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Preface

This volume contains the lecture notes of the Summer School “Reasoning Web
2006” (http://reasoningweb.org), which took place on September 4-6, 2006
in Lisbon and was hosted by the New University of Lisbon (Universidade Nova
de Lisboa).

Like the first “Reasoning Web” Summer School (cf. LNCS 3564), which took
place in 2005, the Summer School “Reasoning Web 2006” was organized by
the Network of Excellence REWERSE, “Reasoning on the Web with Rules and
Semantics” (http://rewerse.net), its member “Centre of Artificial Intelligence
(CENTRIA)” at the New University of Lisbon being responsible for the local
organization.

Reasoning is one of the central issues in Semantic Web research and develop-
ment. Indeed, the Semantic Web aims at enhancing today’s Web with semantics-
carrying “meta-data” and reasoning methods. The Semantic Web is a very active
field of research and development, which involves both academia and industry.

The “Reasoning Web” Summer Schools provide a yearly forum for presenting
and discussing recent developments in the “Semantic Web” field. They have a
specical focus on applied reasoning and on applications. They are primarily, but
not only, intended for young researchers, especially PhD students and young
professionals involved in research and/or development in the “Semantic Web”
field.

The programme of the Summer School “Reasoning Web 2006” cover the
following issues:

– Semantic Web Query Languages
– Semantic Web Rules and Ontologies
– Bioinformatics and Medical Ontologies
– Industrial Aspects

Semantic Web Query Languages. Query languages are expected to become as
important on the Web and on the Semantic Web as they already are in data-
bases. Indeed, many practical applications on today’s Web, and many of the
Semantic Web applications that are expected to emerge, can be seen as in-
formation systems. Query languages ease the retrieval of data from complex
databases or information systems. Query languages for the Web and the Se-
mantic Web are an active area of research: in April 2006 the query language
SPARQL, a query language for the Resource Description Framework RDF, at-
tained the status of a “W3C Candidate Recommendation” (cf. http://www.w3.
org/TR/rdf-sparql-query/); since 2004 a plethora of approaches to querying
RDF have been proposed. The Summer School “Reasoning Web 2006” paid a
tribute to this by including in its programme firstly a presentation of SPARQL
by Bijan Parsia, a member of the “W3C RDF Data Access Working Group”
which develops SPARQL, and secondly a comparative overview by Tim Furche,
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Benedikt Linse, Dimitris Plexousakis, Georg Gottlob, and myself of selected
query languages for RDF. This overview deepens and completes a first compar-
ison presented at the Summer School “ReasoningWeb 2005”, which considered
almost all query languages proposed for RDF but in a more superficial manner.

Semantic Web Rules and Ontologies. Rule-based formalisms currently receive
considerable attention from Semantic Web researchers and developers: The W3C,
for example, launched in November 2005 a “Rule Interchange Format (RIF)”
Working Group (cf. http://www.w3.org/2005/rules/) and many researchers
are now investigating how rule-based reasoning can be applied with XML, RDF,
and/or OWL data. The Summer School “Reasoning Web 2006” therefore of-
fered four complementary lectures on the subject. Two of them, given by Ric-
cardo Rosati and by Thomas Eiter, Giovambattista Ianni, Axel Polleres, Roman
Schindlauer, and Hans Tompits, respectively presented recent approaches to rule-
based reasoning with ontologies. A further lecture by Silvie Spreeuwenberg and
Rik Gerrits was devoted to discussing the commonalities and the differences of
“Business Rules” and “Semantic Web Rules”. A fourth and last lecture on rule-
based formalisms for the Semantic Web by Uwe Aßmann, Jendrik Johannes,
Jakob Henriksson, and Ilie Savga showed how modern software composition
methods can be applied to Semantic Web rule languages.

Bioinformatics and Medical Ontologies. Bioinformatics and Medicine are a pre-
mier application field of Semantic Web methods. For this reason, Semantic Web
researchers and developers can learn much from Semantic Web applications in
these fields. The Summer School “Reasoning Web 2006” therefore offered three
complementary lectures on Bioinformatics and Medical Ontologies: A first lec-
ture by Alan Rector and Jeremy Rogers introduced the representation of medical
concepts in the GALEN ontology; a second lecture by Michael Schroeder and
Patrick Lambrix described a basis for a “Semantic Web for the Life Sciences”,
and a third lecture by Ludwig Krippahl was devoted to the integration of Web
data in the prediction of the’ structures and functions of proteins.

Industrial Aspects. Finally, the Summer School “Reasoning Web 2006” offered
a lecture by Alain Léger, Johannes Heinecke, Lyndon J.B. Nixon, Pavel Shvaiko,
Jean Charlet, Paola Hobson, and François Goasdoué on an industrial perspective
of the Semantic Web.

Many persons contributed towards making the Summer School “Reasoning
Web 2006” possible: First and foremost, the above mentioned lecturers; sec-
ond the local organizers, in particular Carlos Viegas Damásio from the New
University of Lisbon; and finally the programme committee consisting of Pedro
Barahona, New University of Lisbon, Enrico Franconi, Free University of Bozen-
Bolzano, Nicola Henze, University of Hannover, and Ulrike Sattler, University
of Manchester, who all helped me in selecting the Summer School lectures and
assessing their quality. Ulrike Sattler deserves a special mention for having col-
lected the lecture notes and prepared this book. I would also like to mention Jan
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Ma�luszyński from the University of Linköping, and Norbert Eisinger from the
University of Munich, coordinator and deputy coordinator of the REWERSE
Working Group “Education and Training” on behalf of which the “Reasoning
Web” Summer Schools are run.

I thank all of them warmly for their work, their dedication, and also for their
lasting patience, which, I am afraid, was tried again and again during the eight
months leading up to the summer school.

June 2006 Franco̧is Bry
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RDF Querying:
Language Constructs and Evaluation Methods
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Abstract. This article is firstly an introduction into query languages
for the Semantic Web, secondly an in-depth comparison of the languages
introduced. Only RDF query languages are considered because, as of
the writing of this paper, query languages for other Semantic Web data
modeling formalisms, especially OWL, are still an open research issue,
and only a very small number of, furthermore incomplete, proposals for
querying Semantic Web data modeled after other formalisms than RDF
exist. The limitation to a few RDF query languages is motivated both
by the objective of an in-depth comparison of the languages addressed
and by space limitations. During the three years before the writing of
this article, more than three dozen proposals for RDF query languages
have been published! Not only such a large number, but also the often
immature nature of the proposals makes the focus on few, but represen-
tative languages a necessary condition for a non-trivial comparison.

For this article, the following RDF query languages have been, admit-
tedly subjectively, selected: Firstly, the “relational” or “pattern-based”
query languages SPARQL, RQL, TRIPLE, and Xcerpt; secondly the
reactive rule query language Algae; thirdly and last the “navigational
access” query language Versa. Although subjective, this choice is ar-
guably a good coverage of the diverse language paradigms considered
for querying RDF data. It is the authors’ hope and expectation, that
this comparison will motivate and trigger further similar studies, thus
completing the present article and overcoming its limitation.

P. Barahona et al. (Eds.): Reasoning Web 2006, LNCS 4126, pp. 1–52, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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1 Introduction

Query Answering on the Semantic Web

Query answering is as central to the Semantic Web as it is to the conventional
Web. Indeed, the Web as well as the emerging Semantic Web can be seen as
information systems; and query answering is an essential functionality of any
information system.

The Semantic Web is a research and development endeavor aiming at over-
coming limitations of today’s Web. It has has been described as follows by W3C
founder Tim Berners-Lee, Jim Hendler, and Ora Lassila:

“The Semantic Web will bring structure to the meaningful content of
Web pages, creating an environment where software agents roaming from
page to page can readily carry out sophisticated tasks for users.” [16]

In the Semantic Web, conventional Web data (usually represented in (X)HTML
or other XML formats) is enriched by meta-data (represented, e.g., in RDF,
Topic Maps, OWL) specifying the “meaning” of other data and allowing Web-
based systems to take advantage of “intelligent” reasoning capabilities.

Query answering on the Semantic Web might be seen as more complex than
querying on the conventional Web because the “meaning” conveyed by meta-data
has to be properly “understood” and processed. In particular, query languages
for RDF may convey RDF/S’s semantics as expressed, e.g., by RDF type triples.

Focus of this Article

This article is

1. an introduction into query languages for the Semantic Web;
2. an in-depth comparison of the languages introduced along prominent lan-

guage constructs and concepts.

Only RDF query languages are considered in this article. The reason for this is,
that as of the writing of this paper, query languages for other Semantic Web
data modeling formalisms, especially OWL, still are an open research issue, and
only a very small number of, furthermore incomplete, proposals for querying
Semantic Web data modeled after other formalisms than RDF are known.

Furthermore, only a few RDF query languages are considered in this article.
This limitation is motivated both by the objective of an in-depth comparison of
the languages addressed and by space limitations. During the three years before
the writing of this article, more than three dozen proposals for RDF query
languages have been published! Not only such a large number, but also the often
immature nature of the proposals makes the focus on few, but representative
languages a necessary condition for a non-trivial comparison.

In the spirit of a practical introduction into these query languages, we have
taken an example-centered approach. We believe that this is advantageous to
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the reader to quickly gain an impression of the language and constructs. Fur-
thermore, a more formal treatment of the languages is impeded by the lack
of (published) formal semantics. In Section 5, however, different semantics for
interesting language constructs are addressed and compared in select cases.

This article builds upon and complements the survey [5] of Semantic Web
query languages co-authored in 2005 by some of the authors of the present ar-
ticle.1 While the focus of the 2005 survey has been a complete, but therefore
necessarily somewhat shallow coverage of Semantic Web query languages, in-
cluding on the one hand query languages for Topic Maps and on the other hand
all known “dialectal” variations of RDF query languages. In contrast, the present
article is focused on an in-depth comparison of a few selected RDF query lan-
guages that the authors consider representative. Although building upon the
survey [5], this article is self-contained.

At least the first part, of the article is mostly of an introductory nature. We
believe, however, that also researchers and scientists already acquainted with
RDF query languages can benefit from the presented material. This applies
particularly to the comparison of language constructs and evaluation methods
in the second part. We hope that the direct comparisons reveal choices that
language designers face when deciding which constructs to support in which
way, and that language users face when deciding which languages are suitable
for their particular needs.

Language Selection and Order

This article aims at introducing from the perspective of the authors interesting
and representative selection of query languages proposed for RDF:

– Firstly, the “relational” or “pattern-based” query languages SPARQL, RQL,
TRIPLE, and Xcerpt (with its visual “twin” visXcerpt).

– Secondly, the “reactive rule” query language Algae.
– Thirdly, the “navigational access” query language Versa.

Although incomplete and admittedly subjective, this choice can be seen as a
good coverage of the diverse language paradigms considered for querying RDF
data.

It is the authors’ hope and expectation that this comparison will motivate
further similar studies that complete the present article and overcome its limi-
tation. It is also the authors’ hope that this article will provide Semantic Web
practitioners and researchers alike with a good introduction into query answer-
ing on the Semantic Web even though it does not address all query languages
proposed for the Semantic Web.

Structure of this Article

The following three questions are at the heart of this article and give it its
structure:
1 Sections 2 and 3 are shortend versions of corresponding sections of [5].
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1. what are the core paradigms of each query language,
2. what language constructs do different languages offer to solve tasks such as

path traversal, optional selection, or grouping,
3. how are they realized?

In Section 2, the RDF/S data model, a running example, the RDF/S seman-
tics and serialization formats are introduced. Section 3 begins by presenting a
categorization of Semantic Web queries and sample queries for each category.
Subsequently, in Section 4 the RDF query languages selected are introduced—
grouped according to their families, i.e., “relational” or “pattern-based”, “reac-
tive rule” and “navigational access”. For each language considered, some of the
sample queries are formulated. For the sake of conciseness and simplicity, not all
sample queries are expressed in each language considered. In Section 5 a sum-
mary and comparison of language features observable and desirable for RDF
query languages is given. Section 6 examines evaluation methods of Semantic
Web queries. Section 7 concludes this survey.

2 A Brief Introduction to RDF and RDFS

2.1 Data Model

RDF [10, 59] data are sets of “triples” or “statements” of the form (Subject,
Property, Object). RDF data are commonly seen as directed graphs the nodes
of which are statement’s subjects and objects and the arcs of which correspond
to statement’s properties, i.e., an arc relates a statement’s subject with the
statement’s object. Properties are also called “predicates”. Nodes (i.e., subjects
and objects) are either

1. labeled by URIs describing Web resources,
2. or labeled by literals, i.e., scalar data such as strings or numbers,
3. or are unlabeled and called anonymous or “blank nodes”.

Blank nodes are commonly used to group or “aggregate” properties. Specific
properties are predefined in the RDF and RDFS recommendations [21, 53, 59,
69], e.g., rdf:type for specifying the type of resources, rdfs:subClassOf for specify-
ing class-subclass relationships between subjects/objects, and rdfs:subPropertyOf
for specifying property-subproperty relationships between properties. Further-
more, RDFS has “meta-classes”, e.g., rdfs:Class, the class of all classes, and
rdf:Property, the class of all properties.2

RDFS [21] allows one to define so-called “RDF Schemas” or “ontologies”,
similar to object-oriented data models. The inheritance model of RDFS exhibits
the following peculiarities:

1. resources can be classified in different classes that are not related in the class
hierarchy,

2 This survey tries to use self-explanatory prefixes for namespaces where possible.
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2. the class hierarchy can be cyclic so that all classes on the cycle are “subclass
equivalent”,

3. properties are first-class objects, and
4. RDF does not describe which properties can be associated with a class, but

instead the domain and range of a property.

Based on an RDFS schema, “inference rules” can be specified, for instance the
transitivity of the class hierarchy, or the type of an untyped resource that has a
property associated with a known domain.

RDF can be serialized in various formats, the most frequently used being
(RDF/) XML. Early approaches to RDF serialization have raised considerable
criticism due to their complexity. As a consequence, a surprisingly large number
of RDF serializations have been proposed, cf. [26] for a detailed survey.

2.2 Running Example: Classification-Based Book Recommender

In the following, queries in a simple book recommender system describing vari-
ous properties and relationships between books are considered as running ex-
amples.3 The recommender system describes properties of and relationships
between books. It consists of a hierarchy (or ontology) of the book categories
Writing, Novel, Essay, Historical Novel, and Historical Essay, and two books The
First Man in Rome (a Historical Novel authored by Colleen McCullough) and
Bellum Civile (a Historical Essay authored by Julius Caesar and Aulus Hirtius,
and translated by J.M. Carter). Figure 1 depicts these data as a (simplified)
RDF graph [21, 59, 63]. Note in particular that a Historical Novel is both, a
Novel and an Essay, and that books may optionally have translators, as is the
case for Bellum Civile.

The simple ontology in the book recommender system only makes use of the
subsumption (or “is-a-kind-of”) relation rdfs:subClassOf and the instance (or “is-
a”) relation rdf:type. This simple and small ontology is sufficient to illustrate the
most important aspects of RDF query languages.

The RDF representation of the sample data refers to the “simple datatypes” of
XML Schema [17] for scalar data: Book titles and authors’ names are “strings”,
(untyped or typed as xsd:string), publication years of books are “Gregorian
years”, xsd:gYear. The sample data are assumed to be accessible at the URI
http://example.org/books#. Where useful, e.g, when referencing the vocabu-
lary defined in the ontology part of the data, this URL is associated with the
prefix books.

Representation of the Sample Data in RDF. The RDF representation of
the book recommender system directly corresponds to the simplified RDF graph
in Fig. 1. It is given here in the Turtle serialization [7].

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

3 The same example is used in [5].
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The First Man 
in Rome

Julius Caesar

Colleen 
McCullough

J. M. Carter

Aulus Hirtius

_:b1

translator

author

Writing

NovelEssay

Historical 
Novel

Historical 
Essay

foaf:Person
rdfs:domain

rdfs:domain rdfs:range

rdfs:range

_:b2 author

author

translator foaf:name

author

title

_:p1

_:p2

_:p3

_:p4

foaf:name

foaf:name

foaf:name

1990

year

Bellum Civile

title

Class

Property (gregorian) Year Literal “is-a” Relation (rdf:type)

“is-a-kind-of” Relation 
(rdfs:subClassOf)

String LiteralResource

Fig. 1. Sample Data: representation as a (simplified) RDF graph

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix foaf: <http://xmlns.org/foaf/0.1/> .
:Writing a rdfs:Class ; rdfs:label "Novel" .
:Novel a rdfs:Class ; rdfs:label "Novel" ;

rdfs:subClassOf :Writing .
:Essay a rdfs:Class ; rdfs:label "Essay" ;

rdfs:subClassOf :Writing .
:Historical_Essay a rdfs:Class ;

rdfs:label "Historical Essay"; rdfs:subClassOf :Essay.
:Historical_Novel a rdfs:Class ;

rdfs:label "Historical Novel" ;
rdfs:subClassOf :Novel ; rdfs:subClassOf :Essay .

:author a rdf:Property ;
rdfs:domain :Writing ; rdfs:range foaf:Person .

:translator a rdf:Property ;
rdfs:domain :Writing ; rdfs:range foaf:Person .

_:b1 a :Historical_Novel ;
:title "The First Man in Rome" ;
:year "1990"^^xsd:gYear ;
:author [foaf:name "Colleen McCullough"] .

_:b2 a :Historical_Essay ;
:title "Bellum Civile" ;
:author [foaf:name "Julius Caesar"] ;
:author [foaf:name "Aulus Hirtius"] ;
:translator [foaf:name "J. M. Carter"] .
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Books, authors, and translators are represented by blank nodes without iden-
tifiers, or with temporary identifiers indicated by the prefix “ :”.

2.3 Semantics

The meaning of RDF data (e.g., what means “book”?) cannot be fully under-
stood by applications and is interpreted in different ways also by human readers.
Naturally, it depends on social, cultural, temporal and other types of context
information. However, RDF/S allow to specify part of the semantics of applica-
tions (e.g., “a book might have an author”).

As is common practice for declarative languages, the semantics of RDF/S is
specified in terms of a model theory [39, 53]. RDF applications should be able to
derive information using the inference rules for basic RDF, while only schema-
aware applications are expected to take into account information provided by
RDFS inference rules.

3 Sample Queries

The RDF query languages considered in this article are illustrated and illustrated
using five different types of queries against the sample data.4 This categorization
is inspired by [67] and [34].

Selection queries simply retrieve parts of the data based on its content, struc-
ture, or position. The first query is thus:

Query 1. “Select all Essays together with their authors (i.e. author items and
corresponding names)”

Extraction queries extract substructures, and can be considered as a special form
of Selection Queries returning not only explicitly queried resources or statements,
but entire subgraphs.

