
Business Process Design by View Integration

Jan Mendling1 and Carlo Simon2

1 Vienna University of Economics and Business Administration
Augasse 2-6, 1090 Vienna, Austria
jan.mendling@wu-wien.ac.at

2 University of Koblenz-Landau, Germany
simon@uni-koblenz.de

Abstract. Even though the design of business processes most often has
to consolidate the knowledge of several process stakeholders, this fact is
utilized only to a limited extent by existing modeling methodologies. We
address this shortcoming in this paper by building an analogy between
database schema design by view integration on the one hand and pro-
cess modeling on the other hand. In particular, we specify a method for
business process design by view integration starting from two views of
a process as input. We identify formal semantic relationships between
elements of the two process views which are then used to calculate the
integrated process model applying the merge operator. Finally, the in-
tegrated model is optimized using reduction rules. A case study with
two EPC business process models from the SAP reference model demon-
strates the applicability of our approach.

1 Introduction

Business process design and in particular the design of business process models
that capture real-world process semantics is a difficult task. While work proce-
dures that are executed by one person are easy to document, business processes
often span several departments of a company and include several activities per-
formed by different persons. This implies a considerable complexity of the design
task and calls for a structured approach. In this paper, we build on insight from
database design theory, in particular view integration. View integration is a clas-
sical technique for database schema design. The idea is to identify the different
views on the data of every person that is supposed to work with the database.
Each person is interviewed and her view is documented in a separate so-called
input schema. Then, the matching parts of the input schemas are identified.
Based on these matches, the integrated schema is derived as a merge of the
input schemas.

For so far, this technique has attracted only little attention in the context of
business process modeling, basically, due to two reasons. First, the conceptual
difference of process models and data models hinders a direct application of
database schema integration for process design. An approach is needed that is
analogous to data schema integration, but which addresses the specific nature
of business process models, i.e., control flow defined between activities. Second,

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 55–64, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

56 J. Mendling and C. Simon

dedicated techniques for behavior integration have been defined for Petri nets
(cf. [12,16,17]), but not for conceptual languages such as EPCs. As EPCs are
frequently used in process modeling practice (see e.g. the SAP reference model
[4,7]) and EPCs offer OR-joins which cannot be mapped to Petri nets without
loosing readability, there is a more general approach needed.

The contribution of this paper is threefold. First, we identify semantic re-
lationships between activities of different business process models. Second, we
define a merge operator for EPCs that takes as input two EPCs and seman-
tic relationships between their activities to calculate an integrated EPC. Third,
we propose a set of restructuring rules in order to arrive at an integrated EPC
that does not include unnecessary structure. The availability of view integration
techniques for conceptual business process modeling languages provides several
advantages for business process design. If a business process designer conducts
interviews with process stakeholders, she can document each view in an input
EPC and use a merge operation to integrate them. This is less prone to errors
and more time efficient than building an integrated model manually. Further-
more, this procedure provides traceability: changes to the input EPCs can be
studied with respect to their impact on the resulting integrated process model. If
all interviews would be directly documented in one process model, the individual
views are lost. Beyond that, our approach can also support a merger scenario
where business process models of two companies with overlapping semantics have
to be integrated into one repository.

Following this line of argumentation, the remainder of this paper is structured
as follows: in Section 2 we give a definition of EPCs and an overview of our
integration approach. Furthermore, we introduce semantic relationships between
activities of different business process models, we define the merge operator for
EPCs, and we identify restructuring rules. In Section 3, we apply this integration
technique to two EPC business process models from the SAP reference model.
The example models have the same name and share several activities. Section 4
gives an overview of related research before Section 5 concludes the paper.

2 Preliminaries

In this section, we first introduce Event-driven Process Chain (EPC) as a busi-
ness process modeling language (Sect. 2.1). The subsequent sections introduce
the steps of our integration approach, i.e. definition of semantic relationships
(Sect. 2.2), the merge operator (Sect. 2.3), and restructuring rules (Sect. 2.4).

