
Flexibility of Data-Driven Process Structures�

Dominic Müller1,2, Manfred Reichert1, and Joachim Herbst2

1 Information Systems Group, University of Twente, The Netherlands
{d.mueller, m.u.reichert}@ewi.utwente.nl

2 Dept. REI/ID, DaimlerChrysler AG Research and Technology, Germany
joachim.j.herbst@daimlerchrysler.com

Abstract. The coordination of complex process structures is a funda-
mental task for enterprises, such as in the automotive industry. Usually,
such process structures consist of several (sub-)processes whose execution
must be coordinated and synchronized. Effecting this manually is both
ineffective and error-prone. However, we can benefit from the fact that
these processes are correlated with product structures in many applica-
tion domains, such as product engineering. Specifically, we can utilize the
assembly of a complex real object, such as a car consisting of different
mechanical, electrical or electronic subcomponents. Each sub-component
has related design or testing processes, which have to be executed within
an overall process structure according to the product structure. Our goal
is to enable product-driven (i.e., data-driven) process modeling, execu-
tion and adaptation. We show the necessity of considering the product
life cycle and the role of processes, which are triggering state transi-
tions within the product life cycle. This paper discusses important issues
related to the design, enactment and change of data-driven process struc-
tures. Our considerations are based on several case studies we conducted
for engineering processes in the automotive industry.

1 Introduction

Industry increasingly demands IT support for the coordination of large and com-
plex process structures, such as production and development processes. Such
structures usually comprise numerous single processes with many interdepen-
dencies. Though these dependencies are often domain-specific, there exist gen-
eral patterns. Both development and production processes are often structured
according to the product, for example a car or an application software suite.
In particular, several single processes have to be executed for every component
of the product. Some of The dependencies between the components have to
be considered for process coordination. Thus, among other things, the prod-
uct structure defines the sequence of process executions. The result is a process
structure consisting of interconnected single processes according to the assembly
of the product. Usually we use the notion of data-driven process structures for
such patterns.
� This work has been funded by DaimlerChrysler Research and Technology and has

been conducted in the COREPRO (Configuration based Release Processes) project.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 181–192, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

182 D. Müller, M. Reichert, and J. Herbst

A real world example for data-driven process structures are development pro-
cesses in the automotive industry. Release management (RLM), for instance, is
an important part of the development process for car electrical systems [1]. RLM
covers configuration management, testing and release of all electrical components
in a car. Instead of performing RLM processes (e.g., testing) in an isolated fash-
ion and solely at the level of single car components (cf. Fig. 1), there is a great
need for coordinated execution and synchronization of the results of all RLM pro-
cesses related to the different sub-components. That means that the processes for
single data objects (in our case representing car components) have to be synchro-
nized. Fig. 1 (Box C) shows an example for such a data-driven process structure.

Component 2

Total System

Subsystem 3

Component 1 Component 3

Development Processes

Data-driven Process Structure

e.g. Supplier Development e.g. Release Management e.g. Logistics

Product / Data Structure

Total System

Subsystem 1

Subsystem 2

Subsystem 3

Component 1

Component 2

Component 3

Total System
Level

Subsystem
Level

Component
Level

Subsystem 1

Subsystem 2

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3

Individual component life cycleReady Tested Released

Hierarchical structure according
to the configuration structure

Subprocesses in hierarchical
process structure

Single process on Component-
level, e.g. testing process for

Component 3

Single process consists of
several activities

Process step, e.g. Testing with
data-driven structure

A

B C

Fig. 1. Car development process with a data-driven process structure

Currently, the coordination of such data-driven process structures is mainly
done manually due to the lack of suitable concepts for automated management.
Except a few approaches [2,3,4,5,6,7], process design and enactment is activity-
driven in current business process management solutions. Using activity-driven
approaches, the connection between data structures and according process struc-
tures must be defined manually (i.e., the process structure is modeled according
to the data structure). In practice, this leads to inflexible process coordination.
In particular, every change of the data structure necessitates a manual change
of the process structure. Regarding usability, an engineer is not interested in
changing process models if he or she actually wants to change the product struc-
ture. Therefore our goal is to automate the generation and maintenance of these
process structures during runtime by following a data-driven approach for their
design, enactment and change. However, even modeling is difficult tasks. The
information provided by the data structure itself (i.e., the dependencies between
the components) is insufficient for the generation of data-driven process struc-
tures. On the one hand, it does not include the mapping of the components to
processes. On the other hand, the data structures do not imply the control flow
between the processes of the resulting structures.

