

Lecture Notes in Computer Science 4103
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Johann Eder Schahram Dustdar (Eds.)

Business Process
ManagementWorkshops

BPM 2006 International Workshops
BPD, BPI, ENEI, GPWW, DPM, semantics4ws
Vienna, Austria, September 4-7, 2006
Proceedings

13

Volume Editors

Johann Eder
University of Vienna, Department of Knowledge and Business Engineering
Rathausstr. 19/9, 1010 Vienna, Austria
E-mail: johann.eder@univie.ac.at

Schahram Dustdar
Vienna University of Technology, Information Systems Institute
Argentinierstrasse 8/184-1, 1040 Wien, Austria
E-mail: dustdar@infosys.tuwien.ac.at

Library of Congress Control Number: 2006931935

CR Subject Classification (1998): H.3.5, H.4.1, H.5.3, K.4.3, K.4.4, K.6, J.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-38444-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-38444-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11837862 06/3142 5 4 3 2 1 0

Preface

BPM 2006 was the fourth in a conference series that provides a forum for re-
searchers and practitioners in all areas of business process management. In con-
junction with BPM 2006, a series of workshops were held. They were meant to
facilitate the exchange of ideas and experiences between active researchers, and
to stimulate discussions on new and emerging topics in line with the conference
topics. We see the workshops as a necessary extension to the main conference.

BPM has established itself rapidly as a high quality conference with a highly
competitive selection process. The following workshops were approved and ac-
cepted for inclusion in the BPM 2006 program:

– BPD 2006 – 2nd International Workshop on Business Process Design
– BPI 2006 – 2nd International Workshop on Business Process Intelligence
– ENEI 2006 – 2nd International Workshop on Enterprise and Networked En-

terprises Interoperability
– GPWW 2006 – 2nd International Workshop on Grid and Peer-to-Peer based

Workflows
– DPM 2006 – International Workshop on Dynamic Process Management
– semantics4ws 2006 – Advances in Semantics for Web Services

The program of each of these workshops was developed by a separate ded-
icated organization team and program committee. In summary the respective
calls for papers attracted a total of 94 submissions out of which 40 papers were
selected for presentation and are included in this volume.

The organization of these workshops was made possible by the voluntary
dedicated efforts of many individuals. We thank all the workshop organizers,
the members of the program committees and the additional reviewers for their
excellent service to the community. We thank the authors for submitting papers
to these workshops. And last but not least we thank Marek Lehmann for the
careful compilation of this volume.

June 2006 Johann Eder
Schahram Dustdar

Organization

BPM 2006 was organized by the VitaLab, Distributed Systems Group, Institute
of Information Systems, Vienna University of Technology.

Executive Committee

General Chair: Schahram Dustdar (Vienna Univ. of Technology, Austria)

Program Co-chairs: Schahram Dustdar (Vienna Univ. of Technology, Austria)
José Fiadeiro (Univ. of Leicester, UK)
Amit P. Sheth (LSDIS lab, Univ. of Georgia, and Semagix,
Inc., USA)

Industrial Chair: Frank Leymann (Univ. of Stuttgart, Germany)

Workshop Chair: Johann Eder (Univ. of Vienna, Austria)

Demo Chair: Jan Mendling (Vienna Univ. of Economics and Business
Administration)

Local Organization: Florian Rosenberg, Chair (Vienna Univ. of Technology,
Austria)
Martin Vasko (Vienna Univ. of Technology, Austria)
Eva Nedoma (Vienna Univ. of Technology, Austria)
Gudrun Ott (Vienna Univ. of Technology, Austria)
Margret Steinbuch (Vienna Univ. of Technology, Austria)

Sponsoring Institutions

We acknowledge the support of the following companies and institutions:
Ultimus, Austrian Computer Society, Stadt Wien, University of Vienna, TU Wien

Workshop on Business Process Design
(BPD 2006)

Preface

Business Process Management (BPM) remains of high popularity as a paradigm
for the evaluation and design of organizational and IT systems as well as an
increasingly attractive domain for academic research. There are definite signs of
maturity in the operationalization and value generation of process-based man-
agement approaches and communities of practice (e.g., BPMG.org), and events
like the annual Business Process Management conference contribute to a fast
growing body of knowledge on BPM.

However, it is surprising to note that the actual process of process man-
agement still remains largely unstructured. Unlike other areas such as Project
Management (e.g., PMBOK) or Software Engineering (e.g., Spiral Model, RUP),
the Business Process Management community lacks a well-accepted and empir-
ically evaluated procedure model. This is even more disturbing as “process” is
the core focus of BPM.

On the one hand, a high number of idiosyncratic methodologies have been
developed in-house or are distributed as vendorized packages by consulting com-
panies. Furthermore, related concepts such as Six Sigma are often used in prac-
tice as the main reference point for the design of BPM initiatives. On the other
hand, the academic community tends to focus its attention on the intellectually
stimulating parts of the business process lifecycle such as issues related to mod-
eling and executing business processes. The core challenge of a BPM initiative,
generating improved, more compliant or entire new business processes, however,
seems to remain based on the ATAMO principle (“and then a miracle occurs”).

The aim of this Second Workshop on Business Process Design was to con-
tinue the discussion initiated at last year’s event and to further nurture the
development of a body of knowledge on the disciplined, well-understood and
appropriately evaluated design of business processes.

The Call for Papers for this workshop attracted 12 high quality international
submissions. Within a rigorous process, in which each paper was reviewed by at
least two experts, we selected 7 papers for inclusion in this workshop.

We are very grateful to the efforts of all authors related to writing, revising
and presenting their papers. Finally, we appreciate the indispensable support of
the members of the Program Committee who provided excellent feedback and
valuable directions.

June 2006 Tom Davenport
Selma Mansar

Hajo Reijers
Michael Rosemann

(Editors)

Workshop Organization

Co-chairs

Tom Davenport Hajo Reijers
School of Executive Education Department of Technology Management
Babson College at Wellesley Eindhoven University of Technology
Babson Park, MA 02457-0310 5600 MB, Pav.D14, Eindhoven
USA The Netherlands

Selma Limam Mansar Michael Rosemann
College of Business Sciences BPM Research Group
Zayed University Queensland University of Technology
P.O. BOX 19282, Dubai 126 Margaret Street, Brisbane Qld 4000
U.A.E. Australia

Workshop Program Committee

Wil van der Aalst (The Netherlands)
Wasana Bandara (Australia)
Hyerim Bae (Korea)
Injun Choi (Korea)
Leonid Churilov (Australia)
Eric Deakins (New Zealand)
Peter Green (Australia)
Lilia Gzara (France)
Kees van Hee (The Netherlands)
Monique Jansen-Vullers

(The Netherlands)

Peter Kueng (Switzerland)
Jan Mendling (Austria)
Trevor Naidoo (USA)
Stephan Poelmans (Belgium)
Brad Power (USA)
Manfred Reichert (The Netherlands)
Andrew Spanyi (USA)
Robert van der Toorn

(The Netherlands)
Roger Tregear (Australia)
Michael zur Muehlen (USA)

Workshop on Business Process Intelligence
(BPI 2006)

Preface

Surviving in today’s competitive market demands that enterprises improve the
efficiency of their business processes not only by their automation, as they have
done for years, but also by gaining intelligence about such processes to get re-
duced costs and higher performance. Business Process Intelligence (BPI) is an
emerging, interdisciplinary area that aims at developing models, techniques and
tools to improve different aspects of how business processes are modeled and
conducted. BPI is not only the application of Business Intelligence techniques to
business processes but it also integrates contributions from other research areas
like BAM (Business Activity Monitoring), BOM (Business Operations Manage-
ment), BPM (Business Performance Management), and others.

Following the success of the first BPI workshop, held in Nancy on September
5, 2005, this second workshop intended to bridge across the various research areas
that are related to BPI. At the same time the workshop was an opportunity to
continue consolidating this area and building a multidisciplinary community.

The workshop BPI 2006 consisted of a keynote talk on “Process Mining:
Practical Experiences and a Reality Check”, seven contributed papers that were
selected by the program committee for presentation at the workshop, and a
panel on “Business Process Intelligence and Business Intelligence: Differences
and Convergences”.

In his keynote talk, Wil van der Aalst gave an overview of the various process
mining techniques that have been developed in the last 10 years, and discussed
the many perspectives of viewing process mining: from the reverse engineering of
code and the monitoring of embedded systems to cross-organizational workflows
and health-care processes. The goal was to promote a discussion on the challenges
that need to be addressed to improve the applicability of process mining.

The seven papers cover some of the main topics addressed by BPI. In par-
ticular, the paper “Process Mining and Petri Net Synthesis” by E. Kindler, V.
Rubin and W. Schäfer, deals with the topic of process discovery, which refers
to the analysis of enterprise operations in order to derive the process models
that these operations obey. A contribution to this topic is also given by the in-
dustrial paper “A Generic Import Framework for Process Event Logs” by C.W.
Günther and W.M.P. van der Aalst, which illustrates a framework for acquir-
ing log data from a Process-Aware Information System. The topic of intelligent
process analysis (analysis of business process execution to discover interesting
correlations) is addressed by the paper “Process Mining by Measuring Process
Block Similarity” by J. Bae, J. Caverlee, L. Liu, B. Rouse, and H. Yan, which
presents an approach for measuring the similarity between two process models.

78 Preface

Another topic relevant to BPI, exception handling, is dealt with by the paper
“Improving Exception Handling by Discovering Change Dependencies in Adap-
tive Process Management Systems” by B. Weber, W. Wild, M. Lauer and M.
Reichert. A novel topic of process modeling and reasoning is covered by the paper
“Process Representation and Reasoning Using a Logic Formalism with Object-
Oriented Features” by A. Gualtieri, T. Dell’Armi and N. Leone. The topic of
business process measurement is analyzed by the survey paper “A Discourse on
Complexity of Process Models” by J. Cardoso, J. Mendling, G. Neumann and
H.A. Reijers, which focuses on the problem of defining complexity metrics for
business processes. Finally, the position paper “Measuring Performance in the
Retail Industry” by G. Marketos and Y. Theodoridis deals with the application
of BPI in the context of the retail industry by suitably exploiting the RFID
technology.

The panel discussed convergences between Business Intelligence (BI) and
Business Process Intelligence: how techniques of BI can be effectively applied to
add intelligence to the analysis of processes? The panel also intended to evidence
differences between the two areas, as BPI is not just an application of BI, but it
is a multidisciplinary area.

Acknowledgments

We wish to express a special word of thanks to the Program Committee members
(Francesco Archetti, Boualem Benatallah, Fabio Casati, Jonathan E. Cook, Peter
Dadam, Saso Dzeroski, Fosca Giannotti, Mati Golani, Gianluigi Greco, Dimitrios
Georgakopoulos, Joachim Herbst, Shlomit S. Pinter, Michael Rosemann, Wil van
der Aalst, Mathias Weske, Michael zur Muhlen) for providing their technical
expertise in reviewing the submitted papers and their valuable support to create
an interesting program. We are particularly grateful to the keynote speaker,
Wil van der Aalst, for his interesting keynote talk and, more generally, for his
pioneering contribution to the area of BPI. We also thank all the authors of
the accepted papers for sharing their work and experiences in this workshop.
Finally, we want to express our sincere appreciation to the BPM 2006 Workshops
Chair, Johann Eder, for his support in the organization of the workshops and
the proceedings.

June 2006 Malu Castellanos
Domenico Saccà

Ton Weijters
(Editors)

Workshop Organization

Executive Committee

Organizers and PC Chairs Malu Castellanos, Hewlett-Packard Labs, USA
Domenico Saccà, University of Calabria, Italy
Ton Weijters, Eindhoven University

of Technology, The Netherlands

Publication and Coord. Chairs Antonella Guzzo, ICAR-CNR, Italy
Ana Karla A. de Medeiros, Eindhoven

University of Technology, The Netherlands

Program Committee

Francesco Archetti (University of Milan Bicocca, Italy)
Boualem Benatallah (University of New South Wales, Australia)
Fabio Casati (Hewlett-Packard, USA)
Malu Castellanos (Hewlett-Packard Laboratories, USA)
Jonathan E. Cook (New Mexico State University, USA)
Peter Dadam (University of Ulm, Germany)
Saso Dzeroski (Jozef Stefan Institute, Slovenia)
Fosca Giannotti (ISTI-CNR, Italy)
Mati Golani (Ort Braude College, Israel)
Gianluigi Greco (University of Calabria, Italy)
Dimitrios Georgakopoulos (Telcordia Technologies, Austin, USA)
Joachim Herbst (DaimlerChrysler AG, Germany)
Shlomit S. Pinter (IBM Haifa Research Lab, Israel)
Michael Rosemann (Queensland University of Technology, Australia)
Domenico Saccà (University of Calabria, Italy)
Wil Van der Aalst (University of Eindhoven, The Netherlands)
Mathias Weske (Hasso Plattner Institute, University of Potsdam, Germany)
Ton Weijters (Eindhoven University of Technology, The Netherlands)
Michael zur Muhlen (Stevens Institute of Technology, USA)

Workshop on Dynamic Process Management
(DPM 2006)

Preface

The agility of an enterprise increasingly depends on its ability to dynamically set
up new business processes or to modify existing ones, and to quickly adapt its
information systems to these process changes. Companies are therefore develop-
ing a growing interest in concepts, technologies and systems that help them to
flexibly align their businesses and engineering processes to meet changing needs
and to optimize their interactions with customers and business partners.

In this context dynamic process support has become an extensive research
topic in areas like business process management, Web service technology and
engineering workflows with several specialized aspects. Besides business require-
ments there are many technical challenges like the correct and efficient sup-
port of dynamic workflows (e.g., evolution of workflow specifications and dy-
namic change propagation, data-driven workflows), the support of autonomic
or self-organizing processes, the dynamic selection of best service providers,
the dynamic evolution of local processes as well as their involvement in cross-
organizational collaborations, or the handling of security and trust issues in
dynamic processes. While there has been major progress in some of these areas,
dynamic process support is still a vision when looking at more complex scenarios.

The aim of the DPM 2006 workshop, which took place in Vienna on Septem-
ber 4th, was to provide a forum wherein challenges and paradigms for dy-
namic process management could be debated. The workshop brought together re-
searchers and practitioners from different communities and application domains
who share an interest in dynamic process support. We received 10 contributions
from which 5 were accepted for the workshop proceedings. Papers were evalu-
ated on the basis of significance, relevance, technical quality and exposition. We
hope you will find the papers of this workshop interesting and stimulating.

We would like to acknowledge the support of the workshop program commit-
tee. We also thank Johann Eder as workshops chair and Schahram Dustdar as
general chair of the BPM 2006 conference.

September 2006 Manfred Reichert
Kunal Verma

Andreas Wombacher
(Editors)

Workshop Organization

Organization Committee

Manfred Reichert
University of Twente
m.u.reichert@utwente.nl

Kunal Verma
The University of Georgia
verma@cs.uga.edu

Andreas Wombacher
University of Twente
a.wombacher@utwente.nl

Program Committee

Wil van der Aalst, The Netherlands
Fabio Casati, USA
Peter Dadam, Germany
Prashant Doshi, USA
Richard Goodwin, USA
Yanbo Han, China
Dimitrios Karagianis, Austria
Akhil Kumar, USA
Olivera Marjanovic, Australia
Michael Maxmillien, USA
Andreas Oberweis, Germany
Marco Pistore, Italy
Hajo Reijers, The Netherlands
Stefanie Rinderle, Germany
Heiko Schuldt, Switzerland
Vlamidir Tosic, Canada
Barbara Weber, Austria
Mathias Weske, Germany
Michal Zaremba, Ireland

Additional Referees

Paolo Busetta, Linh Thao Ly, Michael Predeschly

Workshop on Enterprise and Networked
Enterprises Interoperability (ENEI 2006)

Preface

Following the success of the first workshop, ENEI 2005 (http://www.loria.fr/
˜nacer/BPM-ENEI05/ENEI-CfP.html), this second event addressed computer-
supported integration and interoperability of enterprise applications and
software. Indeed, enterprises are provided with collections of heterogeneous ap-
plications and software tools that were neither designed nor developed to favor
their interaction and their cooperation.

The problem is more crucial when one considers networked enterprises and
enterprise expansion (through, for instance, alliances or mergers). Moreover, in-
teroperability within an enterprise and between enterprises is not limited to data
interoperability but should also consider additional levels like applications, busi-
ness models, process models, enterprise models, and their supporting systems
and software.

The workshop was divided into three sessions. The first session shows is-
sues related to enterprise systems interoperability, and more particularly at the
manufacturing and shop floor level of enterprises where the product, as seen
by enterprises applications, is one of the main information producers and con-
sumers. Interdependence between the subsystems of an enterprise is one of the
driving reasons for integrating the enterprise.

The second session is related to model-based approaches for enterprise inter-
operability. Indeed, while a modeling framework is needed to map semantics be-
tween enterprise models, business-to-business collaboration models also requing
a flexible IT-architecture. Different protocols, such as P2P, may be applied to
cooperatively develop business process models for enterprise interoperability.

The last session deals with ontology-based approaches. These approaches
may be evaluated within an application for decision making, but also using Web
services technology applied to workflow time management algorithms. However,
research is in progress to define reference conceptual frameworks to organize on-
tology knowledge spaces and semantic annotations to augment enterprise models
with meaningful meta-data, in order to improve human understanding, machine
interoperability, and advanced automatic information management.

It has been a great pleasure to work with the members of the international
program committee, who dedicated their valuable effort to reviewing, in time, the
submitted papers: we are indebted to all of them as we are indebted to the IN-
TEROP Network of Excellence (FP6 IST-508-011, http://www.interop-noe.org)
for its scientific and financial support.

June 2006 Nacer Boudjlida
Hervé Panetto

(Editors)

Workshop Organization

Workshop and Program Committee Co-chairs

Boudjlida, Nacer LORIA UMR 7503, Nancy-University, France
Panetto, Hervé CRAN UMR 7039, Nancy-University, CNRS,

France

Program Committee

Baina, Karim ENSIAS, Morrocco
Bellahsène, Zohra University of Montpellier, LIRMM, France
Berio, Giuseppe University of Turin, Italy
Boudjlida, Nacer LORIA UMR 7503, Nancy-University, France
Boufaida, Mahmoud University Mentouri, Constantine, Algeria
Carvalho, Joao Alvaro University of Minho, Portugal
Castano, Sylvana University of Milan, Italy
Chatha, Kamran Ali Lahore University of Management Sciences,

Pakistan
Chen, Pin Defence Science & Technology Organisation,

Australia
D’Aquin, Mathieu LORIA UMR 7503, Nancy-University, France
Diamantini, Claudia Università delle Marche, Italy
Dubois, Eric CRP Henri Tudor, Luxembourg
Gruhn, Volker University of Leipzig, Germany
Hahn, Axel University of Oldenburg, Germany
Jeusfeld, Manfred Tilburg University, The Netherlands
Johanson, Paul KTH, Sweden
Krogstie, John Norwegian Institute of Science and Technology,

Norway
Lenzerini, Maurizio Università degli Studi di Roma “La Sapienza”, Italy
Mezgar, Istvan Hungarian Academy of Sciences, Hungary
Molina, Arturo Tecnológico de Monterrey, Mexico
Opdahl, Andreas L. University of Bergen, Norway
Oquendo, Flavio University of South Brittany at Vannes, France
Panetto, Hervé CRAN UMR 7039, Nancy-University, CNRS,

France
Perrin, Olivier LORIA UMR 7503, Nancy-University, France
Petit, Michaël University of Namur, Belgium
Tari, Zahir RMIT University, Melbourne, Australia
Slimani, Yahya FST, University of Tunis, Tunisia
Velardi, Paola Università degli Studi di Roma “La Sapienza”, Italy
Whitman, Larry Wichita State University, USA

234 Organization

Additional Referees

Bergholtz, Maria KTH, Sweden
Elgedawy, Islam RMIT University, Melbourne, Australia
Gooneratne, Nalaka RMIT University, Melbourne, Australia
Jaudoin, Hélène ISIMA, France
Montanelli, Stefano, University of Milan, Italy
Saleem, Khalid University of Montpellier, LIRMM, France
Shazib E., Sheikh Lahore University of Management Sciences,

Pakistan

Workshop on Grid and Peer-to-Peer Based
Workflows (GPWW 2006)

Preface

Nowadays, many data- and/or computation-intensive applications in the area
of e-science and e-business involve coordinated sharing of highly distributed re-
sources in a grid environment. In this context, a collaborative workflow man-
agement system is always required as part of the sophisticated problem solving
process. Efficient management of workflow in grid environments has become in-
creasingly important. Issues such as grid workflow infrastructure based on the
Grid toolkits, grid workflow modeling and specification, grid workflow verifica-
tion and validation, and decentralized grid workflow execution based on peer-
to-peer technology have already evoked a high degree of interest.

With the success of the 1st workshop, which was held in Melbourne, Aus-
tralia in 2005, the 2nd International Workshop on Grid and Peer-to-Peer based
Workflows (GPWW) was held in conjunction with the 4th International Con-
ference on Business Process Management (BPM 2006), in Vienna, Austria. The
aim of this workshop was to bring together researchers and practitioners from
academia, industry and governments to report advances in grid and peer-to-peer
based workflow research.

Overall, we received 11 submissions from Australia, Belgium, China, Ger-
many, Hungary, Italy, Korea, Netherlands, Poland and USA. Each paper was
carefully reviewed by 3 members from the International Program Committee.
Based on the quality of the submissions and their relevance to the workshop
themes, the Program Committee accepted 5 papers to be included in the work-
shop proceedings.

We would like to thank all the members of the Program Committee for review-
ing the papers in a very short time period. We are grateful to all the colleagues
who submitted papers to GPWW. We would also like to thank the organizers of
BPM 2006 for their cooperation and partnership. Finally, we acknowledge the
professional support from Springer, who published the proceedings in its LNCS
series.

June 2006 Yun Yang
Jun Shen
Jun Yan

Jinjun Chen
(Editors)

Workshop Organization

Organizers

Yun Yang, Swinburne University of Technology, Australia
Jun Shen, University of Wollongong, Australia
Jun Yan, University of Wollongong, Australia
Jinjun Chen, Swinburne University of Technology, Australia

International Program Committee

Ilkay Altintas, San Diego Supercomputing Center, UCSD, USA
Boualem Benatallah, University of New South Wales, Australia
Rajkumar Buyya, The University of Melbourne, Australia
Ewa Deelman, University of Southern California, USA
Schahram Dustdar, Vienna University of Technology, Austria
Geoffrey Fox, Indiana University, USA
Volker Gruhn, Leipzig University, Germany
John Grundy, Auckland University, New Zealand
Vassilios Karakostas, City University London, UK
Kwei-Jay Lin, University of California at Irvine, USA
Chengfei Liu, Swinburne University of Technology, Australia
Michael Schrefl, University of Linz, Austria
Markus Stumpter, University of South Australia, Australia
Kunal Vemar, University of Georgia, USA
Jian Yang, Macquarie University, Australia
Hai Zhuge, Institute of Computing Technology, CAS, China

External Reviewers

Georg Grossmann, Australia
Aneesh Krishna, Australia
Jia Yu, Australia
Xiaohui Zhao, Australia

Advances in Semantics for Web Services
(semantics4ws 2006)

Preface

These proceedings contain the papers accepted for presentation at the “Advances
in Semantics for Web services (semantics4ws 2006)” workshop held in Vienna,
Austria, on September 4, 2006, in conjunction with the Fourth International
Conference on Business Process Mangement (BPM 2006).

The main topics of this workshop are related to applicability of semantic tech-
nologies to Web services. Web services have added a new level of functionality to
the current Web by taking a first step towards seamless integration of distributed
software components using Web standards. Nevertheless, current Web service
technologies around SOAP, WSDL and UDDI operate at a syntactic level and,
therefore, although they support interoperability (i.e., interoperability between
the many diverse application development platforms that exist today) through
common standards, they still require human interaction to a large extent. For
example, the human programmer has to manually search for appropriate Web
services in order to combine them in a useful manner, which limits scalability
and greatly curtails the added economic value envisioned with the advent of Web
services.

Recent research (which we refer to as Semantic Web Services – SWS), which
draws on a variety of fields such as Semantic Web, knowledge representation,
formal methods, software engineering, process modeling, workflow, and software
agents, is gaining momentum, in particular in the context of Web services us-
age. Research in the above mentioned fields can be exploited to automate Web
services-related tasks, like discovery, selection, composition, mediation, monitor-
ing, and invocation, thus enabling seamless interoperation between them while
keeping human intervention to a minimum. Although several initiatives, like
OWL-S, WSMO, WSDL-S, or IRS, have emerged in this area aiming at address-
ing the problem of semantics in Web services, many major challenges still need
to be addressed and solved in this field.

In this context, this workshop aims to provide a forum in which to focus on
selected core technical challenges for deployment of Semantic Web Services, and
reach a better understanding of the relationships between commercial Web ser-
vice standards, current SWS research efforts, and the ultimate requirements for
full-scale deployment of these technologies. More specifically, this workshop aims
to tackle the research problems (as well as recent practical experiences) around
methods, concepts, models, languages and technology that enable semantics in
the context of Web services, as well as discussing recent advances in semantics
for Web services. Of particular interest are the architectural, technical, and de-
velopmental foundations of SWS, and showing how they combine synergistically

432 Preface

to enable service automation on the scale required by today’s Internet-connected
enterprises.

This workshop aims to bring together researchers and industry practition-
ers (e.g., leading modelers, architects, system vendors, open-source projects,
developers, and end-users) addressing many of these issues (including recent
developments in tools and techniques, and real-world implementations of SWS
applications), and promote and foster a greater understanding of how semantics
can assist automation in Web services, thus helping people develop and manage
services more efficiently and effectively.

The workshop organizers would like to thank the authors for their high-
quality submissions and the members of the program committee for their re-
viewing and review coordination efforts.

June 2006 Steven Battle
John Domingue

David Martin
Dumitru Roman

Amit Sheth
(Editors)

Workshop Organization

Program Chairs

Steven Battle, Hewlett-Packard Labs, UK
John Domingue, The Open University, UK
David Martin, SRI International, USA
Dumitru Roman, DERI Innsbruck, Austria
Amit Sheth, University of Georgia, USA

Program Committee

Rama Akkiraju, IBM, USA
Abraham Bernstein, University of Zurich, Switzerland
Carine Bournez, W3C, France
Jorge Cardoso, University of Mediera, Portugal
Sanjay Chaudhary, DA-IICT, India
Emilia Cimpian, DERI Innsbruck, Austria
Marin Dimitrov, Ontotext, Bulgaria
Dieter Fensel, DERI Innsbruck, Austria
Karthik Gomadam, University of Georgia, USA
Michael Gruninger, University of Toronto, Canada
Sung-Kook Han, Won Kwang University, South Korea
Rick Hull, Lucent, USA
Deepali Khushraj, Nokia, Finland
Michael Kifer, State University of New York at Stony Brook, USA
Michael Maximilien, IBM, USA
Sheila McIlraith, University of Toronto, Canada
Brahim Medjahed, University of Michigan, USA
Adrian Mocan, DERI Innsbruck, Austria
Massimo Paolucci, DoCoMo Euro-Labs, Germany
Brahmananda Sapkota, DERI Galway, Ireland
Tony Shan, Wachovia Bank, USA
Monika Solanki, De Montfort University, UK
Ioan Toma, DERI Innsbruck, Austria
Stuart Williams, HP Bristol, UK

External Reviewers

Alessio Gugliotta
Farshad Hakimpour
Stijn Heymans
Carlos Pedrinaci

James Scicluna
Kunal Verma
Christoph Kiefer

Table of Contents

Workshop on Business Process Design (BPD 2006)

Preface . 3
Tom Davenport, Selma Mansar, Hajo Reijers, Michael Rosemann

Designing Compliant Business Processes with Obligations
and Permissions . 5

Stijn Goedertier, Jan Vanthienen

Design Methods for Collaborative Emergent Processes 15
Igor Hawryszkiewycz

Process Design Strategies to Address Breadth and Depth Complexity 25
Michael Soanes

Improving Business Process Models with Reference Models
in Business-Driven Development . 35

Jochen M. Küster, Jana Koehler, Ksenia Ryndina

ERP Reference Process Models: From Generic to Specific 45
Avi Wasser, Maya Lincoln, Reuven Karni

Business Process Design by View Integration . 55
Jan Mendling, Carlo Simon

An Approximate Analysis of Expected Cycle Time in Business Process
Execution . 65

Byung-Hyun Ha, Hajo A. Reijers, Joonsoo Bae, Hyerim Bae

Workshop on Business Process Intelligence
(BPI 2006)

Preface . 77
Malu Castellanos, Domenico Saccà, Ton Weijters

A Generic Import Framework for Process Event Logs 81
Christian W. Günther, Wil M.P. van der Aalst

Improving Exception Handling by Discovering Change Dependencies
in Adaptive Process Management Systems . 93

Barbara Weber, Werner Wild, Markus Lauer, Manfred Reichert

VIII Table of Contents

Process Mining and Petri Net Synthesis . 105
Ekkart Kindler, Vladimir Rubin, Wilhelm Schäfer

A Discourse on Complexity of Process Models . 117
J. Cardoso, J. Mendling, G. Neumann, H.A. Reijers

Measuring Performance in the Retail Industry . 129
Gerasimos Marketos, Yannis Theodoridis

Process Mining by Measuring Process Block Similarity 141
Joonsoo Bae, James Caverlee, Ling Liu, Hua Yan

Process Representation and Reasoning Using a Logic Formalism
with Object-Oriented Features . 153

Andrea Gualtieri, Tina Dell’Armi, Nicola Leone

Workshop on Dynamic Process Management
(DPM 2006)

Preface . 167
Manfred Reichert, Kunal Verma, Andreas Wombacher

A Declarative Approach for Flexible Business Processes
Management . 169

M. Pesic, W.M.P. van der Aalst

Flexibility of Data-Driven Process Structures . 181
Dominic Müller, Manfred Reichert, Joachim Herbst

Business Rules Segregation for Dynamic Process Management
with an Aspect-Oriented Framework . 193

Semih Cetin, N. Ilker Altintas, Remzi Solmaz

A Dynamic Workflow Management System for Coordination
of Cooperative Activities . 205

François Charoy, Adnene Guabtni, Miguel Valdes Faura

Agile Processes Through Goal- and Context-Oriented Business Process
Modeling . 217

Birgit Burmeister, Hans-Peter Steiert, Thomas Bauer,
Hartwig Baumgärtel

Table of Contents IX

Workshop on Enterprise and Networked Enterprises
Interoperability (ENEI 2006)

Preface . 231
Nacer Boudjlida, Hervé Panetto

Session 1: Enterprise Systems Interoperability
Issues

Shop Floor Information Management and SOA . 237
Konrad Pfadenhauer, Burkhard Kittl, Schahram Dustdar,
David Levy

Product-Driven Enterprise Interoperability for Manufacturing Systems
Integration . 249

Michele Dassisti, Hervé Panetto, Angela Tursi

Understanding Interdependence in Enterprise Systems: A Model
and Measurement Formalism . 261

Ronald E. Giachetti

Session 2: Model-Based Approach for Enterprise
Interoperability

Semaphore – A Model-Based Semantic Mapping Framework 275
Andreas Limyr, Tor Neple, Arne-Jørgen Berre, Brian Elvesæter

B2B Protocol Construction as a Basis for Integration Architecture
Configuration . 285

Bettina Bazijanec, Klaus Turowski

A P2P Approach for Business Process Modelling and Reuse 297
José A. Rodrigues Nt., Jano Moreira de Souza, Geraldo Zimbrão,
Geraldo Xexéo, Eduardo Neves, Wallace A. Pinheiro

Session 3: Ontology-Based Approach for Enterprise
Interoperability

Interoperable and Multi-flow Software Environment: Application
to Health Care Supply Chain . 311

Pierre Féniès, Michel Gourgand, Sophie Rodier

X Table of Contents

An Architecture for Proactive Timed Web Service Compositions 323
Johann Eder, Horst Pichler, Stefan Vielgut

Ontology Knowledge Spaces for Semantic Collaboration in Networked
Enterprises . 336

Silvana Castano, Alfio Ferrara, Stefano Montanelli

About Semantic Enrichment of Strategic Data Models as Part
of Enterprise Models . 348

Claudia Diamantini, Nacer Boudjlida

Workshop on Grid and Peer-to-Peer Based
Workflows (GPWW 2006)

Preface . 363
Yun Yang, Jun Shen, Jun Yan, Jinjun Chen

Requirements for a Workflow System for Grid Service Composition 365
Niels Joncheere, Wim Vanderperren, Ragnhild Van Der Straeten

Web Services Composition in Autonomic Grid Environments 375
Danilo Ardagna, Silvia Lucchini, Raffaela Mirandola,
Barbara Pernici

Event-Based Peer-to-Peer Process Enactment for Ubiquitous Web
Service Devices . 387

Jae-Yoon Jung, Jonghun Park, Seung-Kyun Han, Kangchan Lee

Expressing Business Process Models as OWL-S Ontologies 400
Muhammad Ahtisham Aslam, Sören Auer, Jun Shen,
Michael Herrmann

Combining i* and BPMN for Business Process Model Lifecycle
Management . 416

George Koliadis, Aleksandar Vranesevic, Moshiur Bhuiyan,
Aneesh Krishna, Aditya Ghose

Advances in Semantics for Web Services
(semantics4ws 2006)

Preface . 431
Steven Battle, John Domingue, David Martin, Dumitru Roman,
Amit Sheth

Table of Contents XI

The Semantics of Business Service Orchestration . 435
Bill Karakostas, Yannis Zorgios, Charalampos C. Alevizos

Requirements for Automated Service Composition . 447
Harald Meyer, Dominik Kuropka

Semi-automatic Semantic-Based Web Service Classification 459
Miguel Ángel Corella, Pablo Castells

Modeling, Matching and Ranking Services Based
on Constraint Hardness . 471

Claudia d’Amato, Steffen Staab

Version Management in Semantic Web Services Using OWL-S 483
Maria Cecilia Bastarrica, Carlos Hurtado, Alejandro Vaisman

BPEL Behavioral Abstraction and Matching . 495
Nomane Ould Ahmed M’bareck, Samir Tata

Author Index . 507

Workshop on Business Process
Design (BPD 2006)

Workshop of Business Process
Design (BPD 2006)

Preface

Business Process Management (BPM) remains of high popularity as a paradigm
for the evaluation and design of organizational and IT systems as well as an
increasingly attractive domain for academic research. There are definite signs of
maturity in the operationalization and value generation of process-based man-
agement approaches and communities of practice (e.g., BPMG.org), and events
like the annual Business Process Management conference contribute to a fast
growing body of knowledge on BPM.

However, it is surprising to note that the actual process of process management
still remains largely unstructured. Unlike other areas such as Project Management
(e.g., PMBOK) or Software Engineering (e.g., Spiral Model, RUP), the Business
Process Management community lacks a well-accepted and empirically evaluated
proceduremodel.This is evenmoredisturbingas“process” is thecore focusofBPM.

On the one hand, a high number of idiosyncratic methodologies have been
developed in-house or are distributed as vendorized packages by consulting com-
panies. Furthermore, related concepts such as Six Sigma are often used in prac-
tice as the main reference point for the design of BPM initiatives. On the other
hand, the academic community tends to focus its attention on the intellectually
stimulating parts of the business process lifecycle such as issues related to mod-
eling and executing business processes. The core challenge of a BPM initiative,
generating improved, more compliant or entire new business processes, however,
seems to remain based on the ATAMO principle (“and then a miracle occurs”).

The aim of this Second Workshop on Business Process Design was to con-
tinue the discussion initiated at last year’s event and to further nurture the
development of a body of knowledge on the disciplined, well-understood and
appropriately evaluated design of business processes.

The Call for Papers for this workshop attracted 12 high quality international
submissions. Within a rigorous process, in which each paper was reviewed by at
least two experts, we selected 7 papers for inclusion in this workshop.

We are very grateful to the efforts of all authors related to writing, revising
and presenting their papers. Finally, we appreciate the indispensable support of
the members of the Program Committee who provided excellent feedback and
valuable directions.

June 2006 Tom Davenport
Selma Mansar

Hajo Reijers
Michael Rosemann

(Editors)

Workshop Organization

Co-chairs

Tom Davenport Hajo Reijers
School of Executive Education Department of Technology Management
Babson College at Wellesley Eindhoven University of Technology
Babson Park, MA 02457-0310 5600 MB, Pav.D14, Eindhoven
USA The Netherlands

Selma Limam Mansar Michael Rosemann
College of Business Sciences BPM Research Group
Zayed University Queensland University of Technology
P.O. BOX 19282, Dubai 126 Margaret Street, Brisbane Qld 4000
U.A.E. Australia

Workshop Program Committee

Wil van der Aalst (The Netherlands)
Wasana Bandara (Australia)
Hyerim Bae (Korea)
Injun Choi (Korea)
Leonid Churilov (Australia)
Eric Deakins (New Zealand)
Peter Green (Australia)
Lilia Gzara (France)
Kees van Hee (The Netherlands)
Monique Jansen-Vullers

(The Netherlands)

Peter Kueng (Switzerland)
Jan Mendling (Austria)
Trevor Naidoo (USA)
Stephan Poelmans (Belgium)
Brad Power (USA)
Manfred Reichert (The Netherlands)
Andrew Spanyi (USA)
Robert van der Toorn

(The Netherlands)
Roger Tregear (Australia)
Michael zur Muehlen (USA)

Designing Compliant Business Processes with
Obligations and Permissions

Stijn Goedertier and Jan Vanthienen

Department of Decision Sciences & Information Management,
Katholieke Universiteit Leuven, Belgium

myFirstName.myLastName@econ.kuleuven.be

Abstract. The sequence and timing constraints on the activities in busi-
ness processes are an important aspect of business process compliance. To
date, these constraints are most often implicitly transcribed into control-
flow-based process models. This implicit representation of constraints,
however, complicates the verification, validation and reuse in business
process design. In this paper, we investigate the use of temporal deontic
assignments on activities as a means to declaratively capture the control-
flow semantics that reside in business regulations and business policies.
In particular, we introduce PENELOPE, a language to express temporal
rules about the obligations and permissions in a business interaction, and
an algorithm to generate compliant sequence-flow-based process models
that can be used in business process design.

1 Motivation and Methodology

Nowadays there is an increased pressure on companies to guarantee compliance
of their business processes with business policy, the whole of internally defined
business constraints, and business regulations, the whole of externally imposed
business constraints. The obligation to guarantee compliance, whether imposed
by management, customers, governments or financial markets, is often the main
driver for business process automation. The downside to automating business
processes, however, is that ill-conceived automation can make business processes
more difficult to adapt to ever changing business policies and regulations. As
such, automated business processes risk to become in time an impediment to
compliance, rather than a enabler. Consequently, reconciling compliance and
flexibility is a major concern in business process design.

Companies often only implicitly think about business policy and regulations
when they design business processes and pay little attention to avoid hard-
coding policies and regulations directly in control-flow based process models.
What is lacking is a more declarative approach in business process design in
which business policy and regulations are made explicit in terms of definitions
and constraints. The sequence and timing constraints on the activities in busi-
ness processes, known as control flow, are an important aspect of compliance.
In a software-release process, for instance, a new version may only be put in
production after it has been tested and approved. Similarly, in an order-to-cash

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 5–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

6 S. Goedertier and J. Vanthienen

process, an order may only be shipped by the dispatching office after it has been
accepted by a salesperson. Designers often think implicitly about these kinds
of permissions and obligations when modeling the control-flow perspective of
business processes.

In this paper we show how the logic behind the obligations and permissions
can be made explicit in the form of temporal deontic assignments that can
be (re)used in business process design. To verify and validate such a set of
deontic assignments, we show how to generate a compliant control-flow-based
process model from it. The generated process model is not intended for process
execution, but can rather be used by the process designer for verification and
validation. Moreover, the generated process model allows the designer to identify
the decision points and all possible violations of obligations, i.e. exceptions, that
can occur.

The remainder of this article is structured as follows. In section 2 we discus the
relevant literature on the use of constraints in obtaining business process com-
pliance and flexibility. In section 3, we formally introduce PENELOPE (Process
ENtailment from the ELicitation of Obligations and PErmissions), a language
to express temporal deontic assignments. Next, we discuss some issues in the
verification and validation of temporal deontic assignments. Finally, in section
5 we define and illustrate the algorithm to generate control-flow based process
models from a rule set of obligations and permissions.

2 Related Work

Recently, there is an increased pressure by governments and financial markets on
companies to guarantee compliance with corporate governance regulations.
Frameworks such as ITIL and COBIT lay down control objectives for specific pro-
cesses in an IT organization. The Sarbanes-Oxley Act imposes the design of in-
ternal controls to prevent fraud for the whole company in general and for the IT
organization in particular. Our work focusses on the use of business rules in design-
ing compliant business processes. Different categories of business rules can be used
to declaratively specify the control-flow (sequence and timing of activities), data
(data validation and requirements) and resource perspectives (task allocation and
data access rights) on business processes [1]. In this paper we focus on obtaining a
compliant ordering and timing of activities. The subject of compliance, however, is
broader than these control flow concerns and comprises issues like the introduction
of control steps, separation of duties, the four-eyes principle...

Business process languages such as UML Activity Diagrams, BPMN, Event-
Process-Chains, etc. are most often based on the control-flow paradigm, and
define an explicit order relation between the activities in the process. These or-
der relations even occur in the case handling paradigm, in which a preferred or
normal control-flow is defined between activities [2]. What is lacking is a declar-
ative approach that makes the partial order relations due to legal requirements
more explicit. Bons et al. [3] identify this need to incorporate the legal state into
the model of a trade procedure. To this end, the authors propose to annotate

Designing Compliant Business Processes with Obligations and Permissions 7

the states in Petri nets with a description of the deontic state. Regulations can
be specified between the business partners in a business collaboration (between
external agents). In this context regulations are called business protocols [4] or
business contracts. Several authors describe a language for intelligent agents to
reason about contract state [5] [6] [7] [8]. The objective of this paper differs in
that it does not consider the execution-time monitoring of business contracts, but
rather considers the impact of sequence and timing constraints on business pro-
cess design. The issue of compliance is of course also relevant during the diagnosis
phase of the BPM life-cycle, in which a conformance check between the sequence
and timing constraints and the logged process instances could be possible [9].

3 The PENELOPE Language

Deontic logic is a logic for representing and reasoning about deontic concepts
such as obligation, permission, prohibition and waived obligation. Various ax-
iomatizations of deontic logic have been proposed with considerable extensions
to Føllesdal and Hilpinen’s Standard Deontic logic (SDL) [10]. Broersen et al.
use CTL [11] to express the notion of deadline obligations [12]. Several authors
have built a Deontic Logic [5] [6] [7] using the Event Calculus formalism, for
which Shanahan provides suitable axiomatizations [13]. In these works deontic
properties are represented as fluents, such that it is possible to represent and
reason about the effects of activities on the obligations and permissions of actors.
Table 1 enumerates some of the deontic fluents and axioms we use to represent
temporal deontic assignments.

PENELOPE is different from existing languages mainly because it is designed
with a purpose to generate compliant control-flow-based process models from a
rule set of permissions and obligations. In order to distinguish necessity from
possibility in business policy and regulations, the language considers the deon-
tic modalities of obligation, conditional commitment and permission, whereas
other languages only consider commitments and conditional commitments [6]
[7]. PENELOPE does not consider prohibition or waived obligation. Prohibition
is assumed, however, if neither permission nor obligation can be derived. The
exclusion of prohibition and waiver prevents a lot of anomalies [14]. Some im-
plementations of Deontic logic interpret deontic assignments as the obligation
to bring about a certain proposition, others see it as the obligation to perform
a certain activity. Because PENELOPE aims at entailing process models from
deontic assignments, activities rather than propositions are the object of de-
ontic assignments. This also allows us to model compound activities such as
Xor(AcceptOrder, RejectOrder). Unlike other languages, PENELOPE allows
to explicitly define deadlines on the performance of activities in terms of the
performance of previous activities. When an agent performs an obligation or
permission within due time, the permission or obligation ceases to exist. This
is expressed in axioms 1 and 2. Conversely, not performing an obligation within
due date leads to a violation, as described in axiom 3. Business policies or regula-
tions might provide so-called reparation, or contrary-to-duty, obligations to deal

8 S. Goedertier and J. Vanthienen

with violations [8]. Because we want to capture the semantics of both external
regulations and internal business policy, we need to express deontic assignments
to both external and internal agents involved in a business interaction. Internal
agents in business policies are subordinate to the external agent they represent.
Activities performed by an internal agent resort in the same deontic fluents as
if they were performed by the representative external agent.

Table 1. Some deontic properties of PENELOPE [14]

term meaning

Xor(α1, α2) compound activity alpha1 XOR alpha2

Or(α1, α2) compound activity alpha1 OR alpha2

And(α1, α2) compound activity alpha1 AND alpha2

Oblig(π,α, δ) partner π must do activity α by due date δ
Perm(π,α, δ) partner π can do activity α prior to due date δ
CC(π,α1, δ1, α2, δ2) partner π must do activity α2 by due date δ2

after activity α1 is performed prior to due date δ1

(1) Terminates(α,Oblig(π,α, δ), τ) ← τ ≤ δ
(2) Terminates(α,Perm(π,α, δ), τ) ← τ ≤ δ
(3) Happens(V iolation(Oblig(π, α, δ)), δ) ←

HoldsAt((Oblig(π,α, δ)), δ)∧ � Happens(α, δ)
(4) Initiates(α1, Oblig(π, α2, δ2), τ) ←

τ ≤ δ1 ∧ HoldsAt(CC(π,α1, δ1, α2, δ2)), τ)
(5) Terminates(α1, CC(π, α1, δ1, α2, δ2), τ) ← τ ≤ δ1

We give an example to demonstrate the intuition behind PENELOPE. In an
order-to-cash business process the external roles of Buyer and Seller may be
distinguished. A seller can have, among others, the internal roles of Sales, and
Dispatch. In addition, the following externally visible activity types could exist:
PlaceOrder, AcceptOrder, RejectOrder, Pay and Ship. For these roles and
activities a number of temporal deontic assignments are displayed in Table 2.
Assignments 1 to 4 categorize the external business regulation payment-after-
shipment, specifying that payment takes place after shipment. Assignment 5,
however, is an internal business policy, specifying that no order may be shipped
without previously being accepted. These permissions and obligations impose
partial order constraints on the activities in a business processes. This set of
deontic assignments leads to the process model for both seller and buyer that is
displayed in Fig. 1.

4 Verifying and Validating Temporal Constraints

Temporal deontic assignments lay down the rules of interaction either between
business partners or among the internal agents of a business partner in particular.
Because temporal deontic assignments are the starting point for the design of

Designing Compliant Business Processes with Obligations and Permissions 9

Table 2. Payment-after-shipment

natural and formal expression

(1) Initially the buyer has the permission to place an order.
Initiallyp(Perm(Buyer,P laceOrder(Buyer,Seller)))
(2) When the seller accepts the order, the seller is committed to pay the seller,
one time unit after the seller ships.
Initiates(AcceptOrder(Seller,Buyer), CC(Buyer, Ship(Seller,Buyer), δs,
Pay(Buyer,Seller), δs + 1), τ)
(3) When the buyer places an order, the seller must
either accept or reject it within one time period
Initiates(P laceOrder(Buyer,Seller),Oblig(Seller,
Xor(Accept(Seller,Buyer),Reject(Seller, Buyer)), τ + 1), τ)
(4) When the seller accepts the order, the seller must ship within two time units.
Initiates(Accept(Buyer,Seller),Oblig(Seller, Ship(Seller,Buyer), τ + 2), τ)
(5) Only when sales accepts the order, dispatch may ship the order
Initiates(Accept(Sales,Buyer), P erm(Dispatch, Ship(Dispatch, Buyer), δ), τ)

a business’ private business processes they must be verified and validated. The
rich semantics and the availability of efficient reasoning procedures present new
opportunities for verification and validation. Without going into detail, we can
highlight deadlock, livelock, deontic conflict, temporal conflict and trust conflict
verification issues.

In a business interaction each legal scenario must lead to termination, a
state in which no obligations or permissions exist. In a deadlocks situation, no
permissible performance can carry the business interaction forward such that a
new state of permissions, obligations and conditional commitments exist. Such a
scenario might consist of two business partners having conditional commitments
towards each other, but the conditional performance to turn at least one of these
conditions into a base-level obligation is not permitted. For example, the buyer
has made the conditional commitment to pay upon delivery, whereas the seller
has made the conditional commitment to deliver upon payment. In a livelock
situation, the protocol state is trapped in an infinite loop. Notice that it is not
the occurrence of a loop that defines the livelock, but the occurrence of loops
without a permissible performance that leads to a deontic state outside the loop.

Deontic conflicts arise when there are protocol states in which a business
partner has both the permission and the prohibition to a performance or when
he has both an obligation and obligation waiver to a performance. Note, how-
ever, that it is not possible to have deontic conflicts in PENELOPE, because it
does not make use of prohibition and waiver modalities. Temporal conflicts
occur when two deontic assignments at the same time initiate and terminate
a permission, obligation or conditional commitment. In a business interaction
trust conflicts can also occur. This happens when a business interaction puts
the business in a position were it has direct obligations towards non-trusted busi-
ness partners that involve sensitive activities such as payment or the shipment of
goods, that are not neutralized by preceding performances of the opposite party.

10 S. Goedertier and J. Vanthienen

5 Generating State Space and Control Flow

In this section we introduce an algorithm do generate the state space of a set
of temporal deontic assignments. This state space can be used for verification
of the above mentioned anomalies. In addition, this state space can be mapped
to control-flow-based process models for each of the business partners in the
interaction. Generated process models are not intended for process execution,
but can rather be used by the process designer for validation and allow to identify
the decision points and possible violations of obligations that can occur.

To generate the process model for a role in a business interaction, one must
analyze the temporal obligations and permissions that hold at certain points
in time, given certain narratives of activity performances N . To this end, the
expressions below define sets of obligations O(τ) and permissions P (τ) that hold
at state τ , sets of obligations Od(δ) and permissions Pd(δ) that are due at state
δ and a set of violations without reparation V WR(τ) that happen at state τ .
Notice that a narrative of activity performances N is implicitly assumed in each
of these expressions.

O(τ) = {α : HoldsAt(Oblig(π, α, δ), τ)} (1)
P (τ) = {α : HoldsAt(Perm(π, α, δ), τ)} (2)

Od(δ) = {α : HoldsAt(Oblig(π, α, δ), δ)} (3)
Pd(δ) = {α : HoldsAt(Perm(π, α, δ), δ)} (4)

V WR(τ) = {α : Happens(violation(Oblig(π, α, δ)), τ),
¬∃Initiates(violation(Oblig(π, α, δ)), o, τ)} (5)

A state τ in our state space corresponds to a set of obligations O(τ), per-
missions P (τ) and conditional commitments CC(τ) that hold this state. State
transitions are defined differently in PENELOPE than in the commitment space
defined by Yolum [15]. In PENELOPE a business interaction can move from a
state τ1 to a state τ2 if there exists a narrative N of permissible performances,
between states τ1 and τ2, such that the performance of the activities makes the
same deontic fluents hold at state τ2 that are contained by state τ2. Under the
assumption that no cycles can occur in the interaction, the state space can be
represented as a directed acyclic graph. To efficiently enumerate a state space
beyond a state τ , it suffices to perform all different combinations of permissible
performances that are due at the earliest due date of the obligations and per-
missions that hold in state τ . Figure 2 enumerates the state space of the deontic
assignments of the order-to-cash business process in Table 2. A state τ is an
end state if no obligations or permissions hold at τ or if there exist violations
without reparation.

endState(τ) ⇔ O(τ) ∪ P (τ) = ∅ ∨ V WR(τ) �= ∅ (6)

Temporal deontic assignments to internal and external agents in a business
interaction impose partial order constraints on the activities that are carried
out. The problem of generation the control-flow for a particular role in a set of

Designing Compliant Business Processes with Obligations and Permissions 11

B
U

Y
E

R

payment-after-shipment

placeOrder

pay

[violation(obligation(seller, xorr(acceptOrder(seller,
buyer), rejectOrder(seller, buyer)), 2))]

acceptOrder(seller, buyer)

[violation(obligation(seller,
ship(seller, buyer), 4))]

ship(seller, buyer)

rejectOrder(seller, buyer)

acceptOrder ship

rejectOrder

placeOrder(buyer, seller)

[violation(obligation(buyer,
pay(buyer, seller), 5))]

pay(buyer, seller)

S
E

L
L

E
R

Fig. 1. Two process models generated by PENELOPE

temporal deontic assignments can either be under specified, even specified or over
specified. A problem is under specified if no unique sequence flow can be entailed.
For even and over specified problems, a unique sequence flow can be derived,
provided that the deontic assignments contain no anomalies such as livelocks,
deadlocks or contradictions. Given rules 1 to 4 in the example of Table 2, the
generation problem is even specified. Adding rule 5 makes the problem over
specified, but introduces no contradictions.

We have implemented the PENELOPE language in CLP(fd). In addition we
have constructed an algorithm in Prolog to generate a proprietary XML file with
the BPMN process model for all external roles in a set of deontic assignments.
From this XML file a Microsoft Visio Add-in was written to draw the generated
model. We have chosen the BPMN because its visualizations allow us to model
external events and exceptions in control-flow. We make use of well-understood
and general control flow constructs such as sequence, XOR-split, AND-split, etc.
However, due to lack of space and because the process model is intended to
facilitate validation for the process designer, we do not clearly formulate the
process modeling language used.

The algorithm, of which a summary in pseudo-code is provided below, pro-
gressively enumerates all states in the state space and draws the BPMN model
for role π. Whenever during state transitions the role π performs activities, this
is modeled as a task. Whenever another role performs an activity of which π is
a recipient, this is modeled as a message event. The drawing logic of the algo-
rithm is represented by a large number of IF-THEN rules. In the algorithm the
obligations and permissions of role π that are due at state δ are contained by

12 S. Goedertier and J. Vanthienen

[permission(buyer,
placeOrder(buyer,

seller), 0)]

[obligation(seller,
xorr(acceptOrder(se

ller, buyer),
rejectOrder(seller,

buyer)), 2)]

[obligation(seller,
ship(seller, buyer),

4)]

[obligation(buyer,
pay(buyer, seller),

5)]

[violation(obligation(
buyer, pay(buyer,

seller), 5))]

[violation(obligation(
seller, ship(seller,

buyer), 4))]

[violation(obligation(
seller,

xorr(acceptOrder(…
, ...), rejectOrder(…,

...)), 2))]

[placeOrder(buyer, seller)] [acceptOrder(seller, buyer)]

[ship(seller, buyer)] [pay(buyer, seller)]

[]

[]

[rejectOrder(seller, buyer)]

[]

[]

Fig. 2. The state space of the example deontic assignments

the sets Od(π, δ) and Pd(π, δ). A generated process model for a particular role
π must not violate the obligations for which no violation is allowed. Therefore,
whenever the set PO(π, δ) contains obligations to fulfil, these are drawn as tasks
in BPMN. By way of precaution, a generated process model for a particular role
π must foresee the possibility that other business partners violate obligations.
For instance, when a buyer places an order, he must foresee never to receive
a rejection or acceptance from the seller. Violations of obligations can only be
detected if the due dates on obligations are timed during process enactment.
This is represented in the BPMN model using intermediate timeout events. The
obligations and permissions towards role π due at time δ are contained in the
sets OTP (π, δ) and PTM(π, δ). In a state in which a violation occurs for which
no reparation exists, an error end event is drawn. Notice that process design can
only identify exceptions, it is up to the process modeler to properly deal with
them. In some cases, the deontic conflicts between business partners might be
resolved through human interaction.

1 PO(π, δ) = {α : HoldsAt(Oblig(π,α, δ), δ)}
2 PP (π, δ) = {α : HoldsAt(Perm(π,α, δ), δ)}
3 OTP (π, δ) = {α : HoldsAt(Oblig(φ,α, δ), δ), recipient(α) = π}
4 PTP (π, δ) = {α : HoldsAt(Perm(φ,α, δ), δ), recipient(α) = π}
5 OO(π, δ) = {α : HoldsAt(Oblig(φ,α, δ), δ), φ �= π}
6 OP (π, δ) = {α : HoldsAt(Perm(φ,α, δ), δ), φ �= π}
7 drawControlFlow(π, τ)
8 if ¬endState(S(τ)) then
9 δ ← earliestDueDate(τ)
10 if {α : α ∈ PO(π, δ), atomic(α)} �= ∅ then draw tasks in sequence
11 if {and(α1, α2) : and(α1, α2) ∈ PO(π, δ)} �= ∅ then draw tasks in parallel
12 if ∃xor(α1, α2) ∈ PO(π, δ) or PP (π, δ) �= ∅ then draw XOR gateway
13 ACs ← allCombinations(OO(π, δ) ∪ OP (π, δ) ∪ PP (π, δ))
14 forall AC ∈ ACs
15 As ← AC ∪ PO(π, δ)

Designing Compliant Business Processes with Obligations and Permissions 13

16 if ∃α : α ∈ As, α ∈ xor(α1, α2), xor(α1, α2) ∈ PO(π, δ) then draw task α

17 if ∃α : α ∈ As, atomic(α), α ∈ PP (π, δ) then draw (start event and) task α

18 if ∃α : α ∈ As, α ∈ xor(α1, α2), xor(α1, α2) ∈ PP (π, δ)
19 then draw (start event and) task α

20 if ∃α1, α2 : α1 ∈ As, α2 ∈ As, and(α1, α2) ∈ PP (π, δ)
21 then draw (start event and) tasks α1, α2 in parallel
22 if OTP (π, δ) ∪ PTP (π, δ) �= ∅ then (draw event gateway)
23 if ∃α : α ∈ OTP (π, δ), α ∈ As then draw start/intermediate event α

24 if ∃α : α ∈ OTP (π, δ), α /∈ As then draw intermediate timeout event α

25 if ∃α : α ∈ PTP (π, δ), α ∈ As then draw start/intermediate event α

26 perform activities As

27 drawControlFlow(π, δ)
28 revoke activities As

29 end forall
30 else
31 if {ν : ν ∈ V TM(π, δ)} �= ∅ then draw error end event
32 if ¬∃ν : ν ∈ V TM(π, δ) then (draw end event)
33 end if

6 Conclusion

The sequence and timing constraints on the activities in business processes are
an important aspect of compliance. In this paper, we present an approach that
declaratively captures these constraints, with the purpose of (re)using them in
business process design. Rather than modeling precedence relations for one busi-
ness partner in a particular process, PENELOPE focuses on what can or must be
done at certain points in time, by all business partners, in order to achieve their
business goals, without considering one business process model in particular.

The third party perspective on the modeling of sequence and timing con-
straints makes it possible for external deontic assignments to be shared among
process designers of different organizations. In addition, deontic assignments are
autonomous units of business logic that hold in general rather than for one par-
ticular business process. A such, changes to sequence and timing aspects in busi-
ness policy and regulations can be translated into temporal deontic assignments
that potentially constrain multiple business process models. The generation of
individual process models from temporal deontic assignments is not intended
as a means for process execution, but to be used by the process designer for
verification and validation. Moreover, this explicit generation of control flow can
be used to identify the freedom of choice that is left by the sequence and tim-
ing constraints. It is up to the designer of the process to decide whether this
freedom of choice is to be filled in at design-time or at runtime. In addition,
the automatic generation of control flow contains an enumeration of all possi-
ble violations of obligations by other agents that allows the process designer to
anticipate exceptions in current business process design.

14 S. Goedertier and J. Vanthienen

References

1. Goedertier, S., Vanthienen, J.: Compliant and Flexible Business Processes with
Business Rules. In: CAiSE’06 Workshop BPMDS’06, Proceedings. (2006) forth-
coming.

2. Reijers, H.A., Rigter, J.H.M., van der Aalst, W.M.P.: The case handling case. Int.
J. Cooperative Inf. Syst. 12(3) (2003) 365–391

3. Bons, R.W.H., Lee, R.M., Wagenaar, R.W., Wrigley, C.D.: Modelling inter-
organizational trade using documentary petri nets. In: HICSS (3). (1995) 189–198

4. Bussler, C.: The role of B2B protocols in inter-enterprise process execution. In:
TES ’01: Proceedings of the Second International Workshop on Technologies for
E-Services, London, UK, Springer-Verlag (2001) 16–29

5. Maŕın, R.H., Sartor, G.: Time and norms: a formalisation in the event-calculus. In:
ICAIL ’99: Proceedings of the 7th international conference on Artificial intelligence
and law, New York, NY, USA, ACM Press (1999) 90–99

6. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus:
An approach for specifying and executing protocols. Annals of Mathematics and
Artificial Intelligence 42(1-3) (2004) 227–253

7. Knottenbelt, J., Clark, K.: An architecture for contract-based communicating
agents. In: Proceedings of the 2nd Europ. Workshop on Multi-Agent Sys. (2004)

8. Governatori, G.: Representing business contracts in uleml. Int. J. Cooperative Inf.
Syst. 14(2-3) (2005) 181–216

9. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data
Knowl. Eng. 47(2) (2003) 237–267

10. Føllesdal, D., Hilpinen, R.: Deontic logic: An introduction. In Hilpinen, R., ed.:
Deontic Logic: Introductory and Systematic Readings. D. Reidel Publishing Com-
pany, Dordrecht (1971) 1–35

11. Clarke, E.M., Grumberg, O., Long, D.E.: Verification tools for finite-state con-
current systems. In de Bakker, J.W., de Roever, W.P., Rozenberg, G., eds.: REX
School/Symposium. Volume 803 of LNCS., Springer (1993) 124–175

12. Broersen, J., Dignum, F., Dignum, V., Meyer, J.J.C.: Designing a deontic logic
of deadlines. In Lomuscio, A., Nute, D., eds.: DEON. Volume 3065 of LNCS.,
Springer (2004) 43–56

13. Shanahan, M.: Solving the frame problem: a mathematical investigation of the
common sense law of inertia. MIT Press, Cambridge, MA, USA (1997)

14. Goedertier, S., Vanthienen, J.: Business Rules for Compliant Business Process
Models. In: Proceeding of the 9th International Conference on Business Information
Systems (BIS 2006). Volume P-85 of LNI., GI (2006)

15. Yolum, P.: Towards design tools for protocol development. In: AAMAS ’05, New
York, NY, USA, ACM Press (2005) 99–105

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 15 – 24, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Design Methods for Collaborative Emergent Processes

Igor Hawryszkiewycz

Department of Information systems
University of Technology, Sydney

igorh@it.uts.edu.au

Abstract. Organizations are often faced with managing a variety of processes.
These range from predefined to emergent. There has been very little work on
supporting emergent processes many of which are founded on collaboration
between process workers. A variety of technologies are available to support
collaboration. However, people in most business processes still use the basic
technologies such as e-mail or intranet information portals and do not fully
realize the advantages provided by emerging technologies. This paper describes
a method for extending collaboration beyond simple exchanges and into
collaborative work process support.

Keywords: Situation analysis, Collaboration, Knowledge Sharing.

1 Introduction

Business processes now range from predefined to emergent processes as shown in
Figure 1 using dataflow diagrams. Each circle in Figure 1 represents an activity. A
directed line between two circles shows how one activity follows another. One
extreme are predefined processes where steps follow a predefined sequence. At the
other extreme are emergent processes where the sequence of steps can change, as can
the actions taken in each step. In addition it is also often possible to create
unanticipated tasks. This often happens in planning or design. New ideas may come
up depending on the situation. Each idea may be evaluated using a prespecified
procedure or may require a new task to be introduced.

Fig. 1. Predefined and emergent processes

16 I. Hawryszkiewycz

This paper concentrates on design for emergent processes. There are a large
number of different kinds of emergent processes. These include:

• the capture of best practices [1] through sharing of knowledge,
• joint design of documents or other artifacts, or
• responding to a continually changing situation.

Although emergent processes differ, their most common characteristic is that they
are collaborative in nature. As a result, their design must go beyond supporting
defined process flows and functions. Design must also consider other factors
especially culture, policy, process, and management of an organization, and its goals.
Design must also consider various enables to foster team work and collaboration.
These factors themselves may change as the process emerges and consequently any
process support system must change with the process. Hence any design process is
multi-dimensional and dynamic.

There are also a number of alternatives for supporting collaboration. These include:

• A laizzes-faire approach where users choose technologies to meet local transient
goals,

• Adopting organizational wide infrastructure is developed with processes in place
for knowledge management [2].

• Providing a technical and information infrastructure that can be adapted by users
themselves for their particular situation, but which is integrated with the
organizations services.

This paper concentrates on the latter and ways that infrastructure can be adapted to
emergence as the situation changes, or the last of the above kinds of emergent
process. The paper will first describe the emergent process in more detail and then
address ways to support activities as the process emerges.

2 Modeling Emergent Processes

Figure 2 illustrates typical activities in an emergent process. Figure 2 illustrates the
activities by clouded shapes. Roles involved in the activities are represented by
circles and information by disks. These activities defined by Jacobs [3] for
emergency systems but are generally applicable to any evolving situation. A similar
example can be found in most planning situations. The activities illustrated in
Figure 2 are:

Identifying a situation, where first indications of an emerging situation, such as client
loss, become apparent and require responsible people to be informed. This
includes both external roles that report on the situation as well as internal roles
that distribute such information to people in effected units.

Situation assessment, which requires quick interchanges of information between a
variety of assessor roles to define the scale and nature of the situation, and
identify organizational units that must respond to the situation.

Course of action generation, by unit managers identifying response action and
resource requirements, and use organizational directories to identify tasks needed
to respond to the situation and identify responsibilities for these tasks.

 Design Methods for Collaborative Emergent Processes 17

Course of action selection, which selects a plan and assigns tasks to business units.
The kind of roles envisaged here are coordinator roles as well as task leaders and
members.

Execution Planning, where business units are assigned tasks and task leaders, and
team members assigned to carry out the tasks, and

Execution, where the task leaders and members carry out their designated tasks,
including coordination between business units.

Identifying a situation Situation assessment
Defining alternate
courses of action

Assessors

Local

Coordinator

Situation
description

Courses of
action

Selecting course
of action

Execution
planning

Execution

Execution
management

Task leader

Unit
manager

Organizational
directory

External
contact

Fig. 2. Activities in a typical situation

Apart from emergency situations, such a process is also common in other
applications characterized by changing situations. For example [4] describes a process
for strategic planning in the World Health organization. Here situation assessment is
the collection of data from many regions which is then assessed and alternate courses
of action suggested. These may be directing medical supplies or clearing a swamp.
Each of the activities includes a number of roles, with designated responsibilities.
These roles can coordinate tasks in the activities or who use their knowledge and
information to initiate new actions. People with the necessary qualification must be
assigned to each role. Process management now takes place more through assignment
of responsibilities and setting up relationships.

3 Defining the Dimensions in the Multi-dimensional Design
Process

Design of collaborative systems to support emergent processes is not a precise science
as it is dependent on many qualitative factors including organizational culture,

18 I. Hawryszkiewycz

community practices and structure and the purpose of the collaboration. The design
method must first identify and classify these factors before suggesting ways to
provide technology support. The design dimensions are illustrated in Figure 3.

Type of community

Community
parameters

Collaborative
levels

Open community
Small local team
Organization wide
team
Across organizations

Scope
Purpose
Culture
Work practice

Event notification
Document sharing
Work practice support
Joint work
Joint planning

Lightweight exchanges
Lightweight collaboration
Work coordination

(Lightweight workflows)
Process management
Large scale coordination

Technical
strategy

Relationship management
Task management
Team coordination
Process management

Individual/Collectivism
High/low context
Result or process oriented
Structured or mission

oriented groups
Dealing with uncertainty
Community values

Measures

Adding
value

Improve productivity of existing processes to
get additional business at small incremental cost

Encourage innovation through collaboration to
quickly create products to satisfy client needs

Improved delivery times through improved
processes by supporting communication

Improve relationships and task management to
collect and analyze information

Fig. 3. The Design Dimensions

Each dimension here itself is in itself and subject of study. For example culture has
been described by Hofstede [5] in parameters that include power distance,
individualism/collectivism, uncertainty avoidance, and context. Details of these can
be found in the literature. The paper concentrates technical strategies suggested in this
paper are:

Lightweight exchange primarily concerns exchange of messages between loosely
connected individuals. It usually supports an environment where people stay in
touch and share their responsibility but have no particular goal to achieve some
outcome.

Lightweight coordination now includes the need to proceed to some outcome,
although the outcome is decided as the process proceeds. Hence we now require
ways to set up tasks, create new tasks, and assign responsibilities for them.

Work Coordination where the goal is more specific and usually requires the setting up
of a plan and monitoring progress. The plan can be easily changed although the
goal is usually remains the same.

Process management, where goals are now precisely defined and processes strictly
followed.

The idea of lightweight exchange and collaboration was introduced by Whittaker
[6] to illustrate the kinds of technologies needed to establish and maintain productive
relationships. Lightweight collaboration goes further where the communication
exchange leads to some expected result as for example in [7] where a flexible

 Design Methods for Collaborative Emergent Processes 19

workflow was developed for review processes in digital libraries. Lightweight in this
sense means low entry barrier, flexible and web-based.

4 Choosing and Implementing Technologies

Technologies must be chosen to add business value to the organization. Technology is
not seen as a solution on its own but it requires other enablers to achieve desired
levels of collaboration [8]. Figure 4 illustrates the top-level approach to design. Here
we define the required business value and match it to collaboration level and then
define the required enablers. These enablers together with the collaboration level
provide the guidelines for choosing the technical strategy. We now define the
collaboration level followed together with the required enablers.

Collaborative
levels

Technical
strategy

Business
value

Technology
selection to attain

required
collaboration level

Identify collaboration
level and enablers

to realize value

Cultural
aspects

Process
aspects

People skills and
responsibilities

Governance and
structure

Fig. 4. Design Choice Process

4.1 Measures

Measures are here considered to be those that specifically support creation of business
value. Collaboration is defined in terms of levels. Usually collaboration starts with
event notification, which simply concerns notifying people of changes that can impact
on their work. Then document sharing is added to ensure that people are provided
with information needed to carry out their responsibilities. Subsequent levels are more
complex as they require more intense interaction to coordinate activities. Work
process support, requires a precise definition of the way that collaboration takes place.
It includes the definition of responsibilities of identified roles. The specific rules may
define the expertise needed to define a solution, the risk assessment, budgetary
evaluation, legal aspects and so on. The structure of documents may also be
specifically defined. Joint work goes further in that many of the activities may be
carried out synchronously thus reducing completion time. Joint goal setting is where
involved units together plan and agree on their work processes. This level often
requires support for asynchronous work as goal setting often includes resolving many
imprecisely defined alternatives.

20 I. Hawryszkiewycz

Table 1. Levels of Collaboration and Related Enablers

Collaboration Level Knowledge requirements

Collaboration level 1 - Event notification,
where roles are informed of any changes
that effect the roles

People responsibilities in the
organization and their expertise and
availability to direct alerts.

Collaboration level 2 - Document Sharing,
where documents are distributed between
responsible roles. Typical example is the
capture of best practices.

Building of trust. Reward systems for
participation. Information
requirements of different roles.
Facilitate learning about practices.

Collaboration level 3 - Work process
support, which often defines monitoring
levels of activity and sending reminders to
collaborators. Results in quicker
completion of complex tasks.

Defined team structures and
responsibilities for identified
situations. Define required people
skills. Provide coordination
mechanisms.

Collaboration level 4 - Joint work where
users work together in a synchronous
manner. Adds to the quality of work
outcomes.

Standards defining quality outcomes.

Collaboration level 5 - Joint goal setting
where people jointly decide how they will
work together. Minimizes resources
needed to reach business objectives.

Organizational strategy and mission.
Definition of clear governance rules.

In summary collaboration levels 1 are essential in identifying a situation, whereas
level 3 is needed to facilitate assessment and defining courses of action while
selecting courses of action and execution will need higher levels.

5 Choosing the Technical Strategy

The emphasis on culture and organizational issues requires emphasis on user analysis
[9] in order to make an initial strategic choice. Figure 4 provides guideline that can be
used to make an initial strategy choice. It shows that the technical strategies
themselves overlap and indicates how some cultural factors can influence the initial
choice. As an example small groups working primarily as individuals in a large
context where results are defined in general terms would probably select lightweight
exchange. As the emphasis changes towards emphasis on results, then lightweight
collaboration may be introduced.

Our goal is to provide an infrastructure on which groups can easily set up
collaboration spaces. The idea is to provide a guideline for an initial choice and
perhaps an open template to realize the choice. All that will be left then is to decide
on integrating specific preferred technologies into the collaboration space.

Figure 4 simply provides a guideline to make an initial choice. For example, the
round circles on Figure 4 show the assessment of different perspectives for planning.

 Design Methods for Collaborative Emergent Processes 21

The tendency of the circles to be close to the left of the diagram suggests lightweight
exchange or collaboration as the solution. The crosses show a similar assessment for
emergency response. In this case a better starting point would be lightweight
workflows. These are workflows that can be easily changed as is obvious in an
emergency situation.

Emergent process Predefined process

Increasing context

Increasing group sizeEmphasis on result
Individual/Collectvist culture

Increasing degree of process control

Observation of
tasks and

commenting on
tasks

Participation and
tracking of tasks

Arranging task
process as

situation develops

Working to a
fixed process

Lightweight
exchange

Lightweight
collaboration

Work
coordination

Process
management

Structured oriented groups
Mission oriented groups

Fig. 5. Guidelines for choosing the technical strategy

One important factor is that different strategies may be needed at different parts of
the emergent process shown in Figure 2 and any supporting system must support
system evolution. For example:

Identifying a situation requires lightweight exchange, as here it is not clear what
specific information is needed and people often work as individuals and closely
follows the proposal of Whittaker [6],

Situation assessment may be more lightweight collaboration,
Defining alternate courses of action is usually a lightweight collaborative process or

possibly work coordination if there is some urgency
Selecting a course may introduce more controls and move to work process support as

in many cases the selected course must be approved by a number of people.
Execution often follows a predefined process, which may be agreed upon during

course of action selection.

The support thus changes as we proceed through the process starting with emphasis
on exchanges and completing with well defined processes.

22 I. Hawryszkiewycz

5.1 Choosing the Technology

Figure 5 illustrates the kinds of technologies needed for the different technical
strategies. Usually such progress requires adoption of increasingly leading edge
technologies such as for example shared whiteboards, workspaces or video
interactions. Most business practices primarily using current practices such as e-mail,
portals or in some cases discussion systems and rely on individuals to adopt
technologies to suit their personal preferences. Extending to collaboration and work
practice support requires the introduction of new technologies and often training to
ensure consistent use.

The choice is often left to users with the organization providing the infrastructure
for making this choice and process integration.

Lightweight exchanges

Lightweight collaboration

Work coordination
(Lightweight workflow)

Process management

Large scale coordination

Equivalent to the way offices
work.
Conversation of any significance
most often one to one.

Being aware of process.
Individuals aware of the
process.

Monitoring and reporting
Individuals adapting to process
Process changeable

Monitoring and reporting
Individuals following precise
task
Process fixed

Process management
Interorganizational
coordination

Document sharing

E-mail

Bulletin Boards

Group calendars

Information sharing

Workflow systems

Shared whiteboards

Video and audio
conferencing

Screen sharing

Instant messaging

Blogs

Virtual co-location

Workspaces

Semantic blogs

Fig. 6. Choosing technologies

One approach to support collaboration is through groupware technology.
Groupware implementation will require gradual introduction of technologies as the
process emerges. An example is shown using our LiveNet system where there is an
initial workspace that contains the communication technologies for exchange of
information about a new competitor. Progressing to formulating a response requires
some lightweight collaboration and new technologies are added for this purpose. This
includes a plan that shows the collaboration activities, the assignment of
responsibilities and a calendar. Activities may include suggesting new ideas and
following them up. The new technologies enable people to keep track of the activities
carried out be other team members, ensure they follow up and contribute to these
activities to formulate a timely response.

 Design Methods for Collaborative Emergent Processes 23

Adding calendars to
record availability

Adding plan to keep
track of progress

Assigning role
responsibilities

Adding calendars to
record availability

Adding plan to keep
track of progress

Assigning role
responsibilities

Fig. 7. Progression between strategies – from exchange to collaboration

6 Summary

This paper developed a framework for assessing levels of collaboration and
improving collaboration in situations that require the collection and analysis of
information and using this to respond to the situation.

References

[1] Artail, H. (2006): “Application of KM measures to the impact of a specialized groupware
system on corporate productivity and operations” Information and Management, 2006,
Elsevier Press.

[2] Hansen, M.T., Nohria, N. and Tierney, T. (1999): “Whats your Strategy for Managing
Knowledge” Harvard Business Review, March-April, 1999, pp. 106-116.

[3] Jacobs, J.L., Dorneich, C.P. and Jones, P.M. (1998): “Activity Representation and
Management for Crisis Action Planning” IEEE International Conference on Systems,
Management and Cybernetics, October 1998, pp. 961-966.

[4] Hawryszkiewycz, I.T. (1997): “A Framework for Strategic Planning for Communications
Support” Proceedings of The inaugural Conference of Informatics in Multinational
Enterprises, Washington, October, 1997, pp. 141-151.

[5] Hofstede, G. (1980): Culture’s Consequences: International Differences in Work-related
values” Sage, Beverly Hills, California.

[6] Whittaker, S., Swanson, J., Kucan, J. and Sidner, C. (1999): “Telenotes: Managing
lightweight interactions in the desktop”

[7] Anderson, K.M., Anderson, A., Wadhwani, w., Bartolo, L. (2003): “Metis: A lightweight,
Flexible, and Web-based Workflow Services for Digital Libraries” Proceedings 3rd.
ACM/IEEE conference on digital libraries, May 2003, pp. 98-109.

24 I. Hawryszkiewycz

[8] Adenfelt, M. Lagenstrom, K. (2006): “Enabling knowledge creation and sharing in
transnational projects” International Journal of Project Management 24, 2006, pp. 191-
198. Elsevier Press.

[9] Zhang, J., Patel, V., Johnson, K., Smith, J. (2002): “Designing Human Centered
Distributed Information Systems, IEEE Intelligent Systems, September/October, 2002,
pp. 42-47.

[10] Livenet: http://livenet4.it.uts.edu.au

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 25 – 34, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Process Design Strategies to Address Breadth and
Depth Complexity

Michael Soanes

Department of Information Technology, University of Technology, Sydney, Australia
Michael.G.Soanes@uts.edu.au

Abstract. There is a growing focus on achieving competitive advantage
through the dynamic reconfiguration of the value chain. It is advocated that as a
result of conceptual and technology convergence, BPM is now ready to be the
enabler of this dynamic reconfiguration capability. Business processing is
increasing in complexity. It is proposed that there are two dimensions to
complexity: breadth complexity (the range of activity types within a process)
and depth complexity (the abstraction levels of process logic within a process).
Current process design strategies tend to specialise in specific breadth/depth
complexity combinations. Given individual processes can span multiple
breadth/depth segments, this specialisation strategy can result in multiple
process design strategies and toolsets within the one process. This will prevent
true business process dynamic reconfiguration. A number of conceptual and
technology developments need to be further evaluated with the objective being
an integrated consistent process design strategy across all breadth and depth
complexity segments.

Keywords: Process design methodologies, process design tools.

1 Introduction

Dynamic reconfiguration of the value chain is gaining momentum as a new
competitive advantage. Gartner Group [1] has labeled this trend “business process
fusion” and defines it as “the transformation of business activities that is achieved by
integrating previously autonomous business processes to create a new scope of
management capabilities.” Gartner Group [2] says that through a new operating and
management focus on enterprise wide processes and technology integration, business
process fusion will enable an enterprise to increase its agility and improve efficiency.

There is a recent trend to advocate the revitalization of business process
management (BPM) as a key enabler for business process fusion based upon the
convergence of conceptual and technology trends. This paper will provide an
overview of the conceptual and technical evolution of BPM as the background to
understanding the convergence required to achieve business process fusion.

The complexity of the business processing environment is increasing with greater
variability in content and the sequence of activities within business processes. Cokins

26 M. Soanes

[3] claims that over the last few decades, competition has forced organisations to
increase their range of products / services as well as their support for more
distribution channels. Introducing greater variation and diversity results in increasing
business process complexity. This paper will identify two dimensions to business
process complexity: breadth and depth. It will then justify the need for a consistent
process design approach that addresses both the breadth and depth complexity
dimensions.

Conceptual and technology developments will then be identified that should be
evaluated as potentially contributing to achieve a consistent process design approach
across the breadth/depth combinations.

2 BPM Conceptual Evolution

Porter’s [4] introduction of the value chain concept advocated the importance of
managing business processes within and across organisations. Martin [5] further
advocated the concept of value stream integration at the technology level through
integration of application silos.

Davenport‘s [6] concept of “Process Innovation” and Hammer and Champy’s [7]
concept of “Business Reengineering” evolved into “Business Process Reengineering
(BPR).” Hammer and Champy defined BPR as the “fundamental reconsideration of
and radical redesign of organizational processes, in order to achieve drastic
improvement of current performance in cost, service and speed.” By the mid-1990's,
BPR had gained the reputation of being a nice way of saying "downsizing."
According to Hammer, lack of sustained management commitment and leadership,
unrealistic scope and expectations, and resistance to change prompted management to
abandon the concept of BPR.

Another significant development related to business process management is the
quality movement. Ehrlich [8] describes the evolution of the quality movement from
Statistical Process Control (SPC), to Total Quality Management (TQM), to Kaizen
and to the most recent incarnation as Six Sigma. Ehrlich defines Six Sigma as a
disciplined data driven approach of continually improving process quality and
productivity through reducing the amount of variation in process, leading to
consistent and predictable output. Although Six Sigma is a total business
improvement methodology, process analysis and design is a fundamental component
of that strategy.
The emergence of e-commerce has moved the focus of business process
improvement from intra-organisational to inter-organisational. Hammer [9] states
that because cross - company processes are not coordinated, a vast number of
activities end up being duplicated. Hammer says streamlining cross company
processes is the next great frontier for reducing costs, enhancing quality and
speeding operations.

Smith and Fingar [10] define a third wave of BPM which they call “the break-
through that redefines competitive advantage for the next fifty years”. They define the

 Process Design Strategies to Address Breadth and Depth Complexity 27

first wave as the scientific management principles of the 1920’s. The second wave as
the past decade or so focus on fixed static process design within ERP systems and
other off the shelf packaged systems. They imply the third wave is the enabler for
business users to dynamically change process configurations. The comment by Smith
and Fingar “BPM doesn’t speed up applications development; it eliminates the need
for it.” highlights a risk in seeing BPM as a concept independent of the total business
application architecture.

Thus conceptually, BPM is being held up as the new enabler of competitive advan-
tage through dynamic management and reconfiguration of the value chain and that its
time has come through the convergence of multiple technology trends. As described
above, Gartner Group has labeled this trend business process fusion. The risk at this
point in the BPM revitalisation debate is that it is more conceptual with the lack of a
strong technology grounding of how this will be achieved.

3 BPM Technology Evolution

To appreciate the opportunity provided by technology convergence as advocated by
the business process fusion concept, it is necessary to review the evolution of multiple
threads of BPM related technologies.

Zur Muehlen [11] defines a history of process automation technology. He
describes the research into office automation between 1975 and 1985 as the
ancestor of BPM. Commercial exploitation of workflow technology began in the
early 1980’s with a document imaging routing bias that evolved into what is known
as production workflow. In parallel, enhanced email systems enabled the
introduction of process map based routing of email messages that evolved as part of
the groupware focus. During the 1990’s Enterprise Resource Planning (ERP)
emerged as a key enabler for integrating application silos. ERP packages such as
SAP developed their own BPM capabilities which were embedded and integrated
into the package. At the same time enterprise application integration (EAI) became
a driver for integrating disparate application systems on different platforms. EAI
tools developed their own mechanism for defining the sequencing of messages
between applications. In recent times e-commerce has identified the need to
sequence messages between organisations resulting in the development of standards
and tools focused on inter-organisation business processing. One outcome is an
architecture called the Service Oriented Architecture (SOA) based upon the concept
of abstracting and encapsulating services that are then sequenced to achieve
business processing requirements.

Thus from a technology perspective, there have been multiple threads of BPM
evolving that the business process fusion concept suggests are now ready to converge.

4 Business Process Breadth Complexity

A common categorisation of BPM is from the viewpoint of the support required for
different process types. For example, Gartner Group [12] classifies BPM as:

28 M. Soanes

administrative and task support (Visual BPM); team process support tools
(Collaborative BPM); application specific (Preconfigured BPM); integration focused
BPM (a.k.a. EAI) and application independent (Pure-play BPM).

It is proposed that to understand the process design requirements of a specific
process, it is more appropriate to classify the types of activities the process consists
of. Furthermore, analyzing activities by frequency of the activity and the predictabil-
ity of the occurrence of the activity in relationship to other activities, there are three
broad activity types. Firstly, production activities are regular and predictable activi-
ties that occur within a repeatable process. Secondly, project activities are infrequent
activities that occur within the context of a plannable set of activities to achieve an
outcome. Thirdly, ad-hoc activities are infrequent activities that have no predictability
in their occurrence in relationship to other activities. This activity classification
scheme is more of a continuum as reflected in the following:

Sequence Predictability of Activity

F
requency of A

ctivity

Low High

High

Adhoc

Project

Production

St
ru

ct
ur

ed
ne

ss

Fig. 1. Continuum of activity types based upon frequency vs sequence predictability

In practice, all processes have a mixture of activity types. Even highly structured
production processes have exception sub flows that are unstructured and may require
a customized set of activities (in effect a mini project) to deal with the exception re-
quirements of a specific process instance. Adams, Edmond and ter Hofstede [13] state
that “even for highly structured work practices (such as banking or air traffic control),
it remains difficult (if not impossible) to successfully capture all work activities, and
in particular all of the task sequences possible.”

Correspondingly, specific roles performed by human actors within organisations
participate simultaneously in many processes and result in executing multiple types of

 Process Design Strategies to Address Breadth and Depth Complexity 29

activities. Specific roles may have a predominance of a particular activity type (e.g.
an insurance administrator would predominantly perform production activities). How-
ever many roles have a mixture of all activity types.

Due to the current situation of different tools been used for different process types
(e.g. production workflow for production processes, project management tools for
projects, groupware for administrative processes etc) and the fact that specific roles
perform a mixture of processes results in the need for the role to understand and use
multiple toolsets. Disparate toolsets create natural silos which need to be integrated by
the human participant performing translation and transferal in real time of the syntax
and semantics of one business process type to another business process type based
upon the business value chain of the company. This can easily introduce human errors
which can be propagated throughout the value chain.

This paper defines “business process breadth complexity” as the continuum of
structuredness of activities (ranging from production to ad-hoc). The inherent inter-
mixing of different activity types within the one process combined with multi-tasking
across multiple processes at the one time, results in the need for human participants to
switch between tools depending on the activity type.

5 Breadth Complexity Strategies

Two separate developments are relevant to consider in relation to addressing business
process breadth complexity.

Analysing systems from a top down holistic perspective has evolved into com-
plexity theory that defines organizations and its processes / activities as complex
adaptive systems consisting of cooperative participants that communicate via mes-
sages. Vidal, Buhler and Stahl [14] describe in relation to leveraging web services
that there are two extremes of flexibility. They define static workflow enactment as
the classical approach of prescriptively having to define the workflow of service
enactments in advance. They define Darpa Agent Markup Language (DAML) with
its dynamic web service composition as the extreme end of flexibility. They define
a multi-agent workflow based approach as the mid point of workflow definition
flexibility.

Multi-agent based workflow approaches are advocated as the approach to manage
emergent processes. Debenham[15] defines emergent processes as having tasks that
are typically not predefined and emerge as the process develops. He goes onto say
that emergent processes are business processes but they are different to production
workflows that are routine in nature.

The breadth complexity concept advocated in this paper proposes that even
production processes have exception handling requirements that more resemble
emergent process characteristics. Consequently using different process design
and management approaches based upon categorising the requirements as production
or emergent would result in the need for two process management strategies within

30 M. Soanes

the same process. Consequently the multi agent based workflow approach needs to
be considered as a possible approach to cover the full spectrum of breadth
complexity.

Analysing human activities from a bottom up perspective has been the domain of
cognitive psychology (a.k.a. activity theory). Such concepts as Human Computer In-
teraction (HCI) have resulted from this focus. A more relevant development is the
Computer Supported Collaborative Work (CSCW) focus. Harrison – Broninski [16]
has further developed these ideas and has labeled it “Human Interaction Manage-
ment” which he calls “a complete theory of collaborative human work and its
management.” Amongst many principles, one key principle is that humans do not se-
quence their activities in a procedural, prescriptive way: “people do what they feel to
be appropriate at the time, not what someone decided in advance they will do every
time.” Harrison – Broninski states that a system that implements human interaction
management needs to implement supportive rather than prescriptive activity manage-
ment. This paper proposes that Harrison – Broninski’s “Human Interaction
Management” concepts warrants further consideration in addressing requirements of
business process breadth complexity.

6 Business Process Depth Complexity

VCOR [17] and SCOR[18] are two prominent process classification frameworks that
attempt to provide a standardised classification of processes across the total value
chain of an organization (for both primary and support activities). They provide very
similar models (although different terminology) for defining the depth of business
processes within an organisation. VCOR defines a five level pyramid of depth
complexity including strategic processes, tactical processes, operational processes,
activities and actions. It provides suggested process designs down to level three.
SCOR defines a six level hierarchy of process types, process categories, process
elements, tasks, activities and detailed steps. SCOR provides suggested process
designs to level three and states that below level three, each element is described by
classical hierarchical process decomposition.

The key observation from the comparison of these two models is the arbitrary
cutoff of what is defined as a process and what are activities or tasks. Every level is in
effect a process decomposition until you have an atomic action that is trivial to further
decompose. Although VCOR and SCOR have fixed levels, in reality individual
processes would vary in the depth of decomposition they require based upon their
depth complexity.

Erl [19] defines that a key design issue within SOA is what is called service
interface level abstraction. Erl says that services are abstracted to be black boxes.
Varying the level of the service abstraction will vary what of the implementation
details are public (and therefore reusable) and what is hidden. Erl says the primary
driver of the abstraction level the service is pitched at, is the reuse potential.

VCOR have defined a Federated Enterprise Reference Architecture (FERA) that
maps the VCOR business process framework to a SOA model as the direct

 Process Design Strategies to Address Breadth and Depth Complexity 31

technology implementation. Although the mapping is very comprehensive,
fundamentally an activity within VCOR is a service within SOA.

One of the technology enablers advocated for a revitalization of BPM is the role
BPM could play as the orchestration of services within SOA to facilitate complete
business processes. Inferring the dynamic redefinition of process logic within a BPM
strategy provides the business with greater agility to adjust to changing circum-
stances. The process rules of the services itself are encapsulated and private to the
service.

From the above it is proposed that there are three observations. Firstly, the differ-
entiation between what is a process and what is an activity is quite arbitrary (in effect
an activity is still a process that can be decomposed). Secondly, the abstraction of
what depth a service is defined within SOA is variable depending on reuse objectives.
Thirdly, the BPM/SOA integration approach is based upon different strategies for
process rules managed by BPM and process rules private to the service.

Correlating these three observations results in the reality that there will be two dif-
ferent approaches for defining process rules (a BPM repository and a service defini-
tion repository). What depth of process rules will exist in each repository will vary
from process to process based upon service reuse design objectives. This will mean
that the agility of individual processes will vary dependent on that process’s categori-
sation of process logic between the two repositories.

This paper proposes that BPM cannot be considered as a separate component for
process definition logic and that in effect there needs to a consistent process logic
definition strategy across the entire business process depth complexity.

7 Depth Complexity Strategies

Independent of BPM developments, a further conceptual and technology stream
commonly called “the business rules approach” (Ross[20]) has been evolving. In gen-
eral the business rules approach is about an organised approach to defining and
implementing business rules. The definition approach typically involves a declarative
definition of atomic rules. Although Ross does not define the implementation of the
rules definition, many advocates propose a business rules engine is required to exe-
cute the rules (eg Chisholm [21]). Similar to BPM, the business rules approach’s ob-
jective is to provide ease of business logic maintenance to support business agility
objectives.

There has been recent discussion regarding the overlap between the BPM approach
to process rules management and the general business rules management strategy
within the business rules approach. Lienhard and Kunzi [22] propose that a
BPM strategy combined with process based web services can address the total
business rules approach and that a separate tool such as a business rules engine is not
required.

Enix [23] identify that BPM and the business rules approach have developed inde-
pendently and analyse approaches to integrating the two. They conclude by stating

32 M. Soanes

that a fully integrated environment requires the fusing of business rules, business
processes and an extensible object model.

The basic tenet of this paper is that a common design approach and tool should be
used across the depth complexity. Whether BPM process definition approaches are
extended to process rules within services or whether the general business rules defini-
tion strategy of the business rules approach is applied across the full spectrum of
process rules (both exterior and interior to a service) requires further evaluation.

8 Breadth / Depth Quadrants

Combining the breadth and depth complexity dimensions results in the following
quadrants:

Breadth Complexity

D
epth C

om
plexity

Low High

High

Production
Workflow

Groupware

Procedural
Code

Manual

Footprint of typical
process

Fig. 2. Potential mapping of process definition approaches to the breadth/depth quadrants

To illustrate the mapping of process definition approaches to the breadth/depth
quadrants, a simple real world business process example will be used that has a foot-
print that includes aspects of all quadrants. An insurance claim is received that is cap-
tured in the production workflow system and routed to a claims officer. The claims
officer while reviewing the claim suspects potential fraud. They need to refer it to an
investigator. Although the initial routing of the claim to the investigator may occur
within the production workflow system, it is most likely that the ongoing interactions
are highly unpredictable and most likely will occur via email. Finally it is identified
that some of the items on the claim will be paid and others will be declined. The
claims officer accesses the claims transaction processing system to process the ac-
cepted items. The claims systems has a number of functions and screens required to

 Process Design Strategies to Address Breadth and Depth Complexity 33

enter the claim details. The claims system has pre designed the flow that should be
followed. For the rejected items, a manual letter is generated.

There is process logic throughout this example that has been implemented in
multiple repositories. There is the initial high depth level, highly structured routing of
the claim to the claims officer and investigator that is ideally suited for production
workflow tools. There is the high depth level, unstructured interactions occurring in
the email system to implement the fraud investigations (which is in effect a mini
project). Then there is the low depth level, highly structured flow of functions and
screens embedded as procedural code in the claims system. Finally there is the
manual low depth, unstructured process knowledge the claims officer applies to
handle the fraud rejection items.

One could argue that a specialist production workflow system could address all of
the process flow requirements. However it was the goal of the above breadth and
depth complexity discussions to illustrate that there may be the need to reevaluate al-
ternate process design approaches that are better suited to addressing all four
breadth/depth quadrants. A strategy of multiple repositories as described in the above
example will hinder business agility.

9 Conclusion

The convergence of conceptual and technology trends provides the opportunity for
BPM to be leveraged as a key enabler of business process fusion. To ensure that this
opportunity is not added to the list of many technology silver bullets, there is a need
to clearly identify what trends need to be combined to achieve the correct conceptual
framework and technology underpinning.

Process design strategies are one critical conceptual and technology enabler. They
must provide an integrated solution to address both the breadth complexity of busi-
ness processes and the depth complexity of business processes.

Current process design strategies tend to specialise their focus on one segment of
the breadth and depth complexity continuum resulting in different strategies and tool-
sets to deal with each segment. Given that individual processes can have a combina-
tion of breadth / depth segment complexities, this often results in multiple strategies
and toolsets within individual processes. This reduces the opportunity for dynamic
process change and business agility.

Further research is required to review the opportunity to leverage the complex
adaptive systems developments (and their current application to emergent
processes) and the “human interaction management” developments as enablers of
an integrated process design strategy to address breadth complexity. Further
research is required to review the opportunity to leverage the business rules
approach as an enabler of a common process logic definition strategy across the
spectrum of depth complexity.

Failing to address a consistent approach to the breadth and depth complexity of
business processes will limit the ability to achieve business process fusion.

34 M. Soanes

References

1. Simon Hayward, Gartner Group. Business Process Fusion: Enabling the Real-Time Enter-
prise. 16th October 2003.

2. Mark McDonald and Andy Rowsell-Jones, Gartner Group. Agility and Efficiency: Busi-
ness Process Fusion. April 2004.

3. Gary Cokins. Activity-Based Cost Management – An Executive’s Guide. 2001.
4. Michael E Porter. Competitive Advantage 1985.
5. James Martin. The Great Transition 1995.
6. Tom Davenport. Process Innovation Reengineering Work through Information Technol-

ogy. 1992.
7. Michael Hammer and James Champy. Reengineering the Corporation: A Manifesto for

Business Revolution. 1993.
8. Betsi Harris Ehrlich. Transactional Six Sigma and Lean Servicing. 2002.
9. Michael Hammer. The Super Efficient Company. Harvard Business Review Sept. 2001.

10. Howard Smith and Peter Fingar. Business Process Management the third wave. 2003.
11. Michael zur Muehlen. Workflow-based Process Controlling. 2004.
12. J. Sinar, T. Bell Gartner Group. A BPM Taxonomy:Creating Clarity in a confusing market.

May 2003.
13. Michael Adams, David Edmond and Arthur H. M. ter Hofstede. The Application of Activ-

ity Theory to Dynamic Workflow Adaption Issues. 7th Pacific Conference on Information
Systems July 2003.

14. Vidal Vidal, Paul Buhler and Christian Stahl. Multi-Agent Systems with Workflows IEEE
Internet Computing January/February 2004 (Vol 8 No 1 pages 76-82).

15. John Debenham. A Multi-Agent System for Emergent Process Management in proceed-
ings Nineteenth International Conference on Knowledge Based Systems and Applied Arti-
ficial Intelligence ES-99: Applications and Innovations in Expert Systems VII, Cambridge
UK, December 1999, pp51-62.

16. Keith Harrison-Broninski. Human Interactions – the heart and soul of business process
management. 2005.

17. Value Chain Group VCOR model at www.value-chain.org.
18. Supply Chain Council SCOR model at www.supply-chain.org.
19. Thomas Erl. Business Analysis and SOA Parts 1-6. Tech-Target. March – June 2006.
20. Ronald G. Ross. Principles of the Business Rules Approach. 2003.
21. Malcolm Chisholm. How to Build a Business Rules Engine. October 2003.
22. Heinz Lienhard and Urs Martin Kunzi. Workflow and Business Rules – a common ap-

proach. In Workflow Handbook 2005.
23. Enix Consulting Limited. Business Rules are from Mars and Processes from Venus at

www.enix.co.uk.

Improving Business Process Models with
Reference Models in Business-Driven Development

Jochen M. Küster, Jana Koehler, and Ksenia Ryndina

IBM Zurich Research Laboratory
8803 Rüschlikon, Switzerland

Abstract. Reference models capture best-practice solutions for a specific indus-
try such as retail, banking, or insurance. The models usually cover the whole
range of solution components such as product models, business rules, data models,
and service models. Over the past years, business process reference models have
gained increasing attention. Process merging is a technique that brings together
several process models to create a new process model. In this paper, we introduce
process merging for a scenario which focuses on the improvement of an existing
AS-IS business process by using a reference process model. We describe an ap-
proach that enables a business architect to establish correspondences between two
process models in a systematic way and show how these correspondences define
concrete refactoring operations that serve to improve the AS-IS model.

Keywords: Reference models, process merging.
Category: Industry paper.

1 Introduction

Over the past years, the role of business processes has been continously growing. The
need to sense, analyze and respond more effectively to continuously changing market
conditions and risks is the main driver behind this development. As a consequence,
greater flexibility is required from business models and the supporting IT architecture.
In order to meet this requirement, companies begin to eliminate “line of business” si-
los and move towards networked models. At the business level, composable business
processes are key, while at the IT level, Web services [18] and the adoption of a Service-
Oriented Architecture [5] are at the core of the new technologies.

The field of business process modeling has a long standing tradition. Recently, new
requirements and opportunities have been identified, which result from the need to di-
rectly derive the IT solution from a business process model. Business-driven development
(BDD) [11] is a methodology for developing IT solutions that directly satisfy business re-
quirements and needs. BDD begins with the business strategy and requirements and takes
them through an execution framework that is standardized, well understood, and that can
be executed repeatedly and successfully [11]. Business process models are an essential
means in BDD to create a link between the business needs and the IT implementations.

Modeling the processes of an enterprise is a time-consuming and methodologically
challenging task. It is therefore not surprising that reference models have been devel-
oped that capture processes and data at an abstract level. Reference models describe the
best practices of an industry and are also often aligned with emerging industry-specific

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 35–44, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

36 J.M. Küster, J. Koehler, and K. Ryndina

and cross-industry standards. Many examples of reference models exist, see [7] for an
overview. An example of an industry-specific reference model is IBM’s Insurance Ap-
plication Architecture [9], which has been developed with the assistance of more than
40 leading international insurance companies, while [2] provides a process classifica-
tion framework for cross-industry relevant business processes.

Using reference models in BDD has several advantages. First, they significantly
speed up the design of business process models by providing reusable and high qual-
ity content. Secondly, reference models lead to better and optimized process designs as
they have been developed over a longer period and usually capture the business insight
of more than one industry player. Thirdly, the reference model content usually bridges
the business and the IT domain. For example, business process models can be linked
with predefined interface definition models and Web service models.

There are two main different scenarios, which make use of reference models. On the
one hand, there is the approach of reference model customization, which starts from a
process model that is equipped with configuration options and configures this model to
the needs of an enterprise, see for example the work described in [3, 4, 14, 13, 16]. In
this scenario, a reference model provides the starting point of the configuration process.
This reference model is adapted to the needs of the customer e.g., by refining system
roles, by adding and removing business activities in the process, by setting the values
of process attributes, or by applying configuration patterns.

On the other hand, there is the increasingly important scenario of process merging.
In this scenario, two or more process models have to be brought together in order to
create an improved business process. One scenario for process merging is the improve-
ment of an existing process model (AS-IS model) by a reference model where some
parts of the existing model should be preserved and others should be replaced. Process
merging is also required when companies become subject to acquisitions and mergers.
In such situations, processes have to be aligned at the business and IT level, however,
differences also have to be identified and preserved if appropriate.

Process merging differs from process configuration in the way that it usually requires
to preserve certain parts of the AS-IS process model and the underlying IT systems.
Therefore, a pure configuration of the reference model is not possible as this would
not consider the existing business processes sufficiently enough. Process merging has
similarities to model composition [8] but needs to be tailored to the characteristics of
process models. A key technique for process merging is the ability to establish cor-
respondences between the elements contained in two business processes. These corre-
spondences allow to clearly identify related parts of process models and provide the
basis for systematic process merging.

The paper is organized as follows: Section 2 briefly reviews business-driven devel-
opment and discusses why process merging is becoming increasingly important. It also
introduces two process models as an example for process merging. In Section 3, we
introduce the two main steps of our method: the comparison of process models to estab-
lish correspondences and the derivation of a TO-BE model using refactoring operations
driven by the correspondences. Correspondences are introduced in detail in Section 4,
while the derivation of refactoring operations is covered in Section 5. We conclude with
an outlook on next steps in Section 6.

Improving Business Process Models with Reference Models in BDD 37

2 Process Merging and the Role of Reference Models

Business-driven development provides a model-driven approach to business-IT align-
ment. We distinguish between analysis and design models of business processes [10]—
a distinction which is also made in object-oriented modeling. An analysis model de-
scribes what the process is doing. It shows the initial partitioning of the process into
subprocesses and activities with the main flow of control and, optionally, of data. It
completely abstracts from IT-related aspects, but can be used for simulation and dis-
cussion with business analysts. A design model contains a refined partitioning of the
process that reflects existing application systems and shows an IT-based flow of data
and control and it describes how the process is realized using hardware, software, and
people.

In business-driven development, we distinguish between vertical and horizontal sce-
narios of process merging. Horizontal scenarios involve the merging of process models
at the same level of abstraction and usually in the same modeling notation whereas verti-
cal scenarios involve models at different levels of abstraction, e.g., merging an analysis
and a design model. Another vertical example scenario is the merging of a business
process model and its underlying implementation, e.g., given in the Business Process
Execution Language, BPEL [6], when either the process model or the BPEL have been
modified and changes need to be identified.

A particular scenario that we are going to investigate in this paper is the merging
of an AS-IS process model with a reference business process model with the goal to
improve the AS-IS process and to capture this improvement in a TO-BE process model.
This process improvement scenario is presented as a purely horizontal, analysis-level
scenario. However, we would like to point out that this is only capturing the initial
process improvement phase. In realistic BDD, business requirements flow downwards
from the analysis model to the design model, while IT requirements flow upwards from
the design model to the analysis model. This means, while improving an AS-IS process
with a reference model, it can happen that certain improvement steps are inhibited by
the underlying IT infrastructure. Furthermore, design-level decisions also have to be
reflected in the improvement scenario when a migration plan has to be derived showing
how the AS-IS process is migrated to the TO-BE process at the IT level. Due to space
restrictions, we cannot discuss these vertical merging elements.

We present our example analysis models in the notation of IBM’s WebSphere Busi-
ness Modeler [1], which is based on UML 2.0 activity diagrams [12]. In these models,
we distinguish task and subprocess elements. While tasks capture the atomic, not further
dividable activities in the business process models, subprocesses can be further refined
into more subprocesses and tasks. Control and data flow edges can connect tasks and
subprocesses. The control and data flow can be split or merged using control nodes such
as decision, fork, merge, and join. Process start and end points are depicted by start and
end nodes.

Figure 1 introduces a simplified AS-IS process to handle an insurance claim sub-
mitted by a customer. The process model shows five subprocesses and two decisions.
In this analysis model, we completely abstract from data flow and show the basic pro-
cess structure and control flow only. In the Check Requirements subprocess, the claim
requirements are first checked against the customer’s insurance policy. If insufficient

38 J.M. Küster, J. Koehler, and K. Ryndina

information was provided by the customer, this information needs to be obtained first
and thus the process cycles back to the initial state. If sufficient information is available,
the subprocess Make Accept-Reject Decision makes an accept-reject decision about the
claim. Depending on the outcome of this decision, a payment is made by the insurance
or the claim is rejected.

improvement required

Fig. 1. AS-IS model of the claim handling process

Figure 2 shows a simplified reference model for the claim-handling process. We as-
sume that this reference process has been selected, because of its better separation of
the recording of the claim from its validation and the subsequent settlement process,
which is much better worked out than the currently used payment process. This refer-
ence model therefore fits our anticipated improvement goal, which aims at improving
the compliance of the current AS-IS process with new legal requirements. In order to
meet these requirements, a more fine-grained process has to be developed, showing the
detailed steps of making a payment to a customer.

Fig. 2. Reference model for the claim handling process

3 Overview of Improvement Approach

An existing business process model can be improved under a diverse set of criteria, in-
cluding functional aspects as well as non-functional aspects such as the cost it imposes
while being run in an enterprise. The functional aspect of a business process model
is determined by its tasks as well as their overall organization. For example, a busi-
ness process can support Claim Validation functionality by including tasks that perform
claim validation. Our improvement approach concentrates on these functional aspects,
leaving out data flow and non-functional aspects.

Improving Business Process Models with Reference Models in BDD 39

Improvement can either be performed in a revolutionary or conservative approach.
In the revolutionary approach, the reference model is taken as the initial TO-BE model.
This TO-BE model is iteratively customized by integrating parts of the AS-IS model. As
the IT legacy is disconnected of the initial TO-BE model with this approach, monitoring
and evaluating intermediate results on the IT level is usually not possible.

In the conservative approach, the AS-IS model is taken as the initial TO-BE model.
This initial TO-BE model is then adapted by considering tasks and subprocesses in the
reference model. Changes introduced in the TO-BE model can be propagated to the IT-
level immediately and an incremental approach can be adopted with regards to IT-level
changes. This leads to the ability to monitor intermediate results by implementing inter-
mediate process models and thereby reduces the risk of process migration. We favor the
conservative approach and assume for the following discussion that the AS-IS model is
taken as an initial TO-BE model. Figure 3 illustrates the main steps of our approach:

AS-IS Model
Configured

Reference Model

1. Comparison

Improved TO-BE Model

2. Derivation of TO-BE Model

Fig. 3. Main steps of the approach

– Comparison of AS-IS and Reference Model: The first step is a detailed comparison
of the AS-IS and reference model to detect similarities and differences, with re-
gards to tasks, subprocesses and their organization. The comparison can be focused
on improvement areas or extended to the complete models in order to perform a
detailed analysis. In the first case, business goals lead to the identification of im-
provement areas. In the latter, a form of delta analysis [17] is used to identify those
parts (hot spots) of the AS-IS model that should be improved by integrating parts
of the reference model. A migration plan can be elaborated that clearly determines
milestones for the envisioned improvement.

– Derivation of TO-BE Model: The AS-IS model is taken as the initial TO-BE model.
This model is iteratively improved by refactoring operations: task contents are
adapted, additional tasks and subprocesses are introduced or removed, the hier-
archical structure is reorganized and the control flow is adjusted.

Optionally, the first step can be preceded by a process configuration step (e. g. [3, 4]).
This involves configuring a configurable process model to the needs of the current do-
main.

The output of the approach is a TO-BE model that has been improved by integrating
tasks and subprocesses of the reference model. The relationships of each AS-IS task or
AS-IS subprocess with regards to the reference model are clearly defined.

In the next sections, we will discuss our solution to the problem of comparing process
models and methods for derivation of an improved TO-BE model from the initial TO-
BE model.

40 J.M. Küster, J. Koehler, and K. Ryndina

4 Comparison of AS-IS Model and Reference Model

This section introduces a systematic approach for a comparison between the AS-IS
model and the reference model. In principle, two process models can be compared
along different criteria, for example, tasks and subprocesses used, ordering of tasks and
subprocesses by control flow as well as data used within processes.

In this section, we focus on comparison of tasks and subprocesses used in the pro-
cesses without taking into account detailed control flow. As tasks represent the atomic
unit of behavior, a relation on the task and subprocess level is a prerequisite for control
flow or data flow comparison which is beyond the scope of this paper.

In order to visualize task and subprocess relations, we use a tree structural view
which is a tree constructed of modeling elements of the business process model: The
tree contains as root the process name node and each level i of the tree contains all
activities of the process model with depth i. Tree edges represent hierarchical relation-
ships of the process model, e.g., , if a subprocess contains a task, then the tree contains
an edge from the subprocess to the task.

task correspondence

subprocess correspondence

Fig. 4. Correspondences for the claim-handling scenario

In Figure 4, two tree structural views are shown. On the left, the structural view of
the AS-IS claim handling process is displayed, showing the details of the Make Payment
subprocess. On the right, the reference claim process is displayed.

When comparing business processes, one can find tasks that model the same business
activity. The goal of a detailed comparison is to find all these correspondences between
tasks of AS-IS and reference models and also to identify those tasks that do not have
corresponding tasks. The idea is that a task has a correspondence to another task if
they represent the same functionality. Typically, establishing correspondences requires
a reference model expert and the business architect who designed the AS-IS model.
Together, they have to review every task in the AS-IS and reference models, discuss the
task content and establish correspondences manually. Optionally, correspondences can
be established automatically if similarity of task content can be identified automatically
e.g. by using automated semantic matching (see e.g. [15]). We identify the following
types of task correspondences:

Improving Business Process Models with Reference Models in BDD 41

– 1-to-1: One AS-IS task has a direct correspondence with a reference task.
– 1-to-0: The AS-IS element does not have a corresponding reference task.
– 1-to-many: The AS-IS task has several corresponding tasks in the reference model.
– many-to-1: Several AS-IS tasks have one corresponding task in the reference model.
– 0-to-1: The reference task has no corresponding AS-IS task.

In Figure 4, we show task correspondences for our example, focusing on the tasks of
the Make Payment subprocess:

– Drop Case has a 1-to-1 correspondence to Close Claim in the reference process,
– Pay Amount has a 1-to-1 correspondence to Operate Payment,
– Compile Payment letter has a 1-to-many correspondence to Calculate Benefit and

Send Payment Acceptance letter,
– reference tasks Offer Benefit to Claimant, Record Benefit Offered, Apply Tax Regu-

lations and Record Claimants decision have no corresponding AS-IS tasks.

Tasks that are in a correspondence relation can be compared with respect to
their content which represents an even finer degree of comparison. Given two tasks,
the content can either be equal, inclusive or overlapping. Note that the content of tasks
has to be compared with respect to their semantics. A pure naming comparison is not
enough.

After task correspondences have been established, subprocess correspondences can
be automatically derived: The basic idea is to relate those subprocesses to each other
that contain related tasks. Subprocess correspondences can be used to identify those
subprocesses that have identical or overlapping behavior. In our example, the AS-IS
Make Payment subprocess has a 1-to-many correspondence to the reference Offer Ben-
efit and Settle Claim subprocesses. Details of the algorithm to derive subprocess corre-
spondences are beyond the scope of this paper.

If two process models are captured on different abstraction levels, it can happen that
a subprocess in the AS-IS model only has a single task as its counterpart in the refer-
ence model and vice versa. We assume that subprocess correspondences also include
these types of correspondences between an AS-IS subprocess and one or more reference
tasks.

In general, if there are many 0-to-1 correspondences, this means that the reference
model contains functionality that is currently not included in the AS-IS model. On the
contrary, 1-to-0 correspondences either show that the AS-IS model is very specific or
that the reference model may not be suitable. A large number of many-to-1 and 1-
to-many correspondences hints at a mismatch with regards to the abstraction levels at
which the two models are captured.

Correspondences allow the definition of various quantifiable degrees of similarity
between processes. For example, one can calculate a functionality gap between the two
processes by dividing the reference tasks having 0-to-1 correspondence by the overall
number of reference tasks. The example shows a 57% gap in the area of Make Payment
because 4 of the total 7 tasks of the reference model have 0-to-1 correspondences.

The correspondences provide the basis for the derivation of the improved TO-BE
model, which is discussed in the following section.

42 J.M. Küster, J. Koehler, and K. Ryndina

5 Derivation of Improved TO-BE Model

The objective of this step is to create a TO-BE model that takes into account the re-
sults of the mapping between the AS-IS model and the reference model. This TO-BE
model represents an improved version of the AS-IS model by incorporating parts of
the reference model. The more parts are incorporated into the initial TO-BE model, the
closer will the resulting TO-BE model be to the best practice. The fewer changes are
made, the closer will the resulting TO-BE model be to the existing AS-IS model. The
ideal amount of changes is different for each customer situation and is found by also
considering IT legacy constraints.

Based on the task and subprocess correspondences, we can identify the following
refactoring operations that can be applied to the initial TO-BE model:

– 0-to-1 correspondence: addition of reference task or reference subprocess,
– 1-to-0 correspondence: removal of AS-IS task or subprocess,
– 1-to-many correspondence: splitting of AS-IS task or subprocess,
– many-to-1 correspondence: merging of AS-IS task or subprocess,
– correspondence between task and subprocess: conversion of tasks to subprocesses

and vice versa,
– correspondence between elements with different depth i: changes in the hierarchy

such as moving a task from one subprocess to another one.

a) b) c)

Fig. 5. Evolution of the TO-BE model

Figure 5 shows the application of these refactoring operations to the example. In the
first step, it is decided to split the Make Payment subprocess into two subprocesses,Offer
Benefit REF and Settle Claim REF, because the Make Payment subprocess is the area
where improvement of the process is required. The contained tasks are split according
to their correspondences, e.g., Pay Amount is placed into the Settle Claim REF subpro-
cess. The Compile Payment Letter task is split (note the 1-to-many correspondence in
Figure 4) and replaced by the Calculate Benefit and Send Payment Acceptance Letter
tasks, leading to the result shown in Figure 5 b).

In the second step, the Apply Tax Regulations and the Record Claimants decision
tasks are added to the Settle Claim REF subprocess (note the 0-to-1 correspondences in

Improving Business Process Models with Reference Models in BDD 43

Figure 4). Further, the Drop Case task is moved into its parent process, because it has
a 1-to-1 correspondence to the Close Claim task in the reference model. It is decided to
integrate the Validate Claim subprocess into the TO-BE model because Validate Claim
represents a functionality that is not at all represented in the AS-IS model. This leads to
an improved TO-BE model shown in Figure 5 c).

In a last step, all control flows between new and existing tasks and subprocesses are
manually adjusted. Each subprocess or task that has been modified needs to be exam-
ined and the control flow needs to be reconnected because subprocesses or tasks cannot
automatically be integrated into an existing control flow. Figure 6 a) shows the Settle
Claim subprocess of the TO-BE model after the previously described refactoring oper-
ations, with unconnected control flow. The right order of the tasks has to be determined
by adding control edges between the tasks, leading to the result shown in Figure 6 b).
The resulting TO-BE model models the payment on a fine-grained level and therefore
fulfills the original improvement goal.

a)

b)

Fig. 6. Establishing the control flow in the SettleClaim subprocess of the TO-BE model

6 Conclusion

Within business-driven development, process merging allows the systematic integration
of different processes to create a new business process. One scenario is the improvement
of an existing business process by integrating parts of reference models.

In this paper, we propose a process merging approach that allows the detailed com-
parison of two process models and systematic derivation of an improved TO-BE model.
Our approach has a number of benefits: The correspondences between tasks and sub-
processes can be used to clearly capture the degree of alignment and to identify the hot
spots of the AS-IS model that need to be improved. Concrete refactoring operations
are determined by the correspondences and can be executed semi-automatically. As the
refactoring operations can be recorded, process model improvement can be made re-
producible, which can be a major cost reduction effort if new versions of the reference
model have to be customized for the same company or if improvement proceeds over a
longer time period.

One important area of future work is tool support for refactoring process models
with the capability of change tracking. Further future work includes the elaboration of
the concept of migration plans and the integration with a bottom-up approach that takes
into account existing legacy applications.

44 J.M. Küster, J. Koehler, and K. Ryndina

References

1. IBM WebSphere Business Modeler. http:///www-306.ibm.com/software/integration/
wbimodeler/.

2. Process Classification Framework. http://www.apqc.org/portal/apqc/ksn/PCF Complete
May 5 2004.pdf, 2004.

3. J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, and D. Kuropka. Configurative Pro-
cess Modeling - Outlining an Approach to Increased Business Process Model Usability. In
Proceedings of the 2004 Information Resources Management Association Conference. New
Orleans., pages 615–619, 2004.

4. A. Dreiling, M. Rosemann, W. van der Aalst, W. Sadiq, and S. Khan. Model-Driven Process
Configuration of Enterprise Systems. In S. Eckert O.K. Ferstl, E.J. Sinz and T. Isselhorst,
editors, Wirtschaftsinformatik 2005, pages 687–706. Physica-Verlag, 2005.

5. T. Erl. Service-Oriented Architecture: Concept, Technology, and Design. Prentice Hall, 2005.
6. T. Andrews et al. Business Process Execution Language for Web Services. http://www.

ibm.com/developerworks/webservices/library/ws-bpel, 2002.
7. P. Fettke, P. Loos, and J. Zwicker. Business Process Reference Models: Survey and Classifi-

cation. In Christoph Bussler and Armin Haller, editors, Business Process Management Work-
shops,BPM2005InternationalWorkshops,BPI,BPD,ENEI,BPRM,WSCOBPM,BPS,Nancy,
France, September 5, 2005, Revised Selected Papers, volume 3812, pages 469–483, 2006.

8. M. Gervais, K. Engel, D. Kolovos, D. Touzet, Y. Shaham-Gafni, R. Paige, and J. Aagedal.
MODELWARE Delivery 1.5 Model Composition: Definition of Model Composition Proper-
ties. http://www.modelware-ist.org/.

9. IBM Insurance Application Architecture. http://www.ibm.com/industries/financialservices/
iaa.

10. J. Koehler, R. Hauser, J. Küster, K. Ryndina, J. Vanhatalo, and M. Wahler. The Role of Visual
Modeleling and Model Transformations in Business-Driven Development. In Proceedings of
the 5th International Workshop on Graph Transformations and Visual Modeling Techniques,
pages 1–12, 2006.

11. T. Mitra. Business-driven development. IBM developerWorks article, http://www.ibm.com/
developerworks/webservices/library/ws-bdd, IBM, 2005.

12. Object Management Group (OMG). UML 2.0 Superstructure Final Adopted Specification.
OMG document pts/03-08-02, August 2003.

13. J. Recker, M. Rosemann, W. M. P. van der Aalst, and J. Mendling. On the Syntax of Refer-
ence Model Configuration - Transforming the C-EPC into Lawful EPC Models. In Business
Process Management Workshops, BPM 2005 International Workshops, BPI, BPD, ENEI,
BPRM, WSCOBPM, BPS, Nancy, France, September 5, 2005, Revised Selected Papers, pages
497–511, 2005.

14. M. Rosemann and W. van der Aalst. A Configuarable Reference Modeling Language. Infor-
mation Systems, 2006. To appear.

15. T. Syeda-Mahmood, G. Shah, R. Akkiraju, A. Ivan, and R. Goodwin. Searching Service
Repositories by Combining Semantic and Ontological Matching. In 2005 IEEE International
Conference on Web Services (ICWS 2005), 11-15 July 2005, Orlando, FL, USA, pages 13–20.
IEEE Computer Society, 2005.

16. O. Thomas, O. Adam, and P. Loos. Using Reference Models for Business Process Improve-
ment: A Fuzzy Paradigm Approach. In 9th International Conference on Business Informa-
tion Systems (BIS 2006), Klagenfurt, Austria, May 31-June 2, 2006. To appear.

17. W. van der Aalst. Business Alignment: Using Process Mining as a Tool for Delta Analysis
and Conformance Testing. Requirements Engineering Journal, 2006. to appear.

18. O. Zimmermann, M. Tomlinson, and S. Peuser. Perspectives on Web Services - Applying
SOAP, WSDL and UDDI to real-world projects. Springer, 2003.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 45 – 54, 2006.
© Springer-Verlag Berlin Heidelberg 2006

ERP Reference Process Models:
From Generic to Specific

Avi Wasser, Maya Lincoln, and Reuven Karni

Center for Dynamic Enterprise Modeling
The William Davidson Faculty for Industrial Engineering and Management

Technion, Israel Institute of Technology
Mount Carmel, Haifa 32000, Israel

http://iew3.technion.ac.il/Lab/Dynam/
{awasser, mayal}@technion.ac.il,

rkarni@ie.technion.ac.il

Abstract. Generic reference models are based on the assumption of similarity
between enterprises - either cross industrial or within a given sector. The
research describes a validated reference metamodel, based on an empirical
study of enterprises from various industrial sectors. Drawing on the metamodel,
we suggest a methodology and tools for the design and generation of
individualized business process models.

Keywords: industry blueprints, reference models, case studies and experiments.

1 Introduction

Modern enterprise operations and management are firmly based upon the principle of
functionality and business processes supported by an enterprise-wide integrated IT
infrastructure. Management focus has shifted to integrating and managing the
process-centered enterprise – i.e. the chain of activities whose final aim is the
“production of a specified output for a particular customer or market” [1] using tools
such as Business Process Management (BPM) and Enterprise Resource Planning
(ERP) [2]. These tools form the basis for enterprise activity design, operations,
change and improvement.

The current main thrust of business process management research has focused on
the study of structural frameworks and IT related execution patterns [6] putting little
emphasis on the content layer that is supposed to populate these frameworks. “Real
life” business process models, which contain practical content objects, have been
somewhat disregarded except in illustrative examples. Few scientific publications
have addressed the topic of designing business process content [9],[11],[10], opting to
develop theories, empirical studies and supporting tools. The lack of suggestions for
standard structure, terminology and tools for the process content layer has restricted
the development of “reference modeling content science”, leaving it mostly to
vendors and commercial organizations [8].

46 A. Wasser, M. Lincoln, and R. Karni

Presumably, professionals have developed business process repositories on the
basis of experience accumulated through analyzing business activity and
implementing IT systems in a variety of industries. This has led to a paradigm
whereby these content frameworks are presented as generic – i.e. typical for an
industrial sector (e.g. SAP’s “aerospace industry” business solutions [5] or Oracle’s
“retail solutions” [12]). However, the existence of numerous “generic” reference
models (or “best practices”), that vary significantly between ERP vendors, even for a
given sector, indicates a lack of scientific systematization in developing such content
models and raises the question as to whether these models actually constitute generic
validated prototypes [6]. Another concern is the generation of individualized process
models - conventionally based on customization of sectorial models. This approach
overlooks the fact that sectorial classifications reflect the end-product of the
enterprise, rather than its modus operandi [13].

Aiming to confront these concerns, the objective of this research is to: (1)
demonstrate a generic, validated business process metamodel (2) suggest a structured
methodology for the construction of enterprise-specific business process models
based on the operational characteristics of the implementing organization.

After a review of related work (section 2), we present the validated metamodel
(section 3), and a methodology for the design and generation of enterprise-specific
process models (section 4). Section 5 includes conclusions and directions for future
work.

2 Application of Reference Process Models

2.1 Commercial Reference Models

Commercial reference process models are usually developed by vendors such as SAP
[5] and Oracle [4]; by system integrators such as EDS [16], IBM BCS (Business
Consulting Services) [17], and Accenture [18]; and by BPM specific companies such
as Staffware[20], Pegasystems [19], FileNet [21] and others.

ERP vendor reference process models include, for example, SAP’s industry and
cross-industry Business Solution Maps [5], Lawson-Intentia’s ERM (Enterprise
Reference Models) [14], and Oracle’s OBM (Oracle Business Models) library [4]. In
the SAP business solution maps, the top level “solution map” for an industrial sector
presents names and descriptions of the high level functionalities for that industry
(about 7), and the corresponding main processes (about 7) for each major process.
From these categorizations vendors and integrators develop a suite of processes,
reflecting what an enterprise does, or needs to do, in order to achieve its objectives
[15].

These models are based on the assumption of significant similarity between
enterprises that operate within a certain industry. Oracle corporation for example,
offers process flows that cover 19 industrial branches [4]; SAP offers Business
Solutions for 24 industrial branches [5]; and other ERP/SCM/CRM vendors similarly

 ERP Reference Process Models: From Generic to Specific 47

base their business process models on a finite set of predefined business processes,
that comprise “industry-specific” reference models.

In summary, research into commercial business process models has introduced the
following concepts: (a) the idea of generic reference industry-related business process
models (featuring industrial-sector or output genericity); (b) the idea that a specific
enterprise process model is a sub-set of a generic reference business process model.
The current research elaborates these concepts in the following ways: (a) suggesting a
generic business process metamodel (functional or operational genericity); (b)
applying quantitative statistical methods in validating the genericity of the reference
process metamodel; (c) suggesting a structured method for generating derived
individualized process models.

2.2 Derivation of Individualized Process Models

While academia has devised novel notions regarding model-driven structural process
configuration of enterprise systems [24],[25], the prevailing practitioner procedure for
generating individualized process models content is a top-down customization of
generic sectorial models. When a vendor, integrator or BPM specialist approaches,
say, two enterprises x, y within a certain industrial branch “ ” (such as
manufacturing, utilities, chemicals, healthcare, consumer goods products) both
enterprises are first presented with an identical reference process model. The next
stage would be a top-down customization of the reference model, by eliminating
unnecessary functionalities or processes, so that it would best fit the needs of the
enterprise (Fig. 1).

Fig. 1. Reference based content modeling: state of the art

This approach overlooks the fact that sectorial classifications reflect the end-
product of the enterprise, rather than its modus operandi. Hence, focusing on what the
enterprise produces (or supplies), instead of how this production is carried out, can be

BP001 BP003 ... BPx

BP002 BP129 BPy ...

Enterprise x’s
specific model

Enterprise y’s
specific model

2. Final products: customized, enterprise specific process models

1. An industry specific model is introduced to the implementing
organizations (org.x & org.y within the industry)

BP001 BP003 BP129 ... BP
Industry ’s

reference model

BP315

BP129

48 A. Wasser, M. Lincoln, and R. Karni

misleading and may result in inappropriate business process models [6]. For example,
an enterprise from the manufacturing sector may be based on fabrication processes –
or assembly processes; or mass-production processes – or customized production
processes. In each case the "production" and "logistics" functionalities are very
different. A single "manufacturing" model would probably not cover all cases.

This research suggests an alternative approach for generating individualized
process models, based on the correlation between the operational characteristics of the
organization and a set of corresponding business processes.

3 Constructing a Validated Generic Metamodel

The current metamodel encompasses a hierarchy of over 2,000 processes gleaned
from a survey of the content models published by SAP and Oracle, and further field
surveys and student projects. These resulted in a sample of 101 enterprises from a
wide range of industrial sectors. Top-level operational classifications were developed
in two stages: a first partition into business-oriented functionalities and industry-
oriented functionalities; and a further subdivision into basic and support
functionalities on the one hand, and goods and services on the other. Thus processes
are divided into five operational classes: (a) business functionalities: (1) basic
business processes, (2) business support processes; (b) industrial functionalities: (3)
basic manufacturing processes, (4) manufacturing support processes, (5) service
processes. This top-level categorization is then decomposed into two further levels,
following the lead of the breakdown presented in the Oracle business solution maps:
each business process is subsumed under a main process; and each main process is
subsumed under a major process.

Two attributes were considered necessary if the metamodel was to be regarded as
meaningful at the major process (high) level:

 The set of major processes could be reproduced by performing clustering on the
set of all main (lower level) processes over all enterprises (separability)

 Implementation of a major process implied implementation of all or most of the
main processes it comprises (genericity)

Our analysis was carried out in two directions: bottom-up and top-down. First, all
business processes were linked (a) to some main process and (b) to those industries in
the sample in which they were found to be implemented. Then, clustering [22]
was used to find significant groupings of main processes, based on the
implementation findings. The clusters or groupings were found to correspond to a
high degree with the 29 major processes empirically determined during metamodel
construction by studying upper-level functionalities in the SAP and Oracle models
and from conventional division of organizations into functional departments. It was
found that (a) the probability is high that industries are significantly associated with
the same number and content of clusters corresponding to the number of main
processes in each class; and (b) the degree of separation between clusters is almost
absolute. Thus the major processes can be considered separable (i.e. no overlapping
of main processes within major processes). This completed the bottom-up partitioning

 ERP Reference Process Models: From Generic to Specific 49

of processes at the major, main and operational levels. For example: Major:
"procurement"; main: "procurement order"; basic: "authorization of procurement
order".

As a first step to proving functional genericity, it was noted that the average
probabilities of an enterprise implementing all the main processes within the five
classes were: (a) business functionalities: (1) basic business processes (91%), (2)
business support processes (59%); (b) industrial functionalities: (3) basic
manufacturing processes (40%), (4) manufacturing support processes (51%), (5)
service processes (59%). Thus, even at this level, the basic business processes can be
considered common to almost all enterprises – i.e. functionally generic.

As a second step – top-down analysis – a major process was considered generic, at
one of three levels, according to the following measure of “genericity”:

 Strong genericity: all enterprises that implement the major process implement all
of its requisite main processes – i.e. that a significant number of basic processes
within the major-main hierarchy are implemented. This level was attained by all
basic business processes, all business support processes (except “Information
Service Management”), “Configuration Management”, all manufacturing support
processes, and all service processes.

 Intermediate genericity: the probability that a main process will be implemented in
an enterprise, if the major process is implemented, is not less than 90% (i.e. 90%
of the enterprises studied implemented the process). This level was attained by
“Information Service Management” (91%) and “Product Engineering” (93%).

 Weak genericity: the probability that a main process will be implemented in an
enterprise, if the major process is implemented, is not less than 65%. This level
was achieved by “Research and Development” (76%) and “Production/
Operations” (65%).

 No genericity: the probability that a main process will be implemented in an
enterprise, if the major process is implemented, is less than 65%. No major
process exhibited this level of genericity.

Thus almost all the major processes show appreciable separability and genericity;
and so are meaningful in general. These findings also enable two significant
conclusions to be drawn: (a) an enterprise model can be constructed by a separable
and additive set of business processes; (b) if an enterprise implements a major
process, it most likely implements the corresponding main processes.

The metamodel thus possesses the following important properties:

 It encompasses 29 major processes, 169 main processes and some 2,000
processes.

 Its major processes are separable and generic, so that any derived model is
composed of an additive set of major and main processes.

 Most business functionalities are common to all enterprises.
 Enterprises are differentiated mainly by their industrial functionalities – the degree

to which each of the manufacturing and service sub-classes are implemented.

These properties enable us to utilize the metamodel in a systematic way for the
design of individualized business process models.

50 A. Wasser, M. Lincoln, and R. Karni

4 Generating Individualized Process Models

This research elaborates a method that was presented in [6] as a possible solution to
the above mentioned concerns. Instead of determining what organizations are
producing and then tagging them according to their industrial classification, we
determine in a general and then detailed way how organizations are operating, so that
they are expressed by their operational characteristics. In order to establish an
enterprise-specific business process suite, we analyze the existing or planned
functionalities in the enterprise and create an enterprise-specific model. Each main
process constitutes a generic building block, and incorporates a set of possible
business processes exclusive to that main process. This course of action enables the
construction of an “individualized” organizational model which itemizes the specific
business processes of a given organization. The top-down approach is appropriate for
two reasons. (a) Functional characterization of a specific enterprise is performed
incrementally: first, major processes are analyzed; then, main processes, and finally
basic business processes. (b) We apply the principle of separability (a particular
business process is classified under one main process only; a specific main process is
classified under one major process only) and additivity (as the major processes are
separable, a model is formed from a conjunction of major processes, and thus main
processes, and thus business processes).

