threshold β, the con-
nection is not efficient enough and may be dropped with a probability pd(y) (see
equation 5). The higher the difference between β and f(y) is, the higher pd(y) is.

∀y ∈ Γ
′
(x) , pd(y) =

β − f(z)∑
z∈Γ ′ (x) β − f(z)

(5)

Γ
′
(x) = {y ∈ Γ (x) | f(y) < β} is the subset of peers not efficient enough.
If x was not able to find a peer in is directory, it asks one of its neighbors to

send him a suggestion. x sends to y a message with a copy of is own directory.
y browses its own directory and answers sending back the address of the most
similar peer w that x does not already know. To choose which y of Γ (x) will
be interrogated, a rank-based selection is applied on the scores f(y). Using a
rank based selection provides us with a lower risk of always sending suggestions
requests to the same peer.

4 Simulation Environment and Performance Criteria

A discrete event simulator was used in order to implement and test our informa-
tion dissemination algorithm. We have chosen to use the OmnetPP simulator 1.
1 OmnetPP discrete event simulator, www.omnetpp.org
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The tested network is made of 20 peers allowed to maintain a maximum of
k = 4 connections. Initially, no connection is established and in their address
book peers have the address of a unique randomly chosen peer. To simulate
the presence of a user, each peer periodically (every 100 unit of time) publish
an information item grabbed from a global dataset made of 400 documents
distributed in 4 topic. In this dataset, average intraclass and interclass distances
are respectively of 0.75 and in [0.08, 0.25]. Ant’s λ parameter is set to 0.7 in
order to have high probability to correctly recognize elements of a same class.
Each peer is supposed to be interested in only one topic. Topics are equally
distributed in order to form 4 groups of peers having same interests. It has been
proved in [16], that in this case the most clustered graph is a ”caveman graph”
with a clustering value of 0.6 bounded by an amount of O(1/k3).

The performance of the diffusion algorithm is evaluated through 3 estimators:
the clustering coefficient γ, completeness and efficiency. Theses values are com-
puted for each peer and then averaged over all network members. The clustering
coefficient is defined as the number of connections present within a peer’s neigh-
boorhood divided by the number of possible connections. Completeness is defined
as the number of received information items related to his interest divided by the
total number of information items related to his topic present in the network. Pre-
cision quantify the Spam ratio and is measured as the number of interesting infor-
mation items received divided by the total amount of information items received.

5 Results

Several tests have been performed to estimate the impact of each parameter on
the overall system but, because of space constraints, only tests for the minimum
of quality for a connection are presented here. The test goal is to find when it is
better considering a peer not to be efficient: is it when I > I ? when the value
for I is twice ones of I ? The answer is statued from simulation results averaged
over 50 executions of the algorithm, using different values of β. Five condition
are tested : I < 4I, I < 2I, I < I, 2I < I and 4I < I. They respectively
corresponds to β = 0.8, β = 0.67, β = 0.5, β = 0.33 and β = 0.2.

Considering the figure 1, the best solution is allowing to drop a connection
when I ≥ I since, for β = 0.5, γ ) 0.6. Higher values of β leads to drop
many connections, therefore almost no cluster can be formed and γ ) 0.15.
On the other hand, if β is set to lower values, only very bad connections are
dropped. Nevertheless, the clustering value is higher and the resulting topology
is a network of isolated caves. Since β is low, fewer connections may satisfy
f(y) < β. Hence a peer candidate for disconnection has more chances to be
actually disconnected and less time to exchange information items.

The figure 2 shows how information dissemination evolutes during the simu-
lation. On the figure 2a it can be noted that peers tends to gather more infor-
mation they are interested in when β = 0.2. This was predictable since, as seen
in figure 1, when β = 0.2 peers are connected almost only to peers sharing similar
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Fig. 1. Evolution of clustering coefficient

interests. Setting β = 0.5 leads to middle-range performance with a precision of
) 0.64. On the figure 2b, we can remark that for a β ≤ 0.5, peers’ information
storages contains about 85% of the total number of information they are inter-
ested in present in the network. This convergence of the results for β = 0.5 and
β = 0.2 proves that the diffusion algorithm is as efficient with connected caves
as with isolated caves.
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6 Conclusion and Future Directions

We presented in this paper an algorithm using artificial ants to diffuse informa-
tion in a P2P network. Using a collective memory based on pheromones and a
gossip based diffusion strategy, this algorithm allows to share information with-
out having to define a profile for users nor sending request over the network.
The information diffusion is proactive and transparent for the user.

Without being really changed, the algorithm presented in this paper has been
progressively improved since it’s earlier versions [17]. Future developments will
include trying to improve it further. Particularly, we are looking forward using
Bloom Filter to summarize storages and directories contents.
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Abstract. Stigmergy is a form of indirect interaction for coordination
and communication purposes that can be found in many swarm systems.
In this paper we present a tiled coprocessor for computation-intensive
applications that explicitly exploits stigmergy to achieve adaptability
avoiding the usual time-consuming handshakes involved in direct inter-
actions. This adaptability, without any centralized control, directly im-
plies architectural scalability at design time, flexibility in multitasking
environment, adaptive load balancing and fault-tolerance at run-time.
A CMOS 0.13μm implementation of such architecture for simple array
processing operations is presented and evaluated. Obtained results show
the potentiality of the proposed approach.

1 Introduction

Many studies have been carried out to improve the performances of uniprocessor
systems for computation-intensive applications. CMOS technology scaling allows
higher operating frequencies and higher integration density. However, novel ap-
proaches are required to face the new challenges of digital design, e.g. wire delay
and fault tolerance. With the upcoming of Moore’s Law, scientists are trying
to figure out what kind of the so called “emerging technologies” could provide
spatial scalability with good performances [1]. Emerging technologies are char-
acterized by undependable manufacturing processes leading to many structural
defects. Today’s design styles are not suited for this kind of implementation nei-
ther in terms of architectural structure nor in terms of fault tolerance. Tiled
architectures (architectures composed of identical computational tiles arranged
in a regular grid) have always been considered a good solution to address the
issues of fault tolerance, multitasking and wire delay.

The most fine-grained tiled architectures are Cellular Automata (CA), where
every tile in the system is a simple automaton. Different studies in the field,
aimed to exploit some of the properties of CA on silicon [2] or on future emerg-
ing technologies [1], were presented. A bio-inspired fine-grained fault tolerant
platform is Embryonics [3], where every element is not an automaton but in-
stead a multiplexer-based cell. The self-repair mechanism, implemented at two
levels, involves a significant cost in terms of wasted hardware resources, and the
number of recoverable faults is limited.

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 396–403, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Cooperative VLSI Tiled Architectures: Stigmergy in a Swarm Coprocessor 397

�����
��	�
�

���	�
�
����

�	�
�
�����

�
��������
���	���

�����
���������

�	�
�
�����

�
��������
���	���

�����
���������

�	�
�
�����

�
��������
���	���

�����
���������

�	�
�
�����

�
��������
���	���

�����
���������

�	�
�
�����

�
��������
���	���

�����
���������

�	�
�
�����

�
��������
���	���

�����
���������

�	�
�
�����

�
��������
���	���

�����
���������

�	�
�
�����

�
��������
���	���

�����
���������

�	�
�
�����

�
��������
���	���

�����
���������

�	�
�
�����

�
��������
���	���

�����
���������

�	�
�
�����

�
��������
���	���

�����
���������

�	�
�
�����

�
��������
���	���

�����
���������

����	�����


��
���������

������
�������� ������
�������� ������
�������� ������
��������

��� ���
����

����	�����


��
���������

��� ���
����

����	�����


��
���������

��� ���
����

����	�����


��
���������

��� ���
����

�����
��	�
�

���	�
�
����

�	�
�
�����

�
��������
���	���

�����
���������������
��������

����	�����


��
���������

��� ���
����

�����
��	�
�

���	�
�
����

�����
��	�
�

���	�
�
����

�����
��	�
�

���	�
�
����

�����
��	�
�

���	�
�
����

�����
��	�
�

���	�
�
����

�����
��	�
�

���	�
�
����

�����
��	�
�

���	�
�
����

�����
��	�
�

���	�
�
����

�����
��	�
�

���	�
�
����

�����
��	�
�

���	�
�
����

�����
��	�
�

���	�
�
����

Fig. 1. The fabric structure of identical tiles with the boundary tiles

In this paper, following the original studies about swarm architectures pre-
sented in ANTS2004 [4], we applied Swarm Intelligence to design a coopera-
tive tiled architecture with inherent properties of scalability, flexibility and fault
tolerance in multitasking environments. The system is composed of hardware
agents with limited capabilities placed in an artificial and mutable computa-
tional environment. To avoid direct communications between adjacent agents,
which require handshake protocols and synchronization, we exploited stigmergy.
This powerful mechanism provides for workload diffusion from overloaded zones
towards unloaded ones to achieve improvements in computational performances
and fault-tolerance. An absolutely scalable system was conceived, and a 4×8 fab-
ric composed of 32 hardware agents was implemented in a standard cell CMOS
0.13μm technology and tested on simple array processing algorithms.

The remainder of this paper is organized as follows. Section 2 deals with the
main characteristics of the proposed architecture, whereas Section 3 explains how
stigmergy was used in such architecture. Some simulation results are presented
in Section 4. Section 5 presents the conclusions.

2 The Proposed Tiled Architecture

The proposed architecture consists of a fabric of identical elementary tiles locally
interconnected in a two-dimensional grid. The interface between the fabric and
any external entity is managed by an additional row of boundary tiles (Fig. 1).
The granularity of a tile is coarser than those of CA. A smart hardware agent
placed in every cell is responsible for stigmergic behaviors. The adoption of a
simple packet switching network allows the realization of a loosely structured
collection of tiles even within a regular mesh, compared with a configurable
network. The routing is performed exploiting only relative displacements to al-
low scalability and fault tolerance. The architecture is able to support the ar-
ray element-by-element operations of ADD, SUB, MUL, shift (SHL, SHR) and
compare (CMP), producing a vectorial result (VOP), and multiply-accumulate
(MAC) and accumulation (ACC) operations producing a scalar result (SOP).
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2.1 Boundary Tile

A boundary tile is a special tile able to perform the distribution and finalization
of tasks, in its column. The boundary tile must be able to create the packets with
operands and operator, starting from an operator and two arrays of data, and
to accumulate the partial results (for SOP) or to sort them (for VOP). Since
16-bit input data and 32-bit results have different requirements, two types of
packets are available: Source and Result Data Packet (DP), both of them 50-bit
wide. They include data and other fields basically used for elements indexing
and dynamic routing. The boundary tile implements a decentralized algorithm
for the selection of the best column in multitasking environments.

2.2 Computational Tile

The computational tile is basically composed of three elements, a processing
element (PE), a local memory (MW), and a buffered switch (BS). To these
elements, able to ensure the correct functionality of the architecture in a way
similar to other tiled architectures, we added a smart agent , which implements
the stigmergic behaviors, as depicted in Fig.1.

The Processing Element is an arithmetic unit that processes the packets
fetched from the MW. It is equipped with two self-test structures for fault de-
tection. The latency of the different operations, i.e. the number of clock cycles
required to carry out them, varies with the operations and with the complexity
of data (only for multiplications, as in [4]). ADD, SUB and CMP require 1 cycle,
shifts require 2 cycles, ACC requires 3 cycles and MUL and MAC require 3-8
cycles.

The Local Memory (also called Memory Well) is a little storage area com-
posed of dual-ported FIFOs, one for the input data (WI) and other two (WO)
for the output ones. A memory manager is responsible for the correct packets
management, even in case of faults, and for the workload monitoring. Workload
information is continuously evaluated during the activity of the tile, and consists
in the number of packets stored in WI.

The Buffered Switch is the module which performs data movements into the
fabric. Every input port of the switch is buffered by means of small FIFOs to
break long connections and to ensure a buffering in case of high network traffic.
The routing rules are very simple, since the switch doesn’t require any absolute
address. During task loading, this module performs data movement filling its
MW with incoming SourceDPs until it is full, and then passing the new incoming
SourceDPs to the neighboring tile on the north.

The Smart Agent is a module which transforms a computational tile in an
interactive hardware agent able to carry out the computations cooperatively and
with fault tolerance support in multitasking environments. It consists of some
comparators and a subtractor, and some finite state machines. The smart agent
is responsible for the coordinated activity within the small colony of tiles in the
architecture, exploiting the stigmergy. It should be noted that every tile is able
to work even without this module, but in this case no cooperation can take place.
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3 Stigmergy on VLSI Platforms

The massively parallel structure of swarms allows huge parallelization exploiting
the available individuals at every instant of time. The individuals are able to
coordinate without a coordinator complex activities communicating by means
of the environment. This is an example of stigmergy: one individual modifies
the environment and another one responds to the new environment at a later
time [5]. An example of stigmergy is the clustering behavior exhibited by some
species of ants. Indirect interactions do not require neither synchronization on the
same communication channel nor handshakes, since environment and agents are
different entities. Since agents communication overhead does not increase with
the size of the group, stigmergy implicitly allows scalability. It should be noted
that stigmergy doesn’t explain how the indirect communication takes place: it
provides a general mechanism that relates individual and colony-level behaviors.

3.1 Agent Intelligence and Colony Behavior

Like in every swarm system, the colony behavior descends from the interactions
among the individuals of a colony. Our tiled architecture can be conceived as an
environment composed of a set of fillable wells locally connected by dedicated
pipes. The wells present some leakages so that normally they will be progressively
emptied. The wells are our local MWs, which can be filled with SourceDPs; the
leakage corresponds to the activity of the PE, and the pipes among these wells are
the BSs and their channels. Without any cooperative behavior, MWs are filled
from the southern border of the fabric (Fig.1) and are emptied only due to the
single PE processing (horizontal links are not useful). The agent intelligence is
related to the behavior of the agent with respect to the environment. The agent
is able to sense the environment locally (the workloads of the 4 neighboring
wells and the one of its tile). It takes decisions about the amount of SourceDPs
to transfer towards adjacent wells, if the workload difference is over a minimal
threshold of convenience, and the best direction. It can move data only from
its well; this indirect interaction is a form of stigmergy used to coordinate the
operations into the array. More precisely we have an active stigmergy, which
is related to explicit data movements (performed by the agents of a tile with
the mechanism described above) and to the normal activity of the PEs (which
consume the input data stored in the attached MWs). The workload is spread
across the fabric so that the largest number of available tiles can be involved
in a task, thus exploiting at the most the computational platform every time,
reducing the computational latency even in presence of faulty tiles.

A comparative analysis of the behavior of the system with or without stig-
mergy in the case of only two tasks (130-element MACs) is presented in Fig. 2.
Different snapshots are taken at the same instants of time in the two cases. It
should be noted, on the time axis, that with stigmergy the latency is consider-
ably reduced (47% of the case without stigmergy). It should be noted that, in
large architectures, it would be impossible to efficiently perform such a run-time
analysis and to take the relative decisions in a centralized way.
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Fig. 2. Workload distribution evolution in different instants of time in a 4 × 8 fabric
with 2 tasks loaded with or without stigmergy

3.2 Cell Health and Fault Tolerance

The swarm approach allows the introduction of fault tolerance. The chosen
scheme was the so called cell exclusion. At this time, we implemented two simple
mechanisms applied to the PE to detect faults, by means of fixed-operands op-
erations with known results during inactivity periods, and of a smart watchdog
timer to verify the correctness of the latency of the current operation during
normal activity. If a fault is detected, the smart agent resets the PE and reloads
the last operation. If the fault comes again, the smart agent deactivates the PE
and plugs the MW, so that no other packets can be loaded in that tile.

Two mechanism were implemented for cell exclusion. A first mechanism is
the bypass: the faulty tile becomes transparent and the packets from other tiles
can traverse it but cannot be loaded into its MW. The faulty tile exports to
its neighbors the workload information of the opposite tile, to allow the correct
workload spreading as if the tile was not present. During bypass, the BS must be
perfectly functional. If this would not be true, a second mechanism is activated:
the faulty tile is completely isolated, with the I/O ports blocked. In this case the
smart agent directly activates a block signal which is propagated to the 4 neigh-
boring BSs, and from them to the respective smart agents to prevent requests of
data movement towards that tile. In these cases, the stigmergic behavior is very
useful to exploit all the reachable healthy tiles in the architecture, overcoming
the difficulties of the reduced number of available tiles in a column.
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3.3 Keeping It Simple to Improve Performances: The Bubble Effect

In principle, the workload was conceived as the sum of the latencies of the
operations in the MW (WI) of a tile. This way, the workload difference between
two tiles is the difference in terms of processing time based on the number and
weight of the SourceDPs. Such a solution doesn’t take into account the fixed size
of the MWs which is not related to the weight of the operations. We called the
strange effect descending from this drawback “bubble effect”. This effect was
only observable when tasks with different latencies were contemporarily loaded
into the fabric (e.g. ACC and MAC), and when the sizes of such tasks were large
enough to saturate the MWs of the pertinent column. The stigmergic behavior
tries to spread the workload into the fabric, sending packets to the tiles with less
workload regardless the space available. The “heavy” packets saturates some
FIFOs of the BSs so that the distribution of the “light” task is delayed after the
execution of the “heavy” ones. This way the “light” operations seems to emerge
like bubbles at the end of the computation since the “heavy” tasks terminate
before. To avoid this situation, we move back to the natural swarm abstraction:
the weight of a packet must influence its execution speed, not the decision about
how many packets should be moved. This means that the workload must reflect
only the number of SourceDPs in the MWs and not the type of them. This way,
stigmergy doesn’t produce stalls, the lighter tasks being carried out faster than
the heavier ones (as natural). Furthermore, the workload monitor circuitry is
dramatically simplified compared to the previous solution.

4 Synthesis and Experimental Results

The architecture presented in this paper was implemented in standard cell CMOS
0.13μm technology. The operating frequency is 900MHz, with the only exception
of the PE that runs at 450MHz. Thanks to the swarm approach, the architecture
is fully scalable, i.e. the area grows linearly with the number of tiles, and the
frequency is not affected by it. The area of a tile is about 42.8K equivalent gates,
with 80% of such area occupied by the memories.
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Fig. 3. Percentage of latency for a single task of different size loaded in one of the two
central columns on a 4 × 8 fabric in case of enabled stigmergy with respect to the case
of disabled stigmergy
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4.1 Exploring System Potentialities: Single Task Simulations

In this case, we obtain the highest performances since the number of the tiles
involved in the task execution is the highest possible. It should be reminded
that a task is allocated to a column, and all the stigmergic interactions take
place at run-time without any predefined scheme. In Fig. 3 the percentages
of latency in case of stigmergy, with respect to the case without stigmergy,
for 4 significative tasks are presented. As can be seen, for long-latency opera-
tions (MULs and MACs) the effect of cooperation is well visible with signifi-
cant performance improvements. For low-latency operations (ADDs and ACCs,
in this case) the latency reduction is less sharp since the latency of data trans-
fers due to stigmergic interactions is comparable to those of the single
operations.

4.2 Performances in Case of Faults

The system was tested with a fixed set of 40 tasks whose size and operands were
randomly generated. The operators for the task were chosen randomly within a
set of 4 operators (MUL, MAC, SUB, SHL) to equilibrate latencies. The starting
times were chosen randomly in a timing interval such that the overall simulation
was able to engage the fabric for about 50% of its resources on average. For every
number k of faults the possible faults locations are

(32
k

)
. Starting with the same

set of tasks with the same starting times, we performed 5 simulations for every
number of faults (randomly placed), calculating for each one the percentage of
latency in case of enabled stigmergy with respect to the case of disabled stig-
mergy. The histogram in Fig. 4(a) highlights the average of such values for every
fixed number of faults (bypassed tiles). As can be seen, increasing the number of
faulty elements, the stigmergic approach leads to better performances compared
to the non-cooperative case. The cooperative approach, allowing the involve-
ment of the largest number of computational tiles in every computation, shows
an outstanding adaptability that cannot be found on traditional architectures
with statically scheduled operations. Compared to related works, no rerouting
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Fig. 4. Percentage of the average task latency in case of enabled stigmergy with respect
to the case of disabled stigmergy for 40-task simulations with variable number of faults
(a). Average percentage degradation with or without stigmergy when increasing the
number of faults (b).
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and no spare resources are needed to “repair” a fault. From Fig. 4(b) it is possi-
ble to see the performance degradation for the same set of simulations, varying
the number of faults but always using stigmergy or not. As can be seen, whilst
without stigmergy the performances degradation is always increasing, the adapt-
ability exhibited by the stigmergic approach prevents such degradation showing
also some performance improvements. This is mainly due to a more intensive
exploitation of the upper part of the array (Fig.1), which is usually less used,
due to the presence of bypassed cells in the middle.

5 Conclusions

In this paper an innovative cooperative tiled architecture was presented and eval-
uated in a simulated multitasking environment. The choice to adopt stigmergy
to coordinate the interactions between the smart agents embedded in the tiles
leads to a flexible computational platform able to involve in the computation the
largest number of available tiles. Such an adaptation to environmental changes
in run-time without any centralized control is an unique feature that was made
possible by the adoption of a decentralized cooperative approach inspired by the
Swarm Intelligence paradigm. Beyond stigmergy, some other interesting aspects
typical of swarm system can be found in the proposed architecture, namely an
absolute scalability, flexibility in tasks execution, adaptability, parallelism, si-
multaneous multitasking and fault tolerance. From the simulations performed it
is possible to see how the adoption of cooperative behaviors based on stigmergic
interactions enables the achievement of better performances in normal process-
ing and significantly masks the effects of the presence of faulty tiles, compared
to a non-cooperative approach.

References

1. Abelson, H., Allen, D., Coore, D., Hanson, C., Rauch, E., Sussman, G.J., Weiss, R.:
Amorphous computing. Communications of the ACM 43(5) (2000) 74–82

2. Gruau, F., Lhuillier, Y., Reitz, P., Temam, O.: Blob computing. In: Computing
Frontiers 2004 ACM SIGMicro. (2004)

3. Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Toward robust integrated circuits:
the embryonics approach. In: Proc. of the IEEE. Volume 88. (2000) 516–541

4. Pani, D., Raffo, L.: A VLSI multiplication-and-add scheme based on swarm intel-
ligence approaches. In: Proc. of the 4th International Workshop on Ant Colony
Optimization and Swarm Intelligence - ANTS2004, Brussels, Belgium (2004) 13–24

5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press (1999)



Distributed Shortest-Path Finding
by a Micro-robot Swarm

Marc Szymanski, Tobias Breitling, Jörg Seyfried, and Heinz Wörn

Institute for Process Control and Robotics (IPR)
Universität Karlsruhe, Karlsruhe, Germany

{szymanski, seyfried, woern}@ira.uka.de

Abstract. This paper describes a distributed algorithm for solving the
shortest path problem with a swarm of JASMINE micro-robots. Each
robot is only connected via infra-red communication with its neighbours.
Based on local information exchange and some simple rules the swarm
manages to find the shortest path (shortest path in the number of robots
on the path) in a labyrinth with dead-ends and cycles. The full algorithm
and simulation results are presented in this paper.

1 Introduction

In swarm robotics an often needed behaviour is to search for interesting spots
within the workspace and to form a communication/transportation line between
the found spot(s) and another area of interest or another object.

Several researchers proposed algorithms based on signalling wavefronts to
solve shortest path problems in sensor and communication networks or the multi
robot domain. E.F. Moore described in [1] four wavefront algorithms to find the
shortest path in a maze. And also the Bellman-Ford algorithm computes the
smallest spanning tree in a maze. O’Hara and Balch described in [2] an algo-
rithm that guides robots with the help of fixed communication nodes exploiting
Payton’s pheromone algorithm. In Payton’s algorithm described in [3] a robot
close to the source will broadcast a hop count pheromone message through the
swarm. If a robot close to the target gets this message, it will send a second
hop count pheromone message in the opposite direction. All robots know the
direction vector to the target and the source now. Adding those direction vec-
tors leads to the shortest path. Two problems could occur with this algorithm.
Firstly the robots do not know if they are on the shortest path or not. If the
robots follow the gradient, they will be guided to the source or the target, but
they do not keep up a path between the source and the target. And secondly if
two robots in the swarm become source robots at the same time, the algorithm
will be confused by different directions. Inspired by those algorithms we tried to
overcome this problem. The pheromone used in our algorithm counts the hops
up and down. This enables the robots to know wether they are on the shortest
path or not despite of cycles in the maze.

We implemented a distributed algorithm, that finds the shortest path between
two initiating source robots within a labyrinth and afterwards gathers the other

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 404–411, 2006.
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robots around those initial robots while keeping a communication path between
the two sources. The shortest path is found by an unidirectional negotiation
algorithm, that sends information waves through the robot swarm.

The algorithm was evaluated in the Breve simulation environment [4] based
on a model of the real swarm robot JASMINE1, see Fig. 1.

2 The JASMINE Swarm Micro-robot

The underlying swarm micro-robot JASMINE was developed especially for
swarm robot research and swarm robot games. Despite its small size of about
27×27×35 mm3, it has excellent local communication abilities and a far distance
scanning and distance measuring sensor. The excellent communication abilities
result from six infra-red sensors and emitters arranged around the robot with a
displacement of 60◦. Those sensors could also be used for short distance mea-
surements. The far distance measuring sensor is hooked to the front of the robot.
Two differentially driven wheels give this micro-robot a high manoeuvrability at
a high speed. Optical encoders allow odometric measurements in the mm-range.
Different from many other swarm robots JASMINE supports only local commu-
nication. Long distance communication via radio frequency is not implemented
and does not correspond with the views of the construction team about swarm
robot capabilities. Figure 1 shows the JASMINE swarm micro-robot and the
sensor placement.

(a)

S0

S1

S2
S3

S4

S5

(b)

Fig. 1. (a) The micro-robot JASMINE; (b) Numbering and directions of the sensors.
Starting with sensor S0 at the robot’s front.

3 Distributed Shortest-Path Algorithm

The whole process of searching the shortest path could be separated into three
phases:
1 JASMINE is designed by the Micromechatronics and Microrobotics Group at the

Institute for Process Control and Robotics at the Universität Karlsruhe, Germany,
and the Collective Micro-Robotics Team at the Institute of Parallel and Distributed
Systems at the University of Stuttgart, Germany, for the I-SWARM project. For
more details see http://www.swarmrobot.org.
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1. uniform distribution phase and search phase,
2. shortest path negotiation phase,
3. and aggregation phase.

Whereas the uniform distribution phase ensures that all robots are uniformly
distributed through the whole maze and the aggregation phase leads to a con-
traction of the robots at the nearest sources. However, the most interesting phase
is the shortest path negotiation phase, where the shortest path finding takes place.
This paper will focus on the second phase. How a swarm could be dispersed can
be found in [5].

4 Shortest Path Negotiation Phase

During the shortest path negotiation phase each sensor has a memory for the
expected distance from and to the source df and dt. It also has to remember from
which source it received the pheromone message. This is saved in the pheromone
vector p.

df = (d0
f , d

1
f , . . . , d

5
f ) ∈ N

6 (1)

dt = (d0
t , d

1
t , . . . , d

5
t ) ∈ N

6 (2)
p = (p0, p1, . . . , p5) ∈ {0, 1}6 (3)

The upper index always denotes the sensor in respect to Fig. 1(b).
The robots’ values are initially set to p = −1, dt = ∞ and df = ∞. The

source robots are initialised with p = 0 for source 0 or p = 1 for source 1,
dt = ∞ and df = 0. The basic algorithm is that the sources starts sending the
message m = (0,∞, {0, 1}) over all six outputs. If a robot receives a message

m = (d̄f , d̄t, p̄) (4)

it will store those values in the memory of the receiving sensor s

ds
t = d̄t, ds

f = d̄f , ps = p̄, (5)

and afterwards sends the message

m = (d̄t − 1, d̄f + 1, p̄), (6)

over sensors ((s+ 2) mod 6), ((s+ 3) mod 6) and ((s+ 4) mod 6), on the oppo-
site side of the receiving sensor s. This ensures the wave like dispersion of the
pheromones. If the source gets a message from the other source it sets dt = d̄f

if (d̄f < dt) and continues to send the new message. If it gets a message with
d̄t = 0 and d̄f · 1 = dt the source knows that it got a message over the shortest
communication path. It will wait for an arbitrary number of such messages be-
fore it sends the shortest path found signal (found signal) which will start the
aggregation phase. This delay ensures that the message was really send via the
shortest path and not coincidentally via a second path.
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Table 1. Shortest path algorithm for a source robot

initialise:
df := 0; dt := ∞; p := {0, 1};
receive count := 0;

begin:
while (receive count < receive threshold) {

send( −1, df + 1, dt − 1, p);
if (received message m := (d̄f , d̄t, p̄) on sensor s) {

if (p̄ �= p) {
if (d̄f < dt)

dt := d̄f ;
if (d̄t = 0 ∧ dt = d̄f )

receive count := receive count + 1;
}

}
}

while (stop condition)
send( found signal, 0);

send(s, d̄f , d̄t, p̄) {
if (s �= −1)

send the message m := (d̄f , d̄t, p̄) over sensors
(s + 2) mod 6, (s + 3) mod 6 and (s + 4) mod 6.

else
send the message m := (d̄f , d̄t, p̄) over all sensors

}

However, this basic algorithm is too simple and would lead to problems with
cycles in the connection graph. Table 2 shows an improved algorithm for a robot,
that is not a source. As long as it does not get a signal from the sources, that
the shortest path was found (found signal) each robot does the following: After
receiving a message on sensor s the robot will test if d̄t = 0 which implies the
robot is not on the shortest path and will not commit this message any further,
because only a source robot could receive a d̄t = 0 as the distance to itself. If
d̄t > 0 the robot will update the memory on the receiving sensor if it has not
been updated before or if the received distance

d̄f ≤ min(di
f | pi = p̄; i ∈ {0, . . . , 5}) (7)

is smaller as or equal to all other distances to the goal received from the sending
source. If the memory was updated the robot will send the message updated
by (6) over the sensors on the opposite of the receiving sensor s otherwise the
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Table 2. Shortest path algorithm for a normal (non-source) robot

initialise:
df := ∞; dt := ∞; p := −1;
on shortest path := false;

begin:
while(received message m �= found signal) {

if (received message m := (d̄f , d̄t, p̄) on sensor s) {
if (d̄t �= 0) {

if ( ps = −1
∨ d̄f ≤ min(di

f | pi = p̄, i ∈ {0, . . . , 5})
∨ ds

f ≥ min(di
f | pi = ps, i ∈ {0, . . . , 5}\s) ) {

ds
t := d̄t; ds

f := d̄f ; ps := p̄;
send(s, d̄f + 1, d̄t − 1, p̄);

}
}

if (∃ i, j ∈ {0, . . . , 5} : di
t = dj

f ∧ dj
t = di

f ∧ i �= j)
on shortest path := true;

}
wait for next message();

}

goto source();

message will be blocked. A problem that could occur due to communication
problems is that a message from one source could be propagated around a loop
in the labyrinth and a robot has values from the same source on opposite sensors.
If we just use the obvious condition in (7) the robot would not accept any
messages from the other source anymore. This would lead to a live-lock and the
shortest path would never be found. To solve this, another constraint has to be
introduced:

ds
f ≥ min(di

f | pi = ps; i ∈ {0, . . . , 5}\s) (8)

Equation (8) allows to overwrite a value from one source by the other one in case,
that there is a better di

f value from the overwritten source on another sensor i.
This behaviour will iteratively lead to the case, that each robot on the shortest

path will have at least two sensors i, j, i �= j, with data from different sources
that have cross-over the same values di

t = dj
f and dj

t = di
f . The shortest path

condition is:
∃ i, j ∈ {0, . . . , 5} : di

t = dj
f ∧ dj

t = di
f ∧ i �= j. (9)

The length of the shortest communication path can be computed as dSP =
di

t + dj
f .



