
Designing Compliant Business Processes with
Obligations and Permissions

Stijn Goedertier and Jan Vanthienen

Department of Decision Sciences & Information Management,
Katholieke Universiteit Leuven, Belgium

myFirstName.myLastName@econ.kuleuven.be

Abstract. The sequence and timing constraints on the activities in busi-
ness processes are an important aspect of business process compliance. To
date, these constraints are most often implicitly transcribed into control-
flow-based process models. This implicit representation of constraints,
however, complicates the verification, validation and reuse in business
process design. In this paper, we investigate the use of temporal deontic
assignments on activities as a means to declaratively capture the control-
flow semantics that reside in business regulations and business policies.
In particular, we introduce PENELOPE, a language to express temporal
rules about the obligations and permissions in a business interaction, and
an algorithm to generate compliant sequence-flow-based process models
that can be used in business process design.

1 Motivation and Methodology

Nowadays there is an increased pressure on companies to guarantee compliance
of their business processes with business policy, the whole of internally defined
business constraints, and business regulations, the whole of externally imposed
business constraints. The obligation to guarantee compliance, whether imposed
by management, customers, governments or financial markets, is often the main
driver for business process automation. The downside to automating business
processes, however, is that ill-conceived automation can make business processes
more difficult to adapt to ever changing business policies and regulations. As
such, automated business processes risk to become in time an impediment to
compliance, rather than a enabler. Consequently, reconciling compliance and
flexibility is a major concern in business process design.

Companies often only implicitly think about business policy and regulations
when they design business processes and pay little attention to avoid hard-
coding policies and regulations directly in control-flow based process models.
What is lacking is a more declarative approach in business process design in
which business policy and regulations are made explicit in terms of definitions
and constraints. The sequence and timing constraints on the activities in busi-
ness processes, known as control flow, are an important aspect of compliance.
In a software-release process, for instance, a new version may only be put in
production after it has been tested and approved. Similarly, in an order-to-cash

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 5–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

6 S. Goedertier and J. Vanthienen

process, an order may only be shipped by the dispatching office after it has been
accepted by a salesperson. Designers often think implicitly about these kinds
of permissions and obligations when modeling the control-flow perspective of
business processes.

In this paper we show how the logic behind the obligations and permissions
can be made explicit in the form of temporal deontic assignments that can
be (re)used in business process design. To verify and validate such a set of
deontic assignments, we show how to generate a compliant control-flow-based
process model from it. The generated process model is not intended for process
execution, but can rather be used by the process designer for verification and
validation. Moreover, the generated process model allows the designer to identify
the decision points and all possible violations of obligations, i.e. exceptions, that
can occur.

The remainder of this article is structured as follows. In section 2 we discus the
relevant literature on the use of constraints in obtaining business process com-
pliance and flexibility. In section 3, we formally introduce PENELOPE (Process
ENtailment from the ELicitation of Obligations and PErmissions), a language
to express temporal deontic assignments. Next, we discuss some issues in the
verification and validation of temporal deontic assignments. Finally, in section
5 we define and illustrate the algorithm to generate control-flow based process
models from a rule set of obligations and permissions.

2 Related Work

Recently, there is an increased pressure by governments and financial markets on
companies to guarantee compliance with corporate governance regulations.
Frameworks such as ITIL and COBIT lay down control objectives for specific pro-
cesses in an IT organization. The Sarbanes-Oxley Act imposes the design of in-
ternal controls to prevent fraud for the whole company in general and for the IT
organization in particular. Our work focusses on the use of business rules in design-
ing compliant business processes. Different categories of business rules can be used
to declaratively specify the control-flow (sequence and timing of activities), data
(data validation and requirements) and resource perspectives (task allocation and
data access rights) on business processes [1]. In this paper we focus on obtaining a
compliant ordering and timing of activities. The subject of compliance, however, is
broader than these control flow concerns and comprises issues like the introduction
of control steps, separation of duties, the four-eyes principle...