The efficient modeling of process structures also necessitates the consideration
of domain specific component (i.e., data) states. Possible states are defined by
the specific life cycle of the component (cf. Box B in Fig. 1). State transitions

Flexibility of Data-Driven Process Structures 183

are triggered by executing processes. In the RLM, for example, after executing
the testing processes, a state transition from Ready to Tested is triggered. The
definition of the dependencies between data states and processes is important
information for the generation of data-driven process structures.

In this paper, we present the basics for the management of data-driven process
structures. We emphasize the core issues for the separation of data structure and
process logic in consideration of data states. Based on this separation, we defined
example scenarios for possible runtime adaptations of data-driven process struc-
tures. The remainder of this paper is structured as follows. Section 2 describes
the modeling of data-driven process structures based on data states while Sec-
tion 3 describes the enactment of these processes and the role of the data states
during execution. Scenarios for flexible process execution are presented in Sec-
tion 4 and Section 5 discusses the suitability of state-of-the-art approaches for
realizing data-driven process structures. The paper concludes with conclusions
and an outlook in Section 6.

2 Modeling of Data-Driven Process Structures

The idea behind the design and modeling of data-driven process structures is
the utilization of data structures as well as data states. Both contribute to cre-
ating corresponding process structures and to providing adequate support for
their enactment and change. The goal of our data-driven approach is to sustain
the separated modeling of data and process logic. That enables the independent
definition of data and processes by domain experts (cf. Fig. 2). As shown in
Fig. 2, generating data-driven process structures integrates data and process
models. In particular, the definition of data objects, data states, process tem-
plates and process states (Steps 1a to 1d in Fig. 2) constitute prerequisites for
the realization of data-driven process structures. Data objects and data states are
defined by data domain experts and represent (real) components. In this paper,
we assume that the content of data objects does not include information neces-
sary for process execution. The data structure itself documents the dependencies
between single data objects. With regard to data-driven process structures, the
most relevant information about a data object is its state. This state describes
the current phase of the object within the object life cycle (OLC) and must be
defined in Step 2 (cf. Fig. 2). In the RLM example (cf. Section 1), data objects
have the different OLC states termed ready, tested and released (cf. Box B in
Fig. 1). Considering the dependencies between data objects, the OLC of a single
data object may depend on the life cycle of other data objects. Taking the hier-
archical data structure from Box B in Fig. 1, this could mean that a component
can be tested only if its sub-components have been successfully tested. Thus, the
definition of OLCs depends on the data structure, and it demands the definition
of state transitions between single OLCs (cf. Step 3 in Fig. 2).

State transitions within a particular OLC can be realized by the execution
of processes which are modifying data objects. The combined application of the
OLCs and these processes results in a process structure (cf. Step 4 in Fig. 2).

184 D. Müller, M. Reichert, and J. Herbst

Data modeler

Step 1a. Define
data objects

Process modeler

Step 1d. Define
process states

Step 2. Define data
structure

Step 3. Define
single OLCs

Step 4. Define
OLC structure

Step 5. Define
process config-

uration rules

Step 1b. Define
data states

Step 1c. Define
process templates

Fig. 2. Necessary steps for modeling data-driven process structures

Clearly, this structure depends on the OLC structure (including all single OLC
definitions) and thereby on the data structure.

In the following subsections, we describe the necessary steps to realize a data-
driven process structure definition. Fig. 3 illustrates the steps described in Fig. 2.
The first step consists of the definition of data objects, data states, processes
templates and their final states (cf. Boxes 1a-1d in Fig. 3). The second step
in modeling data-driven process structures is the definition of the data struc-
ture, i.e., the semantic dependencies between data objects (cf. Box 2 in Fig. 3).
Generally, these dependencies are hierarchically arranged with every data object
having exactly one parent data object. However, these structures often provide
many exceptions (e.g., data objects with more than one parent). For the sake of
simplicity, we assume the presence of a hierarchical data structure as used, for
example, for bills of material [8].