Distributed Shortest-Path Finding by a Micro-robot Swarm 409

It is important for the robots to know if they are on the shortest path or not.
Because the robots on the shortest path will behave as beacons for the other
robots that gather near the closest source or transport objects along this path
similar to [6]. The knowledge being or not being on the shortest path triggers
different behaviours during the aggregation phase.

5 Experiments

The simulation for evaluating the proposed algorithm is based on a model of
JASMINE. The simulation environment Breve described in [4] has been used for
the simulation of the JASMINE robots. The distributed shortest-path algorithm
was implemented in Steve2 and MDL2ε which is our further development from
MDLe by Manikonda et al., see [7].

Many simulation experiments have been performed with several source posi-
tions. Figure 2 shows an experiment3. Hundred robots have been equally distrib-
uted in Fig. 2(a) with a communication range of 20 cm. Figure 2(b) shows the
robots in the aggregation phase the white robots stand on the shortest path, the
sources are green and the black robots are moving towards the nearest source.

(a) Beginning of the negotiation phase.
White robots are the sources.

(b) Aggregation phase.

Fig. 2. Experiments with the simulation environment Breve. Black robots are normal
robots, white robots are on the shortest path.

The experiments showed that the algorithm is stable with respect to commu-
nication problems that occur randomly distributed over the robots. If a robot
cannot transmit or receive any messages it will be detected as an obstacle and
the algorithm searches another path around this robot if possible.

2 Programming language for Breve.
3 A video showing the whole experiment can be found at http://wwwipr.ira.uka.de/

∼szymansk/video/SlimeMould.avi.
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Fig. 3. State distribution during an experiment

Figure 3 shows the state distribution during an experiment. One can see that
in the beginning all robots are in the negotiation state and get a message from
either source 1 (red) or 2 (green). After 300 seconds the number of robots that
got a message from source 1 or source 2 is almost equal. After the swarm reaches
this equilibrium the robots on the shortest path become aware, that they are
on the shortest path (blue). Some time after the shortest-path has been found
the sources start emitting their aggregation message. The number of robots
that received this message (magenta) is increasing and the original negotiation
messages are suppressed.

6 Conclusion

We described an algorithm for calculating the shortest path in a maze in a
distributed manner. The experiments start from the point of equally distributed
robots and ends with robts standing on the shortest path.

We showed in several experiments that the algorithm is stable regarding com-
munication errors. This algorithm is currently not scalable in the sense that we
add more sources that should be all connected. Experiments showed if a source
with the same source identification is added the shortest path between two dif-
ferent sources will also be found. One problem for this algorithm is if an agent
is “dead” and does not respond to any input this agent will be treated as a wall.
This problem could also be seen as an advantage, because a path around this
“dead” robot will be found. This “dead” robot is nothing more than an obstacle.

7 Future Work

In the future we are going to implement the algorithm including the dispersion
part on JASMINE robots to evaluate the performance on real robots. It could
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also be compared with other algorithms that find the shortest path between two
sources in a workspace and build a communication path. And a theoretical proof
of the stability of this algorithm could be derived.
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Abstract. The paper presents highlights of a doctoral research ad-
dressed to model and solve the problem of preventive maintenance sche-
duling of fleets of vehicles. The problem is formulated and several Ant
Colony based approaches were proposed and tested considering different
instances of the maintenance scheduling problem, including applications
related to the preventive maintenance of an aircraft fleet belonging to
the Brazilian Air Force. The most successful approach has shown to be
the one based on ACS with a specific local search procedure and inspired
on the application of ACO to the timetabling problem. Details on the
problem formulation, on the proposed approaches, and on the performed
tests and applications are presented.

1 The Fleet Preventive Maintenance Scheduling Problem
- FPMSP

The objective of the FPMSP is to find a feasible chronological sequence for ve-
hicle preventive maintenances. The solution involves the maximization of the
available life cycle of the vehicles (cij) searching for a feasible schedule that
minimizes the waste of available hours between preventive maintenance inter-
vals. Sarac, Batta and Rump (2004) explain the measures used by air companies
related to the maximization of available hours for fleets of aircrafts [1]. An-
other measure to be maximized is the availability of vehicles for the operator
(bi). While a vehicle is under preventive maintenance, it is not available for the
operator. In such a case, a tolerance exists until a minimum number of avail-
able vehicles is reached (EAv). In the same vain, workshops capacities act as
restrictions to the problem (ai). Simultaneous preventive maintenances could
be prohibitive due to workshop capacity constraints. The FPMSP presents dy-
namic characteristics and whenever a vehicle j goes to preventive maintenance
at period i, all of its remaining life cycle is altered to adjust to the new set of
available hours m given by the maintenance action. The remaining of the main-
tenance system also changes as maintenance resources get busy in those specific
periods, which affects other periods as well as the values of the fleet’s availabil-
ity. The FPMSP presents similarities with assignment and subset problems. The
Aircraft Maintenance Routing Problem - AMRP presented by Sarac; Batta and

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 412–419, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Rump (2004) presents similarities with the FPMSP and shows that the problem
is NP-hard since it contains a NP-complete covering problem as a subproblem.
All similar problems studied present exponential complexity and NP - Harde-
ness with authors suggesting the use of meta-heuristics to solve practical cases
[2,3,4,5]. For a simple case, with just one vehicle type and only one workshop,
the solution is to find:

xij =

{
1 if vehicle j is assigned to maintenance at period i

0 otherwise.
(1)

Objective:

Min

I∑
i=1

J∑
j=1

(ai + bi + cij) (2)

Where:

ai =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[(

J∑
1

xij) − Capi] ∗ wa if
J∑
1

xij > Capi

[Capi − (
J∑
1

xij)] ∗ wa′ if
J∑
1

xij < Capi

(3)

bi =

⎧⎨⎩(1 − V erAvi

EAv
) ∗ wb if V erAvi < EAv

0 otherwise.
(4)

cij =

⎧⎪⎪⎨⎪⎪⎩
(
(m − mAv(i−1)j)

m
) ∗ wc ∗ xij if mAv(i−1)j > 0

(1 − xij) ∗ wc′ if mAvij = mAv(i−1)j = 0
o otherwise.

(5)

Penalties related to the mismatch of the workshop capacity (ai) are calculated
by multiplying the parameter wa (or wa’) by the observed excess (or lack) of
capacity for each period. Penalties related to availability (bi) are calculated when
the expected availability (EAv) is not reached for each period by multiplying
the parameter wb by the percentage not reached. Variable (mAvij) indicates the
remaining available time for each vehicle at each period. Penalties related to the
waste of available hours (cij) are calculated by multiplying the parameter wc
by the percentage of life cycle wasted when a vehicle is assigned to maintenance
with available hours still remaining. If a vehicle has no available hours and
is not assigned to maintenance at period i, the penalty is equal to wc’. The
wa, wa’, wb, wc and wc’ values correspond to the weight of applied penalties
and are adjusted according to each instance nature. The research of Abrahão
(2006) presents details of the formulation of the FPMSP including the complete
description of the problem constraints [6].
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2 Solution Strategies to Solve the FPMSP

All procedures begin building an entirely connected graph formed by all vehi-
cles and periods (I × J). Each node xij represents possible maintenance task
assignments. Penalties are computed for each period and the solution cost is the
sum of the costs computed for all periods. While maintenance tasks are being
scheduled, penalties are computed for each period (i) as constraints (ai, bi and
cij ) are affected.

2.1 Constructive Heuristic for the FPMSP - CH

In this case, preventive maintenance tasks are scheduled exclusively according
to the proximity of the depletion of available hours. The CH objectives a short-
est path of scheduled preventive maintenances based on the above mentioned
rule.

2.2 Local Search Heuristic for the FPMSP - LS

The 2-opt [7] method tests possible exchanges of any 2 arcs, rebuilding connec-
tions when improvements are found. It finishes when is not possible to accom-
plish changes that result in improvements. For the FPMSP, the exchanges are
performed on maintenance tasks scheduled for each vehicle (j ). The procedure
advances maintenance tasks by one period and checks if an improvement is veri-
fied. Next, the procedure delays maintenance tasks by one period and checks for
improvements. Finally, maintenance tasks are inserted or removed to the solu-
tion schedule to verify if improvements could be still found. The procedure stops
when, for two consecutive iterations, no improvement is observed.

2.3 Ant System for the FPMSP - ASmnt

Among studied problems, the University Course Timetabling Problem - UCTP
seems to present the most promising configuration to be adapted to the FPMSP.
So, the ASmnt is somewhat inspired on the implementation of ACO procedures
to the UCTP. The agents (ants) use the proximity of the total depletion of
remaining hours for the assignment of maintenance tasks as heuristic informa-
tion (η) and β as a parameter. This, combined with the α parameter and the
pheromone trails (τ), which are deposited on nodes (xij) instead of arcs, provides
the required data for ants to move in accordance with the AS random propor-
tional rule. The amount of available hours mAvij is used instead of the distance
for the heuristic information calculation and the neighborhood of node xij is
limited to avoid consider periods too far from period i. Its reasonable assume
that maintenance actions would be taken close to the period where remaining
available hours are expected to be depleted. This limit is set according to fleet’s
characteristics and the maintenance environment found on each instance. For-
mulation of pheromone trail update and other AS parameters are the same for
the ASmnt.
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2.4 Ant Colony System for the FPMSP - ACSmnt

The Ant Colony System - ACS adaptation to the ACSmnt is similar to the
ASmnt. Even though ACS has been the first ACO procedure benefitting from
local search procedures, no local search is used for this specific case. The phero-
mone update strategy applies only to nodes of the best solution of each iteration.

2.5 Constructive and Local Search Heuristic for the FPMSP -
CLSH

The CLSH method is the composition of a constructive heuristic (CH ) with a
local search procedure (LS ). This method doesn’t count with so much diversi-
fication compared with ACO in the search for solutions, but it is significantly
faster and simple to implement.

2.6 Ant System with Local Search for the FPMSP - ASmntLS

The ACSmntLS is inspired on the adaptation presented in Abrahão and Gualda
(2004) and incorporates local search heuristics among the ASmnt iterations [8].
When applied at each group of θ iterations, local search procedures are succes-
sively repeated until no improvement is observed. The procedure continues their
iterations with ASmnt until the local search procedure is called again. After local
search iterations, pheromone updates only happen if improvements are found,
otherwise, pheromone trails remain the same as before, avoiding too much in-
tensification. With ASmntLS, ASmnt acts as a constructive heuristic while LS
works as a solution improver. After the first iterations, ASmnt and LS work as
improvement mechanisms. However, ASmnt diversifies while LS intensifies the
search for better solutions.

2.7 Ant Colony System with Local Search for the FPMSP -
ACSmntLS

The ACSmntLS is also inspired on the adaptation presented in Abrahão and
Gualda (2004) and incorporates LS inserted at each group of θ iterations com-
pleted by each ant using ACSmnt.

3 Tests and Applications

A set of 18 instances and ACO parameters (Table 1) were generated for the tests
applied to aircraft fleets. Table 2 shows the results for the A25P25sq3h2, one of
the 18 instances generated that encompasses 25 aircraft, 25 periods of one month,
3 different squadrons and initial remaining hours randomly generated between
0 and 400 hours for each aircraft. Table 3 shows the comparative tests with all
instances and methods.

Tests to compare performances were developed using non parametric tests
as suggested by Golden and Stewart (1985) [9]. Friedman’s tests [10] were used
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Table 1. ACO Parameters

Parameters V alues

α heuristic parameter 1; 1.5; 2
β pheromone parameter 1; 1.5; 2
ρ pheromone update 0.1; 0.4; 0.7; 0.9
q0 pseudo-random ACS rule 0.5; 0.7; 0.9
Iter Nr of iterations 30000
Tries Nr of runs 5

Table 2. Obtained results for A25P25sq3h2

Method Penalties T ime (sec) % worst

CH 997 0,04 72%
LS 985 0,08 70%
ASmnt 1352 339,05 133%
ACSmnt 808 159,77 39%
ASmntLS 645 196,85 11%
ACSmntLS 580 149,83 0%
CHLS 647 6,29 1%

Table 3. Comparative results

Ranked results for all instances

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total

CH 6 3 6 6 6 6 6 6 6 6 5 6 7 5 5 5 5 5 100
LS 7 4 7 7 7 7 5 5 5 5 6 5 6 7 6 7 6 7 109
ASmnt 5 5 5 5 5 5 7 7 7 7 7 7 5 6 7 6 7 6 109
ACSmnt 3 6 3 4 4 2 4 4 4 4 3 4 4 4 4 4 4 4 69
ASmntLS 2 7 2 3 3 3 3 3 3 3 4 2 3 2 2 1 1 2 49
ACSmntLS 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 2 3 3 26
CHLS 4 2 4 2 2 4 2 2 2 2 1 3 2 3 1 3 2 1 42

to verify if there is statistical significance to affirm that different performances
among methods exist. If the null hypothesis is rejected, multiple comparisons
are used to determine which procedures present different performances from the
others. Table 4 presents the results of the non-parametric tests. The results so
far indicate that the ACSmntLS is the most promising procedure to solve the
FPMSP. However, ACO allows adjustments and is necessary to adjust the pa-
rameters in order to get the best of each method and results. The next study
compares 108 configurations of parameters (Table 1) applied to the 18 instances
with the use ACSmntLS procedures. The tests were conducted to find the best
set of parameters to be used in real instances of the same kind. Results confirm
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Table 4. Friedman’s Test and Multiple Comparisons

Parameters V alues

T2 60.27 (T statistics)
F (a, K1, K2) 2.98 (critical value )
”P-value” 0.01 -
Reject Ho ? Yes (T2 > F ) for Friedman’s Test

a 0.95 -
t1−a/2,k2 1.98 -
Tcritic 12.40 -

Method Ranking Ri − R(i−1) > Tcritic

ACSmntLS 26 A
CHLS 42 B
ASmntLS 49 B
ACSmnt 69 C
CH 100 D
ASmnt 109 D

that there are differences among configuration of parameters, but they are only
significant between the group formed by the first 14 configurations and the rest.
Nevertheless, configuration 79 was found to be the best among the tested ones.
More details on the parameters settings, comparisons and tests could be found in
Abrahão (2006). With all these results, it is possible to apply the ACSmntLS to
a practical instance of the FPMSP and An application to a real world preventive
maintenance problem related to a fleet of 20 aircrafts of 2 squadrons belonging
to the Brazilian Air Force (FAB) was conducted. The time horizon was set to
25 periods (i = 25) of one month each (two year span) and each aircraft was
supposed to fly 50 hours per period (t). 2nd level maintenance actions and 3rd
level maintenance actions were to be scheduled. 2nd level maintenance tasks
are expected to take 2 periods of time to be accomplished and should occur at
each 400 hours interval (m2nd = 400 hr = 2nd level maintenance interval). 3rd
level maintenance tasks are expected to take 5 periods of time to be accom-
plished and should occur at each 1200 hours interval (m3rd = 1200 hr = 3rd
level maintenance interval). The first squadron was composed of used aircraft
with remaining available hours randomly distributed between 0 and 1200 . The
2nd squadron was composed by brand new aircrafts. This difference provides a
more comprehensive test. Workshops capacities were set to 4 aircraft per period
for 3rd level and 5 for 2nd level (Capi = 4 for 3rd level and Capi = 5 for 2nd
level maintenance). Penalty weights were set to 20 for the waste of life cycle time
(wc) and 10 for idle aircraft not in maintenance (wc’). Penalties for lowering the
fleet availability was set to 5 (wb) and capacity penalties were set to 5 (wa)
and 1 (wa’). The expected availability of the fleet is 55% (EAv=55%). Table 5
presents a preliminary application of all methods to FAB problem and confirms
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Table 5. Global application of the procedures to the practical case

Method Penalty Processing Time (sec) Aircraft Availability (hr)

CH 465.00 2.37 21431
ASmnt 147.56 158.77 20699
ACSmnt 105,11 86.70 20478
ASmntLS 95,69 178.40 20014
CHLS 95,06 21.66 20092
ACSmntLS 92,60 155.27 19845

ACSmntLS as the best performing procedure. The final solution strategy was to
apply the ACSmntLS to the problem with configuration 79 of ACO parameters.
5 tries with 20 ants were performed, given a total of 3000 iterations. Local search
procedures were set to run at every 10 iterations until no improvements were
found by two consecutive iterations. The method was applied first to solve the
3rd level problem. The solution found for the 3rd level maintenance is consid-
ered and updates the graph for the application of the method for the 2nd level
maintenance. So, the graph for the 2nd level maintenance problem considers as
tabu moves the moves that involve time slots (xij = 1) occupied by the 3rd
level solution. The same parameters used for the 3rd level solution were used for
the 2nd level, except workshops capacities and maintenance lead times. Details
on the application and on its results are found in Abrahão (2006). The final
results of this application provided aircraft availabilities of 67% and 66% for the
first squadron during the first and the second year respectively and of 76% and
73% for the second squadron on the same years. The fleet overall availabilities
during the first and the second year were of 71% and 69%. These figures are
far beyond the minimum practical availability level of 55% setup by the fleet
operator.

4 Conclusions and Recommendations

Several ACO based approaches have been proposed and tested to solve the
FPMSP and the most successful was the ACSmntLS, which combines an ACS
structure with a specific local search heuristic. This ACSmntLS was successfully
applied to solve a real problem of a Brazilian Air Force (FAB) fleet of aircrafts.
Distinctive aspects of the research include the mathematical formulation and
implementation of procedures based on ACO approaches to the UCTP to solve
the FPMSP and non parametric tests to compare the different proposed so-
lution methods and to adjust ACSmntLS parameters. Further research should
include: the use of CHLS as a constructive heuristic for the ACSmntLS ; studies
to systemically adjust the penalty parameters (wa, wa, wb, wc and wc) to dif-
ferent fleets and environments; consider more than one maintenance shop; and
comparisons of the proposed approaches with the Max-Min AS and other other
meta-heuristics such as Tabu Search, Genetic Algorithm and GRASP.
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restrições: aplicação na Força Aérea Brasileira. PhD thesis, EPUSP, Departamento
de Engenharia de Transportes, Sao Paulo (2006)

7. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling sales-
man problem. Operations Research 21 (1973) 498–516

8. Abrahão, F.T.M., Gualda, N.D.F.: Aplicação da metaheuŕıstica colônias de formi-
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Abstract. Inverse problems in ocean acoustics are generally solved by
means of matched field processing in combination with metaheuristic
global search algorithms. Solutions that describe acoustical properties of
the bed and subbottom in a shallow water environment are typically ap-
proximations that require uncertainty analysis. This work compares Ant
Colony Optimization with other metaheuristics for geoacoustic inversion,
particularly Genetic Algorithms. It is demonstrated that a MAX -MIN
Ant System can find good estimates and provide uncertainty analy-
sis. In addition, the algorithm can easily be tuned, but proper tuning
does not guarantee that every run will converge given a limited process-
ing time. Another concern is that a single optimization run may find
a solution while there is no clear indication on the accuracy. Both is-
sues can be solved when probability distributions are based on parallel
MAX − MIN Ant System runs.

1 Introduction

Coastal waters allow for a high concentration of human activities and an expand-
ing exploration of the underwater environment takes place mostly by acoustic
techniques. The propagation of sound through the ocean medium is well under-
stood and since no other energy propagates as efficiently, sonar has been the
most effective sensor for many years. In a shallow water environment [1] sound
interacts with the bottom in complex ways and propagation modeling requires
a detailed knowledge of the bottom acoustic properties in addition to the sound
speed structure in the water column and the sea surface scattering conditions.

Geoacoustic inversion is a technique that aims to describe a shallow water
environment by acoustical parameters which in turn are related to other geo-
physical parameters. An introduction to geoacoustic inversion is given in Sec-
tion 2. The concept of matched field processing is explained together with the
optimization problem that is part of an inversion process. Section 3 describes a
benchmark of geoacoustic inversion based on the Yellow Shark experiments in
Mediterranean shallow waters. The section also provides a brief introduction to
metaheuristics that, according to literature, have been applied to inversion be-
fore. Ant Colony Optimization (ACO) [2] is demonstrated to be feasible as well,
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when the world of the ants is regarded as an analogy for the geoacoustic environ-
ment. A MAX -MIN Ant System implementation is tuned for the benchmark
and it is shown how accurate results are found. Tuning is important but does not
guarantee that every inversion will converge to the same solution. In addition
there is no clear indication on the accuracy of solutions. Section 4 adresses these
issues with uncertainy analysis.

2 Introduction to Geoacoustic Inversion

Geoacoustic inversion is principally based on matched field processing (MFP)
described in this section. The focus is on a representative benchmark of geoa-
coustic inversion, based on real data from the 1994 Yellow Shark experiments.

2.1 Inversion Based on Matched Field Processing

Inversion is a technique that derives a physical model from a measurable quan-
tity like a sound pressure field. Sound can be measured for a particular fre-
quency and at a certain distance from the sound source. A physical model of a
medium can be used to make predictions of pressure fields at a number of posi-
tions and frequencies. These predictions are called forward calculations. When
the predictions match the measured fields it is fair to say that the model is
acoustic equivalent with the real world. In other words: when sound propagates
through a medium, the sound pressure field upon reception will be the same
as it would have been when the sound had propagated through the physical
model. The whole process of matching reception with prediction, in order to
obtain a physical model, is called matched field inversion. An objective function
defines mismatch and needs to be minimized to find the best acoustic equivalent
model.

2.2 Inversion for Bottom Geoacoustic Parameters

In a typical shallow water environment1, the medium consists of several layers.
The top layer is the water column where most acoustic quantities can be mea-
sured or otherwise accurately be predicted. But high-frequency echo sounders
used for bathymetric survey do not deeply penetrate into the sedimentary layers
and do not reach the underlying hard rock basement. Low-frequency sound how-
ever does penetrate these layers and in many cases inversion helps to find acoustic
characteristics like sound speed and absorption. A profound understanding of the
medium enhances acoustic sensing capabilities and allows for accurate predic-
tions of sonar detection ranges. A fast inversion scheme that obtains reliable
geoacoustic parameters is a prerequisite for Rapid Environmental Assessment
(REA) for sonar.

1 Shallow waters are usually found at the continental shelf and bound by a depth-
contour line of 200 m. In these waters, sound typically propagates with multiple
interaction with the sea bottom and surface.
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For an arbitrary environment, geoacoustic inversion counts four steps [3]: dis-
cretization of the environment, efficient and accurate forward modeling, efficient
optimization procedures and finally uncertainty analysis. The first step is com-
mented in the next paragraph for the Yellow Shark experiments. The forward
modeling of sound propagation falls beyond the scope of this article. Steps 3 and
4 are addressed with ACO in sections that follow.

2.3 The Yellow Shark Experiments

One of the interesting features of the Yellow Shark experiments is that cores
of the bottom material have been taken and the analysis of these samples pro-
vide ground truthing for the solutions of geoacoustic inversion. Details on the
experiments can be found in Hermand and Gerstoft [4]. For our preliminary
study we will use a benchmark with geometric and geoacoustic parameters and
an objective function based on phase-coherent processing of pressure time series
(wave-forms) received on a vertical array using a model-based matched filter
(MBMF), details can be found in [5]. The benchmark is in the form of a pre-
computed objective function [6] based on measured sound speed profiles in the
water column, averaged over range, and a geoacoustic model of eight parameters
that describe a single sediment layer over a half-space sub-bottom.

The objective function f : S → IR+ needs to be minimized. In YS94, S
is an 8-dimensional search space, where every real parameter xi is subject to
ai ≤ xi ≤ bi, with constants ai and bi based on general a priori information.
If each parameter is sampled by just 10 samples, there are already 108 possible
combinations. Considering that each forward call to the objective function de-
pends on a non-linear propagation model that is computationally demanding,
geoacoustic inversion clearly benefits from a metaheuristic approach.

3 Ant Colony Optimization for Inversion

Various metaheuristics have been applied to the optimization part of inversion.
Ant Colony Optimization is unique in being a population based method with
a short term memory. A MAX − MIN Ant System has been applied on the
Yellow Shark benchmark and a rule of thumb for the performance parameters
has been derived. Results of a tuned run are shown to match with reference
solutions for the benchmark.

3.1 ACO and Other Metaheuristics for Inversion

Early environmental inverse problems were solved with an exhaustive search on
a limited search space [7]. The introduction of Simulated Annealing and the
Genetic Algorithm (GA) [3], [8] made it possible to invert more parameters on
a wider range of samples. Only recently, other methods as Tabu Search and
Differential Evolution entered the field.

Ant Colony Optimization has most in common with Genetic Algorithms. Both
types are population based algorithms that search a discrete search space and
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that are capable of providing uncertainty analysis. The main difference between
the methods are the mechanisms that handle and recombine components of
better candidate solutions (pheromones trails versus genetic operators). ACO
is further different in having a form of memory (the pheromone trails), while
GA’s are without memory. When pheromones evaporate, identifiers of paths with
above average quality are fading out. High rates of evaporation make that only
recent information can be retrieved, as is typical for a short term memory. Low
evaporation rates allow recollection of much older information and correspond
to a long term memory.

3.2 Application of MAX − MIN Ant System

When ACO is applied to inversion, the world of the ants acts as an analogy for
the geoacoustic environment. Acoustic parameters that describe a sea bottom or
water column are objects between the nest and a food source. Paths that bridge
such objects are the sampled values each parameter may take. Ants communicate
by depositing pheromones, a measure for the mismatch between predicted and
actually measured sound pressure fields.

In previous work [9] we have argued that ACO is a feasible optimizer for the
geoacoustic inversion problem and this was demonstrated with a MAX − MIN
Ant System (MMAS) as introduced by Stützle and Hoos [10]. MMAS has
four characteristics [2]. First, only the best-so-far or iteration-best ant is allowed
to deposit pheromones. Secondly, pheromone trail values are restricted to the
[τmin, τmax] interval. All paths are initialized with τmax. And finally, in case of
stagnation the system is reinitiated.

The MMAS implementation focussed on here is called Geoacoustic Inversion
with ANTs (GIANT). Some technical issues:

– Initially, pheromones are equally distributed. Each sample has pheromone
value τ0 = 1/fmin, with fmin the minimal mismatch from the first iteration.

– Only the best-so-far ant x∗ is allowed to deposit pheromones, or (optional)
the iteration-best ant.

– Pheromone update Δτ = 1
f(x∗) is deposited on each of the n samples of x∗.

– Division by zero does not occur for Δτ as full convergence (f = 0) is a
stopping criterion. Some small ε ≥ 0 is defined as a threshold for convergence.

– At each iteration the pheromone trails are scaled to fit an upper bound of
τmax = n/f(xiteration−best) and a lower bound of τmin = c/φn2, with c > 0
a constant and φ the average f of the iteration [10]. With c = 1 it follows
that τmin > 0 and therefore ants have access to the complete search space
at any iteration.

3.3 Tuning of MAX − MIN Ant System

The efficiency of an average optimization run strongly depends on some algo-
rithm-specific parameters, unique for a particular problem. A metaheuristic runs
on a pair (S, f), generally called an instance [11]. The solution space S is
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determined by problem specific parameters xi with upper and lower boundaries
ai and bi that are based on general a priori knowledge. For combinatorial search
methods S is usually discretized by sampling the (ai, bi) intervals. The sampled
geoacoustic parameters strongly influence the search space and the instance.
Therefore, sampling has not been regarded as part of the tuning.

For geoacoustic inversion problems, the objective function f is usually compu-
tationally demanding as for each forward call a mathematical propagation model
needs to be calculated. The ideal solution with f = 0 is not always contained
in S due to simplifications in the models, the presence of ocean noise or limita-
tions in the sampling of the search space. Parameters that have been tuned for
GIANT are colony size N and pheromone evaporation factor ρ.

In a typical application of geoacoustic inversion, many signals are transmitted
and many instances are to be considered. As the objective functions are com-
putationally time consuming, rapid assessments do not permit extensive tuning
for separate instances. Tuning results and their sensitivity in general can not
directly be transferred to other instances.

3.4 Results for Yellow Shark

Good procedures exist for tuning metaheuristics [12], [11]. For the benchmark
however, an exhaustive search was carried out to find a simple rule of thumb
for optimal values for N and ρ. This approach is time consuming and not rec-
ommended for practical use, but does provide a good understanding of the in-
teraction between performance parameters and the speed of convergence. The
method further indicates how sensitive tuning results are and just how bad non-
optimal settings work out. Results are shown in Fig. 1 for a maximum number
of 105 forward calls. Averages are taken over 30 runs for various combinations
of N and ρ. A benchmark specific convergence threshold of ε = 1.743 has been
adapted.

The left diagram shows the average final mismatch. In most runs GIANT
did not converge to ε, plotted in black. The shades of grey point out that N
and ρ should carefully be chosen to find the best solution with the available
forward calls. For 105 available calls, there exists a range of good settings, briefly
characterized as N large and ρ < 0.5.

The diagram on the right shows how many forward calls were needed to get
the minimal mismatch in the left diagram. The number of calls corresponds with
computing time for the best-so-far solution. For a minimal number of forward
calls, N must be as small as the minimal mismatch allows for, ρ is less bounded.

Combined, the two plots reveal a small area of interest: ρ < 0.4 and N ≈ 250.
The low evaporation rates make MAX − MIN Ant System act like it has a long
term memory. With small ρ, ants start to choose the same solution components
and are reducing the intensity of exploration. For the benchmark a rule of thumb
for colony size is N ≈

√
k, with k the available number of forward calls [9].

Table 1 lists solutions for a run with ρ = 0.1 and N = 250. The results
are almost identical to the reference solutions [4]. Since the search space was
discretized in 50 samples, S does not contain all the values of the reference
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Fig. 1. Tuning results for GIANT on the YS94 benchmark. Left: final mismatch over
30 runs. Right: average number of forward calls that were needed to find these minimal
mismatches. In both plots the best settings are found in the darkest areas.