4.1 Determining the Operational Classification of an Enterprise

Lincoln and Karni [15] proposed a general typological representation of enterprises,
that overcame the necessity to distinguish between production and service
industries, seeing that both types of activity occur in most organizations. Their
typology characterizes industrial functionality by two codes: M(*) and S(*). M(*)
defines goods production functionality (oriented along product development
through manufacture) , whilst S(*) defines service provision functionality (oriented
towards the proximity between the provider and customer. The scale of
functionalities ranges from “pure goods production” (M(4)) through “pure service
provision” (S(4)) (Table 1).

This presentation implies that an enterprise implementing “full production”
functionality (R&D, product engineering, configuration management and production),
with no service functionality, would be coded as M(1+2+3+4)S(0).

An enterprise implementing “full service” functionality (front office, contact
office, mobile office and remote office), with no goods functionality, would be coded
as M(0)S(1+2+3+4). All other enterprises can be characterized within this spectrum in
accordance with their tendency to be oriented towards manufacturing or service. For
example: a ticket sales office that is a “pure” service enterprise would be coded as
M(0)S(1+2+3+4) (sales of tickets via the web, through agents in the field, via a call
center, and person-to-person at the enterprise offices). A software company oriented
both towards creating software and providing services would be coded as
M(2+3+4)S(2+3) (development of customized software reusing modules; providing a
help desk in the field and through a call center).

 ERP Reference Process Models: From Generic to Specific 51

Table 1. The primary functional typology

Operational Characteristic Code

Production/operations (MtS) M(4)
Configuration management (AtO) M(3)
Product engineering (EtO) M(2)
Research and development (DtO) M(1)
No significant goods production M(0)
No significant service provision S(0)
Remote office service (web/vending) S(1)
Mobile office service (field) S(2)
Contact office service (call center) S(3)
Front office service (provider) S(4)

4.2 Generation of Individualized Business Process Content Models

The procedure for generating an individual business process model is as follows,
based upon the major-main-basic hierarchical tree within the metamodel:

a) Using a comprehensive questionnaire, identify the general operational
characteristics of the enterprise (as described in section 4.1).

b) From the metamodel, select the major processes constituting the top-level
operational characteristics of the enterprise.

c) Automatically generate a reduced model, encompassing only those major
processes selected and incorporating all the main processes in the sub-trees below
the major processes.

d) From this model, select the main processes constituting the second-level
operational characteristics of the enterprise.

e) Automatically generate a further reduced model, encompassing only those major
and main processes selected and incorporating all basic processes in the sub-trees
below the main processes.

f) Using a general threshold probability given by the enterprise, automatically
retrieve those business processes, for each main process in the condensed
capstone, having a probability equal to or greater than the threshold value.

g) Automatically generate the initial model (all process levels) for the enterprise.
h) Fine tune the model – usually at the process (low) level – to ensure that all

relevant processes have been included, and unnecessary processes eliminated.
This may require some time, as the various "key users" in the enterprise become
involved at this stage. However, they begin from the specific enterprise model as
an initial input, rather than a generalized vendor offering. This focuses attention
on the enterprise functionality, and can greatly shorten the time to reach
agreement on the final model.

A summary of the steps is described in Fig. 2.

52 A. Wasser, M. Lincoln, and R. Karni

Fig. 2. Generating the enterprise specific model

For example, a confectionery manufacturer produces and markets a range of mass-
produced candies for sale at the entrances to a chain of supermarkets. From the
questionnaire we learn that its operations are characterized by make-to-stock
production, a call center for customer orders, a fleet of refrigerated vans for
distribution to the outlets, and refilling of candy vending machines outside the
premises of each outlet. According to the categorization of operational characteristics
(Table 1), the enterprise would be classified as M(3+4)S(1+2+3): managing the candy
mix and distributing customer orders; and receiving the orders and maintaining
vending machines. The corresponding set of industrial processes can be retrieved top-
down from the business process repository, and, as a consequence of the additive
property of the process clusters, the operational modules can be easily combined to
rapidly establish the confectionery manufacturer’s business process model. The next
stage would be the fine-tuning of the model by the manufacturer. This model is then
process as the launch pad for the blueprinting stages of the ERP project. This
generation process has been carried out in several organizations in Israel, and has
been found to be highly effective.

5 Conclusion

The business functionality and process aspects of ERP have, to a large extent, been
overshadowed by IT perspectives of ERP software and vendor industry-based
perspectives of functional commonality. However, business process modeling and
design is distinctly different from information system process modeling [3], and a
specific enterprise does not necessarily conform to the paradigm proposed for the sector
under which it is classified. From a business viewpoint, it is implicit that the process
approach is applicable to almost any industry or enterprise – at least at the nominal level
(naming functions and processes). However, the correct process suite for a particular
enterprise can only be assembled by careful consideration of operational characteristics;

F (Bn=1...n, Mm=1...n , Sk=1...n , Al=1...n)

BP002 BP004 BP51 BP223 ...

Enterprise is:

’s model:

 ...
BP1

F1()
BP2 BP3 BP4 BPn

F2() F3() F4() F5()

4. Review and manually fine-tune enterprise ’s “personalized” model

1. Add a classification correlation value to each business process

2. Determine the enterprise' operational classification

3. Run a quasi automatic statistical “model generation” engine

 ERP Reference Process Models: From Generic to Specific 53

if this is done correctly many classical customization problems can be avoided. Our
investigation has demonstrated the tenability of this assertion, and has shown that
such models can serve as rich tools for understanding enterprise functionality in
general, and, specifically, those classed as business, manufacturing or service. It has
been demonstrated that the method described in this paper significantly facilitates the
design and construction of individualized process models, starting from the
questionnaire, through focused model generation, and the fine tuning of the generated
model. Each step has been found to contribute significantly to that following, so that a
minimum of extraneous processes, at all levels, needs to be taken into account for
elimination. The challenge for further research is to improve the predictive
capabilities of the model (top-down stepwise generation) first by extending the
metamodel representation level, and next by increasing the accuracy of the correlation
between operational characteristics and corresponding business processes
incorporated into the model.

References

[1] Davenport, T., Process Innovation: Reengineering Work through Information
Technology, Harvard Business Press, 1993.

[2] Hatten, K. J. and Rosenthal, S. R., “Managing the Process-Centered Enterprise”, Long
Range Planning, 32 (3), 1999, pp. 293-310.

[3] Gulledge, T. R., Simon, G. and Sommer, R. A., “Using ARIS to Manage SAP
Interoperability”, in Scheer, A.-W., Jost, W., Abolhassan, F., and Kirchmer, M. (Editors),
Business Process Excellence: ARIS in Practice, Springer-Verlag, 2002, pp. 87-108.

[4] Oracle. Business Models (OBM), http://www.oracle.com/consulting/offerings/
implementation/methods_tools/, 2004.

[5] SAP. Business Maps and Solution Composer, http://www.sap.com/solutions/
businessmaps/composer/, 2004.

[6] Avi Wasser, Maya Lincoln, Reuven Karni: Accelerated Enterprise Process Modeling
Through a Formalized Functional Typology. BPM2005: 446-451.

[7] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede: YAWL: yet another workflow
language. Inf. Syst. 30(4): 245-275 (2005)

[8] Fettke, P.; Loos, P.; Zwicker, J.: Business Process Reference Models - Survey and
Classification. In: Kindler, E.; Nottgens, M.: Business Process Reference Models –
BPRM: 1-15 (2005).

[9] Chrysanthos Dellarocas, Mark Klein: A Knowledge-Based Approach for Designing
Robust Business Processes. Business Process Management 2000: 50-65

[10] A. Bernstein. Process Recombination: An Ontology Based Approach for Business
Process Re-Design. SAP Design Guild, Vol. 7, October 2003.

[11] Malone, T. W., Crowston, K. G., & Herman, G. (Eds.) Organizing Business Knowledge:
The MIT Process Handbook. Cambridge, MA: MIT Press, 2003.

[12] www.oracle.com/industries/retail/index.html
[13] B. Light, The maintenance implications of the customization of ERP software, J.

Software Maintenance: Res. Practice 13 (2001) 415–429.
[14] Intentia. Enterprise Reference Models, http://www.intentia.com/WCW.nsf/

pub/tools_index, 2004.
[15] M. Lincoln, Karni R. A Generic Business Function Framework for Industrial Enterprises.

CD Proceedings of 17th ICPR Conference, Blacksburg, VA, USA, October 2003.

54 A. Wasser, M. Lincoln, and R. Karni

[16] EDS. EDS web-site, URL=www.eds.com, 2005.
[17] IBM. IBM web-site. URL=ww1.ibm.com/services/us/bcs/html/bcs_index.html?trac=L1,

2005.
[18] Accenture. Accenture web-site. URL=www.accenture.com/, 2005.
[19] Pegasystems. Pegasystems web-site. URL=www.pegasystems.com, 2005.
[20] Staffware. Staffware web-site. URL=www.staffware.com, 2005.
[21] Filenet. Filenet web-site. URL=www.filenet.com, 2005.
[22] SPSS, SPSS User Guide to Software Version 9, SPSS Institute, 2006.
[23] Mathias Weske, Wil M. P. van der Aalst, H. M. W. (Eric) Verbeek: Advances in business

process management. Data Knowl. Eng. 50(1): 1-8 (2004)
[24] J. Recker, M. Rosemann, W.M.P. van der Aalst, and J. Mendling. On the Syntax of

Reference Model Configuration: Transforming the C-EPC into Lawful EPC Models.
BPM Center Report BPM-05-21,

[25] Recker, J., Mendling, J., van der Aalst, W.M.P., Rosemann, M.: Model-driven Enterprise
Systems Configuration. In: Dubois, E., Pohl, K. (eds.): Advanced Information Systems
Engineering - CAiSE 2006. Lecture Notes in Computer Science, Vol. 4001. Springer,
Luxembourg, Grand-Duchy of Luxembourg (2006) 369-383

Business Process Design by View Integration

Jan Mendling1 and Carlo Simon2

1 Vienna University of Economics and Business Administration
Augasse 2-6, 1090 Vienna, Austria
jan.mendling@wu-wien.ac.at

2 University of Koblenz-Landau, Germany
simon@uni-koblenz.de

Abstract. Even though the design of business processes most often has
to consolidate the knowledge of several process stakeholders, this fact is
utilized only to a limited extent by existing modeling methodologies. We
address this shortcoming in this paper by building an analogy between
database schema design by view integration on the one hand and pro-
cess modeling on the other hand. In particular, we specify a method for
business process design by view integration starting from two views of
a process as input. We identify formal semantic relationships between
elements of the two process views which are then used to calculate the
integrated process model applying the merge operator. Finally, the in-
tegrated model is optimized using reduction rules. A case study with
two EPC business process models from the SAP reference model demon-
strates the applicability of our approach.

1 Introduction

Business process design and in particular the design of business process models
that capture real-world process semantics is a difficult task. While work proce-
dures that are executed by one person are easy to document, business processes
often span several departments of a company and include several activities per-
formed by different persons. This implies a considerable complexity of the design
task and calls for a structured approach. In this paper, we build on insight from
database design theory, in particular view integration. View integration is a clas-
sical technique for database schema design. The idea is to identify the different
views on the data of every person that is supposed to work with the database.
Each person is interviewed and her view is documented in a separate so-called
input schema. Then, the matching parts of the input schemas are identified.
Based on these matches, the integrated schema is derived as a merge of the
input schemas.

For so far, this technique has attracted only little attention in the context of
business process modeling, basically, due to two reasons. First, the conceptual
difference of process models and data models hinders a direct application of
database schema integration for process design. An approach is needed that is
analogous to data schema integration, but which addresses the specific nature
of business process models, i.e., control flow defined between activities. Second,

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 55–64, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

56 J. Mendling and C. Simon

dedicated techniques for behavior integration have been defined for Petri nets
(cf. [12,16,17]), but not for conceptual languages such as EPCs. As EPCs are
frequently used in process modeling practice (see e.g. the SAP reference model
[4,7]) and EPCs offer OR-joins which cannot be mapped to Petri nets without
loosing readability, there is a more general approach needed.

The contribution of this paper is threefold. First, we identify semantic re-
lationships between activities of different business process models. Second, we
define a merge operator for EPCs that takes as input two EPCs and seman-
tic relationships between their activities to calculate an integrated EPC. Third,
we propose a set of restructuring rules in order to arrive at an integrated EPC
that does not include unnecessary structure. The availability of view integration
techniques for conceptual business process modeling languages provides several
advantages for business process design. If a business process designer conducts
interviews with process stakeholders, she can document each view in an input
EPC and use a merge operation to integrate them. This is less prone to errors
and more time efficient than building an integrated model manually. Further-
more, this procedure provides traceability: changes to the input EPCs can be
studied with respect to their impact on the resulting integrated process model. If
all interviews would be directly documented in one process model, the individual
views are lost. Beyond that, our approach can also support a merger scenario
where business process models of two companies with overlapping semantics have
to be integrated into one repository.

Following this line of argumentation, the remainder of this paper is structured
as follows: in Section 2 we give a definition of EPCs and an overview of our
integration approach. Furthermore, we introduce semantic relationships between
activities of different business process models, we define the merge operator for
EPCs, and we identify restructuring rules. In Section 3, we apply this integration
technique to two EPC business process models from the SAP reference model.
The example models have the same name and share several activities. Section 4
gives an overview of related research before Section 5 concludes the paper.

2 Preliminaries

In this section, we first introduce Event-driven Process Chain (EPC) as a busi-
ness process modeling language (Sect. 2.1). The subsequent sections introduce
the steps of our integration approach, i.e. definition of semantic relationships
(Sect. 2.2), the merge operator (Sect. 2.3), and restructuring rules (Sect. 2.4).

2.1 Event-Driven Process Chains (EPCs)

Event-driven Process Chain (EPC) is a business process modeling language rep-
resenting temporal and logical dependencies between activities of a process [6].
EPCs offer function type elements to capture activities of a process, event type
elements which describe pre- and post-conditions of functions, and three kinds
of connector types including and , or , and xor . Control flow arcs are used to link
these elements. Connectors have either multiple incoming and one outgoing arcs

Business Process Design by View Integration 57

(join connectors) or one incoming and multiple outgoing arcs (split connectors).
As a syntax rule, functions and events alternate but may be separated by con-
nectors. For more details on EPCs, we refer to [8,9]. Formally, the structure of
EPC models is defined as follows:

Notation 1 (Predecessor and Successor Nodes). Let (N, A) be a directed
graph consisting of a set of nodes N and a relation A ⊆ N × N defining the set
of directed arcs between the nodes of N . For each node n ∈ N , we define the
set of its predecessor nodes •n := {x ∈ N |(x, n) ∈ A}, and the set of successor
nodes n• := {x ∈ N |(n, x) ∈ A}.

Definition 1 (EPC). An EPC = (E, F, C, l, A) is a directed graph consisting
of three pairwise disjoint sets of nodes E called events, F called functions, and
C called connectors, a mapping l : C → {and, or, xor} specifying the connectors’
types, and a binary relation A ⊆ (E ∪F ∪C) × (E ∪F ∪C) of the directed arcs
between these nodes defining the intended control flow of the EPC such that

– |•e| ≤ 1 and |e•| ≤ 1 for each e ∈ E.
– |•f | = 1 and |f•| = 1 for each f ∈ F .
– Either |•c| = 1 and |c•| > 1 or |•c| > 1 and |c•| = 1 for each c ∈ C.

Figure 1 illustrates this definition showing two EPCs. Both describe similar pro-
cesses of how a customer inquiry about products is received, processed, and how
a quotation is created from the inquiry. The left EPC is taken from the Project
Management branch of the SAP reference model and it is called Customer In-
quiry and Quotation Processing. The second process EPC stems from the Sales
and Distribution branch and its name is Customer Inquiry. The processes share
two events and one function indicated by equal names. In the following, we
elaborate how these two process models can be integrated.

2.2 Semantic Relationships

In the following, we define two kinds of semantic relationships between functions
and events of two distinct EPCs, namely equivalence and sequence.

Definition 2 (Equivalence). Let EPC 1 = (E1, F1, C1, l1, A1) and EPC 2 =
(E2, F2, C2, l2, A2) be two EPCs and Eq ⊆ (E × E) ∪ (F × F) a binary relation.

– If e1 ∈ E1 and e2 ∈ E2 describe the same real-world events, we write
(e1, e2) ∈ Eq .

– If f1 ∈ F1 and f2 ∈ F2 describe the same real-world functions, we write
(f1, f2) ∈ Eq .

Definition 3 (Sequence). Let EPC 1 and EPC 2 be two EPCs and Seq ⊆
(E × F) ∪ (F × E) a binary relation.

– If e1 ∈ E1 is always followed by f2 ∈ F2, we write (e1, f2) ∈ Seq.
– If f1 ∈ F1 is always followed by e2 ∈ E2, we write (f1, e2) ∈ Seq.

58 J. Mendling and C. Simon

Customer
inquiries

about
products

Customer
inquiry

processing

Quotation to
be created
from inquiry

Customer
quotation

processing

XOR

Resource
related

quotation

Quotation
must be

created based
on plan data

Customer
project

required

Customer
inquiries

about
products

Customer
inquiry

processing

Document to
be created
from sales

activity

XOR

V

XOR

Quotation to
be created
from inquiry

Inquiry items
are rejected

Customer
inquiry is

transmitted

Inquiry is
created

Customer Inquiry Customer Inquiry and Quotation Processing

=

=

=

Fig. 1. Customer Inquiry and Customer Inquiry and Quotation Processing EPCs

WhenIf two views on the same business process have been documented as two
EPC business process models, the business process designer has to identify se-
mantic relationships in terms of equivalence and sequence between functions and
events of the different models. Figure 1 might suggest that functions and events
with similar labels are equivalent. Please note that EPC nodes can be also equiv-
alent when syntactically different labels are used (analogous to synonyms) and
that syntactically equivalent labels might relate to different business functions
of another context (analogous to homonyms).

2.3 Merge Operator

The merge operator introduced in this section is novel. It takes two EPC views of
the same business process plus a set of identified semantic relationships as input
and produces an integrated EPC. As a first step, the integrated EPC includes
all elements of the two input EPCs. Then, each pair of nodes (n1, n2) which
describe the same real-world events or functions, i.e. (n1, n2) ∈ Eq , is merged
into a single node and the former input and output arcs are joined and split
with and -connectors, respectively. Finally, for each pair of nodes in the sequence
relationship, an and -split is inserted after the predecessor node, followed by an
arc to a new and -join before the successor node.

Business Process Design by View Integration 59

Definition 4 (Integrated EPC). Let EPC 1 and EPC 2 be two EPCs. The
integrated EPC EPC i := (Ei, Fi, Ci, li, Ai) is defined in five consecutive steps
as follows:

1. Basically, the elements of EPC 1 and EPC 2 are combined in a single diagram:

Ei := E1 ∪ E2
Fi := F1 ∪ F2
Ci := C1 ∪ C2
li := l1 ∪ l2

Ai := A1 ∪ A2

2. Each pair (e1, e2) ∈ Eq of event elements which describe the same real-
world events is fused into a single event. The former incoming and outgoing
control flow arcs are synchronized with the aid of two new connectors csplit
and cjoin :

Ei := Ei \ {e2}
Ci := Ci ∪ {csplit , cjoin}
li := li ∪ {(csplit , and), (cjoin , and)}

Ai := Ai \ {(x1, e1), (x2, e2), (e1, y1), (e2, y2)} ∪
{(x1, cjoin), (x2, cjoin), (cjoin , e1), (e1, csplit), (csplit , y1), (csplit , y2)}

3. For each (f1, f2) ∈ Eq of function elements which describe the same real-
world functions is fused into a single event. The former incoming and out-
going control flow arcs are synchronized with the aid of two new connectors
csplit and cjoin :

Fi := Fi \ {f2}
Ci := Ci ∪ {csplit , cjoin}
li := li ∪ {(csplit , and), (cjoin , and)}

Ai := Ai \ {(x1, f1), (x2, f2), (f1, y1), (f2, y2)} ∪
{(x1, cjoin), (x2, cjoin), (cjoin , f1), (f1, csplit), (csplit , y1), (csplit , y2)}

4. For each (e1, f2) ∈ Seq of an event that is always followed by a function,
two new connectors csplit and cjoin are added and the arc from the new split
after the event to the new join before the function makes the control flow
explicit:

Ci := Ci ∪ {csplit , cjoin}
li := li ∪ {(csplit , and), (cjoin , and)}

Ai := Ai \ {(e1, y1), (x2, f2)} ∪
{(e1, csplit), (csplit , y1), (csplit , cjoin), (cjoin , f2), (x2, cjoin)}

5. For each (f1, e2) ∈ Seq of a function that is always followed by an event,
two new connectors csplit and cjoin are added and the arc from the new split

60 J. Mendling and C. Simon

after the function to the new join before the event makes the control flow
explicit:

Ci := Ci ∪ {csplit , cjoin}
li := li ∪ {(csplit , and), (cjoin , and)}

Ai := Ai \ {(f1, y1), (x2, e2)} ∪
{(f1, csplit), (csplit , y1), (csplit , cjoin), (cjoin , e2), (x2, cjoin)}

2.4 Restructuring Rules

Deriving the integrated EPC according to Definition 4 may result in unnecessary
structure of the process graph. In particular, we identify two reduction rules:

Definition 5 (Reduction Rules). Let EPC = (E, F, C, l, A) be an (inte-
grated) EPC. The following reduction rules can be applied without affecting the
control flow in terms of the order of functions and events:

1. If there is a path (c1, p1, . . . , pn, c2) with P = {p1, . . . , pn} ∈ (E ∪ F ∪ C)
and (c1, c2) ∈ A, then A := A \ {(c1, c2)}

2. If c ∈ C ∧ |c•| = |•c| = 1, then A := A \ {(x, c), (c, y)} ∪ {(x, y)} and
C := C \ {c}.

The first rule eliminates redundant arcs between two connectors that represent
control flow which is implicitly captured by an alternative path between these
connectors. The second rule eliminates connectors that have only one input and
one output arc. Such unnecessary connectors can result from applying the first
reduction rule. Please note that the first rule can change the execution seman-
tics of the EPC: if there is an xor -split or an or -split in the path between the
and -split and the and -join, the and -join can run into a deadlock. As such a po-
tential deadlock is introduced in the integration step, we argue that it should be
eliminated using the first rule.

3 Application to the SAP Reference Model

In order to demonstrate the applicability of our process view integration ap-
proach, we use two EPC process models from the SAP reference model [4,7],
namely the two processes Customer Inquiry and Quotation Processing and Cus-
tomer Inquiry that were presented in Figure 1.

In Section 2, we have identified semantic equivalence relationships between the
events Customer inquiries about products and Quotation to be created and the
function Customer inquiry processing that appear in both input EPCs. Figure 2
shows the integrated EPC model after applying the merge operator. For each
pair of equivalent functions and events, the respective and -joins and -splits are
inserted following Definition 4. The first and the second pair of and -split and -join
can be reduced according to the reduction rules of Definition 5. The restructured
EPC model is given in Figure 3.

Business Process Design by View Integration 61

Customer
inquiries

about
products

Customer
inquiry

processing

Document to
be created
from sales

activity

XOR

V

XOR

Quotation to
be created
from inquiry

Inquiry items
are rejected

Customer
inquiry is

transmitted

Inquiry is
created

V

V

V

V

Customer
quotation

processing

XOR

Resource
related

quotation

Quotation
must be

created based
on plan data

Customer
project

required

Fig. 2. Integrated EPC for Customer Inquiry and Quotation Processing

4 Related Research

There is extensive work in the database community on view integration and
schema integration. Batini et al. [3] provide a comparative analysis of schema
integration methodologies. They distinguish the schema integration activities
of preintegration, comparing, conforming, merging, and restructuring. In our
paper, we focus on comparing, merging, and restructuring EPCs. There are
several contributions that focus on specific aspects of schema integration. Rahm
and Bernstein provide a survey on how matches across different schemas can be
identified automatically [13]. Rizopoulos and McBrien discuss the application of
the hypergraph data model (HDM) with a wide set of semantic relationships
for merging data schemas [14]. For a comprehensive integration method and a
detailed overview of work on schema integration see [15].

62 J. Mendling and C. Simon

Customer
inquiries

about
products

Customer
inquiry

processing

Document to
be created
from sales

activity

XOR

V

XOR

Quotation to
be created
from inquiry

Inquiry items
are rejected

Customer
inquiry is

transmitted

Inquiry is
created

Customer
quotation

processing

XOR

Resource
related

quotation

Quotation
must be

created based
on plan data

Customer
project

required

Fig. 3. Restructured EPC for Customer Inquiry and Quotation Processing

The heterogeneity of business process modeling languages is a notorious prob-
lem both for theory and practice [10]. Formalizing the metamodel of such a
language as a schema makes schema integration applicable for process modeling
language consolidation. In [11], the authors point to the problem of different con-
trol flow representations (graph-based versus block-oriented) as a specific source
of heterogeneity. In [5] an integration process for business process metamodels
is presented that is able to cope with such control flow heterogeneity.

There has been some work on joining and merging business process models
with Petri net based formalisms. The integration of EPC models is conducted
here in analogy with central concepts of the Semantic Process Language (SPL)
[16,17]. In this language, formulas called modules can be formulated to specify
process sets over elementary processes (in which an action occurs or is being
forbidden) using operators for sequence building, alternatives, concurrency and
synchronization, iteration, and negation. Canonical building rules take modules

Business Process Design by View Integration 63

as input and generate Module nets, i.e. Petri nets with explicit start and goal
transitions. Processes of such a Module net are firing sequences which reproduce
the empty initial marking. Per definition, they are also processes of the module
from which the Module net was generated.

In principle, applying the and-operator of SPL (for concurrency and synchro-
nization) yields the intersection of the process sets of the participating modules
concerning common actions. For Module net implementations, all transitions in-
terpreted by the same elementary process are fused into a single one. Also start
and goal transitions are synchronized in order to enforce the co-execution of
the entire processes. Finally, all contradicting elementary processes (in which an
action occurs in one operand and is forbidden within the other) are prohibited
from occurring together (or even synchronously) in a process by additional con-
flict places - a rule which is of no importance for our approach here since EPCs
do not support prohibition.

Comparable work is reported in [12]. Calculating merges and joins of process
models can also be related to problems and solutions on determining inheritance
relationships between process models [2,1]. Still, the mentioned approaches have
not yet been adopted for conceptual languages such as EPCs as we propose in
our approach.

5 Contributions and Limitations

In this paper we have presented an approach to business process design by view
integration. In particular, we have formalized semantic relationships between
elements of different process models, we have specified a merge operator to in-
tegrate input process models, and have identified reduction rules to simplify the
integrated process model. Furthermore, we have applied this approach to an ex-
ample of two EPC business process models from the SAP reference model to
demonstrate the applicability of our approach. It has to be mentioned that the
approach, although defined for EPCs, can be adopted for other process model-
ing languages. In future work, we aim to provide tool support for the merging
of EPC business process models.

References

1. Wil M. P. van der Aalst. Inheritance of business processes: A journey visiting four
notorious problems. In Hartmut Ehrig, Wolfgang Reisig, Grzegorz Rozenberg, and
Herbert Weber, editors, Petri Net Technology for Communication-Based Systems -
Advances in Petri Nets, volume 2472 of Lecture Notes in Computer Science, pages
383–408. Springer, 2003.

2. T. Basten. In Terms of Nets: System Design with Petri Nets and Process Algebra.
PhD thesis, Eindhoven University of Technology, The Netherlands, December 1998.

3. C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis of Method-
ologies for Database Schema Integration. ACM Computing Surveys, 18(4):323–364,
December 1986.

64 J. Mendling and C. Simon

4. Thomas Curran, Gerhard Keller, and Andrew Ladd. SAP R/3 Business Blueprint:
Understanding the Business Process Reference Model. Enterprise Resource Plan-
ning Series. Prentice Hall PTR, Upper Saddle River, 1997.

5. T. Hornung, A. Koschmider, and J. Mendling. Integration of heterogeneous BPM
Schemas: The Case of XPDL and BPEL. Technical Report JM-2006-03-10, Vienna
University of Economics and Business Administration, 2006.

6. G. Keller, M. Nüttgens, and A. W. Scheer. Semantische Prozessmodellierung auf
der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Heft 89, Institut für
Wirtschaftsinformatik, Saarbrücken, Germany, 1992.

7. G. Keller and T. Teufel. SAP(R) R/3 Process Oriented Implementation: Iterative
Process Prototyping. Addison-Wesley, 1998.

8. E. Kindler. On the semantics of EPCs: Resolving the vicious circle. In J. Desel and
B. Pernici and M. Weske, editor, Business Process Management, 2nd International
Conference, BPM 2004, volume 3080 of Lecture Notes in Computer Science, pages
82–97, 2004.

9. Jan Mendling and Markus Nüttgens. EPC Markup Language (EPML) - An XML-
Based Interchange Format for Event-Driven Process Chains (EPC). Information
Systems and e-Business Management, 4, 2006.

10. Jan Mendling, Markus Nüttgens, and Gustaf Neumann. A Comparison of XML
Interchange Formats for Business Process Modelling. In F. Feltz, A. Oberweis,
and B. Otjacques, editors, Proceedings of EMISA 2004 - Information Systems in
E-Business and E-Government, volume 56 of Lecture Notes in Informatics, 2004.

11. Jan Mendling, Cristian Pérez de Laborda, and Uwe Zdun. Towards an Inte-
grated BPM Schema: Control Flow Heterogeneity of PNML and BPEL4WS. In
K.-D. Althoff, A. Dengel, R. Bergmann, M. Nick, and T. Roth-Berghofer, edi-
tors, Post-Proceedings of the 3rd Conference Professional Knowledge Management
(WM 2005), volume 3782 of Lecture Notes in Artificial Intelligence, pages 570–579.
Springer Verlag, 2005.

12. Günter Preuner, Stefan Conrad, and Michael Schrefl. View integration of behavior
in object-oriented databases. Data Knowl. Eng., 36(2):153–183, 2001.

13. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB Journal, 10(4):334–350, 2001.

14. Nikolaos Rizopoulos and Peter McBrien. A general approach to the generation
of conceptual model transformations. In Oscar Pastor and João Falcão e Cunha,
editors, Advanced Information Systems Engineering, 17th International Confer-
ence, CAiSE 2005, Porto, Portugal, June 13-17, 2005, Proceedings, volume 3520
of Lecture Notes in Computer Science, pages 326–341. Springer, 2005.

15. Ingo Schmitt and Gunter Saake. A comprehensive database schema integration
method based on the theory of formal concepts. Acta Inf., 41(7-8):475–524, 2005.

16. Carlo Simon. A Logic of Actions and Its Application to the Development of Pro-
grammable Controllers. PhD thesis, University of Koblenz-Landau, Department of
Computer Science, Germany, May 2002.

17. Carlo Simon. Incremental Development of Business Process Models. In Jörg Desel
and Ullrich Frank, editors, Proceedings of the Workshop Enterprise Modelling and
Information Systems Architectures, volume 75 of Lecture Notes in Informatics,
pages 222–235, Klagenfurt, Austria, October 2005. German Informatics Society.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 65 – 74, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Approximate Analysis of Expected Cycle Time
in Business Process Execution

Byung-Hyun Ha1, Hajo A. Reijers2, Joonsoo Bae3, and Hyerim Bae1,*

1 Dept. of Industrial Engineering, Pusan National Univ.,
San 30, Jangjeon-dong, Geumjeong-gu, Pusan, 609-735, Korea

{bhha, hrbae}@pusan.ac.kr
2 Dept. of Technology Management, Eindhoven Univ.,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

h.a.reijers@tm.tue.nl
3 Dept. of Industrial & Sys. Eng., Chonbuk National Univ.,

664-14, Duckjin-dong, Duckjin-gu, Jeonju, Jeonbuk, 561-756, Korea

jsbae@chonbuk.ac.kr

Abstract. The accurate prediction of business process performance during its
design phase can facilitate the assessment of existing processes and the gen-
eration of alternatives. In this paper, an approximation method to estimate the
cycle time of a business process is introduced. First, we propose a process
execution scheme, with which Business Process Management Systems
(BPMS) can control the execution of processes. Second, an approximation
method for analyzing its cycle time, based on queueing theory, is presented.
We consider agents as queueing servers with multi-class customers and pre-
dict the response time of the agents. The cycle time of the whole process is
calculated using the expected response time and process structure, taking into
account parallel process execution. Finally, the results from the analytical ap-
proximation are validated against those of a simulation. This analysis can be
used to obtain an optimal process execution plan.

1 Introduction

To secure advantage in today’s competitive and customer-oriented business environ-
ments, it is necessary to maintain the effectiveness of business processes. Efficient
management in rendering business processes effective is a key element of competi-
tiveness. Business Process Management Systems (BPMS) were introduced in an ef-
fort to manage business processes efficiently. BPMS is an information system for
designing, administering, and improving intra/inter-organizational business processes.
As a result, BPMS has become a core engine for integrating enterprise information
systems in a process-oriented way [11]. One of the most important reasons for em-
ploying BPMS is that it can be a sound basis for improving business processes. Inte-
gral to this end is performance analysis.

* Corresponding author.

66 B.-H. Ha et al.

A performance index of a business process can be determined according to cus-
tomers, internal processes, suppliers, finance, and employees [13]. We consider as our
performance index cycle time, which has commonly been used to define the period of
time between the receipt of an order from a customer and the completion of the order.
Since business processes managed by BPMSs are very dynamic, complete informa-
tion is rarely known before executing them. Hence, if cycle time can be predicted at
process design time, it can facilitate the assessment and streamlining of existing proc-
ess as well as the outlining of new processes. In this paper, a queueing model for
estimating the cycle time of business processes is introduced.

Employing stochastic models as analytic models for business processes has been
researched in numerous ways for various purposes. Early research has examined the
assertion that queuing theory can be used to redesign business processes [2,10]. Nara-
hari et al. have analyzed the cycle time of the New Product Development (NPD)
process by modeling an organization’s departments as queueing servers, and proposed
several ways to reduce cycle time by means of queueing theory and a simulation
method [7]. Son and Kim have suggested a capacity planning scheme to satisfy due
dates by modeling tasks of business processes as queueing servers [12]. Another ex-
tensively researched model based on a well-defined theoretical foundation is Stochas-
tic Workflow Net (SWN), the results of which can be used to analyze the performance
of business processes and to plan agent capacity, among other ends [1,9]. However, in
most of the previous studies it was presumed that the capacity of the agents is infinite
and that an agent is dedicated to only a single task. These assumptions can hinder a
more accurate description and analysis of business processes, which is the main moti-
vation for us to devise a more realistic approach.

2 Models for Business Process Analysis

Process models used by commercial BPMSs usually include detailed information on
the automatic execution of the processes involved. However, since the purpose of our
research is to analyze process efficiency, it might not be necessary to consider all
business information, e.g. business rules. Therefore, we provide, as required to ana-
lyze processes, a simplified process model. Our model includes three aspects of proc-
ess information: process structure, resource capacity, and statistical information. The
following is a definition of a process model.

Definition 1 (Process Model). A process model is defined as a tuple T, SB, L, A, μ,
rp, pe, which is characterized as follows:

i) T is a set of tasks.
ii) SB = BS, BR, BP, so is a tuple of blocks, where BS, BR, BP, and so are a set of se-

quence blocks, a set of repeat blocks, a set of parallel blocks, and an outmost
sequence block, respectively. Each block can be nested, that is, a block can in-
clude tasks and internal blocks as its members.

iii) L ⊂ ∪{B×B | B∈BS∪BR} is a set of links.
iv) A is a set of agents.
v) μ : T×A → R+∪{0} is a function of average service rate.

 An Approximate Analysis of Expected Cycle Time in Business Process Execution 67

vi) rp : BR → R+ is a function of repeat probability.
vii) pe : ∪{2

p
 | p∈P} → R+∪{0} is a function of parallel execution probability,

where pe∅ = 0.
viii) is customer arrival rate.

A sample process is represented in Fig. 1 (a), which illustrates an ‘Internet loan
process.’ After a customer requests a loan, a clerk first checks the loan application.
Then, two tasks, ‘History Review’ and ‘Credit Inquiry,’ are executed simultaneously
if their respective preconditions are met. The probability of each task’s execution is
marked on a split arrow. Taking the results of these tasks into account, the task ‘Loan
Grant’ is executed next. Note that this appraisal may lead to a repeated execution of
the history review and credit inquiry tasks.

App.
Check

History
Review

Credit
Inquiry

Loan
Grant

Customer
Arrives

Customer
Leaves

COR

0.1

0.9

Φ = 2

0.8

1.0

COR: Conditional OR

t1

t2

t3

t4

P1

R1

so

}{},{},{},,,,{ 114321 PBRBsBttttT PRoS ====
},,,{},,{},,{},,{ 411132141111 ==== tPRtLttPtPRRtso

2,8.0,2.0,0,1.0 },{}{}{1 3232
=Φ==== ttttR pepeperp

},,,{ 4321 aaaaA =
5,10,5,4,20

3433322211 ,,,,, ===== atatatatat μμμμμ

(a) (b)

Fig. 1. A simple process model (a) a sample process (b) a process model

The sample process can be mapped onto our process model as shown in Fig. 1 (b).
All tasks establish a task set, T, and also defined are sets of blocks (BS, BP, and BR),
links (L), and agents (A). Block execution probabilities for parallel and repeat blocks
are derived from the task execution probabilities of the original process. For example,
the probability that both t2 and t3 will execute (pe{t2,t3}) is 0.8, because t3 is always
executed and t2 is executed with probability of 0.8. In this sample process, customers
arrive every 2 time units on the average, that is, =2. For an agent a and a task t, a
positive value for average service rate μt,a indicates the average number of t that can
be performed by a per unit time. Otherwise, μt,a equals zero. This kind of statistical
information can be estimated by domain experts in the design phase or just collected
from the execution history of the business process as registered by the BPMS.

To analyze the cycle time of a business process based on the model above, we first
introduce the execution frequency of each task. An expected execution frequency of b,
denoted by fb, is the frequency of performing block b while a business process is exe-
cuted. The expected execution frequencies of blocks are recursively calculated using
the following equation:

68 B.-H. Ha et al.

.where

,where)1(

,where

,1

}|2{
PP

SpSB
Bp

RRRr

SSs

s

BPPpfpef

BRRrrpff

BSSsff

f

P

o

∈∈∀⋅=
∈∈∀−=
∈∈∀=

=

∈∈∈

(1)

In the sample process depicted in Fig. 1, the expected execution frequencies of the
tasks, ft1, ft2, ft3, ft4 are determined to be 1, 8/9, 10/9, 10/9 .

In addition, the notation below is employed to simplify the formulas in the follow-
ing sections. The shorthands represent a set of tasks that can be performed by agent a
and a set of agents who can perform task t, respectively:

Ta := {t | μt,a > 0} , At := {t | μt,a > 0} . (2)

3 Queueing Analysis of Process Execution

In this section, a method of executing business processes is presented and the main
ideas behind the performance analysis of business processes using queuing theory
are illustrated. When tasks are required to be performed, a BPMS assigns them to
agents by putting them into worklists. The performance of process execution de-
pends on the method of managing worklists and the order of performing tasks in
worklists [5]. In this paper, we consider a work environment in which each agent
has his own worklist.

When a business process is executed in such an environment, the cycle time de-
pends on the ability of the agent who performs a task. In the process execution phase,
a task is assigned to a specific agent with predefined probability as defined below.

Definition 2 (Task Assignment Probability). A task assignment probability of task t
assigned to agent a, denoted by pt,a, is the probability that agent a is selected to
perform task t in business process execution, where μt,a > 0.

In the process execution phase, we apply the following rules: i) when a task is to be
assigned, it is assigned to a specific worklist of an agent using the predefined task
assignment probability (pt,a), and ii) each agent performs the tasks in his worklist
using the First-In-First-Out (FIFO) dispatching rule.

To analyze business processes using queueing theory, agents are modeled as
queueing servers, which are called agent servers. A queueing network can be built by
connecting the agent servers. The jobs arriving at an agent server are the tasks as-
signed to the worklist of the corresponding agent.

The task arrival rate of t (λt) is the average number of occurrences of task t per
time unit when the business process is continuously visited by customers. Similarly,
λt,a and λ•a are defined as the task arrival rate of task t assigned to agent a and the
task arrival rate assigned to agent a regardless of task type, respectively. The task
assignment probabilities can be calculated as follows:

 An Approximate Analysis of Expected Cycle Time in Business Process Execution 69

,,, ,,,
∈

• =⋅=⋅Φ=
aTt

atatatattt pf λλλλλ
(3)

and the utilization rate of agent a (lda) is derived as [4]:

.
,

,

,

,

,

,

∈∈∈

Φ===
aaa Tt at

att

Tt at

att

Tt at

at
a

pfp
ld

μμ
λ

μ
λ (4)

The response time (cycle time) of an agent can be obtained by analyzing the corre-
sponding agent server. Let STt,a and STa be the random variables (RV) denoting the
service time of agent a for task t and the service time of agent a regardless of task
type, respectively. (Note that E[STt,a] is μt,a.) Because STt,a can be assumed to be in-
dependent of each other, the moments of STa are derived as follows:

.][][,
,

∈ •

=
aTt

n
at

a

atn
a STESTE

λ
λ (5)

Let CTa be the RV denoting the cycle time of an agent a. Recall that in this re-
search, an agent handles tasks in a worklist with the FIFO rule. And jobs can be as-
sumed to arrive at agent servers according to the Poisson process [12]. Hence, the
moments of the cycle time can be derived as follows [4]:

.
)1(

][

)1(2

][

)1(3

][
][,

)1(2

][
][

2

2

2223
2

2

a

a

a

aa

a

aa
a

a

a

a

aa
a ld

STE

ld

STE

ld

STE
CTE

ld

ld

STE
CTE

−
+

−
+

−
=+

−
= ••

•

• λλ
λ

λ (6)

The cycle times of agents are independent of each other and tasks are assigned to
agents with predefined task assignment probabilities (pt,a) regardless of their arrival
order. Therefore, the moments of the cycle time CTt of task t are expected to be:

.][][,][][2
,

2
,

∈∈

⋅=⋅=
tt Aa

aatt
Aa

aatt CTEpCTECTEpCTE (7)

4 Estimating Cycle Time

The expected cycle time of each block is derived using those of its internal blocks,
and the cycle time of a process is that of the outmost block so. In other words, the
cycle time of the whole process is recursively calculated from the innermost blocks,
that is, the tasks. The results of this section are based mainly on queueing theory and,
thus, on the assumption of a steady state system.

Sequence blocks. The cycle times of internal blocks that structure a sequence block
are not independent of each other. In other words, if one of the internal blocks has a
long cycle time, there is also a very high probability of other blocks in the same se-
quence having a long cycle time. This kind of dependency can be modeled using the
coefficient of correlation. Commonly, the coefficient of correlation varies with the
structure of the queueing network and the server utilization rate [3]. However, we fix
the coefficient of correlation of sequence blocks (ρs) as 0.5, based on comprehensive
experiments, and assume that only adjacent blocks are correlated.

70 B.-H. Ha et al.

Let CTS be the RV denoting the cycle time of sequence block S; then it is straight-
forward to obtain the mean and variance of the cycle time:

.][][2][][

,][][

2
21

21

, ∩∈∈

∈

+=

=

SLbb
bbs

Sb
bS

Sb
bS

CTVarCTVarCTVarCTVar

CTECTE

ρ
 (8)

Repeat blocks. The number of executions of a repeat block R depends on its repeat
probability rpR. Let CTR and CTR,1 be the RV denoting the cycle time of repeat block
R and the cycle time of R when it is executed only once, respectively. Then,

,1,
2

1,1, +++= RRRRRR CTrpCTrpCTCT (9)

and the statistics for CTR,1 are not different from those of the sequence block.
As in the sequential case, the cycle times from the repeated execution of a block

are not independent of each other. We also fixed the coefficient of correlation of the
repeated execution (ρr) at 0.4. Note that the coefficient of correlation of repeat blocks
is different from that of sequence block. That is, the former represents inter-block
dependency, while the latter represents the dependency of adjacent inner blocks. The
mean and variance of the cycle time of repeat blocks are derived as follows:

.)1(][)21(

][][2][][

,)1(][][

2
1,

1
1,1,

12

1
1,

)1(2

1,

RRRr

i
RRr

i
R

i
R

i
RR

RRR

rpCTVarrp

CTVarCTVarrpCTVarrpCTVar

rpCTECTE

−+=

+=

−=
∞

=

−
∞

=

−

ρ

ρ

(10)

Parallel blocks. The cycle time of a parallel execution is the maximum of the cycle
times of inner blocks. Given that in general it is not easy to obtain accurate
performance measures of parallel blocks, we employ an approximation method for
Fork-Join Queue [8] and adapt it to business processes.

Let CTP and PTB be the RV’s denoting the cycle time of parallel block P and the
cycle time of inner blocks B⊂P when every block in B is executed, respectively.
Then, the mean and variance of block P (with the coefficient of correlation ρp = 0.5)
are given by:

,][][2][][

,][][

21

21

1121

,22,2

2

2

≠
×∈∈

∈

+=

=

BB
BB

BBBBP
B

BBP

B
BBP

PPP

P

PTVarPTVarpepePTVarpeCTVar

PTEpeCTE

ρ

(11)

where E[PT∅] = Var[PT∅] = 0.
The cycle time of the inner blocks is approximated using a generalized exponential

distribution [8]. Let CTb and ATb be the RV denoting the cycle time of inner block
b∈B and its approximated cycle time using a generalized exponential distribution,
respectively. When E[CTb]

2 > Var[CTb], the cumulative distribution function of ATb is
given by:

 An Approximate Analysis of Expected Cycle Time in Business Process Execution 71

.][,][where,otherwise0

1)()(

bbbbb

b
mdx

AT

mCTEdCTVarm

dxexF bb

b

−===

≥−= −−

(12)

Note that the mean and variance of ATb and CTb are the same. If the cycle times of the
inner blocks are assumed to be independent of each other, the cumulative distribution
function of PTB is approximated as follows:

.}{maxwhere,1)(

]Pr[],Pr[]Pr[)(

)(
b

Bb
Bb

mdx

Bb
AT

Bb
bbBPT

dxexF

xCTBbxCTxPTxF

bb

b

B

∈∈

−−

∈

∈

≥−=≅

≤=∈∀≤=≤=

∏∏
∏

(13)

As a result, the first and second moments of PTB are approximated as follows,

,exp)()1(2][

,exp)1(][

}\{2

1||22

}\{2

1||

∅∈ ∈

−

∅∈ ∈

−

−−+−+≅

−−−+≅

B

B

A Ab b

b
AA

A
B

A Ab b

b
A

A
B

m

dd
kdkdPTE

m

dd
kdPTE

(14)

where

.,}{max
}{\

∏∏
∈ ∈∈∈

==
Ab bAc

c
Ab

bAb
Bb

mmkdd (15)

5 Experimental Results

To validate the accuracy of our method, the analytical results for predicting process
cycle time were compared with simulation results. In this validation, we used random
processes of which the structure and the parameters are randomly determined by a
computer.

Each random process is created with the number of tasks and the number of
agents as input data. First, the average service rate of each task is determined using
uniform distributions, and service rates of agents were randomly generated based on
the average service rate of the task. The service times for tasks were assumed to
have gamma distributions with the shape parameter α = 2, an assumption to be
known as generally applicable in practice [6]. The simulation was set to prevent any
single agent doing more than 10 tasks on the average. Generation of the process
structure started from the outmost sequence block, and then the type of inner struc-
ture was determined randomly. The numbers of tasks, repeat blocks, and parallel
blocks in a sequence or repeat block were respectively set to be 10, 2 and 3 on the
average. Task assignment probabilities were generated at random too, and task
arrival rates that allow a maximum workload of agents of 50, 60, 70, 80 and 90 %
were used for our simulation.

Fig. 2 illustrates a sample random process, and the experimental results of the cy-
cle time approximation. Fig. 2 (a) shows that the sample process consists of 12 tasks,
3 parallel blocks, and a repeat block. Five agents participate in the execution of the

72 B.-H. Ha et al.

0

500

1000

1500

2000

2500

1/20 1/18 1/16 1/14 1/12 1/10

Customer Arrival Rate

C
yc

le
 T

im
e

sim

exp

(a) (b)

T02
T04

T05

T07

T11T10
T08

T09
T06T03

T01 T12

Fig. 2. A sample process for experiments. (a) A random process model. (b) Comparison be-
tween the analytical and simulation results.

process. With customer arrival rates varying from 1/20 to 1/10, simulation results
were compared with the cycle times calculated by our method. From the result in
Fig. 2 (b), it can be seen that the estimation was quite satisfactory across all customer
arrival rates.

Table 1. Summary of experiment results with # of business processes*, ME (Mean Error) in
%**, and MSE (Mean Squared Error) in %***

of tasks # of
agents 20 30 40 50 60 70 80 90 100 110 120

249* 248 249 249 246 245 251 271 271 271 271
6.84** 6.82 6.89 6.22 6.61 7.50 8.11 8.19 7.88 7.60 8.58 10

66.80*** 63.34 69.35 52.60 57.34 75.23 91.36 90.26 84.22 78.88 92.97
263 264 264 261 260 262 262 251 251 251 251
3.78 4.64 4.75 5.82 5.14 5.66 6.06 5.71 6.09 5.67 5.83 20
23.07 33.37 35.52 54.58 38.69 46.60 54.60 47.69 60.70 49.17 51.15
261 259 259 273 272 251 251 251
3.86 3.30 4.21 4.19 4.51 4.29 4.85 4.81 30
22.61 16.10 26.56 25.53 32.27 28.35 39.93 32.44
251 251 251 251 251 251 251 251
2.68 3.45 3.50 3.66 3.65 3.93 4.28 3.99 40
13.00 21.04 22.36 20.92 19.91 24.18 27.33 28.64
251 251 251 251 251 251 251
3.13 2.90 3.22 3.41 3.76 3.78 4.17 50
15.09 14.77 15.79 17.39 23.66 21.55 28.88

11,503 iterations of the experiments were conducted for the random processes with
varying numbers of agents (from 10 to 50) and numbers of tasks (from 20 to 120).
The experimental results show that the total mean error is 5.08 (%) and the mean
squared error is 41.42 (%). The results are summarized in Table 1.

In Table 1, the second row of each cell shows the percentage of time difference be-
tween the predicted cycle time and the simulation result. The results show that our
prediction of the cycle time is within a 10% error on average. It can be seen that the

 An Approximate Analysis of Expected Cycle Time in Business Process Execution 73

error generally increases as the number of tasks increases, but the trend is not so sig-
nificant. This fact implies that complex process structures can cause an estimation
error. At the same time, the error decreases as the number of agents increases. This is
because an increased number of agents likely reduces the variance in the cycle times
of tasks.

0

500

1000

1500

2000

2500

3000

3500

4000

-12 -8 -4 0 4 8 12 16 20 24 28 32 36 40

Fig. 3. The histogram of errors in %

Fig. 3, which depicts the overall distribution of error, shows that the variance of er-
ror is not so large.

6 Conclusions

In this paper, we provide an approximate analysis of the average cycle time of busi-
ness processes. For this purpose we first considered a process execution scheme as-
suming BPMS to control the execution of the processes. Under this execution scheme,
an agent is assumed to have an individual worklist and the BPMS assigns tasks to the
worklists. An approximation method for the setting of the individual worklist was
devised to analyze the cycle time. The method is based on queueing theory, and we
considered agents as queueing servers with multi-class customers in order to predict
the response time of the agents. The cycle time of the whole process was calculated
using the expected response time and process structure, taking into account parallel
process execution. We conducted simulation experiments to verify the effectiveness
of our approach, and showed that our method can predict cycle time with acceptable
accuracy. We expect that the prediction of business process performance in the design
phase can facilitate the assessment of existing processes and help to recommend the
generation of new designs.

With respect to further research, since we can evaluate a process with respect to its
cycle time, it might be possible to find, under the process execution scheme intro-
duced in this paper, execution rules that minimize the cycle time. Though mathemati-
cal solutions are often difficult, a meta-heuristic approach to this problem can be very
effective.

74 B.-H. Ha et al.

Acknowledgements

This work was supported by the Regional Research Centers Program (Research
Center for Logistics Information Technology), granted by the Korean Ministry of
Education & Human Resources Development.

References

1. van der Aalst, W., van Hee, K., Houben, G.: Modelling and analysing workflow using a
petri-net based approach. In: Proceedings of the Second Workshop on Computer-
Supported Cooperative Work, Petri Nets and Related Formalisms. (1994)

2. Buzacott, J.A.: Commonalities in reengineered business processes: models and issues.
Management Science 42(5) (1996) 768–782

3. Daduna, H., Szekli, R.: On the correlation of sojourn times in open networks of exponen-
tial multiserver queues. Queueing Systems 34(1-4) (2000) 169–181

4. Gross, D., Harris, C.: Fundamentals of Queueing Theory. John Wiley & Sons, New York
(1998)

5. Ha, B.H., Bae, J., Park, Y.T., Kang, S.H.: Development of process execution rules for
workload balancing on agents. Data & Knowledge Engineering 56(1) (2006) 64–84

6. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis. Third edn. McGraw-Hill,
Boston, MA (2000)

7. Narahari, Y., Viswanadham, N., Kumar, K.V.: Lead time modeling and acceleration of
product design and development. IEEE Transaction on Robotics and Automation 15(5)
(1999) 882–896

8. Rajaraman, B., Morgan, T.W.: Approximate analysis of the average delay in parallel
program execution. In: Proceeding of the Twenty-Sixth Hawaii International Conference
on System Sciences, Hawaii (1993) 584–593

9. Reijers, H.A.: Design and Control of Workflow Processes. Springer-Verlag (2003)
10. Seidmann, A., Sundararajan, A.: The effects of task and information asymmetry on

business process redesign. International Journal of Production Economics 50(2-3) (1997)
117–128

11. Smith, H., Fingar, P.: Business Process Management: The Third Wave. Meghan-Kiffer,
Tampa (2003)

12. Son, J., Kim, M.: Improving the performance of time-constrained workflow processing.
Journal of Systems and Software 58(3) (2001) 211–219

13. Wesner J.W., Hiatt, J.M., Trimble, D.C.: Winning With Quality: Applying Quality Princi-
ples in Product Development. Addison-Wesley, Reading, MA (1995)

Workshop on Business Process
Intelligence (BPI 2006)

Workshop on Business Process Intelligence
(BPI 2006)

Preface

Surviving in today’s competitive market demands that enterprises improve the
efficiency of their business processes not only by their automation, as they have
done for years, but also by gaining intelligence about processes that reduce costs
and improve performance. Business Process Intelligence (BPI) is an emerging,
interdisciplinary area that aims at developing models, techniques and tools to
improve different aspects of how business processes are modeled and conducted.
BPI is not only the application of Business Intelligence techniques to business
processes but it also integrates contributions from other research areas like BAM
(Business Activity Monitoring), BOM (Business Operations Management), BPM
(Business Performance Management), and others.

Following the success of the first BPI workshop, held in Nancy on September
5, 2005, this second workshop intended to bridge across the various research areas
that are related to BPI. At the same time the workshop was an opportunity to
continue consolidating this area and building a multidisciplinary community.

The workshop BPI 2006 consisted of a keynote talk on “Process Mining:
Practical Experiences and a Reality Check”, seven contributed papers that were
selected by the program committee for presentation at the workshop, and a
panel on “Business Process Intelligence and Business Intelligence: Differences
and Convergences”.

In his keynote talk, Wil van der Aalst gave an overview of the various process
mining techniques that have been developed in the last 10 years, and discussed
the many perspectives of viewing process mining: from the reverse engineering of
code and the monitoring of embedded systems to cross-organizational workflows
and health-care processes. The goal was to promote a discussion on the challenges
that need to be addressed to improve the applicability of process mining.

The seven papers cover some of the main topics addressed by BPI. In par-
ticular, the paper “Process Mining and Petri Net Synthesis” by E. Kindler, V.
Rubin and W. Schäfer, deals with the topic of process discovery, which refers to
the analysis of enterprise operations in order to derive the process models that
these operations obey. A contribution to this topic is also given by the industrial
paper “A Generic Import Framework for Process Event Logs” by C.W. Günther
and W.M.P. van der Aalst, which illustrates a framework for acquiring log data
from a Process-Aware Information System. The topic of intelligent process anal-
ysis (analysis of business process execution to discover interesting correlations)
is addressed by the paper “Process Mining by Measuring Process Block Sim-
ilarity” by J. Bae, J. Caverlee, L. Liu, B. Rouse, and H. Yan, which presents
an approach for measuring the similarity between two process models. Another
topic relevant to BPI, exception handling, is dealt with by the paper “Improving

78 Preface

Exception Handling by Discovering Change Dependencies in Adaptive Process
Management Systems” by B. Weber, W. Wild, M. Lauer and M. Reichert. A
novel topic of process modeling and reasoning is covered by the paper “Process
Representation and Reasoning Using a Logic Formalism with Object-Oriented
Features” by A. Gualtieri, T. Dell’Armi and N. Leone. The topic of business
process measurement is analyzed by the survey paper “A Discourse on Com-
plexity of Process Models” by J. Cardoso, J. Mendling, G. Neumann and H.A.
Reijers, which focuses on the problem of defining complexity metrics for busi-
ness processes. Finally, the position paper “Measuring Performance in the Retail
Industry” by G. Marketos and Y. Theodoridis deals with the application of BPI
in the context of the retail industry by suitably exploiting the RFID technology.

The panel discussed convergences between Business Intelligence (BI) and
Business Process Intelligence: how techniques of BI can be effectively applied
to add intelligence to the analysis of processes? The panel also intended to evi-
dence differences between the two areas, as BPI is not just an application of BI,
but it is a multidisciplinary area.

Acknowledgments

We wish to express a special word of thanks to the Program Committee members
(Francesco Archetti, Boualem Benatallah, Fabio Casati, Jonathan E. Cook, Peter
Dadam, Saso Dzeroski, Fosca Giannotti, Mati Golani, Gianluigi Greco, Dimitrios
Georgakopoulos, Joachim Herbst, Shlomit S. Pinter, Michael Rosemann, Wil van
der Aalst, Mathias Weske, Michael zur Muhlen) for providing their technical
expertise in reviewing the submitted papers and their valuable support to create
an interesting program. We are particularly grateful to the keynote speaker,
Wil van der Aalst, for his interesting keynote talk and, more generally, for his
pioneering contribution to the area of BPI. We also thank all the authors of
the accepted papers for sharing their work and experiences in this workshop.
Finally, we want to express our sincere appreciation to the BPM 2006 Workshops
Chair, Johann Eder, for his support in the organization of the workshops and
the proceedings.

June 2006 Malu Castellanos (malu.castellanos@hp.com)
Domenico Saccà (sacca@unical.it)

Ton Weijters (a.j.m.m.weijters@tm.tue.nl)
(Editors)

Workshop Organization

Executive Committee

Organizers and PC Chairs Malu Castellanos, Hewlett-Packard Labs, USA
Domenico Saccà, University of Calabria, Italy
Ton Weijters, Eindhoven University of
Technology, The Netherlands

Publication and Coord. Chairs Antonella Guzzo, ICAR-CNR, Italy
Ana Karla A. de Medeiros, Eindhoven
University of Technology, The Netherlands

Program Committee

Francesco Archetti (University of Milan Bicocca, Italy)
Boualem Benatallah (University of New South Wales, Australia)
Fabio Casati (Hewlett-Packard, USA)
Malu Castellanos (Hewlett-Packard Laboratories, USA)
Jonathan E. Cook (New Mexico State University, USA)
Peter Dadam (University of Ulm, Germany)
Saso Dzeroski (Jozef Stefan Institute, Slovenia)
Fosca Giannotti (ISTI-CNR, Italy)
Mati Golani (Ort Braude College, Israel)
Gianluigi Greco (University of Calabria, Italy)
Dimitrios Georgakopoulos (Telcordia Technologies, Austin, USA)
Joachim Herbst (DaimlerChrysler AG, Germany)
Shlomit S. Pinter (IBM Haifa Research Lab, Israel)
Michael Rosemann (Queensland University of Technology, Australia)
Domenico Saccà (University of Calabria, Italy)
Wil Van der Aalst (University of Eindhoven, The Netherlands)
Mathias Weske (Hasso Plattner Institute, University of Potsdam, Germany)
Ton Weijters (Eindhoven University of Technology, The Netherlands)
Michael zur Muhlen (Stevens Institute of Technology, USA)

A Generic Import Framework
for Process Event Logs

Industrial Paper

Christian W. Günther and Wil M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{c.w.gunther, w.m.p.v.d.aalst}@tm.tue.nl

Abstract. The application of process mining techniques to real-life cor-
porate environments has been of an ad-hoc nature so far, focused on
proving the concept. One major reason for this rather slow adoption has
been the complicated task of transforming real-life event log data to the
MXML format used by advanced process mining tools, such as ProM. In
this paper, the ProM Import Framework is presented, which has been
designed to bridge this gap and to build a stable foundation for the
extraction of event log data from any given PAIS implementation. Its
flexible and extensible architecture, adherence to open standards, and
open source availability make it a versatile contribution to the general
BPI community.

1 Introduction

Process-Aware Information Systems (PAISs) are a commonplace part of the
modern enterprise IT infrastructure, as dedicated process management systems
or as workflow management components embedded in larger frameworks, such
as Enterprise Resource Planning (ERP) systems.

At this point in time, most business process monitoring solutions focus on
the performance aspects of process executions, providing statistical data and
identifying problematic cases. The area of Process Mining [3], in contrast, is
based on the a-posteriori analysis of process execution event logs. From this
information, process mining techniques can derive abstract information about
the different perspectives of a process, e.g. control flow, social network, etc.

There exists a great variety of PAIS implementations in field use, of which each
one follows a custom manner of specifying, controlling and interpreting business
processes. As an example, consider the utter difference in paradigm between a
traditional, rigid Workflow Management System (WFMS) like Staffware on the
one side, and a flexible case handling [5] system like FLOWer [7] on the other.
This scale brings with it a corresponding plethora of event log formats, and
concepts for their storage and accessibility.

In order to render the design of process mining techniques and tools inde-
pendent of the target PAIS implementation, the MXML event log format has
been devised. While this format has been designed to meet the requirements of

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 81–92, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

82 C.W. Günther and W.M.P. van der Aalst

Fig. 1. Positioning the ProM Import Framework in the BPI landscape

process mining tools in the best possible way, the conversion from many PAIS’s
custom formats to MXML is a non-trivial task at best.

This combination of recurring and time-consuming tasks calls for a generic
software framework, which allows the implementation of import routines to con-
centrate on the core tasks which differentiate it from others. Providing a common
base for a large number of import routines further enables to leverage the com-
plete product with marginal additional implementation cost, e.g. by providing a
common graphical user interface (GUI) within the host application.

The ProM Import Framework addresses these requirements, featuring a flex-
ible and extensible plug-in architecture. Hosted import plug-ins are provided
with a set of convenience functionality at no additional implementation cost,
thus making the development of these plug-ins efficient and fast.

This paper is organized as follows. Section 2 introduces process mining and
the ProM framework, followed by an introduction to the underlying MXML
format in Section 3. Section 4 describes requirements, design, architecture, and
implementation of the ProM Import Framework. Subsequently, Section 5 gives
an overview about target systems for which import plug-ins have already been
developed, after which Section 6 draws conclusions.

2 Process Mining and ProM

Process-aware information systems, such as WfMS, ERP, CRM and B2B sys-
tems, need to be configured based on process models specifying the order in
which process steps are to be executed [1]. Creating such models is a complex
and time-consuming task for which different approaches exist. The most tradi-
tional approach is to analyze and design the processes explicitly, making use of
a business process modeling tool. However, this approach has often resulted in
discrepancies between the actual business processes and the ones as perceived
by designers [3]; therefore, very often, the initial design of a process model is
incomplete, subjective, and at a too high level. Instead of starting with an ex-
plicit process design, process mining aims at extracting process knowledge from
“process execution logs”.

Process mining techniques such as the alpha algorithm [4] typically assume
that it is possible to sequentially record events such that each event refers to
an activity (i.e., a well-defined step in the process) and to a case (i.e., a process

A Generic Import Framework for Process Event Logs 83

instance). Moreover, there are other techniques explicitly using additional in-
formation, such as the performer and timestamp of the event, or data elements
recorded with the event (e.g., the size of an order).

This information can be used to automatically construct process models, for
which various approaches have been devised [6,8,11,12]. For example, the alpha
algorithm [4] can construct a Petri net model describing the behavior observed
in the log. The Multi-Phase Mining approach [9] can be used to construct an
Event-driven Process Chain (EPC) [14] based on similar information. At this
point in time there are mature tools such as the ProM framework to construct
different types of models based on real process executions [10].

So far, research on process mining has mainly focused on issues related to con-
trol flow mining. Different algorithms and advanced mining techniques have been
developed and implemented in this context (e.g., making use of inductive learn-
ing techniques or genetic algorithms). Tackled problems include concurrency
and loop backs in process executions, but also issues related to the handling of
noise (e.g., exceptions). Furthermore, some initial work regarding the mining of
other model perspectives (e.g., organizational aspects) and data-driven process
support systems (e.g., case handling systems) has been conducted [2].

3 The MXML Format

The MXML format (as in M ining XML) is a generic XML-based format suitable
for representing and storing event log data. While focusing on the core informa-
tion necessary to perform process mining, the format reserves generic fields for
extra information that is potentially provided by a PAIS.

The structure of an MXML document is depicted in Figure 2, in the for-
mat of a UML 2.0 class diagram. The root node of each MXML document is a
WorkflowLog, representing a log file. Every workflow log can potentially contain

Fig. 2. Schema of the MXML format (UML diagram)

84 C.W. Günther and W.M.P. van der Aalst

one Source element, which is used to describe the system the log has been im-
ported from.

A workflow log can contain an arbitrary number of Processes as child ele-
ments. Each element of type “Process” groups events having occurred during
the execution of a specific process definition. The single executions of that pro-
cess definition are represented by child elements of type ProcessInstance. Thus,
each process instance represents one specific case in the system.

Finally, process instances each group an arbitrary number of AuditTrailEntry
child nodes, each describing one specific event in the log. Every audit trail entry
must contain at least two child elements: The WorkflowModelElement describes
the process definition element to which the event refers, e.g. the name of the task
that was executed. The second mandatory element is the EventType, describing
the nature of the event, e.g. whether a task was scheduled, completed, etc. Two
further child elements of an audit trail entry are optional, namely the Timestamp
and the Originator. The timestamp holds the exact date and time of when the
event has occurred, while the originator identifies the resource, e.g. person, which
has triggered the event in the system.

The elements described above provide the basic set of information used by
current process mining techniques. To enable the flexible extension of this for-
mat with additional information extracted from a PAIS, all mentioned elements
(except the child elements of AuditTrailEntry) can also have a generic Data child
element. The data element groups an arbitrary number of Attributes, which are
key-value pairs of strings.

4 The ProM Import Framework

While the ProM tool suite, which is based on interpreting event log data in the
MXML format, has matured over the last couple of years, there is still a gap in
actually getting these logs in the MXML format. Creating event logs in MXML
has, in the past, been mostly achieved by artificial means, i.e. simulation, or by
ad-hoc solutions which are not applicable to production use.

The ProM Import Framework steps in to bridge this gap. Its incentive is, on
the one hand, to provide an adequate and convenient means for process mining
researchers to actually acquire event logs from real production systems. On the
other hand, it gives the owners of processes, i.e. management in organizations
relying on PAIS operations, a means for productively applying process mining
analysis techniques to their installations.

The following subsection introduces the incentives and high-level goals which
have triggered the development of the ProM Import Framework. Section 4.2
derives from these goals a set of prominent design decisions, which form the
basis of the system architecture, introduced in Section 4.3.

4.1 Goals and Requirements

In order to further progress the field of process mining it is essential to adapt and
tailor both present and future techniques towards real-life usage scenarios, such

A Generic Import Framework for Process Event Logs 85

that process mining can evolve into production use. This evolution fundamentally
depends on the availability of real-life event log data, as only these can provide
the necessary feedback for the development of process mining techniques.

Conversely, the process of actually applying process mining techniques in real
world scenarios has to be eased and streamlined significantly. While several suc-
cessful projects have proved the concept, it is a necessity to improve tool support
for the entire process mining procedure from beginning to end.

A practical process mining endeavor is characterized by three, mainly inde-
pendent, phases: At first, the event log data has to be imported from the source
system. Secondly, the log data needs to be analyzed using an appropriate set
of process mining techniques. Third and last, the results gained from process
mining need thorough and domain-dependent interpretation, to figure out what
the results mean in the given context, and what conclusions can be drawn.

The process mining specialist is required in the second and third phase, while
the user, or process owner, is involved mainly in the third phase. What makes
the first phase stick out is that it is at the moment the one task which can
be performed with the least domain and process mining knowledge involved.
Therefore, it is the logical next step for the progression of process mining to
provide adequate and convenient tool support for the event log extraction phase.

A tool for supporting the event log extraction phase should thus address the
following, high-level goals:

– The tool must be relatively easy to operate, such that also less qualified
personnel can perform the task of event log extraction. This requirement
implies, that:
– By separating a configuration and adjustment phase from the extraction
phase, which can potentially run unattended, the whole process can be lever-
aged and rendered more efficient.

– While ease of use is among the top goals, it must not supersede flexibility
and configurability of the application. It must be applicable in as great an
array of PAIS installations as possible.

– The tool must provide an extensible and stable platform for future develop-
ment.

– It is advisable to provide the tool on a free basis, in order to encourage its
widespread use and lower potential barriers for user acceptance. Further,
providing the code under an open source license is expected to attract also
external developers to participate. This enables the application to benefit
from community feedback and contribution, thereby greatly leveraging the
tool and, ultimately, process mining as a whole.

The subsequent subsection introduces the design decisions which were derived
from these high-level goals.

4.2 Design Decisions

The ProM Import Framework has been developed from scratch, with the fun-
damental goal to provide a most friendly environment for developing import

86 C.W. Günther and W.M.P. van der Aalst

filters1. Consequently, a strong focus has been on extensibility and stability of
the design, while including as much functionality as possible in the framework
itself.

This emphasis has led to six crucial design choices, which have served as the
cornerstone for developing the architecture of the system:

1. Extensibility: The design must incorporate a strict separation between gen-
eral framework code and extension components. An additional requirement
is to shift as much application logic as possible into the core framework, to
prevent code duplication and to ease the development of extensions.

2. Anonymization of log information: The framework shall enable users to
anonymize sensitive information contained in event logs in a transparent and
convenient manner, thereby providing a means to protect the log owner’s
intellectual property.

3. Flexible log-writing pipeline: A logical log-writing pipeline shall be im-
plemented, allowing to transparently chain a random number of log data-
altering algorithms between event extraction and final storage.

4. Decoupled configuration management: It shall be sufficient for an im-
port routine to specify its configuration options, and their corresponding
types. Based on this information, the framework should transparently han-
dle presenting these options to the user and allowing him to change them in
a convenient manner.

5. Decoupled dependencies management: One further requirement to-
wards the framework is to transparently satisfy all import routines’ external
requirements, e.g. database connectivity libraries.

6. Convenient and decoupled user interface: The application shall be rel-
atively easy to use, i.e. it shall not require the user to have knowledge about
process mining internals or the process of importing the event log data.

These design principles, together with the high-level goals presented in Sec-
tion 4.1, have been used as an imperative in shaping the application’s concrete
architecture, which is presented in the following subsection.

4.3 Architecture

The architecture reflects the design principles stated in Section 4.2, and thus
directly supports the high-level goals of Section 4.1. Figure 3 describes the ab-
stract architecture of the framework, identifying the major classes involved and
their mutual relationships in form of a UML 2.0 class diagram.

A flexible plug-in architecture satisfies the requirement for extensibility. For
every target PAIS implementation, one dedicated import filter is supposed to
be implemented as a plug-in. Each import filter plug-in is contained within one
dedicated class, derived from the abstract superclass ImportFilter. From this
base class, every import filter plug-in inherits a set of methods which it can call
in its constructor, to notify the system of its configuration options and external
1 The distribution is available at http://promimport.sourceforge.net.

A Generic Import Framework for Process Event Logs 87

Fig. 3. Architecture of the ProM Import Framework, core components (UML diagram)

dependencies. For the actual import routine, the plug-in is passed an object
implementing the interface FilterEnvironment, connecting the import filter to
fundamental framework capabilities during the import procedure.

All elements of the log-writing pipeline implement the LogFilter interface,
which allows for their flexible arrangement within the pipeline at will. This inter-
face is used in a sequential manner, i.e. it incorporates methods to start and finish
log files, processes and process instances, and a method for passing audit trail
entries. The final endpoint of the log-writing pipeline is marked by an object de-
rived from the abstract class LogWriter providing basic MXML formatting, while
actual writing to permanent storage is implemented in LogWriter’s subclasses.

Intermediate elements of the log-writing pipeline, such as the LogAnonymizer,
are derived from the abstract class LogFilterProxy, implementing their transpar-
ent integration into the pipeline. At this point in time the anonymizer component
is the only intermediate pipeline transformer available.

The FilterManager groups the set of import filters, provides named access to
them, and provides their configuration within the framework for abstract access
and modification. The ImportController, which incorporates the filter manager,
manages the persistency of configuration data for the whole application and
transparently manages and satisfies import filters’ external requirements.

The class ImportFilterFrame implements the main graphical user interface of
the application, including basic user interaction logic.

4.4 Disk-Buffered Event Sorting

The log writing pipeline in the framework expects process instances to be trans-
mitted one after another, while audit trail entries are supposed to be transmitted
in their natural order (i.e., order of occurrence). As not all import routines can
expect their events in an ordered fashion, the framework provides the plug-in
developer with a simple interface for transmitting unsorted event data, while
ensuring that the sorting takes place in a transparent, resource-efficient manner.

88 C.W. Günther and W.M.P. van der Aalst

Fig. 4. Disk-buffered sorting in the framework

As this concept implies that all audit trail entries of an import session have to
be buffered, before the first of them can be written, the process instance buffers
are implemented to swap their content partially to disk storage.

This disk-buffered sorting mechanism is described in Figure 4.

1. Every buffer is equipped with a fixed-size buffer residing in heap space. This
heap buffer is filled, as new audit trail entries are added to the process
instance buffer.

2. When the heap buffer is completely filled with audit trail entries, it needs to
be flushed. First, the events contained within the heap buffer are sorted using
a Quicksort [13] algorithm. Then, all events in the heap buffer are appended
to a swap file. Thus, the swap file contains subsequent segments, of which
each contains a fixed number of sorted audit trail entries corresponding to
one flush operation.

3. After all events have been received, the buffer needs to be emptied into the
log writing pipeline in a sorted manner. An array called the merge table,
with one cell per flush segment in the swap file, is initially filled with the
first audit trail entry from each segment. Then, a modified merge sort [15]
algorithm picks the first (in terms of logical order) event from the merge
table, writes it to the log writing pipeline, and replaces it with the next
entry from the respective flush segment in the swap file. This procedure is
repeated, until all audit trail entries from the swap file have been loaded and
the merge table is empty.

The presented disk-buffered sorting mechanism manages to effectively limit
memory usage of the application. At the same time, a performance lag due to
disk I/O is minimized by pre-buffering and sorting events in the heap buffer.
Note that the algorithm scales well with the degree, in which incoming audit
trail entries are already ordered. The less audit trail entries are in wrong order,
the faster the initial sorting can be performed.

4.5 User Interface

The graphical user interface, which is depicted in Figure 5, is kept rather simple.
On the left, an overview list allows the user to pick the import filter plug-in
to be used. The upper right part shows general import filter properties, such
as name, description, and author. Further, this part includes controls for the
import procedure and the log anonymizer component.

A Generic Import Framework for Process Event Logs 89

Fig. 5. User interface of the ProM Import Framework

The lower right part of the interface can either display a console view, or a
configuration pane allowing to modify configuration settings for import filters.
When the import procedure is started, the view switches to show the console,
which is used to display feedback and error messages to the user.

5 Target Systems

The number of target systems, for which import plug-ins have been developed,
has been steadily growing and diversifying since the development of the ProM
Import Framework began2. On the one hand, this development is driven by
advances in industry and practice, making ever more real-life PAIS implemen-
tations available for process mining research. On the other hand, this research
triggers new applications from within, thus extending the field of “interesting”
target systems.

In both directions, the flexible and extensible architecture of the ProM Im-
port Framework has allowed developers to quickly implement solid and versatile
solutions, taking advantage of the broad set of support functionality and clean
user interface which the framework provides. At the time of this writing, there
exist import plug-ins for the following target systems:

FLOWer : This product is an implementation of the case handling paradigm,
which represents a very flexible, data-driven approach within the greater
family of workflow management systems.

WebSphere Process Choreographer: As a part of IBM’s WebSphere suite,
the Process Choreographer is used to implement high-level business pro-
cesses, based on the BPEL language.

2 The current distribution of the framework, including all plug-ins, can be downloaded
from http://promimport.sourceforge.net.

90 C.W. Günther and W.M.P. van der Aalst

Staffware: A workflow management system in the traditional sense, which has
an impressive market coverage.

PeopleSoft Financials: Part of the PeopleSoft suite for Enterprise Resource
Planning (ERP), this module is concerned with financial administration
within an organization.

CPN Tools: CPN Tools provides excellent tool support for modelling Colored
Petri Nets (CPN), a family of high-level Petri Nets, including a simulation
engine for executing models. An extension to CPN tools has been developed,
allowing to create synthetic event logs during a model simulation.

CVS: The process of distributed software development, as reflected in the com-
mits to a source code repository like CVS, can also be analyzed with tech-
niques from the process mining family.

Subversion: The Subversion system addresses fundamental flaws present in
CVS, providing change logs that can also be interpreted by means of process
mining.

Apache 2: As the access logs of web servers, like Apache 2, reveal the identity of
users from their IP, the exact time and items requested, it is straightforward
to distill process event logs from them.

As diverse as this list may read, it shows the impressive capabilities of the
framework in enabling rapid development of import capabilities. The complexity
of demanding import filters is significantly reduced by standard functionality
offered by the framework. On top of that, the existence of a powerful framework
allows for rapid prototyping of event log import capabilities.

Thereby it stimulates and supports experiments with less obvious systems,
which may otherwise have been deemed not worth the effort. These can serve
as effective and efficient means to evaluate the feasibility and usefulness of an
import effort. An excerpt of ad-hoc solutions to import custom data sets, which
were rapidly and successfully implemented using the ProM Import Framework,
includes:

– Import of event logs describing the process of patient treatments from raw
database tables provided by a Dutch hospital.

– Production unit test logs from an international manufacturer of IC chip
production equipment.

– Conversion of spreadsheets containing patient treatment processes, from an
ambulant care unit in Israel and a large Dutch hospital.

– Versatile and highly configurable import from the WFMS Adept [16], which
is known for its rich set of features addressing flexibility.

6 Conclusions

The MXML format is the most widely adopted standard for the storage of pro-
cess event logs in process mining research. This is most notably due to the fact
that the ProM framework, providing a wide selection of process mining analysis
techniques, relies on MXML for reading event logs.

A Generic Import Framework for Process Event Logs 91

However, due to a lack of convenient conversion tools, the availability of real-
life event logs in MXML format has not been satisfactory so far. On the one
hand, this lack of actual logs had a serious impact on the credibility of process
mining techniques with respect to real-life applications. On the other hand, these
techniques could not be used to analyze and improve industrial processes, and
could thus not be put to use in real-life organizations.

In this paper, we have presented the ProM Import Framework, which is effec-
tively bridging this gap. It represents a typical enabling technology, connecting
formerly separate areas to their mutual benefit. In its current release, this appli-
cation already features import plug-ins supporting seven process-aware informa-
tion systems. Most notably, the support for commercial systems like FLOWer,
WebSphere, and Staffware covers an immense installed base of users. Additional
functionality that has been shifted into the framework makes the development
of additional import plug-ins a convenient, time-effective task.

We hold this extension to the process mining tool landscape to be crucial with
respect to the quality and credibility of process mining research. Real-life event
log data often exhibits awkward and strange properties, which are unforeseen on
a theoretical level, and which have to be taken into account in order to obtain
meaningful results. It is only after process mining techniques have been proven
to successfully analyze real-life logs, and thus to benefit businesses in their daily
operations, that these techniques can grow into productive tools for business
process optimization.

Acknowledgements

This research is supported by the Technology Foundation STW, applied sci-
ence division of NWO and the technology programme of the Dutch Ministry of
Economic Affairs.

References

1. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

2. W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering Interac-
tion Patterns in Business Processes. In J. Desel, B. Pernici, and M. Weske, editors,
International Conference on Business Process Management (BPM 2004), volume
3080 of Lecture Notes in Computer Science, pages 244–260. Springer-Verlag, Berlin,
2004.

3. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

4. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

5. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge Engineering,
53(2):129–162, 2005.

92 C.W. Günther and W.M.P. van der Aalst

6. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

7. Pallas Athena. Case Handling with FLOWer: Beyond workflow. Pallas Athena
BV, Apeldoorn, The Netherlands, 2002.

8. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

9. B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining: Building
Instance Graphs. In P. Atzeni, W. Chu, H. Lu, S. Zhou, and T.W. Ling, editors, In-
ternational Conference on Conceptual Modeling (ER 2004), volume 3288 of Lecture
Notes in Computer Science, pages 362–376. Springer-Verlag, Berlin, 2004.

10. B.F. van Dongen, A.K. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The prom framework: A new era in process mining tool
support. In G. Ciardo and P. Darondeau, editors, Proceedings of the 26th Interna-
tional Conference on Applications and Theory of Petri Nets (ICATPN 2005), vol-
ume 3536 of Lecture Notes in Computer Science, pages 444–454. Springer-Verlag,
Berlin, 2005.

11. D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan. Business
process intelligence. Computers in Industry, 53(3):321–343, 2004.

12. J. Herbst and D. Karagiannis. An Inductive Approach to the Acquisition and
Adaptation of Workflow Models. In M. Ibrahim and B. Drabble, editors, Proceed-
ings of the IJCAI’99 Workshop on Intelligent Workflow and Process Management:
The New Frontier for AI in Business, pages 52–57, Stockholm, Sweden, August
1999.

13. C.A.R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321, 1961.
14. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf

der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland,
Saarbrücken, 1992.

15. D.E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.
Addison Wesley, Reading, MA, USA, 2 edition, 1998.

16. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of
Workflow without Loosing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

Improving Exception Handling by
Discovering Change Dependencies in

Adaptive Process Management Systems

Barbara Weber1,�, Werner Wild2, Markus Lauer3, and Manfred Reichert4

1 Quality Engineering Research Group, University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at

2 Evolution Consulting, Innsbruck, Austria
werner.wild@evolution.at

3 Dept. Databases and Information Systems, University of Ulm, Germany
markus.lauer@uni-ulm.de

4 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@utwente.nl

Abstract. Process-aware information systems should enable the flexi-
ble alignment of business processes to new requirements by supporting
deviations from the predefined process model at runtime. To facilitate
such dynamic process changes we have adopted techniques from case-
based reasoning (CBR). In particular, our existing approach allows to
capture the semantics of ad-hoc changes, to support their memorization,
and to enable their reuse in upcoming exceptional situations. To further
improve change reuse this paper presents an approach for discovering
dependencies between ad-hoc modifications from change history. Based
on this information better user assistance can be provided when dynamic
process changes have to be made.

1 Introduction

Due to frequent changes in its business environment an enterprise must be able
to flexibly and continuously align its information systems (IS) and its business
processes. Enterprise IS therefore must provide for flexible process support while
still enforcing some degree of control [1]. In particular, there is an essential
requirement for maintaining a close ”fit” between real-world business processes
and the workflows as supported by the IS, their current generation is known as
Process-Aware Information Systems (PAIS) [2].

Recently, significant efforts have been undertaken to make PAIS more flexible
and several approaches for adaptive process management have emerged [1,3,4].
The underlying idea is to enable (dynamic) changes of different process aspects
(e.g., control flow, organizational, functional, and informational perspectives)
and at different process levels (e.g., instance and type level). In particular, au-
thorized users must be able to deviate from the pre-defined process model as
needed, i.e., ad-hoc changes (e.g., to add or shift activities) of individual process
� Part of this research was funded by a grant from the Tiroler Wissenschaftsfond.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 93–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

94 B. Weber et al.

instances must be possible at runtime to deal with exceptional or changing sit-
uations. For example, during a medical treatment process the patient’s current
medication may have to be changed due to an allergic reaction, i.e., the process
instance representing this treatment procedure must be dynamically adapted.

To facilitate exception handling we have adopted techniques from case-based
resoning (CBR) [5,6,7]. This allows us to capture contextual knowledge about
ad-hoc changes and to assist actors in reusing it. For this we apply an interactive
variant of CBR (i.e., conversational CBR [8]), describe ad-hoc changes as cases
and memorize them in a case base CB. In its simplest form a case covers a
single change operation (e.g., insertion of a process activity). However, cases may
contain several (semantically) related change operations as well. For example, in
a medical treatment process a magnet resonance tomography (MRT) may have
to be skipped for a patient with cardiac pacemaker, instead, another imaging
procedure (e.g., computer tomography) might have to be applied. Our objective
is to support reuse of such complex changes in similar situations to enable actors
to operate at a higher semantical level and to relieve them from specifying the
change from scratch each time.

Since ad-hoc changes are often applied in exceptional situations, we cannot
expect that semantically related adaptations are always conducted at the same
time, i.e., they are not always added as a single case to the PAIS. This happens
when end users are rather inexperienced and do not think through all conse-
quences, when changes to the same instance are performed by different actors
or when these dependencies are not known when adding a case. Over time, the
PAIS may end up with several inter-related cases which are frequently applied in
combination with each other. By discovering such inter-case dependencies and
by considering this knowledge in the context of change reuse we provide for bet-
ter user assistance. When reusing a certain case the PAIS can suggest users to
apply dependent cases as well. To further improve this approach, cases which
always co-occur shall be merged and the CB should be refactored accordingly.

Section 2 summarizes background information needed for the understanding of
our approach. In Section 3 we introduce the notion of co-occuring cases. Based on
this, in Section 4 we sketch how actors can be assisted in reusing inter-dependent
changes and in refactoring a CB by merging cases. Section 5 discusses related
work and Section 6 concludes with a summary and outlook.

2 Supporting Change Reuse Through CBR

This section covers backgrounds needed for the understanding of this paper.
First, we introduce basic notions related to process management. Second, we
discuss how CBR is used in our approach for capturing the semantics of ad-hoc
changes, for memorizing these changes, and for reusing them in similar situations.

2.1 Basic Notions

For each supported business process a corresponding process type T exists. It
can be related with one or more process schemes representing different versions

Improving Exception Handling by Discovering Change Dependencies 95

of the process. Each process schema S is described in a graph-like fashion, and
comprises a set of activities and control connectors between them. Based on a
schema S new process instances can be created and executed accordingly. For
example, in instance I1 in Fig. 1 activities A and C are completed whereas activity
B is activated (i.e., its work items are offered to users in their worklists).

completed

activated

Process Type Level

A

C

B
AND-Split

AND-Join

OR-Split

OR-Join

Process Instance I1
(unbiased):

Process Instance Level

A

C

B

d=‘yes’

d=‘no’

Process Schema S: Process Schema S‘:

Process Instance I2
(biased):

completed

activated

Process Instance I3
(biased):

Process Type

Change

Fig. 1. Process Type and Process Instance

To deal with exceptional situations at the instance level, users must deviate
from the pre-modeled schema (e.g., by deleting activities) [1,5,9]. Ad-hoc changes
are instance-specific and do not affect the execution schema of any other running
process instances. In Fig. 1, instance I2 has undergone an individual modification
(i.e., the dynamic deletion of activity B). Thus the execution schema of I2 devi-
ates from its original process schema S. Individually modified process instances
are called biased, unchanged ones are denoted as unbiased.

2.2 Capturing Semantics of Ad-Hoc Changes with CBR

Our approach uses case-based reasoning (CBR) techniques to capture the se-
mantics of an ad-hoc change, to memorize it and to support its reuse in similar
situations (for details see [6,7]). Case-based reasoning (CBR) is a contemporary
approach to problem solving and learning [10]. New problems are dealt with by
drawing on past experiences – described in cases and stored in case bases – and
by adapting their solutions to the new problem situation. For representing a
concrete ad-hoc change we use the concept of a case, which captures the context
of, and the reasons for the respective deviation (cf. Fig. 2). More precisely, a case
contains a textual problem description pd which briefly summarizes the excep-
tional situation that led to the ad-hoc deviation. The reasons for the change are
described in question-answer (QA) pairs {q1a1, . . . , qnan} each of which denotes
one particular condition (for details see below). The solution part sol (i.e., the
action list) of a case contains the concrete change operations applied.

96 B. Weber et al.

The ad-hoc changes covered by a particular case c can be reused, i.e., they can
be re-applied to other instances. QA pairs are used to retrieve cases handling
similar problems. If an adequate case is found its solution part can be applied
to the given process instance. All instances to which case c has been applied to
are kept in its instance set instanceSetc. If no similar cases can be found the
user adds a new case with the respective change information to the system.

Definition 1 (Case). A case c is a tuple (pdc, qaSetc, solc, instanceSetc)
where

– pdc is a textual problem description
– qaSetc = {q1a1, . . . , qnan} denotes a set of question-answer pairs
– solc = { opj | opj = (opTypej, sj , paramListj), j = 1, ..., k} is the solution

part of the case denoting a list of change operations (i.e., the changes that
have been applied to one or more process instances) 1

– instanceSetc is the set of process instances to which case c has been applied

The question of a QA pair is usually entered as free text, however, to reduce
duplicates it can alternatively be selected from a list of already existing questions.
The answer can either be free text or a structured answer expression (cf. Fig 2
(a)). Answer expressions allow us to use contextual knowledge already kept in
the PAIS (e.g., due to legal requirements), thus avoiding redundant data entry.
Questions with answer expressions can be evaluated automatically by retrieving
values for their context attributes from existing data in the system (e.g., the
medical problems of a patient as stored in his electronic patient record), i.e.,
they do not have to be answered by users, thus preventing errors and saving
time. Free text answers are used when no suitable context attributes are defined
within the system or the user is not trained to write answer expressions. For
example, the second QA pair in Fig. 2 (a) contains an answer expression using
the context attribute Patient.age. It can therefore be evaluated automatically.
By contrast, the answer in the first QA pair is free text provided by the user.

To be able to reason about the changes applied to a particular process instance
I we introduce caseListI as the list of all cases which have been applied to I,
in their application order. If an instance I is biased its caseListI is not empty.
All cases applied to process instances created from schema version S are stored
in a case base CBS associated with S.

Definition 2 (Case Base). A case base CBS is a tuple (S, {c1, . . . , cm}) where

– S denotes the schema version to which the case base is related
– {c1, . . . , cm} denotes a set of cases (cf. Def. 1)

When deviations from the pre-defined process schema become necessary the user
initiates a case retrieval dialogue (cf. Fig 2 (b)). The system then assists her in
finding already stored similar cases (i.e., change scenarios in our context) by pre-
senting a set of questions to be answered in any number and any order. Questions
1 An operation opj := (opTypej, sj , paramListj) (j = 1, ..., k) consists of operation

type opTypej , subject sj of the change, and parameter list paramListj .

Improving Exception Handling by Discovering Change Dependencies 97

Additional lab test requiredTitle

Description An additonal lab test has to be performed as
the patient has diabetes and is older than 40

Question-Answer Pairs

Question Answer

Patient has diabetes? Yes

Is the patient’s age greater than 40? Patient.age > 40

Actions

Insert LabTest

Operation Type Subject Parameters

Select Operation Type Insert

Select Activity/Edge Lab Test

Please Answer the Questions

Question Answer

Patient has diabetes? Yes

Is the patient’s age greater than 40? Yes

Lab Test required

Title

125

Case ID

100%

Similarity

25

Reputation Score

Display List of Cases

Into S Between Preparation and Examination

(a) (b)

Fig. 2. CCBR Dialogs - Adding a New Case (a) and Retrieving Similar Cases (b)

with an answer expression are automatically evaluated by retrieving the values of
the respective context attributes from the PAIS without user intervention. Based
on this the system then searches for similar cases by calculating the similarity
for each case in the case base CBS . Similarity is calculated by dividing the num-
ber of correctly answered questions minus the number of incorrectly answered
questions by the total number of questions in the case. It then displays the top
n ranked cases (ordered by decreasing similarity) as well as related information
(e.g., reputation scores). The user then has several options:

1. The user can directly answer any of the remaining unanswered questions (in
arbitrary order), similarity is then recalculated and the n most similar cases
are displayed to the user.

2. The user can apply a filter to the case base (e.g., by only considering cases
whose solution part contains a particular change operation). All cases not
matching the filter criteria are removed from the displayed list of cases.

3. The user can decide to review displayed cases in detail.
4. The user can select one of the displayed cases for reuse. The actions specified

in the case’s solution part are then forwarded to and executed by the PAIS.
The instance set of the selected case is adjusted accordingly.

3 Inter-case Dependencies

This section first gives a typical example for inter-case dependencies and then
introduces the formal notation to be used in this paper.

3.1 Motivating Example

Fig. 3 shows the cruciate rupture treatment process for a particular patient.
This treatment process had to be modified due to an unanticipated situation.
To confirm the suspicion of a cruciate rupture usually an x-ray as well as a
magnet resonance tomography (MRT) are performed. However, as this patient
has a cardiac pacemaker the radiologist decided to skip the MRT. To still get a

98 B. Weber et al.

reliable diagnosis, the attending physician ordered a computer tomography (CT)
instead. Though these two changes are related to each other they were added
to the system by different actors at different times. Case c1 was added by the
radiologist and resulted in the deletion of the MRT activity. Some time later the
attending physician added case c17 to insert the CT activity.

Ad-hoc Changed
Process Instance I:

…

Patient

Admission

Anamnesis &

Clinical

Examination

Suspicion of Cruciate

Rupture =“Yes”

Suspicion of Cruciate

Rupture =“No”

X-Ray

MRT

CT

Non Operative

Therapy

…

Problem

MRT cannot be performed

Question-Answer Pairs

Solution

Delete MRT

Cardiac Pacemaker Yes?

Problem

Additionl CT required

Question-Answer Pairs

Solution

Insert CT

Cardiac Pacemaker Yes?

C1

C17

Fig. 3. Application Example

Cases applied to the same instance may be independent of, or dependent on
each other. In our example the deletion of the MRT activity caused the insertion of
the CT activity, i.e., the additional CT compensates the missing MRT. When such
inter-case dependencies exist, the reuse of a particular case might necessitate
further changes. In our example, reusing case c1 may require the application of
case c17 as well since an alternative imaging procedure is needed. Discovering
such inter-case dependencies is crucial to better assist users when they need to
make complex changes to the system.

3.2 Co-occuring Cases

Let CBS be a case base and let c1 and c2 be two cases in CBS . A metrics about
inter-case dependencies is the conditional co-occurence rate CoRate(c2|c1). For
a set of process instances this metrics denotes the relative frequency of the
application of case c2 on condition that case c1 has been applied too.

Definition 3 (Conditional Co-Occurrence Rate). Let S be a process
schema with case base CBS and let c1, c2 ∈ CBS be two cases. The condi-
tional co-occurence rate CoRate(c2|c1) denotes the relative frequency of case c2
on condition that case c1 has already been applied. Formally:

CoRate(c2|c1) = |instanceSetc2 ∩ instanceSetc1 |
|instanceSetc1 |

When a user wants to reuse a case c ∈ CBS we present her all other cases
ck ∈ CBS with CoRate(ck|c) exceeding threshold thres ≤ 1. Section 4 describes
how we assist actors in reusing inter-dependent changes. In this context cases
with strong co-occurence are of particular interest.

Improving Exception Handling by Discovering Change Dependencies 99

Definition 4 (Strong Co-Occurence of Cases). Let S be a process schema
with case base CBS. Let further c1, c2 ∈ CBS. Then:

1. If CoRate(c2|c1) = 1 holds we denote case c2 as strongly co-occurrent with
case c1 (i.e., c2 must only have been applied when c1 has been applied too).

2. If CoRate(c2|c1) = CoRate(c1|c2) = 1 holds we denote cases c2 and c1 as
being strongly co-occurent with each other (i.e., c2 always occurs when c1 has
been applied and vice versa).

If c2 is strongly co-occurrent with c1 (cf. Def. 4.1), obviously, instanceSetc1

⊆ instanceSetc2 must hold. Consequently, we obtain CoRate(c2|c1) = 1 and
CoRate(c1|c2) = |instanceSetc1 |

|instanceSetc2 | . As a special scenario consider two cases c1 and
c2 which are strongly co-occurent with each other (cf. Def. 4.2). Trivially, we
then obtain |instanceSetc1| = |instanceSetc2|. If cases c1 and c2 are strongly
co-occurent with each other and the total number of co-occurrences exceeds
threshold minOccur ∈ N, the process engineer is notified about the option to
merge these inter-dependent cases (cf. Section 4.2).

4 Discovering and Utilizing Knowledge About Inter-case
Dependencies

To discover co-occurent changes we analyze a process schema’s CB. We utilize
the obtained knowledge to assist actors in reusing complex changes (cf. Section
4.1) and to support process engineers in refactoring CBs (cf. Section 4.2).

4.1 Assisting Actors in Reusing Dependent Cases

When a case c ∈ CBS is reused (i.e., c is applied to a process instance I) the
system displays all cases cse ∈ CBS for optional reuse2 which co-occur with c and
for which the co-occurence rate CoRate(cse|c) exceeds a given threshold. This is
accomplished by Algorithm 1. First, Algorithm 1 adds case c to the list of cases
(caseListI) which have already been applied to instance I (line 3). For each case
cse (except for already applied cases to instance I), Algorithm 1 then determines
the conditional co-occurence rate CoRate(cse|c). This is done by determining
the total number of co-occurences between cse and c over all instances of process
schema S and by dividing it by the total number of occurences for case c (line 6).
Finally, only those cases ck are displayed (for potential reuse) whose co-occurence
rate CoRate(cse|c) exceeds the given threshold thres.

For example, consider the scenario depicted in Fig. 4. Assume that the changes
represented by case c5 shall be applied to process instance I132. According to Al-
gorithm 1 the system adds case c5 to CaseListI132 and then determines the con-
ditional co-occurence rate CoRate(cse|c5) for each case cse ∈ CBs\CaseListI132
(i.e., {c3, c19}) related to any instance from InstanceSetc5 = {I44, I143, I147}. We

2 Cases which have already been applied to process instance I are not shown.

100 B. Weber et al.

Algorithm 1. Display CoOccurent Cases
1: Input: Case c; ProcessInstance I ; float thres;
2:
3: add case c to CaseListI ;
4: Integer TotalOccurenceOfC := |InstanceSetc|;
5: for all cse ∈ CBS \ CaseListI do
6: CoOccurenceRatecse := |instanceSetc ∩ instanceSetcse|

TotalOccurenceOfC
;

7: if CoOccurenceRatecse ≥ thres then
8: DISPLAY(cse)
9: end if

10: end for

..

2006-01-17 09:15: case c1 applied to process instance I1

2006-01-17 10:25: case c17 applied to process instance I1

2006-01-17 14:00: case c3 applied to process instance I8

2006-01-17 18:21: case c3 applied to process instance I11

2006-01-18 12:27: case c1 applied to process instance I27

2006-01-18 12:31: case c19 applied to process instance I29

2006-01-18 13:01: case c17 applied to process instance I27

2006-01-18 16:12: case c3 applied to process instance I44

2006-01-18 17:57: case c5 applied to process instance I44

2006-01-19 17:55: case c1 applied to process instance I132

2006-01-21 06:01: case c5 applied to process instance I143

2006-01-21 07:35: case c3 applied to process instance I147

2006-01-22 15:34: case c3 applied to process instance I209

2006-01-22 18:01: case c5 applied to process instance I147

..

I29c19

I1, I132c17

I44, I143, I147c5

I8, I11, I44, I147, I209c3

I1, I27, I132c1

InstanceSetCCase c

c5I143

c3, c5I44

c3I209

c3, c5I147

c1, c17I132

c19I29

c1I27

c3I11

c3I8

c1 ,c17I1

CaseListIInstance I

Fig. 4. Log File

obtain CoRate(c3|c5) = 2
3 and CoRate(c19|c5) = 0

3 . For example, if we have cho-
sen thres = 0.6 case c3 will be displayed to the users (for optional reuse) when
applying c5 to instance I132.

When reusing a case a wizard opens and all dependent cases are displayed to
the user (cf. Fig. 5). For each dependent case its identifier, title and co-occurrance
rate are shown. The co-occurance rate reflects the confidence of the system that
the dependent case should be applied too in this particular situation. The user
can then optionally reuse any of the displayed cases.

At first glance the described approach seems to be easy to implement. How-
ever, when reusing a case and applying its changes it must be guaranteed that
the respective process instance still meets certain correctness and consistency
constraints. In particular, the pre-conditions for applying the change operations
captured by a case must be met when reusing it. As an illustrative example
consider the medical treatment process depicted in Fig. 6. Assume that the re-
spective patient complains about pains in his knee. The attending physician
therefore orders an additional examination. This change is represented by case
c22 which captures the insertion of activity Follow-up examination between ac-
tivities Non Operative Therapy and Documentation and Discharge. Assume
further that during the follow-up examination it is found that the patient suf-
fers from a contusion and the physician therefore decides that a puncture has

Improving Exception Handling by Discovering Change Dependencies 101

Fig. 5. Presenting Dependent Cases to the User

to be performed as well. This change is captured by case c35 (subsequent in-
sertion of activity Puncture between activities Follow-up examination and
Documentation and Discharge). Note that the definition of the latter change
depends on the presence of activity Follow-up examination which was intro-
duced by case c22. Such dependencies, in turn, could result in parameterization
problems or inconcistencies when a user solely wants to reuse case c35. Generally,
the change framework we use allows us to efficiently detect such undesired situ-
ations [11]. In our example, a user who wants to reuse case c35 has two options.
Either she can apply case c22 as well or she may adapt the case by modifying
the parameterization of the respective change (e.g., by replacing the position
parameter Follow-up examination with Non Operative Therapy).

Ad-hoc Changed
Process Instance I:

…

Patient

Admission

Anamnesis &

Clinical

Examination

Suspicion of Cruciate

Rupture =“Yes”

Suspicion of Cruciate

Rupture =“No”

X-Ray

MRT

CT

Non Operative

Therapy
Follow-up

examination

Puncture

Discharge and

Documentation

C22: (…{Insert Follow-up

Examination in schema S between

„Non Operative Therapy“ and

„Discharge and Documentation“})

C35: (…{Insert Puncture in schema

S between „Follow-up

Examination“ and „Discharge and

Documentation“})

Fig. 6. System Supported Conflict Resolution

102 B. Weber et al.

4.2 Refactoring Case Bases by Merging Cases

In order to increase problem solving efficiency we can compress the case base
by merging strongly co-occurent cases. For this scenario, consider the reuse of
a case c and its application to a particular process instance. Whenever such
an event occurs, it triggers an analysis of the case base. More precisely, it is
checked whether the reused case is strongly co-occurent with other cases. If so,
the knowledge engineer is notified accordingly and may then decide to merge
respective cases. Note that in this scenario we can restrict the analysis (i.e.,
the comparison of case c with other cases) to those cases belonging to the case
list caseListI, as only cases within that list can be strongly co-occurent with
case c. Algorithm 2 is applied to detect cases which strongly co-occur with each
other (cf. Def. 4). For the sake of readability we treat this algorithm separately
from Algorithm 1, however, for a practical implementation they can easily be
merged.

Algorithm 2. Notify About Strongly CoOccurent Cases
1: Input: Case c; ProcessInstance I ; int minOccur;
2:
3: Add I to instanceSetc;
4: for all cse ∈ CaseListI do
5: if instanceSetcse = instanceSetc then
6: if |instanceSetc| ≥ minOccur then
7: NOTIFY(c, cse)
8: end if
9: end if

10: end for

Again consider the example from from Fig. 4. Assume that case c17 is applied
to instance I27. Instance I27 is then added to the instance set of case c17. Further,
Algorithm 2 (with, e.g., minOccur = 3) identifies case c1 as being strongly
co-occurent with case c17. Consequently, the process engineer is notified that
c1 and c17 are strongly co-occurent which each other and thus could merge
these two cases. In this situation a new case c′ can be created in CBS and the
original cases are deactivated3, i.e., a refactoring of the case base takes place. The
problem descriptions and QA pairs related to the two cases have to be manually
merged by the process engineer; the corresponding solution parts, in turn, can
be automatically merged by unifying the change operations of the original cases
in the correct order. Different optimizations for purging the resulting operation
sets can be applied in this context. However, this is beyond the scope of this
paper. In addition, the schema-specific case base CBS can be regularly searched
for any strongly co-occurent cases by applying Algorithm 3.

3 For traceability reasons respective cases are not deleted, but only deactivated.

Improving Exception Handling by Discovering Change Dependencies 103

Algorithm 3. Scan For Strongly CoOccurent Cases
1: Input: Case Base CBS; int minOccur;
2:
3: CB = CBS

4: while CB �= ∅ do
5: take arbitrary case cse from CB
6: CB = CB \ {cse}
7: for all case ∈ CB do
8: if instanceSetcase = instanceSetcse then
9: if |instanceSetcase| ≥ minOccur then

10: NOTIFY(case, cse)
11: end if
12: end if
13: end for
14: end while

5 Related Work

Similar to our approach process mining aims at extracting process knowledge
from log data. So far, focus of mining techniques has been on the extraction of
process models from execution logs [12,13,14]. For example, the alpha algorithm
can be used to construct a Petri net model describing the behavior observed in
the log. Similarly, the Multi-Phase Mining approach can be used to construct
event-driven process chains from logs. Recent approaches also use event-based
data for mining model perspectives other than control flow (e.g., process perfor-
mance [15]). Mature tools like the ProM framework allow constructing different
types of models from real process executions. However, process mining research
has not yet addressed applying minig techniques to change logs.

The necessity to support the user in exceptional situations has been addressed
by adaptive process management technology [1,9,16]. ADEPT [1], for instance,
supports the user in defining (syntactically) correct process changes during run-
time. For example, when an activity is deleted at the process instance level, the
system might suggest the deletion of data dependent activities as well. However,
ADEPT does not consider semantical dependencies between changes yet.

Complementary to this paper [17] covers quality aspects relevant when ap-
plying CBR for the memorization and the reuse of ad-hoc modifications and the
deriviation of process type changes. While [17] broadly deals with quality issues
and aims at increasing the performance of the CBR system by increasing prob-
lem solving efficiency, CB competence and solution quality, this paper addresses
how user assistance can be improved through mining inter-case dependencies.

6 Summary and Outlook

We have proposed an approach to improve exception handling in adaptive pro-
cess management systems through discovering and utilizing knowledge about

104 B. Weber et al.

dependencies between ad-hoc modifications. Actors are assisted in reusing pre-
viously applied ad-hoc changes by presenting related modifications to them as
well. In addition, knowledge about inter-case dependencies is used to improve the
quality of the CB (i.e., the collection of retrievable and reusable ad-hoc changes)
and to increase problem solving efficiency. Ongoing work includes the evaluation
of our prototype in a real world scenario. Future work will investigate how the
reuse of ad-hoc modifications can be further improved. For example, a particular
case representing an ad-hoc modification might not directly be applicable, but
may require some adaptation (e.g., the parameterization of change operations
may have to be adapted). Finally, we aim to use more of the semantics captured
in our approach, e.g., to be able to reason about ”similarity” of changes.

References

1. Reichert, M., Dadam, P.: ADEPTflex – supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

2. Dumas, M., ter Hofstede, A., van der Aalst, W., eds. In: Process Aware Information
Systems. Wiley Publishing (2005)

3. Jørgensen, H.D.: Interactive Process Models. PhD thesis, Norwegian University of
Science and Technology, Trondheim, Norway (2004)

4. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering 50 (2004) 9–34

5. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow manage-
ment through conversational case-based reasoning. In: ECCBR’04, Madrid (2004)
434–448

6. Weber, B., Rinderle, S., Wild, W., Reichert, M.: CCBR–driven business process
evolution. In: ICCBR’05, Chicago (2005) 610–624

7. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating process learning and
process evolution - a semantics based approach. In: BPM 2005. (2005) 252–267

8. Aha, D.W., Muñoz-Avila, H.: Introduction: Interactive case-based reasoning. Ap-
plied Intelligence 14 (2001) 7–8

9. Luo, Z., Sheth, A., Kochut, K., Miller, J.: Exception handling in workflow systems.
Applied Intelligence 13 (2000) 125–147

10. Kolodner, J.L.: Case-Based Reasoning. Morgan Kaufmann (1993)
11. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis,

University of Ulm (2004)
12. v.d. Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters,

A.: Workflow mining: A survey of issues and approaches. Data and Knowledge
Engineering 27 (2003) 237–267

13. Golani, M., Pinter, S.S.: Generating a process model from a process audit log. In:
Proc. BPM’03, Eindhoven (2003) 136–151

14. van Dongen, B., van der Aalst, W.: Multi-phase process mining: Building instance
graphs. In: Conceptual Modeling - ER 2004. LNCS 3288, Berlin (2004) 362–376

15. van der Aalst, W., Song, M.: Mining social networks. uncovering interaction pat-
terns in business processes. In: Proc. BPM’04, Potsdam, Germany (2004) 244–260

16. Weske, M.: Workflow management systems: Formal foundation, conceptual design,
implementation aspects. University of Münster, Germany (2000) Habil Thesis.

17. Weber, B., Reichert, M., Wild, W.: Case-base maintenance for ccbr-based process
evolution. In: ECCBR’06. (2006)

Process Mining and Petri Net Synthesis

Ekkart Kindler, Vladimir Rubin, and Wilhelm Schäfer

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany

{kindler, vroubine, wilhelm}@uni-paderborn.de

Abstract. The theory of regions and the algorithms for synthesizing a
Petri net model from a transition system, which are based on this theory,
have interesting practical applications – in particular in the design of
electronic circuits. In this paper, we show that this theory can be also
applied for mining the underlying process from the user interactions with
a document management system. To this end, we combine an algorithm
that we called activity mining with such Petri net synthesis algorithms.
We present the basic idea of this approach, show some first results, and
compare them with classical process mining techniques. The main benefit
is that, in combination, the activity mining algorithm and the synthesis
algorithms do not need a log of the activities, which is not available when
the processes are supported by a document management system only.

1 Introduction

Today, there is a bunch of techniques that help to automatically come up with
process models from a sequence of activities that are executed in an enterprise
[1]. Typically, such sequences come from the log of a workflow management
system or some standard software which is used for executing these processes.
There are many different algorithms and methods that help to obtain faithful
process models; some techniques come up with an initial model quite fast and
the process models are incrementally improved by new observations [2]. All these
techniques can be summarized by the term process mining.

Our interest in process mining came from the area of software engineering.
Software engineering processes are often not well-documented, though good en-
gineers have the processes in their minds. In the Capability Maturity Model
(CMM), this level of maturity of a software company is called repeatable [3].
Therefore, we looked for methods for automatically mining these process mod-
els from the observed work. The main source for observing the work of software
engineers are the logs of the version management systems and document manage-
ment systems that are used in the development process. The problem, however,
is that these systems are aware of documents only and not of the underlying ac-
tivities. Basically, they see the creation, modification, and checkin of documents,
but they are not aware of the activities and to which activity these events belong
to. Therefore, the standard mining algorithms do not work; we must identify the
activities from the event logs of the document management systems before: we
call this activity mining. By activity mining, we get more information on the

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 105–116, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

106 E. Kindler, V. Rubin, and W. Schäfer

process than just a sequence of activities. In order to exploit this information,
we developed an algorithm for obtaining the process models [4].

Having a closer look to the results of activity mining algorithms revealed that
we could easily obtain a transition system for the underlying processes, where
the transitions are the activities of the processes. So, basically, deriving a process
model from the result of the activity mining algorithm means deriving a Petri net
from a transition system, which is a well-known area of Petri net theory called
Petri net synthesis. It was established by the seminal paper by Ehrenfeucht and
Rozenberg [5] on regions and later extended and elaborated by other authors
[6,7,8]. In this paper, we show that our activity mining algorithm in combination
with the tool Petrify [9] can be used for faithfully mining process models from
logs of document management systems and version management systems. The
focus of this paper is on the use of synthesis algorithm; for details on the activity
mining algorithms, we refer to [4].

2 Related Work

There is much research in the area of process mining [1]. People from different
research domains, such as software process engineering, software configuration
management, workflow management, and data mining are interested in deriving
the behavioural models from the audit trails of the standard software.

The first application of “process mining” to the workflow domain was pre-
sented by Agrawal et al. in 1998 [10]. The approach of Herbst and Karagian-
nis [11] uses machine learning techniques for acquisition and adaptation of
workflow models. The seminal work in the area of process mining was presented
by van der Aalst et al. [12,13]. In this work, the causality relations between activ-
ities in logs are introduced and the α-mining algorithm for discovering workflow
models is defined. The research in the area of software process mining started
in the mid 90ties with new approaches to the grammar inference problem pro-
posed by Cook and Wolf [14]. The other work from the software domain is in
the area of mining from software repositories [15]. Our approach [4] aims at
combining software process mining with mining from software repositories; it
derives a software process from the logs of software configuration management
systems.

Another research area, which is discussed in this paper, is the area of Petri
net synthesis and the theory of regions. The seminal paper in this area was
written by Ehrenfeucht and Rozenberg [5]. It answered a long open question
in Petri net theory: how to obtain a Petri net model from a transition system.
Further research in this area came up with synthesis algorithms for elementary
net systems [7] and even proved some promising complexity results for bounded
place/transition systems [6].

First ideas of combining process mining and process synthesis were already
mentioned in the process mining domain [13,16]. In this paper, we make the next
step, we present an algorithm that enables us using the Petri net synthesis tool
Petrify [9] for process mining.

Process Mining and Petri Net Synthesis 107

Fig. 1. Mining and Synthesis Schema

3 Mining and Synthesis

In this section, we present the overall approach; it combines our mining algo-
rithms with Petri net synthesis algorithms in order to discover process models
from versioning logs of document management systems.

The overall scheme of this approach is presented in Fig. 1. It starts with a ver-
sioning log as an input; by means of our activity mining algorithm, we derive a
set of activities from the log. Using the set of activities, we do transition system
generation. From the transition system, we derive a Petri net with the help of the
synthesis algorithm. In this paper, we briefly discuss our activity mining algorithm;
however, the focus of this paper is on the transition system generation, the use of
the synthesis algorithm and the process models that can be obtained by it.

3.1 Transition System Generation from Versioning Logs

In this section, we deal with the versioning logs and present the transition system
generation algorithm.

Initial Input and Activity Mining. Here, we briefly discuss our activity
mining algorithm and the structure of the input it needs. This input information
is versioning logs of different document management systems, such as Software
Configuration Management (SCM) systems, Product Data Management (PDM)
systems and other configuration and version management systems.

An example of a versioning log is shown in Table 1. The log contains data
on the documents and timestamps of their commits to the system along with
data on users and log comments. The versioning log consists of execution logs
(in our example, they are separated by double lines), the structure of which
can be derived using additional information, not discussed in this paper. These
execution logs contain information about the instances of the process. Our small
example was inspired by the software change process [17]; for this process, there
are different executions, in which different documents are committed in different
order starting with the “design” and finishing with the “review”. We group
execution logs into clusters. A cluster is a set of execution logs, which contains
identical sets of documents. For example, the first two execution logs make up
a cluster, because they both contain “design”, “code”, “testPlan” and “review”
documents; the third execution log forms another cluster.

From the information about the execution logs and their clusters, the docu-
ments and the order of their commits to the system, we derive a set of activities

108 E. Kindler, V. Rubin, and W. Schäfer

Table 1. Versioning Log

Document Date Author Comment
design 01.01.05 14:30 de status: initial
code 01.01.05 15:00 dev status: generated
testPlan 05.01.05 10:00 qa status: initial
review 07.01.05 11:00 se status: pending
design 01.02.05 11:00 de status: initial
testPlan 15.02.05 17:00 qa status: initial
code 20.02.05 09:00 dev status: generated
review 28.02.05 18:45 se status: pending
design 01.02.05 11:00 de status: initial
verificationResults 15.02.05 17:00 se status: initial
code 20.02.05 09:00 dev status: generated
review 28.02.05 18:45 se status: pending

with the help of the activity mining algorithm (for details, see [4]). The resulting
set is shown in Table 2. Since we have only information about the documents,
we adopt a document-oriented view on the activities: they are defined by the
input and the output documents1. The output documents are derived from the
logs straightforwardly; the challenge of activity mining is deriving the inputs,
because this information is not represented explicitly. The input contains all the
documents that precede the output document in all the execution logs. For each
activity, we have also shown the clusters from which it was derived; i.e. “1”
means the cluster with the first two execution logs, “2” is the cluster with the
third one. For example, activity 1 has s0 as input, design as output and can be
derived from clusters 1 or 2.

In general, let us assume, there are n clusters and each cluster is given a
unique identifier from the set C = {1, . . . , n}. For every subset cl ⊆ C, there is a
set Dcl, which contains the intersection of sets of documents that belong to each
execution log of this cl: Dcl =

⋂
e∈cl De. So, each activity is a tuple (I, O, cl),

where cl is a set of clusters from which this activity was derived; I and O are the
sets of input and output documents resp. In a formal notation, a set of activities
is defined the following way:

A ⊆ {(I, O, cl)|I ⊂ Dcl, O ⊂ Dcl, cl ⊆ C} (1)

For each tuple, we define a “.” notation, which gives the concrete field value
by its name. E.g. for activity a1 = ({s0}, {design}, {1, 2}), we have a1.I = {s0},
a1.O = {design} and a1.cl = {1, 2}.

1 For technical reason, we include a document “s0” to the input of every activity
except 0 and also add two additional activities that produce “e0”; it is done for
making the process start and the process end explicit.

Process Mining and Petri Net Synthesis 109

Table 2. Set of Activities

Number Input Output Clusters
0 s0 1, 2
1 s0 design 1, 2
2 s0, design code 1
3 s0, design, verificationResults code 2
4 s0, design testPlan 1
5 s0, design verificationResults 2
6 s0, design, code, testPlan review 1
7 s0, design, code, verificationResults review 2
8 s0, design, code, testPlan, review e0 1
9 s0, design, code, verificationResults, review e0 2

Transition System Generation. Different clusters, described in the previous
section, correspond to different sets of documents and represent an alternative
behaviour, whereas from one cluster we can derive concurrent behaviour. For
example, activities 4 and 5 in Table 2 belong to different clusters, their output
documents “testPlan” and “verificationResults” belong to the document sets
of different clusters respectively. Thus, after creating the “design”, there is an
alternative either to produce a “testPlan” or to obtain “verificationResults”. But
the activities 2 and 4 belong to the same cluster, thus, after the “design”, it is
possible both to produce “code” and then a “testPlan” or first a “testPlan” and
then “code”, i.e. they are concurrent.

The main goal of the transition system generation algorithm is generating a
labelled transition system using a set of activities and modelling the alternatives
and the concurrency in it. The transition system consists of states, events and a
transition relation between states, which are labelled with events. In our context,
a state is a set of activities, which represents the history of the process, i.e. it
contains the activities that were executed. All the activities of the state must
occur in the same cluster. For example, the system is in a state s1 = {0, 1, 2}
when activities 0, 1 and 2 have been executed and, thus, documents “s0”, “de-
sign” and “code” have been produced. An event is a document produced by an
activity enabled in a state. An activity is enabled in a state if it does not belong
to the state but belongs to the same cluster as the state’s activities; and the set
of the documents produced by the state’s activities includes the input set of the
enabled activity. For example, activity 4 is enabled in state s1, because it does
not belong to the state, but it belongs to the same cluster as activities 0, 1 and
2; and it needs the documents “s0” and “design” as an input, these documents
are a subset of the document set produced by s1. So, when activity 4 is executed
in the state s1, it produces a document “testPlan” and the system goes to a
new state s2 = {0, 1, 2, 4}. Thus, there is a transition between states s1 and s2
and it is labelled with “testPlan”. The resulting transition system is shown in
Fig. 2; for better readability, the states’ names do not contain the activities but
the names of the produced documents, e.g. s1 is called “s s0 design” and s2 –
“s design s0 testPlan” respectively.

110 E. Kindler, V. Rubin, and W. Schäfer

s_s0

s_s0_design

design

s_design_s0_code

code

s_design_s0_testPlan

testPlan

s_design_s0_verificationResults

verificationResults

s_testPlan_design_s0_code

testPlan code

s_design_s0_verificationResults_code

code

s_code_design_s0_testPlan_review

review

s_code_design_s0_verificationResults_review

review

s_code_design_review_s0_testPlan_e0

e0

s_code_design_review_s0_verificationResults_e0

e0

region

Fig. 2. Generated Transition System

Formally, a transition system is a tuple TS = (S, E, T, s0), where S is a set of
states, E is a set of events, T ⊆ S ×E ×S is transition relation and s0 ∈ S is an
initial state. In our case, a state s ∈ S is a subset of activities, i.e. s ⊆ A, where
A is defined in (1). The initial state s0 = {({}, {s0}, C)} contains the activity,
which produces “s0” and belongs to all clusters. There is a transition s

e→ s′

between two states, if there is an activity a ∈ A such that (a = s′ \s)∧(a.O = e)
and for all b ∈ s : a.cl ⊆ b.cl, i.e. it belongs to the same cluster as the activities
in s and a.I ⊆ ⋃

b∈s b.O, i.e. it is enabled in s.
We implemented these formal definitions as a set of clauses in SWI-Prolog [18].

As output, our algorithm generates a file with the transition system. This file is
accepted by a synthesis tool, see Sect. 3.2, and can be automatically visualized
as shown in Fig. 2.

3.2 Petri Net Synthesis

In this section, we describe the last step of our mining and synthesis approach:
synthesis of a Petri Net from a mined transition system. We use the tool Petrify
[9] for it.

Petrify, given a finite transition system, synthesizes a Petri net with a reach-
ability graph that is bisimilar to the transition system. The synthesis algorithm
is based on the theory of regions and was described in the work of Cortadella
et al. [19]. Petrify uses labelled Petri nets and, thus, supports synthesis from
arbitrary transition systems. It supports different methods for minimizing the
Petri nets and for improving the efficiency of the synthesis algorithm. Here, we
do not go into the details of the synthesis algorithm, but give the essential idea
and motivate the relevance of it for the process mining area.

Process Mining and Petri Net Synthesis 111

design

code

testPlan

verificationResults
review e0

Fig. 3. Synthesized Petri Net

A region is a set of states to which all transitions with the same labels have
the same relations: either they enter this set, or they exit this set or they do not
cross this set. For example, in the transition system in Fig. 2, the set of states

{ s code design s0 testP lan review,
s code design s0 verificationResults review }

is a region, because all transitions with a label “review” enter this set and all
transitions with a label “e0” exit it. Petrify discovers a complete set of minimal
regions for the given transition system and then removes the redundant ones. A
region corresponds to a place in the synthesized Petri Net; so, Petrify tries to
minimize the number of places and to make the Petri net understandable. For
example, the synthesized Petri net is shown in Fig. 3. A place between Petri
net transitions “review” and “e0” corresponds to the set of states, shown above.
In the transition system, different transitions correspond to the same event. An
event in the transition system corresponds to a Petri net transition. For example,
for the event “review” there is a transition with the identical name. There is
an arc between a transition and a place in the Petri net, if the corresponding
transition in the transition system enters or exits the corresponding region.

In the context of process mining, the generated Petri net represents the con-
trol aspect of the process and models concurrency and alternatives, which were
initially hidden in the logs. The transitions represent the activities. Since we
have a document-oriented view on the activities, the execution of every activity
results in committing a document to the document management system. By now,
activities are named by the names of the committed documents, for example,
activity “code” results in committing the document “code” to the system.

Since Petrify supports label splitting, it allows us to synthesize Petri nets
under different optimization criteria and belonging to different classes, such as
pure, free-choice, etc. Practically, for big projects, for complex Petri nets, we can
generate pure or free-choice versions of them, which can be better understandable
by managers and process engineers and, therefore, serve communication purposes
in the company. For example, for the Petri net shown in Fig. 3, we can generate
a “pure” analog of it, see Fig. 4.

3.3 Other Applications – Activity Logs

Along with applying our algorithms to the area of process mining from the
versioning logs, we have also dealt with the activity logs as a standard input for

112 E. Kindler, V. Rubin, and W. Schäfer

design code

testPlan

verificationResults review

code

e0

Fig. 4. Synthesized Pure Petri Net

Table 3. Activity Log

Execution 1 Execution 2 Execution 3
s0 s0 s0
doDesign doDesign doDesign
writeCode planTest verify
planTest writeCode writeCode
doReview doReview doReview
e0 e0 e0

the most of classical mining approaches [13,14]. These logs are usually obtained
from the workflow management systems or some standard software which is used
for executing the processes in the company. For activity logs, we have deliberately
chosen an example, which is very similar to the one given for verioning logs in the
previous part of this section; it was done to motivate the generality of the mining
and synthesis approach and to improve the readability of the paper. Actually, the
algorithms for dealing with the versioning logs and for dealing with the activity
logs are absolutely different and one can not be replaced by the other.

An example of the activity log (event log, as it is often called in literature)
is shown in Table 3. It consists of process executions, which represent process
instances (cases); in our example, we have three instances of the process. Every
instance contains a set of activities and an order of their execution. For example,
in the first instance, activities are executed in the following order: “doDesign”,
“writeCode”, “planTest” and then “doReview”. We add activity “s0” to the
beginning of every log and activity “e0” to the end of every log to make the
process start and the process end explicit.

From the activity log, without any preprocessing steps, we can generate a
transition system. In this case, a state is again a set of activities. An event is
an activity enabled in a state. An activity is enabled in a state when there is a
process execution, where the activity is executed after the set of the activities
of the state. For example, the system is in a state s1 = {s0, doDesign}, when
activities s0 and doDesign have been executed. Since in the “Execution 1”, an
activity “writeCode” is executed after the activities of the state s1, an event
“writeCode” can occur in this state. When the activity is executed, the system
comes to a state s2 = {s0, doDesign, writeCode}; so, there is a transition be-
tween the states s1 and s2. The resulting transition system is shown in Fig. 5.
The Petrify synthesis algorithm generates a Petri net from it, see Fig. 6.

Process Mining and Petri Net Synthesis 113

s_s0

s_s0_doDesign

doDesign

s_s0_doDesign_planTests

planTests

s_s0_doDesign_verify

verify

s_s0_doDesign_writeCode

writeCode

s_s0_doDesign_writeCode_planTests

writeCode

s_s0_doDesign_verify_writeCode

writeCodeplanTests

s_s0_doDesign_writeCode_planTests_doReview

doReview

s_s0_doDesign_verify_writeCode_doReview

doReview

s_s0_doDesign_verify_writeCode_doReview_e0

e0

s_s0_doDesign_writeCode_planTests_doReview_e0

e0

Fig. 5. Generated Transition System

doDesign

planTests

verify

writeCode

doReview e0

Fig. 6. Synthesized Petri Net

In a formal notation, there is a transition s
a→ s′ between two states, where

s = {a1, . . . , ai−1}, a = ai, s′ = {a1, . . . , ai} and a1, . . . , ai are activities, if and
only if there is a following execution a1, . . . , ai−1, ai,

3.4 Implementation and Evaluation

In this section, we show the first steps and directions for the evaluation of the
presented algorithms. For making a small ad-hoc comparison with the existing
process mining approaches, we have used ProM and the α-algorithm [13] for
generating a Petri net from the log presented in Table 3. As a result, we have
got the Petri net shown in Fig. 7. The algorithms provide different results, but,
for example, for our small activity log, the synthesized Petri net has no dead-
locks and it models all the process executions from the activity log, whereas the
model obtained with ProM reaches a deadlock situation after executing activities
“doDesign” and “planTests” and, thus, does not model the “Execution 2”.

This shows that our algorithm gives a better result for at least one exam-
ple. But there are other benefits: First, we are capable of dealing with different
sources of information: versioning logs and activity logs. Second, our approach is

114 E. Kindler, V. Rubin, and W. Schäfer

doDesign

writeCode

planTests

doReview

verify

Fig. 7. Petri Net generated by ProM

Table 4. Execution Times

of Executions 3 5 7 10
Average # of Documents in Execution 4 5 6 10
Execution Time (msec) 941 1157 2307 9994

flexible and extensible, because improving the initial algorithms (they work with
versioning logs) for dealing with the activity logs resulted in: 1) removing clus-
tering and activity mining parts, which are specific and necessary for versioning
logs; 2) slightly changing the transition system generation part2. In general, the
Petri net synthesis approach assumes having complete transition system with all
possible transitions, which is not always a realistic case; but, for the versioning
logs, the activity mining algorithm has to cope with the defects of the input data
and the transition system generation algorithm remains the same.

Our algorithms were implemented in Prolog, which gives a certain flexibility
of the solution and simplifies the capabilities of experimenting with it and ex-
panding it. We have made several experiments with the algorithms. For these
experiments, the logs were generated artificially but they are based on our ex-
perience on real examples. The execution times of all the algorithms (mining,
transition system generation and synthesis) are shown in Table 4. The execu-
tion time depends on the number of executions (execution log) and the average
number of documents in the execution. The columns in the table correspond to
the experiments; the time needed for constructing a Petri net from 10 logs with
10 documents in each log is less then 10 seconds, which is a rather promising
result, since this is an example in the size of a realistic log.

In this section, we have presented the first steps towards combining the min-
ing and the synthesis approaches for discovering process models from both ver-
sioning logs and activity logs. Though, the approach is not fully worked out and
evaluated yet, we can already see its benefits even for the given simple examples.

4 Conclusion and Future Work

In this paper, we have presented mining and synthesis algorithms, which derive
a Petri net model of a business process from a versioning log of a document
2 Now, the ProM community has done their own implementation of some regions

algorithms, which is available as a “Region miner” plugin for ProM.

Process Mining and Petri Net Synthesis 115

management system. This way, we have opened a new application area for mining
without activity logs. We have also shown an extension of our approach, which
can deal with activity logs of workflow management systems. The approach uses
the well-developed and practically-applicable theory of “Petri net synthesis” for
solving a vital problem of process mining. In order to do it, we have developed
a transition system generation algorithm, which is the main focus of the paper.

The algorithms which were presented in this paper can deal with concurrency
and alternatives in the process models. By now, we are not dealing with iter-
ations. Detecting iterations in the versioning logs is a very important domain-
specific and company-specific problem. We will deal with this problem in our
future research, even though this problem appears rather seldom, if the conven-
tions of using the document management system are introduced and fulfilled in
the company. Another relevant domain-specific problem is identifying the activ-
ities and naming them meaningfully. Both issues belong to the part on activity
mining. In the future, we will improve the activity mining algorithm and, pos-
sibly, use the interaction with the user for solving these problems. However,
activity mining is not the focus of this paper; as soon as it is improved, the
transition system generation algorithm has only to be slightly changed for intro-
ducing iterations and activities’ identifiers to the transition systems.

Much work has to be done in applying the mining and synthesis algorithms
to different document management systems in different application areas and
making practical evaluation of them both in the area of business process man-
agement and software process engineering. Since our approach is also relevant
to the area of mining the activity logs, in the future, we should also compare it
to the existing approaches in this area. This paper aims at making the first step
from the well-developed theory of Petri net synthesis to the practically relevant
research domain of process mining.

References

1. van der Aalst, W., van Dongena, B.F., Herbst, J., Marustera, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data &
Knowledge Engineering 47 (2003) 237–267

2. Kindler, E., Rubin, V., Schäfer, W.: Incremental Workflow mining based on Doc-
ument Versioning Information. In Li, M., Boehm, B., Osterweil, L.J., eds.: Proc.
of the Software Process Workshop 2005, Beijing, China. Volume 3840 of LNCS.,
Springer (2005) 287–301

3. Humphrey, W.S.: Managing the software process. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (1989)

4. Kindler, E., Rubin, V., Schäfer, W.: Activity mining for discovering software pro-
cess models. In Biel, B., Book, M., Gruhn, V., eds.: Proc. of the Software Engi-
neering 2006 Conference, Leipzig, Germany. Volume P-79 of LNI., Gesellschaft für
Informatik (2006) 175–180

5. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part I: Basic Notions
and the Representation Problem. Acta Informatica 27 (1989) 315–342

6. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: TAPSOFT. (1995) 364–378

116 E. Kindler, V. Rubin, and W. Schäfer

7. Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33 (1996)
297–315

8. Badouel, E., Darondeau, P.: Theory of regions. In: Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, the volumes are based on the Advanced Course
on Petri Nets, London, UK, Springer-Verlag (1998) 529–586

9. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify:
a tool for manipulating concurrent specifications and synthesis of asynchronous
controllers. IEICE Transactions on Information and Systems E80-D (1997)
315–325

10. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow
Logs. In: Proceedings of the 6th International Conference on Extending Database
Technology, Springer-Verlag (1998) 469–483

11. Herbst, J., Karagiannis, D.: An Inductive approach to the Acquisition and Adap-
tation of Workflow Models. citeseer.ist.psu.edu/herbst99inductive.html (1999)

12. Weijters, A., van der Aalst, W.: Workflow Mining: Discovering Workflow Models
from Event-Based Data. In Dousson, C., Höppner, F., Quiniou, R., eds.: Proceed-
ings of the ECAI Workshop on Knowledge Discovery and Spatial Data. (2002)
78–84

13. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering process
models from event logs. IEEE Transactions on Knowledge and Data Engineering
16 (2004) 1128–1142

14. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based
Data. ACM Trans. Softw. Eng. Methodol. 7 (1998) 215–249

15. MSR 2005 International Workshop on Mining Software Repositories. In: ICSE ’05:
Proceedings of the 27th international conference on Software engineering, New
York, NY, USA, ACM Press (2005)

16. Herbst, J.: Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-
Modellen. PhD thesis, Universität Ulm (2001)

17. Kellner, M.I., Felier, P.H., Finkelstein, A., Katayama, T., Osterweil, L., Penedo,
M., Rombach, H.: ISPW-6 Software Process Example. In: Proceedings of the First
International Conference on the Software Process, Redondo Beach, CA, USA, IEEE
Computer Society Press (1991) 176–186

18. Wielemaker, J.: An overview of the SWI-Prolog programming environment. In
Mesnard, F., Serebenik, A., eds.: Proceedings of the 13th International Workshop
on Logic Programming Environments, Heverlee, Belgium, Katholieke Universiteit
Leuven (2003) 1–16 CW 371.

19. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets from
finite transition systems. IEEE Transactions on Computers 47 (1998) 859–882

A Discourse on Complexity of Process Models
(Survey Paper)

J. Cardoso1, J. Mendling2, G. Neumann2, and H.A. Reijers3

1 University of Madeira
9000-390 Funchal, Portugal

jcardoso@uma.pt
2 Vienna University of Economics and Business Administration

Augasse 2-6, 1090 Vienna, Austria
{jan.mendling, neumann}@wu-wien.ac.at

3 Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

h.a.reijers@tm.tue.nl

Abstract. Complexity has undesirable effects on, among others, the
correctness, maintainability, and understandability of business process
models. Yet, measuring complexity of business process models is a rather
new area of research with only a small number of contributions. In this
paper, we survey findings from neighboring disciplines on how complexity
can be measured. In particular, we gather insight from software engineer-
ing, cognitive science, and graph theory, and discuss in how far analogous
metrics can be defined on business process models.

1 Introduction

Since business process management has become an accepted concept for the
implementation and integration of large-scale information systems, there is an
increasing need for insight into how errors can be avoided, how maintenance
can be facilitated, or how the quality of the processes can be improved. In this
context, there is some evidence that complexity is a determinant of error prob-
ability of a business process [18]. As process complexity and its measurement
is a rather new field in business process management, there is only a limited
understanding of how far existing knowledge of complexity e.g. for the software
engineering domain can be adopted.

The complexity of a software program comes in three ‘flavors’: computa-
tional complexity, psychological complexity, and representational complexity
[26]. The most important is psychological complexity, which encompasses pro-
grammer characteristics, product/documentation complexity and problem com-
plexity. Obviously, the latter aspect, the complexity of the problem itself, cannot
be controlled in developing software. It is therefore frequently dismissed from
consideration in the software engineering literature. It seems sensible to do the
same for analyzing the complexity of process models. However, the issue remains
that complex processes will require more complex process models. Therefore, for

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 117–128, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

118 J. Cardoso et al.

the development of process model complexity it seems worthwhile to evaluate
complexity measures as relative to the underlying process complexity.

Existing theoretical approaches to formulate ’complexity metrics’ for software
include the use of information theory from signal processing (e.g. [10]) and com-
munication theory (e.g. [24]), as well as approaches based on analogues with
graph theory (e.g. [15]) and lattice theory (e.g. [11]). Approaches taking the
cognitive sciences as starting point have resulted, for example, in Bastani’s com-
plexity model [4]. An overview of some 50 different software complexity metrics
is provided in Table 1 in [5].

In this paper, we contribute to a better understanding of business process
model complexity. In particular, we provide a theoretical survey of complexity
considerations and metrics in the fields of software engineering, cognitive science,
and graph theory and we relate them to business process modelling. A further
empirical investigation might ultimately lead to establishing a complexity theory
of business process models. Following this line of argumentation, the rest of the
paper is structured as follows. Section 2 discusses complexity metrics for software
and their applicability for business process models. After a general introduction
to the discipline, we define analogous metrics to the Line-of-Code, McCabe’s
Cyclomatic Complexity called Control-Flow Complexity, Halstead Complexity
Metric, and Information Flow Complexity as defined by Henry and Kafura.
Section 3 relates findings from cognitive science to measuring complexity in
software engineering. In Section 4 graph theoretical measures are considered as
potential complexity metrics for business process models. Section 5 closes the
paper and gives an outlook on future research with a focus on how the process
complexity metrics can be validated.

2 Complexity in Business Processes

2.1 Software Metrics

Over the last 30 years many measures have been proposed by researchers to
analyze software complexity, understandability, and maintenance. Metrics were
designed to analyze software such as imperative, procedural, and object-oriented
programs. Software measurement is concerned with deriving a numeric value for
an attribute of a software product, i.e. a measurement is a mapping from the
empirical world to the formal world. From the several software metrics available
we are particularly interested in studying complexity metrics and find out how
they can be used to evaluate the complexity of business processes.

Software metrics are often used to give a quantitative indication of a pro-
gram’s complexity. However, it is not to be confused with computational com-
plexity measures (cf. O(n)-Notation), whose aim is to compare the performance
of algorithms. Software metrics have been found to be useful in reducing software
maintenance costs by assigning a numeric value to reflect the ease or difficulty
with which a program module may be understood.

There are hundreds of software complexity measures that have been described
and published by many researchers. For example, the most basic complexity

A Discourse on Complexity of Process Models 119

measure, the number of lines of code (LOC), simply counts the lines of executable
code, data declarations, comments, and so on. While this measure is extremely
simple, it has been shown to be very useful and correlates well with the number
of errors in programs.

2.2 The Analogy Between Software and Business Processes

While traditional software metrics were designed to be applied to programs writ-
ten in languages such as C++, Java, FORTRAN, etc, we believe that they can
be revised and adapted to analyze and study business processes characteristics,
such as complexity, understandability, and maintenance. We based our intu-
ition on the fact that there is a strong analogy between programs and business
processes, as argued before in e.g. [23,9]. Business process languages aim to
enable programming in the large. The concepts of programming in the large
and programming in the small distinguish between two aspects of writing the
type of long-running asynchronous processes that one typically sees in business
processes. Programming in the large emphasis is on partitioning the work into
modules whose interactions are precisely specified and can refer to programming
code that represents the high-level state transition logic of a business process
(typically using splits and joins). This state transition logic included information
such as when to wait for messages from incoming transitions, when to activate
outgoing transitions, and when to compensate for failed activities, etc.

A business process, possibly modeled with a language such as BPEL [2], can
be seen as a traditional software program that has been partitioned into mod-
ules or functions (i.e. activities) that take in a group of inputs and provide
some output. Module interactions are precisely specified using predefine logic
operators such as sequence, XOR-splits, OR-splits, and AND-splits. There is a
mapping that can be established between software programs constructs and busi-
ness processes. Functions, procedures, or modules are mapped to activities. Two
sequential software statements (i.e. instructions or functions) can be mapped
to two sequential process activities. A ’switch’ statement can be mapped to a
XOR-split. In programs, threads can be used to model concurrency and can
be mapped to AND-splits. Finally, the conditional creation of threads using a
sequence of ’if-then’ statements can be mapped to an OR-split.

2.3 Business Process Metrics

We believe that the future for process metrics lies in using relatively simple
metrics to build tools that will assist process analysts and designer in making
design decisions. Furthermore, because business processes are a high-level notion
made up of many different elements (splits, joins, resources, data, activities, etc.),
there can never be a single measure of process complexity. The same conclusion
has been reached in software engineering. Nagappan et al. [20] point out that
there is no single set of complexity metrics that could act as a universally best
defect predictor for software programs. For this reason several process metrics
can be designed to analyze business processes. For example, Cardoso [8] identifies

120 J. Cardoso et al.

four main types of complexity metrics for processes: activity complexity, control-
flow complexity, data-flow complexity, and resource complexity.

The following sections describe several approaches to adapt known software
metrics proposed by researches worldwide to business processes analysis. Having
established that there is a mapping from traditional programming languages and
business processes; we will study and adapt some of the most well known and
widely used source code metric, i.e. number of lines of code (LOC) [13], McCabe
cyclomatic complexity [15,16], Halstead’s software science measures [10], and
Henry and Kafura [12] information flow metric.

2.4 Adapting the LOC Metric

One of the earliest and fundamental measures based on the analysis of software
code is based on the basic count of the number of Lines of Code (LOC) of a
program. Despite being widely criticized as a measure of complexity, it continues
to have widespread popularity mainly due to its simplicity [3]. The basis of the
LOC measure is that program length can be used as a predictor of program
characteristics such as errors occurrences, reliability, and ease of maintenance.

If we view a process activity as a statement of a software program, we can
derive a very simple metric (metric M1) that merely counts the number of
activities (NOA) in a business process. It should be noticed that the NOA metric
characterizes only one specific view of size, namely length, it takes no account
of functionality or complexity. Also, bad process design may cause an excessive
number of activities. Compared to the original LOC metric, the NOA is not
language-dependent and it is easier for users to understand.

M1: NOA = Number of activities in a process

Another adaptation of the LOC metric is to view not only activities as pro-
gram statements, but to also take into account process control-flow elements
(i.e. control structures). Control-flow elements affect the execution sequence of
activities. This statements are different since they are executed for their effect
and do not have values. Two types of metrics can be designed depending on the
structured of process.

On the one hand, we can consider that processes are well-structured [1]. When
processes are well-structured we can simply count the control structures corre-
sponding to splits, since it is explicitly known that a corresponding join exits.
Please note that the structure of well-structured processes is analogue to soft-
ware programs. In computer programming, a statement block is a section of code
which is grouped together, much like a paragraph; such blocks consist of one or
more statements. For example, in a C statement blocks are enclosed by braces
{ and }. In Pascal, blocks are denoted by begin and end statements. Having
these characteristics in mind we design our second metric (M2) which counts
the activities and control-flow elements of a process:

M2: NOAC = Number of activities and control-flow elements in a process

A Discourse on Complexity of Process Models 121

On the other hand, we also have to consider that some languages allow the
construction of processes that are not well-structured. As we have already men-
tioned, examples of such languages include EPC and Workflow nets. In these
modeling languages, splits do not have to match a corresponding join. These
processes are generally more difficult to understand and result often in design
errors. For processes that are not well-structured we can design a third metric
(M3) which counts the number of activities and the number of splits and joins
of a process.

M3: NOAJS = Number of activities, joins, and splits in a process

In EPC models, we would count the number of activities, XOR-joins and
-splits, OR-joins and -splits, and AND-joins and -splits to calculate NOAJS.

2.5 Adapting McCabe’s Cyclomatic Complexity

An early measure, proposed by McCabe [15], views program complexity related
to the number of control paths through a program module. McCabe derived
a software complexity measure from graph theory using the definition of the
cyclomatic number which corresponds to the number of linearly independent
paths in a program. It is intended to be independent of language and language
format [17]. This measure provides a single number that can be compared to the
complexity of other programs.

Since its development, McCabe’s cyclomatic complexity (MCC) has been one
of the most widely accepted software metrics and has been applied to tens of
millions of lines of code in both the Department of Defense (DoD) and commer-
cial applications. The resulting base of empirical knowledge has allowed software
developers to calibrate measurements of their own software and arrive at some
understanding of its complexity. McCabe’s cyclomatic complexity is an indica-
tion of a program module’s control-flow complexity and has been found to be a
reliable indicator of complexity in large software projects [25]. Considering the
number of control paths through the program, a 10-line program with 10 assign-
ment statements is easier to understand than a 10-line program with 10 if-then
statements.

MCC is defined for each module to be e − n + 2, where e and n are the
number of edges and nodes in the control flow graph, respectively. Control flow
graphs describe the logic structure of software modules. The nodes represent
computational statements or expressions, and the edges represent transfer of
control between nodes. Each possible execution path of a software module has a
corresponding path from the entry to the exit node of the module’s control flow
graph. For example, in Figure 1, the MCC of the control flow graph for the Java
code described is 14 − 11 + 2 = 5.

2.6 The CFC Metric

In our previous work [6,7] we have designed a process complexity metric that
borrows some ideas from McCabe’s cyclomatic complexity. Our objective was to

122 J. Cardoso et al.

Fig. 1. of a Java program and its corresponding flowgraph

develop a metric that could be used in the same way as the MCC metric but to
evaluate processes’ complexity.

One of the first important observations that can be made from the MCC
control flow graph, shown in Figure 1, is that this graph is extremely similar
to a process. One major difference is that the nodes of a MCC control flow
graph have identical semantics, while process nodes (i.e., activities) can have
different semantics (e.g., AND-splits, XOR-splits, OR-joins, etc). Our approach
has tackled this major difference.

The metric that we have previously developed and tested, called Control-flow
Complexity (CFC) metric, was based on the analysis of XOR-splits, OR-splits,
and AND-splits control-flow elements. The main idea behind the metric was to
evaluate the number of mental states that have to be considered when a designer
is developing a process. Splits introduce the notion of mental states in processes.
When a split (XOR, OR, or AND) is introduced in a process, the business
process designer has to mentally create a map or structure that accounts for the
number of states that can be reached from the split. The notion of mental state
is important since there are theories [19] suggesting that complexity beyond a
certain point defeats the human mind’s ability to perform accurate symbolic
manipulations, and hence results in error.

Mathematically, the control-flow complexity metric is additive, thus it is very
easy to calculate the complexity of a process, by simply adding the CFC of all
split constructs. The control-flow complexity was calculated as follows, where P
is a process and a an activity.

CFC(P) =
∑

a∈P,a isa xor−split

CFCXOR(a)

+
∑

a∈P,a isa or−split

CFCOR(a) +
∑

a∈P,a isa and−split

CFCAND(a)

A Discourse on Complexity of Process Models 123

The CFCXOR − split, CFCOR − split, and CFCAND − split functions is
calculated as follows:

– CFCXOR − split(a) = fan − out(a). The control-flow complexity of XOR-
splits is determined by the number of branches that can be taken.

– CFCOR−split(a) = 2fan−out(a)−1. The control-flow complexity of OR-splits
is determined by the number of states that may arise from the execution of
an OR-split construct.

– CFCAND − split(a) = 1. For an AND-split, the complexity is simply 1.

The higher the value of CFCXOR − split, CFCOR − split, and CFCAND −
split, the more complex is a process design, since developer has to handle all
the states between control-flow constructs (splits) and their associated outgoing
transitions and activities. Each formula to calculate the complexity of a split con-
struct is based on the number of states that follow the construct. CFC analysis
seeks to evaluate complexity without direct execution of processes.

The advantages of the CFC metric is that it can be used as a maintenance and
quality metric, it gives the relative complexity of process designs, and it is easy
to apply. Disadvantages of the CFC metric include the inability to measure
data complexity, only control-flow complexity is measured. Additionally, the
same weight is placed on nested and non-nested loops. However, deeply nested
conditional structures are harder to understand than non-nested structures.

2.7 Adapting the Halstead Complexity Metric

The measures of Halstead [10] are the best known and most thoroughly studied
composite measure of software complexity. The measures were developed as a
means of determining a quantitative measure of complexity based on a program
comprehension as a function of program operands (variables and constants) and
operators (arithmetic operators and keywords which alter program control-flow).
Halstead’s metrics comprise a set of primitive measures (n1, n2, N1, and N2)
that may be derived from the source code:

– n1 = number of unique operators (if, while, =, ECHO, etc);
– n2 = number of unique operands (variables or constants);
– N1 = total number of operator occurrences;
– N2 = total number of operand occurrences.

In our work, we suggest to map business process elements to the set of prim-
itive measures proposed by Halstead. For example, n1 is the number of unique
activities, splits and joins, and control-flow elements (such as sequence, switch,
while, etc. in BPEL) of a business process. While the variable n2 is the number
of unique data variables that are manipulated by the process and its activities.
N1 and N2 can be easily derived directly from n1 and n2. With these primitive
measures we introduce the notion of Halstead-based Process Complexity (HPC)
measures for estimating process length, volume, and difficulty. These measures
are based on Halstead measures and are calculates as follows:

124 J. Cardoso et al.

– Process Length: N = n1*log2(n1) + n2*log2(n2)
– Process Volume: V = (N1+N2)*log2(n1+n2)
– Process Difficulty: D = (n1/2)*(N2/n2)

By the means of the presented mapping we can design an additional mea-
sure for processes based on the original measurement proposed by Halstead,
including the process level, effort to implement, time to implement, and number
of delivered bugs. We do not formalize these measurements since they require
calibration that can only be done with empirical experiments.

Using HPC measures for processes has several advantages. The measures do
not require in-depth analysis of process structures, they can predict rate of errors
and maintenance effort, they are simple to calculate, and they can be used for
most process modelling languages.

2.8 Adapting the Information Flow Metric by Henry and Kafura

Henry and Kafura [12] proposed a metric based on the impact of the information
flow in a program’ structure. The technique suggests identifying the number
of calls to a module (i.e. the flows of local information entering: fan-in) and
identifying the number of calls from a module (i.e. the flows of local information
leaving: fan-out). The complexity of a procedure (PC) is defined as:

PC = Length * (Fan-in * Fan-out)2

The value of the variable length can be obtained by applying the lines of
code or alternatively the McCabe’s cyclomatic complexity metric. The procedure
complexities are used to establish module complexities. A module with respect
to a data structure DS consists of those procedures which either directly update
DS or directly retrieve information from DS. As it can be seen, the measure is
sensitive to the decomposition of the program into procedures and functions, on
the size and the flow of information into procedures and out of procedures.

Henry and Kafura metric can be adapted to evaluate the complexity of pro-
cesses in the following way. To calculate the length of an activity we need first to
identify if activities are seen as black boxes or white boxes by the business pro-
cess management system. If activities are black boxes then only their interface
is known. Therefore, it is not possible to calculate the length of an activity. In
this situation we assume the length to be 1. If activities are white boxes then the
length of an activity is based on knowledge of its source code. In this situation,
the length can be calculated using traditional software engineering metrics that
have been previously presented, namely the LOC and MCC.

The fan-in and fan-out can be mapped directly to the inputs and outputs of
activities. Activities are invoked when their inputs (fan-in) are available and the
activities are scheduled for execution. When an activity completes its execution,
its output data is transferred to the activities connected to it through transitions.
We propose a metric called interface complexity (IC) of an activity which is
defined as:

A Discourse on Complexity of Process Models 125

IC = Length * (number of inputs * number of ouputs)2

The advantages of the IC metric are that it takes into account data-driven
processes and it can be calculated prior to coding, during the design stage. The
drawbacks of the metric are that it can give complexity values of zero if an
activity has no external interactions. This typically only happens with the end
activities of a process. This means the, for example, EPC processes with a large
percentage of end activities will have a low complexity.

3 Cognitive Science on Software Complexity

Most approaches in the software engineering domain take certain characteristics
of software as a starting point and attempt to define what effect they might have
on the difficulty of the various programmer tasks (e.g. maintaining, testing and
understanding code). In [5], it is argued that it is much more useful to analyse
the processes involved in programmer tasks first, as well as the parameters which
govern those efforts: “.. one should start with the symptoms of complexity, which
are all manifested in the mind, and attempt to understand the processes which
produce such symptoms”. Using results from cognitive sciences, e.g. the division
of the mind into short-term and long-term memory, and the mental processes
involved with programming known as “chunking” and “tracing”, Cant et al.
come up with a set of tentative complexity metrics for software programs [5].

A similar approach for determining the complexity of a process model would
be to determine meaningful process model “chunks”, which can be captured as
a single section in the short-term memory. One could think of constructions
like a (short) sequence of activities or a control construct like an XOR-split.
Each of these “chunks” would have to be characterized by a complexity score.
The work in [5] suggests that notably the size of the chunk would be a good
estimate. Next, it is necessary to see the control flow through these chunks, as
people need to scan the relations between chunks to understand the complete
picture. This is referred to as the “tracing” mechanism. In [5], not only the
length of the path but also the kind of dependency influences the comprehension
of the flow between chunks. For software, for example, Cant et al. state that
“a conditional control structure is more complex to understand than a normal
sequential section of code”. For a process model, this could mean that both (a)
the distance between the chunks and (b) a complexity factor for the specific
kind of dependency should be used. Unfortunately, the work in [5] rather sets
an agenda for complexity metrics than providing exact measures. Therefore, it
is far from straightforward to transfer the presented, tentative relations to the
process modelling domain.

4 Complexity of the Process Graph

Graph theory provides a rich set of graph metrics or graph measures that can
be adapted for calculation of the complexity of the process graph. In [14] the

126 J. Cardoso et al.

coefficient of network complexity (CNC), the complexity index (CI), the restric-
tiveness estimator (RT), and the number of trees in a graph are discussed as
suitable for business process models.

The coefficient of network complexity (CNC) provides a rather simple metric
for the complexity of a graph. It can easily be calculated as the number of arcs
divided by the number of nodes. In the context of a business process model, the
number of arcs has to be divided by the number of activities, joins, and splits.
In formal esthetics this coefficient is also considered with the notion of elegance
[21].

CNC = number of arcs / (number of activities, joins, and splits)

The complexity index (CI), or reduction complexity is defined as the mini-
mal number of node reductions that reduces the graph to a single node. This
measure shares so similarity to the notion of structuredness of a process graph
and respective reduction rules. In a BPEL process it can be associated with the
number of structured activities. The complexity index of a process graph has
to be calculated algorithmically and is not applicable for process models with
arbitrary cycles.

Restrictiveness estimator (RT) is an estimator for the number of feasible se-
quences in a graph. RT requires the reachability matrix rij , i.e. the transitive
closure of the adjacency matrix, to be calculated.

RT = 2Σrij − 6(N − 1)/(N − 2)(N − 3)

There are further measures in graph theory which demand rather complex
computations. The number of trees in a graph requires the tree-generating de-
terminant to be calculated based on the adjacency matrix (see [14]). Measures
such as tree width, directed tree width, and directed acyclic graph width are
compared in [22]. The latter measures how close a graph is to a directed acyclic
graph.

5 Contributions and Limitations

In this paper, we have surveyed several contributions from software engineering,
cognitive science, and graph theory, and we discussed to what extent analogous
metrics and measurements can be defined for business process models. In or-
der to demonstrate that these metrics serves their purpose, we plan to carry
out several empirical validations by means of controlled experiments. These ex-
periments will involve more than 100 students from the Eindhoven University
of Technology (Netherlands), the Vienna University of Economics and Business
Administration (Austria), and the University of Madeira (Portugal). The col-
lected data will be analyzed using statistical methods to verify the degree of
correlation between students’ perception of the complexity of processes and the
proposed metrics. It should be noted that we have already conducted a small

A Discourse on Complexity of Process Models 127

experiment that involved 19 graduate students in Computer Science, as part of
a research project, and tested if the control-flow complexity of a set of 22 busi-
ness processes could be predicted using the CFC metric. Analyzing the collected
data using statistical methods we have concluded that the CFC metric is highly
correlated with the control-flow complexity of processes. This metric can, there-
fore, be used by business process analysts and process designers to analyze the
complexity of processes and, if possible, develop simpler processes.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Specification, BEA Systems,
IBM Corp., Microsoft Corp., SAP AG, Siebel Systems, 2003.

3. M. Azuma and D. Mole. Software management practice and metrics in the eu-
ropean community and japan: Some results of a survey. Journal of Systems and
Software, 26(1):5–18, 1994.

4. F. B. Bastani. An approach to measuring program complexity. COMPSAC ’83,
pages 1–8, 1983.

5. S. N. Cant, D. R. Jeffery, and B. Henderson-Sellers. A conceptual model of cognitive
complexity of elements of the programming process. Information and Software
Technology, 37(7).

6. J. Cardoso. Control-flow Complexity Measurement of Processes and Weyuker’s
Properties. In 6th International Enformatika Conference, Transactions on Enfor-
matika, Systems Sciences and Engineering, Vol. 8, pages 213–218, 2005.

7. J. Cardoso. Workflow Handbook 2005, chapter Evaluating Workflows and Web
Process Complexity, pages 284–290. Future Strategies, Inc., Lighthouse Point, FL,
USA, 2005.

8. J. Cardoso. Complexity analysis of bpel web processes. Journal of Software Process:
Improvement and Practice, 2006. to appear.

9. A.S. Guceglioglu and O.W. Demiros. Using Software Quality Characteristics to
Measure Business Process Quality. In W.M.P. van der Aalst, B. Benatallah,
F. Casati, and F. Curbera, editors, Business Process Management (BPM 2005),
volume 3649, pages 374–379. Springer-Verlag, Berlin, 2005.

10. M. H. Halstead. Elements of Software Science. Elsevier, Amsterdam, 1987.
11. W. Harrison and K. Magel. A topological analysis of computer programs with less

than three binary branches. ACM SIGPLAN Notices, april:51–63, 1981.
12. S. Henry and D. Kafura. Software structure metrics based on information-flow.

IEEE Transactions On Software Engineering, 7(5):510–518, 1981.
13. G. E. Kalb. Counting lines of code, confusions, conclusions, and recommendations.

Briefing to the 3rd Annual REVIC User’s Group Conference, 1990.
14. Antti M. Latva-Koivisto. Finding a complexity for business process models. Re-

search report, Helsinki University of Technology, February 2001.
15. T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,

2(4):308–320, 1976.
16. T. J. McCabe and C. W. Butler. Design complexity measurement and testing.

Communications of the ACM, 32:1415–1425, 1989.

128 J. Cardoso et al.

17. T. J. McCabe and A. H. Watson. Software complexity. Journal of Defence Software
Engineering, 7(12):5–9, 1994. Crosstalk.

18. J. Mendling, M. Moser, G. Neumann, H.M.W. Verbeek, and B.F. van Don-
gen W.M.P. van der Aalst. A Quantitative Analysis of Faulty EPCs in the SAP
Reference Model. BPM Center Report BPM-06-08, Eindhoven University of Tech-
nology, Eindhoven, 2006.

19. G. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. The Psychological Review, 1956.

20. Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to pre-
dict component failures. In Proceedings of the 28th International Conference on
Software Engineering, Shanghai, China, 2006.

21. G. Neumann. Metaprogrammierung und Prolog. Addison-Wesley, December 1988.
22. Jan Obdrzalek. Dag-width: connectivity measure for directed graphs. In Sympo-

sium on Discrete Algorithms, pages 814–821. ACM Press, 2006.
23. H.A. Reijers and Irene T.P. Vanderfeesten. Cohesion and Coupling Metrics for

Workflow Process Design. In J. Desel, B. Pernici, and M. Weske, editors, Business
Process Management (BPM 2004), volume 3080, pages 290–305. Springer-Verlag,
Berlin, 2004.

24. M. Shepperd. Early life-cycle metrics and software quality models. Information
and Software Technology, 32(4):311–316, 1990.

25. W. Ward. Software defect prevention using mccabe’s complexity metric. Hewlett
Packard Journal, 40(2):64–69, 1989.

26. H. Zuse. Software Complexity: Measures and Methods. Walter de Gruyter and Co,
New Jersey, 1991.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 129 – 140, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Measuring Performance in the Retail Industry
(Position Paper)

Gerasimos Marketos and Yannis Theodoridis

Department of Informatics, University of Piraeus,
80 Karaoli-Dimitriou St., GR-18534 Piraeus, Greece

{marketos, ytheod}@unipi.gr
http://isl.cs.unipi.gr/db

Abstract. Bearing in mind the changeable and complicated needs of business
environment, in this paper we examine the necessity of evolution in the
traditional decision support techniques. Our aim is to intensify the need for
integrated performance measurement and management, as a way to ameliorate
the existing tools for decision making, which are currently based on historical
data. Because of the nature of challenges and trends in the retail industry, it is
considered to be an appropriate application scenario. In addition to that, a
framework is proposed and a case study is described as a proof of our claim.

Keywords: Performance management, business intelligence, retailing.

1 Introduction

Business Intelligence (BI) developed a few years ago as a set of applications and
technologies for gathering, storing, analyzing, and providing access to corporate data
to aid in decision making. BI includes, among others, decision support systems
(DSS), statistical analysis, information visualization, data warehousing (DW) and
online analytical processing (OLAP), and data mining (DM).

Turban and Aronson [16] argue that the decisions are taken at three levels:
strategic, tactical and operational. The differences among them are related with the
time scale that every decision demands and with the nature of them as well. The top
management is responsible for the strategic planning of their organizations, middle
managers make tactical decisions following the plans of top management and finally
operational managers are responsible for the daily activity of the organization.

Obviously, performers at each level need different kind of information. The top
management wants to see the “big picture” of the company situation. They usually
prefer dashboards, consisting of Key Performance Indicators (KPIs), which show the
trends of the organization. Middle managers want to have access in advanced,
dynamic reports. They prefer aggregated instead of raw data, thus OLAP cubes and
patterns extracted from data mining models look very useful for them. Operational
managers need more real-time information. In fact, traditional BI can not serve them
because it focuses on historical business data and thus it fits in better with strategic
and tactical decision making (figure 1).

130 G. Marketos and Y. Theodoridis

Fig. 1. Traditional BI coverage of decision making levels [15].

The above prove that modern organizations need something more than BI.
Furthermore, the need for process-oriented organizations having efficient business
processes that cut across organizational boundaries, raise the need for a more
complete management of organizational performance. Focus on operational data is
required because performance can not be measured only by trying to find patterns on
historical business data. Strategic and tactical decisions are still critical, but without
efficient operational decisions the real time and process oriented enterprise can not be
realized.

The target is clear: decision makers, independently of level, should have the right
information on the right time in order to serve efficiently and effectively the
customer-centric processes in which they participate. This paper proposes a
realization of the above target and its application in the retail industry.

The rest of the paper is organized as follows. In Section 2, we outline the
challenges of the retail industry. In Section 3 we survey the proposed approaches for
measuring and managing performance. Sections 4 and 5 present a framework for
measuring performance on the retail industry and an application in a case study,
respectively. Conclusions and hints for further work are drawn in Section 6.

2 Trends and Challenges in the Retail Industry

Retailing serves the selling of goods and services to consumers for personal or
household consumption. A classification of the retail industry divisions can be found
in [14]: groceries, apparel, electronics, drugstores, books/music, mail-order, mixed
assortments and others. Retailers are at the end of the supply chain, which may
consist of various suppliers, importers, manufacturers, wholesalers and distributors,
and thus they interact directly with the consumer. To serve this purpose, the majority
of technological advances are quickly applied in this sector so as to facilitate trade.
Data management, supply chain management and marketing strategies, among others,
are combined to this aim.

From a data management perspective, the emerging trends create many
opportunities for delivering more value but they also bring problems that should be

 Measuring Performance in the Retail Industry 131

faced. Radio Frequency Identification (RFID) is a new challenging technology that is
coming into sight, replacing traditional barcodes. Although the adoption of this
technology has raised a lot of controversy, its importance has been recognized and
thus a further discussion about RFID significance is beyond the scope of this paper.
Furthermore, we choose to focus on how data produced by RFID tags can be
transformed into knowledge, and not on the management of the huge volume of data
being researched by data streams community. What RFID can give us is:

a. Sequence of purchase: It is possible to know in which order people buy
things. In fact, we know the exact time of putting an item in the basket.
Extracting such patterns, retailers may decide, for instance, to change the
position of some items in the store in order to facilitate (or not) people in the
store.

b. Positive/ negative preferences: It is possible to have answers on questions
such as: Are there customers that, after taking an item, change their mind and
put it back on the shelf? Is there a specific pattern behind this behaviour? How
much time do customers need to decide about the selection or not of a product?

c. Routes of customers: By placing RFID labels on the baskets, it is possible to
track the movement of customers inside the store. Thus, by placing an Indoor
Positioning System (IPS), customers could be informed based on their interests
and their location.

As far as supply management is concerned, it gives retailers a competitive
advantage. The collected shopping data can be transformed to valuable information
and shared throughout retailers’ supply chain networks of suppliers, factories and
distribution centers to predict trends on product demand for controlling inventories
and stocks.

For marketing purposes, personalized and real time offers is a critical tool to
realize the necessary customer-centricity. Customers should feel that retailers know
and meet efficiently their needs. RFID technology and IPSs can provide the necessary
infrastructure for collecting data and providing useful information. The issue here is
how to interpret the raw data to shopping information that is valuable for each
customer. Several papers have been proposed for predicting shopping lists [6] and
building shopping assistants [5] but they do not take into consideration the latest
technological advances and they are only based on analyzing historical data.
Prediction of shopping lists can be considered as a special case of recommendation
techniques which are overviewed in [2].

The above challenges show that retailers need something more than BI for
supporting strategic and tactical decisions. A more complete solution is required in
the retail environment in order for performance management to integrate business
processes and historical data.

3 Performance Measurement and Management

Performance management is a challenging issue due to three core reasons [11]: (a)
goals and objectives against which we measure companies’ performance are
exponentially increasing, (b) external unstructured data and events have to be

132 G. Marketos and Y. Theodoridis

encompassed and, finally, (c) acting in a timely and effective manner on the resulted
imperatives is required.

The recent years, several researchers have presented their suggestions about BI
evolution in order to serve performance measurement and management. We present
them in order to show their common characteristics and find the set of operations that
best fit in the retail industry.

In [3], performance management is concerned in terms of process execution
monitoring and analysis. Authors consider that simple reports off the process
execution database and OLAP-style analysis are not adequate. Business Process
Intelligence is proposed as a way to explain process behavior and to predict problems
in process executions by applying “process mining” algorithms. An overview of
issues and approaches on workflow mining can be found in [1].

Fig. 2. Different approaches to business process analysis and management [3]

In [13], a Corporate Performance Measurement System is proposed by integrating
business process performance information into a traditional data warehouse. The DW
is built using operational data coming from the workflow log which provides very
detailed information on the history of process instances. In fact, it is the same
approach as the process data warehouse to appear in figure 2.

In [9], Business Performance Management is considered as a set of processes for
optimizing performance by encouraging process effectiveness as well as efficient use
of financial, human, and material resources. The main idea behind this proposal is that
DW is not enough to this end since its technology is neither suitable for the grain nor
for the freshness of the collected information, that should quickly flow throughout the
different levels of the company.

Operational BI, Enterprise Decision Management [15], Business Activity
Monitoring and Business Operations Management are other usually mentioned terms
to describe the ideas presented in this section. In table 1, the differences from
traditional BI are referred.

In the section that follows, we propose a framework as an application of the above
mentioned and not a different approach. We try to intensify the need to evolve the
traditional systems so as to satisfy the emerging needs in business environment.

 Measuring Performance in the Retail Industry 133

Table 1. Traditional BI versus the performance management approach [15]

 Traditional BI The performance
management approach

Focus Improve strategy development
through insight into trends and
performance

Improve strategy execution
through automating decisions

Activity After transaction During transaction
Key
methodologies

Data analysis, OLAP,
reporting and query tools, data
warehousing

Traditional methodologies plus
KPIs, dashboards, business
rules engines

Workflow Offline, disconnected from
business processes

Embedded in operational
processes and systems

Analytics Summarize past performance,
group behavior, trends

Continuously measuring and
managing performance

4 A Framework for the Retail Industry

In this section, we present the architecture of a framework for measuring and
managing performance in the retail industry (figure 3). Combining traditional BI
techniques with the technologies presented in section 3, we can have a complete
solution for dealing with the challenges and trends outlined in section 2.

Our framework consists of a number of modules. In the following paragraphs, a
reasonable sequence of the stages of the proposed framework is described, from the
raw data to the final output. In particular:

a. Source data: Apart from shopping data and workflow logs, other data streams
can be also input in the system. For instance, data collected from RFID tags
include useful information that should be analyzed, although it is not necessary
to be archived in the operational database. For a survey in data stream
management see [8].

b. Integration manager: The role of this module is to manage the above
heterogeneous data sources and to feed the appropriate analytics. Likewise, it
guarantees that the feeding process happens on the right time for each analytic:
ETL tools can be fed once a day as OLAP-style analysis focus on historical data
while Activity Monitoring components need real time data.

c. OLAP Cubes: ETL tools transform raw data into aggregated information
providing thus data warehousing capabilities. Instead of providing only OLAP-
style analysis on shopping data (business data warehouse), the proposed
architecture includes data warehouses for both business and process execution
data.

d. Activity monitoring: This module deals with real time information. It updates
and controls KPIs and triggers Business Rules Manager for verifying that
corporate rules are satisfied. KPIs can be also verified for satisfying predefined
Business Rules (BRs). Most Business Process Management (BPM) suites
support process monitoring.

134 G. Marketos and Y. Theodoridis

e. Data mining engine: DM engine consists of a set of algorithms and techniques
for identifying patterns on data. Customer segmentation, correlations between
products and prediction of product demand are typical tasks that can be applied
on shopping data. We consider as important to include special process mining
algorithms that are applied on workflow logs, for predicting critical situations
and discovering interesting correlations. Applying mining techniques on real
time information (sequence of purchase, routes of purchase) is also a
challenging issue and an active research area [7].

Fig. 3. The proposed architecture

f. Pattern base: A Pattern Base Management System (PBMS) provides pattern
management functionality as a Database Management System (DBMS) does for
data. Patterns are extracted from various data sources applying the data mining
algorithms and techniques included in the data mining engine. Our framework
proposes the integration of the pattern base with the data warehouses and the
operational databases. Thus, data can be viewed from three quite different but

 Measuring Performance in the Retail Industry 135

 useful perspectives: raw data (operational databases), aggregated data (data
warehouses), and analyzed data-extracted knowledge (pattern base). Pattern
management is an active research area in which various approaches have been
introduced [4], [12].

g. Enterprise portal: This is the output (portal) of the proposed system. It
includes a role-based architecture which provides users in various positions with
the appropriate information. For instance, operational managers may be
interested in process intelligence reports while tactical decision makers may find
useful the business and customer intelligence reports. Generally speaking, users
will be able to build their own dashboards by subscribing to the services the role
based systems has allocated to them.

5 Applying Our Framework: A Case Study

In the following paragraphs, we outline the application of our framework addressing
design issues. In particular, we present the data sources involved, the data warehouses
(cubes) built for OLAP purposes, and some indicative KPIs and BRs materialized to
address top management needs.

5.1 Data Sources

The operational database includes tables for storing customer demographics and
details about their transactions. Each transaction takes place in a specific store and
embodies details of the products that were purchased by the customer. The system
may also include details about the supplier of each product. A sample diagram is
depicted in figure 4.

Fig. 4. A sample E-R diagram for operational data

In figure 4, the relationships between the core entities of the system are
represented. As it is shown, a transaction takes place in a specific store and a single
customer participates in it. Namely, a transaction represents a customer’s basket and
may consist of one or more products (purchased in the same basket). Moreover, the
supplier of each product (and other information regarding supplying processes) is
recorded.

136 G. Marketos and Y. Theodoridis

As far as the workflow logs are concerned, the simplest format is presented in table 2
where only the execution time of each activity (step) is recorded. Workflow logs are
tightly related both to the workflow engine that is used to manage business processes
and to the nature of them. Typical business processes in the retail industry are orders
to suppliers and distribution centers.

Table 2. A sample workflow log

Process_Instance Activity Timestamp
Order supplies of product A Send order 1/4/2006 21:05:14
Order supplies of product A Receive products 3/4/2006 10:15:04
Order supplies of product A Inventory products 3/4/2006 12:55:09

5.2 OLAP Cubes

We have proposed the coexistence of business and process data warehouse for
providing OLAP-style analysis to business and process data. In figure 5, we present
the dimensions of a business data warehouse. Apart from geography, product category
and time dimensions, we have included a number of customer hierarchies (age, sex,
profession, marital status, education level and number of children). Measures are
related to quantities and values of products. Figure 5 presents only some of them and
takes into consideration the case of private label products that the retailer may sell.

Fig. 5. A sample data warehouse for business data

Furthermore, in figure 6, a general case process warehouse is presented. The data
warehouse depends on retailer’s organizational structure and needs, and thus the
proposed schema cannot be suitable at every case. We consider that processes and
activities can be classified according to their types. For instance, both human-
triggered and automatic activities should be considered. Geographical hierarchy

 Measuring Performance in the Retail Industry 137

provides analysis capabilities in many different levels. Suppliers dimension classifies
them to various types according to the nature of products they provide.

The defined performance measures should help in analyzing raw process execution
data in a multidimensional way. Interesting measures are the total execution time and
the time lags of each process.

Fig. 6. A sample data warehouse for process data

In both cubes classic OLAP operations can be applied. We illustrate the benefits
obtained by such an approach with two examples of operations supported by our
proposed business and process data warehouses and OLAP technologies:

a. A user may ask to view the average value of private label products in baskets in
the past quarter, over Athens, and, moreover, he/she can easily view the same
information for specific stores in Athens (more detailed view, formally a drill-
down operation) or over Greece (more summarized view, formally a roll-up
operation).

b. Similarly, the total waiting time for processes of a specific process type, over
Athens, in the past quarter may be requested. The user can also easily view the
same information both for each month of the selected quarter and also for the
whole year.

Further to roll-up and drill-down operations described above, typical data cube
operations include slice and dice, for selecting parts of a data cube by imposing
conditions on a single or multiple cube dimensions, respectively and pivot, which
provides the user with alternative presentations of the cube.

5.3 Activity Monitoring

As already mentioned, BPM suites support process monitoring consisting of BRs and
measured by KPIs. We argue that this can be generalized to include monitoring of

138 G. Marketos and Y. Theodoridis

business related activities. Tables 3 and 4 present some interesting KPIs and BRs that
could be continuously calculated and checked respectively. Violation of BRs could
trigger alerts in the enterprise portal for assuring human attention.

Table 3. Sample Key Performance Indicators

KPI Target value
Average waiting time for check out 5 sec. per product
Average value of customer baskets 20 € (weekdays)

50 € (weekends)
Average value of private-label
products in customer baskets

30%

Average weekly sales per state 500K €

Table 4. Sample Business Rules

BR Expression
Waiting time for check out ≤ 20 min.

Execution time for process type:
“Order dairy products”

≤ 1 day

KPIs provide instant and continuous view of the running activities. However, the

target values are based on past experience. In other words, the definition of target
values for complex KPIs can be assisted by using multidimensional analysis (OLAP)
and the aggregated information stored in the two data warehouses (business and
process cubes). Furthermore, it is useful to define BRs on KPIs ensuring alerting if
target values are violated.

5.4 Pattern Base

The execution of data mining models results in patterns that are stored in a PBMS.
Pattern management issues such us update, merging, comparing, querying, evaluation
etc. are active research problems but a detailed discussion about them is beyond the
scope of this paper. Frequent itemsets (FIs), association rules and clusters extracted
from warehouse data are typical examples of patterns.

FIs represent sets of products that are often purchased together (e.g. {milk, bread,
frozen food}) while association rules introduce correlation between items (e.g.
{bread, frozen food} {milk}). Quite more interesting is the discovery of the
temporal sequence of purchasing in such itemsets (e.g. milk, then bread, then frozen
food). On the other hand, clustering algorithms could result in clusters showing
correlations between demographics and shopping preferences. For example a profile
of shoppers (women, aged 30-35) appears to have a specific preference (buy dairy
twice a week) and so on.

We illustrate the benefits obtained by such an approach with two examples of
queries supported by the pattern base:

 Measuring Performance in the Retail Industry 139

a. A user may request to view demographic details about a specific cluster of
customers, for instance: costumers who visit any store once a week and buy
private label products valued 0-5 euros, and the value of their baskets in total is
between 20-30 euros.

b. A user may have the information that milk is in high demand in a specific store
and he/she requires knowing what products are purchased supplementary to
milk in order to check their supplies. The proposed pattern base can provide a
list of these products which are associated with milk, and moreover, to give a
hierarchical order of their association with milk combined with information
about stores supplies.

6 Conclusions – Further Work

Taking into account current challenges and trends in the demanding and complicated
area of the retail industry, it is evident that decision making analysis should be based
on real time information and not only on historical data, as the traditional methods
have used so far. In this paper, we propose a framework for extending traditional BI
to an integrated environment for measuring and managing performance. As it was
highlighted in [10] the importance of measurement in controlling, managing and
improving the processes is vital. The framework consists of several modules that
enable both business and process intelligence capabilities. It includes tools so as to
give the proper information on the right time to each decision making level.

Our research is at early stage; future steps include the evaluation and incorporation
of process mining algorithms in the data mining engine and the development of a
prototype following the proposed architecture. The application of our framework in
other industries could also be a task for future work.

Acknowledgements. Research supported by the General Secretariat for Research and
Technology of the Greek Ministry of Development under a PENED’2003 grant.

References

[1] van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.J.M.M.: Workflow mining: a survey of issues and approaches, Data & Knowledge
Engineering 47 (2003) 237-267

[2] Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin A.: Incorporating contextual
information in recommender systems using a multidimensional approach. ACM
Transactions on Information Systems 23 (2005) 103–145

[3] Castellanos, M., Casati, F., Dayal, U., Shan, M.C.: A Comprehensive and Automated
Approach to Intelligent Business Processes Execution Analysis. Int. J. Distributed and
Parallel Databases 16 (2004) 239-273

[4] Catania, B., Maddalena, A.: Flexible Pattern Management within PSYCHO. Proc.
PaRMa’06, Munich, Germany (2006)

[5] Cumby, C., Fano, A., Ghani, R., Krema, M.: Building Intelligent Shopping Assistants
Using Individual Consumer Models. Proc. IUI’05, San Diego, CA, USA (2005)

140 G. Marketos and Y. Theodoridis

[6] Cumby, C., Fano, A., Ghani, R., Krema, M.: Predicting Customer Shopping Lists from
Point of Sale Purchase Data. Proc. KDD ’04, Seattle, WA, USA (2004)

[7] Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining Data Streams: a review. ACM
SIGMOD Record 34 (2005) 18-26

[8] Golab, L., Ozsu, M.T.: Issues in Data Stream Management. ACM SIGMOD Record 32
(2003) 5-14

[9] Golfarelli, M., Rizzi, S., Cella, I.: Beyond Data Warehousing: What’s next in Business
Intelligence? Proc. DOLAP’04, Washington, DC, USA (2004)

[10] Harrington, J.H.: Business Process Improvement – The breakthrough strategy for total
quality, productivity, and competitiveness. McGraw-Hill, New York, USA (1991)

[11] Keziere, R.: Are we there yet? Three challenges for BPM. Cutter IT Journal 18 (2005)
[12] Kotsifakos, E., Ntoutsi, I., Theodoridis, Y.: Database Support for Data Mining Patterns.

Proc. PCI’05, Volos, Greece (2005)
[13] List, B., Machaczek, K.: Towards a Corporate Performance Measurement System. Proc.

ACM SAC’04, Nicosia, Cyprus (2004)
[14] Madlberger, M.: Strategies and Business Models in Electronic Retailing: Indications from

the U.S. and the UK. Proc. ICEC’04, Delft, Netherlands (2004)
[15] Taylor, J.: Beyond BI: Building intelligence into your operational decisions. Fair Isaac

white paper (2005)
[16] Turban E., Aronson J.E.: Decision Support Systems and Intelligent Systems. Prentice

Hall (1998)

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 141 – 152, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Process Mining by Measuring Process Block Similarity

Joonsoo Bae1, James Caverlee2, Ling Liu2, and Hua Yan2

1 Dept of Industrial & Sys. Eng., Chonbuk National Univ., South Korea
jsbae@chonbuk.ac.kr

2 College of Computing, Georgia Institute of Technology, US
{caverlee, lingliu, huayan}@cc.gatech.edu

Abstract. Mining, discovering, and integrating process-oriented services has
attracted growing attention in the recent years. Workflow precedence graph and
workflow block structures are two important factors for comparing and mining
processes based on distance similarity measure. Some existing work has done on
comparing workflow designs based on their precedence graphs. However, there
lacks of standard distance metrics for comparing workflows that contain
complex block structures such as parallel OR, parallel AND. In this paper we
present a quantitative approach to modeling and capturing the similarity and
dissimilarity between different workflow designs, focusing on similarity and
dissimilarity between the block structures of different workflow designs. We
derive the distance-based similarity measures by analyzing the workflow block
structure of the participating workflow processes in four consecutive phases. We
first convert each workflow dependency graph into a block tree by using our
block detection algorithm. Second, we transform the block tree into a binary tree
to provide a normalized reference structure for distance based similarity analysis.
Third, we construct a binary branch vector by encoding the binary tree. Finally,
we calculate the distance metric between two binary branch vectors.

1 Introduction

Business process management has continued to attract attentions of both academics
and industry. With the increasing interest and wide deployment of BPML, we see a
growing demand for efficient business process management architectures and
technologies that support enterprise transformation [7]. Effective enterprise
transformation refers to strategic business agility in terms of how efficiently an
enterprise can respond to its competitors and how timely an enterprise can anticipate
new opportunities that may arise in the future. In the increasingly globalized
economy, enterprises face complex challenges that require rapid and possibly
continual transformations. As a result, more and more enterprises are focused on the
strategic management of fundamental changes with respect to markets, products, and
services [10]. Such transformation typically has a direct impact on the business
processes of an enterprise. In addition, the wide spread use of process-centric systems
has made it possible to accumulate process definitions and to accelerate the analysis
and comprehension of process definitions.

Although business process management systems have been deployed in many
industrial engineering fields, research on analysis, mining and integration of business
processes are still in its infancy. One of the representative existing studies on process

142 J. Bae et al.

improvement is workflow mining, which investigates the traces and results of
workflow execution, and determines significant information in order to improve the
existing workflow processes [2, 3, 7]. However, most of the existing workflow
mining research does not provide a quantitative measure to compare and capture the
similarity of different workflow designs. The objective of this research is to develop a
distance based similarity measure to discover, mine and integration of existing
workflow definitions by analysis of workflow dependency graphs.

Workflow precedence graph and workflow block structures are two important
factors for comparing and mining business processes based on distance similarity
measures. Although some existing work has done in comparing workflow designs
based on their precedence graphs [4], there lacks of formal distance metrics for
comparing workflows that contain complex block structures such as parallel OR,
parallel AND. In this paper, we present a novel process difference analysis method
using distance measures between block structures of two business processes. We
present a quantitative approach to derive the distance-based similarity measures in
four consecutive phases. We first convert each workflow dependency graph into a
block tree by using our block detection algorithm. Then, we transform the block tree
into a binary tree to provide a normalized reference structure for distance based
similarity analysis. In the third phase, we construct a binary branch vector by
encoding the binary tree. Finally, we calculate the distance metric between two binary
branch vectors. The proposed difference analysis method achieves three distinct
goals. First, by analyzing the block structures of process models, we present a
quantitative process similarity metric to determine the relative distance between two
process designs in terms of their block structure similarity. This similarity analysis
facilitates not only the comparison of existing process models with each other, but
also provides the flexibility to adapt to changes in existing business workflow
processes. Second, the proposed method is quick and flexible, which reduces the cost
of both the analysis and design phases of web service processes. Third, the proposed
method enables the flexible deployment of process mining, discovery, and integration –
all key features that are necessary for effective transformation of an enterprise. We
argue that the block structure based distance measure can be effectively combined
with a workflow precedence based similarity analysis tool [4] in process mining,
process merging, and process clustering, and ultimately it can help to reduce or
minimize the costs involved in design, analysis, and evolution of workflow systems.

2 Process Definition Model

The business process reference model (process model for short in the rest of the
paper) consists of business process definitions and the specification of workflows
among the processes with respect to data flow, control flow, and operational views
[11]. We define a business process in terms of business activity patterns. An activity
pattern consists of objects, messages, message exchange constraints, preconditions
and postconditions [12], and is designed to specify the service actions and execution
dependencies of the business process. We consider two types of activity patterns –
elementary activity patterns and composite activity patterns [1, 5]. An elementary
activity pattern is an atomic unit. A composite activity pattern consists of a one or
more elementary activity patterns or other composite activity patterns.

 Process Mining by Measuring Process Block Similarity 143

We define a business workflow as a collection of business activities connected by
data flow and control flow, where each represents a business process. We use data
flow among processes to define the data dependencies among processes within a
given business workflow. We use control flow to capture the operational structure of
the business workflow service, including the process execution ordering, the
transactional semantics and dependencies of the workflow.

Formally, each workflow service is specified in terms of process definitions. We can
model each process definition using a directed graph, in which the nodes of the graph
are activities. The process dependency graph captures information about how activities
share information and how data flows from one activity to another. Due to the space
constraint, in this paper we focus our discussion only on the dependency graph.

Definition 1 (Dependency Graph, DG). A dependency graph DG is defined by a
binary tuple <DN, DE>, where

•
1 2

{ , , ..., }
n

DN nd nd nd= is a finite set of activity nodes.

•
1 2

{ , , ..., }
m

DE e e e= is a set of edges. Each edge is of the form
i j

nd nd→ .

Note that in the dependency graph formulation, self-edges are disallowed since edges
are intended to denote data flow dependencies between different activities (nodes).
Additionally, a dependency graph must be a connected graph. Unconnected nodes and
isolated groups of nodes are disallowed in the graph, as isolated nodes or groups of
nodes are considered a separate service process in our reference model.

As a real-life example of business process, there are many PIPs (Partner Interface
Processes) as defined by RosettaNet[9]. PIPs define business processes between
trading partners. PIPs fit into seven Clusters, or groups of core business processes,
that represent the backbone of the trading network. Each Cluster is broken down into
Segments and within each Segment are individual PIPs. RosettaNet standards provide
the infrastructure for integrating business processes with trading partners across the
globe, delivering essential value to industries and proven real-world business results.
Fig. 1 shows a standard process of procurement order by buyer, which is in Segment
3A(Quote and Order Entry) of Cluster 3(Order Management). This example process
has 13 activities and their dependencies.

Analyze
ordering
needs

Set quote specifications
and create a quote

request

Process the order
status response

Analyze
purchase order

confirmation

Create
purchase

order request

Define requested
products and send price
and availability request

Analyze price and
availability responses

Create order
status query

Analyze the
changes from seller

Analyze the purchase
order acknowledgement

Make the needed
changes to the
purchase order

Cancel the
purchase order

Order completed

Fig. 1 A real-life example of business process

144 J. Bae et al.

Given two workflow processes and their respective dependency graphs, there are
numerous ways these two graphs may differ. Typically, it makes more sense to
compare only those graphs that have sufficient similarity in terms of their dependency
graphs. Consider two extreme cases: one is when the two dependency graphs have the
same set of nodes and the other is when there is no common node between two
graphs. By assigning 1 for the first case and 0 for the latter case, we define a
comparability measure that indicates the ratio of common nodes in two graphs. One
way to measure the extent of comparability between two graphs is to use a user-
controlled threshold, called δ-Comparability, which is set to be between 0 and 1.
Because this value represents the ratio of common nodes over the union of all nodes
in two graphs, the larger the value is, the greater degree of comparability between the
two graphs. Note that δ value can not be 0 since δ = 0 means that there is no common

node between two graphs, i.e., 1 2
DN DN∩ ≠ ∅ .

Definition 2 (δ-Comparability of DG)
Let

1 1 1
(,)DG DN DE= and

2 2 2
(,)DG DN DE= be two dependency graphs, and δ be

a user-defined control threshold. We say that DG1 and DG2 are δ-comparable if the

condition 1 2

1 2

DN DN

DN DN
δ

∩
≥

∪
holds, where 0 1δ< ≤

If we apply the δ-
Comparability to the
example graphs shown
in Fig. 2 with δ=0.5, g0
and f2 are not
comparable because
the number of common
nodes is only one but
the number of total
nodes is 7, that is

1 2

1 2

1
0.5

7

DN DN

DN DN

∩
= <

∪
. On the other hand, g0 and g2 are δ-comparable because there

are 3 common nodes and the total number of nodes is 5, thus the two graphs satisfy

the δ-comparability condition 1 2

1 2

3
0.5

5

DN DN

DN DN

∩
= ≥

∪
.

3 Motivating Scenarios

Given the process reference model, we consider two motivating scenarios that benefit
from the difference analysis methodology introduced in this paper. Consider a
scenario where a company has maintained a warehouse of existing processes used in
various business locations. Process mining[2, 3]of the process warehouse can help the
enterprise to discover interesting associations or classifications among business
processes running at different locations or branches of the company.

A C B D A B C E A
B

D

A B C D

g0

A B C D

g0

g1
g2 g3

C

F G H I

f1

F G H I

f1

A G H I

f2

A G H I

f2

Fig. 2. Examples of δ-Comparability

 Process Mining by Measuring Process Block Similarity 145

1 2
3

4

11

8 10

7

6

5

9
1 2

3

4

11

8 10

7

6

5

9

1 2
3

4

11

8 10

7

5

9
1 2

3

4

11

8 10

7

5

9

1 2
3

4

11

8 10

7

6 9
1 2

3

4

11

8 10

7

6 9

1 2
3

4

11

8

7

6

5

1 2
3

4

11

8

7

6

5

1 2
3

4

11

8 10

7

6

5

9
1 2

3

4

11

8 10

7

6

5

9

δ

1 2
3

4

11

8 10

7

6

5

9
1 2

3

4

11

8 10

7

6

5

9
1 2

3

4

11

8 10

7

6

5

9

1 2
3

4

11

10

7

6

5

9
1 2

3

4

11

10

7

6

5

9

Fig. 3. Process mining example

In Fig. 3, we show a process warehouse that contains many types of processes (for
example, g1, g2, g3, g4, g5). A typical process mining scenario is the identification of
the processes most similar to a baseline process template in the process warehouse.
Given a query process and a comparability threshold δ-value, the process mining will
identify (g3) as the process that is most similar based on the comparability criterion. It
is obvious that the concept of process similarity (or distance) is critical to the
effectiveness of process mining.

4 Block Structure in Workflow

The first task in block structure based similarity analysis is to identify and extract
structural patterns between two business processes. We assume that each business
process and their process steps are described in terms of workflow and its activities in a
precedence dependency graph. Our similarity comparison algorithm takes two
workflow activity dependency graphs that satisfy δ-Comparability criteria as input and
produces a block structure-based distance measure. Let’s use two derived processes that
are variations of procurement order process in Fig. 1. These two processes have
10 activities respectively but have different activities with each other. The first
process (g11) has A6 but does not have A8, and the second process (g22) has A8 but

A1 A2

A3

A4

A11

A8 A10

A7

A5

A9

A1 A2

A3

A4

A11

A8 A10

A7

A5

A9

A1 A2

A3

A4

A11

A10

A7

A6

A5

A9

A1 A2

A3

A4

A11

A10

A7

A6

A5

A9

Fig. 4. Two extended examples of real-life business process in Fig. 1

146 J. Bae et al.

does not have A6, and vice versa. These two graphs satisfy δ-Comparability as

1 2

1 2

9
0.5

11

DN DN

DN DN

∩
= ≥

∪
 and δ = 0.5.

4.1 Block Types

If we use dependency graph in the process definition, the precedence relationships
and existence of activities can be represented well. However, if there are splits in
workflow (workflow denoting a parallel relationship), the dependency graph does not
include the meaning completely. Thus, we need another representation method to
measure parallel relationships. In this section the structure information that can be
found in the dependency graph is used to define the distance measure between
processes.

Fig. 4 provides an example of a parallel relationship in the process definition, in
which there are properties other than precedence relationship. One of other properties
is parallel relationship and this parallel relationship comprises the structure of a
process by using a nested relationship. In order to compare the structure properties, it
is necessary to define how a process is composed of basic structures.

In order to represent
the parallel relationship,
the concept of block is
introduced in this paper.
A block is a unit of
representation that can
minimally specify the
behavioral pattern of
process flow. The
behavioral patterns
found in process models
are classified into
iterative, serial and parallel ones, each of which is illustrated in Fig. 5. Our discussion
in this paper is confined to such networks that can be built by combining those
patterns. In this paper, the iterative block is not dealt with because it has less meaning
in similarity of dependency and structure than serial and parallel. A serial pattern is
shown in Fig. 5 (b). This pattern is simple in that it involves no iteration and has no
split or merge in its task flow. But the serial block is related with the dependency
measure which is discussed in the previous section. In this section, the parallel block
is investigated in more detail.

A parallel pattern is such a flow that a node splits into two or more branches, the
branches proceed in parallel, and merge into a node. Fig. 5 (c) is an illustration of this
kind of pattern. The pattern is further subdivided into four types: AND-, XOR-, and
SOR-parallel. Although all the parallel patterns are different in terms of their
semantics, they have the same graphical structure. This is because the graphical
objects of nodes and arcs deal only with the split-and-merge relations of tasks. The
semantics distinguishing the parallel patterns are usually specified on the split or
merge nodes.

(c) Parallel block

...

(b) Serial block

. . .

(a) Iterative block

.

Fig. 5. Block types

 Process Mining by Measuring Process Block Similarity 147

4.2 Block Detection Algorithm

Since a component task of a process can be a nested process, the structure relation
can be represented as a block structure. So in this paper, a block detection algorithm
is used in order
to generate blocks
in the process
and the generated
blocks are used in
the development
of distance mea-
sure. The block
detection algori-
thm[5] searches
serial block and
parallel block al-
ternately and mo-
difies the original
network to con-
struct a block tree
from a process
definition.

In reference
[5], the block de-
tection algorithm
finds a cycle in
the process net-
work but these cycles are not used in the distance measure because the cycle does not
affect the structure of a process. After serial blocks and parallel blocks are found
alternately, this algorithm finally ends with a single node that means the uppermost
block in the block tree. Fig. 6 provides an example of transforming a process network
into block structure by using the block detection algorithm. In the example, the cycle
block is removed at first, and then serial block, AND-parallel block, serial block,
XOR-parallel block and serial block are generated. Since these blocks have hierarchy
information, a tree can be made by combining the found blocks.

Definition 3 (Block Tree)
Let

1 1 1
(,)DG DN DE= be the input and T=(N, E, Root(T), label) be the output of

block detection algorithm respectively. The output is called block tree N is a finite set
of nodes, which include the DN1 and detected blocks. E is a binary relation on N
where each pair (u,v) E represents the parent-child relationship between two nodes
u, v N. Node u is the parent of node v and v is one of the child nodes of u. Parent is
nesting block and children are the nested components of the super block. There exists
only one root note, denoted as Root(T) N, which has no parent. The root node is
always serial block. Every other node of the tree has exactly one parent and it can be

(a) Iterative block

A1 A2

A4

A3

A7

A6

A5

A9

A11

A8 A10

Start node

End node

A12

(b) Branch-water and parallel block

A1 A2

A4

A3

A7

A6

A5

A9

A11

A8 A10

A12

1.0 1.0

0.5

0.5 0.5 0.5

0.17

0.17

0.17

0.5

1.0 1.0

(c) Serial block

A1 A2

A4

A3 A9

A11

A8 A10

A12

1.0 1.0

0.5

0.5 0.5 0.5

0.5

1.0 1.0
B1

0.5

(d) Parallel block

A1 A2 A11 A12

1.0 1.0

0.5

1.0 1.0B2

0.5

B3

(e)Serial block

A1 A2 A11 A12

1.0 1.0 1.0 1.0

B4

1.0

(f) Final

B5

Fig. 6. Example of block generation

148 J. Bae et al.

reached through a path of edges from the root. The nodes which have a common
parent u (i.e., all the children of u) are siblings. |T| is the number of nodes in tree T, or
the size of T.

The block tree T11 in Fig. 7 has a serial block B5 as root node, which has 5 components,
A1, A2, B4, A11, and A12. These 5 components comprise first depth in the tree. Again a
parallel block B4 has two components, B2 and B3, which are serial blocks and second
depth in the tree. At third depth, a serial block B2 has three components, A3, B1, A9 and
a serial block B3 has three components, A4, A8, A10. Finally, three components A5, A6,
A7 are at the fourth depth as children of a parallel block B1.

B5

A3

A5 A6 A7

A9 A4 A10

A1 A2 A11B4 A12

Serial Block

B2 B3

AND–Parallel Block

Serial Block Serial Block

B1

OR-Parallel Block

B5

A3

A5 A6 A7

A9 A4 A10

A1 A2 A11B4 A12

Serial Block

B2 B3

AND–Parallel Block

Serial Block Serial Block

B1

OR-Parallel Block

B5

A3

A5 A7

A9 A4 A10

A1 A2 A11B4 A12

Serial Block

B2 B3

AND–Parallel Block

Serial Block Serial Block

B1

OR-Parallel Block

A8

B5

A3

A5 A7

A9 A4 A10

A1 A2 A11B4 A12

Serial Block

B2 B3

AND–Parallel Block

Serial Block Serial Block

B1

OR-Parallel Block

A8

Fig. 7. Block Trees of Fig. 4

5 Structural Similarity in Tree Format

We have seen that block tree has two block types alternating serial and parallel as the
depth increases in the previous section. So we can compare two block trees with the
same block type (serial or parallel) in the same depth if we start from root node. We can
define structural comparison by restricting the comparable depth in both block trees.

Definition 4 (Structural Comparison by Depth d)
If we have block trees T1=(N1, E1, Root(T1), label1), T2=(N2, E2, Root(T2), label2),
the structural comparison by depth d is the block tree comparison from root node to
depth d.

The measure of similarity between two trees T1 and T2 has been well studied in
combinatorial pattern matching. Most studies use edit distance to measure the
dissimilarity between trees (notice that similarity computation is the dual problem of
distance computation). [14] Our proposed mapping of tree structures into a numeric
vector space is based on the binary tree representation of rooted ordered labeled
trees[13]:

 Process Mining by Measuring Process Block Similarity 149

Definition 5 (Binary Tree)
A binary tree consists of a finite set of nodes. It is:

1. an empty set. Or
2. a structure constructed by a root node, the left subtree and the right subtree of the

root. Both subtrees are binary trees, too.

There is a natural correspondence between forests and binary trees. The standard
algorithm to transform a forest (or a tree) to its corresponding binary tree is through
the left-child, right-sibling representation of the forest (tree):

(i) Link all the siblings in the tree with edges.
(ii) Delete all the edges between each node and its children in the tree except those

edges which connect it with its first child.

B5

A3

A5

A7

A9

A4 A8

A1

A2

A11

B4

A12

Serial

B2

B3

AND

Serial

Serial

B1 OR

ε

ε

ε

ε

ε

ε

A10
ε

B5

A3

A5

A7

A9

A4 A8

A1

A2

A11

B4

A12

Serial

B2

B3

AND

Serial

Serial

B1 OR

ε

ε

ε

ε

ε

ε

A10
ε

A6

A7

ε

ε

B5

A3

A4 A10

A1

A2

A11

B4

A12

Serial

B2

B3

AND

Serial

Serial

B1 OR

ε

ε

ε

ε

ε

A5 A9

A6

A7

ε

ε

B5

A3

A4 A10

A1

A2

A11

B4

A12

Serial

B2

B3

AND

Serial

Serial

B1 OR

ε

ε

ε

ε

ε

A5 A9

Fig. 8. Normalized Binary Tree Representation

Note that the transformation does not change the labels of vertices in the tree. We
can transform T11 and T22 of Fig. 7 into BIN(T11) and BIN(T22) shown in Fig 8,
respectively. The binary tree representation is denoted as BIN(T) = (N, El, Er, Root(T),
label) in our paper.

A binary tree corresponding to a forest retains all the structure information of the
forest. Particularly, in the binary tree representation, the original parent-child
relationships between nodes, except the ones between each inner nodes and its first
child, are removed. The removed parent-child relationships are replaced by the link
edges between the original siblings. This property makes the transformed binary tree
representation appropriate for highlighting the effect of the edit-based operations on
original trees.

150 J. Bae et al.

6 A Structural Similarity Measure

The key element of our algorithm is to transform rooted, ordered, labeled trees to a
numeric multi-dimensional vector space equipped with the norm L1 distance. The
mapping of a tree T to its numeric vector ensures that the features of the vector
representation retain the structural information of the original tree. Furthermore, the
tree-edit distance can be lower bounded by the L1 distance of the corresponding
vectors. In this section, we present the transformation methods to get structural
similarity measure.

6.1 Vector Representation of Trees

To encode the structural information we normalize the transformed binary tree
representation BIN(T) of T. In BIN(T), for any node u, if u has no right (or left) child,
we append a ε node (i.e., nodes labeled as ε do not exist in T) as u’s right (or left)
child. Thus we make T a full binary tree in which all the original nodes have two
children and all the leaves are labeled as ε (as in Fig. 8). The normalized binary tree
representation is defined as () ({ }, , , (()),)l rBIN T N E E Root BIN T labelε= , where ε

denotes the appended nodes as well as their labels. To simplify the notation, in this
paper u N represents the node as well as its label where no confusion arises. In order
to quantify change detection in a binary tree, we define the binary branch on
normalized binary trees:

Definition 6 (Binary Branch)
Binary branch (or branch for short) is the branch structure of one level in the binary
tree. For a tree T, u N there is a binary branch BiB(u) in BIN(T) such that

() (, , , ())
l ru u u uBiB u N E E Root T= , where 1 2{ , , }uN u u u= (; { }, 1,2iu N u N iε∈ ∈ =),

1{ , }
lu lE u u= , 2{ , }

ru rE u u= and ()uRoot T u= in the normalized BIN(T).

Assume that the universe of binary branches BiB() of all trees in the dataset composes
alphabet and the symbols in the alphabet are sorted lexicographically on the string
uu1u2.

Definition 7 (Binary Branch Vector)
The binary branch vector BBV(T) of a tree T is a vector 1 2 | |(, ,...,)b b bΓ , with each

element bi representing the number of occurrences of the ith binary branch in the tree.
| | is the size of the binary branch space of the dataset.
We can first build an inverted file for all binary branches, as shown in Fig. 9 (a). An
inverted file has two main parts: a vocabulary which stores all distinct values being
indexed, and an inverted list for each distinct value which stores the identifiers of the
records containing the value. The vocabulary here consists of all existing binary
branches in the datasets. The inverted list of each component records the number of
occurrences of it in the corresponding trees. The resulting vectors of our
transformation for the block trees in Fig. 7 and the normalized binary trees in Fig. 8
are shown in Fig. 9 (b). Based on the vector representation, we define a new distance
of the tree structure as the L1 distance between the vector images of two trees:

 Process Mining by Measuring Process Block Similarity 151

ε
ε ε ε ε ε ε εε

(a) Inverted File

(b) Binary Branch Vectors

Fig. 9. Binary Branch Vector Representation

Definition 8 (Structural Distance)
Let 1 1 2 | |() (, ,...,)BBV T b b bΓ= , 2 1 2 | |() (' , ' ,..., ')BBV T b b b Γ= be the binary branch vectors

of trees T1 and T2 respectively. The structural distance of T1 and T2 is
| |

1 2 1
(,) | ' |i ii

BDist T T b b
Γ

=
= −

This structural distance has been proved that the distance properties met in reference
[13]. And we can get the structural distance at depth 4 of Fig. 9 is 6.

In order to calculate running time complexity, we consider each step of the
algorithm. Since the block detection algorithm depends on the number of node in
dependency graph[5], we consider only the tree comparison steps. Assume that the
size of the dataset, i.e., the total number of tree data objects, is |D|. For record Ti, there
are |Ti| nodes in it. To build the vector representation, the whole inverted file has to be
scanned once. So the time and space complexities of the whole vector construction

algorithm are both
| |

1
(| |)

D

ii
O T

=
, which means all information of input processes.

7 Conclusion and Future Work

We have presented a structural difference analysis methodology between process
definitions. Although there can be many difference attributes in process definitions,
structural characteristics as well as dependency information are most important
factors to discriminate processes. This paper focuses on the structural characteristic as
a distance measure. We first convert each workflow dependency graph into block tree
by using block detection algorithm. Second, the block tree is transformed into binary
tree to make a binary branch. Third, binary branch vector is generated by encoding
binary branch. Finally, we calculate the distance metric between the binary branch
vectors. The proposed difference analysis method achieves three distinct goals. First,
by analyzing the attributes of process models, we can present a quantitative process
similarity metric to determine the relative distance between process models. This
facilitates not only the comparison of existing process models with each other, but

152 J. Bae et al.

also provides the flexibility to adapt to changes in processes. Second, the proposed
method is fast and flexible, which reduces the cost of both the analysis and design
phases of complex web service processes. Third, the proposed method enables the
flexible deployment of process mining, discovery, and integration. The next research
issue is to integrate structural distance into dependency distance in process definition.
And we are interested in developing a prototype system that provides efficient
implementation of various similarity analysis methods, including the dependency
distance and structure distance presented in this paper.

Acknowledgments. The first author was supported by the Korea Research
Foundation Grant (KRF-2004-003-D00477).

References

1. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros,
“Workflow Patterns,” Distributed and Parallel Databases, 14(3), pages 5-51, July 2003.

2. W.M.P. van der Aalst, B.F.van Dongen, J. Herbst, L. Maruster, G. Schimm and A.J.M.M.
Weijters, “Workflow Mining: A Survey of Issues and Approaches,” Data and Knowledge
Engineering. 47(2), 237-267, 2003

3. W.M.P. van der Aalst, A.J.M.M. Weijters and L. Maruster, ”Workflow Mining:
Discovering Process Models from Event Logs,” IEEE Transactions on Knowledge and
Data Engineering. 16(9), pp. 1128-1142, 2004

4. J. Bae, J. Caverlee, L. Liu, B. Rouse, “Process Mining, Discovery, and Integration using
Distance Measures,” Technical Report GT-CSS-2006-006, Apr. 2006.

5. J. Bae, H. Bae, S. Kang, Y. Kim, “Automatic control of workflow process using ECA rules,”
IEEE Trans. on Knowledge and Data Engineering, vol.16, no.8, pp. 1010-1023, 2004.

6. H. Bunke, K. Shearer, “A Graph Distance Metric based on the Maximal Common
Subgraph,” Pattern Recognition Letters, vol.19, issues 3-4, pp. 255-259, 1998.

7. J.E. Cook and A.L. Wolf, “Software Process Validation: Quantitatively Measuring the
Correspondence of a Process to a Model,” ACM Transactions on Software Engineering
and Methodology, 8(2), pp. 147-176, 1999.

8. K.M. Hammouda, M.S. Kamel, “Efficient Phrase-Based Document Indexing for Web
Document Clustering,” IEEE Transactions on Knowledge and Data Engineering, vol.16,
no.10, pp. 1279-1296, 2004.

9. RosettaNet, http://www.rosettanet.org, RosettaNet Standard (RosettaNet Partner Interface
Processes)

10. W. B. Rouse, “A Theory of Enterprise Transformation,” Systems Engineering, vol. 8, no.
4, 2005.

11. R. Rush, W.A. Wallace, “Elicitation of knowledge from multiple experts using network
inference,” IEEE Transactions on Knowledge and Data Engineering, vol. 9, no. 5, pp. 688-
698, 1997.

12. WfMC, Workflow Management Coalition Workflow Standard Process Definition Interface --
XML Process Definition Language, Document Number WFMC-TC-1025 Version 1.13,
September 7, 2005

13. Yang, R., Kalnis, P, Tung, A., ”Similarity Evaluation on Tree-structured Data,” ACM
SIMOD 2005, June 14-16, 2005, pp. 754-765

14. K. Zhang, D. Shasha, “Simple Fast Algorithms for the Editing Distance between Trees and
Related Problems,” SIAM Journal of Computing, vol.18, no.6, pp. 1245-1262, 1989.

Process Representation and Reasoning Using a
Logic Formalism with Object-Oriented Features

Andrea Gualtieri1,2, Tina Dell’Armi1 and Nicola Leone3

1 Exeura srl, University of Calabria, Rende (CS) 87036, Italy
{gualtieri, dellarmi}@exeura.it

www.exeura.it
2 DEIS, University of Calabria, Rende (CS) 87036, Italy

3 Department of Mathematics, University of Calabria, Rende (CS) 87036, Italy
leone@mat.unical.it

Abstract. A novel approach to model processes and workflows is pre-
sented. It is based on the OntoDLP language, an extension of Disjunctive
Logic Programming with object-oriented features. Compared to tradi-
tional models, the approach enables knowledge inference on dynamic
structures of the process, thanks to the reasoning capabilities of On-
toDLP. Moreover, the approach can be also used to redefine and classify
existing workflow schemes. Indeed, their execution traces, produced by
workflow engines, can be easily imported through the mapping facilities
of the underlying metamodel, and eventually organized into taxonomic
structures for modeling different execution-patterns.

1 Introduction

Process management phases require both definition and analysis of process
schemas. A large number of formalisms and approaches have been already pro-
posed to support the design of processes [10] [11]. A cornerstone for charac-
terizing a formalism is the specific metamodel adopted, which is an high level
and platform-independent definition of the workflow items which are admitted.
Many workflow systems refer an explicit metamodel, others have an implicit one,
imposed by the offered features.

Essential requirements in a metamodel are an unambiguous semantics and
the capability to express the main elements of a workflow, e.g., according with
[12]: decomposition of process in activities; definition of control-flow rules among
activities; assignment of activities to execution entities; annotation of input and
output elements to each activity.

The implementation of a metamodel item is demanded to specific languages,
allowing to define process schemas, each of them establishing a pattern of exe-
cution. Every time that a workflow execution runs, a workflow instance is gen-
erated, and a workflow log is recorded. By analyzing workflow logs it is possible
to modify his own process schema or to generate a new one [13].

The approach proposed in this paper is based on a metamodel allowing for
an intuitive graph-oriented representation of processes, based on the explicit
definition of node and transition. The metamodel includes a set of constructs

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 153–163, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

154 A. Gualtieri, T. Dell’Armi, and N. Leone

allowing to abstract workflow solutions adopted by a large number of tools in the
open source community. We implement this metamodel by using the OntoDLP
language, an extension of Disjunctive Logic Programming (DLP) with object-
oriented features. We are able to define classes of processes and activities that can
be both composed, to make process schemas, and classified to obtain hierarchical
structures. Importantly, thanks to the reasoning capabilities provided by the
DLP, we can define logic rules to analyze and automatically classify the traces of
processes execution and to infer new knowledge about process-schema structures.

2 Process Modeling Overview

A standard formalism to represent processes and workflows does not exist in lit-
erature. Several works have proposed a large variety of methods and approaches
to represent dynamic knowledge. Traditional ones are connected to the standard
language XPDL provided by the Workflow Management Coalition (WfMC)[14].
This family of languages is based on a graph-oriented model, in which transitions
are formalized by using arcs between activities. Another formalism, based on the
use of Petri Nets models, provides a consistent framework to derive interesting
results about structural properties of workflow [17].

An alternative approach derives from the view proposed by the BPML stan-
dard language provided by the Business Process Management Initiative (BPMI)
[15]. This approach is based on a block-oriented model, in which transition are
not explicitly declared: besides specific and customized activity blocks, BPML
provides, in fact, specific blocks to define dynamic aspects of the process execu-
tion. Every process is defined on a sequence block that contains every activity
of the process grouped in a set: to model control flows alternative to the se-
quence, particular dynamic blocks are placed in specific points of the set. Both
XPDL and BPML also support recursive decomposition, transaction and excep-
tion handling mechanism [16].

The BPML approach is adopted in the family of formalisms connected to the
Business Process Execution Language (BPEL). In particular, BPEL extension
like BPEL4WS are oriented to the web services orchestration: in this way every
activity of the process can be demanded to a specific web service able to execute
it. Another evolution of BPEL is BPELJ, a formalism that enables Java and
BPEL to cooperate by allowing sections of Java code, called Java snippets, to
be included in BPEL process definitions [18]. Snippets are expressions or small
blocks of Java code that can be used for things such as: loop conditions, branch-
ing conditions, variable initialization, web service message preparation, logic of
business functions.

Also JBoss community provides a formalism to integrate process definition
elements and java code. The Java Process Definition Language allows a process
definition as a combination of a declaratively specified process graph and, op-
tionally, a set of related java classes [19]. The java classes can then be made
available to the jBPM runtime environment, that is the workflow engine inte-
grated or linked by all the open source tools based on JBoss platform. Just for

Process Representation and Reasoning Using a Logic Formalism 155

this reason, jBPM is one of the most adopted solution to implement workflow
execution. Moreover, JPDL structure allows grouping of nodes based on the
super-state construct. From this point of view, JPDL is a promising solution to
capture logs of workflow execution provided by a wide number of open source
tools and organize them in hierarchies based on properties of super-states.

3 A Metamodel for Logic Process Representation

The metamodel adopted in our approach is graph-oriented, so it provides explicit
constructs to express node and transition elements. It is derived from JPDL
modeling approach just to allow an easy mapping to process traces generated by
jBPM workflow engine. As shown in 1, we consider a process as a composition
of nodes, events, actions and task.

A task should be associated both to a process or to specific portion of it. As
in JPDL, we adopt a “swimlane” item to express a group of tasks that refer an
unique assignment. Assignment shall be then associated to many kind of actors,
based on particular workflow execution context.

We connect “event” and “action” items to ”node” and “transition” respec-
tively, just to express that a transaction executed anywhere should be acknowl-
edged in our context and associated to a specific state of our process schema.
About nodes, we distinguish the initial and the ending point of the process, by
using “start state” and “end state” respectively. All other nodes are classified
as “common nodes”. As shown in 2, we assume many kind of common nodes.
For example, “fork”, “join” and “wait node” are flow control nodes. A “decision
node” is a particular node which is associated to a ”condition” and to an “han-
dler” that is an entity able to resolve the issue. A task node, should instead be

Fig. 1. A portion of process metamodel

156 A. Gualtieri, T. Dell’Armi, and N. Leone

Fig. 2. A focus on node constructs

associated to one or more task assigned to an actor. Every common node has
also one or more variables that can be used to map input and output elements
of the activity.

A particular kind of node is a “subprocess node” that is an activity that refers
an external process to the current one. Significantly different is a “group node”
that contains a set of activities without any constraint about their composition.
By defining specific relations among a “group node” and many common nodes,
we are able to express that a particular node is a collection of nodes. We can also
use these collections to facilitate the categorization of processes. A group node,
in fact, should express a common semantics that results an abstraction of the
semantics connected to the single activities. So, for example, a “development”
activity should be composed by an “implementation” and a “test” step.

4 Process Representation and Reasoning

Our approach is based on the formal representation of processes, according with
the metamodel illustrated in the previous section, in the logic-based language
OntoDLP. On top of such a representation, we can then specify a number of
(OntoDLP) inference rules, which allow us to discover new process properties
and capture also dynamic knowledge which is hidden in process schemas.

In this section, we first recall the OntoDLP language for knowledge represen-
tation and reasoning. Then, we show some sample reasoning tasks.

Process Representation and Reasoning Using a Logic Formalism 157

4.1 OntoDLP: Language Overview

OntoDLP is an extension of Disjunctive Logic Programming (DLP) by object-
oriented features. It combines the expressive and deductive power of DLP1

(capture the complexity class Σ2
P) with the facilities of the object-oriented

paradigm for a natural and effective real-world knowledge representation and rea-
soning. In particular, the language includes, besides the concept of relations, the
object-oriented notions of classes, objects (class instances), object-identity,
complex-objects, (multiple) inheritance, and the concept of modular pro-
gramming by mean of reasoning modules.

In the following, an overview of the language is given by informally describ-
ing its most significant features and by giving language use examples for the
representation of some of the main concepts related to the workflow domain.

Classes can be declared in OntoDLP by using the keyword class followed by
the class name and by a comma separated list of attributes. Each attribute is
a couple (attribute-name : attribute-type). The attribute-type is either a
user-defined class, or a built-in class (in order to deal with concrete data types,
OntoDLP makes available two built-in classes string and integer). For instance,
a generic process can be represented by declaring the class process with an
attribute of type string as follows:

class process(name:string).

Objects, that is class instances, are declared by asserting new facts. An In-
stance for the class process, can be declared as follows:

#1:process(name:"Web sale order").

The string “Web sale order” values the attribute name; while #1 is the object-
identifier (oid) of this instance (each instance is equipped by a unique oid).

Classes can be organized in a taxonomy by using the isa relation. For exam-
ple, a common node is a node characterized by a possible asynchronously acti-
vation. This class specialization can be represented in OntoDLP, declaring class
common node as an extension of class node with a new attribute asynchronous:

class common_node isa {node}
(asynchronous:string).

Instances of the class common node are declared as usual, by asserting new
facts:
#2:common_node(name:"Password required",

asynchronous:"true").
#3:common_node(name:"Registration required",

asynchronously:"false").

Like in common object-oriented languages with inheritance, each instance of a
sub-class becomes, automatically, an instance of all super classes (isa relation in-
duces an inclusion relation between classes). In the example, “Passwor required”

1 In the field of logic-based Artificial Intelligence, DLP is widely recognized as a
valuable tool for knowledge representation, commonsense reasoning and incomplete-
knowledge modeling [1,2,3,4,5,6,7,8].

158 A. Gualtieri, T. Dell’Armi, and N. Leone

and “Registration required” are instances of both node and common node. More-
over, sub-classes inherit attributes from all super-classes. In the example, the
common node class inherits attribute name of class node and declares a new
local attribute named asynchronous.

The language provides a built-in most general class named Object that is the
class of all individuals and is a superclass of all OntoDLP classes.

Also multiple inheritance is supported. Attribute inheritance in OntoDLP
follows the strategy adopted in the COMPLEX language, for a formal description
refer to [9].

The possibility to specify user-defined classes as attribute types allows for
complex objects or nested classes, i.e. objects made of other objects. For example,
the class transition, besides the name of type string, is characterized by two
attributes of the user-defined type node.

class transition(name:string,from:node,to:node).

The following declaration of class create timer includes, besides timer name
and duedate, an attribute of type action, namely, action to execute.

class action(name:string).
class create_timer isa {action}

(timer_name:string,duedate:integer,action_to_execute:action).

Note that this declaration is “recursive” (both action and create timer are of
type action). An instance of class create timer can be specified as follows:

#4:create_timer(name:"Sell timer creation", timer_name:"Sell timer",
duedate:30,action_to_execute:#5).

where the oid #5 identifies a selling action:

#5:action(name:"Sell").

Instance arguments can be valued both specifying object identifiers and by
using a nested class predicate (complex term) which works like a function. For
example, the action to execute is specified by a complex term in the following
declaration:

#6:create_timer(name:"Auction timer creation",timer_name:"Auction timer",
duedate:60,action_to_execute:action(name:"Auction").

Relations represent relationships among objects. Base relations are declared
like classes and tuples are specified (as usual) asserting a set of facts (but tuples
are not equipped with an oid). For instance, the base relation contains, and a
tuple asserting that the process identified by oid #1 contains the common node
identified by oid #2, can be declared as follows:

relation contains(process:process,node:node).
contains(#1,#2).

Classes and base relations are, from a data-base point of view, the extensional
part of the OntoDLP language. Conversely, derived relation are the intensional

Process Representation and Reasoning Using a Logic Formalism 159

(deductive) part of the language and are specified by using reasoning modules.
Reasoning modules, like DLP programs, are composed of logic rules and integrity
constraints. OntoDLP reasoning modules allow one to exploit the full power of
DLP. As an example, consider the following module, encoding the path search
problem between two nodes in a process schema.

relation path(from:node, to:node).

module(path){
path(from:X,to:Y) :- T:transition(from:X,to:Y).

path(from:X,to:Y) :- T:transition(from:X,to,Z), path(from:Z,to:Y).}

4.2 Reasoning on Process Schema

A process schema is a definition of a path of execution of activities that can
be enacted many times. Every execution of a schema is a process instance in
which variables have their value assignment. Before the instances generation,
in the process schema are so defined only classes of activities that can admit
different enactments in relation to different values assigned to their variables. We
represent these classes of activities as specializations of the nodes introduced in
the metamodel. In this way, a particular activity belonging to a specific process,

Fig. 3. An example of process schema

is modeled as a specialization of one of the classes specifying an “activity node”
element of the metamodel. So, for example, “requirement analisys”, “research”,
“implementation” and “test” activities are subclasses of “task node” and may
be involved in a “project” element, modeled as a “process” subclass:

160 A. Gualtieri, T. Dell’Armi, and N. Leone

class project isa {process}.

class research isa {task_node}.

class requirement_analisys isa {task_node}.

class implementation isa {task_node}.

class test isa {task_node}.

relation has_research_task(proj:project, res:research).

relation has_requirement_analysis_task(proj:project,
req_anal:requirement_analysis).

relation has_implementation_task(proj:project,
impl:implementation).

relation has_test_task(proj:project, test:test).

We can then define a pattern of execution for a “project” type process, by
declaring a set of subclasses of the “transition” element associating pairs of
activities:

class start_fork_transition isa {transition}
(from:start_state, to:fork).

class research_join_transition isa {transition}
(from:research, to:join).

class requirement_analisys_join_transition isa {transition}
(from:requirement_analisys, to:join).

class decision_test_transition isa {transition}
(from:decision_node, to:test).

class test_end_state_transition isa {transition}
(from:test, to:end_state).

Moreover, similarly to the nodes, also these specific transitions must be asso-
ciated to the specific “project” element.

In our approach, every instance of a process will generate several logical facts.
So, for example, an instance of the above schema for a KMS process is here
formalized as follows:

#7:process(name:"KMS").

#8:research(name:"KMS research", asynchronous:"true").

#9:requirement_analisys(name:"KMS requirement analisys",
asynchronous:"true").

Process Representation and Reasoning Using a Logic Formalism 161

#10:test(name:"KMS test", asynchronous:"true").

#11:join(name:"join node", asynchronous:"true").

#12:research_join_transition
(name:"KMS research-join transition",from:#8, to:#11)

#13:requirement_analisys_join_transition
(name:"KMS requirement analisys-join transition",from:#9, to:#11)

By performing reasoning on these facts we are able to infer new knowledge
on static and dynamic aspect of processes. For example, we can define a rule
expressing that every process that involves a “requirement analysis” and an
“implementation” activity is “project” type process.
P:project(N):- contains(process:P, node:N1),

contains(process:P,node:N2), N1:requirement_analisys(),
N2:implementation(), P:process(name:N).

This way, the KMS process above defined, will be classified also as instance of
“project” class. Adopting recursively this approach, we are able to recognize a
“research and development project” as a project that involves also a “research”
activity.
P:research_development_project(N):- contains(project:P, node:N1),

N1:research(),P:project(name:N).

where class research development project is defined as
class research_development_project isa {project}.

This way we are able to define a hierarchical structure of process schemas.
When we start to design a process, we can use this hierarchical structure to find
an appropriate schema for modeling a specific context. If we modify this schema,
by adding or removing activities, we will be always able to automatically classify
new instances, by using specific reasoning rules.

For example, if an ontology or a quality certification system provides a docu-
ment classification we are able to classify a generic activity that receives as input
a “notification” and produces as output a “research deliverable” as a research
activity, using the following rule:
C:research(name:N, asynchronous:"true"):-

C:node(name:N).
has_input(c_node:C, v:variable(name:"notification")),
has_output(c_node:C, v:variable(name:"research deliverable")).

where relations has input and has output are defined as follows:
relation has_input(c_node:common_node, v:variable).

relation has_output(c_node:common_node, v:variable).

Moreover, also if an activity is not modeled as atomic node, we can discover
it in a path of activities that receives a specified input and produces a specified
output. For example, we can define a project as a “research and development
project” if it contains a research activity and a “development”, i.e. a path from
a node that receives a “requirement analysis document” to a node that produces
a “test report”.

162 A. Gualtieri, T. Dell’Armi, and N. Leone

P:research_development_project(N):- P:process(name:N),
contains(process:P, node:N1),
contains(process:P, node:N2),
contains(process:P, node:N3),
N1:research(),
has_input(c_node:N2, v:variable(name:"requirement analysis document")),
has_output(c_node:N3, v:variable(name:"test report")),
path(from:N2, to:N3).

where, path relation is defined in section 4.1.
This way, we are able to capture also dynamic knowledge that is hidden in

process schemas.

5 Implementation and Future Works

The approach introduced in this paper has been implemented in OntoDLV sys-
tem [21], that is an ontology management platform based on OntoDLP lan-
guage and allowing to create, modify, navigate and query ontologies using a
user-friendly visual environment. The metamodel adopted and presented in this
work has been defined using the graphical interface and validated by the con-
sistency check offered by the system. The addition of reasoning modules in On-
toDLV allows the extraction of new knowledge about process schemas. In fact
OntoDLV guarantees inference capabilities thanks to the integration of DLV
system, widely recognised as the state of the art in the field of non monotonic
reasoning (and disjunctive logic programming). For complexity analysis issues
in OntoDLV refer to DLV results, shown in [22].

The long-term goal of this approach is to provide a support in the whole
process management life-cycle. Actually, the metamodel has to be integrated
in a framework for specifying enterprise models [20]. This way, it is possible to
obtain an ontology of organizational processes that should support an archi-
tecture of heterogeneous open source tools for enterprise activities, like project
planning and monitoring, timesheet compiling and analyzing, document man-
agement. Just to be easily mapped on JBoss process framework, widely adopted
in open source community, the metamodel is inspired to JPDL formalism. With
respect to JPDL and other xml-based languages, the proposed approach is able
to use inference rules of DLP. This is particularly useful to link the triggers gen-
erated by generic JBoss-based tools to particular process events. Moreover, logic
rules make possible to discover semantic dependencies inside process elements:
actually, as it is illustrated in this paper, hierarchical structures are set just on
the belonging of activities to process schemas; our purpose is to reason and to
extract hierarchies also on the behaviour of processes.

The inference rules should be semi-automatically suggested by integrating
process mining techniques that examine process instances. Process structures
obtained should be useful in the process design phase: using OntoDLV querying
we are able to find classes of process either composed by particular activities
or associated to specific parameters or actors. A correlated future work regards
the definition of techniques to semi-automatically compose a particular process

Process Representation and Reasoning Using a Logic Formalism 163

schema as a function of the provided input, the required output and the existing
classes of activities.

References

1. Baral C. and Gelfond M.: Logic Programming and Knowledge Representation, JLP
vol 19/20, 73–148 (1994).

2. Lobo J., Minker J. and Rajasekar A.: Foundations of Disjunctive Logic Program-
ming, The MIT Press, Cambridge, Massachusetts (1992).

3. Disjunctive Logic Programming and Disjunctive Databases, 13th IFIP World Com-
puter Congress, Hamburg, Germany (1994).

4. Eiter T., Faber W., Gottlob G., Koch C., Leone N., Mateis C., Pfeifer G. and
Scarcello F.: The DLV System, Workshop on Logic-Based Artificial Intelligence,
Washington, DC (1999).

5. Gelfond M. and Lifschitz V.: Classical Negation in Logic Programs and Disjunctive
Databases, NGC vol 9, 365–385 (1991).

6. Lifschitz V.: Foundations of Logic Programming, Principles of Knowledge Repre-
sentation, 69–127 (1996).

7. Minker J.:Overview of Disjunctive Logic Programming, AMAI vol 12 1–24 (1994).
8. Baral C.: Knowledge Representation, Reasoning and Declarative Problem Solving,

Cambridge University Press (2002).
9. Greco S., Leone N. and Rullo P.: COMPLEX: An Object-Oriented Logic Program-

ming System, IEEETKDE vol 4 (1992).
10. Casati F., Ceri S., Pernici B., and Pozzi G.: Conceptual Modeling of Workflows.

In Proc. 14th Object-Oriented and Entity-Relationship Modelling , Gold Coast,
Australia, December (1995).

11. Kappel G., Lang P., Rausch-Schott S., and RetschitzeggerW.: Workflow Manage-
ment Based on Objects, Rules, and Roles. Bulletin of the Technical Committee on
Data Engineering, IEEE Computer Society, 18(1), pages 11–18 (1995).

12. Kradolfer M.: A Workflow Metamodel Supporting Dynamic, Reuse-Based Model
Evolution, University of Zrich, Ph. D. Thesis

13. Greco G., Guzzo A., Manco G., Sacc D.: Mining and Reasoning on Workflows.
IEEE Trans. Knowl. Data Eng. 17(4): 519-534 (2005)

14. Workflow Management Coalition: Terminology and Glossary, Issue 3.0. Document
Number WfMC TC-1011 (1999).

15. Arkin A.: Business Process Modeling Language, BPMI.org (2002)
16. Shapiro R.: A comparison of XPDL, BPML and BPEL4WS, Cape Vision (2002).
17. van der Aalst W.M.P., The Application of Petri Nets to Workflow Management.

The Journal of Circuits, Systems and Computers, 8(1):21-66 (1998).
18. IBM: Business process execution language web services, version 1.0 (2002)
19. Jboss: jBPM Process Definition Language, version 3.0 (2005)
20. Gualtieri A., Ruffolo M.: An Ontology-Based Framework for Representing Orga-

nizational Knowledge, Proceeding of I-Know ’05 - 5th International Conference on
Knowledge Management, Graz Austria (2005)

21. OntoDLV system, http://www.exeura.it/ontodlv
22. Ricca F., Leone N.: Disjunctive Logic Programming with Types and Objects: The

DLV+ System. Journal of Applied Logics Elsevier ISSN: 1570-8683 (to appear);
KBS Research Reports INFSYS RR-1843-05-10 Institut fr Informationssysteme
Technische Universitt Wien Favoritenstrasse 11 A-1040 Vienna Austria (2006)

Workshop on Dynamic Process
Management (DPM 2006)

Workshop on Dynamic Process Management
(DPM 2006)

Preface

The agility of an enterprise increasingly depends on its ability to dynamically set
up new business processes or to modify existing ones, and to quickly adapt its
information systems to these process changes. Companies are therefore develop-
ing a growing interest in concepts, technologies and systems that help them to
flexibly align their businesses and engineering processes to meet changing needs
and to optimize their interactions with customers and business partners.

In this context dynamic process support has become an extensive research topic
in areas like business process management, Web service technology and engineer-
ing workflows with several specialized aspects. Besides business requirements
there are many technical challenges like the correct and efficient support of dy-
namic workflows (e.g., evolution of workflow specifications and dynamic change
propagation, data-driven workflows), the support of autonomic or self-organizing
processes, the dynamic selection of best service providers, the dynamic evolution
of local processes as well as their involvement in cross-organizational collabora-
tions, or the handling of security and trust issues in dynamic processes. While
there has been major progress in some of these areas, dynamic process support is
still a vision when looking at more complex scenarios.

The aim of the DPM 2006 workshop, which took place in Vienna on September
4th, was to provide a forum wherein challenges and paradigms for dynamic pro-
cess management could be debated. The workshop brought together researchers
and practitioners from different communities and application domains who share
an interest in dynamic process support. We received 10 contributions from which
5 were accepted for the workshop proceedings. Papers were evaluated on the ba-
sis of significance, relevance, technical quality and exposition. We hope you will
find the papers of this workshop interesting and stimulating.

We would like to acknowledge the support of the workshop program commit-
tee. We also thank Johann Eder as workshops chair and Schahram Dustdar as
general chair of the BPM 2006 conference.

September 2006 Manfred Reichert
Kunal Verma

Andreas Wombacher
(Editors)

Workshop Organization

Organization Committee

Manfred Reichert
University of Twente
m.u.reichert@utwente.nl

Kunal Verma
The University of Georgia
verma@cs.uga.edu

Andreas Wombacher
University of Twente
a.wombacher@utwente.nl

Program Committee

Wil van der Aalst, The Netherlands
Fabio Casati, USA
Peter Dadam, Germany
Prashant Doshi, USA
Richard Goodwin, USA
Yanbo Han, China
Dimitrios Karagianis, Austria
Akhil Kumar, USA
Olivera Marjanovic, Australia
Michael Maxmillien, USA
Andreas Oberweis, Germany
Marco Pistore, Italy
Hajo Reijers, The Netherlands
Stefanie Rinderle, Germany
Heiko Schuldt, Switzerland
Vlamidir Tosic, Canada
Barbara Weber, Austria
Mathias Weske, Germany
Michal Zaremba, Ireland

Additional Referees

Paolo Busetta, Linh Thao Ly, Michael Predeschly

A Declarative Approach for Flexible Business
Processes Management

M. Pesic and W.M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology,
P.O.Box 513, NL-5600 MB, Eindhoven, The Netherlands

m.pesic@tm.tue.nl, w.m.p.v.d.aalst@tm.tue.nl

Abstract. Management of dynamic processes in an important issue in
rapidly changing organizations. Workflow management systems are sys-
tems that use detailed process models to drive the business processes.
Current business process modelling languages and models are of imper-
ative nature – they strictly prescribe how to work. Systems that al-
low users to maneuver within the process model or even change the
model while working are considered to be the most suitable for dynamic
processes management. However, in many companies it is not realistic
to expect that end-users are able to change their processes. Moreover,
the imperative nature of these languages forces designer to over-specify
processes, which results in frequent changes. We propose a fundamen-
tal paradigm shift for flexible process management and propose a more
declarative approach. Declarative models specify what should be done
without specifying how it should be done. We propose the ConDec lan-
guage for modelling and enacting dynamic business processes. ConDec is
based on temporal logic rather than some imperative process modelling
language.

Keywords: Workflow management, declarative model specification, dy-
namic workflow, flexibility, temporal logic.

1 Introduction

Companies need to adapt to rapid changes in their environment. In order to
maintain agility at a competitive level, business processes are subjected to fre-
quent changes. As software products that are used in companies for automatic
driving of the business processes, workflow management systems (WFMSs) [2,10]
should be able to support the dynamics of business processes.

Workflow management systems are generic information systems which can be
implemented in variety of organizations to manage the flow of work. In tradi-
tional WFMSs, every change of such a business process model is a time consum-
ing and complex endeavor. Therefore, these systems are not suitable for rapidly
evolving processes. The rigid nature of today’s systems results from the way they
model and enact the business process. A business process model can be seen as
a scheme which defines the ‘algorithm’ of the process execution. During the ex-
ecution of the model, the system uses the business process model as a ‘recipe’

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 169–180, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

170 M. Pesic and W.M.P. van der Aalst

to determine the sequence (order) of tasks to be executed. Since the enactment
of the model highly depends of the modelling technique and the modelling lan-
guage, the later two play a determining role in the way the prescribed process
can be executed. The weaker this prescription is, the easier it is to deviate from
the prescribed process. However, most process models enforce the prescribed pro-
cedure without deviations. Flexible WFMSs should allow users to deviate from
the prescribed execution path [12]. For example, traditional systems have the
reputation to be too rigid because they impose a strictly predefined execution
procedure.

The case-handling paradigm is usually considered as ‘a more flexible ap-
proach’ [5] because users work with whole cases and can modify to some extent
the predefined process model. An example of such a system is FLOWer, which
offers the possibility to open or skip work items that are not enabled yet, skip
or execute enabled work items and redo executed or skipped items.

Systems for dynamic process management emerge as a necessity to enable dy-
namic changes in workflow management systems [12,6]. As response on demand
for dynamic business process management, a new generation of adaptive work-
flow management systems is developed [20,17,15]. When working with adaptive
systems, users can change execution paths (e.g., in ADEPT users can insert,
delete or move tasks in process models [17]).

Both in traditional, case-handling and adaptive systems, process models are
presented in a process modelling language (e.g., Petri nets [18] ,Pi calculus [16],
etc.), which defines the ‘algorithm’ for the process execution. Based on this
algorithm, the system decides about the order of the task execution. Because
process modelling languages like Petri nets and Pi calculus precisely prescribe
the algorithm to be executed, the resulting models are imperative. Although case-
handling and adaptive workflow systems allow for deviations/changes of models
written in imperative languages, the result remains an imperative model. This
can result in many efforts to implement various changes over and over again.

To abandon the imperative nature of contemporary WFMSs, we propose a
paradigm shift by using a declarative language. In this paper we propose Con-
Dec as a declarative language for modelling business processes. Unlike imperative
languages, declarative languages specify the “what” without determining of the
“how”. When working with such a model, the users are driven by the system to
produce required results, while the manner in which the results are produced de-
pends on the preferences of users. Figure 1 characterizes the differences between
classical imperative languages and ConDec. Figure 1(a) illustrates that Con-
Dec specifies the “what” by starting from all possibilities and using constraints
to approximate the desired behavior (outside-to-inside).

Imperative languages start from the inside by explicitly specifying the proce-
dure (the “how”) and thus over-specifying the process. To illustrate this, consider
the ConDec constraint shown in Figure 1 (b). This constraint implies that the
only requirement is that for a given case not both A and B are executed, i.e.,
it is possible to execute A once or more times as long as B is not executed and
vice versa. It is also possible that none of them is executed. In an imperative

A Declarative Approach for Flexible Business Processes Management 171

forbidden
behavior

deviations from
the prescribed

model

IMPERATIVE
MODEL

ConDec C
onD

ec

ConDec Con
Dec

(a) Declarative ConDec vs. imperative languages

A B

(b) A and B should not happen both

A

B
X

c1

c2

(c) Over-specification in an
imperative language

Fig. 1. A shift from imperative to declarative languages

language one tends to over-specify this as shown in Figure 1 (c). Unlike Fig-
ure 1 (b), now a decision activity is introduced – X. This activity needs to be
executed at a particular time and requires rules (e.g. conditions c1 and c2) to
make this decision. Moreover, implicitly it is assumed that A or B is executed
only once. Hence, there is an over-specification of the original requirement and
as a result (1) changes are more likely and (2) people have less choice when using
the system.

In this paper we first introduce ConDec, a new language for modelling dynamic
business processes (Section 2). In Section 2.1 we show an illustrative example of
a ConDec model. Section 2.2 shows how a ConDec model can be enacted by a
process management system. Related work is presented in Section 3. Section 4
concludes the paper and proposes future work.

2 Declarative Business Process Models

ConDec is a declarative language that can be used to build a wide range of
models: from very ‘strict’ models that define the process in detail to very ‘relaxed’
models that state only what work should be done, without specifying how it
should be done. Taking an optimistic approach, the simplest model to make in
ConDec is a model specifying which tasks are possible. Users can execute such
a model in their own preference – they can choose which tasks to execute and
how many times, and in which order to execute tasks. However, such a simple
too-relaxed model can be too ‘anarchic’ – there are often some rules that should
be followed while working. These rules can also be added to a ConDec model -
thus making it more rigid if desired. As an ‘strict’ extreme, a ConDec model can
be supplied with such rules, that it behaves as an imperative model during the
execution: the process is strictly prescribed and followed.

Initially, a ConDec model consists of a number of tasks, which are the possible
tasks that can be executed. The notion of a task is the smallest unit of work,
like in any other workflow language. In an extreme case, a model consisting
only of tasks can be instantiated and enacted. When working on such a process
instance, users would be able to execute whichever tasks in whatever order. The

172 M. Pesic and W.M.P. van der Aalst

next step in developing a ConDec model is to define the relations between tasks.
The notion of relations between tasks in ConDec is considerably different than
in a Petri net and other traditional workflow models. Relations between tasks
in a Petri net describe the order of execution, i.e, how the flow will be executed.
We refer to the relations between tasks in ConDec as constraints. A constraint
represents a policy (or a business rule). At any point in time during the execution
of the model, each constraint has a boolean value ‘true’ or ‘false’, and this value
can change during the execution. If a constraint has the value ‘true’, the referring
policy is fulfilled and vice versa – if a constraint has the value ‘false’, the policy is
violated. At every moment during the execution of a process model, the model
is evaluated to be correct or not. The execution of a model is correct at one
moment of time if all its constraints have the value ‘true’ at that moment of
time. Since some constraints can evaluate to ‘false’ at the very beginning of the
execution, a constraint which has the value ‘false’ during the execution is not
considered an error. Consider an example of a constraint that specifies that, each
execution of task A is eventually followed by task B. Initially (before any task
is executed), this constraint expression evaluates to true. After executing A the
constraint evaluates to false and this value remains false until B is executed.
This illustrates that a constraints may be temporarily violated. However, the
goal is to end the execution of a ConDec model in a state where all constraints
evaluate to true.

We use Linear Temporal Logic (LTL) [14] for declarative modelling of relations
between tasks – constraints. In addition to the basic logical operators, tempo-
ral logic includes temporal operators: nexttime (©F), eventually (�F), always
(�F), and until (F �G). However, LTL formulas are difficult to read due to the
complexity of expressions. Therefore, we define a graphical syntax for some typ-
ical constraints that can be encountered in workflows. The combination of this
graphical language and the mapping of this graphical language to LTL forms
the declarative process modelling language - ConDec. We propose ConDec for
specification of dynamic processes.

Because LTL expressions can be complex and difficult to create for non-
experts, we introduce constraint templates for creating constraints. Each tem-
plate consists of a formula written in LTL and a graphical representation of the
formula. An example is the “response constraint” which is denoted by a special
arc connecting two activities A and B. The semantics of such an arc connecting A
and B are given by the LTL expression �(A −→ �B), i.e., any execution of A is
eventually followed by B. Users use graphical representation of the templates to
develop constraints in the ConDec model. Every template has an LTL expression
of the constraint. It is the LTL expression and not the graphical representation
that is used for the enactment (execution) of the model.

We have developed a starting set of more than twenty constraint templates.
Constraint templates define various types of dependencies between activities at
an abstract level. Once defined, a template can be reused to specify constraints
between activities in various ConDec models. It is fairly easy to change, remove
and add templates, which makes ConDec an ‘open language’ that can evolve

A Declarative Approach for Flexible Business Processes Management 173

and be extended according to the demands from different domains. Currently,
there are three groups of templates: (1) “existence”, (2) “relation”, and (3)
“negation” templates. Because a template assigns a graphical representation to
an LTL formula, we can refer to such a template as a formula. Presentation of
all templates is not necessary for the demonstration of the language. For a full
description of the developed templates, we refer the reader to the report [4].
Figure 2 shows an illustrative ConDec model consisting of three tasks: A, B, and
C. Tasks A and B are tagged with a constraint specifying the number of times the
task should be executed. These are the so-called “existence formulas” that specify
how many times a task can be executed within one case. Since task C does not
have a constraint on the number of executions, it can be executed zero or multiple
times (0..*). The arc between A and B is a relation formula and corresponds to
the LTL expression for “response” discussed before: �(A −→ �B). The response
constraint is satisfied if task B is executed after task A, but not necessarily as
the next task after A. This constraint allows that some other tasks are executed
after task A and before task B. The connection between C and A denotes the
“co-existence” relation formula: (� C −→ � A) ∧ (� A −→ � C). According
to this constraint, if C is executed at least once, A is also executed at least once
and vice versa. This constraint allows any order of the execution of tasks C and
A, and also an arbitrary number of tasks between tasks C and A. Note that it is
not easy to provide a classical procedural model (e.g., a Petri net) that allows
for all behavior modelled Figure 2.

 [](A -> <> B),
i.e., every A is

eventually
followed by B B is executed

twice

A can be
executed at
most once

C

if A is executed
at least once, C
is executed at
lest once and

vice versa.

B

2

A

0..1

Fig. 2. An simple example of a ConDec model

Note that a ConDec model can be developed as an imperative model when
using the right constraints. For example, we developed a constraint template
“chain succession” [4] that can be used to specify a direct succession between
two activities.

We use an illustrative example to explain the concept of declarative languages
and advantages of declarative process models. First, we develop a Petri net model
of a simple example of on-line book purchasing. Next, we show how to develop a
ConDec model for the same example. This will show how ConDec specifies the
relations between tasks in a more natural and refined way.

Figure 3 shows a Petri net model of a simple proces for on-line book pur-
chasing. A Petri net consists of places (represented by circles) and transitions
(represented by rectangles). Transitions and places are connected with directed

174 M. Pesic and W.M.P. van der Aalst

arcs – a transition has its input and output places. Initially, there is a token
in the place start. A transition is enabled when there is a token in each of its
input places. If a transition is enabled, it fires by consuming a token from each
of its input places and producing a token in each of its output places. In our
example, the transition order is enabled and will fire the first by consuming and
producing one token. The produced token will enable transitions accepted and
declined. If the order is not accepted, the transition declined will fire by con-
suming a token from the input place and producing a token in its output place
– end. This process execution would end with the initial order being declined
and the book would not be purchased. If the order is accepted, the transition
accepted fires by consuming one token and producing two. This will result in
transitions receive book and receive bill being enabled. We assume that
the book and the bill arrive separately, because it is possible that the book ar-
rives from the shipper and the bill from the bookstore. When the book arrives
the transition receive book fires, and transition receive bill fires when the
bill arrives. Only after these two transitions fire and produce tokens in two input
places of the transition pay, the book will be payed by firing this transition, and
thus ending the process of book purchasing.

start

order

accepted

declined

end

receive
book

receive
bill

pay

Fig. 3. Petri net - Purchasing a book

2.1 Declaring a Business Process in ConDec

In this section, we develop a ConDec model for the book purchasing example
and explain the concept of constraints using this model. Figure 4 shows a Con-
Dec model for the purchasing book example. We first define the same tasks like
in the Petri net model in Figure 3. However, instead of defining the relations
with Petri net arcs, we create a number of constraints, based on templates pre-
sented in [4]. First we develop a number of unary “existence” constraints. These
constraints define how many times a task can be executed – the cardinality of a
task. The graphical representation of these constraints indicates the cardinality
for each task. Task order has the “existence” constraint “exactly 1” [4]. This
constraint can be seen as the cardinality symbol ‘1’ above the task order, and
it specifies that this task will be executed exactly once. All other tasks have the
“existence” constraint “absence 2” [4]. The graphical representation for this con-
straint is the cardinality symbol ‘0..1’ and it specifies that the task can execute
at most one time. In this example, the book will be ordered exactly once, and
this is why the task order has the cardinality ‘1’. The order can be accepted

A Declarative Approach for Flexible Business Processes Management 175

or not. Similarly, the order can be declined or not. This is why these two tasks
have the cardinalities ‘0..1’. The book, the bill and the payment will not be ex-
ecuted more that one time. However, due to the possible declining of the order
and errors, it might happen that these tasks do not execute at all. Therefore,
tasks receive book, receive bill and pay have cardinality ‘0..1’.

Fig. 4. ConDec - Purchasing a book

Next, we define relations between tasks. Several “relation” and “negation” [4]
constrains are added to describe dependencies between tasks in the ConDec model
in Figure 4. There is a branched response from the task order. It has two
branches: one to the task accepted and the other to the task declined. Some
binary “relation” and “negation” constraints can be extended with branches. The
branched response in Figure 4 specifies that, after every execution of order, at
least one of the tasks accepted or declined will eventually be executed. How-
ever, it is now possible that both tasks are executed, and to prevent this we add
the not co-existence constraint between tasks accepted and declined. So
far, we have managed to make sure that after the task order only one of the ac-
tivities accepted and declined will execute in the model. One problem remains
to be solved – we have to specify that both tasks accepted and declined can
be executed only after the task order was executed. We achieve this by creating
two precedence constraints: (1) one between the tasks order and accepted
making sure that the task accepted can be executed only after the task order
was executed, and (2) one between tasks order and declined makes sure that
the task declined can be executed only after the task order was executed.

Further, we specify the relation between the activities accepted and receive
book. In the Petri net model we had a strict sequence between these two ac-
tivities. However, due to some problems or errors in the bookstore it might
happen that, although the order was accepted (the task accepted is executed),
the book does not arrive (the task receive book is not executed). However, we
assume that the book will not arrive before the order was accepted – the con-
straint precedence between the activities accepted and receive book specifies
that the task receive book cannot be executed until the task accepted was
executed.

The original Petri net specifies that if the bill arrives also the book will arrive,
and vice versa. This may not be always true. The ConDec model in Figure 4

176 M. Pesic and W.M.P. van der Aalst

accepts the situation when the bill arrives even without the book being sent. This
could happen in the case of an error in the bookstore when a declined order was
archived as accepted, and the bill was sent without the shipment of the book.
However, we assume that every bookstore that delivers a book, also sends a bill
for the book. We specify this with the responded existence constraint between
the receive book task and the receive bill task. This constraint forces that
if the task receive book is executed, then the task receive bill must have
been executed before or will be executed after the task receive book. Thus, if
the execution of the task receive book exists, then also the execution of the
task receive bill exists.

The constraint precedence between the tasks receive bill and pay means
that the payment will be done after the bill was received. However, after the bill
was received the customer does not necessarily pay, like in the Petri net model.
It might happen that the received book was not the one that was ordered or it
was damaged. In these cases, the customer can decide not to pay the bill. Note
that the ConDec model in Figure 4 allows users to pay even before the book has
arrived. If the order was accepted, then the book can be received. The bill can
be paid as soon as the bill is received, and the bill can be received before the
book. This allows for the execution of the model where the book arrives after
the received bill had been paid.

Note that in this section we used a Petri net model as a starting point and
showed the corresponding ConDec model after some relaxations. For real-life
processes we propose not to do this. Starting with a classical process model may
lead to the introduction of unnecessary constraints that limit users and flexibility.
Because of a (potential) large number of different (types of) relations between
activities, ConDecmodel can become to complex. Therefore, we recommend a
careful selection of a small number of relations (constraints) that are appropriate
for the desired ConDec model.

2.2 Enacting Declarative Models

While the graphical notation of constraint templates enables a user-friendly in-
terface and masks the underlying formula, the formula written in LTL captures
the semantics of the constraint. A ‘raw’ ConDec model consists of a set of tasks
and a number of LTL expressions that should all evaluate to true at the end of
the model execution. ConDec models can be executed due to the fact that they
are based on LTL expressions, and every LTL formula can be translated into
an automaton [14,11]. The possibility to translate an LTL expression into an
automaton and the algorithms to do so, have been developed for and extensively
used in the field of model checking [14]. The Spin tool [13] uses an automata
theoretic approach for the simulation and exhaustive formal verification of sys-
tems, and as a proof approximation system. Spin can verify the correctness of
requirements, which are written as LTL formulas, in a system model written in
Promela (PROcess MEta LAnguage) [13]. A more detailed explanation about the
automata theory and the creation of the Buchi automatons from LTL formulas
is out of scope of this article and we refer the interested readers to [13,14].

A Declarative Approach for Flexible Business Processes Management 177

We can execute a ConDec model [4] by constructing an automaton [11] for
each of the LTL expressions or constructing a single automaton for the whole
model (i.e., construct an automaton for the conjunction of all LTL expressions).
Figure 5 shows a simple ConDec model and the corresponding automaton1. This
model consists of tasks curse, pray, and bless and the constraint response
between tasks curse and pray. With this constraint in the model, when a person
curses (p2 is not an accepting state), (s)he should eventually pray after this (p1
is an accepting state). Because there are no “existence” constraints in this model,
all three activities can be executed an arbitrary number of times.

(a) model (b) automaton

p2p1 p2

bless

pray pray

curse curse,bless

curse pray

bless

response

Fig. 5. A simple ConDec model

Using automata for the execution of models with constraints allows for the
guidance of people, e.g., it is possible to show whether a constraint is in an
accepting state or not. Moreover, if the automaton of a constraint is not in an
accepting state, it is possible to indicate whether it is still possible to reach an
accepting state. This way we can color the constraints green (in accepting state),
yellow (accepting state can still be reached), or red (accepting state can not be
reached anymore). Using the Buchi automaton some engine could even enforce
a constraint.

3 Related Work

Although many business processes can be characterized as dynamic processes,
traditional rigid WFMSs can not cope with frequent changes. The flexibility of
WFMSs can be seen as the ability to change or deviate from the business process
and plays an important role in the extend to which such systems can support
dynamic processes [12]. The nature of the modelling language itself determines
the usability and flexibility of the system [3].

Case-handling systems have the reputation to be more flexible and more ap-
propriate for dynamic business processes [5]. In such systems, users can open
a whole case, and work on that case, while in traditional WFMSs, users work
with multiple cases. When allowing users to work on whole cases, the system

1 Note that the generated Buchi automaton is a non-deterministic automaton. For
simplicity we use a deterministic automaton yielding the same behavior.

178 M. Pesic and W.M.P. van der Aalst

has the privilege to allow for much more maneuver in the process (e.g., opening,
skipping and re-doing tasks in FLOWer).

The most advanced solution for dynamic processes management is a class of
WFMSs that offers the possibility to change the business process model at run-
time [20,17,15]. When working with adaptive WFMSs, it is possible to change
the business process model on the general level (i.e., the change is applied for all
business process instances), or on the instance level (i.e., the change is applied
only on one instance). Systems like ADEPT [17] develop very complex workflow
engines [19] that are able to handle inserting, deleting and moving tasks at run-
time.

Declarative properties are used to check whether the model matches the mod-
elled system in [7]. In this approach, causal runs of a Petri net model are gener-
ated by means of simulation. Process nets representing causal runs are analyzed
with respect to specified properties. The three groups of properties are: facts (the
property should always hold) [9], causal chains (immediate causal dependency)
and goals (the property eventually holds). While this approach validates Petri
net process models, our approach is used to generate and enact the model.

4 Conclusions and Future Work

Flexibility of WFMSs is tremendously influenced by their perception of the no-
tion of a business process. In current systems, the model of a business process
is seen as an imperative prescription of the procedure that should be followed
during work. The present solutions for dynamic process management lie in a
flexible execution of the model (i.e., case handling systems such as FLOWer),
and in the possibility to change the model during the execution (i.e., adaptive
systems such as ADEPT [17]). However, the approach and the model still remain
the same: an imperative prescription of how the solution should be reached.

ConDec is a declarative language for modelling business processes. It spec-
ifies what should be done, and users can decide how they will do it. We take
an optimistic approach where, in principle, anything is possible. That is, any-
thing is possible unless we specify some constraints. Constraints represent poli-
cies that should not be violated. In a way, constraints specify what not to do
instead of specifying how to work. This leaves a lot of room for the maneu-
ver of users, who can make decisions and work in various ways with the same
ConDec model.

Using automata theory and Linear Temporal Logic, ConDec models can be
executed by an engine. Developing a system for management of ConDec mod-
els brings various challenges. We are currently developing a prototype of such
a system. Up to now, we have developed an editor where constraint templates
can be defined and used to build a ConDec model. The ConDec model for the
purchasing book example is developed in this tool (cf. Figure 6). The next
challenge is to develop a complete workflow management system. This sys-
tem will be used together with the YAWL system (www.yawl-system.com),
where the YAWL language [1] deals with the structured workflows at a higher

A Declarative Approach for Flexible Business Processes Management 179

level. Moreover, the system will be linked to our process mining tool ProM [8]
(www.processmining.org). This allows for the monitoring of ConDec flexible
processes. Actually, ProM already offers an LTL checker for checking the Con-
Dec constraints after execution.

YAWL

Prom

interface B

Fig. 6. The ConDec system with YAWL and ProM

References

1. W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design
and Implementation of the YAWL System. In A. Persson and J. Stirna, editors,
Advanced Information Systems Engineering, Proceedings of the 16th International
Conference on Advanced Information Systems Engineering, volume 3084 of Lecture
Notes in Computer Science, pages 142–159. Springer-Verlag, Berlin, 2004.

2. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

3. W.M.P. van der Aalst and S. Jablonski. Dealing with Workflow Change: Identifica-
tion of Issues and Solutions. International Journal of Computer Systems, Science,
and Engineering, 15(5):267–276, 2000.

4. W.M.P. van der Aalst and M. Pesic. Specifying, discovering, and monitoring
service flows: Making web services process-aware. BPM Center Report BPM-
06-09, BPM Center, BPMcenter.org, 2006. http://is.tm.tue.nl/staff/wvdaalst/
BPMcenter/reports/2006/BPM-06-09.pdf.

5. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge Engineering,
53(2):129–162, 2005.

6. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. In ER ’96:
Proceedings of the 15th International Conference on Conceptual Modeling, pages
438–455. Springer-Verlag, 1996.

7. J. Desel. Validation of process models by construction of process nets. In Business
Process Management, Models, Techniques, and Empirical Studies, pages 110–128,
London, UK, 2000. Springer-Verlag.

180 M. Pesic and W.M.P. van der Aalst

8. B. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining Tool
Support. In G. Ciardo and P. Darondeau, editors, Application and Theory of Petri
Nets 2005, Lecture Notes in Computer Science, pages 444–454. Springer-Verlag,
Berlin, 2005.

9. H. J. Genrich and G. Thieler-Mevissen. The calculus of facts. Mathematical Foun-
dations of Computer Science 1976, pages 588–595, 1976.

10. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, 3:119–153, 1995.

11. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple On-The-Fly Automatic
Verification of Linear Temporal Logic. In Proceedings of the Fifteenth IFIP WG6.1
International Symposium on Protocol Specification, Testing and Verification XV,
pages 3–18, London, UK, 1996. Chapman & Hall, Ltd.

12. P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke. A compre-
hensive approach to flexibility in workflow management systems. In WACC ’99:
Proceedings of the international joint conference on Work activities coordination
and collaboration, pages 79–88, New York, NY, USA, 1999. ACM Press.

13. G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston, Massachusetts, USA, 2003.

14. E.M. Clarke Jr., O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts and London, UK, 1999.

15. P.J. Kammer, G.A. Bolcer, R.N. Taylor, A.S. Hitomi, and M. Bergman. Techniques
for supporting dynamic and adaptive workflow. Comput. Supported Coop. Work,
9(3-4):269–292, 2000.

16. R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge
University Press, Cambridge, UK, 1999.

17. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of
Workflow without Loosing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

18. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

19. S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria For Dynamic
Changes in Workflow Systems: A Survey. Data and Knowledge Engineering,
50(1):9–34, 2004.

20. M. Weske. Formal foundation and conceptual design of dynamic adaptations in
a workflow management system. In HICSS ’01: Proceedings of the 34th Annual
Hawaii International Conference on System Sciences, volume 7, page 7051, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

Flexibility of Data-Driven Process Structures�

Dominic Müller1,2, Manfred Reichert1, and Joachim Herbst2

1 Information Systems Group, University of Twente, The Netherlands
{d.mueller, m.u.reichert}@ewi.utwente.nl

2 Dept. REI/ID, DaimlerChrysler AG Research and Technology, Germany
joachim.j.herbst@daimlerchrysler.com

Abstract. The coordination of complex process structures is a funda-
mental task for enterprises, such as in the automotive industry. Usually,
such process structures consist of several (sub-)processes whose execution
must be coordinated and synchronized. Effecting this manually is both
ineffective and error-prone. However, we can benefit from the fact that
these processes are correlated with product structures in many applica-
tion domains, such as product engineering. Specifically, we can utilize the
assembly of a complex real object, such as a car consisting of different
mechanical, electrical or electronic subcomponents. Each sub-component
has related design or testing processes, which have to be executed within
an overall process structure according to the product structure. Our goal
is to enable product-driven (i.e., data-driven) process modeling, execu-
tion and adaptation. We show the necessity of considering the product
life cycle and the role of processes, which are triggering state transi-
tions within the product life cycle. This paper discusses important issues
related to the design, enactment and change of data-driven process struc-
tures. Our considerations are based on several case studies we conducted
for engineering processes in the automotive industry.

1 Introduction

Industry increasingly demands IT support for the coordination of large and com-
plex process structures, such as production and development processes. Such
structures usually comprise numerous single processes with many interdepen-
dencies. Though these dependencies are often domain-specific, there exist gen-
eral patterns. Both development and production processes are often structured
according to the product, for example a car or an application software suite.
In particular, several single processes have to be executed for every component
of the product. Some of The dependencies between the components have to
be considered for process coordination. Thus, among other things, the prod-
uct structure defines the sequence of process executions. The result is a process
structure consisting of interconnected single processes according to the assembly
of the product. Usually we use the notion of data-driven process structures for
such patterns.
� This work has been funded by DaimlerChrysler Research and Technology and has

been conducted in the COREPRO (Configuration based Release Processes) project.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 181–192, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

182 D. Müller, M. Reichert, and J. Herbst

A real world example for data-driven process structures are development pro-
cesses in the automotive industry. Release management (RLM), for instance, is
an important part of the development process for car electrical systems [1]. RLM
covers configuration management, testing and release of all electrical components
in a car. Instead of performing RLM processes (e.g., testing) in an isolated fash-
ion and solely at the level of single car components (cf. Fig. 1), there is a great
need for coordinated execution and synchronization of the results of all RLM pro-
cesses related to the different sub-components. That means that the processes for
single data objects (in our case representing car components) have to be synchro-
nized. Fig. 1 (Box C) shows an example for such a data-driven process structure.

Component 2

Total System

Subsystem 3

Component 1 Component 3

Development Processes

Data-driven Process Structure

e.g. Supplier Development e.g. Release Management e.g. Logistics

Product / Data Structure

Total System

Subsystem 1

Subsystem 2

Subsystem 3

Component 1

Component 2

Component 3

Total System
Level

Subsystem
Level

Component
Level

Subsystem 1

Subsystem 2

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3

Individual component life cycleReady Tested Released

Hierarchical structure according
to the configuration structure

Subprocesses in hierarchical
process structure

Single process on Component-
level, e.g. testing process for

Component 3

Single process consists of
several activities

Process step, e.g. Testing with
data-driven structure

A

B C

Fig. 1. Car development process with a data-driven process structure

Currently, the coordination of such data-driven process structures is mainly
done manually due to the lack of suitable concepts for automated management.
Except a few approaches [2,3,4,5,6,7], process design and enactment is activity-
driven in current business process management solutions. Using activity-driven
approaches, the connection between data structures and according process struc-
tures must be defined manually (i.e., the process structure is modeled according
to the data structure). In practice, this leads to inflexible process coordination.
In particular, every change of the data structure necessitates a manual change
of the process structure. Regarding usability, an engineer is not interested in
changing process models if he or she actually wants to change the product struc-
ture. Therefore our goal is to automate the generation and maintenance of these
process structures during runtime by following a data-driven approach for their
design, enactment and change. However, even modeling is difficult tasks. The
information provided by the data structure itself (i.e., the dependencies between
the components) is insufficient for the generation of data-driven process struc-
tures. On the one hand, it does not include the mapping of the components to
processes. On the other hand, the data structures do not imply the control flow
between the processes of the resulting structures.

The efficient modeling of process structures also necessitates the consideration
of domain specific component (i.e., data) states. Possible states are defined by
the specific life cycle of the component (cf. Box B in Fig. 1). State transitions

Flexibility of Data-Driven Process Structures 183

are triggered by executing processes. In the RLM, for example, after executing
the testing processes, a state transition from Ready to Tested is triggered. The
definition of the dependencies between data states and processes is important
information for the generation of data-driven process structures.

In this paper, we present the basics for the management of data-driven process
structures. We emphasize the core issues for the separation of data structure and
process logic in consideration of data states. Based on this separation, we defined
example scenarios for possible runtime adaptations of data-driven process struc-
tures. The remainder of this paper is structured as follows. Section 2 describes
the modeling of data-driven process structures based on data states while Sec-
tion 3 describes the enactment of these processes and the role of the data states
during execution. Scenarios for flexible process execution are presented in Sec-
tion 4 and Section 5 discusses the suitability of state-of-the-art approaches for
realizing data-driven process structures. The paper concludes with conclusions
and an outlook in Section 6.

2 Modeling of Data-Driven Process Structures

The idea behind the design and modeling of data-driven process structures is
the utilization of data structures as well as data states. Both contribute to cre-
ating corresponding process structures and to providing adequate support for
their enactment and change. The goal of our data-driven approach is to sustain
the separated modeling of data and process logic. That enables the independent
definition of data and processes by domain experts (cf. Fig. 2). As shown in
Fig. 2, generating data-driven process structures integrates data and process
models. In particular, the definition of data objects, data states, process tem-
plates and process states (Steps 1a to 1d in Fig. 2) constitute prerequisites for
the realization of data-driven process structures. Data objects and data states are
defined by data domain experts and represent (real) components. In this paper,
we assume that the content of data objects does not include information neces-
sary for process execution. The data structure itself documents the dependencies
between single data objects. With regard to data-driven process structures, the
most relevant information about a data object is its state. This state describes
the current phase of the object within the object life cycle (OLC) and must be
defined in Step 2 (cf. Fig. 2). In the RLM example (cf. Section 1), data objects
have the different OLC states termed ready, tested and released (cf. Box B in
Fig. 1). Considering the dependencies between data objects, the OLC of a single
data object may depend on the life cycle of other data objects. Taking the hier-
archical data structure from Box B in Fig. 1, this could mean that a component
can be tested only if its sub-components have been successfully tested. Thus, the
definition of OLCs depends on the data structure, and it demands the definition
of state transitions between single OLCs (cf. Step 3 in Fig. 2).

State transitions within a particular OLC can be realized by the execution
of processes which are modifying data objects. The combined application of the
OLCs and these processes results in a process structure (cf. Step 4 in Fig. 2).

184 D. Müller, M. Reichert, and J. Herbst

Data modeler

Step 1a. Define
data objects

Process modeler

Step 1d. Define
process states

Step 2. Define data
structure

Step 3. Define
single OLCs

Step 4. Define
OLC structure

Step 5. Define
process config-

uration rules

Step 1b. Define
data states

Step 1c. Define
process templates

Fig. 2. Necessary steps for modeling data-driven process structures

Clearly, this structure depends on the OLC structure (including all single OLC
definitions) and thereby on the data structure.

In the following subsections, we describe the necessary steps to realize a data-
driven process structure definition. Fig. 3 illustrates the steps described in Fig. 2.
The first step consists of the definition of data objects, data states, processes
templates and their final states (cf. Boxes 1a-1d in Fig. 3). The second step
in modeling data-driven process structures is the definition of the data struc-
ture, i.e., the semantic dependencies between data objects (cf. Box 2 in Fig. 3).
Generally, these dependencies are hierarchically arranged with every data object
having exactly one parent data object. However, these structures often provide
many exceptions (e.g., data objects with more than one parent). For the sake of
simplicity, we assume the presence of a hierarchical data structure as used, for
example, for bills of material [8].