Query 2. “Select all data items with any relation to the book titled ‘Bellum
Civile’.”

Reduction queries: Some queries are more concisely expressed by specifying what
parts of the data not to include in the answer:

Query 3. “Select all data items except ontology information and translators
from the book recommender system.”

Restructuring queries: In Web applications, it is often desirable to restructure
data, possibly into different formats or serializations. For example, the contents
of the book recommender system could be restructured to an (X)HTML repre-
sentation for viewing in a browser, or derived data could be created, like inverting
the relation author:

4 Again, these queries are mostly the same as in [5].
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Query 4. “Invert the relation author (from a book to an author) into a relation
authored (from an author to a book).”

In particular, RDF requires restructuring for reification, i.e. expressing “state-
ments about statements”. When reifying, a statement is replaced by four new
statements specifying the subject, predicate, and object of the old statement.
For example, the statement “Julius Caesar is author of Bellum Civile” is reified
by the four statements “X is a statement”, “X has subject Julius Caesar”, “X
has predicate author”, and “X has object Bellum Civile”.

Aggregation queries: Restructuring the data also includes aggregating several
data items into one new data item. As Web data usually consists of tree- or
graph-structured data that goes beyond flat relations, we distinguish between
value aggregation working only on the values (like SQL’s max(·), sum(·), . . . )
and structural aggregation working also on structural elements (like “how many
nodes”). Query 5 uses the max(·) value aggregation, while Query 6 uses structural
aggregation:

Query 5. “Return the last year in which an author with name ‘Julius Caesar’
published something.”

Query 6. “Return each of the subclasses of ‘Writing’, together with the average
number of authors per publication of that subclass.”

Combination and inference queries: It is often necessary to combine information
that is not explicitly connected, like information from different sources or sub-
structures. Such queries are useful with ontologies that often specify that names
declared at different places are synonymous:

Query 7. “Combine the information about the book titled ‘The Civil War’ and
authored by ‘Julius Caesar’ with the information about the book with identifier
bellum_civile.”

Combination queries are related to inference, because inference refers to combin-
ing data, as illustrated by the following example: If the books entitled ‘Bellum
Civile’ and ‘The Civil War’ are the same book, and ‘if ‘Julius Caesar’ is an au-
thor of ‘Bellum Civile’, then ‘Julius Caesar’ is also an author of ‘The Civil War’.
Inference queries e.g. compute transitive closures of relations like the RDFS
subClassOf relation:

Query 8. “Return the transitive closure of the subClassOf relation.”

Not all inference queries are combination queries, as the following example illus-
trates:

Query 9. “Return the co-author relation between two persons that stand in au-
thor relationships with the same book.”

Some query languages have closure operators applicable to any relation, while
other query languages have closure operators only for certain, predefined rela-
tions, e.g., the RDFS subClassOf relation. Some query languages support general
recursion, making it possible and easy to express the transitive closure of every
relation.
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4 The RDF Query Language Families

In this survey, we focus on three groups of RDF query languages differing in
what the authors perceive as central paradigms of the languages:5 Languages
following the relational or pattern-based paradigm use selection constructs sim-
ilar to selection-projection-join (SPJ) queries. Though they share a common
query core, the languages in this group vary quite noticeably, some extending
SPJ queries very conservatively, others going well beyond with novel constructs
aiming to adequately support the specifics of RDF. The second group is set apart
by the use of reactive rules but otherwise shares some commonality with the first
group. The final group is more distinctly separated by preferring navigational
access and path expressions over patterns.

Figure 2 may serve as orientation through the “language zoo” discussed in this
chapter and includes also “dialects” and variants that are only briefly mentioned
in the following.

4.1 The Relational Query Languages SPARQL, RQL, TRIPLE, and
Xcerpt

The SPARQL Family. SPARQL [84] is a query language that has already
reached candidate recommendation status at the W3C, and is on a good way to
become the W3C recommendation for RDF querying. It has its roots in SquishQL
[76] and RDQL [91].

Querying RDF data with languages in the SPARQL family amounts to match-
ing graph patterns that are given as sets of triples of subjects, predicates and
objects. These triples are usually connected to form graphs by means of joins
expressed using several occurrences of the same variable. SPARQL uses the Tur-
tle [7] serialization format for RDF as basis for its own triple syntax. It inherits
certain syntactic shorthands from Turtle: e.g., predicate-object lists allow several
statements to share the same subject without repeating the subject. Pairs of
predicates and objects following the subject are separated by colons. Object lists
are shorthands for several statements sharing both the subject and the predicate,
the objects being separated by commas.

Solutions to SPARQL (or SquishQL or RDQL) queries are given in the form
of result sets, for which also an XML format has been specified [9]. In SPARQL,
result sets are sets of mappings from the variables occurring within the query
to nodes of the queried data. Although RDQL and SquishQL are predeces-
sors of SPARQL, this section presents realizations of the sample queries only
in SPARQL. The formulation in the other members of the SPARQL family are
very similar though some of the queries use features only recently added and not
available in RDQL and SquishQL.

In SPARQL, Query 1 is expressed as follows.

PREFIX books: <http://example.org/books#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

5 See [5] for a more comprehensive survey of Semantic Web query languages.
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Fig. 2. Chronological Overview of RDF Query Languages (in bold typeface: languages
covered in this survey; in italic typeface: non-RDF (mostly XML) query languages with
proposals/extensions for querying RDF; MetaLog’s unique approach to RDF querying
based on a natural language interface defies classification in this framework); N3QL is
not classified due to incomplete description

SELECT ?essay ?author ?authorName
FROM <http://example.org/books>
WHERE { ?essay rdf:type books:Essay .

?essay books:author ?author .
?author books:name ?authorName . }

The WHERE clause specifies the graph pattern to match using variables to
select data. Variables are recognized by either ? or $ prefix. Triples are connected
to graph patterns using “.” (colon). The FROM clause specifies the URL (or
some other identifier) of the data to be queried and the SELECT clause the
result variables.

Extraction queries like Query 2 can only be approximately expressed in all
members of the SPARQL family, because recursive traversals of the data are
not possible. Thus one cannot extract all information relevant to a particular
resource. Collecting all outgoing edges of a node together with the directly linked
objects of these predicates is possible and is showcased in the sample code below.
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As can be seen, SPARQL does not syntactically differentiate between variables
for predicates and for resources, as opposed to RQL discussed below. Also the
extraction of information occurring at a fixed distance from the resource repre-
senting the book named “Bellum Civile” is possible by adding further statements
to the query below.

PREFIX books: <http://example.org/books#>
SELECT ?property ?propertyValue
FROM <http://example.org/books>
WHERE {?essay books:title "Bellum Civile" .

?essay ?property ?propertyValue . }

Another way to approximate extraction queries are SPARQL’s DESCRIBE
queries that allow the retrieval of “descriptions” for resources. The exact extent
of such a “description” is not defined in [84], but concise bounded descriptions
[96] are referenced as a reasonable choice. These represent a form of predefined
extraction query that returns all immediate properties for a resource as well as
the immediate properties of all blank nodes that are reachable from the resource
to be described without other named resources in between.

The FILTER keyword is used in SPARQL to eliminate result sets which eval-
uate to false when substituted in the boolean expressions given in the body of
the FILTER clause. A query that finds the persons that have authored a book
with title “Bellum Civile” can be expressed in SPARQL as follows:

PREFIX books: <http://example.org/books#>
SELECT ?person
FROM <http://example.org/books>
WHERE { ?book books:author ?person .

?book books:title ?title .
FILTER (?title = ’Bellum Civile’) }

The three queries mentioned above are also expressible in SPARQL’s prede-
cessors SquishQL and RDQL with a slightly different syntax but almost identical
structure. SPARQL and its relatives do not support RDF/S inferencing, which
means that among other tasks, querying all resources of type books:Writing of the
example data above would not return any results, because there are no resources
which are directly associated with books:Writing via an rdf:type property. If the
SPARQL family provided support for inferencing, the resources represented by
the blank nodes _:b1 and _:b2 in the serialization in Section 2.2 could be re-
turned as results to the query in compliance with the rule RDFS9 of the RDFS
semantics. One can argue that RDF/S and OWL reasoning should not be a
task of the query language, but should be provided by an underlying black box
reasoner. Given such a reasoner that transparently provides the full RDFS en-
tailment graph, i.e., the closure graph under the RDF/S inference rules, the
languages of the SPARQL family can very well answer queries such as the one
just mentioned.

There are several other characteristics and also limitations of the members of
the SPARQL family, which deserve to be mentioned:



12 T. Furche et al.

– Queries cannot be composed or nested.
– Negation can only be used in FILTER clauses (they are called AND-clauses

in SquishQL and RDQL), but not in WHERE clauses, i.e., triple patterns
can only occur positively.

– Due to the lack of recursion, members of the SPARQL family cannot express
certain kinds of inference queries such as 8 and extraction queries (as has
been mentioned above).

SPARQL being a descendant of RDQL and SquishQL, it provides some addi-
tional features, that go beyond the queries mentioned above and which are not
included in RDQL and SquishQL. Among these new features are:

– The construction, using CONSTRUCT clauses, of new RDF graphs with data
from the RDF graph queried. Just as the query patterns, the construct pat-
terns are specified as sets of triples with variables serving as placeholders.
Naturally, all variables appearing within the construct pattern must also
appear within the query.

– The possiblity to return, using DESCRIBE clauses, “descriptions” of the re-
sources matching the query part. The exact meaning of “description” is left
undefined, cf. [96] for a proposal.

– The specification of OPTIONAL triple or graph query patterns, i.e., data that
should contribute to an answer if present in the queried data, but whose
absence does not prevent from returning an answer. A corollary of is the
ability of SPARQL to test for absence of triples (i.e., negation-as-failure).
E.g., finding all books which do not have a translator is achieved by using
the OPTIONAL keyword and a FILTER expression requiring that the optional
variable is not bound included in the optional query part:
PREFIX books: <http://example.org/books#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?writing
FROM <http://example.org/books>
WHERE { ?writing books:author _:Author .

OPTIONAL { ?writing books:translator ?translator } .
FILTER (!bound(?translator)) }

– The expression of disjunctions of queries with the keyword UNION.
– Querying named graphs. First introduced in TriQL [18], another variant of

RDQL, named graphs allow the scoping of triples and triple patterns: A
query is evaluated not against a single set of triples but rather against a set
of such sets each associated with a name (in form of a URI). The FROM
NAMED clause can limit the matching of the triple pattern in the associated
WHERE to the graphs with the specified names.

In contrast to other RDF query languages, SPARQL supports four different
query result forms, which vary in the type of results returned. Only queries
formulated using CONSTRUCT or DESCRIBE are closed in the sense that the
results are RDF graphs just as the queried data. Queries using ASK return a
boolean value and is used to find out whether a query pattern matches with the
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data. The SELECT query pattern is used to collect variable bindings from query
patterns just as in SquishQL and RDQL.

The CONSTRUCT clause provides a straightforward enhancement over mere
collection of variable bindings. Following the CONSTRUCT keyword, a result
template is specified, which is an RDF graph that contains some or all of the
variables from the query pattern in the WHERE-clause. For each match of the
query pattern with the queried data, the result template is filled with the cor-
responding variable bindings, and the resulting RDF graph is included in the
answer graph. However, CONSTRUCT patterns are rather limited missing, e.g.,
any ability for grouping (and thus can not construct new RDF containers or
collections).

Using the CONSTRUCT clause, restructuring and non-recursive inference
queries can be expressed in SPARQL. Query 4 can be expressed in SPARQL
as follows:

PREFIX books: <http://example.org/books#>
CONSTRUCT {?y books:authored ?x}
FROM <http://example.org/books>
WHERE {?x books:author ?y}

and Query 9 by

PREFIX books: <http://example.org/books#>
CONSTRUCT {?x books:co-author ?y}
FROM <http://example.org/books>
WHERE { ?book books:author ?x .

?book books:author ?y .
FILTER (?x != ?y) }

One of SPARQL’s design principles is that queries should be easily derivable
from RDF graphs. Thus, any RDF graph can be included in the WHERE-clause
of a SPARQL query in Turtle [7] syntax. A further result of this design prin-
ciple is that blank nodes are allowed to appear within query patterns. It must
be emphasized that blank nodes in query patterns are not required to match
with blank nodes of the data to be queried, but are mere syntactical sugar for
existentially quantified variables.6

Besides query result forms, SPARQL provides the solution modifiers DIS-
TINCT, ORDER BY, LIMIT, and OFFSET. DISTINCT eliminates duplicates in
the sets of variable bindings, LIMIT specifies an upper bound for the number of
solutions, OFFSET is used to omit the first n solutions of the solution sequence,
and ORDER BY allows to order the solution sequence ascending or descending
according to one or more variable bindings or according to a function.

[84] contains a formal semantics for SPARQL. For details on SPARQL’s se-
mantics refer to [84] and to the tutorial on SPARQL in this volume [81]. The
latter, in particular, motivates the, at a first glance, slightly odd definition of
SPARQL’s semantics.
6 See http://lists.w3.org/Archives/Public/public-rdf-dawg-comments/2006Jan/0073-

.html for a discussion about blank nodes in SPARQL queries.
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The RQL Family. Under “RQL family”, we group the languages RQL [57]
and SeRQL [22]. Common to these languages is that they support combining
data and schema querying. In the case of RQL, the RDF data model deviates
slightly from the standard data model for RDF and RDFS: (1) cycles in the
subsumption hierarchy are forbidden, and (2) for each property, both a domain
and a range must be defined. These restrictions ensure a clear separation of the
three abstraction layers of RDF and RDFS: (1) data, i.e. description of resources
such as persons, XML documents, etc., (2) schemas, i.e. classifications for such
resources, and (3) meta-schemas specifying meta-classes such as rdfs:Class, the
class of all classes, and rdf:Property the class of all properties. They make possible
a flexible type system tailored to the specificities of RDF and RDFS.

In the following discussion we concentrate on RQL, the “RDF Query Lan-
guage”, that has been developed at ICS-FORTH [31, 54, 55, 56, 57]. Its most
distinguishing feature is a strong support for typing as well as a more complete
set of advanced language operators such as set operations, aggregation, container
construction and access than in most other RDF query languages.

SeRQL aims to be a more accessible derivate of RQL. Therefore several syn-
tactic shorthands (e.g., object-property and object lists and optional expressions,
all three later adopted in SPARQL) are introduced for common query situations.
Also SeRQL drops built-in support for typing beyond literals, presumably un-
der the impression that the multitude of language constructs provided in RQL
makes the language too complex. The same reasoning applies for advanced query
constructs such as set operations, universal quantification, aggregations, etc.

Another derivate of RQL is eRQL, a radical simplification of RQL based
mostly on a keyword-based interface. It is the expressed goal of the authors
of eRQL to provide a “Google-like query language but also with the capacity
to profit of the additional information given by the RDF data”.7 The resulting
language is, unsurprisingly, of rather limited expressiveness and can not express
most of the sample queries.

Basic schema queries. A salient feature of RQL is the use of the types from
RDFS schemas. The query subClassOf(books:Writing) returns the sub-classes of
the class books:Writing8. A similar query, using subPropertyOf instead of sub-
ClassOf, returns the sub-properties of a property. The following three queries
returns the domain ($C1) and range ($C2) of the property author defined at the
URI named books. The prefix $ indicates “class variable”, i.e., a variable ranging
on schema classes. It can be expressed in RQL in three different manners:

1. using class variables:
SELECT $C1, $C2 FROM {$C1}books:author{$C2}
USING NAMESPACE books = &http://example.org/books#

2. using a type constraint :
SELECT C1, C2 FROM Class{C1}, Class{C2}, {;C1}books:author{;C2}
USING NAMESPACE books = &http://example.org/books#

7 http://www.dbis.informatik.uni-frankfurt.de/∼tolle/RDF/eRQL/
8 Assuming: USING NAMESPACE books = &http://example.org/books-rdfs#
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3. without class variables or type constraints:
SELECT C1, C2 FROM subClassOf(domain(book:author)){C1},

subClassOf(range(books:author)){C2}
USING NAMESPACE books = &http://example.org/books#

While the first two queries return exactly the same result—namely the do-
main and range of the books:author-property and all possible combinations of
their subclasses—the third query does not include the domain and range of
books:author itself but only the combinations of their subclasses. There is an-
other subtle difference: the first two queries should only return class combinations
for which actual statements exist, the third should also return class combination
where no actual statement for that combination exists.

The query topclass(books:Historical Essay) returns the top of the subsumption
hierarchy, i.e., books:Writing, cf. Figure 1. Similar constructs for querying the
leaves of the subsumption hierarchy or the nearest common ancestor of the two
classes are available. Moreover, RQL has “property variables” that are prefixed
by @ and which can be used to query RDF properties (just as classes can be
queried using class variables). The following query, with property variables pre-
fixed by @ returns the properties, together with their actual ranges, that can be
assigned to resources classified as books:Writing:

SELECT @P, $V FROM {;books:Writing}@P{$V}
USING NAMESPACE books = &http://example.org/books#

Combining these facilities, Query 8 is expressible in RQL as follows:
SELECT X, Y FROM Class{X}, subClassOf(X){Y}.

Data queries. With RQL, data can be retrieved by its types or by navigating to
the appropriate position in the RDF graph. Restrictions can be expressed using
filters. Classes, as well as properties, can be queried for their (direct and indirect,
i.e., inferred) extent. The query books:Writing returns the resources classified
as books:Writing or as one of its sub-classes. This query can also be expressed
as follows: SELECT X FROM books:Writing{X}. Prefixing the variable X with ˆ
in the previous queries, yields queries returning only resources directly classified
as books:Writing, i.e., for which a statement (X, rdf:type, books:Writing) exists.
The extent of a property can be similarly retrieved. The query ^books:author
returns the pairs of resources X,Y that are in the books:author relation, i.e., for
which a statement (X, books:author, Y ) exists. RQL offers extended dot notation
as used in OQL [29], for navigation in data and schema graphs. This is convenient
for expressing Query 1:

SELECT X, Y, Z FROM {X;books:Essay}books:author{Y}.books:authorName{Z}
USING NAMESPACE books = &http://example.org/books#

The data selected by an RDF query can be restricted with a WHERE clause:

SELECT X, Y FROM {X;books:Essay}books:author.books:authorName{Y},
{X}books:title{T}

WHERE T = "Bellum Civile"
USING NAMESPACE books = &http://example.org/books#



16 T. Furche et al.

Mixed schema and data queries. With RQL, access to data and schema can be
combined in all manners, e.g., the expression X;books:Essay restricts bindings
for variable X to resources with type books:Essay. Types are often useful for
filtering, but type information can also be interesting on their own, e.g., to
return a “description” of a resource understood as its schema:

SELECT $C, ( SELECT @P, Y FROM {Z ; ^$D} ^@P {Y}
WHERE Z = X and $D = $C )

FROM ^$C {X}, {X}books:title{T} WHERE T = "Bellum Civile"
USING NAMESPACE books = &http://example.org/books#

This query returns the classes under which the resource with title “Bellum
Civile” is directly classified; ^$C{X} finds the classes under which the resource X
is directly classified.