Process Definitions

Templates
Process A

Process C

Hierarchical Data Structure

Process

States

State P1

State P3

State P2

Object Life Cycle

S1 S2 S3Object 1

S1 S3 S4Object 2

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 7

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3

Process Configuration Rules

Object 1 Process A
in

State S1

Object 2 Process BState S1

Object 3 Process AState S2

Object 4 Process BState S1

Object 5 Process CState S1

in

in

in

in

State P1

State P1

State P1

State P1

State P1

Object 1 State S2

Object 3 State S1

Object 3 State S3

Object 4 State S2

Object 5 State S2

out

out

out

out

out

OLC Structure

S1 S2 S3

S1 S2 S3S1 S3 S4

S2 S3 S4

S1 S2 S3

S2 S3 S4

S1 S2 S3

Data

States
State S1

State S3

State S2

State S4

Data

Object 1

Object 5

Object 3

Object 2

Object 4

Object 7

Object 6

1a 1b 1c 1d3

2 4 5

Process B

Fig. 3. Modeling data-driven process structures according to the steps in Fig. 2

Every data object has its own object life cycle, which describes the states
(or stages) an object goes through until reaching the desired final state (cf.
Box 3 in Fig. 3). The states are connected by state transitions. Generally, the
OLC should not only describe the ideal situation, but also consider exceptional
cases (e.g., error states). In addition, OLCs may include hierarchical states, (i.e.,
with more detailed states). In the RLM, for example, the state Tested includes

Flexibility of Data-Driven Process Structures 185

several substates like Electrical Check and Test Drive. The aspect of OLCs with
hierarchical phases is not discussed in this paper.

Defining OLCs for single data objects is only one part of the challenge. When
considering data structures and dependencies between data objects, we also have
to deal with dependencies between different OLCs. Box 2 in Fig. 3, for example,
depicts a hierarchical data structure including data objects organized at three
levels. Based on this data structure, an OLC structure must be also modeled by
defining state transitions between different OLCs. As a result, we obtain an OLC
structure with defined state dependencies between single OLCs of data objects
(Box 4 in Fig. 3).

OLC state transitions represent data object modifications. As mentioned ear-
lier, such modifications are accomplished by executing processes. These pro-
cesses use data objects (in individual states) as input. By executing them, the
data objects are modified, and thus their individual states change. These tran-
sitions are defined in Box 4 from Fig. 3 in compliance with the OLC structure.
As a result, we obtain the process configuration describing the structure of the
process (cf. Box 5 in Fig. 3). It is used for generating the control flow of the
process structure during runtime. As shown in Fig. 3 (Box 5) we have chosen
a simple rule-based representation for the process configuration. Every rule de-
fines an OLC state transition which depends on the current OLC state, the
process termination state and the OLC state after process execution. The first
rule, for example, triggers the execution of Process A when Object 1 reaches
State S1. If Process A terminates in State P1, the state of Object 1 is changed
to S2.

Process templates may be used within several rules. We have simplified mod-
eling in this paper - in practice the rules have to be enriched by additional
constraints (e.g., time constraints) and processes have more input and output
parameters.

Based on to the process configuration, the control flow of the process structure
is generated. Fig. 4 depicts the control flow of the generated process structure.
Note that, in practice, these structures become much more complex due to the
fact that data structures include more elements than assumed in our examples,
and OLCs may consist of numerous phases in practice [1].

Hierarchical Data-Driven Process Structure

Process 1.1 Process 1.2 Process 1.3

Process 2.1 Process 2.2 Process 2.3

Process 3.1 Process 3.2 Process 3.3

Process 4.1 Process 4.2 Process 4.3

Process 5.1 Process 5.2 Process 5.3

Process 6.1 Process 6.2 Process 6.3

Process 7.1 Process 7.2 Process 7.3

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3

Start

Control FlowProcess TemplateProcess X.Y Process for Data Object X, State Y

Fig. 4. Generated process structure

186 D. Müller, M. Reichert, and J. Herbst

3 Enactment of Data-Driven Process Structures

Typically, data-driven process structures are embedded in larger process envi-
ronments (e.g., development processes; cf. Box A in Fig. 1) [1]. In our RLM
example, the data-driven process structure is part of the total Release Manage-
ment process. The execution order of the single processes is controlled by the
process structure according to the OLC structure.