Process Definitions

Templates
Process A

Process C

Hierarchical Data Structure

Process

States

State P1

State P3

State P2

Object Life Cycle

S1 S2 S3Object 1

S1 S3 S4Object 2

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 7

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3

Process Configuration Rules

Object 1 Process A
in

State S1

Object 2 Process BState S1

Object 3 Process AState S2

Object 4 Process BState S1

Object 5 Process CState S1

in

in

in

in

State P1

State P1

State P1

State P1

State P1

Object 1 State S2

Object 3 State S1

Object 3 State S3

Object 4 State S2

Object 5 State S2

out

out

out

out

out

OLC Structure

S1 S2 S3

S1 S2 S3S1 S3 S4

S2 S3 S4

S1 S2 S3

S2 S3 S4

S1 S2 S3

Data

States
State S1

State S3

State S2

State S4

Data

Object 1

Object 5

Object 3

Object 2

Object 4

Object 7

Object 6

1a 1b 1c 1d3

2 4 5

Process B

Fig. 3. Modeling data-driven process structures according to the steps in Fig. 2

Every data object has its own object life cycle, which describes the states
(or stages) an object goes through until reaching the desired final state (cf.
Box 3 in Fig. 3). The states are connected by state transitions. Generally, the
OLC should not only describe the ideal situation, but also consider exceptional
cases (e.g., error states). In addition, OLCs may include hierarchical states, (i.e.,
with more detailed states). In the RLM, for example, the state Tested includes

Flexibility of Data-Driven Process Structures 185

several substates like Electrical Check and Test Drive. The aspect of OLCs with
hierarchical phases is not discussed in this paper.

Defining OLCs for single data objects is only one part of the challenge. When
considering data structures and dependencies between data objects, we also have
to deal with dependencies between different OLCs. Box 2 in Fig. 3, for example,
depicts a hierarchical data structure including data objects organized at three
levels. Based on this data structure, an OLC structure must be also modeled by
defining state transitions between different OLCs. As a result, we obtain an OLC
structure with defined state dependencies between single OLCs of data objects
(Box 4 in Fig. 3).

OLC state transitions represent data object modifications. As mentioned ear-
lier, such modifications are accomplished by executing processes. These pro-
cesses use data objects (in individual states) as input. By executing them, the
data objects are modified, and thus their individual states change. These tran-
sitions are defined in Box 4 from Fig. 3 in compliance with the OLC structure.
As a result, we obtain the process configuration describing the structure of the
process (cf. Box 5 in Fig. 3). It is used for generating the control flow of the
process structure during runtime. As shown in Fig. 3 (Box 5) we have chosen
a simple rule-based representation for the process configuration. Every rule de-
fines an OLC state transition which depends on the current OLC state, the
process termination state and the OLC state after process execution. The first
rule, for example, triggers the execution of Process A when Object 1 reaches
State S1. If Process A terminates in State P1, the state of Object 1 is changed
to S2.

Process templates may be used within several rules. We have simplified mod-
eling in this paper - in practice the rules have to be enriched by additional
constraints (e.g., time constraints) and processes have more input and output
parameters.

Based on to the process configuration, the control flow of the process structure
is generated. Fig. 4 depicts the control flow of the generated process structure.
Note that, in practice, these structures become much more complex due to the
fact that data structures include more elements than assumed in our examples,
and OLCs may consist of numerous phases in practice [1].

Hierarchical Data-Driven Process Structure

Process 1.1 Process 1.2 Process 1.3

Process 2.1 Process 2.2 Process 2.3

Process 3.1 Process 3.2 Process 3.3

Process 4.1 Process 4.2 Process 4.3

Process 5.1 Process 5.2 Process 5.3

Process 6.1 Process 6.2 Process 6.3

Process 7.1 Process 7.2 Process 7.3

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3

Start

Control FlowProcess TemplateProcess X.Y Process for Data Object X, State Y

Fig. 4. Generated process structure

186 D. Müller, M. Reichert, and J. Herbst

3 Enactment of Data-Driven Process Structures

Typically, data-driven process structures are embedded in larger process envi-
ronments (e.g., development processes; cf. Box A in Fig. 1) [1]. In our RLM
example, the data-driven process structure is part of the total Release Manage-
ment process. The execution order of the single processes is controlled by the
process structure according to the OLC structure.

The generated process structure (cf. Fig. 4) implies the execution order of the
embedded processes. Note that the coordination of the single processes depends
directly on the assigned data object states. In the example from Fig. 4, for
instance, some processes depend on more than one input object. The top-level
process P 1.2, for example, depends on all processes on level 2). We assume an
AND-join for process synchronization, i.e., the processes of all data objects must
terminate before starting execution of Process P 1.2.

After instantiation of the process structure, all data objects remain in their
initial states until modified by corresponding processes. Fig. 5 shows the impact
of executing the generated process in Fig. 4 on data states. In Fig. Fig. 5 we
have divided this execution in three phases: A, B and C. The execution order of
the state transitions (and thus the related processes) is represented by numbered
state transitions. Following this approach, the current state of the whole process
structure is represented by the state of the top-level data object.

OLC structure (runtime)

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

1
1

1

2

2
2

Start

OLC structure (runtime)

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

6

7
7

7

8
8

8

OLC structure (runtime)

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3
3

3

3

4

4

4

5

5

5

4

4

4

5

S2 State S2 Active State S2 Finished State Trigger / Activity 1 Execution Order

A B C

Fig. 5. Process execution order illustrated by state transitions (cf. OLC structure in
Box 4 of Fig. 3)

In practice, different processes access and modify data objects. For the gen-
eration of the data-driven process structure, that means the current OLC state
of a data object may have been already changed before process generation or
execution. In the example of RLM, a previously executed instance of the testing
process may have modified a component and thus have changed the state of the
component to Tested. Because of the testing process need to be executed only if
the component has been changed, it is not necessary to test it again.

The question is whether the predefined state is subsequently used in another
process structure or not. Several points have to be considered in this context.
First, some data objects may be used in different processes, e.g., testing and re-
lease. In this context, the predefined state of the data object must be compatible

Flexibility of Data-Driven Process Structures 187

with the OLC structure of the current process configuration to ensure consistent
OLCs (i.e., the current data object state has to be used in the current process
configuration). Second, predefined OLC states may lead to an inconsistent OLC
structure. Fig. 6 depicts such a situation. Box A shows the OLCs of two data
objects (Object 1 and 2) with state transitions between them. The predefined
state of Object 2 is S3 (cf. Box B). Box C shows the problem of an undefined
behavior caused by the predefined state: Object 1 triggers a state transition to
Object 2 and activates a previous state S3. Keeping the predefined state leads
to an inconsistent state of the OLC structure up to deadlocks (e.g., state transi-
tion from state S2 of Object 2 to state S2 of Object 1). However, resetting the
triggered state makes (the advantages of) the predefined state to be lost and
induces the re-execution of processes for this object.

Predefined Data State

(runtime)

S1 S2 S3

S1 S2 S3

?
1 Execution Order

State Transition

S2 Predefined State

S2 State

S1 Active State
Predefined Data State

S1 S2 S3

S1 S2 S3

Predefined Data State

(runtime)

S1 S2 S3

S1 S2 S3

A B C

1

D
at

a
O

bj
ec

t 2
D

at
a

O
bj

ec
t 1

Fig. 6. Behavior during runtime with predefined data states

4 Adaptation of Data-Driven Process Structures

In practice, data changes (e.g., removing a component from the product struc-
ture) and process changes (e.g., changing the order of different testing processes)
occur frequently [1]. Flexibility and dynamic adaptation support are therefore
not only required at the level of single process executions, but also at the pro-
cess structure level. An advantage affected by the modeling method presented
in Section 2 is the ability to adapt data and processes separately. In addition,
the data-driven perspective provides a more intuitive view of changes when com-
pared to solely activity-oriented process structures.

To ensure a consistent OLC structure, the applicability of both data and pro-
cess changes during runtime depends on the current state of the OLC structure
(and the process structure respectively). In the following section, we character-
ize possible changes (data structure, object life cycle, object life cycle structure,
processes and data states) and discuss the resulting issues and challenges.

4.1 Data Structure Changes

Modifying data structures (e.g., by adding or removing data objects) during
runtime results in several challenges. After updating the data structure, both
the OLC structure and the process configuration must be applied correspond-
ingly. Before modifying a data structure, it must be verified whether this change
will lead to a valid result. In hierchical data structures, removing a data object
with child-dependencies clearly also affects its sub-objects. Whether or not the

188 D. Müller, M. Reichert, and J. Herbst

change is possible or requires further operations depends on the state of the af-
fected OLC structure and on the already triggered state changes. Table 1 gives
an overview of the data modification scenarios: (1) adding a data object to the
data structure; (2) removing a data object from the data structure; (3) exchang-
ing a data object (and keeping OLC); and (4) moving a data object within the
data structure.

Table 1. Overview of dynamic data changes

Scenarios 1) Add Data Object 2) Remove Data Object
3) Exchange of Data

Object
4) Reorder Data Object

S1) Total process not started Ok Ok2 Ok Ok
S2) Total process running; affected data object not running Ok1 Ok2 Ok Ok1

S3) Total process running, affected object running - Ok3 Ok4 Ok2,4

S4) Total process running, affected object terminated - - - -
S5) Total process terminated - - - -
Ok = change is possible - = change might lead into inconsistent OLC structure state
1 if no state transition to affected object missed so far 2 if all states in OLC structure stay reachable
3 if no state transitions to other objects triggered so far 4 Processes for this object have to be restarted

Fig. 7 shows the problems we have to deal with when removing a data object
(Scenario S4 from Table 1). First, all running processes related to this data ob-
ject must be interrupted and terminated in a semantically correct manner (Box
A). Second, state dependencies to other data objects (i.e., control flows between
processes) must be removed (Box B). Regarding parent data objects this may
imply that certain adaptations have to be carried out to preserve consistency. It
may be necessary to reset a previous state of the OLC or adding state transitions
to prevent unreachable or inconsistent states. In Fig. 7 (Box C), for example, the
current state (S3) of Object 4 is no longer valid when Object 7 is removed. The
active state of Object 4 has to be reset to S2 to prevent inconsistencies. This
change also affects other data objects and may necessitate further adaptations of
dependent data objects in order to ensure consistent execution of the data-driven
process structure. For our example from Fig. 7 this means that the current state
(S3) of Object 1 becomes invalid. However, changing the current state of Object
1 again results in an inconsistent OLC structure because of further dependen-
cies. The state transitions from state S3 of Object 1 to all sub-objects have to
be reset. Thus, the whole structure is affected by the initial adaptation.

S2 State S2 Active State S2 Finished State State Transition 1 Execution OrderS2 Reset State

BHierarchical Data Structure

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 7

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

OLC structure (runtime) OLC structure (runtime)

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

2

1

3

A C

Fig. 7. Data structure changes requiring runtime adaptations

Flexibility of Data-Driven Process Structures 189

4.2 Structural Changes of Object Life Cycles

Data structure modifications also affect the OLC structure. For example, adding
a new data object may require the insertion of new state transitions to OLCs
of dependent data objects as well. Table 2 presents two scenarios for structural
changes of OLCs: (1) changes of the OLC structure by itself adding or removing
state transitions; and (2) changes of a single OLC.

Table 2. Overview dynamic changes of the OLC structure and single OLCs

Scenarios

1a) Change OLC

Structure (adding

transition)

1b) Change OLC

Structure (removing

transition)

2a) Change

transitions in Single

OLC

2b) Add or Remove

States in Single OLC

S1) Total process not started Ok Ok2 Ok2 Ok2

S2) Total process running; affected data objects not running Ok Ok2 Ok2 Ok2,3

S3) Total process running, affected objects running Ok1 Ok1,2 Ok1,2 Ok2,3

S4) Total process running, affected objects terminated - - - -
S5) Total process terminated - - - -
Ok = change is possible - = change might lead into inconsistent OLC structure state
1 if start and end state not activated so far 2 if all states stay reachable 3 if not state transitions to other data objects affected

Clearly, changes of an OLC structure must be done carefully in order to
preserve consistency. Adding or removing state transitions, for example, might
lead to inconsistent states for OLC structure as well as to violated dependencies.
Fig. 8 (Box A) illustrates the inconsistency that might occur when inserting an
additional state transition (cf. Scenario S4 in Table 2). The activation of the
new state transition, as shown in Fig. 8 (Box B), leads to an inconsistent state.
One option to deal with this case is to reset the current state of the affected
data object. As discussed above, this might again result in an inconsistent OLC
structure due to further dependencies.

Single OLC (runtime)

OLC Structure

S1 S2 S3 S1 S2 S3

OLC Structure (runtime)

Single OLC

S2 S3S1 S2 S3S1
?

S1

S2

Active State

State

State Change

S2 Finished State

New transition

A B

C D

S1 S2 S3S1 S2 S3 S1 S2 S3S1 S2 S3

?

Fig. 8. Adding state transition to the OLC structure and changing single OLCs

Another scenario is the change of a single OLC. As an example, consider the
removal of a state from a single OLC for optimization reasons (cf. Fig. 8, Box
C). If state changes for this data object have already occurred, consistent OLC
operations need to be ensured. Fig. 8 (Box D) shows the problem when changing
OLCs during runtime. State S2 was removed in the OLC definition. If this state
is currently activated, the change leads to an inconsistency. A possible solution
to deal with this situation is to reset the state of the data object (which may
cause further inconsistent states of the whole OLC structure).

190 D. Müller, M. Reichert, and J. Herbst

4.3 Process Configuration Changes

According to the modeling steps presented in Fig. 2, the changes described in
Sections 4.1 and 4.2 affect the process configurations as well (cf. Box 5 in Fig. 3).
However, there are other scenarios for process configuration changes (cf. Table 3).
If processes are exchanged in the process configuration, for example, the gen-
erated process model must be adapted. Due to the fact that processes have no
direct dependencies on other processes themselves (these dependencies are de-
fined by the process configuration), processes are simply exchangeable in our
approach - if they are not currently executed (Scenario S3).

We also have to consider scenarios for already finished processes (Scenarios
S4 and S5). In these states, the exchange of a process makes no sense at first
glance. However, the process configuration should be updated, because other
reasons may require the re-execution of the process - for example, the external
reset of data object states.

Table 3. Overview dynamic changes

Scenarios
1) Exchange Process in Process

Configuration
2) Change Process Template

S1) Total process not started Ok Ok
S2) Total process running; affected process not running Ok Ok
S3) Total process running, affected process running - -
S4) Total process running, affected process terminated Ok Ok
S5) Total process terminated Ok Ok

4.4 External State Changes

The external change of data object states is typical for development or manu-
facturing processes in practice. As example consider a real world failure (e.g., a
faulty electrical component) [1] that necessitates a change of the current state
of a data object. As discussed earlier, this kind of change may affect the whole
OLC structure. Fig. 9 (Box A) shows an example of the external state change of
a data object. According to the OLC structure, dependent state transitions must
be revoked and OLCs of dependent data objects must be changed. As can be
seen from Fig. 9, further data objects have to be involved - even though there is
no direct dependency to the initially changed data object. A detailed discussion
of this point will be subject of future publications.

OLC structure (runtime)OLC structure (runtime)

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

OLC structure (runtime)

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

6

6

7

7

8
8

9

9

S1 S2 S3

S1 S2 S3S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

2

3

5

S2 State S2 Active State S2 Finished State 1 Execution OrderS2 Reset State Undo Tansition

1

3

2

4

6

BA C
External State

Change

Fig. 9. (External) change of a single data object state and its consequences

Flexibility of Data-Driven Process Structures 191

5 Related Work

Workflow management systems (WfMS) follow the idea of separating business
logic from application code [9]. The resulting workflow specifications can be
instantiated and executed during runtime. Several approaches exist for adapting
single process instances to handle exceptional situations during runtime [10]. In
this paper, we assumed that processes trigger data state transitions. These single
processes might be realized as workflows. However, manual mapping of data-
driven structures to workflow structures leads to inflexible and large workflow
models. The result is a mixture of data structure and process logics, which
increases complexity for execution and maintenance during runtime and is thus
not applicable for data-driven process structures.

Data-driven approaches, such as Case Handling [2], provide concepts for flex-
ible process execution based on data dependencies. Activities are linked with
data items. The execution order of the activities during runtime depends on the
availability of data. Product Driven Case Handling [3] describes the utilization
of the case handling approach for product oriented process design. The idea
is to model the process according to product characteristics. The advantage of
the case handling approach is the flexible and efficient execution of processes.
Case handling does not explicitly consider data states (i.e., domain specific data
states), the definition of hierarchical data structures and the automated gener-
ation of data-driven process structures.

Product-driven Workflow Design defines an analytical method for the product
structure based (re-)design of workflows [4]. The idea is to generate a workflow
sequence for producing products based on bills of material and three design cri-
teria (quality, costs and time). The goal of this approach is the precise derivation
of a process execution sequence according to the product structure. However, we
believe that our approach enables a more flexible method for process modeling.
In addition, we focus more on the flexible execution of data driven process based
on data state dependencies than on optimization criteria.

The idea of goal-based approaches [5] is to generate the process based on a
specified initial (and final) condition. Therefore, a task ontology with activities
- including data input and output - is defined. The necessary task network is
generated (e.g., using planning techniques from artificial intelligence) based on
the specified output goal. However, this approach does not deal with the special
requirements of data-driven process structures based on data states as well as
with flexible runtime adaptations.

There are also similarities of our application when compared to domain spe-
cific approaches. A project that considers the requirements of the automotive
development processes is WEP [6]. This approach allows for process defini-
tion of both structured and unstructured parts. WEP combines WfMS with the
goal-based approach. WEP includes also mechanisms for process synchroniza-
tion based on data quality. However, the WEP does not consider the generation
process structures according to a data structure.

AHEAD offers dynamic support for (software) development processes [7].
The CoMa product model allows for the definition of configurations, i.e., data

192 D. Müller, M. Reichert, and J. Herbst

structures with dependencies between data objects. The DYNAMITE activity
model enables the flexible execution of corresponding processes. Based on the
modeled relationships between data and processes, dynamic task nets are gen-
erated. Thus, the approach also separates the data structure from the process
structure. However, the relevance of data states as well as relationships between
data states are not discussed in this approach.

6 Summary and Outlook

The more complex products are the more complex the coordination of related
processes becomes. The data-driven generation of these process structures is
therefore crucial to their efficient modeling and execution and demands the uti-
lization of data structures. as well as support for process enactment and co-
ordination. The consideration of (product) data life cycles for the definition of
data-driven processes is crucial. In this paper, we have discussed the core chal-
lenges of data-driven process structures based on a data state oriented view.
In addition, we have presented the opportunities of the separation of data and
process structures for flexible adaptations during runtime.

Further points, such as data flows in data-driven process structures, concur-
rently executed processes for one data object (leading to several active states),
exception handling (e.g., by using transaction) and the differentiation between
changeable and not changeable data states (e.g., physical state Produced) as
well as applying the approach for a real world process will be subject of further
research in this area.

References

1. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release manage-
ment processes in the automotive industry. In: BPM. (2006)

2. Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for business
process support. DKE 53(2) (2005) 129–162

3. Aalst, W., Berens, P.J.S.: Beyond workflow management: Product-driven case
handling. In: GROUP. (2001) 42–51

4. Reijers, H., Limam, S., Aalst, W.: Product-based workflow design. Management
Information Systems 20(1) (2003) 229–262

5. Mentink, R., Wijnker, T., Lutters, D., Kals, H.: Supporting manufacturing envi-
ronments. (2002)

6. Beuter, T., Dadam, P., Schneider, P.: The WEP model: Adepquate workflow-
management for engineering processes. In: ECEC. (1998)

7. Jäger, D., Schleicher, A., Westfechtel, B.: AHEAD: A graph-based system for
modeling and managing development processes. In: AGTIVE. (1999) 325–339

8. Crnkovic, I., Asklund, U., Dahlqvist, A.P.: Implementing and Integrating Prod-
uct Data Management and Software Configuration Management. Artech House
Publishers (2003) ISBN 1-58053-498-8.

9. WFMC: Workflow reference model. Technical report, Workflow Management
Coalition, Brussels (1994)

10. Reichert, M., Dadam, P.: ADEPTflex: Supporting dynamic changes of workflow
without loosing control. JIIS 10(2) (1998) 93–129

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 193 – 204, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Business Rules Segregation for Dynamic Process
Management with an Aspect-Oriented Framework

Semih Cetin, N. Ilker Altintas, and Remzi Solmaz

Cybersoft Information Technologies, Ata Plaza 3/3, 34758,
Atasehir, Istanbul, Turkey

{semih.cetin, ilker.altintas, remzi.solmaz}@cs.com.tr
http://www.cybersoft.com.tr/english/index.html

Abstract. Almost at every tier of software architecture, business rules crosscut
several parts of process management such as workflows, task assignments, and
business transactions. Managing business rules on its own hence improves the
dynamism of processes in the sense of modeling, implementing, executing, and
even maintenance. Moreover, seamless integration with the rest of the picture
may offer further dynamism, but this requires smart and reasonably reflective
application frameworks for industrial systems. Here, aspect orientation comes
to rescue since it mainly aims the separation of crosscutting concerns such as
business rules. This paper presents a practical Aspect-Oriented Framework for
rule-based business process management where all aspects, facts, rules and
rule-sets can be defined and managed dynamically by means of a GUI console.
Moreover, this lightweight framework has been implemented in conformance to
Adaptive Object Model to facilitate the process dynamism through declarative
techniques for design and bytecode engineering for seamless integration.

1 Introduction

Business Process Management (BPM) is an emerging technology that organizes the
flow of business processes in terms of workflows, rules, and other business entities
for improving the efficiency of processes as they are defined, executed, managed and
changed without troubles. In this respect, a business process is defined as inclusive
and dynamically coordinated set of collaborative/transactional activities [24].

BPM solutions primarily provide the ability to orchestrate and monitor workflows
among people and business entities under the supremacy of business rules. Therefore,
such solutions are expected to have critical decision points defined and implemented
either within a given process or among several processes executed by the workflows.
This understanding figures out that business rules are usually tangled in and scattered
through today’s IT solutions not only within the isolated processes, but also among
the workflow-directed processes. Besides, they may occur in different forms like
content-based ones at presentation tier for rich clients or workflow-based ones at Web
tier for enterprise applications. Therefore, using server-side rule engines may not be
sufficient alone to achieve process dynamism against the variety and spreading of
business rules.

194 S. Cetin, N.I. Altintas, and R. Solmaz

Aspect orientation is an emerging technology having the first and foremost goal of
providing a clear separation and seamless composition of crosscutting concerns such
as business rules. This paper introduces such a practical Aspect-Oriented Framework
(AOF), “RUMBA ([RU]le-based [M]odel for [B]asic [A]spects)”, which provides a
declarative environment with a GUI console for rule-based business process model-
ing. It basically enables the design of any business entity (e.g. person) through the
dynamic composition of feature-driven “basic aspects” (e.g. identity as a permanent
feature and instructorship as a varying feature used when person is expected to be an
instructor). Moreover, every basic aspect such as instructorship may contain other
basic aspects, recursively. RUMBA allows the dynamic definition of facts, rules, and
rule-sets, too.

In addition to the modeling environment, RUMBA offers a lightweight framework
for dynamic integration of business rules with other business processes or business
services using “Reflective Aspect”, “Reflective Rule” and “Data Face” architectural
patterns. These patterns are implemented entirely in Adaptive Object Model (AOM)
to dynamically manage basic aspects, facts, rules and rule-sets. Main contribution of
the paper is identifying the extensive set of business rules crosscutting the every tier
of enterprise application architectures and proposing an AOF to segregate, dynami-
cally manage, and transparently bind these rules to the rest of the picture.

We discuss the existing approaches for business rules segregation towards dynamic
process management in the next section. Then comes the taxonomy of business rules
crosscutting the architectural tiers of enterprise applications. The paper continues with
the design rationale for RUMBA framework and the way it facilitates dynamic proc-
ess management. Finally, paper ends with the conclusion.

2 Existing Approaches for Business Rules Segregation

Managing business rules apart from other business aspects may provide an efficient
infrastructure for software flexibility and adaptability, hence, dynamism. Structured
development proposed information hiding and modularization principles such as [22].
Introduction of design patterns [13] affected the way to model separation of concerns
with a set of patterns (delegate, proxy, visitor, MVC, responsibility chain, etc.) and
other object-oriented techniques [5, 11, 12]. Nevertheless, they all have very limited
support for process dynamism both for modeling and execution.

Study of recent trends revealed that dynamically modifiable processes and object-
oriented views of workflow definitions deserve a “serious attention” from researchers
[19]. It is realized by the static hierarchies of class definitions such that once they
have been specified and implemented, it would be so hard to modify or adapt dynami-
cally to ever-changing needs of business people. Ever desired dynamic process man-
agement cannot acquire such reflexes through static object-oriented hierarchies [26].
Similarly, business processes and other entities must be purified from the crosscutting
rules for better process dynamism. This purification requires a dynamic domain
model and a declarative environment where actual business processes, associated
business entities and controlling business rules can be tailored like Lego toys. There-
fore, more dynamic object representation models are required and the commonsense
for that is AOM.

 Business Rules Segregation for Dynamic Process Management with an AOF 195

AOM1 is a model that represents classes, attributes, and relationships as metadata.
Users change the metadata (object model) to reflect changes in the domain to modify
the system’s behavior. That is why AOM can be used as a reflective architecture if
part of a system such as business rules is constantly changing or if you want to allow
users to dynamically configure/extend their system that can lead to "program without
programming" [28]. The design of AOM involves three major activities: defining the
business entities, rules and relationships; developing an engine for instantiating and
manipulating these entities according to their rules in the application; and developing
tools for describing these entities, rules and relationships [27]. Thus, reflectivity is an
implied concept in AOM, however a generic middleware should be implemented to
achieve that reflectivity. Even though separation of business rules from other business
entities is not the first-class target of AOM, it can be achieved by implementing
proper architectural and/or design patterns with it [2].

Similarly, Aspect-Oriented Programming (AOP) is another approach to be used
for business rules segregation [7]. AOP proposes that applications are better struc-
tured by separately specifying the various concerns that can be weaved together into
a coherent program [10, 17]. These related concerns are grouped as “aspects”, and
AOP provides appropriate isolation, composition and reuse of the code used to im-
plement them. This is particularly useful when these concerns are crosscutting design
decisions that have many objects leading to different places in the code doing the
same thing like logging [18]. Even it is pointed out in a recent publication that AOP
can be used to separate business rule concerns from other business entities semanti-
cally [6]. A group of AOP approaches such as AspectJ [23], Composition Filters [1],
HyperJ [16], and DemeterJ [21] exist today. Moreover, several aspect-oriented
frameworks2 like AspectWerkz, Nanning, JAC, Colt, JBossAOP, dynaop, and Dy-
namicAspects are available.

AOM and AOP can be used for segregating the business rules so that rule inference
engines or workflow management systems can separately execute them. First, it is our
observation that they approach the problem from a single line of insight: AOP intends
“functional dynamism” whereas AOM provisions “architectural reflectivity”. Second,
highly capable rule inference engines like ILOG3 or JESS4 and workflow manage-
ment systems like Staffware5 are not versatile enough to be used at every tier. For
example, they are not suitable for client side rule execution for Rich Internet Applica-
tions (RIA) [2, 3] because of high resource needs and lack of dynamic deployment
characteristics.

3 Taxonomy of Business Rules and Design Rationale for RUMBA

Business rules have received a lot of attention and the main focus has been on the
ability to make applications flexible and amenable to change, which is known to be
dynamism in general. Both researchers and practitioners are convinced that business

1 Meta Data and Adaptive Object Model: http://www.adaptiveobjectmodel.com
2 Open Source Aspect-Oriented Frameworks in Java: http://java-source.net/
3 ILOG Business Rule Management Engine: http://www.ilog.com
4 JESS, Te Rule Engine for Java Platform: http://herzberg.ca.sandia.gov/jess/
5 Staffware BPM Solutions, Acquired by TIBCO: http://www.staffware.com

196 S. Cetin, N.I. Altintas, and R. Solmaz

rules require explicit treatment for a detailed classification to ensure process agility
[4, 9, 15, 20, 25]. The authors present another taxonomy here in Fig. 1 for separation
of business rules crosscutting the BPM. This figure specifies the process management
as an orthogonal model to architectural tiers of enterprise applications and classifies
the business rules again according to this orthogonal model.

Presentation
 TierContent

Serving

Rich Client
Rendering

Rule Coordinator

Process Coordinator

Web
Tier

Application
 Tier

Business Process
Workflows

Business Process
Orchestrations

Business
Processes

Business Tasks

Business Transactions

Operations
Management

Business Services

Business Rules

Content
Based

Orchestration
Based

Workflow
Based

Operation
Based

Task
Based

Transaction
Based

Service
Based

Domain
Based Business Implementations

Data
Management Data

Tier

Fig. 1. Separation of Business Rules Crosscutting The Process Management Being Orthogonal
to Architectural Tiers

3.1 The Need for Business Rules Classification

Fig. 1 identifies the general architectural model of BPM where business processes
consist of process workflows and process orchestrations. Both process workflows and
orchestrations specify how process tasks are structured, but the only difference is that
process workflows supervise the flow of user tasks within an organizational process,
whereas orchestrations administer the collaboration of internal user tasks with exter-
nal processes owned by other institutions. In that sense, process orchestrations must
have at least one external process task to be accessed with XML-like interfaces.

 Business Rules Segregation for Dynamic Process Management with an AOF 197

Business tasks are the internal activities within an organization generated either by
the underlying business model or by the users themselves as reminders for their own
benefit or in order to delegate work to others. Tasks may contain several independent
business transactions as the single and atomic unit of work for a consistent change in
the state of a business process. A business transaction may be as short as giving a
purchase order or as long as a mortgage (from the initial mortgage application to final
satisfaction being sent after the last payment). Business transaction is not the same as
data processing transaction, and a single business transaction may contain several data
processing transactions encapsulated in business services. Hence, a business service is
the combination of business implementations (the set of interrelated data processing
transactions) managed by a computational model.

Such an understanding of BPM and applying to enterprise systems like the ones we
experienced in banking and insurance domains revealed the categorization of business
rules identified in Fig. 2. This taxonomy is performed due to the attributes of business
rules such as “complexity” (simple, composite, with backward or forward reasoning),
“criticality” (severe, moderate, low), “frequency of change” (high, vibrant, fair, low),
“order of execution” (first, last, any order), “type of access” (internal, external, both),
or “responsibility” (business, IT, both). For example, domain-based rules have severe
criticality since they are the last point for checking data integrity, however content-
based ones are not that much critical since they will be double or triple checked
through transaction-based and service-based rules at several other tiers.

Business Rule
Category Complexity Criticality

Frequency
of Change

Order of
Execution

Type of
Access Responsibility

Content-based Simple Low Vibrant Any Internal Business

Orchestration-based Simple Moderate Low First Both Business

Workflow-based Composite Moderate Low First Internal Business

Operation-based Composite Moderate High Any Internal IT

Task-based Reasoning Moderate Vibrant Any Internal Both

Transaction-based Reasoning Severe Fair Any Internal Both

Service-based Reasoning Severe Vibrant Any Both Both

Domain-based Reasoning Severe Vibrant First Internal Both

Fig. 2. Business Rules Taxonomy

3.2 Classification of the Business Rules

Categorizing business rules due to aforementioned attributes facilitates the business
rule management issues such as “storage”, “caching”, “administration” or “execution
performance”, respectively. We classify the business rules into eight major groups:

− Content-Based Rules: control the conditions for variability of rendering platforms
such as generating HTML for Web-browsers but WML for mobiles, and include
data validation and verification such as checking the age for having driving license.
They should be defined once in the system and a proper framework should execute
the same business rules both on clients and servers. Whenever such a rule changes,

198 S. Cetin, N.I. Altintas, and R. Solmaz

it should be modified once and this update must be automatically reflected to both
client-side Rule Coordinator (see Fig. 1) and server-side rule engines. Therefore, a
lightweight rule engine that may be used both on clients and servers will simplify
the application design. This lightweight engine then executes the identical content-
based rules by using the client-side data provided by visual widgets and the server-
side data provided by business entities such as process workflows or services even
composed of RUMBA basic aspects. In our approach, the content-based rules are
categorized into a separate group for having a single point of “administration” and
dynamic “caching” of the business rules even on clients. There exist a lot of such
rules that can be instantly executed on clients. Otherwise they should be handled
on servers that may increase the network traffic unintentionally.

− Orchestration-Based Rules: are situations governing the integration of business
processes with external ones such as validating the social security ID by means of a
Web service from the Social Security Organization to issue credit in a core banking
application. It is important to implement orchestration-based rules in an expressible
manner such as BPEL6 or RuleML7, since both parties should be able to agree on
the set of conditions for their business processes to be merged. Hence, business
process orchestration engines should be incorporated with a separate rule engine so
that exposition/imposition with expressive languages should be fully supported.
Moreover, business process orchestration and rule engines must be communicating
over a high-speed protocol such as direct method calls instead of slower XML-like
interfaces. In our approach, we classify the orchestration-based rules in a separate
category to increase the “execution performance” of such type of rules.

− Workflow-Based Rules: supervise the workflow of user tasks within a process. A
typical example is a set of rules for managing the application to damage repayment
in insurance business domain in such a way that when applied to Class-A agencies
the repayment is consecutively checked by at least two members of the experts’
council whereas when applied to regional office Form-A and Form-B are filled out
by an expert. Like content-based rules, workflow-based rules should be able to get
executed at server and client sides as connected to process workflow engine.

− Task-Based Rules: are circumstances under which the set of business transactions
will be executed in coordination. An example to task-based rules is issuing the
credit in a core banking application in such a way that if the credit amount is more
than 50.000$, then credibility checking through Central Credit Bureau transaction
will be executed otherwise direct scoring transaction will be activated. Task-based
rules should be executable in conjunction with operation-based rules as well since
certain tasks can be assigned to predefined process workflows or orchestrations
based on user authorizations, which is an operational concern. Task-based rules
may be needed to be inferred with operation-based rules in “backward reasoning”,
which may complicate the achievement of adaptability and performance.

− Transaction-Based Rules: govern the association of related services under certain
conditions. A typical example is the forever use of external Web services of Cen-
tral Credit Bureau if the credit is corporate type, and the use of local credibility
services in the case of individual type. Like task-based rules, transaction-based

6 BPEL: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
7 RuleML: http://www.ruleml.org/

 Business Rules Segregation for Dynamic Process Management with an AOF 199

rules may demand on domain-based rules kept by Data Management (see Fig. 1)
that will be executed again in “backward reasoning”. For that, keeping simple rules
in database queries might be necessary just to get rid of the repetitive definitions of
same rules, and this will affect the “storage” and “caching” issues in business rule
management.

− Service-Based Rules: administer the circumstances for the combinatorial use of
business implementations such as selecting the implementation based on quick sort
algorithm for limited set of interactive business transactions instead of using the
implementations based on “order by” clause of SQL queries for batch transactions.
These rules should be executed very fast and the context that should be transferred
between rule engine and business implementation should be handled carefully for
high volume database queries that may be a concern for “execution performance”.

− Domain-Based Rules: are the mostly referred and executed rules such as a car is
valid to be insured if it is younger than 20 years in insurance domain. They should
be executed very fast. Moreover, any change request in domain-based rules should
be reflected automatically to business implementation without further compilation
and deployment. Thus, “execution performance” and “administration” are of ut-
most importance.

− Operation-Based Rules: manage the operational concerns of an application such
as scheduled execution constraints. A typical example is that batch credit due list
can only be generated between 01:00 and 06:00 am. Another example is user role
determinations in the sense of authorization constraints like a teller cannot execute
“customer account update” transaction but branch manager can with the permission
granted by central management. They are most likely to change among all, hence
the level of dynamism for maintaining operation-based rules and composing with
other business aspects without compilation and deployment are of utmost value.

4 Dynamic Process Management with RUMBA Framework

RUMBA liberally adopts the vision of a reflective architecture where business rules
and other business aspects can be defined dynamically and integrated seamlessly. It
uses the term “basic aspect” to facilitate that everything in software modeling can be
represented in terms of dynamic features. A basic aspect is a generic container that
can host three things: basic and custom data attributes, other aspects as sub-aspects
that can yield a very powerful hierarchical and recursively accessible structure, and
method implementers having a standard invocation interface. Such a flexible struc-
ture allows the modeling of any set of concerns at design time by declaring an aspect
having the largest set of attributes, sub-aspects and method implementers.

As an example; a person can be an instructor at university, a father at home and a
driver at traffic. In that sense, the same person can be declared in RUMBA to be an
aspect to hold the widest set of the following other sub-aspects: “instructorship”,
“fathership”, and “drivership”. Supportively, by definition it can hold attributes such
as age, sex, name, surname; and methods such as getAge(), getName(), setName(),
getSex() to be used generically in any occurrence of the three roles. RUMBA pro-
vides a lightweight runtime environment to instantiate a person with “instructorship”,
“fathership” or “drivership” role by dynamically creating first the common attributes,

200 S. Cetin, N.I. Altintas, and R. Solmaz

related methods of being person as well as the desired sub-aspects depending on role
type. Whichever role it has been created with, this aspect can be managed with ge-
neric access methods like “aspect.invoke(“getAge”, aspectParams)”, or attributes can
be accessed as basic Java data types like “aspect.getAttribute(“name”).toString()”.
This AOM design unleashes the static dependencies of object hierarchies and pro-
vides a closer performance to the Java object access in contrast to the original AOM
baseline.

In a clarification, RUMBA synthesizes aspect orientation with AOM for the high
performance separation of concerns that can provide a dynamic weaving approach.
Unlike classical AOP approaches that has a primary object model together with those
crosscutting concerns such as logging and persistence implemented as aspects in
“asymmetry”, RUMBA presumes that even this primary object model can also be
declaratively designed by the GUI console and embodied by underlying framework
which is capable of composing all these basic aspects in symmetry [14]. To this end,
RUMBA has even extensions to take any custom data type into picture as defined by
the user, thanks to the architectural patterns of RUMBA explained below.

4.1 Data Face Pattern

RUMBA designers introduced a novel approach to wrap existing data types of Java
language in a dynamic manner, provided a way to have custom data types expressed
in Java with the AOF, exposed basic and custom data types to RUMBA users, and
named this approach as “Data Face” pattern. It is an architectural pattern heavily
using bytecode engineering to instantiate derived “face” types from standard “core”
types as shown in Fig. 3. RUMBA uses a generic Data type as the base of all basic
and custom data types, and other Arguments, Aspect, and RumbaFactory are all using
that.

Rumba

Rumba Factory

Arguments

Aspect

Data

Custom Data1 Custom Data2

create

1
1

RUMBA Face RUMBA Core

Boolean Data

Double Data

Int Data

ArgumentsCore

AspectCore

DataCore

Bytecode Engineer

.

Fig. 3. Data Face Pattern

 Business Rules Segregation for Dynamic Process Management with an AOF 201

4.2 Reflective Aspect Pattern

Reflective Aspect Pattern is another architectural pattern inspired from “Adaptability
Aspects Pattern” [8] for providing the reflectivity of basic aspects in terms of design,
definition, implementation and maintenance. As shown in Fig. 4, it includes:

− Generative Aspect Model: An aspect with reflective properties is nothing than a
template definition of adaptive objects complying with AOM structure in
RUMBA.

− Aspect Factory is a singleton in the core library so that it enables the creation of
dynamic aspects at runtime due to the templates kept in Aspect Type Repository.

− Aspect Type Repository is composed of set of classes to keep the aspect templates
to help Aspect Factory for the instantiation of reflective aspects accordingly. To this
end, aspect definition screens will be the front-end of this Central Repository.

− Aspect (Template) Definition: Aspect attributes, methods, aspect and sub-aspects
and the collaborations with other aspects are all definable with managerial screens.

− Method Delegator: Java Method Implementers can be associated with dynamic
aspects by means of underlying bytecode engineer.

Core Business
Logic Aspect Factory

Aspect Set Aspect

Data

Custom Data

Method

1

1

Aspect Type
Repository

N

Aspect Type

Method Delegator
Bytecode Engineer

Generative
Aspect Model

N
1

N

Java Method Implementer

Boolean Data

Char Data

Int Data

.

Fig. 4. Reflective Aspect Pattern

4.3 Reflective Rule Pattern

Similar to Reflective Aspect, we also need a model in which business departments can
simply define business rules. Supportively, we propose another meta-model called as
Reflective Rule pattern to manage business rules and their relationships with reflective
aspects as shown in Fig. 5. “RuleFactory” is the main creator of all rule-related parts.
“Rules” contain “Facts” which can be of three types: simple value checks expressions,
database lookups and Java method calls. First two are handled dynamically but for the
last, an implementer should be associated at runtime through bytecode engineering.
“RuleSets” are used to express composite rules. By using the “RuleContext” as the

202 S. Cetin, N.I. Altintas, and R. Solmaz

context of pointcuts between rules and basic aspects, any type of rules introduced in
Section 3 can be composed into the process management dynamically.

Basic Aspects Rule Factory
1

infer

infer

create

create

1

Fact Factory RuleContext

1
N

Fact

create
N

FactResult

FactType

1
N

FactDataBinder

FactResultTable FactResultValue

Java Implementor BytecodeEngineer FactMethodBinder

N

1

1
RuleExpression

RuleExpression

RuleSet

Rule

FactResultMethod

Fig. 5. Reflective Rule Pattern

4.4 Dynamic Process Management

The logical classification of business rules given in Section 3 aids design to prevent
them from crosscutting the process management concerns. However, such a logical
design should be able to turn into a physical implementation by a framework that
guides the dynamic integration with processes through inherent architectural patterns.
RUMBA facilitates the dynamic processes management with:

− Declarative Environments to enable the definition of basic aspects, rules and rule-
related elements by GUI screens to unleash business people from IT intricacies.

− Standard Structure for Domain Modeling to empower IT designers to deal with
only simple and easy to model a hierarchical basic elements, that are basic aspects.

− Seamless Composition of Rules with a very lightweight framework to associate
simple/composite rules with visual widgets at clients and basic aspects at servers.

− Standard Interfaces to form pointcut contexts where aspectual data and other
rule-related attributes are managed separately through standard Java calls. This will
facilitate the integration with process management through standard interfaces, too.

 Business Rules Segregation for Dynamic Process Management with an AOF 203

− Common Use of Rule Contexts with basic aspects in core functionality and many
parts of process management. In contrast to classical approaches, RUMBA enables
the sharing of its rule context (it is Java serializable) as is with process engines.

− Coexistence with Diverse Process Engines is inherently possible with any sort of
business process engine within workflows and orchestrations since it relies on a
simple and standard interface; pure Java based rule context having aspects as well.

− Versatility of Use on multi-platforms both on servers and clients even including
mobiles as long as a JRE 1.4 runtime is provided.

− Running with RIA Frameworks is supported by default and any JavaBean can be
used for dynamic process management. Currently, it is available on the Aurora RIA
[2, 3] framework of Cybersoft, but could be implemented easily on others as well.

5 Conclusion

Effective management of business processes in enterprise applications becomes more
and more important today. Thus, responding to ever changing business requirements
in shorter cycles may put an organization ahead of others in the stiff competition.
One way of achieving dynamic process management is the segregation of business
rules from other business aspects like business entities and business processes.

In this paper, the authors presented the significance of business rules segregation
and to this end, a comprehensive taxonomy of business rules has been introduced to
separate business rules crosscutting the process management issues that are orthogo-
nal to the architectural tiers. Such a classification has introduced eight major business
rule types that should be modeled separately from the process management.

We also introduced a practical aspect-oriented framework, RUMBA, which has
flawless integration with rule-based development concerns by having the visionary
perspective for aspect-orientation where every concern of software development can
be modeled in terms of basic aspects. Thanks to proper modification of Adaptive
Object Model, architectural reflectivity can be achieved without loosing performance,
ease of development and maintainability. This practical AOF has been used and
proven in the development of new generation Web-based core insurance application
for the largest insurance company of Turkey where dynamic process management is
of utmost significance stemmed from the nature of insurance business domain.

References

1. Aksit, M., Tekinerdogan, B.: Aspect-Oriented Programming Using Composition Filters,
ECOOP'98 Workshop Reader (1997)

2. Altintas, N. I., Cetin, S.: Integrating a Software Product Line with Rule-Based Business
Process Modeling, TEAA: VLDB Workshop, TEAA 2005, LNCS 3888 (2005) 15-28

3. Altintas, N. I., Surav, M., Keskin, O., Cetin, S.: Aurora Software Product Line, Turkish
Software Architecture Design Workshop, 2nd National Software Engineering Symposium,
Ankara – Turkey, http://trese.cs.utwente.nl/TSAD/Papers/aurora.pdf (2005)

4. Bajec, M., Krisper, M., Rupnik, R.: Using Business Rules Technologies To Bridge The
Gap Between Business And Business Applications, Proceedings of the IFIP 16th World
Computer Congress (2000) 77-85

204 S. Cetin, N.I. Altintas, and R. Solmaz

5. Buschmann, F. et al: Pattern-Oriented Software Architecture, Volume 1: A System of Pat-
terns, John Wiley & Sons (1996)

6. Cibran, M., D'Hondt, M.: High-Level Specification of Business Rules and Their Crosscut-
ting Connections, AOSD'06 (2006)

7. D’Hondt M.: Hybrid Aspects for Integrating Rule-Based Knowledge and Object-Oriented
Functionality, Ph.D. Thesis, Vrije Universiteit, Brussel (2004)

8. Dantas A., Borba P.: Adaptability Aspects: An Architectural Pattern for Structuring Adap-
tive Applications, SugarLoaf- PLoP’2003, Brazil (2003)

9. Date, C. J.: What Not How: The Business Rules Approach To Application Development,
Addison Wesley Longman, Inc. (2000)

10. Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K., Ossher, H.: Discussing Aspects of AOP,
Communications of the ACM 44, (2001) 33–38

11. Fayad, M., Schmidt, D., Johnson, R.: Building Application Frameworks: Object-Oriented
Foundations of Framework Design, John Wiley & Sons (1999)

12. Fowler, M.: Patterns of Enterprise Application Architecture, Addison-Wesley (2002)
13. Gamma, E. et al: Design Patterns: Elements of Reusable Object-Oriented Software, Ad-

dison-Wesley (1994)
14. Harrison, W. H., Ossher, H. L., Tarr, P. L.: Asymmetrically vs. Symmetrically Organized

Paradigms for Software Composition, IBM Research Division, RC22685 (2002)
15. Herbst, H.: Business Rules in Systems Analysis: A Meta-Model and Repository System,

Information Systems, 21 (2) (1996) 147-166
16. IBM: HyperJ: Multi-Dimensional Separation of Concerns for Java, http://www.research.

ibm.com/hyperspace/HyperJ/HyperJ.htm (2001)
17. Kiczales, G.: Aspect-Oriented Programming, ACM Computing Survey, Volume 4: 157

(1996)
18. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J. M., Ir-

win, J.: Aspect–Oriented Programming, in ECOOP’97, LNCS 1241 (1997) 220–242
19. Mohan, C.: Recent Trends in Workflow Management Products, Standards and Research,

Volume 164, http://www.almaden.ibm.com/cs/exotica/wfnato97.ps (1998) 396–409
20. Moriarty, T.: Business Rule Management Facility: System Architect, Intelligent Enter-

prise, 3 (12) (2000)
21. Northeastern University, College of Computer and Information Science: DemeterJ: As-

pect-Oriented Software Development, http://www.ccs.neu.edu/home/lieber/demeter.html
(1996)

22. Parnas, D. L.: On the Criteria to be used in Decomposing Systems into Modules, Commu-
nications of the ACM, v.15 n.12 (1972) 1053-1058

23. Ramnivas L.: AspectJ in Action, Practical Aspect-Oriented Programming (2003)
24. Smith, H., Fingar, P.: Business Process Management (BPM): The Third Wave, Meghan-

Kiffer Press (2003)
25. Struck, D.L.: Business Rule Continuous Requirements Environment, PhD Thesis, Colo-

rado Technical University (1999)
26. Tufekci, O., Cetin, S., Altintas, N. I.: How to Process [Business] Processes, Integrated De-

sign and Process Technology, IDPT-2006, Society for Design and Process Science,
http://www.cybersoft.com.tr/free/publications/H2PP.pdf (2006)

27. Yoder J. W., Balaguer, F., Johnson, R.: Adaptive Object Models for Implementing Busi-
ness Rules, OOPSLA (2001)

28. Yoder J. W., Balaguer F., Johnson R.: Architecture and Design of Adaptive Object Mod-
els, Intriguing Technology Presentation at OOPSL '01, ACM SIGPLAN Notices, ACM
Press (2001)

A Dynamic Workflow Management System for
Coordination of Cooperative Activities

François Charoy1, Adnene Guabtni1, and Miguel Valdes Faura2

1 University Henri Poincaré Nancy 1 - INRIA - LORIA laboratory,
BP 239, F-54506

Vandoeuvre-lès-Nancy Cedex, France
2 Bull R&D, 1, rue de Provence

38130 Echirolles (France)
Francois.Charoy@loria.fr

Abstract. This paper comes back to the problem of coordination of
cooperative activities with a Workflow management system. First, we
describe the differences that we have noted between business processes
and cooperative processes. Then we present a set of requirements for a
Workflow management system that aims to support cooperative work-
flow, and among these requirements are high flexibility and dynamicity.
Then we describe how this has been taken into account in the devel-
opment of the Bonita workflow management system that proposes to
remove the idea of process model to work only with process instances
that can be derived from each others or that can be composed.
Keywords:Adaptive processes,Cooperative processes,Architectures and
tools for dynamic processes.

1 Introduction

Using workflow technology to support cooperative activities is an old idea, taking
its sources in Office Information Systems. A lot of work has been devoted to this
problem during the 90’s with the advent of the CSCW field. It must be noted
that although automation of business process management and web services
composition has gained in visibility and acceptance, its application to coordinate
cooperative work is not yet a success. But with the greater acculturation of
people to cooperative work over the Internet, the need for better support for
coordination if beginning to appear with a greater pressure. A lot of domain,
such as e-learning, software development, content management systems, scientific
and medical applications, crisis mitigation systems require now better support
for coordination and tracking of individual activities.

One of the assumption that has been made some years ago is that work-
flow and business process modeling could be used, regarding some evolutions,
to support the coordination of cooperative activities. A common belief is that
the ability to easily change process types or process instances is still consid-
ered as an important issue for acceptance of Workflow management System in
organisations. In a cooperative environment, this requirement is even more im-
portant. Business processes can be considered as stable regarding cooperative

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 205–216, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

206 F. Charoy, A. Guabtni, and M.V. Faura

processes. A business process takes time to be designed and implemented, but
this cost is redeemed by the number of its execution and by the expected raise
of productivity. Cooperative processes like software development processes are
of different nature. They are long lasting processes with a high potential for
evolution during their life-time. They are not executed so often. Spending a lot
of time to design and implement such a process would be considered as a waste
of time.

We consider, following the proponents of ad-hoc workflow for cooperative
processes that, defining a complete cooperative process from the beginning with
all its details is almost impossible. The process for software development or
for technical report production may not be known entirely at their beginning.
They may have to be refined during their execution. Our point of view is that
a cooperative process will evolve during its execution. Thus, it must be very
easy to change during its execution, instance by instance. We try to push this
hypothesis to its extreme by not making the difference between model and
instance.

To summarize, a Workflow Management System that aims to support coop-
erative activities must first provide the same kind of support as a WFMS for
Business processes i.e. activities, activity dependency management, performer
and resources management. It must also be very flexible and allow easy modifi-
cations by the users, instance by instance.

In the first part of this paper, we will try to summarize the differences be-
tween so-called business processes and cooperative processes. Then we will list
the requirements that we want to met. The next part will present the model un-
derlying the Bonita Workflow Management System and how it’s flexibility can
potentially meet the requirements that we have described.

2 Business vs Cooperative Processes

Cooperative and business processes are different in nature. We can identify a
number of differences between a WFMS that has to support cooperative process
and a WFMS that has to support Business Processes. These differences are the
following:

The number of process models. In a cooperative environment, the ratio between
the number of execution of a process and the number of process definitions
is small compared to a business environment. Processes are built from process
fragments on a project by project basis. Pushing this assumption to the extreme,
all processes in a cooperative environment are different. That means essentially
that the participants to a process must be able to design the process.

The process structure is simpler. Business process can be relatively complex
with many alternatives, compensating activities and the rest. When defining a
business process, designer try to consider almost every possible case. Cooperative
processes are simpler in general, consisting on sequences of activities executing

A Dynamic Workflow Management System 207

in loops1. We consider that cooperative process are generally the concatenation
of successive steps that lead to the production of a final result for the project.
It may still happen to find a complex structure inside the steps. However, the
organisation of the process itself must be understandable by the participants to
the process. Thus it cannot be too complicated.

The process evolves more often. A business process is less subject to evolution
than a cooperative process. The long duration of a cooperative process encom-
pass in itself the need for change. Changes in the environment or in the goal of
the process have more chances to occur. A business process is supposedly shorter
and thus less subject to changes during its execution time.

The process is user driven. Cooperative processes governs cooperative projects
where participants are concerned by a common goal. This is less the case in a
classical business process where people are mostly concerned by the task they
have to execute. Thus, cooperative workflow management systems should provide
their users with a clear view of what has been done, who does what and what
remains to be done (even if that is expected to change). A cooperative process
is the result of a consensus between its participants.

Althoug these differences are important, we still think that it is possible to
adapt workflow models and workflow management systems. in the next part we
describe the requirements that are important for such a system.

3 Requirements for Cooperative Processes Support
System

A system that aims to support explicit cooperative work coordination needs to
provide some incentive to its users. Even if there is a feeling for better support
for coordination in distributed cooperative project, and even if there is some
will to set up clear procedures at the beginning, the use of these procedures and
tools to track the activities is most often forgotten as soon as the project begins
and the pressure to get results raises. If the users lose the feeling that following
the process is useful for them, they stop using it, or use it lazily[1,2].

Designing the processes. In a cooperative setting, the plan and the process to
follow is generally the result of some consensus after discussions between the
members of a team. Decisions are taken and actions to be done are distributed
among them. Most of the time, these actions are small processes that have to be
refined and connected to the overall group coordination.

For instance, when doing software development, the development plan is de-
cided and then refined. Creating a cooperative process from scratch would be
very long and error prone. Most of the time, when starting a cooperative process,
even with implicit coordination, people refer to existing process that they have
1 Most design process for instance require several execution of the same activities to

reach a given result.

208 F. Charoy, A. Guabtni, and M.V. Faura

executed before. They try to reuse part of their previous experience in the new
project. A cooperative workflow management system must be able to reproduce
this behavior by allowing the reuse of fragment of processes that have already
been executed.

A cooperative WFMS must provide an efficient library of process instances or
fragments that can be easily integrated in a new process (for instance a process
for paper reviewing or a process for code release in a software development
project).

Users control the process. Users participating in a cooperative process should
be able to monitor and change the process. Business process are constrained
by management and cannot be changed by end-users. This is the contrary in a
cooperative process. We consider that the cooperative process is the result of
its execution (the process is itself a product of the process). Each user has the
ability to add/remove/change activities of the process in which they participate.

Automation of activities. The incentive to use a workflow management system
is not always clear for user. A lot of experiences have shown that if the users find
no benefit using this kind of system they will avoid to use it by any means(see [3]
and related works). A cooperative workflow management system should provide
some assistance, and some automation for the most repetitive tasks and not
just control for the management. It must also be sufficiently integrated to the
environment to help the users to find the documentation they need to modify,
to publish, retrieve and share these documents, to track what happens to them.
If these conditions are fulfilled, there is more chance that users will contribute
to the process evolution2.

In order to reach these goals we have started a project some years ago that
has resulted in the development of a Workflow engine called Bonita that has
been already used in different settings. The Bonita model was designed with
these requirements in mind.

4 The Bonita Model

The definition of the model has been done with several constraints in mind. Cur-
rent standard process models are complex. The definition of a process requires
specific skills. They are reserved to specialist and cannot be read by common
users. Although we know that the complexity of business process definition may
require some expertize, we argue as we have said before that cooperative process
need to be managed by their end users.

The definition of the Bonita model is inspired from dynamic languages [4]. It
does not separate the model (a class) from its instances (objects). Instances can
be directly created from the Bonita API, executed and modified dynamically. A
new process can be created either from scratch, by cloning an existing process
or by importing a process definition inside an other process. On figure 1, on the
2 Of course this remains to be proved by experiences.

A Dynamic Workflow Management System 209

left is a window showing the state of the process for a user, and on the right is
the state of the process. This window is also an editor, thus the process can be
changed at any time.

Fig. 1. The execution and definition interface

A process describes a set of activities that have to be executed to reach some
goal. It has participants that can adopt roles within the process. These roles are
used to create the relationship between activities and the user that can execute
them. Constraints on the definition of a process are kept minimal to ease its
definition by end users. A process is a defined by a set of activities and by
dependencies between activities. Dependencies between activities are end/start
dependencies, with join conditions and split conditions.

A process is created by a user, the owner of the process. From this point, the
process is started. The owner can add activities to the process and dependencies
between these activities. A process is started by its owner. It can be terminated
automatically when all activities of the process have been terminated, aborted
or are dead. It can also be terminated or aborted by a user explicitely.

Activity states are the following : initial, executable, executing, anticipable,
anticipating cancelled, aborted, terminated. An activity can be executed as soon
as it is created. It is then in the state Executable.

Flexible execution of processes is possible due to the ability to start an activ-
ity in advance. This is what we call anticipation. Anticipation which has been
already described[5] is a mean to reduce constraints on the execution of cooper-
ative activities. The main idea is that an activity can be executed even when all
its activation conditions are not met. But we guarantee that at some time be-
fore its termination, they will be met. Thus, at the end of the process execution
everything appears to have been executed normally even though some activities
have been started before there normal activitation time. The main advantage
is that even with strict process definition, flexible execution remains possible.
Figure 2 is a case where node1 has been started, node2 and node3 have been
started with anticipation and node4 is in a state where it could be started.

210 F. Charoy, A. Guabtni, and M.V. Faura

Fig. 2. Some activities can be started even when the preceeding ones are not finished

New activities and new dependencies can always be created during the process
execution. The only constraints concern the state of activities. It is not possible
to change activities and dependencies concerning terminated activities.

The owner of a process can also attach users to the process with specific roles.
Users are then participating to the process. They belong to different roles. An
activity can only be executed by a user that can take the role specified for the
activity.

The workflow engine is able to calculate to do list and executing list for each
user participating to a process and to notify users of every change that concerns
them.

4.1 Process Building Blocks

Of course, defining each new process activity by activity is not a very sound
way of working even though we are doing that very often in real life project.
The support of the WFMS must appear as valuable and in this case, the risk is
that some activities are created at the beginning of the project and no followup
occurs. This is often the case with planning tools and can be verified in many
open source projects on Sourceforge for instance : a project is created, many tasks
and activities are instanciated and assigned and then nothing more happen.

In a cooperative project, the process must be described very easily, based on
previous experience. Writing a document as a group has been done many time.
If their process require such kind of step, a group of users must be able to find
several process fragments that provide a solution for that (plan, edit, review,
release or plan, produce, edit, release).

The following example shows different steps in the life of a cooperative
project.

Fig. 3. The initial process

On figure 3, a small editing process is used to start the production of a doc-
ument. Several activities are instantiated. Then the process is started and a
validation/submit step are added to the process (figure 4).

A Dynamic Workflow Management System 211

Fig. 4. The process is completed with validation/submission

Fig. 5. The edition process is reused for a new document

From this result a new document has to be produced. Thus, the editing process
is imported again and connected to the validation activity (figure 5).

Process importation and Process cloning are the two main mechanisms that
we propose to support this kind of behavior. We follow the path of prototype
based language that do not make the difference between classes and instances.
Any process instance, running or terminated can be used to instantiate a new
process. In this case, activities are reinitialised to their initial state and every
properties of the original process are imported in the new one, except users. Thus
a process can be build by importing different processes and then by creating
dependencies between activities of these fragments. A process can be suspended
during this phase. If it is not, state of activities is immediately updated to reflect
the new state.

The dynamicity of the model allows this kind of behavior. Dependencies can
then be created between existing activities of the process and the imported ones.

4.2 Data Flow

A process is not just about coordinating activities. It is also about managing the
data that are used by these activities. Our model provides some simple support
for process data and has been integrated in a more sophisticated environment
for shared data management.

Two kinds of data are directly managed inside a process. Process data and
activity data. Process data are properties that can be access and changed by all
the activities of a process. Activity data acts as input and output parameters.
Each activity has a list of input and output data. These data are represented
as properties, with a name, a value and a read/write constraint. Then these
data are propagated to the succeeding activities. Conflict may occurs when two

212 F. Charoy, A. Guabtni, and M.V. Faura

properties with the same name are propagated to an activity through an and
join node. In this case, we choose to keep the last value for simplcity reasons,
but this point need to be consolidated. In cooperative activities, we consider
that activities use mostly data from shared workspace (document spaces, source
repository) where they commit and checkout data when they need it. For these
data, we consider that to each activity, a local workspace is created where the
shared data are checked out at the beginning of the activity, and checked in at
the end of the activity. Thus conflicts and concurrency problems are managed
by the shared repository and depends on its protocol.

4.3 Process Correctness

We put very few constraints on the structure of the executing process. This is
the cost of dynamicity. Only cycles are detected and forbidden except when they
belong to the special iterator construct. A process is always valid. Activities are
executable as soon as they meet their start or anticipation condition. A process
is considered as terminated when all its activities are dead (not reachable) or
terminated. This is a very different approach than the ones that are generally
considered in business process management, but we think that flexibility is more
important than consistency in this context. As the process is not supposed to
be executed a great number of time, consistency problems can be solved when
they occur.

4.4 Automating Activities

Acceptability of a process control by users depends on the benefits that the users
can obtain from the process execution itself. Automation of part of the process
is one of these expected benefits. Although many activities in a cooperative
workflow are user driven, there are still large part of them that can be automated.
Test, compilation, and different kind of supports that can be implemented by
services provided by the process execution environment.

In our model, we allow the attachment of scripts that we call hooks to state
changes of activities. For instance a script can be associated to the state change
from executable to executing or from executing to terminated of an activity. When
several hooks are associated to the same state change of the same activity, they are
all executed in an undefined order. For instance, when a user has finished and edit-
ing activity, its workspace can be automatically checked in in a shared repository.

Special kind of activities can be defined as completely automatic. As soon as
they become executable, they are executed and all the scripts associated to their
state change.

Failure of the execution of a Hook cancel the state change. Thus, hooks can
be used to express termination condition on activities. For instance, they can be
used to check the status of an activity when the user tries to terminate it. If the
check fails, the activity remains in the executing state. Note that state change of
activities are atomic and include hook execution. Hook implementation is done
in Java or with a script language (BeanShell). Conditions can be expressed using
the support provided by the language.

A Dynamic Workflow Management System 213

Hooks can be specific to an activity or associated to the process. A hook
associated to the process will be executed for a specific event for all activities of
the process. This allows to adapt the general behavior of a process.

Of course, hooks can make the definition of a process complex as it requires
some programming. Our goal is to provide library of hooks for very generic
actions and to provide the ability of using script language to describe simple
action. Hook have access to the context of the current activity and they can
be used to call WebServices in the scope of the activity execution transaction.
Figure 6 is an example of such a hook definition in Java that sends an email
when the correct state is reached. This hook is associated with an activity and
is executed when the activity is started. The parameters of the hook are objects
containing the context of execution, i.e. the activity and the process data.

Fig. 6. AfterStart hook implementation

Hooks can also be used to modify the current process. We plan to use hooks
to generate compensation process when an activity is cancelled or aborted but
this is still an ongoing research.

4.5 Role Management

Role management is classical. To each process is associated a set of role and ac-
tivities are associated to roles. User can take role and they can execute activities
that are associated to one of their role. Procedure (performer assignements) can
also be attached to activities to calculate user assignement.

4.6 Awareness

Every event (process change or state change) on a process produces an event
that is published in a message queue. Users may register to be notified of these
events. They can choose to be notified of every activity termination for a given
process. They will receive an email or an instant message. This is a very basic

214 F. Charoy, A. Guabtni, and M.V. Faura

form of awareness. The process edition tool is also kept synchronized with the
current state of the process. This is interesting but no so useful as we consider
that the pace of execution of a cooperative process is relatively slow, so events
will not occur so often.

5 The Implementation

The Bonita System (bonita.objectweb.org) is available as Open Source and is
actually in use but more for classical business process management than real
cooperative one. Its development has started in the LORIA lab and the main
support is now provided by Bull R&D. It is implemented on a J2EE Jonas Server
and uses the Jabber XMPP protocol for event notifications. Rich Swing clients
are maintained up to date with JMS events. A Web interface is also available for
an access behind a firewall. Figure 7 provides a view of the Bonita architecture.

Fig. 7. Architecture of Bonita

6 Related Work

A lot of work has been devoted to the problem of providing a dynamic of flexible
process environment. Some work was devoted to the management of change in
processes [6], change in process definition through different techniques [7]. Flex-
ibility and exception handling has also been proposed to manage unexpected
situations [8,9]. Other approach like [10] allows for dynamic changes to the pro-
cess instance but restrictions on the operations that can be applied in order to
maintain some consistency. More recent work [11] proposes to combine a classical
workflow model with some pocket of flexibility that reduce the constraints on
execution. In [12], the authors uses the idea of emergent workflows to allow adap-

A Dynamic Workflow Management System 215

tation of process instances at runtime. It combines planification and workflow
management.

A general study on state of the art of correctness criteria for dynamic change
in workflow can be found in [13]. The goal of most of this work is to maintain
the consistency between the process model and its instances in case of instance
or process evolution. All these approaches provide interesting insights on the
different kind of flexibility while keeping a correct workflow structure. Our point
is that structural consistency is not as important as the ability to build easily
dynamic processes that can be controlled by users.

Other works take different directions that are not based on Workflow Man-
agement systems. Some years ago, we tried to control process using temporal
constraints [14]. In this work, the process was not defined but the state of the
system was driven by constraints that forced the system state to go through
different stages. The results were interesting but the constraints were difficult
to write and to understand for end users. Other work have done in the same
direction [15]. Our point of view here is that although rule based systems or
constraint based system are interesting, they fail to provide the correct level
of support to end users and are hard to maintain. This is why, even with its
limitation, the workflow approach is still the best one for us at this time.

7 Conclusion and Future Work

With our approach, we have pushed to the extreme the idea of flexibility in work-
flow management. The process execution is considered as a program execution
where the program is written at runtime by its users. Processes are created by
hand or by importing or cloning existing processes. Of course, this limit the kind
of consistency control that can be done on the process structure, but this allow
also quick corrections in case of problems. The only part of the process really
known is the one that has already been executed. This requires also to support
process definition with library of predefined process fragments that solve generic
problems that may occur in cooperative processes (some kind of cooperative
process patterns) that need to be defined. It means also that we need to provide
more help for users with for instance a greater integration of the process with the
user environment. At best the WFMS should be able to guess that the user is
working on a given task and even that he has finished to work on it. It should also
provide some kind of ubiquitous todo list management system, easily accessible
by users. These are some paths that we plan to explore in a near future.

References

1. Charoy, F., Godart, C., Gregori, N., Hautecouverture, J.C., Jourdain, S.: Co-
opera : An environment for teaching and learning internet cooperation. In: IADIS
International Conference e-Society 2004, Avila, Espagne. (2004) 323–330

2. Herrmann, T., Hoffmann, M.: The metamorphoses of workflow projects in their
early stages. Computer Supported Cooperative Work (CSCW) 14(5) (2005)
399 – 432

216 F. Charoy, A. Guabtni, and M.V. Faura

3. Suchman, L.A.: Plans and Situated Actions : The Problem of Human-Machine
Communication (Learning in Doing: Social, Cognitive & Computational Perspec-
tives). Cambridge University Press (1987)

4. Ungar, D., Chambers, C., Chang, B.W., Holzle, U.: Organizing programs without
classes. Lisp and Symbolic Computation 4(3) (1991)

5. Grigori, D., Charoy, F., Godart, C.: Coo-flow: a process technology to support co-
operative processes. International Journal of Software Engineering and Knowledge
Engineering - IJSEKE Journal 14(1) (2004)

6. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: COCS ’95: Proceedings of conference on Organizational computing systems,
New York, NY, USA, ACM Press (1995) 10–21

7. Joeris, G., Herzog, O.: Managing evolving workflow specifications. In: Conference
on Cooperative Information Systems. (1998) 310–321

8. Hagen, C., Alonso, G.: Flexible exception handling in the OPERA process support
system. In: International Conference on Distributed Computing Systems. (1998)
526–533

9. Luo, Z., Sheth, A.P., Kochut, K., Miller, J.A.: Exception handling in workflow
systems. Applied Intelligence 13(2) (2000) 125–147

10. Reichert, M., Dadam, P.: ADEPT flex -supporting dynamic changes of workflows
without losing control. Journal of Intelligent Information Systems 10(2) (1998)
93–129

11. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process
constraints for flexible workflows. Inf. Syst. 30(5) (2005) 349–378

12. Bassil, S., Keller, R.K., Kropf, P.G.: A workflow-oriented system architecture for
the management of container transportation. In Desel, J., Pernici, B., Weske, M.,
eds.: Business Process Management. Volume 3080 of Lecture Notes in Computer
Science., Springer (2004) 116–131

13. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems–a survey. Data & Knowledge Engineering 50(1) (2004) 9–34

14. Skaf, H., Charoy, F., Godart, C.: A hybrid approach to maintain consistency of
cooperative software development activities (1997)

15. Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P., Zbyslaw, A.: Freeflow:
mediating between representation and action in workflow systems. In: CSCW
’96: Proceedings of the 1996 ACM conference on Computer supported cooperative
work, New York, NY, USA, ACM Press (1996) 190–198

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 217 – 228, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Agile Processes Through Goal- and Context-Oriented
Business Process Modeling

Birgit Burmeister1, Hans-Peter Steiert2, Thomas Bauer3, and Hartwig Baumgärtel4

1 DaimlerChrysler Research and Technology, REI/IK, Alt-Moabit 96a, D-10559 Berlin
2 DaimlerChrysler, ITP/EP, Bela-Barenyi-Str. 1, D-71063 Sindelfingen

3 DaimlerChrysler Research and Technology, REI/ID, P.O. Box 2360, D-89013 Ulm
4 University of Applied Sciences Ulm, Prittwitzstr. 10, D-89075 Ulm

{birgit.burmeister, hans-peter.steiert, thomas.tb.bauer}
@daimlerchrysler.com, baumgaertel@hs-ulm.de

Abstract. Today’s methods for business process modeling like extended event-
process-chains only allow the definition of static graph structures. They are not
flexible enough for instance to model the change management process of the
Mercedes Car Group (MCG) since it requires dynamic selection of process
variants, process schema evolution and their (partial) propagation on running
workflows, arbitrary dynamic process jumps and changes, etc. We have devel-
oped an approach for modeling agile processes based on goals and context
rules, which enables the required flexibility. Additionally it is possible to map
such a process model to a run-time infrastructure for process execution.

1 Introduction

Business processes in today’s companies are highly complex, involve many different
participants and spawn multiple information systems. Running business processes is
no longer possible without support by modern information technology. Moreover,
optimizing business processes is crucial for business success of companies. Therefore,
the processes have to be continuously improved and have to be flexible enough to
deal with the dynamic environment in times of global competition.

Compared to these challenges, the current status of business process management
in most companies is disappointing: “Should-be” processes are usually modeled by
graphical modeling tools like (in best cases) ARIS or UML, but mostly by simple
drawing tools like MS Visio or MS PowerPoint. All of these tools support a very
simple mind model behind modeling: processes are seen as long and fixed sequences
of activities, which is far away from reality and from the challenges. This leads to the
fact that models drawn in such tools are often used only to cover white walls in
the offices. The processes really executed in the companies are different from that on
the wallpapers, “shadow” processes dominate the “official” ones and IT systems are
not understood or inflexible and hence misused by many users.

The reason for inflexibility is that process support within the IT systems is (even
today) mostly hard-coded with no explicit representation of the process to be executed

218 B. Burmeister et al.

or supported. Hence, process changes are costly, imply the high risk of code modifi-
cation, and always lag behind reality.

Compared to typical business processes, e.g. in call centers or financial services,
managing engineering processes is even more challenging for several reasons: First of
all engineering processes are long running tasks. Constructing a car lasts for many
years and the next model of a large airliner is the result of nearly a decade of engi-
neering and production planning. During this time period many things change – what
has been an up-to-date approach in the beginning may be outdated at the end. Second,
engineering processes have to cope with uncertainty because of their mixture of
creative tasks, collaborative work and repeating activities. This results in very com-
plex processes with many alternative paths and sections that cannot be planned in
advance. Third, some products have become so complex that not all engineering tasks
can be performed within one enterprise. Special know how provided by external
partners has to be exploited, too. This results in engineering processes which are
partly executed by external partners. Managing such processes means to handle exter-
nal engineering tasks without knowledge about “how” they internally work to provide
their service.

Traditionally, business process modeling methods and workflow management sys-
tems have been developed based on a mind model of business processes as process
chains or task chains. Changes, uncertainty, and hidden processes are seen (and some-
times handled) as exceptions instead as regular events. Hence, support for the special
demand of engineering processes is limited [2]. Adequate support for engineering
processes in terms of modeling and execution obviously requires a completely new
approach for process management that is able to deal with the requirements for flexi-
bility, transparency, and efficiency, both in design and execution phase of the process.
A new modeling approach to enable agile processes has to

• support the design of huge, complex processes, by using a modular process model
but also allowing for an overall picture of the process

• decrease the effort for changing and maintaining the process model and
• allow flexibility and agility not only in process modeling but also in process execu-

tion through software systems.

We propose a new modeling and execution approach and illustrate it by means of an
engineering change management process in the automotive industry. We implemented
a software demonstrator for modeling and process simulation to show the flexible
execution of the change management process. We are very optimistic that our results
are applicable to other business process domains, as well.

This paper is structured as follows: we start with a short introduction to agent tech-
nology in Section 2, since our approach exploits concepts and advantages of this
technology. The new modeling approach is introduced in Section 3. Subsequently, we
describe the software demonstrator in Section 4, with special emphasize to the real-
life use cases modeled and executed with this tool. For productive use, agent technol-
ogy has to fit into a company’s existing IT infrastructure and should be built up based
on as much mature of-the-shelf software as possible. Hence, in Section 5 we present
how our approach can be mapped to existing products and tools. We conclude the
paper with a summary and an outlook to further research and development tasks.

 Agile Processes Through Goal- and Context-Oriented Business Process Modeling 219

2 Using Agent Technology for Enabling Agile Processes

Agent-oriented software technology was first introduced to deal with large-scale,
distributed software systems, which are embedded in dynamic environments, and
allow for the interaction of different partners. The term “agent” is used as a name for
an autonomous software component, which is able to deal with the dynamic environ-
ment and may interact with other agents [9]. Typical examples for the application of
the technology in the real world are production control [5] and logistics [17].

A specific architecture for agents is the so-called BDI-agent architecture. This ar-
chitecture is based on a formal theory of human reasoning [3]. Herein an agent is
described by its beliefs, i.e. the information an agent has about itself, its environment
and possibly other agents; its desires, i.e. motivations of the agents that drive its
course of action; and finally its intentions; i.e. the short-term goals that the agent
wants to achieve, derived from its desires and external events, to which the agents
wants to react. To achieve its goals/intentions an agent has certain plans how the goals
can be achieved. A plan consists of certain actions/steps that have to be executed to
achieve the corresponding goal.

The BDI architecture was first implemented by [15]. The operational semantics of
this implementation is as follows: The activities of an agent can be described as a
permanent jump between two different types of actions: on the one hand the execution
of basic tasks, which the agent uses to fulfill currently active goals (“execution activ-
ity”), and on the other hand the reasoning about the next basic action, which he will
execute (“control activity”). Execution activities can be:

• Interactions with the environment, e.g. with a user by creating a window, writing
some information to it, asking for an input, reading and interpreting the input and
writing the input data to an internal database.

• Sending a message to another agent.
• Waiting for a message from another agent, reading and interpreting the message,

and saving the message data.
• Performing some kind of computation, e.g. by executing an external software

procedure.
• Manipulating the own data base (belief base) based on incoming sensor informa-

tion, messages etc.

A control activity results in the choice of an execution activity which will be per-
formed next. For this, the agent introspects its goal base, its set of possible execution
activities and its belief base. From the goal base it extracts the goals which are acti-
vated and not yet fulfilled. Then it collects all activities which would help to fulfill
one of the active goals. Next, it checks which of the activities could be performed as
next execution action. That is, it checks if the current context (which is determined by
its current belief base) fit to the context the action was designed for. For example, if
the agent simulates a traveling salesman which currently travels, but gets tired, and
hence activates the goal to have a short break and close his eyes for 5 minutes, it may
have several execution actions (or sequences of basic actions): for the case that he
travels by train or by aircraft, he immediately may close his eyes. If he travels by car,
he needs to look for the next parking, go to there and can then have his break. The

220 B. Burmeister et al.

different actions are designed for different contexts. The information about the con-
text an action is made for is described by the so called context condition of the action.

The agent has to skip all actions which would fulfill a goal, but only in another
context. Among the remaining actions he chooses now the one he will execute next
(see Fig. 1). The plan whose condition evaluated to true is then chosen for execution.
The single steps of the plan are then executed as defined in the plan.

Fig. 1. Choosing and Executing of Plans

If there is more than one plan that could be executed in a context, it is possible to
attach priorities to plans. In this case, if more than one plan is executable at a time, the
plan with the highest priority is chosen for execution. More sophisticated methods to
choose from conflicting plans were realized in different implementations of the BDI
agent architecture. For example, the plan with the most specific context condition can
be chosen, or separate conflict resolution rules can be used to select one plan.

The BDI architecture is well-established agent architecture with several agent tools
and applications supporting the architecture, as e.g. JadeX [4]. The ideas of the BDI
architecture are also used for business process modeling and management, introduced
again by Georgeff and available in the Agentis platform [1].

Based on the ideas of goal-oriented and context-aware execution of agent plans,
and of using it for business process modeling and execution, we have enhanced the
ideas for a new form of business process modeling.

3 Modeling Agile Processes with Goals and Context

Inspired by agent technology and the concept of goal orientation and decomposition
the main ideas behind our modeling approach are (i) to have a modular process model
that describes the single steps of a process (sub-processes, activities) separate from
the goals of the process and the different contexts in which the process can be exe-
cuted; and (ii) to have different modeling levels, for the different parts of the process
model. This modular, goal- and context-based process model can then be executed as
an agile process, by considering current goal and context when determining the next
step in the process, just as realized in the BDI agent architecture. The agent can be
seen as an assistant or guide of the user who is responsible for “driving” a task
through the process. Since the agent can perform a lot of routine work for its “boss”,
it can take over the role of a “process driver” on behalf of the user.

 Agile Processes Through Goal- and Context-Oriented Business Process Modeling 221

3.1 Process Model

A process model in our approach consists of different parts that model the process in
different levels of abstraction:

• On the highest level the process is modeled by the goals the process has to fulfill.
The goals can be divided into a hierarchy of goals, one goal can be achieved by ful-
filling a number of sub-goals; e.g., the main goal of a change management process
is to realize a change in the final product. This goal can be achieved by fulfilling
several sub-goals, as initiating the change process; gathering the necessary infor-
mation, deciding on and finally realizing the change (see Fig. 2).

Fig. 2. Goal Hierarchy for Change Management

• On the same level the possible contexts of the process have to be defined. The
context of a process is described by various context variables and their range of val-
ues. These variables model different parameters that influence the flow of the proc-
ess. Typical context variables in the change management process describe the state
of the overall engineering process, the type of the affected product, parameters of
the change request, as e.g. number of parts involved, valuation, difficulty, etc.

• The next modeling level contains the process parts (plans, modules) that fulfill
the process goals on the lowest level of the goal hierarchy. Each module has an
associated “context condition”, that describes in which context this module is
used to fulfill the corresponding process goal. The context condition refers to
context variables and their values for a certain context. Let us look to a change
request that has to be assessed regarding certain criteria before a decision is
made whether to implement the change or not. In different contexts different as-
sessment criteria are relevant. Fig. 3 shows an example of different modules at-
tached to a goal. A context condition may look like:

((Assesment_Relevance-FactorA = TRUE) +
 (ContextVariable = Value)
...)

• The lowest modeling level contains detailed process models of the modules. These
models describe the activities that are executed within the module. These detailed
processes can be modeled in any conventional business process modeling notation,
e.g. BPMN [13] or UML activity diagrams [14]. Tasks in these models can be ei-
ther pre-defined tasks, as e.g. data base access, user interaction, and posting of
goals, or new basic procedures which have to be specified so that they can later be
implemented in a programming language for the execution system.

222 B. Burmeister et al.

Fig. 3. Process modules attached to goals

The different levels of the model correspond to different people in different roles:

• Process analysts, who have a very good understanding of the process but rather
small IT know-how, can model the hierarchy of goals and sub-goals, and define
which modules can be used to fulfill the goals.

• IT analysts with their good understanding of the process and an intermediate IT
know-how can support the process analysts in modeling the goal hierarchy and the
process modules. Together these two roles formulate the context conditions of the
modules.

• IT consultants (probably of an external consultancy company) have an intermediate
understanding of the processes and good IT know-how. Together with the IT ana-
lysts they specify the detailed flows of the modules.

• Software developers have only a rough understanding of the process but very good
know-how of IT. They write the code for single activities within the detailed proc-
ess models of the modules.

3.2 Evaluation

Prior to the demonstrator implementation (see below) we applied the modeling
method to analyze the current system as well as the requirements for a new change
management system. In the interviews we conducted with domain experts, software
designers, and end users of the current change management system we strictly asked
for goals, sub-goals and goal relations of the processes before we talked about task
sequences and detailed procedures. Even if the interviews were not a representative
sample from a scientific point of view we got some interesting hints about the suit-
ability of our approach in real world projects.

Focus on “What”: One source of misunderstanding between domain experts and
software designers stems from discussing how the system should behave instead of
focusing on what services it should deliver. By this, the domain expert limits the
ability of the software designer to find a good solution for his problems. Also, it is

 Agile Processes Through Goal- and Context-Oriented Business Process Modeling 223

very difficult for the software designer to really understand what the needs of the
domain experts are. With the goal oriented modeling approach the question to answer
is always “What do you want to reach?” By this domain expert and software designer
are equal partners in discussing how the goal should be reached. Further it is much
clearer what the system is expected to do.

Of course we had to face to some disadvantages, e.g. model review: Not all people
involved in requirements analysis are familiar with technology. During our modeling
phase those domain experts were guided by a modeling expert. In order to avoid
misunderstandings the result needs to be reviewed by the domain experts. While goal-
orientation has shown to be a very good tool for guiding people towards new solu-
tions it is not appropriate for review: Most people check the model by applying use
cases in order to see “how it works”. For this purpose a “bullet-and-arc” representa-
tion seems to be more suitable.

As for all concepts there are pros and cons – there is no silver bullet in computer
science. But our experience shows that the results from process analysis are much
better and justify additional efforts in other development phases.

4 Demonstrator

To demonstrate the feasibility of the modeling approach and the flexible execution of
agile processes we have implemented a software demonstrator. It shows:

• the modeling of the process model on different levels of abstraction: Different
levels of the model can be modeled by people having different roles (see above)

• the automatic, and thus seamless, translation of the process model into an “execu-
table” process model, allowing for easy and fast process improvement

• the flexible execution of processes by achieving the process goals and taking into
account the current context of the process.

This demonstrator consists of three components (see Fig. 4):

• A graphical editor, that allows building the process model with goals, context, and
modules as described in Section 3. Here we re-used an own universal graphical
editor for arbitrary graphs implemented earlier. This tool, called GraphEdit, is
based on Java and XML and is designed for maximal modeling flexibility. That is,
the meta-models of the graphs have to be specified in a specific XML format
which will be read as a configuration file. GraphEdit provides the node and arc
types of the meta-model with their parameters for building graphs. The graphs are
stored again as XML files. When loading an existing graph model, GraphEdit loads
the corresponding meta-model first. To use GraphEdit in our demonstrator we only
needed to design a new configuration file, and to create a graphical representation
(icon) for the node types. Our meta model contains node types for goals and mod-
ules with their context conditions as well as nodes for BPMN like basic processes.

• The process model is then automatically translated into an “executable” process
model by an XML-based translator. The process model is stored in an XML-based
format (see above). This format is translated into an “executable” process model
that can be taken as input for the process engine. In the software demonstrator there

224 B. Burmeister et al.

are two different translation components: one translates the goal hierarchy and con-
text (“goal-translator”), another one translates the basic module processes and their
context conditions (“plan translator”).

The goal translator is able to translate the goal hierarchies and definitions of
context variables completely automatically. The plan translator translates process
modules that are composed of predefined tasks and certain flow constructs (se-
quence, alternative and parallel branching). For those tasks within process modules
that are not pre-defined the code has to be added to the executable model in this
step. The resulting executable process model is now input for the process engine.

• The process engine uses the executable process model to control the execution of
single process modules, based on current goals and context as described in Section 2.
For the demonstrator we have used the agent tool JadeX as process engine. JadeX
is an extension of the widely used agent environment Jade. It extends Jade with a
BDI agent architecture [4].

Fig. 4. Architecture of Demonstrator for Agile Processes

The demonstrator was applied to the goal- and context-based process model of the
engineering change management process of MCG. Different scenarios were tested
with the demonstrator, that show how the process can adapt to unplanned events,
monitor and react to missing deadlines.

The main advantages of the approach are that it provides a highly modular process
model that allows for a flexible and agile adoption of the process, i.e. the process
instance is composed of the single modules during process execution. The values of
context variables drive the selection of process modules. If a value of a context vari-
able changes during process execution, this will result in the selection of a different
process module, than the one, which would have been predicted at the beginning of
the process. This resembles an on-line migration to a new process-schema (or even to
parts of it). The demonstrator also allows for the reactivation of already fulfilled
goals, and thus realizing partial returns to earlier process parts (i.e. dynamic jumps
and changes). Finally, a highly parallel execution of modules is possible, since no
sequence restrictions are modeled on the goal level.

5 IT-Infrastructure for the Execution of Agile Processes

Until now, we have presented an approach for modeling and a software demonstrator
for modeling and execution of agile processes. In this section, run-time aspects are
considered: An infrastructure for a real-world application at DaimlerChrysler’s MCG

 Agile Processes Through Goal- and Context-Oriented Business Process Modeling 225

engineering dept. has to cope with non-functional requirements as very good stability,
performance, scalability, etc. Furthermore, it has to fit to the existing IT-infrastructure
and products of the strategic IT-partners. Run-time components for process execution
additionally always have to fulfill several functional requirements as the storage of
the organizational model, actor assignment for activities (e.g. role resolution), work-
list management incl. delegation and substitution for tasks, integration of legacy
applications, documentation of process execution and user actions, etc.

Workflow products [6, 11] already offer (many of) these functions in order to sim-
plify the implementation of application systems. Their usage is reasonable, therefore,
to implement the module processes (see lower part of Fig. 5).

Fig. 5. Possible Architectures for Process Execution using the Modeled Context Rules

These modules contain interactive and automatic activities and have a static struc-
ture. This allows realizing them with traditional workflow technology using all the
features mentioned above. Furthermore, these features are solely required at this level,
since the atomic activities (tasks) are completely contained in the module processes.

A drawback of workflow systems is their limited flexibility. In the given scenario,
this is a serious problem for the top-level workflow since it has to be modeled using
goals and context rules for module selection (cf. left part of Fig. 5). In the following,
different architectures are analyzed that enable the execution of such processes and, in
addition, fulfill the mentioned functional and non-functional requirements. They
differ in the execution style for the top-level workflow (cf. Fig. 5, alternatives 1 to 4).

1. Top-level process control by a rule engine: The modeled context rules can be
automatically translated into event-condition-action (ECA) rules that may be exe-
cuted by a rule engine (e.g. ILog [7]). This enables a very agile top-level process
since no graph-oriented process model is used at all. The disadvantages are that
this approach will result in a large number of rules, which are difficult to maintain.
Additionally, there do not exist products with an integrated (ECA) rule engine and
a workflow engine. Two different systems, therefore, have to be coupled, with the
consequence that the actions of the rules will call (independent) workflow in-
stances. A context for the whole process does not exist. Process instance data has

226 B. Burmeister et al.

to be stored externally and is used by the rule engine and multiple modules (i.e.
workflow instance fragments). The workflow engine, therefore, is not able to use
workflow internal data in process control (e.g. determining actors of former mod-
ules for task assignment). Finally, the coupling of different system types may cause
implementation effort and decrease performance and stability.

A variant of this approach is to realize the top-level process control by BDI
agents instead of a rule engine. Platforms as Agentis [1] offer support for process
execution as well, but for (large) real-world applications the limitations of the cor-
responding functions are not acceptable. Instead, a production workflow system
[11] is required for the control of the module workflows. As discussed above for
rule engines, this results in the necessity of coupling two different system types.

2. Top-level as pseudo-workflow: The context of the workflow instance may be kept
by using a (top-level) workflow that stores the process instance data and only con-
sists of a loop with a single activity inside. Its task is to call the module sub-
workflows. The workflow uses business rules in order to select the modules. There
is no necessity for a complete rule engine since the rules are actively called and the
actions (sub-workflow calls) are triggered by the workflow. Therefore, a rule com-
ponent of a today’s workflow product, as for instance IBM Process Server [6], is
sufficient. The whole application may be realized within one product. This reduces
the implementation effort and allows good maintainability. Since the context rules
are called continuously and the whole top-level process is controlled by the rules,
arbitrary agility may be achieved. Parallel execution of modules can be achieved
by starting the modules asynchronously. Since even the synchronization of parallel
branches is modeled by the context rules, they guarantee that an activity intended
to be executed after a parallelism, in fact, can only be started if these branches are
completed.

3. Top-level as state machine: Workflow products as IBM Process Server enable
workflow modeling in a state machine style. The goal- and context-oriented model
may be automatically translated into a state diagram: The states directly correspond
to the modeled goals and the context rules are used to control the state changes and
to select module workflows. This allows application implementation within one
single product, the context of the process instance is kept, and the modeled goals
are even visible at run-time monitoring. The problem with this approach is that a
state machine only allows one single active state at one time. Therefore, parallel
branches have to be realized at the module level. In the given process almost all
activities are executed parallel to others. This would result in a small number of
very large modules which have to be realized as traditional workflows. Such a re-
striction of the agility of process execution is not acceptable.

4. Top-level as traditional workflow: To overcome the restrictions with respect to
parallel branches, the top-level process may be realized as workflow that is con-
trolled using traditional workflow technology. Again, context rules are used for the
selection of branches and modules, and the whole process control happens within
one system. Unfortunately, it is not possible to derive the process graph automati-
cally from the goal-oriented model. Another drawback is the limited flexibility of
workflow systems, which typically do not allow arbitrary jumps and dynamic
process changes. The rules influence the control flow only at pre-defined points
what restricts agility of the process execution. Even flexible workflow approaches

 Agile Processes Through Goal- and Context-Oriented Business Process Modeling 227

as ADEPT [16] do not offer this kind of agility since there are still based on graph-
oriented process models. On the other side, since for each decision point only a few
rules are assigned, implementation complexity is reduced and maintainability in-
creases.

The selection of the optimal architecture depends on the concrete requirements of
the given process and application scenario. Architecture 1 has several disadvantages
which result from the necessary coupling of different systems and the lack of com-
mercially available systems. Architecture 3 may only be used for processes that do
not require parallel branches. Since the possibility of parallel execution paths is an
important aspect of agility, such processes perhaps do not exist at all. The architec-
ture 4 should be chosen if the offered agility is sufficient, since it maintains the proc-
ess structure and the workflow products are used as intended. For the given change
management process, however, extreme agility is required with the result that archi-
tecture 4 may not be used. Therefore, architecture 2 seems most suitable: All the
agility enabled by the goal- and context-oriented modeling may be achieved at run-
time as well and most features of the workflow system can be used (e.g., user and
work-item management). Only workflow actions that depend on the existence of the
whole workflow graph (e.g. process visualization) are not useable with the standard
realization of the workflow products.

7 Discussion, Conclusion, and Outlook

We have presented an approach for business process modeling of agile processes
which was inspired by ideas from agent-oriented technology. Our modeling approach,
which defines a process model with goals, contexts, and process modules, seems
especially suitable for engineering processes. Different roles may model the process
on different levels. Process analysts can concentrate on “what” should be achieved by
the process; IT analysts and software developers can later define the “how”.

Although the coupling of agent technology and business process management is
not new, existing approaches [8], [11] focus on agents’ communication and coopera-
tion (and mobility) abilities to support the process execution. Single tasks are modeled
as services and agents offer and use these services in executing the process. Moreover
different types of agents are used for the implementation of a workflow system [10].
Agent communication and cooperation can (and will) enhance our approach for
expanding it for the coordination of multiple processes/ agents. For the execution we
are investigating several IT-infrastructures as described in section 6.

Up to now we have demonstrated the feasibility of the modeling approach in the
area of engineering change management. We have modeled the process and have
realized the automatic translation and agent based execution of the process model.
Finally, we have investigated different software architectures for the implementation
of a new change management system.

We are now in the process of evaluating several potential partners for the imple-
mentation of that system. The partners and their chosen architectures and technologies
have to enable the required agility by offering the goal-oriented and modular model-
ing approach and demonstrated agile process execution.

228 B. Burmeister et al.

Acknowledgement

We would like to thank Jürgen Scharpf and the NCM-Team for their support. Special
thanks to Christian Wiech for his excellent work in implementing the demonstrator.
Finally we would to thank the anonymous reviewers. Due to space limitation we were
not able to consider all of their valuable comments. Nevertheless we will take them as
inspirations for our future work.

Literature

1. Agentis Software: Adaptive Enterprise™ Solution Suite. http://www.agentissoftware.com
2. T. Beuter: Workflow-Management für Produktentwicklungsprozesse. Dissertation Univer-

sität Ulm. (2002)
3. M. Bratman: Intention, Plans, and Practical Reason. Harvard University Press. (1987)
4. L. Braubach, A. Pokahr, W. Lamersdorf: Jadex: A BDI-Agent System Combining Mid-

dleware and Reasoning. In: [18]. (2005)
5. S. Bussmann, N.R. Jennings, M.J. Wooldridge: Multiagent Systems for Manufacturing

Control. A Design Methodology. Springer Series on Agent Technology. Springer. (2004)
6. IBM Redbook: Technical Overview of WebSphere Process Server and WebSphere Inte-

gration Developer. (2005)
7. ILog Technology. http://www.ilog.com/products/businessrules
8. N.R. Jennings, T.J. Norman, P. Faratin, P. O’Brien, B. Odgers: Autonomous Agents for

Business Process Management. In: Int. Journal of Applied Artificial Intelligence 14 (2)
145-189 (2000).

9. N.R. Jennings, M.J. Wooldridge (Eds.): Agent Technology – Foundations, Applications,
and Markets. Springer. (1998)

10. G. Joeris: Decentralised and Flexible Workflow Enactment Based on Task Coordination
Agents. In Proc. Workshop Agent-Oriented Information Systems (2000)

11. F. Leymann, D. Roller: Production Workflow - Concepts and Techniques. Prentice Hall.
(2000)

12. M. Merz, B. Liberman, K. Müller-Jones, W. Lamersdorf: Inter-organisational workflow
management with mobile agents in COSM. In: Proc. 1st. Conf. Practical Applications of
Intelligent Agents and Multi-Agent Technology (1996)

13. Object Management Group: Business Process Modeling Notation – Specification. (2006)
14. Object Management Group: Unified Modeling Language – Superstructure, Version 2.0.

(2005)
15. A.S. Rao, M.P. Georgeff: BDI Agents: From Theory to Practice. In V. Lesser (ed.) Proc.

1st International Conf. on Multi-Agent Systems. MIT-Press. (1995)
16. M. Reichert, P. Dadam: ADEPTflex – Supporting Dynamic Changes of Workflows without

Losing Control. Journal of Intelligent Information Systems, Special Issue on Workflow
Management Systems 10(2). (1998) 93-129

17. G. Rimassa, M.Calisti, M.E. Kerland: Living Systems™ Technology Suite. In: [18].
(2005)

18. R. Umland, M. Klusch, M. Calisti (eds.): Software Agent-Based Applications, Platforms,
and Development Kits. Whitestein Series in Software Agent Technology. Birkhäuser.
(2005)

Workshop on Enterprise and
Networked Enterprises

Interoperability (ENEI 2006)

Workshop on Enterprise and Networked
Enterprises Interoperability (ENEI 2006)

Preface

Following the success of the first workshop, ENEI’2006 (http : // www.loria.fr/
˜nacer/BPM-ENEI05/ENEI-CfP.html), this second event addressed computer-
supported integration and interoperability of enterprise applications and
software. Indeed, enterprises are provided with collections of heterogeneous ap-
plications and software tools that were neither designed nor developed to favor
their interaction and their cooperation.

The problem is more crucial when one considers networked enterprises and
enterprise expansion (through, for instance, alliances or mergers). Moreover, in-
teroperability within an enterprise and between enterprises is not limited to data
interoperability but should also consider additional levels like applications, busi-
ness models, process models, enterprise models, and their supporting systems
and software.

The workshop was divided into three sessions. The first session shows issues
related to enterprise systems interoperability, and more particularly at the man-
ufacturing and shop floor level of enterprises where the product, as seen by
enterprises applications, is one of the main information produces and consumes.
Interdependence between the subsystems of an enterprise is one of the driving
reasons for integrating the enterprise.

The second session is related to model-based approaches for enterprise in-
teroperability. Indeed, while a modeling framework is needed to map semantics
between enterprise models, business-to-business collaboration models also re-
quire a flexible IT-architecture. Different protocols, such as P2P, may be applied
to cooperatively develop business process models for enterprise interoperability.

The last session deals with ontology-based approaches. These approaches may
be evaluated within an application for decision making, but also using Web ser-
vices technology applied to workflow time management algorithms. However,
research is in progress to define reference conceptual frameworks to organize on-
tology knowledge spaces and semantic annotations to augment enterprise models
with meaningful meta-data, in order to improve human understanding, machine
interoperability, and advanced automatic information management.

It has been a great pleasure to work with the members of the international
program committee, who dedicated their valuable effort to reviewing, in time, the
submitted papers: we are indebted to all of them as we are indebted to the IN-
TEROP Network of Excellence (FP6 IST-508-011, http://www.interop-noe.org)
for its scientific and financial support.

June 2006 Nacer Boudjlida
Hervé Panetto

(Editors)

ENEI’06 Workshop Committees

Workshop and Program Committee Co-chairs

Boudjlida, Nacer LORIA UMR 7503, Nancy-University, France
Panetto, Hervé CRAN UMR 7039, Nancy-University, CNRS,

France

Program Committee

Baina, Karim ENSIAS, Morrocco
Bellahsène, Zohra University of Montpellier, LIRMM, France
Berio, Giuseppe University of Turin, Italy
Boudjlida, Nacer LORIA UMR 7503, Nancy-University, France
Boufaida, Mahmoud University Mentouri, Constantine, Algeria
Carvalho, Joao Alvaro University of Minho, Portugal
Castano, Sylvana University of Milan, Italy
Chatha, Kamran Ali Lahore University of Management Sciences,

Pakistan
Chen, Pin Defence Science & Technology Organisation,

Australia
D’Aquin, Mathieu LORIA UMR 7503, Nancy-University, France
Diamantini, Claudia Università delle Marche, Italy
Dubois, Eric CRP Henri Tudor, Luxembourg
Gruhn, Volker University of Leipzig, Germany
Hahn, Axel University of Oldenburg, Germany
Jeusfeld, Manfred Tilburg University, The Netherlands
Johanson, Paul KTH, Sweden
Krogstie, John N orwegian Institute of Science and Technology,

Norway
Lenzerini, Maurizio Universitá degli Studi di Roma “La Sapienza”, Italy
Mezgar, Istvan Hungarian Academy of Sciences, Hungary
Molina, Arturo Tecnológico de Monterrey, Mexico
Opdahl, Andreas L. University of Bergen, Norway
Oquendo, Flavio University of South Brittany at Vannes, France
Panetto, Hervé CRAN UMR 7039, Nancy-University, CNRS, France
Perrin, Olivier LORIA UMR 7503, Nancy-University, France
Petit, Michaël University of Namur, Belgium
Tari, Zahir RMIT University, Melbourne, Australia
Slimani, Yahya FST, University of Tunis, Tunisia
Velardi, Paola Universitá degli Studi di Roma “La Sapienza”, Italy
Whitman, Larry Wichita State University, USA

234 Organization

Additional Referees

Bergholtz, Maria KTH, Sweden
Elgedawy, Islam RMIT University, Melbourne, Australia
Gooneratne, Nalaka RMIT University, Melbourne, Australia
Jaudoin, Hélène ISIMA, France
Montanelli, Stefano, University of Milan, Italy
Saleem, Khalid University of Montpellier, LIRMM, France
Shazib E., Sheikh Lahore University of Management Sciences, Pakistan

Session 1: Enterprise Systems
Interoperability Issues

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 237 – 248, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Shop Floor Information Management and SOA

Konrad Pfadenhauer1, Burkhard Kittl1,
Schahram Dustdar2, and David Levy3

1 Vienna University of Technology, Institute for Production Engineering,
Karlsplatz 13, 1040 Vienna, Austria

{pfadenhauer, kittl}@mail.ift.tuwien.ac.at
2 Vienna University of Technology, Information Systems Institute,

Distributed Systems Group, Argentinierstraße 8/184-1, 1040 Vienna, Austria
dustdar@infosys.tuwien.ac.at

3 University of Sydney, School of Electrical and Information Engineering, Room 327,
Engineering Faculty Building J13, Sydney, NSW, Australia

dlevy@ee.usyd.edu.au

Abstract. Service Science is a new term for a new paradigm which aims at the
solution of an obvious problem: How to make the increasing fusion of business
and IT successful in a dynamically changing and risk adverse environment?
This question has to be raised at different levels of abstraction, from
macroeconomic viewpoints circulating around qualities of service societies to
service oriented architectures of business applications. We worked in an
interdisciplinary team consisting of industrial engineers and distributed system
experts on the issue of business and IT alignment in a well-defined system,
namely the shop-floor domain in discrete production industry. The result of this
work is an ANSI/ISA 95 compliant model-driven methodology for
manufacturing operations management. This methodology was evaluated by
means of the realization of a SOA (Service Oriented Architecture) demo
scenario for production operations management.

1 Intelligent Manufacturing Information Systems

Discrete manufacturing shop floor information and control flow management is still a
challenging task due to the heterogeneity of data structures and information systems
(automation components inclusively). The objective of vertical integration from high-
level Enterprise Resource Planning (ERP) to the machine level is still unrivalled.
Existing solutions led to static process logic coding within monolithic Manufacturing
Execution System (MES) utilizing elaborate interfaces for rudimentary integration,
lacking the needed flexibility and scalability. This proceeding is not sufficient
regarding the requirements of today’s dynamic production environments.

Internet based manufacturing, leveraging the latest technologies to achieve
distributed information systems, provides new possibilities not only for static, data
centric integration of the shop floor into an overall enterprise architecture, but also for
full process integration of control and thus field level by means of SOA.

238 K. Pfadenhauer et al.

Fig. 1. Internal and external service providers at the shop floor control level

We assume that sub-system vendors at the control level (e.g. for tool management
or for storage systems) will follow the trend towards service orientation already
visible for ERP level modules. More control tasks get transferred to the field level
PLCs (Programmable Logic Control) or open PC terminals, where the knowledge is
concentrated and reaction times are the shortest. Hence Fig. 1 depicts potential service
providers at different levels of the shop floor hierarchy, resulting in a complex
distributed architecture which demands for system modelling and process life-cycle
management. Public services into and out of the shop floor are next to the outlined
vertical, mainly internal integration an issue too. Machine vendors are offering
services like online maintenance, education support, planning and optimisation of
production and logistics systems or other e-Industrial/tele-services. In our opinion this
public, horizontal connectivity is in the short run not as promising as the vertical
service integration due to higher coordination demands and security reasons. Recent
developments at the machine level (e.g. Radio Frequency Identification) strengthen
the call for an intuitive, model-based overview about service distribution and
communication networks within the complete architecture.

The aim of this project was to investigate the potential of SOA for information and
control flows in the shop floor domain, integrating applications as well as human
workers as loosely coupled service providers. A modelling methodology was
developed, which brings together system modelling at different levels of abstraction
as well as process detailing and implementation at the execution level. Thus by means
of existing standards concerning modelling (ANSI/ISA 95, UML (Unified Modeling
Language)) as well as implementation technologies (Web Services, UDDI (Universal
Description, Discovery and Integration)) Business and IT alignment was established.

The structure of this paper is as follows. We first discuss in Section 2 some
manufacturing domain information architecture proposals. In Section 3 we present our
model driven service architecture methodology. After that the implementation
environment for a demo scenario is outlined in Section 4. Section 5 demonstrates the
application of our MDSA (Model Driven Service Architecture) methodology by means
of the demo scenario. With a conclusion and an outlook at the work to come we will
finish this paper.

 Shop Floor Information Management and SOA 239

2 Manufacturing Domain Information Architecture Proposals

Enterprise Architecture (EA) research resulted in a number of elaborated architecture
proposals with a more general scope (Zachman Framework, PERA (Purdue Enterprise
Reference Architecture), GERAM (Generalized Enterprise Reference Architecture
and Methodology)) as well as a manufacturing scope (CIMOSA (Computer Integrated
Manufacturing Open System Architecture), GRAI Integrated Method). In our opinion
these concepts introduce important ideas regarding modelling, modularization and
abstraction levels. For instance the basic principles of MDA (Model Driven
Architecture) or SOA can all be found in CIMOSA. Regarding modelling techniques
applied as well as the assumptions made at the implementation level lack of
standardization is the major problem of these architectures. We believe a feasible
approach has to take the given techniques and technologies at the execution level into
account and embed them into a broader architecture which supports Business and IT
alignment. A joined initiative for manufacturing domain object and control flow
standardization is ANSI/ISA 95 [2], [3], [4], a proposal derived from PERA. The
limited scope, the use of UML and the focus on the higher abstraction levels as with
the corresponding information flows makes this a very promising approach which we
utilize and extend towards implementation level modelling. Proposals for BPM
(Business Process Management) at the implementation level leveraging enterprise
application integration, workflow or more recently process markup techniques
(BPEL, BPML, XPDL) are promising, but concepts are missing how the integration
into an overall platform independent enterprise architecture can be established. For a
detailed discussion of state-of-the-art techniques and technologies concerning EA two
EU initiatives delivered excellent publications [5], [6]: The aim of INTEROP
(Interoperability Research for Networked Enterprise Applications and Software,
launched 2004) is the conceptual as well as the technical integration of business by
means of reference models. Contrary to our project the inter-enterprise system
integration focus is dominant. Nevertheless, the chosen approach of MDA and SOA
alignment, together with semantic annotations, shows some similarities to the
approach presented in the following. But the INTEROP deliverables remain at a
conceptual level, whereas in this work a domain specific real-world implementation
proofs the quality of the methodology. Whereas INTEROP is the nucleus mainly of
the university research community, ATHENA (Advanced Technologies for
interoperability of Heterogeneous Enterprise Networks and their Applications,
launched 2004) is an IT industry platform. Although useful but abstract reference
models were available from the very beginning, very little relevant information was
published how they can be implemented. Lippe et al. [7] demands for a 3-level
modelling approach (Business, Technical and Executable Processes) and claim that a
process abstraction concept is missing in existing architecture proposals. In their
survey on modelling languages they claim that UML does not support business
context, but in such a comparison the UML extension mechanism should be
considered. All the more, as suitable UML profiles are provided for model driven
SOA development (Berre [8]: UML Profile for PIM4SOA; Pondrelli [9]: UML
Profiles for Services, Business Objects and Ontologies). In Pondrelli [10] it becomes
clear that no new profiles are delivered, but existing proposals (e.g. IBM UML 2.0
Profile for Software Services) are incorporated in a rudimentary methodology.

240 K. Pfadenhauer et al.

Berre [8] presents the ATHENA Interoperability Framework. It would have been
interesting to get more information about the ATHENA Service Oriented
Interoperability Framework or the proposed MPCE Architecture (including Platform
Independent Model for SOA (PIM4SOA) & Model Transformations) beyond the
description in INTEROP D6.1 [11], but the content published so far is not sufficient
for a detailed discussion. In addition, the focus on cross-organizational business
processes with a strong emphasis on OMG Meta-Object Facility related model
mapping increases the scope which is therefore much broader then the objectives of
the single modelling language, intra-organisational approach presented here.

Recently, more emphasis on Service Oriented Analysis and Design (SOAD) can
be observed. Arsanjani [12] rediscovers the three model abstraction dimension of
reference architecture proposals like CIMOSA when he states that the process of
service oriented modelling consists of three phases, namely identification,
specification and realization. But he correctly postulates that it can no longer be an
exclusively and thus unsuccessful top-down approach of domain decomposition, but
a combination of top-down, bottom-up (existing asset analysis) and middle-out
(goal-service modelling). For our methodology we adopted the hybrid SOAD
modelling approach of Zimmermann et al. [13] who suggests a combination of
Object Oriented Analysis and Design, BPM and EA techniques. It is the aim of this
work to enrich and unify these fragments towards a comprehensive SOAD
approach. Moreover, the methodology has to be validated by means of real-world
standards, techniques and applications. Due to the weaknesses of existing solutions,
we want to build up a SOA for the shop floor, optimising the trade-off between
flexible interconnectivity and network infrastructure complexity. To overcome a
situation of vertical, interrupted processes and partly unavailable, partly static
accessible functionalities we introduce our concept of a MDSA for the shop floor a
combined top-down/bottom-up methodology realized in a tool for user friendly
model creation. On a conceptual base, the abstract MDA and SOA concepts are
adopted for and enriched with concrete technologies and tools to implement a real-
world framework for the shop floor domain.

3 Model Driven Service Architecture for the Shop Floor

Our methodological considerations started with the domain dimensions Business,
Architecture and Application, each with its own modelling concept. SOAD has to
bring those three together. End result should be a platform independent model, which
has to be mapped to the actual and potential system assets. Hence it becomes a
platform specific model, which will loose some of its Business readability as
implementation details are added. In Fig. 2 we depict the resulting methodology
specifically for the shop floor domain. The before mentioned domain dimensions
were replaced by the classical hierarchy levels, namely Enterprise Level, Shop Floor
Control Level and Shop Floor Field Level (Fig. 1). In the past the modelling concepts
where utilized separately at the levels as shown in the figure.

 Shop Floor Information Management and SOA 241

Fig. 2. Model Driven Service Architecture for the shop floor

First, fast and easy initial modelling of a given shop floor system has to be
supported, focusing on functionality and connectivity of the system as a whole. We
achieve this by a generic model collection called Shop Floor Tool-Box (SFTB). The
SFTB is an ANSI/ISA 95 compliant tool box which enables fast and standardized
modelling of particular shop floor scenarios. The tool consists of an abstract service
repository of basic and complex services (what dimension), concrete service providers
(who dimension), binding mechanisms and data entities (with dimension). The PSFM
(Particular Shop Floor Model) at the end of the Design phase can exist at two
abstraction levels, platform/computer independent and platform specific. The latter
constitutes the ESFM (Executable Shop Floor Model). Whereas the PSFM will
consider the actual system specification only roughly (coarse grain functionality
distribution), the ESFM must be fully aligned with the assets either already existing or
under construction. The PSFM has to support long term platform, infrastructure and
service provider decisions through as-is and to-be comparisons. This high level model
has to interact with the ESFM concerning process definition. The latter serves at a
tactical level for the (re)design of service flow definitions which are semantically rich
enough for executable code generation. Knowledge gained from the PSFM and ESFM
should be fed back into the Shop Floor Tool-Box, which more and more becomes a
valuable knowledge base.

4 MDSA Implementation – Assumptions, Technologies and Tools

We already mentioned the different approaches regarding SOAD. We strongly believe
that only a combined approach can be successful, matching the given asset structure
against high-level requirement business models. Thus we did a comparison of top-
down and bottom-up approaches for model driven WS-composition, which led to the

242 K. Pfadenhauer et al.

result that satisfying technologies enabling stringent methodologies from business
oriented system models down to executable service flow definitions hardly exist.
Nevertheless, the approaches evolving around UML seemed most promising.

Therefore we implemented a combined Specification and Representation approach
depicted in Fig 3, with a methodology based on UML 2.0 for high-level use-case and
business scenario modelling (system model) resulting in platform independent service
collaboration views (modified IBM UML 2.0 Profile for Software Services [14] as
Model Representation Language). The System Model, which at a low level defines the
composition specification, derives its syntax and semantic from a combined meta-
model of an ANSI/ISA 95 Profile (leveraging the Equipment/Functional Hierarchy
Model of Part I and the Activity Models of Part III) and the IBM Profile for Business
Modeling [15]. Corresponding templates ease the model management. The repository
of assets (service providers, realizing components) as well as other relevant
information (data or binding types) are available in the low-level models and are
incorporated in the fine-grained flow models (bottom-up). These flow models are the
blueprint for the Composition Model, in our case BizTalk Orchestration Designer
orchestrations. At this stage automated mapping between Model Representation
Language (UML 2.0 Activity Diagram) and Executable Composition Language
(XLANG/s) is not included. Other mapping requirements, which would gain
importance if different modelling notations shall be integrated, are not relevant due to
the limitation of modelling environments (Rational Software Modeler 6.0.1 with
profile plug-ins and BizTalk Orchestration Designer 2004).

Tasks

Executable Composition
Language

Composition
Model

Run-Time
Environment

Development
Environment (IDE)

Model Representation
Language

Modeling
Environment

System
Model

Composition
Specification

Specification and
Representation

Testing

Discovery/Binding

Mapping

Syntax/Semantic
Verification

Environments

MDSA

Deployment

Monitoring

CIM/PIM in UML 2.0 (ISA S95
Profile and Modeling Templates)

UML 2.0 Profile
Business Modeling

UML 2.0 Profile
Software Services

Windows Server UDDI
.NET,

BizTalk Server

 VS .NET

Rational Software Modeler,
BizTalk Orchestration Designer

XLANG/s

BizTalk Orchestration

Fig. 3. MDSA implementation

 Shop Floor Information Management and SOA 243

We focused on discovery and binding, typically supported by a service broker,
which is next to service provider and service requestor the third major role in the
basic SOA paradigm. In the demo scenario this role is performed by the UDDI 1.0
compliant Windows Server 2003 UDDI. The Microsoft platform also prevails
regarding the Run-Time Environment (.NET 1.1 and BizTalk Server 2004) as well as
the Development Environment (Visual Studio .NET 2003).

5 MDSA Implementation by Means of a Demo Scenario

Within the modelling framework the complete ANSI/ISA 95 standards can be
visualized and used as the guideline for domain modelling. Hence the methodology
implementation follows ANSI/ISA 95 Part 1 concerning the general assumptions
about hierarchies and functions. The generic Functional Hierarchy Model and the
Equipment Hierarchy Model are the bases for functionality allocation and
categorization. The implemented functionality in the demo scenario is part of the
Production Operations Management grouping within the Manufacturing Operations
Management Model.

ANSI/ISA 95 models are on the one hand the high-level framework for the SFTB,
a collection of models and artefacts ready to be used for modelling projects. Thus the
first task was to build an ANSI/ISA 95 UML Meta-Model in our modelling
environment. On the other hand this Meta-Model constitutes the UML profile for
ANSI/ISA 95, which is used throughout the modelling efforts. Mainly, the purpose of
this profile is to keep the relationships to the business related ANSI/ISA 95 models
and terminologies especially in low-level diagrams and models alive. Nevertheless, it
is important to state that the SFTB is more than an ANSI/ISA 95 Meta-Model. It
contains more information at different levels of abstraction and shall grow with every
real-world modelling project, which means entities like service providers, data type
definitions (OAGIS 9.0 Business Document Objects, OPC XML DA etc.) are
continuously fed back into the SFTB.

5.1 From SFTB Constructs to Particular Shop Floor Models

For the remainder the Detailed Production Scheduling model shall be used to
demonstrate the easy and highly integrated modelling methodology down to
executable process specifications. The concept of modularization is important in the
SFTB from the very beginning. That is why the use cases are separated from each
other (Fig. 4). This gives the modeller the flexibility to first chose the constructs he
needs and then integrate them, in the case of use case models through include and
extend relationships or through the replacement of external actors and use cases.

Fig. 4 represents the highest level in the MDSA methodology. The whole Detailed
Production Scheduling activity is represented as a Business Use Case, interacting with
a Business Actor, the Production Schedule Provider. Typically, this role is realized by
level 4 activities, often an ERP system releasing rough scheduled Production
Schedule.

244 K. Pfadenhauer et al.

Fig. 4. Detailed Production Scheduling use case model

This use case supports two Business Goals, WIP Minimization and increased
Adherence to Delivery Dates. The definition of goals is a key principle of process
orientation, because the achievement of these objectives, refined by means of KPI,
determines the effectiveness of the overall process. A control loop like the one
presented in this work, has to translate the monitoring results of the operational level
into figures representing the business goals. Business Goals are not included in the
ANSI/ISA 95 standard and therefore give an example for constructs derived from the
SFTB. Business Collaborations realize the use case. A centralized view provides the
Detailed Production Scheduling Realization Overview, a diagram consisting of four
diagrams according to the Rational Analysis Model template. However, alternative
flow diagrams are optional and of course their number is unlimited. The template
suggests using sequence diagrams for basic and alternative flows, but the use of
activity diagrams or even non UML diagrams is possible. The first is a class diagram
depicting all Business Workers and Business Entities for this particular realization. At
least one dynamic behaviour view completes the basic overview. This is the second
compulsory diagram in every Analysis Model.

5.2 From Particular to Executable Shop Floor Models

In an iterative process two modelling perspectives evolve, first the top-down derived
PIM and secondly the bottom-up originating PSM. Thus the modelling project for a
particular scenario can be seen as a central market place, were supply (the actual
system configuration plus potential future functionality providers of the repository,
part of the constructs of the SFTB) meets demand (the to-be system with its processes
and goals defined by the business analysts). So far we have determined what
Production Operation Management Activities we want to implement and modeled the
high-level static and dynamic requirement models. Now it is time to have a look at
which service providers are available and which roles they can play to realize the
postulated system configuration. The service provider models can have two sources,
either they are available as low-level constructs in the SFTB, or they are added to the
project from the scratch. In either case, the modified IBM Profile for Software
Services shall be used. Rational Software Modeler offers a template for this profile,
which is used in an extended version for all modelling efforts at the software service
level.

 Shop Floor Information Management and SOA 245

The service providers are grouped in a Service View perspective. We have already
placed emphasis on the fact that the service provider construct is implementation
independent. That is to say that the service providers, together with the interfaces
respectively operations they realize, can be personnel as well as applications. To give
an example: The Detailed Production Scheduling activity has an associated service
provider role ScheduingIFProvider (Fig. 5), which provides for the service flow
scheduleNewOrders the IPreactorIF interface (Fig. 6). This role is assigned to the
scheduling software Preactor 9.2 interface extension. Another service provider is
SchedulingProvider, a role assigned to the Preactor software user. All implementation
details will be added in the subsequent step of Component View creation. The Service
View, a component diagram, considers use dependencies as well as realization
relationships. A class diagram and a composite structure diagram refine each single
service provider component. For instance the ProductionScheduleCheckProvider
Service Provider consists of two interfaces, stereotyped as ServiceSpecifications.
Which operations they provide can be explored in the class diagram or in the general
Service View. Each interface can be accessed at least trough two ports (Services), the
general type is included in the port name (e.g. scheduleNewOrdersSOAP and
scheduleNewOrdersFSO). The detailed type specification (e.g. SOAP-RPC, SOAP-
DOC) is included in the documentation and has to be the same as the Service Channel
binding attribute defined in the Collaboration View. This perspective provides a
Composition Overview and a Collaboration Overview diagram. The first, depicted in
Fig. 5, shows the relationships between the Service Partitions, which are collections
of Service Providers. It is also shown what roles the partitions fulfil. In our case the
partition is compliant with the activities of ANSI/ISA 95 Production Operations
Management, thus we find a Plant1:Scheduling partition stereotyped Detailed
Production Scheduling, which realizes the role of a
DetailedProductionScheduleProvider for other partitions. Partition and UDDI are
closely related.

Fig. 5. Composition overview of the collaboration view perspective

246 K. Pfadenhauer et al.

We decided to map each Service Partition to an UDDI provider and every Service
operation to an UDDI service due to the small number of operations. The UDDI
categorization is ANSI/ISA 95 compliant as well, therefore the UDDI provider
Plant1:Scheduling has the following categorizations assigned and provides all
interfaces included in the partition: Detailed Production Scheduling (from ANSI/ISA
95 Activity Model categorization schema) and Site (from ANSI/ISA 95 Equipment
Hierarchy categorization schema). Service Collaborations are assigned to ANSI/ISA
95 activities by means of stereotypes and refine the Business Collaborations
described above. Each collaboration contains a composite structure diagram and at
least one diagram for the behaviour view.

Fig. 6 depicts the static composite structure of the scheduleNewOrders
collaboration. Here we see the participating roles and the provided interfaces (Service
Specifications). The Service Channel stereotype contains the binding information.
What we also see is that this collaboration depends on another Service Collaboration,
namely createPreactorImportBoM. This collaboration gets bind by an internal
BizTalk call, but offers a WS port (Service) as well. For three roles additional
information (URL comment) is added. For ProductDefinition and SchedulingIF the
URL points directly to the UDDI window, where detailed information about the
actual implementation, e.g. the actual status categorization, is displayed. Those
interfaces are statically bound, but SchedulingNotification can have a multiplicity
greater zero, which means that within the collaboration a lookup for notification
subscriptions in the UDDI takes place (IInquiry interface). The DataDefinition
participant represents the XML schema definitions used in this collaboration, which
are in this case deployed as .NET DLL at the BizTalk Server.

ProductionScheduleRelease :
IReleasedProductionSchedule

ProductionScheduleChecker :
IscheduleNewOrders

<ServiceChannel>

1

1

<ServiceChannel>

<ServiceChannel>

<ServiceChannel>

<ServiceChannel>

<ServiceChannel>

<ServiceChannel>

Configuration : IProductionScheduleCheckConfiguration

DataDefinition : IDataDefinition

SchedulingNotificationBindingDefinition : IInquiry [*]

ProductDefinition : IBoM

http://128.139.106.81
/uddi/details/businessdetail.aspx?

frames=true&key=121c795d-
04e9-43e8-bb05-bdc16fbe9b49

http://128.130.106.81/uddi

http://128.130.106.81
/uddi/details/businessdetail.aspx?

frames=true&key=7d4c267b-
9fbc-4dba-8651-122f0705e99f

SchedulingIF : IPreactorIF

SchedulingNotification : ISchedulingNotification [*]

<<ServiceCollaboration,
Detailed_ProductionScheduling>>

createPreactorImportBoM

{binding=BTDirect}

ProductionScheduleRelease :
IReleasedProductionSchedule

ProductionScheduleChecker :
IscheduleNewOrders

<ServiceChannel>

1

1

<ServiceChannel>

<ServiceChannel>

<ServiceChannel>

<ServiceChannel>

<ServiceChannel>

<ServiceChannel>

Configuration : IProductionScheduleCheckConfiguration

DataDefinition : IDataDefinition

SchedulingNotificationBindingDefinition : IInquiry [*]

ProductDefinition : IBoM

http://128.139.106.81
/uddi/details/businessdetail.aspx?

frames=true&key=121c795d-
04e9-43e8-bb05-bdc16fbe9b49

http://128.139.106.81
/uddi/details/businessdetail.aspx?

frames=true&key=121c795d-
04e9-43e8-bb05-bdc16fbe9b49

http://128.130.106.81/uddi

http://128.130.106.81
/uddi/details/businessdetail.aspx?

frames=true&key=7d4c267b-
9fbc-4dba-8651-122f0705e99f

http://128.130.106.81
/uddi/details/businessdetail.aspx?

frames=true&key=7d4c267b-
9fbc-4dba-8651-122f0705e99f

SchedulingIF : IPreactorIF

SchedulingNotification : ISchedulingNotification [*]

<<ServiceCollaboration,
Detailed_ProductionScheduling>>

createPreactorImportBoM

<<ServiceCollaboration,
Detailed_ProductionScheduling>>

createPreactorImportBoM

{binding=BTDirect}{binding=BTDirect}

Fig. 6. scheduleNewOrders collaboration composite structure

 Shop Floor Information Management and SOA 247

The Configuration role provides access to the collaboration configuration, which
has to be called as a separate BizTalk orchestration (including a business rule call for
rules deployed at the BizTalk Business Rule Composer). The wrapping of the
business rule call makes the rule platform independent, because the configuration
helper orchestration can be published as a WS if necessary. Due to the shortage of
space it is not possible to present the activity diagram containing the control flow
which is the blueprint for the BizTalk Orchestration, although it remains platform
independent in the sense that proprietary actions (e.g. Transform shape) are not
included. What is added are again URL comments and business rule constraints. In
addition, massage types are referenced by name for each object flow.

In the model organization message types and the assigned data types are collected
in a Message View perspective. To sum it up, this activity model can be reused for
different SOA implementation platforms. We have to mention the Component View
perspective, where the realization of Service Specifications by means of components
and classes are modelled. This OO abstraction level marks the end point for our
methodology from business to enriched but still platform independent models. The
mapping to the .NET environment and the BizTalk Orchestration Designer is the final
step towards executable flow models.

6 Conclusion

The aim of this project was to investigate the potential of SOA in the shop floor
domain and we proofed that this concept fulfills the requirements of state of the art
intelligent manufacturing information systems. A SOA is flexible enough to realize
decentralized control structures where appropriate and to integrate a broad range of
service providers in a loosely coupled way. With the proposed MDSA methodology
two gaps could be closed, resulting in business and IT alignment. First the gap to the
implementation layer, which can be a very heterogeneous one in discrete
manufacturing involving sophisticated web applications as well as manual processing
tasks. The second gap is the one to the business layer, where business analysts define
processes including goal and performance indicator setting. The outcome of this work
is an ANSI/ISA 95 compliant model-driven methodology for manufacturing
operations management. This methodology was evaluated by means of the realization
of a SOA demo scenario for production operations management comprising of two
dozens service providers, a central repository and user friendly terminal applications.
It was possible to show that the proceeding is consistent enough to provide
management capabilities throughout the whole system life-cycle. Moreover, the
methodology is flexible enough to embed given shop floor scenarios and components
smoothly into the framework with the help of predefined modelling constructs.

The successful participation of IT and domain specialists proofed the feasibility
and user friendliness of the proposed methodology. At the implementation level it was
interesting to see what restrictions a platform like MS BizTalk dictates in terms of
system and not just single flow modelling. Especially the issue of nested flows made
some proprietary patterns necessary. Next steps to come are some investigations
regarding system dynamics. We would like to know how our approach performs in
terms of control loops including flexible system adoption based on monitoring results.

248 K. Pfadenhauer et al.

Such a control loop concept must work at different levels of abstraction, providing
every level with the right amount and granularity of information. Another focal point
will be the interface between platform independent UML 2.0 activity models and the
flow models of platform specific implementation environments. At the present stage
this requires manual mapping.

References

1. IBM Research: Cover Story: Are we Ready for “SERVICE”?, Think Tank October 10th,
2005, Translated from Consultation magazine – ThinkTank Media group, accessed from
http://researchweb.watson.ibm.com/ssme/20051010_services.shtml at March 15th, 2006

2. ANSI/ISA-95.00.01-2000 Enterprise-Control System Integration Part 1: Models and
Terminology, ISA Organization, 2000

3. ANSI/ISA-95.00.02-2001 Enterprise-Control System Integration Part 2: Object Model
Attributes, ISA Organization, 2001

4. ANSI/ISA-95.00.03-2005 Enterprise-Control System Integration Part 3: Activity Models
of Manufacturing Operations Management, ISA Organization, 2005

5. ATHENA D.A1, Diez, A.B.G.(Document Owner): First Version of State of the Art in
Enterprise Modelling Techniques and Technologies to Support Enterprise Interoperability,
Deliverable D.A1.1.1, Version 1.0, July 2004

6. INTEROP D4.1: Scientific Integration Conceptual Model and its application in INTEROP,
IST-508 011, Version 5.4, November 19th, 2004

7. Lippe S., Greiner U. and Barros A.: A Survey on State of the Art to Facilitate Modelling of
Cross-Organisational Business Processes, SAP Research, 2005, accessed at
http://www.athena-ip.org on March 24th, 2006

8. Berre A.-J.: Model Driven Interoperability – a standards based approach – and the
ATHENA Interaoperability Framework, SINTEF, Presentation at eChallenges e-2005,
Session Workshop 8°, October 20th, 2005

9. Pondrelli L. (2005a): A MDD Approach to the Development of Interoperable Service
Oriented Architectures, Gruppo Formula, Presentation at eChallenges e-2005, Session
Workshop 8a, 20th October 2005

10. Pondrelli L. (2005b): An MDD annotation methodology for Semantic Enhanced Service
Oriented Architectures, accessed at http://ftp.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-160/paper27.pdf on March 27th, 2006

11. INTEROP D6.1: Practices, principles and patterns for interoperability, Ed. David Chen,
IST-508 011, Final Version 1.0, May 20th, 2005

12. Arsanjani A.: Service-oriented modeling and architecture, IBM developerworks, Nov 11th,
2004; accessed at: http://www-128.ibm.com/developerworks/webservices/library/ws-soa-
design1/ on December 12th, 2004

13. Zimmermann O., Krogdahl P. and Gee C.: Elements of Service-Oriented Analysis and
Design, IBM developerworks, June 2nd, 2004; accessed at: http://www-
128.ibm.com/developerworks/webservices/library/ws-soad1/ on March 7th, 2005

14. Johnston S.: UML 2.0 Profile for Software Services, IBM developerworks, April 13th,
2005; accessed at http://www-128.ibm.com/developerworks/rational/library/05/419_soa/
on May 31st, 2005

15. Johnston S.: Rational UML Profile for business modeling, IBM developerworks June 30th,
2004; accessed at http://www-128.ibm.com/developerworks/rational/library/5167.html on
May 31st, 2005

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 249 – 260, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Product-Driven Enterprise Interoperability for
Manufacturing Systems Integration

Michele Dassisti1, Hervé Panetto2, and Angela Tursi1

1 Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, Italy
m.dassisti@poliba.it,

a.tursi@poliba.it
2 Centre de Recherche en Automatique de Nancy (CRAN - UMR 7039),

Nancy-University, CNRS, France
Herve.Panetto@cran.uhp-nancy.fr

Abstract. The “Babel tower effect”, induced by the heterogeneity of
applications available in the operation of enterprises brings to a consistent lack
of “exchangeability” and risk of semantic loss whenever cooperation has to take
place within the same enterprise. Generally speaking, this kind of problem falls
within the umbrella of interoperability between local reference information
models .This position paper discuss some idea on this field and traces a research
roadmap to make enterprise interoperable on the basis of this statement to face
interoperability of RIMs by focusing the attention on the product. By applying a
transformation between local information models into an “ontological
reference model” centred on the product it is possible to insure applications
interoperability.

Keywords: Interoperability, Integration, Product Data Management, Enterprise
Model, Ontology.

1 Introduction

There are many tools available which cause information overload in the operation of
enterprises for several scopes: managerial, production, marketing and so on. This
information is characterised by a common problem: the “Babel tower effect” induced
by the heterogeneity of applications (such as ERP, SCM, PDM, MES …), of users
and of domains. All this information is strongly influenced mainly by two drivers: the
scope (say, criteria) for which this has been collected and used, and the subjectivity
induced by each decision maker using it (say interpretation or classification of
information).

This situation is due to different information reference models embedded into
applications, and thus into a lack of “exchangeability” and a loss of semantics when-
ever a different use of information is required. This latter kind of problem falls within
the umbrella of interoperability problems where, generally speaking, interoperability
can be defined as that intrinsic characteristic of a generic entity (organization, system,
process, model, …) allowing its interaction with other entities - to a different

250 M. Dassisti, H. Panetto, and A. Tursi

extent of simplicity - to cooperate for achieving a common goal (second level
goal) within a definite interval of time, while pursing its own specific goal (first level
goal).

In principle, local reference information models (RIM) embed many classes of
information, which responds to specific information classification criteria. Criteria
thus define “dimensions”, and according to these it is possible to retrieve information
whenever required: the heterogeneity of information comes from the specific nature
of this classification depending on the two referred drivers. Whenever it is possible to
translate these dimensions into, say, neutral dimensions, it would be possible to reach
easily a true interoperability between RIMs.

This concept is here translated in practice by referring these RIMs to the common
element in all manufacturing operations: the product. The product, which evolves
through time (in a diachronic way) along its life cycle, allows thus to define a
common reference information model, to support information exchange between the
product views and the many applications that refer to them.

The basic assumption of the thesis here sustained is that it is possible in
principle to transform local information models (embedded into local
applications) to an “ontological reference model” centred on the product
(PCORM). In order to insure applications interoperability, the PCORM should be
embedded into the product itself; that means information should be deeply linked
to the product and possibly recorded into it to be retrieved by applications
whenever required.

This position paper presents some idea and traces a research roadmap on this
topic, to explore the possibility to make enterprise interoperable on the basis of
product-centred information view. The shape of the paper is as follows: section 2
introduces standards and frameworks concerned on information interoperability;
section 3 provides the conceptual idea of the paper; section 4 presents some hints
for the research roadmap; section 5 summarises the research challenges that have to
be faced in the next future and finally in section 6 some general comments are
provided.

2 Information Interoperability

Enterprises need to focus on their core-competences to improve efficiencies. At the
present, the product is perceived again, after the soap-bubble new-economy
experiences, the real value of enterprises and a new role is emerging for the whole
production process.. In this scenario, the product and production lifecycle and its
related management are unavoidably turning to be key aspects, defining a sort of
“product centric” or “product-driven” reference point-of-view [1]. The integrated
management of all the information regarding the “product” and its manufacturing is
one of the related questions. Information interoperability asks for common shared
approaches: standardisation and enterprise modelling methodologies are the most
advanced tools to this aim.