Further features of RQL are not discussed here, e.g., support for containers,
aggregation, and schema discovery. Although RQL has no concept of “view”, its
extension RVL [66] gives a facility for specifying views.

RQL has been criticized for its large number of features and choice of syntactic
constructs (like the prefixes ^ for calls and @ for property variables), which
resulted in the simplifications SeRQL and eRQL of RDF. On the other hand,
RQL is far more expressive than most other RDF query languages, especially
those of the SPARQL family. Most queries of Section 3, except those queries
referring to the transitive closures of arbitrary relations, can be expressed in
RQL.

Query 1 is already given in RQL above. Query 2 cannot be expressed in RQL
exactly, since RQL has no means to select “everything related to some resource”.
However, a modified version of this query, where a resource is described by
its schema, is also given above. Reduction queries, e.g. Query 3, can often be
concisely expressed in RQL, in particular if types are available:

SELECT S, @P, O
FROM (Resources minus (SELECT T FROM {B}books:translator{T})){S},

(Resources minus (SELECT T FROM {B}books:translator{T})){O},
{S}@P{O}

USING NAMESPACE books = &http://example.org/books#

An implementation of the restructuring Query 4 is given above in the exten-
sion RVL of RQL. RQL is convenient for expressing aggregation queries, e.g.,
Query 5:

max(SELECT Y
FROM {B;books:Writing}books:author.books:authorName{A},

{B}books:pubYear{Y}
WHERE A = "Julius Caesar")

Inference queries that do not need recursion, e.g., Query 9, can be expressed
in RQL as follows:
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SELECT A1, A2 FROM {Z}books:author{A1}, {Z}books:author{A2}
WHERE A1 != A2
USING NAMESPACE books = &http://example.org/books#

In RQL’s extension RVL, an expression of Query 9 can actually create new
statements as follows:

CREATE NAMESPACE mybooks = &http://example.org/books-rdfs-extension#
VIEW mybooks:co-author(A1, A2)
FROM {Z}books:author{A1}, {Z}books:author{A2} WHERE A1 != A2
USING NAMESPACE books = &http://example.org/books#

A formal semantics for RQL has been defined together with the language,
e.g., in [57].

TRIPLE. [51, 92, 93] is a rule-based query, inference, and transformation lan-
guage for RDF. TRIPLE is based upon ideas published in [40]. TRIPLE’s syntax
is close to F-Logic [58]. F-Logic is convenient for querying semi-structured data,
e.g., XML and RDF, as it facilitates describing schema-less or irregular data
[64]. Other approaches to querying XML and/or RDF based on F-Logic are
XPathLog [75] and the ontology management platform Ontobroker9. TRIPLE
has been designed to address two weaknesses of previous approaches to query-
ing RDF: (1) Predefined constructs expressing RDFS’ semantics that restrain a
query language’s extensibility, and (2) lack of formal semantics.

Instead of predefined RDFS-related language constructs, TRIPLE offers Horn
logic rules (in F-Logic syntax) [58]. Using TRIPLE rules, one can implement
features of, e.g., RDFS. Where Horn logic is not sufficient, as is the case of
OWL, TRIPLE is designed to be extended by external modules implementing,
e.g., an OWL reasoner. Thanks to its foundations in Horn logic, TRIPLE can
inherit much of Logic Programming’s formal semantics. Referring to, e.g., a
representation of UML in RDF [60, 61], the authors of TRIPLE claim in [93] that
TRIPLE is well-suited to query non-RDF meta-data. This can be questioned,
especially if, in spite of [44], one considers the rather awkward mappings of Topic
Maps into RDF proposed so far.

TRIPLE differs from Horn logic and Logic Programming as follows [93]:

– TRIPLE supports resources identified by URIs.
– RDF statements are represented in TRIPLE by slots, allowing the grouping

and nesting of statements; like in F-Logic, Path expressions inspired from
[43] can be used for traversing several properties.

– TRIPLE provides concise support for reified statements. Reified statements
are expressed in TRIPLE enclosed in angle brackets, e.g.:
Julius\_Caesar[believes-><Junius\_Brutus[friend-of -> Julius\_Caesar]>]

9 http://www.ontoprise.de/products/ontobroker
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– TRIPLE has a notion of module allowing specification of the ‘model’ in
which a statement, or an atom, is true. ‘Models’ are identified by URIs that
can prefix statement or atom using @.

– TRIPLE requires an explicit quantification of all variables.

Query 1 can be approximated as follows:

rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.
books := ’http://example.org/books#’.
booksModel := ’http://example.org/books’.
FORALL B, A, AN result(B, A, AN) <-

B[rdf:type -> books:Essay;
books:author -> A[books:authorName -> AN]]@booksModel.

This query selects only resources directly classified as books:Essay. Query 1 is
properly expressed below.

TRIPLE’s rules give rise to specify properties of RDF. [93] gives the following
implementation of a part of RDFS’s semantics:

rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.
rdfs := ’http://www.w3.org/2000/01/rdf-schema#’.
type := rdf:type.
subPropertyOf := rdfs:subPropertyOf.
subClassOf := rdfs:subClassOf.

FORALL Mdl @rdfschema(Mdl) {
transitive(subPropertyOf).
transitive(subClassOf).
FORALL O,P,V O[P->V] <-

O[P->V]@Mdl.
FORALL O,P,V O[P->V] <-

EXISTS S S[subPropertyOf->P] AND O[S->V].
FORALL O,P,V O[P->V] <-

transitive(P) AND EXISTS W (O[P->W] AND W[P->V]).
FORALL O,T O[type->T] <-

EXISTS S (S[subClassOf->T] AND O[type->S]).
}

Inference from range and domain restrictions of properties are not imple-
mented by the rule given above. This is no limitation of TRIPLE, though, as
they can be realized by the following additional rules:

FORALL S,T S[type-$>$T] <-
EXISTS P, O (S[P-$>$O] AND P[rdfs:domain-$>$T]).

FORALL O,T O[type->T] <-
EXISTS P, S (S[P-$>$O] AND P[rdfs:range-$>$T]).

With the rules given above, the approximation of Query 1 given above only
needs to be modified so as to express the ‘model’ it is evaluated against: instead of
@booksModel, @rdfschema(booksModel) should be used, i.e., the original ‘model’
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should be extended with the above-mentioned rules implementing RDFS’ seman-
tics. Most queries of Section 3 can be expressed in TRIPLE. Aggregation queries
cannot be expressed in TRIPLE, for the language does not support aggregation.

[93] specifies an RDF, and therefore XML, syntax for a fragment of TRIPLE.
By relying on translations to RDF, one can query data in different formalisms
with TRIPLE, e.g., RDF, Topic Maps, and UML. This, however, might lead to
rather awkward queries. Some aspects of RDF, viz. containers, collections, and
blank nodes, are not supported by TRIPLE.

Xcerpt. Xcerpt [13, 24, 88, 89], cf. http://xcerpt.org, is a language for query-
ing both data on the “standard Web” (e.g., XML and HTML data) and data
on the Semantic Web (e.g., RDF, Topic Maps data). Therefore the approach of
querying an XML serialization of Semantic Web data is feasible in Xcerpt, but
it is not as natural as directly querying the RDF data. Xcerpt uses common lan-
guage constructs for querying data in several different formats and is therefore
very useful for authoring applications that combine all kinds of Web data. This
survey focuses on applying Xcerpt to querying RDF data, but querying XML
and Topic Maps with Xcerpt is quite similar (cf. [5]).

Three features of Xcerpt are particularly convenient for querying RDF data.
(1) Xcerpt’s pattern-based incomplete queries are convenient for collecting re-
lated resources in the neighbourhood of some given resources and to express
traversals of RDF graphs of indefinite lengths. (2) Xcerpt chaining of (possibly
recursive rules) is convenient for expressing RDFS’s semantics, e.g., the transi-
tive closure of the subClassOf relation, as well as all kinds of graph traversals. (3)
Xcerpt’s optional construct is convenient for collecting properties of resources.

All nine queries from Section 3 can be expressed in Xcerpt. The following
Xcerpt programs show solutions for the queries against the RDF serialization
from Section 2.

[19] proposes two views on RDF data: as in most other RDF query languages
as plain triples with explicit joins for structure traversal and as a proper graph.

On the plain triple view, Query 1 can be expressed in Xcerpt as follows:

DECLARE ns-prefix rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
ns-prefix books = "http://example.org/books#"

GOAL
result [
all essay [
id [ var Essay ],
all author [
id [ var Author ],
all name [ var AuthorName ]

] ] ]
FROM
and(
RDFS-TRIPLE [
var Essay:uri{}, "rdf:type":uri{}, "books:Essay":uri{} ],
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RDF-TRIPLE [
var Essay:uri{}, "books:author":uri{}, var Author:uri{} ],

RDF-TRIPLE [
var Author:uri{}, "books:authorName":uri{}, var AuthorName ] )

END

Using the prefixes declared in line 1 and 2, the query pattern (between FROM
and END) is a conjunction of tree queries against the RDF triples represented in
the predicate RDF-TRIPLE. Notice that the first conjunct actually uses RDFS-
TRIPLE. This view of the RDF data contains all basic triples plus the ones
entailed by the RDFS semantics [53] (cf. [19] for a detailed description). Us-
ing RDFS-TRIPLE instead of RDF-TRIPLE ensures that also resources actually
classified in a sub-class of books:Essay are returned. Xcerpt’s approach to RDF
querying shares with [86] the ability to construct arbitrary XML as in this rule.

On Xcerpt’s graph view of RDF, the same query can be expressed as follows:

DECLARE ns-prefix rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
ns-prefix books = "http://example.org/books#"

GOAL
result [
all essay [
id [ var Essay ],
all author [
id [ var Author ],
all name [ var AuthorName ]

] ] ]
FROM
RDFS-GRAPH {{
var Essay:uri {{
rdf:type {{ "books:Essay":uri {{ }} }},
books:author {{
var Author:uri {{
books:name {{ var AuthorName }}

}}
}} }} }}

END

The RDF graph view is represented in the RDF-GRAPH predicate. Here, the
RDFS-GRAPH view is used that extends RDF-GRAPH just like RDFS-TRIPLE
extends RDF-TRIPLE. Triples are represented similar to striped RDF/XML: each
resource is a direct child element in RDF-GRAPH with a sub-element for each
statement with that resource as object. The sub-element is labeled with the URI
of the predicate and contains the object of the statement. As Xcerpt’s data model
is a rooted graph (possibly containing cycles) this can be represented without
duplication of resources.

In contrast to the previous query no conjunction is used but rather a
nested pattern that naturally reflects the structure of the RDF graph with the
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exception that labeled edges are represented as nodes with edges to the elements
representing their source and sink.

Xcerpt rules are convenient for making the language “RDF serialization trans-
parent”. For each RDF serialization, a set of rules expresses a translation from
or into that serialization. However, the rules for parsing RDF/XML [10], the
official XML serialization, are very complex and lengthy due to the high degree
of flexibility RDF/XML allows. They can be found in [19], similar functions for
parsing RDF/XML in XQuery are described in [87]. The following rules parse
RDF data serialized in the RXR (Regular XML RDF) format [4], a far simpler
and more regular RDF serialization.

The following rule extracts all triples from an RXR document. Since different
types (such as URI, blank node, or literal) of subjects and objects of RDF triples
are represented differently in RXR, the conversion of the RXR representation
into the plain triples is performed in separate rules, see [19].

DECLARE ns-prefix rxr = "http://ilrt.org/discovery/2004/03/rxr/"

CONSTRUCT
RDF-TRIPLE[
var Subject, var Predicate:uri{}, var Object ]

FROM
and[
rxr:graph {{
rxr:triple {
var S as rxr:subject{{}},
rxr:predicate{ attributes{ rxr:uri{ var Predicate } } },
var O as rxr:object{{}}

}
}},
RXR-RDFNODE[ var S, var Subject ],
RXR-RDFNODE[ var O, var Object ]

]
END

Querying RDF data with Xcerpt is the subject of ongoing investigation [19].
A visual language, called visXcerpt [11, 12], has been conceived as a visual

rendering of textual Xcerpt programs, making it possible to freely switch during
programming between the visual and textual view, or rendering, of a program.

A formal semantics of Xcerpt has been published in [88]. Static type checking
methods have been developed for Xcerpt [25, 98] that are based on seeing tree
grammars in their various disguises, e.g., DTD, XML Schema, RelaxNG, as
definitions of abstract data type. Recent work [28, 90] on Xcerpt focuses on
efficient evaluation of Xcerpt’s high-level constructs.

There is quite a number of other query languages that fall into this group but
can not be covered here for space reasons (for further details see [5]). Further
investigaton of such languages might start with R-DEVICE [6], RDF-QBE [85],
and RDFQL [1].
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4.2 The Reactive Rule Query Language Algae

Algae10 is an RDF query language developed as part of the W3C Annotea project
(http://www.w3.org/2001/Annotea/) aiming at enhancing Web pages with se-
mantic annotations, expressed in RDF and collected from ‘annotation servers’,
as Web pages are browsed. Algae is based on two concepts: (1) “Actions” are the
directives ask, assert, and fwrule that determine whether an expression is used
to query the RDF data, insert data into the graph, or to specify ECA11-like
rules. (2) Answers to Algae queries are bindings for query variables as well as
triples from the RDF graph as “proofs” of the answer. Algae queries can be com-
posed. Syntactically, Algae is based on the RDF syntax N-triples [46], a subset
of the N3 [14] notation for RDF. This subset excludes specifically N3 rules or
queries as used in the N3QL proposal [15]. Algae extends the N-triple syntax
with the above mentioned “actions” and with so-called “constraints”, written
between curly brackets, that specify further arithmetic or string comparisons to
be fulfilled by the data retrieved.

Query 1 can be expressed as follows:

ns rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
ns books = <http://example.org/books#>
read <http://example.org/books> ()
ask ( ?essay rdf:type <http://example.org/books#Essay> .

?essay books:author ?author .
?author books:authorName ?authorName )

collect( ?essay, ?author, ?authorName )

This query becomes more interesting if we are not only interested in the titles
of essays written by “Julius Caesar” but also want the translators of such books
returned, if there are any:

ns rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
ns books = <http://example.org/books#>
read <http://example.org/books> ()
ask ( ?essay rdf:type <http://example.org/books#Essay> .

?essay books:author ?author .
?author books:authorName ‘‘Julius Caesar’’ .
?essay books:title ?title .
~?essay books:translator ?translator .

)
collect( ?title, ?translatorName )

Note ~ used to declare ‘translator’ an optional. This query returns the answer
given in Table 1.

Query 2 and Query 4 cannot be expressed in Algae due to the lack of closure,
recursion, and negation. Queries 5 and 6 cannot be expressed in Algae due to
the lack of aggregation operators. All other queries can be expressed in Algae,
most of them requiring ‘extended action directives’ [82].
10 Also called “Algae2”. This survey follows [83] and retains the name “Algae”.
11 ECA stands for event-condition-action.
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Table 1. Answer to Query 1

?title ?translator Proof
“Bellum Civile” “J. M. Carter” _:1 rdf:type <http://exam...ks-rdfs#Essay>.

_:1 books:author _:2.
_:2 books:authorName ‘‘Julius Caesar’’.
_:1 books:title ‘‘Bellum Civile’’.
_:1 books:translator ‘‘J. M. Carter’’.

No formal semantics has been published for Algae.

Algae is not the only RDF query language that provides reactive rules: iTQL
[2] is used in the Kowari Metastore and provides querying, update, and trans-
action management functionality, for details see [5]. iTQL is also one of the
few RDF query languages with a form of unrestricted closure path expressions
(thanks to the trans function). RUL [65], the RDF update language, provides
update expressions on top of RQL.

4.3 The Navigational Access Query Language Versa

Developed as part of the Python-based 4Suite XML and RDF toolkit12, Versa
[77, 78, 79] is a query language for RDF inspired, but significantly different from
XPath[33, 45]. Versa can be used in lieu of XPath in the XSLT version of 4Suite.
Like the Syntactic Web Approach, TreeHugger, and RDF Twig, Versa is aligned
with XML. Like XPath, Versa can be extended by externally defined functions.
Versa’s authors claim that Versa is easier to learn than RDF query languages
inspired from SQL.

Versa has constructs for a forward traversal of one or more RDF proper-
ties, e.g., all() - books:author -> * selects those resources that are author
of other resources. Instead of the wildcard *, string-based restrictions can be
expressed. Using Versa’s forward traversal operators, Query 1 can be expressed
as follows:

distribute(type(books:Essay), ".",
"distribute(.-books:author->*, ".", ".-books:authorName->*)")

The function distribute() returns a list of lists containing the result of the
second, third, . . . argument evaluated starting from each of the resources selected
by the first argument. As in XPath, . denotes the current node.

Versa has a Forward filter for selecting the subject of a statement, e.g.,
type(books:Essay) |- books:title -> eq("Bellum Civile") returns the
essays entitled “Bellum Civile”. Versa has also constructs for a backward traversal
(but no backward filter), e.g., the essays titled “Bellum Civile” are returned by

12 http://4suite.org/
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(books:Essay <- rdf:type - *) |- books:title -> eq("Bellum Gallicum").