2.1 Event-Driven Process Chains (EPCs)

Event-driven Process Chain (EPC) is a business process modeling language rep-
resenting temporal and logical dependencies between activities of a process [6].
EPCs offer function type elements to capture activities of a process, event type
elements which describe pre- and post-conditions of functions, and three kinds
of connector types including and , or , and xor . Control flow arcs are used to link
these elements. Connectors have either multiple incoming and one outgoing arcs

Business Process Design by View Integration 57

(join connectors) or one incoming and multiple outgoing arcs (split connectors).
As a syntax rule, functions and events alternate but may be separated by con-
nectors. For more details on EPCs, we refer to [8,9]. Formally, the structure of
EPC models is defined as follows:

Notation 1 (Predecessor and Successor Nodes). Let (N, A) be a directed
graph consisting of a set of nodes N and a relation A ⊆ N × N defining the set
of directed arcs between the nodes of N . For each node n ∈ N , we define the
set of its predecessor nodes •n := {x ∈ N |(x, n) ∈ A}, and the set of successor
nodes n• := {x ∈ N |(n, x) ∈ A}.

Definition 1 (EPC). An EPC = (E, F, C, l, A) is a directed graph consisting
of three pairwise disjoint sets of nodes E called events, F called functions, and
C called connectors, a mapping l : C → {and, or, xor} specifying the connectors’
types, and a binary relation A ⊆ (E ∪F ∪C) × (E ∪F ∪C) of the directed arcs
between these nodes defining the intended control flow of the EPC such that

– |•e| ≤ 1 and |e•| ≤ 1 for each e ∈ E.
– |•f | = 1 and |f•| = 1 for each f ∈ F .
– Either |•c| = 1 and |c•| > 1 or |•c| > 1 and |c•| = 1 for each c ∈ C.

Figure 1 illustrates this definition showing two EPCs. Both describe similar pro-
cesses of how a customer inquiry about products is received, processed, and how
a quotation is created from the inquiry. The left EPC is taken from the Project
Management branch of the SAP reference model and it is called Customer In-
quiry and Quotation Processing. The second process EPC stems from the Sales
and Distribution branch and its name is Customer Inquiry. The processes share
two events and one function indicated by equal names. In the following, we
elaborate how these two process models can be integrated.

2.2 Semantic Relationships

In the following, we define two kinds of semantic relationships between functions
and events of two distinct EPCs, namely equivalence and sequence.

Definition 2 (Equivalence). Let EPC 1 = (E1, F1, C1, l1, A1) and EPC 2 =
(E2, F2, C2, l2, A2) be two EPCs and Eq ⊆ (E × E) ∪ (F × F) a binary relation.

– If e1 ∈ E1 and e2 ∈ E2 describe the same real-world events, we write
(e1, e2) ∈ Eq .

– If f1 ∈ F1 and f2 ∈ F2 describe the same real-world functions, we write
(f1, f2) ∈ Eq .

Definition 3 (Sequence). Let EPC 1 and EPC 2 be two EPCs and Seq ⊆
(E × F) ∪ (F × E) a binary relation.

– If e1 ∈ E1 is always followed by f2 ∈ F2, we write (e1, f2) ∈ Seq.
– If f1 ∈ F1 is always followed by e2 ∈ E2, we write (f1, e2) ∈ Seq.

58 J. Mendling and C. Simon

Customer
inquiries

about
products

Customer
inquiry

processing

Quotation to
be created
from inquiry

Customer
quotation

processing

XOR

Resource
related

quotation

Quotation
must be

created based
on plan data

Customer
project

required

Customer
inquiries

about
products

Customer
inquiry

processing

Document to
be created
from sales

activity

XOR

V

XOR

Quotation to
be created
from inquiry

Inquiry items
are rejected

Customer
inquiry is

transmitted

Inquiry is
created

Customer Inquiry Customer Inquiry and Quotation Processing

=

=

=

Fig. 1. Customer Inquiry and Customer Inquiry and Quotation Processing EPCs

WhenIf two views on the same business process have been documented as two
EPC business process models, the business process designer has to identify se-
mantic relationships in terms of equivalence and sequence between functions and
events of the different models. Figure 1 might suggest that functions and events
with similar labels are equivalent. Please note that EPC nodes can be also equiv-
alent when syntactically different labels are used (analogous to synonyms) and
that syntactically equivalent labels might relate to different business functions
of another context (analogous to homonyms).

2.3 Merge Operator

The merge operator introduced in this section is novel. It takes two EPC views of
the same business process plus a set of identified semantic relationships as input
and produces an integrated EPC. As a first step, the integrated EPC includes
all elements of the two input EPCs. Then, each pair of nodes (n1, n2) which
describe the same real-world events or functions, i.e. (n1, n2) ∈ Eq , is merged
into a single node and the former input and output arcs are joined and split
with and -connectors, respectively. Finally, for each pair of nodes in the sequence
relationship, an and -split is inserted after the predecessor node, followed by an
arc to a new and -join before the successor node.