Table 1. Geoacoustic parameters and results for tuned GIANT on YS94 (ρ = 0.1 and
N = 250). Listed are parameters xi with their physical meaning, ai and bi are lower
and upper bounds, s∗ is the reference solution and s the solution found by GIANT.

xi Physical meaning ai bi s∗ s

ρ2 sediment density in g/cm3 1 2 1.5 1.5
α2 sediment absorption in dB/λ 0 0.175 0.03 0.0315
c2 sediment sound speed in m/s 1440 1540 1470 1470
g2 sediment sound speed gradient in s−1 1 9 2 1.96
d2 thickness of sediment layer in m 0 11 7.5 7.48
ρ3 bottom density in g/cm3 1 2.5 1.8 1.81
α3 bottom absorption in dB/λ 0.05 0.375 0.15 0.18
c3 bottom sound speed in m/s 1450 1600 1530 1531

solution. This can be noticed for g2, where neighboring samples are 1.96 and
2.12: the exact solution g2 = 2 s−1 is out of reach.

Good settings have been found after tuning, Fig. 1 reveals that on average,
still some 40.000 forward calls are needed to get the desired solution. Another
issue is that not every run of a metaheuristic is guaranteed to converge to the
same solution. An alternative approach is to have less forward calls for each run,
stops before final convergence and then let uncertainty analysis point out what
the intermediate results show.

4 Uncertainty Analysis

Metaheuristics find solutions of above-average quality and tuning will speed up
the average inversion process. Still, there is no guarantee that for a single run the
convergences are fast enough and the final solution lacks a clear indication on
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the degree of confidence in the results. Both issues are solved when probability
distributions provide uncertainty analysis.

4.1 The Bayesian Framework for Genetic Algorithms

In geoacoustic inversion codes that use genetic algorithms, it has become com-
mon use to base posterior probability density (PPD) on the average of several
parallel inversions [3]. In the absence of detailed a priori information, uniform
a priori distributions are assumed [8]. Another assumption is that data errors
are independent and identically Gaussian distributed. Gerstoft did show how
the average gene distributions and the marginal probability distribution became
similar over 20 runs [3].

4.2 Uncertainty Analysis with MAX − MIN Ant System

Without a Bayesian argumentation but in line with the genetic approach, the
probability distributions in Fig. 2 are based on the averages over 10 GIANT
runs. For this multi-start procedure equal settings for performance were used:
N = 50, ρ = 0.05 and a maximum of 200 iterations. In total, the cost of acquiring
the distributions did not exceed 105 forward calls. Arrows mark the reference
solutions and are found at central positions within the distributions. Figure 2
not only gives correct central values, it adds an indication on the uncertainty.
Intervals of likely values narrow down when more processing is allowed.
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Fig. 2. GIANT probability distributions on the YS94 benchmark. Plotted are averages
over 10 parallel runs with a total of 105 forward calls. Arrows mark reference solutions.

5 Conclusion

With geoacoustic inversion, a marine application has been presented for Ant
Colony Optimization. A basic MAX − MIN Ant System was implemented to
search for geoacoustic properties of a shallow water environment. The algorithm
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has been tuned on a benchmark based on real world data from the 1994 Yel-
low Shark experiments. Accurate solutions were found within the given process-
ing time. Runs that do not reach full convergence are shown to be useful in a
multi-start approach, when MMAS provides uncertainty analysis by combining
final results of parallel runs into probability distributions. The next step is to
improve convergence for geoacoustic inversion by customizing MMAS with a
priori knowledge on the search space.
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Abstract. Ant colony optimisation is a constructive metaheuristic that
successively builds solutions from problem-specific components. A para-
meterised model known as pheromone—an analogue of the trail phero-
mones used by real ants—is used to learn which components should be
combined to produce good solutions. In the majority of the algorithm’s
applications a single parameter from the model is used to influence the
selection of a single component to add to a solution. Such a model can
be described as first order. Higher order models describe relationships
between several components in a solution, and may arise either by con-
triving a model that describes subsets of components from a first order
model or because the characteristics of solutions modelled naturally re-
late subsets of components. This paper introduces a simple framework to
describe the application of higher order models as a tool to understand-
ing common features of existing applications. The framework also serves
as an introduction to those new to the use of such models. The utility
of higher order models is discussed with reference to empirical results in
the literature.

1 Introduction

Ant colony optimisation (ACO) is a constructive metaheuristic that belongs
to the model-based search (MBS) class of optimisation algorithms [1]. In an
MBS algorithm, successive solutions are built using a parameterised probabilis-
tic model, the parameters of which are revised over time using the solutions
produced by the algorithm in order to direct its search towards promising areas
of the solution space. The model used in ACO is referred to as a pheromone
model in reference to the trail pheromones laid down by real ants to mark paths
from their nest to a food source. In essence, the model describes relationships
between components in the solution, such as one component succeeding another
or whether a component is in a solution or not. The problem being solved thus
partially dictates what can be modelled. Although the initial application of ACO
to the well-known travelling salesman problem (TSP) used a model that very
closely resembles the environment in which real ants move—there is a clear sim-
ilarity between a Hamiltonian cycle in an edge-weighted graph and alternative
routes between nest and food—as the range of problems to which it is applied
has grown so too has the range of models [2].
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During a single iteration of a typical ACO algorithm, each artificial ant con-
structs a solution by successively adding problem-specific solution components.
The relative utility of alternative components is given by the parameters of the
pheromone model. When the utility of adding a candidate component to a par-
tial solution is described by a single parameter, the model is said to be first
order [3,4,2]. A higher order model is one in which the utility of adding a candi-
date component to a partial solution is described by several parameters, requiring
that the information be aggregated before judging that component’s utility.

This paper introduces a simple framework for higher order pheromone models
that serves both as a tool to understand existing applications of such models and
as a guide for their future application. The utility of such models is also discussed
with reference to their empirical performance. These topics are organised as
follows. Section 2 formalises the discussion of pheromone models, introducing
some necessary notation, before Section 3 describes the framework. The empirical
performance of higher order models is compared to that of first order alternatives
in Section 4. Section 5 provides some concluding remarks.

2 Pheromone Models

An ACO algorithm consists of a number of iterations of solution construction,
within which each (artificial) ant builds its solution by successively selecting a
solution component to add to its sequence. Solution components are typically
selected probabilistically, biased by the parameters of the pheromone model,
which provide an estimate of the utility of adding a solution component to an
ant’s partial solution. It should be noted that the term solution component is
somewhat overloaded in the ACO literature, at times being used to refer to
components of the model rather than the components from which solutions are
built (sometimes referred to as natural solution components [3]). As both kinds
of “component” are discussed in this paper, the term solution characteristic [2]
is introduced to describe components of the model. A pheromone model thus
consists of a set of solution characteristics, and is denoted by C. To each solution
there corresponds a set of solution characteristics that is a proper subset of that
defined by the model.

In essence, the model describes relationships between components or compo-
nents and the solution. For instance, the model used with the TSP describes a
relationship between exactly two components, the candidate being considered
and the previous component added. The model commonly used with knapsack
problems represents a relationship between a candidate and the solution as a
whole, indicating the utility of including a component at all. The relationships
described by a pheromone model may also make reference to aspects of so-
lutions other than the components from which they are built. For instance,
some models used in the literature represent the absolute position of compo-
nents in a solution, while others represent the assignment of items from one set
of entities to another (with the solution components being drawn from only one
of the two sets). When a model represents a relationship between a candidate
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solution component and at most one other component in the partial solution, as
in these examples, that model is said to be first order. In other words, the util-
ity of adding a candidate component is described by a single pheromone value
(a non-zero, real-valued number denoted by τ). When the relationships mod-
elled relate to multiple solution components, the pheromone model is higher
order.

Higher order pheromone models implicitly define two sets of solution charac-
teristics: one set relates to decisions to include individual solution components
based on the current state of a partial solution, while the other set relates to
higher order decisions, i.e., whether a single solution should exhibit two or more
particular solution characteristics at the same time. Given a first order model
C, an nth-order model may be a set of n-tuples of solution characteristics, de-
noted by Cn. Higher order models may be contrived by modelling combinations
of n solution characteristics from some first order model or, when the solution
characteristics modelled relate many parts of the solution to each other, will
form naturally as a consequence of having to combine information from each
relationship. In the latter case there is typically no related first order model.

3 Using Higher Order Models

The two main issues that arise when using a higher order model are how the
higher order information is used, and the trade-off between the computational
overhead associated with the larger pheromone model versus the benefits of using
the extra information it provides. The former is discussed in this section, while
the latter is discussed in Section 4 below.

Although higher order pheromone models have been used in a number of
ACO algorithms, there is no single approach to their use. Nevertheless, there are
common features of each of the approaches currently described in the literature
that allow a general framework to be proposed.

When using a first order pheromone model, each constructive step is a com-
petition between individual solution characteristics (and hence between the so-
lution components they implicitly represent). When using a higher order model,
the pheromone associated with adding a particular solution component is an
aggregate of a number of pheromone values. Given a first order solution charac-
teristic c ∈ C, denote the set of all other single solution components or charac-
teristics to which c is related, and which consequently should be used to inform
the decision to include c in the current partial solution, by Cc. In general, for an
nth order pheromone model it is important to know to which tuples of (n − 1)
solution components or characteristics a first order characteristic c is related,
denoted Cn−1

c . Given an appropriate definition for Cn−1
c , a suitable aggregation

function must also be defined, as well as an alternative when Cn−1
c = ∅.

Assuming that a solution characteristic c corresponds to a single constructive
step (e.g., the addition of a single solution component or a single assignment),
and denoting the pheromone associated with adding c to the partial solution
sp using an nth order pheromone model by τ(sp, c, n), a generic function for
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τ(sp, c, n) where n ≥ 2 is given by

τ(sp, c, n) =
{

f(sp, c, τn) if ∃ τn and |Cn−1
c | > 0

τ(sp, c, n − 1) otherwise (1)

where τn : C × Cn−1 → R
+ is a function from collections of n solution char-

acteristics to pheromone values, and f(s, c, τn) is an aggregation function over
the pheromone values associated between c and the elements of Cn−1

c , which
is discussed in more detail below. Note that the equation is recursive; if Cn−1

c

is empty or τn does not exist then a lower order pheromone model is sought.
To ensure that the recursion defined by Equation 1 is well-founded, τ1 must be
defined, either to be a constant value or a separate first order pheromone model.
In pheromone models where the elements of Cn−1

c are taken from sp, early in
solution construction sp contains few solution characteristics and it is likely that
Cn−1

c = ∅, and hence a lower order pheromone model such as τ1 must be used
until the nth order model τn can be used. Conceivably, for n > 1, if an nth order
model is used, n − 1 other pheromone models may also be employed to deal
with the first n− 1 steps of solution construction. In practice, most higher order
pheromone models are only second order, so at most two pheromone models may
be required.

Instances of higher order models are specified by providing definitions for the
three components of this general framework, Cc, f and τ1. The definition of Cc

is highly problem specific and closely tied to the way solutions are constructed.
A number of options are available for the aggregation function f , four of which

are to take the minimum, maximum, mean or sum of the different pheromone
values involved. These four alternative definitions of f are denoted by min(τn),
max(τn), mean(τn) and sum(τn) respectively.

The definition of Cn−1
c also determines which pheromone values from τn are

updated by a solution s. For instance, using a second order pheromone model
that represents the learned utility of having pairs of solution characteristics
(ci, cj) ∈ C2 copresent in a solution, pheromone is updated for all pairs (ci, cj)
such that ci, cj ∈ s, ci �= cj . Alternatively, when using a second order model
that represents the utility of placing a solution component before certain other
solution components, the value of Cn−1

c when the solution was constructed must
be used to identify which pheromone values to update.

3.1 Defining Cc, f and τ1 for a Problem

The definition of Cc is problem specific and typically apparent from the higher
order solution characteristics being modelled. For instance, if a second order
model is used to learn whether pairs of components should be part of the same
solution, then intuitively Cc should contain those components already in the
partial solution. Alternatively, given a different second order pheromone model
that models pairs of components that should not be part of the same solution
(or where there is a relationship based on the relative order of the pairs of com-
ponents as in [4]), and faced with a first order decision about whether to include
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Table 1. Sample of customisations of Equation 1. τmax is an upper bound on phero-
mone values imposed in the MAX − MIN Ant System algorithm [6].

Cc f τ1 Example(s)
∈ sp sum unknown [7,8]

equivalent to 1 [9]
1st order model [10]

mean 1 [11,12]
1 [13]
1 [5]
1st order model [5]

�∈ sp min τmax [14]
∞ [4]

a candidate characteristic, intuitively Cc should contain only those components
that have not yet been added to the partial solution.

The definitions of f and τ1 can be somewhat separate from the solution char-
acteristics modelled and so may appear to be arbitrary choices. Nevertheless, a
number of observations may be made concerning existing applications of higher
order models. Table 1 categorises the usage of higher order pheromones found
in the literature, based on whether the elements of Cc come from the partial
solution or its complement, the aggregation function used and definition of τ1.
Full details of the retrospective application of the framework to the works cited
are given in [5].

With regards to the aggregation function f , all the examples in Table 1 use
min, mean or sum, while none uses max. The use of the min function can be
characterised as a cautious approach—any single low pheromone value can in
effect veto the first order decision being considered. Conversely, max allows any
single high pheromone value to make the decision more likely. The functions sum
and mean allow each higher order solution characteristic’s pheromone value to
influence the first order decision, with the choice of whether to use sum or mean
dependent on the number of higher order solution characteristics available for
each candidate first order characteristic (or component). In the examples cited,
sum is used in all cases where |Cc| = |Cc′ | ∀ c �= c′ for a fixed partial solution
size, while mean is used in those cases where this is not the case (or where the
magnitude of observed pheromone values must be kept constant).

Notably, min is used only in those cases where the elements of Cc are not
present in the partial solution. Blum and Sampels [4] describe an ACO algorithm
for shop scheduling problems in which each solution characteristic indicates the
relative order of operations that must be processed on the same machine. In this
application, the rationale for using min is that if any pheromone value is low then
there must exist at least one related operation that should be scheduled before
the one being considered. The min function is also used in an ACO algorithm for
a university timetabling problem developed by Socha, Knowles and Sampels [14],
where higher order pheromone values are used to learn which events should not
be placed in the same timeslot. Conceivably, taking the minimum value between
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the current event and those already assigned a timeslot might produce similar
results to considering unscheduled events. However, this approach may allow an
event to be placed in a timeslot that suits another unscheduled event better
and which may increase solution cost if that other event were later placed in
the same timeslot. Consequently, taking the minimum value may avert such
undesirable actions. Thus, in both examples, using min in relation to those
solution components or characteristics that have yet to be added to a partial
solution appears to avoid making decisions that may force the algorithm to
make an inferior decision later in solution construction. In contrast, the use of
sum and mean with pheromone values associated with solution components or
characteristics already in a partial solution appears to promote the selection of
a solution component that is well suited to the existing partial solution.

In those examples where τ1 is clearly defined and the elements of Cc are
taken from the partial solution, the first solution characteristic is chosen either
randomly or using a first order pheromone model when used in conjunction with
sum, while it is assigned a constant value when used with mean. Where the
elements Cc do not come from the partial solution, τ1 is set to either a high value
(τmax) or a candidate component is chosen as if it had a high value (such as ∞).

4 Utility of Higher Order Pheromones

When implemented, higher order pheromone models require greater computa-
tional resources than their first order counterparts. While storage overhead is
typically not problematic—most higher order models are second order, repre-
senting a squaring in size—higher order models necessarily take longer to process
as multiple pheromone values must be considered for each solution characteristic.
This increased computational overhead must be weighed against any potential
improvements to the quality of solutions produced by the algorithm, as the fol-
lowing examples show.

A comparative study of first and second order pheromone models for the k-
cardinality tree problem found that, given the same amount of execution time,
the latter produces fewer solutions and thus the algorithm makes less progress
towards good solutions [10]. It was concluded that the first order model is con-
sequently a better choice for this problem.

Roli, Blum and Dorigo [7] compared the performance of an ACO algorithm
for constraint satisfaction using three alternative pheromone models, including a
first order pheromone model that represents which assignments should be made
and a second order pheromone modelling which pairs of assignments should be
made. Both models performed similarly well. However, again due to the increased
computational overhead for the second order model, the first order model is
promoted as the best-suited to that problem.

Montgomery [5] compared first and second order pheromone models for the
knapsack problem, also finding that the two gave equivalent performance in
terms of solution quality, with the second order model increasing the required
computation time for an equivalent number of solutions produced.
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Montgomery [5] also compared a first and two second order pheromone models
for a car sequencing problem in which different car models must be assigned
positions in a production sequence such that the separation penalty between
cars of the same model is minimised (i.e., it is desirable keep cars of the same
model apart). The penalty varies between models. The first order pheromone
model represents the assignment of a car model to a sequence position. One of
the higher order models represents pairs of sequence positions assigned the same
car model, similar to the model used by Costa and Hertz [11] for the graph
colouring problem in which nodes in a partially connected graph are partitioned
into colour groups. The other higher order model represents pairs of sequence
positions assigned the same car model plus which model is assigned. The study
found that the first order model and the second order model that includes the
actual car model assigned both outperformed the model inspired by that used by
Costa and Hertz. This finding is commensurate with suggestions by Montgomery,
Randall and Hendtlass [2] regarding appropriate pheromone models. However,
the first order model performed best overall.

These four studies would appear to suggest that higher order models have
little or no utility. However, there are some combinatorial problems, such as
the maximum-clique [9] and graph colouring [11] problems, for which first order
models may not be appropriate—both of these problems involve the assignment
of components to groups. Indeed, potential problems have been identified with
first order models for the graph colouring problem [2]. Furthermore, the best per-
forming model for shop scheduling problems is the second order model developed
by Blum and Sampels [4,15], a key feature of which is that it is not derived from
a first order model. Taken together, these results suggest that if a simpler phero-
mone model is “appropriate” for a given problem, it is unnecessary to use a higher
order (typically, a second order) model. Montgomery, Randall and Hendtlass [2]
put forward a number of qualities of a model that make it “appropriate” for a
particular problem, the chief one being that it represents characteristics of solu-
tions that directly impact on solution cost. Using this guiding criterion, the use
of higher order pheromone models is implicated in a number of problem domains.

5 Conclusions

The majority of pheromone models used in ACO algorithms are first order,
with a single parameter of the model representing the learned utility of adding
a single solution component to a partial solution. A number of higher order
models have also been developed which give more detailed information about
the utility of adding a single component. This paper has introduced a simple
framework for describing higher order pheromone models, which serves as a tool
to understand common features of existing applications and may assist in the
future development of new higher order models for other problems.

A review of studies that compare first and second order models suggests that
higher order models will often give equivalent performance to first order counter-
parts, but at the expense of greater computation times. However, there are some
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problems where the use of higher order models appears necessary. Therefore, if
a problem appears to require the use of a higher order model then a first order
model should also be developed and its performance examined.
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Abstract. In this article, we study hybrid Particle Swarm Optimiza-
tion (PSO) algorithms for continuous optimization. The algorithms com-
bine a PSO algorithm with either the Nelder-Mead-Simplex or Powell’s
Direction-Set local search methods. Local search is applied each time the
PSO part meets some convergence criterion. Our experimental results for
test functions with up to 100 dimensions indicate that the usage of the it-
erative improvement algorithms can strongly improve PSO performance
but also that the preferable choice of which local search algorithm to ap-
ply depends on the test function. The results also suggest that another
main contribution of the local search is to make PSO algorithms more
robust with respect to their parameter settings.

1 Introduction

PSO is a population-based optimization technique introduced by Kennedy and
Eberhart in 1995 [1]. Today there exist many variants of PSO like PSO with
inertia weights [2, 3], a constricted version of the PSO [4], the usage of various
topologies for the particles neighborhood [5], etc. These variants try to introduce
variations on how to balance diversification and intensification of the search to
improve over the performance of the basic PSO algorithm.

Another option, which is very commonly used in hybrid stochastic local search
(SLS) algorithms [6], has less frequently been exploited in PSO research: the
combination of a global exploration mechanism with a local search algorithm.
(Examples for combinations of PSO with local search for continuous function
optimization can be found in [7, 8].) The main focus of this article is an ex-
perimental study of a hybrid Particle Swarm Optimization (HPSO) algorithm
that combines PSO with local search for continuous optimization problems of
the form f : D → R where D ⊆ Rn, n ∈ N+. In this article, we examine
the extension of a standard PSO algorithm with either the Nelder–Mead Sim-
plex (NMS) or Powell’s Direction-Set (PDS) local search methods [9] as well as
with a reinitialization process and we study the performance of the resulting
algorithms.

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 436–443, 2006.
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2 Basic Algorithms

Particle Swarm Optimization. PSO algorithms maintain a population of
particles, each particle i having associated a current position �xi ∈ D, a velocity
vector �vi ∈ Rn and the position �pi ∈ D of the best objective function value
it found so far. Starting from some initial population, PSO cycles through the
following steps. First, all particles update their velocity and next each particle i
updates its position �xi using its new velocity vector and computes the function
value f(�xi). PSO repeats these steps until some termination criterion is met.

The basic PSO extended with a parameter called inertia weight [2] performs
the velocity and position update for a particle i according to

�vi(t + 1) := w(t)�vi(t) + φ1�r1i(�pi(t) − �xi(t)) + φ2�r2i(�pg(t) − �xi(t)) (1)

�xi(t + 1) := �xi(t) + �vi(t + 1), (2)

where w(t) is the (time varying) inertia weight, φ1 ∈ R+ and φ2 ∈ R+ are
positive constants, �ri1 and �ri2 are random numbers with each dimension being
uniformly distributed in [0, 1] and g is the index of the particle with the best
previous position in the neighborhood of particle i at iteration t. Usually, each
component j of the velocity vector �vi is bounded to −vmax ≤ vij ≤ vmax;
vmax ∈ R+ is a positive constant. Another important variant of PSO uses the
constriction coefficient χ [4] and the velocity update becomes

�vi(t + 1) := χ(�vi(t) + φ1�r1i(�pi(t) − �xi(t)) + φ2�r2i(�pg(t) − �xi(t))). (3)

The constriction coefficient is often used as a function of φ1 and φ2 and thus
could be considered as a special case of the variant with inertia weights [10].

Apart from the above mentioned parameters, the neighborhood topology can
have a significant influence on PSO performance [11]. Usually, the velocity up-
date equation of every particle i only depends on �pi and �pg. The basic version
of PSO uses the gbest neighborhood topology, i.e., all particles are neighbored
to each other and, hence, �pg is the best position found so far by the algorithm.

Iterative improvement algorithms. The NMS and the PDS method are
deterministic iterative-improvement algorithms for multidimensional continuous
optimization. Both methods use only function evaluations for the optimization
process and are easy to implement. Starting from an initial solution �xstart, they
iteratively improve upon their current solution until their termination criterion is
met. We use the implementation of the NMS and PDS methods proposed in [9].

3 Hybrid Particle Swarm Optimization

An advantage of iterative improvement methods is their good exploitation qual-
ity; however, they have no mechanism for a robust exploration of the search
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space. In contrast, PSO can offer such exploration capabilities. Hence, it may be
a good idea to combine the two techniques in one algorithm.

In this article, we examine such a combination, in which we apply iterative
improvement algorithms only occasionally. In particular, we introduce a con-
vergence criterion to the PSO algorithm that is based on the distance between
the current positions of the particles. Once this convergence criterion is met, we
apply an iterative improvement algorithm to the best solution seen so far. Upon
termination of the local search, the particles are reinitialized to randomly chosen
positions and the PSO part is restarted. This cycle of repeated applications of a
PSO algorithm until convergence and subsequent local search is applied until the
termination criterion of our HPSO algorithm, typically a maximum number of
function evaluations or computation time, is met and the algorithm then returns
the best solution found.

The main difference to a standard PSO loop is the usage of the convergence
criterion and the usage of the iterative improvement algorithm. To enforce a
fast convergence of the PSO algorithm and to, hence, apply the local search a
significant number of times, we use as the underlying PSO algorithm the gbest
PSO with Equation 1 for the velocity update. For w(t) we use the nonlinear
function

w(t) := (1 − g(t))we · (winitial − wfinal) + wfinal, (4)

which was proposed in [3] to calculate the inertia weight at iteration t, where g(t)
returns a number in the range [0, 1] and we, winitial, wfinal ∈ R are constants.
The function g(t) returns 0 at the beginning of a search process and increases
every iteration until it reaches 1 at the end of the search. The constant winitial is
the initial value of the inertia weight and wfinal is the desired value of the inertia
weight at the end of the search process. A constant inertia weight is obtained if
winitial and wfinal are equal. As the convergence criterion in our algorithm we
use the distance of the particles to the best solution found so far �x∗. In particular,
the convergence criterion is met, if dmax/ddomain < 0.001, where dmax ∈ R+ is
the maximum Euclidean distance to �x∗ over all current positions of the particles
and ddomain =

√
n(bu − bl)2 is the diameter of the search space (bu and bl are

the upper and lower bound of one dimension of the search space). As iterative
improvement methods we explore the usage of either NMS or PDS. For the
reinitialization of the population P , each particle in P is moved to a random
position �x in the search space and �p is set to �x. The components of the velocity
vectors receive new, uniformly distributed values in the range [−vmax, vmax].

4 Experiments on PSO Variants

Experimental setup. As our test-bed we use five test functions taken from
the literature [4, 12, 13]; the functions are given in Table 1 together with their
particular search domain and their globally optimal function value. All functions
were tackled using 30 and 100 dimensions.

The swarm size was set to 30 particles. All algorithms use vmax = bu − bl.
Standard parameters for φ1 and φ2 and the constant inertia weight were taken
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Table 1. The functions of our test-bed. See the text for details.

Name Domain [bl, bu]n fopt Formula

Ackley [−32, 32]n 0
f1(x) = −20 exp −0.2 n−1 n

i=1 x2
i

− exp n−1 n
i=1 cos(2πxi) + 20 + e

Griewank [−600, 600]n 0 f2(x) = 1 + 1
4000

n
i=1 x2

i − n
i=1 cos xi√

i

Rastrigin [−5.12, 5.12]n 0 f3(x) = 10n + n
i=1[x

2
i − 10 cos(2πxi)]

Rosenbrock [−30, 30]n 0 f4(x) = n−1
i=1 [100(xi+1 − x2

i )2 + (xi − 1)2]
Sphere [−100, 100]n 0 f5(x) = n

i=1 x2
i

Table 2. Parameter sets for the standard algorithms; see the text for more details. The
“C” and “D” at the end of algorithm identifiers refer to the usage of either constant
or decreasing inertia weights.

Type of inertia weight Configuration φ1 φ2 Inertia weight

constant PSO1, RPSO1C, HPSO1C 1.7 1.7 0.6
PSO2, RPSO2C, HPSO2C 1.494 1.494 0.729

decreasing
RPSO1D, HPSO1D 1.7 1.7 (0.8, 0.2, 2)
RPSO2D, HPSO2D 1.494 1.494 (0.8, 0.2, 2)

from the literature [12]. An experiment with an n-dimensional function was ter-
minated after 1000n function evaluations and each experiment was repeated 100
independent times. The initial positions of the swarm are distributed uniformly
at random in the search space.

The algorithmic variants include the basic gbest PSOs, where the velocity
update is calculated according to Equation 1. We also study an RPSO algo-
rithm that is the same as our HPSO, except that it does not use any iterative
improvement method. Hence, RPSO only differs in the usage of the occasional
restarts from the basic PSO. By including it into the analysis, we get a better
impression of the impact the local search and the occasional restarts have on the
overall performance. RPSO and HPSO were tested with constant and decreasing
inertia weights. All algorithmic variants and the individual parameters of each
algorithm variant in a first batch of experiments are shown in Table 2, which is
split in dependence of the usage of constant or decreasing inertia weights. The
decreasing inertia weight parameters are given as a triple (winitial, wfinal, w

e).

Experimental comparison. The results for our HPSO are given for either
the usage of NMS or of PDS. In Table 3, we give the average function values
obtained; all entries smaller than 10−10 were rounded to zero.

Our experiments show that RPSO reaches at least comparable but often much
better solution quality than basic PSO on the multimodal functions (Ackley,
Griewank, Rastrigin), while the reinitialization process leads to no improvement
for the unimodal functions (Rosenbrock, Sphere). Second, almost all results of
the HPSO configurations are better than the results of PSO1 and PSO2. Again,
the 30-dimensional Sphere function is an exception where HPSO with NMS is
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Table 3. Average function values for PSO, RPSO and HPSO variants on the test
functions after 1000n function evaluations. All configurations of HPSO that are in
bold-face reach lower averages than the best among all PSO and RPSO variants. The
best configuration for each function is marked with an asterisk. See Table 2 for the
meaning of the algorithm identifiers.

Configuration Ackley Griewank Rastrigin Rosenbrock Sphere

n = 100, 100000 function evaluations
PSO1 5.8161 0.2590 267.465 231.779 0.0003
PSO2 5.9400 0.3734 276.049 279.856 1.0557

RPSO1C 0.3064 0.0129 114.134 295.935 0.0055
RPSO2C 1.2262 0.0153 132.128 319.547 0.0062
RPSO1D 1.7313 0.0057 167.863 263.382 0.0023
RPSO2D 2.7645 0.0354 234.573 367.831 0.0933

HPSO1C PDS ∗0 0.1435 ∗86.290 150.011 ∗0
HPSO2C PDS ∗0 0.1351 87.131 168.364 ∗0
HPSO1D PDS 0.2510 0.1437 143.900 134.895 ∗0
HPSO2D PDS 0.6713 0.2148 159.969 130.187 ∗0

HPSO1C NMS 2.1163 ∗0.0040 113.872 153.167 0.0003
HPSO2C NMS 2.2404 0.0075 142.284 176.449 0.0002
HPSO1D NMS 3.0200 0.0068 150.047 130.198 0.0003
HPSO2D NMS 4.3143 0.0193 171.966 ∗82.794 0.0003

n = 30, 30000 function evaluations
PSO1 2.1911 0.0326 56.0857 42.1194 ∗0
PSO2 1.9050 0.0314 57.2996 48.9864 ∗0

RPSO1C 0.0081 0.0213 30.8356 56.9872 0.0003
RPSO2C 0.0230 0.0244 35.8105 60.0397 0.0002
RPSO1D 0.0090 0.0248 39.6500 54.7927 0.0004
RPSO2D 0.0886 0.0342 47.3336 69.9956 0.0040

HPSO1C PDS ∗0 0.0196 ∗17.4212 15.7134 ∗0
HPSO2C PDS 0.0134 ∗0.0193 19.7989 23.1755 ∗0
HPSO1D PDS 0.0116 0.0282 25.1322 19.8705 ∗0
HPSO2D PDS 0.2095 0.0453 30.1778 ∗14.2611 ∗0

HPSO1C NMS 0.0948 0.0248 29.3964 34.5819 6.614e-10
HPSO2C NMS 0.1384 0.0241 33.5891 44.5354 3.780e-10
HPSO1D NMS 0.3952 0.0215 31.5297 28.9776 1.161e-09
HPSO2D NMS 1.1578 0.0231 34.4734 22.5492 1.254e-09

outperformed by PSO although especially the Sphere function should be easily
solved by an iterative improvement method. Here, apparently NMS may have
problems with convergence or the termination criterion used in [9]. Third, the
best choice of the iterative improvement method depends somewhat on the test
function. For the Ackley function, HPSO with PDS performs clearly better than
HPSO with NMS, while on the 100-dimensional Griewank function it is domi-
nated by HPSO with NMS. On the Rastrigin and Rosenbrock functions, HPSO
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Table 4. Average function values of HPSO on n dimensions. All configurations that
performed better than the best corresponding (HPSOC: HPSO1C, HPSO2C; HPSOD:
HPSO1D, HPSO2D) configuration in Table 3 are in bold-face. Configurations that are
equal to the best corresponding configuration of HPSO in Table 3 are in brackets.