 Product-Driven Enterprise Interoperability 251

2.1 Standards for Product Data Representation and Exchange

Standardisation initiatives interesting for our purpose are the IEC 62264 set of
standards [3] and the ISO 10303 Technical specifications [4], because they are related
to Product Data Management at the business and the manufacturing levels of
enterprises.

The IEC 62264 set of standards specify a set of reference models for information
exchange to facilitate the integration of business applications and manufacturing
control applications, within an enterprise. The key aspects for integrating the business
applications and the manufacturing operations and control applications are the
information structures and exchanges, related to the products, managed by activities,
applications, processes, resources, and functions.

Examples of enterprise applications dealing with these exchanges are, at the
business levels, ERP (Enterprise Resource Planning) systems or PDM (Product
Data Management) systems and, at the manufacturing level, MES (Manufacturing
Execution Systems), to name only a few. In particular, MES functions relate
production monitoring including materials (raw and finished) and resources
(equipment and personnel) traceability information. The International Organization
for Standardization (ISO) has been pushing forward the development of standards
and models to foster the exchange of information related to goods and services [5].
Efforts like ISO 10303 STEP – Standard for the Exchange of Product model data –
deals with the issues of integration and interoperability problem. STEP represents
the standard for the computer-interpretable representation of product information
and for the exchange of product data. It aims to provide a neutral mechanism
capable of describing products throughout their lifecycle. Nowadays, STEP has
been recognized as appropriate to help in the integration of manufacturing systems
in industries such as automotive, aircraft, shipbuilding, furniture, building and
construction, gas and oil.

A significant solution for PDM data exchange is the Unified PDM Schema, which
is a basic specification for the exchange of administrative product definition data. It
has been created by unifying all PDM data between all existing STEP Application
Protocols, such as AP-203, AP-214 and AP-227 and allows the exchange of
information that is stored in PDM systems. This information typically forms the
metadata for any product. In order to deal with the increasing demands on product
models exchange, the standard has specified a set of STEP reusable modules related
to PDM. These modules concern all related information attached or describing
products technical data such as product structure, configuration control, efficacy,
person and organisations, etc. Data integration ensures that the information
describing product design, manufacturing and life cycle support is defined only once;
STEP data integration eliminates redundancy and the problems caused by redundant
information.

2.2 Enterprise Modelling Methodologies

Several enterprise modelling methodologies and supporting tools, addressing phases
of the enterprise life cycle and various aspects of enterprise modelling, have been
developed so far. These methodologies and tools are intended to support business

252 M. Dassisti, H. Panetto, and A. Tursi

decision-making (such as process visualisation and simulation), enterprise process
management, control and monitoring of operational processes (such as workflow) and
performance monitoring (such as visualisation of work in progress). Some of the most
relevant methodologies and tools are here briefly recalled, highlighting main features
and criticalities for the scope of this position paper.

The ZACHMAN’s framework [6] is a logical structure for classifying and
organising the descriptive representations of an Enterprise. The framework bundle of
information consists in representing the design artefacts that constitute the
intersection between the roles in the design process It results in a balance between the
holistic view and the pragmatic view, in a sort of a framework that results a good
classification scheme more oriented to problem solving and planning tasks.

GERAM [7], [8] framework encompasses all knowledge needed for enterprise
engineering / integration. The completeness of the architecture, which encompasses
architectures, methodologies, languages, modelling concepts, models, tools, operation
systems for Enterprise Modelling makes this approach a reference for the ISO 15704
standard [20], i.e. an useful guidelines and a way to create a common ontology in the
scientific community, more than a specific tool to be used for interoperability.

GRAI [9], [10] methodology proposes a modelling framework to support the
analysis, design and implementation of an enterprise, referring to two dimensions,
based on the systemic approach: functional abstraction and decomposition levels.
GIM modelling framework, which is included into the GRAI methodology,
introduces the decision dimension/view which is not taken into account in other
modelling frameworks: in this sense, it is more decision support oriented.

ARIS [11], [12] approach is based on the “multiple views” concept: the objective
is to reduce the complexity by dividing the enterprise into individual views, by
referring to a number of modelling languages co-ordinated into the Control View. The
ARIS architecture forms the framework for the development and optimisation of
integrated information systems as well as a description of their implementation by
superimposing a structure of interrelations; it is also based on a process-oriented
approach [10].

CIMOSA [13] is a framework to analyse the requirements of enterprises and
translating these into a system which enables and integrates the functions that match
the requirements. CIMOSA is neutral in this regard: it addresses concepts and models
that are only necessary to model integrated enterprise systems, focusing on process
model based enterprise activity control. There is no explicit consideration on
interoperability issues in CIMOSA modelling framework. However, CIMOSA can be
a contribution for integrated paradigm to establish interoperability (see ISO 14258
[21] and ENV 40003 [22]).

DoDAF [14] is one of the most comprehensive enterprise frameworks and
provides a good understanding of the stakeholders and users needs. It provides poor
contribution to integrated platforms, model-driven design and generation of
interoperable solutions. Most all leading Enterprise Architecture vendors are
supporting DoDAF, such as METIS Enterprise from Troux Tecnology, System
Architect from Popkin, Mega Suite form Mega International, and the other top ten
providers.

 Product-Driven Enterprise Interoperability 253

TEAF (Treasury Enterprise Architecture Framework) [14] is another of the most
comprehensive enterprise frameworks and gives a good understanding of the
stakeholders and users and the minimum of information required to align business and
IT. The contribution to integrated platforms, model-driven design and generation of
interoperable solutions is poor.

The AKM [15] technology and corresponding methodology is based on the
concepts of Enterprise Knowledge Spaces, and its four knowledge dimensions::
Approach – Methodology -Infrastructure and Solutions – AMIS. The AKM
technology is prone to interoperability, since it implements the layered Enterprise
Architecture, and it is prepared for the POPS methodology, for the Enterprise
Knowledge Architecture and the Intelligent Infrastructure services.

ISO 15745 – Open System Application Integration Framework [23] consists of the
application integration framework (AIF), which defines generic elements and rules for
describing integration models and application interoperability profiles, together with
their component profiles (process profiles, information exchange profiles, and
resource profiles). It supports the development of interface specifications in the form
of application interoperability profiles (AIPs) enabling the selection of suitable
resources and the documentation of the "as built" application. A key factor is the
concept of interfaces: the interfaces of the resources used to perform the function are
configured to work with the corresponding resource interfaces of the other functions,
involved in a target manufacturing applications. There is no complete industrial
implementation reported so far; furthermore, this approach can work only if various
standards used to specify interfaces are interoperable between them.

MISSION [16] approach extends the High Level Architecture (HLA) approach
[17], [18], [19] includes the modelling aspects which describe how to collect the
necessary data for the distributed simulation, specification on how the different
simulation models can be coordinated starting from a template library; a simulation
manager supports the definition and the interoperability of simulation templates by
exchanging objects. Even this interesting solution relies on a top-down specification
of objects to be exchanged and the related interfacing information in the federation.

Table 1 summarises the standards and enterprise modelling approaches for
interoperability discussed above. Till now, no unified conceptual basis for model-
based enterprise engineering -enabling consistency, convergence and interoperability
of the various modelling methodologies and supporting tools - has been created so far
based on a bottom-up view.

From this brief summary it is evident how all the solutions available so far share
the same common top-down approach, .relying on the process-view approach, which
belongs to the static and holistic perception of the enterprise, descending from system
theory. To summarise, it is evident how a different conception for the global
information reference model is required for cooperation to take place effectively; this
justifies the thesis here sustained that the product view may turn to be very
interesting, since the product is in some sense “inertial” with respect to the changing
cooperation processes and the potential dynamical evolution in time of actors.

254 M. Dassisti, H. Panetto, and A. Tursi

Table 1. Standards and frameworks comparison

Standard/
Framework

Interoperability core features Product
view

IEC 62264 Information structures and exchanges Yes
ISO 10303 Representation of product information

and exchange of product data
Yes

ZACHMAN Intersection between roles in design
process and product abstractions

No

GERAM Components used in all types of
enterprise integration processes

No

GRAI Modelling with reference to functional
abstraction and decomposition levels

No

ARIS Development and optimisation of
integrated information systems

No

CIMOSA Concepts and models strictly necessary to
model integrated enterprise systems

No

DoDAF Understanding of the stakeholders and
users needs

No

TEAF Information from stakeholders and users
alignment in business and IT

No

AKM Layered Enterprise Architecture, POPS
methodology, Enterprise Knowledge and
Intelligent Infrastructure services

No

ISO 15745 Interfaces No
MISSION Distributed discrete-event simulation No

3 Product View for Reference Information Models

It has to be stated firstly that each application adopted for the operation of enterprises
uses its own information repository, which serves for its own scopes. Each repository
refers to a reference information model (RIM) that specifies the structure of the
information treated and its nature. This model embeds several design and
management criteria related to the scope of the application to which it is devoted (say
subjective part), even though a information is still valid independently of the
application itself (say, objective part).

It is thus possible to state that each application retrieves information from its
repositories, according to the specific need during its operation: the efficiency of this
“information retrieval process (IRP)” is directly dependent on the amount of objective
information available. A negative effect results from the subjective part of
information, in case this has to be imported from different applications: in this latter
case, the translation required might bring to strong loss of information, and thus it
may have impact on its significance or pertinence.

 Product-Driven Enterprise Interoperability 255

Let us imagine that a reference system can be defined for making explicit
information concerning the transformations the product has to undergo. This
information is always a result of a decisional process made by operators according to
their specific scope (top-down approach): in this case the information reference
system is the operator himself (see iRS

1,2,3,… in Fig. 1). The novelty of our idea is to
reverse the information reference system (see iRS

* in Fig. 1) by simply making the
“product” active part of its transformation process (bottom-up approach).

By referring to the “product view” here proposed, it is possible to guarantee a sort
of neutrality of the information, thus reducing the risk of subjectivity and
consequently the efficiency of the information retrieval process itself.

ERP
MES

...

PRODUCT
CAD

iRS*

iRS1

iRS4

iRS2
iRS3

IRP

Product
life-cycle?

?

?

?
Final product

Fig. 1. Product view representation: iRS
* is the “inertial” reference system centred on product

The efforts devoted to information standardisation, as stated before, is a proof of
the need to improve the efficiency of IRP, whether its constraints are in the “top-
down” approach, which unavoidably limits its significance to the decision-maker
capability of capturing all the relevant aspects of RIM. The product-view approach
can be defined, on the contrary, as a “bottom-up” one, where adaptively the product
“asks” for information to proceed along its life-cycle (see Fig. 2). This representation
is obviously not complete, since features and behavioural rules of the “product” are
always designed a-priori by the decision maker: it will be a matter of the future
research effort to devise if and how it will be possible to allow a pure adaptive
mechanism of the class “product”, in order to implement a true bottom-up fashion if
ever possible.

In order to explain better the product view and the related research challenges, let
us imagine a man to “sit on the product” and walk with it during its life-cycle: all the
information required to know where to go, which operation to undergo or what kind
of information to receive for the next change of state, will turn to have a radically
different meaning - and consequently structure - with respect to the classical top-
down approach.

256 M. Dassisti, H. Panetto, and A. Tursi

Starting from this representation, the first step of the research effort in the
development of the product-driven interoperability will be the study of the existing
reference information models used by the actual applications concerned with the
product life-cycle, to find an unique “product view” representation, that will be the
basis to design the structure of the PCORM. For the sake of simplification, one can
state that the PCORM will result a meta-model derived from a sort of intersection (or
any similar reasonable logical operation on models) of the entire specific RIM
corresponding to each of the application available in the factory, independently of
their objective or subjective nature.

It will be another question of the future research to understand the nature and the
contents of this logical operation onto the RIMs (or the repositories of information
themselves, in case of instantiation in a real application).

4 Research on Transformation of Reference Information Models

The concept of interoperability has been widely analyzed, in the last decade, by the
research European community (see IDEAS Roadmap, UEML [24], INTEROP NoE
[25] and ATHENA IP [26] projects), in a joint effort between industrial world,
tertiary industry, suppliers and academic world. On the basis of results reached so far,
the fundamental aspects that can be further explored in the development of the
interoperability concept are:

 the development of synergies between different domains, such as the enterprise
modelling, the ontology building and the software architectures and platforms;

 the definition and the realisation of methods and tools providing an effective
support to the collaboration between experts in the various domains.

A step of the research on product-driven interoperability will be to study the RIMs,
embedded into the local applications, such as PDM systems and ERP systems. These
applications deal with the product but with different points of view; this has to be
done by focusing on the product, tracing its diachronic evolution through time along
its life cycle.

Starting from this, the research has to define the transformation operations of local
reference information models (RIMs) into an “ontological reference model” centred
on the product (PCORM). The idea of this position paper could be inspired to the
concept of “schema integration”, developed in the Database Management System
(DBMS) domain, where various data models (namely, schemas) and architectures are
used to design the conceptual structure of databases, which is to design an abstract,
global, understandable view of the application.

Batini et al [27] define schema integration as “the activity of integrating the
schema of existing or proposed databases into a global, unified schema”. The contexts
in which this concept can be applied are:

 the view integration (in database design), which produces a global
conceptual description of a proposed database,

 the database integration (in distributed database management), which
produces the global schema of a collection of database.

 Product-Driven Enterprise Interoperability 257

In both contexts, the approach consists in designing an integrated schema (i.e. a
conceptual view in the case of view integration and a global schema in the case of
database integration), starting from the single component schema to be integrated
(namely: the user views in the view integration and the local schema in the database
integration), with the scope of capturing the meaning of data.

In a similar way, to obtain the “ontological reference model” before mentioned it
will be necessary to build an integrated schema, containing all the information
included in local applications RIMs as necessary (corresponding to the component
schemas in the DBMS domain). This “ontological reference model” will be built upon
the product, which is the guideline for the design process and to implement
information, thus resulting in the bottom up approach.

The framework provided in [27] to face the schema diversity can be a good
guideline to suggest a set of steps of the integration process, useful to transform local
RIMs into PCORM. Inheriting from the DBMS domain, the integration process can
be performed by referring to an ordered mixture of the following activities:

 pre-integration: it consists of an analysis of local applications RIMs before
integration to decide upon some integration policy, what applications to
integrate, the order of integration and all additional information relevant to
integration;

 comparison of the schemas: this activity has the scope to determine the
correspondences among elements of RIMs and detect possible syntactic or
semantics conflicts. Conflicts may rise for several reasons: different
perspectives (each application has its own way of modelling the same
information), equivalence among constructs of the model (several
combinations of constructs can have the same meaning), incompatible design
specifications (erroneous choices in inputs to the models integration
process). In case common elements may be modelled in different ways, an
inter-schema properties (i.e. semantic relationships holding between
different models) need thus to be recognised;

 conforming the schemas: an effort is required to solve conflicts, depending
on their nature, to make possible merging of various local RIMs;

 merging and restructuring: once conflicts are eliminated, the RIMs can be
superimposed to derive the intermediate “ontological reference model” with
an iterative process: at the end of this, the final “ontological reference
model” can be derived. It will require a test against the following qualitative
criteria:

o completeness and correctness: the ontological reference model must
contain all concepts present in any RIM correctly;

o minimality: the concept represented in more than one RIM must be
represented only once in the ontological reference model;

o understandability: the ontological reference model should be easy
to understand by the designers.

All of the above activities can be performed for building the PCORM, bearing in
mind that all the integration activities are strongly influenced by the data model
adopted to build the conceptual schemas. As a consequence, these activities might be

258 M. Dassisti, H. Panetto, and A. Tursi

used only as guidelines or hints for the transformation process of RIMs into the
PCORM. Other approaches can be feasible to this aim.

In [28], for example, the integration between PDMs and workflow management
systems (which are two integration systems) is suggested using the PDM to store sets
of definitions of both the parts and the task that need to be executed on the parts. The
PDM acts as the reference database both for the enactment services of the production
workflow system and for other systems and manages the Product Breakdown
Structure (PBS), the Assembly Breakdown Structure (ABS) and the Work Breakdown
Structure (WBS).

In [29], on the other hand, an approach how to link “incompatible” integration
systems is suggested, which can represent a valid indication to the research project in
exam. The authors introduce a four-layered architecture, which is only a conceptual
solution for integration: two partners with the need for co-operation define structural
and behavioural patterns of interaction.

All the interaction solutions discussed above are not suitable as a general
integration solution for every kind of co-operation between the two or more partners;
these can represent a good hint for our research roadmap to devise the transformation
operations of local reference information model into the “ontological reference
model” centred on the product. Hopefully, an appropriate mix of these can be a good
choice to the scope posed for the research.

5 Roadmap of Research

Following the premises developed in paragraph 0and 4, herewith we summarise some
of the most important research challenges to be faced in the next future for supporting
enterprise product-driven interoperability.

The research activities will be centred on the information modelling for the
technical management of products and its use for interoperability of the
manufacturing applications. These research activities will tend to build on the concept
of interoperability based on product view, to be used diffusely in manufacturing
cycle, starting from the ideation phase up to the product use.

The methodologies to be used may refer to the design mechanisms of computer
science engineering – such as UML standard and formal logic – for the definition of
model structures of information within the enterprise. These can ensure a common
logical structure for the interoperability of the applications, by referring to the
product.

In modelling the various phases of product lifecycle, all the sets of technical
information need to be considered, constantly interpreted from the point of view of
product; information produced during the idea and design phase need to be also
considered. The information model based on the product will constitute a sort of
“backbone” for tracing the product evolution and to build the ontological model,
making easier the information exchange between different applications linked to the
product.

The final expected outcome of the research plan here described will be the
formalization of a common information model, almost indifferent to the application

 Product-Driven Enterprise Interoperability 259

type used in manufacturing systems and based on existing standards, such as ISO
10303 and IEC 62264 previously recalled.

Main focus points of the research will be:

i. study of information reference systems and of applications main models and
standard, for the information management of the product;

ii. development of a general reference model, starting from a specific
application of PDM (Windchill) and an one for ERP (Sage Adonix), based
on a real case of an Italian factory which manufactures bicycles, for the
generation of a reference ontology of product information;

iii. formal check of reference model for the ontology of product information,
applicatory check on an instanced industrial case for the operational
feasibility.

6 Conclusions

The interoperability is a concept of growing interest for the enterprise, urged from the
competitive pressure imposed by the new market without boundaries. The product is
the key concept shared by all applications inside an enterprise: it may serve as a kind
of “mediator” to refer all information produced and used by these applications. The
thesis here sustained is that an ontological reference model centred on the product
takes into account all product points of view.

It is evident how the temporariness of the cooperation is a critical factor for the
realization of collaborative networks between manufacturing enterprises, in order to
survive in the global market. The scientific studies proposed various answers to this
problem: many of these answers can be classified as top-down. The use of a reference
system as proposed, in a bottom-up fashion, promises good results in the research of
design solution, effective for the temporary cooperation between systems of
enterprises, which today has not been reached yet.

Acknowledgments. This work is partially supported by the Commission of the
European Communities under the sixth framework programme (INTEROP Network
of Excellence, Contract N° 508011, <http://www.interop-noe.org>).

References

1. Morel G., Panetto H., Zaremba M.B., Mayer F.: Manufacturing Enterprise Control and
Management System Engineering: paradigms and open issues. IFAC Annual Reviews in
Control. 27/2, 199-209, Elsevier, December 2003, ISSN: 1367-5788

2. Terzi S., Cassina J., and Panetto H.: Development of a metamodel to foster interoperability
along the product lifecycle traceability. Proceedings of the IFIP/ACM SIGAPP INTEROP-
ESA conference, Interoperability of Enterprise Software and Applications, February 23-25,
Geneva, Switzerland, Springer Science publisher, pp. 1-11, (2005) ISBN: 1-84628-151-2

3. IEC 62264: Enterprise-control system integration, Part 1. Models and terminology, Part 2:
Model object attributes. ISO/IEC, (2002) Geneva

260 M. Dassisti, H. Panetto, and A. Tursi

4. ISO/TS 10303: STEP modules related to Product Data Management. Industrial automation
systems and integration — Product data representation and exchange (2004) Geneva

5. International Organization for Standardization (ISO). Geneva (2005) www.iso.org
6. http://www.zifa.com
7. Bernus P. and Nemes L.: Requirements of the Generic Enterprise Reference Architecture

and Methodology. Annual Reviews in Control, 21 (1997) 125-136
8. Bernus P. and Nemes L.: A framework to define a generic enterprise reference architecture

and methodology. Computer Integrated Manufacturing Systems, 9 (1996) 179-191
9. Chen, D., Vallespir, B. and Doumeingts, G. : GRAI integrated methodology and its

mapping onto generic enterprise reference architecture and methodology. Computers in
Industry, 33 (1997) 387- 394

10. McCarthy, I. and Menicou M.: A classification schema of manufacturing decisions for the
GRAI enterprise modelling technique. Computers in Industry, 47 (2002) 339-355

11. Scheer A.-W. et al.: ARIS, Business Process Framework, 3 rd edition, Berlin (1999)
12. http://www.pera.net/Methodologies/ARIS/ARIS.html
13. http://www.cimosa.de
14. http://www.gcn.com/enterprisearchitecture
15. http://www.akmii.net
16. Mertins K., Rabe M., Jäkel F-W.: Distributed modelling and simulation of supply chains.

International Journal of Computer Integrated Manufacturing, 18/5:342-349, 2005
17. Dahmann J., Fujimoto R. and Weatherly R: The DoD High Level Architecture: an update.

(1998)
18. Department of Defence: Defence modelling and simulation Office: High Level

Architecture Run-time Infrastructure. Programmer’s Guide Version 4 (1998)
19. Zhuge H., Chen J., Feng Y., and Shi Y.: A federation-agent-workflow simulation

framework for virtual organisation development. Information & Management, 39 (2002)
325-336

20. ISO IS 15704: Industrial automation systems - Requirements for enterprise reference
architectures and methodologies (1999) Geneva

21. ISO IS 14258: Industrial automation systems - Concepts and rules for enterprise models
(1999) Geneva

22. CEN ENV 40003:1990 - CIM Systems Architecture - Framework for Enterprise Modelling
23. ISO/DIS 15745-1: Industrial automation systems and integration — Open systems

application integration frameworks — Part 1: Generic reference description; (2000),
Geneva

24. http://www.ueml.org
25. http://www.interop-noe.org
26. http://www.athena-ip.org
27. Batini C., Lenzerini M., and Navathe S.B.: A Comparative Analysis of Methodologies for

Database Schema Integration. ACM Computing Surveys, 18(4) (1986) 323-364
28. Kovacs Z., Le Goff J.M. and McClatchey R.: Support for product data from design to

production. Computer Integrated Manufacturing Systems, 11(4) (1998) 285-290
29. Karcher A. and Glander M.: Global distributed engineering – integrating different process

paradigms. Journal of Materials Processing Technology, 138 (2003) 31-137

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 261 – 272, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Understanding Interdependence in Enterprise Systems:
A Model and Measurement Formalism

Ronald E. Giachetti

Department of Industrial & Systems Engineering, Florida International University,
10555 W. Flagler Street / (EC 3100), Miami, FL 33174, USA

giachetr@fiu.edu

Abstract. Interdependence between the subsystems of an enterprise is one of
the driving reasons for integrating the enterprise. Integration attempts to man-
age those interdependencies so all subsystems work harmoniously together to
achieve the enterprise goals. Prior to embarking on an enterprise integration
project the interdependencies need to be analyzed. Unfortunately, interdepend-
ence between subsystems is still poorly conceptualized. This paper develops a
modeling and measurement formalism to analyze interdependence in the enter-
prise. The model defines interdependence and characterizes the strength of the
interdependence through relational measurement theory. The model is sup-
ported by empirical findings and illustrated through a case study. Limitations of
current conceptualizations of interdependence are discussed and remedies are
proposed. The primary contribution is a formal model to define and analyze in-
terdependence in an enterprise, an activity that should occur as part of all enter-
prise integration projects.

Keywords: Enterprise Systems, modeling, measurement.

1 Introduction

An enterprise system is an organized collection of interdependent subsystems that
must coordinate their activities in order to achieve common enterprise goals. The
decomposition of the enterprise into subsystems is a natural strategy to deal with the
size and complexity of enterprise systems. There are several ways in which to
decompose the enterprise [1]; one of the more common decompositions is functional.
The benefits of the decomposition are derived from the differentiation of each
subsystem to develop unique knowledge, information, and systems to optimally
address local problems. However, the decomposition must be countered with
appropriate levels of integration so that the decisions and actions of each subsystem
contribute effectively and efficiently to the overall enterprise goals. The need for
integration arises due to the interconnectedness between the subsystems. The
subsystems are interdependent because of the business processes that cross subsystem
boundaries [2]. Not only is the enterprise decomposed from an organizational
perspective but also from a technical perspective. The information technologies and
related systems that support each organizational unit are specified, designed, and

262 R.E. Giachetti

implemented to meet local requirements. As a result, when viewing from an
enterprise-wide perspective, a heterogeneous mix of technologies emerges and creates
additional hurdles to integrating the enterprise.

One of the merits of a good decomposition is to obtain loosely coupled subsystems
that minimize the interdependence between subsystems [3]; however, in practice
interdependence cannot be eliminated. So while decomposition is done to make en-
terprise design easier, the decomposition also introduces another level of complexity
because complexity arises not just from the size of the system but also from the inter-
relatedness of the system components and the emergent behaviour that cannot be
predicted from the individual system components [3], [4]. As interdependence in-
creases, the enterprise must spend more time and effort on coordination work and
utilize more elaborate coordination mechanisms are required to integrate the enter-
prise system. Malone et al. [5] define coordination work as that work that is per-
formed by a group of actors working together on a task that would not have been
performed if a single actor did the task alone. An over-riding concern for the design-
ers and managers of enterprise systems is how to manage the interdependencies be-
tween the subsystems so that the overall enterprise systems performance is optimized
[6], [7].

Managing dependencies [8] is part of the larger problem of enterprise integration.
Enterprise integration (EI) is the study of all the system components, how they are
related to each other, and structuring them so as to improve the enterprise’s perform-
ance [2]. There are many approaches to integrate the enterprise. In an attempt to shed
light on the multitude of ways to achieve enterprise integration, [8] defined five inte-
gration types of connectivity, data sharing, interoperability, coordination, and align-
ment that categorize the many approaches applied to integrating the enterprise. The
lower level and mostly technical integration types are implemented as an indirect
means to effect coordination and organizational alignment. For example, work toward
greater interoperability of heterogeneous systems is performed so that the workflow
supported by those systems is more seamless or better coordinated. Regardless of the
integration approach adopted, all integration approaches strive to improve the per-
formance of the enterprise. It has been established and is generally accepted that
integration leads to improved enterprise performance [9], [11]. However, results of
integration efforts have been haphazard, with many failures reported in the literature
[12], [13]. In order to progress, the central research question in designing enterprise
systems is to identify variables that will enable researchers to make consistent and
valid predictions of what type of enterprise integration will be most effective in dif-
ferent situations.

To improve the success of enterprise integration this paper seeks to understand
the relationships between the subsystems within the enterprise. There are many types
of relationships between these subsystems, but the one of primary importance to inte-
gration is interdependence. Interdependence is the degree to which the actions
and outcomes of one unit are controlled by or contingent upon the actions of another
unit. If interdependence is high then the time, cost, and effort necessary to coordinate
the process will be high [14], [15]. This paper seeks to define, model, and measure

 Understanding Interdependence in Enterprise Systems 263

interdependence in an enterprise. In the next section a review of the conceptual
development of interdependence is presented. Then in section 2 the modelling frame-
work is presented. The modelling framework shows the development of the defini-
tions of interdependence, how to formally model them, and how to define quantitative
measures of interdependence. An illustrative example is provided in section 3. In the
conclusions the main findings of the research are summarized and suggestions for
future research are made.

1.1 Conceptual Development of Interdependence

One of the classical management writers, Fayol [16], listed coordination as one of the
critical elements of management. He pointed to the necessity of "harmonizing the
separate activities and departments into a single whole". Coordination work is neces-
sary to manage the interdependencies in the enterprise. It was Thompson [17] who in
his action theory of organizations paid a great deal of attention to the different types
of interdependence existing within organizations and to methods for achieving high
levels of cooperation and coordination. Interdependence is “when actions taken by
one referent system affect the actions or outcomes of another referent system” [18].
Interdependence relationships can be direct when Unit A requires an action by Unit B
(e.g. delivery of materials) or indirect when Unit A requires an action of Unit B con-
tingent on A’s own action (e.g. delivery of materials according to a production sched-
ule generated by A) [19]. Interdependence occurs based on the flow of work between
organizational units, based on the organizational hierarchy and procedures for deci-
sion making, as well as on the social needs and goals of the employees [20].

There are three distinct approaches toward conceptualizing and measuring
interdependence. The first approach to measure interdependence is to use the flows
(material, information, control) and characterize the difficulty of managing the flows
[7], [14], [20], [22]. Thompson proposed a simple ordinal measure scale. In his
conceptualization the lowest level of interdependence is pooled resources, then
sequential relationships, followed by reciprocal relationships that are the most
difficult to coordinate. This basic hierarchy of interdependence types continues to be
utilized by researchers today. The approach of modelling and measuring
interdependence through studying the work flow patterns assumes the
interdependencies arise between tasks – in fact Malone and [7] succinctly define
coordination as the management of dependencies. Their work is atypical of much of
the other work. They define a taxonomy of dependency types and provide guidelines
on how to coordinate each dependency types. The second approach is to
conceptualize different types of exchanges between the organization units [18], [19].
In this work, the emphasis is on interdependence in the organizational structure and
not the process. The third approach is to develop action theory of organizations, paid
a great deal of attention to the different types of interdependence existing within
organizations and to methods for achieving high levels of cooperation and
coordination. Interdependence is “when actions taken by one referent system affect
the actions or outcomes of another referent system” [18]. Interdependence
relationships can be direct when Unit A requires an action by Unit B (e.g. delivery of
materials) or indirect when Unit A requires an action of Unit B contingent on

264 R.E. Giachetti

perceptual constructs of interdependence constructs that can be measure them via
survey methods. [23] use a perceptual measure of interdependence because they argue
that measuring it by understanding workflows is too difficult. Other researchers have
also used perceptual measures of interdependence, usually when interdependence was
one of several variables that they were studying [24]. The strength of the survey
method is to capture the participants’ perspective and provide a richer characterization
of all facets of interdependency.

The ordinal scale provided by Thompson was developed to describe the influence
of interdependence on organizational structure – it is too crude to guide business
process redesign efforts. The extension of the interdependence types through tax-
onomies is a qualitative analysis. They do not order the dependencies in any way
according to strength, they do not rank the coordination mechanisms in terms of use-
fulness or appropriateness, and they do not discuss the interdependencies of an entire
process or system except in an isolated form. Survey methods provide a means to
measure interdependence beyond workflow patterns – but they are ill-suited to busi-
ness process redesign. The reason is surveys provide no model of the enterprise sys-
tems nor is it clear how to convert the characterization of interdependence strength
into prescriptive actions that can be taken. So, survey data can describe the current
as-is interdependence but it cannot be used to understand and predict what interde-
pendence will arise in a to-be enterprise design.

In this work we concur with [7] that interdependence arises from the tasks.
However, we view the instance of the interdependence creates a coordination load on
the organizational unit or actor responsible for coordinating that (those) tasks
involved in the interdependence. So, we relate the interdependence between tasks and
organizational structure through the responsibilities of each organization unit for
executing a task. Moreover, we combine the merits of survey collection with the
merits of process modelling in order to develop an engineering tool to analyze
interdependence in enterprise systems as part of the analysis necessary for any
enterprise integration project.

2 Model Development

Interdependence is the degree to which the actions or outcome of one task affects the
actions or outcome of a second task. In this definition, interdependence is viewed as
occurring between tasks, which then creates interdependence between the organiza-
tional units that are responsible for the tasks. It is important to view interdependence
as arising between tasks and not organizational units because the tasks can be decoup-
led from the organizational unit responsible for its completion. For example, a task
requires a certain set of capabilities in order to execute the task. Any actor or organi-
zation unit that possesses those capabilities may execute the task. Consequently, man-
agement has the flexibility to reassign roles and responsibilities as long as it adheres
to the task capability constraints. Any reassignment would change interdependence
between organizational units; however the interdependence between tasks would
remain unaltered. So, any model must represent both process constructs and organiza-
tion constructs.

 Understanding Interdependence in Enterprise Systems 265

The empirical relationships between the objects are derived from the literature.
First, Thompson [17] and many succeeding research state that pooled resources,
sequential tasks, and reciprocal tasks are ordered from lowest to highest in terms of
interdependence. We add a refinement to the interdependence types to distinguish
between two types of sequential interdependence. There is sequential interdependence
due to the control flow of activities and a sequential interdependence due to the in-
formation flow. In an enterprise, the control flow or sequence of work tasks is not
necessarily the same as the information flow. We call the later type an information
sequential interdependence.

The introduction of a fourth type disrupts the ordering of interdependence types
because it is not clear the ordering of control sequential versus information sequential.
We argue that a control sequential interdependence is stronger or at least the same
strength interdependence relationship as an information sequential interdependence.
The reason is that control flow is like a rely race in which the runner cannot run until
he receives the baton. Likewise, in a control flow the succeeding task cannot start
until the previous task completes. In an information sequential interdependence the
succeeding task frequently has alternative courses of action if the information is de-
layed or otherwise interfered with. The introduction of this logic leads to a complete
ordering of the interdependence types. However, the comparison between control
versus information sequential interdependence must be tested and empirically
validated.

The current understanding of interdependence is an ordinal scale of the above-
mentioned interdependence types. There is insufficient empirical justification to
make any stronger claims concerning the relative strength of one interdependence
type compared to another type. For example, does a strong sequential relationship
equal a weak reciprocal relationship? For this reason we consider the interdepend-
ence types separately until more empirical evidence can provide guidance on other
courses of action.

A second empirical relationship is reported in [23]. They show that interdepend-
ence attributes of frequency, importance, and delay have significant impact on process
participants’ perception of interdependence. These interdependence characteristics
can provide an ordering within each of the four types defined above.

A final observation is interdependence is an asymmetric relationship. For example,
task B can be strongly dependent on task A but the reverse may not be true; i.e. task A
is only weakly dependent on task B. When discussing relationships in general the
term interdependence is preferred since any notion of direction is ambiguous. How-
ever, when discussing specific task relationships the term dependent is preferred be-
cause it conveys the direction.

2.2 Enterprise System Model for Interdependence Measurement

There is a significant body of literature on enterprise modelling (See [2] for a review).
A prevalent research approach is the development of enterprise reference architectures
that describe the enterprise from many different viewpoints in order to deal with the
complexity of the enterprise system. In this work we choose Event Driven Process

266 R.E. Giachetti

Chains (EPC), which are one of the central components of ARIS [25]. EPCs unite the
organization, information, and function views defined by ARIS into a single diagram
showing the process flow. We choose EPCs because in a single diagram we can
represent the primary objects of interest for studying interdependence: control flows,
information flows, organizational responsibility, and attributes of these flows. EPC
come the closest to representing all of these elements – although in a later section we
annotate the EPC to represent the attributes of frequency, importance, and delay of the
information flows.

2.2.1 Event Driven Process Chain Model
Since, interdependence arises largely due to the business processes in the organization
we take a process-centric perspective of the enterprise.

Fig 1. Four interdependency types

2.3 Measurement of Interdependence

The pattern of work flows alone is insufficient to understand interdependence be-
tween tasks. For example, a report can be generated daily and flow to a function but
maybe the report is of little use. For this and similar reasons it is necessary to move
beyond capturing the patterns of workflow. Attributes of the work flows need to be
defined and measured in order to more fully characterize the interdependence. We
create an extended event process control diagram that is extended by annotating a
standard EPC with the attributes frequency, importance, and timing onto the existing
diagram notation. Let the attributes be defined by the triple <f, s, d> as shown in

 Understanding Interdependence in Enterprise Systems 267

Table 1. Information Flow Attributes

Attribute Scale Interpretation
Frequency →′Af I : {1,

2, 3, 4, 5, 6, 7}

How frequently does this information flow occur?
Once a … {quarter, month, two weeks, week, day,
hour, minute}

Importance →′AsI : {1,

2, 3, 4, 5}

How important is the information flow to the func-
tion? { a minor inconvenience to do without it, diffi-
cult but possible to function effectively without it,
impossible to function effectively without it}1

Delay →′Ad I : {1,

2, 3, 4, 5, 6, 7}

How long can this information flow be delayed before
the function is negatively affected? {quarter or longer,
month, two weeks, week, day, hour, minute}

Table1. These mappings have been empirically validated [23]. The information flow
attributes are used to characterize the strength of pooled resource, information
sequential and reciprocal interdependencies.

As previously stated each interdependence type is handled separately.
Interdependence between the functions is collected in an n × n matrix M where each
element mij is the interdependency measure. Each function in a row is dependent on
the function in the column to the degree mij. A separate matrix is made for each
interdependence type. In the information sequence interdependence matrix the values
of <fI, sI, dI> are used to derive mij, which is normalized to be between 0 and 1. In the
control sequential matrix the values of <sC, dC> are used to derive mij and are also
normalized between 0 and 1.

3 Illustrative Application

The interdependence modelling and measurement framework is applied to a
telecommunications company that competes in the long-distance domestic and
international market. The telecommunications company generated almost $300
million in revenue and employees approximately 180 employees. In this case study
we focus on one product, the prepaid calling card. A prepaid calling card is a card
in set denominations (e.g. $10, $15, or $20) that customers purchase to make
telephone calls. Grocery stores, bodegas, restaurants, and so forth distribute the
calling cards. The prepaid cards can be used from any telephone and for any type of
call.

The prepaid calling card delivery process was modelled using the annotated EPC
described above. To create the model two analysts reviewed the company’s existing
documentation including procedure manuals and the like. The head of the manage-
ment systems group that created the procedure manuals was interviewed and
consulted with over a six month period. Additionally, the process was observed by the
analysts during this same period. Semi-structured interviews of approximately twenty
minutes were conducted with the cognizant staff in each department involved in the

1 Scores 2 and 4 are intermediate between described values.

268 R.E. Giachetti

prepaid process. The data collected was incorporated into the model. The model was
presented to the company’s managers for validation.

Some notable aspects of the process are the telecommunications company acts as a
“coordinator” for the entire process. The cards are printed by an outside vendor, they
are distributed by an outside distributor who also collects the payments, capacity on
the network to carry the calls is negotiated with a network provider, and customer
service is partially outsourced. The only actual task, aside from coordination, con-
ducted by the company is marketing of the prepaid calling cards. Otherwise, the
company operates as a virtual enterprise that coordinates the activities of specialized
providers so as to deliver the service to the customer.

Fig. 2 shows part of the overall EPC diagram for the entire prepaid card process.
In order to abridge the diagram the organization units are not shown. Instead, in each
task the organization responsible is designated with the abbreviations: D = distributor,
S = sales, M = marketing, PM = prepaid manager, and P = printer.
In Fig. 2 the triple characterizing frequency, importance, and delay is depicted on
each information flow arc leaving an information resource. For example, the arc from
resource PO entering the function Generate Prototype Card is (1, 3, 5). The interpre-
tation is the PO is received quarterly or less, it is difficult but possible to generate the
prototype card without the PO, and the PO can be delayed by a day before the func-
tion is negatively affected.

The information sequential interdependencies between functions are shown in
Table 2. The measures can be used to understand which functions are critical to the
overall workflow. For example, the table shows that function 6, Generate order de-
tails is a critical function in the overall workflow since other functions have a high
dependence on it. This suggests the information output of this function, the Order
Details, is important and appropriate use of IT to ensure its accuracy and timely deliv-
ery can add to a well coordinated process. Also, function 11, Print Cards has a high
interdependence on other functions, specifically functions 7 and 10. These two func-
tions provide the CD-ROM with PINs and the Printing Order. The reason for the high
interdependence is the importance of these information resources and the low toler-
ance for delay. Taking this into consideration managers can examine how the infor-
mation flows to improve overall efficiency of the process.

The information sequential interdependence can be transferred to the organiza-
tional units responsible for each task. These measures can be used to reduce interde-
pendence by modifying each organization unit’s task assignments assuming task
capability constraints are met, by tracing the sources of the interdependence and en-
acting means to reduce the interdependence, or by enacting coordination mechanisms
to manage the interdependence.

In a business process it is expected that the predominant interdependency
type would be sequential. Process designers would try to minimize reciprocal inter-
dependencies – understanding they take more coordination effort. In this extract of
the entire prepaid calling card process there are no pooled resource or reciprocal in-
terdependence types – however in the entire process there were several reciprocal
interdependence types found.

 Understanding Interdependence in Enterprise Systems 269

START

Generate
Supply

Request : D

Generate
Inventory
Report : D

V

Supply
Request
Accepted

Inventory
Report

Generated

Generate PIN
Order : S

Generate PO
:M

PO Sent

PIN Order
Generated

Supply
Request

Inventory
Report

Create CD-
ROM with
PINs : PM

(2,3)

(1,3,5)

Supply
Request

(1,1,3)

Prototype
Card for

Validation

Order Details

Printing Order
Generated

Generate
Order Details/

Request
Prototype : M

Prototype
Card

Validated

PO

POS PIN
Order

Generated

V

Sales
Information

(2,2,3)

XOR

Supply
Request
Rejected

Review
Supply

Request : S

Supply
Request Sent

(4,5)

V

(5,7)

(2,3)

Generate
Prototype
Card : P

Prototype
Card Ready

Prototype
Requested

(4,5)

Validate
Prototype
Card : M

(5,7)

(1,5,6)

(3,5)

V

(3,5)

Generate
Printing Order

: M

V

(4,6)

CD-ROM with
PINs created

Print Cards :
P

V

(5,6)

(5,6)

CD-ROM with
PINs

(1,5,6)

(1,4,5)

(1,3,5)

Printing Order

Printing Order (1,4,6)

(3,5)

Activation/
Deactivaion

PIN Order

Sales Analysis

(2,4,4)

(1,4,5)

V

(1,3,5)

(1,3,5)

Order Details

(1,5,6)

PO

(1,3,5)

Order Details (1,5,6)

Fig. 2. Partial EPC for Prepaid Telephone Card Process

Table 2. Information Sequential Interdependence for illustrated example

FUNCTION 1 2 3 4 5 6 7 8 9 10 11
Generate supply request 1 0.00
generate inventory report 2 0.00
review supply request 3 0.75 0.75
generate PIN order 4 0.67 0.67
generate PO 5 0.33 0.33
Generate order details / prototype 6 0.67 0.67
create CD-ROM with PINs 7 0.67 0.92 1.58
Generate prototype card 8 0.67 0.83 1.50
validate prototype card 9 0.92 0.92
generate printing order 10 0.67 0.92 1.58
print cards 11 0.92 0.83 1.75

1.75 0.00 0.00 1.33 1.33 2.67 0.92 0.92 0.00 0.83 0.00

270 R.E. Giachetti

Table 3. Control Sequential Interdependence

FUNCTION 1 2 3 4 5 6 7 8 9 10 11
Generate supply request 1 0.00
generate inventory report 2 0.00
review supply request 3 0.75 0.75
generate PIN order 4 0.42 1 1.42
generate PO 5 0.42 1 1.42
Generate order details / prototype 6 0.42 0.42
create CD-ROM with PINs 7 0.67 0.67 1.33
Generate prototype card 8 0.75 0.75
validate prototype card 9 1 1.00
generate printing order 10 0.83 0.83
print cards 11 0.92 0.92 1.83

0.75 0.83 2.00 0.67 0.42 0.75 0.92 1.00 1.50 0.92 0.00

An examination of some of the control sequential interdependencies (in Table 3)
reveals that some of them are rather weak. For example, function 6 to generate order
details is only weakly dependent on function 5 to generate the PO. This indicates
there is some parallelism occurring. The Marketing department is generating the order
details while they are also generating the PO.

Table 4 shows the control sequential interdependence between organization units.
There is a strong interdependency between Marketing and the Printer. Their relation-
ship becomes a possible bottleneck if the workflow is not coordinated well. At the
other extreme, the Distributor is not dependent on any other organization unit. How-
ever, it should be remembered that this analysis is for illustrative purposes and only a
segment of the entire prepaid process is shown. In the full model the Distributor has
dependencies on the other units.

Table 4. Control sequential interdependence transferred to organization units

D S M PM P
Distributor D
Sales S 1.17
Marketing M 0.42 1.00 1.00
Prepaid Manager PM 0.67 0.67
Printer P 1.67 0.92

4 Conclusion

This paper developed a formal model and measurement framework to define and
understand the interdependence in an enterprise system. The three interdependence
types of pooled resources, sequential, and reciprocal were extended by distinguishing
between information sequential and control sequential interdependence. Moreover, in
order to measure differences within an interdependence type we introduced attribute
measures of frequency, importance, and delay. The inclusion of the interdependence
attributes adds a significant refinement to the comparisons that can be made between
interdependence types.

 Understanding Interdependence in Enterprise Systems 271

The paper formalized and augmented event process chains in order to model the
interdependence types. The model enables the analysis of both ‘as-is’ systems as well
as ‘to-be’ systems. Moreover, the formalization in the model allows the making of a
clear distinction between the interdependence types. An advantage of the model we
present is it provides for the overlapping of tasks to different degrees. In most process
models if tasks are shown sequentially – the assumption is the second task cannot
start until the first task completes. Through the use of the control flow attributes, the
model presented here allows for tasks that might overlap slightly so that the strict
precedence is not mandated. One potential omission that remains in the model (and in
most formal modelling efforts) is that there may be many informal communications
that take place and would not be immediately apparent to the modeller. To mitigate
this possibility the modeller needs to interview process actors and observe the actual
process tasks. This suggests that maybe the model should include an additional set of
arcs for informal communications. This is a possible future research that needs to be
examined.

The study limited itself to interdependence types and characteristics that have been
proven through long use and validation in empirical research studies. The exception
is we argued that control sequential interdependence is at least equal to or stronger
than an information sequential interdependence. This assumption was done in order
to maintain the representation condition of measurement theory that requires a weak
ordering that is transitive and complete. The relationship between these two types of
interdependencies needs to be empirically examined to confirm or reject our hypothe-
sis, and is reserved for future work.

References

1. M. Harris and A. Raviv, "Organization design," Management Science, vol. 48, pp. 852-
866, 2002.

2. F. D. Vernadat, Enterprise modeling and integration. London, UK: Chapman and Hall,
1996.

3. H. A. Simon, "Complex systems: The interplay of organizations and markets in contempo-
rary society," Computational & Mathematical Organization Theory, vol. 7, pp. 79-85,
2001.

4. J. Sutherland and W. J. van den Heuval, "Enterprise application integration and complex
adaptive systems," Communications of the ACM, vol. 45, pp. 59-64, 2000.

5. T. W. Malone, J. Yates, and R. I. Benjamin, "Electronic markets and electronic hierar-
chies," Communications of the ACM, vol. 30, pp. 484-497, 1987.

6. J. F. Rockart and J. E. Short, "IT in the 1990s: Managing Organizational Interdependence,"
Sloan Management Review, vol. 30, pp. 7-18, 1989.

7. T. W. Malone and K. Crowston, "The interdisciplinary study of coordination," ACM Com-
puting Surveys, vol. 26, pp. 87-119, 1994.

8. R. Giachetti, "Enterprise Integration: An information integration perspective," Interna-
tional Journal of Production Research, vol. 42, pp. 1147-1166, 2004.

9. S. B. Brunnermeier and S. A. Martin, "Interoperability costs in the US automotive supply
chain," Supply Chain Management: An International Journal, vol. 7, pp. 71-82, 2002.

10. M. T. Frohlich and R. Westbrook, "Arcs of integration: an international study of supply
chain strategies," Journal of Operations Management, vol. 19, pp. 185-200, 2001.

272 R.E. Giachetti

11. K. Kumar and J. Van Hillesgersberg, "ERP: Experiences and evolution," Communications
of the ACM, vol. 43, pp. 23-26, 2000.

12. B. Sulon, "Pennsylvania-based Hersey Foods' distribution problems to continue," in
Knight-Ridder/Tribune Business News, 1999.

13. A. Osterland, "Blaming ERP," CFO Magazine, vol. January, 2000.
14. V. Albino, P. Pontrandolfo, and B. Scozzi, "Analysis of information flows to enhance the

coordination of production processes," International Journal of Production Economics, vol.
75, pp. 7-19, 2002.

15. A. Van de Ven, A. L. Delbecq, and R. Koenig, "Determinants of coordination modes
within organizations," American Sociological Review, vol. 41, pp. 32-338, 1976.

16. H. Fayol, General and Industrial Management. London: Pitman, 1949.
17. J. D. Thompson, Organizations in Action. New York: McGraw-Hill, 1967.
18. J. E. McCann and D. L. Ferry, "An approach to assessing and managing inter-unit interde-

pendence," Academy of Management Review, vol. 4, pp. 113-119, 1979.
19. B. Victor and R. S. Blackburn, "Interdependence: An alternative conceptualization," Acad-

emy of Management Review, vol. 12, pp. 486-498, 1987.
20. F. Sahin and E. P. Robinson, "Flow coordination and information sharing in supply chains:

Review, implications, and directions for further research," Decision Sciences, vol. 33, pp.
505-536, 2002.

21. K. Crowston, "A coordination theory approach to organizational process design," Organ-
izational Science, vol. 8, pp. 157-175, 1997.

22. L. Kunz, Jin, "The Virtual Design Team: A Computational Simulation Model of Project
Organizations," Simulation, vol. 64, pp. 160-174, 1995.

23. M. Wybo and D. Goodhue, "Using interdependence as a predictor of data standards: theo-
retical and measurement issues," Information & Management, vol. 29, pp. 317-329, 1995.

24. J. W. Dean and S. A. Snell, "Integrated manufacturing and job design: moderating effects
of organizational inertia," Academy of Management Journal, vol. 34, pp. 776-804, 1991.

25. A. W. Scheer, Business process engineering. Reference models for industrial enterprises.
Berlin: Springer-Verlag, 1995.

Session 2: Model-Based
Approach for Enterprise

Interoperability

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 275 – 284, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Semaphore – A Model-Based Semantic Mapping
Framework

Andreas Limyr, Tor Neple, Arne-Jørgen Berre, and Brian Elvesæter

SINTEF ICT, Forskningsveien 1, 0373 Oslo, Norway
{Andreas.Limyr, Tor.Neple, Arne.J.Berre,

Brian.Elvesater}@sintef.no

Abstract. This paper presents a framework and a tool devised to aid in
obtaining information interoperability between enterprise applications. The
approach has its foundations in the principles of model-driven architecture
(MDA) and architecture-driven modernisation (ADM). The key idea is that
mappings between different information formats are defined at a platform-
independent level, and that the mechanisms that actually perform the needed
data conversion are generated based on the mappings according to the relevant
platforms of the systems at hand.

Keywords: Interoperability, Mapping, Transformation, UML, MDA.

1 Introduction

In the area of interoperability the challenge is to get systems to “speak with each
other” in such a manner that the dialog is meaningful for the systems. Work has
been going on for a long time to find better ways to enable system interoperability.

When it comes to communication between different software systems it is
important that the shared information is understood both syntactically and
semantically, because misinterpreted information can cause unexpected, unwanted or
even fatal errors. It is therefore important to have a clearly expressed way of making
one system understand the information from another system.

In the previous years model-driven development (MDD), where models are seen as
the prime artefact in software engineering, has become very wide-spread. This paper
describes ongoing work within the area of applying the MDD paradigm to the
interoperability problem. The focus of this work has been on the MDD aspects to a
larger degree than to more formally based approaches.

This paper is structured as follows; chapter 2 gives an overview of the challenges at
hand, chapter 3 presents the Semaphore tool [1], an answer to the challenges, chapter 4
provides an example of using Semaphore, chapter 5 presents a discussion on some
topical issues, while chapter 6 provides conclusions and outlines possible further work.

2 The Challenges

There are several challenges when it comes to making one system understand another.
The first challenge is often the fact that the two systems do not speak the same
“language”, that is they do not share the same syntax.

276 A. Limyr et al.

Even if the systems use the same syntax it is not certain the semantics are shared.
This means the information passed from one system to another can be misinterpreted
and close to meaningless.

To address these problems there are some requirements. First of all the syntactical
difference should be dealt with. This means the solution should handle systems with
different information representation formats, or syntax.

The second requirement is the ability to clearly express a semantic unity between
systems. By semantic unity we mean that the shared information is interpreted in the
right way by all parties. To support this there is a need for various operations on the
source information. Operations such as split, merge and convert should be available.
The report [2] describes some challenges related to model mappings and model
transformations.

3 Semaphore

Semaphore is an attempt at meeting these challenges. It is a syntactic and semantic
mapping tool. The specification and implementation of the tool is described in [3],
[4]. The idea behind this tool is to define mappings between the information formats
at hand through defining the mappings on platform-independent models of the
information formats. After defining mappings between a source model and target
model transformation code is generated to be used on the instances of the source
model. The transformation code will transform an instance of the source model into
an instance of the target model according to the mappings performed on the models.
This is based on the ideas from the OMG Model Driven Architecture (MDA)
paradigm [5].

Fig. 1. Overview of models and tools

 Semaphore – A Model-Based Semantic Mapping Framework 277

Fig. 1 shows an overview of how the tool relates to the different models and their
originating systems. It is important to note that the Semaphore tool is used at design
time and that the runtime elements are to be handled by some transformation
technology, denoted as TransformationEngine in the figure. The transformation
engine is viewed as “yet another platform”, meaning that the mapping model (the
definition of the mapping) is viewed as a platform-independent model, while the
Transformation Code is viewed as a platform-specific model for the chosen
transformation technology.

3.1 Input Formats

Information can be exchanged between systems using different formats. Semaphore
needs a formal representation of the information structures, i.e. information format
definitions. The information format definitions can be in form of XML schemas, SQL
table definitions or some other format. Semaphore can be extended with any number
of different formats.

To cover up the (possible) syntactical differences we use MDA mentality in abstracting
the information format definitions to platform-independent models. Both the source model
and the target model are abstracted to platform-independent models and represented as
standard Unified Modeling Language (UML) [6] class diagrams. This process can also be
seen in relation to architecture-driven modernisation (ADM) principles.

The fact that the mapping tool only takes UML models as input means that the
mapping environment is identical, independent of the formats of the source and the
target. The magic is in the abstraction of the models and the generation of the
(platform specific) transformation code.

3.2 Mapping

When the user has imported the right models into the tool, he is presented with three
panes; the left pane contains the model of the input and the right the model of the
output. The user can then create the mappings by adding mapping elements (called
mapping operators) to the centre pane of the tool. The mapping operators are attached
to elements, classes or attributes, in the source and target model. This gives a
graphical representation of the mapping.

In mapping between the different elements the tool supports different types of
mapping operators. Semaphore currently supports the following mapping operators:

• Root mapping: One-to-one mapping. This mapping is used to connect the root of
the two models.

• Simple mapping: One-to-one mapping without any modification. This mapping
is also used to create a structure.

• Concatenate mapping: Many-to-one mapping. The mapping will simply
concatenate the selected input elements to one output element.

• Split mapping: One-to-many mapping. The mapping will split the input element
into different output elements with regards to a string or character.

• Substring mapping: One-to-one mapping. Substring mapping has an index from
field and an index to field to specify which part of the input element the output
element will consist of.

278 A. Limyr et al.

In order to aid the user in the process of defining the mappings the tool provides a
pluggable architecture for mapping helpers. A mapping helper has the task of
analysing the models and providing suggestions of possible mappings. The suggested
mappings are presented to the user who then can choose to accept or reject them.

A simple helper that checks for similarities in the names of the model elements is
provided with the tool as an example. One can also envision that such helpers can be
created using more complex strategies, such as strategies based on ontology
technologies as seen in [7].

3.3 Output

After the mapping is performed it is possible to generate transformation code. The
generation of this code can be seen as the goal of the whole exercise. This is done by
viewing the mapping definition it self as a model. In fact the mapping definition is a
model in it own right adhering to a metamodel defined for this purpose.

The mapping definition model is used as input to a transformation. The
transformation can be model to model, where the generated model is used by a
transformation engine, but the most common strategy would be to perform a model to
text transformation. The transformation code can be in any format, but the purpose of
the code is to transform one instance of the source model to one instance of the target
model based on the defined mapping.

The transformation code can be from one technology to another, for instance
reading from an SQL database and creating XML documents. The tool provides a
pluggable architecture for transformation code generation. This means it is possible to
create customized transformation code from and to any number of technologies.
Semaphore allows for transformation generator code to be written using the model to
text technology MOFScript1, or through the use of Java.

A generator for creating transformation code from XML to XML is provided with
the tool. Output of this generator is an XSLT script that can be executed with an
XSLT processor.

3.4 Tool Implementation

The Semaphore tool is implemented as an Eclipse [8] plug-in. As the Eclipse
environment has gained momentum as a developer IDE, the Semaphore tool can
easily be integrated into the IDE of developers. This also includes modelling tools
both for UML and metamodels such as Rational Software Architect and Borland
Together Architect.

In developing Semaphore a number of technologies from the Eclipse projects have
been utilised. The Eclipse Modeling Framework (EMF) [9] has been used for
handling of the mapping metamodel, the Eclipse UML2.0 project [10] is used to
handle the UML models that are used for the mapping. The Eclipse Graphical Editing
Framework (GEF) [11] is used to visualise the models and mappings.

The plug-in based Eclipse architecture also allows for the extendible nature of the
Semaphore tool, as new mapping helpers, input format transformations and
transformation generators are created as plug-ins. This is done through the use of a set
of defined extension points provided by the Semaphore tool. Developers can then
provide their own plug-ins that implement extensions to the defined extension points.

1 http://www.modelbased.net/mofscript

 Semaphore – A Model-Based Semantic Mapping Framework 279

4 Example of Use

In order to give a better understanding of how the Semaphore tool works this section
provides an example of applying Semaphore. For this example we will use two simple
XML schemas as source and target models. The schemas can be seen in Table 1.
The source describes a schema with organisation information with telephone
information and address information. The target describes a schema with party
information consisting of the same information as the source. These two schemas
describe the same information, but have some different naming conventions.

Table 1. Example XML Schemas

Source.xsd Target.xsd
<xs:element name="street"
type="xs:string"/>

<xs:element name="country"
type="xs:string"/>

<xs:element name="postalCode"
type="xs:string"/>

<xs:element name="telephone"
type="xs:string"/>

<xs:element
name="OrganisationInfo">
 <xs:complexType>

<xs:sequence>
 <xs:element ref="Address"/>
 <xs:element ref="telephone"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Address">
 <xs:complexType>
 <xs:sequence>

 <xs:element ref="street"/>
 <xs:element ref="country"/>
 <xs:element ref="postalCode"/>
</xs:sequence>

 </xs:complexType>
</xs:element>

<xs:element name="Address">
 <xs:complexType>

<xs:sequence>
 <xs:element ref="Country"/>
 <xs:element ref="PostalZone"/>
 <xs:element ref="StreetName"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Party">
 <xs:complexType>

<xs:sequence>
 <xs:element ref="Address"/>
 <xs:element ref="Telephone"/>
</xs:sequence>

 </xs:complexType>
</xs:element>

<xs:elementname="PostalZone"
type="xs:string"/>

<xs:element name="StreetName"
type="xs:string"/>

<xs:element name="Telephone"
type="xs:string"/>

<xs:element name="Country"
type="xs:string"/>

When presented with XSD as input Semaphore will create UML representations of
the XSD for use in the mapping process. The conversion is based on some simple rules
like an XSD element with a complex type converts to a UML class and an XSD element
with a simple type declared inside a complex type is converted to a UML attribute.

After performing a conversion of the source schema and the target schema into
UML models, these models are loaded by Semaphore. The first step of mapping
these two models is to define a root mapping. The root mapping connects the top

280 A. Limyr et al.

levels of the two models. The result of the conversion and the initial root mapping
can be seen in Fig. 2.

Fig. 2. Semaphore with Source.xsd and Target.xsd. There is also a root mapping between
OrganisationInfo and Party.

As described earlier, one can perform mappings manually or use mapping helpers
to get hints of possible mappings. For this example we will use the “Match by Name”
mapping helper to perform a mapping. Right-clicking on the attribute “country” in the
source model and selecting “Match by Name” gives one match in the target model.
This can be seen in Fig. 3.

Fig. 3. Mapping helper dialog

 Semaphore – A Model-Based Semantic Mapping Framework 281

The state of the mapping diagram after the automatic mapping is performed can be
seen in Fig. 4.

Fig. 4. Status after a match by name on Country is performed

The simple mapping is now complete, and one can generate transformation code
based on this mapping. This is done by right-clicking anywhere in the diagram and
choosing the “Transform from XML to XML” action. This will generate an xslt script
capable of taking an XML file adhering to Source.xsd and create an XML file
adhering to Target.xsd according to the mapping. An excerpt of the generated xslt is
shown in Table 2.

Table 2. Excerpt of the resulting xslt script

….
<xsl:template match="/">
 <Party>
 <Address>
<Country><xsl:value-of

select="/OrganisationInfo/Address/country"/></Country>
 </Address>
 </Party>
</xsl:template>
…..

The defined mappings will be valid at a syntactic level, meaning that the elements

to be copied to and from are valid, resulting in a syntactically valid schemata for the
output format. The semantic validity of the mapping needs to be verified by a human,
and is actually done so through the manual mapping steps and by accepting or
rejecting the mappings proposed by the mapping helper.

282 A. Limyr et al.

5 Discussion

5.1 Abstractions to UML

As mentioned in previous chapters Semaphore is based on creating abstractions of the
input and output information formats in form of UML models. Semaphore provides a
pluggable architecture where one can add new importers that are developed as Eclipse
plug-ins. The importers are typically written in Java.

The cost (in form of time) of writing an importer for a new format depends on the
nature of the format. The assumption is that formats that describe information
elements with properties and associations can be mapped to UML Class models. In
this abstraction choices of mapping have to be made, for some formats the mappings
are more straight-forward than for others. The complexity of the input format
definition scheme and the degree of conceptual similarity with the UML metamodel
will be the factors that have the most influence on the cost of developing a new
importer.

5.2 N2 Versus N2

The Semaphore tool allows for mappings between two models. Potentially one may
have multiple input formats for multiple output formats, resulting in mappings
between these input and output formats. Mapping between all model pairs will result
in N-squared mappings. Mapping between each model and a reference model will
result in a linear growth of number of mappings. Given this it is an advantage to map
to a reference model. This is shown in Fig. 5, where the mappings between six
different models are illustrated.

The reference model may be an ontology, or it may be a commonly agreed UML
model. The benefit of the better scalability of this approach is only sustainable as long

Model A

Model B

Model C

Model D

Model E

Model F

Model A Model B

Reference
Model

Model C

Model D Model E Model F

Fig. 5. 2N and N-squared

 Semaphore – A Model-Based Semantic Mapping Framework 283

as the reference model is stable. When the reference model is altered there may be a
large number of mapping definitions that need to be changed.

Semaphore can be used with the reference model approach. The tool is simply
applied between the different models and the reference model as apposed to applying
it directly between the input and output model formats.

It should be noted that the number of mapping helpers will not grow in relation to
the input and output formats. This is an independent issue as this is based on what
strategies one chooses for the helpers. Technically the helpers will work on the PIM
level UML models.

6 Conclusion and Future Work

The previous chapters have presented Semaphore and shown how it can be applied to
a problem. Through this it has been shown that the approach of defining mappings
between platform-independent model representations of information formats is viable.
One issue that has arose is that when dealing with large models, the graphical view of
the mappings may become complex thus limiting the value of using a model diagram
approach. This has partly been handled by allowing for mapping sub-trees to be
collapsed in the mapping pane.

The pluggable infrastructure of Eclipse has allowed for Semaphore to have a
flexible architecture with regards to different input formats, mapping helpers and
transformation formats. This will allow for targeting other formats in the future,
natural candidates include SQL table definitions among others.

In order to add more weight to the “semantic” part of the concept the idea of using
ontology based technologies in mapping helpers has been researched at the conceptual
level. Hopefully parts of these ideas can be implemented in the future. The idea would
then be to use annotated models in the mapping tool and use technologies such as
reasoners to provide mapping suggestions. The Mapping Helper concept of
Semaphore is a natural place to plug such functionality into the system. Related work
and tools such as COMA++ [7] has a greater emphasis on the semantic aspects and
should be investigated further. Results related to use of ontology technologies for
interoperability from the ATHENA project are natural candidates for integration with
Semaphore both for annotation of models (design-time) and reconciliation (run-time).
For the latter the reconciliation engine would be viewed as the TransformationEngine
at hand.

Acknowledgments. The work published in this paper is partly funded by the
European Commission through the ATHENA IP (Advanced Technologies for
interoperability of Heterogeneous Enterprise Networks and their Applications
Integrated Project) (IST- 507849) [12] and the INTEROP NoE (Interoperability
Research for Networked Enterprise Applications and Software Network of
Excellence) (IST-508011) [13]. The work does not represent the view of the European
Commission, the ATHENA consortium, or the INTEROP consortium, and the authors
are solely responsible for the paper’s content.

284 A. Limyr et al.

References

1. SINTEF, Semaphore website. 2006. http://www.modelbased.net/semaphore/.
2. INTEROP TG3, TG MoMo Roadmap. 2005, INTEROP NoE. http://interop-

noe.org/backoffice/workspaces/tg3/documents/task2/roadmap/attachment_download/file.
3. ATHENA A6, Model-driven and Adaptable Interoperability Framework. 2006, ATHENA

IP.
4. ATHENA A6, Model-driven and Adaptable Interoperability Infrastructure. 2006,

ATHENA IP.
5. Object Management Group, MDA Guide Version 1.0.1, J. Miller and J. Mukerji, Editors.

2003, Object Management Group.
6. Object Management Group, UML 2.0 Superstructure Specification. 2003, Object

Management Group.
7. Aumueller, D., et al. Schema and Ontology Matching with COMA++. in SIGMOD. 2005.

Baltimore, Maryland, USA.
8. Eclipse Foundation, Eclipse platform. 2005. http://www.eclipse.org.
9. Eclipse Foundation, Eclipse Modeling Framework. 2005. http://www.eclipse.org/emf.

10. Eclipse Foundation, UML2 project. 2006. http://www.eclipse.org/uml2/.
11. Eclipse Foundation, Graphical Editing Framework. 2006. http://www.eclipse.org/gef/.
12. ATHENA, ATHENA Public Web Site. 2005, ATHENA IP. http://www.athena-ip.org.
13. INTEROP, INTEROP Portal. 2005, INTEROP NoE. http://www.interop-noe.org/.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 285 – 296, 2006.
© Springer-Verlag Berlin Heidelberg 2006

B2B Protocol Construction as a Basis for Integration
Architecture Configuration

Bettina Bazijanec and Klaus Turowski

Business Informatics and Systems Engineering
University of Augsburg,

Universitätsstraße 16, 86135 Augsburg, Germany
{bettina.bazijanec, klaus.turowski}@wiwi.uni-augsburg.de

Abstract. Efficient business-to-business collaboration needs an IT-architecture
that allows for a preferably automatic configuration of integration services and
flexibly supports different collaboration scenarios. This paper presents an ap-
proach to construct a B2B protocol from single protocol fragments that address
specific collaboration aspects and that are implemented by single components
of an B2B integration architecture. Therefore, the resulting B2B protocol
description will be mapped to an architecture composition specification in a
second step. For the purpose of protocol construction, different types of de-
pendencies between protocols will be described as well as an abstract business
transaction pattern that will be extended and refined during the B2B protocol
construction process.

Keywords: B2B, architecture, collaboration.

1 Introduction

In business-to-business collaboration scenarios two coordination problems have to
be solved simultaneously: the external coordination problem caused by interaction
with one or more independent business partners with potentially different technical
capabilities, and the internal coordination problem caused by the usage of existing ap-
plication systems for implementing inter-organizational business processes. External
coordination is achieved by agreeing on a B2B protocol. It defines message ex-
changes between business partners that are necessary to coordinate collaboration
tasks. The order of sending and receiving messages defines a so-called public process
for each collaboration partner [3]. The internal coordination problem is solved by de-
fining an internal business process that orchestrates application systems. This is done
with the help of some dedicated software that can either be a scripting engine or a
more advanced Enterprise Application Integration (EAI) server. It is crucial that busi-
ness information contained in incoming messages can be handed over to internal ap-
plication systems and vice versa. Therefore, public and private processes have to be
synchronized. For this purpose a so-called binding has to be performed [2]. Binding
typically includes integration tasks due to message and sequence mismatches. This
may require, for example, transformation, aggregation, or splitting of external

286 B. Bazijanec and K. Turowski

messages before they can be forwarded to the internal business process for further
processing [26, 10].

Public processes not only deal with business related messages but also with more
technical aspects, e.g. security, reliability, and message transport. Therefore, informa-
tion is additionally exchanged due to the distributed nature of B2B collaboration (e.g.
signatures, passwords, acknowledgement messages). These aspects represent the con-
text of business information exchange and are linked to business protocols but also in-
troduce own message types and exchange sequences (e.g. an authorization protocol
that has to be carried out before the business protocol). Consequently, B2B integra-
tion systems have to be configured in a way that the external message exchange be-
havior conforms to the agreed B2B protocol. However, configuration of such systems
is tedious and costly as, for example, document mappings have to be defined and
processes have to be aligned [8]. The definition of the execution context and the inte-
gration of its different aspects into one comprehensive B2B protocol may also be a
time-consuming task. There are B2B frameworks like RosettaNet or ebXML that al-
ready define many technical and business-related aspects of inter-organizational mes-
sage exchange but they are not supported by all collaboration partners because there
are also many other standards available that only address certain aspects but that may
be also be combined to a comprehensive B2B protocol (e.g. MIME, SOAP, cXML,
BTP). Hence, there is the need to flexibly adapt to different B2B protocols depending
on frequently changing partners and business processes [15, 27].

This paper shows how the definition and implementation of B2B protocols can be
simplified by constructing them from predefined protocol artefacts that may be im-
plemented by different architectural components. The remainder is organized as fol-
lows: section 2 gives an introduction to our approach and a brief overview of related
work. In section 3, different types of dependencies between protocols are described as
well as a standard pattern of business transaction that will be used as a basis for the
B2B protocol construction process. Section 4 describes how this transaction pattern
can be stepwise extended in order to construct the B2B protocol considering a simple
purchasing protocol as example. For this purpose three more protocol fragments pro-
viding transport, decryption, and validation behaviour are added to the underlying
transaction pattern. In section 5, conclusions are drawn and an outlook on future work
is given.

2 Approach and Related Work

The goal of our approach is to accomplish a mapping between protocol descriptions
and suitable configurations of a component-based integration architecture to imple-
ment the particular B2B protocol of a given collaboration scenario. Architectural
components are used to implement specific protocol fragments that can be composed
to a customized integration system. For this purpose two concepts have to be devel-
oped: first, a method for construction of a consistent B2B protocol out of single coor-
dination protocols addressing specific aspects relevant for coordination and second, a
configuration concept for integration architectures containing mapping rules between
B2B protocol description and architectural components. This approach promises a

 B2B Protocol Construction as a Basis for Integration Architecture Configuration 287

higher degree of flexibility due to the reuse of previously implemented protocols and
the automated configuration of the respective architectural components.

In this paper we will focus on the B2B protocol construction, i.e. the definition of
public processes for collaboration partners. We will not further discuss binding spe-
cific questions and techniques like message transformation. For a detailed description
we refer to [2], [10]. Internal business applications are expected to understand exactly
the document types sent by the collaboration partner, so that solving message and se-
quence mismatches between public and private processes is not necessary. We will
focus on external coordination and the interplay of different coordination protocols
concerning business information exchange, reliability of asynchronous communica-
tion, and confidentiality of message content. But unlike other approaches we do not
compare two or more public processes in order to test their compatibility or bisimilar-
ity. We start with a common semantic basis in form of abstract business transaction
patterns and then built up the overall B2B protocol by consecutively adding protocol
fragments to the basis. In each extension step however only such protocol fragments
may be used that are supported by each partner. Therefore, some kind of negotiation
has to take place but this is also outside the scope of this paper. It rather will be shown
which relationships between different coordination aspects are typically present in
B2B protocols and how they can be formally described. This description may be ei-
ther used to analyze given protocols or – as we intend to do – to agree upon a specific
B2B protocol. In both cases, the description helps to identify necessary implementa-
tion and/or configuration steps. Construction steps may for example add new message
exchanges to the basic transaction pattern or replace abstract message descriptions by
more specific ones. Also, if concurrent execution of single protocols is needed, sepa-
rate messages may be composed to one protocol message to send all information at
the same time (e.g. authentication header together with a purchase order). After hav-
ing completed all construction steps the B2B protocol represents a contract between
collaboration partners as it contains the definition of all sequences of incoming and
outgoing messages (mirrored for each communication partner) including the message
definitions, and all necessary parameters (e.g. time-out values).

A related approach of customizing B2B integration systems out of predefined
components has been proposed by [12]. They argue that B2B integration systems can
be constructed from interaction components that implement B2B protocols and ser-
vice components that support business activities execution. They subdivide service
components into business process oriented components that implement private proc-
esses, and business interaction oriented components that are composed from process
oriented and interaction components. However, it is not shown how this composition
is facilitated and which dependencies components may have. Also, interaction com-
ponents implement complete B2B protocols, so that these components may be very
coarse-grained what may restrict their frequent reuse.

A more fine-grained approach for component reuse based on protocols can be
found in the work of [22]. He investigates how components supporting certain proto-
cols can be used to implement a particular business process. Therefore he compares
business process and component process descriptions with each other based on meth-
ods located in the field of distributed processes and behavioural subtyping where
authors investigate compatibility and substitutability of protocols [16], [23], [25]. As

288 B. Bazijanec and K. Turowski

already mentioned, this work may be integrated into our approach when determining
suitable protocol fragments but not for comparison of complete B2B protocols since
they will be constructed. However, some of these approaches already incorporate
some concepts (e.g. abstract vs. specific specification in vertical action refinement
[19]) that can be used for determining valid construction steps.

Mechanisms for constructing an overall consistent B2B protocol addressing differ-
ent aspects can be found within the B2B framework ebXML [9]. There, capabilities of
the partner’s application systems with respect to inter-organizational communication
are documented in form of collaboration partner profiles (CPP). The framework also
includes a so-called collaboration partner agreement that can be formed out of two
CPPs through negotiation. CPPs primarily address security related aspects and only
consider ebXML specific description standards. Accordingly, the negotiation process
is specific for CPPs.

The idea that B2B protocols can be related to speech acts and therefore have a se-
mantic basis that is useful to build flexible messaging systems has already been de-
scribed by Moore [18]. He developed a formal language for business communication
and a messaging system that can reason about the intended meaning and therefore
give suitable responses in a conversation. He evaluated the system in several inter-
organizational scenarios but his focus was not on implementation and reuse of exist-
ing protocols or protocol standards.

3 Protocol Dependencies and Business Transaction Patterns

In order to explain the interrelation of different protocols a formal definition of a pro-
tocol is provided first. A protocol can formally be defined following the definition of
transition systems [11] as a 5-tuple p=(Q, , δ, s, F) where Q is a finite set of states
and is a finite set of valid labels that represent protocol messages which are ex-
changed during an interaction. Messages are marked out if they represent outgoing
messages and in if they represent incoming messages. δ ⊆ Q × × Q is the transition
relation, s∈Q is the initial state, and F is a set of final states. The resulting transition
system is specific for a particular role in an interaction. Each outgoing message in the
protocol description corresponds to an incoming message of another role’s protocol
description. As an example, a simple purchase protocol representing a seller’s public
process can be defined as follows:

Q = {q0, q1, q2, q3, q4}, = {PO, POA,INV,PAY}, F = {q4}, s = q0,
δ = {(q0, in:PO, q1), (q1, out:POA, q2), (q2, out:INV, q3), (q3, in:PAY, q4)}

First, a purchase order (PO) is received which leads to a protocol state change from
q0 to q1. In this state the seller is able to send out a POA message that contains an ac-
ceptance of order. After sending out the message, the state changes to q2 where it is
possible to send an invoice (INV) after having shipped the goods. After that the seller
is able to receive an advice of payment (PAY). Fig. 1 shows a graphical representation
of the given finite state machine.

The first protocol dependency we want to introduce is the message sequencing de-
pendency. This is the case when a message exchange in one protocol can only happen

 B2B Protocol Construction as a Basis for Integration Architecture Configuration 289

Fig. 1. Simple purchasing protocol (seller side)

after an specific message exchange in another protocol, e.g. if the reception of a pur-
chase order has to be acknowledged by a particular message (e.g. ACK) that is not
originally part of the business protocol. The definition in Fig. 1 would have to be ex-
tended by a further state q1’ that is placed between state q0 and q1. The transition re-
lation now would be δ = {(q0, in:PO, q1’), (q1’, out:ACK, q1), (q1, out:POA, q2), (q2,
out:INV, q3), (q3, out:PAY, q4)}.

In the protocol definition in Fig. 1 only message types are used (e.g. PO). How-
ever, one specific message type can have different syntactic representations and con-
tain multiple message parts that may include document or processing information
(e.g. business document and sender’s signature). In above definition, a message type
corresponds to the type of the included business document. This document is typically
put in the message body whereas the message header contains processing (i.e. context
related) information. However, the message body may also contain context related in-
formation such as a signature. This is particularly true in cases where no business
document but only context information will be sent (e.g. an authorization message
containing only username and password). When a message body contains more than
one message part so-called packaging standards like MIME [13] specify how single
parts can be put together and later be identified. Independently from any packaging
standard, we propose to specify relationships between different message parts con-
cerning different coordination aspects within a message type definition. Up to date,
this information is only implicitly defined in additional trading partner agreements or
implementation guidelines [9]. Relationships that can be identified in protocol stan-
dards are enclose, encoding, and reference. An enclose relationship (denoted
C[DOC]) means that a business document DOC in a message body is sent together
with related context information C placed into the header of the message. The brack-
ets ([…]) then represent some packaging syntax. DOC is a document type that repre-
sents business information. Encoding (denoted K(DOC)) describes that a business
document has been encoded and therefore changed its representation. K may be the
name of a compression algorithm or an name that indicates the encryption method.
Finally, the reference relationship (denoted S{DOC}) means that some information is
included in the message that is related to the document content (e.g. a signature that
has been derived from the document and is added to the message). If a message con-
tains independent parts (e.g. documents that both have to be transmitted but do not in-
terrelate) then those are simply separated by comma to denote their ordering (e.g.
DOC1,DOC2). It is possible to combine relationships: T[C[DOC1, K(DOC2)]] de-
scribes two nested headers T and C that are attached to the message which also con-
tains two documents DOC1 and DOC2, and DOC2 is encoded, i.e. encrypted with K.
For example T may be a HTTP header, C a WS-Coordination context, and K the
receiver’s public key. This would also mean that the square brackets of the C[…]

290 B. Bazijanec and K. Turowski

relationship denote the SOAP packaging standard as required by the WS-
Coordination standard. Note that these relationships are already indicators for subse-
quent architectural mapping: K1(doc) means that the whole message has to be en-
crypted by one component before the contents of doc can be evaluated by another
component. The presented intra-message relationships can now be expressed within a
protocol description by using the introduced message composition operators in the
message labels.

When describing protocol dependencies, especially intra-message relationships, it
is necessary to introduce placeholders for message types because composition and
packaging is independent from specific message types. For example, a simple encryp-
tion protocol can be defined from the receiver’s point of view as:

Q = {q0,q1,q2}, = {K1(<request>), K2(<reply>)}, F = {q2}, s0 = q0,

δ = {(q0, in:K1(<request>), q1), (q1, out:K2(<reply>), q2)}

Every incoming request is expected to be encrypted with key K1. The fact that
<request> is written in lower case and put in angle brackets means that it repre-
sents a request with variable type. Every time the receiver gets an encrypted request, a
reply message <reply> encrypted with key K2 is sent back. In order to use this ab-
straction concept a hierarchy of message types has to be developed. A possible ab-
straction path in such a hierarchy could be: <msg> <request> PO. This
means that a specific type PO can be used instead of the abstract type <request>,
and request can be used instead of the abstract type <msg>. Also, an abstract type
<msg> may be replaced by a composed message type as introduced above. To derive
a hierarchy of abstract message types their communicative dimension has to be taken
into account. Messages can be regarded as communicative acts which express a
sender’s attitude [21]. This includes the sender’s intention what effect it wants to
achieve (cf. [4], [20], [14]). Verbs describing these intentions (e.g. inform, request)
can be used as abstract message types in protocol definitions since they are already
present in many B2B protocol standards. For example, Moore [17] has evaluated sev-
eral B2B standards and identified many verbs that express intentions. We will not fur-
ther discuss the definition of an abstract message type hierarchy but introduce some
simple abstraction relations within our examples. We rather focus on the use of ab-
stract message types within recurrent patterns of business transaction.

Business protocols are composed of business transactions that are basic units of
coordination specifying the exchange of business information often using a send-reply
communication pattern (e.g. request for quote – quote, purchase order – purchase or-
der acknowledgement). Unfortunately, there is no common definition of a business
transaction in literature so that some authors use this concept only for single pairs of
message exchange (e.g. [9]) and others for more complex exchange structures (e.g.
[4]). Basically, a business transaction can be seen as an exchange of related messages
that leads to a transfer of economic resources (e.g. exchange of goods, money, or
information). Although different business protocols may be used for completely dif-
ferent purposes they show recurrent patterns of business transaction when looking at a
higher level of abstraction. Definitions of transaction pattern types (also called
interaction patterns) can be found in agent and language action literature (cf. [5], [24],
[1], [7], [4]). Fig. 2 shows a basic transaction pattern that was built on the basic

 B2B Protocol Construction as a Basis for Integration Architecture Configuration 291

conversation for action schema [24] and abstractly defines a customer’s request for
action and a supplier’s declaration of the execution result. It is also very similar to the
standard pattern of transaction proposed in [4].

Q = {p0,p1,p2,p3,p4,p5},

F = {p2,p5}, s = p0,
 = {<request>, <refuse>,

<agree>, <state>,
<reject>, <accept>},
δ = { (p0, in:<request>, p1),
(p1, out:<refuse>, p2),
(p1, out:<agree>, p3),
(p3, out:<state>, p4),
(p4, in:<reject>, p2),
(p4, in:<accept>, p5)}

Fig. 2. Standard transaction pattern (supplier view)

The transaction starts with an incoming request that is evaluated. The supplier may
agree or refuse to perform the requested action. This is done by sending the respective
message out to the customer. In case of a refusal the transaction is aborted and no fur-
ther message will be exchanged (depicted as final state p2). After having sent an
<agree> message, the requested action will be performed. A <state> message
will be sent to the customer by the supplier who indicates that the action has been per-
formed. The customer may accept the outcome or reject it. In both cases the transac-
tion should be aborted (note: in an alternative pattern a reject may also lead back to
state p3 until the outcome is accepted). In the following, we will use this pattern as
basis for our protocol construction approach.

4 Protocol Construction

So far we have introduced three kinds of protocol dependencies (sequencing, intra-
message relationships, and refinement of abstract message types) and also selected the
standard pattern of business transaction as a semantic basis for B2B protocol con-
struction. Now, we will show how these concepts can be used to construct a consis-
tent B2B protocol. We assume that collaboration partners have agreed upon following
protocol fragments:

Transport Protocol

Q = {r0, r1, r2}, F = {r1, r2}, s = r0,
 = {HTTP[<msg>]},

δ = {(r0, in:HTTP[<msg>], r1),
(r0, out:HTTP[<msg>], r2)}

292 B. Bazijanec and K. Turowski

The transport protocol that defines, that all incoming and all outgoing messages
will use HTTP for message transport.

Decryption Protocol

Q = {s0, s1}
 = {DES(<zrequest>)},

F = {t1}, s = s0,
δ = {(s0,in:DES(<request>), s1)}

The decryption protocol defines that all incoming requests should be DES-
encrypted. Note, that this also means that all outgoing requests on the communication
partner’s side have to be encrypted.

Validation Protocol

Q = {t0,t1,t2,t3}, F = {t2,t3}, s = t0,
 = {<request>, SCHEMA-
ERROR, CONTENT-ERROR, ACK},
δ = {(t0, in:<request>, t1),
(t1, out:SCHEMA-ERROR, t2),
(t1, out:CONTENT-ERROR, t2),
(t1, out:ACK, t3)}

The validation protocol defines that all incoming requests first have to be checked
if they conform to the expected message schema and if the message content is read-
able. If one of these checks fails then an error message is sent out. Otherwise an ac-
knowledgement message is sent back to the requester.

Fig. 3 shows the first construction step. It is based on two dependency types: intra-
message relationship and abstract message refinement.

Fig. 3. Construction step 1 (transport)

 B2B Protocol Construction as a Basis for Integration Architecture Configuration 293

The transport specific message in:HTTP[<msg>]fits to the original message
in:<request> because the HTTP-Format is defined upon a more abstract message
type (<msg> <request>). This is also true for all other messages defined by
the transaction pattern. Therefore, all message types in the transition system have to
be changed.

In Fig. 4 the relevant part of the resulting transition system in step 2 is shown. The
decryption protocol maps only to the first transition where incoming requests
in:DES(<request>)are considered. So only the message type of the first transition
is replaced. There is also an implicit ordering of the intra-message relationship shown
in step 2. It is assumed that the encryption relationship is stronger than the transport
relationship. This is typically true in B2B protocols but should be explicitly specified.

Fig. 4. Construction step 2 (decryption)

Fig. 5 shows the result of construction step 3. The first transition of the validation
protocol can be integrated into the pattern since the first transition still represents an
incoming request. The outgoing error messages of the validation protocol can be
mapped to the outgoing refuse message in the pattern.

Fig. 5. Construction step 3 (validation)

294 B. Bazijanec and K. Turowski

This is possible because protocol errors always lead to the termination of the cur-
rent transaction unless a retry protocol is in place. There is no retry protocol in this
case and therefore the replacement is correct. As there are two possible error
messages as answers to the request the refuse transition between state p1 and p2 is
replaced by two new transitions. By performing this replacement, one of the two
possible transaction end states is reached. Reaching all possible transaction end
states is an important condition of the protocol construction process. The integration
of the validation protocol also shows how sequence relationships are treated. The
ACK-message that indicates successful validation of a request does not necessarily
replace the <agree> message since it only indicates that the request is valid in the
sense of the given validation protocol. In this case a sequencing relationship can be
assumed (unless otherwise specified). This means that an additional message ex-
change transition (out: ACK) and also a new state (p1’) are inserted at a given state
(here: p1).

Finally, Fig. 6 shows step 4 of the B2B protocol construction example where the
business protocol from Fig. 1 is used. The integration of this protocol has to be based
either on a general mapping of message types to intentions (see for example [17]) or
on a specification that comes with the business protocol (here: <request> PO;
<agree> POA; <state> INV; <accept> PAY).

Fig. 6. Construction step 4 (business protocol)

The resulting finite state machine for the constructed B2B protocol has still one
transition with an abstract message left. This outgoing <reject> message may be
replaced by a specific message of another protocol fragment, e.g. a protocol based on
the cancellation pattern provided in [4], or a timeout protocol.

 B2B Protocol Construction as a Basis for Integration Architecture Configuration 295

5 Summary and Outlook

In this paper an approach for the construction of a complete B2B protocol out of sev-
eral protocol fragments has been showed. This approach is useful when collaboration
partner are able to agree upon single protocol standards or parts of B2B frameworks
but not on complete B2B protocols. It may also be useful in situations when existing
B2B protocols have to be extended an extension points in the external behavior have
to be identified. First, three kinds of protocol dependencies have been introduced that
enable modelling of sequencing and simultaneity in the message exchange of public
processes. Then, a business transaction pattern was described that formed the basis for
B2B protocol construction. Several construction steps were explained by means of a
comprehensive example. Some basic requirements for protocol construction have
been addressed like coverage of all business transaction end states, matching of mes-
sage exchange direction, matching of transaction continuation/termination, transaction
state extension, and the possibility of explicit mappings. Message type definitions and
mismatches that cause message transformation have not been considered. Also, nego-
tiation steps for protocol fragments were not part of this paper.

Although checking similarity between public processes of collaboration partners is
not necessary in this protocol construction approach, checking similarity of the inter-
mediary B2B protocols between consecutive steps has to be performed. Behavioural
subtyping relations like (weak) simulation and optimistic subtyping [16], [6], [22], as
well as vertical implementation relations [19] seem to be suitable for protocol
construction and will be further examined. Future work will also include the actual
mapping of the resulting protocol description to architectural components in order to
allow a flexible configuration of the B2B integration system.

References

1. Bergholtz, M., Jayaweera, P., Johannesson, P., Wohed, P., Bringing Speech Acts Into
UMM, 1st. Int. REA Technology Workshop 2004.

2. Bussler, C., B2B Integration, Springer, Berlin, 2003.
3. Bussler, C., Public Process Inheritance for Business-to-Business Integration, Technolo-

gies for E-Services, Third International Workshop, TES 2002, pp., pp. 19-28.
4. Dietz, J. L. G., Generic Recurrent Patterns in Business Processes, Business Process Man-

agement 2003, pp. 200-215.
5. FIPA, Communicative Act Library Specification, http://www.fipa.org/specs/fipa00037/.
6. Fischer, C., Wehrheim, H., Behavioural Subtyping Relations for Object-Oriented Formal-

isms, 8th International Conference on Algebraic Methodology And Software Technology
2000, pp. 469-483.

7. Fornara, N., Colombetti, M., Defining Interaction Protocols using a Commitment-based
Agent Communication Language, Int. Conference on Autonomous Agents and Multiagent
Systems 2003.

8. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C., WSMX - A Semantic Service-
Oriented Architecture, International Conference on Web Services (ICWS 2005) 2005.

9. Hofreiter, B., Huemer, C., Klas, W., ebXML: Status, Research Issues, and Obstacles, 12th
Int.l Wrkshp on Research Issues in Data Engineering: Engineering e-Commerce/ e-
Business Systems (RIDE.02) 2002, pp., pp. 7-16.

296 B. Bazijanec and K. Turowski

10. Hohpe, G., Woolf, B., Enterprise integration patterns, Addison-Wesley, Boston, 2004.
11. Hopcroft, J. E., Motwani, R., Ullman, J. D., Introduction to Automata Theory, Languages,

and Computation, Addison Wesley, 2001.
12. Hu, J., Grefen, P., Component Based System Framework for Dynamic B2B Interaction, 26

th Annual International Computer Software and Applications Conference 2002.
13. IETF, RFC 2045: Multipurpose Internet Mail Extensions, http://www.ietf.org/rfc/

rfc2045.txt.
14. Kimbrough, S., Moore, S., On automated message processing in electronic commerce and

work support systems: speech act theory and expressive felicity, ACM Transactions on In-
formation Systems, 15 (1997), pp. 321-367.

15. Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A. H. H., Elmagarmid, A. K., Busi-
ness-to-business interactions: issues and enabling technologies, The VLDB Journal, 12
(2003), pp. 59-85.

16. Milner, R., Communication and Concurrency, Prentice Hall, Ney York, 1995.
17. Moore, S., Categorizing automated messages, Decision Support Systems, 22 (1998), pp.

213-241.
18. Moore, S., A Foundation for Flexible Automated Electronic Communication, Information

Systems Research, 12 (2001), pp. 34-62.
19. Rensink, A., Gorrieri, R., Action refinement as an implementation relation, TAPSOFT

1997, pp. 772–786.
20. Searle, J. R., Vanderveken, D., Foundations of Illocutionary Logic, Cambridge University

Press, Cambridge, England, 1985.
21. Singh, M., Huhns, M. N., Service-Oriented Computing: Semantics, Processes, Agents,

John Wiley and Sons Ltd, Chichester, 2004.
22. Teschke, T., Semantische Komponentensuche auf Basis von Geschäftsmodellen, Depart-

ment für Informatik, Universität Oldenburg, Oldenburg, 2003.
23. van der Aalst, W. M. P., Weske, M., The P2P Approach to Interorganizational Workflows,

Proceedings of the 13th International Conference on Advanced Information Systems Engi-
neering 2001, pp., pp. 140-156.

24. Winograd, T., Flores, F., Understanding computers and cognition., Ablex, Norwood/NJ,
1986.

25. Wombacher, A., Fankhauser, P., Mahleko, B., Neuhold, E., Matchmaking for Business
Processes Based on Choreographies, IEEE International Conference on e-Technology, e-
Commerce and e-Service (EEE'04) 2004, pp., pp. 359-368.

26. Yellin, D. M., Strom, R. E., Protocol Specifications and Component Adaptors, ACM
Transactions on Programming Languages and Systems, 19 (1997), pp. 292-333.

27. Zirpins, C., Baier, T., Lamersdorf, W., A Blueprint of Service Engineering, First European
Workshop on Object Orientation and Web Service (EOOWS) 2003.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 297 – 307, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A P2P Approach for Business Process Modelling and
Reuse

José A. Rodrigues Nt., Jano Moreira de Souza, Geraldo Zimbrão, Geraldo Xexéo,
Eduardo Neves, and Wallace A. Pinheiro

COPPE – Universidade Federal do Rio de Janeiro
{rneto, jano, zimbrao, xexeo, eneves, awallace}@cos.ufrj.br

Abstract. Business Process Management Systems are largely used nowadays.
However, most process models are started from scratch, not having reuse pro-
moted. Large enterprises not using a unique integrated system, and also some of
them that do, have the same business process implemented in a variety of ways,
due to differences in their units’ cultures or environments. A P2P tool is pro-
posed as a way of cooperatively developing business processes models, mini-
mizing the time needed to develop new models, reducing the differences among
similar processes conducted in distinct organization units, enhancing the quality
of models and promoting reuse.

Keywords: Distributed Systems, P2P, Business Process Modelling, BPM, Re-
use, Reputation.

1 Introduction

Business Process Management (BPM) has gained popularity and strength in the last
few years. The failure of traditional approaches for systems modelling in fully ad-
dressing the needs of most organizations, especially on aligning the development’s fi-
nal product with business objectives [1], has contributed to this picture. Particularly,
modelling the business process can greatly facilitate requirements gathering, still
viewed as the source for most failures on projects [2]. Yet, the work on MDA [3], en-
hancing the value of Platform Independent Models (PIM), also contributes to leverag-
ing the importance of process modelling.

There exist several common, or similar, processes in organizations. For instance,
most organizations1, whether in the same company or not, have a procurement and
acquisition process. We believe a cooperative approach can drastically reduce mod-
els’ development time.

Addressing these issues, we propose the use of a peer-to-peer (P2P) tool to ex-
change processes models, promoting a “natural” standardization. The proposed tool
also allows for the enhancement of existing models, through an evfolutionary ap-

1 The term organization is used in this article with a generic sense, i.e., it can be a company or a

company unit.

298 J.A. Rodrigues Nt. et al.

proach that helps in organizational learning [4]. Additionally, since modellers can
work
independently of any organization, the tool may also be used on an individual basis,
as an open repository and reuse promotion mechanism.

2 The Problem

A large amount of common business processes do exist among organizations. Due to
the increase of attention to business process management [5], organizations tend to
fully model their processes. Many times though, models are developed from scratch,
with little attention to reuse or process standardization.

In large enterprises, where several non-integrated systems can be found [6], differ-
ences among their units or departments could be greatly reduced if there was some
way of standardizing their common processes. A cooperative approach can also ease
the modelling task among different enterprises, where processes integration may be
needed.

The adoption of standardized processes is expected to enhance efficiency and per-
formance, e.g., streamlining the supply-chain process [6], while facilitating reuse and
reducing modelling costs. In the networked economy, flexibility and reuse deserve
special attention [7].

2.1 The Modelling Scenario

Making organizations adopt a standard process is not an easy task. This gets even
harder if they are part of different companies. Cross-organizational BP modelling be-
sides justifying special care, especially due to privacy and competitive constraints,
can be a complex job [8].

The Business Process Cooperative Editor (BPCE) focuses on the improvement of
models, the optimization of modelling activities, and the reuse of models among
organizations.

2.2 UML for BP Modelling

Business process models are modelled using UML Activity Diagrams. Activity Dia-
grams were chosen for BP modelling due to the following reasons:

• Being a standard
• Wide use of XMI for model interchange in CASE tools
• IT background of users

For the purpose of BPCE, whole diagrams or fragments are handled as models.
This way, a user wanting to develop a new model can do it by assembling existing
diagrams, or parts of existing diagrams, to compose a model that suit the established
requirements.

 A P2P Approach for Business Process Modelling and Reuse 299

2.3 Model Exchange

Model exchange can be accomplished in a variety of ways. Actually, the lack of one
standard format, widely adopted and used, is still recognized as a problem for the ad-
vancement of BPM. It is desirable that an interchange format presents the following
characteristics: readability, ease of implementation, platform independence, effi-
ciency, free availability, and support of standards [9].

The XML Process Description Language (XPDL) [10] could be a good choice.
Besides being supported by a number of tools, it is capable of handling both UML
models (based on the Meta Object Facility – MOF) and Business Process Modeling
Notation (BPMN) models.

However, the XML Metadata Interchange Format (XMI), proposed by the OMG
[11] appears as a natural choice. The use of XMI is recommended for two reasons:

• The chosen modelling media was the activity diagram, from UML.
• Extensions of the work to deal with software models or other XMI based tasks

would be facilitated [12].

Although restricted to interchanging diagrams based on MOF, also from OMG, it
is absolutely platform independent [11]. It shall be noted that BPMN has not yet de-
fined a language for diagram interchange [13].

2.4 The P2P Approach

To evaluate the adequacy of a P2P approach, an analysis of the proposed system
was conducted, based on the work of [14]. An evaluation considering their pro-
posed decision-tree led us to the conclusion that a P2P approach was suitable to our
problem.

Summarizing, the use of a P2P approach is justified, in this case, by the following:

• Budget constraints – the low cost entry of P2P systems allows for its use in any or-
ganization and also by independent modellers, starting their own cooperation net-
work;

• High relevance, to the participants, of the resources being shared;
• Non-critical nature – the shared models are used as basis for the development of

new models and, consequently, are not considered critical, since the modelled busi-
ness is not actually running on them; and

• Abundance of process models on different and, sometimes, unrelated sources,
which could jeopardize a centralized approach. Yet, the possibility of the inde-
pendent, sometimes “unknown” modeller, to autonomously participate in such a
cooperation network, posting its contributions.

Considering that, a P2P system depends on the actual participation of peers and
since reuse of one’s models builds up a reputation, we believe that such a mechanism
motivates the cooperation of peers. However, free-riders might well exist in this
scenario [15].

300 J.A. Rodrigues Nt. et al.

3 Implementing the Solution

BPCE is a P2P tool that allows modellers to freely share their models. It is imple-
mented as a four-layer architecture, as described below:

1. Infrastructure layer – implemented by COPPEER [16], it is responsible for the P2P
primitives.

2. Repository layer – responsible for storing local models.
3. Searcher layer – has the mechanisms for finding models – the Searcher –, which

can be aggregated to build a new model, using COPPEER resources. It also in-
cludes a simple tool for visualizing model elements – the Viewer –, prior to being
selected for use in the Editor.

4. Editor layer – holds the graphical environment with resources to modelling – the
Editor –, including assembling obtained model elements collected from the net-
work of agents.

Fig. 1 shows the conceived architecture.

Fig. 1. BPCE Architecture

Published models are stored in local repositories – the search space for COPPEER.
Whenever a user wants to build a new model, a search can be performed on the
Searcher, which uses COPPEER for it. The search returns pointers to model ele-
ments2. Basic information about found elements is based on their XMI and additional
attached data. That basic information is displayed to the user in the Searcher window,
where model visualization can be requested. As soon as the local repository receives
enough data to graphically display any information about the selected model element,
a Viewer, which is part of the Searcher, may be started.

The user can briefly check the found model, using the Viewer. If the user decides
to use a model, it can be transferred to the Editor, either to a new Editor window or to
an already open one.

2 Model and model elements are sometimes used interchangeably in the article. In the case

of activity diagram, model element means a fragment of a model, eventually just an atomic
action.

Editor

Searcher

Repository

C
O

P
P

E
E

R

 A P2P Approach for Business Process Modelling and Reuse 301

On the Editor, the user can modify the received element, by editing it or by aggre-
gating it to other existing elements. A new version of the same element, or a new one,
can then be directly added to the repository, through a publishing mechanism.

An overview of a basic modelling cycle is shown in Fig. 2.

Fig. 2. Modelling Cycle

3.1 COPPEER – A P2P Framework

The bottom layer, provided by COPPEER [16], takes care of model exchange and al-
lows for the search of models or models’ elements related to desired subjects.

The COPPEER framework is an environment for developing and running P2P ap-
plications. It is a research project developed at the Database Lab of the Federal Uni-
versity of Rio de Janeiro Graduate School and Research in Engineering
(UFRJ/COPPE). It implements a P2P environment under the Complex Adaptive Sys-
tems (CAS) paradigm [17].

3.2 The Model Editor

The Editor provides resources to assemble and edit model elements. Models prepared
on the Editor are published as XMI archives.

Since the appraisals of imported models are done after building a new model, the
Editor has a function to publish a model. The published model becomes available on
the model repository for use by other peers. Publishing includes the creation of a

302 J.A. Rodrigues Nt. et al.

Model Object (MO), by the Editor, which aggregates a small image of the published
model, its score and its information vector. Such a vector is produced from the XMI
representation of the model, discarding the header, common to all published files.

Additionally, when a model is published, the evaluation of the models used
to compose it is done. Later on, if the user wants to evolve a published model, the
Editor asks for a new evaluation, only if new models are imported and added to the
model.

3.3 Retrieving Models

Searching the Models’ Space is performed using a simple search mechanism, based
on the vector model [18]. Each new model has its vector calculated, and preserved, in
MO’s, created to later use by the Searchers and Viewers.

Since XML tags are also used when calculating vectors, the search can further be
directed to specific types of elements, according to activity diagram schema. For ex-
ample, it can be constrained to ActivityGroup [19], by simply adding the term to the
query.

Considering the search space can be populated by a large amount of models, user
can specify the maximum distance allowed from the query vector, for retrieved mod-
els. Retrieved models are presented, ordered by similarity to the query, with their
scores.

3.4 Ranking Models

In an environment with a large number of choices, ranking turns out to be helpful in
optimizing user’s work. When there are several models dealing with the same subject,
it is to the benefit of the users that some kind of ranking exists, to facilitate the choice
of any particular option. The idea of cooperatively filtering the available models can
be applied to such a context [20], [21].

A model’s score is an indicator of usage of the model. To calculate the score, and
assessment of its author’s reputation is required. The reputation indicator used in
BPCE tries, through tracking models usage, to indicate the quality of the models pro-
duce by each user.

While maintaining scores or reputations on a traditional distributed system could
be done using a central server, this is not the case in a P2P environment. Some ap-
proaches have been already explored [22] and show that in P2P environments, the
maintenance of evaluations is not trivial. We assumed, for the sake of reducing com-
plexity, that minor differences among peers’ local values are acceptable.

Most P2P reputation systems have two kinds of problems:

• Reputation is based on just a few peers evaluation, losing the big picture; or
• Reputation is based on all peers’ evaluations, unnecessarily raising the traffic

on the network [23].

The proposed algorithm is not susceptible to the above problems, since the reputa-
tion is build up considering all uses of a modeller’s model and just this, i.e., it does
not require the participation of all peers on the network.

 A P2P Approach for Business Process Modelling and Reuse 303

Models are ranked according to their utilization by other modellers. When a re-
trieved model is used, i.e., the user decides, when using the Viewer, to export it to the
Editor, it receives points. Those few points granted, mean that the model has, at least,
gotten the attention of the user – however, this is not actually a way to reward the
model, but to discard the ones that are not even looked at by users. Later, when a new
model is created on the Editor, the user is presented with a list of imported models,
where he marks the models actually used to derive the new one. Those selected
models receive some additional points, to leverage their ranking, according to their
utilization on the new model, i.e., the user can state that an imported model had low,
medium or high influence on the new developed model. The received points are
weighted by the appraising modeller’s reputation.

Synthesizing, a new model has its initial points, based on the score of the models
used in its composition and the reputation of its modeller. It keeps receiving points
according to its utilization on the development of new models.

A modeler’s reputation is calculated based on the reutilization of his models and on
his collaboration to the overall ranking process. The modeller receives points each
time one of his models is selected and additional points when it is actually used.
Points are also granted when he decides to collaborate on the appraisals of the im-
ported models. This can motivate the participation of users in the ranking system. It
applies a simplified version of the HYRIWYG reputation system [24].

So, let:

• I be the set of modellers.
• M be the set of models, J ⊂ M be the set of models from modeller I, and K ⊂ M be

the set of imported models in model m.
• psijm be the points for selection (0 if not selected, 1 otherwise), by modeller i, in

model j, of model m.
• puijm be the points for use, where not used = 0, low = 1, medium = 2 and high = 3,

by modeller i, in model j, of model m.
• pej be the points for evaluation, where pej=0 if the modeller does not evaluate used

models, and pej=1 if he does evaluate, when building his model j.
• Ri be the reputation of modeller i.
• wi be the weight of memory, ws be the weight of selection, and wu be the weight of

use

The evaluation system can then be expressed by:

Model’s Initial Points

K

pu
PM

PI K

ikm
k

m = 3
*

(1)

The initial points’ factor evaluates a model, based on the reputation of the models used
in its composition. This is done by considering that, if a model is an evolution of other
models, it must carry some of their reputation. It can be seen as the model’s DNA.

304 J.A. Rodrigues Nt. et al.

Model’s Selection Points

()=
I J

ijmiim psPRRPS ** (2)

The selection points factor accounts for the points accrued by the model due to its se-
lection by other modellers, when building new models. A model receives a reward for
being, at least, interesting.

Model’s Use Points

()=
I J

ijmiim puPRRPU ** (3)

The use points factor accounts for the points the models receives on other modellers’
appraisals, when also building new models. It is the reward for the actual utilization
of the model.

Model’s Total Points

mmmm PUwuPSwsPIwiPM *** ++= (4)

Total points are calculated by the formula above. The weights are used to balance the
factors. Different organizations or scenarios can require different customizations of
the system, manipulating how ranking shall be affected by each of these factors. It is
important though, to understand that these weights must be set for once and for all,
since, the initial evaluation is static, i.e., it is computed at the time the model is built
and never more. Also, the other evaluations, although being computed during sys-
tem’s life, are, each of them, computed at the time the model is used, and added to the
existing model points.

Modeller’s Reputation (R)

=

I
i

i
i PR

PR
R (5)

The modeller’s reputation introduces the reputation of the modeller into the scenario.
It is defined as above, based on the modeller’s points.

Modeller’s Points

+=
J

j
J

j

i pe
J

PM
PR (6)

 A P2P Approach for Business Process Modelling and Reuse 305

The first factor is the average points the modeller has received on his models. It is the
actual score of the modeller.

The second factor is a motivating factor – a reward, given to the modeller, each
time he builds a new model, and evaluates the models used to compose it. This feature
enhances the cooperation among modellers.

4 Conclusion and Expected Benefits

BPCE facilitates the development of new business process models, through reuse.
This is done using the P2P paradigm, hiding model exchange complexities from us-
ers, and providing users with an easy to use and simple interface.

However, there exist some negative aspects of the approach. Some of them are ex-
pected to be mitigated, but some may require some extra effort. The list below is a ba-
sic assessment of the cons:

• Trust – while in a controlled membership scenario the problems associated with
trustiness may be minimized, this turns out to be much harder in an open environ-
ment;

• Participation – heavy dependence on peer’s availability, since models are stored on
authors’ peers, may develop as a problem. Although reputation build up may work
as a motivating factor, the unavailability of a node, while not critically compromis-
ing the modeller’s work, may act as a demotivating factor. Replication can address
this problem, reducing its impact;

• Diversity of modelling languages – the system’s effectiveness is based on the use
of a common standard or, at least, compatibility among shared models. Translators,
although feasible, may not be practical; and

• Diversity of tools – even assuming the existence of a unique exchange mechanism,
as XMI, our assessment has shown that each tool has some particularities when
preparing their XMI files. While BPCE can be adapted to work with several exist-
ing tools, the wide use of non-standard resources in XMI files can affect system’s
effectiveness.

Despite the downside of the coin, we understand that through BPCE, the organiza-
tion can have its processes shared and adapted. As a result, on the long run, it is ex-
pected that the best-fitted processes survive, contributing to evolution and standardi-
zation of the organizations’ processes. In this sense, it may be seen as a distributed
knowledge management tool, supporting organizational learning in the enterprise.
Additionally, when used by different enterprises, it can help organizations tune-up
their processes and better understand each other.

5 Summary and Future Work

BPCE, as presented in the preceding sections, is currently under implementation for
deployment in a large company, where the problems stated do exist. Enhancements,
as described below, will be implemented on next versions.

306 J.A. Rodrigues Nt. et al.

Several issues have appeared during the development. Due to the time constraints
of the project, we intend to consider them on the next versions of the tool. A small list
of issues is provided:

• Ontology based search – besides enhancing search, it allows for customization,
including partitioning the search space onto business areas, with their proper
ontologies.

• XPDL – support of XPDL and related technologies.
• Security mechanisms – avoiding fraud and selecting what information can be vi-

ewed by other users. This deserves special care when conducting cross-
organizational modelling. Additionally, the need for anonymity must be studied,
since social barriers may difficult sharing.

• Ranking – the present implementation just considers the modeller participation on
the ranking process as a binary function, on each new developed model. This can
be changed into a system where the points received are also based on the quality of
the judgment made by the modeller [24]. In addition, proper experiments shall be
conducted to allow for the assessment of the advantages and disadvantages of the
algorithm when compared to the other existing ones.

References

[1] Chan, Y. Why Haven’t We Mastered Alignment? The Importance of the Informal Or-
ganization Structure. MIS Quarterly Executive, Vol. 1, No. 2, June/2002.

[2] Hofmann, H. Lehner, F. Requirements Engineering as a Success Factor on Software Pro-
jects. IEEE Software, v. 18, issue 4, IEEE Press, 2001.

[3] Miller, J. Mukerji, J. editors, MDA Guide Version 1.0.1. OMG 2003.
[4] Liebowitz, J. Building Organizational Intelligence: A Knowledge Management Primer.

CRC Press. 1999.
[5] Smith, H. Fingar, P. Business Process Management – The Third Wave. Meghan-Kiffer

Press, 2003.
[6] May, M. Business Process Management – Integration in a Web-enabled Environment.

Pearson Education Ltd. 2003.
[7] Smith, H. Fingar, P. IT Doesn’t Matter – Business Process Do. Meghan-Kiffer Press,

2003.
[8] Lippe, S. Greiner, U. Barros, A. A Survey on State of the Art to Facilitate Modelling of

Cross-Organisational Business Processes. 2nd Workshop of German Informatics Society
(GI), 11th GI Conference “BTW 2005”, 2005.

[9] Mendling, J. Neumann, G. and Nuttgens, M. A Comparison of XML Interchange Formats
for Business Process Modelling, in Workflow Handbook 2005. Future Strategies Inc.,
2005.

[10] The Workflow Management Coalition, Process Definition Interface – XML Process De-
finiton Language. WFMC, 2005.

[11] Object Management Group, MOF 2.0/XMI Mapping Specification, v2.1. OMG, 2005.
[12] Rodrigues, E. Rodrigues, J. Mello, R. Porto, F. Mapping OO Applications to Relational

Databases using the MOF and XMI. Workshop on Integration and Transformation of
UML models – ECOOP 2002, LNCS, v. 2548. Springer-Verlag Heidelfeld, 2002.

 A P2P Approach for Business Process Modelling and Reuse 307

[13] Object Management Group, Business Process Modeling Notation Specification, v1.0.
OMG, 2006.

[14] Roussopoulos, M. Baker, M. Rosenthal, D. Giuli, T. Maniatis, P. Mogul, J. 2 P2P or not 2
P2P?. Proceedings of the 3rd International Workshop on Peer-to-Peer Systems. LNCS, v.
3279. Springer-Verlag Heidelfeld, 2005.

[15] Parameswaran, M. Susarla, A. Whinston, A. P2P Networking: An Information-Sharing
Alternative. IEEE Computer, v. 34, issue 7, IEEE Press, 2001.

[16] Miranda, M. Xexeo, G. Souza, J. Building Tools for Emergent Design with COPPEER.
Proceeedings of the 10th International Conference of CSCW in Design – CSCWD 2006.
2006.

[17] Tan, J. Wen, H. Awad, N. Health Care and Services Delivery Systems as Complex Adap-
tive Systems. Communications of the ACM, vol. 48, issue 5. ACM Press, 2005.

[18] Baeza-Yates, R. Ribeiro-Neto, B. Modern Information Retrieval. ACM Press. 1999.
[19] Object Management Group, UML 2.0 Superstructure, v2.0 formal 05/07/04. OMG, 2005.
[20] Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. Using Collaborative Filtering To

Weave An Information Tapestry. Commun. ACM 35, 12 (Dec. 1992), 61-70. ACM,
1992.

[21] Resnick, P. Iacovou, N. Suchak, M. Bergstrom, P. Riedl, J. GroupLens: An Open Archi-
tecture for Collaborative Filtering of Netnews. Proceedings of the 1994 ACM Conference
on Computer Supported Cooperative Work – CSCW 94. ACM, 1994.

[22] Aberer, K. Despotovic, Z. Managing Trust in a Peer-2-Peer Information System. Proceed-
ings of the 10th International Conference on Information and Knowledge Management
(ACM CIKM), New York, USA, 2001.

[23] Kamvar, S. Schlosser, M. Garcia-Molina, H. The Eigentrust Algorithm for Reputation
Management in P2P Networks. Proceedings of the 12th International Conference on
World Wide Web, Budapest, Hungary - WWW '03. ACM Press, New York, NY,
640-651.

[24] Garcia, A. C., Ekstrom, M., and Björnsson, H. 2004. HYRIWYG: Leveraging Personal-
ization to Elicit Honest Recommendations. In Proceedings of the 5th ACM Conference
on Electronic Commerce - EC '04. ACM Press, 2004.

Session 3: Ontology-Based
Approach for Enterprise

Interoperability

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 311 – 322, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Interoperable and Multi-flow Software Environment:
Application to Health Care Supply Chain

Pierre Féniès, Michel Gourgand, and Sophie Rodier

LIMOS CNRS UMR 6158
Campus des Cézeaux, 63173 Aubière, France

{fenies, gourgand, rodier}@isima.fr

Abstract. In this paper, we propose a generic decisional model allowing to
evaluate in a total way (physical flows, financial flows) plannings for any
system contained in supply chain. We present a methodology for decision-
making aid software conception. This methodology use modelling and
simulation concept and show the interest of going towards Advanced Budgeting
and Scheduling software for complexes supply chains performance evaluation.
To show the generic character of the decisional approach, we apply the chaining
of models suggested to the logistic process of Health Care Supply Chain. We
give the metrics resulting from the modelling and the simulation of the patient
treatment in the Hospital system.

Keywords: APS, ABS, Multi flow software environment, interoperability.

1 Introduction

Hospital system is an opened system which interacts with external logistic entities or
medical service providers. The comparison with industrial supply chain is obvious:
the current hospital, taking into account its growing complexity, is closer to an
immense logistic chain whose agents aim at satisfying patients. So, Health Care
Systems can be seen as a Health Care Supply Chain (HSC) [1].

As medical organizations grow, information flow managing between various
components becomes more complex. Health management is a knowledge intensive
activity and most organizations have specialist sub-domains, each with its own
vocabulary, knowledge base and software applications. The fact that these sub-
domains contain multi-platform, multi-vendor application wrappers built around
multi-variate data sources further adds to the complexity [2].

So HSC information system needs can be compared with industrial Supply Chain
information system needs with regard to data integration and interconnection.

Then, as [3] show it, interoperability appears to be a major approach for the design
of applications dedicated to access information. The Supply Chain manager has to
possess a set of tools and methods capable of helping him in design problems as in
piloting problems but also capable of furthering interoperability of information
sources. In fact, decision-making aid software depend increasingly on various

 P. Féniès, M. Gourgand, and S. Rodier

312

heterogeneous resources, such as databases, knowledge bases, files, Web-based
information, and so on. Moreover, the complexity of a HSC, as of industrial Supply
Chain, is due to the structure of the logistic process [4] and to the number of entities
which interact simultaneously.

The purpose of this article is to propose an interoperable and multi-flow software
environment for HSC which combines simulation and performance evaluation and to
connect this decision-making aid software with HSC information system. One of the
objectives of this work will be the integration of a decisional and financial applicative
brick in the APS (Advanced Planning Scheduling). In fact, thanks to the analysis of
existing tools and methods [5] we will show that the latter don’t integrate in their
decisional approach, in intra-organisational context as in inter-organisational context,
the constraints evaluation resulting from financial flow. If decision-making aid tools
try to improve the organization profitability by improving a number of physical flow
performance criteria, they don't interpret, or inadequately, the physical flow elements
in financial flow elements translation.

Fig. 1. Financial unit integration in software suite of APS type for the Supply Chain

This paper is organized as follows: in next section, a state of the art about integrated
decision-making aid software concept and a brief state of decision-making aid
software market are given. An interoperable and multi-flow decision-making aid
software suite is proposed in section 3. Section 4 is dedicated to the presentation of a
study case. Finally, conclusion and future research work are presented.

2 State of the Art

In this section, we present a brief state of the art on the necessity of an integrated
information system for Supply Chain and Health Care Supply Chain, and in a second
part, we briefly compare some decisional tools applicable to Health Care system.

 Interoperable and Multi-flow Software Environment

313

2.1 Necessity of Integrated Decision-Making Aid Software

In a literature review [5] show that enterprises have to implement inter-organizational
integration due to increasing competition and globalization. This integration is then
used as basis for a transparent inter-organizational integration of all members of the
whole supply network allowing a continuous exchange of information between the
members. Company-internal integration seems to be a precondition for an inter-
organizational integration. [6] show that it is possible to integrate and access various
heterogeneous information sources within a hospital Intranet based on the ARIANE
architecture and the Unified Medical Language System (UMLS) ontology. Their
prototype demonstrates the interest of this common ontology when associated with
the Information Source MAP (ISM) [7] which provides with a catalogue of existing
servers. The use of ontologies to provide interoperability among heterogeneous data
sources has been applied in many domains including manufacturing [8] and medical
information systems [9,10]. In a literature review about cost models, [11] shows that
Activity Based Costing (ABC) system is the best type of cost model for complex
system because of its connections with Supply Chain management. As shown by [12],
integrating financial flow and physical flow in Supply Chain management is essential
to optimize financial flow and we think that there is a need for a general approach for
both Supply Chain modelling and its evaluation which combines physical and
financial flows thanks to ABC. [13] show that there is not in literature approaches
which propose to combine physical flow simulation, financial flow evaluation and
data integration.

2.2 Existing Software for Decision-Making About Flow

Nowadays the effective decision-making importance grows and many tools were set
up on the market in order to answer this request. Information to be presented at the
user is the central problems of any decisional project. The decisional tools aim to
allow consolidations establishment and to bring closer data, primarily at ends of
reporting or decision-making. They are data consultation tools, on variables
aggregation or detail levels, and also observed according to variable axes (for
example: to measure the costs, the sales or profitability, by geographical area,
temporal period or product range). The decisional tools market counts a certain
number of solutions as regards Cost Accounting and Budgetary Development. Table 1
retains some software packages, some specialized enough, others generic, which are
compared on various criteria. Our study is not exhaustive, and we have only studied
the most important editors which propose integrated solutions. For each APS, we
study if financial flow is integrated, for example with credit management functions, if
costing management models are implemented, and if scorecards with financials
metrics are used. This analysis shows that in network configuration, the optimization
is done with very simple costs constraints. But in tactical or operational activities,
financials constraints are not integrated and are not evaluated. Note that some of the
tested APS have links with ERP (for example APO and R3 which are edited by SAP),
but these links don’t integrate financial evaluation with planning. Moreover, note that
discrete event simulations are not used by APS, which only use optimization.

 P. Féniès, M. Gourgand, and S. Rodier

314

Table 1. Encompassing view of various tools functionalities

 Dataware
House

Process
Modelling

Physical
flow Opti-
mization

Budgetary
Develop-

ment

Discrete
event

Simulation

Not specialized tools
ADEXA iCollaboration Suite ; ASPEN
eSupply Chain Suite ; FUTURMASTER
Futurmaster; ORACLE aps; PEOPLE
SOFT SupplyChain Planning; SAP
Advanced Planer and Optimization
(APO); SYNQUEST One2One Solutions.

Not
Specified

Yes

Yes

No

No

"Health" specialized tools
SIB Sextant; KEYRUS K@-prim; MC
KESSON Evoluance SIAD

Not

Specified

Yes

Not

specified

Yes

No

Moreover, to avoid high maintenance costs or to deploy a standard corporate
model in an international group, some corporations are implementing ERP systems
without or with minimal customization or interoperability [14].

We conclude that if HSC manager want to plan and budget the hospital activities
as a whole they must use software which permit a real integration of Supply Chain
informational, physical and financial flows in decision making process. This type of
software does not actually exist. We propose in next section a type of software
which takes into account physical and financial flows thanks to decision making
tools and information flow thanks to data warehouse in planning and budgeting
activities.

3 Proposal of an Interoperable and Multi-flow Decision-Making
Aid Software Suite

It is worth noting that there is a need for a general approach for both HCS modelling
and its evaluation which combines data from physical, informational and financial
flows in one type of software which is a global Advanced Planning and Scheduling
(APS) [15]. This one allows solving HCS problem with an integration of all the
system flow. We call Advanced Budgeting and Scheduling (ABS) this type of APS
which combines all the flows and integrates data from the information system.

First, we propose in this section the ASDI-HSC environment, which means
Analysis, Specification, Design, and Implementation for the systems of the Health
Care Supply Chain class. In a second time, we present the concept of ABS which is
made thanks to ASDI-HSC environment.

3.1 Environment for a Multi-flow Tool Design

We use a methodology called ASDI (Analysis, Specification, Design, and
Implementation) [16] dedicated to the design and the implementation of modelling,
simulation and piloting software environments for a domain.

 Interoperable and Multi-flow Software Environment

315

Performance
Evaluation

Operation
Research

Statistics

Interfaces

Interfaces

Graphical
Tools

Animation

Decision aid
System

Data
warehouse

Analysis and specification
methods

Modelling methodology for
the field

Modelling process
management

Systemic approach
 Oriented object

Approach

WITNESS
PREVA
ARENA

MILP

Data mining

Interfaces

Interfaces

Graphs tools

3D
Emulation

SCOPE
Data

warehouse

ARIS -UML

ASDI Modelling
methodology

Modelling process
management

Systemic a
pproach Oriented object

approach

A generic modelling software environment ASDI HSC Modelling environment

Fig. 2. ASDI-HSC environment

Figure 2 only presents the visible elements for the manager. These elements
communicate using the interfaces layer. The environment corresponds to the concept
of software engineering workshop for the Supply Chain modelling and performance
evaluation, whether this one is centred production of goods or services. The ASDI-
HSC environment makes it possible to design and establish software suite of ABS
type (Advanced Budgeting and Scheduling) which constitutes an evolution in the
decision-making aid tools for Supply Chain. ASDI-HSC includes:

- a performance evaluation system, core of the environment; the performance
evaluation layer allows the one or more action models development according to the
modelling objectives. SIMAN V and WITNESS are indifferently used as core of this
software environment. PREVA (PRocess EVAluation) approach [20] thus allows to
the action models constitution whose objectives are centred on the value creation, but
also on "patient" satisfaction;
- a metric selection part, consisted by SCOPE approach (Supply Chain Operational
Performance Evaluation)[1] which allows the balanced scorecards construction and
establishment for the behaviours orientation in HSC.
- a data warehouse which allows the access to data necessary to the tools belonging to
the various part of the environment ;
- an operational research part which uses Mixed Integer linear Programs (MILP) (For
operating theatre…).
- a statistical part, which allows the analysis and the processing the existing data
(forecasts of load, learning curves) as well as the study of the results obtained by the
core of the environment.
- Graphics tools and 3D emulation which makes possible to animate in 3D with
MANTRA 4D the simulation models. This three-dimensional chart tool is very
significant to imply the actors in the organizational change.
- a part which contains methods of analysis and specification. ARIS and UML tools
are here used as formalisms and methods for specification.
- a modelling methodology of the field which was presented in [13], [16].

 P. Féniès, M. Gourgand, and S. Rodier

316

3.2 ASDI-HSC Environment Use for an Advanced Budgeting and Scheduling
Software Design

Figure 3 shows the characteristics of an ABS and the existing connections between
the various activities of Supply Chain physical and financial flows, the modelling
approaches and the decisional horizons interacting with the various data-processing
and mathematical models included in ABS.

Fig. 3. An Advanced Budgeting and Scheduling software

Supposing that the activity "to budget for" for financial flow is the equivalent of
the activity "to plan it" for physical flow, we define Advanced Budgeting and
Scheduling as a coherent succession of software applications allowing the
optimization and the performance evaluation of supply chain physical and financial
flows and combining overall (for the whole of the chain) like locally (for an entity)
the strategic, tactical, operational decisional horizons [17] with macroscopic,
mesoscopic and microscopic modelling approaches. These various applications are
connected to the information system of supply chain entities by a data warehouse
which reprocesses heterogeneous data resulting from different software applications
to feed in information the prescriptive models like descriptive contained in ABS.
Usually, prescriptive models [18] are used for decision-making: they are used to make
a choice on the design, control and the functioning of supply chain [19], while the
descriptive models [19] make it possible to evaluate the decisions made by the
prescriptive model or directly by the actors.

 Interoperable and Multi-flow Software Environment

317

Technical and conceptual features of an ABS are given in table 3 which shows the
passage from an APS software suite to an ABS software suite. If the context of use of
an ABS is the same one (internal Supply Chain as well as external) as an APS, the
software functionalities integrate planning and budgeting of the activities (for
example, choice of the planning which generates the maximum of cash-flow) and the
measuring tools of the performance use concepts more advanced than the few
indicators of physical flow. This type of software suite can be used for a complex
system of the Supply Chain as for the whole Supply Chain. We integrate in ABS a
decisional module which organizes information for Supply Chain managers in the
form of prospective scorecard for the ex ante activities evaluation.

Table 3. Transition from an APS to an ABS

 Advanced Planning and Scheduling [15] Advanced Budgeting and Scheduling
Context Internal and external Supply Chain Internal and external Supply Chain

Functionalities
Network Design
Distribution (DRP)
Production (PDP)
Supplying (MRP)
Scheduling and transport

For physical flow
For physical flow
For physical flow
For physical flow
For physical flow

For physical and financial flows
For physical and financial flows
For physical and financial flows
For physical and financial flows
For physical and financial flows

Decisional Tools
Performance Measurement Some physical flow metrics

Balanced Scorecard+ PREVA model
[16]

Connection with the
chain entities information

system
Not detailed

Data warehouses allowing collection of
data and information from heterogeneous

applications
Software components for

decision making tools Optimisation (Cplex) and heuristics
Coupling of optimisation/ simulation
(prescriptive and descriptive models)

Collaborative Planning

Collaborative planning gives to the chain
entities the quantity of products and

services to be produced and delivered on
short, medium and long term for a given

customer satisfaction rate.

Collaborative planning gives to the chain
entities the quantity of products and

services to be produced and delivered on
short, medium and long term which gives

the highest level of value for Supply Chain
entities.

The supply of the centred part on the costs and the financial part of the prospective
scorecard is carried out by the model PREVA [20] which makes it possible to
translate in a prospective and causal way the impact of physical flow into element of
financial flow by a succession of Activity Based Costing models. PREVA evaluate in
the medium and long term cash flows generated by Supply Chain and the entities
which make it up, but also in the short time the position of treasury of the Chain
entities generated by a collaborative planning.

In the APS, the interfacing with each entity information system which makes it up
is not carried out. We propose to carry it out in ABS by a data warehouse which
allows the collection and the data securisation resulting from heterogeneous
applications. Lastly, collaborative plannings of the APS are oriented Patient or
Customer Satisfaction (with the logistic meaning of the term) and do not integrate the
value creation concept for the actors who take part in the network Supply Chain.
Collaborative plannings resulting from an ABS allow, for a level of customer
satisfaction given to choose the solution which generates the most value for the whole
of the chain actors and to design the division of the latter.

 P. Féniès, M. Gourgand, and S. Rodier

318

4 Application

The generic evaluation model presented previously was applied to a real HSC
application. This application is done in collaboration with AXEGE society. In this
HSC several cares are done far away the Hospital, for example in the laboratory or in
imagery. In hospitals, there is a lot of units which are very often saturated and can’t
treat all the patients which are addressed to them. The objective of this study is to
evaluate, according to physical and financial criteria, various rules of patients priority
in the context of systems of health regulation mechanism. For that, the environment
previously presented is implemented. In a first paragraph, we present briefly the study
case, giving the details of the modelling process, while the second paragraph presents
the simulation results which come from the HSC modelling and simulation. Note that
many processes are evaluated in the case study and different granularity levels are
modelled and evaluated.

4.1. Action Model Modelling and Development

HSC modelling is given on figure 4. Figure 5 shows the links between software
applications, information flows, financial flows and physical flows in order to make a
decision making aid tool.

We present here an example of application of the decision making aid tool
proposed. For the work of modelling and data collection was carried out in
collaboration with the Hospital. In the study case, a priority is associated to each
treatment. Indeed, the management of the priorities is as follows: an agenda for
patient appointment date is made for each day. This last one is elaborated by
supposing a processing time of the average patient without taking into account his
pathology and its severity. In addition, any patients coming from other departments
must be also treated. It is then possible that some schedules patients are not treated the
right day. Pathologies differ according to their severity, their medical resources
consumption and their remuneration. The objectives of the HSC being multiple
(profitability, treatment rate...), the choice of a patients treatments priority rule is
complex. We suppose that physical flow is composed of patients flow. Figure 5
presents a chain of patient treatment process in a hospital. It is important to specify
that the various interventions are not inevitably carried out within the hospital, indeed
the laboratory is for example located on another site. A simulation model under
SIMAN V Arena of this system was developed in order to evaluate in a stochastic
context the best rule of patients priority management.

Five priority rules (heuristic) are evaluated as follows:

• H1: First patient check-in, first patient treated (current rule).
• H2: The largest criterion of severity (for equivalent criterion of severity, FIFO).
• H3: The largest financial criterion (for equivalent criterion of severity, the

financial criterion the most interesting financial criterion).
• H4: Processing time considered on average shortest (with criterion of equivalent

time, first in, first out).
• H5: The longest processing time (with criterion of equivalent time, first in, first out).

In the case of identical criterion, rule FIFO is applied.

 Interoperable and Multi-flow Software Environment

319

Fig. 4. Event Process Chain of the patient way in the Hospital

Fig. 5. Links between software applications and flows in real case study

 P. Féniès, M. Gourgand, and S. Rodier

320

This simulation is not determinist and finishing. Six families of pathologies: P1 to
P6 are considered. The patients check-in follows an exponential law of average 15
mm. The pathologies distribution and the processing time of pathologies by the
medical resources are given by table 4. The criterion of pathology severity does not
correspond to an emergency criterion. The financial data are "pro format" and are
built starting from a regulation system for public health care system. Figure 6
represents the translation of specification model previously defined into simulation
model with Arena tool. To realize the simulation of the HSC on 365 days, a time of
15 minutes is necessary.

Table 4. Initial data

 P1 P2 P3 P4 P5 P6
Distribution law Seasonality of pathologies
Processing following a normal
distribution

N(14,2) N(15,5) N(21,5) N(25,5) N(15,5) N(20,2)

Severity (of the least serious to the
most serious)

1 2 3 3 2 2

Pathology price (€) 20 17 22 30 15 25

Pathology margin (€) 10.62 8.75 6.5 7.98 8.8 8.37

Output variables to observe are: the annual average number of patients treated by
pathology, the annual rate of patients satisfaction, the annual rate of medical resources
occupation. Input Variables are: Priority rules. Initial state of the system: the Hospital
Supply Chain resources are free and the waiting rooms are empty at the beginning of
each simulated day. Finishing conditions of the simulation: one day which is
simulated begins at 8 AM and finishes at 6 PM. Collect results are: a replication
consists of 365 days consecutive without restoring of the "laws". We made 30 replicas
of 365 days and determine the average value of each observable variable. The
observed variables of the patients treatment of the HSC are then used by the
decisional module resulting from PREVA.

4.2 Results

The analysis of the physical flow results is carried out using the approach for financial
performance evaluation (PREVA). This tool treats the data, which it receives from the
simulation model. This data are exported from SIMAN V Arena tool to Scorecards,
using the Visual Basic language. Thus starting from the physical flows represented in
the simulation model we have the translation of corresponding financial flows. The
input data of decisional model detailed previously and which are provided at the end
of the simulation are the annual number of patients treated by pathology, the number
of patients untreated by pathology, as well as the use ratio of medical resources.
Finally, the tool for performance evaluation enabled us to obtain results for each
evaluated management rule, these results are represented on figure 6. The analysis of
the results (table 5) makes it possible to initially show the sensitivity of the
performances indicators compared to various management rules of treatment priority
but also to select the best rules for the analyzed system.