Business Process Design by View Integration 59

Definition 4 (Integrated EPC). Let EPC 1 and EPC 2 be two EPCs. The
integrated EPC EPC i := (Ei, Fi, Ci, li, Ai) is defined in five consecutive steps
as follows:

1. Basically, the elements of EPC 1 and EPC 2 are combined in a single diagram:

Ei := E1 ∪ E2
Fi := F1 ∪ F2
Ci := C1 ∪ C2
li := l1 ∪ l2

Ai := A1 ∪ A2

2. Each pair (e1, e2) ∈ Eq of event elements which describe the same real-
world events is fused into a single event. The former incoming and outgoing
control flow arcs are synchronized with the aid of two new connectors csplit
and cjoin :

Ei := Ei \ {e2}
Ci := Ci ∪ {csplit , cjoin}
li := li ∪ {(csplit , and), (cjoin , and)}

Ai := Ai \ {(x1, e1), (x2, e2), (e1, y1), (e2, y2)} ∪
{(x1, cjoin), (x2, cjoin), (cjoin , e1), (e1, csplit), (csplit , y1), (csplit , y2)}

3. For each (f1, f2) ∈ Eq of function elements which describe the same real-
world functions is fused into a single event. The former incoming and out-
going control flow arcs are synchronized with the aid of two new connectors
csplit and cjoin :

Fi := Fi \ {f2}
Ci := Ci ∪ {csplit , cjoin}
li := li ∪ {(csplit , and), (cjoin , and)}

Ai := Ai \ {(x1, f1), (x2, f2), (f1, y1), (f2, y2)} ∪
{(x1, cjoin), (x2, cjoin), (cjoin , f1), (f1, csplit), (csplit , y1), (csplit , y2)}

4. For each (e1, f2) ∈ Seq of an event that is always followed by a function,
two new connectors csplit and cjoin are added and the arc from the new split
after the event to the new join before the function makes the control flow
explicit:

Ci := Ci ∪ {csplit , cjoin}
li := li ∪ {(csplit , and), (cjoin , and)}

Ai := Ai \ {(e1, y1), (x2, f2)} ∪
{(e1, csplit), (csplit , y1), (csplit , cjoin), (cjoin , f2), (x2, cjoin)}

5. For each (f1, e2) ∈ Seq of a function that is always followed by an event,
two new connectors csplit and cjoin are added and the arc from the new split

60 J. Mendling and C. Simon

after the function to the new join before the event makes the control flow
explicit:

Ci := Ci ∪ {csplit , cjoin}
li := li ∪ {(csplit , and), (cjoin , and)}

Ai := Ai \ {(f1, y1), (x2, e2)} ∪
{(f1, csplit), (csplit , y1), (csplit , cjoin), (cjoin , e2), (x2, cjoin)}

2.4 Restructuring Rules

Deriving the integrated EPC according to Definition 4 may result in unnecessary
structure of the process graph. In particular, we identify two reduction rules:

Definition 5 (Reduction Rules). Let EPC = (E, F, C, l, A) be an (inte-
grated) EPC. The following reduction rules can be applied without affecting the
control flow in terms of the order of functions and events:

1. If there is a path (c1, p1, . . . , pn, c2) with P = {p1, . . . , pn} ∈ (E ∪ F ∪ C)
and (c1, c2) ∈ A, then A := A \ {(c1, c2)}

2. If c ∈ C ∧ |c•| = |•c| = 1, then A := A \ {(x, c), (c, y)} ∪ {(x, y)} and
C := C \ {c}.

The first rule eliminates redundant arcs between two connectors that represent
control flow which is implicitly captured by an alternative path between these
connectors. The second rule eliminates connectors that have only one input and
one output arc. Such unnecessary connectors can result from applying the first
reduction rule. Please note that the first rule can change the execution seman-
tics of the EPC: if there is an xor -split or an or -split in the path between the
and -split and the and -join, the and -join can run into a deadlock. As such a po-
tential deadlock is introduced in the integration step, we argue that it should be
eliminated using the first rule.

3 Application to the SAP Reference Model

In order to demonstrate the applicability of our process view integration ap-
proach, we use two EPC process models from the SAP reference model [4,7],
namely the two processes Customer Inquiry and Quotation Processing and Cus-
tomer Inquiry that were presented in Figure 1.