Configuration Ackley Griewank Rastrigin Rosenbrock Sphere

n = 100, 100000 function evaluations
HPSOC (0) 0.1303 79.3003 126.509 (0)
HPSOD 0 0.1357 87.5583 115.592 (0)

n = 30, 30000 function evaluations
HPSOC (0) 0.0267 17.0231 10.3569 (0)
HPSOD 0 0.0267 18.8141 14.6747 (0)

Table 5. The entries show the average function values of the ith best parameter setting
for HPSO

Inertia weight i Ackley Griewank Rastrigin Rosenbrock Sphere

n = 100, 100000 function evaluations

constant
20 0.0188 0.0096 101.994 19.9772 0

100 2.9717 0.2052 158.834 96.7507 0.0003
200 20.9588 2456.14 1642.66 1.18e+09 272874

decreasing
20 0.1892 0.0814 111.136 16.9327 0

100 0.9343 0.2192 153.055 58.3007 0
200 7.7326 0.3141 201.682 173.815 0.0003

n = 30, 30000 function evaluations

constant
20 0.0031 0.0065 22.8257 3.9928 0

100 1.0219 0.0344 38.5897 23.7757 5.13e-10
200 20.3653 509.89 423.832 2.07e+08 54336.2

decreasing
20 0.0135 0.0069 24.0287 8.2877 0

100 0.5883 0.0182 34.0737 21.1996 0
200 2.5140 0.0838 45.8425 36.363 1.29e-09

with PDS performs somewhat better than with NMS if we compare the variants
using a same parameter setting for the PSO related parameters; on the Sphere
function HPSO with PDS outperforms clearly HPSO with NMS. Across all the
test functions, the configuration HPSO1C PDS seems to be rather robust. It
achieved the best results of all configurations seven times and in the other cases
it is typically among the best variants.

Parameter settings. Besides the standard parameters (see Table 2), we ex-
amined the influence of the parameter settings on our HPSO. The possible val-
ues for φ1 and φ2 that we used were {0.75, 1.125, 1.5, 1.875, 2.25}, the values
for the constant inertia weight w were {0.2, 0.4, 0.6, 0.8, 1.0}. In the case of the
decreasing inertia weight w(t) only winitial varies. Possible values we consid-
ered were {0.4, 0.6, 0.8, 1.0, 1.2}; the parameters wfinal = 0.2 and we = 2 were
fixed. To rank the different parameter settings we used a quality criterion that is
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calculated as follows: First determine the mean worst and the mean best found
function value fmax and fmin of function f . For the jth parameter setting we
compute a quality qfj = (fj−fmin)/(fmax−fmin) where fj is the mean function
value obtained by parameter setting j. The final quality criterion measured is
qj = |F |−1 ∑

f∈F qfj , where F is the set of test functions.
The highest ranked HPSO configuration according to this quality criterion

for the constant inertia weight as well as for the decreasing inertia weight was
φ1 = 1.5, φ2 = 2.25 with PDS. The best constant inertia weight was w = 0.2
and the best initial inertia weight for the decreasing approach was w(t) = 0.4.
The values reached by these two parameter settings are shown in Table 4, where
HPSOC uses the constant inertia weight and HPSOD the decreasing inertia
weight. Compared to the standard parameters from Table 3, we can see that there
is room for further improvement with parameter tuning, but that a standard
parameterization (Table 2) performs reasonably good.

An interesting observation is that the best results for the configurations with
decreasing inertia weights are not better than the best results for the constant
inertia weight, but that many more parameter settings with decreasing inertia
weight find reasonably good quality solutions than when using a constant inertia
weight. This is shown in Table 5, where we give the average function values of the
20th, 100th and 200th best parameter setting per test function for constant and
decreasing inertia weights. A closer inspection of the algorithm traces suggested
an explanation for the more robust behavior: By decreasing inertia weights the
algorithm more rapidly and more easily meets our convergence criterion and,
hence, also uses more often restarts and the local search algorithms.

5 Conclusions

In this article, we have introduced a new hybrid PSO algorithm that uses oc-
casional restarts and combines PSO with iterative improvement methods. Our
computational results clearly show that the inclusion of iterative improvement
methods into PSO is highly desirable concerning solution quality reached but
especially also concerning the robustness of our overall HPSO algorithm with
respect to the parameter settings of the PSO part. For this latter aspect, par-
ticularly the variants with decreasing inertia weight appear to be best suited.
Future work will comprise a more careful comparison of the hybrid algorithms
proposed here to other, recent PSO variants and also to other techniques for
tackling continuous optimization problems. Another line of research will study
other schemes for implementing hybrid PSO algorithms. In fact, we are con-
vinced that our initial results also indicate that the study of hybrids between
PSO and local optimization techniques deserves more attention in future research
on PSO.
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6. Hoos, H.H., Stützle, T.: Stochastic Local Search-Foundations and Applications.
Morgan Kaufmann Publishers, San Francisco, CA, USA (2004)

7. Fan, S., Liang, Y., Zahara, E.: Hybrid simplex search and particle swarm optimiza-
tion for the global optimization of multimodal functions. Engineering Optimization
36(4) (2004) 401–418

8. Wang, F., Qiu, Y., Bai, Y.: A new hybrid NM method and particle swarm algorithm
for multimodal function optimization. In: IDA. Volume 3646. (2005) 497–508

9. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes
in C : The Art of Scientific Computing. second edn. (1992)

10. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in
particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary
Computation, 2000. Volume 1. (2000) 84–88

11. Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on
particle swarm performance. In: Proceedings of the 1999 Congress on Evolutionary
Computation, 1999. CEC 99. Volume 3. (1999) 1931–1938

12. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and
parameter selection. Information Processing Letters 85(6) (2003) 317–325

13. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several
stochastic algorithms on selected continuous global optimization test problems.
Journal of Global Optimization 31(4) (2005) 635–672



Introducing a Binary Ant Colony Optimization

Min Kong and Peng Tian

Shanghai Jiaotong University, Shanghai, China
kongmin@sjtu.edu.cn, ptian@sjtu.edu.cn

Abstract. This paper proposes a Binary Ant Colony Optimization ap-
plied to constrained optimization problems with binary solution struc-
ture. Due to its simple structure, the convergence status of the proposed
algorithm can be monitored through the distribution of pheromone in
the solution space, and the probability of solution improvement can be
in some way controlled by the maintenance of pheromone. The success-
ful implementations to the binary function optimization problem and the
multidimensional knapsack problem indicate the robustness and practi-
cability of the proposed algorithm.

1 Introduction

Ant Colony Optimization (ACO) is a stochastic meta-heuristic for solutions to
combinatorial optimization problems. Since its first introduction by M. Dorigo
and his colleagues [1] in 1991, ACO has been successfully applied to a wide set of
different hard combinatorial optimization problems, such as traveling salesman
problem[2], quadratic assignment problem[3], and vehicle routing problem[4].
The main idea of ACO is the cooperation of a number of artificial ants via
pheromone laid on the path. Each ant contributes a little effort to the solution,
while the final result is an emergence of the ants’ interactions.

Besides its success in practical applications, there have also been some studies
on the theory of ACO[5,6,7], which are mainly focused on the convergence proof
of ACO. But the cybernetics of ACO is still unclear, specially on the speed of
convergence. This paper tries to reveal some properties of the convergence speed
of ACO by a simple ant system, BAS, which works in binary space and whose
performance is verified through the binary function optimization problem and
the multidimensional knapsack problem.

2 The Binary Ant System

2.1 Solution Construction

In BAS, artificial ants construct solutions by walking on the mapping graph as
described in Fig. 1. At every iteration, a number of na ants cooperate together to
search in the binary solution domain, each ant constructs its solution by walking
sequentially from node 1 to node n + 1 on the routing graph. At each node i,
ant either selects the upper path i0 or selects the lower path i1 to walk to the
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Fig. 1. Routing Diagram for Ants in BAS

next node i + 1. Selecting i0 means xi = 0; and selecting i1 means xi = 1. The
selecting probability is dependent on the pheromone distributed on the paths:

pis(t) = τis(t), i = 1, · · · , n, s ∈ {0, 1} (1)

where t is the number of iteration.
The solutions constructed by the ants may not be feasible when tackling the

constrained binary optimization problems. A solution repair operator is incor-
porated to transfer the infeasible solutions to the feasible domain.

2.2 Pheromone Update

Initially, BAS set all the pheromone values as τis(0) = 0.5, which is the same as
that of HCF[8], but uses a simplified pheromone update rule:

τis(t + 1) ← (1 − ρ)τis(t) + ρ
∑

x∈Supd|is∈x

wx (2)

where Supd is the set of solutions to be intensified; wx are explicit weights for
each solution x ∈ Supd, which satisfying 0 ≤ wx ≤ 1 and

∑
x∈Supd wx = 1; ρ

is the evaporation parameter, which is set initially as ρ = ρ0, but decreases as
ρ ← 0.9ρ every time the pheromone re-initialization is performed.

Supd consists of three components, they are: the global best solution Sgb, the
iteration best solution Sib, and the restart best solution Srb.

Different combinations of wx are implemented according to the convergence
status of the algorithm. The convergence status is monitored by a convergence
factor cf , which is defined as:

cf =
∑n

i=1 |τi0 − τi1|
n

(3)

Under this definition, when the algorithm is initialized with τis(0) = 0.5 for all
the paths, cf = 0, while when the algorithm gets into convergence or premature,
|τi0 − τi1| → 1, thus that cf → 1.

Table 1 describes the pheromone update strategy in different value of cf ,
where wib, wrb and wgb are the weight parameters for Sib, Srb and Sgb respec-
tively, cfi, i = 1, · · · , 5 are threshold parameters within the range of [0,1].

In BAS, once cf > cf5, the pheromone re-initialization procedure is performed
according to Sgb: {

τis = τH if is ∈ Sgb

τis = τL otherwise
(4)
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where τH and τL are two parameters satisfying 0 < τL < τH < 1 and τL+τH = 1.
This kind of pheromone re-initialization will focus more on the previous search
experience rather than a total redo of the algorithm.

Table 1. Pheromone Update Strategy for BAS

cf < cf1 cf ∈ [cf1, cf2) cf ∈ [cf2, cf3) cf ∈ [cf3, cf4) cf ∈ [cf4, cf5)
wib 1 2/3 1/3 0 0
wrb 0 1/3 2/3 1 0
wgb 0 0 0 0 1

3 Theoretical Analysis

3.1 Pheromone as Probability

Lemma 1. For any pheromone value τis at any iteration step t in BAS, the
following holds:

0 < τis(t) < 1 (5)

Proof. From the pheromone update procedure described in the previous section,
obviously we have τis(t) > 0. And because

∑
x∈Supd wx = 1, we can calculate

the upper limit for any particular path according to equation (2):

τmax
is (t) ≤ (1 − ρ)τmax

is (t − 1) + ρ

≤ (1 − ρ)tτis(0) +
∑t

i=1(1 − ρ)i−1ρ
= (1 − ρ)tτis(0) + 1 − (1 − ρ)t

(6)

Since BAS set the initial pheromone value as 0 < τis(0) < 1, we have
τmax
is (t) < 1 according to the final sum of equation (6).

Theorem 1. The pheromone values in BAS can be regarded as selecting prob-
abilities throughout the iterations.

Proof. Initially, since all the pheromone are set to 0.5, it obviously satisfies the
statement of the theorem. For the following iterations, what we need to do is to
prove τi0(t) + τi1(t) = 1, 0 < τis(t) < 1 holds for every variable xi under the
condition of τi0(t − 1) + τi1(t − 1) = 1.

From Lemma 1, we can see that 0 < τis(t) < 1 holds for any pheromone. After
the pheromone update procedure, all the pheromone values are evaporated, and
there must be one and only one of τi0 and τi1 associated with any x ∈ Supd that
receives pheromone intensification, therefore, for any pheromone pair τi0 and τi1,
we have:

τi0(t) + τi1(t) = (1 − ρ)τi0(t − 1) + ρ
∑

x∈Supd|i0∈x

wx

+(1 − ρ)τi1(t − 1) + ρ
∑

x∈Supd|i1∈x

wx

= (1 − ρ)(τi0(t − 1) + τi1(t − 1)) + ρ
∑

x∈Supd

wx

= 1 − ρ + ρ = 1
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3.2 Relation with PBIL

It is interesting that BAS, which is developed from ACO, is much similar to
PBIL[9], which is developed from another successful meta-heuristic, the Genetic
Algorithm. The main reason lies probably in the fact that both BAS and PBIL
incorporate the same reinforcement learning rule represented as equation (2).

The pheromone as selecting probabilities in BAS seems identical to the prob-
ability vector in PBIL, but BAS focuses more on the pheromone monitor and is
controlled by additional complicated pheromone maintenance methods to guide
the search to the direction for a quick convergence. While PBIL only deals with
binary function optimization problem, BAS also applies to constrained combi-
natorial optimization problems.

4 Experimental Results

4.1 Function Optimization Problem

Normally, the function optimization problem can be described as:

min f(y), y = [y1, · · · , yv]
s.t. aj ≤ yj ≤ bj , j = 1, · · · , v (7)

where f is the object function and v is the number of variable.
In BAS, each variable yj is coded into a binary string [xj1, · · · , xjd] in BCD

code, where d is the coding dimension for every variable. The final solution rep-
resentation x = [x11, · · · , x1d, x21, · · · , x2d, · · · , xv1, · · · , xvd] is the combination
of all the variables yj in series, so we have n = vd as the total dimension of the
binary representation to the function optimization problem.

Repair Operator. The purpose of the repair operator for the function opti-
mization problem is to decode the binary solution string x = [x1, · · · , xn] into
the real variables and make sure that each variable yj falls into the constrained
region [aj , bj ]. The process can be described as:

y′j =
∑dj

i=1+d(j−1) xi2i−1, j = 1, · · · , v
yj = y′

j

2d (bj − aj) + aj

(8)

Local Search. A one-flip local search is applied to Sib and Sgb, it checks every
bit by flipping the value from 0 to 1 or from 1 to 0, to see whether the resulting
solution is better than the original one. If it is improved, the solution is updated,
otherwise, the original solution is kept for further flips.

Comparison with Other Ant Systems. For all the tests, we use general
parameter settings as: d = 12, na = 5, τ0 = 0.5, τH = 0.65, ρ0 = 0.3,
cfi = [0.2, 0.3, 0.4, 0.5, 0.9], and the algorithm stops until the total function eval-
uation number exceed 10000 or the search is considered success by satisfying the
following condition:
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|f∗ − fknown best| < ε1 · |fknown best| + ε2 (9)

where f∗ is the optimum found by BAS, fknown best is the known global opti-
mum. ε1 and ε2 are accuracy parameters, which is set to be: ε1 = ε2 = 10−4.

Table 2 reports the success rate and average number of function evaluations
on different benchmark problems over 100 runs. It is clear that BAS finds the
best known solutions every time for all the benchmarks. Meanwhile, considering
the average number of function evaluation, BAS is also very competitive.

Table 2. Comparison of BAS with CACO[10], API[11], CIAC [12], and ACO[13]

f
CACO API CIAC ACO BAS

% ok evals % ok evals % ok evals % ok evals % ok evals
R2 100 6842 [10000] 100 11797 2905 100 5505.4
SM 100 22050 [10000] 100 50000 695 100 74.37
GP 100 5330 56 23391 364 100 1255.59
MG 100 1688 20 11751 100 2723.36
St [6000] 94 28201 100 1044.66
Gr5 [10000] 63 48402 100 1623
Gr10 100 50000 52 50121 100 1718.43

4.2 Multidimensional Knapsack Problem

The multidimensional knapsack problem (MKP) is a well-known NP-hard com-
binatorial optimization problem, which can be formulated as:

maximize
n∑

j=1

pjxj (10)

subject to
n∑

j=1

rijxj ≤ bi, i = 1, ...,m, (11)

xj ∈ {0, 1}, j = 1, ..., n. (12)

Repair Operator. In BAS, a repair operator is incorporated to guarantee
feasible solutions. The idea comes from Chu and Beasley [14], which is based on
the pseudo-utility ratio calculated accodring to the surrogate rate. The general
idea of this approach is described very briefly as follows.

The surrogate relaxation problem of the MKP can be defined as:

maximize
n∑

j=1

pjxj (13)

subject to
n∑

j=1

(
m∑

i=1

ωirij)xj ≤
m∑

i=1

ωibi (14)

xj ∈ {0, 1}, j = 1, 2, ..., n (15)



Introducing a Binary Ant Colony Optimization 449

where ω = {ω1, ..., ωm} is a set of surrogate multipliers (or weights) of some
positive real numbers. We obtain these weights by a simple method suggested
by Chu and Beasley [14], in which we solve the LP relaxation of the original
MKP and use the values of the dual variables as the weights. The weight ωi can
be seen as the shadow price of the ith constraint in the LP relaxation of the
MKP.

Table 3. The results of BAS MKP on 5.100 instances. For each instance, the table
reports the best known solutions from OR-library, the best and average solutions found
by Leguizamon and Michalewicz[15], the best solution found by Fidanova [16], the
best and average solutions found by Alaya et.al. [17], and the results from BAS MKP,
including the best and average solutions over 30 runs for each instance.

N◦ Best Known
L.&M. Fidanova Alaya et.al. BAS MKP
Best Avg. Best Best Avg. Best Avg.

00 24381 24381 24331 23984 24381 24342 24381 24380.7
01 24274 24274 24245 24145 24274 24247 24274 24270.7
02 23551 23551 23527 23523 23551 23529 23551 23539.7
03 23534 23527 23463 22874 23534 23462 23534 23524.1
04 23991 23991 23949 23751 23991 23946 23991 23978.5
05 24613 24613 24563 24601 24613 24587 24613 24613
06 25591 25591 25504 25293 25591 25512 25591 25591
07 23410 23410 23361 23204 23410 23371 23410 23410
08 24216 24204 24173 23762 24216 24172 24216 24205.4
09 24411 24411 24326 24255 24411 24356 24411 24405.5
10 42757 42705 42757 42704 42757 42736.2
11 42545 42445 42510 42456 42545 42498.9
12 41968 41581 41967 41934 41968 41966.5
13 45090 44911 45071 45056 45090 42074.8
14 42218 42025 42218 42194 42198 42198
15 42927 42671 42927 42911 42927 42927
16 42009 41776 42009 41977 42009 42009
17 45020 44671 45010 44971 45020 45016.5
18 43441 43122 43441 43356 43441 43408.8
19 44554 44471 44554 44506 44554 44554
20 59822 59798 59822 59821 59822 59822
21 62081 61821 62081 62010 62081 62010.4
22 59802 59694 59802 59759 59802 59772.7
23 60479 60479 60479 60428 60479 60471.8
24 61091 60954 61091 61072 61091 61074.2
25 58959 58695 58959 58945 58959 58959
26 61538 61406 61538 61514 61538 61522.5
27 61520 61520 61520 61492 61520 61505.2
28 59453 59121 59453 59436 59453 59453
29 59965 59864 59965 59958 59965 59961.7
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The pseudo-utility ratio for each variable, based on the surrogate constraint
coefficient, is defined as:

uj =
pj∑m

i=1 ωirij
(16)

The repair operator consists of two phases. The first phase examines each bit
of the solution string in increasing order of uj and changes the bit from one to
zero if feasibility is violated. The second phase reverses the process by examining
each bit in decreasing order of uj and changes the bit from zero to one as long
as feasibility is not violated.

Local Search. A random-4-flip method is designed as the local search for Sib

and Sgb, it randomly selects 4 bits to flip, then repairs the solution if necessary,
and checks the result. If the resulting solution is better, then update the solution,
otherwise, keeps the original solution. This kind of flips are performed for a
certain number of 10n to Sib and Sgb at each iteration, where n is the problem
dimension.

Comparison with Other Ant System. Table 3 displays the comparison re-
sults of 5.100 from OR library. The parameters for all the tests are: na = 20,
τ0 = 0.5, τH = 0.55, ρ0 = 0.3, cfi = 0.3, 0.5, 0.7, 0.9, 0.95, and the algorithm
stops when 2000 iterations are performed. On these instances, BAS MKP out-
performs all the other three algorithms in the results of the average solution
found. Actually, BAS MKP finds 29 best solutions out of the 30 instances tested.

5 Conclusions

This paper presented BAS, a binary version of hyper-cube frame of ACO to
handle constrained binary optimization problems. In the proposed version of
the system, pheromone trails are put on the selections of 0 and 1 for each bit
of the solution string, and they directly represent the probability of selection.
Experimental results show that BAS works well on binary function optimization
problem and performs excellently in multidimensional knapsack problem. The
results reported in the previous experimental sections demonstrate that BAS is
capable of solving these various problems very rapidly and effectively.
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Abstract. For solving combinatorial optimisation problems, exact meth-
ods accurately exploit the structure of the problem but are tractable only
up to a certain size; approximation or heuristic methods are tractable for
very large problems but may possibly be led into a bad solution. A question
that arises is, From where can we obtain knowledge of the problem struc-
ture via exact methods that can be exploited on large-scale problems by
heuristic methods? We present a framework that allows the exploitation of
existing techniques and resources to integrate such structural knowledge
into the Ant Colony System metaheuristic, where the structure is deter-
mined through the notion of kernelization from the field of parameterized
complexity. We give experimental results using vertex cover as the prob-
lem instance, and show that knowledge of this type of structure improves
performance beyond previously defined ACS algorithms.

1 Introduction

For solving combinatorial optimisation problems, exact methods accurately ex-
ploit the structure of the problem but are tractable only up to a certain size; ap-
proximation or heuristic methods are tractable for very large problems but may
possibly be led into a bad solution. A third approach could be to combine heuris-
tics and exact methods, which would hopefully still run quickly but the quality of
solution would be improved over just regular heuristics. Some examples of com-
bining heuristics with exact methods are discussed in [1]. In the work discussed in
this paper, we investigate the use of an already well established body of techniques
from the field of parameterized complexity [2,3] for identifying problem structure
as part of an exact solution, the extent to which these techniques can be integrated
into heuristics, and what advantage this gives over a standard heuristic approach.

In section 2 of this paper, we discuss ant colony system (ACS) for the vertex
cover problem. In section 3 we discuss parameterized complexity and kerneliza-
tion. In section 4 we present our framework for integrating ACS with kerneliza-
tion. In section 5 we give experimental results for our new algorithms and in
section 6 we conclude.

2 ACS for the Minimum Vertex Cover Problem

In this section we will present an algorithm by Gilmour and Dras [4] for ant
colony system on the vertex cover problem (VCP). Given the graph G = (V,E),
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the minimum VCP is the problem of finding a set of nodes V ′ ∈ V such that every
edge E is covered by a node from V ′ and such that the number of nodes in V ′ is
minimised. Our ant colony system algorithm is based upon the ACS algorithm
for the TSP [5] and the algorithm by Shyu, Yin, & Lin [6] for the weighted vertex
cover problem. In section 2.1 we discuss the problem representation as defined
by Shyu et al. [6] for ACS on the vertex cover problem. In sections 2.2 and 2.3 we
present our adapted random proportional transition rule and pheromone update
rules.

2.1 Problem Representation

Shyu et al. note that, unlike the Traveling Salesman Problem (TSP) for which
the first ACS algorithm was designed, a VCP solution does not constitute a path
in the graph. Thus in order to allow our algorithm to find unordered subsets of
nodes, we construct a complete graph Gc = (V,Ec). This will “guarantee that
there always exists a path in G, a sequence of unrepeated adjacent vertices, which
covers exactly and only the vertices in V ′” [6]. But we want to solve the minimum
vertex cover problem for G and not Gc and therefore we need to preserve the
details of the original graph within this new representation. Therefore we define
for each ant k a binary connectivity function ψk : Ec → {0, 1} as

ψk(i, j) =
1 if edge (i, j) ∈ E;
0 if edge (i, j) ∈ Ec − E,

(1)

2.2 Random Proportional Transition Rule

Our rule for deciding which node j ant k should place in its vertex cover con-
struction next is:

j = arg maxu∈Jk{[τu(t)] · [ηu]β} if q ≤ q0;
J if q > q0,

(2)

where q is randomly selected from the distribution [0, 1]; q0 is a tunable pa-
rameter such that 0 ≤ q0 ≤ 1; τu(t) is the amount of pheromone on node u;
ηu =

∑
z∈N(u) ψk(u, z) is the heuristic goodness of node u; Jk is the set of

nodes that ant k may still visit; and J ∈ Jk is a node that is randomly selected
according to the probability:

pJk(t) =
[τJ (t)] · [ηJ ]β

l∈Jk [τl(t)] · [ηl]β
(3)

After an ant visits a node which it has just placed in its candidate solu-
tion, it sets ψk(i, j) = 0 for every edge (i, j) connected to the node j that it
has just visited. This allows the ant to keep track of which edges have been
covered. A solution is constructed when all edges are covered. But, before the
next cycle can continue, the connectivity values need to be reset according to
equation (1).
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2.3 Pheromone System

For the vertex cover problem, pheromone is placed on nodes since we are in-
terested in constructing an unordered subset of all the nodes within the graph.
Therefore, the global and local pheromone update rules need to be updated to
work with nodes. Our global pheromone update rule, which is executed by one
ant at the end of each cycle, is defined as:

τi(t) ← (1 − ρ) · τi(t) + ρ · Δτi(t) (4)

where i are the nodes belonging to the current best solution T+; Δτi(t) = 1/L+

such that L+ is the size of the solution T+; and ρ is a parameter governing
pheromone decay such that 0 < ρ < 1.

Similarly, our local pheromone update rule, which is executed by every ant
on each node as it is placed in the candidate solution, is defined as:

τi = (1 − ϕ)τi + ϕτ0 (5)

where ϕ ∈ (0, 1) is a parameter which simulates the evaporation rate of phero-
mone; and τ0 is the amount of pheromone every edge is initially set to before
this algorithm starts.

Similar to the TSP, our formulation for τ0 is τ0 = 1
(n·Lnn) where Lnn is the

size of a solution produced by a simple greedy heuristic.

3 Parameterized Complexity

An overview of parameterized complexity is available in [2,3]; we give a brief
outline here. In section 2 we defined what we will now call the general minimum
vertex cover problem. A related problem is the k-vertex cover problem: given a
graph G = (V,E) and a parameter k, the k-vertex cover problem is the problem
of finding a vertex cover of size less than or equal to k. This problem is still
NP-complete. A key idea of parameterized complexity is that if some value of a
problem is known to be bounded in a certain context, useful algorithms with good
complexity properties can be developed. For the k-vertex cover problem, k might
be bounded by the maximum size of the vertex cover that we are trying to find;
in such a case, there is a best-case algorithm with complexity O(kn + 1.2852k)
[7] that is tractable for k up to 400. Parameterized complexity also allows a more
fine-grained analysis of problems classified as NP-complete: some are amenable
to this treatment, while others have only brute-force solutions of complexity
O(nk+1). Those that are amenable to this approach are called fixed-parameter
tractable (FPT).

Parameterized complexity contains both a framework of complexity analysis
and a corresponding toolkit of algorithm design. One such tool for algorithm
design is kernelization. The idea behind kernelization is reducing a problem
in polynomial time to its problem kernel such that ideally, even a brute-force
attack is an option; however, usually an approach such as bounded search trees
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is necessary for difficult problems. Kernelization is the core idea behind the
successful algorithms for the vertex cover problem.

Many different optimization problems [3] have been analyzed using the notions
of parameterized complexity, for example the dominating set problem, traveling
salesman problem, and the 3-CNF satisfiability problem, often with several pro-
posed algorithms for each problem. There is thus a wide range of tools available
to be used. The aim of this paper is to see whether, and in what way, these can
be combined with ACO as a kind of template in the context of the vertex cover
problem.

4 Ant Colony System with Structure

The key idea in this paper is that kernelization can be used to give ACS infor-
mation about the problem. We will present six variant algorithms for combining
these. Within the algorithms that we propose, we will be utilizing just one ker-
nelization rule. The rule we have chosen to use is: “If G has adjacent vertices u
and v such that N(v) ⊆ N [u], then replace (G, k) with (G − u, k − 1) and place
u in the vertex cover” [2]; here N(v) denotes the set of vertices that form the
neighbourhood of v and N [v] denotes N(v) ∪ {v}. See [8] for a more detailed
discussion on how we came to use this rule.

Kernelized Ant Colony System. This algorithm performs kernelization within the
initialisation stage of the algorithm and then runs regular ACS on the resulting
kernel graph. We define a set χ that contains all the nodes that are identified by
kernelization as belonging to an exact solution. Within the kernelization phase
we remove from the graph all the nodes that belong to χ and all edges connected
to nodes in χ.

PreKernelized Ant Colony System. This algorithm works similarly to Kernelized
ACS except rather than removing nodes from the graph, it sets the pheromone
on the selected nodes to be τkern. This will initially make the nodes in the
kernelization set more attractive to ants than any other nodes in the problem.

CycleKernelized Ant Colony System. This algorithm is similar to PreKernel-
ized ACS except that the kernelization information is continually reinforced in
pheromone. Therefore we have moved the kernelization component out of the ini-
tialisation phase and into the global pheromone update rule. As well as placing
pheromone on the current best solution, the ant selected to perform the global
pheromone update rule also reinforces the pheromone on the nodes in χ.