Versa’s function traverse serves to traverse paths of arbitrary length, e.g., the
following query returns all sub-classes of books:Writing:

traverse(books:Writing, rdf:subClassOf, vtrav:inverse, vtrav:transitive)

Similarly, Versa’s function filter provides a general filter, e.g., all essays entitled
“Bellum Gallicum” having a translator named “J. M. Carter” are returned by
the following query:

filter(books:Essay <- rdf:type - *,
". - books:title -> eq(’Bellum Gallicum’)",

". - books:translator -> books:translatorName -> eq(’J. M. Carter’)"

Selection and extraction queries can be easily implemented in Versa, although
the selection of related items is not very convenient, as the above implementation
of Query 1 demonstrates. In contrast to most RDF query languages, Versa allows
the extraction of RDF subgraphs of arbitrary sizes, as required by Query 2.
Reduction queries can be expressed in Versa, e.g., using negation or set difference.
Query 3 can be implemented in Versa as follows:

difference(all(),
union(type(rdfs:Class),

union(type(rdf:Property,
all() <- books:translator - *))

)
)

Restructuring, combination, and inference queries cannot be expressed in
Versa, as the result of a Versa query is always a list (possibly a list of lists).
However, Query 4 and 9 can be approximated in Versa as follows:

distribute(all(), ". - books:author -> *", ". - books:author -> *")

Answers to this query include “Julius Caesar” (as if he would be a co-author
of himself !). This does not seem to be avoidable with Versa. Versa also provides
several aggregation functions. Query 5 can be expressed as follows in Versa:

max(filter(all(),
". - books:author -> books:authorName -> eq(’Julius Caesar’)"
)

- books:year -> *)

Query 6 can be implemented in Versa using the function length as follows:

distribute(traverse(books:Writing, rdf:subClassOf,
vtrav:inverse,vtrav:transitive),

".",
"max(length((. <- rdf:type *) - books:author -> *))"
)
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No formal semantics has been published for Versa.
Aside from Versa, most RDF query languages that fall into this group are

derivatives of XPath or XSLT or are at least very similar to these XML query
languages, for details once more refer to [5]. There are a few proposals for XPath-
style RDF path languages (RDF Path [80], RPath [74], RxPath [94]), however
all proposals are very limited in expressiveness and often immature. [86, 87]
suggests the use of XQuery for querying RDF, TreeHugger [95] and RDF Twig
[97] do the same for XSLT (1.0), the latter two relying on external functions for
preprocessing the RDF data. RDFT [38] suggests an RDF template language in
the style of XSLT, as does [62]. Both approaches seem to have been abandoned.

This section has introduced a number of RDF query languages divided in three
groups. For an overview of the discussed languages and their relations, refer
again to Figure 2. The following two sections relate the introduced languages
comparing their approaches to selection, construction, evaluation, etc.

5 Language Constructs Compared

The previous section establishes a basic understanding of interesting exemplars
of RDF query languages. This broad overview of languages is complemented in
this section with a close look at specific language concepts and constructs. For
instance, selecting optional data is essential for RDF, since all properties are
optional by default. However, different languages provide quite different means
to handle such data. All these language constructs are compared over several
of the languages from the previous section as appropriate to show the range of
solutions for the particular need.

For the purpose of this section, the constructs are divided in three classes:
selection, construction, and procedural abstraction or view definition.

5.1 Selection

The basic functionality of any query language is selection, i.e., the ability to
characterize subsets of the queried data that match the user’s query intent. In
relational databases where the schema of the data is well-known, such charac-
terizations are often based on few attributes of the sought-for data items and
possibly a small number of relations with other data items. On semi-structured
data such as XML or RDF, selection becomes more centered around the position
of the sought-for data items within the structure of the queried data. Some RDF
(and most XML) query languages therefore provide not just selection based on
attribute value, but richer selection constructs.

Triple Patterns vs. Path expressions

Triple patterns. The basic form of selection construct is a triple pattern that
corresponds to a relational selection-(projection-)join query. A triple pattern
consists of a conjunction of one or more triples, that are just like data triples but
may additionally be extended with query constructs such as variables. SPARQL
uses triple patterns in Turtle syntax. E.g.,
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?essay books:title "Bellum Civile"

selects the resources with “Bellum Civile” as value of the books:title property.
This basic form of a triple pattern is like a selection operation from the relational
algebra. If variables occur in several triples in the same triple pattern, that
pattern becomes a selection-(projection-)join query13, e.g.,

?essay books:author ?author.
?author foaf:name "Julius Caesar"

Joins expressed, e.g., through multiple occurrences of the same variable in
the same pattern query are even more prevalent in RDF than in usual relational
queries. This is partially due to the binary nature of RDF properties. Further-
more, one often needs to “traverse” several intermediary nodes in the RDF graph
to select the actually used data items.

Specifying such traversals in a succinct way has been considered not only in
the context of RDF, but also in the context of relational (GEM [100]), object-
oriented ([43]) and XML ([33]) data. The most successful and for semi-structured
and XML query languages widely accepted construct for specifying structure
traversal are path expressions. Essentially, they allow the omission of variables
for intermediary nodes that are just used to “reach” the target nodes. E.g., the
above SPARQL query can also be written as

?essay books:author [foaf:name "Julius Caesar"].

which uses the ability of SPARQL’s syntax to omit blank nodes (i.e., existen-
tially quantified variables) in queries and is tantamount to a path expression.
RQL specifically introduces path expressions with a syntax similar to OQL’s dot
notation:

{Essay}books:author.foaf:name{A}.

Path Expressions. Path expressions constructs can be classified along their in-
tended use and expressiveness in three classes:

1. Basic path expressions are only abbreviations for triple patterns as seen in
SPARQL or RQL. They allow only the specification of fixed length traversals,
i.e., the traversed path in the data is of same length as the path expression.
These path expressions are not more expressive than triple patterns (and
therefore SPJ queries), but are nevertheless encountered in several query
languages as “syntactic sugar”. Examples of query languages with only basic
path expressions are GEM [100], OQL [29], SPARQL [84], and RQL [84].

2. Unrestricted closure path expressions are a common class of path expressions
that adds to the basic path expressions the ability to traverse arbitrary-
length paths. XPath path expressions (disregarding XPath predicates for
the moment) fall into this category with closure axes such as descendant.
This type of path expressions is very common in XML query languages

13 Triple pattern queries as discussed here and used, e.g., in SPARQL have more or
less the same expressiveness and evaluation complexity as relational SPJ-queries.
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(e.g., XML-QL [41], Quilt [30], XPath and all XML query languages based
on XPath). It is also used in the RDF query language iTQL[2]. Its expressive-
ness is indeed higher than that of basic triple patterns (SPJ queries). It can
be realized in languages that provide only triple patterns but additionally
(at least linear) recursive views. SQL-99 is an example of a language that
provides no closure path expressions but linear recursion and thus can em-
ulate (unrestricted) closure path expressions. For RDF, there are few query
languages that fall into this class since RDF has, in contrast to XML, no dom-
inating hierarchical relation but many relations of equal importance. This
makes unrestricted closure often too unrestrictive for interesting queries.

3. Therefore, several RDF query languages provide generalized or regular path
expressions. Here, full regular expression syntax including repetition and
alternative is provided on top of path expressions. E.g., a*.((b|c).e)+ tra-
verses all paths of arbitrary many a properties followed by at least one rep-
etition of either a b or a c in each case followed by an e. Such regular path
expressions are provided, e.g., by Versa’s traverse operator, Xcerpt’s quali-
fied descendant, or the XPath extension with conditional axes [71]. The latter
work showed that regular path expressions are even more expressive than un-
restricted closure path expressions and a path language like XPath becomes
indeed first-order complete with the addition of regular path expressions.
Nevertheless, direct language support is not only justified by the ease of use
for the query author but also by complexity results, e.g., in [70] that show
that regular path expressions do not affect the complexity of a query lan-
guage such as XPath and can be evaluated in polynomial time w.r.t. data
and query size. Simulation of regular path expressions using triple patterns
(SPJ queries) and recursive views is possible but the resulting queries become
excruciatingly complex even for simple regular path expressions.

Summarizing, path expressions provide convenient means to specify structural
constraints in RDF queries and are therefore supported by a large number of
RDF query languages. However, surprisingly many RDF query languages ignore
(unrestricted or regular) closure path expressions. This is surprising as these path
expressions make query authoring (they allow avoiding recursive views) easier
and can be implemented efficiently as research on these constructs for XML
query languages has shown. In particular, unrestricted closure path expressions
can be implemented nearly as efficiently as basic path expressions using, e.g.,
tree labeling schemes [48] or closure indices.

Closure Subgraph Extraction. Closely related to (regular or unrestricted)
closure path expressions, is the issue of subgraph extraction: Since schema and
extent of RDF data are often, at best, only vaguely known, extracting interesting
portions of the data whose extent is not known statically (i.e., at query authoring
or compilation time) becomes an often encountered problem: E.g., given infor-
mation about authors and books, extract all information on one book, e.g., for
export into a bibliography management application or for styled display on a
Web site.



28 T. Furche et al.

It should be immediately clear, that closure subgraph extraction is easily
achieved in languages providing (regular or unrestricted) closure path expres-
sions. Regular path expressions are probably needed in the case of RDF to define
a reasonable subgraph, e.g., by traversing only certain relations, traversing only
a certain number of times, or stopping at resources with certain characteristics.

What about languages with only triple patterns and/or basic path expressions
such as SPARQL, RQL, or RDQL? Some of these languages, e.g., RQL, provide
built-in closure for certain fixed, predefined relations, cf. Section 5.1. SPARQL
provides one specialized language construct, DESCRIBE, that is intended to re-
turn relevant and representative information about resources, e.g., in the style
of concise bounded descriptions [96] where a resource is described by its imme-
diate properties and the immediate properties of all blank nodes reachable from
the resource without other named resources in between. The intuition here is
that further information about the latter blank nodes can not be retrieved in
further queries to the RDF data as they are not addressable from outside. The
SPARQL specifications, however, does not require DESCRIBE to return concise
bounded descriptions but leaves the extent of the returned information up to
the implementation. Nevertheless, DESCRIBE is the only construct in SPARQL
that approximates closure subgraph extraction.

Schema-aware Selection. The discussion of closure path expressions could
not be complete without looking at one common way of reducing closure path
expressions to basic expressions: It is assumed that closure is only relevant for a
few, predefined relations such as rdfs:subClassOf which are known to be transi-
tive. For these, the implementation transparently provides the closure.

This is just one of the effects when RDF query languages provide schema-
aware (in this case RDFS-aware) selection. An RDF query language may elect
to match the query not against the bare data graph but against the entailment
graph according to some set of entailment rules, e.g., the RDFS entailment rules.
E.g., RQL provides support for the specific entailment rules of RDFS with some
exceptions (acyclic subsumption hierarchy, only part of the axiomatic triples are
included). The latter exception is, in fact, needed to guarantee that query answer
are always finite, as the RDFS entailment rules in [53] include one axiomatic
triple for each integer i to handle rdf: i properties. Query languages must, in this
case, opt for a reasonable restriction, e.g., to include only axiomatic triples for
integers i ≤ m with m the maximum size of a container in the data.

TRIPLE [93] takes schema-aware querying a step further by providing means
to parameterize a query with a “model” containing the rules to use for computing
the entailment graph against which the query is to be matched. This allows the
treatment of different schema languages in the same query framework.

Similarly, schema-awareness can be achieved in any RDF query language with
(recursive) views by providing a collection of rules implementing the schema en-
tailment rules. Xcerpt chooses this approach, as it makes schema access transpar-
ent for the query author. However, languages like Xcerpt and Versa that provide
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regular path expressions allow the query author also to specify queries with ad-
hoc schema-awareness in the queries, e.g., by using a closure path expression like
(rdfs:subClassOf)+ instead of just rdfs:subClassOf.

None of these approaches forces the entailment graph ever to be materialized.
Rather, it may be lazily (i.e., in a goal-driven backward-chaining manner) com-
puted, partially materialized, or fully materialized depending on the needs of the
implementation and the query.

Optional Selection and Disjunctions. So far, we have considered pure con-
junctive queries only. Disjunction or equivalent union constructs allow the query
author to collect data items with different characteristics in one query. E.g., to
find “colleagues” of a researcher from an RDF graph containing bibliography
and conference information, one might choose to select co-authors, as well as co-
editors, and members in the same program committee. On RDF data, disjunctive
queries are far more common place than on relational data since all RDF prop-
erties are by default optional. Many queries have a core of properties that have
to be defined for the sought-for data items but also include additional properties
(often labeling properties or properties relating the data items to “further” in-
formation such as Web sites) that should be reported if they are defined for the
sought-for data items but that may also be absent. E.g., the following SPARQL
query returns pairs of books and translators for books that have translators and
just books otherwise. If one considers the results of a query as a table with null
values, the translator column is null in the latter case.

SELECT ?writing, ?translator
WHERE { ?writing a books:Essay .

OPTIONAL { ?writing books:translator ?translator } }

Such optional selection eases the burden both on the query author and the
query processor considerably in contrast to a disjunctive or union query which
has to duplicate the non-optional part:

SELECT ?writing, ?translator
WHERE { ?writing a books:Essay .

?writing books:translator ?translator }
UNION
{ ?writing a books:Essay }

Furthermore, the latter is not actually equivalent as it returns also for writings
X with translators one result tuple (X, null). Indeed, this points to the question
of the precise semantics of an optional selection operator. One can observe that
the answer to this question is not the same for different RDF (or XML) query
languages. The main difference between the offered semantics in languages such
as SPARQL, Xcerpt, or XQuery lies in the treatment of multiple optional query
parts with dependencies. E.g., in the expression A ∧ optional(B) ∧ optional(C)
the same variable V may occur in both B and C. In this case, if we just go
forward and use the B part to determine bindings for V those bindings may
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be incompatible with C, i.e., prevent the matching of C. The way this case of
multiple interdependent optionals is handled allows to differentiate the following
four semantics for optional selection constructs:

1. Independent optionals: Interdependencies between optional clauses is dis-
regarded by imposing some order on the evaluation of optional clauses.
SPARQL, e.g., uses the order of optional clauses in the query: The following
query selects essays together with translators and, if that translator is also
an author, also the author name.

SELECT ?writing, ?person, ?name
WHERE { ?writing a books:Essay .

OPTIONAL { ?writing books:translator ?person }
OPTIONAL { ?writing books:author ?person .

?person foaf:name ?name } }

If we change the order of the two optional parts, the semantics of the query
changes: select all essays together with authors and author names (if there
are any). The second optional becomes superfluous, as it only checks whether
the binding of ?person is also a translator of the same essay but whether the
check fails does not affect the outcome of the query.

It should be obvious that this semantics for interdependent optionals is
equivalent to allowing only a single optional clause per conjunction that may
in turn contain other optional clauses. Therefore, the above query could also
be written as follows:

SELECT ?writing, ?person, ?name
WHERE { ?writing a books:Essay .

OPTIONAL { ?writing books:translator ?person
OPTIONAL { ?writing books:author ?person .

?person foaf:name ?name }
} }

This observation, however, only applies if the optional clauses are interde-
pendent. If they are not interdependent multiple optional clauses in the same
conjunction differ from the case where they are nested.

Algae seems to employ the same optional semantics as SPARQL, though
the language specification is rather vague at that point.

2. Maximized optionals: Another form of optional semantics considers any order
of optionals: In the example it would return the union of the orders, i.e.,
either first binding translators than checking whether they are also authors or
first binding authors and author names then checking whether they are also
translators. This is more involved than the above form and assigns different
semantics to adjunct optionals vs. nested optionals. The advantage of this
semantics is that it is equivalent to a rewriting of optional to disjunctions
with negated clauses: A ∧ optional(B) ∧ optional(C) is equivalent to (A ∧
not(B) ∧ not(C)) ∨ (A ∧ not(B) ∧ C) ∨ (A ∧ B ∧ not(C) ∨ (A ∧ B ∧ C).
This semantics ensures that the maximal number of optionals for a certain
(partial) variable assignment is used. This semantics has been introduces in
Xcerpt.
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3. All-or-nothing optional: A rare case of optional semantics is the “all-or-
nothing” semantics where either all optional clauses are consistent with a
certain variable assignment or all optional variables are left unbound. This
semantics can be achieved in SPARQL and Xcerpt using a single optional
clause instead of multiple independent ones.

RDF Specificities. Following the look at general issues for query languages
in the specific context of RDF, this section closes the discussion of selection
constructs with a consideration of selection constructs for RDF specificities such
as blank nodes, collections, reified statements etc. RDF query languages should
support these specificities in some way (possibly only as syntactic sugar) to be
considered adequate to the RDF data model.

Blank Nodes. Among the considered specificities, blank nodes are the only ones
that introduce new challenges for the query language. For matching, blank nodes
are just like any other resource, but obviously do not match if a URI is specified
in the query. However, for result construction blank nodes have to be considered
specifically, see Section 5.2.

Collections and Containers are RDF’s constructs to represent sets, sequences,
and similar structures. The difference between containers and collections lies
in the fact that containers are always open (i.e., new members may be added
through additional RDF statements) and collections may be closed. Both con-
tainers and collections are merely vocabulary and representational conventions
but do not extend the data model. I.e., a sequence container 〈A, B, C〉 is reduced
to the triples

_:1 rdf:type rdf:Sequence
_:1 rdf:_1 A
_:1 rdf:_2 B
_:1 rdf:_3 C

Similarly, collections are reduced to binary relations of rdf:first and rdf:last:

_:1 rdf:first A
_:1 rdf:rest _:2
_:2 rdf:first B
_:2 rdf:rest _:3
_:3 rdf:first C
_:3 rdf:rest rdf:nil

However, these reductions result in lengthy and hard to understand triple pat-
terns. Furthermore, querying directly on these representations proves challenging
in many RDF query languages. Consider the simple query intent for selecting
all members of a container or collection C. This query cannot be expressed in
most RDF query languages if C is a collection, as it requires an arbitrary-length
traversal of rdf:first and rdf:last edges (or direct support of collections) neither of
which most RDF query languages provide including SPARQL. In languages with
regular path expressions such as Versa or Xcerpt this query can be expressed
as C rdf:first.(rdf:rest.rdf:first)* R with R selecting the contained re-
sources. In the case of containers, an RDF query language either needs direct
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support or some support for regular expressions over property URIs. SPARQL,
e.g., can express the query as

SELECT ?contained_resource
WHERE { ?C ?P ?contained_resource .

FILTER(regex(str(?P),
"http://www.w3.org/1999/02/22-rdf-syntax-ns#_\d+")) }

where the regular expression \d+ stands for one or more digits.
RQL is one of the few RDF query languages that provide specific constructs

for querying membership in containers and even position in ordered containers.
E.g., the above query can simply be expressed as R in C, selecting all resources R
in the container C. Though RQL does not yet consider collections, this addition
should be straightforward.

Reification. Reified statements are another example for a modeling construct
that is reduced to several triples but is often convenient to query without re-
quiring the author to perform the reduction by hand. Indeed, some RDF query
languages such as SeRQL [22] and TRIPLE [93] provide specific syntax for reified
statements, that allows reified statements to be queried with the same syntax
as normal statements. SeRQL simply encloses a triple pattern in curly braces to
indicate reification.

5.2 Construction

Where the previous section has focused on how RDF query languages select
data from the underlying RDF graph, this section looks at the reporting of the
selected data including construction of new data.