The generated process structure (cf. Fig. 4) implies the execution order of the
embedded processes. Note that the coordination of the single processes depends
directly on the assigned data object states. In the example from Fig. 4, for
instance, some processes depend on more than one input object. The top-level
process P 1.2, for example, depends on all processes on level 2). We assume an
AND-join for process synchronization, i.e., the processes of all data objects must
terminate before starting execution of Process P 1.2.

After instantiation of the process structure, all data objects remain in their
initial states until modified by corresponding processes. Fig. 5 shows the impact
of executing the generated process in Fig. 4 on data states. In Fig. Fig. 5 we
have divided this execution in three phases: A, B and C. The execution order of
the state transitions (and thus the related processes) is represented by numbered
state transitions. Following this approach, the current state of the whole process
structure is represented by the state of the top-level data object.

OLC structure (runtime)

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

1
1

1

2

2
2

Start

OLC structure (runtime)

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

6

7
7

7

8
8

8

OLC structure (runtime)

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3
3

3

3

4

4

4

5

5

5

4

4

4

5

S2 State S2 Active State S2 Finished State Trigger / Activity 1 Execution Order

A B C

Fig. 5. Process execution order illustrated by state transitions (cf. OLC structure in
Box 4 of Fig. 3)

In practice, different processes access and modify data objects. For the gen-
eration of the data-driven process structure, that means the current OLC state
of a data object may have been already changed before process generation or
execution. In the example of RLM, a previously executed instance of the testing
process may have modified a component and thus have changed the state of the
component to Tested. Because of the testing process need to be executed only if
the component has been changed, it is not necessary to test it again.

The question is whether the predefined state is subsequently used in another
process structure or not. Several points have to be considered in this context.
First, some data objects may be used in different processes, e.g., testing and re-
lease. In this context, the predefined state of the data object must be compatible

Flexibility of Data-Driven Process Structures 187

with the OLC structure of the current process configuration to ensure consistent
OLCs (i.e., the current data object state has to be used in the current process
configuration). Second, predefined OLC states may lead to an inconsistent OLC
structure. Fig. 6 depicts such a situation. Box A shows the OLCs of two data
objects (Object 1 and 2) with state transitions between them. The predefined
state of Object 2 is S3 (cf. Box B). Box C shows the problem of an undefined
behavior caused by the predefined state: Object 1 triggers a state transition to
Object 2 and activates a previous state S3. Keeping the predefined state leads
to an inconsistent state of the OLC structure up to deadlocks (e.g., state transi-
tion from state S2 of Object 2 to state S2 of Object 1). However, resetting the
triggered state makes (the advantages of) the predefined state to be lost and
induces the re-execution of processes for this object.

Predefined Data State

(runtime)

S1 S2 S3

S1 S2 S3

?
1 Execution Order

State Transition

S2 Predefined State

S2 State

S1 Active State
Predefined Data State

S1 S2 S3

S1 S2 S3

Predefined Data State

(runtime)

S1 S2 S3

S1 S2 S3

A B C

1

D
at

a
O

bj
ec

t 2
D

at
a

O
bj

ec
t 1

Fig. 6. Behavior during runtime with predefined data states

4 Adaptation of Data-Driven Process Structures

In practice, data changes (e.g., removing a component from the product struc-
ture) and process changes (e.g., changing the order of different testing processes)
occur frequently [1]. Flexibility and dynamic adaptation support are therefore
not only required at the level of single process executions, but also at the pro-
cess structure level. An advantage affected by the modeling method presented
in Section 2 is the ability to adapt data and processes separately. In addition,
the data-driven perspective provides a more intuitive view of changes when com-
pared to solely activity-oriented process structures.

To ensure a consistent OLC structure, the applicability of both data and pro-
cess changes during runtime depends on the current state of the OLC structure
(and the process structure respectively). In the following section, we character-
ize possible changes (data structure, object life cycle, object life cycle structure,
processes and data states) and discuss the resulting issues and challenges.