Business process languages such as UML Activity Diagrams, BPMN, Event-
Process-Chains, etc. are most often based on the control-flow paradigm, and
define an explicit order relation between the activities in the process. These or-
der relations even occur in the case handling paradigm, in which a preferred or
normal control-flow is defined between activities [2]. What is lacking is a declar-
ative approach that makes the partial order relations due to legal requirements
more explicit. Bons et al. [3] identify this need to incorporate the legal state into
the model of a trade procedure. To this end, the authors propose to annotate

Designing Compliant Business Processes with Obligations and Permissions 7

the states in Petri nets with a description of the deontic state. Regulations can
be specified between the business partners in a business collaboration (between
external agents). In this context regulations are called business protocols [4] or
business contracts. Several authors describe a language for intelligent agents to
reason about contract state [5] [6] [7] [8]. The objective of this paper differs in
that it does not consider the execution-time monitoring of business contracts, but
rather considers the impact of sequence and timing constraints on business pro-
cess design. The issue of compliance is of course also relevant during the diagnosis
phase of the BPM life-cycle, in which a conformance check between the sequence
and timing constraints and the logged process instances could be possible [9].

3 The PENELOPE Language

Deontic logic is a logic for representing and reasoning about deontic concepts
such as obligation, permission, prohibition and waived obligation. Various ax-
iomatizations of deontic logic have been proposed with considerable extensions
to Føllesdal and Hilpinen’s Standard Deontic logic (SDL) [10]. Broersen et al.
use CTL [11] to express the notion of deadline obligations [12]. Several authors
have built a Deontic Logic [5] [6] [7] using the Event Calculus formalism, for
which Shanahan provides suitable axiomatizations [13]. In these works deontic
properties are represented as fluents, such that it is possible to represent and
reason about the effects of activities on the obligations and permissions of actors.
Table 1 enumerates some of the deontic fluents and axioms we use to represent
temporal deontic assignments.

PENELOPE is different from existing languages mainly because it is designed
with a purpose to generate compliant control-flow-based process models from a
rule set of permissions and obligations. In order to distinguish necessity from
possibility in business policy and regulations, the language considers the deon-
tic modalities of obligation, conditional commitment and permission, whereas
other languages only consider commitments and conditional commitments [6]
[7]. PENELOPE does not consider prohibition or waived obligation. Prohibition
is assumed, however, if neither permission nor obligation can be derived. The
exclusion of prohibition and waiver prevents a lot of anomalies [14]. Some im-
plementations of Deontic logic interpret deontic assignments as the obligation
to bring about a certain proposition, others see it as the obligation to perform
a certain activity. Because PENELOPE aims at entailing process models from
deontic assignments, activities rather than propositions are the object of de-
ontic assignments. This also allows us to model compound activities such as
Xor(AcceptOrder, RejectOrder). Unlike other languages, PENELOPE allows
to explicitly define deadlines on the performance of activities in terms of the
performance of previous activities. When an agent performs an obligation or
permission within due time, the permission or obligation ceases to exist. This
is expressed in axioms 1 and 2. Conversely, not performing an obligation within
due date leads to a violation, as described in axiom 3. Business policies or regula-
tions might provide so-called reparation, or contrary-to-duty, obligations to deal

8 S. Goedertier and J. Vanthienen

with violations [8]. Because we want to capture the semantics of both external
regulations and internal business policy, we need to express deontic assignments
to both external and internal agents involved in a business interaction. Internal
agents in business policies are subordinate to the external agent they represent.
Activities performed by an internal agent resort in the same deontic fluents as
if they were performed by the representative external agent.

Table 1. Some deontic properties of PENELOPE [14]

term meaning

Xor(α1, α2) compound activity alpha1 XOR alpha2

Or(α1, α2) compound activity alpha1 OR alpha2

And(α1, α2) compound activity alpha1 AND alpha2

Oblig(π,α, δ) partner π must do activity α by due date δ
Perm(π,α, δ) partner π can do activity α prior to due date δ
CC(π,α1, δ1, α2, δ2) partner π must do activity α2 by due date δ2

after activity α1 is performed prior to due date δ1

(1) Terminates(α,Oblig(π,α, δ), τ) ← τ ≤ δ
(2) Terminates(α,Perm(π,α, δ), τ) ← τ ≤ δ
(3) Happens(V iolation(Oblig(π, α, δ)), δ) ←

HoldsAt((Oblig(π,α, δ)), δ)∧ � Happens(α, δ)
(4) Initiates(α1, Oblig(π, α2, δ2), τ) ←

τ ≤ δ1 ∧ HoldsAt(CC(π,α1, δ1, α2, δ2)), τ)
(5) Terminates(α1, CC(π, α1, δ1, α2, δ2), τ) ← τ ≤ δ1