 Interoperable and Multi-flow Software Environment

321

Table 5. Selection of management rules

Management Rule H2 H3 H4 H5
A number of patients sol < H1 sol >H1 Best rule sol < H1
Satisfaction Patients sol < H1 sol >H1 Best rule sol < H1
Resources use id H1 id H1 id H1 id H1
Value Creation sol < H1 Best rule sol >H1 sol < H1
Generated Cash lows sol < H1 Best rule sol >H1 sol < H1
Selection eliminated H3 & H4 better than H1 eliminated

68,00%
70,00%
72,00%
74,00%
76,00%
78,00%
80,00%

H1 H2 H3 H4 H5
0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

45 000

50 000

H1 H2 H3 H4 H5

Fig. 6. Results

The decisional approach gives criteria of selection which allow, for an equivalent or
higher quality of "patient satisfaction", to select the most advantageous rules of
management on the financial. If the results presented validate the decisional approach, the
various rules of management and their order are relevant only compared to the case study.

5 Conclusion

In this paper, a modelling environment for Supply Chains class systems was
proposed. This software environment, based on ASDI modelling process has for
objective to help the experts in modelling and the managers to model a complex
system such as a HSC. The evaluation constraints resulting from financial flows are
integrated and give the possibility to propose new decisional software called ABS,
which permits the taking into account of performance evaluation methods in
interdisciplinary and interoperable context of Supply Chain management. Thanks to
this approach, decision making tools using simulations for all the flows (physical,
financial and informational flows) are connected together and with information
system. This approach is validated in a health care supply chain (with different
entities such as laboratories, internal and external unit of care). This generic approach
enables us to consider, in a next study, the integration of ABC model and financial
flows in optimization models in order to improve running of HSC. An extension of
this approach in large external Supply Chain in order to improve their functioning and
to allow the managers to share the value creation realized by collaborative planning
and to develop interoperability in intra-organizational as in inter-organizational
context for other types of supply chain (industrial …) will be proposed in next works.

 P. Féniès, M. Gourgand, and S. Rodier

322

References

1. Féniès, P., Gourgand, M., Tchernev N.: Une contribution à la mesure de la performance
dans la supply chain hospitalière : L’exemple du processus opératoire. In 2ème conférence
francophone en Gestion et Ingénierie de Systèmes Hospitaliers (GISEH). Mons (2004)

2. Orgun B., Vu J.: HL7ontology and mobile agents for interoperability in heterogeneous
medical information systems. Computers in Biology and Medicine, (2005)

3. Degoulet P, Fieschi M. Interopérabilité des Systèmes d'Information de Santé - Aspects
Syntactiques et Sémantiques. Paris: CIHS, (1997)

4. Tchernev N.: Modélisation du processus logistique dans les systèmes flexibles de production,
Thèse de doctorat, Université Blaise Pascal, Clermont Ferrand II, France, (1997)

5. Selk B., Kloeckner S., Albani A.: Enabling interoperability of networked enterprises through
an integrative information system architecture for CRM and SCM. First International
Workshop on Enterprise and Networked Enterprises Interoperability (ENEI). Nancy (2005)

6. Aymarda S., Fieschia D., Jouberta M., Fieschia M.: Towards Interoperability of
Information Sources within a Hospital Intranet. Annual Symposium Library (1998)

7. Masys D., Humphreys B.: Structure and function of the UMLS Information Sources Map.
In: Lun K, Degoulet P,Piemme T, Rienhoff O, eds. MEDINFO 92: North-Holland Publ.
Comp., (1992)

8. Obitko M., Marik V.: Ontologies for multi-agent systems in manufacturing domain, in:
13th International Workshop on Database and Expert Systems Applications, Aix-en-
Provence, France, (2002) 597–602

9. Lanzola G., Falasconi S., Stefanelli M.: Cooperative software agents for patient
management, in: Fifth Conference on Artificial Intelligence in Medicine Europe (AIME95)
(1995) 173–184

10. Lanzola G., Falasconi S., Stefanelli M.: Cooperating agents implementing distributed
patient management, in: Seventh European Workshop on Modelling Autonomous Agents
in a Multi-Agent World, (1996) 218–232

11. Shapiro J.: On the connections among activity-based costing and operational research.
European Journal of Operational Research, Vol. 118, p 295-314 (1999).

12. Vidal, C.J., Goetschlackx, M.: A global Supply Chain model with transfer pricing and
transportation cost allocation, European Journal of Operational Research, Vol. 129. (2001).

13. Chabrol M., Féniès P., Gourgand M., Tchernev N.: Un environnement de modélisation
pour le système d’information de la Supply Chain : application au Nouvel Hôpital
d’Estaing. Ingénierie des Systèmes d'Information - VOL 11/1, (2006) 137-162

14. Botta-Genoulaz V., Millet P.-A., Grabot B.: A survey on the recent research literature on
ERP systems. Computers in Industry, Volume 56, Issue 6, (2005) 510-522

15. Stadtler H., Kilger C.: Supply chain Management and Advanced Planning. Springer
(2001).

16. Chabrol M., Chauvet J., Féniès P., and Gourgand M.: A methodology for process
evaluation and activity based costing in health care Supply Chain, LNCS as a special issue
on Interoperability, Volume 3812, p. 375 – 384, (2006).

17. Ballou R.: Business Logistics Management, Prenctice-Hall Inc Englewood Cliffs,New
Jersey (1997).

18. Dietrich B.L.: Taxonomy of discrete manufacturing systems. Journal of Operation
Research, (nov-dec 1991).

19. Cooper R, Zmud R.: Information technology implementation research: a technological
diffusion approach. Management Science 36 - (2) (1990) 123-39

20. Comelli M., Féniès P., Tchernev N.: Un modèle décisionnel pour l'évaluation de la
performance du processus logistique : application sur une unité de consultation
ambulatoire d'une Supply Chain hospitalière. 6ème Conférence Francophone de
MOdélisation et SIMulation (MOSIM). Rabat (2006).

An Architecture for Proactive Timed Web
Service Compositions

Johann Eder1, Horst Pichler2, and Stefan Vielgut2

1 Department of Knowledge and Business Engineering
University of Vienna, Austria

2 Department of Informatics-Systems
University of Klagenfurt, Austria

Abstract. Web Services-based business processes spread over the
boundaries of companies, requiring the integration of customers, suppli-
ers and partners to achieve inter-organizational business goals. Accord-
ing to organizational rules temporal constraints, like deadlines, must be
defined for processes. Violation of these constraints usually results in
increased cost and reduced quality of service. Advanced workflow time
management approaches allow the prediction of eventually arising time
constraint violations and enables proactive initiation of evasive ”self heal-
ing” actions. This saves time, avoids unnecessary task-compensations and
therefor decreases costs. In this paper we present an architecture for Web
Service Composition environments which enables the usage of advanced
predictive and proactive time management features.

1 Introduction

The next step in the evolution of web services are composite web services to
support business processes within organizations as well as business processes
spanning several organizations like supply chains. Thus the most critical need
in companies will be to provide services with a better quality than their com-
petitors. To assess the quality of service (QoS) it is necessary to define measures
which are significant indicators for certain quality aspects, where expected or
guaranteed process duration ranks among the most important characteristics
[15]. Slow web services, invoked by a composite web service, can have an dis-
astrous impact on the overall process response time and even worse result in
the violation of time constraints, like a process deadlines. Thus techniques are
needed to predict these durations and possible constraint violations based on the
anticipated response time of participating web services, enabling us too exchange
certain services or to optimize them for faster execution.

These are established problems in workflow management, a closely related
application area. Workflow management systems, are used to improve processes
by automating tasks and getting the right information to the right place for a
specific job function. Additionally it is a necessity to control the flow of infor-
mation and work in a timely manner by using time-related restrictions, such as
bounded execution durations and absolute deadlines, which are often associated

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 323–335, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

324 J. Eder, H. Pichler, and S.Vielgut

with process activities and sub-processes [10]. However, arbitrary time restric-
tions and unexpected delays can lead to time violations, which typically increase
the execution time and cost of business processes because they require some type
of exception handling [21]. Although currently available commercial products
offer sophisticated modelling tools for specifying and analyzing workflow pro-
cesses, their time-related functionality is still rudimentary and mostly restricted
to monitoring of constraint violations and simulation for process re-engineering
purposes [6]. Workflow time management deals with these problems and allows
for instance the prediction of response times or proactive avoidance of constraint
violations. In research several attempts have been made to provide solutions to
time management problems (e.g. [5,6,8,11,14,19]).

Nowadays inter-organizational workflows are likely to be assembled from sev-
eral external processes and services. This can be accomplished by aggregating
distributed web services into a web service composition. More than ever slow
external services will have a disastrous impact on the overall process response
time, cause deadline violations and increase the cost of the process. It seems to be
an obvious idea to apply time management approaches to avoid these problems,
which requires some adaptations to the original algorithms.

In this paper we present a novel time manager architecture for web service
composition environments, where we focus on BPEL executable processes [4,1].
We list and explain required build time and run time components, along with a
brief introduction into the necessary parts of time management theory.

The paper is organized as follows. In Section 2 we describe basic workflow
time management concepts. Section 3 gives an overview of the architecture. Sec-
tions 4 explains already implemented build time components in detail, whereas 5
outlines run time components along with some ideas for still unsolved problems.
The paper finishes with some conclusions and a brief outlook in Section 6.

2 Workflow Time Management in a Nutshell

The basic concepts of workflow time management are rooted in project plan-
ning methods like the Critical Path Method (CPM) or the Program Evaluation
Review Technique (PERT) [10]. They determine, among other things, a valid
execution interval for each activity in the process. This interval is delimited by
the earliest point in time an activity can start, which is determined by preceding
activities, and the latest point in time it must end, in order to meet the process
deadline. The intervals are calculated based on the knowledge about process
control flow structure, the average or estimated durations of activities and time
constraints. The phases of time management, its concepts and main ideas are
best explained with an example.

2.1 Process Build Time

Process Modelling. An expert or process designer models the process and
augments it with necessary temporal information. Figure 1 visualizes a workflow

An Architecture for Proactive Timed Web Service Compositions 325

time

A B C

0 1 65432 121110987

deadline= 13

13

B.d
B.st

Start End4 4 3

B.eps B.lae

deadline

A.d
C.d

Fig. 1. Valid Execution Interval of Activity B

consisting of three activities executed in sequence. Explicit time properties are
the estimated duration of activities in basic time units, which are A.d = 4,
B.d = 4 and C.d = 3 and a deadline of δ = 13, stating that the overall workflow
execution must not exceed 13 time units.1

Calculation of the Timed Graph. The output of this phase is called Timed
Graph which augments the process model with valid execution intervals for each
node or activity. The time line in Figure 1 shows these execution intervals for
activity B. A relative time model is used, where 0 denotes the start time of the
process. All other points in time are declared or calculated relative to this start
time [16]. Based on this information the valid execution interval for activity B is
calculated as follows: an activity must not start until all predecessors are finished
(since we assume that there is no delay between activities), therefore the earliest
possible time B may start is determined by the sum of predecessor durations:
B.eps = 4. To take the deadline of 13, into account, the point of view has to be
reversed, now starting from the end of the workflow. By subtracting the durations
of succeeding activities from the deadline, the latest allowed end B.lae of activity
B is determined: B.lae = 13 − 3 = 10. In the figure one can also spot the time
span B.st, which depicts the slack or buffer time; this time may be consumed
by B without endangering the deadline.2 The EPS-values for all activities are
calculated in a forward pass and the LAE-values in a backward pass, as described
in e.g. [14], where along with simple sequences also conditional, alternative and
parallel execution structures are considered, as well as upper and lower bound
constraints. In order to cope with run time uncertainties like varying execution
durations and branching and looping behavior (treatment of blocked loops) a
stochastic model was introduced in [11,12], where each time value is represented
as histogram, which allows statements for certain confidence thresholds.

1 Although it can not be recommended to represent durations with simple scalar time
values, we will still use this representation to reduce the complexity of explana-
tions. In the prototypical implementation we used the probabilistic model presented
in e.g. [11,12], where time values are represented as histograms, which allow more
differentiated statements about the temporal status of a process.

2 Slack time is produced by relaxed deadlines or on shorter branches of parallel
structures.

326 J. Eder, H. Pichler, and S.Vielgut

2.2 Process Instantiation

The workflow engine starts, controls and terminates the control flow of process
instances. When starting a new process instance the time manager has to load
the according timed graph and adjust it to the current date and time. This step
is called Calendar Mapping, which in its simplest form just adds the current date
and time to each EPS and LAE-value in the timed graph.

2.3 Process Run Time

Monitor State of Execution. During process execution a time management
component must map each currently executed activity with its counterpart-node
in the timed graph.

Predictive Time Management. The prediction component has several func-
tions: it may be used to predict the rest execution time of the process [11] or to
forecast the arrival time of future tasks for certain workflow participants (based
on EPS-values) [9]. For this paper the most important feature is the prediction
of eventually arising future deadline violations based on LAE-values. E.g. if B
ends later than 13 (time units after the start of the process) one can state that
it is likely that the deadline will be violated after finishing C. In contrast to
reactive time management, which solely reacts on constraint violations that al-
ready occurred, predictive time management forecasts violations and enables the
system to initiate evasive actions [14].

Proactive Time Management. Proactive time management will be started
after the prediction of violations. Its purpose is to trigger appropriate evasive ac-
tions. Consider our running example: before C is even started according evasive
actions can be invoked in order to hold the deadline, for instance exchanging
activity C with an alternative shorter activity C′. We claim that early predic-
tion of time constraint violations and their pro-active treatment saves costs and
therefor increases the quality of service [12].

3 Architecture for Timed Web Service Compositions

Figure 2 proposes an architecture for a BEPL-based web service environment
which enables proactive time management. The architecture consists of the Pro-
cess Engine and the Time Managers Build Time and Run Time components.

Time Manager Build Time Components

1. The Parser loads the BPEL-definition, parses it and generates an according
Process Graph.

2. The Data Collector augments the graph with additional temporal process
information, like expected activity durations and time constraints.

An Architecture for Proactive Timed Web Service Compositions 327

BPEL

Process Definition

Process Graph

9hours 5hours

1hour
Extended Graph

Parser Data Collector Timed Graph Calculator

Timed Graph

9hours 5hours

1hour

2hours

Time Manager - Build
Time Components

Model DB

Process Engine

History
3d Party QoS

Duration, Branching, Constraints

Instance 1

Instance 2

Instance 3

Log Events

Instance Graph 3Events

Intervention

Experts

Instance Graph 2

Instance Graph 1

Instance Models
(Calendar Mapped)

Prediction

Instance Model
Mapper

Time Manager -
Run Time Components

Start
Process

Proaction

Temporal Status

User, Administrator

2hours

Fig. 2. Time Manager Architecture

3. The resulting Extended Graph is fed into the Timed Graph Calculator, which
generates the Timed Graph.

4. And finally the Timed Graph is stored in the Model Database.

Process Engine
1. The BPEL-Process Engine starts new process instances and controls their

execution (communication with web services).
2. During the execution of process instances certain events, like start or termi-

nation of process activities, are signaled to the run time component of the
time manager.

3. In order to avoid possible future violations of time constraints the process
engine reacts to intervention signals from the time manager.

Time Manager Run Time Components
1. When a process is started by the process engine an according signal will be

sent to the time manager.
2. The Instance-Model Mapper loads the according timed graph from the model

database and generates a calendar-mapped copy, called Timed Instance
Graph, for the process instance.

328 J. Eder, H. Pichler, and S.Vielgut

3. Each time an activity of the process instance starts or ends an according
signal will be sent to the instance-model mapper.

4. The Prediction Component periodically checks the temporal status of the
instance and raises an exception if time constraints are likely to be violated.
Additionally it provides an interface to monitor the temporal status of each
process instance (e.g. likelihood of deadline violations, expected remaining
execution time) which may be accessed by users, service requestors or process
administrators.

5. In this case the Proactive Component jumps into action, tries to find an al-
ternative (shorter) execution plans in order to prevent a future deadline vi-
olation, and sends according intervention instructions to the process engine.

The current status of the prototypical implementation and research tasks is as
follows: the build time components are completed and now we focus on the
proactive part, namely service exchange algorithms. For the Java-based imple-
mentation of the prototype the following tools and technologies were used: Oracle
BPEL Server, Eclipse + Oracle BPEL Designer Plugin, Apache Tomcat, Axis
Soap Engine and the Xerces2 XML-Parser [22].

4 Build Time Components

4.1 Parser: Generating the Process Graph

The first step is to parse the web services-based process definition in order to
generate a graph-based process representation, which is necessary for the time
management calculations performed later. In a service oriented architecture en-
terprizes or their applications respectively communicate via loosely coupled web
services, which are described by standards like the Web Service Description Lan-
guage (WSDL) [24,1]. As these services do very often not operate in isolation,
but in the context of a business process, a description language must be used to
define e.g. the data flow between and the execution order of web services. The
Process Execution Language for Web Services (BPEL, BPELWS) is such a lan-
guage [4,1]. Note that we concentrate on executable business processes, which
require, similar to processes in workflow systems, a central process execution
engine that enacts and controls process instances. In a services-based scenario
the engine communicates either synchronously or asynchronously with external
web services, which form the steps in a business process. BPEL provides several
base activities to communicate with web services, like invoke, receive or reply.
Additionally it provides so called structural activities to define the control flow
between base activities, like sequence, switch, flow or while. As BPEL originates
from block-structured (XLANG) and activity diagram-based (WSFL) languages
the control flow of a BPEL process definition can be represented a directed graph
with control nodes [3]. Therefore the transformation of a BPEL-definition into
a process graph poses no further problems for the Parser.

An Architecture for Proactive Timed Web Service Compositions 329

4.2 Data Collector: Generating the Extended Graph

In many workflow systems activities have additional attributes holding expected
execution durations, which are mainly used for simulation and process re-
engineering purposes [23,18]. Additionally time constraints can be defined to
e.g. enable the enforcement of organizational rules.

Extended Information. In addition to the control flow structure defined in the
process definition, time management algorithms need the following information
to calculate their temporal models:

– Response Time: Each activity must be augmented with the expected dura-
tion, or since we talk about services, call it response time.

– Time Constraints: Several types of time constraints exist. An overall process
deadline is a time constraint which restricts the execution duration of the
whole process. A lower bound constraint is defined between a source and a
target activity which are not necessarily adjacent in the graph. It defines a
minimum time that must pass after finishing the source activity, before the
target activity is allowed to start. An an Upper Bound Constraint defines
a maximum time that is allowed to pass between the source and the target
activity.

Data Sources. The function of the Data Collector is to gather this additional
information and extend the process graph with it, where the following data
sources may be accessed:

– Experts: Information stemming from organizational rules, like time con-
straints, must be introduced by expert process modelers. If no other sources
are available experts may additionally make estimations about service re-
sponse times.

– Process History: If knowledge about past process execution exists, response
times can also be extracted from the process history. The process history (or
process log) stores events which occur during process execution, for instance
the start or end of activities, along with according time stamps.

– Third Party: Sometimes the extraction of response times tends to be a prob-
lem, especially in flexible environments where autonomous web services, ac-
cessed by the composition, are frequently changing. For these cases response
times could also be stored and administered by trusted third parties, which
offer an interface to access statistics, similar to or as an extension of a (Web)
Service Level Agreement-architecture [7,15].

In order to automate data collection we extended the original WSDL of each
service contained in the composition with a time management interface which
provides methods (e.g. getResponseTime) to access extended data. The (hidden)
implementation of these methods provides access to one of the above mentioned
types of the data sources and can be uniformly accessed via the web service in-
terface. The implementation may for instance be a query to an experts database
or forwarding the request to a third party interface.

330 J. Eder, H. Pichler, and S.Vielgut

4.3 Timed Graph Calculator

As BPEL-definitions can be represented as graphs and all possible structural
activities are supported by according control flow structures, as addressed in
e.g. [14,11,12], it already seems that time management algorithms as explained
in Section 2 can be applied without further adaptations. Unfortunately existing
workflow time management approaches are based on one assumption: activities
are interpreted as basic execution units which must be finished in order to pro-
ceed with workflow execution. But in Web Service scenarios external services,
applications or sub-processes are started, using a blocking (synchronous) or non-
blocking (asynchronous) communication model. To enable our time management
algorithms to cope with these models it was necessary to examine the structure
of communication scenarios and how they affect EPS- and LAE-values. Recent
publications on web service communication and web service composition, e.g.
[1,20,3], already identified several basic synchronous and asynchronous commu-
nication patterns, which we had to consider in our time management calculation
algorithms. A detailed description of how to handle each pattern can be found
in [13].

Synchronous Patterns. In a synchronous or blocking model the requester waits
for the response of the provider before it continues execution. The advantage of
this model is its simplicity, as the process state does not change until the response
has been received. The obvious disadvantage is that blocking the execution of
the main process, especially when long running external processes are involved,
increases its execution duration tremendously. For synchronous communication
patterns no special mapping is necessary since after the invocation of an external
service process execution will be blocked until the response is received, which is
exactly the behavior of so called atomic activities in workflow systems.

Asynchronous Patterns. Although synchronous communication is appropri-
ate in many situations it may be suboptimal when long-running external services
or sub-processes are called. In an asynchronous or non-blocking model the main
process sends a request to the provider and continues execution without delay. At
a later point in time it receives a response (callback) from the provider, which of
course implies that the main process contains an activity which waits to receive
this response. Asynchronous communication loosely couples sender and receiver.
This accelerates process execution and compensates communication problems
(e.g. network problems). But for time management it poses a problem as vi-
sualized on the left-hand side in Figure 3: a web service composition consists
of a sequence of activities, where the first one invokes an external web service,
which itself hides a process. As the communication is non-blocking, the process
engine continues execution with succeeding activities (which may for instance
be blocking calls to other services). The last activity receive synchronizes the
external web service, as it waits for the response message.3

3 For details on callbacks and how response messages are correlated to their appropri-
ate process instances, e.g. using correlation-ids, we refer to [1].

An Architecture for Proactive Timed Web Service Compositions 331

lbc: 12

invoke receiveCB
5 4

Composition

External Web Service

X Y
9 3

Response Time: 12

Deadline: 10

request response

invoke receiveCB
5 4

Composition Deadline: 10

Fig. 3. Invocation of an External Web Service

Assuming that the duration of invoke and receive is 0, one could be tempted
to state that the overall execution duration of the composition is 9, which is less
than the deadline of 10. But of course it is necessary to consider the response
time of the invoked service which is 12, therefore the deadline will be violated.
One can see that the time span between invoke and receive is determined by the
maximum of the duration of the regular path and the duration of the external
service. Please note that in this scenario an external web service with a response
time less than 9 hours (which is the sum of durations of B and D) would have had
no effect on the execution duration of the workflow and the execution intervals of
its activities, as in this case the longer regular path via B and D would determine
these values.

In order to calculate the timed graph we have to introduce a temporal re-
lationship between the invoking and the receiving activity, where asynchronous
communication with a web service can be easily mapped to a lower bound con-
straint (see right-hand side in Figure 3). The forward and backward calculations
may then be performed as explained in [14], which states that for activities
which are connected by a lower bound constraint the longest path determines
the according time intervals. A required prerequisite is to connect the invoke and
the adhering receive activity with a lower bound. This can be automated during
parsing if the BPEL-definition contains according partner links and bindings
[1,22]. Note also that since the invoked service may reside anywhere its struc-
ture will be unknown and it must therefore be treated as a black box. The only
knowledge required is its expected response time which can for instance be de-
termined by retrieving the QoS-information on this service from a trusted third
party.

4.4 Model Database

At the last step of the build time phase the timed graph must be stored in the
Model Database. The model database holds a timed graph for each time-managed
process. The model is stored as an XML-representation of the timed graph model,
which consists of nodes, edges and temporal relations. Nodes hold temporal
information (EP- and LA-values) and a mapping to the WSDL-specification and
according partner links. Edges connect nodes and temporal relations represent
time constraints like lower bounds.

332 J. Eder, H. Pichler, and S.Vielgut

5 Run Time Components

5.1 Instance-Model Mapper

To monitor the progress of a process instance and its temporal status the time
manager needs to be notified of certain events, which are: start of a process or
activity, end of a process or activity and the abnormal termination of a process.
Each of these events must be signaled to the Instance-Model Mapper which reacts
as follows:

Start Process. The mapper generates a copy, called Timed Instance Graph, of
the according timed graph which it loads from the model database. Afterwards
each EPS and LAE-value in this graph is mapped to the real calendar, which
means that the current date and time is added. Consider the example from Sec-
tion 2: in the original model the valid execution interval is defined as relative
distance to the start time 0 of the process, e.g. B.eps = 4 and B.lae = 10. As-
suming that the time unit used is hours and the (current) time at the start of the
process is Monday 1st, 8am the interval in the instance graph will be calendar-
mapped as follows: B.eps = Monday 1st, 12am and B.lae = Monday 1st, 6pm.
Of course this applies for the intervals of all activities the timed instance graph,
as well as for the overall deadline which is mapped to Monday 1st, 9pm. Addi-
tionally the execution pointer is initialized with a reference to the start activity
(in the timed instance graph).

Start Activity, End Activity. The mapper updates the execution pointer
such that it references the currently executed activity (in the timed instance
graph).

End Process, Cancel Process, Termination Due to Failure. The mapper
discards the timed instance graph.

5.2 Predictive Time Manager

This component checks periodically and on arrival of certain events if the cur-
rent execution status is likely to cause time constraint violations in the future.
E.g. activity B finishes at time Monday 1st, 7pm and the process enginge sig-
nals end of activity B to the time manager. By comparing the actual end time
of B with its latest allowed end time B.lae = 6pm the time manager finds
out that a deadline violation is likely to occur. Actually it predicts that af-
ter the execution of C the process will most likely finish at 10pm, which is
1 hour after the calendar-mapped deadline, and therefore 1 hour to late. It
raises an according exception which must be handled by the Proactive Time
Manager.

As an additional feature the prediction componentent provides an interface
to monitor the temporal information and status of each process instance which

An Architecture for Proactive Timed Web Service Compositions 333

may be accessed by users, service requestors or process administrators. Service
requestors might for instance be interested in the expected completion date/time
of a certain process instance. Process administrators might want to know the
temporal status of an instance. In [14] the traffic light model was introduced,
which proposes different temporal states that are set according to the likelihood
of a deadline violation: green (everything ok), yellow (problems possible) and
red (violation most likely to occur).

5.3 Proactive Time Manager

When this component catches an exception the process is already late, which
means that the rest of the process must be sped-up in order to reach the given
deadline. We just started to research methods to exchange services with faster
alternatives. Of course it is possible that these alternative services have some
drawbacks (which is the reason that they were not chosen in the first place), e.g.
they might be more expensive. The first input parameter for such an algorithm
is the amount of time that must be saved; consider the running example: activity
B is late by one hour, therefore the succeeding activities must be accelerated by
at least one hour, in order to meet the deadline. Additionally such an algorithm
will need to know which services are exchangeable, along with a set of alternative
services for each of them (we plan to realize a static approach in the prototypical
implementation). The next step is the generation of an alternative constraint-
violation free process execution plan. This is not so straightforward as it seems
at first glance. E.g. exchanging a service with a shorter alternative might not
affect the execution duration of the process at all, if it for example resides on
a path where still slack time is available. Additionally it might be necessary to
exchange more than one service. However, in every case a partial recalculation
of the timed instance graph will be necessary. Finally the process engine must
be informed about the changes it has to apply on the (still running) process
instance.

6 Current Work, Future Work and Conclusions

The prediction and proactive avoidance of deadline violations decreases costs of
processes and increases their quality of service. In this paper we proposed a time
manager architecture for web service composition environments, showed how to
apply workflow time management algorithms, explained in detail how build time
and some run time components work and provided some ideas of how to solve still
open run time problems. To prove the feasibility of our concepts we implement a
web services-based time management framework, where we currently concentrate
on the run time aspects, especially on repair and service exchange algorithms.
Additionally we examine the applicability of proactive time management features
on other quantifiable quality dimensions, like cost or reliability. The integration
of proactive repair mechanisms into process automation environments is subject
of ongoing research.

334 J. Eder, H. Pichler, and S.Vielgut

References

1. G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web Services: Concepts, Architec-
tures and Applications. Springer Verlag, ISBN 3-540-44008-9, 2005.

2. W. M. P. van der Aalst and H. A. Reijers. Analysis of discrete-time stochastic
petrinets. In Statistica Neerlandica, Journal of the Netherlands Society for Statis-
tics and Operations Research, Volume 58 Issue 2, 2003.

3. Petia Wohed and Wil M.P. van der Aalst and Marlon Dumas and Arthur H.M. ter
Hofstede. Pattern Based Analysis of BPEL4WS. QUT Technical report, FIT-TR-
2002-04, Queensland University of Technology, Brisbane, 2002.

4. Business Process Execution Language for Web Services Version 1.1 - BPEL4WS
Specification. BEA, IBM, Microsoft, SAP and Siebel, 2004.

5. G. Baggio and J. Wainer and C. A. Ellis. Applying Scheduling Techniques to
Minimize the Number of Late Jobs in Workflow Systems. In Proc. of the 2004
ACM Symposium on Applied Computing (SAC). ACM Press, 2004.

6. C. Combi and G. Pozzi. Temporal conceptual modelling of workflows. LNCS 2813.
Springer, 2003.

7. J. Cardoso and A. Sheth and J. Miller. Workflow Quality of Service. Proceedings
of the International Conference on Integration and Modeling Technology and Inter-
national Enterprise Modeling Conference (IEIMT/IEMC’02), Kluwer Publishers,
2002.

8. P. Dadam and M. Reichert. The ADEPT WfMS Project at the University of Ulm.
In Proc. of the 1st European Workshop on Workflow and Process Management
(WPM’98). Swiss Federal Institute of Technology (ETH), 1998.

9. J. Eder, W. Gruber, M. Ninaus, and H. Pichler. Personal Scheduling for Workflow
Systems. LNCS 2678, Springer Verlag, 2003.

10. J. Eder and E. Panagos. Managing Time in Workflow Systems. Workflow Hand-
book 2001. Future Strategies Inc. Publ. in association with Workflow Management
Coalition (WfMC), 2001.

11. J. Eder and H. Pichler. Duration Histograms for Workflow Systems. In Proc. of the
Conf. on Engineering Information Systems in the Internet Context 2002, Kluwer
Academic Publishers, 2002.

12. J. Eder and H. Pichler. Probabilistic Workflow Management. Technical report,
Universitt Klagenfurt, Institut fr Informatik Systeme, 2005.

13. J. Eder and H. Pichler. Avoidance of Deadline Violations for Interorganizational
Business Processes. Seventh International Baltic Conference on Databases and
Information Systems DB&IS, Technika, 2006.

14. J. Eder, E. Panagos, and M. Rabinovich. Time constraints in workflow systems.
LNCS 1626. Springer, 1999.

15. M. Gillmann, G. Weikum, and W. Wonner. Workflow management with service
quality guarantees. In Proceedings of the 2002 ACM SIGMOD International Con-
ference on Management of Data. ACM Press, 2002.

16. H. Jasper and O. Zukunft. Time Issues in Advanced Workflow Management Appli-
cations of Active Databases. In Proc. of the 1st International Workshop on Active
and Real-Time Database Systems. Workshops in Computing, 1995.

17. B. Kiepuszewski, A. ter Hofstede, C. Bussler. On Structured Workflow Model-
ing. In: Proceedings of the 12th Conference on Advanced Information Systems
Engineering (CAISE). Stockholm, Sweden, June 2000.

18. M. Laguna and J. Marklund. Business Process Modeling, Simulation and Design.
ISBN 0-13-091519-X. Pearson Prentice Hall, 2005.

An Architecture for Proactive Timed Web Service Compositions 335

19. O. Marjanovic and M. Orlowska. On modeling and verification of temporal con-
straints in production workflows. Knowledge and Information Systems, 1(2), 1999.

20. E. Newcomer. Understanding Web Services. Verlag: Addison-Wesley, ISBN 0-201-
75081-3, 2002.

21. E. Panagos and M. Rabinovich. Predictive workflow management. In Proc. of
the 3rd Int. Workshop on Next Generation Information Technologies and Systems,
Neve Ilan, ISRAEL, 1997.

22. S. Vielgut. Time Management in Web Service Orchestrations. Master Thesis,
University of Klagenfurt, 2005.

23. Workflow Process Definition Interface. A Workflow Management Coalition Speci-
fication. Document number WFMC-TC-1025, 2002.

24. E. Christensen and F. Curbera and G. Mereditih and S. Weerawarana Web Service
Definition Language 1.1 - WSDL Specification IBM, Microsoft, 2001.

Ontology Knowledge Spaces for Semantic
Collaboration in Networked Enterprises�

Silvana Castano, Alfio Ferrara, and Stefano Montanelli

Università degli Studi di Milano
DICo - Via Comelico, 39, 20135 Milano - Italy

{castano, ferrara, montanelli}@dico.unimi.it

Abstract. In this paper, we define a reference conceptual framework
to organize ontology knowledge spaces and related semantic collabora-
tion schemes for coordinated and virtual access to heterogeneous and
distributed information resources inside and outside the enterprise, at
both intra- and inter-enterprise level under different collaboration re-
quirements and goals. The framework exploits ontology knowledge spaces
and enabling services for searching and retrieving the relevant informa-
tion resources, namely those semantically related to a target request,
both in a stable and emergent collaboration scenarios.

1 Introduction

Large enterprises, e-government organizations, business organizations, and in-
ternetworking communities in general, need today a coordinated and virtu-
alized access to distributed information resources to realize novel forms of
networked enterprises (e.g., virtual organizations, networks of cooperating or-
ganizations), often to rapidly respond to opportunities or challenges that cannot
be anticipated in advance. Accessing heterogeneous and distributed information
resources in a coordinated and virtual way through complex, possibly cross-
organizational, business processes requires appropriate semantic interoperability
techniques to enable a seamless access and retrieval of the right information
resources, in the time frame that the users require, while preserving the infor-
mation representation and management requirements of each single party in-
volved in the collaboration [1,12]. In addition, a further requirement for effective
semantic interoperability techniques regards the availability of ontology-based
descriptions of information of interest in use by an organization. Ontologies
are generally recognized as an essential tool for allowing communication and
knowledge sharing among distributed users and applications, by providing a
semantically rich description and a common understanding of a domain of in-
terest.

In this paper, we define a reference conceptual framework to organize ontol-
ogy knowledge spaces and related semantic collaboration schemes for coordinated

� This paper has been partially funded by NoE INTEROP, IST Project n. 508011 -
6th EU Framework Programme.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 336–347, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ontology Knowledge Spaces for Semantic Collaboration 337

and virtual access to heterogeneous and distributed information resources in-
side and outside the enterprise, at both intra- and inter-enterprise level under
different collaboration requirements and goals. The framework exploits ontol-
ogy knowledge spaces and enabling services for searching and retrieving the
relevant information resources, namely those semantically related to a target
request, both in a stable and emergent collaboration scenarios. To this end,
we combine both a mediation approach for integrated access to heterogeneous
information sources, typical of data integration systems [3,8,9], and a discov-
ery approach typical of open networked systems [2,7], to provide a compre-
hensive framework for semantic collaboration in networked enterprise contexts.
With respect to networked collaboration, recent research in P2P systems fo-
cuses on providing techniques for evolving from basic P2P networks support-
ing only file exchanges using simple filenames as metadata, to more complex
systems like schema-based P2P networks, capable of supporting the exchange
of structured contents (e.g., documents, relational data) by exploiting explicit
schemas to describe knowledge, usually using RDF and thematic ontologies as
metadata [10,11]. With respect to these latter approaches, the paper presents
collaboration techniques for semantic collaboration that work without super-
peer nodes and integrated schemas, but rather on the presence of autonomous
information ontologies and on dynamic query through a knowledge discovery
service at each enterprise party. Main contributions of our work regards the or-
ganization of the ontology knowledge into multiple spaces capable of providing
different semantic views targeted to different semantic collaboration purposes.
Moreover, we discuss how such knowledge spaces can be used by enabling ser-
vices for enforcing semantic collaborations both at intra- and inter-enterprise
level.

The paper is organized as follows. In Section 2, we describe the reference con-
ceptual framework for organizing the enterprise ontology knowledge spaces. The
stable semantic collaboration scheme and the emergent semantic collaboration
scheme are presented in Section 3 and 4, respectively. In Section 5, an applica-
tion example regarding the stable/emergent collaboration schemes is discussed.
Finally, concluding remarks are provided in Section 6.

2 Enterprise Knowledge for Semantic Collaboration

An important requirement to consider when addressing the problem of semantic
collaboration and knowledge sharing in intra/inter enterprise contexts, is related
to the fact that each enterprise needs to share a large number of heterogeneous
information resources (e.g., databases, XML documents). In this respect, ontol-
ogy specification is generally employed for providing a semantic description of
the resources to be shared for semantic collaboration. In this paper, we propose
an enterprise-level ontology knowledge organization in multiple spaces with the
aim to provide multiple semantic views targeted to different semantic collabora-
tion purposes.

338 S. Castano, A. Ferrara, and S. Montanelli

2.1 Ontology Knowledge Spaces

As shown in Figure 1, three different ontology knowledge spaces are defined in
the enterprise-level ontology, namely the resource knowledge space, the mapping
knowledge space, and the network knowledge space. They are defined to be used
for supporting different semantic collaboration schemes.

Relational
Schema

XML
Schema

Cl2

Resource
knowledge

spacep1
p1 p2

Oc2

Oc4

p1

p2

Lc1

Lc2

Lc3
Cl3

Cl1

Object
Schema

Oc1

Resource schema descriptions

Sk

Legenda

Network
knowledge

space
RO1

RO2

SnS1

Mapping knowledge space

Information resources

Strong property

Weak property

Ontology concept

Cluster

Local concept

EquivalentClass

SubClassOf

Data Mapping

Distributed Mapping

Property range

Remote
enterprise-level

ontologies

Fig. 1. The enterprise-level ontology spaces

Resource knowledge space. This knowledge space provides a reference de-
scription of the enterprise information resources in terms of ontology concepts
and semantic relations, possibly according to a Semantic Web-compatible spec-
ification language (e.g., OWL). Ontology concepts are characterized by a name,
and a set of properties that represents their features. Each property is associ-
ated with a name and a value, which can be a datatype or a reference to another
ontology concept. Properties can be strong is they are mandatory (i.e., they
have minimal cardinality ≥ 1), or they can be weak if they are optional (i.e.,
they have minimal cardinality = 0). Semantic relations are defined between
ontology concepts in the resource knowledge, to express the most appropriate
relationship existing between them. In particular, semantic relations that can be
specified include the typical relations provided by the Semantic Web languages
(e.g., equivalentClass, subClassOf in the OWL language). Ontology concepts in the
resource knowledge space are connected with the mapping knowledge by means
of data mappings and with the network knowledge by means of distributed
mappings.

Mapping knowledge space. This knowledge space describes how to map on-
tology concepts onto the underlying information resources described through

Ontology Knowledge Spaces for Semantic Collaboration 339

local concepts. A local concept provides metadata information about the name
and the structure of a specific information resource. To overcome (semantic)
heterogeneity, local concepts that have semantic affinity, namely, that describe
the same information resources using the same or similar terminology (e.g., syn-
onyms) and the same or compatible structure in different enterprise sources are
grouped into clusters. The local concepts in each cluster are connected with the
corresponding ontology concept in the resource knowledge space through data
mappings. A data mapping is a correspondence between an ontology concept
oc and a local concept lc. A data mapping defines how to map the structure
of oc (i.e., its name and its properties) on the specific structure of lc. Given
oc and its associated cluster of local concepts, all the data mapping for oc
are conceptually organized into a data mapping table, where columns repre-
sent the properties of oc and the rows represent the corresponding element in
the structure of the local concepts. We note that the data mapping tables pro-
vide information regarding the semantic similarity of the information resources
within the enterprise (intra-enterprise knowledge) and are exploited to enforce
an intra-enterprise collaboration scheme (see Section 3). In general, data map-
ping and data mapping tables can be semi-automatically defined by relying
on an integration/unification process like in the GAV-based data integration
systems [3,8].

Network knowledge space. This knowledge space describes the knowledge
that the enterprise has acquired about the other parties in the networked enter-
prise. In particular, the network knowledge keeps track of the semantic similar-
ity between the ontology concepts in the resource knowledge and the knowledge
in the remote enterprise-level ontologies through distributed mappings. A dis-
tributed mapping is a correspondence between an ontology concept oc and a
remote enterprise-level ontology eo of the networked enterprise. In particular,
a distributed mapping links an ontology concept oc to the ontology of an ex-
ternal party of the networked enterprise that contains ontology descriptions of
resources semantically related to oc. Currently, we are enforcing also a more
advanced distributed mapping approach in order to associate each ontology
concept oc also with the specific remote concepts that have a high level of
similarity with oc. This last approach allows us to maintain more specific map-
ping information and a policy for updating the network knowledge with
respect to the changes in the remote ontologies. For a detailed description of
these latter mapping approach the reader can refer to [4]. Given oc, the set
of its distributed mapping is conceptually organized into a distributed map-
ping table, where rows specify the location metadata of the involved remote
enterprise-level ontologies (e.g., name, uri, version). In other words, the net-
work mapping table provides information regarding the semantic neighbors of
the enterprise within the networked enterprise (inter-enterprise knowledge) and
can be exploited to enforce an inter-enterprise collaboration scheme (see
Section 4).

340 S. Castano, A. Ferrara, and S. Montanelli

2.2 Semantic Collaboration Schemes

Semantic collaboration is concerned with cooperative interaction of autonomous
parties, possibly within a networked enterprise, with the aim to achieve a com-
mon goal. Using available ontology knowledge spaces, appropriate collaboration
schemes and related enabling services are defined to reflect the nature of col-
laboration, and to comply with several technical requirements with respect to
automated and semantically enabled collaboration support. We distinguish two
main different semantic collaboration schemes, namely the stable collaboration
and the emergent collaboration. The stable collaboration is suited for intra-
enterprise contexts where information resources are assumed to change quite
rarely and the enterprise-level ontology is built and maintained by a team of
enterprise experts to reflect the internal enterprise requirements for integrated
information resource access. The stable collaboration scheme allows the enter-
prise users to specify single target queries on the resource knowledge space of
the enterprise-level ontology with the aim to exploit the mapping knowledge
space and to retrieve all the relevant data contained in the underlying, possibly
heterogeneous, information sources.

The emergent collaboration is suited for inter-enterprise contexts (i.e., net-
worked enterprises) where the collaboration constraints may change and a rapid
response by the participants is needed to reorganize the collaboration according
to the new emergent requirements. The emergent collaboration scheme allows
the enterprise users to specify target queries on the resource knowledge space
of the enterprise-level ontology with the aim to exploit the network knowledge
space and to dynamically identify the enterprise parties within the networked
enterprise that can provide relevant knowledge with respect to a given target
request.

3 Stable Semantic Collaboration

The goal of the stable semantic collaboration is to allow a uniform and integrated
access to a multitude of heterogeneous information resources at intra-enterprise
level.

3.1 Collaboration Scheme

In the stable collaboration, a mediation/acquisition service provides centralized
query processing as shown in Figure 2. In particular, starting from a search
query formulated over the resource knowledge space, the mediation/acquistition
service reformulates this query in terms of each local information resource by
exploiting the mapping knowledge and by generating a number of sub-queries
against the involved local sources. The local queries are then executed by means
of the wrappers associated with each source, and the results (i.e., specific re-
source instances) are collected by the mediator and sent back to the requesting
client submitting the query. Based on the data provided by each source, the me-
diation/acquisition service provides an integrated result to the original search
query.

Ontology Knowledge Spaces for Semantic Collaboration 341

Fig. 2. Service architecture of the stable semantic collaboration

3.2 Enabling Services

The main service enabling the stable semantic collaboration is the mediation/-
acquisition service. Given a search query formulated over the concepts of the
resource knowledge space, the mediator locates the involved local concepts by
exploiting the mapping knowledge space and reformulates the query in terms of
such local concepts. In particular, query processing is composed by three steps:
i) cluster selection, ii) query reformulation and iii) answer composition.

Cluster selection. The aim of the cluster selection step is to select clusters
of the mapping knowledge that contain local concepts which can satisfy a given
search query. Moreover, within a cluster, only local concepts that are relevant for
the target query are identified, in order to minimize the query reformulation step.
Given a SQL-like search query SQ of the form: 〈SELECT * | property name [, . . .]
FROM ontology concept name [, . . .] [WHERE property condition [, . . .]]〉 we consider
the data mappings associated with the ontology concept(s) listed in the FROM
clause of SQ. For each ontology concept, the data mapping table is exploited in
order to select the local concepts in Cl that can satisfy SQ. In order to perform
such an activity, the mediator considers the search query condition in the WHERE
clause and it selects only those local concepts which can satisfy at least one factor
in the query condition.

Query reformulation. In the query reformulation step the mediator composes
a local query LQi for each selected local concept Lci. By exploiting the ap-
propriate data mappings, the SELECT and WHERE clauses of SQ are rewritten
appropriately in terms of the corresponding local concept structure.

Answer composition. Local queries LQi formulated in the query reformulation
step are executed against the corresponding information sources, by means of
their query wrappers. The local query replies are then collected and properly
composed by the mediator and sent back to the requesting client.

342 S. Castano, A. Ferrara, and S. Montanelli

4 Emergent Semantic Collaboration

The goal of the emergent collaboration is to support dynamic knowledge shar-
ing and resource discovery at inter-enterprise level in dynamic networked en-
terprises/communities, where the all cooperating parties have equal roles and
capabilities and can decide to join and leave the community at any moment (e.g.,
Peer-to-Peer (P2P) networks, Grids). Networked enterprises can dynamically co-
operate and share resources often in response to opportunities or challenges that
cannot be anticipated in advance and require a rapid response. In this contexts,
enterprise parties dynamically take part to the collaboration by exposing their
resource knowledge space and interact each other directly by submitting queries
for knowledge sharing and resource discovery purposes.

4.1 Collaboration Scheme

Differently from the stable collaboration, in the emergent collaboration the client
cannot refer to a unique enterprise-level ontology to formulate his requests. In-
stead, each enterprise party in the system provides part of the overall informa-
tion available from a distributed environment, and acts both as a client and as
a server in the system. The architecture of the emergent collaboration is shown
in Figure 3. In the emergent collaboration, two different query types are sup-

Fig. 3. Service architecture of the emergent collaboration

ported, namely the probe query and the search query. A probe query is used
for discovering potential collaborating enterprise parties, and contains specifica-
tions of target concepts describing the resources of interest. A search query is
used in order to acquire resource data related to one or more target resources,
once a collaborating enterprise has been identified. The emergent collaboration
is realized by means of a discovery service, which is responsible for performing
i) probe query composition and propagation, and ii) probe query processing in-
vocation. The discovery service is invoked by an enterprise party in order to
identify the collaborating parties within the networked organization that can

Ontology Knowledge Spaces for Semantic Collaboration 343

provide relevant information resources with respect to a target request, based
on the ontology descriptions of its resource knowledge space. Once an enterprise
party providing relevant information resource with respect to the target request
is discovered, specific search queries can be directly submitted to the media-
tion/acquisition service provided by the remote party. Each enterprise party can
provide a standard access to its mediation/acquisition service by means of a Web
Service. Standard protocols (e.g., SOAP,WSDL) can be adopted to interact with
the Web Service. The SOAP protocol provides well-defined XML-based message
communications to send and receive search queries, while the WSDL document
provides the specification of the set of methods supported by the remote medi-
ation/acquisition service as well as the structure of the returned data extracted
from the information resources.

4.2 Enabling Services

The discovery service is based on three main steps: i) the query formulation and
propagation; ii) the query resolution; iii) the answer management.

Query formulation and propagation. A requesting enterprise party (querier)
interested in enriching its knowledge with respect to one or more concepts of
interests (target concept(s)), submits a probe query containing the target con-
cept(s) with the intention to find those parties of the networked enterprise which
store semantically related concepts in its enterprise-level ontology. An expres-
sive probe query representation capable to support the description of ontology
concepts, properties, and semantic relations is adopted. To this end, a reference
query template is defined as follows:

FIND Target concept name [, . . .]
[WITH Property name [, . . .]]
[WHERE Property conditions,

〈Related concept, semantic relation name〉[, . . .]]

where the FIND clause contains a list of target concept(s) names; the WITH clause
an optional list of properties related to the target concept(s); and the WHERE
clause an optional list of conditions to be verified by the property values, and/or
an optional list of concepts related to the target by a semantic relation. The
probe query is then sent to the other enterprise parties according to the routing
protocols of the underlying collaboration infrastructure.

Query resolution. Receiving a probe query, each enterprise party is interested
in comparing the incoming request against its enterprise- level ontology, in order
to discover whether it can provide concepts matching the target. Appropriate
ontology matchmaking techniques are required to cope with different levels of
detail in concept descriptions. In such a dynamic context, the aim of matching
techniques is to allow a dynamic choice of the kind of features to be considered
in the matching process, with the goal of providing a wide spectrum of metrics
suited for dealing with many different matching scenarios [5]. In particular, the
meaning of ontology elements in the enterprise-level ontology and in the query
depends basically on the names chosen for their definition and on the relations

344 S. Castano, A. Ferrara, and S. Montanelli

they have with other elements. Based on these considerations, the matching
process compares the target concept descriptions contained in the probe query
with the ontology definitions in order to evaluate the semantic affinity between
them. Finally, the matching process returns a (possibly empty) list of concepts
semantically related to the target, which is replied to the querier by means of a
query answer.

Answer management. Collecting query replies from the answering parties,
the querier has to manage the received additional knowledge. Such an additional
knowledge can serve the querier with two main purposes. The first purpose is
to enrich the network knowledge of the querier by introducing the description
of new enterprise parties that provide resources semantically related to one or
more ontology concepts of the querier. The second purpose is to exploit the new
ontology concepts in order to compose specific search queries to be submitted to
the remote enterprise party. In this case, the querier can send the search query,
by exploiting directly the mediation/acquisition service of the remote enterprise
party.

5 Application Example

In Figure 4, we show a portion of an enterprise ontology in the Travel domain
where we consider three information resources of a travel agency enterprise.
The Accommodation local concept is extracted by the relational database Reserva-
tion DB (S1) and describes accommodations that are characterized by the name,
price, location, and affiliation. The Hotel local concept is extracted by the XML
source Travel (S2) and describes hotels featured by an hotel name, a category, a
cost, a region, and a country. Finally, from the object-relational database Ger-
man hostels (S3), we extract the local concept Hostel, featured by the name and
the cost. As an example of ontology concept, we consider the Accommodation

Reservation_DB
(S1)

Travel
(S2)

Network
knowledge

space

German_hostels
(S3)

Information resources

Accommodation

name
prize

location
affiliation

S1.accommodation

hotel
category

cost
region

country

S2.hotel

name
cost

S3.hostel

name

categorycost

location

Mapping
knowledge

space

Resource
knowledge

space

RO1

RO2

affiliation

Fig. 4. Example of an enterprise-level ontology in the Travel domain

Ontology Knowledge Spaces for Semantic Collaboration 345

concept in the resource knowledge space. The Accommodation concept has been
derived from the local concepts presented above. The correspondences between
the ontology concept and the local concepts are represented by appropriate data
mappings, that are represented in the data mapping Table 1. The data mapping

Table 1. Data mapping table for the Accommodation ontology concept

Accommodation name category cost location affiliation

S1.Accommodation name NULL price location affiliation
S2.Hotel hotel category cost region OR country NULL
S3.Hostel name NULL cost ’Germany’ NULL

table provides information on the local concept properties that correspond to
each global property. In particular, the NULL value denotes that the global prop-
erty does not have a corresponding local property in a given local concept (e.g.,
category). The OR clause is used to represent property patterns that correspond
to a given ontology property. For example, the location property of the Accommo-
dation concept has been mapped on the region and country properties of the Hotel
local concept. Moreover, data mappings allow to map a global property on a
constant value denoting a value for properties that does not have a correspond-
ing local property in a given local concept. For example, the location property of
the Accommodation concept has been mapped on the ’Germany’ constant value for
the Hostel local concept, denoting that the Hostel concept provides information
only about hostels in Germany.

The Accommodation ontology concept is also associated with two remote
enterprise-level ontologies of two other enterprise parties in the networked en-
terprise, namely RO1 and RO2. The correspondence between the Accommodation
concept and the remote ontologies is represented by the distributed mapping
shown in the distributed mapping Table 2.

Table 2. Distributed mapping table for the Accommodation ontology concept

ontology concept: Accommodation
Name URI Version

RO1 http://www.enterprise1.com/ontology 1.0
RO2 http://www.enterprise2.com/ontology 2.0

In the following, we show an example of retrieval of resources about accom-
modations. The querier first search accommodation data within his enterprise,
then, in order to extend the result set, he exploits the emerging collaboration
scheme by sending the query over the network.

Stable collaboration. As an example of stable collaboration, we consider the
search query SELECT name FROM accommodation WHERE location = ’Italy’ AND
cost ≤ 100, performed against the Accommodation concept shown in Figure 4. The

346 S. Castano, A. Ferrara, and S. Montanelli

query aims to identify low-priced accommodations in Italy. By exploiting the
data mappings, the global query condition is reformulated as: location = ’Italy’
AND cost ≤ 100. For each local concept in Cl1, the mediation/acquisition service
verifies if it can satisfy the condition. In our example, the Accommodation and
the Hotel local concepts are selected, but not the Hostel concept, as its location
is ’Germany’, and thus the condition factor location = ’Italy’ can not be satisfied.
As a consequence, in the query transformation step, the search query above is
reformulated into two local queries, one for each selected local concept. The
obtained local queries are shown in Figure 5.

LQ1
SELECT name
FROM accommodation
WHERE location = ’Italy’ AND price ≤ 100

LQ2

SELECT hotel
FROM hotel
WHERE (region = ’Italy’ OR country = ’Italy’)
AND cost ≤ 100

Fig. 5. Example of query reformulation

Emergent collaboration. As an example of emergent collaboration, we sup-
pose that the querier intends to enlarge its knowledge with respect to the Accom-
modation concept. To this end, he submits to the network the following query,
searching for parties storing similar concepts: FIND accommodation WITH name,
category, location, affiliation. The query is received by two remote enterprise parties
EP3 and EP4 which apply ontology matching techniques to evaluate the seman-
tic affinity between the query and the concepts contained in their enterprise-
level ontologies. According to the ontology matching results, the two parties
reply with their concepts Hotel and Hostel, respectively. On the basis of these
two results, the querier updates its network knowledge by defining two new dis-
tributed mappings. The first mapping links the Accommodation concept in the
querier ontology to the enterprise-level ontology of EP3, while the second map-
ping links the Accommodation concept to the enterprise-level ontology of EP4.
Moreover, the querier can formulate hotel or hostel specific search queries for
the mediation/acquisition services of EP3 and EP4, respectively.

6 Concluding Remarks

In this paper, we have presented a conceptual framework to organize ontol-
ogy knowledge spaces and enabling services for supporting different levels of
semantic collaboration at both intra- and inter-organization level. We have also
described stable and emergent semantic collaboration schemes targeted to differ-
ent networked collaboration scenarios. Stable and emergent collaborations can
be enforced through specific software tools. For instance, the stable collabora-
tion can be enforced by relying on the Artemis tool environment and related
mediation functionalities. In particular, Artemis implements the mediation ser-
vice, by providing a query processing environment over an integrated schema of
heterogeneous datasources [3]. Furthermore, the emergent collaboration can be

Ontology Knowledge Spaces for Semantic Collaboration 347

enforced by relying on the Helios tool environment for knowledge discovery and
sharing in peer-based systems. In particular, Helios is implemented as a toolkit
that can be used by each enterprise to realize the discovery service [6].

References

1. H. Afsarmanesh, C. Garita, and L.O. Hertzberger. Virtual Enterprises and Fed-
erated Information Sharing. In Proc of the 9th Int. Conference on Database and
Expert Systems Applications (DEXA 1998), pages 374–383, Vienna, Austria, 1998.

2. J. Broekstra and et al. A Metadata Model for Semantics-Based Peer-to-Peer Sys-
tems. In Proc. of the 1st Int. WWW Workshop on Semantics in Peer-to-Peer and
Grid Computing (SemPGRID), Budapest, Hungary, May 2003.

3. S. Castano, V. De Antonellis, and S. De Capitani Di Vimercati. Global View-
ing of Heterogeneous Data Sources. IEEE Transactions on Knowledge and Data
Engineering, 13(2):277–297, March/April 2001.

4. S. Castano, A. Ferrara, and S. Montanelli. Evolving open and independent on-
tologies. International Journal of Metadata, Semantics and Ontologies, 2006. To
appear.

5. S. Castano, A. Ferrara, and S. Montanelli. Matching Ontologies in Open Networked
Systems: Techniques and Applications. Journal on Data Semantics, V, 2006.

6. S. Castano, A. Ferrara, and S. Montanelli. Web Semantics and Ontology, chapter
Dynamic Knowledge Discovery in Open, Distributed and Multi-Ontology Systems:
Techniques and Applications. Idea Group, 2006.

7. A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema Mediation in Peer Data
Management Systems. In Proc. of the 19th Int. Conference on Data Engineering
(ICDE 2003), Bangalore, India, 2003.

8. M. Lenzerini. Data Integration: A Theoretical Perspective. In Proc. of the 21st
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS 2002), Madison, Wisconsin, USA, 2001.

9. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Matching with
Cupid. In Proc. of the 27th Int. Conference on Very Large Data Bases (VLDB
2001), Rome, Italy, 2001.

10. W. Nejdl and et al. EDUTELLA: a P2P Networking Infrastructure Based on RDF.
In Proc. of the 11th Int. World Wide Web Conference (WWW 2002), Honolulu,
Hawaii, USA, May 2002.

11. S. Gribble and A. Halevy and Z. Ives and M. Rodrig and D. Suciu. What Can
Databases Do for Peer-to-Peer? In Proc. of the 4th Int. Workshop on the Web and
Databases (WebDB 2001), in conjunction with ACM PODS/SIGMOD 2001, Santa
Barbara, California, USA, May 2001.

12. N. Silva, J. Rocha, and J. Cardoso. E-Business Interoperability Through Ontol-
ogy Semantic Mapping. In Proc. of the PRO-VE Working Conference, Lugano,
Switzerland, 2003.

About Semantic Enrichment of Strategic Data
Models as Part of Enterprise Models�

Claudia Diamantini1 and Nacer Boudjlida2

1 DIIGA, UNIVPM, Ancona, Italy
diamantini@diiga.univpm.it

2 UHP Nancy 1, LORIA, France
Nacer.Boudjlida@loria.fr

Abstract. The paper presents the outcomes of a practical experiment
aimed at the identification of the various types of annotations that can be
attached to enterprise strategic data models. The work is part of a more
extensive experimentation on different enterprise models perspectives de-
veloped inside the ”Semantic Enrichment of Models and Architecture &
Platforms” task group of the FP6 IST-508-011 NoE INTEROP, whose
goal is to evaluate the appropriateness (and the possible incomplete-
ness) of existing semantic enrichment concepts, techniques, services and
tools. Besides the need for multiple ontologies, the experiment enlighten
a rather new perspective with respect to the literature on semantic an-
notation, related to the fact that mathematical objects have to be taken
into consideration.

1 Introduction

Semantic enrichment is the process of associating to data a description of their
meaning, in order to improve human understanding, machine interoperability,
and advanced automatic information management (retrieval, mining, presen-
tation). Nowadays, semantic enrichment is almost a synonym of annotating
source data with formal descriptions of concepts in a domain ontology. It is
mainly considered in the semantic web scenario, where it is applied to semi-
structured and unstructured documents [19,8,15,20]. However, semantic enrich-
ment has been applied also to structured data, like database schema, to en-
hance database interoperability and to enable intelligent access to heteroge-
neous sources [12,10,6]. Some approach to ontology mapping exploits seman-
tic enrichment of ontologies as well [21]. To the best of our knowledge, few
works in the literature takes the semantic enrichment problem from the per-
spective of a model-based view of enterprise systems (see e.g. [14] for semantic
annotation of process models). Therefore, in the framework of the FP6 IST-
508-011 INTEROP Network of Excellence (http://www.interop-noe.org), the
research group entitled ”Semantic Enrichment of Models and Architecture &
Platforms” adopted a pragmatic approach to experience semantic enrichment

� Part of this work is supported by the FP6 IST-508-011 NoE INTEROP.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 348–359, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

About Semantic Enrichment of Strategic Data Models 349

of enterprise models. The aim of the intended experimentation is to pragmat-
ically locate, by means of the analysis of case studies, the various types of
annotations that can be attached to a model to make it more readable and
exchangeable, in order to evaluate the appropriateness (and the possible incom-
pleteness) of concepts, techniques, services and tools developed in the seman-
tic web scenario [3]. This paper presents the outcomes of the study performed
at the strategic enterprise level. At this level, enterprises develops a strategy
through a complex planning and control cycle. In this cycle, a model of the
enterprise is considered, that is compared against a “to-be” state, being it ei-
ther the realization of a given vision and mission or a reference best practice. A
gap analysis may then leads to the definition of the necessary steps to fill that
gap. The models considered at this level by strategy experts and top manage-
ment are defined by a set of measurable performance indicators coming from
inside and outside the organization. In the information system view, the refer-
ence architecture for strategic support is based on the data warehouse (DW),
that enables multidimensional analysis of performance indicators by means of
OLAP tools and reports. Hence, we consider the DW model as part of an
enterprise model at the strategic level. Also, an OLAP report can be consid-
ered as a view over the DW (and hence a view of the enterprise model), re-
alized by slice-and-dice, roll-up and drill-down operations. However, a report
may contain further information, derived from the DW and calculated at re-
port generation time. Furthermore, reports are the main tool used by man-
agers for their activity. For these reasons, in this paper we focus on OLAP
reports, instead of the DW to study the kind of semantic information which
can be found at the strategic enterprise level. The results of this study point
out that annotations based on links to an ontology (that is the main kind of
semantic annotation considered in the semantic web scenario) can be useful
at this level, provided that different kinds of ontologies are provided. However
they cannot by themselves express the whole body of semantic information ap-
pearing at the strategic level. In order to fully describe the meaning of strate-
gic data, also a description of the way they have been generated has to be
given. Hence, annotation languages should be defined that are expressive enough
to describe the semantics of mathematical formulas, forecasting processes and
models.

The rest of the paper is organized as follows: section 2 shortly introduces
considerations about semantic annotation and annotation of models, section 3
briefly reviews the theory underpinning the definition of a strategy, section 4
describes the organization of strategic data and gives a reference example, de-
rived from the analysis of the case study. This example is exploited in section
5 to review the different kinds of semantic information that are worth of being
associated with strategic data. Section 6 ends the paper.

2 Semantic Annotations of Models

Annotate: to add a brief explanation or opinion to a text or drawing (Cambridge
advanced learner’s dictionary, http://dictionary.cambridge.org/)

350 C. Diamantini and N. Boudjlida

Annotation: A comment attached to a particular section of a document. Many
computer applications enable you to enter annotations on text documents,
spreadsheets, presentations, and other objects. This is a particularly effective
way to use computers in a workgroup environment to edit and review work. . .
(Webopedia, http://www.webopedia.com).

The purpose of annotations is to describe the content of “something” (we
will call it the annotated object) and therefore annotations may be considered as
meta-data. They have been used for a while for texts and hypertext documents
as well as in some communities like biologists [2,8]. They may be provided under
different forms, like links, paths, notes, comments, highlights of selected words,
numbered steps in a process, etc.

Hereafter, we present a review of the annotation concept, describing the ty-
pology of annotations together with the link between annotations and ontologies
(section 2.1), the requirements for annotations to be consistently first provided
and second interpreted (section 2.2), and the possible services for annotations
(section 2.3). Finally, we illustrate the annotation of models (section 2.4).

2.1 Typology of Annotations

Different types of annotations may be distinguished; these include:

1. Textual annotations that consist in added notes and comments to the anno-
tated object.

2. Link annotations that extend the textual annotation notion: the annotation
content is reachable through a provided link.

3. Semantic annotations : while textual annotations and link annotations are
primarily intended toward humans, semantic annotation content is some
semantic information intended to be readable by humans as well as machines.
For instance, the current work on semantic annotations of Web resources
and services is intended to serve for sophisticated Web resources retrieval,
discovery and composition as well as for reasoning [20].

Further, annotations may appear as informal (like a margin note) or formal:
That means that the annotation expressions may range from annotation ex-
pressed according to a given structured language (like RDF and RDF Schema)
with a formal syntax, to annotations expressed in some sound and well-founded
language (like First Order Logic, Description Logic, etc.), which have also a for-
mal semantics. It is obvious that the more formal the semantics of the language
is, the more the machine-readability of the annotation increases. This assumes
that no implicit assumptions are made and no ambiguity persists to enable a
common interpretation and understanding of the annotations.

Therefore, in addition to the annotation definition language used, a common
understanding of the provided annotations is required. Part of this common
understanding may rely on the use of one or several ontologies that provide
“a representation of a shared conceptualization of a particular domain”[23]. It
means that (i) the conceptualization has to be agreed by the authors of the
annotation (let us call them the annotation providers) and by the ones who

About Semantic Enrichment of Strategic Data Models 351

exploit the annotations (let’s call them the annotation consumers) and that, (ii)
for some types of annotations, the annotation contents are linked to concepts in
the ontology.

2.2 Semantics of Semantic Annotations1

Additionally, in order for the annotation to be interpreted and processed consis-
tently, annotation consumers need to understand the meaning of the annotations
that are provided to them [1]. Consider a very simple example: a theorem being
stated in a document. What types of annotations may be associated with it? One
can annotate that theorem providing a link to its demonstration or providing
the demonstration itself, someone else may annotate the document with a list of
possible applications of the theorem, etc. The interpretation and the processing
of the annotations are then obviously different.

As an illustration of types of annotation contents, [1] introduces a classification
considering a resource U#X annotated with a concept expression C, U being the
URL of a web page and X being an XPointer expression leading to a region of
the document. That classification includes the following types of annotations.

– Decoration and Linking, very similar to the textual and to the link annota-
tions mentioned before;

– Instance Identification: the annotated object (U#X) is an instance of a given
class and the annotation content may be a link to that class;

– Aboutness : no assertion is made about the existence of an instance of the
concept C, but there is a loose association with the concept;

– Pertinence: the target of the annotation may be of interest for the annotated
object.

2.3 Services for Annotations

Another matter concerns the way the annotations are actually provided and as-
sociated with the annotated object. There is a progressive move from manual to
automatic or semi-automatic annotation provision (for some example of annota-
tion tools, see for instance http://annotation.semanticweb.org/tools/ and [16]).
An annotation provider uses at the same time ontology management services
and annotation management services while modelling the various enterprise per-
spectives that may constitute a model of an enterprise : annotations that are
incorporated into a model or into parts of a model refer to given ontologies.
Since the content of some types of annotations relies on given ontologies, it
seems clear that ontology services (like querying or browsing an ontology) have
to be coupled with annotation services.

From a software architecture perspective, [13] distinguishes between a proxy
based approach and a browser based approach for annotating web resources. In
the proxy based approach, annotations and annotated documents are merged
by the proxy; the browser only services the merged documents. In a browser
1 Title borrowed from[1].

352 C. Diamantini and N. Boudjlida

based approach, an application of the browser merges the annotations with
the documents while browsing. In addition, annotations can be stored sepa-
rately and provided thanks to an annotation service offered by an annotation
server.

2.4 Annotation of Enterprise Models in a Model Based Approach

In a model-based approach, various levels of models and instances are considered,
every level having its proper concepts, rules and constraints, and it may be linked
to other levels using various types of relationships (is instance of, derives from,
etc.). Figure 1 illustrates such types of levels and instances [5,7], where:

– the meta-model level concerns the ways models are designed, specified, vali-
dated, instantiated, etc. This level itself may be specified as a (meta)model;

– the generic/specific model level comprises the specification of models. When
these are generic, they may serve for deriving specific models. Models at
these levels are instances of the meta-model level.

– the model instance level: while the two preceding levels are abstract ones,
this level comprises concrete objects like resources allocated to some tasks,
task assignments to actors, software systems assigned for realizing activities.

– the instance level is the level of the actual objects and activities.

Fig. 1. Model and instance levels

Every level may be fitted with appropriate software support, which means
that the set of enterprise applications and software systems may cover the levels
horizontally (i.e. a software support is provided for the activities that are per-
formed at a given level) as well as vertically (i.e. a support is provided for “going
down” from one level to another).

The consequence is that interoperability is required within a level and be-
tween levels. For example, at the generic/specific model level, one can imagine

About Semantic Enrichment of Strategic Data Models 353

that various enterprise modelling tools or environments are cooperatively used
to specify an enterprise model according to their respective meta-models as de-
scribed at the meta-model level.

This figure becomes more complex when we consider networked enterprises
interoperability where every “node” of the networked enterprises may have its
proper meta-models, generic/specific models, software systems and platforms,
and so on. This means that interoperability ranges from very fine granule ob-
jects and software (for example, a function that concatenates strings) to the
interoperability of two or more networked organizations.

Therefore, for interoperability purposes, intra-levels and inter-levels seman-
tic annotations are conceivable to enable consistent model exchange and model
sharing between actors in an enterprise as well as in a networked enterprise. How-
ever, at this stage of our work, we are not able to provide a complete list of the
types of annotations that may be suited for each level and for moving between
levels. To the best of our knowledge, few work is reported in the literature about
semantic enrichment of models since most of the on-going work mainly deals
with Web resources and services. Therefore, we adopted a pragmatic approach
to experience semantic enrichment of enterprise models.

The role of the intended experimentations is to help in the identification of
the various types of annotations that can be attached to a model to make it
more readable and exchangeable. The next section reports on the current state
of that identification with respect to enterprise strategic models. Further details
about additional enterprise models perspectives can be found in [3].

3 Strategic Planning

One of the most comprehensive definitions of strategy is given by [11, p. 14]:
“Strategy determines and reveals the organizational purpose in terms of long-
term objectives, action programs, and resource allocation priorities; ...; attempts
to achieve a long-term sustainable advantage in each of its businesses by respond-
ing appropriately to the opportunities and threats in the firm’s environment, and
the strengths and weaknesses of the organization...”.

Strategic planning is a complex process of “dynamic, continuous activities of
self-analysis” [17, p.37] oriented to the definition of a strategy. Strategic planning
strongly recommends to base the analysis on a set of measurable, objective in-
dicators characterizing internal and external facts that are relevant to the enter-
prise vision and mission. In the literature different complementary methodologies
have been devised to perform this strategic information needs analysis, like Crit-
ical Success Factors, Key Performance Indicators, Management Accounting and
Balanced Score Card methods [4,18]. These methodologies have been adopted to
define a set of indices for our case study. We do not go deeper into the process
of information needs analysis due to lack of space and since it is out of the scope
of the present paper.

354 C. Diamantini and N. Boudjlida

4 The Information System View of Strategic Planning

The reference architecture of information systems for strategic support is based
on the data warehouse architecture. The logical data model in a data ware-
house is the multidimensional model. In the multidimensional model, measured
indices (the facts) are analyzed (i.e. aggregated/disaggrgated) w.r.t. different
dimensions, like time, organization and product hierarchies.

Figure 2 gives a simplified example of data warehouse schema, showing part
of the set of indices defined for the considered case study.

Fig. 2. A Simplified Data Warehouse Schema

The data warehouse feeds OLAP analysis and presentation tools, like report
generators. Figure 3 shows an example of the typical content and structure of an
OLAP report, which is suited for the next discussion on semantic annotation.

Fig. 3. An example of typical report

About Semantic Enrichment of Strategic Data Models 355

5 Semantic Enrichment of Strategic Data

As already said, reports can be considered as views over the data warehouse,
realized by slice-and-dice, drill-down and roll-up operations. Hence, if we accept
that a data warehouse is the reference model at strategic level, the model of a
report is part of an enterprise model; a specific report being an instance of its
model. Models and instances can be both subject to annotations. An OLAP re-
port may contains indices not explicitly stored in the data warehouse, calculated
from the basic facts at report generation time. In our example, unit cost and all
the rows labeled Proj. to year (which are estimates of the indices for the coming
months) are elements of this type. Furthermore, reports are the main tool used
by managers for their activity. For this reason, we focus our analysis on reports
instead of the data warehouse.

By inspecting the report example we identified the following types of semantic
information (see figure 4): (a) Meaning of a term (b) Temporal and metric unit
information (c) Forecasting models (d) Derivation and aggregation rules.

Fig. 4. Kind of relevant semantic information

5.1 Meaning of Terms

Meaning of terms can be expressed by linking the terms to concepts of a common
domain ontology.

The Edinburgh Enterprise Ontology (EO) [24] has been taken into consider-
ation. Report terms can be related to ontology concepts in different ways: for
instance, terms like Batteries (Mob. Phones) can be considered an instance of
the Product concept in EO, explaining that in our context, batteries (mobile

356 C. Diamantini and N. Boudjlida

phones) are particular kinds of products. Similarly, the term Products has an
equivalence relation with the same ontology concept.

Other kinds of relations could be envisaged as well : for instance intra-model
relations like a part-of relation between Batteries and Mob. Phones, or an equiv-
alence relation between Products and Total.

At the strategic level, the enterprise ontology is no more sufficient, since in-
dices express concepts that are better referred to the financial and economic
domain, like purchase, cost, proceeds, margin, amortization and so on.

To express the meaning of such indices, we may refer to a specific ontology
like the Financial Ontology by Teknowledge (http://ontology.teknowledge.com).
For instance, we might define an instance-of relation between the term proceeds
and the ontology concept Income.

5.2 Temporal and Metric Information

Metric information is perhaps the most standardized and well-known kind of
information. Probably it is not necessary to define specific ontologies. Simple
annotations reporting the symbol of the unit measure ($, %,. . .) might suffice.
In some situation, information about unit conversion (e.g. from $ to euro) might
be useful. In this case, rather than a fixed conversion, it is preferable to es-
tablish a link to an external, official exchange organization. Let us note that,
despite its simplicity, information about unit measure gives important insights
to understand the meaning of numbers in the report.

Temporal information appears in the report (e.g. the term Quart.I). It can
be annotated in the simplest way by resorting to the Edinburgh Enterprise On-
tology, which contains temporal concepts like Time Interval, Time Line and
Time Point. In order to enable temporal reasoning, more specific ontologies
should be exploited.

5.3 Forecasting Models

Intermediate reports usually contain estimates of quantities which are not al-
ready known. In the example, it is assumed that the report is generated at the
end of the second quarter of the year, hence it contains performance indices
which are calculated from transactional data for the first and second quarter,
while it gives an estimate for the remaining part of the year. A fundamental
information to understand the meaning of terms like Proj. to year is the actual
method (for instance, linear or non linear regression) used to estimate the un-
known quantity, on the basis of known data. This information can be given in
different ways:

– by a link to a suited mathematical ontology
– by a link to a formal description of the method
– by a link to a formal description of the model

At the best of our knowledge, mathematical ontologies suited to our end does
not exist. Formal description of the method means the description of the process

About Semantic Enrichment of Strategic Data Models 357

which leads to the estimate, given in some process description language. It can
either refers to an abstract description of the method or to the actual program
which performs calculation. Finally, formal description of the model means for
instance to give the parameters of the linear/non linear equation interpolating
known data. Model description languages like the Predictive Model Markup
Language (PMML) can be used to this end [9].

5.4 Derivation and Aggregation Rules

Index values are calculated by elaborating upon transactional data. Basically,
we can distinguish two kinds of elaboration:

– Aggregation: used to generate synthetic data at different levels of granularity.
Aggregation is performed by functions like average, sum, etc.;

– Derivation: used to calculate derived indices (e.g., in the example the first
margin concept is defined as the difference between proceeds and the costs
for purchase and personnel)

We point out that the actual definition of the function used to calculate a de-
rived index is the most important semantic information to give about the index:
as a matter of fact, an important limitation to interoperability at strategic level,
even in homogenous environments like a single enterprise, is the semantic hetero-
geneity of derived indices. Although theoretically enterprises could/should define
a standardized set of indicators, this is not actually the case for many true en-
terprises. The reason is related to the existence of some form of autonomy for or-
ganization units: this is the case for example of public administrations, multiple
division structures, franchising etc. This autonomy can lead organization units to
define their own indicators and hence to heterogenous indices definition. For in-
stance, the unit cost can be simply defined as the total cost divided by the total
number of goods produced, but the calculus of total cost is not a standardized
procedure, which may or may not include some type of cost, relate the cost to
the production volume by either a linear or non linear function etc. Similarly, a
productivity index might be defined either by the ratio between proceeds and the
number of employees, or between the net income and the number of employees.
Employees can be counted by “heads”, or by “hours-equivalent”, taking into con-
sideration part-time and full-time contracts. As another source of heterogeneity,
indicators can change in time, due to different analysis needs, or modified external
and internal conditions like changes in enterprise rules or national/international
laws. In this scenario, the usage of annotation can be envisioned to enhance com-
munication and comprehension among managers, simplify the process of budget
formation by comparison and reconciliation of local performance indicators, or to
compare and reason on reports generated at different times.

6 Conclusions

The simulation of a strategic information needs analysis for the case study we
used, allows to enlighten novel kinds of information which is typical of strategic

358 C. Diamantini and N. Boudjlida

planning and control activities. This information comes in the form of financial
and economic concepts, aggregated and derived data, and forecasting models.

Hence it is argued that a single enterprise ontology is not sufficient to de-
scribe the concepts in OLAP reports, and that specific financial/economic and
mathematical ontologies are needed. Also, it is argued that the traditional map-
ping of terms to ontology concepts cannot by itself express the whole body of
semantic information appearing at the strategic level. Rather, annotation lan-
guages should be defined which are expressive enough to describe the semantics
of mathematical formulas, forecasting processes and models. The problem of se-
mantic description of mathematical objects has been addressed only recently,
by the MathML [25] and the OpenMath [22] standards. The best known lan-
guage for the description of forecasting (or predictive) models is the Predictive
Model Markup Language (PMML) [9]. Further work will be devoted to evaluate
the appropriateness of these languages for our purpose, and to device specific
annotation services and tools.

From a more general standpoint, considering the variety of enterprise models
perspectives, we feel that a single ontology may not cover all the reequired types
of annotations. Will we then fall in the problem of heterogeneous ontologies?

Acknowledgement. The authors are indebted to Stefano Tinella (Troux, Nor-
way) for fruitful discussions about Strategic and Business enterprise models.

References

1. S. Bechhofer, L. Carrand C.A. Goble, S. Kampa, and T. Miles-Board. The Se-
mantics of Semantic Annotation. In Proceedings of CoopIS/DOA/ODBASE, pages
1152–1167, Irvine, California, USA, October 30-November 1 2002. LNCS# 2519.

2. N. Boudjlida, M-D. Devignes, and M. Smal-Tabonne. Services for a Genomics
Open Distributed Environment, a position paper. In XEWA-00, The XML Enabled
Wide-Area Searches for Bioinformatics Workshop, League City, Texas, December
2000. http://www.casc.llnl.gov/xewa/.

3. Boudjlida, N. et alii. A practical experiment on semantic enrichment in a homo-
geneous environment. Deliverable DTG4.1, IST-508 011 NoE INTEROP, 2006.

4. Bracchi,G.,Francalanci,C. and Motta,G. Sistemi Informativi e Aziende in Rete.
McGraw-Hill Italia, 2001.

5. G. Canals, N. Boudjlida, J.C. Derniame, C. Godart, and J. Lonchamp. ALF:
A Framework for Building Process-Centered Software Engineering Environments,
chapter 7, pages 153–187. Research Studies Press, Taunton, Somerset England,
1994. In “Software Process Modeling and Technology”, A. Finkelstein, J. Kramer
and B.A. Nuseibeh, editors.

6. Castellanos, M. Semantic Enrichment of Interoperable Databases. In IEEE Work-
shop on Research Directions in Interoperability, April 1993.

7. J-C. Derniame, B-A. Kaba, and D. Wastell, editors. Software Process: Principles,
Methodology and Technology. Springer-Verlag, LNCS# 1500, 1999.

8. European Bioinformatics Institute. Symposium on Semantic Enrichment of Scien-
tific Literature, Hinxton, Cambridgeshire, UK, February 2006.

About Semantic Enrichment of Strategic Data Models 359

9. Grossman, R., Hornik, M. and Meyer, G. Evolving Data Mining into Solutions
for Insights: Data Mining Standards Initiatives. Communications of the ACM,
45(8):59–61, August 2002.

10. Hakkarainen, S. Dynamic Aspects and Semantic Enrichment in Schema Compar-
ison. PhD thesis, Stockholm University, 1999.

11. Hax, A. C. and Majluf, N. S. The Strategy Concept and Process, A Pragmatic
Approach. Prentice Hall, Upper Saddle River, NJ, 1996.

12. Hohenstein, U. Using Semantic Enrichment to Provide Interoperability between
Relational and ODMG Databases. In International Hong Kong Computer Society
Database Workshop, pages 210–232, 1996.

13. M-R. Koivunen and R. Swick. Metadata Based Annotation Infrastructure offers
Flexibility and Extensibility for Collaborative Applications and Beyond. In Proc.
of the KCAP 2001 Workshop on Knowledge Markup & Semantic Annotation, 2001.

14. Lin, Y., Strasunskas, D., Hakkarainen, S., Krogstie, J., and Solvberg, A. Seman-
tic Annotation Framework to Manage Semantic Heterogeneity of Process Models.
In Proc. of the 18th Conference on Advanced Information Systems Engineering,
Luxemburg, Springer-Verlag, LNCS# 4001, pages 433-446, 2006.

15. Missikoff, M. et alii. Ontology-Based Integration and Interoperability of Enterprise
Modelling, Architectures and Platforms: State of the Art and State of the Practice.
Deliverable no. DWP8.1, FP6 IST-508 011 NoE INTEROP, November 2004.

16. Reeve, L., Han, H. Survey of semantic annotation platforms. In Proc. of the 2005
ACM symposium on Applied Computing, pp.1634–1638, Santa Fe, New Mexico,
2005

17. Rowley, D. J., Lujan, H. D., and Dolence, M.G. Strategic Change in Colleges and
Universities. Jossey-Bass Publishers, San Francisco, CA, 1997.

18. Seung Ki Min, Eui-Ho Suh and Su-Yeon Kim. An Integrated Approach Toward
Strategic Information Systems Planning. The Journal of Strategic Information
Systems, 8(4):373–394, 2000.

19. SEWASIE: SEmantic Webs and AgentS in Integrated Economies. IST-2001-34825
EU Project. http://www.sewasie.org/.

20. S. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding Semantic to Web
services Standards. In Proceedings of the 1st Intern’l Conference on Web Services
(ICWS’03), pages 395–401, Las Vegas, Nevada, June 2003.

21. Su, X., Hakkarainen, S. and Brasethvik, T. Semantic enrichment for improving
systems interoperability. In ACM Symposium on Applied Computing, pages 1634–
1641, 2004.

22. The OpenMath Society. The OpenMath Standard Version 2.0.
http://www.openmath.org/cocoon/openmath/standard/om20-2004-06-
30/omstd20.pdf, 2004.

23. M. Uschold and M. Gruninger. Ontologies: Principles, Methods and Applications.
Knowledge Engineering Review, 11(2), 1996.

24. Uschold, M., King, M., Moralee, S. and Zorgios, Y. v The Enterprise Ontology.
The Knowledge Engineering Review, 13, 1998.

25. W3C Math Working Group. Mathematical Markup Language (MathML) Version
2.0 (Second Edition). http://www.w3.org/Math, Oct. 2003.

Workshop on Grid and
Peer-to-Peer Based Workflows

GPWW 2006

Workshop on Grid and Peer-to-Peer Based
Workflows (GPWW 2006)

Preface

Nowadays, many data- and/or computation-intensive applications in the area
of e-science and e-business involve coordinated sharing of highly distributed re-
sources in a grid environment. In this context, a collaborative workflow man-
agement system is always required as part of the sophisticated problem solving
process. Efficient management of workflow in grid environments has become in-
creasingly important. Issues such as grid workflow infrastructure based on the
Grid toolkits, grid workflow modeling and specification, grid workflow verifica-
tion and validation, and decentralized grid workflow execution based on peer-
to-peer technology have already evoked a high degree of interest.

With the success of the 1st workshop, which was held in Melbourne, Aus-
tralia in 2005, the 2nd International Workshop on Grid and Peer-to-Peer based
Workflows (GPWW) was held in conjunction with the 4th International Con-
ference on Business Process Management (BPM 2006), in Vienna, Austria. The
aim of this workshop was to bring together researchers and practitioners from
academia, industry and governments to report advances in grid and peer-to-peer
based workflow research.

Overall, we received 11 submissions from Australia, Belgium, China, Ger-
many, Hungary, Italy, Korea, Netherlands, Poland and USA. Each paper was
carefully reviewed by 3 members from the International Program Committee.
Based on the quality of the submissions and their relevance to the workshop
themes, the Program Committee accepted 5 papers to be included in the work-
shop proceedings.

We would like to thank all the members of the Program Committee for review-
ing the papers in a very short time period. We are grateful to all the colleagues
who submitted papers to GPWW. We would also like to thank the organizers of
BPM 2006 for their cooperation and partnership. Finally, we acknowledge the
professional support from Springer, who published the proceedings in its LNCS
series.

June 2006 Yun Yang
Jun Shen
Jun Yan

Jinjun Chen
(Editors)

Workshop Organization

Organizers

Yun Yang, Swinburne University of Technology, Australia
Jun Shen, University of Wollongong, Australia
Jun Yan, University of Wollongong, Australia
Jinjun Chen, Swinburne University of Technology, Australia

International Program Committee

Ilkay Altintas, San Diego Supercomputing Center, UCSD, USA
Boualem Benatallah, University of New South Wales, Australia
Rajkumar Buyya, The University of Melbourne, Australia
Ewa Deelman, University of Southern California, USA
Schahram Dustdar, Vienna University of Technology, Austria
Geoffrey Fox, Indiana University, USA
Volker Gruhn, Leipzig University, Germany
John Grundy, Auckland University, New Zealand
Vassilios Karakostas, City University London, UK
Kwei-Jay Lin, University of California at Irvine, USA
Chengfei Liu, Swinburne University of Technology, Australia
Michael Schrefl, University of Linz, Austria
Markus Stumpter, University of South Australia, Australia
Kunal Vemar, University of Georgia, USA
Jian Yang, Macquarie University, Australia
Hai Zhuge, Institute of Computing Technology, CAS, China

External Reviewers

Georg Grossmann, Australia
Aneesh Krishna, Australia
Jia Yu, Australia
Xiaohui Zhao, Australia

Requirements for a Workflow System for Grid
Service Composition

Niels Joncheere, Wim Vanderperren, and Ragnhild Van Der Straeten

System and Software Engineering Lab (SSEL)
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
{njonchee, wvdperre, rvdstrae}@vub.ac.be

Abstract. In this position paper, we propose a new generation work-
flow system for grid services. We observe that grid computing has become
an increasingly important application domain in computer science. Grid
services — a new technology based on web services — are expected to be-
come the de facto standard for grid computing. Similar to web services,
an effective mechanism is needed for the composition of grid services.
Existing technologies, however, have a number of important drawbacks:
they have limited or no support for modularization of crosscutting con-
cerns, for dynamic workflow adaptation, and for high-performance com-
puting. We propose a new generation workflow system that is tailored
specifically for grid services, and that tackles these problems, among
others.

Keywords: Aspect-oriented software development, grid services, work-
flow languages.

1 Introduction

Over the last years, grid computing has become an increasingly important re-
search domain within computer science. “The Grid” can be described as a ser-
vice for sharing computing power and data storage capacity over the Internet.1

The specific problem that lies at the heart of this technology is coordinated
resource sharing and problem solving in dynamic, multi-institutional virtual or-
ganizations [1]: the large scope of many current scientific problems makes it
increasingly difficult to solve them using only one computer system, and forces
the use of a distributed solution. By creating a virtual organization of different
resources, which typically don’t belong to the same owner but are connected
through the Internet, it is possible to address these problems. A recent challenge
is the use of grid technology beyond scientific applications, more specifically in
the production and design of products in industrial environments. Such design
tasks typically require the use of multiple complex simulation- and optimization
tools, which are used as part of a design process workflow.

1 http://gridcafe.web.cern.ch/gridcafe/

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 365–374, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

366 N. Joncheere, W. Vanderperren, and R. Van Der Straeten

Since 2002, a standardization effort for grid computing has been active under
the form of the Open Grid Services Architecture (OGSA).2 This initiative aims
to promote the acceptance and application of grid technologies through standard-
ization. Its main task is the harmonization of academic activities concerning the
Grid, with web services [2], a technology which also has a lot of industry sup-
port. Web services are applications that are accessible through the Internet and
which use SOAP/XML for the transmission of information and WSDL/UDDI
for the description and discovery of other web services. The OGSA standardiza-
tion work has led to the development of grid services [3], which are actually a
subclass of web services, with additional properties relevant for grid computing.
It is expected that grid services will soon become the de facto standard for grid
computing.

Although the services themselves have been standardized, composing grid
services is still an open issue. Grid services are currently typically composed
by manually writing the necessary glue-code in programming languages such as
C and Java. In the web services world, however, it has been identified that a
composition of web services is more naturally captured by dedicated workflow
languages than by general-purpose programming languages. Languages such as
BPEL4WS [4] and WS-CDL [5] have already been well accepted in the web
services community. Because grid services are a kind of web services, it is in
principle possible to recuperate these workflow languages for grid services. How-
ever, we identify several problems with current practice web service workflow
languages:

– Most workflow languages do not have a clearly defined semantics [6].
– Most languages are not suitable for high-performance computing.
– There is insufficient support for the modularization of crosscutting con-

cerns [7].
– There is insufficient or no support for dynamic adaptation of workflows.

The goal of this position paper is to identify the main limitations of current
approaches for grid service composition, and to specify the requirements of a
workflow system that is specifically tailored for grid service composition, and
which therefore addresses these limitations, among others.

The outline of the paper is as follows. In Section 2, we analyze current ap-
proaches for grid service composition and identify their main limitations. In Sec-
tion 3, we specify the requirements for a workflow system for grid services based
on these limitations. In Section 4, we illustrate the applicability of our approach
by describing the context in which it would typically be used. In Section 5, we
present related work, and in Section 6, we state our conclusions.

2 Limitations of Current Approaches

Several workflow approaches for grid computing currently exist [8,9,10,11,12,13].
These approaches, however, use their own service and communication standards,
2 http://www.globus.org/ogsa/

Requirements for a Workflow System for Grid Service Composition 367

which makes them incompatible with each other. Furthermore, most of them
are not suited for the new grid services standard. Therefore, composing grid
services is currently typically handled by manually programming glue-code. Ex-
isting workflow systems for web services can technically be used for composing
grid services, as grid services are a special kind of web services. There are, how-
ever, several problems with current workflow systems for web services which
make them less suited for the grid services context.

Currently, BPEL4WS is well supported and widely accepted as the de facto
standard for web service composition. We therefore limit our discussion of lim-
itations to BPEL4WS; most of the limitations are also applicable to the other,
less frequently used approaches. Note that our approach itself is not based on
BPEL4WS; we merely discuss it here because it is representative of the state of
the art in workflow languages.

2.1 Semantics

van der Aalst [6] observes that most workflow languages for web services do not
have a clearly defined semantics. BPEL4WS is a combination of WSFL [14] and
XLANG [15], which are in their turn based on other, earlier languages. A large
amount of the functionality of the original languages has ended up in the new
language. This makes BPEL4WS expressive at the price of being complex.

2.2 High-Performance Computing

Another important topic regarding workflow languages for grid services is the
support for the specific requirements that are typically of importance with
high-performance computing. In such an environment, it is common that large
amounts of data need to be transferred from one step in a workflow to another.
Special attention should be directed to how this happens: it would, for example,
be unacceptable if all these data were transferred to a central workflow coordi-
nator before being transferred to a next step. This is, however, current practice
in BPEL4WS workflow systems.

2.3 Separation of Concerns

BPEL4WS does not have sufficient support for separation of concerns [16]. It is
very difficult to modularize BPEL4WS processes in an effective way, because each
process must be specified in a single XML file. Furthermore, it is not possible to
specify sub-processes separately. Complex processes thus give rise to large XML
files, which can become difficult to understand and maintain. A workaround
for this problem is to expose sub-processes as separate services, but this is not
always desirable, as it introduces additional overhead and scoping problems.

Even if BPEL4WS would support sub-processes, one would still not be able
to modularize every concern successfully. Kiczales et al. [7] recognize that some
concerns of an application cannot be modularized using existing software devel-
opment methods: the implementation of these concerns is completely spread out

368 N. Joncheere, W. Vanderperren, and R. Van Der Straeten

over the different modules of the system. The same logic is repeated among differ-
ent modules, resulting in code duplication. This code duplication makes it very
difficult to add, modify or remove these concerns [17]. Examples of such crosscut-
ting concerns are security concerns such as access control and confidentiality [18],
debugging concerns such as logging [19] and timing contract validation [20], and
business rules such as billing [21].

The goal of aspect-oriented software development (AOSD) is to achieve a bet-
ter separation of concerns, by allowing crosscutting concerns to be specified in
separate modules called aspects, so that adding, modifying or removing these
concerns does not require changes to the rest of the system. As the crosscutting
concerns we mentioned above are encountered frequently in BPEL4WS work-
flows [22,23,24,25], a solution for better modularization based on aspect-oriented
techniques is necessary.

2.4 Dynamism

BPEL4WS does not support altering the workflow specification while it is run-
ning. The only exception is altering the concrete partner bindings (web services)
when the additional standard WS-Addressing [26] is employed. In a grid ser-
vices context, where long-running computations are the norm, dynamic workflow
adaptation is essential in order to manage changing requirements.

3 A New Generation Workflow System

The goal of our approach is to offer a new generation workflow system, which
is specifically tailored for grid service composition, and which therefore ad-
dresses the problems that were identified above, among others. This section
specifies the requirements for this workflow system. These requirements can be
divided into six properties, namely workflow, AOSD, dynamism, modularity,
high-performance computing, and semantics. Each of these properties is dis-
cussed in further detail below.

3.1 Workflow

Every workflow language needs to define the basic activities that it supports, and
how these activities can be ordered. Concerning the basic activities, we support
invoking grid services (both synchronously and asynchronously), and assigning
and retrieving variables.

Concerning the ordering of activities, existing literature is useful when decid-
ing which kinds of orderings must be supported. For example, van der Aalst et
al. [27] have identified a number of recurring workflow patterns, from elementary
to complex, based on an extensive study of existing workflow languages. These
patterns can be divided into six categories: basic control patterns, advanced
branching- and synchronization patterns, structural patterns, patterns involving
multiple instances, state-based patterns, and cancellation patterns. Our work-
flow language naturally supports the basic control patterns (such as sequence

Requirements for a Workflow System for Grid Service Composition 369

and exclusive choice), but regarding the more complex patterns, we need to
weigh expressivity against clarity.

3.2 AOSD

Just like with regular software, some concerns of a grid service composition (such
as billing and logging) cannot be modularized using current technologies: they
end up scattered across the composition, and tangled with one another. This
makes it difficult to add, modify or remove these concerns. In order to avoid
such problems, one of the main properties of our workflow system is that it
supports AOSD in order to allow the modularization of crosscutting concerns.

We propose a joinpoint model that allows advices to be executed before,
around and after each basic workflow activity (e.g. service invocations and vari-
able assignments). Pointcuts are expressed in a language based on logic pro-
gramming, which allows selecting joinpoints based on the names and types of
the corresponding workflow activities. Advices are expressed in the basic work-
flow language.

Because workflows involving grid services typically run for a long time, and
on expensive infrastructure, it is important that the chance of encountering
unexpected behavior is minimized. Therefore, we require that all properties of
aspect-oriented interactions (such as the order in which multiple advices, which
are applicable on the same joinpoint, are applied) are specified in advance.

3.3 Dynamism

Grid workflows often take a lot of time to complete, because of the complicated
calculations and the large amounts of data that are involved. Additionally, they
run on complicated, expensive infrastructure, which may be used on a pay-per-
use basis. This makes it prohibitively expensive if workflows do not behave as
expected, and have to be restarted.

This problem is our motivation for requiring that all properties of aspect-
oriented interactions are specified in advance. However, this does not solve the
problem completely: suppose that a certain business unit of a company is await-
ing the results of a grid workflow that is taking more time to complete than
expected. In such a case, it could be useful if the workflow could be modified
while it is running in order to get it to finish faster (e.g. by removing certain parts
of the workflow that are not considered essential to obtain the results needed by
the business unit).

As another example, consider the case where an error is discovered near the
end of a workflow that has already performed a lot of useful computations. In
this case, correcting part of the workflow while it is running would certainly be
preferable to terminating it and restarting it after the workflow is corrected.

Therefore, our workflow system supports dynamic workflow adaptation, i.e. it
is possible to modify workflows while they are being executed. We allow pieces
of workflow to be added, replaced or removed in any place where the control flow
has not yet passed at the time of the modification. We aim to prevent introducing

370 N. Joncheere, W. Vanderperren, and R. Van Der Straeten

specific language constructs for this purpose: a piece of workflow should not need
to know that part of it might be adapted during its execution, or that it might
be used to replace another piece of workflow.

The dynamism we discussed above concerns the basic workflow description.
However, dynamism can be useful with respect to AOSD, too: several aspect-
oriented programming (AOP) languages [28,29] already support dynamic en-
abling and disabling of aspects in order to facilitate adapting to concrete situ-
ations. Therefore, our workflow system supports such dynamic AOP, too. Al-
though dynamic AOP once had a reputation of introducing high performance
overhead, recent work [30] has shown that it is possible to implement dynamic
AOP efficiently using techniques such as just-in-time compilation and caching.

3.4 Modularity

Because of our system’s support for AOSD, it facilitates modularizing crosscut-
ting concerns. Using current workflow languages, however, it is not always possi-
ble to effectively modularize even the basic workflow. For example, a BPEL4WS
process is always a single monolithic specification, which makes it impossible to
reuse parts of a process elsewhere (unless these parts are modeled as separate
web services, which introduces a large amount of overhead).

Therefore, we support sub-processes by allowing parts of a workflow to be
specified in separate modules. These modules can then evolve independently
from the main workflow, and can be reused in other workflows. It is clear that
such an approach is an improvement on a number of current approaches.

3.5 High-Performance Computing

In traditional web services applications, the messages that are exchanged be-
tween services are typically very small. In grid computing, on the other hand,
it is common that large streams of data need to be transferred. Therefore, re-
quiring that all data pass through a central workflow coordinator — as is the
case with conventional workflow languages such as BPEL4WS — is unaccept-
able, as it would require much more network capacity than is actually necessary.
We therefore aim to remedy this problem by providing a distributed workflow
coordinator that makes sure large data streams are routed directly to the next
step in the workflow.

In order to provide this functionality, we introduce a language construct that
allows specifying which data streams may be large and may thus require more
efficient modes of network transport. On the other hand, the workflow engine
may decide which streams of data are large, and handle them accordingly, if such
information is not specified.

3.6 Semantics

It has been argued that most current workflow languages do not have a clearly
defined semantics [6]. Among others, this hampers compatibility between differ-
ent engines for a same workflow language. Therefore, we aim to define a formal
operational semantics for our workflow language.

Requirements for a Workflow System for Grid Service Composition 371

4 Applicability

Existing work on grid computing mostly focuses on scientific applications, such
as bio-informatics or high-energy physics. Our approach, however, is aimed at
design and production in industrial settings — an increasingly important appli-
cation domain for grid services.

A lot of design activities in such industrial setting traditionally require pro-
totypes to be built and tested in order to obtain important information on the
design (e.g. crashing an automobile into a wall in order to discover safety in-
formation, placing a model of a plane in a wind tunnel in order to discover
aerodynamics information, etc.). Innovation in computer science has made it
possible to simulate this kind of tests. Because this kind of virtual prototyping
requires a lot of computing power and involves a lot of data, such problems
cannot be solved easily using only one computer system. Using grid computing,
however, these problems can be solved effectively.

The industrial partner for our research currently sells such virtual prototyping
grid software to clients that wish to test their products. These clients then use
their own grid infrastructure to run the simulations. This limits the applicability
of the industrial partner’s products, as the required infrastructure’s cost may be
prohibitively high.

Our workflow system would, however, enable a completely new business model,
in which clients use the infrastructure of the industrial partner on a customizable
basis. In such a scheme, clients would not be forced to invest in specific infras-
tructure any more, and the industrial partner would not be forced to spend time
on offering support for clients’ local software.

The contracts of the industrial partner with its clients may vary a lot: one
client may require other grid services than another, the service level agreements
may differ, or different billing schemes (pay-per-use, flat-fee, etc.) may be used.
Our workflow system would facilitate enforcing such different contracts, as these
could be modularized as aspects.

Of course, the applicability of our approach is not limited to the virtual pro-
totyping case presented above: the properties of our system, such as support for
AOSD and dynamic workflow adaptation, are also useful in the traditional scien-
tific application domain of grid computing, and even in the application domain
for web services.

5 Related Work

An aspect-oriented extension to BPEL4WS — AO4BPEL [23] — has been pro-
posed. This extension supports dynamic adaptation of aspects. However, be-
cause it is an extension to BPEL4WS, it inherits the deficiencies identified
in this paper, such as limited support for modularization (of non-crosscutting
concerns) and high-performance computing. Another approach that recuperates
aspect-oriented ideas in the domain of web services is the Web Services Man-
agement Layer [25]. The WSML modularizes redirection, advanced selection

372 N. Joncheere, W. Vanderperren, and R. Van Der Straeten

policies, and management concerns such as caching and billing using aspects.
The WSML does, however, not directly support web service composition and
relies on BPEL4WS for that end. As such, it also inherits the disadvantages
discussed in this paper.

Currently, grid services are mostly composed manually, by writing programs
in traditional programming languages (such as C and Java), which use libraries
such as the ones provided by the Globus Toolkit3 to interact with concrete grid
services. This situation obviously has a lot of drawbacks, as these languages
do not support dynamic adaptation of the composition, or modularization of
crosscutting concerns. Recently, however, a number of approaches have been
proposed that aim to remedy these problems.

GridNexus [31] is a graphical system for creating and executing scientific
workflows in a grid environment. A GUI allows developers to specify processes
by creating directed acyclic graphs whose nodes perform simple computing tasks,
or invoke grid services. Processes can be saved as composites, which can then be
reused in other processes. Visual process specifications are represented by scripts
written in a language called JXPL, which can be executed by an appropriate
engine. By using such scripts, the user interface is separated from workflow
execution. Although this approach is a serious improvement on manual grid
service composition, it is targeted mainly at scientific grid applications, and not
at industrial applications. It does not support dynamic workflow adaptation nor
advanced separation of concerns.

Kepler [32] is a graphical workflow system similar to GridNexus (both ap-
proaches even use the same GUI technology). Like GridNexus, processes are
directed acyclic graphs. The most important difference is that Kepler does not
translate diagrams to scripts in order to execute workflows: workflows are ex-
ecuted by the GUI, thus increasing coupling between process definition and
execution. Kepler is also aimed at scientific applications, and does not support
dynamic workflow adaptation nor advanced separation of concerns.

6 Conclusions

In this position paper, we observe that, although the application domain for grid
services is rapidly expanding, current approaches for grid service composition
have a number of disadvantages that limit their applicability, and thus hamper
the acceptance of grid services in industrial settings. The most important disad-
vantages are insufficient support for AOSD, for dynamic workflow adaptation,
and for high-performance computing.

Therefore, we propose a new generation workflow system, which is specifically
tailored for grid service composition, and thus tackles these problems, among
others. We present the requirements for our workflow system, and illustrate its
applicability. Our future work will be directed at performing a first iteration on
the design and implementation of our system.

3 http://www.globus.org/toolkit/

Requirements for a Workflow System for Grid Service Composition 373

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scal-
able virtual organizations. International Journal of High Performance Computing
Applications 15(3) (2001) 200–222

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V., eds.: Web Services: Concepts,
Architectures and Applications. Springer-Verlag, Heidelberg, Germany (2004)

3. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The physiology of the grid:
An open grid services architecture for distributed systems integration (2002)
http://www.globus.org/alliance/publications/papers/ogsa.pdf.

4. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann,
F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana,
S.: Business Process Execution Language for Web Services version 1.1 (2003)
http://www.ibm.com/developerworks/library/ws-bpel/.

5. Kavantzas, N., Burdett, D., Ritzinger, G.: Web Services Choreography Descrip-
tion Language version 1.0. W3C Working Draft 27 April 2004, World Wide Web
Consortium (2004) http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/ .

6. van der Aalst, W.M.P.: Don’t go with the flow: Web services composition standards
exposed. IEEE Intelligent Systems 18(1) (2003) 72–76

7. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. Technical Report SPL97-008 P9710042,
Xerox PARC (1997)

8. Bhatia, D., Burzevski, V., Camuseva, M., Fox, G., Furmanski, W., Premchan-
dran, G.: WebFlow — a visual programming paradigm for web/Java based coarse
grain distributed computing. Concurrency — Practice and Experience 9(6) (1997)
555–577

9. Basney, J., Livny, M.: Deploying a high throughput computing cluster. In Buyya,
R., ed.: High Performance Cluster Computing: Architectures and Systems, Volume
1. Prentice Hall (1999)

10. Furmento, N., Mayer, A., McGough, S., Newhouse, S., Field, T., Darlington, J.:
Optimisation of component-based applications within a grid environment. In: Pro-
ceedings of the 14th International Conference on High Performance Computing
and Communications (SC 2001), Denver, CO, USA (2001)

11. Romberg, M.: The UNICORE grid infrastructure. Scientific Programming, Special
Issue on Grid Computing 10(2) (2002) 149–157

12. Lorch, M., Kafura, D.: Symphony — a Java-based composition and manipula-
tion framework for computational grids. In: Proceedings of the 2nd International
Symposium on Cluster Computing and the Grid (CCGrid 2002), Berlin, Germany
(2002) 136–143

13. Gannon, D., Bramley, R., Fox, G., Smallen, S., Rossi, A., Ananthakrishnan, R.,
Bertrand, F., Chiu, K., Farrellee, M., Govindaraju, M., Krishnan, S., Ramakrish-
nan, L., Simmhan, Y., Slominski, A., Ma, Y., Olariu, C., Rey-Cenvaz, N.: Pro-
gramming the grid: Distributed software components, P2P and grid web services
for scientific applications. Cluster Computing 5(3) (2002) 325–336

14. Leymann, F.: Web Services Flow Language (WSFL 1.0). IBM (2001)
15. Thatte, S.: XLANG — web services for business process design. Microsoft (2001)

http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm.
16. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Comm. ACM 15(12) (1972) 1053–1058

374 N. Joncheere, W. Vanderperren, and R. Van Der Straeten

17. Elrad, T., Filman, R.E., Bader, A.: Aspect-oriented programming. Comm. ACM
44(10) (2001) 29–32

18. De Win, B., Joosen, W., Piessens, F.: Developing secure applications through
aspect-oriented programming. In Filman, R.E., Elrad, T., Clarke, S., Akşit,
M., eds.: Aspect-Oriented Software Development. Addison-Wesley, Boston (2005)
633–650

19. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In Knudsen, J.L., ed.: Proc. ECOOP 2001, LNCS 2072,
Berlin, Springer-Verlag (2001) 327–353

20. Vanderperren, W., Suvée, D., Jonckers, V.: Combining AOSD and CBSD in Pa-
coSuite through invasive composition adapters and JAsCo. In: Proceedings of
Net.ObjectDays 2003, Erfurt, Germany (2003) 36–50

21. D’Hondt, M., Jonckers, V.: Hybrid aspects for weaving object-oriented function-
ality and rule-based knowledge. In Lieberherr, K., ed.: Proc. 3rd Int’ Conf. on
Aspect-Oriented Software Development (AOSD-2004), ACM Press (2004) 132–140

22. Arsanjani, A., Hailpern, B., Martin, J., Tarr, P.: Web services: Promises and
compromises. Queue 1(1) (2003) 48–58

23. Charfi, A., Mezini, M.: Aspect-oriented web service composition with AO4BPEL.
In Zhang, L.J., ed.: Proceedings of the 2nd European Conference on Web Services
(ECOWS 2004), Erfurt, Germany, Springer-Verlag (2004) 168–182

24. Cottenier, T., Elrad, T.: Dynamic and decentralized service composition with Con-
textual Aspect-Sensitive Services. In: Proceedings of the 1st International Confer-
ence on Web Information Systems and Technologies (WEBIST 2005), Miami, FL,
USA (2005)

25. Verheecke, B., Vanderperren, W., Jonckers, V.: Unraveling crosscutting concerns
in web services middleware. IEEE Software 23(1) (2006) 42–50

26. Box, D., Christensen, E., Curbera, F., Ferguson, D., Frey, J., Hadley, M.,
Kaler, C., Langworthy, D., Leymann, F., Lovering, B., Lucco, S., Millet, S.,
Mukhi, N., Nottingham, M., Orchard, D., Shewchuk, J., Sindambiwe, E., Storey,
T., Weerawarana, S., Winkler, S.: Web Services Addressing (WS-Addressing).
W3C Member Submission 10 August 2004, World Wide Web Consortium (2004)
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/.

27. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(3) (2003) 5–51

28. Popovici, A., Gross, T., Alonso, G.: Dynamic weaving for aspect-oriented pro-
gramming. In Kiczales, G., ed.: Proc. 1st Int’ Conf. on Aspect-Oriented Software
Development (AOSD-2002), ACM Press (2002) 141–147

29. Suvée, D., Vanderperren, W.: JAsCo: An aspect-oriented approach tailored for
component based software development. In Akşit, M., ed.: Proc. 2nd Int’ Conf. on
Aspect-Oriented Software Development (AOSD-2003), ACM Press (2003) 21–29

30. Vanderperren, W., Suvée, D.: Optimizing JAsCo dynamic AOP through HotSwap
and Jutta. In Filman, R., Haupt, M., Mehner, K., Mezini, M., eds.: DAW: Dynamic
Aspects Workshop. (2004) 120–134

31. Brown, J.L., Ferner, C.S., Hudson, T.C., Stapleton, A.E., Vetter, R.J., Carland,
T., Martin, A., Martin, J., Rawls, A., Shipman, W.J., Wood, M.: GridNexus:
A grid services scientific workflow system. International Journal of Computer &
Information Science 6(2) (2005) 72–82

32. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler:
An extensible system for design and execution of scientific workflows. In: Proceed-
ings of the 16th International Conference on Scientific and Statistical Database
Management (SSDBM 2004), Santorini, Greece (2004)

Web Services Composition in Autonomic Grid
Environments

Danilo Ardagna, Silvia Lucchini, Raffaela Mirandola, and Barbara Pernici

Politecnico di Milano

Abstract. To cope with the competitiveness of the market place, e-
business applications should be developed exploiting the flexibility of
service oriented paradigm and the challenges of the grid computing tech-
nologies and should guarantee the fulfillment of quality requirements. In
this paper we present a reference framework to support the execution of
Web services based e-business applications in autonomic grid environ-
ments. Specifically, we tackle the problem of selection of Web services
that assure the optimum mapping between each abstract Web service
of a business process and a Web service which implements the abstract
description, such that the overall quality of service perceived by the user
is maximized. The proposed solution guarantees the fulfillment of global
constraints, considers variable quality of service profile of component
Web services and the long term process execution.

1 Introduction

The competitiveness of the market place and the advent of on demand service
computing pave the way for the development of e-business applications that
exploit both the flexibility of service oriented paradigm of development and
the challenges of the grid computing technologies. At the same time, QoS in
the context of software engineering and Web services has seen a flurry of recent
research activity. Different approaches have been followed so far, spanning the use
of QoS ontologies [15], the definition of ad-hoc methods in QoS-aware framework
[19,22], and the application of optimization algorithms [23,4,11,7].

Our work aims at merging these trends as it intend to pursue the QoS-driven
selection and composition of Web services for e-business applications in (auto-
nomic) grid environment.

QoS requirements are difficult to satisfy especially due to the high variabil-
ity of Internet application workloads. Internet workloads can vary by orders of
magnitude within the same business day [9]. Such variations cannot be accom-
modated with traditional allocation practices, but require autonomic computing
self-managing techniques [13], which dynamically allocate resources among dif-
ferent services on the basis of short-term demand estimates.

This dynamic fulfillment of varying QoS requirements can be enhanced by grid
computing, which is proposed as an infrastructure providing transparent resource
sharing between collaborating organizations [12]. Grid middlewareprovides basic

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 375–386, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

376 D. Ardagna et al.

mechanisms to manage the overall infrastructure of a service center, implement-
ing service differentiation and performance isolation for multiple Web services
sharing the same physical resources, and simplifying the re-configuration of the
physical infrastructure.

Recently, Grid middleware is evolving to implement Web service standards.
Grid and Web services framework mutual convergence can favor the integration
of business process across extended enterprises in order to maximize the QoS
requirements for the end user and optimize the use of physical resources.

In the literature resource allocation and scheduling in scientific grid workflows
has been analyzed in depth [21,26]. Resource management spans task-based al-
gorithms that greedly allocate tasks to resources and workflow-based algorithms
that search for an efficient allocation for the entire workflow [8]. Another as-
pect/dimension that distinguishes the various approaches concerns the type of
resource manager considered: centralized or distributed [21]. A comprehensive
survey of different workflow management systems and grid ongoing research
projects is presented in [5].

However scientific workflows and composed e-business processes have different
computing requirements, which pose diverse constraints on the re-configuration
of the infrastructure. In this paper we present a reference framework to support
the execution of Web services based e-business applications in autonomic grid
environments. The problem of selection of Web services in composed services
will be analyzed in depth. The goal is to discover the optimum mapping be-
tween each abstract Web service of a business process and a Web service which
implements the abstract description, such that the overall QoS perceived by the
user is maximized and some global constraints (i.e. constraints over the whole
business process) are guaranteed. Furthermore, we assume that Web services are
characterized by a variable quality of service profile and the long term execution
of the composed service will be considered.

The paper is organized as follows. In Section 2 we describe the composed Web
service specification and the quality model adopted. Section 3 is devoted to the
description of the problem of resource allocation in grid environments. Finally,
conclusions are drawn in Section 4.

2 Business Process Specification and Quality Model

A Web service is modeled as a software component which implements a set
of operations. Web services are registered with associated keywords and their
WSDL specification in a service registry [6]. We assume that the registry stores
also for each operation o of a Web service j, the values of QoS qj,o(t) and the
number of instances that can be executed during a specific time interval.

A composite service is specified as a high-level business process in BPEL lan-
guage in which the composed Web service is specified at an abstract level. In
the following we refer to an abstract Web service as a task ti, while Web services

Web Services Composition in Autonomic Grid Environments 377

selected to be executed are called concrete Web services. Some annotations are
added to the BPEL specification in order to identify:

– global and local constraints on quality dimensions;
– the maximum number of iterations for cycles;
– the expected frequency of execution of conditional branches;
– user preferences, a set of normalized weights {ω1, ω2, . . . , ωN},

∑N
n=1 ωn = 1,

indicating the user preferences with respect to the set of quality dimensions;
– Web service dependency constraints.

Global constraints specify requirements at process level, while local constraints
define quality of Web services to be invoked for a given task in the process.
The optimization problem will consider statistically all of the possible execution
scenarios of the composite service, according to their probability of execution.

The maximum number of iterations and frequency of execution of conditional
branches can be evaluated from past executions by inspecting system logs or
can be specified by the composite service designer. If an upper bound for cy-
cles execution cannot be determined, then the optimization could not guarantee
that global constraints are satisfied [23]. At compile time, cycles are unfolded
according to the maximum number of iterations.

Finally, Web service dependency constraints impose that a given set of tasks
in the process is executed by the same Web service. This type of constraints
allows considering both stateless and stateful Web services in composed services.
Constraints and BPEL annotations are specified by WS-Policy (see [3]).

QoS profiles follow a discrete stepwise function, that is periodic with period
T (see Figure 1). QoS profiles are obtained as result of the local grid resource
allocation as it will be discussed in Section 3.1. In the following the continuous
time will be denoted by t, while the discrete time interval will be denoted by
u. The discretization interval will be denoted by � and we assume that the
QoS profile is constant in every interval of length �. In autonomic systems �
is about half an hour [2], while, if we assume that the incoming workload has a
daily seasonal component, T is 24 hours.

qj,o(t)

T

u=13

u=28

2T t

Fig. 1. Example of Periodic QoS Profile

378 D. Ardagna et al.

In Figure 1, the time interval u = 13 and u = 28 are highligted, where
T = 24 · � and � = 1 hour. The index u can range in [1, �E/��].

For the periodicity we have:
qj,o(t) = qj,o(t + uT) u ∈ [1, �E/�] (1)

and
qj,o,u = qj,o,u mod(T/�) u ∈ [1, �E/�] (2)

The problem of maximization of QoS is multi-objective since several quality cri-
teria can be associated with each operation o of a Web service j in the time
interval u. In this paper we focus on Web services execution time (ej,o,u), avail-
ability (aj,o,u), price (pj,o,u), and reputation (rj,o,u). In the following we will
indicate with E, A, B, and R the execution time, availability, budget, and repu-
tation global constraints for the composed service execution. This set of quality
dimensions have been the basis for QoS consideration also in other approaches
both in the Web service and grid community [23,18,17].

Note that, if the same service is accessible from the same provider, but with
different quality characteristics (e.g. quality level), then multiple copies of the
same service will be stored in the registry, each copy being characterized by its
quality profile.

Finally we denote with Nj,o,u the number of instances of operation o of Web
service j which can be executed in the time interval u; we assume that the Web
services execution is supported by limited resources.

3 Resource Allocation in Grid Environments

The grid domain is characterized by the Virtual Organization (VO) concept, that
is a set of individuals and/or institutions which share computing resources. Re-
source sharing is regulated and controlled by defining the set of shared computing
and storage elements [1,12], who is allowed to access them and which are the
conditions under which resource sharing occurs. A VO lets different individuals
and/or institutions to share resources in a controlled way, so that VO members
can collaborate to obtain a common objective. In the scenario considered in this
paper, resources are represented by concrete Web services which are physically
deployed in multiple VOs, and are executed by Local Grids. A VO can use con-
crete Web services, that are located in different VO sites, to execute a particular
abstract composed service. Local Grid includes also: a Service Registry, a Local
Resource Allocation module and a Broker (see Figure 2). The registry stores
the WSDL specification, the QoS profile and the number of instances which
can be executed in the time interval u for every operation. The broker receives
composed Web service execution requests from VO members and external users,
consults the local and remote registries and determines the execution plan (i.e.
abstract to concrete Web service assignment) for the composed service execu-
tion. Local grid resources are reserved according to the execution plan identified
by the broker. VOs and the end user establish Service Level Agreement (SLA)
contracts for the service provisioning and Nj,o,u is updated accordingly.

Web Services Composition in Autonomic Grid Environments 379

Resource management introduces two different optimization problems which
corresponds to the VOs (providers) and users perspectives: (i) each VO would
like to maximize the SLA revenues and the use of physical resources, (ii) the
end user is interested in the maximization of the QoS of the composed service
execution.
SLA revenues maximization is performed locally by the local resource allocation
module, while QoS maximization is evaluated by brokers. Note that brokers of
different local grids can collaborate to identify the optimum abstract to concrete
Web service mapping and a composed service can be executed by concrete Web
services located in different local grids.

Fig. 2. Grid Reference Framework

This paper focuses on the maximization of the QoS for the end user which will
be discussed in depth in Section 3.2. Local grid resource management has been
presented in previous work [24,2] and will be briefly summarized in Section 3.1.

3.1 Local Resource Allocation

Each VO needs to allocate local grid physical resources to different Web ser-
vice operation invocations wsj,o in order to maximize the revenues from SLA,
while minimizing resource management costs. One of the main issues is the
high variability of the incoming request workload which can vary by orders of
magnitude within the same business day [9]. It is difficult to estimate workload
requirements in advance, and planning the capacity for the worst-case scenario

380 D. Ardagna et al.

is either infeasible or extremely inefficient. In order to handle workload varia-
tions, many service centers have started employing autonomic techniques [14],
that allow the dynamic allocation of physical resources among different Web
services invocations on the basis of short-term demand estimates. The goal is
to meet the application requirements while adapting the physical infrastructure.
The adoption of grid computing is very promising in this application area, since
basic mechanisms to provide resource virtualization, service differentiation, per-
formance isolation, and dynamic re-configuration of the physical infrastructure
are implemented by the grid middleware layer [12,1].

The local resource allocation is performed periodically with period �′ (e.g.,
10-30 minutes [25,2]) on the basis of a short-term workload prediction (see Figure
3a). Note that �′ is lower than �, the discretization time interval adopted
to model the QoS in the service registry. The short term predictor forecasts
the number of Web services invocations for the next control interval denoted
as N̂j,o(t). The local resource allocator uses also some low level information
provided by the grid monitoring infrastructure in order to identify requests of
different Web services operations and to estimate requests service times (i.e.,
the CPU and disk time required by the physical infrastructure to execute each
operation).

Short-term
workload
predictor

Nj,o(t)
^

Local Resource
Allocator

Grid
Monitor

Nj,o(t)

fj,o(t)

Workload
statistics

qj,o(t)

(a)

Historical
workload
statistics

Long-term
workload
predictor

(b)

qj,o(t)

T

T

Nj,o(t)

Local Resource
Allocator

Fig. 3. Local Resource Allocation

In order to maximize revenues from SLA, the local resource allocator deter-
mines the fraction of capacity assigned to each Web service invocation fj,o(t),
relying on the virtualization mechanism and performance isolation provided by
the grid infrastructure. The local resource allocator employs also an admission
control scheme [20] that may reject requests in order to guarantee that the QoS
requirements are met, or to avoid service instability caused by capacity restric-
tions. Overall, the local resource allocator determines the number of Web service
operation invocations Nj,o(t) ≤ N̂j,o(t) allowed for the next control interval, its
corresponding QoS level qj,o(t), and the fraction of capacity of the physical grid
infrastructure fj,o(t) devoted to its execution.

As we discussed in [2], the local resource allocator algorithm can be used with
a long-term workload predictor and historical workload statistics from systems

Web Services Composition in Autonomic Grid Environments 381

log (see Figure 3b) in a simulation environment in order to determine Nj,o(t) and
the quality profile on the long term. If we assume that the incoming workload
has a daily periodic component, as frequently happens in practice [16], Nj,o(t)
and qj,o(t) are also periodic and can be described with granularity � > �′ in a
service registry.

Note that, resource allocation is performed at local grid level since a global
resource allocation scheme which determines Nj,o(t) and qj,o(t) for the whole grid
infrastructure introduces a high overhead [10]. Furthermore, by implementing a
local resource allocation policy VOs have a greater control of their own physical
infrastructure.

3.2 Maximizing QoS for the End-User

Requests of execution of composed Web service from VOs or external users are
submitted to grid brokers specifying the preferences (weights) and the set of
local and global constraints. A broker solves the Web Service Selection problem
(WSC) which consists in finding the optimal mapping between process tasks and
Web service operations.

Probability=0.2

Execution Path ep1 Execution Path ep2Composite Service

Probability=0.8
Cond

t1

not(Cond)

t4

t6

t5

t3t2

t4

t6

t1

t3t2

t5

t6

t1

t3t2

Fig. 4. Execution Paths

In the following, Web services will be indexed by j while operations will be
indexed by o. We will indicate with WS i the set of indexes of Web services wsj

candidate for the execution of task ti, with OP j the set of indexes of operations
implemented by Web service wsj , and with wsj,o the invocation of operation
o ∈ OP j of Web service wsj . Let be I the number of tasks of the composed
service specification and J the number of candidate Web services. We assume

382 D. Ardagna et al.

that cycles are unfolded according to the maximum number of iterations. For
the sake of simplicity in the following definitions we assume that a composite
service is characterized by a single initial task t1 and a single end task tI :

– Execution Path. A set of tasks {t1, . . . , ti, . . . , tI} such that t1 is the initial
task, tI is the final task and no ti1 , ti2 belong to alternative branches. Exe-
cution paths will be indexed by k and denoted by epk. We will indicate with
Ak the set of indexes of tasks included in the execution path and with K
the number of different execution paths arising from the composed service
specification. Note that an execution path can include parallel sequences (see
Figure 4).

– Execution Plan. An execution plan of an execution path epk is a set of
ordered triples {(ti,wsj,o, xi)}, indicating that every task ti included in epk

is executed at time instant xi by invoking wsj,o. Execution plans will be
indexed by l and denoted as eplkl .

– Global Plan. The global plan is a set of ordered triples {(ti,ws i,o, xi)}, which
associates every task ti to a given Web service operation invocation wsj,o

at time instant xi and satisfies local and global constraints for all execution
paths.

Note that, the set of execution paths of an activity diagram identifies all the
possible execution scenarios of the composite service. The optimization problem
will consider all of the possible execution scenarios according to their probability
of execution, which can be evaluated by the product of the frequency of execution
of branch conditions included in execution paths and annotated in the BPEL
specification. Under these definitions, a local constraint can predicate only on
properties of a single task. Vice versa, global constraints can predicate on quality
attributes of an execution path or on a subset of tasks of the activity diagram, for
example a set of subsequent tasks or a sub path. In the current implementation,
exceptions are not considered in the optimization problem, global constraints
will be guaranteed only for the nominal execution of the composite service.

The WSC problem is formulated as a mixed integer linear programming prob-
lem. The decision variables of our model are the followings:

– yi,j,o,u ∈ {0, 1} is equal to 1 if the task ti is executed by Web service j ∈ WS i

with the operation o ∈ OP j during the time interval u, 0 otherwise;
– wi,u ∈ {0, 1} is equal to 1 if the task ti is executed during time interval u, 0

otherwise;
– xi ∈ R+ indicates the time instant in which task ti is executed.

Let us denote with the variable Y = [yi,j,o,u] the characteristic vector of a
generic execution plan EPL; in the following, execution plans will be represented
by their characteristic vector.

The goal of the WSC problem is to maximize the average aggregated value
of QoS. The average is obtained by considering all of the possible execution
scenarios, i.e., all of the execution paths arising from the composed service spec-
ification, and their probability of execution freqk. As we have discussed in [4]

Web Services Composition in Autonomic Grid Environments 383

the aggregated value of QoS can be obtained by applying the Simple Additive
Weighting (SAW) technique, one of the most widely used techniques to obtain
a score from a list of dimensions.

Let us denote with scorek(Y) the aggregated value of QoS of the execution
plan Y along the execution path epk. If we number the quality dimensions as
exeT ime = 1, avail = 2, price = 3, rep = 4 the overall score along the execution
path epk associated with an execution plan Y is evaluated as (for deeper details
see [4]):

scorek(Y) = ω1
max exeTimek−exeTimek(Y)
max exeTimek−min exeTimek

+ ω2
availk(Y)−min availk
max availk−minavailk

+

+ω3
max pricek−pricek(Y)
max pricek−min pricek

+ ω4
repk(Y)−min repk
max repk−min repk

(3)

Our goal is to maximize the weighted average of the score of execution paths
where weights are given by execution path frequency of execution freqk. The
WSC problem can be formulated as:

P1) max
∑K

k=1 freqk · scorek(Y)

∑
j∈WSi

∑
o∈OPj

�E/��∑
u=1

yi,j,o,u = 1 i = 1, . . . , I (4)

wi,u(u − 1)� ≤ xi i = 1, . . . , I ; u = 1, . . . , �E/� (5)

u�wi,u + E(1 − wi,u) ≥ xi i = 1, . . . , I ; u = 1, . . . , �E/� (6)

wi,u =
∑

j∈WSi

∑
o∈OPj

yi,j,o,u i = 1, . . . , I ; u = 1, . . . , �E/� (7)

yi,j,o,u ≤ Nj,o,u i = 1, . . . , I ; ∀j ∈ WS i; ∀o ∈ OPj ; u = 1, . . . , �E/� (8)

∑
j∈WSi

∑
o∈OPj

�E/��∑
u=1

ej,o,u mod(T/Δ)yi,j,o,u = exeT i i = 1, . . . , I (9)

xi2 − (exeT i1 + xi1) ≥ 0 ∀ti1 → ti2 (10)

exeT imek = xI + exeT I ; k = 1, . . . , K (11)

availk =
∏

i∈Ak

∏
j∈WSi

∏
o∈OPj

�E/��∏
u=1

a
yi,j,o,u

j,o,u mod(T/Δ) k = 1, . . . , K (12)

pricek =
∑

i∈Ak

∑
j∈WSi

∑
o∈OPj

�E/��∑
u=1

pj,o,u mod(T/Δ)yi,j,o,u k = 1, . . . , K (13)

repk = 1
|Ak|

∑
i∈Ak

∑
j∈WSi

∑
o∈OPj

�E/��∑
u=1

rj,o,u mod(T/Δ)yi,j,o,u k = 1, . . . , K (14)

exeT imek ≤ E k = 1, . . . , K (15)

availk ≥ A k = 1, . . . , K (16)

pricek ≤ B k = 1, . . . , K (17)

repk ≥ R k = 1, . . . , K (18)

xi ∈ R+ i = 1, . . . , I ; exeT imek, availk, pricek, repk ∈ R+ k = 1, . . . , K;

yi,j,o,u, wi,u ∈ [0, 1] ∀i, j, o, u

384 D. Ardagna et al.

Constraint family (4) garantees that each task ti is assigned to only one con-
crete wsj,o and its execution can start in a specific time interval u. Constraint
families (5) and (6) relate variable xi and variable wi,u. If wi,u is set to 1 then
xi value belongs to u interval, otherwise xi can assume any value between [0,E].
For example if wi,5 = 1 then we can obtain from constraint (5) xi ≥ 4� and
from constraint (6) xi ≤ 5�; on the other hand if wi,5 = 0 we obtain xi ≥ 0
and xi ≤ E. Constraint family (7) relates variables wi,u and yi,j,o,u, indeed if
the task ti is executed by invoking in interval u the operation o of Web service
j, i.e. yi,j,o,u = 1, then wi,u is raised to 1. Family constraint (8) guarantees that
the number of parallel Web service operation invocations that can be executed
in the same interval u must be lower or equal to the number of available invoca-
tion instances. Constraint (9) expresses the duration of every task in term of the
duration of selected service. Note that for constraints (4) and (7) there is only
one operation invocation in a specific interval and hence a task duration is given
by the selected Web service operation execution time. Constraint family (10)
represents precedence constraints for subsequent tasks in the activity diagram.
If a task ti2 is a direct successor of task ti1 (indicated as ti1 → ti2), then execu-
tion of task ti2 starts after task ti1 termination. Constraint family (11) evaluates
the execution time of an execution path (and hence the execution time of the
composed process, from Section 2 we assume that the composed process has a
single start and a single end task) as the sum of the starting time of the last task
tI and its corresponding execution time. Constraints families (12)-(14) express
execution path epk availability, price and reputation (see [4]). Finally, constraint
families (15)-(18) are the global constraints to be fulfilled.

Problem P1) can include Web service dependency constraints which can be
formulated as follows. If two task ti1 , ti2 must be executed by the same Web
service, then the following constraint families are introduced:

∑

o∈OPj

�E/��∑

u=1

yi1,j,o,u =
∑

o∈OPj

�E/��∑

u=1

yi2,j,o,u ∀j ∈ WS i1 ∩ WS i2 ;

∑

o∈OPj

�E/��∑

u=1

yi1,j,o,u = 0, ∀j ∈ WS i1 \ WS i2 ;

∑

o∈OPj

�E/��∑

u=1

yi2,j,o,u = 0, ∀j ∈ WS i2 \ WS i1 .

Local constraints can predicate on properties of a single task and can be
included in the model as follows. For example if the designer requires that the
price for task ti1 has to be less or equal than a given value p, then the following
constraint is introduced:

∑

j∈WSi1

∑

o∈OPj

�E/��∑

u=1

pj,o,uyi1,j,o,u ≤ p (19)

Web Services Composition in Autonomic Grid Environments 385

The Problem P1) has integer variables and a non-linear constraint family (the
availability bounds expressed by equations (12) and (16)). Availability bounds
can be linearized by applying the logarithm function (see [23]). In [4], by assum-
ing a constant quality profile, we have shown that the problem of selection of
Web services with QoS constraints is equivalent to a Multiple choice Multiple
dimension Knapsack Problem which is NP-hard, hence P1) is NP-hard.

An optimization tool based on CPLEX, a state of the art integer linear pro-
gramming solver, is under development. The performance of the approach will be
evaluated by varying the size of the WSC instances, i.e., by varying the number
of tasks and candidate Web services.

4 Conclusions

This paper presents a framework for the development of e-business applications
built on autonomic grid computing infrastructure, where the service selection
and composition is performed to guarantee that the overall quality perceived
by the user is maximized. Our short/medium term goal includes the realiza-
tion/implementation of the proposed approach and its validation on an indus-
trial case study. In particular, the execution of a distributed ERP software to
support small and medium enterprises which share computing resources in a grid
environment will be considered. The long term goal is the realization of a frame-
work where different kind of selection and composition methods are provided; in
such a way the user can choose the methods best suited for his application and
quality requirements.

Acknowledgements. The work reported in this paper has been partially sup-
ported by the DISCORSO FAR Italian Project. Thanks are expressed to Giu-
liana Carello and Marco Trubian for many fruitfull discussions on optimization
issues. We are grateful to Engineering Ingegneria Informatica and especially to
Gabriele Giunta for technical support.

References

1. The egee Project (Enabling Grid for E-Science). http://public.eu-egee.org/test/.
2. J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and M. Trubian. Resource

management in the autonomic service-oriented architecture. In ICAC 2006 Proc.,
2006. In Press.

3. D. Ardagna, C. Cappiello, P. Plebani, and B. Pernici. A Framework for Describing
and Supporting Adaptive Context-aware Web Services. Politecnico di Milano Tech-
nical Report 2006.48 http://www.elet.polimi.it/upload/ardagna/Tech2006-48.pdf,
June 2006.