In Section 2, we have identified semantic equivalence relationships between the
events Customer inquiries about products and Quotation to be created and the
function Customer inquiry processing that appear in both input EPCs. Figure 2
shows the integrated EPC model after applying the merge operator. For each
pair of equivalent functions and events, the respective and -joins and -splits are
inserted following Definition 4. The first and the second pair of and -split and -join
can be reduced according to the reduction rules of Definition 5. The restructured
EPC model is given in Figure 3.

Business Process Design by View Integration 61

Customer
inquiries

about
products

Customer
inquiry

processing

Document to
be created
from sales

activity

XOR

V

XOR

Quotation to
be created
from inquiry

Inquiry items
are rejected

Customer
inquiry is

transmitted

Inquiry is
created

V

V

V

V

Customer
quotation

processing

XOR

Resource
related

quotation

Quotation
must be

created based
on plan data

Customer
project

required

Fig. 2. Integrated EPC for Customer Inquiry and Quotation Processing

4 Related Research

There is extensive work in the database community on view integration and
schema integration. Batini et al. [3] provide a comparative analysis of schema
integration methodologies. They distinguish the schema integration activities
of preintegration, comparing, conforming, merging, and restructuring. In our
paper, we focus on comparing, merging, and restructuring EPCs. There are
several contributions that focus on specific aspects of schema integration. Rahm
and Bernstein provide a survey on how matches across different schemas can be
identified automatically [13]. Rizopoulos and McBrien discuss the application of
the hypergraph data model (HDM) with a wide set of semantic relationships
for merging data schemas [14]. For a comprehensive integration method and a
detailed overview of work on schema integration see [15].

62 J. Mendling and C. Simon

Customer
inquiries

about
products

Customer
inquiry

processing

Document to
be created
from sales

activity

XOR

V

XOR

Quotation to
be created
from inquiry

Inquiry items
are rejected

Customer
inquiry is

transmitted

Inquiry is
created

Customer
quotation

processing

XOR

Resource
related

quotation

Quotation
must be

created based
on plan data

Customer
project

required

Fig. 3. Restructured EPC for Customer Inquiry and Quotation Processing

The heterogeneity of business process modeling languages is a notorious prob-
lem both for theory and practice [10]. Formalizing the metamodel of such a
language as a schema makes schema integration applicable for process modeling
language consolidation. In [11], the authors point to the problem of different con-
trol flow representations (graph-based versus block-oriented) as a specific source
of heterogeneity. In [5] an integration process for business process metamodels
is presented that is able to cope with such control flow heterogeneity.

There has been some work on joining and merging business process models
with Petri net based formalisms. The integration of EPC models is conducted
here in analogy with central concepts of the Semantic Process Language (SPL)
[16,17]. In this language, formulas called modules can be formulated to specify
process sets over elementary processes (in which an action occurs or is being
forbidden) using operators for sequence building, alternatives, concurrency and
synchronization, iteration, and negation. Canonical building rules take modules

Business Process Design by View Integration 63

as input and generate Module nets, i.e. Petri nets with explicit start and goal
transitions. Processes of such a Module net are firing sequences which reproduce
the empty initial marking. Per definition, they are also processes of the module
from which the Module net was generated.

In principle, applying the and-operator of SPL (for concurrency and synchro-
nization) yields the intersection of the process sets of the participating modules
concerning common actions. For Module net implementations, all transitions in-
terpreted by the same elementary process are fused into a single one. Also start
and goal transitions are synchronized in order to enforce the co-execution of
the entire processes. Finally, all contradicting elementary processes (in which an
action occurs in one operand and is forbidden within the other) are prohibited
from occurring together (or even synchronously) in a process by additional con-
flict places - a rule which is of no importance for our approach here since EPCs
do not support prohibition.

Comparable work is reported in [12]. Calculating merges and joins of process
models can also be related to problems and solutions on determining inheritance
relationships between process models [2,1]. Still, the mentioned approaches have
not yet been adopted for conceptual languages such as EPCs as we propose in
our approach.

5 Contributions and Limitations

In this paper we have presented an approach to business process design by view
integration. In particular, we have formalized semantic relationships between
elements of different process models, we have specified a merge operator to in-
tegrate input process models, and have identified reduction rules to simplify the
integrated process model. Furthermore, we have applied this approach to an ex-
ample of two EPC business process models from the SAP reference model to
demonstrate the applicability of our approach. It has to be mentioned that the
approach, although defined for EPCs, can be adopted for other process model-
ing languages. In future work, we aim to provide tool support for the merging
of EPC business process models.