We give an example to demonstrate the intuition behind PENELOPE. In an
order-to-cash business process the external roles of Buyer and Seller may be
distinguished. A seller can have, among others, the internal roles of Sales, and
Dispatch. In addition, the following externally visible activity types could exist:
PlaceOrder, AcceptOrder, RejectOrder, Pay and Ship. For these roles and
activities a number of temporal deontic assignments are displayed in Table 2.
Assignments 1 to 4 categorize the external business regulation payment-after-
shipment, specifying that payment takes place after shipment. Assignment 5,
however, is an internal business policy, specifying that no order may be shipped
without previously being accepted. These permissions and obligations impose
partial order constraints on the activities in a business processes. This set of
deontic assignments leads to the process model for both seller and buyer that is
displayed in Fig. 1.

4 Verifying and Validating Temporal Constraints

Temporal deontic assignments lay down the rules of interaction either between
business partners or among the internal agents of a business partner in particular.
Because temporal deontic assignments are the starting point for the design of

Designing Compliant Business Processes with Obligations and Permissions 9

Table 2. Payment-after-shipment

natural and formal expression

(1) Initially the buyer has the permission to place an order.
Initiallyp(Perm(Buyer,P laceOrder(Buyer,Seller)))
(2) When the seller accepts the order, the seller is committed to pay the seller,
one time unit after the seller ships.
Initiates(AcceptOrder(Seller,Buyer), CC(Buyer, Ship(Seller,Buyer), δs,
Pay(Buyer,Seller), δs + 1), τ)
(3) When the buyer places an order, the seller must
either accept or reject it within one time period
Initiates(P laceOrder(Buyer,Seller),Oblig(Seller,
Xor(Accept(Seller,Buyer),Reject(Seller, Buyer)), τ + 1), τ)
(4) When the seller accepts the order, the seller must ship within two time units.
Initiates(Accept(Buyer,Seller),Oblig(Seller, Ship(Seller,Buyer), τ + 2), τ)
(5) Only when sales accepts the order, dispatch may ship the order
Initiates(Accept(Sales,Buyer), P erm(Dispatch, Ship(Dispatch, Buyer), δ), τ)

a business’ private business processes they must be verified and validated. The
rich semantics and the availability of efficient reasoning procedures present new
opportunities for verification and validation. Without going into detail, we can
highlight deadlock, livelock, deontic conflict, temporal conflict and trust conflict
verification issues.

In a business interaction each legal scenario must lead to termination, a
state in which no obligations or permissions exist. In a deadlocks situation, no
permissible performance can carry the business interaction forward such that a
new state of permissions, obligations and conditional commitments exist. Such a
scenario might consist of two business partners having conditional commitments
towards each other, but the conditional performance to turn at least one of these
conditions into a base-level obligation is not permitted. For example, the buyer
has made the conditional commitment to pay upon delivery, whereas the seller
has made the conditional commitment to deliver upon payment. In a livelock
situation, the protocol state is trapped in an infinite loop. Notice that it is not
the occurrence of a loop that defines the livelock, but the occurrence of loops
without a permissible performance that leads to a deontic state outside the loop.

Deontic conflicts arise when there are protocol states in which a business
partner has both the permission and the prohibition to a performance or when
he has both an obligation and obligation waiver to a performance. Note, how-
ever, that it is not possible to have deontic conflicts in PENELOPE, because it
does not make use of prohibition and waiver modalities. Temporal conflicts
occur when two deontic assignments at the same time initiate and terminate
a permission, obligation or conditional commitment. In a business interaction
trust conflicts can also occur. This happens when a business interaction puts
the business in a position were it has direct obligations towards non-trusted busi-
ness partners that involve sensitive activities such as payment or the shipment of
goods, that are not neutralized by preceding performances of the opposite party.

10 S. Goedertier and J. Vanthienen

5 Generating State Space and Control Flow

In this section we introduce an algorithm do generate the state space of a set
of temporal deontic assignments. This state space can be used for verification
of the above mentioned anomalies. In addition, this state space can be mapped
to control-flow-based process models for each of the business partners in the
interaction. Generated process models are not intended for process execution,
but can rather be used by the process designer for validation and allow to identify
the decision points and possible violations of obligations that can occur.