Graph Construction vs. Selection-only. Surprisingly many RDF query lan-
guages are not closed, i.e., their result is not again RDF but often simply sets or
sequences of tuples representing alternative variable assignments. Examples of
such languages are RDQL [91] and Versa. SPARQL provides both just variable
assignments using the SELECT keyword and some limited form of graph con-
struction using the CONSTRUCT keyword which, however, falls short of even
the most simple grouping tasks.

Even when considering only variable selection blank nodes in results are an
interesting challenge for RDF query languages. Blank nodes can not be identified
from outside thus any “internal” identifier for a blank node returned as part
of a result provides at best existential information (i.e., there is a node that
fulfills a query). This makes grouping and aggregation even more important
than in relational queries. All the more surprising is the lackluster support for
these well-established language features in RDF query languages. RQL is one of
the few languages providing aggregation including grouping by sub-queries: The
following query selects all resources authored by “Julius Caesar” together with
the count of their properties.
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SELECT R, count(SELECT @P FROM {R @P }
FROM {R}books:author{A}
WHERE A = "Julius Caesar"

The languages in the SPARQL family mostly lack any form of aggregation
thus requiring, e.g., post-processing of query results to solve such queries.

Graph Construction. A basic requirement for any query language is closure,
i.e., the ability to construct data in the same data model as the queried data. In
the case of RDF query languages, quite a number of languages focus on selection
only, e.g., Versa and RDQL. Others, such as SPARQL provide graph construc-
tion but only the most basic form. Most notably, SPARQL omits any form of
grouping which severely limits the sort of graphs that can be constructed.

The basic form of graph construction in SPARQL is

CONSTRUCT { ?R ?P ?O }
WHERE { ?R books:author "Julius Caesar". ?R ?P ?O }

Constructing a graph with one triple for each property of all resources with
author “Julius Caesar”. Indeed, SPARQL’s constructions are just triple patterns
again generating one instance of the triple pattern for each variable assignment
produced by the query.

In particular, this means that blank nodes in construct patterns are instanti-
ated once for each variable assignment. There is no way that triples for different
variable assignments “share” blank nodes.

Collections and containers. This separate handling of constructed instances pre-
vents any form of grouping including the construction of containers and col-
lections, for both of which some form of grouping is needed. Thus, it is im-
possible to answer simple queries such as “put the names of hotels for each city
in a container/collection” or link each city and all its inhabitants to a common
(blank) node. What SPARQL lacks is a proper “identity invention” facility, cf.
[3].

RQL provides specialized constructs for constructing collections and contain-
ers and allows arbitrary grouping using nested queries, but also lacks proper
treatment of blank nodes in construction.

Minimal Result Graphs. In addition to the support of blank nodes for group-
ing properties, blank nodes pose another challenge for graph construction in
RDF query languages: Naively, one might generate one result instance for each
blank node in the variable assignments. However, in many cases this leads to
unnecessary large result graphs.

E.g., consider the assignment set {(R → http://w3.org/, P → director, O →
”Tim Berners-Lee”), (R → http://w3.org/, P → director, O → :1)}. Then the
above SPARQL query constructs a graph containing two statements, one stating
that the W3C has director “Tim Berners-Lee” and one stating that the W3C
has some (unknown or unspecified) creator. However, the second statement is
entailed by the first one and therefore superfluous. A minimal result graph
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would only retain those blank nodes that are not “compatible” and thus entailed
by the other resources in the graph.

Conditional construction. When constructing a result graph, the shape of the
graph is often closely linked to the variable assignments. This goes, again, beyond
mere instantiation of variables at predefined positions. E.g., one might only want
to include a subgraph if a certain optional variable is bound. This ability of a
query language is referred to as conditional construction. One can essentially
distinguish three forms of conditional construction:

1. Unscoped optional construction is used, e.g., in SPARQL: A triple containing
optional variables is only included if bindings for all optional variables are
provided in the current variable assignment. The drawback of this approach
is that it does not allow the existence of a binding for an optional variable to
have effect beyond triples using that variable. E.g., it is not possible to add
the statement that a resource is (of type) translated if a translator exists.

2. Scoped optional construction allows this sort of queries by providing an
explicit optional construction construct (e.g., optional in Xcerpt construct
terms) with a scope. In RDF, this scope is usually a set of triples that are to
be included if a binding for the optional variable is present. In contrast to
the first case, not all of these triples have to contain the optional variable.

3. Full conditional construction finally uses conditional constructs such as if
. . . then or case with arbitrary boolean expressions over the query variables.
E.g., one might want to add the triple ?P rdf:type my:Teen for persons
with ?Age between 12 and 18 and the triple ?P rdf:type my:Adult for
older persons.

Notice, that all three forms can be expressed if the query language allows
disjunction to span selection and construction as is the case in most rule-based
query languages such as Xcerpt, Algae, or Triple. In SPARQL, however, dis-
junction is limited to selection (i.e., WHERE clauses) thus making (2) and (3)
inexpressible in SPARQL.

Construction of XML Results. If one looks at the RDF data access use
cases [35] and considers often cited usage for RDF query languages, the need
for a bridge between RDF queries and XML processing becomes evident. Some
languages address this by integrating RDF and XML querying, e.g., Xcerpt or
approaches such as [87]. Such languages become versatile in the sense of [27].

Most RDF query languages, however, do not consider the intertwining of
XML and RDF queries. Still, the need for at least a means to deliver XML as
result of an RDF query is evident. SPARQL, e.g., defines a static schema for
representing answers in XML, cf. [9]. Such a static schema can then serve for
further processing by means of XML query languages or other processing tools.

5.3 Procedural Abstraction

This section closes with a brief look at procedural abstraction mechanisms for
RDF query languages. Procedural abstraction in form of database views or rules
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is a common feature of both programming and expressive query languages. For
the Semantic Web to succeed, an efficient rule layer to implement large scale
reasoning tasks is essential. Separating querying and (rule) reasoning, however,
is often infeasible, in particular if the extent of the queried data depends on
the reasoning and is not known a priori (as is the case, e.g., in crawling RDF
queries).

In addition, rules or views are useful for the query author for all the reasons
traditional procedural abstraction has become commonplace in programming
languages (separation of concern, reuse, etc.).

Therefore, quite a number of RDF query languages provide some form of rules
or views. TRIPLE and Xcerpt, e.g., use deductive rules similar to Logic Program-
ming or Datalog, Algae uses production rules, cf. Section 6 on the evaluation of
these different rule paradigms.

Both, TRIPLE and Xcerpt use rules to provide transparent RDFS-aware se-
lection as discussed above in Section 5.1, but also allow the user to define their
own rules expressing, e.g., application semantics already on the query layer.

A further important use for rules is the integration and mediation of hetero-
geneous data. The data may differ in format, schema, or just representation, if
the schema is flexible as most RDFS schemata. In these cases, rules can ease
data integration, e.g., if mappings between the different schemata are provided
in some form, cf. [89]. They can also perform data normalization transparent to
the query user, i.e., allow the user to query representational variants without
considering all these variants in each query anew.

6 Query Evaluation

Methods for RDF query evaluation differ in several aspects:

– RDF data may be stored in memory or on disk.
– Query evaluation may be distributed over a network of collaborating nodes,

or it may be local.
– RDF triples may include provenance information. In this case, they are called

quadruples (s, p, o, c) of subject, predicate, object and so-called context in-
formation. Alternatively, the provenance information may be associated with
entire subgraphs rather than with triples.

– RDF graphs can be stored as decomposed triples or quadruples in a relational
database engine, as documents on a file system, or as entire graphs in an
object oriented or semi-structured database. The type and schema of the
storage have a high influence on the efficiency of query processing.

– Queries may either consist of single RDF statements with variables sub-
stituted for any combination of subject, predicate and object (e.g. (?X,
foaf:knows, ?Y)), or they may consist of conjunctions of such statements,
then referred to as conjunctive queries. In the latter case, multiple occur-
rences of the same variable are evaluated by joins and allow querying graph
patterns.
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In this article we mainly focus on non-distributed answering of RDF queries
on large RDF repositories stored on disk. Both querying graphs with and with-
out provenance information are discussed, and different storage methods are
examined. Both single statement queries and conjunctive queries consisting of
multiple RDF statements are considered.

6.1 Storage of RDF Data

The first issue highlighted in the field of query evaluation is data storage: a closer
look is taken at three alternative approaches to storing RDF data. First, light is
shed on the use of the Berkeley database for storing RDF in the Jena framework,
second several proposed methods for using relational database engines for RDF
storage are reproduced, and third approaches for deploying object oriented and
object relational databases for RDF storage are described. Taking into account
their widespread use, it is not surprising that the greatest number of suggestions
and implementations of RDF storage is based upon relational database engines.
In each of the sections, the impact of the choice of the storage method on query
evaluation is highlighted.

RDF Storage in Berkeley Databases. According to the directory of the
Free Software Foundation14, the Berkeley Database is

[..] an embedded database system. Its access methods include B+tree,
Extended Linear Hashing, fixed and variable-length records, and Persis-
tent Queues. Berkeley DB provides full transactional support, database
recovery, online backups, and separate access to locking, logging and
shared memory caching subsystems. [..]

The initial database back-end for the Jena RDF framework [47] supports
both relational database back-ends and the Berkeley database. The relational
database schema for storing RDF statements in Jena1 (the first version of Jena)
is very efficient in space, because it does not contain any redundant information.
In contrast, each RDF statement is stored three times in the Berkeley database
– using all of subject, predicate and object as hash-keys. According to [99] the
redundant storage yields a significant enhancement of query performance, and
from this experience the authors of Jena decided to not fully normalize the re-
lational database schema for Jena2 (the second version of the Jena RDF Frame-
work). Besides Jena, also the Redland RDF Application Framework [8], rdfDB
and RDFStore make use of the Berkeley database.

Storage of RDF at the aid of Relational Database Engines. The majority
of suggestions for permanently storing RDF data concern relational database
engines.

RDF storage in Jena1 and Jena2 The most straight-forward approach to storing
RDF in a relational DBS is to create a single table with the columns subject,

14 http://directory.fsf.org/
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predicate and object, containing all statements of the RDF graph. In order to
save space, the relational database schema of Jena1 differs from this simplistic
approach in that the schema is normalized to contain each resource and literal
only once. Therefore a resource table and a literals table are introduced, contain-
ing a column for a short primary key, and a column for resources and literals,
respectively. The subjects, predicates and objects of the statement table refer to
these keys.

Although this schema is very efficient in space, retrieving the subject, object
and predicate of a statement already requires three joins between the statement
table, the resource table and the literals table. Therefore the relational database
back-end of Jena2 [99] stores literals and resources directly in the statements
table unless they supersede a configurable maximum size. As a result, short
URLs may be stored multiple times in order to avoid joins, but large URLs are
only stored once in order to save space. There are several other optimizations
that have been incorporated into Jena2:

– Multiple tables for different graphs. RDF applications may wish to store data
which is seldom accessed together in different tables, and data which is often
queried together in the same tables. “The use of multiple statement tables
may improve performance and caching” [99, Section 3.1].

– Property tables. In RDF graphs, there are usually sets of statements with
the same subject that occur frequently together. An example would be the
properties foaf:name, foaf:nick, foaf:knows, etc. of the FOAF vocabu-
lary. So as to provide efficient access to these common statement patterns,
they are stored in special property tables. For each common statement pat-
tern, one property table is provided, and common statement patterns may
be automatically detected in RDF Graphs.

– Reified statements tables. In Jena1 reified statements are not stored in their
reified form (which would require four ordinary statements for one reified
statement), but in the statements table with two extra columns – one of
them indicating whether the statement is reified, and the other containing
the statement identifier. Since also reified statements constitute common
access patterns, Jena2 stores reified statements in property tables.

Storage of RDF data in 3store 3store [50] is a C-library developed at the Uni-
versity of Southampton with a MySQL database back-end. It is intended for
very large RDF databases and is being tested with over 30 million RDF triples
holding knowledge about authors, publications and institutions in UK Com-
puter Science research. The database schema employed is very similar to that of
Jena1. It consists of a statements table, and a table for resources and literals. As
in Jena1, literals and resources are not directly stored in the statements table.
Instead a portion of their MD5 hash values are stored as 64-bit foreign keys in
the statements table. The use of the hash function for literals and URIs and
the storage in extra tables guarantee lower overall space of the database, few
string comparisons, and a uniform length of the records in the statements ta-
ble, “an optimization which benefits the MySQL database engine” [50, Section
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4.3]. Although the probability of hash collisions is very low (10−10 for 5 · 108

resources), hash collisions are detected and reported at assertion time. [50] does
not mention how hash collisions are corrected. Hash collisions among homony-
mous literals and URIs are averted by splitting the hash space into two equally
large parts, one for literals, the other for URIs.

The most recent version of 3store [49] allows the formulation of queries in
SPARQL, which supports the concept of named graphs. Therefore, the state-
ments table contains an additional row which indicates the graph that the state-
ment belongs to (triples with such provenance information are often called quads.
Besides the statements table, and the tables for literals and URIs, 3store also
stores the languages and data types of literals in special tables.

RDF Storage in Sesame Sesame is an RDF database with support for Schema
inferencing and querying using the SeRQL query language. By introducing an
additional Storage and Inference Layer (SAIL) between the RDF storage system
and the applications accessing the data, Sesame is designed to support a wide
variety of different storage possibilities. In [23] an implementation of SAIL in
the open source databases PostgreSQL and MySQL is presented.

The PostgreSQL database schema makes use of transitive sub-table relations,
which are a special PostgreSQL feature, to model RDFS’ property and class
subsumption hierarchies. A table holding instances of a class C1 which is a sub-
class of class C2 inherits from the table for C2 – in other words it is declared
as a sub-table of C2. A query issued on the contents of table C2 is also eval-
uated on the entries of table C1. As Jena1 and 3store, Sesame stores resource
URIs and literal values only once to save space. An important difference be-
tween Sesame RDF storage and the solutions discussed so far is that statements
are not stored in a single statements table consisting of subject, property and
object. Instead, an extra table is created for each property and class which is
used in the RDF graph. Since this procedure requires the insertion of new tables
to the schema when RDF statements are added which use properties or classes
which have not appeared in the RDF graph so far, we call these kinds of schemas
dynamic schemas as opposed to static schemas as used in 3store and Jena. An
RDF graph with FOAF data would thus include tables foaf:knows contain-
ing all pairs of person URIs for persons knowing each other, tables foaf:name,
foaf:nick for storing ordinary names and nick names, etc. are created. For each
class used in the RDF schema, tables such as foaf:Person, foaf:Document, etc.
Data about the schema is stored in special tables rdfs:Class, rdfs:Property,
rdfs:domain, rdfs:range, etc. A performance comparison with a static Post-
greSQL schema has shown, that schemas with a single statement table are faster
when inserting or updating data from the RDF graph. Especially the insertion of
new rdfs:subClassOf statements is expensive, since it requires rebuilding the
parts of the subclass-hierarchy modeled by PostgreSQL sub-tables. On the other
hand, the authors of [23] expect querying to be faster in the dynamic database
schema.

The alternative MySQL implementation of the Sesame Storage and Infer-
ence Layer uses a static database schema. This schema is significantly more
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complex than the static schemes of 3store and Jena in that it contains tables
dedicated to holding the predefined RDF/S properties rdfs:subPropertyOf,
rdfs:subClassOf, rdf:type, etc. Although not explicitly mentioned in [23],
administering this schema information in separate tables enhances the perfor-
mance of RQL schema queries such as subClassOf(Artist). The fact that RQL
is a language that explicitly supports the straightforward formulation of schema
queries, and that the other storage engines are coupled with languages with lower
support for schema queries may be an explanation for the different database
schemas employed.

RDF Storage in RDFSuite RDFSuite is a set of tools for querying, validating and
storing RDF data. It natively supports the RQL query language. In this para-
graph, its storage system is briefly examined. RDFSuite uses the PostrgreSQL
DBS for storing RDF data, and its schema is a dynamic schema resembling
the PostgreSQL schema of Sesame. Sub-table relationships are used to imple-
ment subClassOf and subPropertyOf-relationships among classes and proper-
ties. Since RQL provides syntactic means specifically geared to querying RDF
Schema, such queries must be evaluated quickly. Therefore, the schema informa-
tion is kept in separate tables such as subProperty, subClass, Property, Class
and Type. In contrast to the schemas described above, Namespaces are stored
in a separate Namespace table in order to save space. This namespace table is
referenced from the other tables. A database is built from an RDF-description
using a two phase algorithm: In the first phase, properties and classes occur-
ring within the RDF data are extracted, and from this information the database
schema is constructed. In the second phase this schema is populated with the
instance data from the RDF file.

Path Based Storage of RDF Data Matono et al. [73] point out that storing
RDF graphs as decomposed sets of triples is efficient for evaluating single state-
ment queries, but is inefficient for path based queries. Whereas in single state-
ment queries one or two items of subject, predicate and object are omitted,
path based queries as defined in [73] are finite sequences of arcs (v0, v1), (v1, v2),
. . . , (vk−1, vk) from a source node v0 to the destination vk. Answering path based
queries of length k at the aid of a single statement table requires k −1 joins over
the table. So as to improve performance, Matono et al. suggest the following
procedure:

– The RDF graph to be queried is separated into five subgraphs named CI,
PI, T, DR, G containing the class hierarchy (rdfs:subClassOf statements),
the hierarchy amongst properties (rdfs:subPropertyOf), type information
(rdf:type), domain and range information of properties and all remaining
statements, respectively. Only the paths occurring within G are explicitly
saved within an appropriate relational table. For the hierarchical subgraphs
CI and PI an interval numbering scheme is applied in order to efficiently
answer queries concerning their transitive closures. Since the subgraphs T
and DR are flat, it does not make sense to extract paths from them.



40 T. Furche et al.

– For each resource r in the graph G all paths starting at any root node of
G and ending at r are saved. In order to be able to efficiently deal with
path based queries that start with a wild card (e.g. “give me all titles of
books authored by someone”), path expressions are saved in reverse order.
Moreover, only the names of the predicates are reflected within the path
expressions, whereas node names are omitted. An example path expressions
saved in the database would thus be ’#title<#author. The relational table
containing the path expressions consists of two columns, one holding path
identifiers, and the other holding path expressions such as the one given
above. In a resource table, resources are associated with paths that end at
this resource.

– Path queries are evaluated by concatenating their predicate names in re-
verse order and subsequently comparing the resulting string with the path
expressions stored in the path expressions table.