4. D. Ardagna and B. Pernici. Global and Local QoS Guarantee in Web Service
Selection. In BPM 2005 Workshops Proc., pages 32–46, 2005. Nancy.

5. D. Berlich, M. Kunze, and K. Schwarz. Grid computing in Europe: from research
to deployment. In CRPIT ’44: Proc. of the 2005 Australian workshop on Grid
computing and e-research, pages 21–27, Darlinghurst, Australia, Australia, 2005.
Australian Computer Society, Inc.

386 D. Ardagna et al.

6. D. Bianchini, V. D. Antonellis, B. Pernici, and P. Plebani. Ontology-based method-
ology for e-Service discovery. Information Systems, 31:361–380, 2006.

7. G. Canfora, M. Penta, R. Esposito, and M. L. Villani. QoS-Aware Replanning of
Composite Web Services. In ICWS 2005 Proc., 2005.

8. J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. GridFlow: Workflow Management
for Grid Computing. In CCGRID 2003 Proc., Jul. 2003.

9. J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle. Man-
aging energy and server resources in hosting centers. In SOSP 2001 Proc., pages
103–116, 2001. Banff.

10. L. Chunlin and L. Layuan. A distributed utility-based two level market solution for
optimal resource scheduling in computational grid. Parallel Comput., 31(3+4):332–
351, 2005.

11. D. B. Claro, P. Albers, and J. K. Hao. Selecting Web Services for Optimal Com-
position. In ICWS 2005 Workshop Proc., 2005. Orlando.

12. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. Intl. J. of Supercomputer Applications, 2001.

13. J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE
Computer, 1(31):41–50, 2003.

14. Z. Liu, M. Squillante, and J. L. Wolf. On Maximizing Service-Level-Agreement
Profits. In Proc. of ACM Eletronic Commerce Conference, October 2001.

15. E. M. Maximilien and M. P. Singh. A Framework and Ontology for Dynamic Web
Services Selection. IC, 8(5):84–93, Sept./Oct. 2004.

16. D. Menascé, V. Almeida, and L. Dowdy. Performance by Design. Prentice Hall,
2003.

17. D. Menasce and E. Casalicchio. QoS in Grid Computing. IEEE Internet Comput-
ing, July–Aug 2004.

18. M. Ouzzani and A. Bouguettaya. Efficient Access to Web Services. IEEE Internet
Comp., 37(3):34–44, 2004.

19. C. Patel, K. Supekar, and Y. Lee. A QoS Oriented Framework for Adaptive Man-
agement of Web Service Based Workflows. In Proc. of DEXA 2003, volume 2376
of LCNS, pages 826–835. Springer-Verlag, 2003.

20. H. G. Perros and K. H. Elsayed. Call Admission Control Schemes : A Review.
IEEE Magazine on Communications, 1996.

21. J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid computing.
SIGMOD Rec., 34(3):44–49, 2005.

22. T. Yu and K. J. Lin. A Broker-Based Framework for QoS-Aware Web Service
Composition. In Proc. of 2005 IEEE Int’l Conf. on e-Technology, e-Commerce
and e-Service, Mar. 2005.

23. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnamam, and H. Chang. QoS-Aware
Middleware for Web Services Composition. IEEE Trans. on Soft. Eng., May 2004.

24. L. Zhang and D. Ardagna. SLA based profit optimization in autonomic computing
systems. In ICSOC 2004 Proc., pages 173–182, 2004. New York.

25. L. Zhang and D. Ardagna. SLA Based Profit Optimization in Autonomic Com-
puting Systems. In ICSOC 2004 Proc., pages 173–182, 2004.

26. L. J. Zhang and L. Bing. Requirements driven dynamic services composition for
web services and grid solutions. Journal of Grid Computing, 2(2):121–140, 2004.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 387 – 399, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Event-Based Peer-to-Peer Process Enactment for
Ubiquitous Web Service Devices

Jae-Yoon Jung1,2, Jonghun Park2, Seung-Kyun Han2, and Kangchan Lee3

1 Eindhoven University of Technology, The Netherlands
jjyjung@gmail.com

2 Seoul National University, Republic of Korea
jonghun@snu.ac.kr, jackleg83@gmail.com

3 Electronics & Telecommunication Research Institute, Republic of Korea
chan@etri.re.kr

Abstract. Web service technology is a representative means of heterogeneous
system integration and communication. Process language standards, such as
WS-BPEL and WS-CDL, have accelerated the usability of web services in
business area. However, recently emerging web service devices in ubiquitous
environments still have a difficulty in coordinating their processes because of
the limited computing power and storage. This research proposes a framework
of event-based process enactment for ubiquitous web service devices. The
framework adopts P2P architecture where devices communicate with one
another via web services eventing. The schema of ECA rules and messaging
protocol are presented for P2P process enactment so that service devices can
interact each other and accomplish their process execution based on the ECA
rules. Our proposed framework is expected to be useful in ubiquitous service
environments since it enables a scalable and light-weighted process enactment
through event-based web service technology.

Keywords: Peer-to-peer process, web services eventing, ubiquitous computing,
Event-Condition-Action rules.

1 Introduction

Ubiquitous computing environments are increasingly becoming heterogeneous and
service rich domains [7]. In such environments, distributed devices with particular
services are interconnected each other via various types of networks. While web
service technology is becoming a de facto standard for integration of business
applications [14], it is also rapidly emerging as an effective means for achieving inter-
operability among the devices in ubiquitous computing networks [11]. There are
several ongoing efforts that attempt to embed the web services into various forms of
computing devices in order to establish pervasive networks. These include
Microsoft’s invisible computing project [10] and UPnP 2.0 [12]. In particular,
recently proposed web service standards, such as WS-Eventing [2] and WS-
Addressing [3], are accelerating the deployment of web service technology into the
ubiquitous environments.

388 J.-Y. Jung et al.

In the meantime, workflow technology has changed the paradigm of information
system. Process-centric system architecture has facilitated heterogeneous systems to
collaborate with one another on the control of process enactment engines [5]. The
centralized coordination mechanism based on the client/server structure has supported
managerial control to administrators and efficient job assignment to participants. Web
service technologies have been also enhanced through development of process
standards, such as WS-BPEL [1] and WS-CDL [9]. Moreover, research results on
web service discovery and semantic web service are accelerating the wide spread of
web service technologies by discovering service providers based on ontology and
comparing their quality of services [13].

Yet, ubiquitous computing environments have difficulty in adopting the recent
advancements from process technology mainly due to the nature of centralized service
coordination. Ubiquitous computing assumes that various service devices, such as
sensors, service appliances, and controllers, are interacting for the purpose of user
convenience in any time and any place. Although process execution is requisite to
effective user supporting, the centralized mechanism can hinder scalable network and
efficient interaction among service devices, requiring a new framework for ubiquitous
process enactments.

This paper introduces an event-based peer-to-peer (P2P) process enactment
framework for ubiquitous service devices. In the framework, service devices interact
with one another via web service eventing messages, and each device executes
independently sub-processes expressed in Event-Condition-Action (ECA) rules. The
event-based mechanism enhances network efficiency and scalability since service
devices in P2P network can communicate each other directly without centralized
coordination and also execute their sub-processes independently.

Specifically, we present an ECA rule description language for Web Services
(named WS-ECA) that employs WS-Eventing specification as an eventing format in
P2P network. WS-ECA can support primitive events, such as time, service, internal
and external events, as well as composite events with logical operators. WS-Eventing,
proposed by Microsoft, et al., provides a messaging protocol for delivering
subscription, notification, and fault messages to implement event-driven interactions
based on web services [2]. The content of notification events can be described without
restrictions for specific applications. Furthermore, we also propose a schema of the
message protocol for process enactment by extending the notification events in WS-
Eventing. The protocol is composed of the messages for process deployment,
initiation, enactment, and audit reporting.

In the following, Section 2 introduces the framework of event-based P2P process
enactment for ubiquitous service computing, and Section 3 and 4 present the WS-
ECA language and messaging protocol for the framework, respectively. An example
of P2P process enactment in a home networking scenario is described in Section 5.
Finally, Section 6 concludes the paper.

2 P2P Process Enactment in Ubiquitous Service Computing

This section describes an event-based P2P process enactment framework for
ubiquitous service devices. In the proposed framework, service devices interact with
one another via web services eventing, and each device executes sub-processes

 Event-Based Peer-to-Peer Process Enactment for Ubiquitous Web Service Devices 389

expressed in terms of ECA rules. The eventing-based mechanism facilitates
scalability and efficiency since the devices participate in service network as a peer
and interact with each other directly without centralized coordination. The considered
P2P network adopts WS-Eventing specification as an event message format, and
employs a WS-ECA proposed in this paper.

The framework has three main characteristics: (1) event-based communication via
web service technology (2) process enactment in a scalable P2P network, and (3)
lightweight process execution based on ECA rules. These characteristics of proposed
framework offer several advantages compared to centralized process coordination as
follows:

 Scalable collaboration network: Process enactment is accomplished by event-
driven communication in a P2P network. In ubiquitous environments there are
frequent joining and leaving of a number of devices. Web services eventing
enables heterogeneous service devices to seamlessly communicate each other.

 Decentralized coordination: P2P processes are executed according to ECA rules of
service devices that are interacting via web services eventing. The ECA rules
governing the behavior of devices are distributed across the network and executed
independently by individual devices.

 Light-weight implementation: Contrary to the full-blown process modeling
languages such as WS-BPEL and WS-CDL that require heavy process engines, the
proposed framework adopts active rules that can be executed via web services
eventing. This enables light-weight implementation of process execution and
message communication for web service-enabled devices.

2.1 P2P Process Enactment Framework

The framework for P2P process enactment defines three types of peers, and the peers
perform five steps throughout their life cycle similar to conventional workflow
systems: process design, deployment, initiation, enactment, and audit reporting.
Figure 1 illustrates the P2P process enactment framework with the five steps.

First, designer peers can create new P2P processes and deploy them to service
peers. The peers should know what service peers are included in the network and
what services are provided by the peers. The discovery procedure can be adopted
from previous research results on service discovery and semantic web services [7,
13], and it is beyond the scope of this paper. In the step of process deployment, a
global process is composed of several sub-processes based on their roles, and the sub-
processes are described according to ECA rules so that they can interact with one
another through triggering events. The ECA rules are explained in detail with the
proposed WS-ECA schema in Section 3. An ECA rule may be registered to multiple
peers in the same role group since duplicated registration can address the problem of
dynamic participation of service peers in the network.

Subsequently, administrator peers can initiate a process from the list of deployed
processes. The peer can make a selection of some peers in each service role or assign
a priority among them in consideration of their connectivity and the user’s preference.
Finally, service peers execute the rules and services of initiated processes while they
inform one another of the status of sub-process execution. The detailed procedure of
process enactment is explained in Section 4.

390 J.-Y. Jung et al.

p11 p32

S2S1 S3

p21 p22 p23p12 p31

d2d1 a1 a2 a3

designer peer group admin peer group

service peer groups

(1) process design

(2) process deployment

(3) process initiation

(4) process enactment

service1 service2 service3

(5) reporting

p21
p32p22p11
s3s2s1

p21
p32p22p11
s3s2s1

(priority)

Fig. 1. P2P process enactment framework

3 ECA Rule Description Language for Web Service Devices

This section describes the schema of WS-ECA, the proposed rule description
language for ubiquitous web service devices. The rules can be triggered by either the
external events in the form of WS-Eventing or the internal events generated from the
timer or internal systems. While external events can be used for initiation of sub-
processes and message flow between two sub-processes, internal events are used for
modeling state transitions and gateways in sub-processes. The basic structure of the
proposed WS-ECA is defined as follows.

 <ECARule name=“xs:NCName” targetNampespace=“xs:anyURI”

xmlns=“http://di.snu.ac.kr/2005/eca/”
xmlns:xs=“http://www.w3.org/2001/XMLSchema” >

<variables>? <variable ... />+ </variables>
<events> event+ </events>
<actions> action+ </actions>
<rules>

<rule name=“xs:NCName”>+
<event name=“xs:QName”/>
<condition expression=“XPath Expression”/>
<action name=“xs:QName”/>

</rule>
</rules>

 <ECARule>

Fig. 2. The overall WS-ECA schema

 Event-Based Peer-to-Peer Process Enactment for Ubiquitous Web Service Devices 391

The schema supports the primitive events and actions as well as the composite ones
for ECA rule processing in ubiquitous service devices. Event is an incident that
triggers a rule, and it can be internal or external to a service device. Specifically, the
schema supports four types of primitive events. First, time event is generated by a
timer at the point that a user has specified. The time event has three subtypes: absolute,
periodic, and relative. The absolute type event is generated once, the periodic type
event occurs periodically, and the relative type event occurs at specific time before or
after another event. Second, internal event is generated by the internal system
including the rule engine and the device itself. It can be used to recognize the state
change of the device or to trigger other rules (i.e. rule chaining). A sub-process is
implemented by chaining several rules. Third, external event is delivered from an
external device in order to initiate a sub-process or exchange the state of a sub-process.
External events are conformant to the schema extended from WS-Eventing
specification, which is described in detail in Section 4. Finally, service event can be
one of two types: before and after. The before (after, respectively) type is generated
before (after, respectively) a specific service of a device begins (finishes, respectively).

 <events>

<timeEvent type=“once” name=“xs:NCName”> xs:dateTime </timeEvent>
<timeEvent type=“periodic” name=“xs:NCName” unit=“xs:duration”>

xs:dateTime </timeEvent>
<timeEvent type=“relative” name=“xs:NCName” baseEvent=“xs:NCName”

interval=“xs:duration”/>
<intEvent name=“xs:NCName”/>
<extEvent name=“xs:NCName” eventID=“xs:anyURI”/>
<svcEvent type=“before” name=“xs:NCName” service=“xs:QName”/>
<svcEvent type=“after” name=“xs:NCName” service=“xs:QName”/>

<compositeEvent type=“OR” name=“xs:NCName” TTL=“xs:duration”>

event+ </compositeEvent>
<compositeEvent type=“AND” name=“xs:NCName” TTL=“xs:duration”>

 event+ </compositeEvent>
<compositeEvent type=“SEQ” name=“xs:NCName” TTL=“xs:duration”>

 event+ </compositeEvent>
<compositeEvent type=“NOT” name=“xs:NCName” TTL=“xs:duration”>

event+ </compositeEvent>
 </events>

Fig. 3. Event schema of WS-ECA

More than one of the above four primitive events may be composed into a
composite event by use of the following logical operators. First, disjunction event of
type “OR” has more than one sub-event. One or more of the sub-events must occur
within a specific time interval. Second, conjunction event of type “AND” has more
than one sub-event. All of the sub-events must occur one or more times within a
specific time interval. Third, sequence event of type “SEQ” has more than one sub-
event. All of the sub-events must ever occur sequentially within a specific time
interval. Finally, negation event of type “NOT” has only one sub-event. The sub-event
must not occur within a specified time interval. A composite event can be defined

392 J.-Y. Jung et al.

recursively by using the above logical operators. The XML schema for the proposed
event structure is shown in Figure 3.

The condition part of WS-ECA rules is a boolean statement that must be satisfied
in order to activate a rule. It is described in terms of an XPath expression [4], and the
expression in a condition may refer to values from the event definition and use the
variables defined in a WS-ECA document. The syntax for the variables is presented in
Figure 4. Variables may refer to specific elements of an event defined in WS-ECA
rules (called event variables) or they may be used to represent a state of a device
(called device variables). They can be also used to express the conditions or to assign
necessary input data for actions such as service invocations and event generation. We
define two extension functions to assign the value to a variable as shown in Table 1.
The first function extracts a specific value from an event variable, and the second
returns the date and time information.

 <variables>?
 <variable name=“xs:NCName” deviceVar=“xs:QName”?
 eventVar=“eca:getVariable(event QName, path PathExpr)”? />+

 </variables>

Fig. 4. Variable schema of WS-ECA

Table 1. Extension functions to XPath's built-in functions

Functions Return type Return value
eca:getVariable(event QName,
path PathExpr)

xs:any
Specific value from an event
variable

eca:getDateTime(event QName) xs:dateTime Date and time information

The action part of the WS-ECA contains the instructions that are executed when a
triggered rule is activated. A primitive action can be (i) invokeService(svc) that
invokes internal or external service svc, (ii) createExtEvent(evt) that generates an
external event evt and publishes it to subscribing devices, and (iii) createIntEvent
(evt) that generates an internal event evt and triggers corresponding rules of a
device. invokeService action can be used for invocation of internal services during
executing sub-processes, in addition to the invocation of external services if it does
not influence the control flow of sub-processes. And, createExtEvent and
createIntEvent actions are used for representing control flow and message flow of
P2P processes, respectively.

As in the case of events, the actions also may consist of above primitive actions or
their compositions. A composite action is defined by use of more than one primitive
or composite action with two operators: conjunction and disjunction operators. The
syntax of actions is omitted due to the space limitation.

4 Eventing Protocol for P2P Process Enactment

P2P process network includes three kinds of peers, namely designer, service, and
administrator peers. Service peers subscribe their roles to designer peers. The role is

 Event-Based Peer-to-Peer Process Enactment for Ubiquitous Web Service Devices 393

used as a criterion of service assignment for deploying processes. Next, designer
peers create new processes based on WS-ECA schema, and then deploy the processes
to service peers according to their roles. Finally, administrator peers can initiate
deployed processes and require the audit reporting. The life cycle of P2P processes
and their message protocols are defined as follows:

Process design. Designer peers create P2P processes by using WS-ECA rules and the
WS-Eventing messages. In designing the process, four types of primitive events -
time, service, internal, and external events - can be used for composing or
choreographing services. In particular, external events can be employed to express
message flows among sub-processes while internal events can be used to express
control flows in sub-processes. In addition, AND, XOR, OR splits and joins can be
also expressed by using composite events and conditions in the rules. The proposed
concept of process design will be described with an example in the next section.

Process deployment. Process deployment is a procedure of registering all sub-
processes to participating devices according to their roles. There are two kinds of sub-
processes: one is embedded sub-processes, which can be initiated by the global
process, and the other is independent sub-processes, which can be reused by another
process by using its triggering event. To deploy a sub-process, a designer peer sends
DeployProcess messages to service peers with the corresponding role, and the
message contains descriptions of a new process, ECA rules, and deployment
information. Figure 5 shows the schema of DeployProcess message.

Process initiation. Two kinds of initiation methods are supported in our framework.
One is manual initiation by administrator peers sending InitiateProcess messages,
and the other is automatic initiation via triggering events, which can be periodic time
events, internal events occurred by device state changes, and external events through
WS-Eventing. InitiateProcess message contains information of administrator,
priorities of service providers, policy of audit reporting, etc.

Process enactment. An initiated process is executed according to the ECA rules that
comprise the sub-process. After finishing a sub-process, the service peer sends
TransitProcess messages to a set of descendant service peers for triggering the next
sub-processes. The TransitProcess messages contain the history of the executed
sub-processes and instances as UUID, which enables service peers to discriminate
returned processes from new ones.

Audit reporting. This step is not mandatory. In case audit reporting was set when the
process has been designed or initiated, the service peers should send ReportAudit
messages to the administrator peer. The messages are sent as soon as service peers
finish each service in the sub-process. If connection is lost or a response message is
not received, the service peer sends again to the peer performing the next sub-process
and then the message will be sent again to the administrator peer with the next audit
reporting message. Figure 6 shows the schema of ReportAudit message.

Table 2 shows the list of protocol messages defined for the five steps of P2P
process life cycle. The schema of all messages is specified through extending and
conforming to WS-Eventing specification. In each step, a pair of messages is

394 J.-Y. Jung et al.

Table 2. Process enactment life cycle and message protocol

Life cycle Peers Messages
Process design designer peer N/A
Process deployment designer peer service peers DeployProcess(Response)
Process initiation admin/service peer service peer InitiateProcess(Response)
Process enactment service peer service peers TransitProcess(Response)
Audit reporting service peer admin peer ReportAudit(Response)

exchanged between two peers. For instance, after DeployProcess message is sent
from designer peer to service peers, DeployProcessResponse messages should be
replied from service peers to design peer.

<s:Envelope xmlns:s=“http://www.w3.org/2003/05/soap-envelope”
 xmlns:wsa=“http://schemas.xmlsoap.org/ws/2004/08/addressing”
 xmlns:wse=“http://schemas.xmlsoap.org/ws/2004/08/eventing”
 xmlns:p2p=“ http://di.snu.ac.kr/2006/p2p”>
 <s:Header>
 <wsa:Action>http://di.snu.ac.kr/2006/p2p/DeployProcess</wsa:Action>
 ...
 </s:Header>
 <s:Body>
 <p2p:DeployProcess>
 <p2p:ProcessDescriptionURI>xs:anyURI</p2p:ProcessDescriptionURI>
 <p2p:ECARuleDescriptionURI>xs:anyURI</p2p:ECARuleDescriptionURI>
 <p2p:DeploymentDescription>
 <p2p:Deployer> xs:any </p2p:Deployer>?
 <p2p:Time> xs:dateTime </p2p:Time>?
 <p2p:Expires> [xs:dateTime | xs:duration] </p2p:Expires>?
 <p2p:Version> xs:any </p2p:Version>?
 </p2p:DeploymentDescription>?
 </p2p:DeployProcess>
 </s:Body>
</s:Envelope>

Fig. 5. The schema of DeployProcess messages

<s:Envelope ...>
 <s:Header>
 <wsa:Action>http://di.snu.ac.kr/2005/p2p/ReportAudit</wsa:Action>...
 </s:Header>
 <s:Body>
 <p2p:ReportAudit>
 <p2p:ProcessDescriptionURI>xs:anyURI</p2p:ProcessDescriptionURI>
 <p2p:ServiceDescriptionURI>xs:anyURI</p2p:ServiceDescriptionURI>
 <p2p:AuditDescription>
 <p2p:ServiceName> xs:NCName </p2p:ServiceName>
 <p2p:Time> xs:dateTime </p2p:Time>
 <p2p:Status> xs:any </p2p:Status>
 </p2p:AuditDescription>
 </p2p:ReportAudit>+
 </s:Body>
</s:Envelope>

Fig. 6. The schema of ReportAudit messages

 Event-Based Peer-to-Peer Process Enactment for Ubiquitous Web Service Devices 395

5 Example

In this section, P2P process enactment is illustrated with an example of “morning cook
process” in a home networking environment, as shown in Figure 7. Suppose that Jack set a
get-up time of the alarm clock to 7:00 AM before sleeping. In the morning, the alarm
clock informs the rice cooker of ‘20 minutes before get-up’ (represented as
extEvent(alarm(msg))). The cooker starts to cook the rice (represented as invoke
Service(cook())), and in case that the amount of rice is not enough, it will alert that to
the alarm clock (represented as extEvent(out-of-rice)) at get-up time. When the rice
cooking is completed, the cooker informs a coffee maker. And after 10 minutes
(represented as timeEvent(10min before extEvent(cooking-completion))), the coffee
maker will start to prepare coffee (represented as invokeService (makeCoffee())).

A
la

rm
 C

lo
ck

send
“get-up time”

R
ic

e
co

ok
er

C
of

fe
e

m
ak

er

out-of-rice ?
yes

no

alert
“out-of-rice”

enough rice ?
yes

no

invoke
“cooking” service

send
“out-of-rice”

send “cooking
completion”

send "20min
before get-up”

invoke “coffee
making” service

receive “cooking
completion”

start on 20min
before get-up

get-up time

alarm
("before get-up")

alarm("get-up") out-of-rice

cooking completion

delay 10min

Fig. 7. Example of morning cooking service

Based on the structure and syntax of the WS-ECA presented in Section 3, we can
define WS-ECA rules for the morning cooking. For example, the process of the rice
cooker is described by use of the ECA rules, and it is shown in Figure 8. In addition,

on extEvent(alarm(msg))
if alarm.msg=‘20min before get-up’
do invokeService(cook())
on beforeServiceEvent(cook())
if rice is not enough
do createIntEvent(out_of_rice)
on extEvent(alarm) after intEvent(out_of_rice) within 1hr
if alarm.msg=‘get-up’
do createExtEvent(out-of-rice)
on afterServiceEvent(cook())
if cooking is succeeded.
do createExtEvent(cooking-completion)

Fig. 8. ECA rules of the rice cooker

396 J.-Y. Jung et al.

<ECARule name=“rice-cooker-rules”
 targetNampespace=“http://di.snu.ac.kr/ rice-cooker/rules/”
 xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
 xmlns:rc=“http://di.snu.ac.kr/ rice-cooker/WSDL/”
 xmlns=“http://di.snu.ac.kr/2005/eca/”>
<variables>
 <variable name=“hasEnoughRice” type=“xsd:boolean”/>
</variables>
<events>
<intEvent name=“cookingEvt”/>
<extEvent name=“alarm”

eventID=“http://di.snu.ac.kr/event/alarm-clock/alarm”/>
<svcEvent type=“before” name=“before-cooking” service=“rc:cook”/>
<svcEvent type=“after” name=“after-cooking” service=“rc:cook”/>
<compositeEvent type=“SEQ” name=“getting-up-after-out-of-rice”

TTL=“PT1H”>
<event name=“cooking”/><event name=“alarm”/>

</compositeEvent>
</events>

<actions>

<createIntEvent name=“cooking” intEvent=“cookingEvt”/>
<createIntEvent name=“out-of-rice” intEvent=“outofriceEvt”/>
<createExtEvent name=“cooking-completion” extEvent=

“http://di.snu.ac.kr/event/rice-cooker/cooking-completion”/>
<invoke name=“invokeCooking” service=“rc:cook”/>
<invoke name=“alert-out-of-rice” service=“rc:alert”>

 <rc:contents>out of rice</rc:contents>
</invoke>

</actions>
<rules>
 <rule name=“cooking-rule”>
 <event name=“alarm”/>
 <condition expression=“/alarm/msg=‘20min before get-up’”/>
 <action name=“cooking”/>
 </rule>
 <rule name=“enough-rice-rule”>
 <event name=“cookingEvt”/>
 <condition expression=“hasEnoughRice=true”/>
 <action name=“invokeCooking”/>
 </rule>
 <rule name=“not-enough-rice-rule”>
 <event name=“cookingEvt”/>
 <condition expression=“hasEnoughRice=false”/>
 <action name=“out-of-rice”/>
 </rule>
 <rule name=“out-of-rice-alarm-rule”>
 <event name=“getting-up-after-out-of-rice”/>
 <condition expression=“/alarm/msg=‘get-up’”/>
 <action name=“alert-out-of-rice”/>
 </rule>
 <rule name=“cooking-completion-rule”>
 <event name=“cooking-completion”/>
 <condition expression=“true”/>
 <action name=“cooking-completion”/>
 </rule>
</rules>

</ECARule>

Fig. 9. WS-ECA rules of the rice cooker

 Event-Based Peer-to-Peer Process Enactment for Ubiquitous Web Service Devices 397

<s:Envelope xmlns:ac=“http://di.snu.ac.kr/event/alarm-clock/” ... >
<s:Header>
<wsa:Action>http://di.snu.ac.kr/2006/p2p/InitiateProcess</wsa:Action>
 <wsa:MessageID>uuid:7dd22961-78ee-4b66-8766-f6b388f6b9dd </wsa:MessageID>
 <wsa:To> http://home.example.com/rice-cooker</wsa:To>
</s:Header>
<s:Body>
 <p2p:InitiateProcess>
 <p2p:ProcessDescriptionURI> ... </p2p:ProcessDescriptionURI>
 <p2p:ECARuleDescriptionURI> ... </p2p:ECARuleDescriptionURI>
 <p2p:InitiationDescription>
 <p2p:Initiator> Jack </p2p:Initiator>
 <p2p:Time> 2006-03-01T07:00:00Z </p2p:Time>
 <p2p:ProcessType> embedded sub-process </p2p:ProcessType>
 </p2p:InitiationDescription>
</p2p:InitiateProcess>
<ac:alarm> <ac:msg> 20min before get-up </ac:msg></ac:alarm>

</s:Body>
</s:Envelope>

Fig. 10. InitiateProcess messages for the rice cooker

Figure 9 shows the WS-ECA document for the rice cooker, rice-cooker.xml, which is
initiated by the InitiateProcess message presented in the Figure 10.

6 Conclusions and Discussion

Process management is one of the widely deployed technologies in area of modern
business information systems. Nevertheless, centralized process enactment and
control have resulted in several shortcomings such as workload of servers, single
point of failure, and network inefficiency. To address these limitations, grid and P2P
approaches have been recently proposed in many areas. In particular, grid approach is
taken in many scientific workflow projects, such as bioinformatics, GIS, and physics
computing [8]. Since scientific problem-solving usually requires high performance
computing as well as huge data set, the centralized coordination approach may result
in serious inefficiency of process enactments. On the other hand, P2P workflow does
not have a long history. It concentrates on the scalability and connectivity in ad hoc
networks rather than the load balancing of computing resources. Fakas and
Karacostas [6] proposed P2P workflow architecture based on web directory, which
enables peers to search one another and offer their services via web service
technology. Nevertheless, since the approach requires a heavy process engine and
centralized directory service, it is rather similar to the distributed workflow research.
Recently, Yan, et al. [15] presented P2P infrastructure for workflow management.
The work focused on distributed data storage in consideration of P2P network
construction. In contrast to their work, this paper addressed the problem of efficient
process enactment in ubiquitous computing environment.

Specifically, ubiquitous computing systems have difficulty in adopting centralized
process enactment approaches. In such systems, the process-centric coordination is
required when a number of devices are interacting with each other and with

398 J.-Y. Jung et al.

surrounding service users. The decentralized process enactment is therefore required
to effectively address the characteristics, such as unstable network connection and
dynamic device participation, as well as limited device capabilities.

This paper introduced an event-based P2P process enactment framework for
ubiquitous service devices. The framework aimed at light-weight process enactment
without requiring centralized coordination for the purpose of scalability, efficiency,
and fault tolerance. As a result, we took an event-based coordination approach, and
presented an event-based rule description language, named WS-ECA, as well as a
messaging protocol for P2P process enactment by extending WS-Eventing
specification. WS-ECA enables service devices to interact with each other while they
exchange web service-based event messages. Contrary to the existing web service
based process execution languages such as WS-BPEL and WS-CDL that are
specifically defined for supporting long-running, transactional business processes, the
proposed WS-ECA attempts to support instantaneous, reactive interactions of web
service enabled devices in P2P process environments.

The presented framework on event-driven process enactment is expected to
contribute to efficient implementation of emerging ubiquitous service-based systems.

Acknowledgement

This work was supported by the Korea Research Foundation Grant funded by the
Korean Government (MOEHRD). (KRF- 2005-214-D00397).

References

1. Andrews, T. et al.: Business Process Execution Language for Web Services: Version 1.1.
OASIS (2003) http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

2. Bank, D. et al.: Web Services Eventing. 2004. http://ftpna2.bea.com/pub/downloads/WS-
Eventing.pdf

3. Box, D. et al.: Web Services Addressing. W3C Member Submission (2004).
http://www.w3.org/Submission/ws-addressing/

4. Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0, W3C Recommendation,
1999, http://www.w3.org/TR/xpath

5. Dumas, M. van der Aalst, W.M.P., Hofstede, A.H.: Process-Aware Information Systems:
Bridging People and Software Through Process Technology. John Wiley & Sons Inc.
(2005)

6. Fakas, G.J., Karakostas, B.: A peer to peer (P2P) architecture for dynamic workflow
management, Info. Soft. Tech. 46 (2004) 423-431

7. Friday, A., Davies, N., Wallbank, N., Catterall, E., Pink, S.: Supporting Service Discovery,
Querying and Interaction. In Ubiquitous Computing Environments. Wireless Networks 10
(2004) 631–641

8. Jung, J.-Y., Lee, W., Kang, S.-H.: Process Decomposition and Choreography for
Distributed Scientific Workflow Enactment. In Proc. of Int’l Conf. Comp. Sci. and its App.
(ICCSA’06), LNCS 3984, Springer-Verlag, Berlin (2006) 942-951

9. Kavantzas, N. et al., Web Services Choreography Description Language Version 1.0, W3C
Candidate Recommendation (2005) http://www.w3.org/TR/ws-cdl-10/

10. Microsoft, The Microsoft invisible computing project web site, http://
research.microsoft.com/invisible/

 Event-Based Peer-to-Peer Process Enactment for Ubiquitous Web Service Devices 399

11. Sashima, A., Izumi, N., Kurumatani, K.: Location-Mediated Coordination of Web Services
in Ubiquitous Computing. In Proc. of IEEE Int’l Conf. Web Services (ICWS’04) (2004)
109-114.

12. UPnP, The UPnP forum web site, http://www.upnp.org
13. Verma, K., et al.: METEROR-S WSDI: A Scalable P2P Infrastructure of Registries for

Semantic Publication and Discovery of Web Services, Info. Tech. and Mgt. 6 (2005) 17-39
14. Vinoski, S.: Integration with Web Services. IEEE Internet Comp., 7(6) (2003) 75-77.
15. Yan, J., Yang, Y., Raikundalia, G.K.: SwinDeW- p2p-Based Decentralized Workflow

Management System. IEEE Trans. Sys., Man, and Cyber. – Part A. In Press.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 400 – 415, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Expressing Business Process Models
as OWL-S Ontologies

Muhammad Ahtisham Aslam1, Sören Auer1,2, Jun Shen3, and Michael Herrmann4

1 Betriebliche Informationsysteme, Universität Leipzig, Germany
{aslam, auer}@informatik.uni-leipzig.de

2 Computer and Information Science Department, University of Pennsylvania, USA
auer@seas.upenn.edu

3 School of IT and CS, University of Wollongong, Australia
jshen@uow.edu.au

4 DaimlerChrysler AG, Sindelfingen Germany
michael.hm.herrmann@daimlerchrysler.com

Abstract. BPEL4WS is a well-established business process standard that can be
used to orchestrate service-based workflows. However, the rapid growth and
automation demands of e-business and grid applications require BPEL4WS to
provide enhanced semantic annotations to achieve the goal of business
processes automation. Here, OWL-S (OWL for Web Services) is designed to
represent such kind of semantic information. Furthermore, there exists a
similarity in the conceptual model of OWL-S and BPEL4WS that can be
employed to overcome the lack of semantics in BPEL4WS by mapping the
BPEL4WS process model to the OWL-S suite of ontologies. The mapped
OWL-S service can be used to increase flexibility and to automate BPEL based
grid scenarios even further. This is achieved by dynamic discovery,
composition and invocation of OWL-S services, for example within e-business
and grid environments. Hence, the aim of this paper is to establish a mapping
from the BPEL process model to the complete OWL-S suite of ontologies. We
present a mapping strategy and a tool supporting this strategy. This allows the
semantic annotation of workflows defined as BPEL4WS processes to enable the
automation of a variety of e-business tasks.

1 Introduction

Combining Web Services and Grids is a promising way to leverage existing work in
both business and scientific environments. BPEL4WS is a standard language to define
workflows as a combination of Web Services interactions. BPEL4WS combines the
power of graph oriented (WSFL) language and procedural workflow language
(XLANG). Strong support for Web Services in BPEL makes it very attractive workflow
language for the use in Grid environments. A BPEL workflow is a Web Services
orchestration and can act itself as a Web Service. A BPEL process seen as a Web
Service can be combined with other Web Services to create new ones. But such an
interaction and combination of a BPEL process with other Web Services has the same
syntactical limitations as the syntax of the base Web Services. With such syntactical
limitations, processes defined by using a workflow language (e.g. BPEL4WS) cannot be
automated to meet the demands of rapidly growing e-business world.

 Expressing Business Process Models as OWL-S Ontologies 401

We consider a B2B interaction in which two business partners have defined their
business processes as BPEL processes. Integrating these processes to perform some
complex business task requires prior agreements between both business partners. But
such kind of manual discovery of compeers and making prior agreements between
them is not an efficient and flexible approach for the automation and integration of
BPEL processes. Even exporting such a workflow, as a Web Service is not enough for
the purpose of automation of BPEL based Grid service scenarios. Mapping a business
process (BPEL process) to an OWL-S service description will support business
process automation by enabling semantic base discovery, invocation and composition
by semantic enabled systems.

In this paper we present a mapping strategy to map BPEL processes to the OWL-S
ontology and its prototypical implementation as a tool1 (BPEL4WS2OWL-S Mapping
Tool) that can be used to map BEPL4WS processes to the complete OWL-S suite of
ontologies. Our work is an extension and improvement to work by CICEC Lab [8]
that has the following drawbacks:

• Atomic processes are not supported according to OWL-S specifications.
• Atomic processes cannot be invoked and executed in resulting OWL-S service.
• Complex message types are not supported.
• No data binding is supported between atomic processes.
• Data flow between atomic processes is defined in separate OWL file, which is

not according to OWL-S specifications.
• Mapping does not support the OWL-S specification.
• Profile and Grounding ontologies are not supported.

Since, Profile ontology is not supported by [8], therefore, mapped OWL-S
Process Model ontology cannot describe its capabilities so that it can be discovered
on the basis of matching semantics. Also, unavailability of Grounding ontology
results in communication restrictions with other semantic enabled services. [8]
Supports only mapping from BPEL process model to OWL-S Process Model
ontology and this mapping also have many drawbacks and limitations as discussed
above. Therefore, work by CICEC Lab (Jun Shen and Yun Yang) needs to be
enhanced and improved to support more consistent mapping to Process Model
ontology. Also, such a mapping will have real world effects if mapping from BPEL
process model to complete OWL-S suite of ontologies (Profile, Process Model and
Grounding) will be supported.

Our work is an effort to achieve more consistent mapping, resulting in full OWL-
S suite of ontologies (Profile, Process Model and Grounding ontologies). Our work
supports complex message types to create more consistent data flow. WSDL
operations are mapped to OWL-S atomic processes (with Profile, Process Model and
Grounding). Data flow between atomic processes is supported and the mapped OWL
file has the complete OWL-S suite of ontologies (Profile, Process Model and
Grounding). Also, atomic processes are grounded with real WSDL services so that
they can be invoked and executed on network.

The remaining paper is organized as follows: In section 2 we discuss some
important concepts, concerning the relevant technologies (i.e. BPEL, OWL-S) and

1 http://bpel4ws2owls.sourceforge.net/

402 M.A. Aslam et al.

some introductory sentences about the OWL-S API being an important part of
mapping implementation. In section 3 we discuss the mapping specifications (for
mapping BPEL4WS process model to OWL-S suite of ontologies) and mapping of
BPEL process model to OWL-S Process Model ontology. Section 4 describes how
Profile and Grounding ontologies are created during mapping process. Section 5
descries the architecture and user interface of our mapping tool. In section 6 we
discuss the limitations of our work. Section 7 discusses the related work and sections
8 draw the conclusion of our work and discuss the future plans.

2 Background

2.1 BPEL4WS

Different workflow languages (e.g. WSFL [9], MS XLANG [10] and BPEL4WS [2])
were developed to bring the use of Web Services to a higher level by composing them
together to perform complex business tasks that a single Web Service cannot perform.
Among these languages BPEL got more attraction of the community for modeling
business processes as a composition of Web Services. A BPEL process is modeled by
using BPEL primitive and structured activities. Figure 1 gives an overview of BPEL
activities. Figure 1 shows that BPEL has two kinds of activities basic or primitive
activities and structured activities. Primitive activities (e.g. invoke, receive and reply) are
used to model interaction between business partners, where as workflow in a BPEL
process model is modeled by using the structured activities (e.g. sequence, flow etc.)
BPEL primitive activities can be nested in structured activities according to requirements
(e.g. sequence activity can be used to perform sub activities in a sequence). Flow activity
can be used to perform sub-activities concurrently and to synchronize sub-activities. Key
components of a BPEL process model are partners, which associate a Web Service
defined in an accompanying WSDL document with a particular role and variables.
Variables contain the messages passed between partners and correspond to message in
accompanying WSDL documents [11]. But effective dynamic service binding cannot be
performed by solely matching WSDL messaging interfaces.

BPEL4WS Activities
Primitive
Activities

Structured
Activities

• Receive
• Send
• Invoke

• Sequence
• Flow
• Switch
• While
• etc.

Fig. 1. BPEL4WS activities table

Since, expressiveness of WSDL service behavior is restricted to interaction
specifications and BPEL uses WSDL portType as service information, therefore,
BPEL inherits the limitations of WSDL. Furthermore, BPEL cannot express the

 Expressing Business Process Models as OWL-S Ontologies 403

inheritance and relationships among the Web Services. It cannot provide well-defined
semantics for automated composition and execution. Moreover, these languages are
based on XML in essence; they are limited in semantic descriptions without enough
ontology support [12].

2.2 OWL-S

Towards ultimate goal of seamless interaction among networked programs and
devices, industry has developed orchestration and process modeling languages such as
WSFL [9], MS XLANG [10] and recently BPEL4WS [2]. Unfortunately, lack of
support for semantically enriched information in these modeling languages leaves us a
long way from seamless interoperation. Researchers in the Semantic Web community
have taken up this challenge proposing top-down approaches to achieve aspects of
Web Service interoperation [11]. OWL-S, OWL ontology for Web Services, is
developed to provide Web Services semantics and consists of three types of
knowledge: Profile, Process Model and Grounding.

Profile provides semantically enriched information about capabilities of a service
and what a service is doing. Profile specifies inputs required by a service and outputs
generated by a service, pre-conditions that need to be true for using the service and
effects that service produce in surrounding world after its execution.

Rather than a program that can be executed, a Process Model is specification of
ways a client may interact with a service. A Process Model can have one or more
simple, atomic and composite processes. An atomic process is a description of a
service that can be executed in single step and expects a message as an input and may
return a message in response as an output. A composite process maintains the state of
the process. A composite process may consist of sub composite or atomic processes.
Simple processes are non-invoke able processes and have no grounding, but like
atomic processes they can be executed in single step.

Grounding specifies how to access a service. Technical details, for example,
communication protocols, message formats, port numbers used to contact the service,
are specified in Grounding. Normally, the Grounding suffices to express how the
components of a message are bundled (i.e. how inputs are put together to make a
message to a service, and how replies are disassembled into the intended outputs) [3].

2.3 OWL-S API

OWL-S API provides a Java API for programmatic access to read, execute and write
OWL-S service descriptions. The API provides an Execution Engine that can invoke
atomic processes that have WSDL [4] or Universal Plug and Play Language (UPnP)
[13] groundings, and composite processes that uses OWL-S control constructs (e.g.
Sequence, Split etc.) [14]. OWL-S’s exchange syntax is RDF/XML and many
processors work with an RDF based model, in part, to facilitate the smooth integration
of OWL-S service descriptions with other Semantic Web knowledge bases. However
working with the RDF triples directly can be quite cumbersome and confusing and the
OWL-S API was designed to help programmers to access and manipulate OWL-S
service descriptions programmatically [14]. We have also implemented the use of
OWL- S API in our tool to write the OWL-S services, for the BPEL process model,
according to mapping specifications discussed in the next section.

404 M.A. Aslam et al.

3 Mapping Specifications

In this section we discuss the mapping from BPEL process to the OWL-S ontology.
We also discuss the criteria used for mapping in areas where specifications of the
BPEL and the OWL-S do not support direct mapping. For example Assignment
activity in BPEL has no equivalent control construct in OWL-S so that it can be
directly translated to OWL-S control construct.

3.1 Overview

Figure 2 gives an overview of mapping specifications. Figure 2 shows that BPEL
primitive activities are mapped to OWL-S Perform control constructs. If a primitive
activity is an I/O activity (used to create the interface of the BPEL process) then this
activity is used to create the Profile of the resulting OWL-S service. Also, figure 2
shows that BPEL structured activities are mapped to relevant OWL-S control
constructs. On the basis of this mapping overview the next section describes the
mapping of BPEL process model to OWL-S Process Model ontology in more detail.

BPEL4WS

Primitive Activities

• Receive
• Send
• Invoke

Structured Activities

• Sequence
• Flow
• Switch (Case)
• While

OWL-S

Atomic Process (Perform)
<process:Perform>
 <process:process
 rdf:resource="…………."/>
</process:Perform>

Control Constructs

• Sequence
• Split
• Sequence (IfThenElse)
• RepeatWhile

Profile
I/O Primitive
Activity

Fig. 2. Overview of mapping specifications

3.2 Mapping to OWL-S Process Model

OWL-S has three kinds of processes, simple processes, atomic process and composite
process. Where as the BPEL have two kinds of processes, abstract processes and
executable processes. Abstract processes provide means of synchronization with
other processes at various level of granularity for the purpose of planning and
reasoning [12]. Simple processes in OWL-S also play the same role as BPEL abstract
processes by providing a level of abstraction. To keep the complexity of work within
limitations, in the current version, synchronization between processes is not supported

 Expressing Business Process Models as OWL-S Ontologies 405

therefore, we restrict our self on the mapping of executable processes to atomic and
composite processes.

3.2.1 Atomic Processes. Atomic process corresponds to an action a service can
perform in a single interaction and which can be executed in a single step by sending
and receiving appropriate messages. Also, an atomic process has no sub-process.

BPEL process gives flow information of different activities in a business process.
Where as, messages exchanged between partners, port types and partner links,
expressing business partners and relation between partners are expressed in BPEL’s
corresponding WSDL file. A business process interacts with partner services through
interfaces supported by corresponding Web Services. Operations supported by partner
services (WSDL services) can be used to perform some specific task (supported by
that Web Service operations) by sending them an input message and probably
receiving some output message. Like an operation supported by a Web Service, an
atomic process in OWL-S is a process that can perform some action in a single step.
Therefore, partner Web Services (WSDL Services) are parsed and corresponding
atomic processes (with Profile, Process Model and Grounding) are created for each
supported operation. Each atomic process is grounded with real Web Service (WSDL
service), so that it can be invoked in resulting OWL-S composite service to perform
some specific task.

For more clarification consider the “Translation And Dictionary” process example
(available with our tool). The example contains a BPEL file and relevant WSDL file
and two WSDL services (“DictionaryService.wsdl” and “TranslatorService.wsdl”,
having operations “getMeaning” and “getTranslation” respectively). The figure 3
shows the partner link for the interacting Web Service in the BPEL’s corresponding
WSDL file.

Fig. 3. “Partner Link” in BPEL’s corresponding WSDL file showing interaction with
“Dictionary Service”.

Figure below (fig. 4) shows supported operation “getMeaning” in the

“DictionaryService.wsdl” file.

Fig. 4. WSDL operation ”getMeaning” will be mapped to OWL-S atomic process
“getMeaningProcess”.

<plnk:partnerLinkType name="Dictionary_Ser_PortType">
 <plnk:role name="portRole">
 <plnk:portType name="q1:DictionaryPortType" />
 </plnk:role>
</plnk:partnerLinkType>

<wsdl:portType name="DictionaryPortType">
 <wsdl:operation name="getMeaning">
 <wsdl:input message="tns:DictionaryRequest" />
 <wsdl:output message="tns:DictionaryResponse" />
 </wsdl:operation>
</wsdl:portType>

406 M.A. Aslam et al.

So according to specifications, the tool creates atomic process “getMeaningProcess”
for Web Service operation “getMeaning”. Similarly all partner services (WSDL
services) are parsed and atomic processes “OWL files” are created for each supported
operation. Also, tool will not be able to create the atomic process for a Web Service
operation, if the WSDL service would not be accessible on network.

3.2.2 Primitive Activities and Atomic Processes. OWL-S Perform control
construct can be used to perform an atomic process. BPEL primitive activities (e.g.
receive, reply and invoke) can be used to perform a Web Service operation by sending
and receiving appropriate messages. Due to their logical matching behavior we map
BPEL primitive activities to OWL-S Perform control constructs to perform relevant
atomic processes. Receive activity is used to receive some message from some
resource (e.g. from some Web Service). Reply activity is used to send a message in
response to some receive activity. Where as the invoke activity represents combine
behaviour of both receive and reply activities (i.e. it invoke a service by sending it an
input message and then receive a message as an output of Web Service operation).
Figure 5 shows invoke activity statement in a BPEL process.

Fig. 5. Invoke activity sending and receiving message from“Dictionary Service”

Figure 5 shows an invoke activity statement which sends an input message
“Message_1_To_Dic_Service” to perform “getMeaning” operation and receives a
message "Message_1_From_Dic_Service" as a response of “getMeaning” operation.
Like OWL-S atomic processes, the BPEL primitive activities can be used to perform
some specific operation in a single step and they have no sub activity to be performed.
We map these BPEL primitive activities to OWL-S Perform control constructs (as
shown in figure 6).

Fig. 6. OWL-S Perform control construct to perform atomic process “getMeaningProcess”

Where as, the “getMeaningProcess” is atomic process that can be performed in
single step and is supported by the “getMeaning.owl” file created in section 3.2.1.

3.2.3 Structured Activities and Composite Processes. Structured Activities in a
BPEL process model describe the order in which set of the child primitive or
structured activities is performed. For example structured activity (sequence)
describes that the child primitive or structured activities within a sequence activity are

<invoke partnerLink="Dictionary_Ser_Port"
portType="q3:DictionaryPortType"
operation=”getMeaning"
inputVariable= ”Message_1_To_Dic_Service”

 outputVariable= ”Message_1_From_Dic_Service”/>

<process:Perform>
<process:process df:resource="http://examples.org/DummyURI.owl

#getMeaningProcess"/>
</process:Perform>

 Expressing Business Process Models as OWL-S Ontologies 407

performed in a sequence. Similar to BPEL structured activity (sequence), the OWL-S
has Sequence control construct, which is used to perform the child atomic or
composite processes in a sequence. Due to their logical matching behavior, BPEL
structured activities are mapped to OWL-S control constructs with in an OWL-S
composite process.

A composite process is not a behavior a service will do, but a behavior (or set of
behaviors) the client can perform by sending and receiving a series of messages [3]. A
composite process may consist of sub atomic or composite processes. Like BPEL
structured activities, the OWL-S uses its control constructs to define control flow
between sub atomic and composite processes.

Let us consider the example below (taken from “Translation And Dictionary”
example available with our tool), describing that structured activity (sequence) has
two sub primitive activities that can be performed in a sequence with in a BPEL
process model.

´

Fig. 7. Sequence activity having child primitive activities (invoke)

Figure 8 shows the OWL-S control construct Sequence as a result of mapping of
BPEL structured activity (sequence). Figure 8 shows that Sequence control construct
has two atomic processes (i.e. “getTranslationProcess” and “getMeaningProcess”)
that can be performed in a sequence. Where two Perform control construct statements
are result of mapping of two invoke activities with in BPEL sequence activity (as
discussed in section 3.2.2).

Flow activity in BPEL is used to create concurrency and synchronization between
sub-activities and has an equivalent OWL-S control construct Split. In OWL-S, Split
control construct is used for concurrent execution of process components and Split-Join
control construct is used to define processes that have partial synchronization. But in
current version we have implemented the mapping of flow activity to Split control
construct and synchronization between process components is not yet supported.

Switch, structured activity supports conditional behavior. A conditional branch is
defined by the case element, which can have optional otherwise branch. The BPEL
switch activity is mapped to OWL-S sequence (Sequence) of If-Then-Else control
constructs. Where each case element is mapped to an If-Then-Else control construct

<sequence>
 ……………………………
 <invoke partnerLink="To_Translation_Service_Port_1"

 portType="q2:TranslatorPortType”
 operation=”getTranslation”
 inputVariable="Message1_To_Translation_Service"
 outputVariable="Message1_From_Translation_Service"/>

 ……………………………
 ……………………………
 <invoke partnerLink="Dictionary_Ser_Port"

 portType="q3:DictionaryPortType"
 operation="getMeaning"

 inputVariable=”Message_1_To_Dic_Service”
 outputVariable="Message_1_From_Dic_Service" />

……………………………
</sequence>

408 M.A. Aslam et al.

<process:CompositeProcess
 rdf:about="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestProcess">
<process:composedOf>
 <process:Sequence>
 <process:components>
 <process:ControlConstructList>
 <list:first>
 <process:Perform>
 <process:process

 rdf:resource="http://examples.org/DummyURI.owl#getTranslationProcess"/>
 </process:Perform>
 ………….
 ………….
 <process:ControlConstructList>
 <list:first>
 <process:Perform>

 <process:process
 rdf:resource="http://examples.org/DummyURI.owl#getMeaningProcess"/>

 </process:Perform>
 </list:first>
 ………….
 ………….
 </process:ControlConstructList>
 </list:rest>
 </process:ControlConstructList>
 </process:components>
 </process:Sequence>
 </process:composedOf>
</process:CompositeProcess>

Fig. 8. OWL-S sequence control construct statement

and otherwise part of the case statement is mapped to Else part of If-Then-Else
control construct. Figure below (figure 9) shows the BPEL switch activity having a
case element and case condition statement.

<switch name="Solvency_Switch">
 <case condition="bpws:getVariableData('status', 'status', '//type')=3">
 <sequence name="Solvency_Sequence">
 ………..
 </sequence>
 </case>
</switch>

Fig. 9. BPEL switch activity statement

Figure 10 shows the mapping of the BPEL switch activity to the OWL-S sequence
of If-Then-Else control constructs.

<process:Sequence>
 <process:components>
 <process:ControlConstructList>
 <list:first>
 <process:If-Then-Else>

 <process:then>
 <process:Sequence>
 ……………………………
 ……………………………
 </process:Sequence>
 </process:then>
 ……………………………
 ……………………………
 </process:If-Then-Else>
 </list:first>
 </process:ControlConstructList>
 </process:components>

</process:Sequence>

Fig. 10. Mapping of “switch” activity to OWL-S sequence (Sequence) of If-Then-Else control
constructs

 Expressing Business Process Models as OWL-S Ontologies 409

Also, the while activity in BPEL is mapped to the Repeat-While control construct
in OWL-S, to repeatedly perform a specific process.

Conditions: mapping for condition statements is not fully supported in this version.
Also, there exist no appropriate way to map the statement part
“bpws:getVariableData(… ” to OWL-S, that’s why in this version automatic mapping
of condition is not fully supported. But information about the condition statement can
be found in OWL-S process ontology (e.g. in “Demo.owl” file, in case of our Demo
example project). This condition statement can be used to manually create the SWRL
expressions for conditions in OWL-S.

3.3 Data Flow

According to the BPEL and the OWL-S specifications there are no logically
equivalent activities in BPEL and OWL-S for direct mapping of the Assignment
activity, which can be used to define data flow between process components in the
OWL-S composite process. Therefore, here, we discuss the criteria we have
implemented for defining data flow between atomic processes within a composite
process.

The BPEL Assignment activity can be used to assign an output message or
message part of a primitive activity, as an input message or message part of other
primitive activity. According to mapping specifications, invoke activities before and
after Assignment activity are mapped to the OWL-S Perform control constructs (as
discussed in section 3.2.2) and message and message parts in the from and to part of
Assignment activity are used to create the data flow between these atomic processes.
Figure 11 gives a simplified view of criteria we used to create data flow. Figure 11
shows that primitive activities (performing operations “Operation1” and “Operation
2” respectively) before and after Assignment activity are mapped to atomic processes
(“Atomic Process 1” and “Atomic Process 2” respectively) and message and message
parts of these activities used in Assignment activity are mapped to data flow
statements in OWL-S by using <Process:hasDataFrom> and
<Process:InputBinding> constructs.

getTranslatio

Assignment

getMeaning

Operation 1

Assignment

Operation 2

Data Flow

Atomic Process 1

Atomic Process 2

BPEL4WS OWL-S

Atomic Process 2.input

Atomic Process 1.output

Primitive Activity
 to

Atomic Process

Primitive Activity
 to

Atomic Process
Message1

Message1.Part

Message2.Part

Message2

Fig. 11. Mapping of Assignment activity to create data flow between process components

410 M.A. Aslam et al.

4 Profile and Grounding Ontologies

In above section we have discussed in detail, how a BPEL process model is mapped
to OWL-S Process Model ontology. This section describes how Profile and
Grounding ontologies are created during the whole mapping process.

4.1 Profile

A BPEL process can have multiple interfaces as receive, reply or invoke activities.
These activities can have input/output messages, which are defined in the BPEL’s
corresponding WSDL file. Such activities can be used to receive and send a message
as an input and output of a BPEL process. Therefore, among these multiple input and
output primitive activity options, message variable of the first receive primitive activity
that receives a message from the outer world is selected to define the input of the
OWL-S composite process. Message parts of this message variable are defined as input
parameters of the resulting Profile ontology and these input parameters are annotated
with dummy ontological concepts to define semantics of resulting OWL-S service. If a
receive activity has corresponding reply activity then message variable of this reply
activity is used to set the output of the OWL-S composite process. If a receive activity
don’t has corresponding reply activity then first primitive activity (i.e. first invoke
activity) sending some message to the outer world (working as an interface of BPEL
process) is taken as an output activity to define the output of the OWL-S composite
process. Message variable of this activity is used to define the output parameters in the
Profile ontology of resulting OWL-S service and theses output parameters are also
annotated with dummy ontological concepts to provide semantics of mapped BPEL
process as OWL-S service. End user of the mapping tool needs to replace these URIs
of dummy ontological concepts with their domain ontologies.

A primitive activity is declared as an Input/Output (I/O) activity if its port type and
operation is supported by the BPEL’s corresponding WSDL file. Even though, OWL-
S specifications support multiple instances of Profile ontology for one instance of
Process Model ontology but tool create one instance of Profile ontology for one
instance of Process Model ontology. Therefore, in case, if a BPEL process has more

Service

Profile

Domain
Ontology

presents

describedBy

supports

annotation

Grounding

Process
Model

Fig. 12. Annotating input/output parameters in Profile ontology with domain ontology

 Expressing Business Process Models as OWL-S Ontologies 411

than one I/O primitive activities (which create the interface of BPEL process) then
only one instance of Profile ontology is created according to above discussed
specifications.

4.2 Grounding

Grounding of a service specifies details about how to access a service. In case of our
mapped OWL-S service, Grounding of OWL-S composite service specifies the
address of the grounding of each atomic process (as shown in fig. 13). Also, concrete
messages are specified explicitly in Grounding. Of course, it is not possible to
automatically define the XSL Transformation [15] for complex messages. Web
Services Description Language (WSDL) service, being XML format for describing
network services is referred in Grounding of each atomic process to have access to
the original implementation of WSDL service.

<grounding:WsdlGrounding
 rdf:about="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestGrounding">

 ……………………………
 <grounding:hasAtomicProcessGrounding

rdf:resource="http://examples.org/DummyURI/getMeaning.owl#
getMeaningAtomicProcessGrounding"/>

<grounding:hasAtomicProcessGrounding
 rdf:resource="http://examples.org/DummyURI/getTranslation.owl#

getTranslationAtomicProcessGrounding"/>
</grounding:WsdlGrounding>

Fig. 13. Service Grounding for “Translation And Dictionary” example

In figure 13 “getMeaningAtomicProcessGrounding” and “getTranslationAtomic-
ProcessGrounding” are groundings for “getMeaningProcess” and “getTranslation-
Process” defined in “getMeaning.owl” and “getTranslation.owl” created in section 3.2.1.

5 BPEL4WS2OWL-S Mapping Tool

In this section we describe the internal architecture of the tool and its user interface.
Figure 14 gives a simplified view of the architecture of the tool and shows that tool
consists of three major components (i.e. WSDL Parser, BPEL Parser and OWL-S
Mapper which uses the OWL-S API).

Function of the WSDL Parser is to parse each of the Web Services (WSDL files)
taking part in BPEL process composition and to transfer information about Web
Service operations to the OWL-S Mapper. The OWL-S Mapper creates an OWL-S
atomic process (with Profile, Process Model and Grounding ontologies) for each
Web Service operation. The mapped OWL-S atomic processes are stored in a separate
OWL file and saved in project atomic processes directory. Then BPEL Parser is
activated which parses the BPEL process model file. BPEL primitive activities with in
a BPEL process model that are used to perform a Web Service operation, are
transferred to OWL-S Mapper with information about Web Service operation
performed by that primitive activity. The OWL-S Mapper maps these primitive
activities to OWL-S Perform control construct statements that are used to perform the
relevant atomic processes. Where as, OWL-S Mapper has already created and saved

412 M.A. Aslam et al.

the atomic process that an OWL-S Perform control construct has to perform. Also,
BPEL Parser transfers each BPEL structured activity to OWL-S Mapper, which maps
the BPEL structured activity to relevant OWL-S control construct within the OWL-S
composite process. Notice that the BPEL Parser takes care for primitive activities,
which are working as an interface of the BPEL process model. The OWL-S Mapper
uses message parts of these activities to create the input/output parameters of Profile
ontology of resulting OWL-S service (as discussed in section 4.1).

Fig. 14. Architecture of BPEL4WS2OWL-S Mapping Tool

The “BPEL4WS2OWL-S mapping tool” provides an easy to use interface (fig.15)
employing menus and buttons to perform the mapping process. The mapping process
includes creating a new project, adding input BPEL and WSDL files, validating the

Fig. 15. An overview of BPEL4WS2OWL-S mapping tool

 Expressing Business Process Models as OWL-S Ontologies 413

input files, building the project (to create object view of input files) and finally
mapping the project. The resulting OWL-S ontology files can be viewed in the project
explorer (upper right window) and the contents of these files can be seen in upper left
window of the tool. The lower left window acts as an output window to see the output
of different mapping actions. The lower right window is an object explorer, which
gives an object view of the input files.

6 Limitations

Here, we describe the limitation of our work in two phrases: one is the OWL-S
specifications limitation and other is the mapping implementation. OWL-S is not as
mature as BPEL, for example, equivalent of BPEL activities like Assignment, Fault
Handler, Terminate etc. are not available in OWL-S for direct mapping from BPEL to
OWL-S. Information about pre and post-conditions is not described in BPEL so that it
can be used in automatic mapping. Input and output parameters in the resulting
Profile ontology need to be annotated with real world domain ontologies by the end
user. Second phrase is about limitations of mapping implementation. For example,
synchronization between process components is not supported. Conditions are
partially supported. These are the areas where mapping implementation can be
improved with further research and development to create more consistent mapping.

Therefore, mapping support in our tool is limited in above discussed areas and
needs to further improvements in our tool to produce more consistent mapping. Also,
tool needs to be continuously updated with coming versions of related technologies.

7 Related Work

In this paper, we have presented an approach to map syntax based Web Services
composition (BPEL process model) to Semantic Web Services composition (OWL-S
composite service). Our work supports the mapping of the BPEL process model to the
complete OWL-S suite of ontologies. The resulting OWL-S service can be used for
dynamic discovery, invocation and composition by semantic enabled systems.

As discussed before that [8] presents an initial kind of mapping to map BPEL
process to OWL-S Process ontology (with above discussed limitations) to facilitate
p2p based service flow system. WSDL2DAML-S [17] (updated to WSDL2OWL-S)
presents an approach to add semantics to Web Services by translating Web Service
operation to OWL-S ontology. WSDL2OWL-S partially supports the translation to
Process Model and Profile ontologies because Web Services technology (WSDL) do
not provide all information that is needed for complete WSDL to OWL-S translation.
There have also been other efforts to add semantics to different technologies. WSDL-
S [16] is an effort by LSDIS Labs to add semantics to WSDL. WSDL-S’s approach is
to enhance WSDL tags to add semantics (by annotating them with domain ontologies)
to Web Services rather than to define a separate ontology to describe Web Services
semantically. WSDL-S also adds new tags to WSDL specifications to support pre and
post conditions. [11] Presents an approach to enhance dynamic discovery and
composition of semantically enriched Web Services with in a BPEL process model.
[11] Propose, rather than to bind a service in a BPEL process at design time, user

414 M.A. Aslam et al.

should define semantic requirements of a required service with in a BPEL process.
Our work is a more consistent effort to add semantics to BPEL process model by
mapping it to OWL-S composite service in which each Web Service operation is an
OWL-S atomic process.

8 Conclusion and Future Work

As discussed above that end user needs to develop the domain ontologies and to
change the Profile ontology of resulting OWL-S service by annotating input/output
parameters with these domain ontologies. Therefore, a tool is needed that can be used
to develop domain ontologies and an editor which can be used to edit the resulting
OWL-S ontology (Profile ontology) with these domain ontologies. Once completed,
the resulting OWL-S service can provide richer business process semantics in the
form of OWL-S ontology for flexible integration and automation of workflows in
peer-2-peer workflow systems and in Data Grid applications. For example the
approach discussed in [11] can be used to dynamically discover, invoke and compose
theses Semantic Web Services to complete a process. Also resulting OWL-S ontology
can be edited to create more complex Semantic Web Services by composing different
atomic and composite services together.

“Protégé” with its plug-in “OWL-S Editor” is an ideal framework to develop
domain ontologies and to edit resulting OWL-S service with these domain ontologies.
“Protégé” is an ontology development tool and “OWL-S Editor” is an editor, which
can be used to visually develop and edit OWL-S services. “OWL-S Editor” is
available as a plug-in for “Protégé”. We are working to produce more consistent
mapping from BPEL to OWL-S to overcome the above-discussed limitations of our
work. We are also working to improve our tool as a “BPEL4WS2OWL-S import
plug-in” for “Protégé” and “OWL-S Editor”, so that the mapped OWL-S services can
be directly imported in “OWL-S Editor” for editing.

References

1. WISEINFO: [online] Available http://wiseinfo.info/web-service.htm
2. Business Process Execution Language for Web Services Version 1.1. 5th May 2003.

[online] Available ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf.
3. OWL-S: Semantic Markup for Web Services. [online] Available http://www.daml.org/

services/owl-s/1.1/overview/.
4. Web Services Description Language (WSDL) 1.1. [online] Available http://www.

w3.org/TR/wsdl.
5. UDDI Version 3.0.2: UDDI Specifications Technical Committee Draft, Dated 20041019.

[online] Available http://www.uddi.org/specification.html
6. A First Overview of BPEL4WS. January 25, 2.005. [online] Available http://jroller.com/

page/coreteam /Weblog?catname=%2FWorkflow
7. OWL-S’ Relationship to Selected Other Technologies [online] Available http://www.

daml.org/services /owl-s/1.1/related.html.
8. J. Shen, Y. Yang, C. Zhu and C. Wan. “From BPEL4WS to OWL-S: Integrating E-

Business Process Descriptions”, Proc. of 2nd IEEE International Conference on Services
Computing (SCC 2005), pp.181-188, Orlando, USA, July 2005.

 Expressing Business Process Models as OWL-S Ontologies 415

9. Frank Leymann. Web Services Flow Language (WSFL 1.0) May 2001. [online] Available
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

10. UDDI Version 3.0.2: UDDI Specifications Technical Committee Draft, Dated 20041019.
[online] Available http://www.uddi.org/specification.html

11. Daniel J. Mandell and Sheila A. McIlraith: Adapting BPEL4WS for the Semantic Web:
The Bottom-Up Approach to Web Service Interoperation. Proceedings of the Second
International Semantic Web Conference 2003.

12. Jun Shen, Yun Yang, Jun Yan, A P2P based Service Flow System with Advanced
Ontology Profiles, accepted by International Journal of Advanced Engineering
Informatics.

13. http://upnp.org/
14. Evren Sirin: OWL-S API. [Project Home Page] Available http://www.mindswap.org/

2004/owl-s/api/.
15. XSL Transformations (XSLT) : [online] Available http://www.w3.org/TR/xslt.
16. R. Akkiraju, J. Farell, J.A. Miller, M. Nagarajan, A. Sheth and K. Verma : "Web Service

Semantics – WSDL-S" [online] Available http://www.w3.org/2005/04/FSWS/
Submissions/17/WSDL-S.htm.

17. M. Paolucci, N. Srinivasan, K. Sycara, and T. Nishimura, “Toward a Semantic
Choreography of Web Services: From WSDL to DAML-S” In Proceedings of the First
International Conference on Web Services (ICWS’03), Las Vegas, Nevada, USA, June
2003, pp 22-26.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 416 – 427, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Combining i* and BPMN for
Business Process Model Lifecycle Management

George Koliadis, Aleksandar Vranesevic, Moshiur Bhuiyan,
Aneesh Krishna, and Aditya Ghose

School of Information Technology and Computer Science (SITACS),
University of Wollongong (UOW), NSW 2522, Australia

{gk56, av85, mmrb95, aneesh, aditya}@uow.edu.au

Abstract. The premise behind ‘third wave’ Business Process Management
(BPM1) is effective support for change at levels. Business Process Modeling
(BPM2) notations such as BPMN are used to effectively conceptualize and com-
municate process configurations to relevant stakeholders. In this paper we argue
that the management of change throughout the business process model lifecycle
requires greater conceptual support achieved via a combination of complemen-
tary notations. As such the focus in this paper is on the co-evolution of opera-
tional (BPMN) and organizational (i*) models. Our intent is to provide a way of
expressing changes, which arise in one model, effectively in the other model. We
present constrained development methodologies capable of guiding an analyst
when reflecting changes from an i* model to a BPMN model and vice-versa.

1 Introduction

Business process models play a key role in both organizational management [1] [2]
and enterprise information systems development [3]. Many notations developed for
the task of modeling business processes, have their own focus of application and
appropriate audience [4] [5] [6] [7] [8]. High-level conceptual models provide an
understanding of an organization from an intentional and social perspective [9] for
reasoning support during redesign [9]. In comparison, lower-level technical models
are especially suited for applications in the description, execution and simulation of
business processes [8].

Business process development should be based on principled high-level models of
the enterprise and the business context. Commonly, processes are formulated in an
ad-hoc fashion without reference to these high-level models. Some of the most
prominent modeling notations enlisted are focused towards technically-oriented data,
and process modeling notations such as ER, Data-Flow, Systems Flowcharting and
UML and workflow modeling [10]. In this work, we offer constrained development
methodologies to guide development of process models from higher-level conceptual
models. This supports life-cycle management in the following sense: when changes
occur to the high-level model, these can be reflected in the process model, and vice-
versa. In this paper, Section 2 provides a background to business process modeling

 Combining i* and BPMN for Business Process Model Lifecycle Management 417

with an overview of our chosen notations. Section 3 illustrates concepts/methods
provided in our methodologies (with examples). The paper is concluded in Section 4.

2 Background

The notations used for modeling business processes have been categorized in many
works, based on their conceptual features [4] [5] [6] [7] [8]. The common principle
recognized in all analyses is that some notations are more suited towards specific
audiences (i.e. with either technical/non-technical backgrounds) or applications (i.e.
possibly for description, re-design or execution) throughout the business process life-
cycle. Many notations focus on specific aspects, with limited relation/traceability to
other important business process aspects. This has brought about the need for an
enterprise view [6] to support the development and maintenance of rich models that
provide an enhanced ability to conceptualize, communicate and understand business
processes, and their context of operation.

In related work, some preliminary ideas in [11] have been proposed for developing
a BPMN model given the existence, and agreement to, an i* model of the process.
Six steps are provided for mapping between constructs, with no consideration for
reflecting change and consistency made. Also, an approach for deriving a BPMN
model from a business model is proposed in [12], achieved through the intermediate
translation of the business model into an activity dependency model that can then be
translated into a business process model. In this work, we provide a simpler approach
aimed at reducing added complexity and/or misinterpretations during modeling. Fur-
thermore, much work has been completed on supporting guided translation and co-
evolution of i* into various other behavioral modeling notations and languages [13]
[14] [15]. The primary aim in these approaches is to further develop detailed design
artifacts that can lead onto implemented systems, or directly be used in the configura-
tion of agent-based systems. However, our primary focus is on modeling lifecycle
support during BPM1 projects whereby the concern is for the development and/or
assessment of detailed business process designs. The work in this paper extends pre-
vious work in [16]. In comparison to previous work, we take the following approach
to lifecycle management: when changes to a business process model (i.e. BPMN –
[17]) occur, these changes must ensure some notion of consistency with a higher-level
enterprise model, and vice versa. In this instance, an i* model [9].

2.1 Agent-Oriented Conceptual Modeling (AOCM) with i*

i* supports modeling rich organizational contexts by offering high-level so-
cial/anthropomorphic abstractions (such as goals, tasks, soft goals and dependencies)
as modeling constructs for reasoning support during business process redesign [9] [7].
Figure 1 represents a simple i* Meeting Scheduling model. The central concept in i*
is that of intentional actor. These can be seen in the Meeting Scheduling model as
nodes representing the intentional/social relationships between three (3) actors
required to schedule a meeting: a Meeting Initiator (MI); Meeting Scheduler (MS);
and, Meeting Participant (MP).

418 G. Koliadis et al.

Routine

+ Scope

Fig. 1. An i* Strategic Rationale (SR) Meeting Scheduling Model with a Routine Illustrated

The i* framework consists of two modeling components [9] Strategic Dependency
(SD), and Strategic Rationale (SR) models. The SD model consists of a set of nodes
and links. Each node represents an actor, and each link between the two actors indi-
cates that one actor depends on the other for something in order that the former may
attain some goal. The depending actor is known as depender, while the actor de-
pended upon is known as the dependee. Dependancies may involve goals to be
achieved (e.g. MeetingBeScheduled), tasks to be performed (e.g. EnterAvailDates),
resources to be furnished (e.g. Agreement), or soft-goals (optimization objectives or
preferences) to be satisficed (e.g. MaximizeAttendance).

The SR mode further represents internal motivations and capabilities (i.e. processes
or routines) accessible to specific actors that provide illustration of how dependencies
can be met. In i*, a routine [9] specifies an intended course of action an actor may
pursue given a set of alternatives. These elements and their relationships represent the
strategic requirements of a business process when invoked in a specific context. For
example, to ScheduleMeeting (illustrated in Figure 1 with its Scope) that includes three
sub-tasks and six dependencies with two additional actors. Tasks in i* may be primi-
tively workable whereby the actor responsible for the element believes that it can
achieve its requirements at execution time – i.e. it is sufficiently reduced during decom-
position. In comparison to BPMN however, a primitively workable element may still be
represented as a sub-process as the term does not imply a ‘primitively executable action’
(i.e. application of analyst / designer discretion). Furthermore, for a routine to be
workable, all involved actors must be committed to satisfying their dependencies [9].

The Tropos project [18] aims to provide methodological support for advancing
the i* framework further towards architectural and detailed design where dynamic /
behavioral aspects are of importance. Specifically, Formal Tropos (FT) – see [19],
is a part of the Tropos project that provides a specification language for modeling

 Combining i* and BPMN for Business Process Model Lifecycle Management 419

dynamic aspects of an i* model via formal annotation of Creation and Fulfillment
conditions. These conditions are specified using first-order typed linear temporal
logic and prescribe the constraints on an elements lifecycle. In this work, we take the
same approach to annotation (with the use of fulfillment conditions annotated to i*
models). In comparison, our work is illustrated via informal annotations.

2.2 Business Process Modeling with BPMN

The Business Process Modeling Notation (BPMN), developed by the Business Proc-
ess Management Initiative (BPMI.org) [17] is primarily a technically-oriented busi-
ness process modeling notation that supports the assignment of activity execution
control to entities within an organization via ‘swim-lanes’. BPMN has the capability
to map directly to executable process languages including XPDL [20] and BPEL [17]
[21]. Furthermore, an analysis of BPMN [22] also stated its high maturity in repre-
senting concepts required for modeling business process, apart from some limitations
in terms of representing state, and the possible ambiguity of the swim-lane concept.

Fig. 2. A BPMN Patient Treatment Business Process Model

Figure 2 represents a simple BPMN Patient Treatment process. Processes are rep-
resented in BPMN using flow nodes: events (circles), activities (rounded boxes), and
decisions (diamonds); connecting objects: control flow links (unbroken directed
lines), and message flow links (broken directed lines); and swim-lanes: pools (high-
level rectangular container), and lanes partitioning pools. These concepts are further
discussed in [17].

420 G. Koliadis et al.

3 Constrained Development Methodologies

We propose constrained development methodologies to guide the derivation or main-
tenance of one type of model given the availability of the other. The development is
supported with the introduction of two concepts: fulfillment conditions (i.e. as in [19])
and effect annotations.

An effect is broadly defined as the result (i.e. product or outcome) of an activity be-
ing executed by some cause or agent. An effect annotation is a specific statement
relating to the outcome of an activity, associated to a state altering construct in a
given model. During BPM2, effects are annotated to atomic tasks/activities or sub-
processes within an actor’s lane. The execution of a number of activities in succession
results in a cumulative effect that includes the specific effects of each activity in the
sequence. We also note the fact that certain effects can undo prior effects (i.e. in the
case of compensatory activities). Effect annotations may possibly be formalized using
the formal layers of some currently well-developed Goal-Oriented Requirements
Engineering (GORE) methodologies [23] [19], however, we only state their applica-
bility in this work, and aim towards possible integration in the future.

Fulfillment conditions are annotated to tasks and goals assigned to actors in an SR
diagram, and dependencies (i.e. not including soft-goals as these are used during
assessment of alternatives and describe non-functional properties to be addressed) in
an i* model. A fulfillment condition [19] is a statement specifying the required condi-
tions realized upon completion of a given task, goal or dependency. Fulfillment con-
ditions recognize the required effects on a business process model. For example, a
fulfillment condition for a task dependency to EnterADateRange, may be the
DateRangeCommunicated effect (subsequently required by the task assigned to a
dependee actor).

3.1 Annotation and Propagation

Tasks, goals and dependencies are annotated with fulfillment conditions in an i*
model. Additionally, the tasks assigned to participants in a BPMN model are anno-
tated with effects for assessment against fulfillment conditions.

Tasks associated to dependencies on the dependee side may require additional ef-
fects when related to a BPMN model. That is, the fulfillment conditions for a de-
pendency may not be explicitly stated against the tasks. For example, the fulfillment
condition for ProposedDateProvided (i.e. annotated to the ProposedDate resource
dependency in Figure 1) will be propagated to the ObtainAvailDate task. This should
occur during annotation, whenever a fulfillment condition is annotated to a resource,
goal or task dependency.

Effect annotations in BPMN models are propagated via trajectories. A trajectory is a
sequential execution of activities terminating at an end state that represents the opera-
tional goal of the process. Control flow links between events, activities, and gateways
within a BPMN model indicate the flow of trajectories. Effects within a process are
accumulated during forward traversal through a trajectory. This accumulation ensures

 Combining i* and BPMN for Business Process Model Lifecycle Management 421

that any compensatory activities, that may undo effects, are also taken into account
during traversal.

3.1.1 Annotating the Meeting Scheduling Model (Figures 1 and 4)

Table 1. Annotation of Fullfillmnent Conditions to Respective Tasks/Dependancies

Task/Dependency (Figure 1) Fulfillment Conditions Task Annotation (Post
Development – Figure 4)

MI: SchedulerSchedules Meeting DateRangeEnteredIntoScheduler;
DateRangeCommunicatedToScheduler

1;
1;

MS: ScheduleMeeting AgreedDateKnownToInitiator 4
MS: ObtainAvailableDates ProposedDateProvided;

AvailableDatesObtained;
AvailableDatesStored;
AvailableDatesValidated

2 (message);
2;
2;
2

MS: ObtainAgreement AgreementObtained;
AgreementRecorded

4;
4

MS: MergeAvailableDates AvailableDatesMerged 3
P: AgreeToDate DateAgreedTo; AgreementProvided; 6; 6 (message)
P: FindAgreeableDateUsing Scheduler AvalDatesEnteredIntoScheduler;

AgreeableDateFoundUsingScheduler
5;
6

MS-Dep->MI: EnterDateRange DateRangeCommunicatedToScheduler 1
MI-Dep->MS: MeetingBeScheduled AgreedDateKnownToInitiator 4
MS-Dep->P: EnterAvailDates AvailDatesEnteredIntoScheduler 5
P-Dep->MS: ProposedDate ProposedDateProvided 2
MS-Dep->P: Agreement AgreementProvided 6 (message)

3.2 Scope Projection

In order to evaluate consistency between the two notations, we provide some rules for
projecting the scope of the i* model. In the current case, i* models are likely to repre-
sent a broader scope in comparison to a specific BPMN model as they are applied to
capture the greater organizational context. Scope projection is based on an identifica-
tion of the business process (represented in BPMN) as a routine assigned to an actor
in an i* model.

− Rule 1: The root node of the routine traceable to the process in consideration and
all tasks in its first level of decomposition from are to be within scope.

− Rule 2: All dependencies that are associated to a task within the scope of the rou-
tine, where the actor in control of the routine (initiator) is the depender are within
the scope of the process; as well as the tasks assigned to dependee actors.

− Rule 3: All dependencies that are associated to a task within the scope of the rou-
tine, where the intiator is the dependee are within the scope of the process iff the
task assigned to the depender is part of some decomposition of a task in the scope
of the process as per Rule 2; as well as the tasks assigned to the depender actors.

3.3 Consistency Evaluation

We introduce consistency rules to provide a mechanism for ensuring consistency
between i* and BPMN models (developed with consideration to [19]).

422 G. Koliadis et al.

− Rule 1: Every actor in an i* model required as a participant in the routine (traceable
to the business process) and any of their tasks must be represented in the BPMN
model (and vice versa), assessed via application of scope projection rules.

− Rule 2: There must exist a trajectory in the process model, whereby the operational
objective (as encoded in the accumulated fulfillment conditions of traceable tasks)
of the routine is achieved, and the sequence of activities is consistent with the re-
quirements specified in the routine as further outlined below:
− Rule 2.1: The accumulated effect of all tasks and goals traceable to the routine

must achieve accumulated routine fulfillment conditions during forward tra-
versal of at least one trajectory in the process model; AND,

− Rule 2.2: The fulfillment of a task on the depender side of a dependency must
not be realized before the fulfillment of the dependency upon accumulation of
effects during forward traversal of the same trajectory.

3.4 Constrained Development of a Business Process Model Given a High-Level
Conceptual Model

These steps are based on the aforementioned consistency rules aimed towards provid-
ing analyst guidance during initial model development.

− Step 1: Identify internal and external actors in i* diagram.
− Step 2: Map elements to equivalent constructs within the BPMN model. See sub-

steps below.
− Step 2.1: Map Participants. The greater organization for which the i* model is

represented is signified as a pool in BPMN. Any external participants are also
represented as pools. Internal organizational actors are represented as lanes
within the organizational pool.

− Step 2.2: Map Activities. Tasks within i* are represented as either sub-
processes or atomic activities within BPMN assigned to actors within pools and
lanes.

− Step 3: Sequence required tasks/sub-processes and introduce control and sequence
flow links by analyzing fulfillment conditions. Tasks placed within each pool or
lane are now sequenced to conform to routine requirements by taking Consistency
Rule 2 (see: Section 3.3) into consideration. This requires that tasks be sequenced
using control flow links in a manner that results in a trajectory satisfying fulfill-
ment conditions on an i* model. Control flow links are used to indicate realization
of dependencies between actors within the same organization. In order to realize
dependencies between organizational boundaries, a message flow link is used to
represent the dependency going from the depender lane to the dependee lane. This
may require single/multiple messages between tasks derived via analysis of ful-
fillment conditions.

− Step 4: Elaborate on sub-processes. The choice to introduce tasks or sub-
processes into the BPMN diagram for specific tasks in the i* model is made in Step
2.2. The analyst can develop each sub-process guided by the list of required ful-
fillment conditions annotated to the i* task that the sub-process realizes.

 Combining i* and BPMN for Business Process Model Lifecycle Management 423

Figure 3 illustrates the application of the constrained development methodology in
the context of the Meeting Scheduling model represented in Figure 1, with annota-
tions applied in Table 1. Much of the detail has been omitted for brevity. The follow-
ing section describes a possible change requirement and its reflection within an i*
model for further analysis.

Step 1:
Internal /
External
Participant Pools

Step 3:
Task Sequencing,
Message and
Sequence Flow

Step 2:
Participants and
Activities

1

2 3 4

5 6

Step 4:
Sub-Process
Elaboration

Fig. 3. BPMN Process Model derived using the Constrained Development Methodology

3.4.1 Reflecting Changes in an i* Model to an Associated BPMN Model
The scope projection techniques are used to assess whether a change in an i* model
will impact a BPMN model. These guidelines aim to support the reflection of change
between i* and BPMN models for the specific instances of impacting change outlined
below.

− Step 1: For each classification outlined below apply associated changes.
− Addition of an actor. If a new actor has been added to the i* model, a swimlane

(i.e. for an internal actor) or pool (i.e. for an external actor) will need to be
placed on the process model. Additionally, new dependencies must exist be-
tween the actor and existing actors (described below). These dependencies will
be included for all new actors where the dependency is related to the routine and
actor is the dependee. However, where the actor is the depender they will only
be included if linked to a task in an existing dependency graph (see Scope Pro-
jection rules).

− Addition of a goal/task/resource dependency. If a new dependency has been
added to the i* model, then this may require the addition of new activities/sub-
processes and message flow links within the BPMN model (as described
below).

424 G. Koliadis et al.

− Addition of a goal or task. The addition of a goal or task will require the addi-
tion of a task within the BPMN model. The addition of these tasks must be
scoped to their respective actors, and any dependencies must be realized via
message-flow links where one of the actors is external to the organization.

− Step 2: Re-apply consistency rules to both models to assess whether consistency
has been maintained.

Consider the following example applied to the Meeting Scheduling example in
Figure 1 (i*) and Figure 3 (BPMN). A new requirement within in the form of a task
dependency between the Meeting Initiator (i.e. the dependee) and the Meeting Sched-
uler (i.e. the depender) to ProvideParticipantPrioritization. Participant prioritization
means that the Meeting Initiator must now prioritize the current list of participants in
order for the Meeting Scheduler to MergeAvailableDates and FindAnAgreeableSlot
effectively.

Given the application of our approach for guiding an analysts decision, it can be in-
ferred that the effect for ParticipantPrioritizationProvided will propagate within the i*
model as a fulfillment condition on the SchedulerSchedulesMeetingTask. Furthermore,
given Consistency Rule 3, requires that ParticipantPrioritizationProvided occurs prior
to the fulfillment of the MergeAvailableDates fulfillment conditions. This information
can then be used to highlight the scope of change within the BPMN model to a point
within a trajectory prior to the required effects of MergeAvailableDates, where an
activity controlled by the initiator is able to realize the required effect.

3.5 Constrained Development of a High-Level Conceptual Model Given a
Business Process Model

The following steps provide systematic guidance for developing an i* model given an
already existing process model. Figure 5, illustrates the constrained development of
the Patient Treatment BPMN model in Figure 2.

− Step 1: Map elements to equivalent constructs within the i* model.
− Step 1.1: Map Participants. Both pools and lanes in a BPMN model represent

actors in an i* model. These can be directly translated into the model.
− Step 1.2: Map Activities. Represent activities and sub-processes as ‘primitively

workable’ tasks assigned to actors in i*.
− Step 2. Apply intentional reasoning.

− Step 2.1: Query the Intention of Tasks. Intentional reasoning is applied to iden-
tify higher-level intentional elements and dependencies by querying the inten-
tion of tasks. This step aims to guide the further understanding and representa-
tion of an actors motivations.

− Step 2.2: Query the Intention of Flow-Links. Analyze control and message flow
between actor boundaries to identify goal, task and resource dependencies.
These types of links can be used as a primary heuristic for identifying possible
dependencies between actors.

− Step 3: Identify soft-goal dependencies in the i* model. The representation of soft-
goals (including dependencies) are not in the scope of the BPMN notation.

 Combining i* and BPMN for Business Process Model Lifecycle Management 425

3.5.1 Reflecting Changes in a BPMN Model to an Associated i* Model
These steps indicate how BPMN model change may be reflected in the i* model:

− Step 1: For each classification of change, apply the following changes.
− Addition of a swimlane or pool. If a swimlane or pool is added, then a new ac-

tor will be required within the i* model. This will include the addition of new
dependencies and tasks within the i* model. A primary heuristic for identifying
dependencies includes message flow links and control flow links between pools
and lanes (message flow ndicates a resource dependency for some information).

− Addition a task to an existing swimlane or pool. If a new task is added to a
swimlane or pool, this will require a task to be decomposed from the root node
of the routine traceable to the current process.

− Step 2: Re-apply consistency rules assess whether maintenance.

Step 1:
Pools and
Lanes as Actors;
Activities &
Sub-Processes

Step 2:
Querying
Intentions –
Tasks and
Flow Links

Step 3:
Soft-Goals

Fig. 4. An i* ‘Patient Treatment’ Process

Consider now a scenario where the business process model is modified to improve
the performance of the IssuePrescription task which has been identified to be a major
operational bottleneck. The task is improved by including a task before hand which
checks the patient’s previous medical history to identify previous prescriptions for the
patient for similar illnesses (e.g. common flu). We name the task CheckPatientMedi-
calHistory. Furthermore, the client is now encouraged to provide information on his

426 G. Koliadis et al.

medical background, which we represent as a task named ProvideMedicalHistoryIn-
formation. We now proceed to add an additional task within the bounds of the Doctor
agent and an additional task within the bounds of the Patient agent.

As in the previous case we use intentional reasoning to identify that the added task,
within the Doctor agent, contributes to the higher level task of TreatingPatients. We
apply the same technique to justify the placement of the ProvideMedicalHistoryIn-
formation task as a decomposition task under the RequestMedicine task.

The added message flow in the BPMN diagram is represented as a resource de-
pendency between the Patient and the Doctor, where the Doctor requires the Patient to
provide his previous medical history. We also introduce the soft-goal between the
Patient and the Doctor, titled TimelyDrugPrescription, indicating the fact that the
Doctor will try to improve the time required to prescribe medication to the Patient.

4 Conclusion

In this work, we have illustrated an initial approach for supporting the lifecycle of
business process models with the complementary use of i* - a well developed notation
for modeling organizational contexts, and BPMN – a newly developed notation for
modeling business processes. The approach for reflecting changes in organizational
context to changes in the design of business processes provides an effective mecha-
nism for aligning business processes with organizational objectives. Similarly, opera-
tional improvements can be mapped back to organizational objectives to facilitate
analysis and ensure no conflicts exist with existing objectives. Although these steps
are preliminary we believe their systematic nature makes them available for automa-
tion in all phases, and are pursuing this task, through the development of a software
tool, along with further refinement of the approach.

References

1. Smith, H. Fingar, P.: Business Process Management – The Third Wave. Meghan-Kiffer
Press, Tampa Florida (2003)

2. Hammer, M. Champy, J.: Reengineering the Corporation: A Manifesto for Business Revo-
lution. HarperBusiness, (1993)

3. Dumas, M. Aalst, W. M. P. and Hofstede, A. H.: Process-Aware Information Systems:
Bridging People and Software Through Process Technology. Wiley-Interscience (2005)

4. Bider, I. Johannesson, P.: Tutorial on: Modeling Dynamics of Business Processes – Key
for Building Next Generation of Business Information Systems. In: The 21st International
Conference on Conceptual Modeling (ER2002), Tampere, FL, October 7-11 (2002)

5. Kavakli, V. and Loucopoulos, P.: Goal-Driven Business Process Analysis - Application in
Electricity Deregulation. In: Information Systems, 24(3) (1999) 187-207

6. Loucopoulos, P. and Kavakli, E.: Enterprise Modeling and the Teleological Approach to
Requirements Engineering. In: International Journal of Intelligent and Cooperative Infor-
mation Systems 4(1) (1995) 45-79

7. Katzenstein G. Lerch F. J.: Beneath the surface of organizational processes: a social repre-
sentation framework for business process redesign. In: ACM Transactions on Information
Systems (TOIS), 18(4) (2000) 383-422

 Combining i* and BPMN for Business Process Model Lifecycle Management 427

8. Yu, E.: Models for Supporting the Redesign of Organizational Work. In: Proceedings,
Conf. on Organizational Computing Systems (COOCS'95) Milpitas, California, USA, Au-
gust 13-16 (1995) 225-236

9. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD Thesis, Gradu-
ate Department of Computer Science, University of Toronto, Toronto, Canada (1995) ~124

10. Davies, I, Green, P. Rosemann, M. Gallo, S.: Conceptual Modelling – What and Why in
Current Practice. In: Lecture Notes in Computer Science, Volume 3288 (2004) 30-42

11. Cysneiros, L.M. Yu, E. Addressing Agent Autonomy in Business Process Management -
with Case Studies on the Patient Discharge Process. In: Proc. of the 2004 Information Re-
sources Management Association Conference, New Orleans, May, (2004)

12. Andersson, B. Bergholtz, M. Edirisuriya, A. Ilayperuma, T. Johannesson, P.: A Declara-
tive Foundation of Process Models. In: Lecture Notes in Computer Science, Volume 3520
(2005) 233–247

13. Krishna, A., Ghose, A. K., Vranesevic, A.: Agent-Oriented Conceptual Models to UML
Sequence Diagrams via Effect Annotations. Special issue on Agent-Oriented Software De-
velopment Methodologies-International Journal of Multi-Agent and Grid Systems. In-
press. (2006)

14. Dasgupta, A., Salim, F., Krishna, A., Ghose, A. K.: Hybrid Modelling using i* and
AgentSpeak (L) Agents in Agent-Oriented Software Engineering. To appear in: The Pro-
ceedings of 8th International Conference on Enterprise Information System (ICEIS-2006),
Paphos, Cyprus, May 23-27 (2006)

15. Krishna, A., Guan, Y., Sambattheera, C., Ghose, A. K.: Agent-based Prototyping of Web-
based Systems. To appear in: The Proceedings of the 19th International Conference on In-
dustrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA-
AIE-2006), Springer-Verlag Lecture Notes in Computer Science, Annecy, France, 27-30
June (2006)

16. Koliadis, G. Vranesevic, A. Bhuiyan, M. Krishna, A. Ghose, A.: A Combined Approach
for Supporting the Business Process Model Lifecycle. To appear in: The Proceedings of
the 10th Pacific Asia Conference on Information Systems (PACIS), July 6-9, Kuala Lum-
pur, Malaysia (2006).

17. White, S. Business Process Modeling Notation (BPMN) Version 1.0. Business Process
Management Initiative (BPMI.org), May (2004)

18. Giorgini, P. Kolp, M. Mylopoulos, J. Pistore, M.: The Tropos Methodology: an overview.
In: Methodologies And Software Engineering For Agent Systems. Kluwer Academic Pub-
lishing (2004)

19. Fuxman, A. Liu, L. Mylopoulos, J. Pistore, M. Roveri, M. Traverso, P.: Specifying and
analyzing early requirements in Tropos. In: Requirements Engineering, Springer London,
9(2) (2004) 132–150

20. Fischer, L.: Workflow Handbook 2005. Workflow Management Coalition, (WfMC)
(2005)

21. Ouyang, C. W.M.P. van der Aalst, Dumas, M. and ter Hofstede, A.H.M.: Translating
BPMN to BPEL. BPM Center Report BPM-06-02, BPMcenter.org, (2006)

22. Becker, J. Indulska, M. and Rosemann, M. Green, P.: Do Process Modelling Techniques
Get Better? A Comparative Ontological Analysis of BPMN. In: Campbell, Bruce and Un-
derwood, Jim and Bunker, Deborah, Eds. Proceedings 16th Australasian Conference on In-
formation Systems, Sydney, Australia (2005)

23. Lamsweerde, A. Goal-Oriented Requirements Engineering: A Guided Tour. In: The 5th In-
ternational Symp. In Requirements Engineering (RE’01), Aug. (2001)

Advances in Semantics
for Web Services

(semantics4ws 2006)

Advances in Semantics for Web Services
(Semantics4ws 2006)

Preface

These proceedings contain the papers accepted for presentation at the “Advances
in Semantics for Web services (semantics4ws 2006)” workshop held in Vienna,
Austria, on September 4, 2006, in conjunction with the Fourth International
Conference on Business Process Mangement (BPM 2006).

The main topics of this workshop are related to applicability of semantic tech-
nologies to Web services. Web services have added a new level of functionality to
the current Web by taking a first step towards seamless integration of distributed
software components using Web standards. Nevertheless, current Web service
technologies around SOAP, WSDL and UDDI operate at a syntactic level and,
therefore, although they support interoperability (i.e., interoperability between
the many diverse application development platforms that exist today) through
common standards, they still require human interaction to a large extent. For
example, the human programmer has to manually search for appropriate Web
services in order to combine them in a useful manner, which limits scalability
and greatly curtails the added economic value envisioned with the advent of Web
services.

Recent research (which we refer to as Semantic Web Services – SWS), which
draws on a variety of fields such as Semantic Web, knowledge representation,
formal methods, software engineering, process modeling, workflow, and software
agents, is gaining momentum, in particular in the context of Web services us-
age. Research in the above mentioned fields can be exploited to automate Web
services-related tasks, like discovery, selection, composition, mediation, monitor-
ing, and invocation, thus enabling seamless interoperation between them while
keeping human intervention to a minimum. Although several initiatives, like
OWL-S, WSMO, WSDL-S, or IRS, have emerged in this area aiming at address-
ing the problem of semantics in Web services, many major challenges still need
to be addressed and solved in this field.

In this context, this workshop aims to provide a forum in which to focus on
selected core technical challenges for deployment of Semantic Web Services, and
reach a better understanding of the relationships between commercial Web ser-
vice standards, current SWS research efforts, and the ultimate requirements for
full-scale deployment of these technologies. More specifically, this workshop aims
to tackle the research problems (as well as recent practical experiences) around
methods, concepts, models, languages and technology that enable semantics in
the context of Web services, as well as discussing recent advances in semantics
for Web services. Of particular interest are the architectural, technical, and de-
velopmental foundations of SWS, and showing how they combine synergistically

432 Preface

to enable service automation on the scale required by today’s Internet-connected
enterprises.

This workshop aims to bring together researchers and industry practition-
ers (e.g., leading modelers, architects, system vendors, open-source projects,
developers, and end-users) addressing many of these issues (including recent
developments in tools and techniques, and real-world implementations of SWS
applications), and promote and foster a greater understanding of how semantics
can assist automation in Web services, thus helping people develop and manage
services more efficiently and effectively.

The workshop organizers would like to thank the authors for their high-quality
submissions and the members of the program committee for their reviewing and
review coordination efforts.

June 2006 Steven Battle
John Domingue

David Martin
Dumitru Roman

Amit Sheth
(Editors)

Workshop Organization

Program Chairs

Steven Battle, Hewlett-Packard Labs, UK
John Domingue, The Open University, UK
David Martin, SRI International, USA
Dumitru Roman, DERI Innsbruck, Austria
Amit Sheth, University of Georgia, USA

Program Committee

Rama Akkiraju, IBM, USA
Abraham Bernstein, University of Zurich, Switzerland
Carine Bournez, W3C, France
Jorge Cardoso, University of Mediera, Portugal
Sanjay Chaudhary, DA-IICT, India
Emilia Cimpian, DERI Innsbruck, Austria
Marin Dimitrov, Ontotext, Bulgaria
Dieter Fensel, DERI Innsbruck, Austria
Karthik Gomadam, University of Georgia, USA
Michael Gruninger, University of Toronto, Canada
Sung-Kook Han, Won Kwang University, South Korea
Rick Hull, Lucent, USA
Deepali Khushraj, Nokia, Finland
Michael Kifer, State University of New York at Stony Brook, USA
Michael Maximilien, IBM, USA
Sheila McIlraith, University of Toronto, Canada
Brahim Medjahed, University of Michigan, USA
Adrian Mocan, DERI Innsbruck, Austria
Massimo Paolucci, DoCoMo Euro-Labs, Germany
Brahmananda Sapkota, DERI Galway, Ireland
Tony Shan, Wachovia Bank, USA
Monika Solanki, De Montfort University, UK
Ioan Toma, DERI Innsbruck, Austria
Stuart Williams, HP Bristol, UK

External Reviewers

Alessio Gugliotta
Farshad Hakimpour
Stijn Heymans
Carlos Pedrinaci

James Scicluna
Kunal Verma
Christoph Kiefer

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 435 – 446, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Semantics of Business Service Orchestration

Bill Karakostas1, Yannis Zorgios2, and Charalampos C. Alevizos1

1 Centre for HCI Design, School of Informatics, City University, London, UK
{billk, C.Alevizos}@soi.city.ac.uk

2 CLMS (UK) LIMITED, Croydon, UK
yz.clms@gmail.com

Abstract. Business services are deliveries of capabilities to consumers. The
way such capabilities are selected, combined and delivered makes for the
flexibility in services provision compared to, for example, manufacturing of
tangible goods. The coordination (‘orchestration’) of services is an essential
requirement for the delivery of more complex services. However, current
technologies for web service orchestration assume a procedural ‘program-like’
approach that as we argue in this paper reduces the flexibility to adapt the
composite service in response to changing requirements. This paper proposes
that service orchestration should be carried out at the business level, preserving
the business semantics and transformed if required to specific orchestration
execution models such as BPEL4WS, using MDA techniques.

Keywords: Service composition, Service orchestration, Service semantics,
IDEF0, MDA, BPEL4WS.

1 Introduction

Web services make software functions available programmatically over the Internet
and may be used as building blocks for applications. A composite web service is one
that is built using multiple component web services and is typically specified using a
language such as BPEL4WS [1] or WSIPL [2].

In a broader sense, a service is a set of capabilities delivered to a consumer. A
capability is access to a tangible resource such as a piece of equipment, or to an
intangible one such as information. Thus, a flight service offers a passenger the
capability to fly to some destination via the airline’s resources (i.e. airplanes). Since
computers, however, can only deal with intangible (i.e. information) resources, in this
paper we will only be concerned with information-based services.

Services are often confused with the mechanisms that are used for their delivery:
processes. Services are conceptually different from processes in the sense that unlike
processes they are not procedural transformations of inputs to outputs. A banking loan
service, for example, is not about transforming loan applications to loans- it is about
giving customers access to financial resources of the bank.

Research in service orchestration is currently driven by the popularity of web
services. Therefore current approaches to service orchestration, such as WFSL,

436 B. Karakostas, Y. Zorgios, and C.C. Alevizos

XLANG, more recently BPEL4WS and others are XML based and focus on the
coordination of executable web services. Languages, such as BPEL4WS, utilise high-
level scripting notation to control the sequence and flow of service execution. They
define standard programming language constructs for sequences, loops, spawning,
conditional execution, and exception handling.

However, we argue that by thinking about services orchestration in execution
terms, we loose the ability to separate business services from their implementation
and hence the ability to independently change the business service from its delivery
mechanisms. In this paper, therefore, we propose an execution language-independent
way to represent business services and their orchestrations.

Our service modelling and orchestration language is based on the IDEF0 modelling
standard [3]. IDEF0 allows the specification of services and their dependencies
(orchestrations) in an execution independent way that allows flexible adaptation of
orchestrations by reconfiguring service dependencies. The reconfiguration is
accomplished through declarative specifications of controls that constrain the
behaviour of individual services or of the orchestration as a whole.

The structure of the paper is as follows: Section 2 defines the notation and
semantics of the service description language. Section 3 defines the formal semantics
of service execution and service orchestration. Section 4 uses a travel agent example
to illustrate our approach to service orchestration. Section 5 discusses the service
orchestration engine. Finally, Section 6 positions our research against related
approaches and identifies directions for further research.

2 A Service Description Language

Our service modelling approach is based on an extended version of the process
analysis and modelling method known as IDEF0 [3]. IDEF0 in turn is based on
the Structured Analysis and Design Technique (SADT), a graphical approach to
system description, introduced by Douglas T. Ross in the early 1970s. An IDEF0
activity diagram contains one or more levels of decomposition of a process. Boxes
within a diagram show the sub-processes of the parent process named by the
diagram. Arrows between the boxes show the flow of products between processes
(Figure 1).

A business service is modelled as consisting of a number of inputs, outputs,
controls and mechanisms:

• Inputs denote the capabilities that are required for the provision of the
service.

• Outputs are the capabilities offered by the service to its consumers.
• Controls are the methods, procedures, standards etc. controlling the provision of

the service.
• Finally, mechanisms are the processes and resources used in the provision of the

service.

 The Semantics of Business Service Orchestration 437

The key advantages of IDEF0 over alternatives, such as UML activity diagrams in
service orchestration modelling, are as follows:

1. IDEF0 supports hierarchical service decomposition. A service can be
decomposed into its constituting services and this can be repeated for several
levels until services are atomic i.e. they cannot be decomposed any further. In
contrast, UML activity diagrams are flat.

2. An IDEF0 model does not imply an order of service execution; services in an
IDEF0 model are not executed in any particular order, as it might be implied by
the layout of the model (e.g. from left to right). Moreover, arrows connecting
services do not signify execution control, but dependencies between services, in
contrast to control flow representations in models such as Petri nets or UML 2.0
activity diagrams [4].

process
input output

control

mechanism

Fig. 1. Process model in IDEF0 notation

Medical Consultation
Service

Patient
Data

Medical
Procedure

Doctor,
Medical equipment

Medical
Diagnosis

Fig. 2. Example of a Medical Consultation Business Service in IDEF0 notation

Figure 2 shows an example of modelling a medical consultation business service as
a Level 0 IDEF0 model. Input capabilities to the service are access to patient data
such as the patient’s medical history etc. The output capability is a medical diagnosis
that, for example, will enable a treatment to be prescribed. The practitioner doctor
and any equipment he uses constitute the mechanisms of the service. Finally, the
provision of this service is controlled by the medical procedures and practices that
they may apply to this particular type of medical consultation.

438 B. Karakostas, Y. Zorgios, and C.C. Alevizos

A formal definition of a service is therefore as follows:
A service S is a 4-tuple (I, C, O, M) where:

• I is a set of input capabilities I1, I2,…, In [defined as I(S)] that are required
for the service to be delivered. A capability is a complex (tangible or
intangible) entity and is described by a set of attributes that draw values
from some domain. As explained already, capabilities are usually
referring to the availability of information or tangible resources such as
humans, machinery, money etc.

I(S): ∀ i, 1 i n, Ii ∈ I(S) (1)

• C is a set of control rules C1, C2,…, Cn [defined as C(S)] that constrain the
service execution, based on the input capabilities of the service. The
concept of control is explained in section 3 of the paper.

C(S): ∀ i, 1 i n, Ci ∈ C(S) (2)

• O is a set of output capabilities O1, O2,…, On [defined as O(S)] that are
delivered by the service to its consumers.

O(S): ∀ i, 1 i n, Oi ∈ O(S) (3)

• M is the mechanism used for the delivery of the service [defined as M(S)].
M is the process that will deliver the service.

M(S): ∀ i, i = 1, Mi ∈ M(S) (4)

3 Service Execution Semantics

3.1 Service Execution

Because a service is not a process, it is not appropriate to use program execution
concepts such as for example execution paths, synchronisation etc. We say that at
anytime a service can be only in of the two possible states ‘available’ or
‘unavailable’. A service is ‘available’ if and only if all the capabilities for its delivery
are present and all conditions for its delivery (as defined by the service’s control
rules) are fulfilled – otherwise it is ‘unavailable’.

A control rule is a logic expression that evaluates to true or false. Control rules are
defined in terms of capabilities. A control rule is therefore a function from LP ->
{true, false}, where LP are all the possible logic expressions constructed using logical
operators (¬ ∨ ∧) and the properties and values of the input capabilities in an IDEF0
service model. Essentially, a control rule is a precondition on the availability of a
service and is defined in terms of the input capabilities properties. More formally, a
service S is ‘available’ at time t if input capabilities I1, I2, … , In are available at time t
and all control rules C1, C2, … , Cn applying to that service evaluate to true.

available(St):(∀ Ii

t
 ∈ I(St), available(Ii

t)=true)∧(∀ Ci
t
 ∈ C(St), eval(Ci

t)=true) (5)

 The Semantics of Business Service Orchestration 439

Below are some example control rules from the problem domain of flight booking.
The same problem domain will be used in the more extensive example of Section 5.

As the following control rules are defined in terms of resource capabilities, such
resources, their properties and their domains need to be defined first as in Table 1.

Table 1. Classes of resources in the flight booking domain

Class Properties
Flight FlightNo : Int

FlightDeparture : Date
DepartureAirportCode : AirportCode

Passenger PassengerDetails : PersonalDetails
PassportStatus : {‘valid’, ‘invalid’}

Ticket Type : {‘first’, ‘business’, ‘economy’}
Farevalue : Money

FlightBooking BookingRef : ReferenceNumber
FlightRef : Flight
PassengerRef : Passenger
TicketRef: Ticket

And the corresponding UML class diagram is:

Fig. 3. Class diagram for Flight and Hotel booking

The following control rules can then be defined, first in English natural language
and then as the equivalent logic expressions:

Control Rule 1: The booking of an economy ticket is allowed only if the departure
date is a Saturday.

available(FlightBooking) ⇐ FlightBooking.TicketRef.Type = ‘economy’ ⇐
DayOfTheWeek(FlightBooking.FlightRef.FlightDeparture) = ‘Saturday’

(6)

Control Rule 2: Bookings are allowed only if the passenger’s passport status is
‘valid’.

440 B. Karakostas, Y. Zorgios, and C.C. Alevizos

available(FlightBooking) ⇐
 FlightBooking.PassengerRef.PassportStatus=‘valid’

(7)

The above are complex control rules that constrain the allowed combinations of
values in the service resources. Other control rules may only constrain the presence of
resources to provide input capabilities to a service, i.e. a service cannot be available if
the input resources do not exist.

Control Rule 3: A flight can only be booked if the passenger’s details are known.

available (FlightBooking) ⇐ FlightBooking.PassengerRef null (8)

3.2 Service Orchestration

An orchestration is a set consisting of services S1, S2, …, Sn where each service is
connected to some other service via a capability which is used as input, output or
control i.e. the output of a service can be either input to another service, control for
another service or both. This can be expressed formally as:

∀ Si ∈ ∃ Sk ∈ : (∃ j ∈ Sk (C) ∧ j ∈ Si(I)) ∨

(∃ j ∈ Sk (O) ∧ j ∈ Si(C)) ∨

(∃ j ∈ Sk (I) ∧ j ∈ Si(O))

(9)

A service orchestration can be considered as a composite service Si that can be
decomposed into a network of services Si1, Si2, …, Sin, where each Sik can be composite
or atomic. A service is atomic if it delivers capabilities to a higher order service but
itself does not use the capabilities of another service. Services that are not atomic can be
further decomposed allowing as a result multiple levels of orchestration.

There are three conditions for an atomic service Si to be valid and be able to
participate in an orchestration:

1. Service must have at least one input capability. Using definition (1) we have:

∃ Ik ∈ I(Si), 1 k n, Si ∈ (10)

2. Service must have at least one output capability. Using definition (2) we have:

∃ Ok ∈ O(Si), 1 k n, Si ∈ (11)

3. Service must have a mechanism. Using definition (4) we have:

∃ Mk ∈ M(Si), k = 1, Si ∈ (12)

4 A Service Orchestration Example

We will use a travel agent scenario that is frequently sited in service orchestration
papers. A travel agent undertakes to fulfil the requirements of a customer for a trip by
arranging both the customer’s flight and hotel accommodation. The customer requires

 The Semantics of Business Service Orchestration 441

that the flight’s actual date must be as close as possible to his desired date for travel,
and that there must be available hotel accommodation for that date. The task of the
travel agent is to orchestrate external services for flight and hotel booking in a way
that meets the customer requirements. There are mutual dependencies between the
services as hotel reservation can only be made after a suitable flight has been found.
However the flight service depends also on the hotel booking service, as if there are
no hotels availability for the found date then an alternative flight must be sought.

To describe the above service in a procedural (e.g. BPEL4WS style) we can use the
UML activity diagram of Figure 4.

However, this procedural approach makes the evolution of the provided services
more difficult. Suppose that the travel agency extends its range of services by
providing also a car booking service. The newly added service of car booking, adds a
new set of dependencies to the existing services. To introduce them in the previous
activity diagram (or the equivalent BPEL4WS program) we would be required to do
modifications in several places as now three conditions need to be satisfied
simultaneously in order for the composite service to be available (Figure 5).

INVOKE THE FLIGHT
BOOKING SERVICE

WITH FIRST CHOICE
DATE

INVOKE THE HOTEL
BOOKING SERVICE

WITH FIRST CHOICE
DATE

ROLLBACK & INVOKE
HOTEL SERVICE AND FLIGHT

BOOKING SERVICE WITH
ALTERNATIVE DATE

HOTEL AVAILABLE

FLIGH UNAVAILABLE

{continued until
alternative dates are
exhausted in which
case the process
terminates}

FLIGHT AVAILABLE

HOTEL UNAVAILABLE

ROLLBACK & INVOKE
HOTEL SERVICE AND FLIGHT

BOOKING SERVICE WITH
ALTERNATIVE DATE

Fig. 4. Activity diagram for Flight and Hotel booking

442 B. Karakostas, Y. Zorgios, and C.C. Alevizos

ROLLBACK & INVOKE
HOTEL, FLIGHT AND CAR
BOOKING SERVICE WITH

ALTERNATIVE DATE

INVOKE THE FLIGHT
BOOKING SERVICE

WITH FIRST CHOICE
DATE

INVOKE THE HOTEL
BOOKING SERVICE

WITH FIRST CHOICE
DATE

ROLLBACK & INVOKE
HOTEL, FLIGHT AND CAR
BOOKING SERVICE WITH

ALTERNATIVE DATE

HOTEL AVAILABLE

FLIGH UNAVAILABLE

FLIGHT AVAILABLE

HOTEL UNAVAILABLE

ROLLBACK & INVOKE
HOTEL, FLIGHT AND CAR
BOOKING SERVICE WITH

ALTERNATIVE DATE

INVOKE THE CAR
BOOKING SERVICE

WITH FIRST CHOICE
DATE

CAR AVAILABLE

{continued until
alternative dates are
exhausted in which
case the process
terminates}

CAR UNAVAILABLE

Fig. 5. Activity diagram for Flight, Hotel and Car booking

To model the same scenario in our approach, we first define the following three
services:

SBookFlight (INPUT : SETOF Date ,

OUTPUT : FlightBooking,
CONTROL: FlightBookingControl ,
MECHANISM : FlightBookingWebService)

(13)

 The Semantics of Business Service Orchestration 443

SBookHotel (INPUT : SETOF Date,
OUTPUT : HotelBooking,
CONTROL : HotelBookingControl,
MECHANISM : HotelBookingWebService)

(14)

SBookCar (INPUT : SETOF Date,

OUTPUT : CarBooking,
CONTROL : CarBookingControl,
MECHANISM : CarBookingWebService)

(15)

We then specify the control rules as follows:

FlightBookingControl: FlightBooking.OutDate=HotelBooking.ArrivalDate ∧
FlightBooking.ReturnDate=HotelBooking.DepartureDate

(16)

CarBookingControl: CarBooking.StartDate = HotelBooking.ArrivalDate ∧
CarBooking.EndDate= HotelBooking.DepartureDate

(17)

Fig. 6. Services of travel agent scenario as encoded in the IDEF0 model

444 B. Karakostas, Y. Zorgios, and C.C. Alevizos

Note that although the control rules can be added at different times (i.e. as the
service is modified) the declarative style of definitions allows rules to be processed
independently from each other by an inference engine. Thus by using the transitivity
property, an inference engine like the Service Orchestration Engine described in the
next section, can deduce that there is a dependency between the flight booking service
and the car booking service in two different control rules:

FlightBooking.OutDate= HotelBooking. ArrivalDate =
CarBooking.StartDate

(18)

And

FlightBooking.ReturnDate=HotelBooking.Departuredate=
CarBooking. EndDate

(19)

The IDEF0-based graphical representation of the travel agent services with all

possible dependencies shown as control rules is shown in Figure 6.

5 Service Orchestration Engine

Service Orchestration Engine is a service execution engine that is similar to
BPEL4WS processors, i.e. applications that execute BPEL4WS programs. However,
the main difference between the Service Orchestration Engine and a BPEL4WS
engine is that the former does not implement a procedural style of execution. The
Service Orchestration Engine allows for flexible rearrangements in the service
orchestration, which unlike BPEL4WS does not require modifications to an
orchestration program, as it implements a declarative rather than procedural style of
orchestration. Effectively, the Service Orchestration Engine is a constraint-checking
engine. Given an orchestration, the engine will evaluate for each service all controls
that apply to the service either directly, as modelled at the time of the service
definition, or because such controls refer to the service’s input capabilities. Only if all
relevant controls evaluate to true, the service will be considered to be ‘available’.

Formally given an orchestration :

∃ S ∈ : available(S) iff ∀ c ∈ C(S), eval(c) = true (20)

Service orchestration does not exclude the possibility that some of the services

making up the orchestration will themselves be composite services, orchestrated in a
procedural BPEL4WS style. Additionally, a service orchestration as defined in this
paper can be automatically transformed into a BPEL4WS or other language service
orchestration equivalent. This approach is described in more detail in [5].

Model-driven architecture is at the core of our approach to provide a seamless
transition from business services to web services design and orchestration. IDEF0
models of the services are used as platform independent models (PIM) that capture
the semantics of business services and produce flexible orchestrations.

 The Semantics of Business Service Orchestration 445

 IDEF0 service orchestration model

Transformation Transformation

BPEL
orchestration

BMPL
orchestration

Transformation

Future
orchestration

standard

Fig. 7. Transforming declarative service orchestrations to procedural ones

Inside the PIMs, business services are systematically decomposed by the business
expert into networks of activities. Web services are identified and co-designed with
the other business activities. This approach leads to flexible business process
orchestrations as it captures business services behaviour semantics as well as the
corresponding web services behaviour and the relation between the two. Finally,
based on these models, actual processes in BPEL, BPML or other standard can be
generated using separate modules [5]. Each module can generate a specific executable
process and can be easily replaced and reused in case a standard has been revised.
Finally, with IDEF0 generic modules an executable process can be created in more
than one standard simultaneously.

6 Discussion and Conclusions

The advantages of service orchestration have been analysed from organizational,
managerial, strategic, operational and technical perspectives, e.g. in [6]. While clearly
all approaches to service orchestration today are concerned with the orchestration of
executable web services, e.g. [7], we argue that for flexibility reasons orchestration
must be implemented at the business process level. Other approaches have also
considered the problem of service composition as an AI planning problem e.g. [8].

Building generic IDEF0 service models and specifying each service in the model
using the semantics defined in this paper, allows for flexible orchestration of business
services that are independent of particular service execution environments. This
approach improves the reusability of generic services in different situations and it also
enables the customization of the services based on the configuration parameters. It
also helps in the success of new business models, where services are bought in from
external parties. Off-the-shelf IDEF0 service models can be bought and used in
orchestrations to implement complex solutions, such as for supply chain models, e-
government applications and other business-to-business types of collaboration.

446 B. Karakostas, Y. Zorgios, and C.C. Alevizos

Acknowledgements. The service orchestration semantics described in this paper are
based on the IDEF0 execution engine of CLMS (UK) which is the core element of the
CLMS Platform that is used to deliver distributed system solutions.

References

1. IBM, et al. Business Process Execution Language for Web Services version 1.1. 2002
[cited; Available from: http://www-128.ibm.com/developerworks/library/specification/ws-
bpel/.

2. Lo, E., et al., WSIPL: An XML Scripting Language for Integrating Web Service Data and
Applications. To appear in Web Intelligence and Agent Systems (WIAS), 2005.

3. Draft Federal Information Processing Standards Publication 183, Standard for integration
definition for function Modeling (IDEF0). 1993, National Institute of Standards and
Technology (NIST).

4. Storrle, H., Semantics and Verification of Data-Flow in UML 2.0 Activities, in Proc. Intl.
Ws. on Visual Languages and Formal Methods (VLFM’04). 2004: Rome, Italy.

5. Karakostas, B., Y. Zorgios, and C.C. Alevizos, Automatic derivation of BPEL4WS from
IDEF0 process models. To appear in Journal of Software & System Modeling, Springer-
Verlag, 2006.

6. Gortmaker, J., M. Janssen, and R.W. Wagenaar. The Advantages of Web Service
Orchestration in Perspective. in Proceedings of the 6th international conference on
Electronic commerce. 2004. Delft, The Netherlands: ACM International Conference
Proceeding Series; Vol. 60.

7. Courbis, C. and A. Finkelstein. Weaving Aspects into Web Service Orchestrations. in 3rd
IEEE International Conference on Web Services (ICWS'2005). 2005. Orlando, Florida,
USA.

8. Carman, M., L. Serafini, and P. Traverso, Web Service Composition as Planning, in
International Conference on Automated Planning & Scheduling (ICAPS). 2003: Trento,
Italy.

Requirements for Automated Service
Composition�

Harald Meyer and Dominik Kuropka

Hasso-Plattner-Institute for IT-Systems-Engineering
Prof.-Dr.-Helmert-Strasse 2-3, 14482 Potsdam, Germany

{harald.meyer, dominik.kuropka}@hpi.uni-potsdam.de

Abstract. Automated service composition is an important approach to
create aggregate services out of existing services. Several different ap-
proaches towards automated service composition exist. They differ not
only in the used algorithms but also in provided functionality. While
some support the creation of compositions with alternative or parallel
control flow, others are missing this functionality. This diversity yields
from a missing consensus on the required functionality to automatically
compose real-world services. Hence, with this paper we aim at providing
the foundation for such a consensus. We derived the required functional-
ity from multiple business scenarios set up in the Adaptive Services Grid
(ASG) project.

1 Introduction

Cooperation between enterprises on global level is essential to conduct success-
ful business. Service composition yields the possibility to aggregate services from
inside and outside of enterprises to new composed services which raises the value
of the whole service chain. Compositions are currently modeled manually. This
leads to inflexible service compositions with in-optimal quality as manual mod-
eling makes adjustments for individual service requests too expensive. Automat-
ing the creation of compositions increases flexibility and quality. Furthermore
it reduces the probability of enactment failures caused by services used in the
model which either disappeared or have been modified over the time. Auto-
mated service composition will include newly registered services automatically
while de-registered services will no longer be used in compositions.

Several approaches for automated service composition differing in provided
functionality exist. While they motivate automated service composition, a con-
sensus on the required functionality to perform automated service composition
is missing. Zeng et al. [1] present an automated composition approach based on
a rule inference engine. They describe the supported functionality of their sys-
tem DYflow like the composition of parallel and alternative control flow or the

� This paper presents results of the Adaptive Services Grid (ASG) project (contract
number 004617, call identifier FP6-2003-IST-2) funded by the Sixth Framework Pro-
gram of the European Commission.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 447–458, 2006.
© Springer-Verlag Berlin Heidelberg 2006

448 H. Meyer and D. Kuropka

annotation of services with Quality of Service (QOS) properties. Pistore et al. [2]
use their model-checking planner MBP to do automated service composition. It
supports non-deterministic services and partial observability of service effects.
They explain that these features are necessary to model real-world services. Sirin
et al. [3] implement automated service composition through Hierarchical Task
Network (HTN) planning. For them an important feature of service composi-
tion is the hierarchical decomposition of complex task to atomic—invokable—
services. The approach by Berardi et al. [4] is based on the automatic synthesis
of finite state machines. In [5] they extend this approach to non-deterministic
finite state machines to support real-world, external services. This small se-
lection underlines that no common understanding on the required features ex-
ists. While rationale is provided for the extended features of each approach, the
features are mostly rooting from the origins of the used algorithms. As most
algorithms come from the area of automated planning, features are aimed at
supporting problems in typical planning domains1. Features like parallel con-
trol flow that are usually not of importance in such domains are rather sparsely
supported.

In this paper we aim at creating a consensus on the required features for
automated service composition. We will motivate them through a real world
business scenario. Following this introduction a scenario is presented that forms
the basis for our requirements analysis. In Section 3 we present the functional
requirements on a service composition component. Finally, Section 4 contains a
summary of the presented requirements and an outlook.

2 Use Case Scenario

The attraction booking use case scenario presented here serves as the motivating
scenario in the Adaptive Services Grid (ASG)2 project. The goal of the ASG
project is to develop a reference architecture for adaptive service matchmaking,
composition, binding and enactment. Furthermore a prototypical implementa-
tion for testing and evaluation purposes of this reference architecture is provided
by the project. The scenario allows customers to retrieve information about at-
tractions in the immediate surrounding of the customer by using a mobile de-
vice. Additionally customers may request directions and maps to the attraction
or they can directly book tickets with their mobile device.

Based on the customer’s current position and the specified query, the system
compiles a list of attractions. This list is displayed as it is or as a map showing
the position of the customer and the attractions found. The customer can then
request additional information for specific attractions. This includes its address,
opening hours or price. The customer can also request a route description to
lead him to the attraction. If the attraction is bookable, the customer can book
1 Domains at the biannual International Planning Competition (IPC)

[http://ipc.icaps-conference.org] include for example controlling ground
traffic at an airport or the flow of oil through a pipeline network.

2 http://asg-project.org

Requirements for Automated Service Composition 449

Find attractions

Find attractions

Find attractions

Consolidate
attractions *

Create route
description

Calculate routeLocate customer
*

Locate customer

Order
tickets

ConÞrm
reservation

Reserve
ticket

Charge
phone bill

Charge
credit card

ConÞrm
order

Find attractions:

Get route description:

Book attraction:

payment
option?

phone
bill

credit
card

Fig. 1. Example compositions for attraction booking use cases

a digital ticket. The route description consists of a map and a textual description.
While the map shows streets and buildings, indicating the path as a colored line,
the textual description includes street names and directions (e.g.: where to turn
left or right). To book a specific attraction or event, the customer selects the
number of people to attend the event. The system then offers the customer a
number of tickets for a certain price category. If the customer decides to accept
the offer, he is charged the specified amount of money. In return he receives the
given number of digital tickets for the event. The attraction booking booking
scenario encompasses the three use cases find attractions, get route description,
book attraction.

All three are fulfilled by enactment of proper service compositions. Figure 1
shows some example compositions for each use case. The activities inside the
compositions represent service invocations. The shown compositions are tailored
exactly to the specific user request. For example, if the customer’s location is
already specified in the service request, the invocation of a localization service
is not necessary. A similar flexibility applies to the booking of an attraction.
No payment option is specified in the shown example. Instead the user selects
a payment option just before payment. But the customer may have already
specified his preferred payment option in a profile. The client application on the
mobile device then transfers the information about the user preference and the
customer does not have to select a payment option. If service providers register
new attraction information services or remove old services, future queries for
attraction information will incorporate these changes of the service landscape. In
this scenario automated service composition allows changes in the set of available
services and in the client application (new use cases, additional information)
without requiring manual adjustment of the service compositions.

450 H. Meyer and D. Kuropka

3 Functional Requirements of Service Composition

In the previous section a use case scenario from the ASG project was introduced.
In the ASG project, the industry partners developed and evaluate five different
scenarios for their business areas. The attraction booking scenario together with
another scenario proved to scenarios with the biggest market potential. Our ap-
proach was to derive the requirements from these two scenarios. We will use the
attraction booking scenario in this section to motivate the requirements on a
service composition component and a composition language. The composition
language defines how service compositions look like. The requirements are or-
dered according to the categories elements of composition, control flow, data
flow, data model, and quality of service.

This categorization is based on the process representation perspectives by
Curtis, Kellner, and Over [6]. While other approaches [7,8,9] propose additional
aspects or categories, our first four categories represent the core of all these
approaches. We see quality of service and the optimization for it as one of the
main advantages of automated service composition. If we did not introduce an
own category for it QOS requirements would be scattered among the elements of
composition (QOS properties of services) and the control flow (QOS fulfillment
of service compositions).

3.1 Requirements on the Elements of Composition

The elements of composition are the building blocks from which service compo-
sitions are created.

Req. 1: Elements of composition are services interactions. The elements of a
composition are activities that perform a task. All these activities must be ser-
vice interactions. This does not limit generality as we can encapsulate all other
activities—even manual—in services. For example: In the above scenario the ac-
tivity to locate a customer is realized by a service. Each service performs exactly
one task and is stateless. It is therefore not necessary to support more than
one operation per service. Besides invoking services, a composition can itself be
invoked as a service.

Req. 2: Elements of composition are service compositions. Service interactions are
the atomic elements of compositions. To improve reusability existing service com-
positions are used as elements of compositions as well. Service compositions can
be either manually modeled or they can be results from previous composition re-
quests. Using manually modeled compositions allows to express process parts that
cannot be created by the composer automatically (e.g. loops are impossible with
most composition approaches). Reusing previous automated service compositions
is useful in most scenarios especially if equal functionalities are often requested.

Req. 3: Services have input and output parameters. Services perform a speci-
fied functionality and this functionality usually depend on data provided in the

Requirements for Automated Service Composition 451

service request as input parameters. For example the localization of a customer
needs the customer’s telephone number as input data. Services usually also re-
turn a result (e.g.: the customer’s location). To allow the input and output
of data, parameters are needed. A service has zero or more input and output
parameters. In reality, mapping between the input and output parameters of dif-
ferent services is a complicated task [10]. Here we assume that input and output
parameters correspond to concepts from one ontology.

Req. 4: Service functionality is described semantically. Service functionality is
described semantically to allow automated service composition. Besides input
and output parameters, specifications of services include preconditions and ef-
fects. The precondition of a service specifies the assumptions that must hold in
order to invoke the service. The effect defines the changes to the current state
that result from invoking the service on the world beyond the output parameter.
Preconditions and effects describe the state of the world and the state of avail-
able information. To do so, logical relations between input parameters, between
output parameters and between input and output parameters can be defined.
Additional variables that are not parameters of a service might be necessary to
describe functionality for instance by referring to objects of the world which are
not directly inputs or outputs of a service. In order to express preconditions and
effects a logical language is necessary. In the semantic community well known
and often used languages are Description Logics [11] and Frame Logics [12].

Req. 5: Services can have more than one precondition or effect. It is common
that a service has more than one precondition or effect. This can be implemented
by most logical languages though conjunction of several logical expressions.

Req. 6: Services can be invokable in different situations. Often a service is not
just invokable in more than one situation. Confirming the order in the book
attraction composition from Figure 1 can be invoked if the tickets have been paid
by credit card or through the telephone bill. This can be achieved by having two
distinct order confirmation services—one for credit card payment and one for
telephone bill payment—or by supporting disjunction in the precondition. All
possible situations in which the service is invokable are linked via disjunction
and if just one of them is true, the service can be invoked.

Req. 7: Services can have uncertain effects. Services can have more than one
possible outcome and it might be impossible to determine the concrete out-
put in advance. Uncertain effects can be expressed through disjunction possible
effect. Disjunctive effects increase the complexity of automated service compo-
sition [13,14] but they are usually unavoidable when real world services have to
be modeled.

3.2 Control Flow Requirements

The control flow of a process or service compositions defines the order in which
the elements of composition are enacted. This includes simple sequential ordering

452 H. Meyer and D. Kuropka

but also complex parallel or alternative control flows. Figure 1 shows sequential,
parallel, and alternative control flows.

Requirements regarding control flow can be separated into two types of re-
quirements: Requirements regarding composition language and requirements re-
garding automated composition functionality. The first one describe what can
kind of control flow can be modeled and how it can be expressed. The second one
describe which subset of these composition language features can be automati-
cally composed. With workflow patterns [15] a categorization for different control
flow constructs exists for the workflow management domain. Requirements anal-
ysis regarding control flow will be performed according to these patterns.

Req. 8: Composition of sequential control flow. In a Sequence of activities the
activities are enacted one after another in a well-defined order. Figure 1 shows a
sequence in the get route description composition: First the customer is located,
then a route is calculated, and finally a description for the route is generated.

Req. 9: Composition of parallel control flow. Parallel control flow allows the par-
allel invocation of activities. Figure 1 in the find attractions composition shows
an example for parallel control flow. The different attraction information ser-
vices are invoked in parallel. In general every usage of parallel control flows can
be sequentialized. But sequentialization can dramatically reduce process perfor-
mance. For the application to real world scenarios it is therefore mandatory.
Parallel control flow is implemented by two different patterns: Parallel Split and
Synchronization. A parallel split splits a single thread of control into multiple
threads. A synchronization merges them later.

Req. 10: Composition of alternative control flow. Alternative control flows are
parts in a process where—depending on some condition—one out of many pos-
sible control flows is selected. One example is displayed in Figure 1 in the book
attraction composition. It shows the realization of an alternative control flow
using the workflow patterns Exclusive Choice and a Synchronizing Merge.

Req. 11: Composition Language supports workflow patterns. So far all control
flow requirements were requirements regarding the functionality of the composi-
tion component. However the composition output, an instance of the composition
language, has also to be considered. The basic requirement on the composition
language regarding control flow is modeling support for the above-mentioned re-
quired workflow pattern. This can be achieved through a graph-structured or a
block-structured approach. In a graph-structured approach activities are vertices
that are connected through edges symbolizing ordering constraints. In a block-
structured approach structured activities exist that contain other activities and
determine their enactment order. While a graph-structured approach is more
generic, a block-structured approach is easier to visualize and to reason about.
In general it is best to support both approaches like WS-BPEL [16] does. The
composition language should also support the patterns that cannot be composed
automatically.

Requirements for Automated Service Composition 453

Req. 12: Composition is block-structured. Supporting structured activities in
the composition language does not mean that the composer outputs a block-
structured result. Actually, service composition generates a partially-ordered set
of services that can be represented as a graph. As already mentioned block-
structuring has its advantages and should be preferred when possible. To have
block-structured compositions, either the composition algorithm could support
them directly or post-processing could be performed. The first approach is a
new research area, so it is unclear whether it can be successful. Hierarchical-
Task-Network planners [17,18,19] generate block-structured plans. But they do
not actually generate block structures, but rather reuse them. Post-processing
rises the problem of complexity. As shown in [20] reordering compositions sub-
sequently can be as complex as composition itself.

3.3 Data Flow Requirements

The data flow of composition defines how data is exchanged between services.
Services have input and output parameters. The output of one service can be
the input for another service. Data flow requirements include for example the
ability to exchange data and the usage of process input data. The following
four requirements regarding data flow are all defined over activities instead of
services. The process enactment engine stores the outputs of invoked services
and sends them to services that require them. Hence, data is exchanged between
the activities of the composition.

Req. 13: Activities exchange data. The fundamental data flow requirement is the
ability to exchange data. Exchanging data between activities and therefore data
flow is supported in nearly all process meta-models [6,21]. Activities have formal
parameters that are replaced by actual data when invoked. This data can either
be process input data or output from other activities.