References

1. Wil M. P. van der Aalst. Inheritance of business processes: A journey visiting four
notorious problems. In Hartmut Ehrig, Wolfgang Reisig, Grzegorz Rozenberg, and
Herbert Weber, editors, Petri Net Technology for Communication-Based Systems -
Advances in Petri Nets, volume 2472 of Lecture Notes in Computer Science, pages
383–408. Springer, 2003.

2. T. Basten. In Terms of Nets: System Design with Petri Nets and Process Algebra.
PhD thesis, Eindhoven University of Technology, The Netherlands, December 1998.

3. C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis of Method-
ologies for Database Schema Integration. ACM Computing Surveys, 18(4):323–364,
December 1986.

64 J. Mendling and C. Simon

4. Thomas Curran, Gerhard Keller, and Andrew Ladd. SAP R/3 Business Blueprint:
Understanding the Business Process Reference Model. Enterprise Resource Plan-
ning Series. Prentice Hall PTR, Upper Saddle River, 1997.

5. T. Hornung, A. Koschmider, and J. Mendling. Integration of heterogeneous BPM
Schemas: The Case of XPDL and BPEL. Technical Report JM-2006-03-10, Vienna
University of Economics and Business Administration, 2006.

6. G. Keller, M. Nüttgens, and A. W. Scheer. Semantische Prozessmodellierung auf
der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Heft 89, Institut für
Wirtschaftsinformatik, Saarbrücken, Germany, 1992.

7. G. Keller and T. Teufel. SAP(R) R/3 Process Oriented Implementation: Iterative
Process Prototyping. Addison-Wesley, 1998.

8. E. Kindler. On the semantics of EPCs: Resolving the vicious circle. In J. Desel and
B. Pernici and M. Weske, editor, Business Process Management, 2nd International
Conference, BPM 2004, volume 3080 of Lecture Notes in Computer Science, pages
82–97, 2004.

9. Jan Mendling and Markus Nüttgens. EPC Markup Language (EPML) - An XML-
Based Interchange Format for Event-Driven Process Chains (EPC). Information
Systems and e-Business Management, 4, 2006.

10. Jan Mendling, Markus Nüttgens, and Gustaf Neumann. A Comparison of XML
Interchange Formats for Business Process Modelling. In F. Feltz, A. Oberweis,
and B. Otjacques, editors, Proceedings of EMISA 2004 - Information Systems in
E-Business and E-Government, volume 56 of Lecture Notes in Informatics, 2004.

11. Jan Mendling, Cristian Pérez de Laborda, and Uwe Zdun. Towards an Inte-
grated BPM Schema: Control Flow Heterogeneity of PNML and BPEL4WS. In
K.-D. Althoff, A. Dengel, R. Bergmann, M. Nick, and T. Roth-Berghofer, edi-
tors, Post-Proceedings of the 3rd Conference Professional Knowledge Management
(WM 2005), volume 3782 of Lecture Notes in Artificial Intelligence, pages 570–579.
Springer Verlag, 2005.

12. Günter Preuner, Stefan Conrad, and Michael Schrefl. View integration of behavior
in object-oriented databases. Data Knowl. Eng., 36(2):153–183, 2001.

13. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB Journal, 10(4):334–350, 2001.

14. Nikolaos Rizopoulos and Peter McBrien. A general approach to the generation
of conceptual model transformations. In Oscar Pastor and João Falcão e Cunha,
editors, Advanced Information Systems Engineering, 17th International Confer-
ence, CAiSE 2005, Porto, Portugal, June 13-17, 2005, Proceedings, volume 3520
of Lecture Notes in Computer Science, pages 326–341. Springer, 2005.

15. Ingo Schmitt and Gunter Saake. A comprehensive database schema integration
method based on the theory of formal concepts. Acta Inf., 41(7-8):475–524, 2005.

16. Carlo Simon. A Logic of Actions and Its Application to the Development of Pro-
grammable Controllers. PhD thesis, University of Koblenz-Landau, Department of
Computer Science, Germany, May 2002.

17. Carlo Simon. Incremental Development of Business Process Models. In Jörg Desel
and Ullrich Frank, editors, Proceedings of the Workshop Enterprise Modelling and
Information Systems Architectures, volume 75 of Lecture Notes in Informatics,
pages 222–235, Klagenfurt, Austria, October 2005. German Informatics Society.

	Introduction
	Preliminaries
	Event-Driven Process Chains (EPCs)
	Semantic Relationships
	Merge Operator
	Restructuring Rules

	Application to the SAP Reference Model
	Related Research
	Contributions and Limitations

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