The authors of [73] present a performance comparison with the Jena2 frame-
work which suggests that for path queries of length greater than 3, path based
storage of RDF data allows significantly faster query processing. For queries of
length 1 and 2, Jena2 performed better. The resource table associating resources
with path identifiers is significantly larger than the actual number of resources,
especially in the case of deep and densely interwoven graphs. A further issue
not addressed within [73] are path queries that do not start with wildcard nodes
(e.g. “Find all titles of books and their authors”). Since the stored paths only
contain predicates and no node identifiers, answering such queries still requires
joins over the statements table.

RDF Storage in Object Databases. In [20] Bönström et al. propose to di-
rectly store RDF graphs modeled in an object oriented programming language
in an object oriented database (OODB). They compare the performance of all
kinds of queries including schema and hybrid queries expressed in RQL on top
of the OODBS Fastobjects with the performance of the same queries on top
of the relational MySQL database back-end of Sesame. Due to the similarity
of RQL and OQL, RQL queries can be straightforwardly translated to OQL.
All resources (URIs for nodes and predicates as well as literals) are represented
as objects, and the statements of the RDF graphs are stored in the OODB as
“an object/reference structure”. The performance comparisons conducted in [20]
suggest that directly storing an RDF graph in an OODB system considerably
speeds up query evaluation, especially for schema and hybrid queries. Perfor-
mance comparisons with the PostgreSQL back-end of Sesame and other RDF
storage systems mentioned above have not been mentioned in the article.

Index Structures for RDF. The approaches considered so far use stan-
dard database management systems (OODBS and RDBS) or standard libraries
(Berkeley DB) to efficiently store and retrieve RDF data on disk. However, some
research has already been carried out on developing index structures specifically
aimed at RDF. In [72] Matono et al. propose to use suffix arrays to efficiently
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find paths in RDF graphs. In [52] index structures for RDF statements with
context information (also called RDF quads or RDF triples with provenance
information). In this section, both of these approaches are briefly reviewed and
discussed.

Indexing RDF and RDF Schema with Suffix Arrays Suffix Arrays [68] are index
structures used to search for a pattern P of length p in a larger string M of length
m. All suffixes of M are sorted in lexicographical order, and the suffix array is
efficiently stored as the string M and a sequence of indexing points p1, . . . , pm

where pi, 1 ≤ i ≤ m is the position of the ith suffix (in lexicographical order)
in the original string m. Suffix arrays allow to find all instances of P in M in
O(p · logm).

Matono et al. propose to extract all paths from an acyclic RDF graph that
start at root nodes (nodes without incoming edges) and end at leaf nodes (nodes
without outgoing edges) and to represent them as strings by concatenating
their labels (or identifiers for their labels). The alphabet Σ of these strings
is thus the set of resource URIs and literal values of the Graph. They define
the notion of suffix arrays for directed acyclic graphs as a list of indexing points
(pa1, po1), . . . , (pal, pol) where pai denotes the path that the ith suffix (in lex-
icographical order) appears in, and poi denotes the position within pai. Paths
within the queried RDF graph matching a particular path query can be found
by performing binary searches on the suffix array.

In order to cope with schema queries efficiently, Matono et al. divide the
RDF graph into several subgraphs according to the type of predicates, see [72]
for details. Performance evaluations presented in [68] indicate that depending
on the type of path queries, the proposed indexing scheme speeds up query
execution by a factor in between two and nine.

Index Structures for RDF Quadruples Web applications processing data from
several different resources usually are interested in tracing where the information
originated from in order to judge its trustworthiness. Furthermore, it is often
desirable to perform substring searches on large amounts of Semantic Web data.
While RDF storage systems making use of the Berkeley database get by with
three hashes for the efficient look-up of triples for two given items of the triple,
[52] suggest index structures for efficiently searching for substrings (keyword
index ) within resource and literal values and for looking up quadruples (quad
indexes) based on any combination of subject, predicate, object and context
information.

Since resources and literals are referenced from both the keyword index and
from the quad indexes, nodes in the RDF graph are mapped to shorter object
identifiers which are stored in the indexes instead. Substring matches are deter-
mined by using an inverted index on all words appearing as tokens within the
queried RDF graph. The inverted index allows to look up lists of object iden-
tifiers of resources that a given word appears in and also provides occurrence
counts for the words that can be used to optimize the join order of conjunctive
queries.



42 T. Furche et al.

The quad indexes allow to efficiently look up RDF quadruples matching a
given query quadruple in which some of the four entries may be omitted. Query
quadruples such as (?:rdf:type:?:http//example.com/stmts.rdf), which finds
all rdf:type statements originating from the context http//example.com/
stmts.rdf, can be categorized into 24 = 16 access patterns, depending on which
of the four elements of the quadruple are given. A naive implementation would
construct 16 indexes to allow the efficient evaluation of queries falling in any
of the 16 categories, but Harth et al. show that by taking advantage of prefix
queries in B+-trees, only 6 “combined” indexes suffice for this purpose.

6.2 Schema- and Reasoning-Aware RDF Querying

As has been pointed out in Section 4, RDF languages can be distinguished by
the fact whether they provide constructs taking advantage of RDF/S and OWL
reasoning. While the major part of languages does not provide direct means of
finding e.g. all subclasses of a given class, or all instances of a class, others do
provide such features (e.g. RQL).15 But also the languages of the SPARQL family
do not reject the RDF/S semantics, but simply maintain that the computation
of derived facts should be provided by an underlying graph model (e.g., by
pre-materialization or on-the-fly construction performed by the storage layer).
Therefore, an overview over several approaches of implementing especially the
RDF/S semantics are given in this section.

One step in this direction that has already been discussed in Section 6.1, is
the use of dynamic relational database schemes containing tables for each de-
fined rdfs:Class holding all the instances of the class. This allows to efficiently
retrieve all instances of a given class. Additionally, the use of sub-table relation-
ships within database schemes allows the implementation of the rdfs9 inference
rule as defined in [53]. Other RDF/S inference rules have not been covered so
far. There are mainly three approaches that deal with the implementation of the
RDF/S semantics:

– Labeling schemes can help to implement the RDF/S entailment rules con-
cerning the rdfs:subClassOf and rdfs:subPropertyOf relationships, and
any other relationship that is defined to be transitive.

– Precomputation of derived facts (forward chaining). Forward chaining can be
used to precompute implied RDF statements, not contained in the original
RDF graph that are derived from any of the RDF/S rules or even from user-
defined rules. This approach trades memory space for execution time, and is
especially useful, if the queried graph and its schema information are stable
and if the number of queries issued on the graph is high. Note, however, that
this approach requires that RDF triples and therefore the Web sites involved
are known beforehand. Indeed, this computation model is not suitable for
crawler queries where the extent of the data is extended at query time.

15 Note that none of the examined languages provides constructs for taking advantage
of OWL semantics. However, some research on how to combine query languages with
OWL reasoners has already been carried out.
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However, since many RDF query languages including SPARQL and RDQL
do not support such queries the computation model is relevant for RDF
querying.

– Backward chaining. Like forward chaining, backward chaining can be used
to implement any kind of rules including all RDF/S entailment rules. Back-
ward chaining is preferred when the underlying graph changes frequently,
and when the the number of queries is low. Xcerpt uses backward chain-
ing in combination with simulation unification to evaluate programs. The
evaluation of Xcerpt is not treated in this article for the sake of brevity, cf.
[28, 90].

Labeling Schemes for RDF/S Reasoning. Christophides et al. advocate the
use of labeling schemes in conjunction with relational database storage of RDF
graphs for “avoiding costly transitive closure computations over voluminous class
hierarchies”[32] in Semantic Web data bases such as the Open Directory Portal.
The use of labeling schemes reportedly results in a decrease in query execution
time for transitive closure computations of 3-4 orders of magnitude compared
to evaluating such queries on a dynamic relational database scheme such as the
one described in [55].

In [32] three types of labeling schemes are compared with respect to their
suitability for supporting ancestor/descendant (which is a more general form of
subclass queries), adjacent/sibling, and nearest common ancestor queries. Some
of the results concerning the use of these labeling schemes for both hierarchi-
cal subsumption relationships and those structured as directed acyclic graphs
(DAGs) are recapitulated here and an example is given in Figure 3.

– Bitvector schemes assign bitvectors of length n (n is the number of nodes
within a DAG to be represented by the scheme) to the nodes. The ith node
in the DAG has a 1 bit at the ith position, and a 1 bit at the position
k, if the kth node is one of its ancestors. All other positions within its
bitvector are 0. Bitvector schemes allow subsumption checking in constant
time (the length of the bitvectors is assumed to be constant), but finding all
ancestors, descendants or siblings can only be achieved in O(n). Additionally,
the size of the bitvector must be adjusted, when new classes are added to
a class hierarchy, making this method inappropriate for class hierarchies in
the presence of dynamic updates. As Figure 3 shows, the bitvector scheme
can be naturally extended to account for multiple inheritance among RDF
classes.

– Prefix schemes assign labels to nodes within a class hierarchy (or DAGs in
general), such that for each node N and an arbitrary ancestor A the label of
A is a prefix of the label of N . Probably the most known representative of
prefix schemes is the Dewey Decimal Encoding (DDE). A major advantage
of prefix schemes is their support for dynamic updates. New sibling nodes
can be added as long as the total number of siblings does not exceed the
size of the alphabet chosen (in the figure the alphabet is Σ = {1, . . . , 9}).
The major disadvantage is the inflationary label size for class hierarchies
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which are not tree-shaped: Each non-spanning-tree edge in Figure 3 causes
the node it originates from and all of its descendants to inherit the label of
the node the non-spanning-tree edge points at.

– Interval schemes assign lower and upper bounds to nodes, such that for a
node N and an arbitrary ancestor A, the interval of N is contained within
the interval of A, and for two sibling nodes the intervals are disjoint.In the
interval based labeling scheme of Agraval et al., the label of a node v is
composed of a pair of numbers (min(v), post(v)) where post(v) is the post-
order number of the node and min(v) is the minimal post-order number of
the descendants of v. As shown in Figure 3, the labeling scheme by Agrawal
et al. can also be extended to handle DAGs. In contrast to the downward
propagation of labels in the prefix schemes, labels are propagated upwards
when non-spanning-tree edges are to be reflected (e.g. the node ex:d inherits
the label of the node ex:g because there is a non-spanning-tree edge from
ex:g to ex:d. The top node ex:a does not need to inherit the label [1,1]
of ex:g, since [1,1] is already included in the interval [1,7] of ex:a.

Fig. 3. Labeling schemes for DAG sub-class hierarchies

Note that all of the above labeling schemes cannot be used to represent cycles
in the subsumption graph. An alternative labeling scheme for graphs with cycles
is the 2-hop labeling [36].

Forward Chaining. The most apparent approach to calculating the transitive
closure of rdfs:subPropertyOf and rdfs:subClassOf relationships and other
implied RDF statements derivable by inference rules is the following: The body
of a rule is instantiated with facts from the knowledge base, such that it becomes
true (if possible) and the instantiated head of the rule is added to the knowledge
base if it is a new fact. In this way, each of the rules is applied to the knowledge
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base in turn, until a complete run over the rules does not produce any new
derived statements. Once that the application of all rules does not produce any
new statements, one can be sure that all implied RDF/S statements have been
added to the knowledge base.

Let F be the number of facts, R the number of rules and C the average
number of conditions within the head of the rules. Then the maximum number
of comparisons between facts and conditions for one loop over the rules is R∗FC .
The overall complexity additionally depends on the number of loops that need to
be performed. Several proposals for improving runtime behavior can be thought
of:

– Applying the rules to the entire knowledge base in each round is not nec-
essary. It suffices to consider only those instantiations of the inference rules
that make use of a new fact – that means a fact that has been added after
the last application of the rule. In doing so, the specific semantics of RDF
blank nodes should be considered.

– If the body of an inference rule could almost be completely instantiated in
one round, the information about the successfully instantiated part gets lost
before the rule is reconsidered. By remembering partial instantiations of rule
bodies one can treat space for time.

– Especially in the case that rules are complex, the bodies of different rules
may share common parts of the condition. In the naive algorithm these sub-
conditions are evaluated once for each rule.

Note, that forward chaining might be difficult to realize if the Web sites in-
volved and thus the RDF facts are not all known before hand as is the case, e.g.,
with crawler queries.

CWM and Pychinko CWM16 (an acronym for Closed World Machine) is a
Python command line tool for RDF documents that can – amongst other things –
convert between different formats (currently the serializations Notation3, RDF/-
XML and NTriples are supported) and store triples in a queryable database.
The more interesting feature of CWM for this section is its ability to do forward
chaining. Given the following rule and data, CWM will infer that :Frank, :Bob,
and :Sam are :Male (the shorthand a represents an rdf:type property).

{ ?x :son ?y } => { ?y a :Male }.

:Mary :son :Frank, :Bob, :Sam.

Since CWM does not employ any optimization techniques for forward chain-
ing, it does not perform very well on large sets of assertions and rules. The
authors of Pychinko17, a CWM clone, improved the performance of CWM by
implementing the RETE-algorithm [42].

16 http://infomesh.net/2001/cwm/
17 http://www.mindswap.org/∼katz/pychinko/
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The RETE-Algorithm The RETE-algorithm was conceived by Charles Forgy
at Carnegie Mellon University in 1979, and formed the basis for new develop-
ments in the ambit of expert systems. Its core idea is to (1) merge (parts of)
the antecedents of rules if they are the same, to (2) memorize possibly partial
instantiations of antecedents of rules, and to only consider new facts within each
loop over the set of rules. The data structure at the core of the RETE algo-
rithm is a network computed from the antecedents of the rules. An example of
this data structure for RDF/S entailment rules and some RDF/S statements is
given in Figure 4. The network reflects the RDF/S inference rules rdfs9 and
rdfs11 and contains two kinds of nodes: α-nodes representing simple conditions
and β-nodes representing conjunctions over α-nodes. The α-nodes are populated
with matching facts from the knowledge base (an RDF graph), and beta nodes
are populated if a conjunction of simple conditions becomes true. The set of
initially known facts is given at the top right of Figure 4. Note that although
rdfs9 and rdfs11 are very simple entailment rules, the principles of the RETE
algorithm already allow for some optimizations. Both rules share a common an-
tecedent (the node rdfs:subClassOf(X,Y)), and partial instantiations of rules
are memorized (e.g. the instantiation (ex:mammal, ex:animal), which will help
to derive additional implied RDF statements in the next loop).

}

}
}

Fig. 4. Memorization of partially instantiated antecedents and combination of rule
antecedents in RETE algorithm

As Figure 4 shows, the new facts rdf:type(ex:leo, ex:mammal) and rdfs:
subClassOf(ex:lion,ex:animal) can be inferred. Adding these new facts to
the knowledge base as in Figure 5 shows that the amount of comparisons to
be performed is low: The derived facts must only be compared with the two
α-nodes, and trigger one new instantiation for each α-node and a new instantia-
tion for the left β-node, such that the last implied statement rdf:type(ex:leo,
ex:animal) can be derived. Note that also the removal of facts (RDF state-
ments) from the knowledge base (the RDF graph) can be efficiently handled by
the RETE-algorithm in the same way as the addition of new facts.
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}

}
}

Fig. 5. Addition of new facts to the rete decision tree

Although the optimizations of the RETE algorithm have a greater impact
for a large number of rules with complex antecedents, its implementation in
Pychinko allegedly yields a five-fold performance increase. Therefore its applica-
tion to larger and more involved rules for Semantic Web reasoning seems to be
promising.

7 Conclusion

Although this survey only considers a (subjectively chosen) subset of the RDF
query languages proposed so far, it makes quite clear that the research commu-
nity has not yet settled on a dominant paradigm to querying Semantic Web data
and that this field of research is changing quite quickly. Language constructs and
approaches to querying RDF differ both in their availability (e.g. regular path
expressions) and also in their exact semantics (e.g. the optional construct). The
widespread use of the query languages within Semantic Web projects, which will
most probably take place within the upcoming years, will allow to judge the
real-world utility of the presented approaches and constructs and will ultimately
establish the most usable amongst them.

This article presents some interesting methods for accelerating RDF query
evaluation. With the amount of available Semantic Web data increasing expo-
nentially, evaluation methods, efficient storage and retrieval and index structures
specifically aimed at RDF become more important for realizing any of the pro-
posed languages.
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1 SPARQL Background

Consider the following two conceptions of the Semantic Web:

– A web of (logic based) knowledge representations.
– A web of (semi-)structured data.

In both conceptions, the common factor (the web) imposes certain require-
ments: extremely variable scalability (from a home page to community sites to
sites that encompass a significant fraction of the web), rapid evolution, radical
distribution, arbitrary interconnection and aggregation, and very little valida-
tion or other means of control. The demands of the web are forcing both the
knowledge representation (KR) and the database communities to stretch their
understanding and technology in different ways. While implementation tech-
niques require revamping to deal with web scale, finding the right level and
sort of expressiveness is even more critical. The web doesn’t just need bigger
databases, it needs “better” ones. The rise of semi-structured data, especially in
the form of XML and associated languages, is driven by the success of HTML
as a data representation language as well as its many failures. The amount of
data that has been created or converted to HTML is staggering. HTML allows
novices to publish all sorts of information quite easily while also supporting com-
plex information structures (for example, see the typical site map of a large site).
However, HTML is lacking in a number of ways, especially in the management,
evolution, integration, and repurposing of data. HTML, especially in common
use, has (at least) three fundamental problems: malformed or misused constructs,
a heavy presentation orientation, and a lack of needed expressivity. These prob-
lems stem from aspects of HTML (and associated software like the browser)
that, we believe, contributed to its success. Browsers were very permissive in
their parsing and rendering of HTML, which lowered the barrier to producing
pages. Various presentation features in HTML made it an attractive platform
for publishing information from software manuals to dictionaries to newspapers
with ads. HTML’s core simplicity requires a lack of expressivity, which makes
it easier to learn (and to learn to “abuse”). More significantly, by pushing the
balance of expressivity (and thus complexity) toward the presentation aspects of
the language, it was relatively neutral toward content of different sorts. Consider
the effect of requiring a specialized content language to be developed before one
could publish, say, a recipe. Either the user would have to develop their own

P. Barahona et al. (Eds.): Reasoning Web 2006, LNCS 4126, pp. 53–67, 2006.
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language (a difficult task in itself), or find a suitable one if it exists. Both paths
are strongly inhibitory.