To generate the process model for a role in a business interaction, one must
analyze the temporal obligations and permissions that hold at certain points
in time, given certain narratives of activity performances N . To this end, the
expressions below define sets of obligations O(τ) and permissions P (τ) that hold
at state τ , sets of obligations Od(δ) and permissions Pd(δ) that are due at state
δ and a set of violations without reparation V WR(τ) that happen at state τ .
Notice that a narrative of activity performances N is implicitly assumed in each
of these expressions.

O(τ) = {α : HoldsAt(Oblig(π, α, δ), τ)} (1)
P (τ) = {α : HoldsAt(Perm(π, α, δ), τ)} (2)

Od(δ) = {α : HoldsAt(Oblig(π, α, δ), δ)} (3)
Pd(δ) = {α : HoldsAt(Perm(π, α, δ), δ)} (4)

V WR(τ) = {α : Happens(violation(Oblig(π, α, δ)), τ),
¬∃Initiates(violation(Oblig(π, α, δ)), o, τ)} (5)

A state τ in our state space corresponds to a set of obligations O(τ), per-
missions P (τ) and conditional commitments CC(τ) that hold this state. State
transitions are defined differently in PENELOPE than in the commitment space
defined by Yolum [15]. In PENELOPE a business interaction can move from a
state τ1 to a state τ2 if there exists a narrative N of permissible performances,
between states τ1 and τ2, such that the performance of the activities makes the
same deontic fluents hold at state τ2 that are contained by state τ2. Under the
assumption that no cycles can occur in the interaction, the state space can be
represented as a directed acyclic graph. To efficiently enumerate a state space
beyond a state τ , it suffices to perform all different combinations of permissible
performances that are due at the earliest due date of the obligations and per-
missions that hold in state τ . Figure 2 enumerates the state space of the deontic
assignments of the order-to-cash business process in Table 2. A state τ is an
end state if no obligations or permissions hold at τ or if there exist violations
without reparation.

endState(τ) ⇔ O(τ) ∪ P (τ) = ∅ ∨ V WR(τ) �= ∅ (6)

Temporal deontic assignments to internal and external agents in a business
interaction impose partial order constraints on the activities that are carried
out. The problem of generation the control-flow for a particular role in a set of

Designing Compliant Business Processes with Obligations and Permissions 11

B
U

Y
E

R

payment-after-shipment

placeOrder

pay

[violation(obligation(seller, xorr(acceptOrder(seller,
buyer), rejectOrder(seller, buyer)), 2))]

acceptOrder(seller, buyer)

[violation(obligation(seller,
ship(seller, buyer), 4))]

ship(seller, buyer)

rejectOrder(seller, buyer)

acceptOrder ship

rejectOrder

placeOrder(buyer, seller)

[violation(obligation(buyer,
pay(buyer, seller), 5))]

pay(buyer, seller)

S
E

L
L

E
R

Fig. 1. Two process models generated by PENELOPE

temporal deontic assignments can either be under specified, even specified or over
specified. A problem is under specified if no unique sequence flow can be entailed.
For even and over specified problems, a unique sequence flow can be derived,
provided that the deontic assignments contain no anomalies such as livelocks,
deadlocks or contradictions. Given rules 1 to 4 in the example of Table 2, the
generation problem is even specified. Adding rule 5 makes the problem over
specified, but introduces no contradictions.

We have implemented the PENELOPE language in CLP(fd). In addition we
have constructed an algorithm in Prolog to generate a proprietary XML file with
the BPMN process model for all external roles in a set of deontic assignments.
From this XML file a Microsoft Visio Add-in was written to draw the generated
model. We have chosen the BPMN because its visualizations allow us to model
external events and exceptions in control-flow. We make use of well-understood
and general control flow constructs such as sequence, XOR-split, AND-split, etc.
However, due to lack of space and because the process model is intended to
facilitate validation for the process designer, we do not clearly formulate the
process modeling language used.