In workflow management, two different approaches to model data flow are
in use. With the first approach all data is stored on the process level. Input
parameters of activities are read from this central storage. Output parameters
are stored in this central storage or the so called blackboard. With the second
approach, data actually flows between activities. Explicit data flow connectors
connect the outputs of one activity with the input of another one. So the main
difference is that in the first approach all data exchange must be done through
the central storage. If the output of one activity is used by two other activities,
it is still written only once to the storage and read twice. In the second approach
two distinct data connectors exist. WS-BPEL uses the blackboard approach
through process variables [16]. In contrast, Leymann and Roller [21] propose
a meta-model, used in IBM MQSeries Workflow, that facilitates explicit data
connectors. The flexibility gained by the blackboard approach, stands in contrast
to the fact that it is harder to follow the implicit data flow. This requirement
and service composition in general are agnostic to the selected approach of data
flow representation.

454 H. Meyer and D. Kuropka

Req. 14: Activities use process input data. Certain data elements in the attraction
booking scenario like PhoneNumber and Attraction, are not produced by any
activity. These data elements are part of the process data and are inputs for the
process. Processes must have such data, and activities must be able to use them.

Req. 15: Data exchange implies control flow. Control flow embeds an ordering
constraint between two activities if one activity depends on another one. Depen-
dencies are for example causal links (e.g.: an activities creates the precondition
of another one) or the protection of causal links. Causal links do not only exist
on the level of semantic service descriptions, but also for input and output pa-
rameters. If one activity uses the output of another activity as an input a causal
link between the two activities exist. Therefore an ordering constraint between
the two activities must be included.

Calculate routeLocate customer

:Coordinates

implied
control ßow

Fig. 2. Control flow implied by data flow

Refer to Figure 2 for an example: Even if the customer localization service and
the route calculation service are not linked through preconditions and effects, it
is necessary to add an ordering constraint between them as the route calculation
service uses the coordinates created by the localization service.

Req. 16: Activities create new variables. While this requirement sounds trivial
and self-evident, it actually is not for automated planning / composition. Activi-
ties create new variables, means that activities do not just write data into already
defined variables, but they create variables on the fly. With automated planning
this is normally not possible. All the variables that are usable during composition
must be defined in advance. This includes also intermediate variables that are
neither used in the input nor in the output. When retrieving a route description
in the Attraction Booking scenario, a coordinates variable must be defined. This
coordinates variable is never used in the input or the output of the request. It
is also not obvious why such a variable could be necessary. Hence, by adding
this variable we are encoding assumptions about automatically created service
composition into the service request. This is bad as it hampers flexibility. Other
service compositions are possible that do not need this variable.

Defining all necessary variables requires a lot of information about the avail-
able services and at least a rough idea on how the composition could look like.
Therefore it is required here that activities can create new variables and that
the service composer takes them into account.

Requirements for Automated Service Composition 455

3.4 Data Model Requirements

The data model defines how data elements are described. The data model is
of importance for the service composition component, as it has to use data el-
ements to replace the formal parameters with actual parameters. We assume
that all services use one data model (ontology). Without this assumption com-
plex problems in structural and semantic heterogeneities [22,10] arise that often
cannot be solved automatically.

Req. 17: Data elements are typed. Data elements are exchanged between services
as parameters. To ensure that only valid data elements are passed as parameters
it makes sense to type them. Besides predefined types, user-defined types are
necessary as well. Type-safety not only prevents service enactment from invoking
services with wrong parameters, it also eases planning. With typed data elements
and parameters the search space of the service composer is reduced. So the
composer can already eliminate many of the potential compositions.

Req. 18: Data element types are defined in an ontology. Service specifications are
annotated semantically to allow automated service composition. Service specifi-
cations therefore include preconditions and effects. Both are modeled as logical
expressions. To use input parameters, output parameters and variables in these
logical expressions, the types of data elements are described in an ontology.

PhoneNumber
countryCode: String
areaCode: String
number: String

Coordinates
longitude: Float
latitude: Float

Attraction
name: String
description: String

Visual
RouteDescription

map: Image

Textual
RouteDescription

text: String

location

RouteDescription

stepsRoute

Fig. 3. Extract from the Attraction Booking ontology

An ontology is a model of linguistic means of expression on which several
actors have agreed on and which are (or can be) used by those actors. [23] In this
context a model is a representation of an (not necessary tangible) object system
written by the mean of a formal (but not necessary textual) modeling language.
So an ontology defines concepts and their relations which are important in a
specific domain. Figure 3 shows the ontology of the Attraction Booking scenario
modeled using the Unified Modeling Language.

456 H. Meyer and D. Kuropka

Req. 19: Composer is aware of data element structure. Besides having data
elements with ontology-based types it is also necessary that the composer is
aware of the internal structure of data elements described using an ontology. To
do so the composer has to understand a logic language that can represent such
structured information. Frame Logic [12] is an enhancement of first-order logic
as it adds object-oriented concepts like object identity, inheritance and complex
objects.

Req. 20: Data elements can be used to evaluate control flow conditions. Re-
quirement 9 stated that the composer can compose alternative control flows. An
alternative control flow can be the result of an Exclusive Choice or a Multiple
Choice. Both have one incoming and multiple outgoing control flows. To decide
which control flows are actually executed, conditions are assigned to the indi-
vidual flows. In our example, booked tickets for an attraction can be paid by via
telephone bill or credit card. Based on the user provided payment option, the
correct service is invoked. Conditions are expressed over data elements. So the
composer must be able to create such conditions to enable a proper execution
of the composition at run-time.

3.5 Quality of Service Requirements

The quality of service (QOS) requirements here are part of the functional require-
ments. They describe functionality that is needed to ensure quality of service
properties for service compositions defined in a service request. The require-
ments on the representation of quality of service properties for service requests
and service specifications is out of scope of this requirements analysis. Together
with a solution strategy for calculating QoS of compositions a detailed analysis
can be found in [24] and [25].

Req. 21: Composer uses QOS properties. In order to fulfill QOS requirements
stated in a service request the composer must use the QOS properties specified by
services. Based on the values of the properties for different services the composer
is able to select the best service.

Req. 22: Compositions fulfill QOS requirements from service request. To use
the quality of service properties to select the best service compositions, it is
important to describe the relevant quality of service properties and their desired
values in the service request. A service request in the Attraction Booking scenario
could state that finding attractions costs at most 0.10 e. Accordingly, all services
invoked can only cost 0.10 e. Then the service composer selects and composes
service compositions according to these quality of service parameters.

4 Conclusion

In this paper we presented the core requirements towards automated service com-
position. We identified 22 requirements regarding the elements of composition,

Requirements for Automated Service Composition 457

the control flow, the data flow, the data model, and the usage of quality of service
properties. They described expected functionality of a component for automated
service composition and requirements regarding the languages to specify services
and service compositions. These requirements can be used as a starting point
to develop a new component for the automated service composition, to evaluate
existing ones, and to justify their extension.

Our future work in the ASG project is to realize a component for the au-
tomated service composition that fulfills all identified requirements. We will
also verify these requirements in another use case prototype that is currently
implemented.

References

1. Zeng, L., Benatallah, B., Lei, H., Ngu, A., Flaxer, D., Chang, H.: Flexible Com-
position of Enterprise Web Services. Electronic Markets – Web Services 13 (2003)
141–152

2. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and
monitoring web service composition. In: Workshop on Planning and Scheduling for
Web and Grid Services (held in conjunction with The 14th International Conference
on Automated Planning and Scheduling. (2004) 70 – 71

3. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: Htn planning for web service
composition using shop2. Journal of Web Semantics 1 (2004) 377–396

4. Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M.: Automatic
composition of e-services that export their behavior. In: Proceedings of the First
International Conference on Service-Oriented Computing. Volume 2910 of Lecture
Notes In Computer Science., Heidelberg (2003) 43–58

5. Berardi, D., Calvanese, D., Giacomo, G.D., Mecella, M.: Composition of services
with nondeterministic observable behaviour. In: Proceedings of the Third Interna-
tional Conference on Service-Oriented Computing. Volume 3826 of Lecture Notes
In Computer Science., Heidelberg (2005) 520–526

6. Curtis, B., Keller, M.I., Over, J.: Process modeling. Communications of the ACM
35 (1992) 75 – 90

7. Jablonski, S., Böhm, M., Schulze, W., eds.: Workflow Management – Entwicklung
von Anwendungen und Systemen. dpunkt Verlag (1997)

8. Weske, M., Vossen, G.: Workflow Languages. International Handbooks on Infor-
mation Systems. In: Handbook on Architectures of Information Systems. Springer
(1998) 359 – 379

9. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services – Concepts, Ar-
chitectures and Applications. Data-Centric Systems and Applications. Springer
(2004)

10. Nagarajan, M., Verma, K., Sheth, A.P., Miller, J.A., Lathem, J.: Semantic inter-
operability of web services – challenges abd experiences. In: Proceedings of the 4th
IEEE Intl. Conference on Web Services. (2006) (to appear).

11. Baader, F., Calvanese, D., McGuiness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation, Applications. Cambridge
University Press, Cambridge, UK (2003)

12. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. Journal of the Association for Computing Machinery 42 (1995)
741 – 843

458 H. Meyer and D. Kuropka

13. Erol, K., Nau, D.S., Subrahamnian, V.: Complexity, decidability and undecidability
results for domain-independent planning: A detailed analysis. Technical Report CS-
TR-2797, UMIACS-TR-91-154, SRC-TR-91-96, University Of Maryland (1991)

14. Ghallab, M., Lau, D., Traverso, P.: Automated Planning - theory and practice.
Morgan Kaufmann (2004)

15. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and Parallel Databases 14 (2003) 5 – 51

16. Organization for the Advancement of Structured Information Standards (OA-
SIS): Web Services Business Process Execution Language (WS-BPEL). (2004)
http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel.

17. Sacerdoti, E.: The nonlinear structure of plans. In: Proceedings of the International
Joint Conference on Artificial Intelligence. (1975) 206 – 214

18. Erol, K., Handler, J., Nau, D.S.: Semantics for hierarchical task-network planning.
Technical Report CS-TR-3239, UMIACS-TR-94-31, ISR-TR-95-9, University Of
Maryland (1994)

19. Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., Yaman, F.:
Shop2: An htn planning system. Journal on Artificial Intelligence Research 20
(2003) 379 – 404

20. Bäckström, C.: Computational aspects of reordering plans. Journal Of Artificial
Intelligence 9 (1998) 99 – 137

21. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice
Hall (2000)

22. Sheth, A.P.: Changing focus on interoperability in information systems: From
system, syntax, structure to semantics. In: Interoperating Geographic Information
Systems, Kluwer Academic Publishers (1998) 5–30

23. Kuropka, D.: Modelle zur Repräsentation natürlichsprachlicher Dokumente –
Information-Filtering und -Retrieval mit relationalen Datenbanken. Logos Verlag,
Berlin (2004)

24. Cardoso, J., Sheth, A.P., Miller, J.: Workflow quality of service. In: Proceedings of
the International Conference on Enterprise Integration and Modeling Technology,
Deventer, The Netherlands, The Netherlands, Kluwer, B.V. (2002) 303–311

25. Cardoso, J., Sheth, A.: Semantic e-workflow composition. J. Intell. Inf. Syst. 21
(2003) 191–225

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 459 – 470, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Semi-automatic Semantic-Based Web Service
Classification

Miguel Ángel Corella and Pablo Castells

Universidad Autónoma de Madrid, Escuela Politécnica Superior
Campus de Cantoblanco, 28049 Madrid, Spain

{miguel.corella, pablo.castells}@uam.es

Abstract. With the expectable growth of the number of Web services available
on the WWW and service repositories, the need for mechanisms that enable the
automatic organization and discovery of services becomes increasingly impor-
tant. Service classification using standard or proprietary taxonomies is a com-
mon and simple facility in this context, complementarily to more sophisticated
service management retrieval techniques. In this paper we propose a heuristic
approach for the semi-automatic classification of Web services, based on a
three-level matching procedure between services and classification categories,
assuming a corpus of previously classified services is available. An experimen-
tal test of the proposed techniques is reported, showing positive results.

1 Introduction

Since the emergence of the semantic Web [3], many research efforts have been aiming
to use semantics to endow Web services with a higher potential for automation. These
efforts have given rise to the semantic Web services vision [18]. The basis of this trend
is to add semantic information to current Web service descriptions (in WSDL [6] for-
mat) to enable their analysis and manipulation by software programs enacting further
automation capabilities for such tasks as service selection, invocation, composition, or
discovery [11] and other tasks related to Web services but not often mentioned as be-
ing target of semantic-based technologies. In this paper we focus on the classification
of Web services, this is, the assignment of a class to a service, at publication time,
indicating the domain (i.e. the business focus) to which a service belongs.

Today, UDDI [14] is the most widely accepted and used protocol for publishing
and searching Web services on the Web. These actions are usually performed within
UDDI registries, which can be defined as service repositories available (and easy
accessed through a URL) on the Internet. In these registries, services can be classified
using one or several service taxonomies (such as UNSPSC1 – United Nations
Standard Products and Service Code, NAICS2 – North American Industry Classifica-
tion System, or even user-defined taxonomies created in UDDI format, since UDDI
specification v.2). Nevertheless, this classification has to be performed manually by a

1 http://www.unspsc.org/
2 http://www.census.gov/naics

460 M.Á. Corella and P. Castells

human publisher. Due to the huge quantity of classes in standard service taxonomies
like the ones already mentioned, the classification process is usually costly. Further-
more, taxonomies are subject to evolution, change or even replacement by new ones,
making even heavier the maintenance effort load on repository administrators.

The purpose of the work presented here is to provide automatic mechanisms to
help service publishers in the classification task at publication time. For this aim, we
propose a heuristic-based classification system that compares a new service with the
ones already classified in order to predict the appropriateness of the available classifi-
cation categories for the new service, and produce a ranked list of candidate classes.
Service classification is not only a must for manually browsing and managing service
repositories, but can in fact be used for simple but efficient forms of service annota-
tion and semi-automated discovery, complementary aid for automatic selection, etc.

The paper is organized as follows: Section 2 introduces some related work already
presented in the domain of Web service classification and other related knowledge
areas. Section 3 defines the problem of Web service classification in a more formal
way and motivates why service semantics are needed in order to successfully solve it.
The presentation and brief explanation of our classification heuristic is described in
Section 4. Section 5 describes a framework where the classification method has been
implemented and tested. Section 6 reports the experimental results obtained with our
approach. Finally, Section 7 provides conclusions and outlines future work directions.

2 Related Work

The problem of the automatic classification of Web services has been addressed in
prior work from two main approaches, that we may class as heuristic (e.g. [15]) and
non-heuristic (e.g. [5] and [10]). In [10], two different strategies are proposed. The
first one is based on using the information contained in non-semantic service descrip-
tions to select a category in which the service fits best, by using Natural Language
Processing, machine learning and text classification techniques. The second one con-
sists of using the same information contained in service descriptions to dynamically
create the categories in which the service should be classified, using clustering tech-
niques. In both approaches the classification process is based on the extraction of
relevant words from service descriptions, the construction of term vectors with those
relevant words and the usage of classification mechanisms (e.g. Naïve Bayes) to per-
form the vector classification. This way, the service classification problem is solved
by a text classification approach. From our point of view, this approach has two main
drawbacks. First, the hypothesis of finding relevant and meaningful words in service
descriptions is a very optimistic starting point. Next, doing clustering implies that the
created categories do not have meaningful names, and the classification taxonomy
changes over time. These two problems do not matter at publication time, but can be
an issue if the classification information is intended to be used for service discovery,
since users could neither select services by category (they do not have a name), nor
get properly acquainted with the taxonomy, as its structure may change frequently.

 Semi-automatic Semantic-Based Web Service Classification 461

The approach to classification proposed in [5] follows similar steps as those de-
scribed in [10]. The main difference is that the method used to classify term vectors is
based on Support Vector Machines. In addition, in this proposal, service publishers are
provided with some extra information, more precisely, with a concept lattice extracted
using Formal Concept Analysis over service descriptions. This extra information al-
lows service publishers to know how the words used in their service descriptions con-
tribute to the selection of a specific category, helping them to e.g. modify some words
of their descriptions which may cause ambiguity in the classification process. As this
approach also applies Natural Language Processing techniques on service descriptions,
the same drawback as pointed out above can be found here, namely the assumption
that meaningful textual information can be found in service descriptions (operation and
parameter identifiers, comments, etc.) does often not hold.

In [15], a framework to semi-automate the semantic annotation of Web services (i.e.
parameter description based on ontology concepts, semantic service classification, etc.)
is presented. For classification, an algorithm to match Web service data types (in XML
Schema3) and domain ontology concepts is defined based on schema matching. As-
suming a 1-1 correspondence between domain ontologies and service categories, the
classification is done by selecting the category that corresponds to the domain ontology
that yields the highest similarity when compared to the service. The drawback here is
that best practices in Web service definition prescribe document-based service descrip-
tions, this is, service messages should consist of a unique part defined by a complex
schema containing all the service parameters. With this form of description it is diffi-
cult to find similarities with domain ontology concepts as, usually, no single domain
concept will contain the complete structure of service messages.

Another relevant area for our work is that of service matchmaking (see e.g. [12]
and [16]). This research topic is related to Web service classification in that our ap-
proach to service classification computes similarity degrees between services in order
to assign them a common category, and service matchmaking aims to find services
that match a concrete capability description, e.g. in order to invoke matching services
and/or compose them into more complex processes. The main difference between this
research area and our addressed problem is that while in our view, service classifica-
tion admits some degree of fuzziness in service matching, i.e. we consider a continu-
ous similarity measure, work on service matchmaking typically does not, and is based
on discrete matching levels (e.g. “no match”, “partial match”, “complete match”).

3 The Service Classification Problem

As mentioned earlier, service classification is a common necessity to make service
administration and retrieval manageable for human users. Moreover, it can serve as a
complementary aid for automatic service discovery and selection techniques. Never-
theless, there are often usability problems involved in service categorization which
cause difficulties for the creation, validation, and use of classifications in real-world
environments. Such problems include:

3 http://www.w3.org/TR/2001/REC-xmlschema-2-20010502

462 M.Á. Corella and P. Castells

• Classification taxonomies can be extremely large, comprising thousands of catego-
ries (e.g. UNSPSC ~ 20,000 classes, NAICS ~ 2,300 classes).

• The number of services in a repository can grow quite large, making it virtually
impossible for repository administrators to validate the information published
along with a service.

• The placement of a service under a proper category requires a considerable amount
of knowledge of the taxonomy, the application domain, etc., in order to make ap-
propriate classification decisions. Few publishers or administrators have this
knowledge with sufficient width and depth.

Our work aims at alleviating the administrator’s work, and reducing the publication
effort for service providers, by supplying them with a ranked set of likely appropriate
categories when a new service has to be published in the repository. Our proposal
approaches the classification problem as follows. Given a set of services already clas-
sified under a given taxonomy, and a new service description to be published, the
unclassified service is compared with the classified ones, whereby a measure of the
likelihood that the service should be assigned a certain category is computed.

WSDL descriptions provided by current technologies are not suitable for this pur-
pose, as they only focus on the syntactic view of the services, which is not sufficient
to support valid service classification criteria in practice.

3.1 The Need for Service Semantics

Consider this example: take two Web services, the first one defining currency conver-
sion capabilities, and the second one describing a trip time calculator. A typical de-
scription of such functionalities in WSDL is provided in Appendix A at the end of this
paper. Since WSDL service descriptions only include functional information (i.e.
syntactic information about the service interface), the only available description ele-
ments to compare services are service operations, messages, and data types. As can be
seen in the example, the currency converter service has one operation, involving:

• An input message containing an amount of money of type double, and two cur-
rency codes, of type string.

• An output message containing the converted amount (a double).
On the other hand, the trip time calculator service has also one operation, involving:
• An input message containing an average speed of type double, and two city names,

of type string.
• An output message containing the trip time in minutes (a double).

From a conceptual point of view, these two services should yield a low similarity
measure value when compared. However, since the WSDL interfaces are syntactically
equivalent, their comparison would produce a very high result value.

• In conclusion, WSDL-based descriptions are not sufficient, and would often lead
to inconsistent similarity values, and therefore, to service misclassification. Seman-
tic Web service descriptions can solve this problem by providing means to describe
service inputs and outputs from a conceptual point of view. A typical description

 Semi-automatic Semantic-Based Web Service Classification 463

of the examples as semantic Web services is included in Appendix B. We use
WSMO [17] in the example, but our classification approach (as it is based on ab-
stract mathematical similarity formulas) is language agnostic, so it is compatible
with other semantic Web service languages such as OWL-S [13], WSDL-S [1], or
SWSO [2].

4 Classification Heuristic

As introduced in earlier sections, our heuristic approach consists of the comparison of
unclassified services with classified ones. The heuristic is divided into three levels,
corresponding to the comparison between different service elements involved in the
classification procedure, as we explain next. We will omit here all the mathematical
formalization details, which can be found in [7].

Service Category Level. Since services have to be assigned a category as a result of
the classification procedure, the consideration of this level is quite obvious. It is
needed in order to find evidence that a service should belong to a specific category.
This is the highest level of granularity in the classification method, at which a final
service-category matching degree is obtained, which is used to sort the ranked service
category list proposed to service publishers. The proposed computation for this
measure is defined by:

() () ()
()1

1
P : 1 sim ,

τ −

+

∈⊂

− ∏A

x AA c

s c s x

where P(s:c) is the evidence that the service s should belong to the category c formal-
ized in a probabilistic way and estimated by the inclusion-exclusion principle [19]
applied to a set of computed similarity values sim(s,x), between service s and all the
services under category c. Thus, the predicted appropriateness of a category for a
service increases with the similarity between the service and the classified services.

Service Description Level. The comparison between services is based on the
assumption that services of the same category are likely to deal with similar concepts
as inputs/outputs. Therefore, operation structures (i.e. conceptual roles and grouping
of the data involved in the operations) are considered relevant for service-level
comparisons. In fact, the similarity between two services is measured in terms of the
similarity between service operation sets, and it is computed as the average of the
best possible pairwise similarities obtained by an optimal pairing of the operations
from the two sets. For this purpose, the similarity between two operations is
computed as:

() () ()' 'sim , ' sim , sim ,op op op opop op I I O O= ⋅

where Iop, Iop’, Oop and Oop’ are the set of input and output parameters of the operations
op and op’ respectively. The similarity between two parameter sets is computed in
turn as the average of the best possible pairwise similarities obtained by an optimal
pairing of the parameters from the two sets.

464 M.Á. Corella and P. Castells

Service Parameter Level. The comparison of service parameters in our approach is
based on the similarity between the ontology concepts used to annotate them. A
considerable body of research has addressed the problem of matching ontology
concepts (e.g. [4], [8], [9]). In our current experiments, we have tested our own
concept to concept similarity measure, specifically devised and tuned to our approach.
The similarity between two ontology concepts t and t’ is measured by:

() () ()
()

()
' max , ' 11

sim , ' 1 1
h ' min , ' h

d d d d
t t

d d d d

α − −
= − ⋅ ⋅ ⋅ −

+

where h() is the total height of the concept hierarchy in the ontology, d and d’ are the

distances from t and t’, respectively, to their lowest common ancestor, and α∈[0,1] is
a parameter that ensures a minimum non-zero similarity value to soften the impact of
this measure on the overall heuristic. In our tests, α was tuned empirically to 0.8.

5 Implementation

We have implemented the techniques described in the previous sections into a service
classification framework, serving the double purpose of a) demonstrating a practical
environment where users can classify and store their services in a repository, and b)
setting up experiments to test and evaluate our approach .

User
Interface

Offline Data
Controller

Ontology
Controller

Measure
Controller

...

...

Repository Database(s)

Optimization Database(s)

...

...

Domain ontology(ies)

Taxonomy ontology(ies)

...

...

...

Category measure(s)

Service measure(s)

Parameter measure(s)

Fig. 1. Classification framework architecture showing the three main component types of the
implementation: offline data controllers, ontology controllers and measure controllers

Figure 1 shows a high-level view of the main architectural components of this
framework. These include:

• Offline Data Controllers: They are responsible for controlling the access to offline
information stored in different databases. This offline information storage allows
both the persistence of the service repository and the optimization of the execution
time. For instance, since our techniques involve a combinatory comparison between
services, parameters, etc., many similarity values are computed in advance and

 Semi-automatic Semantic-Based Web Service Classification 465

stored in the database, The offline data controllers are compatible with any service
repository, by implementing a bridge from the repository to our database.

• Ontology Controllers: They interface with the different ontologies that may be in-
volved in the classification process. These include both domain ontologies contain-
ing the concepts used in semantic Web service descriptions, and service taxono-
mies, represented in an ontological format. Again the generality of these compo-
nents allows plugging any ontology into the framework.

Fig. 2. Screenshot of the classification framework to use and test our approach

• Measure Controllers: They interface with the similarity measures involved in the
heuristic. Once again, these abstraction components enable using any similarity
measure at each level provided that it complies with the controller interface.

The above components are provided to achieve as much generality as possible. This
way, our framework can be easily configured for the classification of services described
with any domain ontology, into any taxonomy, based on any matching functions (at
each comparison level), and using in any repository implementation standard (e.g.
UDDI). This flexibility is also a valuable feature to facilitate the tests involved in our
research. A screenshot of the framework user interface is shown in Figure 2.

6 Experiments and Evaluation

The approach proposed here was tested and evaluated in the implemented framework.
The corpus used in the experiments is a repository containing 164 semantic Web
service descriptions (in OWL-S), annotated using an ontology containing over 400
atomic concepts (i.e. no complex concept definitions, as e.g. OWL or WSML support,
were used yet in our experiments). The services were manually classified using a
taxonomy containing 23 different service categories. The service repository was

466 M.Á. Corella and P. Castells

essentially the one used in several other studies [5, 10, 15], and available in A. Heβ’s
Web page4. We have reused the domain ontology and the taxonomy included in this
corpus, but have mapped the service descriptions to WSMO in order to reuse some
tools available or developed in our research group (e.g. an input/output concept ex-
tractor or a translator to Racer5 logical axioms enabling reasoning in our future work).

Fig. 3. Average classification success rate (i.e. correct class is at top of the ranking) vs. the ser-
vices used as evidence (left), and average service classification time vs. the number of services in
the repository (right). The test was performed with a repository of 164 services.

Using this corpus, we have conducted several effectiveness and performance tests
by using a part of the repository as evidence (i.e. classifications taken as a given), and
the rest for testing (i.e. services to be classified). The experiments were run for differ-
ent ratios of evidence vs. test corpus sizes, in order to observe the evolution of the
performance measures with respect to the amount of training data. The results ob-
tained in the experiments are shown in Figure 3. The tested features are:

• Classification success rate: In this test we measured the average percentage of
correct classifications with respect to the percentage of the repository used as evi-
dence and test. A correct classification is one that ranks first the right (manually
assigned) category of a service in the ranking of possible categories. This provides
an estimation of the average probability of offering the correct category as first op-
tion. It can be seen that the success rate is about 83% when almost all the available
corpus of 164 (but eight) services is used as evidence. In the cases where the
method failed, the correct class was usually second or third in the ranking.

• Time performance: Although this is not a critical issue for classification, since this
process can be performed offline at service publication time, our framework aims
to be as efficient as possible. Thus we have measured the average classification
time with respect to the size of the repository, which shows linear growth up to less
than 7 s., on an Intel Pentium M, 1.73 GHz and 1 GB of RAM available.

4 http://www.few.vu.nl/~andreas/projects/annotator/owl-ds.html
5 http://www.racer-systems.com

 Semi-automatic Semantic-Based Web Service Classification 467

7 Conclusions and Future Work

We have presented an efficient service classification approach based on conceptual
service descriptions, that can be used to assist publishers, consumers and repository
administrators in manual service categorization and retrieval tasks. As a continuation
of the work presented here, we plan to investigate the potential of the proposed classi-
fication capabilities to enhance automatic service retrieval mechanisms. The heuris-
tics have been tested on a corpus use in prior research by different authors, showing
positive results. The generality of the implemented framework allows the easy inte-
gration and testing of different similarity measures at the three proposed granularity
levels.

Besides the combination of our approach with service discovery techniques, as fu-
ture work we envisage the extension of the algorithms to deal with more complex
ontology-based descriptions of concepts, service capabilities (by Boolean expres-
sions), etc. This involves a generalization of our basic matching functions, which
could benefit from available ontology-oriented reasoners, and could link to ongoing
related research in service matchmaking. Further experimentation and testing of our
approach is foreseen as well, such as the comparison with other existing techniques,
similarity measures, as well as the combination of several measures into improved
ones, tests on larger repositories, performance tests with respect to further corpus
features (such as taxonomy and ontology size, service disparity), etc.

Acknowledgements

This research was supported by the Spanish Ministry of Industry, Tourism and Com-
merce (CDTI05-0436) and the Ministry of Science and Education (TIN2005-0685).
Thanks are due to Rubén Lara for all his feedback and ideas on the research
presented.

References

1. Akkiraju, R., Farrel, J., Miller, J., Nagarajan, M., Schmidt, M., Sheth, A., Verma, K: Web
Service Semantics – WSDL-S, Technical Note, Version 1.0, 2005.

2. Battle, S., Bernstein, A., Booley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M., Mar-
tin, D., McIlraith, S., McGuiness, D., Su, J., Tabet, S.: Semantic Web Service Ontology
(SWSO), Version 1.0, 2005.

3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American, 2001.
4. Bernstein, A., Kaufmann, E., Bürki, C., Klein, M.: How similar is it? Towards personal-

ized similarity measures in ontologies. In the 7th Internationale Tagung Wirtschaftsinfor-
maitk. Bamberg, Germany, 2005, pp. 1347-1366.

5. Bruno, M., Canfora, G., Di Penta, M., Scognamiglio, R.: An approach to support web ser-
vice classification and annotation. In Proceedings of the IEEE International Conference on
e-Technology, e-Commmerce and e-Services (EEE 2005), Hong Kong 2005.

6. Christiensen, E. et al: Web Service Description Language (WSDL), v1.1.

468 M.Á. Corella and P. Castells

7. Corella, M. A., Castells, P.: A Heuristic Approach to Semantic Web Services Classifica-
tion. In Proceedings of the 10th International Conference on Knowledge-Based & Intelli-
gent Information & Engineering Systems (KES 2006), Bournemouth, UK, 2006.

8. Culmore, R., Rossi, G., Merelli, E.: An ontology similarity algorithm for BioAgent. In
NETTAB 02 Agents in Bioinformatics. Bologna, Italy, 2002.

9. Ehrig, M., Haase, P., Stojanovic, N.: Similarity for ontologies – a comprehensive frame-
work. Workshop on Enterprise Modelling and Ontology at PAKM 2004. Austria, 2004.

10. Heβ, A., Kushmerick, N.: Automatically attaching semantic metadata to Web Services. In
Workshop on Information Integration on the Web (IIWeb2003), Acapulco, Mexico, 2003.

11. Keller, U., Lara, R., Lausen, H., Polleres, A., Fensel, D.: Automatic Location of Services.
In 2nd European Semantic Web Conference (ESWC 2005). LNCS Vol. 3532 pp. 1-16.

12. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web tech-
nology. In the International Journal of Electronic Commerce, 8(4):39 – 60. 2004.

13. Maritn, D., Burnstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Naraya-
nan, S., Paolucci, M., Parsia, B. et al: OWL-S: Semantic markup for web services, v1.1,
2004.

14. OASIS: UDDI: The UDDI technical white paper, 2004.
15. Oldham, N., Thomas, C., Sheth, A., Verma, K.: METEOR-S Web Service Annotation

Framework with Machine Learning Classification. In Proc. of the 1st Int. Workshop on
Semantic Web Services and Web Process Composition (SWSWPC’04), California, July
2004.

16. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic Matching of Web Service
Capabilities. In Proceedings of the First International Semantic Web Conference, 2002.

17. Roman, D., Lausen, H., Keller, U., de Brujin, J., Bussler, C., Domingue, J., Fensel, D.,
Hepp, M., Kifer, M., König-Ries, B., Kopecky, J., Lara, R., Oren, E., Polleres, A., Sci-
cluna, J., Stollberg, M.: Web Service Modeling Ontology (WSMO), 2005.

18. Terziyan, V. Y., Kononenko, O.: Semantic web enabled web services: State-of-the-art and
industrial challenges. In Proc. International Conference on Web Services (ICWS), 2003.

19. Whitworth, W. A.: Choice and Chance, with one thousand exercises. Hafner Pub. Co. New
York, 1965.

 Semi-automatic Semantic-Based Web Service Classification 469

Appendix A: WSDL Example Descriptions

Example Service 1: Currency Converter

<wsdl:definitions ... >
 <wsdl:types>
 <schema targetNamespace="http://nets.ii.uam.es/CurrencyConverter"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="CurrencyConverterRequest"> <sequence>
 <element name="amount" type="xsd:double"/>
 <element name="currencyCode1" type="xsd:string"/>
 <element name="currencyCode2" type="xsd:string"/>
 </sequence> </complexType>
 <complexType name="CurrencyConverterResponse"> <sequence>
 <element name="convertedAmount" type="xsd:double"/>
 </sequence> </complexType>
 </schema>
 </wsdl:types>
 <wsdl:message name="convertCurrencyRequest">
 <wsdl:part name="request" type="impl:CurrencyConverterRequest"/>
 </wsdl:message>
 <wsdl:message name="convertCurrencyResponse">
 <wsdl:part name="response" type="impl:CurrencyConverterResponse"/>
 </wsdl:message>
 <wsdl:portType name="CurrencyConverterPortType">
 <wsdl:operation name="convertCurrency" parameterOrder="request">
 <wsdl:input message="impl:convertCurrencyRequest"
 name="convertCurrencyRequest"/>
 <wsdl:output message="impl:convertCurrencyResponse"
 name="convertCurrencyResponse"/>
 </wsdl:operation>
 </wsdl:portType>
...
</wsdl:definitions>

Example Service 2: Trip Time Calculator

<wsdl:definitions ...>
 <wsdl:types>
 <schema targetNamespace="http://nets.ii.uam.es/TripTimeCalculator"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="TripTimeCalcualtorRequest"> <sequence>
 <element name="averageSpeed" type="xsd:double"/>
 <element name="departureCity" type="xsd:string"/>
 <element name="destinationCity" type="xsd:string"/>
 </sequence> </complexType>
 <complexType name="TripTimeCalculatorResponse"> <sequence>
 <element name="tripDuration" type="xsd:double"/>
 </sequence> </complexType>
 </schema>
 </wsdl:types>
 <wsdl:message name="tripTimeCalculatorRequest">
 <wsdl:part name="request" type="impl:TripTimeCalculatorRequest"/>
 </wsdl:message>
 <wsdl:message name="tripTimeCalculatorResponse">
 <wsdl:part name="response" type="impl:TripTimeCalculatorResponse"/>
 </wsdl:message>
 <wsdl:portType name="TripTimeCalculatorPortType">
 <wsdl:operation name="calculateTripTime" parameterOrder="request">
 <wsdl:input message="impl:tripTimeCalculatorRequest"
 name="calculateTripTimeRequest"/>
 <wsdl:output message="impl:tripTimeCalculatorResponse"
 name="calculateTripTimeResponse"/>
 </wsdl:operation>
 </wsdl:portType>
...
</wsdl:definitions>

470 M.Á. Corella and P. Castells

Appendix B: WSMO Example Descriptions

Example Service 1: Currency Converter

namespace {
 _"http://nets.ii.uam.es/CurrencyConverter#",
 dc _"http://purl.org/dc/elements/1.1#",
 sample _"http://nets.ii.uam.es/SampleOntology#",
}
webService _"http://nets.ii.uam.es/CurrencyConverter"
 capability ConverterCapability
 sharedVariables {?ccode2}
 precondition
 definedBy
 ?amount memberOf sample#MoneyAmount and
 ?amount[sample#fromCurrency hasValue ?ccode1] and
 ?ccode1 memberOf sample#CurrencyCode and
 ?ccode2 memberOf sample#CurrencyCode.
 postcondition
 definedBy
 ?convertedAmount memberOf sample#MoneyAmount and
 ?convertedAmount[sample#fromCurrency hasValue ?ccode2].

Example Service 2: Trip Time Calculator

namespace {
 _"http://nets.ii.uam.es/TripTimeCalculator#",
 dc _"http://purl.org/dc/elements/1.1#",
 sample _"http://nets.ii.uam.es/SampleOntology#",
}
webService _"http://nets.ii.uam.es/TripTimeCalculator"
 capability CalculatorCapability
 precondition
 definedBy
 ?speed memberOf sample#Speed and
 ?speed[sample#inUnits hasValue "km"] and
 ?city1 memberOf sample#City and
 ?city2 memberOf sample#City.
 postcondition
 definedBy
 ?tripTime memberOf sample#Duration and
 ?tripTime[sample#inUnits hasValue "min"].

Modeling, Matching and Ranking Services
Based on Constraint Hardness

Claudia d’Amato1 and Steffen Staab2

1 Department of Computer Science, University of Bari - Italy
claudia.damato@di.uniba.it

2 ISWeb, University of Koblenz-Landau - Germany
staab@uni-koblenz.de

Abstract. A framework for modeling Semantic Web Service is proposed. It is
based on Description Logic (DL), hence it is endowed with a formal semantics
and, in addition, it allows for expressing constraints in service descriptions of
different strengths, i.e. Hard and Soft Constraints. Semantic service discovery
can be performed by matching DL descriptions, expressing both Hard and Soft
constraints, and exploiting DL inferences. Additionally, a method for solving the
problem of ranking services is proposed which is based on the use of a semantic
similarity measure for DL. This method can rank (matched) service descriptions
on the grounds of their semantic similarity w.r.t. the service request, by preferring
those that are able to better satisfy both Hard and Soft Constraints.

1 Introduction

In the last few years, the Web had two revolutionary changes, Web Service technology
and the Semantic Web technology, that transformed it from a static document collection
into an intelligent and dynamically integrated collection of resources. The former has
allowed uniform access via Web standards to software components residing on various
platforms and written in various programming languages. The latter has enriched exist-
ing Web data with their meaning, logically expressed with formal descriptions that are
machine processable, thus facilitating access and integration. The major limitation of
Web Services is that their retrieval and composition still require manual effort. To solve
this problem, researchers have augmented Web Services with a semantic description
of their functionality [8, 11]. By reusing a common vocabulary, service modelers can
produce semantic service descriptions that can be shared and understood on the Web.
Such vocabulary is defined by upper-level ontologies such as OWL-S1 and WSMO2 for
Semantic Web Services.

In this paper we propose a framework for describing services, based on Description
Logic (DL) [1]. DL is the theoretical foundation of OWL3 language and it is endowed
by a formal semantics, thus allowing expressive service descriptions. Moreover the ser-
vice discovery task can be performed by algorithms defined in terms of standard and
non-standard DL inferences. The use of DL in service descriptions and discovery task

1 http://www.daml.org/services/owl-s/1.0/
2 http://wsmo.org
3 The ontology language for the Semantic Web, http://www.w3.org/2004/OWL/.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 471–482, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

472 C. d’Amato and S. Staab

is not new [7, 5, 13, 10, 14, 6, 3]. However in [7] it is showed that primitives, modeled
by DL, sometimes produce counterintuitive results. This issue is analyzed in [6], where
preliminary guidelines for modeling service descriptions are presented. Moreover, the
notion of variance is introduced, namely a service description usually represents numer-
ous variants of a concrete service. Exploiting this notion, a service discovery algorithm
is proposed. The assumption is that precise control of variance in service description is
crucial to ensure quality of the discovery process.

The framework that we propose enriches the guidelines of [6]. However, in a real
scenario it is important to express another form of variance in service descriptions (and
particularly in the service request side), represented by the optional and the mandatory
aspects of a service description. Hence we introduce the notion of Hard and Soft Con-
straints. Namely, we call Hard Constraints (HC) those features of a service description
that have to be necessarily satisfied by the target services and we call Soft Constraints
(SC) those features whose satisfaction is only preferable. To be able to distinguish HC
and SC is important both for business-to-consumer interaction and for service discov-
ery task. In fact with respect to business-to-consumer interaction, HC and SC allow to
express the real necessities of the user; with respect to the process discovery task, the
distinction between HC and SC make possible to relax some needs, increasing the pos-
sibility of satisfying a request. We propose a way to express these kind of constraints
and how to deal with them during the service discovery phase.

Furthermore, we propose a new procedure for ranking the services (discovered in
the previous phase), that is able to manage the variance introduced by HC and SC. The
procedure uses a semantic similarity measure for DL concept descriptions that assigns
higher ranks to services that are more similar to the requested service and that satisfy
both its HC and SC, while services that are less similar and/or satisfy only SC of the
request receive a low rank.

The paper is organized as follows. The DL framework for describing services is
presented in the next section. In Sect. 3 the discovery and ranking processes are detailed.
The conclusions of this work are drawn in Sect. 4.

2 Modelling Service Descriptions

The main reason of the attention to service descriptions is the need of automating pro-
cesses such as service discovery and composition. A service description is expressed as
a set of constraints that have to be satisfied by the service providers. It can be thought as
an abstract class acting as a template for service instances; namely, a service description
defines a space of possible service instances (as in [12]), thus introducing variance.

Variance is the phenomenon of having more than one instance and/or more than one
interpretation for a service description. Following [6], we distinguish between variance
due to intended diversity and variance due to incomplete knowledge. To explain these
concepts, the notion of possible worlds (borrowed from the first-order logic semantics)
is used. Under open-world semantics, a modeler must explicitly state which service
instances are not covered by the service description. For each aspect of the service
description that is not fully specified there are several possible worlds, reflecting a way
of resolving incompleteness (variance due to incomplete knowledge). Besides, given a

Modeling, Matching and Ranking Services Based on Constraint Hardness 473

possible world, the lack of constraints possibly allows for many instances satisfying a
service description (variance due to intended diversity).

Let us consider the following service description (for a request):
Flight(flight) and operatedBy(flight,company)and departureTime(flight,time) and
arrivalTime(flight,time) and from(flight,Germany) and to(flight,Italy)

and the Service instances:

– Flight(0542) and operatedBy(0542,ryanair) and departureTime(0542,8:00) and
arrivalTime(0542,9:40) and from(0542,Hahn) and to(0542,Bari)

– Flight(0721) and operatedBy(0721,hlx) and departureTime(0721,12:00) and ar-
rivalTime(0721,13:10) and from(0721,Cologne) and to(0721,Milan)

This description represents the request of flights from Germany to Italy, independently
from departure and arrival time, company and cities involved. This lack of constraints
allows many possible instances (as above), inducing variance due to intended diversity.

Now, let us consider the service instance below:

Flight(512) and operatedBy(512,airBerlin)and departureTime(512,18:00) and
arrivalTime (512,19:30) and from(512,Berlin) and to(512,London)

This is also a correct instance of the service request reported above, because the
fact that London is not an Italian city is left unspecified in the KB. So there can be
a possible world in which London is an Italian city. Here the absence of constraints
induces variance due to incomplete knowledge.

In order to cope with the effects of the variance on the semantics of a service de-
scription, it is necessary to adopt a language for service representation characterized by
well-defined semantics. This is one of the peculiarities of the DL family. We intend to
enrich the framework in [6] for describing services using DL, by showing how to deal
with HC and SC expressed in service descriptions. The framework is reported below.

– A service description is expressed by a set of DL-axioms D = {S, φ1, φ2, ..., φn},
where the axioms φi impose restrictions on an atomic concept S, which represents
the service to be performed.

– Domain-specific background knowledge is represented by a knowledge base (KB)
that contains all relevant domain-level facts.

– A possible world, resolving incomplete knowledge issues, is represented by a single
DL model (interpretation) I of KB � D.

– The service instances that are acceptable w.r.t. a service description D, are the
individuals in the extension SI of the concept S representing the service.

– Variance due to intended diversity is given by SI containing different individuals.
– Variance due to incomplete knowledge is reflected by KB � D having several

models I1, I2,

The axioms in a service description D constrain the set of acceptable service in-
stances in SI . These constraints are generally referred to the properties used in a de-
scription. Here, various ways for constraining a property using DL are reported.

Variety: a property can either be restricted to a fixed value or it can range over in-
stances of a certain class. This is expressed by ∀r.i (or ∃r.i) and ∀r.C (or ∃r.C),

474 C. d’Amato and S. Staab

respectively. For any acceptable service instance, the value of such a property must
either be an individual or a member of a class.

Multiplicity: a property can either be multi-valued, allowing service instances with
several property values, or single-valued, requiring service instances to have at most
one value for the property. By the number restriction ≤ 1 r, a property is marked as
single-valued. Using the restrictions ≤ m r (with m ≥ 2) ≥ n r, ∃r.�, ∃r.C, and
∀r.C a property is marked as multi-valued.

Coverage: a property can be explicitly known to cover a range. If a property is range-
covering, the service description enforces that in every possible world, there is an
acceptable service instance with this property value. This introduces variance due
to intended diversity. This kind of constraint is expressed by an axiom of the form
C � ∃r−.S in D, where the concept C is the range of the property r to be covered.
A non-range-covering property induces variance due to incomplete knowledge, as
in distinct possible worlds different subsets of the range will be covered.

Example 2.1. Let us consider the following requested service description
Dr = { Sr ≡ Company � ∃payment.EPayment � ∃to.{bari} �

� ∃from.{cologne,hahn} � ≤ 1 hasAlliance �
� ∀hasFidelityCard.{milesAndMore};

{cologne,hahn} � ∃ from−.Sr }
KB = {cologne:Germany, hahn:Germany, bari:Italy, milesAndMore:Card}
As defined with framework, Dr is described as a set of axioms that impose restrictions
on Sr which is the service that has to be performed. The requester asks for flight com-
panies that fly from Cologne and Hahn to Bari and accept electronic payment when
selling tickets. Then it is required that a company has at most one alliance with another
flight company and, if it has a fidelity program, it is ”Miles and More”. In the descrip-
tion, different several kinds of constraints are reported. Variety constraints are used with
the properties to, from and hasFidelityCard, indeed these properties are restricted to a
fixed value. The at-most number restriction (≤ 1) for the property hasAlliance is a Mul-
tiplicity constraint with which the property hasAlliance is declared to be single-value.
A Coverage constraint is expressed by the last axiom in Dr which makes explicit the
range covered by the property from. Namely, this axiom asserts that {cologne,hahn} is
the range coverage of the property from.

If we require that, for all air companies, the payment method is specified and that the
unique method allowed is electronic payment, the service description has to be:
Dr = { Sr ≡ Company � ∃payment.EPayment � ∀payment.EPayment �

� ∃from.{cologne,hahn} � ∃to.{bari} � ≤ 1 hasAlliance �
� ∀hasFidelityCard.{milesAndMore};

{cologne,hahn} � ∃ from−.Sr }
In this way we force the existence of a payment method and oblige that all payment
methods have to be electronic payments. ��

The services presented in the example represent simple descriptions. In real scenarios a
service request is typically characterized by some needs that must be necessarily satis-
fied and others that should be satisfied (expressing a preference). Then, the former will
be considered as Hard Constraints (HC) and the latter as Soft Constraints (SC). Taking

Modeling, Matching and Ranking Services Based on Constraint Hardness 475

this difference into account makes the service description and management more com-
plex. The new descriptions have to be defined by the user/requester through an HC set
and an SC set, whose elements are expressed in DL as seen above.

More formally, let DHC
r = {SHC

r , σHC
1 , ..., σHC

n } be the set of HC for a requested
service description Dr and let DSC

r = {SSC
r , σSC

1 , ..., σSC
m } be the set of SC for Dr.

Every element in DHC
r and in DSC

r is expressed as previously seen. The complete
description of Dr is given by Dr = {Sr ≡ SHC

r �SSC
r , σHC

1 , ..., σHC
n , σSC

1 , ..., σSC
m }.

Note that, in this description, new information on constraint hardness has been added.

Example 2.2. Let us consider a slightly modified version of the previous example dis-
tinguishing between HC and SC:

Dr = { Sr ≡ Flight � ∃from.{Cologne, Hahn, Frankfurt} � ∃to.{Bari} �
� ∀hasFidelityCard.{MilesAndMore};

{Cologne, Hahn, Frankfurt} � ∃ from−.Sr; {Bari} � ∃ to−.Sr }
where

HCr = { Flight � ∃to.{Bari} � ∃from.{Cologne, Hahn, Frankfurt};
{Cologne, Hahn, Frankfurt} � ∃ from−.Sr; {Bari} � ∃ to−.Sr }

SCr = { Flight � ∀hasFidelityCard.{MilesAndMore}};

KB = { cologne,hahn,cologne:Germany, bari:Italy, MilesAndMore:Card}
With this service description a requester asks for flights starting from Frankfurt or

Cologne or Hahn and arriving at Bari. The use of ”Miles And More” card would be
preferred. Departure and arrival places are expressed as HC. This means that provided
services must fulfil these constraints. This is understandable thinking, for instance, to a
requester that want to go from Koblenz to Bari. He/she is interested in Cologne, Hahn
and Frankfurt airports because they have the same distance from Koblenz, while he/she
is not interested in other airports because much more distance. Instead the use of ”Miles
And More” card is expressed as SC, namely flights that allow the use of this card are
preferred, but the requester accepts also flights that do not allow the use of this card.
This is because the use of Miles and More card is advantageous for the requester but it
is not his primary need; his/her primary need is to have a flight for reaching Bari. ��
This new representation can better model the requester’s needs, allowing to express
real-life preferences, feature not considered in the original framework [6]. Moreover
expressing SC allows to have service instances satisfying a request even if part of it is
ignored, thus augmenting the possibility of having response for a request.

3 Service Discovery and Ranking

Service Discovery is the task of locating service providers that can satisfy the requester’s
needs. In this scenario, semantic service descriptions can be used to automate the task.
Discovery is performed by matching a requested service description to the service de-
scriptions of potential providers, in order to detect relevant ones. Two service descrip-
tions match if there is an acceptable instance for both descriptions [14, 12, 6, 7].

476 C. d’Amato and S. Staab

Considering the framework presented in Sect. 2, let Dr and Dp respectively a re-
quested service description and a provided service description, expressed as a set of
axioms imposing restrictions on the services that have to be performed that are called
Sr and Sp respectively. The matching process (w.r.t. a KB) can be defined as a boolean
function match(KB, Dr, Dp) which specifies how to apply DL inferences to perform
matching. Various matching procedure, based on DL inferences, have been proposed
[7, 14, 12]. We fix our attention to those proposed in [6]. Differently from the others,
this procedure is able to treat variance (particularly variance due to incomplete knowl-
edge) without being too weak or too strong. Indeed, the other matching procedures
[13, 14, 5] consider a match valid if there exists a common instance service at least
in one possible world. This match, called Satisfiability of Concept Conjunction, is the
weakest check w.r.t. both kinds of variance. Indeed, along the dimension of intended
diversity, it is sufficient to find one common service instance. Along the dimension of
incomplete knowledge, it is sufficient to find one possible world in which such a service
instance exists, regardless of all other possible worlds.

Another type of matching procedure [7, 10, 9] executes match by checking for sub-
sumption, either of the requestor’s description by the provider’s or vice versa. It is called
Entailment of Concept Subsumption. This check is very strong, since it requires one of
the service descriptions to be more specific than the other, for all service instances in
all possible worlds. Conversely, a valid match for the procedure in [6] occurs when
there exists a common instance service between a provider’s service description Dp

and a requestor’s service description Dr w.r.t. KB, in every possible world. It can be
formalized as:

KB ∪Dr ∪Dp |= ∃xSr(x)∧Sp(x) ⇔ KB ∪Dr ∪Dp ∪{Sr �Sp � ⊥}unsatisfiable

This check is called Entailment of Concept Non-Disjointness. It is stronger than Sat-
isfiability of Concept Conjunction because checks for an intersection in every possible
world, but it is not as strong as Entailment of Concept Subsumption, because it does not
require one of the sets of acceptable service instances to be fully contained in the other
set. This match increases (w.r.t Entailment of Concept Subsumption) the possibility to
find interesting provided services, decreasing the error due to variety (more present in
Satisfiability of Concept Conjunction).

The provided services, selected by the matching process, have to be ranked w.r.t.
certain criteria and then returned to the requestor, in order to start the negotiation
process between the requested service and provided services. We focus our attention
on the ranking services process and propose a ranking procedure based on the use
of a semantic similarity measure for DL. This procedure ranks in higher positions,
provided services that are most similar to the requested service and that satisfy both
HC and SC of the requested service. Instead, services that are less similar and/or sat-
isfy only HC are ranked in lower positions. This is because services that satisfy both
HC and SC can satisfy more needs of the requested service than services that sat-
isfy only HC. In the following, the measure used for determining the similarity value
between service descriptions is presented, then the ranking services process is
explained.

Modeling, Matching and Ranking Services Based on Constraint Hardness 477

3.1 The Semantic Similarity Measure

The semantic similarity measure used for ranking services is presented in [4], in which
a semantic similarity measure for DL concept definitions, asserted in the same ontol-
ogy, is defined. Considering Sect. 2, service descriptions can be viewed as DL concept
descriptions asserted in a T-Box and their instances can be regarded as concept asser-
tions in an A-Box and the Canonical Interpretation can be considered (see [1] for details
about T-Box, A-Box and Canonical Interpretation). So the following similarity measure
can be applied to the service descriptions

Definition 3.1 (Semantic Similarity Measure). Let L be the set of all service descrip-
tions and let I be the canonical interpretation which maps every service description
to its instances. The Semantic Similarity Measure s is a function s : L × L �→ [0, 1]
defined as follows:

s(Sr, Sp) = |(Sr	Sp)I |
|(Sr
Sp)I | · max(|(Sr	Sp)I |

|SI
r | ,

|(Sr	Sp)I |
|SI

p |))

where (·)I computes the concept extension w.r.t. I, | · | returns the cardinality of a set.

This function assigns the maximum value in case of semantic equivalence of the ser-
vice descriptions. Otherwise it assigns a value in the range [0, 1[. This value grows with
the increasing size of the set of service instances in common (given by the first fac-
tor) and it is weighted by a factor which represents the incidence of the intersection
with respect to either concept. Particularly, the increase of this factor implies that the
concepts are closer to subsume one the other (or even to be equivalent). This means to
consider similarity not as an absolute value, but weighted with respect to the degree of
non-similarity. The function s is really a similarity measure, (according to the formal
definition [2]) and its complexity mainly depends on the complexity of the instance
checking operator (for the chosen DL) used to define the extension of concept descrip-
tions (see [4] and Sect.3.3 for details). Similarity value is computed between a requested
service description Sr and a provided service description Sp, so the instance checking
operator has to define the set of instances for them. For every provided service, the set
of instances is known. We need to define the extension of Sr. Note that the measure is
applied after the matching process and that the chosen matching procedure (see Sect.3)
selects all provided services Sp that have at least one instance satisfying Sr. So it is
straightforward to understand that the set of instances for Sr is given by the union of
the provided service instances that satisfy Sr. Namely:

SI
r =

⋃n
j=1{x|Sr(x) ∧ Sj

p(x)}
where n is the number of provided services selected by the matching process.

3.2 Ranking Procedure

The rationale of the procedure consists in measuring the similarity between the re-
quested and the provided services, selected by the matching phase: a higher similarity
will result in higher rankings.

The presented measure assigns highest values to services that share most of the in-
stances with Sr so, as in [6], the criterion used is based on variance, namely, a provider

478 C. d’Amato and S. Staab

is better than another if the variance it provides is greater than the other. However, dif-
ferently from [6], we are able to supply a total order of the provided services (rather
than a partial order). Anyway this is not enough for ensuring that provided services
satisfying both HC and SC of Sr will be in the higher positions, while services satisfy-
ing only HC will be in the lower positions. Let us consider the following scenario: let
Sr be the requested service and let Sl

p and Sk
p two provided services, selected by the

matching procedure. As said in Sect.2, a service is mainly described by the set of HC
and SC. Particularly, a service can also be described only by HC 4. Let us suppose that
Sr is described by both HC and SC, that Sl

p is a provided service whose instances all
satisfy only the HC of Sr and that Sk

p is a provided service whose instances all satisfy
both HC and SC of Sr. So let us consider the canonical interpretation, it is straightfor-
ward to see that ∀x : Sk

p (x) → Sl
p(x) ⇔ (Sk

p)I ⊆ (Sl
p)

I ⇒ |(Sk
p)I | ≤ |(Sl

p)
I | ⇒

s(Sr, S
k
p) ≤ s(Sr, S

l
p). This is the opposite result w.r.t. our criterion. Indeed we want

that provided services satisfying both HC and SC of Sr and more similar to Sr are on
top of the ranking. For achieving this goal, the ranking procedure is:

given Sr = {SHC
r , SSC

r } service request; Si
p(i = 1, .., n) provided services selected

by match(KB, Dr, D
i
p);

for i = 1, . . . , n do compute s̄i := s(SHC
r , Si

p)
let be Snew

r ≡ SHC
r � SSC

r

for i = 1, . . . , n do
compute si := s(Snew

r , Si
p)

si := (s̄i + si)/2

Let us call SHC
r the requested service description relative to HC and SSC

r those
relative to SC. For all Si

p, the similarity values s̄ := s(SHC
r , Si

p) are computed. Hence,
let us consider a new service description Snew

r ≡ SHC
r �SSC

r defined as the conjunction
of HC and SC of Sr. The instances of Snew

r satisfy both HC and SC of Sr. So, for all Si
p

the similarity values s := s(Snew
r , Si

p) are computed. It is straightforward to understand
that a Si

p satisfying only HC of Sr will has s = 0. For all Si
p, the final similarity value

si is given by the average between s̄ and s. This last value si is used for setting the rank
of the services.

Let clarify this process considering the following example. Dr is a requested service
description, Dl

p and Dk
p are two provided service description, selected by the matching

process. KB is the used knowledge base. We rank Dl
p and Dk

p . Let note that here Dl
p and

Dk
p are described specifying their HC and SC. This is in order to show how the ranking

process work in this case. However, it is straightforward to see that the procedure can
rank provided services even if they are described without any specification about their
constraint hardness.

Dr = { Sr ≡ Flight � ∀operatedBy.LowCostCompany � ∃to.{bari} �
� ∃ from.{cologne,hahn} � ∀applicableToFlight.Card;

{cologne,hahn} � ∃ from−.Sr }
4 A service can not be described only by SC because it means ask for a service that contains

only optional constraints and this does not make sense.

Modeling, Matching and Ranking Services Based on Constraint Hardness 479

where

HCr = { Flight � ∃to.{bari} � ∃ from.{cologne,hahn}
{cologne,hahn} � ∃ from−.Sr }

SCr = { Flight � ∀operatedBy.LowCostCompany � ∀applicableToFlight.Card};

Dl
p = { Sl

p ≡ Flight � ∃to.Italy � ∃from.Germany;
Germany � ∃ from−.Sl

p; Italy � ∃ to−.Sl
p }

where

HCl
p = { Flight � ∃to.Italy � ∃from.Germany;

Germany � ∃ from−.Sl
p; Italy � ∃ to−.Sl

p }
SCl

p = {}

Dk
p = { Sk

p ≡ Flight � ∀operatedBy.LowCostCompany � ∃to.Italy �
�∃from.Germany;

Germany � ∃ from−.Sk
p ; Italy � ∃ to−.Sk

p }
where

HCk
p = { Flight � ∃to.Italy � ∃from.Germany;

Germany � ∃ from−.Sk
p ; Italy � ∃ to−.Sk

p }
SCk

p = { Flight � ∀operatedBy.LowCostCompany};

KB = { cologne,hahn:Germany, bari:Italy, LowCostCompany � Company }

Let us consider Sr, Sl
p and Sk

p . Let note that Sl
p satisfies only HC of Sr while Sk

p

satisfies both HC and SC of Sr. Let us suppose that the extensions of Sl
p and Sk

p are:
|(Sl

p)
I | = 8 and |(Sk

p)I | = 5 and all instances satisfy Sr. Note that Sk
p � Sl

p then
(Sk

p)I ⊆ (Sl
p)I . So |(Sr)I | = 8. Furthermore, Sr �≡ Sl

p and Sr �≡ Sk
p . Let us consider

SHC
r given by: SHC

r ≡ Flight�∃from.{cologne,hahn}�∃to.{bari} and SSC
r given by

SSC
r ≡ Flight � ∀operatedBy.LowCostCompany � ∀applicableToFlight.Card. Known

that all the instances of Sl
p and Sk

p satisfy Sr and particularly that Sl
p satisfies only HC

of Sr while Sk
p satisfies both HC and SC of Sr, it is straightforward to understand that

|(SHC
r � Sl

p)I | = 8 and that |((SHC
r � SSC

r) � Sl
p)I | = |(Snew

r � Sl
p)I | = 0, con-

sequently sl = 0. In the other case, we know that |(Sk
p)I | = 5 and that Sk

p satisfies
both HC and SC of Sr. So, some instances of Sk

p can satisfy only HC of Sr and others
satisfy both HC and SC (in the better case we could have that all instances of Sk

p satisfy
both HC and SC).Let us suppose that instances of Sk

p that satisfy both HC and SC of
Sr, namely that satisfy Snew

r ≡ SHC
r � SSC

r are 3. Let applying the procedure:

s̄l :=s(SHC
r , Sl

p)=
|(SHC

r 	Sl
p)I |

|(SHC
r
Sl

p)I | · max(|(S
HC
r 	Sl

p)I |
|(SHC

r)I | ,
|(SHC

r 	Sl
p)I |

|(Sl
p)I |))= 8

8 · max(8
8 , 8

8)=1

s̄k :=s(SHC
r , Sk

p)=
|(Sr	Sk

p)I |
|(Sr
Sk

p)I | · max(
|(Sr	Sk

p)I |
|SI

r | ,
|(Sr	Sk

p)I |
|(Sk

p)I |))= 5
8 · max(5

8 , 5
5)=0.625

480 C. d’Amato and S. Staab

Fig. 1. Common instances between requested service and provided services for their ranking

The next step is computing sl and sk, that, considering the observation above are given
by:

sl := s(Snew
r , Sl

p) = 0

sk := |(Snew
r 	Sk

p)I |
|(Snew

r
Sk
p)I | · max(|(S

SC
r 	Sk

p)I |
|(Snew

r)I | ,
|(Snew

r 	Sk
p)I |

|(Sk
p)I |)) = 3

5 · max(3
3 , 3

5) = 3
5 = 0.6

Hence the final similarity values are: sl = 0.5, sk = 0.6125 and so the ranking of the
provided services is:

1. Sk
p Similarity Value 0.6125

2. Sl
p Similarity Value 0.5

This result is consistent with the goal. Namely, using this procedure, provided services
are ranked w.r.t. both variance and satisfaction of Sr’s SC.

More in general, the rational of the ranking procedure is showed in Fig. 1. As seen in
Sec. 3.1, due to the chosen matching procedure, all the services that have to be ranked
have at least one instance satisfying Sr. In the figure, HC and SC represent the Hard
and Soft Constraints of the requested service and S1 and S2 represent services to rank.
All the instances of S1 or S2 that are in HC are relevant instance service for Sr, because
they satisfy its HC. However they are not the preferred instance services for Sr because
they do not satisfy also SC of Sr. For example if the HC of Sr ask for flights from
Cologne to Bari and the SC of Sr ask for flights that allow the use of Miles and More
card then all the instances of S1 and S2 that are in HC are all flights from Cologne to
Bari held by two different company. This instances are relevant because they satisfy
the main need, however flights from Cologne to Bari that allow the use of Miles and
More card will be preferred w.r.t. flights that do not allow the use of this card. Thus
the preferred instance services for Sr are all the instances of S1 and S2 that are in the
intersection between HC and SC. These instances are all the flights from Cologne to
Bari of S1 and S2 that allow the use of Miles and More Card.

Modeling, Matching and Ranking Services Based on Constraint Hardness 481

The parts of S1 and S2 outside HC represents all the instances that do not satisfy
HC and thus irrelevant service instances for Sr; for example flights having a departure
and/or arrival place different from those requested. In the same way the part of S2 out-
side HC but in SC represents irrelevant service instances for Sr because these instances
satisfy SC without satisfying HC; for example represents flights that allow the use of
Miles and More card but that do not arrive in Bari and so these are not interesting for
the request.

At the first time, the procedure ranks provided services that satisfy HC w.r.t. vari-
ance criteria, indeed provided services that share most of service instances with Sr

have higher similarity value. Hence SC are considered. The procedure assigns an ad-
ditional similarity value to provided services that satisfy also SC. This similarity value
is assigned, again using the variance criteria. Let note that in computing the additional
similarity value are not considered all the service instances satisfying SC of Sr but only
the service instances satisfying both HC and SC of Sr. This avoid to have in higher
ranking position provided services that are very similar to SC but dissimilar from HC,
whose instances are obviously not preferred w.r.t. to services mostly similar to HC. In-
deed the latter can have a lot of instances satisfying SC but that are not relevant at all
for the main request.

3.3 Discussion

In this section the complexity of the proposed algorithms is analyzed. Both matching
and ranking procedure use reasoning services. Indeed for the matching process, two
service descriptions match if their conjunction is not subsumed by the bottom concept.
So the complexity of the matching procedure depends from the complexity of the sub-
sumption operator for the chosen DL. For the ranking process, the dominant operation
is the computation of the similarity value, for which the s measure is called twice for
every matched provided service that has to be ranked. The complexity of s mainly de-
pends from the complexity of the instance checking operator (for the chosen DL), used
for computing the extensions of the service descriptions and the extension of their con-
junction and disjunction. However the complexity of the ranking procedure could be
decreased by reducing the number of calls to the instance checking operator. Indeed,
the extensions of all available services can be computed beforehand, so at request-time,
only the extension of the requested service description has to be computed. The exten-
sions of the conjunctive and disjunctive service descriptions can be computed by the
use of set theory applied to the extensions already determined.

4 Conclusion and Future Work

This paper proposes a framework based on DL for describing services. Differently from
[6], to which it is inspired, our framework allows to express hard and soft constraints in
a service description, thus obtaining a more flexible framework for service modeling.

Moreover, these new kind of constraints can be useful for supplying to the requester
the most appropriate provided services among those selected from the matching phase.
Indeed a new ranking procedure was presented in order to rank services selected by the
discovery process. The aim of this ranking procedure was to help during the choice in

482 C. d’Amato and S. Staab

the list of eligible provided services discovered in the previous phase. To this purpose,
the procedure can take into account the presence of HC and SC, the variance exploiting
a measure that can assess the semantic similarity between service descriptions. This
yields a total order among the selected services, differently from [6] where the ranking
procedure provides only a partial order and is not able to manage HC and SC.

For the future, an experimentation involving the framework, the matching and rank-
ing procedures is necessary, in order to show the improvement of the quality of the
results supplied to the requester. Moreover, a new matching process could be useful
for further increasing the quality of the discovery process and reduce the noise in the
selection of services.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge University Press, 2003.

[2] H.H. Bock. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical
Information from Complex Data. Springer-Verlag, 1999.

[3] Andrea Calı̀, Diego Calvanese, Simona Colucci, Tommaso Di Noia, and Francesco M.
Donini. A description logic based approach for matching user profiles. In Description
Logics, 2004.

[4] C. d’Amato, N. Fanizzi, and F. Esposito. A semantic similarity measure for expressive
description logics. In A. Pettorossi, editor, Proceedings of Convegno Italiano di Logica
Computazionale, CILC05, Rome, Italy, 2005.

[5] J. Gonzales-Castillo, D. Trastour, and C. Bartolini. Description logics for matchmaking of
services. In Proc. of KI-2001 Workshop on Applications of Description Logics, page vol.
44, 2001.

[6] S. Grimm, B. Motik, and C. Preist. Variance in e-business service discovery. In Proceedings
of the ISWC Workshop on Semantic Web Services, 2004.

[7] L. Li and I. Horrocks. A software framework for matchmaking based on semantic web
technology. In WWW ’03: Proceedings of the 12th international conference on World Wide
Web, pages 331–339, New York, NY, USA, 2003. ACM Press.

[8] Sheila A. McIlraith and David L. Martin. Bringing semantics to web services. IEEE
Intelligent Systems, 18(1):90–93, 2003.

[9] T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. A system for principled match-
making in an electronic marketplace. In WWW, pages 321–330, 2003.

[10] M. Paolucci, T. Kawamura, T.R. Payne, and K.P. Sycara. Semantic matching of web ser-
vices capabilities. In International Semantic Web Conference, pages 333–347, 2002.

[11] Massimo Paolucci and Katia P. Sycara. Autonomous semantic web services. IEEE Internet
Computing, 7(5):34–41, 2003.

[12] Chris Preist. A conceptual architecture for semantic web services. In Proceeding of Inter-
national Semantic Web Conference, pages 395–409, 2004.

[13] D. Trastour, C. Bartolini, and J. Gonzalez-Castillo. A semantic web approach to service
description for matchmaking of services. In SWWS, pages 447–461, 2001.

[14] D. Trastour, C. Bartolini, and C. Preist. Semantic web support for the business-to-business
e-commerce lifecycle. In WWW ’02: Proceedings of the 11th international conference on
World Wide Web, pages 89–98, New York, NY, USA, 2002. ACM Press.

Version Management in Semantic Web Services
Using OWL-S�

Maria Cecilia Bastarrica, Carlos Hurtado, and Alejandro Vaisman

Department of Computer Science, Universidad de Chile
{cecilia, churtado, avaisman}@dcc.uchile.cl

Abstract. In the last few years there has been an increasing interest
in studying ontology evolution and versioning for the World Wide Web,
in particular, applied to OWL. However, little attention has been given
to the problem of Web services evolution, with a focus on OWL-S, an
ontology of services recently proposed. In this paper, we show that recent
work on Temporal RDF can be extended to support versioning of an
ontology of services. We introduce a formal model and a query language
that allow accessing different versions of an OWL-S specification. We
present the language semantics and discuss complexity issues. We show
how our proposal can be implemented within the OWL-S framework.

1 Introduction

OWL [19] is an ontology language for the Semantic Web, developed by the World
Wide Web Consortium (W3C). It allows the representation of information about
categories of objects, and how these objects interrelate. This information, in a Se-
mantic Web scenario, can help to develop efficient automated processes in order
to access information on the Web. OWL is built on top of the Resource Descrip-
tion Framework (RDF) [1,11], and extends RDF and RDFS, adding restrictions
on properties, and operations like disjunction and negation.

Web services are software applications that interact using Web standards.
Although Web service technology is rapidly gaining popularity, it still requires
more human involvement than may be wanted. Avoiding this would imply the
ability of automatically discovering and invoking Web services. Semantic Web
technology has helped to solve this problem by means of ontologies of services
that are used for representing a service profile (for describing services offered by
a Web site). These ontologies can be used by service-seeking agents. The efforts
for defining a standard for ontologies of services led to OWL-S [17], a language
that allows to describe what a service provides, what a service requires from the
users, how the service works, and how the service is used. OWL-S is aimed at
enabling efficient automatic Web service discovery, invocation, interoperation,
and execution monitoring.

� Partially supported by Millennium Nucleus Center for Web Research, Grant P04-
67-F, Mideplan, Chile, and Project Fondecyt No. 1050642.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 483–494, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

484 M.C. Bastarrica, C. Hurtado, and A. Vaisman

1.1 Motivation

Today’s business systems must be able to adapt to changes and so does the
Semantic Web. Most of the change management tasks are still being performed
manually [20], which is time-consuming and error prone. It would be desirable
to add change management capabilities to the Semantic Web. An example of
an evolving ontology is MeSH, a medical ontology used by MEDLINE, a huge
source of medical information on the Web. MeSH is frequently updated in order
to stay in line with the state-of-the-art in medical research. The changes that
MeSH goes through consist of the addition of new terms, and also reclassification
of such terms. It seems clear that there is need for ontology evolution support
on the Web, as it has been pointed out in [5,10,13,14], among other works.

Another real-life example that illustrates the need for Web services versioning,
is the area of mobile phones. Phone companies need to incorporate new services
continuously in order to keep competitive in the market. To achieve the required
flexibility and evolvability many of them are currently migrating their platforms
towards service oriented architectures [4] where each service is implemented as
a Web service. Each Web service may then provide a particular service with
as many diverse operations as different cell phone platforms need to access the
service. For example, the monotone ringtone service is different depending on
the phone model. As the cell phone technology advances rapidly, new phone
devices appear continuously and there is a need to provide support for them.
Also, it may be necessary to keep the service version history in order to provide
the service if holders of older phone models require it. Another typical use of
this version history keeping is to determine the time interval in which the cell
phone company supported the service for a certain phone model so that it can
charge the phone vendor for providing support for its devices.

There are many ways to address ontology changes. Stojanovic [20] classifies
ontology changes in four categories: (a) ontology management; (b) ontology mod-
ification; (c) ontology evolution, and (d) ontology versioning. There is limited
work on ontology evolution, but little has been done on ontology versioning [13].
In this paper we address a topic still more unexplored: versioning of Web services
ontologies. Versioning has been recognized as a relevant problem in Web service
development [2,3]. However, no formal study has been attempted. Developers
devise ad-hoc solutions when they need to deal with the problem of maintaining
different versions of their applications. A proper mechanism for version man-
agement would allow easy access to different versions of a Web service ontology
as of any point in time. Moreover, it would add flexibility, allowing to access
simultaneously multiple versions of a service [3].

1.2 Problem Statement and Contributions

We address the problem of Web service versioning and we show that OWL-S,
as a language for describing Web service ontologies, can be extended in order to
support versioning. In this way, we are able to query and use past states of a
service ontology. For this purpose, we use the approach in [6,7] for RDF.

Version Management in Semantic Web Services Using OWL-S 485

A proper version management mechanism requires a temporal data model to
support it. Thus, this paper proposes a temporal data model supporting ver-
sioning of Web services. We define an abstract model for OWL-S, and extend
its components with temporal labels that indicate their intervals of validity,
leading to a temporal OWL-S graph. This temporal model, denoted OWL-S(T),
allows to manage versioning at two levels: version and state (i.e., within a version
different states can be supported). We then define a notion of OWL-S(T) con-
sistency, based on the framework proposed in [9], and we show how consistency
can be checked in a temporal setting, ensuring that a document is consistent at
any point in time. We propose a query language that supports typical temporal
queries, and allows to retrieve versions of an OWL-S(T) document as of any
instant in time. We give the semantics an complexity of the language. Finally,
we sketch how our proposal can be implemented in the OWL-S framework.

Section 2 discusses related work. Section 3 gives an overview of temporal con-
cepts and the OWL-S notions used in the paper; we also introduce the abstract
model for OWL-S. Section 4 presents the model for introducing time in OWL-
S and Section 5 a proposal for a query language. Section 6 discusses how the
introduced concepts could be implemented within the OWL-S framework. We
conclude in Section 7.

2 Related Work

The Ontology Web Language (OWL) [19] was developed by the W3C Web Ontol-
ogy Working Group. Many of its features come from its predecessor DAML+OIL,
and from the fields of Description Logic and Knowledge Representation. Hor-
rocks et al [12] detail the evolution of OWL. OWL is built on top of RDF [16], a
metadata language for the Semantic Web. Several languages for querying ontolo-
gies have been proposed and implemented, some of them in the lines of traditional
database query languages, others based on logic and rule languages [8,15].

Although temporal management has been recently studied for semistructured,
XML, and RDF data, little has been done to this respect in the Semantic Web
setting. Among the four categories in which Stojanovic [20] classified ontology
changes, we are particularly interested in evolution and versioning. Stojanovic
addressed the first problem, and defined the requirements for an efficient ontol-
ogy evolution system. This approach was implemented in the so-called KAON
framework. The problem of preserving consistency upon an evolving ontology
was studied by Haase et al [9]. This work provides a comprehensive overview
of the state-of-the-art in ontology evolution [10]. Finally, Flouris et al [5] claim
that the current approaches for ontology evolution lack formality, and propose
a model that generalizes and applies the AGM postulates.

In the field of ontology versioning, Klein et al [13] present a system, called Onto
View, that helps specifying relations between different versions of an ontology
(but does not keep track of the history). Visser et al [22] propose a temporal
reasoning framework for the Semantic Web, applied in BUSTER, an ontology-
based prototype supporting the so-called concept@location in time type of query.

486 M.C. Bastarrica, C. Hurtado, and A. Vaisman

Huang et al propose a reasoning framework for ontology versioning, based on
temporal logic; they claim that ontology evolution is well-understood, although
ontology integrity is still an open research field. Their multi-version reasoning
framework is aimed at discovering inconsistencies caused by ontology evolution.
It is defined as an extension of linear temporal logic (LTL), denoted LTLm.

There is a clear need for version management in the design of Web ser-
vices [2,3]. Brown et al [2] classified changes in Web services in two broad classes:
backward-compatible and non-backward-compatible. In the former, we have the
addition of new WSDL operations and new XML schema types. In the latter,
they include: removing/renaming operations, changing the parameters of an op-
eration, and changing the structure of a complex data type. In spite of this there
is still no study of temporality issues in OWL-S ontologies and query languages.

3 Preliminaries

3.1 Temporal Issues

The existing approaches to ontology versioning are based on developing a new
physical version of the ontology each time a change occurs. In [6], they propose a
different approach for the evolution of RDF specifications, which can be seen as
a logical theory. They timestamp the RDF triples with their interval of validity.
In order to introduce the time dimension into OWL-S, we are faced with the
same question: should we maintain a snapshot of each state of the graph or,
should we label the elements of the OWL-S specification that are subject to
changes? Although both models are equivalent, the first one appears to be not
suitable for queries of the form: “all time instants where some condition Φ holds
in the specification”. It is well-known [21] that there are at least two temporal
dimensions to consider: valid and transaction times. Valid time is the time when
data is valid in the modeled world; transaction time is the time when data is
actually stored in the database. The snapshot approach captures transaction
time, while labeling is mostly used when representing valid time. The approach
we present in this paper can support both time dimensions.

For evolving OWL-S specifications, labeling may do better in scenarios where
changes are frequent and only affecting a few elements. In this situation, creating
a new physical version of the graph each time an update occurs may lead to large
overheads when processing temporal queries that span multiple versions. Thus,
labeling will be our approach. We work with the point-based temporal domain
for defining our data model and query language, but we encode time-points in
intervals whenever possible, for the sake of clarity. We consider time as a discrete,
linearly ordered domain, as usual in virtually all temporal database applications.
As usual in temporal databases, the (moving) current instant is denoted Now.

3.2 OWL-S Overview

Software agents that access Web services need a description of the available ser-
vices to perform an efficient service lookup. This description is provided by OWL-
S [17]. At a high level of abstraction, OWL-S can be seen as an ontology structure

Version Management in Semantic Web Services Using OWL-S 487

serviceName

FindZipCode

hasInput

hasOutput

city state zip code

isPresentedBy

presents

hasProcess

describes
describedBy

Process Model

ZCFS

ZCFS Profile

hasInput

textDescription

txt ZCFS
Process

city state zip code

parameterType
label

string

city
state zip code

parameterType parameterType
label

label

ZCFS
Grounding

wsdlGrounding

ZipCodeFinderService
(ZCFS)

supportedBy

hasAtomicProcessGrounding

ZCFProcessGrounding

hasInput

hasInput

hasOutput

owlsProcess

ZCFS
Process

doc

wsdlDocument

string integer

Fig. 1. Running example

whose instances are the OWL-S specifications. This structure or schema is com-
posed of three classes: ServiceProfile, ServiceModel and ServiceGrounding. These
classes are related to the Service class by the properties presents, describedby, and
supports, respectively. These properties have also their inverse. For simplicity we
focus on the properties serviceName, textDescription, has parameter, has
input, has output for the class Profile; from the Process class (a subclass of
ServiceModel), we use the has input, has output, parameterType and label
properties; from ServiceGrounding we use the wsdlDocument property, which is
the URI of the WSDL operation corresponding to an atomic process. We have
chosen these properties because they give a good intuition of the problem, and
their instances are likely to change over time.

Throughout the paper we use the service ontology depicted in Figure 1,
adapted from [18]. This is an abstract representation of an OWL-S specification
for a Web service that receives a pair city-state, and returns the corresponding
zip code (for brevity, we only partially show the Grounding part). The service
Profile tells what the service does, the Process Model tells the service clients
how to use the service, and the Grounding specifies how an agent can access the
service. WSDL operations bind the ontology to the implementation of the Web
service. In the example of Figure 1, we have included the types and names of
the service input and output parameters. The following fragment corresponds to
the abstract graph in Figure 1.

...

<grounding:WsdlAtomicProcessGrounding rdf:ID=‘‘ZCFProcessGrounding’’>

<grounding:owlProcess rdf:resource=‘‘#ZipCodeFinderProcess’’/>

<grounding:wsdlDocument>

‘‘http://www.dcc.uchile.cl/2005/ws/docum/ZipCode-v1.0.asmx?WDSL’’

</grounding:wsdlDocument>

.... >

488 M.C. Bastarrica, C. Hurtado, and A. Vaisman

3.3 Abstract Model of OWL-S

In what follows, we adopt an abstract model for an instance of an OWL-S spec-
ification and we describe it as a graph (from now on, an OWL-S graph). We are
not interested in the OWL-S structure, given that we will consider this structure
static. Thus, we do not need our model to represent relations like subpropertyOf,
subclassOf, and so on. Figure 2 (a) shows an abstract model for an OWL-S in-
stance. The nodes represent resources (domain and range of each property). The
edges represent OWL-S properties, which include properties provided by the
OWL-S ontology such as presents, serviceName, hasInput, and hasOutput.
Although we have denoted the properties pi with different names, this may not
always be the case. Edges denoted inv(pi) represent the inverse property of pi,
like in the case of describes and describedBy in Figure 1. Note that this graph is
analogous to an RDF graph.

Definition 1 (OWL-S graph). An OWL-S graph is a set of RDF triples
(a, p, b), where p is an OWL-S property.

We next incorporate OWL-S constraints and consistency in our model. We de-
note Σ the set of OWL constraints given in the OWL-S specification. As an
example, we have in Σ a constraint that states that all property p is equivalent
to inv(p), and a constraint that isDescribedBy has max cardinality 1.

Definition 2 (OWL-S Consistency). An OWL-S graph is consistent if an
only if it satisfies the set of OWL-S constraints Σ.

4 Introducing Time into OWL-S

As mentioned in Section 3, we consider the schema (i.e., OWL-S ontology) as
fixed. Thus, the instances of the ontology are the only elements subject to
change. We extend the graph in Definition 1 with temporal labels, yielding a
temporal OWL-S graph, and we state consistency conditions these graph must
satisfy.

We assume the existence of three finite sets: intervals I, timestamps T , and
versions V , and two functions: init : I → T and end : I → T , which return the
starting and ending timestamps of an interval, respectively.

Definition 3 (Temporal OWL-S graph). A temporal OWL-S graph H is a
tuple (G, V, ρ), where G is an OWL-S graph whose triples are annotated with
intervals in I, V ⊆ V is a set of versions, and ρ : V → I is a function that
assigns to each version an interval (lifespan of the version). The intervals in
ran(ρ) do not appear in G.

Note that the model only supports single intervals. This introduces some limi-
tations on the model’s expressive power. However, the model can be extended
to support sets of intervals. Figure 2 (b) shows a temporal OWL-S graph.

Version Management in Semantic Web Services Using OWL-S 489

p1

inv(p1)

inv(p2) p2

p5

p7

a

b

c

d

e fh

[0,20]

p4

[0,50]
p3

[21,40]

p1

inv(p1)

inv(p2) p2

p5

p7

a

b

c

d

e fh

p4

p3

p6

g
g

p6

[21,40]

(a) (b)

Fig. 2. (a) An abstract OWL-S graph. (b)The corresponding t-OWL-S graph.

Definition 4 (Lifespan of a node). Given a temporal graph H, the lifespan
of a node n of it, denoted lifespan(n) is the interval i such that init(i) =
Min({init(i′) : (a, p, n)[i′] ∈ G} ∪ {init(i′) : (n, p, b)[i′] ∈ G}) and end(i) =
Max({end(i′) : (a, p, n)[i′] ∈ G} ∪ {end(i′)(n, p, b)[i′] ∈ G}).

Definition 5 (Snapshot). Given a temporal OWL-S graph G, a snapshot of
G at time t, denoted G(t), is an OWL-S graph, with triples (a, p, b) such that
(a, p, b)[t] is in G.

Definition 5 provides the link between OWL-S with versioning, and temporal
OWL-S. A specification has as many versions as different snapshots can be
obtained at different instants. Thus, all versions of an OWL-S specification are
embedded in a single document.

4.1 Updates

We consider the following subset of the changes proposed in [2]: (a) add a new
WSDL operation; (b) remove an WSDL operation; (c) change the parameters of
an operation. However, note that the abstract model defined above hides most of
the non-temporal semantics of OWL-S. In this way, the update operations can be
implemented as operations over the graph, as follows: (1) adding a new operation
at time t is the insertion of a new edge (and the corresponding node), with
temporal label [t, Now]; (2) removing (at time t) an existing WSDL operation
(indicated by and edge with label [ts, Now]) is implemented replacing the label
by [ts, t] (thus, the history is retained); (3) changing some parameter implies
the following operations over the graph: (a) remove, at time t − 1, the edge to
be modified; (b) add an edge with the new parameter, at time t. For example,
suppose we want to update property p7, at time t = 100, replacing the range
URI h, by r, in the graph in Figure 2. The edge (b, p7, h)[0, Now] is replaced by
(b, p7, h)[0, 99], and a new edge (b, p7, g)[100, Now] is inserted.

490 M.C. Bastarrica, C. Hurtado, and A. Vaisman

This definition of updates shows that we can partition the time line (i.e.
the temporal document’s lifespan) in a set of intervals such that, within these
intervals, all the snapshots remain the same.

Definition 6 (Interval Partition). The interval partition P of a set of inter-
vals i1, . . . , in, is the smallest set of intervals P = P1, . . . , Pn, such that all the
Pi’s in P are pairwise disjoint and P contains a partition of every interval ij.

4.2 Consistency

Hasse et al [9] studied the problem of keeping an evolving ontology consistent
through its different states. They defined three different notions of consistency,
respectively denoted κS , κL, and κU : (a) structural; (b) logical; (c) user-defined.
We are interested in extending OWL-S consistency for the temporal model.
Therefore we show how the set of OWL-S constraints Σ, which captures struc-
tural and logical consistency, can be applied in the temporal setting.

Definition 7 (Consistency). A temporal OWL-S graph G is consistent if and
only if every snapshot G(t) is consistent.

Given a temporal OWL-S graph G and an interval i, we denote G(i), the (non-
temporal) OWL-S graph with triples (a, b, c) such that (a, b, c) : i ∈ G.

Theorem 1. A temporal OWL-S graph G is consistent if and only if for every
interval i in the partition of the intervals of G, G(i) is consistent.

Proof. (sketch) Follows from defining the partition of the sets of intervals in the
graph. The document is consistent within the set of timestamps defined by each
interval in the partition.

The theorem yields an algorithm to verify consistency, which consists of two
steps: (i) compute the partition of the intervals of G; (ii) compute G(i) for each
interval i in the partition and check satisfiability of the constraints in G(i). Step
(i) can be done by building intervals from consecutive timestamps mentioned in
the intervals of G. Satisfiability can be checked using any OWL reasoner.

5 Querying Temporal OWL-S

The temporal OWL-S graph can be fully queried using the notion of temporal
RDF [6,7]. Here we sketch a query language that allows to query different versions
of OWL-S(T) specifications, along with changes inside versions themselves.

In order to capture changes inside versions, we introduce the notion of a state.
Therefore, our query language augment standard RDF querying with the notions
of version and state. Intuitively, a state is a maximal interval inside a version for
which the OWL-S specification does not change.

Definition 8 (State). Given an OWL-S(T) graph H = (G, V, ρ), the set S of
states of H is the smallest interval partition of the intervals in ρ(V) such that
for each interval i ∈ S and for every pair of timestamps t1, t2, where init(i) ≤
t1, t2 ≤ end(i), we have H(t1) = H(t2).

Version Management in Semantic Web Services Using OWL-S 491

5.1 Queries by Example

Both, states and versions have “init” and “end” timestamps. We use the func-
tions init and end to refer respectively to them. As an example, init(s2) =
end(s1), says that s2 is a successor of s1, and by end(v) = end(s) we restrict
s to be the last state of version v. We also include standard arithmetic built-in
predicates (<, ≤, =, ≥, >) to compare timestamps. For instance, init(s2) < 2
tells that s2 started before timestamp 2.

Now, let us begin with a simple query: “Find the inputs of the Web service
ZipCodeFinderService in the last state of version v1”.

(ZipCodeFinderService , hasInput , ?U)[?S] ←
(?X, hasInput , U?)[?S][v1], end(?S) = end(v1)
(ZipCodeFinderService , presents, ?X)[?S][v1].

Annotations inside brackets in the queries represent variables that range over
states and versions. The following query returns “the profiles and states of version
v1 of Web service ZipCodeFinderService”.

(ZipCodeFinderService , presents, ?Z)[?S] ←
(ZipCodeFinderService , presents, ?Z)[?S][v1].

Now consider the query “Find the versions of Web services that output a Zip
code”. We express it as the following query:

(?V, versionOf, ?Y) ← (?Y, hasOutput , zipcode)[?S][?V], (?S, presents , ?Y)[?S][?V].

5.2 Semantics

We consider the following disjoint sets of variables: a set Vr of RDF variables,
a set Vv containing version variables, and a set Vs of state variables. Individual
variables are denoted ?X , ?Y , ?Z, etc.

A query is a tableau, which is a pair (H, B ∪ A), where H and B are graph
patterns, and the set A has the usual arithmetic predicates over timestamps
and applications of the functions init and end. A graph pattern is a set of
expressions of the form (a, b, c)[s][v], where (a, b, c) is an RDF triple where some
elements may be variables in Vr, s ∈ Vs is a state variable, and v may be a
version variable in Vv or a constant for a version name.

We adopt a notion of safe rule similarly to Datalog to prevent operations on
infinite predicates. A rule is safe if each of its variables appear as an argument
in a non-built-in predicate of the body.

In order to give the semantics of a query we transform a temporal OWL-
S graph H = (G, V, ρ) into an RDF graph whose triples are annotated with
versions and states. This annotated graph, denoted VS(H), is a set contain-
ing triples (a, b, c)[s][v], which establishes that (a, b, c) holds in a state s of
H , and s arises within a version v ∈ V (i.e., init(s) ≤ init(v) and
end(v) ≤ end(s)).

492 M.C. Bastarrica, C. Hurtado, and A. Vaisman

Given an interval i and a set of intervals S, we denote CoverSet(i, S) the set
containing the intervals i′ ∈ S such that init(i′) ≤ init(i) and end(i) ≤ end(i′).
Then, the set VS(H) is obtained as follows. Let S be the set of states of H , and
let U be the set of intervals in G. For each interval i ∈ S, and version v that
contains i, we annotate with [i][v] all the triples in

⋃
i′∈CoverSet(i,U) H(i′), and

add them to VS(H).
The semantics is similar to temporal RDF [6]. Given a query (H, B ∪ A) and

a OWL-S(T) graph H , for each matching of the graph pattern B in VS(H),
pick the values of the variables for versions and states, and check if they satisfy
the built-in predicates in A. If this is the case, construct a pre-answer, which is
the graph resulting by substituting the values of the variables in the head. The
answer of the query is the union of all pre-answers.

5.3 Complexity

We now show that the query language proposed does not increase the complexity
of temporal RDF.

Lemma 1. Given an OWL-S(T) graph H = (G, V, ρ), for each state s of H,
there are intervals i, i′ in H such that init(i) = init(s) and end(i′) = end(s).

This lemma gives a simple procedure to compute states. We need to order all
the timestamps that limit the intervals in H , and search for maximal intervals
that have these timestamps as limits, within which the temporal OWL-S graph
does not change. This procedure takes O(N2M), where N is the size of H ,
and M is the number of intervals in H . It also shows that VS(H) has size in
O(NM).

To get the complexity of query processing, we consider the problem of testing
emptiness of the query answer set in the following forms: (1) Query complexity
version: for a fixed database D, given a query q, is q(D) non-empty? (2) Data
complexity version: for a fixed query q, given a database D, is q(D) non-empty?

Theorem 2. The evaluation problem is NP-complete for the query complexity
version, and polynomial for the data complexity version.

The proof is similar to temporal RDF and is based on the fact that the graph
VS(H) over which the search for matching is done is of polysize in H .

6 Temporal OWL-S Implementation

Now we sketch how the concepts introduced in the paper can be embedded
in an actual OWL-S specification. For this, we propose two mechanisms: (1)
slightly extend the OWL-S vocabulary, specifying a new profile; (2) timestamp
the elements of the OWL-S specification.

Versioning Profiles. The first extension we need is a small OWL-S vocabulary
in order to define a fourth component of a OWL-S(T) specification (along with

Version Management in Semantic Web Services Using OWL-S 493

profile, process model, and grounding), that we will call a versioning profile.
The vocabulary of this new profile includes the classes versioningprofile,
version, interval, date, and the properties hasVersion, spans (and its inverse
isSpannedBy), lifeSpan, init and end. The constraints for the versioning pro-
file are: (a) the domain of lifeSpan is version, and its range is interval; (b) the
domain and range of init and end are interval and date, respectively; (c) the
domain and range of hasVersion are versioningprofile and version, respec-
tively; (d) the domain and range of spans are Service and versioningprofile,
respectively;(b) the cardinality of the lifeSpan property is 1-1.

In our running example, for instance, we would have the following triples stat-
ing that v1 is a version of the OWL-S(T) specification and its lifespan lies within
the interval i, whose limits are 1 and 2:

(ZCFS, isSpannedBy, ZCFSV ersioningProfile), (ZCFSV ersioningProfile,
hasVersion, v1), (v1, lifeSpan, i), (iinit, 1), (i, end, 3).

OWL-S Timestamping. Assume that from 2005 on, a new version of the process
which implements the service of our running example was released. The corre-
sponding timestamped OWL-S specification would look as follows:

<rdf:RDF xmlns:owl=‘‘http://www.w3c.org/2002/07/owl#’’?>

xmlns:Time=‘‘http://www.dcc.uchile.cl/db/time’’

...

<grounding:WsdlAtomicProcessGrounding rdf:ID=‘‘ZCFProcessGrounding’’>

<grounding:owlProcess Time:FROM=‘1999-01-01’ Time:TO=‘Now’

rdf:resource=‘‘#ZipCodeFinderProcess’’/>

<grounding:wsdlDocument Time:FROM=‘1999-01-01’ Time:TO=‘2004-12-31’>

‘‘http://www.dcc.uchile.cl/2005/ws/docum/ZipCode-v1.0.asmx?WDSL’’

</grounding:wsdlDocument>

<grounding:wsdlDocument Time:FROM=‘1999-01-01’ Time:TO=‘2004-12-31’>

‘‘http://www.dcc.uchile.cl/2005/ws/docum/ZipCode-v2.0.asmx?WDSL’’

</grounding:wsdlDocument>

....

7 Conclusion

Versioning of Web services ontologies has not yet been studied by the Semantic
Web community. We introduced OWL-S(T), a formal model for OWL-S, along
with a query language supporting a two-level versioning scheme for OWL-S
specifications. Our model and query language allow, for instance, simultaneously
accessing different versions of the same specification.

A lot of research and practical issues remain open. Among these problems, the
development of efficient algorithms for checking consistency, and fixing inconsis-
tent specifications is required. Future work also includes the implementation of
our proposal.

494 M.C. Bastarrica, C. Hurtado, and A. Vaisman

References

1. D. Brickley and R.V.(Eds.) Guha. RDF vocabulary description language 1.0: RDF
schema. W3C Recommendation, 10 February 2004.

2. K. Brown and M. Ellis. Best practices for web services versioning. 2004.
http://www-128.ibm.com/developerworks/webservices/library/ws-version.

3. C. Chris Peltz and A. Anagol-Subbarao. Design strategies for web services ver-
sioning. Web Services Journal, SYS-CON Media, 2004. http://webservices.sys-
cop.com/read/44356.htm.

4. Thomas Erl. Service-Oriented Architecture : Concepts, Technology, and Design.
Prentice Hall, August 2005.

5. Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. Evolving ontology
evolution. In SOFSEM, pages 14–29, 2006.

6. C. Gutiérrez, C. Hurtado, and A. Vaisman. Temporal RDF. In European Confer-
ence on the Semantic Web (ECSW’05) (Best paper award), pages 93–107, 2005.

7. C. Gutiérrez, C. Hurtado, and A. Vaisman. Introducing time into RDF. IEEE-
TKDE Special Issue on the Semantic Web (in press), 2006.

8. P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A Comparison of RDF Query
Languages. In International Semantic Web Conference, 2004.

9. P. Haase and L. Stojanovic. Consistent Evolution of OWL Ontologies. In Proceed-
ings of the 2nd. European Semantic Web Conference, pages 182–197, 2005.

10. P. Haase and Y. Sure. State-of-the-Art on Ontology Evolution.
SEKT/2004/D3.1.1.b/v0.5, 2004.

11. Patrick Hayes(Ed.). RDF semantics. W3C Recommendation, 10 February 2004.
12. I. Horrocks, P. Patel-Schneider, and F. Van Harmelen. From SHIQ and RDF

to OWL: the making of a Web Ontology Language. Journal of Web Semantics,
1(1):7–26, 2003.

13. M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. Ontology Versioning and
Change Detection on the Web. In EKAW, pages 197–212, 2002.

14. A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. Establishing the
Semantic Web 11: An infrastructure for searching, reusing, and evolving distributed
ontologies. In Proceedings of the 12th. International Conference on World Wide
Web, pages 439–448, 2003.

15. A. Magkanaraki, G. Karvounarakis, T.T. Anh, V. Christophides, and D. Plex-
ousakis. Ontology Storage and Querying. Technical Report 308, Foundation for
Research and Technology Hellas, Institute of CS, Information System Lab, 2002.

16. F. Mannola and E. Miller. RDF Primer. W3C Recommendation, Feb. 2004.
17. David Martin(Ed.). OWL-S: Semantic Markup for Web Services. OWL-S 1.1

Release. http://www.daml.org/services/owl-s/1.1.
18. The Mindswap Project. http://www.mindswap.org.
19. M. Smith, C. Welty, and D.L. (Eds.) McGuiness. OWL Web Ontology Language

Guide. W3C Recommendation, February 2004.
20. L. Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis, University

of Karlsrhue, 2004.
21. A. Tansel, J. Clifford, and S. Gadia (eds.). Temporal Databases: Theory, Design

and Implementation. Benjamin/Cummings, 1993.
22. U. Visser. Intelligent Information Integration for the Semantic web. Lecture Notes

in Computer Science (3159), 2004.

BPEL Behavioral Abstraction and Matching

Nomane Ould Ahmed M’bareck and Samir Tata

GET/INT, Institut National des Télécommunications
9 rue Charles Fourier 91011 Evry, France

{Nomane.Ould ahmed mbarek, Samir.Tata}@int-evry.fr

Abstract. BPEL is the most popular language for describing business process
and business interaction based on Web services for inter-organizational cooper-
ation. Nevertheless, BPEL requires a static binding of services to the flows. We
propose in this paper a new approach enabling dynamic binding. This approach
consists of, first, providing a high-level description of process, second, abstract-
ing the process behavior using symbolic observation graphs and third providing
an efficient algorithm for symbolic observation graphs matching which is used
for binding dynamically business processes.

1 Introduction

In context of globalization, organizations are increasingly using process-aware infor-
mation systems to perform automatically their business processes. Based on such sys-
tems, organizations focus on their core competencies and access other competencies
through cooperation. In order to manage the cooperation between organization, Busi-
ness Process Execution Language for Web Services (BPEL for short) was introduced for
specifying business processes behavior based on Web services and business interaction
protocols. A BPEL process allows can be abstract or executable. The first type defines
the business protocol role and describes its public aspects. The second one defines the
logic and state of the process by providing sequence of Web service interactions con-
ducted at each business partner. Moreover, BPEL defines a set of primitive activities,
such as invoke, to invoke Web service operations. These primitive activities can be com-
bined into more complex primitives using any of the structure activities provided such
as sequence and flow. One of the main drawbacks of BPEL is that it requires that the
process details are known at the design time. Indeed, BPEL requires static binding of
services to the flows [Verma et al., 2004]. Nevertheless it turns out that sometimes some
parts of BPEL are not known at the design time. To overcome this lack we propose here
a new approach to represent, abstract and match BPEL processes.

The idea of dynamic BPEL is not new. Ideed, in [Karastoyanova et al., 2005], the
authors propose to extend BPEL by the ”find and bind” mechanism. By adding a new
construct ¡find bind¿ to BPEL, they enable users to choose explicitly web services at
run time. Users have only to specify the selection criteria within ¡find bind¿ construct
and they do not care about how the matching is performed. However, this work deals
mainly with matching of two web services according to criteria like QoS or semantics.
It does not care about the matching of control flow between web services which is
important as we will show in this paper.

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 495–506, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

496 N. Ould Ahmed M’bareck and S. Tata

Our approach allows a dynamic binding of services to the flows and it consists, first,
providing a high-level description of process, second, abstracting the process behavior
using symbolic observation graphs (SOG for short) [Haddad et al., 2004] and third pro-
viding an efficient algorithm for SOG matching used for binding dynamically business
processes. The rest of this paper is organized as follows. Section 2 presents our running
example. Section 3 introduce the dynamic BPEL notion. In Section 4 we show how pro-
cess behaviors are abstracted using SOG. Section 5 is devoted to a matching algorithm.
Conclusion and perspectives are given in Section 6.

2 Our Motivating Scenarios

The example we present here involves two business partners: a client and a product
provider. Figure 1 presents a specification of the client’s BPEL behavior using Petri
net notation [van der Aalst, 1998]. First, the client sends an order for a product. Then
it receives a notification. If the notification is negative (i.e. the product is unavailable),
then the client looks for an alternative. Otherwise, first, the client receives the delivery.
Then, it sends the payment and uses its product. Finally, it evaluates the product.

SENDORDER

RECEIVENOTIF

RECEIVEPRODUCT

SENDPAYMENT
USE

PRODUCT

LOOK

ALTERNATIVE

EVALUATE

PRODUCT

.

Fig. 1. The client’s workflow

SENDNOTIF

COMPONENT1

HANDLEORDER

ASSEMBLE

COMPONENT2

SENDPRODUCT

RECPAYMENT

INVOICE

PAYMENT

PRODUCT

DATABASE UPDATE

CHECK STOCK

ANALYSIS

GET SUPPLIES

.

Fig. 2. The provider’s workflow

Figure 2 presents the provider’s BPEL behavior. First, the provider waits for an order
request. Then it checks the stock. After that, it notifies the client whether its order has
been taken into account. If the order was refused then the provider gets supplies. Other-
wise, it analyzes the order components and then it gets the components and assembles
them. After that, according to the type of the client, the provider can have two different
behaviors. If the client is faithful the provider sends the product and the invoice together

BPEL Behavioral Abstraction and Matching 497

and waits for the payment. Otherwise the provider sends the invoice, waits for the pay-
ment and then sends the product. Finally, the provider updates its database according
to the performed activities. Cooperative activities, represented by filled transitions in
Figure 1 and Figure 2, are the ones that send and/or receive data to/from partners that
are not known at the design time.

We assume that at the design time, the client and the provider do not know each
other. Indeed, the client does not know which provider will offer the required service
and the provider as well does not know who will use his services. Consequently, they
cannot describe their processes using BPEL and deploy them because BPEL requires a
static binding of services to the flows. In our example, we want to enable the client and
the provider to discover each other at the run time and then generate automatically a
traditional BPEL descriptions for each and deploy them.

3 Dynamic BPEL

Our objective is to enablepartners to describe their processes at the design time, even
if some parts of them are not known, and at the run time they bind the unknown parts
to discovered services. To reach this end, each business process must be abstracted,
published in certain registry. In addition a matching mechanism must be used to identify
partners and bind them at run time. For illustration, let us look at the previous example.
At the design time the client describes its BPEL process in which some parts are not
known (i.e. information about the actual provider). At the execution time he wants to
discover a provider and bind the unknown parts of his process to the discovered services.
As provider, the client means a process that receives an order, notifies, sends a product
and afterward receives the payment. The execution of these activities in this order is
important from the client point of view. Consequently, the he looks for a process that
satisfies these conditions. Indeed, in several cases the required partner is composed of
more than one activity. Also in several cases at the design time, the client does not know
which provider will use and the provider as well does not know who will use his service.
Therefore, these processes cannot be represented in BPEL because BPEL requires that
all partners are known and described at the design time. By dynamic BPEL, we mean
a BPEL document in which some partners are not known i.e. certain activities are not
associated to concrete web services. To do that, we propose here to describe processes
using dynamic BPEL, abstract dynamic BPEL using symbolic observation graphs (SOG
and finally perform the matching between SOGs to bind dynamically processes.

Figure 3 summarizes our approach. Given two dynamic BPEL we build, tanks to our
SOGConstructor, a SOG representation for each dynamic BPEL. Then the matchmaker
compares SOGs representation. Finally if the result is positive, our BPELGenerator
takes as input the dynamic BPELs description and constructs for each dynamic BPELs
a traditional BPEL that later can be executed by any BPEL engine.

Dynamic BPEL processes are described using traditional BPEL except the unknown
parts. To distinguish between these parts and the known ones, we add an element Part-
ner which is specified for each unknown portType. The name of this element is the same
as the name of the unknown portType and initially its value is unknown. This acts like a
formal parameter. Its actual value will be provided only after the matching process.

498 N. Ould Ahmed M’bareck and S. Tata

Fig. 3. Steps for BPEL generation

In our example the client does not know all parts of his workflow and so he describes
it as a dynamic BPEL. This description is given bellow. First the client sends an order
(SendOrder operation) but he does not know who will receive this order (ReceiveOrder
operation is not known). Then he waits for a notification (ReceiveNotif operation) but
he does not know who will send this notification (SendNotif operation is not known
too). Also, the client waits for a product reception and then he sends the payment (Re-
ceiveProduct and SendPayment are known). However, the client does not know who
will send the product and receives the payment (resp. the operation SendProduct and
ReceivePayment are not known).

<portType name="purchaseOrderPT">
<operation name="SendOrder">
<output message= "Order" />
</operation>
<operation name="ReceiveNotif">
<input message= "Notification" />
</operation>
<operation name= "ReceiveProduct">
<input message= "ProductDetail" />
</operation>
<operation name= "SendPayment">
<output message= "AccountInfo" />
</operation>

</portType>
<!-- The unknown operations -->
<portType name="ProviderPT_1" >
<partner name="ProviderPT_1" value="unknown" />
<operation name= "ReceiveOrder">

BPEL Behavioral Abstraction and Matching 499

<input name= "Order" />
</operation>
<operation name= "SendNotif">
<output name= "Notification" />
</operation>
<operation name= "SendProduct">
<output name= "ProductDetail" />
</operation>
<operation name= "ReceivePayment">
<input name= "AccountInfo" />
</operation>

</portType>

Once the portTypes (the known and the unknown ones) are described, we can use
them in the process description. The rest of dynamic BPEL description is the same
manner as for traditional BPEL. Bellow we give how the client dynamic BPEL looks
like. Note that we describe here only the operation that interact with external partners.

<process>
<variables> ... </variables>
<partnerLinks> ... </partnerLinks>
<sequence>
<invoke partnerLink = "purchasing"
portType = "purchaseOrderPT" operation= "SendOrder"
outputVariable= "POrder" />
<receive partnerLink = "purchasing"
portType = "ProviderPT_1" operation= "ReceiveOrder"
inputVariable= "POrder" />
<invoke partnerLink = "purchasing"
portType = "ProviderPT_1" operation= "SendNotif"
inputVariable= "Notification" />
<flow>
<receive partnerLink = "purchasing"
portType = "purchaseOrderPT" operation = "ReceiveNotif"
variable = "Notification" />

<invoke partnerLink = "purchasing"
portType = "ProviderPT_1" operation= "SendProduct"
outputVariable= "Product" />

</flow>
<receive partnerLink = "purchasing"
portType = "purchaseOrderPT" operation = "ReceiveProduct"
variable = "Product" />
<invoke partnerLink = "purchasing"
portType = "purchaseOrderPT" operation = "SendPayment"
variable = "AccountInfo" />
<receive partnerLink = "purchasing"
portType = "ProviderPT_1" operation = "ReceivePayment"
inputVariable= "AccountInfo" />

</sequence>
</process>

500 N. Ould Ahmed M’bareck and S. Tata

A client who wish to cooperate with the provider must support PlaceOrder (send
an order), RecNotif (receive a notification), RecOrder (receive the ordered product),
SendPayment (send payment) operations and sometimes it must support the RecInvoice
(receive the invoice) operation. For sake of space we do not give the description of all
these operations.
<!-- portType for the known operation -->
<portType name="OrderingPT">
<operation name= "HandleOrder">
<input name= "Order" />
</operation>
... ...

</portType>
<!-- portType for th unknown operation -->
<portType name="ClientPT_1" State="unknown">
<partner name="ClientPT_1" value="unknown" />
<operation name= "PlaceOrder">
<output name= "Order" />
</operation>
... ...

</portType>

The provider dynamic BPEL should looks like the description given bellow.
<process>
<sequence>
<invoke partnerLink = "purchasing"
portType = "ClientPT_1" operation= "PlaceOrder" />
<receive partnerLink = "purchasing"
portType = "OrderingPT" operation= "HandleOrder" />
<invoke partnerLink = "purchasing"
portType = "OrderingPT" operation= "SendNotif" />
<flow>
<receive partnerLink = "purchasing"
portType = "ClientPT_1" operation = "ReceiveNotif" />

<switch isFaithful>
<case "isFaithful=true">
<sequence>
<invoke partnerLink = "purchasing"
portType = "OrderingPT" operation= "SendProduct" />

<receive partnerLink = "purchasing"
portType = "ClientPT_1" operation = "ReceiveProduct" />

<invoke partnerLink = "purchasing"
portType = "ClientPT_1" operation= "SendPayment" />

<receive partnerLink = "purchasing"
portType = "OrderingPT" operation= "RecPayment" />

</sequence>
</case>
<case "isFaithful=false">

<invoke partnerLink = "purchasing"
portType = "OrderingPT" operation= "SendInvoice" />

...

BPEL Behavioral Abstraction and Matching 501

</case>
</switch>

</flow>
</sequence>

</process>

In the follow we give how we abstract and advertise BPEL behavior.

4 BPEL Behavior Abstraction and Advertisement

In this section we propose to abstract the behavior of a given dynamic BPEL with the
symbolic observation graph (SOG for short) [Haddad et al., 2004] and we present how
Ordered Binary Decision Diagram (OBDD) techniques [Bryant, 1986, Wegener, 2000]
can be used to advertise dynamic BPELabstractions into registries. Before we go through
the abstraction details, let us give these definitions.

Definition 4.1 (Wf-net). To model dynamic BPEL behavior, we use workflow nets
(Wf-nets) [van der Aalst, 1998] which is a specific form of Petri nets. In WF-nets, ac-
tivities (operations) are modeled by transitions, and dependencies (control flow) are
modeled by places and arcs. A WF-net has one source place and one sink place and all
its nodes should be on some path from source to sink. Let P and T be disjoint sets of
places and transitions respectively, the elements of P ∪ T are called nodes. A Petri net
W(P,T,Pre,Post) is a Wf-net if and only if :

– Pre ⊆ (P×T) is a finite set of arcs connecting places to transitions,
– Post ⊆ (T×P) is a finite set of arcs connecting transitions to places,
– there is one source place i ∈ P s.t. •i=∅ and one sink place o ∈ P s.t. o•=∅, and
– every node x ∈ P ∪ T is on a path from i to o.

The set of input (resp. output) places for a transition t is noted •t (resp. t•). The set of
transitions sharing a place p as output (resp. input) place is noted •p (resp. p•).

Definition 4.2 (dynamic BPEL behavioral language). Let σ be a sequence of transi-
tions (σ ∈ T ∗). The projection of σ on a set of transitions X ⊆ T (denoted by σ�X)
is the sequence obtained by removing from σ all transitions that do not belong to X .
A sequence σ = t1t2 . . . tn over transitions is said to be accepted if i ∈ •t1, o ∈ tn•
and σ can be executed by the BPEL engine. The language L(B) of a dynamic BPEL
behavior B is the set of all accepted sequences and the projection function is extended
to L as follows: L�X = {σ�X , σ ∈ L}.

In [Haddad et al., 2004], the authors have introduced the SOG as an abstraction of the
reachability marking graph of a given Petri net and showed that the verification of an
event-based formula of LTL \ X (LTL minus the next operator) on the SOG is equiv-
alent to the verification on the original reachability graph. To summarize, the building
of the SOG is guided by the set of the actions occurring in the formula. Such actions
are called observed while the other actions of the system are unobserved. Then, the
SOG is defined as a deterministic graph where each node is a set of markings linked
by unobserved sequences of actions and each arc is labeled with an observed transition.

502 N. Ould Ahmed M’bareck and S. Tata

Nodes of the SOG are called meta-states and may be represented and managed effi-
ciently by using OBDD techniques. Each marking of a meta-state is viewed as a vector
of boolean variables by choosing the appropriate variables describing the system (in
our case each place of the Wf-net will be represented by a boolean variable). Then the
set of marking in the meta-state is equivalent to the boolean function which returns
true iff the input vector corresponds to a reachable state (via the firing of a sequence of
unobserved transitions). The boolean expression associated with the function can now
be represented in a compact way by factorizing the multiple occurrences of the subex-
pression. Hence the final structure is a rooted directed acyclic graph (DAG) where the
subgraph rooted at each node corresponds to a subexpression and the root corresponds
to the function to be represented.

The benefit of OBDDs comes from the fact that a small OBDD can often represent
a huge set of states, and the ”symbolic” operations like the set operations (union, in-
clusion. . .) and the membership test are cheap as long as the OBDD is small. Equally
important are the operations associated to an event of the system and a set of states: the
subset of states for which this event is enable, the ”image” of this set obtained by the oc-
currence of the event and the ”preimage” of the set i.e. the set of states where the occur-
rence of this event leads to a state of the specified set. Generally, these latter algorithms
have a time complexity proportional to the size of the OBDD on which they are applied.
Thanks to the efficiency of OBDDs and the symbolic operations they supply, the SOG
approach allow to handle huge systems (more than 1030 reachable states) in a reason-
able time. In practice, this efficiency is optimal whenever the number of the observed
transitions is small with respect to the total number of transitions [Haddad et al., 2004,
van Noord, 2000].

We think that the SOG technique is suitable for abstracting dynamic BPEL behavior
for many reasons: First, by considering that the observed transitions are the coopera-
tive activities and the unobserved are the local ones, the SOG allows one to represent
the dynamic BPEL projected on the cooperative transitions i.e. the local behaviors are
hidden. The second reason is that such an abstraction is suitable for checking whether
two dynamic BPELs represented by their SOG can be interconnected. Moreover, given
an dynamic BPEL, its SOG is built once and it may still unchanged as long as the
changes on the model do not lead to a potential additional occurrence of a new activ-
ity. Finally, the reduced size of the SOG (in general) could be an advantage when one
plans to store and manage a big number of dynamic BPELs abstractions in the same
registry.

For sake of space, we do not give the SOG building algorithm, we refer the reader
to [Haddad et al., 2004] for more details about the SOG technique. Here, we use such
algorithm to construct the SOG of the client (Figure 1) and the SOG of the provider
(Figure 2). Figure 4 and Figure 5 illustrates these graphs respectively. Hence, the ad-
vertisement of BPEL will be done via its SOG. Even if, the size of the SOG is generally
small, one can represent this structure more compactly using again OBDD. In fact,
OBDD are quite often used to represent structures of graph viewed as matrices. The
following section will be devoted to the detail of the matching

BPEL Behavioral Abstraction and Matching 503

Fig. 4. The client’s observation graph Fig. 5. The provider’s observation graph

5 Dynamic BPEL Behavior Matching

As it can be seen from the example above, matching between two dynamic BPEL is a
real need. Indeed, in several cases the required partner is composed of more than one
service. The algorithm that we propose here deal with the matching of control flow.
This algorithm compares the structure of two dynamic BPEL

Figure 3 summarizes the matching procedure. In the beginning we suppose that we
have two dynamic BPEL. Thanks to our SOGConstructor we build SOG representation
for each dynamic BPEL. Then the matchmaker compares SOGs representation. Finally
if the result given by the matchmaker is positive, our BPELGenerator takes as input
dynamic BPELs description and constructs two new standard BPELs. The later can be
executed by BPEL engine like Orchestra or other.

Given a Wf-net W1 and a registry of potential partners for W1, we discuss in this
section the selection criteria making a choice of a Wf-net W2 in the registry as a partner
of W1 be an effective one. Such criteria are based on the behavior of W1 i.e. its behavior
on the cooperative transitions, which must match with the observable behavior of W2.
Before presenting the matching conditions, let us introduce some definitions.

Definition 5.1 (Transition). Each transition t of Wf-net W is represented by a tuple
t = 〈name, guard, type, msg〉 s.t.

– the name attribute of t, denoted by t.name, is the label associated to t,
– the guard attribute is boolean expression. The transition is enable iff the input

places are sufficiently marked and t.guard = true,
– the type attribute of t, denoted by t.type, indicates that t is supposed to receive a

message (type = 1), to send a message (type = 0), to receive and after it sends a
message (type = 10) or to send and after it receives a message (01).

– the msg attribute of t, denoted by t.msg, represents the semantic description of the
message (using a common ontology) t has to send or to receive.

This section is organized in two parts. The first one deals with checking the possibility
of cooperation between two SOGs of two dynamic BPELs. In the second one we treat
the question of constructing a BPEL description from dynamic BPEL and the result of
matching.

504 N. Ould Ahmed M’bareck and S. Tata

5.2 Checking Cooperation Possibility

In order to check whether there exists a correspondence between two cooperative transi-
tions t1 and t2 belonging to two different Wf-nets, we need to compare these transitions
with respect to their attributes. Two attributes are taken in account: type and msg. For
instance, if t1 is a reception transition then t2 must be a sending transition and both
transitions have to match on the semantic of the exchanged message. We denote by
t1.msg ≡ t2.msg the fact that messages of t1 and t2 deal with the same data type and
semantics. Now, if t1.type = ¬(t2.type) and t1.msg ≡ t2.msg, then we say that t1
matches with t2 (and vice versa) and denote this relation by t1 ∼ t2.

The following hypothesis is important for the remaining part of the paper. It says that,
within the same Wf-net W1, if a cooperative transition occur in a Wf-net more than once
then these occurrences are executed in an exclusive way (c.f. transitions PRODUCT
and PAYMENT of Figure 2). In this case we denote by {t} the set of occurrences of a
cooperative transition t in a Wf-net. Let 〈W1, m1〉 be a marked Wf-net and let T1 be its
set of cooperative transitions. Then ∀t1 ∈ T1, ∀σ = αt1α

′t1, where α and α′ ∈ T ∗
1 ,

then σ �∈ L(W1, m1). (H)

The Cooperation Candidate Property. In this section, we define the cooperation
candidate property: an asymmetric property to be checked between two given marked
Wf-nets. This property will help us to define formally the fact that a Wf-net W1 can
cooperate with a given Wf-net W2. For this issue, we need to introduce a renam-
ing procedure LW1 which operates on W2 via a possible renaming of its cooperative
transitions.

Definition 5.2 (Renaming procedure). Let W1 and W2 be two Wf-nets and let T1 and
T2 be their sets of cooperative transitions. The renaming procedure LW1 associated to
W1 is defined as follows:

LW1(W2) = ∀t2 ∈ T2 if ∃t1 ∈ T1 s.t. t1 ∼ t2 then t2.name := t1.name.

Now, 〈W2, m2〉, a marked workflow, is said to be a cooperation candidate for 〈W1, m1〉
if for any firing sequence enabled from 〈W1, m1〉, there exists a firing sequence en-
abled from 〈LW1(W2), m2〉, which both have the same projection on the cooperative
transitions (of W1). In the following, we define such a property in terms of inclusion of
projected languages.

Definition 5.3 (cooperation candidate property). Let 〈W1, m1〉 and 〈W2, m2〉 be
two marked Wf-nets: 〈W2, m2〉 is said to be a candidate for cooperation with 〈W1, m1〉
iff L�T1(〈W1, m1〉) ⊆ L�T2(〈LW1 (W2), m2〉).

Note that if 〈W1, m1〉 and 〈W2, m2〉 have the same observable language then the coop-
eration candidate property holds mutually.

An Algorithm for Checking the Cooperation Candidate Property. The coopera-
tion candidate property is expressed as an inclusion relation between the languages
of two Wf-nets once projected on the cooperative transitions. Checking such property

BPEL Behavioral Abstraction and Matching 505

represents the main difficulty of our approach. A naive test of this relation could dras-
tically limit the interest of our approach. Here, we propose to use the SOG for this
purpose. In fact, the local moves induced by the non cooperative transitions are hence
abstracted (unobserved) since they are not directly involved in the inclusion test. The
Wf-net W2 would be an effective candidate to cooperate with W1 if the language
induced by the SOG of W1 is included in that induced by SOG of LW1(W2). To
check such an inclusion, the SOG of (W1, m1) is synchronized against the SOG of
(LW1(W2), m2).

The inclusion test Algorithm 1 works on the fly i.e. the building of the synchronized
product can be stopped at any moment as soon as the inclusion is proved unsatisfied.
When the synchronized product is entirely built, one deduce that the inclusion holds (as
long as the guards of the cooperative transitions are satisfied). The parameters of this
algorithm are the SOGs SoG1 = 〈s0, S1, E1〉 and SoG2 = 〈s′0, S′

1, E
′
1〉 of (W1, m1)

and (LW1(W2), m2) respectively. s0 (resp. s′0) is the initial meta-state of SoG1 (resp.
SoG2), S1 (resp. S2) its set of meta-states and E1 (resp. E2) its set of arcs.

Algorithm 1. (L(〈s0, S1, E1〉) ⊆ L(〈s′0, S2, E2〉))?
1: State s1, s2, s′

1, s′
2;

2: Set of transition f1, f2;
3: stack st(〈State, State, T ransitions〉);
4: s1 = s0;
5: s2 = s′

0;
6: f1 = Out(s0),
7: f2 = Out(s′

0);
8: if f1 �= ∅ and f2 �= ∅ then
9: if (Names(f1) �⊆ Names(f2)) then

10: return false;
11: end if
12: end if
13: Synch = {〈s1, s2〉};
14: st.Push(〈s1, s2, f1〉);

15: repeat
16: st.Pop(〈s1, s2, f1〉);
17: for t ∈ f1 do
18: s′

1 = Img(s1, t); s′
2 = Img(s2, t)

19: if 〈s′
1, s

′
2〉 �∈ Synch then

20: f1 = Out(s′
1);f2 = Out(s′

2);
21: if f1 �= ∅ and f2 �= ∅ then
22: if (Names(f1) �⊆ Names(f2))

then
23: return false;
24: end if
25: Synch = Synch ∪ {〈s′

1, s
′
2〉};

26: st.Push(〈s′
1, s

′
2, f1〉);

27: end if
28: end if
29: end for
30: until st is empty;
31: return true;

The data structures used by Algorithm 1 are a table Synch and a stack st. Synch is
used to store the visited states of the synchronized product. An item of st is a tuple
〈s1, s2, f1〉 composed of a reachable meta-state of (W1, m1), a reachable meta-state of
(LW1(W2), m2) and a set of cooperative transitions enabled from both nodes.

Moreover, three functions are used in this algorithm. The two first ones, Out() and
Img(), collect information associated to the SOG structure. The first one is applied to
a node of the SOG and return the set transitions labeling its output edges. The second
function is applied to a state s1 and a transition t (enabled in this node) and returns the
reached state. The third function is Names() whose parameters are a set of transitions f
returns the set of their names.

506 N. Ould Ahmed M’bareck and S. Tata

5.4 BPEL Generation

Once the matching is done, we can generate a BPEL standard description for each
SOG, of course if the result of the matching is positive . For instance, in our example
the matching between the client SOG and the provider one is positive and consequently
we can fill the values of the unknown portType in both of them.

<partner name="ClientPT_1" value="purchaseOrderPT">
<partner name="ProviderPT_1" value="OrderingPT">

In the generated BPEL description for the client we will have the OrderingPT in-
stead of ProviderPT 1. Consequently, HandleOrder, SendNotif, SendProduct and Rec-
Payment operations of OrderingPT will respectively replace ReceiveOrder, SendNotif,
SendProduct and ReceivePayment of ProviderPT 1. Also, in the generated BPEL de-
scription for the provider the ClientPT 1 will be replaced by purchaseOrderPT. For
sake of space do not give the whole client and provider BPEL descriptions.

6 Conclusion and Perspectives

In this paper, we have presented an approach that enable dynamic binding for BPEL
process that is done in three steps. First, we provide a high-level description for the
process that we called dynamic BPEL description. In this description some parts of the
process might not be known at the design time. Then the Business process behaviors are
abstracted into symbolic observation graph using the ordered binary decision diagram
technique. Finally, we have presented an efficient algorithm for symbolic observation
graph matching. If the result of the matching is positive, we generate a traditional BPEL
description for each dynamic BPEL process.

Since the matching is currently based on the process behavior, we are going to work
on adding semantic facilities in order to enhance the matching. This ongoing work will
lead to the development of a semantic registry for dynamic BPEL processes.

References

[Bryant, 1986] Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691.

[Haddad et al., 2004] Haddad, S., Ilié, J.-M., and Klai, K. (2004). Design and evaluation of a
symbolic and abstraction-based model checker. In Wang, F., editor, ATVA, volume 3299 of
LNCS. Springer.

[Karastoyanova et al., 2005] Karastoyanova, D., Houspanossian, A., Cilia, M., Leymann, F., and
Buchmann, A. (2005). Extending bpel for run time adaptability. edoc, 0:15–26.

[van der Aalst, 1998] van der Aalst, W. M. P. (1998). The application of petri nets to workflow
management. Journal of Circuits, Systems, and Computers, 8(1):21–66.

[van Noord, 2000] van Noord, G. (2000). Treatment of epsilon moves in subset construction.
Computational Linguistics, 26(1):61–76.

[Verma et al., 2004] Verma, K., Akkiraju, R., Goodwin, R., Doshi, P., and Lee, J. (2004). On
accommodating inter service dependencies in web process flow composition. AAAI Spring,
pages 37–43.

[Wegener, 2000] Wegener, I. (2000). Branching programs and binary decision diagrams: theory
and applications. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

Author Index

Alevizos, Charalampos C. 435
Altintas, N. Ilker 193
Ardagna, Danilo 375
Aslam, Muhammad Ahtisham 400
Auer, Sören 400

Bae, Hyerim 65
Bae, Joonsoo 65, 141
Bastarrica, Maria Cecilia 483
Battle, Steven 431
Bauer, Thomas 217
Baumgärtel, Hartwig 217
Bazijanec, Bettina 285
Berre, Arne-Jørgen 275
Bhuiyan, Moshiur 416
Boudjlida, Nacer 231, 348
Burmeister, Birgit 217

Cardoso, J. 117
Castano, Silvana 336
Castellanos, Malu 77
Castells, Pablo 459
Caverlee, James 141
Cetin, Semih 193
Charoy, François 205
Chen, Jinjun 363
Corella, Miguel Ángel 459

d’Amato, Claudia 471
Dassisti, Michele 249
Davenport, Tom 3
Dell’Armi, Tina 153
Diamantini, Claudia 348
Domingue, John 431
Dustdar, Schahram 237

Eder, Johann 323
Elvesæter, Brian 275

Féniès, Pierre 311
Ferrara, Alfio 336

Ghose, Aditya 416
Giachetti, Ronald E. 261
Goedertier, Stijn 5

Gourgand, Michel 311
Guabtni, Adnene 205
Gualtieri, Andrea 153
Günther, Christian W. 81

Ha, Byung-Hyun 65
Han, Seung-Kyun 387
Hawryszkiewycz, Igor 15
Herbst, Joachim 181
Herrmann, Michael 400
Hurtado, Carlos 483

Joncheere, Niels 365
Jung, Jae-Yoon 387

Karakostas, Bill 435
Karni, Reuven 45
Kindler, Ekkart 105
Kittl, Burkhard 237
Koehler, Jana 35
Koliadis, George 416
Krishna, Aneesh 416
Kuropka, Dominik 447
Küster, Jochen M. 35

Lauer, Markus 93
Lee, Kangchan 387
Leone, Nicola 153
Levy, David 237
Limyr, Andreas 275
Lincoln, Maya 45
Liu, Ling 141
Lucchini, Silvia 375

Mansar, Selma 3
Marketos, Gerasimos 129
Martin, David 431
Mendling, Jan 55, 117
Meyer, Harald 447
Mirandola, Raffaela 375
Montanelli, Stefano 336
Müller, Dominic 181

Neple, Tor 275
Neumann, G. 117
Neves, Eduardo 297

508 Author Index

Ould Ahmed M’bareck, Nomane 495

Panetto, Hervé 231, 249
Park, Jonghun 387
Pernici, Barbara 375
Pesic, M. 169
Pfadenhauer, Konrad 237
Pichler, Horst 323
Pinheiro, Wallace A. 297

Reichert, Manfred 93, 167, 181
Reijers, Hajo A. 3, 65, 117
Rodier, Sophie 311
Rodrigues Nt., José A. 297
Roman, Dumitru 431
Rosemann, Michael 3
Rubin, Vladimir 105
Ryndina, Ksenia 35

Saccà, Domenico 77
Schäfer, Wilhelm 105
Shen, Jun 363, 400
Sheth, Amit 431
Simon, Carlo 55
Soanes, Michael 25
Solmaz, Remzi 193
Souza, Jano Moreira de 297
Staab, Steffen 471
Steiert, Hans-Peter 217

Tata, Samir 495
Theodoridis, Yannis 129
Turowski, Klaus 285
Tursi, Angela 249

Vaisman, Alejandro 483
Valdes Faura, Miguel 205
van der Aalst, Wil M.P. 81, 169
Vanderperren, Wim 365
Van Der Straeten, Ragnhild 365
Vanthienen, Jan 5
Verma, Kunal 167
Vielgut, Stefan 323
Vranesevic, Aleksandar 416

Wasser, Avi 45
Weber, Barbara 93
Weijters, Ton 77
Wild, Werner 93
Wombacher, Andreas 167

Xexéo, Geraldo 297

Yan, Hua 141
Yan, Jun 363
Yang, Yun 363

Zimbrão, Geraldo 297
Zorgios, Yannis 435

	Frontmatter
	Workshop on Business Process Design (BPD 2006)
	Preface
	Designing Compliant Business Processes with Obligations and Permissions
	Design Methods for Collaborative Emergent Processes
	Process Design Strategies to Address Breadth and Depth Complexity
	Improving Business Process Models with Reference Models in Business-Driven Development
	ERP Reference Process Models: From Generic to Specific
	Business Process Design by View Integration
	An Approximate Analysis of Expected Cycle Time in Business Process Execution

	Workshop on Business Process Intelligence (BPI 2006)
	Preface
	A Generic Import Framework for Process Event Logs
	Improving Exception Handling by Discovering Change Dependencies in Adaptive Process Management Systems
	Process Mining and Petri Net Synthesis
	A Discourse on Complexity of Process Models
	Measuring Performance in the Retail Industry (Position Paper)
	Process Mining by Measuring Process Block Similarity
	Process Representation and Reasoning Using a Logic Formalism with Object-Oriented Features

	Workshop on Dynamic Process Management (DPM 2006)
	Preface
	A Declarative Approach for Flexible Business Processes Management
	Flexibility of Data-Driven Process Structures
	Business Rules Segregation for Dynamic Process Management with an Aspect-Oriented Framework
	A Dynamic Workflow Management System for Coordination of Cooperative Activities
	Agile Processes Through Goal- and Context-Oriented Business Process Modeling

	Workshop on Enterprise and Networked Enterprises Interoperability (ENEI 2006)
	Preface

	Session 1: Enterprise Systems Interoperability Issues
	Shop Floor Information Management and SOA
	Product-Driven Enterprise Interoperability for Manufacturing Systems Integration
	Understanding Interdependence in Enterprise Systems: A Model and Measurement Formalism

	Session 2: Model-Based Approach for Enterprise Interoperability
	Semaphore -- A Model-Based Semantic Mapping Framework
	B2B Protocol Construction as a Basis for Integration Architecture Configuration
	A P2P Approach for Business Process Modelling and Reuse

	Session 3: Ontology-Based Approach for Enterprise Interoperability
	Interoperable and Multi-flow Software Environment: Application to Health Care Supply Chain
	An Architecture for Proactive Timed Web Service Compositions
	Ontology Knowledge Spaces for Semantic Collaboration in Networked Enterprises
	About Semantic Enrichment of Strategic Data Models as Part of Enterprise Models

	Workshop on Grid and Peer-to-Peer Based Workflows (GPWW 2006)
	Preface
	Requirements for a Workflow System for Grid Service Composition
	Web Services Composition in Autonomic Grid Environments
	Event-Based Peer-to-Peer Process Enactment for Ubiquitous Web Service Devices
	Expressing Business Process Models as OWL-S Ontologies
	Combining {\itshape i}* and BPMN for Business Process Model Lifecycle Management

	Advances in Semantics for Web Services (semantics4ws 2006)
	Preface
	The Semantics of Business Service Orchestration
	Requirements for Automated Service Composition
	Semi-automatic Semantic-Based Web Service Classification
	Modeling, Matching and Ranking Services Based on Constraint Hardness
	Version Management in Semantic Web Services Using OWL-S
	BPEL Behavioral Abstraction and Matching

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