While these “problems” arguably helped the web to grow, they make manag-
ing, reusing, or evolving data difficult, as can be seen by the move away from
websites based on collections of HTML files toward database backed websites,
and, more generally, to “content management systems”. More recently, under
the “Web 2.0” moniker (for public, community-oriented sites) and with the rise
of Web Services (primarily for business interaction), there has been an increase
in the reuse of web published information across organizational boundaries in
complex ways. This increase has been enabled by the use of XML to overcome
exactly the three problems listed above: XML insists on well formedness and
strongly discourages permissive parsers — if there is a mismatched tag, most
parsers reject the document hard and fast. XML has no inherent presentation
semantics, and, pragmatically, presentation has been handled either by trans-
formation to HTML or by Cascading Style Sheets (CSS). Finally, XML is a
metalanguage for defining markup languages, so, at the very least, users can de-
velop languages specific to their representational task. On the other hand, XML
based languages retain some of the flexibility of HTML: well-formedness is a very
minimal constraint on XML documents, so in the worst case, one can jumble
arbitrary tags together and process the data ad hocly. Schemas are all out of
band and generally allow for a great deal of flexibility in the structure. Finally,
the query and transformation languages (XPath, XQuery, and XSLT) reflect and
exploit the base flexibility of XML: they do not require complete structuring of
the data, they can impose constraints in an as needed and as possible basis, and
they incorporate a strong navigational model[2].

While XML has been criticized by the semi-structured data community for
its tree, rather than graph, orientation[5] among other things, its wide adoption
and strong infrastructure make it a difficult behemoth to ignore, and make it
silly to do so. However, XML technologies are firmly rooted in a datastructure
view of the world, and thus not particularly suitable for logic based knowledge
representation[1]. For example, XQuery, while admirably declarative, is a fairly
standard functional programming language (with some twists in the type sys-
tem, XML Schema, to deal with tree structured data), and typical XML tasks
such as validation, transformation, and (database like) query focus on the struc-
tural, or syntactic, aspects of an XML fragment. Thus, in order to represent
some aspect of the world, one must design all aspects of the representation,
generally leaving many aspects implicit.1 Of course, one could use XML as the

1 “In a nut-shell (and somewhat exaggerated), the difference between knowledge-based
programming (which processes knowledge) and classical programming (which pro-
cesses data) can be formulated as follows. In classical programming, one designs spe-
cialized programs that are tailored to a specific application problem. The knowledge
about the problem description and the application domain is implicitly represented
in the structure of the program, and must thus be acquired by the programmer. In
knowledge-based programming, the knowledge about the application domain is rep-
resented explicitly . . . ideally, the preocessing can be done with the help of general
. . . problem solving methods.”[1].
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syntax of a knowledge representation language and, in a sense, that is what
RDF, RDFS, and OWL do. However, RDF is an inexpressive enough logic that
it is ambiguous as to whether it is a knowledge representation language or a data
language (see section 3.2 for more discussion). When you add that people often
use (or misuse) RDF as competitor to XML, then the picture gets even more
murky.

In any information based application, whether a database driven web applica-
tion or an AI planning system interacting with a theorem prover, there needs to
be an effective interface between the information and information management
part of the system, and the rest. In database management literature, this inter-
face is often in the form of a specialized language called a data manipulation
language, which includes facilities for retrieving, structuring, adding, modifying,
and deleting information in the database. Of these, perhaps the most prominent
is the retrieval aspect, that is, the query language. For XML, the most com-
mon query language is XPath which uses a navigational retrieval model. For the
Semantic Web languages RDF(S) and OWL, there are a plethora of languages
available, but the W3C is in the process of standardizing one, called SPARQL
(an acronym expanding to SPARQL Protocol and RDF Query Language). While
SPARQL technically includes both a query language and a protocol for (typically
remote) access of Semantic Web data, development of the protocol greatly lags
behind that of the query language. Thus, we shall focus on the query language,
and hereafter use “SPARQL” to refer to the query language.

Historically, RDF query languages were primarily of two sorts: navigational,
“path”-like languages and relational, SQL-like languages. Of the former, there
are two prominent members: Versa2 and the Wilbur Query Language3, though
they remain little used, with only one implementation each. SQL-like languages
are widespread, with RDQL4 being the most popular. RDQL is the starting
point of SPARQL, though during development SPARQL acquired a new syntax
for graph patterns based on Turtle5 and features from other SQL-like RDF query
languages, most notably, SeRQL6, were added.

2 RDF

Here we present an abbreviated overview of the RDF abstract syntax, conceptual
model, and semantics. The reader will find it helpful to review the relevant
specifications: RDF: Concepts and Abstract Syntax 7, and RDF Semantics8, in
particular sections 0, 1, and 2. The concrete syntax used in this paper is Turtle,
which is also the core graph syntax is SPARQL.

2 http://uche.ogbuji.net/tech/rdf/versa/
3 http://wilbur-rdf.sourceforge.net/2004/05/11-comparison.shtml
4 http://www.w3.org/Submission/RDQL/
5 http://www.dajobe.org/2004/01/turtle/
6 http://www.openrdf.org/doc/sesame/users/ch06.html
7 http://www.w3.org/TR/rdf-concepts/
8 http://www.w3.org/TR/rdf-mt/
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2.1 Syntax

RDF documents describe graphs, which are collections of triples. Triples are
understood as assertions, that is, as true or false indicative sentences. Each triple,
as the name indicates, consists of three parts, a subject, predicate, and object.
Each “slot” of a triple can be filled with an RDF term, though there are syntactic
restrictions on where certain terms can appear. The canonical RDF term is
the Uniform Resource Identifier, or URI (recently supplanted with International
Resource Indentifiers, IRIs, which are constructed from a much wider character
set). URIs can be the subject, predicate, or object of a triple and correspond
either to a singular term (that is, as the name of an individual) when the subject
or object, or to a two place relation when the predicate. In plain RDF, there is
not a significant distinction between a predicate and other URI terms, so it is
convenient to think of a triple as reified into a three place predicate (call it ‘rdf’,
or ‘triple’).

Objects can also be data values (in RDF jargon these are called “literals”).
There are two basic sorts of literal, plain literals and typed literals. Literals
fundamentally consist of two parts, a lexical form and a value. The lexical form
is always a Unicode string and it is expressed the syntax of the literal. For plain
literals, the lexical form and the value are identical (perhaps modulo encoding
or whitespace), and plain literals may have a language tag as well. Typed literals
all have a third part, a datatype URI 9 which determines the range of admissible
values and the mapping from the lexical form into the value space. For example,
consider the following typed literals:

Example 1. Value Identical Typed Literals
"1"ˆˆ<http://www.w3.org/2001/XMLSchema#integer>
"01"ˆˆ<http://www.w3.org/2001/XMLSchema#integer>

These literals have identical datatype URIs and values, but their lexical forms
are distinct. Certain SPARQL test functions will treat these literals as identical.
There is one predefined datatype in RDF 10 for XML content.

So far, the possible RDF graphs we have described are all ground, that is,
they contain no variables of any sort. Ground graphs are similar to XML Infosets
without type information (that is, the abstract datastructures corresponding to
well formed XML documents) — they are very similar to a standard database.
Standard database techniques (i.e., model checking) suffice to deal with them.
However, RDF throws a twist into the mix: so-called blank nodes (commonly
known as BNodes). BNodes may appear only in subject and object positions,
and correspond to existentially quantified variables. The BNode quantifier for a
particular graph occurs outside the entire graph, thus all such variables have a
single, graph-global, scope.
9 It is somewhat characteristc of RDF that certain syntactic concerns are mixed with

semantic ones. In this case, instead of the notion of a type being fundamental, it is
the type’s identifier that is primary. Part of this is due to the desire to compose
specifications (and the things they specified) via standard Web mechanisms.

10 Named by the URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
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To sum up, an RDF graph is a collection (conjunction) of triples. Each triple
consists of three terms, a URI or BNode, a URI, and a URI, BNode, or literal
term. Literals may be typed or untyped. In SPARQL lingo, an RDF graph that
is available for query is part of a dataset. A dataset may contain one or more
RDF graphs where all but one of the graphs in a dataset have a URI as a label.
The unlabeled graph is called the default graph. In this paper, we shall only deal
with a single default graph in the queried dataset.

Throughout, we use the Turtle concrete syntax for RDF, as it is the syntax
employed by SPARQL. Here is a brief introduction to Turtle, but the reader is
strongly encouraged to consult the Turtle specification.

The core of Turtle is a direct, minimal representation of a set of triples. Each
triple is delimited with a full stop; URIs are delimited by angle brackets; BNodes
are indicated by a leading “ :”; and literals (both plain and typed) by straight
double quotes. The following four triples exhibit all these forms, including a
BNode coreference:

Example 2. Basic Turtle:
<http://ex.org/sara> <http://ex.org/loves>

<http://ex.org/mary>.
<http://ex.org/sara> <http://ex.org/hasFirstName> "Sara".
<http://ex.org/sara> <http://ex.org/knows> :aBNode.
:aBNode <http://ex.org/age>

"8"ˆˆ<http://www.w3.org/2001/XMLSchema#integer>.

Turtle has a number of abbreviation forms which make it considerably less te-
dious to read and write. In particular, URIs can be abbreviated with (psuedo)
QNames, given an appropriate prefix declaration, as follows:

Example 3. Moderately Abbreviated Turtle:
@prefix : <http://ex.org/>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
:sara :loves :mary.
:sara :hasFirstName "Sara".
:sara :knows :aBNode.
:aBNode :age "8"ˆˆxsd:integer.

Notice that one can declare a “default” prefix, as we did in this example. Turtle
has additional abbreviation forms, but we shall not use them in this paper.

2.2 Semantics

RDF’s semantics are given by a simple, if somewhat non-standard, model theory.
In what follows, we follow closely the presentation in the RDF Semantics docu-
ment, and we restrict ourselves to the most basic semantics, that of the graphs
themselves, without attending to any of the extended semantic conditions im-
posed on the special RDF and RDFS vocabulary.
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Definition 1. A simple interpretation, I, of an RDF graph, R
(where Sig(R) is the set of terms used in R, i.e., the signature) is a tuple of
the form < IR, IP, IEXT, IS, IL, IT > where

– IR (the domain) is a non-empty set;
– IP is the set of properties;
– IEXT : IP → IR × IR;
– for the set of URIs, U such that U ⊆ Sig(R), IS : U → (IR ∪ IP );
– for the set of plain literals, PL ⊆ Sig(R), IL : PL → IR;
– for the set of typed literals, TL ⊆ Sig(R), IT : TL → IR;
– for the set of BNodes, B such that B ⊆ Sig(R), A : B → IR and for any

non-BNode T ∈ Sig(R), A : T → I(T ).
– For a triple, < s, p, o >, I(< s, p, o >) = true if

• I(p) ∈ IP ;
• < A′(s), A′(o) >∈ IEXT (I(p)) for some A′;

otherwise I(< s, p, o >) = false;
– For an RDF graph, R, I(R) = true if, given some A′, every triple Tr ∈ R,

I(Tr) = true, and I(R) = false otherwise.

The main thing to attend to is that properties are not interpreted directly as sets
of pairs of elements of the domain, as one might expect, but via an additional
mapping fucntion (IEXT ). This is a hook for higher order syntax in RDFS and
OWL Full (though the semantics remains robustly first order, in the style of
HiLog[3]).

Entailment between basic RDF graphs (called simple entailment) is defined
in the usual way: a graph R1 simply entails a graph R2 if for all I such that
I(R1) = true, I(R2) = true as well.

3 Core SPARQL: Basic Graph Patterns

3.1 Syntax

Basic graph patterns (BGPs) are the key interface between the query side of
things and the data side. A BGP is the only part of a SPARQL query that is
sensitive to the semantics of the queried document, and, in fact, at least concep-
tually speaking, the only part that “interacts” with the data. It should, therefore,
be no surprise that a BGP is a slight, but significant, generalization of an RDF
graph. The extra bit is in the form of a new sort of term, the query variable.
Query variables are similar to BNodes in being, in a sense, existential variables
and are globally scoped to the BGP in which they occur. Query variables have
a bit more freedom syntactically as they can appear in the predicate, as well as
subject or object, of a triple. The set of triples that include triples with query
variables are called triple patterns. A BGP is a set of triple patterns.

In addition to syntactic freedom, query variables are called out specially from
BNodes for two reasons:
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– Since BNodes in BGPs are lexically identical to BNodes in a graph serial-
ized to Turtle syntax, it’s useful to distinguish between “intentional” query
variables and variables that are possibly just part of some example data.

– Query variables and BNodes correspond to distinguished and undistinguished
variables, respectively. Traditionally, a distinguished variable must be bound
to a ground term, and thus can only bind to individuals explicitly mentioned
in the document. Undistinguished variables do not require a named binding
and do not report their bindings in result sets. They are purely existential
i.e., they do not require a witness entity present in the graph.

As we shall discuss in the next section, things are not quite so neat in the case
of simple entailment since many SPARQL users wanted the ability to query for
BNodes, primarily to deal with coreference between results (or queries!). Thus,
query variables can be bound to BNodes — a rather unusual situation.

The concrete syntax of BGPs is Turtle plus terms with either a leading “?” or
leading “$” to indicate a query variable (we shall use “?” exclusively).11 BGPs
are delimited by curly braces.

Example 4. A BGP (without prefix declarations):
{ex:sara ex:loves ?who.}

3.2 SPARQL Semantics

The semantics for SPARQL, even restricting attention to simple entailment, is
surprisingly complex. BNodes, both in the data and especially in the result set,
complicate the picture enormously. Furthermore, in spite of the clear semantics
of RDF (which mandates that BNodes are existential variables), many users
(and SPARQL implementors and specifiers!) tend to treat BNodes as “graph
local” names, e.g., as Skolem constants. For editing applications, this is not an
unreasonable attitude, but for the definition of query answers, it is rather odd.
Given the lack of systems that correctly and sensibly implement simple entail-
ment (and given the rather high computational complexity of simple entailment),
we should not be so surprised that the data structural view of RDF graphs is
so prevalent. It is possible that future working groups will chose to retract the
existential interpretation of BNodes, given these prevailing attitudes.

A second difficulty is the desire to have SPARQL be the query language for
the Semantic Web, or at least for all extant Semantic Web languages. Even re-
stricting one’s attention to the RDF Semantics document, one finds several sorts
of entailment specified (simple entailment, RDF entailment, various extensions
including RDFS). OWL is a completely different beast. While all these languages
have an RDF syntax, not all variants are happy with the RDF semantics. For
example, OWL Lite and OWL DL are based on description logics and thus are
biased toward a more traditional first order model theory (i.e., where relations
are directly identified with sets of tuples). So, some of the syntactic freedom

11 There are other relaxations, including permitting literals in the subject position.
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of RDF and SPARQL can cause problems for standard approaches to OWL
conjunctive query.

The current SPARQL specification tries to be flexible and to provide useful
hooks for dealing, semantically, with all these variations. Unfortunately, the cur-
rent does not provide any syntax (or protocol features) for determining what
semantics one is querying with. Also, there are several unspecified aspects of the
semantics (for example, the algebra — see the notion of distinctness). It is hoped
that as implementation and use experience is gathered, these problems can be
straightfowardly resolved.

Parameterizing the Semantics. For specification purposes, we can divide
SPARQL queries into two parts: basic graph patterns and algebraic operations.12

BGPs are evaluated against a graph and that evaluation produces a query result
(also known as a result set), that is, a set of bindings for the query variables
in the BGP. A query result is very much like a table in a relational database
system (the key difference being the presence of BNodes in the results). Query
results are then manipulated by the various algebraic operations of SPARQL.
This conception of SPARQL allows for SPARQL queries to be parameterized to
the semantics of the graph, while leaving the rest of the language fixed. (From
an implementation perspective, such a separation is unlikely to be practical.)

The relationship between a graph, a BGP, and the result set is characterized by
an “Entailment regime”. An entailment regime is an arbitrary relation between
RDF graphs, thus, clearly, RDF entailment and all the various forms of OWL
entailment are entailment regimes. This vagueness in specification allows for all
sorts of processing of RDF graphs to affect the valid answers to a SPARQL
query, including procedural and other ad hoc notions.

As we will see below, a result is a substitution of RDF terms for the query
variables of a BGP such that the resulting graph is entailed by the queried graph
under some entailment regime. Now we need to take into account what may be
substituted to form a correct result.

BNode Coreference. It is tempting to take query variables as simple existen-
tial variables, and thus BGPs as a mere syntactic variant of RDF graphs. On
this view, if a graph simply entails a BGP, then the result set is, in principle, non
empty — there is at least one hit on the graph. By testing different groundings
of the BGP (i.e., wherein we replace all the query variables with ground terms)
we could (impractically) determine the particular bindings that make up the
results set.

There are several wrinkles in this picture. The easiest to resolve is the exis-
tence of query variables in predicate positions. Essentially, we must ground those
variables with properties in the signature of the graph in question before testing
for entailment, which is how we (in principle) extract predicate variable bindings
anyway.

12 This approach was forcefully articulated by Enrico Franconi and Sergio Tessaris
during the development of SPARQL.
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Trickier is the fact that BNodes can be returned in query results as values of
bindings. There are a number of reasons for this, but the most prominent one is
for exhibiting coreference in results sets. For example, take the following graph
and BGP (assume an appropriate prefix):

Example 5. Significant BNode Coreference
Graph:

:x :loves :mary.
:x :loves :sheeva.
:y :loves :katayun.

BGP:
?who :loves ?whom.

Now, if ?who were properly distinguished, then this query would have an empty
results set, which is both counterintuitive and unfortunate. If it were properly
non-distinguished, then while we would know that all of :mary, :sheeva, and
:katayun are loved, we could not tell from the result set that someone loves both
:mary and:sheeva (without a subsequent query). The most desirable result set
for this query against this graph is:

Table 1. Result set for example 5

?who ?whom

:a :mary
:a :sheeva
:b :katayun

(Note, of course, that the semantics of RDF do not rule out that there is
someone who loves all three.)

This result set is very informative. We know that someone loves each of these
women, and we know that at least one person loves both :mary and :sheeva.
We definitely want this sort of coreference in result sets. We could achieve the
same effect, in some sense, with additional queries. Once we have retrieved all
the loved people, we could subsequently test whether each element of the power
set of the set of loved people share a lover. It is an understatement to say that
this is not at all practical. Interestingly, such coreference between answers in a
result set is useful under a wide range of entailment regimes, including those of
OWL, though existentials returned in bindings has not, to our knowledge, been
considered before.13

13 Obviously, one might also want to have coreference between result sets of different
queries (and thus between result sets and queries). To achieve such “stable BNode”
references requires the identification of a larger scope to put the quantifiers outside,
perhaps a notion of a “session”. One would expect this to be handled on the protocol
side of things.
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Result Redundancy. A naive application of simple entailment will result in
an arbitrary number of results, if there are any. Simple entailment allows for
existential generalization. So if there are any hits at all, we can substitute fresh
BNodes in for query variables to get a new, but redundant, result. This is highly
undesirable, as it arbitrarily bloats the result set. Of course, the graph itself may
already contain such redundancy, such as in:

Example 6. Redundant graph:
:june :loves :sheeva.
:x :loves :sheeva.