KernelAnts Ant Colony System. ACS uses m ants to generate solutions to a
problem. However, KernelAnts ACS uses k additional ants to kernelize the graph
and place pheromone on the nodes identified through kernelization whilst the
original m ants continue to perform regular ant colony system. Each turn, these
kernelants set the pheromone on one node each to τkern; this node is selected
by choosing the node in χ with the smallest pheromone value. This occurs in
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parallel with the regular ants continuing to construct solutions to the problem
influenced by the pheromone on the graph.

TransKernelized Ant Colony System. Within this algorithm, we have incorpo-
rated the kernelization into the ants’ random proportional transition rule. When
an ant draws a random number between zero and one that is less than the thresh-
old q0, the ant will first look in the kernelization set χ to see if there is a node to
visit before picking the best of all possible options as with regular ACS. Should
the random number be above the threshold, the ant assigns to each potential
node a probability and decides where to go next probabilistically, as with regular
ACS.

Neighbourhood TransKernelized Ant Colony System. One problem with Trans-
Kernelized ACS is that it can involve a lot of kernelization on the fly. Neigh-
bourhood TransKernelized ACS is an alternative algorithm that picks a node
using the regular ACS random proportional transition rule (see equation (2)).
However, if q ≤ q0, this algorithm then tests all the neighbours of node j to
ensure that none of them belong to the kernelization set χ and therefore make
a better choice. Since either j is in the vertex cover or all of its neighbours are,
it is safe to include j into our vertex cover should none of its neighbours be in
the kernelization set.

5 Evaluation

5.1 Parameter Investigation

We generated a set of 160 graphs with number of nodes ranging from 100 to
800 and number of edges ranging from 150 to 4000 and performed parameter
analysis on ant colony system and our six new algorithms for the vertex cover
problem. We timed how long ant colony system took to complete 2001 iterations
on each graph and that was the amount of time given to each algorithm during
parameter analysis. We then explored one parameter at a time; table 1 contains
the parameters found to be good.

5.2 Challenging Benchmarks

Benchmarks with Hidden Optimum Solutions for Graph Problems2 is a website
with a collection of challenging instances of graph problems constructed by hid-
ing optimum solutions for a specific problem in hard graphs [9]. This website
contains forty instances for the VCP of between 450 and 1534 nodes.

We initially timed how long it took ant colony system to run on each graph
for 200 iterations. We then set each algorithm to run on each graph for that
1 We chose 200 iterations because the Mann-Whitney statistical test has shown sta-

tistical improvement between 50, 100, 150, and 200 iterations but no improvement
between 200 and 250 iterations.

2 http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/graph-benchmarks.htm
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Table 1. Good parameters for ant colony system and our six new algorithms. These
parameters are: number of ants m; number of kernelants k; influence of heuristic in-
formation β; pheromone trail evaporation ρ; probability of including the best choice in
tour construction q0; and quantity of pheromone to drop on kernelized nodes τkern.

ACS KACS PKACS CKACS KAACS TKACS NTKACS
m 50 40 40 40 40 10 40
k - - - - 10 - -
β 4 5 5 4 4 5 5
ρ 0.1 0.1 0.1 0.1 0.1 0.2 0.1
q0 0.9 0.9 0.9 0.9 0.9 0.999 0.9

τkern - - 0.5 0.5 0.95 - -

Table 2. The sum and average of all results for Shyu et al.’s algorithm, ACS, the
optimal solution, and our six new algorithms, on benchmark instances

SYL ACS KACS PKACS CKACS KAACS TKACS NTKACS Opt
sum 39219 39177 39110 39116 39035 39037 39077 39092 38690

average 980.475 979.425 977.75 977.9 975.875 975.925 976.925 977.3 967.25

period of time. Table 2 contains the sum and average of the results for each
algorithm. We have adopted the approach of Birattari [10], of using a maxi-
mum number of instances possible with just one run per instance for all ex-
perimentation. See [8] for a more detailed discussion of all experiments and
results.

We applied the Mann-Whitney U-test—recommended for use in metaheuris-
tic analysis [11]—to these results and made the following conclusions. Firstly, all
algorithms including our ACS algorithm were statistically significant improve-
ments over the algorithm by Shyu et al.. Secondly, all kernelization algorithms
were a statistically significant improvement over regular ACS. Thirdly, there was
no statistical difference between CycleKernelized ACS and KernelAnts ACS but
they were statistically better than all other algorithms. Lastly, Kernelized ACS,
PreKernelized ACS, TransKernelized ACS, and Neighbourhood TransKernelized
ACS all performed roughly the same; there is only a small statistical preference
for TransKernelized ACS. The primary conclusion from these results is that the
kernelized algorithms do outperform regular ACS algorithms.

5.3 Random Graphs

We constructed two groups of graphs of 500 nodes each. The first group of
graphs contains graphs with 100 to 500 nodes, the second 600 to 1000 nodes.
Each algorithm ran on each graph for the quantity of time required for ACS
to perform 200 iterations on that graph. All random graphs were generated
using the algorithm proposed by Skiena [12] and selected to contain a variety of
parameters for number of nodes, number of edges, and kernel sizes. Again only
one run per graph was performed.
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Table 3. The sum and average of all results for Shyu et al.’s algorithm, ACS, and our
six new algorithms, on random graphs with 100 to 500 nodes

SYL ACS KACS PKACS CKACS KAACS TKACS NTKACS
sum 99229 95486 95286 95366 95354 95273 95010 94967

average 198.458 190.972 190.572 190.732 190.708 190.546 190.02 189.934

Table 4. The sum and average of all results for Shyu et al.’s algorithm, ACS, and our
six new algorithms, on random graphs of 600 to 1000 nodes

SYL ACS KACS PKACS CKACS KAACS TKACS NTKACS
sum 264700 255329 254407 254703 254785 254517 253671 253272

average 529.4 510.658 508.814 509.406 509.57 509.034 507.342 506.544

Table 3 contains the sum and average of the results for each algorithm for
the first group of graphs. We applied the Mann-Whitney U-test to these re-
sults and made the following conclusions. Firstly, all algorithms are a statistical
improvement over the algorithm by Shyu et al.. Secondly, all kernelization al-
gorithms except PreKernelized ACS are a statistical improvement over regular
ACS. Thirdly, TransKernelized ACS and Neighbourhood TransKernelized ACS
perform statistically speaking roughly the same, and these two algorithms are a
statistical improvement over all other algorithms.

Table 4 contains the sum and average of the results for each algorithm for
the second set of graphs. We applied the Mann-Whitney U-test to these results
and made the following conclusions. Firstly, all algorithms were a statistical
improvement over the algorithm by Shyu et al.. Similarly, all kernelization algo-
rithms were a statistical improvement over regular ACS. Secondly, Neighbour-
hood TransKernelized ACS was an improvement over all other algorithms and
TransKernelized ACS a clear second.

6 Conclusion

Our overall conclusion is that kernelization rules from the field of parameter-
ized complexity are a useful and extensive resource for combination with ACO.
Specifically, we have found that our six kernelization algorithms are useful for
getting better results for both our benchmark problems and random graphs. In
the larger, harder benchmark problems, it was found that pheromone based ker-
nelization algorithms performed the best. This is probably because pheromone
based algorithms consume less CPU time and so more iterations of ACS can be
performed which is benefical for these hard problems. However, the algorithms
with kernelization integrated into the random proportional transition rule work
better on the random graphs; probably because the random graphs are not
quite as hard and so more time can be used performing kernelization. We have
further identified a structure through this work that is common enough in both
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our benchmark problems and our random graphs to significantly affect quality
of solutions, and that ant colony system is poor at solving.

There are two broad avenues for future work. Firstly, further experimentation
of this kind on the vertex cover problem using different kernelization rules would
be useful for getting greater insight into what structures ant colony system is
weak at solving. Investigation into why this is the case could also prove fruitful.
Secondly, we plan to extend the approach to other optimization problems.
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Abstract. In this paper, a discrete particle swarm optimization (DPSO)
algorithm is presented to solve the single machine total earliness and tar-
diness penalties with a common due date. A modified version of HRM
heuristic presented by Hino et al. in [1], here we call it MHRM, is also
presented to solve the problem. In addition, the DPSO algorithm is hy-
bridized with the iterated local search (ILS) algorithm to further improve
the solution quality. The performance of the proposed DPSO algorithm is
tested on 280 benchmark instances ranging from 10 to 1000 jobs from the
OR Library. The computational experiments showed that the proposed
DPSO algorithm has generated better results, in terms of both percent-
age relative deviations from the upper bounds in Biskup and Feldmann
[2] and computational time, than Hino et al. [1].

1 Introduction

In a single machine scheduling problem with a common due date, n jobs are
available to be processed at time zero. Each job has a processing time and a
common due date. Preemption is not allowed and the objective is to sequence
jobs such that the sum of weighted earliness and tardiness penalties is minimized.
That is,

f(S) =
n∑

j=1

(αjEj + βjTj) . (1)

When the job j completes its operation before its due date, its earliness is given
by Ej = max(0, d − Cj), where Cj is the completion time of the job j. On the
other hand, if the job finishes its operation after its due date, its tardiness is
given by Tj = max(0, Cj − d) . Earliness and tardiness penalties of job j are
given by parameters αj and βj , respectively. It is well-known that for the case of

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 460–467, 2006.
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restrictive common due date with general penalties, there is an optimal schedule
given the following properties:

1. No idle times are inserted between consecutive jobs [3].
2. The schedule is V-Shaped. In other words, jobs that are completed at or

before the due date are sequenced in non-increasing order of the ratio pj/αj .
On the other hand, jobs whose processing starts at or after the due date are
sequenced in non-decreasing order of the ratio pj/βj . Note that there might be
a straddling job, that is, a job that its processing is started before its due date
and completed after its due date [2].

3. There is an optimal schedule in which either the processing of the first job
starts at time zero or one job is completed at the due date [2].

The complexity of the restrictive common due date problem is proved to be
NP-complete in the ordinary sense [4]. Feldmann and Biskup [5] applied different
meta-heuristics such as evolutionary search (ES), simulated annealing (SA) and
threshold accepting (TA). In addition, Hino et al. [1] most recently compared
the performance of TS, GA, and their hybridization. PSO was first introduced to
optimize continuous nonlinear functions by Eberhart and Kennedy [6]. Authors
have successfully proposed a DPSO algorithm to solve the no-wait flowshop
scheduling in [7]. Based on the experience above, this study aims at solving the
single-machine total earliness and tardiness penalties with a common due date
problem by the DPSO algorithm.

Section 2 introduces the modified MHRM heuristic. Section 3 provides the
details of the proposed DPSO algorithm. The computational results on bench-
mark instances are discussed in Section 4. Finally, Section 5 summarizes the
concluding remarks.

2 Modified MHRM Heuristic

Consistent with the HRM heuristic in [1], the MHRM heuristic consists of: (i)
determining the early and tardy job sets, (ii) constructing a sequence for each
set, and (iii) setting the final schedule S as the concatenation of both sequences.
In order to ensure that S will satisfy properties (1) and (2), there will be no
idle time between consecutive jobs, and the sequences of SE and ST will be
V-shaped. The following notation consistent with Hino et al. [1] is used:

P : set of jobs to be allocated
g : idle time inserted at the beginning of the schedule
SE : set of jobs completed on the due date or earlier
ST : set of jobs completed after the due date
S : schedule representation S = (g, SE , ST )
e : candidate job for SE

t : candidate job for ST

Ee : distance between the possible completion time of job e and the due date



462 Q.-K. Pan, M.F. Tasgetiren, and Y.-C. Liang

T t : distance between the possible completion time of job t and the due date
dT : time window available for inserting a job in set ST

dE : time window available for inserting a job in set SE

pj : the processing time of job j
H : total processing time, H =

∑n
j=1 pj

The procedure of the modified MHRM heuristic is summarized as follows:

Step 1: Let P = 1, 2, , n;SE = ST = φ ,g = max{0, d − H ×
∑n

j=1
βj

αj+βj
};

dE = d − g and dT = g + H − d.
Step 2: Set e = arg maxjεp{pj/αj}and t = arg maxjεp{pj/βj} (in case of a
tie, select the job with the longest pj).
Step3: Set Ee = dE − pe and T t = dT .

If Ee ≤ 0, then go to step 5. If T t − pt ≤ 0 , then go to step 6.
Step 4: Choose the job to be inserted:

If Ee > T t, then SE = SE + {e},dE = dE − pe and P = P − {e}.
If Ee < T t, then ST = SET + {t},dT = dT − pt and P = P − {t}.
If Ee = T t, then if αe > βt then ST = ST +{t},dT = dT −pt and P = P −{t};
else SE = SE + {e}, dE = dE − pe and P = P − {e}. Go to step 7.

Step 5: Adjustment of the idle time (end of the space before the due date):
If g + Ee < 0, then ST = ST + {t}, dT = dT − pt and P = P − {t},
else SE′

= SE ,ST ′
= ST ∪ P ,g′ = d −

∑
jεSE′ pj , S′ = (g′, SE′

, ST ′
);

SE′′
= SE + {e}, ST ′′

= ST ∪ P − {e}, g′′ = d −
∑

jεSE′′ pj ,
S′′ = (g′′, SE′′

, ST ′′
).

If f(SE′
) ≤ f(SE′′

), then ST = ST +{t},dE = 0, dT = dT −pt +g′−g, g = g′

and P = P − {t}.
Else SE = SE + {e},dE = 0, dT = dT + g′′ − g, g = g′′ and P = P − {e}.
Go to step 7.

Step 6: Adjustment of the idle time (end of the space after the due date):
If g < T t, then SE = SE + {e}, dE = dE − pe and P = P − {e},
else ST ′

= ST ,SE′
= SE ∪ P ,g′ = d −

∑
jεSE′ pj , S′ = (g′, SE′

, ST ′
);

ST ′′
= ST + {t}, SE′′

= SE ∪ P − {t}, g′′ = d −
∑

jεSE′′ pj ,
S′′ = (g′′, SE′′

, ST ′′
).

If f(SE′
) ≤ f(SE′′

), then SE = SE + {e},dT = 0, dE = dE − pe + g′ − g,
g = g′ and P = P − {e};

else ST = ST + {t}, dT = 0, dE = dE + g − g′′, g = g′′ and P = P − {t}.
Step 7: If P �= φ then go to step 2.
Step 8: If there is a straddling job (it must be the last job in ), then SE′

= SE ,
ST ′

= ST , g′ = d−
∑

jεSE′ pj, S′ = (g′, SE′
, ST ′

). If f(S′) ≤ f(S) then g = g′.
The main difference between HRM and MHRM heuristics is due to the fact

that the inserted idle time g is calculated in Step 1 such that :

g = max{0, d − H ×
n∑

j=1

βj

αj + βj
} . (2)
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By doing so, the inserted idle time completely depends on the particular
instance. It implies that if the total tardiness penalty of a particular instance is
greater than the total earliness penalty of that instance, that is,

∑
βj >

∑
αj ,

the inserted idle time would be larger for that particular instance. Hence more
jobs would be completed before the due date. In other words, more jobs would
be early. Since

∑
βj >

∑
αj , the total penalty imposed on the fitness function

would be less than the one used in the HRM heuristic. In addition, the following
modification is made in Step 3. If the distance between the possible completion
time of candidate job t and the due date is smaller or equal to zero, both the
start time and the completion time of the job t will be before or at the due date,
i.e., the job t is not a straddling job. In our algorithm, T t − pt ≤ 0 is employed
instead of T t ≤ 0 because T t − pt ≤ 0 implies that the job t is a straddling job.
In this case, the adjustment of the idle time for the end of the space after the
due date through Step 6 should be made. Accordingly, necessary modifications
are also made in Step 5, 6, and 8.

3 Discrete Particle Swarm Optimization Algorithm

It is obvious that standard PSO equations cannot be used to generate a discrete
job permutation since position and velocity of particles are real-valued. Instead,
Pan et al. [7] proposed a new method to update the position of particles as
follows:

Xt
i = c2 ⊕ F3(c1 ⊕ F2(w ⊕ F1(Xt−1

i ), P t−1
i ), Gt−1). (3)

Given that λt
i and δt

i are temporary individuals, the update equation consists
of three components: The first component is λt

i = w ⊕ F1(Xt−1
i ), which repre-

sents the velocity of the particle. F1 indicates the binary swap operator with
the probability of w. In other words, a uniform random number r is generated
between 0 and 1. If is less than w, then the swap operator is applied to generate a
perturbed permutation of the particle by λt

i = F1(Xt−1
i ) , otherwise current per-

mutation is kept as λt
i = Xt−1

i . The second component is δt
i = c1 ⊕F2(λt

i, P
t−1
i )

where F2 indicates the one-cut crossover operator with the probability of c1.
Note that λt

i and P t−1
i will be the first and second parents for the crossover

operator, respectively. It is resulted either in δt
i = F2(λt

i, P
t−1
i ) or in δt

i = λt
i

depending on the choice of a uniform random number. The third component is
Xt

i = c2 ⊕ F3(δt
i , G

t−1) where F3 indicates the two-cut crossover operator with
the probability of c2. It is resulted either in Xt

i = F3(δt
i , G

t−1) or in Xt
i = δt

i

depending on the choice of a uniform random number. The pseudo code of the
DPSO algorithm is given in Fig.1.

A binary solution representation is employed for the problem. The xt
ij , the

jth dimension of the particle Xt
i , denotes a job; if xt

ij = 0, the job j is completed
before or at the due date, which belongs to the set SE ; if xt

ij = 1 , the job j is
finished after the due date, which belongs to the set ST .

After applying the DPSO operators, the sets SE and ST are determined from
the binary representation. Then every fitness calculation follows property (2).
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Note that the set ST might contain a straddling job. If there is a straddling job,
the first job in the early job set is started in time zero. After completing the
last job of the early job set, the straddling job and the jobs in the tardy job set
are sequenced. On the other hand, if there is no straddling job, the completion
time of the last job in the early job set is matched with the due date and the
processing in the tardy job set is followed immediately.

Initialize parameters
Initialize population
Evaluate
Do{

Find the personal best
Find the global best
Update position
Evaluate
Apply local search(optional)

}While (Not Termination)

Fig. 1. DPSO algorithm with a local search

s0 = Gt

s=LocalSearch(s0)
Do{

s1=perturbation(s)
s2=LocalSearch(s1)
s=AcceptanceCriterion(s, s2)

}While (Not Termination)
if f(s) < f(Gt) then Gt = s)

Fig. 2. Iterated local search algorithm

At the end of each iteration, the ILS algorithm is applied to the global best so-
lution Gt to further improve the solution quality. The ILS algorithm in Fig.2 was
based on the simple binary swap neighborhood. The perturbation strength was
5 binary swaps to avoid getting trapped at the local minima. In the LocalSearch
procedure, the binary swap operator was used with the size of min(6n, 600) and
the size of the do−while loop was 10. The binary swap operator consists of two
steps: (i) generate two random integers, a and b, in the range [1, n]; (ii) if xt

ia =
xt

ib, then xt
ia = (xt

ia +1)mod2; else xt
ia = (xt

ia +1)mod2 and xt
ib = (xt

ib +1)mod2.

4 Computational Results

The DPSO algorithm is coded in Visual C++ and run on an Intel P IV 2.4 GHz
PC with 256MB memory. Regarding the parameters of the DPSO algorithm,
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the crossover probabilities were taken as c1 = c2 = 0.8, respectively. The swap
probability was set to w = 0.95. One of the solutions in the population is con-
structed with the MHRM heuristic, the rest is constructed randomly. The pro-
posed DPSO algorithm was applied to the benchmark problems developed in
Biskup and Feldmann [2]. 10 runs were carried out for each problem instance
and the average percentage relative deviation was computed as follows:

Δavg =
R∑

i=1

(
(Fi − Fref ) × 100

Fref

)
/R (4)

where Fi,Fref , and R were the fitness function value generated by the DPSO
algorithm in each run, the reference upper bounds generated by Biskup and
Feldmann [2], and the total number of runs, respectively. The maximum number
of iterations was fixed to 50 and the algorithm was terminated when the global
best solution was not improved in 10 consecutive iterations. The computational
results of the MHRM heuristic are given in Table 1 where the MHRM heuris-
tic is superior to its counterpart HRM heuristic in terms of relative percent
improvement.

Most recently, Hino et. al. [1] developed a TS, GA and hybridization of both
of them denoted as HTG and HGT. They employed the same benchmark suite
of Biskup and Feldmann [2]. Table 2 summarizes the computational results of
the DPSO and those in Hino et al. [1]. As seen in Table 2, the DPSO algorithm
outperforms all the metaheuristics of Hino et al. [1] in terms of the minimum
percentage relative devia-tion since the largest improvement of -2.15 on overall
mean is achieved. Besides the average performance of the DPSO algorithm, it is
also interesting to note that even the worst performance of the DPSO algorithm,
i.e., the maximum percentage relative deviation, was better than TS, GA, HGT
and HTG algorithms of Hino et al. [1]. Regarding the CPU time requirement of
the DPSO algorithm, the maximum CPU time until termination was not more
than 1.33 seconds on overall average whereas Hino et al. [1] reported that their
average CPU time requirement was 21.5 and 7.8 seconds for TS and hybrid

Table 1. Statistics for the MHRM Heuristic

h 10 20 50 100 200 500 1000 Mean
0.2 1.53 -3.97 -5.33 -6.02 -5.63 -6.32 -6.68 -4.50

HRM 0.4 8.68 0.46 -3.87 -4.42 -3.51 -3.46 -4.26 -1.48
0.6 19.27 9.78 7.59 4.69 3.71 2.53 3.23 7.26
0.8 22.97 13.52 8.10 4.70 3.71 2.53 3.23 8.39

Mean 13.11 5.17 1.62 -0.26 -0.43 -1.18 -1.12 2.42
h 10 20 50 100 200 500 1000 Mean

0.2 1.00 -3.57 -5.45 -6.02 -5.62 -6.32 -6.69 -4.67
MHRM 0.4 5.91 -0.49 -4.03 -4.27 -3.52 -3.45 -4.27 -2.02

0.6 2.77 2.02 1.51 1.50 1.71 1.41 1.55 1.78
0.8 3.95 4.07 2.13 1.43 1.71 1.41 1.55 2.32

Mean 3.41 0.51 -1.46 -1.84 -1.43 -1.74 -1.97 -0.65



466 Q.-K. Pan, M.F. Tasgetiren, and Y.-C. Liang

strategies, respectively. To sum up, all the statistics show and prove that the
DPSO algorithm was superior to all the metaheuristics presented in Hino et al.
[1]. Note that the best results so far in the literature are reported in bold in
Table 2.

Table 2. Statistics for the DPSO Algorithm

DPSO TS GA HTG HGT

h Δmin Δmax Δavg Δstd Δmin Δmin Δmin Δmin

10 0.2 0.00 0.00 0.00 0.00 0.25 0.12 0.12 0.12
0.4 0.00 0.00 0.00 0.00 0.24 0.19 0.19 0.19
0.6 0.00 0.00 0.00 0.00 0.10 0.03 0.03 0.01
0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 0.2 -3.84 -3.84 -3.84 0.00 -3.84 -3.84 -3.84 -3.84
0.4 -1.63 -1.63 -1.63 0.00 -1.62 -1.62 -1.62 -1.62
0.6 -0.72 -0.72 -0.72 0.00 -0.71 -0.68 -0.71 -0.71
0.8 -0.41 -0.41 -0.41 0.00 -0.41 -0.28 -0.41 -0.41

50 0.2 -5.68 -5.67 -5.68 0.01 -5.70 -5.68 -5.70 -5.70
0.4 -4.66 -4.58 -4.64 0.03 -4.66 -4.60 -4.66 -4.66
0.6 -0.34 -0.34 -0.34 0.00 -0.32 -0.31 -0.27 -0.31
0.8 -0.24 -0.24 -0.24 0.00 -0.24 -0.19 -0.23 -0.23

100 0.2 -6.19 -6.16 -6.18 0.01 -6.19 -6.17 -6.19 -6.19
0.4 -4.94 -4.88 -4.92 0.02 -4.93 -4.91 -4.93 -4.93
0.6 -0.15 -0.15 -0.15 0.00 -0.01 -0.12 0.08 0.04
0.8 -0.18 -0.18 -0.18 0.00 -0.15 -0.12 -0.08 -0.11

200 0.2 -5.78 -5.73 -5.76 0.02 -5.76 -5.74 -5.76 -5.76
0.4 -3.74 -3.67 -3.72 0.03 -3.74 -3.75 -3.75 -3.75
0.6 -0.15 -0.15 -0.15 0.00 -0.01 -0.13 0.37 0.07
0.8 -0.15 -0.15 -0.15 0.00 -0.04 -0.14 0.26 0.07

500 0.2 -6.42 -6.39 -6.41 0.01 -6.41 -6.41 -6.41 -6.41
0.4 -3.56 -3.49 -3.53 0.02 -3.57 -3.58 -3.58 -3.58
0.6 -0.11 -0.11 -0.11 0.00 0.25 -0.11 0.73 0.15
0.8 -0.11 -0.11 -0.11 0.00 0.21 -0.11 0.73 0.13

1000 0.2 -6.76 -6.73 -6.75 0.01 -6.73 -6.75 -6.74 -6.74
0.4 -4.38 -4.32 -4.36 0.02 -4.39 -4.40 -4.39 -4.39
0.6 -0.06 -0.06 -0.06 0.00 1.01 -0.05 1.28 0.42
0.8 -0.06 -0.06 -0.06 0.00 1.13 -0.05 1.28 0.40

Mean -2.15 -2.13 -2.15 0.01 -2.01 -2.12 -1.94 -2.06

5 Conclusions

A modified version of the HRM heuristic with much better results is developed
along with the discrete version of the PSO algorithm. The DPSO algorithm
is hybridized with the ILS algorithm to further improve the computational re-
sults. The proposed DPSO algorithm was applied to 280 benchmark instances
of Biskup and Feldmann [2]. The solution quality was evaluated according to the
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reference upper bounds generated by Biskup and Feldmann [2]. The computa-
tional results show that the proposed DPSO algorithm generated better results
than those in Hino et. al. [1].
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Abstract. Support vector machines, especially when using radial basis
kernels, have given good results in the classification of different volatile
compounds. We can achieve a feature extraction method adjusting the
parameters of a modified radial basis kernel, giving more importance to
those features that are important for classification proposes. However,
the function that has to be minimized to find the best scaling factors is
not derivable and has multiple local minima. In this work we propose to
adapt the ideas of the ant colony optimization method to find an optimal
value of the kernel parameters.

1 Introduction

Electronic noses are defined as an array of sensors and a pattern recognition
(PARC) system [1]. Over the past years these systems have been applied to many
different applications with a considerable success. One of the aspects gaining in
importance in the electronic nose field is feature extraction [2]. The importance
of this stage for the PARC system lies in the need to enhance those features that
have more importance for classification. In fact, this method is quite similar to
the way the brain processes the information in the olfactory bulb, giving more
importance to those signals coming from the nose that are useful to identify the
target odor. However, most of the work developed about feature extraction is
done using the filter approach, that is, the data are transformed independently
of the learning machine employed. This approach is straightforward but it is
not as coherent as the wrapper approach, which makes the data transformation
depending on the result of the classification machine.

Support vector machines (SVM) have demonstrated to be a powerful learning
method [3] and its use in the electronic nose field is getting more importance
[4]. In particular, best results are achieved with radial basis function (RBF) ker-
nels [5]. When using such kernels, some hyperparameters must be tuned, but
this process is usually done picking up some values and testing with an exter-
nal dataset. In [6] the proposal was to use a multi-gamma kernel, where every
feature had its own gamma parameter. In this way, the tuning of the hyper-
parameters can be used as a feature extraction with a wrapper approach. This
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tuning is usually done testing several values of the parameters and measuring
a classification error, such as cross-validation. However, when the dimension of
the problem is not very small, as it is usual in the electronic nose problems, the
number of possible solutions makes it impossible to test all the combinations.

It has to be noted that the functions employed to test the classification error,
and so to select the scaling factor values, are not derivable. As a matter of
fact, these functions have multiple local minima, so the use of optimization
methods based on a gradient descent is less than appropriated. Ant Colony
Optimization (ACO) [7],[8] is a recent meta-heuristic search method, based in
swarm intelligence, that is providing good results to solve hard combinatorial
problems. In this work, we have adapted this method to search the scaling factors
values that minimize the classification error.

2 SVM Classification Error

Given a problem with a set of training vectors xi ∈ Rn, i = 1, ..., l and a vector of
labels y ∈ Rl, yi ∈ {−1, 1} the training of the SVM implies to solve the following
optimization problem:

min
α

W (α) = 1
2αT Qα − eT α

subject to 0 ≤ αi ≤ C, i = 1, ..., l
yT α = 0 .

(1)

where e is the unity vector, C is a regularization parameter and Qij =
yiyjK(xi, xj) is a symmetric matrix, with K(xi, xj) being the kernel function.
With certain kernels the Q matrix is positive definitive and so, the problem
described in (1) has a unique solution of α that can be found quickly using
a gradient descent method or some other decomposition method like the one
proposed in [9]. Once the solution of α is found, there will be only a number
of training patterns xi with αi different to zero. These patterns are known as
support vectors. Then, for a new incoming pattern x we have a decision function:

f(x) = sgn

(∑
i

αiyiK(x, xi) + b

)
, xi ∈ V . (2)

being V the set of support vectors. As it has been mentioned, in the electronic
nose best results have been achieved with a RBF kernel. In this work, the pro-
posal is to use the following kernel:

K(x, y) = e
−

n

i=1
γi(xi−yi)2

. (3)

Being γi ∈ [0, 1] the scaling factors associated to each feature. These scaling
factors have to be tuned to improve the performance of the SVM. Now, the
question is how the classification error can be measured. Most of the works that
use SVM with a simple RBF kernel use an external test set to adjust the values
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that minimize the classification error. It is especially interesting the measure
obtained with the leave-one-out procedure because it gives us an unbiased esti-
mator of the classification error. However, this procedure is very expensive from
a computational point of view, since it requires l trainings. It is well known that
only support vectors are able to introduce error in the leave-one-out procedure.
Moreover, in [10] it was demonstrated that if a support vector fulfils (4), then
that support vector does not introduce error in the leave-one-out process:

2α0
i R

2 − yif
0(x

i
) < 0 . (4)

With R being an upper bound of the kernel used and α0
i , f

0(xi) are the solution of
the optimization problem described in (1) and the decision function respectively.
In our case, the kernel described in (3) has an upper bound of 1. So, there is an
upper bound of the leave-one-out error that can be calculated as:

L̂OO =
1
l

∑
i

u
(
2α0

i − yif
0(x

i
)
)

i ∈ V . (5)

where u (.) is the step function.

3 The Proposed ACO Procedure

For a given dataset xi ∈ Rn , i = 1, ...., l we have to find the best combination
of γ ∈ Rn, γi ∈ [0, 1] that minimizes the leave-one-out error. The proposed ACO
procedure has the following elements:

– A number of artificial ants. Each ant travels across a path associated to a
solution of the γ vector.