4.1 Data Structure Changes

Modifying data structures (e.g., by adding or removing data objects) during
runtime results in several challenges. After updating the data structure, both
the OLC structure and the process configuration must be applied correspond-
ingly. Before modifying a data structure, it must be verified whether this change
will lead to a valid result. In hierchical data structures, removing a data object
with child-dependencies clearly also affects its sub-objects. Whether or not the

188 D. Müller, M. Reichert, and J. Herbst

change is possible or requires further operations depends on the state of the af-
fected OLC structure and on the already triggered state changes. Table 1 gives
an overview of the data modification scenarios: (1) adding a data object to the
data structure; (2) removing a data object from the data structure; (3) exchang-
ing a data object (and keeping OLC); and (4) moving a data object within the
data structure.

Table 1. Overview of dynamic data changes

Scenarios 1) Add Data Object 2) Remove Data Object
3) Exchange of Data

Object
4) Reorder Data Object

S1) Total process not started Ok Ok2 Ok Ok
S2) Total process running; affected data object not running Ok1 Ok2 Ok Ok1

S3) Total process running, affected object running - Ok3 Ok4 Ok2,4

S4) Total process running, affected object terminated - - - -
S5) Total process terminated - - - -
Ok = change is possible - = change might lead into inconsistent OLC structure state
1 if no state transition to affected object missed so far 2 if all states in OLC structure stay reachable
3 if no state transitions to other objects triggered so far 4 Processes for this object have to be restarted

Fig. 7 shows the problems we have to deal with when removing a data object
(Scenario S4 from Table 1). First, all running processes related to this data ob-
ject must be interrupted and terminated in a semantically correct manner (Box
A). Second, state dependencies to other data objects (i.e., control flows between
processes) must be removed (Box B). Regarding parent data objects this may
imply that certain adaptations have to be carried out to preserve consistency. It
may be necessary to reset a previous state of the OLC or adding state transitions
to prevent unreachable or inconsistent states. In Fig. 7 (Box C), for example, the
current state (S3) of Object 4 is no longer valid when Object 7 is removed. The
active state of Object 4 has to be reset to S2 to prevent inconsistencies. This
change also affects other data objects and may necessitate further adaptations of
dependent data objects in order to ensure consistent execution of the data-driven
process structure. For our example from Fig. 7 this means that the current state
(S3) of Object 1 becomes invalid. However, changing the current state of Object
1 again results in an inconsistent OLC structure because of further dependen-
cies. The state transitions from state S3 of Object 1 to all sub-objects have to
be reset. Thus, the whole structure is affected by the initial adaptation.

S2 State S2 Active State S2 Finished State State Transition 1 Execution OrderS2 Reset State

BHierarchical Data Structure

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 7

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

OLC structure (runtime) OLC structure (runtime)

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

2

1

3

A C

Fig. 7. Data structure changes requiring runtime adaptations

Flexibility of Data-Driven Process Structures 189

4.2 Structural Changes of Object Life Cycles

Data structure modifications also affect the OLC structure. For example, adding
a new data object may require the insertion of new state transitions to OLCs
of dependent data objects as well. Table 2 presents two scenarios for structural
changes of OLCs: (1) changes of the OLC structure by itself adding or removing
state transitions; and (2) changes of a single OLC.

Table 2. Overview dynamic changes of the OLC structure and single OLCs

Scenarios

1a) Change OLC

Structure (adding

transition)

1b) Change OLC

Structure (removing

transition)

2a) Change

transitions in Single

OLC

2b) Add or Remove

States in Single OLC

S1) Total process not started Ok Ok2 Ok2 Ok2

S2) Total process running; affected data objects not running Ok Ok2 Ok2 Ok2,3

S3) Total process running, affected objects running Ok1 Ok1,2 Ok1,2 Ok2,3

S4) Total process running, affected objects terminated - - - -
S5) Total process terminated - - - -
Ok = change is possible - = change might lead into inconsistent OLC structure state
1 if start and end state not activated so far 2 if all states stay reachable 3 if not state transitions to other data objects affected

Clearly, changes of an OLC structure must be done carefully in order to
preserve consistency. Adding or removing state transitions, for example, might
lead to inconsistent states for OLC structure as well as to violated dependencies.
Fig. 8 (Box A) illustrates the inconsistency that might occur when inserting an
additional state transition (cf. Scenario S4 in Table 2). The activation of the
new state transition, as shown in Fig. 8 (Box B), leads to an inconsistent state.
One option to deal with this case is to reset the current state of the affected
data object. As discussed above, this might again result in an inconsistent OLC
structure due to further dependencies.