The algorithm, of which a summary in pseudo-code is provided below, pro-
gressively enumerates all states in the state space and draws the BPMN model
for role π. Whenever during state transitions the role π performs activities, this
is modeled as a task. Whenever another role performs an activity of which π is
a recipient, this is modeled as a message event. The drawing logic of the algo-
rithm is represented by a large number of IF-THEN rules. In the algorithm the
obligations and permissions of role π that are due at state δ are contained by

12 S. Goedertier and J. Vanthienen

[permission(buyer,
placeOrder(buyer,

seller), 0)]

[obligation(seller,
xorr(acceptOrder(se

ller, buyer),
rejectOrder(seller,

buyer)), 2)]

[obligation(seller,
ship(seller, buyer),

4)]

[obligation(buyer,
pay(buyer, seller),

5)]

[violation(obligation(
buyer, pay(buyer,

seller), 5))]

[violation(obligation(
seller, ship(seller,

buyer), 4))]

[violation(obligation(
seller,

xorr(acceptOrder(…
, ...), rejectOrder(…,

...)), 2))]

[placeOrder(buyer, seller)] [acceptOrder(seller, buyer)]

[ship(seller, buyer)] [pay(buyer, seller)]

[]

[]

[rejectOrder(seller, buyer)]

[]

[]

Fig. 2. The state space of the example deontic assignments

the sets Od(π, δ) and Pd(π, δ). A generated process model for a particular role
π must not violate the obligations for which no violation is allowed. Therefore,
whenever the set PO(π, δ) contains obligations to fulfil, these are drawn as tasks
in BPMN. By way of precaution, a generated process model for a particular role
π must foresee the possibility that other business partners violate obligations.
For instance, when a buyer places an order, he must foresee never to receive
a rejection or acceptance from the seller. Violations of obligations can only be
detected if the due dates on obligations are timed during process enactment.
This is represented in the BPMN model using intermediate timeout events. The
obligations and permissions towards role π due at time δ are contained in the
sets OTP (π, δ) and PTM(π, δ). In a state in which a violation occurs for which
no reparation exists, an error end event is drawn. Notice that process design can
only identify exceptions, it is up to the process modeler to properly deal with
them. In some cases, the deontic conflicts between business partners might be
resolved through human interaction.

1 PO(π, δ) = {α : HoldsAt(Oblig(π,α, δ), δ)}
2 PP (π, δ) = {α : HoldsAt(Perm(π,α, δ), δ)}
3 OTP (π, δ) = {α : HoldsAt(Oblig(φ,α, δ), δ), recipient(α) = π}
4 PTP (π, δ) = {α : HoldsAt(Perm(φ,α, δ), δ), recipient(α) = π}
5 OO(π, δ) = {α : HoldsAt(Oblig(φ,α, δ), δ), φ �= π}
6 OP (π, δ) = {α : HoldsAt(Perm(φ,α, δ), δ), φ �= π}
7 drawControlFlow(π, τ)
8 if ¬endState(S(τ)) then
9 δ ← earliestDueDate(τ)
10 if {α : α ∈ PO(π, δ), atomic(α)} �= ∅ then draw tasks in sequence
11 if {and(α1, α2) : and(α1, α2) ∈ PO(π, δ)} �= ∅ then draw tasks in parallel
12 if ∃xor(α1, α2) ∈ PO(π, δ) or PP (π, δ) �= ∅ then draw XOR gateway
13 ACs ← allCombinations(OO(π, δ) ∪ OP (π, δ) ∪ PP (π, δ))
14 forall AC ∈ ACs
15 As ← AC ∪ PO(π, δ)

Designing Compliant Business Processes with Obligations and Permissions 13

16 if ∃α : α ∈ As, α ∈ xor(α1, α2), xor(α1, α2) ∈ PO(π, δ) then draw task α

17 if ∃α : α ∈ As, atomic(α), α ∈ PP (π, δ) then draw (start event and) task α

18 if ∃α : α ∈ As, α ∈ xor(α1, α2), xor(α1, α2) ∈ PP (π, δ)
19 then draw (start event and) task α

20 if ∃α1, α2 : α1 ∈ As, α2 ∈ As, and(α1, α2) ∈ PP (π, δ)
21 then draw (start event and) tasks α1, α2 in parallel
22 if OTP (π, δ) ∪ PTP (π, δ) �= ∅ then (draw event gateway)
23 if ∃α : α ∈ OTP (π, δ), α ∈ As then draw start/intermediate event α

24 if ∃α : α ∈ OTP (π, δ), α /∈ As then draw intermediate timeout event α

25 if ∃α : α ∈ PTP (π, δ), α ∈ As then draw start/intermediate event α

26 perform activities As

27 drawControlFlow(π, δ)
28 revoke activities As

29 end forall
30 else
31 if {ν : ν ∈ V TM(π, δ)} �= ∅ then draw error end event
32 if ¬∃ν : ν ∈ V TM(π, δ) then (draw end event)
33 end if

6 Conclusion

The sequence and timing constraints on the activities in business processes are
an important aspect of compliance. In this paper, we present an approach that
declaratively captures these constraints, with the purpose of (re)using them in
business process design. Rather than modeling precedence relations for one busi-
ness partner in a particular process, PENELOPE focuses on what can or must be
done at certain points in time, by all business partners, in order to achieve their
business goals, without considering one business process model in particular.