– For each feature i, there are m possible states of γi. The continuous space
[0,1] is divided into m discrete values. Si

j is the j-th state associated to the
feature i. There is an initial state S0 where all the ants start the travel.

– From one state j to another state z, there is a path that contains the following
elements:
• The propability pjz of that path to be chosen by an ant.
• A pheromone value τjz that depends on the amount of ants that have

travel across this path.

Every ant begins its travel at the initial state S0 where it can choose between
m possible paths that will arrive to a state S1

j . With this initial movement the
ant has selected the value of γ1. The choice is done with a probability p0j . Once
an ant has reached a state Si

j it can only move to a state Si+1
z and it will take

that path with a probability pjz . When the ant is in a state Sn it has reached
the end of the travel and it has a possible solution of the γ vector. At every
instant of time t, there are k concurrent ants that are traveling across the states.
In Fig.(1) it is shown a problem with 4 features, where the scaling factor values
have 5 steps. Then, an ant starting in the initial node can choose in every state
between the paths drawn in dashed line, and in this example it has selected the
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Fig. 1. An example of the possible paths an ant can choose in a 4-feature problem

continuous line. Once all the ants have finished their routes, the estimator of the
leave-one-out described in (5) is evaluated for each ant.

It is important to note that we have proposed in this work to take into account
only discrete values of the continuous space. The main reason for doing this, is
that similar values of gammai should give similar results.

The basic algorithm is summarized in the following steps:

1. Create the available states. In the first iteration set a uniform distribution
for all probabilities.

2. Set the same amount of pheromone τjz in all the possible paths.
3. Set k ants at the initial node. Each ant will select a path to the state j with

a probability p0j . Once the ant is in the state j the choice of the next path
is done depending on the probability of each path.

4. Once the k ants have finished their travel, compute for each of them the
estimator of the leave-one-out ̂LOOk, as is defined in (5). Select the B ants
that have achieved the lowest values in this iteration. If there are two ants
with the same evaluation function value, it is first selected the one with less
number of support vectors.

5. Increment the pheromone value of the tail following:

Δτjz =

{
Q

LOOk
if k ∈ B

0 if k /∈ B
. (6)

where Q is a constant that has to be adjusted depending on the problem
under study.

6. If the winning path until this moment has not be included in the previous
point, include it now.

7. Recalculate all the path probabilities:

pjz =
τλ
jz∑
τλ
j

. (7)

Where λ is a constant to be adjusted.
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8. Evaporate pheromone values:

τ it+1
jz = (1 − ρ) τ it

jz . (8)

Where ρ, is the evaporation coefficient.
9. If the number of iterations has reached the maximum number of iterations

allowed, then finish and return the path value of the ant with lowest leave-
one-out value. If the number of iterations has not reached the maximum,
repeat from step 3.

4 Results and Discussion

4.1 Standard Datasets

Before testing the proposed method on electronic nose datasets, we have tested
it on some datasets obtained from the UCI repository database. The main reason
for doing this is the high number of features the electronic nose datasets have.
In order to have some control on the convergence rate, number of ants per
population and some other parameters like the described constants (Q, λ, ρ) it
is very useful to test on some datasets with less features in such a way that it is
possible to calculate the absolute minima of the problem.

In Fig.(2) it is shown the mean of the standard deviation of the paths selected
by the ants against the number of generations.It is clear that after a number of
iterations, all the ants in the generation follow the same path. If this number
of iterations is very low, there is a high risk of falling into a local minima.
However, if the standard deviation of the solution keeps high after a number
of generations, it would mean that the algorithm is not searching towards the
solution, but it searches in a randomize way. In this figure it is shown different
curves for different values of Q and it can be appreciated the importance of
choosing an adequate value of Q. To make this figure, we have executed the
algorithm one hundred of times per each value of Q, drawing the mean of the
standard deviations calculated. Repeating this process for several datasets, we
found that a good value of Q can be obtained calculating the mean of the the
evaluation function in the first generation and dividing it by two.

One important measure for our experiments is the number of generations
needed to reach the absolute minima and how many times is it reached. A
measure related to this is the indicator M , that is defined as the number of
generations needed to have at least a success in 80% of the tests. This indicator
measures how fast the algorithm converges to the optimal solution. In Fig.(3)
is represented the percentage of success against the number of generations used
for the Indian-Diabetes dataset with 60 ants per generation, in continuous line,
and 15 ants per generation in dashed-dot line. For this test the constants have
the following values: ρ = 0.8, λ = 2, and Q = 100. It can be appreciated that
M = 45 in the case of 60 ants per generation but in the case of 15 ants per
generation this value is not obtained, since many times the algorithm falls into
a local minima and the maximum success obtained is a 63%.
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Fig. 2. Standard Deviation against number of generations for different values of Q
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Fig. 3. Indian-Diabetes Dataset. Success for two different size populations.

In Table(1) are shown the values for several standard datasets. The Q para-
meter was always adjusted as explained, with ρ = 0.9 and λ = 2. In all cases,
the exact minima was obtained through exhaustive search since although the
number of combinations is big it is possible to obtain it, due to the reduced
number of features.

It can be appreciated how the algorithm has a good behavior in the first and
the third datasets, whereas in the second case the percentage of success is so
low that the M parameter could not be measured although the test was done
increasing a lot the number of generations. This can be explained because the
leave-one-out estimator gives for this dataset almost plain values and the search
is not optimized. These measures are interesting to work with the algorithm in
a real system.

4.2 Electronic Nose Datasets

Once we have tested the method with standard datasets we can focus on the
electronic nose datasets. In this case we have tested 3 datasets that were obtained
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Table 1. M value for different datasets

N of Ants per Max. Iter % M
DATASET N Features γ steps Generation Allowed Sucess Parameter

Indian-Diabetes 8 4 30 200 89 60
30 50 75 NA
60 200 94 45
60 50 85 45

Breast Cancer 9 4 30 200 43 NA
30 50 35 NA
60 200 55 NA
60 50 35 NA

Ecoli 5 5 30 200 90 29
30 50 83 29
60 200 94 27
60 50 86 27

Table 2. M value for Electronic Nose datasets

N of Ants per Max. Iter % M
DATASET N Features γ steps Generation Allowed Sucess Parameter

RonVsWhisky 88 10 30 200 95 31
30 50 89 31
60 200 97 28
60 50 92 28

EthanolVsAlcohols 88 10 30 200 83 94
30 50 67 NA
60 200 85 78
60 50 71 NA

COVsNO2 88 10 30 200 78 NA
30 50 58 NA
60 200 84 150
60 50 65 NA

in our laboratory using SnO2 sensors with thermomodulation [4]. The first one
is composed on some samples from a whisky and some others from Ron. The
second one, is composed from composed from Ethanol and some other alcohols
like methanol and propanol. The third one takes samples from CO and NO2.
Table (2) shows the results obtained for these datasets.

One of the relevant issues from the information obtained with these measures
is that the algorithm works better for a population of 60 ants rather than for 30
ants. The main reason is that ants works under a cooperation way and, especially
at the beginning there are more solutions explored. However, we can not conclude
that the higher the number of ants the faster the convergence is.
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5 Conclusion

In this work we have adapted the ACO method to optimize modified RBF ker-
nels. This procedure is extremely important to know what features should be
enhanced in electronic nose applications. The proposed method reach to a global
minima with a high level of success in most of the datasets tested if the necessary
parameters are well adjusted. Future work will explore possible attractiveness
functions, new datasets and modifications of the ACO algorithm to work with
continuous spaces.
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Abstract. From October 2005 to August 2006, the museum of natural
history of the city of Tours is displaying a temporary exhibition designed
by the members of the “handicap and new technologies” research team
from the computer science lab of the University of Tours. This paper
describes this exhibition, the goals and means that have been involved
to popularize recent researches in the field of artificial insects. Different
robots and computer simulations have been used to explain how our
community builds new paradigms inspired by insect models and swarm
intelligence concepts.

1 Introduction

Since the beginning of 90’s, the amazing world of insects has inspired computer
scientists and robots makers in their research activities [1]. The exhibition called
“Artificial Insects” offers a visit inside this strange world populated with virtual
ants and autonomous robots whose capacities make it possible to solve prob-
lems like robot’s navigation, data clustering, optimization... With the help of
computer simulations and interactive devices designed by the researchers of the
Computer Science Lab in Tours, it is possible to apprehend these new concepts,
to handle and see evolving/moving these singular and enthralling creatures.

The project of this exhibition was born from the meeting between the current
director of the natural history museum, Didier Lastu, and the members of the
research team HaNT (Handicap and New Technologies 1). At University of Tours,
works on artificial insects has been started in 1997, at the starting time of PhD
work of Nicolas Monmarché [2]. Since then, artificial ants have been the subject of
many publications, studies or projects and their use in various fields of computer
science has been constantly developed in the Lab [3,4,5,6,7,8,9, for instance].

1 www.hant.li.univ-tours.fr

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 476–483, 2006.
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Fig. 1. Poster exhibition (Graphics: Alexandre Saint-Pol)

From the researchers’ point of view, the goal of this exhibition is to popularize
their work, to communicate the fascination that biological models exert on them
for the resolution of difficult problems. For the computer science teachers, it
is a question of showing that computer science studies can lead to unexpected
considerations and that innovation can take advantage of interdisciplinarity, here
with biology, ethology or even sociobiology. It should be underlined that majority
of simulations or robots were conceived, developed or programmed in the context
of students’ projects during their engineering courses. Lastly, for the Natural
history museum, it is way of considering a possible future, of showing that natural
history can carry out original applications.

In this paper, we present the various modules that have been built for the
exhibition. As a web site has been written to help the educational visit prepara-
tion, more informations can be extracted from there2 such as panels (in French)
and videos.

2 General Description of the Exhibition

The exhibition is installed in the room of the temporary exhibitions, which
is approximately 200 m2 of surface. The visit is organized in a sequence of
modules, with an increasing level of abstraction (see the general map in fig. 2).
The first demonstrations are based on the copy of an individual capacity of
insects (for example navigation in their environment), whereas aspects related
to the collective behavior are introduced later. Each workshop (or modules)
focuses on a particular problem or topic and clarifies a concept, most often
with two approaches: (1) the first approach focuses on autonomous robotics and
presents the animation of one or more robots with possibilities of interactions;
(2) the second approach is based on computer simulations and presents by the
intermediary of a computer various possibilities of simulation.

2 www.hant.li.univ-tours.fr/museum
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Fig. 2. General map of the exhibition

For each module, we have designed panels that give explanations, other ex-
amples taken in the field, and possible applications of the idea presented in the
corresponding module.

3 Description of the Modules

3.1 Module 1: Following Pheromone Trails

The ants frequently use pheromones to locate themselves in their environment,
for example to find their nest on the way back from a food source. These
chemical and volatile substances make it possible to consider minimal strate-
gies of displacement (i.e. consuming only very little energy in communication or
calculation).

Follow-Up of Pheromones by a Lego Robot. The goal is to show that
with general audience commercial equipment (MindStorm Lego), one can already
build a robot that displays a pheromone like following behavior. The robot moves
in an autonomous way in a closed area and follows the white lines, which are
representing the pheromones trails. The robustness of the strategy of the robot
(move straight ahead when the white paint is detected and turn when it detects
another color, in our case: green) can be tested by the visitor: the play-ground of
the robot can be modified in the same way than the game of the labyrinth where
tiles of wood can be inserted laterally to modify a line or a column (see figure 3).
This robot gives a simple introduction to robots that can use real odors [10].

Following Digital Pheromones. Even if the Lego robot environment is vari-
able, there is not any pheromone evaporation, as it can be observed in nature.
In order to show the impact of this evaporation on the movement of a colony
of ants, we have proposed a simulation of ants on a tactile screen. The visitor
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Fig. 3. Lego robot (left) and inside its labyrinth (right)

can play the role of one leading ant by drawing with his/her finger a pheromone
trail or let one of the ants deposit one. The main parameters such as the number
of ants, and the evaporation speed of pheromones, can be modified during the
simulation. This game is very useful for the youngest who can play with these
ants and is then one of the favorite display.

3.2 Module 2: The Foraging Boe-Bot

The objective of this module is to show that one can take as a starting point the
the navigation capacities of insects to design robots able to move in a variable
and dubious environment. We wanted to show that in this case, with a voluntarily
simple behavior, a insect-robot is apparently not very effective but finally enough
robust to perform the expected task.

To illustrate this idea, we have chosen the daily concern of many insects:
finding food and to bringing it back to their nest. The chosen robot for this
demonstration, the Boe-Bot one (Parallax) (fig. 4(a)), uses simple behaviors,

(a) (b)

Fig. 4. Boe-Bot with its grip and compass (a) and its environment (food source in the
lower left corner and nest in the upper right corner)



480 P. Lebocey et al.

according to the very limited knowledge it has of its environment via its sen-
sors. It is located in a labyrinth, or more exactly in an environment filled
with the obstacles (fig. 4(b)) and tries to reach a given area (which could rep-
resent the nest for an ant). As many insects that are able to use polarized
light, the Boe-bot robot can benefit from directional information provided by a
compass.

The visitors can observe the robot’s behaviors and for example notice that
the robot does not have any learning capacity: it can spend more or less a long
time to achieve its task depending on its “chance”. The public can thus perceive
that there are other ways to solve a problem than trying to reproduce a complex
reasoning. Thanks to the stochasticity of its decisions, a robot-insect can thus
achieve its goals, its patience being only limited by the autonomy of its batteries.
In this module, the visitor has to feed the robot: he/she has to insert a ball for
table tennis in the feeding area.

3.3 Module 3: Team Work

The objective of this module is to show the importance of collective behaviors in
insect societies for the resolution of robotics problems. We have conceived and
realized, a mobile and autonomous robot: ArABot (for Artificial Ant Robot).
The constraints that we have decided to verify are the following: the robot must
be easily re-programmed, easy to build and at a cost not exceeding 80 EUR.
Until march 2006, we have built 12 robots (fig.5(a)).

A Colony of ArABots. A colony of robots is installed at the museum
(fig. 5(b)). ArAbots move randomly in their environment in which cubes made
of wood are dispersed. As they meet cubes they push them but if the load is
too heavy (there are too many cubes or one of the limit of the play ground
is reached), the robot changes direction and leaves the cubes in their place.
From a global point of view, one can very quickly assist to the agglomeration
of the cubes: although the robots do not communicate directly between them,
they communicate by the intermediary of the modifications that they cause on
their common environment (the cubes’ position). This demonstration of collec-
tive robotics illustrates the possibility of creating apparently simple robots, not
too expensive, but with an overall liability that is better than a single robot,
carrying out the same work, could provide. Actually, in the event of break-
down, a collective system will remain operational (the visitors can regularly
note that a robot out of service does not compromise the action of the other
robots).

Unfortunately, the efficiency of the colony is a problem in the context of a
demonstration which must be ran during all the opening hours of the museum:
half an hour after the start of robots, almost all the cubes are aggregated and
an employee of the museum needs to open the furniture to scatter the pieces of
wood. Then we have introduced a special robot which spends all its time turning
around the area and driving the cubes toward the center.
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(a) (b)

Fig. 5. AraBots Robots (a) and general vue of the module number 3 with ArAbots
inside

Simulations of Collective Behaviors. Two simulations of collective robotics
are also presented on computers (inside special furnitures where the screen can
only be visible for the visitor):

– the first one is a simplification of ArAbots. We wanted to show here, that ro-
botics also needs a phase of simulation to check the algorithms before estab-
lishing them in the robots. The advantages of simulation are visible (speed,
reliability, reproducibility) but the limits of the model also (discretization of
space...);

– the second simulation models robots able to imitate weaver ants: they gather
plates (leaves) to build a larger structure (their nest). They form chains by
clinging the ones to the others and try to catch another chain coming from
another plate in order to draw the two plates one toward the other.

The objective of these simulations is to show that simultaneous work with
several robots can make it possible to reach more efficient results than by using
only one more vulnerable and more expensive robot.

3.4 Module 4: Resolution of Combinatorial Problems

This module explains with two panels both combinatorial optimization and data
clustering with artificial ants. A simplified example of the TSP is used to explain
that ants can lay down artificial pheromones onto the arcs of a graph and by
this mechanism they can find good paths.

3.5 Module 5: Artistic Design

The last module of the exhibition proposes an original use of the collective
intelligence of ants: the generation of abstract paintings [6] and the generation
of music [5]. In both cases, the paradigm of pheromones is used:
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– painting of artificial ants: the ants move on a white canvas and deposit
colored pheromones. The various characteristics of the ants produce abstract
paintings in perpetual evolution (Fig. 6(a));

– music of artificial ants: the ants move between the notes and build a melody
by depositing pheromones between the notes which they meet, thus building
the melodies which are repetitive and infinite.

These two applications are played all the day, this module constitutes a place of
relaxation (video projection of painting in construction and music uninterrupted)
(Fig. 6(b)).

(a) (b)

Fig. 6. (a) Example of ant painting (two green ants with different characteristics in
their moves). (b) General vue of the exhibition.

4 Conclusion

This exhibition has necessitated about one year of work (it opened on October
2005, 1st). The main difficulty is to keep the robots in good health, not because
of visitors misuses but simply because robots are running 8 hours a day and 6
days per week and it is intensive for small mechanics.

During the opening hours, some of our students had to improve robots (for
instance the Lego has been rebuild) and that was one of our goals: having a
living exhibition, not only because robots moves alone but also because students,
researchers, ... keep on improving the demonstrations.

In our opinion, this kind of exhibition is important to make people aware of the
main concepts that underline our researches. Even if robots are more appropriate
to catch the attention of visitors, it is necessary to explain what computer science
research can imply (even if mathematical aspects have been removed), it is a good
way to build vocations within young visitors. As can be observed in other cities,
people are found of these experiments and good results in museum-going is our
reward: from October to April, about 7, 400 visitors have seen the exhibition and
3, 000 of them were children accompanied by their professor.
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et à l’optimisation. Thèse de doctorat, Laboratoire d’Informatique, Université de
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7. Labroche, N., Monmarché, N., Venturini, G.: AntClust: Ant Clustering and Web
Usage Mining. In Cantu-Paz, E., ed.: Genetic and Evolutionary Computation Con-
ference. Volume 2723 of Lecture Notes in Computer Science., Chicago, Springer-
Verlag Telos (2003) 25–36
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Abstract. Production scheduling problems such as the job shop consist
of a collection of operations (grouped into jobs) that must be scheduled
for processing on different machines. Typical ant colony optimisation ap-
plications for these problems generate solutions by constructing a permu-
tation of the operations, from which a deterministic algorithm can gen-
erate the actual schedule. This paper considers an alternative approach
in which each machine is assigned a dispatching rule, which heuristically
determines the order of operations on that machine. This representation
creates a substantially smaller search space that likely contains good so-
lutions. The performance of both approaches is compared on a real-world
job shop scheduling problem in which processing times and job due dates
are modelled with fuzzy sets. Results indicate that the new approach pro-
duces better solutions more quickly than the traditional approach.

1 Introduction

Ant colony optimisation (ACO) is a constructive metaheuristic in which, during
successive iterations of solution construction, a number of artificial ants build so-
lutions by probabilistically selecting from problem-specific solution components,
influenced by a parameterised model of solutions (called a pheromone model in
reference to ant trail pheromones). The parameters of this model are updated
at the end of each iteration using the solutions produced so that, over time, the
algorithm learns which solution components should be combined to produce the
best solutions. When adapting ACO to suit a problem an algorithm designer
must first decide how solutions are to be represented and built (i.e., what base
components are to be combined to form solutions) and then what characteristics
of the chosen representation are to be modelled.

Production scheduling problems consist of a number of jobs, made up of a set
of operations, each of which must be scheduled for processing on one of a num-
ber of machines. Precedence constraints are imposed on the operations of each

� Corresponding author.
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job. The majority of ACO algorithms for these problems represent solutions as
permutations of the operations to be scheduled (operations are the base compo-
nents of solutions), which determines the relative order of operations that require
the same machine (see, e.g., [1,2]). A deterministic algorithm can then produce
the best possible schedule given the precedence constraints established by the
permutation. This approach is more generally referred to as the list scheduler
algorithm [1]. An alternative approach is to assign different heuristics to each
machine which determine the relative processing order of operations, thereby
searching the reduced space of schedules that can be produced by different com-
binations of the heuristics [3]. Building solutions in this manner may offer an
advantage by concentrating the search on heuristically good solutions. This pa-
per compares these two solution representations by using a real-world job shop
scheduling problem (JSP).

A formal description of the JSP is given in Section 2, including further details
of the two solution construction approaches. Section 3 describes the real-world
JSP instance to which both approaches are applied, in which processing times
and due dates are modelled by fuzzy sets to reflect the uncertain nature of these
in industrial settings. Details of the ACO algorithms developed for the fuzzy
JSP are given in Section 4, followed by analysis of their empirical performance
in Section 5. Section 6 describes the implications of the results for the future ap-
plication of ACO to such problems. An extended version of this paper, including
more extensive empirical analyses, is presented in [4].

2 Job Shop Scheduling and Solution Construction

The JSP examined in this study consists of a set of n jobs J1, . . . , Jn, with as-
sociated release dates r1, . . . , rn and due dates d1, . . . , dn. Each job consists of a
sequence of operations (determined by the processing requirements of the job)
that must each be scheduled for processing on one of m machines M1, . . . ,Mm.
Only one operation of a job may be processed at any given time, only one opera-
tion may use a machine at any given time and operations may not be preempted.
Two criteria have to be minimised simultaneously, the average tardiness of jobs
CAT and the number of tardy jobs CNT , calculated as follows:

CAT =
1
n

n∑
j=1

Tj (1)

where Tj = max{0, Cj −dj} is the tardiness of of job Jj and Cj is the completion
time of job Jj .

CNT =
n∑

j=1

uj (2)

where uj = 1 if Tj > 0, 0 otherwise.
It is common in ACO applications for the JSP and related scheduling prob-

lems to generate a permutation of the operations, which implicitly determines
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the relative processing order of operations on each machine. These algorithms
are restricted to creating permutations that respect the required processing order
of operations within each job, which can consequently be called feasible permu-
tations. A deterministic algorithm transforms the relative processing order into
an actual schedule.

Different solution construction approaches produce different search spaces.
The space of feasible permutations of operations for a JSP is very large (a weak
upper bound is O(k!), where k is the number of operations) and is certainly
much larger than the space of actual solutions. This space also has a slight bias
towards good solutions, which can be exploited by some pheromone models and
proves disastrous for others [5]. Another notable feature of this search space is
that while all solutions can be reached, solutions (schedules) are represented by
differing numbers of permutations.

An alternative approach to building solutions is to assign different dispatching
rules (i.e., ordering heuristics) to each machine, which subsequently build the
actual schedule [3]. The search space then becomes the space of all possible
combinations of rules assigned to machines, which is O(|D|m) where D is the set
of rules and m the number of machines. Given a small number of dispatching
rules (this study uses four, described in Section 4) it is highly probable that this
search space is a subset of the space of all feasible schedules. However, assuming
the dispatching rules are individually likely to perform well it is expected that
this reduced space largely consists of good quality schedules.

The performance of these two approaches is compared on a real-world JSP
instance, described in the next section.

3 A Real-World JSP

The data set used has been provided by a printing company, Sherwood Press,
in Nottingham, United Kingdom [6]. There are 18 machines in the shop floor,
grouped within seven work centres: printing, cutting, folding, card-inserting,
embossing and debossing, gathering, stitching and trimming, and packaging.

Due to both machine and human factors, processing times of jobs are un-
certain and due dates are not fixed but promised instead. Therefore, fuzzy sets
are used to model these uncertain values. A triangular membership function
μp̃ij (t) = (p1

ij , p
2
ij , p

3
ij) is used to model the fuzzy processing time p̃ij of job Jj

on machine Mi, i = 1, . . . ,m, j = 1, . . . , n, where p1
ij and p3

ij are lower and
upper bounds of the processing time, while p2

ij is the so-called modal point [7].
An example of fuzzy processing time is shown in Fig. 1(a). A trapezoidal fuzzy
set (d1

j , d
2
j) is used to model the due date d̃j of each job, where d1

j is the crisp
due date and the upper bound d2

j of the trapezoid exceeds d1
j by 10%, follow-

ing the policy of the company. An example of a fuzzy due date is given in
Fig. 1(b).

The objective function takes into account both the average tardiness of jobs
and the number of tardy jobs. As these are measured in different units they are
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(a) (b)

Fig. 1. Fuzzy (a) processing time and (b) due date

(a) (b)

Fig. 2. Satisfaction grade of tardiness using (a) possibility measure and (b) area of
intersection

mapped onto satisfaction grades in the range [0, 1], which are then combined in
an overall satisfaction grade. Two approaches used to measure tardiness in [6]
are investigated:

1. The possibility measure πC̃j
(d̃j), used by Itoh and Ishii [8] to handle tardy

jobs in a JSP, measures the satisfaction grade of a fuzzy completion time
SGT (C̃j) of job Jj by evaluating the possibility of a fuzzy event C̃j occurring
within the fuzzy set d̃j [8] (illustrated in Fig. 2(a)):

SGT (C̃j) = πC̃j
(d̃j) = supmin{μC̃j

(t), μd̃j
(t)} j = 1, . . . , n (3)

where μC̃j
(t) and μd̃j

(t) are the membership functions of fuzzy sets C̃j and

d̃j respectively. This measure is referred to as poss hereafter.
2. The area of intersection measure (denoted area hereafter), introduced by

Sakawa and Kubota [9], measures the proportion of C̃j that is completed by
the due date d̃j (illustrated in Fig. 2(b)):

SGT (C̃j) = (area C̃j ∩ d̃j)/(area C̃j) (4)

The satisfaction grades of tardiness defined in (3) and (4) are used in two
objectives:
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1. To maximise the satisfaction grade of average tardiness SAT :

SAT =
1
n

n∑
j=1

SGT (C̃j) (5)

2. To maximise the satisfaction grade of number of tardy jobs SNT : A parameter
λ is introduced such that a job Jj , j = 1, . . . , n, is considered to be tardy if
SGT (C̃j) ≤ λ, λ ∈ [0, 1]. After calculating the number of tardy jobs nTardy,
the satisfaction grade SNT is calculated as:

SNT =

⎧⎨⎩
1 if nTardy = 0
(n′′ − nTardy)/n′′ if 0 < nTardy < n′′

0 if nTardy > n′′
(6)

where n′′ = 15% of n, where n is the number of jobs.

Two different aggregation operators, average and minimum (denoted average
and min hereafter), were investigated for combining the satisfaction grades of
the objectives.

4 ACO for a Fuzzy JSP

Two ACO algorithms were developed based on the MAX − MIN Ant System
(MMAS), which has been found to work well in practice [10]. The first of these,
denoted MMASperm, constructs solutions as permutations of the operations,
while the second, denoted MMASrules, assigns dispatching rules to machines.
The set of dispatching rules D consists of the following four rules: Early Due
Date First, Shortest Processing Time First, Longest Processing Time First and
Longest Remaining Processing Time First.

The two solution representations require different pheromone models. The
models chosen have been found to produce the best performance for their respec-
tive solution representations [11]. For MMASperm, a pheromone value, denoted
τ(oi, oj), exists for each directed pair of operations that use the same machine,
and represents the learned utility of operation oi preceding operation oj [1]. At
each step of solution construction, the set of unscheduled operations that re-
quire the same machine as a candidate operation o is denoted by Orel

o . Blum
and Sampels [1] take the minimum of the relevant pheromone values. Thus, the
probability of selecting an available operation o to add to the partial permutation
p is given by

P (o, p) =
minor∈Orel

o
τ(o, or)∑

o′ �∈p minor∈Orel
o′ τ(o′, or)

. (7)

The last operation on each machine is scheduled as soon as it becomes available.
For MMASrules, a pheromone value τ(Mk, d) is associated with each com-

bination of machine and dispatching rule (Mk, d) ∈ M × D, where M is the
set of machines. At each step of solution construction, a machine is assigned a
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dispatching rule. The probability of assigning a dispatching rule d ∈ D to ma-
chine Mk is given by

P (Mk, d) =
τ(Mk, d)∑

d′∈D\{d} τ(Mk, d′)
. (8)

In both algorithms, after each iteration all pheromone values are reduced in
proportion to (ρ− 1) while those for the iteration best solution sib are increased
by ρ ·F (sib), where ρ is the pheromone evaporation rate and F is the overall sat-
isfaction grade of sib (given by either the average or min aggregation operator).

5 Computational Results

The performance of the algorithms was compared on one month’s data collected
from Sherwood Press (the March set used by Fayad and Petrovic [6]). The re-
sulting JSP instance consists of 549 operations partitioned into 159 jobs.

The algorithms were implemented in the C language and executed under Linux
on a 2.6GHz Pentium 4 with 512Mb of RAM. The MMAS control parameters
used were: 10 ants per iteration; 3000 iterations; ρ = 0.1; τmax = 1; τmin =
1 × 10−3 in MMASrules and τmin = 1 × 10−4 in MMASperm. The values
of τmin and τmax were chosen to approximate those suggested by Stützle and
Hoos [10] based on the size of the solution representation and pheromone update.

Both algorithms were executed with different combinations of parameter val-
ues for solution evaluation: poss and area tardiness measures, and average and
min aggregation operators. The value of λ was fixed at 0.7. Each combination
was run with 10 different random seeds.

5.1 Solution Quality

The results revealed that when using the min aggregation operator, MMASperm

is unable to find a solution with a non-zero objective value. This is because the
algorithm, facing a large number of solutions with SNT = 0, searches randomly
until a subset of pheromone values is updated. Further testing confirmed that a
random search of permutations is unlikely to produce solutions with SNT > 0.
A second version of the algorithm, named MMASmin

perm, was developed in which
the pheromone update was modified such that, if all solutions in an iteration have
an objective value of zero, the best solution in terms of SAT is used to update
pheromone values using the average aggregation operator. Such a modification
was not necessary for MMASrules as random assignments of dispatching rules
to machines typically produced solutions with SNT > 0.

Table 1 summarises the satisfaction grades of tardiness measures according to
the aggregation operator used for each algorithm. It is evident that MMASmin

perm

is much more successful than its original form when using the min aggregation
operator. Further investigation revealed that it required the use of the average
aggregation operator in up to 33% of iterations. Across solution evaluation mea-
sures, MMASrules clearly outperforms MMASperm.
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Table 1. Performance of the algorithms. The best result for each measure is given
with the mean value in parentheses. Bold items are best within each solution quality
measure.