Single OLC (runtime)

OLC Structure

S1 S2 S3 S1 S2 S3

OLC Structure (runtime)

Single OLC

S2 S3S1 S2 S3S1
?

S1

S2

Active State

State

State Change

S2 Finished State

New transition

A B

C D

S1 S2 S3S1 S2 S3 S1 S2 S3S1 S2 S3

?

Fig. 8. Adding state transition to the OLC structure and changing single OLCs

Another scenario is the change of a single OLC. As an example, consider the
removal of a state from a single OLC for optimization reasons (cf. Fig. 8, Box
C). If state changes for this data object have already occurred, consistent OLC
operations need to be ensured. Fig. 8 (Box D) shows the problem when changing
OLCs during runtime. State S2 was removed in the OLC definition. If this state
is currently activated, the change leads to an inconsistency. A possible solution
to deal with this situation is to reset the state of the data object (which may
cause further inconsistent states of the whole OLC structure).

190 D. Müller, M. Reichert, and J. Herbst

4.3 Process Configuration Changes

According to the modeling steps presented in Fig. 2, the changes described in
Sections 4.1 and 4.2 affect the process configurations as well (cf. Box 5 in Fig. 3).
However, there are other scenarios for process configuration changes (cf. Table 3).
If processes are exchanged in the process configuration, for example, the gen-
erated process model must be adapted. Due to the fact that processes have no
direct dependencies on other processes themselves (these dependencies are de-
fined by the process configuration), processes are simply exchangeable in our
approach - if they are not currently executed (Scenario S3).

We also have to consider scenarios for already finished processes (Scenarios
S4 and S5). In these states, the exchange of a process makes no sense at first
glance. However, the process configuration should be updated, because other
reasons may require the re-execution of the process - for example, the external
reset of data object states.

Table 3. Overview dynamic changes

Scenarios
1) Exchange Process in Process

Configuration
2) Change Process Template

S1) Total process not started Ok Ok
S2) Total process running; affected process not running Ok Ok
S3) Total process running, affected process running - -
S4) Total process running, affected process terminated Ok Ok
S5) Total process terminated Ok Ok

4.4 External State Changes

The external change of data object states is typical for development or manu-
facturing processes in practice. As example consider a real world failure (e.g., a
faulty electrical component) [1] that necessitates a change of the current state
of a data object. As discussed earlier, this kind of change may affect the whole
OLC structure. Fig. 9 (Box A) shows an example of the external state change of
a data object. According to the OLC structure, dependent state transitions must
be revoked and OLCs of dependent data objects must be changed. As can be
seen from Fig. 9, further data objects have to be involved - even though there is
no direct dependency to the initially changed data object. A detailed discussion
of this point will be subject of future publications.

OLC structure (runtime)OLC structure (runtime)

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

OLC structure (runtime)

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

6

6

7

7

8
8

9

9

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

2

3

5

S2 State S2 Active State S2 Finished State 1 Execution OrderS2 Reset State Undo Tansition

1

3

2

4

6

BA C
External State

Change

Fig. 9. (External) change of a single data object state and its consequences

Flexibility of Data-Driven Process Structures 191

5 Related Work

Workflow management systems (WfMS) follow the idea of separating business
logic from application code [9]. The resulting workflow specifications can be
instantiated and executed during runtime. Several approaches exist for adapting
single process instances to handle exceptional situations during runtime [10]. In
this paper, we assumed that processes trigger data state transitions. These single
processes might be realized as workflows. However, manual mapping of data-
driven structures to workflow structures leads to inflexible and large workflow
models. The result is a mixture of data structure and process logics, which
increases complexity for execution and maintenance during runtime and is thus
not applicable for data-driven process structures.

Data-driven approaches, such as Case Handling [2], provide concepts for flex-
ible process execution based on data dependencies. Activities are linked with
data items. The execution order of the activities during runtime depends on the
availability of data. Product Driven Case Handling [3] describes the utilization
of the case handling approach for product oriented process design. The idea
is to model the process according to product characteristics. The advantage of
the case handling approach is the flexible and efficient execution of processes.
Case handling does not explicitly consider data states (i.e., domain specific data
states), the definition of hierarchical data structures and the automated gener-
ation of data-driven process structures.