The third party perspective on the modeling of sequence and timing con-
straints makes it possible for external deontic assignments to be shared among
process designers of different organizations. In addition, deontic assignments are
autonomous units of business logic that hold in general rather than for one par-
ticular business process. A such, changes to sequence and timing aspects in busi-
ness policy and regulations can be translated into temporal deontic assignments
that potentially constrain multiple business process models. The generation of
individual process models from temporal deontic assignments is not intended
as a means for process execution, but to be used by the process designer for
verification and validation. Moreover, this explicit generation of control flow can
be used to identify the freedom of choice that is left by the sequence and tim-
ing constraints. It is up to the designer of the process to decide whether this
freedom of choice is to be filled in at design-time or at runtime. In addition,
the automatic generation of control flow contains an enumeration of all possi-
ble violations of obligations by other agents that allows the process designer to
anticipate exceptions in current business process design.

14 S. Goedertier and J. Vanthienen

References

1. Goedertier, S., Vanthienen, J.: Compliant and Flexible Business Processes with
Business Rules. In: CAiSE’06 Workshop BPMDS’06, Proceedings. (2006) forth-
coming.

2. Reijers, H.A., Rigter, J.H.M., van der Aalst, W.M.P.: The case handling case. Int.
J. Cooperative Inf. Syst. 12(3) (2003) 365–391

3. Bons, R.W.H., Lee, R.M., Wagenaar, R.W., Wrigley, C.D.: Modelling inter-
organizational trade using documentary petri nets. In: HICSS (3). (1995) 189–198

4. Bussler, C.: The role of B2B protocols in inter-enterprise process execution. In:
TES ’01: Proceedings of the Second International Workshop on Technologies for
E-Services, London, UK, Springer-Verlag (2001) 16–29

5. Maŕın, R.H., Sartor, G.: Time and norms: a formalisation in the event-calculus. In:
ICAIL ’99: Proceedings of the 7th international conference on Artificial intelligence
and law, New York, NY, USA, ACM Press (1999) 90–99

6. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus:
An approach for specifying and executing protocols. Annals of Mathematics and
Artificial Intelligence 42(1-3) (2004) 227–253

7. Knottenbelt, J., Clark, K.: An architecture for contract-based communicating
agents. In: Proceedings of the 2nd Europ. Workshop on Multi-Agent Sys. (2004)

8. Governatori, G.: Representing business contracts in uleml. Int. J. Cooperative Inf.
Syst. 14(2-3) (2005) 181–216

9. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data
Knowl. Eng. 47(2) (2003) 237–267

10. Føllesdal, D., Hilpinen, R.: Deontic logic: An introduction. In Hilpinen, R., ed.:
Deontic Logic: Introductory and Systematic Readings. D. Reidel Publishing Com-
pany, Dordrecht (1971) 1–35

11. Clarke, E.M., Grumberg, O., Long, D.E.: Verification tools for finite-state con-
current systems. In de Bakker, J.W., de Roever, W.P., Rozenberg, G., eds.: REX
School/Symposium. Volume 803 of LNCS., Springer (1993) 124–175

12. Broersen, J., Dignum, F., Dignum, V., Meyer, J.J.C.: Designing a deontic logic
of deadlines. In Lomuscio, A., Nute, D., eds.: DEON. Volume 3065 of LNCS.,
Springer (2004) 43–56

13. Shanahan, M.: Solving the frame problem: a mathematical investigation of the
common sense law of inertia. MIT Press, Cambridge, MA, USA (1997)

14. Goedertier, S., Vanthienen, J.: Business Rules for Compliant Business Process
Models. In: Proceeding of the 9th International Conference on Business Information
Systems (BIS 2006). Volume P-85 of LNI., GI (2006)

15. Yolum, P.: Towards design tools for protocol development. In: AAMAS ’05, New
York, NY, USA, ACM Press (2005) 99–105

	Motivation and Methodology
	Related Work
	The PENELOPE Language
	Verifying and Validating Temporal Constraints
	Generating State Space and Control Flow
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