Algorithm F SAT SNT CNT

Using poss and average
MMASperm 0.69 (0.62) 0.91 (0.91) 0.46 (0.34) 13 (15.9)
MMASrules 0.73 (0.73) 0.93 (0.93) 0.54 (0.53) 11 (11.2)
Using poss and min
MMASperm 0 0.72 (0.71) 0 48 (51.2)
MMASmin

perm 0.42 (0.35) 0.89 (0.88) 0.42 (0.35) 14 (15.5)
MMASrules 0.54 (0.53) 0.93 (0.93) 0.54 (0.53) 11 (11.3)
Using area and average
MMASperm 0.62 (0.59) 0.90 (0.90) 0.33 (0.28) 16 (17.3)
MMASrules 0.71 (0.70) 0.93 (0.93) 0.50 (0.48) 12 (12.5)
Using area and min
MMASperm 0 0.70 (0.69) 0 49 (52.1)
MMASmin

perm 0.42 (0.32) 0.88 (0.87) 0.42 (0.32) 14 (16.4)
MMASrules 0.50 (0.48) 0.93 (0.92) 0.50 (0.48) 12 (12.5)

5.2 CPU Time

An order of magnitude difference was observed between the CPU time of the
two algorithms, with MMASperm taking more than 1400 seconds compared
to approximately 100 seconds for MMASrules. This is to be expected given
the respective number of components each must consider at each construc-
tive step; MMASperm considers approximately 40 operations on average, while
MMASrules considers only four. Moreover, MMASrules finds its best solu-
tions very early in each run (often within 1 second) while MMASperm does not
converge until quite late.

6 Conclusions

Typical ACO algorithms for production scheduling problems such as the JSP
build solutions as permutations of the operations to be scheduled, from which
actual schedules are generated deterministically. An alternative approach when
the problem in question has multiple machines and various criteria upon which
to judge the urgency of competing operations is to assign different dispatching
rules to each machine. The chosen dispatching rules are then responsible for
determining the relative processing order of operations on each machine. This
paper compared both approaches on a multi-objective real-world JSP, modelled
with fuzzy operation processing times and job due dates. The results show that
assigning dispatching rules to machines produces higher quality solutions in far
less time than building a permutation of the operations. This supports the claim
that the assignment of dispatching rules restricts the search space to an area of
good quality solutions.
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As this study focused on a single, real-world JSP instance (albeit using a
variety of solution quality measures) future work is required to determine if
these results hold for other production scheduling instances. Additionally, it is
now common practice in most ACO algorithms to use a local search procedure
to improve the solutions produced, something not done in this study so that
differences between the two solution construction approaches could be observed.
While the addition of local search to a permutation-based ACO algorithm for
these problems may allow it to perform better, it is potentially more useful in the
new approach, where it can explore solutions that combinations of dispatching
rules would otherwise never produce.
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Abstract. The exam timetabling problem faces the problem of schedul-
ing exams within a limited number of available periods. The main objec-
tive is to balance out student’s workload by distributing the exams evenly
within the planning horizon. Ant colony approaches have been proven to
be a powerful solution approach for various combinatorial optimization
problems. In this paper a Max-Min and a ANTCOL approach will be
presented. Its performance is compared with other approaches presented
in the literature and with modified graph coloring algorithms.

1 Introduction

The exam timetabling problem faces the problem of scheduling exams within a
limited number of available periods. The main objective is to balance out stu-
dent’s workload and to distribute the exams evenly within the planning horizon.
To evaluate a given schedule Carter et al. [1] proposed a cost function that
imposes penalties Pω whenever one student has to write two exams scheduled
within ω + 1 consecutive periods. ω is called the order of the conflict. In partic-
ular, conflicts of order 0 should be avoided, i.e. that a student has to write two
exams in the same period.

The exam timetabling problem can be formulated as a modification of the well-
known graph coloring problem. Each node represents one exam. Undirected arcs
connect two nodes if at least one student is enrolled in both corresponding exams.
Weights on the arcs represent the number of student enrolled in both exams. The
objective is to find a coloring where no adjacent nodes are marked with the same
color or to minimize the weighted sum of the arcs that connect two nodes marked
with the same color. The exam timetabling problem is a generalization of this
problem as in the objective function also conflicts of higher orders are penalized.
As the graph coloring problem is already NP-hard [2] several heuristics have
recently been developed for solving practical exam timetabling problems, c.f. [3].

Ant colony optimization algorithms represent special solution approaches for
combinatorial optimization problems derived from the field of swarm intelligence.
They were first introduced by Colorni, Dorigo and Maniezzo in the early nineties
[4]. An in depth introduction into ant systems can be found in [5].

The solution approach in ant colony optimization consists of n cycles. In each
of these cycles first each of the m ants constructs a feasible solution. If the
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optimization problem consists of finding an optimal sequence for some nodes,
the probability that an ant ν that has just chosen node i chooses the next node
j is determined by the following formula:

pν
ij =

{
(τij)α(ηij)β

k∈Nν
i

(τik)α(ηik)β if j ∈ Nν
i

0 otherwise
(1)

The value ηij is calculated by a constructive heuristic. τij is the amount of
pheromone trail, that represents the learned desirability of choosing node j when
in node i. This information is repeatedly updated by the ants after they have
constructed their solutions. α and β are given weighting factors and Nν

i is the
set of nodes that have not yet been visited by ant ν currently located in node i.
This type of ant colony optimization algorithm is known in the literature as ant
systems (AS).

Different variants of ant colony algorithms have been suggested in the litera-
ture, like e.g. ant colony systems (ACS) or Max-Min ant systems (MMAS), c.f.
[5]. We will compare some of these strategies with respect to their suitability
for our problem. In particular, MMAS, which was first proposed by Stützle and
Hoos [6], generated significantly better solutions for the travelling salesmen prob-
lem. Socha et al. [7] compared the MMAS variant with ACS and found out that
MMAS outperformed the ACS approach for the considered timetabling problem.

The main modification of MMAS are related to the way how the matrix τ
is initialized and how pheromone values are updated. Additionally, MMAS uses
local search to improve the solutions found by the ants. Details will be discussed
in the next section.

As far as the author is aware, ant colony algorithms to scheduling problems have
only been applied by Colorni et al. [4] and by Socha et al. [7]. The former article
focuses on the job shop scheduling problem, the latter one on the timetabling prob-
lems for university classes, which are slightly different from the exam timetabling
problem considered here. Finally, Costa and Hertz [8] used an ant colony approach
to solve assignment type problems, in particular graph coloring problems. Re-
cently, Dowsland and Thomson modified and improved in [9] this graph coloring
algorithm with respect to the examination scheduling problem.

2 An Ant Algorithm for the Exam Scheduling Problem

2.1 General Modifications for the Exam Timetabling Problem

The solution approach consists of n cycles. In each of these cycles first each of the
m ants constructs a feasible solution using therefore the constructive heuristic
and the pheromone trails. These exam schedules are then evaluated according
to the given objective function and the experience accumulated during the cycle
is used to update the pheromone trails.

Depending on the choice of a constructive heuristic and the way the phero-
mone values are used, there are different ways how this basic solution approach
can be adapted to the exam timetabling problem.
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– At each stage of the construction process in the approach of Costa and
Hertz [8] called ANTCOL the ant chooses first a node i and then a feasible
color according to a probability distribution equivalent to (1). The matrix
τ provides information on the objective function value, i.e. the number of
colors required to color the graph, which was obtained when nodes i and j
are colored with the same color.

In contrast to elite strategies where only the ant that found the best
tour from the beginning of the trial deposits pheromone, all ants deposit
pheromone on the paths they have chosen. According to [5] this strategy is
called ant cycle strategy.

Different priority rules were tested as constructive heuristic. Among those
chosen in each step, the node with the highest degree of saturation, i.e. the
number of different colors already assigned to adjacent nodes, achieved the
best results with respect to solution quality and computation times.

– In Socha et al. [7] a pre-ordered list of events is given. Each ant chooses
the color for a given node probabilistically similar to the formula (1). The
pheromone trail τij contains information on how good the solution was, when
node i was colored by color t. The constructive heuristic employed in their
approach is not described.

For the exam timetabling problem the way the information in matrix τ is used
in both approaches is not meaningful. Due to the conflicts of higher orders the
quality of a solution does not depend on how a pair of exams is scheduled nor
on the specific period an exam is assigned to. For example, assigning two exams
i and j with cij = 0 to the same period can either result in a high or in a low
objective function value as the quality of the solution strongly depends on when
the remaining exams are scheduled. In the following we implemented a two step
approach.

Step I: Determine the sequence according to the exams is scheduled. We will
assume that an ant located in a node, corresponding to an exam, has to
visit all other nodes, i.e. it has to construct a complete tour. The sequence
according to this ant constructs the tour corresponds to the sequence in
which the exams are scheduled.

Step II: Find the most suitable period for an exam which should be scheduled.
Therefore, all admissible periods are evaluated according to the given penalty
function.

Following this two step approach probabilities pν
ij for choosing the next node

j that has to be scheduled are computed according to (1). Pheromone values τij

along the ants’ paths are updated by the inverse of the objective function value.
For the heuristic value ηij the following simple priority rule for graph coloring
was implemented. The exam with the smallest number of available periods is
selected. A period would not be available for an exam if it caused a conflict of
order 0 with another exam that has already been scheduled. This priority rule
corresponds to the saturation degree rule (SD) which was tested in [1]. The value
ηij is chosen to be the inverse of the saturation degree.
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2.2 MMAS Specifications

MMAS approaches mainly differ from AS algorithms in the way they use the
existing information (c.f. [6]):

– Pheromone trails are only updated by the ant that generated the best solu-
tion in a cycle. The corresponding values τij are updated by ρτij + 1/f best

where f best is equal to the best objective function value found so far. For
all other arcs (i, j) that are not chosen by the best ant τij is updated by
(1 − ρ)τij . ρ ∈ [0, 1] represents the pheromone evaporation factor, i.e. the
percentage of pheromone that decays within a cycle.

– Pheromone trail values are restricted to the interval [τmin, τmax], i.e. when-
ever after a trail update τij < τmin or τij > τmax then τij is set to τmin or
τmax, respectively. The rationale behind this are that if the differences be-
tween some pheromone values were too large, all ants would almost always
generate the same solutions. Thus, stagnation is avoided.

– Pheromone trails are initialized to their maximum values τmax. This type of
pheromone trail initialization increases the exploration of solutions during
the first cycle.

The solution quality of ant colony algorithms can be considerably improved
when it is combined with additional local search. In hybrid MMAS only the best
solution within one cycle is improved by local search. For the exam timetabling
problem a hill climber procedure has been implemented. Within an iteration of
the hill climber two sub-procedures are carried out in succession. The hill climber
is stopped if no improvement can be found within an iteration.

Within the first sub-procedure of the hill climber for all exams the most
suitable period is examined. Beginning with the exam that causes the biggest
contribution to the objective function value, all feasible periods are checked and
the exam is assigned to its best period. The first sub-procedure is stopped if
all exams have been checked without finding an improvement. Otherwise the
contributions to the objective function value are recalculated and the process is
repeated.

The second sub-procedure tries to decrease the objective function value by
swapping all exams within two periods, i.e. all exams assigned to period t′ are
moved to period t′′ and the exams of that period are moved to period t′. There-
fore all pairs of periods are examined and the first exchange that leads to an
improvement is carried out. Again, the process is repeated as long as the objec-
tive function value is decreased.

3 Computational Experiments

The proposed Max-Min algorithm was implemented in Borland Delphi 7.0. It will
be referred to as M-ET in the sequel. Test runs were carried out on a computer
with 3.2 GHz clock under Windows XP.
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3.1 Test Cases

To benchmark algorithms test cases of twelve practical examination problems
can be found on the site of Carter (c.f. [10]). To make a comparison meaningful
all algorithms must use the same objective function. Therefore, Carter proposed
weighting conflicts according to the following penalty function: P1 = 16, P2 =
8, P3 = 4, P4 = 2, P5 = 1, where Pω is the penalty for the constrain violation
of order ω. The cost of each conflict is multiplied by the number of students
involved in both exams. The objective function value represents the costs per
student. As the proposed M-ET algorithm does not guarantee that no conflicts
of order 0 occur, additionally, the penalty P0 was imposed and set to 10000.

3.2 Adjustment of the Parameters

The required parameters were specified as follows. The number of cycles was
set to 50. Within each cycle 50 ants were employed to construct solutions. Sev-
eral test runs were carried out in order to determine the required parameters
appropriately:

– The evaporation rate ρ was set to 0.3. Like in [6] it turned out that this
parameter is quite robust, i.e. the parameter ρ does not clearly influence the
performance.

– For the restrictions of the pheromone interval values to strategies were tested.
Setting τmax = 1/ρ obtained slightly better results than in the case of vari-
able τmax and τmin as proposed in [6]. Best results were obtained with τmin

equal to 0.019.
– Different values for the weighting factors α and β were tested. It turned out

that the approach performed best when α was set to one and β was chosen
high. Best results were obtained for β equal to 24. But the difference was on
the average less than one percent when β was bigger than eight. A high β
forces that exams which can be scheduled, due to zero order conflicts, only in
a few remaining periods are scheduled first as they are given a much higher
probability in (1). Remember that ηij is the inverse of the saturation degree
as explained in section 4.1. Thus, a high β value has the same effect like a so
called candidate list [5]. Whereas, values for β lower than 5 solutions with
zero order conflicts could not always be avoided.

– As the approach is non-deterministic each test case was solved twenty times.

After determining the parameters in such a way, it turned out that less than
2 % of the solutions were generated more than once. Thus, stagnation, that is
caused by the fact that many ants generate almost the same solutions, could not
be observed.

3.3 Comparison with Other Exam Timetabling Approaches

The proposed M-ET approach was compared with different other approaches.
The results of the benchmarks are taken from the literature [11,12]. Table 1
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displays the best solution and the average solution achieved when each test case
was solved twenty times.

Additionally, the results were compared with a modified version of the
ANTCOL graph coloring algorithm of Costa and Hertz [8], called A-ET in the
sequel. Within this approach the ANT DSATUR(1) procedure was used as a
constructive method as described in [8]. The objective function was modified in
order to consider conflicts of higher order too. In addition the hill climber al-
ready incorporated in the M-ET approach was also implemented. The parameter
α was set to 1, β to 35. ρ was set equal to 0.3.

Table 1. Best and average solution after twenty test runs for the benchmark test
cases from Carter et al.[1,10,12] (Best value and best average value for each instance
is written in bold)

test case [11] [13] [14] [15] [16] [17] [18] [19] M-ET A-ET
car-f-92 best 4.6 5.2 6.0 4.0 4.3 - - 4.4 4.8 4.3

avg. 4.7 5.6 6.0 4.1 4.4 - - 4.7 4.9 4.4
car-s-91 best 5.7 6.2 6.6 4.6 5.1 5.7 - 5.4 5.7 5.2

avg. 5.8 6.5 6.6 4.7 5.2 5.8 - 5.6 5.9 5.2
ear-f-83 best 45.8 45.7 29.3 36.1 35.1 39.4 40.5 34.8 36.8 36.8

avg. 46.4 46.7 29.3 37.1 35.4 43.9 45.8 35.0 38.6 36.3
hec-s-92 best 12.9 12.4 9.2 11.3 10.6 10.9 10.8 10.8 11.3 11.1

avg. 13.4 12.6 9.2 11.5 10.7 11.4 12.0 10.9 11.5 11.4
kfu-s-93 best 17.1 18.0 13.8 13.7 13.5 - 16.5 14.1 15.0 14.5

avg. 17.8 19.5 13.8 13.9 14.0 - 18.3 14.3 15.5 14.9
lse-f-91 best 14.7 15.5 9.6 10.6 10.5 12.6 13.2 14.7 12.1 11.3

avg. 14.8 15.9 9.6 10.8 11.0 13.0 15.5 15.0 12.7 11.7
pur-s-93 best - - 3.7 - - - - - 5.4 4.6

avg. - - 3.7 - - - - - 5.6 4.6
rye-s-93 best 11.6 - 6.8 - 8.4 - - - 10.2 9.8

avg. 11.7 - 6.8 - 8.7 - - - 10.4 10.0
sta-f-83 best 158.0 161.0 158.2 168.3 157.3 157.4 158.1 134.9 157.2 157.3

avg. 158.0 167.0 158.2 168.7 157.4 157.7 159.3 135.1 157.5 157.5
tre-s-92 best 8.9 10.0 9.4 8.2 8.4 - 9.3 8.7 8.8 8.6

avg. 9.2 10.5 9.4 8.4 8.6 - 10.2 8.8 9.1 8.7
uta-s-92 best 4.4 4.2 3.5 3.2 3.5 4.1 - - 3.8 3.5

avg. 4.5 4.5 3.5 3.2 3.6 4.3 - - 3.8 3.5
ute-s-92 best 29.0 29.9 24.4 25.5 25.1 - 27.8 25.4 27.7 26.4

avg.29.1 31.3 24.4 25.8 25.2 - 29.4 25.5 28.6 27.0
yor-f-83 best 42.3 41.0 36.2 36.8 37.4 39.7 38.9 37.5 39.6 39.4

avg. 42.5 42.1 36.2 37.3 37.9 40.6 41.7 38.1 40.3 40.4

The results of table 1 can be summarized as follows: Although, the M-ET
approach does not generate outstanding results its performance is comparable
with other approaches. It finds better solutions than the approaches in [11], [13],
[18], [17] and [19] for most test cases. In addition, it is striking that no approach
outperforms all other approaches for all test cases. Thus, there are some test
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cases where M-ET finds better solutions than the approaches [14], [15] and [19],
although one must confirm that these three approaches generate better solutions
for most of the test cases. For example, M-ET found better solutions than the
approach [14] in four out of the 13 test cases.

Surprisingly, the simple AS approach A-ET outperformed the M-ET for al-
most all test cases. Even without using the hill climber better results were ob-
tained. In particular, this result is contrary to other results presented in the
literature where MMAS algorithms obtained better results for various combina-
torial optimization problems (c.f. [5,6]).

Computing times for the M-ET approach lay in the range of 10 seconds for the
smallest test cases, i.e. hec-s-92, to 2.5 hours for the pur-s-93 problem. Compared
to the M-ET approach the computing time of the A-ET combined with the hill
climber was on the average 80 % higher. Thus, one can conclude that A-ET
takes more time but gets a better solution quality than M-ET. Please note that
the same stopping stopping criteria was used for both algorithms, namely, 2500
solutions. Of course one could argue that the time saved by the M-ET approach
could be used to generate more solutions. But, increasing the number of ants
and the number of cycles to 100 did not result in achieving better solutions.

4 Conclusion

In this paper different strategies for solving exam timetabling problems were
tested. Ant colony approaches are capable of solving large real world exam
timetabling problems. The implemented algorithms generated comparable re-
sults like other high performance algorithms from the literature.

Unlike for other combinatorial optimization problems like the TSP or the QAP
for the exam timetabling problem the MMAS approach did not outperform the
simpler AS strategy. Of course, it goes without saying but proper adjusting
parameters can improve the performance of an algorithm considerably.

A self-evident extension would be to incorporate additional constraints and
requirements like e.g. scarce room resources or precedence constraints between
exams.
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1 Search Ant and Labor Ant Clustering Algorithm
(SLAC)

In 1990, Deneubourg et al. [1] developed the first ant clustering algorithm based
on mimicking corpse piling process of ants. In his algorithm, an ant picks up
and drops the data items based on the similarity of ant’s local neighborhoods.
Labroche et al. [2] developed a different ant algorithm, AntClust, based on chem-
ical odor and some behavioral rules of ants.

In existing ant-based clustering algorithms [1], [3], [4], ants are usually having
long traveling paths and clustering is sometimes taking too long for a large vol-
ume of data items. It is also hard to decide when the clustering is completed since
the number of clusters can be changed some times when the number of iterations
is changed. They also show relatively ambiguous boundaries to distinguish the
clusters.

In this paper, we propose a new ant algorithm, search-ant and labor-ant clus-
tering (SLAC) algorithm for clustering of data items utilizing the behavior of
ants not in corpse filing but in food searching and storing. We are using two
kinds of ants: search ants and labor ants. At an early phase of the algorithm, a
fixed number of storage nests which are storage places for data items are formed
by search ants. Labor ants are traveling to the storage nests with picked items.

We set a central point of each storage nest on the lattice to form a storage
nest around the central point. A search ant drops the data items around the
central point of a storage nest. The data items in the same storage nest will be
similar to each other, but dissimilar to the data items of other storage nests.
The data dropped by search ants is stored in a nest memory. A stored data
item in the nest memory will not be moved later on but keep to stay in the
storage nest. In SLAC, we use Lumer and Faieta’s neighborhood function in [3]
for dissimilarity measure and Deneubourg’s threshold function in [1] for pick up
and drop probabilities of the items.

2 Experimental Result and Concluding Remarks

In our computational experiment, a real data set (Iris data set of the ma-
chine learning repository http://www.ics.uci.edu/∼mlearn/MLRepository) and
� This paper was supported by Faculty Reaserch Fund, Sungkyunkwan University,

2004.
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synthetic data sets generated by two-dimensional Normal distribution N(μ, σ)
are used. Iris data set has three cluster and two synthetic data sets are generated
to have four clusters. We compare the performance of our proposed algorithm
with the ant-based algorithm, ATTA in [4]. ATTA is a much improved algorithm
in clustering speed and robustness compared to the existing corpse piling ant
algorithms.

The performance of ant-based clustering varies with the magnitude of overlap-
ping among the data items between the clusters. Outputs of ATTA and SLAC
for Art1 data set has four clusters clearly since its data are overlapped barely.
Both algorithms ATTA and SLAC produce small clustering errors for Art1 data
sets in 30 trials. Art2 data set is more overlapped than Art1 data set. ATTA
made average of 3.36 clusters even with 1,000,000 iterations, but SLAC made
average of 3.87 clusters with only 50,000 iterations in 30 trials for Art2. If we
increase the nest memory of SLAC from 20 to 50, the average number of clusters
increased from 3.87 to 3.93.

In Iris data set which has 150 data items, ATTA hardly generated correct
three clusters in average clustering time of 6.25 seconds but SLAC generated
average of 3.0 clusters in average clustering time of 0.15 seconds with 8% mean
of clustering errors in 30 trials.

The proposed algorithm SLAC used search ants and labor ants to balance
their work loads and reduce the traveling paths of labor ants. SLAC is faster
than existing corpse piling ant clustering algorithms and can be applied to var-
ious applications. Initial data items assigned by search ants of SLAC contribute
a significant influence toward following clustering process. Hence we need to fur-
ther study optimal setting for the numbers of search ants and the size of nest
memory to improve the performance of SLAC.
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Pontif́ıcia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil

jel@ind.puc-rio.br
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This reasearch studies ACO algorithms for the switch engine scheduling in a
Railroad Yard. The cars are moved individually or grouped into blocks by a set
of locomotives called switch engines which are dedicated to moving around the
cars in the yard. The need for moving comes from the fact that the arriving
trains are disassembled into blocks of cars, undergo some operations like, load-
ing, unloading and cleaning and finally are assembled into a new train. Each
moving request is called a switch order. The decision of which switch engine will
execute which switch order and the sequence of that executution is the core of
our problem. The optimization of this schedule reduces the overall operational
costs of the yard as weel as the time to assemble new trains, thus leading to a
more productive railroad system.

The problem can be summarized as follows: Given the information about the
railroad yard layout, the switch engines currently located in it and a list contain-
ing all pending planned switch orders the goal is to determine an assignment of
switch engines to switch orders, and a sequencing of these such that none of the
operational constraints are violated and the costs are minimized. The practical
goal os the overall project is to develop a switch engine scheduling algorithm for
the Tubarao Railroad Yard, located in Brazil, which is the largest railroad yard
in Latin America.

The switch engine scheduling problem is strongly connected to the multiple
pickup and delivery problem with time windows (m-PDPTW), which is used to
model passenger and good transportation. This is a well known NP-hard problem
from which heuristic approaches have shown to produce solutions that are easy
to implement and have a low sensitivity to changes in the original problem. A
first contribution of our work is the adaptation of an ACO algorithm, in this
case COMPETants [1] to the problem, introducing a number of railroad yard
specific constraints to model the particularities of the railroad yard scenario.

First tests using real-world instances showed that our algorithm might produce
huge savings. Hence we decided to continue the research with further analysis
and possibly improving the original algorithm. For these tests we have deployed
an instance generator to produce additional sets of data based on parameters
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(a) Wide time windows (b) Tight time windows

Fig. 1. RRCRB and RRC solution values comparison for tight and wide time windows,
considering plans with 20, 80 and 120 switch orders

that describe the most important operational characteristics of the yard. In
our initial tests, we examined the implementations of two different pheromone
update rules. The first one, which we called RRC (Railroad COMPETants) was
simply the same rule used in the COMPETants algorithm and the second one,
called RRCRB (Railroad COMPETants - Rank Based) used the pheromone
update rule presented in [2] as the Rank Based Ant System.

An extensive analysis was done comparing the quality of the solutions ob-
tained with both implementations. It showed that the RRC version of the al-
gorithm outperformed the RRCRB version for all the combinations of input
parameters and instance type and sizes considered. This can be seen in Figure 1,
which illustrates one the results obtained. Paired-t tests showed that both varia-
tions deliver results that vary accordingly up and down. We also concluded that
further tuning of the algorithm parameters seems not to be very promising to
improve the performance of the worse variant.

As the next steps in this research, we plan to try to improve the solution
quality obtained by the ACO algorithm through the adoption of more performing
ACO techniques or the inclusion of local search procedures. We also plan to
extend the scope of this research tackling other problems in the railroad yard
operation algorithmically.
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Although ACO has been proved to be an efficient and versatile tool for combina-
tional optimization problems [1,2], it cannot deal with continuous optimization
problems directly. Therefore, there are only a few studies on ACO [3] for con-
tinuous optimization. This paper presents a novel ACO algorithm (CACO-DE)
for continuous optimization based on discrete encoding, which is quite different
from other ant methods.

In the CACO-DE, limit-accuracy real number variables are encoded to be
strings of integer digits 0-9. For example, given x=397.168, it can be encoded to
be a string (0, 3, 9, 7, 1, 6, 8). The first digit in the sequence is 0 for positive
numbers and 1 for negative numbers.

The pheromone trail is defined as a 4-dimensional array, in which each element
T [i, j, a, b] is defined as follows: i is the parameter index, j indicates the jth digit
of the ith parameter, a and b are digits from the set 0 to 9, T [i, j, a, b] reflects
the probability of assigning the jth digit of the ith parameter to the digit b
conditioned on the (j − 1)th digit having been assigned to a.

The pheromone trail of CACO-DE is accumulated with an updating rule, in
which the increment of pheromone is set according to the quality of the solution
obtained by ants. Later, a local strategy is added to optimize the best solution
obtained by ants each iteration. The framework of CACO-DE is similar to Ant
Colony System (ACS) [2], and the convergence in value [2] can be proved.

The numerical results presented here are based on 100 independent runs of
CACO-DE algorithm on each of the test problem. The parameters are set as
α = β = 0.1 and the number of ants is 10 as those in ACS. The accuracy
of CACO-DE and ACO [3] is presented in Table 1. Both of the algorithms
terminate when the required accuracy is met. And the comparison of average
evaluation number between CACO and other methods is presented in Table 2.
The comparison presented is not only an indication of the potential of CACO-
DE, but also a result showing the advantage of CACO-DE in solution accuracy
and evaluation number. Table 1 shows that CACO-DE can find a high-accuracy
solution of the test functions and perform better than other ant methods (CACO
and ACO) for continuous optimization problem. Table 2 can verify that CACO-
DE is the most efficient in all of the test methods.

However, the problems tested here are the ones with a few variables. Moreover,
the accuracy of the optimal variables is limited so that the encoding can be
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Table 1. Comparison of average accuracy between CACO-DE and other ant methods

No Test problem Optimal Search Domain Dimension ACO[3] CACO-DE

1 De Jong’s 3905.93 [-9.999, 9.999] 2 — 0
2 Goldstein, Price 3 [-9.999, 9.999] 2 1.00E-4 0
3 Martin, Gaddy 0 [-9.999, 9.999] 2 — 4.44E-07
4 Rosenbrock 0 [-9.999, 9.999] 2 — 4.44E-07
5 Rosenbrock 0 [-9.999, 9.999] 4 3.00E-3 2.03E-04
6 Sphere model 0 [-9.999, 9.999] 6 1.00E-04 1.00E-06

Table 2. Comparison of average number of function evaluations between CACO-DE
and other algorithms in the literature

No CGA ECTS ESA ACO CACO CACO-DE

1 — — — — 6000 1872
2 410 231 783 364 5330 666
3 — — — — 1688 340
4 — — — — 6842 1313
5 960 480 796 2905 8471 624
6 750 338 — 695 22050 270

carried out successfully. Therefore, larger sets of benchmark problems should be
tested to indicate the advantage or disadvantage of CACO-DE. Moreover, the
performance of CACO-DE should be discussed in detail.
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1 Introduction

Throughout the history of research, some of the most innovative and useful dis-
coveries have arisen from a fusion of two or more seemingly unrelated fields
of study; a characteristic of some method or process is enfused into a com-
pletely disjoint technique, and the resulting creation exhibits superior behavior.
Some common examples include simulated annealing modeled after the anneal-
ing process in physics, Ant Colony Optimization modeled after the behavior of
social insects, and the Particle Swarm Optimization algorithm modeled after the
patterns of flocking birds.

Particle swarm optimization (PSO) is a promising new optimization technique
developed by James Kennedy and Russell Eberhart [1] which models a set of
potential problem solutions as a swarm of particles searching in a virtual space
for good solutions. The method was inspired by the movement of flocking birds
and their interactions with their neighbors in the group. By “flying” the particles
through the virtual space, with attraction to positions in the space that yielded
the best results, the swarm is able to find optimal solutions.

Within the field of multi-robot systems, one area that has received some at-
tention is collective robotic search, where a group of robots works together to
localize one or more targets (e.g., [2,3]). Using a collective robotic approach in
search tasks can offer several major benefits over the single robot alternative.
Searching can be done massively in parallel, significantly decreasing the time
taken to locate the target(s) and improving robustness against failure of sin-
gle agents. Scalability allows further improvement by only adding more agents,
and the extensive amount of sensorial data allows for less error-prone decision-
making.

Both PSO and collective robotic search are instances of multi-agent search.
For PSO, the search is virtual with no limitations to particle movement, while
multi-robot search is situated in the real world with constraints such as inter-
robot collisions and limited communication range. However, there may be ideas
which can be shared between the two search scenarios to improve one or both;
adapting the strategies of PSO particles could yield an effective search technique
in multi-robot systems, and the dynamics of the collective robotic search might
generate interesting effects in the PSO algorithm.
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2 Experiments and Preliminary Results

A first adaptation of the PSO algorithm is to modify particle neighborhoods
to be more akin to multi-robot search neighborhoods. In PSO, every particle
is a member of some neighborhood of other particles with which it shares in-
formation. Typically, these neighborhoods are fixed throughout the algorithm,
which may mean that particles in the same neighborhood are very far from each
other in the search space. In multi-robot scenarios, communication range is of-
ten limited. This restricts information sharing to only between nearby robots.
Therefore, to realistically model a multi-robot system, particle neighborhoods
should be set in such a way that particles are not required to communicate with
other particles outside of some close proximity.