Product-driven Workflow Design defines an analytical method for the product
structure based (re-)design of workflows [4]. The idea is to generate a workflow
sequence for producing products based on bills of material and three design cri-
teria (quality, costs and time). The goal of this approach is the precise derivation
of a process execution sequence according to the product structure. However, we
believe that our approach enables a more flexible method for process modeling.
In addition, we focus more on the flexible execution of data driven process based
on data state dependencies than on optimization criteria.

The idea of goal-based approaches [5] is to generate the process based on a
specified initial (and final) condition. Therefore, a task ontology with activities
- including data input and output - is defined. The necessary task network is
generated (e.g., using planning techniques from artificial intelligence) based on
the specified output goal. However, this approach does not deal with the special
requirements of data-driven process structures based on data states as well as
with flexible runtime adaptations.

There are also similarities of our application when compared to domain spe-
cific approaches. A project that considers the requirements of the automotive
development processes is WEP [6]. This approach allows for process defini-
tion of both structured and unstructured parts. WEP combines WfMS with the
goal-based approach. WEP includes also mechanisms for process synchroniza-
tion based on data quality. However, the WEP does not consider the generation
process structures according to a data structure.

AHEAD offers dynamic support for (software) development processes [7].
The CoMa product model allows for the definition of configurations, i.e., data

192 D. Müller, M. Reichert, and J. Herbst

structures with dependencies between data objects. The DYNAMITE activity
model enables the flexible execution of corresponding processes. Based on the
modeled relationships between data and processes, dynamic task nets are gen-
erated. Thus, the approach also separates the data structure from the process
structure. However, the relevance of data states as well as relationships between
data states are not discussed in this approach.

6 Summary and Outlook

The more complex products are the more complex the coordination of related
processes becomes. The data-driven generation of these process structures is
therefore crucial to their efficient modeling and execution and demands the uti-
lization of data structures. as well as support for process enactment and co-
ordination. The consideration of (product) data life cycles for the definition of
data-driven processes is crucial. In this paper, we have discussed the core chal-
lenges of data-driven process structures based on a data state oriented view.
In addition, we have presented the opportunities of the separation of data and
process structures for flexible adaptations during runtime.

Further points, such as data flows in data-driven process structures, concur-
rently executed processes for one data object (leading to several active states),
exception handling (e.g., by using transaction) and the differentiation between
changeable and not changeable data states (e.g., physical state Produced) as
well as applying the approach for a real world process will be subject of further
research in this area.

References

1. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release manage-
ment processes in the automotive industry. In: BPM. (2006)

2. Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for business
process support. DKE 53(2) (2005) 129–162

3. Aalst, W., Berens, P.J.S.: Beyond workflow management: Product-driven case
handling. In: GROUP. (2001) 42–51

4. Reijers, H., Limam, S., Aalst, W.: Product-based workflow design. Management
Information Systems 20(1) (2003) 229–262

5. Mentink, R., Wijnker, T., Lutters, D., Kals, H.: Supporting manufacturing envi-
ronments. (2002)

6. Beuter, T., Dadam, P., Schneider, P.: The WEP model: Adepquate workflow-
management for engineering processes. In: ECEC. (1998)

7. Jäger, D., Schleicher, A., Westfechtel, B.: AHEAD: A graph-based system for
modeling and managing development processes. In: AGTIVE. (1999) 325–339

8. Crnkovic, I., Asklund, U., Dahlqvist, A.P.: Implementing and Integrating Prod-
uct Data Management and Software Configuration Management. Artech House
Publishers (2003) ISBN 1-58053-498-8.

9. WFMC: Workflow reference model. Technical report, Workflow Management
Coalition, Brussels (1994)

10. Reichert, M., Dadam, P.: ADEPTflex: Supporting dynamic changes of workflow
without loosing control. JIIS 10(2) (1998) 93–129

	Introduction
	Modeling of Data-Driven Process Structures
	Enactment of Data-Driven Process Structures
	Adaptation of Data-Driven Process Structures
	Data Structure Changes
	Structural Changes of Object Life Cycles
	Process Configuration Changes
	External State Changes

	Related Work
	Summary and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