Although proximity-based PSO neighborhoods have been used before in the
literature, they have not been thoroughly explored and not with the multi-robot
search paradigm in mind. We propose two new models: Model A (PSOA), where
the two nearest particles form a particle’s neighborhood, and Model B (PSOB),
where all particles within some fixed radius r form the neighborhood. These
are similar to the neighborhood models used with PSO for multi-robot learning
in [4]. We compare these two models to the lbest (PSOL) and gbest (PSOG)
techniques for optimizing both low (3) and high (30) dimensional problems.

Table 1. Performance of Algorithms in 3/30 Dimensions

PSOL PSOG PSOA PSOB
Sphere 0.000/0.297 0.000/0.000 0.000/0.065 0.000/0.000
Rosenbrock 0.023/8.006 0.005/14.31 0.162/147.3 0.005/15.42
Rastrigin 0.042/64.66 0.129/40.66 0.419/76.57 0.070/40.89
Griewank 0.003/0.002 0.007/0.011 0.003/0.012 0.004/0.009

Initial results on standard test functions indicate that Model A does not
perform very well in either high or low dimensions. Model B offers some potential
benefit in low dimensions, offering a good compromise between PSOL and PSOG,
but does not do well in high dimensions.
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1 Introduction

In the Single Source Capacitated Facility Location Problem (SSCFLP), n cus-
tomers and m potential facility locations are given. Each customer i has an
associated demand di that must be supplied only by a single facility j. The cost
cij is the unit shipping cost between customer i and facility j. The capacity of
each facility sj is known, as well as the fixed charge fj incurred whenever facility
j is opened. The objective of the problem is to locate a number of facilities that
serve a set of customers at minimum cost.

The Ant Colony Optimization (ACO) has been applied to many combinatorial
optimization problems successfully. Descriptions of different ACO algorithms and
related literature review can be obtained in [1]. To the best of our knowledge,
no applications of ACO for the SSCFLP have been published in the literature.
Hence, this research aims to develop a Multiple Ant Colony System (MACS) for
the SSCFLP.

2 Multiple Ant Colony System

The MACS coordinates two different solution construction rules: location selec-
tion rule and customer assignment rule. One ant colony is used to select the
set of facility locations while the other one is applied to allocate customer to
each opened location. The heuristic information are the ratio of capacity (sj) to
fixed charge (fj) for location selection and the distance between customer i and
facility j for customer assignment, respectively. The pheromone information are
pheromone level of each candidate site j for location selection and the pheromone
level of arc (i, j) for customer assignment, respectively. After all ants construct
the solutions, two different local search approaches (insertion move and swap ex-
change) are applied sequentially to improve the best one among all constructed
solutions. The framework of the MACS consists in the following steps:

Step 1: Each ant generates the solution using location selection rule and cus-
tomer assignment rule. Then update local pheromone information.

Step 2: Apply the local search to improve the iteration-best solution.
Step 3: Update global pheromone information according to global-best and

iteration-best solutions.
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3 Numerical Analysis

In this research, the performance of the MACS is tested by two groups of bench-
mark instances. The first group of benchmark instances consists of two sets of
problems from Holmberg et al. [3]. The number of candidate sites ranges from 10
to 50 while the number of customers ranges from 50 to 150. The computational
results show that the MACS can obtain optimal solutions in 37 out of 40 small
and median size problems within reasonable run times. Although the MACS
cannot find optimal solutions in all medium problems, the average gap from the
optimal solutions is about 0.01%.

The second group of benchmark instances, 12 very large size problems, is
adopted from the Beasley OR-Library. These problems involve 100 candidate
sites and 1,000 customers. We use the best-known solutions of the problems
without single source constraint as the lower bounds to measure the gap. Many
competitive results of the SSCFLP have been obtained by Lagrangean heuristic
(LH). Hence, we compare the performance of the MACS with the LH proposed
by Hindi and Pienkosz [2]. The results show that the average gap of the MACS
is only 0.27%, which is lower than those obtained by LH (0.77%) in [2].

4 Summary

This research proposes a multiple ant colony system to solve the single source
capacitated facility location problem. The computational results show that our
approach is competitive with other heuristic algorithms.
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1. Dorigo, M. and Stützle T.: Ant Colony Optimization. Bradford Books. MIT Press
(2004)

2. Hindi, K.S., Pienkosz K.: Efficient Solution of Large Scale, Single-Source, Capac-
itated Plant Location Problems. Journal of the operational Research Society. 50
(1999) 268–274

3. Holmberg, K., Ronnqvist, M., Yuan D.: An Exact Algorithm for the Capacitated
Facility Location Problems with Single Sourcing. European Journal of Operational
Research. 113 (1999) 544–559



Energy Efficient Sink Node Placement in Sensor
Networks Using Particle Swarm Optimization

Kirusnapillai Selvarajah and Visakan Kadirkamanathan

Department of Automatic Control and Systems Engineering
University of Sheffield, United Kingdom
{K.Selvarajah, visakan}@shef.ac.uk

1 Introduction and Problem Formulation

We formulate a non linear optimization problem to find the optimal sink node
position for a given wireless sensor networks (WSN) region where sensor nodes
generate different amounts of data to send to the sink node [1]. The problem
is NP-hard in general and we use the particle swarm optimization technique to
solve the optimization problem [2].

For a network with N sensor nodes, where each node i senses and generates
data with the rate of gi, suppose that the initial energy at each node is Ei(1 ≤
i ≤ N). For the placement problem, we assume that the data rates from node
i to node k and to the sink node are fik and fiS ; (xi, yi), 1 ≤ i ≤ N , are fixed
coordinates for the placement of the sensor nodes; (x, y) are the coordinates
of the sink node which is to be placed efficiently in the sensor network region
(−L,L) × (−L,L). Cik and CiS are the link cost from node i to node k and
to the sink node S, respectively. For each node in the WSN, the following flow
balance equation must be met [3]

fiS +
k �=i∑

1≤k≤N

fik =
m �=i∑

1≤m≤N

fmi + gi (1)

The goal here is to place the sink node in an optimal way to maximize the
lifetime of a sensor network consisting of N sensors with the same initial energy
deployed in a certain area. According to the problem setup, maximizing the life
time is achieved by minimizing total power consumption of N sensor nodes. The
power consumption of node i, Pi, can be represented as follows:

Pi =
k �=i∑

1≤k≤N

cikfik +
m �=i∑

1≤m≤N

ρfmi + ciSfiS (2)

where Pi is the power dissipation at i, ρ is the power consumption coefficient
for receiving data, CiS denotes power consumption cost between nodes i and
sink node and fiS denotes the data rate to the sink node from node i. The
optimization function that minimizes the total power consumption of the WSN
is as follows:

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 510–511, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Energy Efficient Sink Node Placement in Sensor Networks 511

min
N∑

i=1

(
k �=i∑

1≤k≤N

Cikfik +
m �=i∑

1≤m≤N

ρfmi) +
N∑

i=1

CiSfiS) (3)

2 Energy Efficient Sink Node Placement Using Particle
Swarm Optimization

To find the optimal location of the sink node in the sensor network region, we
have to perform search algorithms such as genetic algorithm or particle swarm
optimization as the problem is NP-hard in general. Here we choose particle
swarm optimization because its implementation is simple and gives better results
in most cases than genetic algorithm [4]. To solve the optimization problem, we
need to know the optimal connection pattern for every single search point in
the WSN region as the optimization function depends on the multi-hop optimal
path connection pattern of every single node to the sink node. If we perform the
routing algorithm after every iteration (every possible point for the sink node
in the region) online, it can be a computationally expensive process and add
more complexity to the optimization algorithm. We consider the WSN networks
region as several small clusters to reduce the computational complexity and we
perform the optimal multi-hop routing algorithms off-line by assuming the sink
node is placed in each cluster. Then we calculate the cost function using the
optimal routing connection pattern for each cluster. We assume that if the sink
node is placed anywhere in the given cluster it has the same optimal routing path
(realistic assumption to calculate near optimal position). After each iteration,
our optimization algorithm identifies the appropriate cluster, then selects the
cost function for its cluster which depends on the multi-hop optimal routing
connection from each sensor node to the sink node.

The simulation results show that the proposed optimal strategy has significant
benefit over other existing placement techniques where energy consumption is
vital in wireless sensor networks. The future direction of our work is in finding
the optimal positions for the multiple sink nodes for large scale sensor networks
based on the residual energy of the sensor nodes.
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Swarm Intelligent (SI) algorithms draw their inspiration from the interaction of
individuals of social organisms. One such algorithm, Ant Colony Optimization
(ACO) [1], utilizes the foraging behavior of ants to solve combinatorial optimiza-
tion problems. Although ACO performs well in a static environment, it has been
pointed out that ACO does not perform as well as other heuristics in dynamic
situations such as routing. This paper proposes a new algorithm, entitled Evolu-
tionary Ant Colony Optimization (EACO), that combines ACO with elements
of Genetic Algorithms (GA). By adding evolution, the EACO algorithm allows
the individual ants to develop their own characteristics, thereby removing the
homogeneity inherent within ACO. Our results demonstrate the potential of this
approach in a dynamic environment.

There have been other attempts in the past at combining SI and Evolution,
however, most have used the two as discrete events. White et al.[2] came the
closest to mimicking nature with their approach by moving two of the global
ACO parameters to the individual ants and evolving the ants themselves. How-
ever, even in White’s experiments, the two algorithms (GA and ACO) are run
as discrete steps where the GA runs only after all ants have found a solution.

EACO attempts to approximate nature by directly integrating the bio-op-
erators of GA into ACO and evolving the ants in the system on a continuous
basis. In EACO, an initial population of ants is created, and as ants die and are
removed from the system, new ants are created in their place. This approach
allows the algorithm to run continuously as a single system rather than as two
discrete events where entire populations are created and destroyed between each
iteration of the GA.

The ants in the ACO algorithm proposed by White et al.are characterized by
two main characteristics: sensitivity to pheremone and sensitivity to link cost.
On the other hand, the genotype in EACO contains five attributes: lifespan,
pheremone quality, pheremone sensitivity, speed, and reproduction rate. Our
current implementation uses only lifespan and speed.

Two different sets of tests were used to test the efficacy of the EACO algo-
rithm versus traditional ACO. In both tests, a simple map was used to test the
ability of each algorithm to find the optimal path between two cities. In the
first test, a search for the shortest path was done by both algorithms in a purely
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static environment. In the second test, the map was changed (after a period that
allowed both algorithms to converge on their initial solutions) to make the cur-
rent “best path” a local optimum, thus testing how well each algorithm per-
formed in a dynamic environment.

In the first test, as expected, ACO performed better than EACO converging
on the most optimal path 98% of the time versus 80% for EACO. However, in
the dynamic environment, EACO was able to escape from the local optimum
and converge on the new “best path” 62% of the time versus 18% for ACO.
Interestingly, in the remaining 38% of the tests, EACO converged on the second
most optimal path (i.e., the previous “best path”) while ACO proceeded to get
worse in the remaining 83% of its tests.

Another interesting fact about the EACO algorithm is that by simply reduc-
ing the mutation rate to zero, EACO essentially becomes ACO and, therefore,
performs just as well as ACO in a static environment. This planned benefit re-
sults from the method in which diversity is introduced into the EACO algorithm.
In EACO, all ants in the initial population are introduced into the system with
identical genotypes. Then, through mutation and crossover, their genotypes be-
come more diverse. Thus, by simply removing the mutation factor, the genotypes
in the EACO algorithm are forced to stay uniform and the algorithm becomes
ACO. The end result of this behavior is that EACO acts as a superset of ACO,
performing well in both static and dynamic situations depending upon how the
system is initialized.

In this paper, we have presented a new approach to solving discrete opti-
mization problems that combines ACO and GA. Our experiments have shown
that, in dynamic solution spaces, EACO outperforms the traditional ACO meta-
heuristic, and can become ACO with a simple change in the system’s mutation
rate. Future plans for EACO include the inclusion of characteristics other than
lifespan and speed. We also plan to incorporate the idea of species into the algo-
rithm thereby allowing a fitness to be associated with a group rather than just
an individual ant which should align itself more to the strengths of SI. Finally,
we are also looking into adding a mechanism by which EACO can select the
appropriate mutation rate according to the dynamism of the system rather than
relying on the intervention of a user.
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1 Introduction

The particle swarm algorithm [1] contains elements which map fairly strongly
to the group-foraging problem in behavioural ecology: its continuous equations
of motion include concepts of social attraction and communication between in-
dividuals, two of the general requirements for grouping behaviour [2]. Despite
its socio-biological background, the particle swarm algorithm has rarely been
applied to biological problems, largely remaining a technique used in classical
optimisation problems. In this paper [3], we show how some simple adaptions to
the standard algorithm can make it well suited for the foraging problem.

This work introduces a new way to look at the particle swarm algorithm,
i.e. using it as a simulation tool in the biological field of behavioural ecology.
Our research is part of the XPS1 multidisciplinary project which aims, among
other things, to explore extensions of the particle swarm algorithm by including
strategies from biology. This work on foraging behaviour represents a first step
in simulating more complex group behaviour in animals.

2 Approach

The simulation of animal grouping behaviour is extremely complex. Therefore,
in order to make progress, we focus here on simulating an abstraction of the
group-foraging problem, where: (a) there are no predators or any other source of
risk or danger; (b) animals neither give birth nor die; (c) animals are “blind” and
have no sense of smell, but they can communicate with everyone else, regardless
of the size of the world; (d) the food sources do not deteriorate unless eaten and
once a source is exhausted, it does not regenerate.

We propose two approaches to model foraging behaviour: the first uses a
standard particle swarm algorithm, with the particles just slowing down in the
proximity of food; the second approach modifies the basic algorithm in order to
make the particles actually stop on the food source and remain there to eat.

1 Details of the project can be found at http://xps-swarm.essex.ac.uk.
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The general idea behind our two approaches is the following. The particles
in the swarm represent the animals looking for food sources. The sources are
distributed over the 2-dimensional world and take the form of patches which
contain a certain amount of food. To explore different situations that can happen
in nature, there are three different configurations of food with respect to the
number of patches, their size and the amount of food they contain.

The particles move over the food landscape according to the rules of the
particle swarm algorithm. When a particle lands on a patch of food, it starts
feeding on it, i.e. the amount of food available on that patch decreases (while the
size remains the same). Because of the way the algorithm works, other particles
are attracted to this patch, and start feeding as well. Eventually, the food on
the patch will be exhausted (i.e. it will reach a minimum threshold), and the
particles will start foraging again.

The food eaten by the particle is interpreted as the energy that the animal
gains when feeding. The food intake, or equivalently the energy gained, repre-
sents the fitness of the particle. In the standard particle swarm algorithm, the
particles represent the coordinates of points in the search space and their fitness
is simply given by the value of the function we want to optimise. In our simula-
tion, the fitness of the particles is evaluated as the amount of food available for
the particle to eat (i.e. the amount of food left on the patch), weighted by the
amount of food that a particle can eat (i.e. the particle’s own intake factor).

3 Conclusion

We have shown how some simple adaptions to the standard particle swarm
algorithm can make it well suited for the foraging problem.

The results (see [3]) show that the changes convert the standard algorithm
into one which produces qualitatively realistic behaviour for a simplified model
of abstract animals and their foraging environment. We have also highlighted
sensible envelopes for parameter values and shown that it is important to keep
the particles’ trajectories “smooth”.

With this simulation, we have begun with a simple abstraction of the group-
foraging problem. In the near future, we will extend the analysis of this behav-
iour further, by introducing more realistic features for the food sources, and by
refining the parallelism between particles and animals.
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The facility layout problems in today’s batch-to-mass manufacturing systems
have gained a whole new face and popularity due to the requirements of mass
customization. Facilities layout problem is still the most popular application for
the Quadratic Assignment Problem [1]. The facility layout model addressed in
this study is also known as quadratic assignment problem and formulated as
integer linear programming formulation [2]. PSO performs a population-based
search which emulates the social behavior of bird flocking and fish schooling
[3]. In PSO, candidate solutions, called particles, search through the problem
space by following the current optimal particles. Locations of particles in the
search space are determined by their positions and velocities. Eberhart, Shi and
Kennedy [2001] introduce the following equations:

v̄i(t) = v̄i(t − 1) + ϕ1(p̄i − x̄i(t − 1)) + ϕ2(p̄g − x̄i(t − 1)) (1)

where
x̄i(t) = x̄i(t − 1) + v̄i(t) (2)

where x̄i is the position of a particle i, v̄i is the velocity for particle i, p̄i is the in-
dividual best-so-far position, p̄g is the global best-so-far position and ϕ variables
are random numbers defined by an upper limit. The algorithm we used is a typ-
ical PSO but it is left due to page restriction. The proposed PSO algorithm for
QAP-based FLPs has been implemented in C . First set of problems were taken
from research papers that dealt with QAP (Table 1). Even though we set the
maximum number of iterations to as low as 100, the proposed PSO converged to
the known optimal solutions. Aiming a gradual challenge, we considered QAP
problems with 30 departments or less, taken from Burkard’s QAPLIB as a next
stage. This set resulted in 77 problems . For each problem, we propose and
run three PSO algorithms: (i) the standard PSO (called as PSO-St), (ii) the
standard PSO with velocity restriction (PSO-VR), and (iii) modified PSO that
regenerates the population periodically to avoid possible local optima (PSO-M).
For each problem, all three PSO’s average convergence to the optimal solutions
turned out to be around 83%. This performance should be considered with the
fact that no problem- specific parameter adjustments or tunings were performed
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Table 1. Results of standart PSO for first set of problems

Test problems PSO Solution Optimal Solution Convergence Ratio

Rosenblatt(1) 12822 12822 100
Rosenblatt(2) 14853 14853 100
Rosenblatt(3) 13172 13172 100
Rosenblatt(4) 13032 13032 100
Rosenblatt(5) 12819 12819 100
Zimmermann&Sovereign 389 389 100
Gavett 403 403 100

but simply the generally accepted settings were adhered. Even then in 62 single
runs from out of 231 converged to the optimum at a 95% or better percentage.
Aiming to reveal the impacts of the parameters on the PSO performance, we
designed experiments with different settings over the selected problems with 12,
15, 16, 20, 26, and 30 departments, taken from Burkard’s QAPLIB. In some
problems like Chr12, fine tuning improved the performance from 57% to 86%.
The problems with high convergence rates remained in the same vicinity of per-
formance for different parameter settings. In an attempt to analyze the impact
of the department-specific restrictions on the performance of PSO-based algo-
rithm, a subset of the test problems taken from QAPLIB have been modified
to represent these restrictions at 10%, 20%, and 30% levels to emulate the un-
desired department assignment to certain locations. The increased restriction
levels naturally resulted in the increase of the objective function values as well.
If one increase the number of runs per restriction level, the reliability of the
observation should be increased.

Our comprehensive experiments on the test-problems and their promising
results enabled us to attack a layout problem of a headline cell with 21 worksta-
tions in a truck engine plant. Although no any reconfiguration decision is made
yet, the expected improvement in the layout efficiency is approximately 7%. As
a conclusion, the computational results indicate that our proposed PSO-based
algorithms can be applied in solving QA-based FLPs, and showed that PSO
can enable the solution efficiencies to facility layout problems. A future research
must be issued to unreveal the impact of a possible relation between the sparsity
of the distance and flow matrices and the parameter selection and tuning in the
domain of QA-based FLPs.
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1 Simulation Police Allocation and Criminal Activity

Multi-Agent Systems (MAS) are extensively used as a tool for simulation of
dynamic systems. Geosimulation is an urban phenomena approach that uses
the multi-agent methodology to simulate discrete, dynamic, and event-oriented
systems. Our focus in this paper is to use self-organization, specially strategies
inspired by solutions from Swarm Intelligence, as well as the idea of social net-
works, and demonstrate their effect on learning in geosimulation agents.

The allocation of police officers in urban areas in order to perform preventive
policing is one of the most important tactical management activities in criminal-
ity control. Simulation systems come to be an useful tool for supporting decision
support. But effectiveness is directly proportional to the dynamism of the crimi-
nal model being utilized. The learning factor tends to be essential in that context
because it will help in the identification of the trends.

Our simulator makes a society with three types of agents: crime targets, po-
lice, and criminals The simulator is made of a 60×60 grid where 41 crime targets
are distributed. The simulation uses 16 criminal agents that form 4 communities
(clusters). One hub exists in each community, also playing the role of that com-
munity’s broker. In general, social network hubs are considered to be the nodes
with the highest number of connections (degree of centrality). In this simulator,
we define a hub as a criminal agent with the highest success rate (efficiency)
among the four in the community – successful criminal agents tend to be known
in the community and is likely to have a high degree of centrality. These agents
communicate with each other at the end of a day period (48 iterations of our
simulation) – the simulation has 90 days.

In our models, each criminal has three actions: commit a crime, not commit a
crime, and move to a certain location. In order to reach a decision about the crime
they utilize different approaches: Lazy (distance is the sole source of decision);
Swarm (experience with target is also used); and Social-Swarm (decision now
considers information from other criminals). All three models above are modeled
under one general probability equation common in swarm systems [1].
� Partially funded by the National Science Foundation, USA, grant #INT-0337161.

�� Sponsored by CNPq/Funcap, Brazil, under DCR grant #23661-04.
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Fig. 1. The evolution of crimes occurred in the Social-Swarm model is the best

2 Evaluation of the Learning Models

First we would like to confirm our previous results showing that criminal agents
can make better decisions when they learn from their past criminal activities. In
[2] we also show the Swarm model leads to the formation of spatial-temporal
structures at the level of criminal agents whose emergent property is their ten-
dency to choose targets that have low or none preventive police patrolling. Sec-
ond, we would like to investigate the effects of the social connections an agent has
on his behavior and learning capability. In all executions we have used 41 crime
targets and 38 stationary police patrols in 38 of the targets. This configuration
leaves 3 targets without protection. In the experiment in Fig. 1 we demonstrate
the learning capability of each model used.

One of the most important results we obtain in this work is the fact that
a model to support the study of patrol routes must be consistent with some
sociological theories on crime. Our results have demonstrated that learning is
essential in the modeling of criminal behavior. We have utilized two models
called Swarm and Social-Swarm which indicates the promise of these self-
organized approaches in a practical problem. The inclusion of social aspects in
the model demonstrates a significant gain over the standard Swarm model when
the available points are located next to each other.

The work on modeling the social influence in criminal behavior is in its infancy.
Despite our good results, we intend to investigate better the effect that a social
network topology has on the social factor considered in this paper.
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1 Introduction

Several traffic control approaches address the problem of reducing traffic jams. A
class of them deals with coordination of traffic lights to allow vehicles traveling
in a given direction to pass an arterial without stopping. However, in cities where
the business centers are no longer located exclusively downtown, this approach is
not appropriate: simple offline optimization of the synchronization in one arterial
alone cannot cope with changing traffic patterns.

This paper is an extension of our previous models: In [1] a decentralized,
swarm-based approach was presented, but we have not collected and analyzed
information about the group formation. In [2] groups were considered and a
technique from distributed constraint optimization was used, namely cooperative
mediation. However, this mediation was not decentralized: group mediators com-
municate their decisions to the mediated agents in their groups and these agents
just carry out the tasks. Also, the mediation process may take long in highly
constrained scenarios, having a negative impact in the coordination mechanism.
Therefore, a decentralized, swarm-based model of task allocation as presented
here is necessary. The dynamic group formation without mediation combines the
advantages of those two previous works (decentralization via swarm intelligence
and dynamic group formation).

2 Approach, Scenario and Results

Our approach seeks to replace the traditional arterial green wave by “shorter
green waves” in segments of the network. Of course, in some key junctions con-
flicts may appear because in almost any practical situations, a signal plan does
not allow synchronization in more than one traffic direction. However, our ap-
proach dynamically deals with the question of which traffic direction shall be
synchronized. In this paper, each junction (plus its traffic lights) behaves like
a social insect. A signal plan is a unique set of timing parameters comprising
basically the cycle length and the split. Due to lack of space, we refer the reader
to [1,3] for a detailed explanation about traffic control related concepts. Several
plans are normally required for an intersection (or set of intersections in the case
� Authors partially supported by CAPES and CNPq respectively.
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of a synchronized system) to deal with changes in traffic flow. As a measure of
effectiveness of such systems, one generally seeks to optimize a weighted com-
bination of stops and delays, a measure of the density, or travel time. Here we
are focussing on how the coordination is working, so we measure the number of
coordinated agents and the number of groups formed.

For the task allocation, we use the mathematical model of division of labor in
colonies of social insects [4]. The levels of the stimulus increase if tasks are not
performed, or not performed by enough individuals. These concepts are used in
our approach in the following way: each agent (traffic light/crossing) has different
tendencies to execute one of its signal plans (i.e. an available task), according to
the environment stimulus and particular thresholds. The approach also considers
that each vehicle leaves a pheromone trace that can be perceived by the agents
at the junction. The stimulus sj of plan j is based on a weighted sum of the
accumulated pheromone in each phase of this plan, and on the number of agents
in the area of coordination of the signal plan. Every signal plan is associated with
a given stimulus according to the direction towards this signal plan is biased.

When there is a change in the traffic flow, there must be an adaptation to the
new situation. Traffic lights in the street with intense traffic flow tend to adopt
the synchronized plans.

For the experiments, we use a 5x5 Manhattan-like grid, with a traffic light
at each junction. We change the insertion rate of vehicles, emulating unexpected
changes in the scenario. At the beginning of the simulations, all agents have
neighbors with different plans, so that no group is formed a priori.

We have performed different experiments. Due to lack of space, these cannot
be discussed here. Please go to http://www.inf.ufrgs.br/~mas/maslab for
the extended description. We measure the number of groups created and the
number of agents in the groups. In the experiments, agents were able to create
groups of coordination and to coordinate in the direction with the higher traffic
flow. In summary, the results show an adaptation to the changes in a fast and
independent form, without any hierarchical organization.
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We propose an extended ACO algorithm for the Maximum Edge Disjoint Paths
(MEDP) problem. In this problem we want to satisfy the largest possible number
of request for disjoint paths on a given graph topology. We first proposed our
approach in [1]. In that paper a proof of concept was given on a number of quite
small graphs. Now we build on that approach and use existing ACO features
to develop an algorithm capable of obtaining good results on a set of MEDP
benchmark problems.

In our algorithm each ant belongs to a given type. Ants of the same type work
together on a common solution, but compete with ants of a different type for
the use of resources. In the case of the MEDP each ant type is responsible for a
single connection request and the different ant types compete for the use of graph
edges. The competition between ant types is modeled by the pheromone system
used. Each ant type has its own pheromone. Ants are attracted by pheromone
of their own type, but are repulsed by pheromones left by other types. Edges
with large amounts of foreign pheromone types will have a lower probability of
being used by an ant. To assign a probability to possible next edges e, ants use
an adapted version of the Ant System formula:

P (e) =
[τ(e)]α[η(e)]β [1/φ(e)]γ∑

e′
[τ(e′)]α[η(e′)]β [1/φ(e′)]γ

(1)

Every ant now takes into account 2 pheromone values. The value τt represent
pheromones deposited by its own type t, while φt is the sum over all pheromone
values τi associated with the edge, where i �= t. An ant’s sensitivity to these foreign
pheromones φt is controlled by the parameter γ. From Formula 1 it is clear that
the probability of choosing an edge, decreases as the foreign pheromones increase.
This causes ants to explore other edges to find alternatives for edges preferred by
other types. Due to a lack of good local heuristics for the MEDP, we do not con-
sider the factor η(e) in this algorithm (we set β = 0). This means that disjoint
paths are found based only on the pheromone left by the ants. Initially ants will
explore the graph randomly, as each edge has the same probability. As pheromone
is deposited on the edges, the different types develop a preference for certain edges,
and pheromone repulsion causes types to avoid using the same edges.

� Funded by a Ph.D grant of the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT Vlaanderen).

M. Dorigo et al. (Eds.): ANTS 2006, LNCS 4150, pp. 522–523, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Using Pheromone Repulsion to Find Disjoint Paths 523

We compare our algorithm with the ACO algorithm for the MEDP proposed
by Blum and Blesa [2] on a benchmark set described in their paper. In order to
make a comparison between the algorithms, both were given the same cpu time.
This was done by running the ACO algorithm for a fixed number of iterations
(250) on an instance, and giving the MACO algorithm the amount of cpu time
used by the ACO algorithm. The average results are summarized in Table 1.
Parameter settings for the ACO algorithm were taken from [2].

Table 1. Benchmark results

Instance data ACO MACO
Topology #commodities avg result σ avg result σ cpu time (s)
graph3 10 9.85 0.35707 9.85 0.35707 4.816
graph3 25 21.3 1.38203 22.1 1.57797 16.0145
graph3 50 33.3 2.14709 33.4 1.772 49.624
graph3 75 38.8 2.56125 38.05 2.83681 89.3765
graph4 10 10 0 9.8 0.50990 9.89
graph4 25 23.9 1.13578 23.25 1.25996 27.4305
graph4 50 39.2 1.93907 39.5 3.13847 91.0965
graph4 75 50.7 3.28786 50.3 3.33317 200.261

bl-wr2-wht2 10 8.75 0.94207 8.4 0.96954 15.0095
bl-wr2-wht2 25 15.8 1.53623 15.7 1.70587 51.0335
bl-wr2-wht2 50 24.75 2.36379 24.9 2.46779 148.036
bl-wr2-wht2 75 29.35 3.16662 29.7 3.13209 316.935

Both algorithms achieve very similar results. The multi-type approach achieves
the best result in 5 cases, compared to 6 best results for the ACO algorithm,
but differences in solution quality are quite small. The multi-type approach does
get the best results on the largest instances (bl-wr2-wht2 ). It should also be
noted that the ACO approach requires the calculation of a heuristics matrix.
The heuristic stores the shortest distance between node pairs, and is used to
guide to ants to short paths for their commodities. This heuristic was calculated
once for each topology before the experiment and this calculation time is not
included in the above results.
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1. Nowé, A., Verbeeck, K., Vrancx, P.: Multi-type ant colony: the edge-disjoint paths
problem. In: ANTS 2004. Volume 3172 of LNCS., Springer-Verlag (2004) 202–213

2. Blesa, M., Blum, C.: Ant colony optimization for the maximum edge-disjoint paths
problem. In: EvoWorkshops 2004. Volume 3005 of LNCS. (2004) 160–169
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