The second triple does not add any information, since if we know that if :june
:loves :sheeva, we know that someone does. Similarly, consider the following
result set):

Table 2. Result set with redundancy

?x ?y

:june :sheeva
:x :sheeva

Semantically speaking, the second result does not give us any new information.
This result set could be derived from a query on example 6, or from a series of op-
erations (e.g., a projection of another result set). Now, fully minimizing the result
set might be computationally prohibitive (in particular, just requiring minimality
in the result set of a BGP bumps up the complexity of query answering). Many
query systems allow for redundancy in the result sets (though SPARQL, like SQL,
has a keyword DISTINCT that enforces (some sense of) minimality in the results),
but we must ensure that there is a sensible bound on redundant answers. Further-
more, there are some applications (e.g., editing) where sensitivity to the explicit
redundancy in the queried graph could be pragmatically interesting, though this
is pushing back toward a datastructural view of RDF.

Whichever scenario, we must be careful to give only the right amount of
redundancy, and that the redundancy be predictable.

The Semantics 14

To handle all this, plus semantic extensibility, requires a fair bit of machinery.
Recall the desiderata:

1. Parameterizable semantics
2. BNodes in results
3. Appropriately minimal redundancy

14 Many thanks to Sergio Tessaris and especially Enrico Franconi for their helpful
discussions about SPARQL semantics. Without that assistence, this section would
surely be entirely broken.
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Different entailment regimes put different constraints on the values of bind-
ings, so “more” expressive entailment relations may miss answers that “less”
expressive entailment relations give (as well as the more obvious vice versa;
in a sense, some less expressive entailment relations allow for more expressive
result sets). For example, in most query focused variants of OWL DL entail-
ment, BNodes cannot appear as bindings of variables (they can only match
non-distinguished variables). Similarly, OWL DL entailment generally does not
allow for the built-in vocabulary to appear as bindings. In order to capture these
distinctions, the scoping set contains the set of admissible bindings for a query
against a graph under an entailment regime.

Definition 2. Basic Graph Pattern E-matching15

Let G be an RDF graph, BGP be a basic graph pattern, B a set of RDF
terms, S a mapping from the query variables in BGP to elements of B, and E
an entailment regime. BGP E-matches with pattern solution S on graph G with
respect to scoping set B if:

– BGP ′ is a basic graph pattern that is exactly the same as BGP except that
all the BNodes in Sig(BGP ) are mapped 1-1 to the BNodes in Sig(BGP ′)

– B and BGP ′ do not share any BNodes.
– G E-entails (G ∪ S(BGP ′))

While the entailment regime is necessary for parameterizing the semantics, it
is not sufficient. We also need B, the “scoping set”, to specify the terms which
are legitimate values of bindings. For example, if one wished to use SPARQL to
express traditional conjunctive queries against OWL DL knowledge bases (where
there are no existentials in the result set), one merely needs to specify that the
scoping set can never contain BNodes. Similarly, one can exclude the built-in
vocabulary, or the set of class names. However, typically, B must contain all or
nearly all the non-BNode terms in G. If it excludes terms that are legitimate
bindings, we run the risk of excluding valid answers. It also must contain enough
BNodes to handle all the distinctions needed in the result set. Furthermore,
the entailment regime must specify what instantiated BGPs are “syntactically
legal.”16

The main oddity in this definition is the third condition: instead of directly en-
tailing S(BGP ), G must entail (G ∪ S(BGP ′)). Let us consider the case where
the entailment regime is simple entailment, and the scoping set, B, is equal

15 This definition is somewhat different from that appearing in the SPARQL specifica-
tion. in particular, it dispenses with the notion of a scoping graph and just reuses
the original graph. We believe that these definitions are effectively equivalent, but
since the role of the scoping graph is not explicitly described, it is hard to be entirely
sure.

16 In our definition, this is defined by ruling that non-well-formed BGPs for an en-
tailment regime are not entailed by any graph. In the SPARQL document, this is
specified by an extra condition on entailment, that is, that S(BGP ′) must be “in
the range” of the entailment relation.
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to Sig(G). (This is, in fact, the specific semantics currently sanctioned by the
SPARQL specification.) We now must consider if the definition of E-matching,
instantiated in this way, meets desiderata 2 and 3.

B contains exactly the BNodes in G. When we substitute one into BGP ′,
since this subsitution preserves BNode identity, we have stable coreference across
different substitutions. Thus we at least enable coreference. Since we combine by
simple set union the original graph with S(BGP ′), BNode identity is preserved
between triples in G and in S(BGP ′). Thus, if there is a match, G ∪ S(BGP ′)
will just be G again. If we substitute the “wrong” BNode in for a query variable,
we will not get an “extra” match (unlike if we use a fresh BNode), since there
will be an extra coreference that prevents G from entailing G∪S(BGP ′). So, we
get exactly the redundancy that is in G and no more.17 Consider the following
example:

Example 7. Correct redundancy:
Graph:

:x :loves :sheeva.
:y :loves :sheeva.
:z :loves :zarrin.

BGP:
?who :loves :sheeva

Recall that the scoping set is equal to the signature of the original graph,
thus, { :x, :y, :z, :loves, :sheeva, :zarrin}. These are the only candidates
for bindings of ?who. Clearly, the only possibly successful candidates are the
BNodes, so let us examine each of those substituions when combined with the
original graph:

Example 8. G ∪ S(BGP ′):
Where ?who = :x:

:x :loves :sheeva. # The S(BGP ′) merges with this triple.
:y :loves :sheeva.
:z :loves :zarrin.

Where ?who = :y:
:x :loves :sheeva.
:y :loves :sheeva.# The S(BGP ′) merges with this triple.
:z :loves :zarrin.

Where ?who = :z:
:x :loves :sheeva.
:y :loves :sheeva.

17 The only reason to replace BGP with BGP ′ is to ensure that there are no shared
BNodes between the original graph and the query except those introduced by a
substitution.
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:z :loves :zarrin.
:z :loves :sheeva.# S(BGP ′) appears with a spurious co-reference).

Clearly, the first two substitutions are entailed by G, whereas the third is not.
Consider what happens if we add a fresh BNode to the scoping set not included
in Sig(G):

Example 9. G ∪ S(BGP ′):
Where ?who = :somethingFresh:

:x :loves :sheeva.
:y :loves :sheeva.
:z :loves :zarrin.
:somethingFresh :loves :sheeva.

But this is simply entailed by G as the last triple is entailed by either the first
or second triple alone. Thus, we can recover the exact behavior of unrestricted
simple entailment by adding an infinite supply of fresh BNodes to the scoping
set. Full minimality is harder to ensure and involves an increase in complexity (as
one must “leanify” the results), but also is not required by the current SPARQL
specification. In effect, we have a compromise between a full knowledge based
approach and a pure datastructural approach.

4 Algebraic Manipulation of Results

Now that we can extract a table from a graph via a BGP, we can manipluate
that table in a variety of more or less standard relational ways. The table and
algebra orientation of SPARQL is perhaps most obviously distinguishes it from
path oriented query languages, where the intermediate objects tend to be nodes
rather than tables of bindings.18

4.1 A Bit of Syntax

A concrete, complete “core” SPARQL query consists of zero or more prefix
declarations, a query result form (we shall only consider the SELECT form), and
a where clause consisting of a number of BGPs with operations between them.
Consider this example (without operations):

Example 10. Core SPARQL query:
PREFIX ex: <http://ex.org/>
SELECT *

{?who ex:loves ?whom}

BGPs are delimited by curly braces, which are required in order to distinguish
distinct BGP arguments to various operators.
18 One can typically simulate each approach in the other, at the cost of perspicuity and

concision, for example, see [4].
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4.2 Familiar Operations

There are three fundamental operations which can be performed on a result
set within a SPARQL query: projection, filtering, and conjunction. The project
function removes columns from a result set, in the standard way. Projections are
specified in the SELECT clause by listing the variables19 whose columns are
to be preserved, where ∗ is the identity projection. For example, we can modify
the prior example to only give one column (e.g., the lovers, not the loved):

Example 11. Simple Projection:
Graph:

:x :loves :mary.
:x :loves :sheeva.
:y :loves :katayun.

Query:
PREFIX ex: <http://ex.org/>
SELECT ?who

{?who ex:loves ?whom}

Evaluating this query against the graph will result in one column of answers.
The number of answers will vary with the semantics of the entailment relation
(and, if the DISTINCT solution modifier is added, on the particular semantics of
DISTINCT), but in any case we will have only two distinguishable answers. In
contrast, if we evaluate the same BGP with SELECT * we will get three clearly
distinct answers in the results set.

In addition to filtering out columns, we can filter out rows in a result set
by testing the value of a binding against a range of functions.20 Row filters
syntactically appear inside a BGP but are understood as operations on a result
set, not as part of the core semantics of the query, though, if the base logic has
the correct expressiveness, this distinction can be moot. Certainly, in practical
query engines, one will push the filters as far down into the query plan as possible
to avoid generating inordinately large intermediate tables, or bringing in excess
data from disk.

Finally, we can combine result sets using the OPTIONAL or UNION operators.
These allow for a weak kind of disjunction in queries, restricted to result sets.

5 Conclusion

There is much missing in SPARQL, and much in SPARQL that we did not touch
on in this essay. SPARQL has a rich set of test functions, some aggregation and

19 Note that unlike many query languages, the SELECT clause does not determine
which variables are distinguished, or even pseudo-distinguished (i.e., taking BNodes
as values). BNodes in the BGP are non-distinguished whereas query variables are
all distinguished (or pseudo-distinguished if the scoping set contains BNodes).

20 See the SPARQL specification: http://www.w3.org/TR/rdf-sparql-query/#tests
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ordering operators, several interesting query forms (with the most notable be-
ing the CONSTRUCT form, which produces an RDF graph from a template and
a query result), and the ability to query over multiple identified graphs, or to
select graphs based on a query about them. Additionally, there is a minimal pro-
tocol for querying a dataset over raw HTTP or as a SOAP based Web Service.
Additionally, though not formally specified, the SPARQL query syntax has be-
come the de facto standard for conjunctive data query over OWL DL knowledge
bases.

SPARQL has many features well suited for the manipulation of semi-
structured data beyond merely its graph and RDF orientation. For example,
bindings to BNodes or, in the case of certain constructs, optionally bound vari-
ables make uniform querying of heterogeneously structured data — in particular,
data that is only partially congruous — succinct and effective. Not discussed in
this paper, but significant, is the introspective capabilities afforded by graph
variables. A single query can set up a series of subqueries that are applied based
on some inspection of the metadata of various graphs. Similarly, the controversial
DESCRIBE query form which returns an arbitrary, server defined RDF graph that
in some way “describes” the query answers makes it easier to explore graphs on
the fly. This close, in principle, alignment (some would say confusion) between a
browsing approach and a more structured query approach is at the heart of the
functioning of the web.
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In order for ontologies to have the maximum impact, they need to be
widely shared. In order to minimize the intellectual effort involved in
developing an ontology, they need to be re-used. In the best of all possible
worlds, ontologies need to be composed. [45]

Abstract. To master large rule sets in ontologies and other logic-based
specifications, the ability to divide them into components plays an im-
portant role. While a naive approach treats the rule sets as black-box
components and composes them via combinators, their relationships are
usually so complicated that this approach fails to be useful in many
scenarios. Instead, the components should be ”opened” before compo-
sition. The paper presents several such ”gray-box composition” tech-
niques, namely fragment-based genericity and extension, inline template
expansions, semantic macros, and mixin layers. All approaches help to
structure large ontologies and rule-based specifications into fine-grained
components, from which they can be built up flexibly.

Models or specifications describing domains or systems can easily and quickly
grow in size. Big ontologies, such as the Gene Ontology1, contain thousands of
concepts and relationships. Indeed, because it is difficult in general to construct
large models, some existing attempts have been criticized for their structure (see
e.g. [5]). The same is also valid for large rule-based specifications and ontologies.
Important questions to answer are: How to structure a large specification in a
good way? How to simplify the specification task for ontology engineers? How
to share parts of a model with other models so that the cost of construction
is reduced? While several authors have suggested that a division of a large on-
tology into components can be a decisive help to master the complexity of on-
tology engineering [34,39], several important questions remain open: How does
an adequate component model for ontologies look? Which grain size should it
have? Can we reuse small building blocks of ontologies in several contexts? Does
component-based ontology engineering scale?

One obvious idea for a solution, the employment of the object-oriented
paradigm, is not enough. Inheritance is a concept that is often misinterpreted,
either because it can be given several slightly different semantics, depending on

1 http://www.geneontology.org/
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the context in which it is used [10], or because application engineers have diffi-
culties to distinguish it from part-of relationships [5]. On the other hand, while
inheritance provides reuse for types, it does not so for rules: what does it means
to inherit from a rule set?

Unfortunately, also other well-known component models from software engi-
neering, such as CORBA [42], or EJB [28], suffer from several problems that
prevent their employment in ontological engineering. First of all, these models
are black-box, in the sense that the components remain unchanged during com-
position. Often, changes to the interiors of a component are required to make
it more apt to its use context, but due to the black-box principle, the only way
components can be adapted is by wrapping. Secondly, these classical compo-
nent models are defined for binary languages. Of course, this is not the level
of abstraction on which model components should be reused, which should be
suited for modeling tasks in analysis and design. Thirdly, the components are
connected by linkers that link function definitions to function calls. However,
for rule-based languages, linking predicate definitions to predicate uses would be
more important, but this is not supported. Finally, model components should
be connected according to other static relationships than the call relation, for
instance, according to aggregation or inheritance. However, such connections are
not possible with current component models.

A typical model composition technique that can be applied to other relations
between language constructs than the call relation is genericity. It is already
employed in most modern object-oriented languages for classes (C++, Java 1.5,
Haskell, or Ada95 [25]), but so far, only in a restricted manner in rule-based
and ontology languages, with the notable exception of HiLog [11]. Genericity is
used to produce specific instances of language constructs (fragments) from other
generic fragments. For instance, specific types can be produced from generic
classes. Most often, this is used for type-safe collections: container classes are
programmed as generic skeletons and instantiated to type-specific containers
better apt for typing. One object-oriented language, BETA, drives the genericity
principle to the extreme [33]. In BETA, every fragment that can be produced by
the language is considered as a component that can be constructed, instantiated,
compiled, and linked in isolation. Furthermore, fragments can contain parametric
slots, generic parameters that can be filled by other fragments. Hence, BETA
components, fragments, are perfectly apt for reuse on all levels of abstraction
the language offers. However, this principle of universal genericity is not well
known and has not been applied to other languages.

This principle, universal genericity, and its cousin, universal extensibility, can
easily be applied to modeling languages, in particular, rule-based ontology lan-
guages, delivering important techniques for component-based ontology engineer-
ing, such as type-safe templates, type-safe macros (semantic macros), view-based
and aspect-based development. Thus, when ontologies are engineered from frag-
ment components, these principles can be applied to all concepts of an ontology
language, so that ontology lines (ontology families) can be built from ontology
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components. Thus, the motivation behind this paper is the following: to show
how the elements of an ontology can be composed from fragments.

This paper starts out with an overview on several programming languages that
use fragment-based component models. Then, it transfers these concepts to the
elements of ontology languages. Basically, ontologies contain concepts, classes,
defined by a data definition language (DDL), and expressions, rules or con-
straints, defined by a data manipulation language (DML). Sections 2–4 transfer
fragment-based component models and the related technology of invasive com-
position to them. We start with invasive composition of queries, using a query
language for XML and RDF, Xcerpt, as an example. Then, we look at invasive
rule composition for Prolog. Finally, we show how the elements of rule-based
ontology languages, can be composed invasively. We demonstrate how F-logic
classes can be composed from partial classes, and, in the large, how ontologies
can be composed from partial class layers (mixin layers, Section 5). Finally, a
comparison to related work (Section 6) completes the paper.

1 Component-Based Engineering with Fragments

Future ontologies will be based on ontology components. We argue that the right
size of an ontology component for component-based ontology management is a
fragment of the underlying ontology language. Fragment components have been
invented in the research on object-oriented systems, and are used there for type-
safe adaptation of frameworks and unforeseen evolution, as can be seen from
languages, such as BETA. Fragment composition relies on three techniques: uni-
versal genericity, universal extension, and an appropriate composition language.
These principles allow for a maximal reuse of code and specification pieces, to
increase variability, and to improve extension and evolution.

1.1 The BETA Fragment Metaprogramming Environment

The first language which introduced universal genericity is BETA [33]. This lan-
guage and its development environment was developed as part of the Mjolner
project - a project for object-oriented software development environments, con-
ducted by a number of Scandinavian institutes [26].2 The BETA language is a
strongly typed object-oriented language with two main constructs, pattern and
object. Patterns describe classes, procedures, functions and other static concepts,
while objects and activation records represents their run-time instances.

What is interesting in the BETA programming language in relation to the con-
text of component-based development, is its solution for modularization, which
relies on the notion of fragments, fragment forms, and slots.

Definition 1. In BETA, a fragment is a sentential form, a partial sentence
derived by a nonterminal.
2 Remarkably, the inventors of BETA and its principle of universal genericity

stem from the same schools in Scandinavia who invented the principle of object
orientation.
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Fragments can be plain or generic. A plain, non-generic fragment is a partial
sentence of BETA, derived from a non-terminal, containing only terminals. A
generic fragment (a fragment form or template) is a fragment that still contains
nonterminals. Hence, a fragment form is a set of non-terminal and terminal
symbols derived from a non-terminal; it is the basic element to define a module
in the BETA system.

Using a specific notation, it is possible to write non-terminals inside forms that
can be replaced by other forms (slots3). Slots have a name and are typed by a
syntactic category, i.e., an element of BETA’s grammar (which corresponds to
a metaclass in a metamodel of BETA). A BETA slot is syntactically structured
by the following grammar rule:

1S lo t : := ’<<SLOT’ Name ’ : ’ Metac lass ’>>’
| ’<<’ Name ’ : ’ Metac lass ’>>’

where ’< <’, the placeholder token, does not occur in BETA elsewhere and
Metaclass is an arbitrary nonterminal of the BETA grammar. Finally, when a
set of fragments is associated with a name, it is called a fragment group.

Example 1. The following example demonstrates a fragment form named
PersonTemplate of the syntactic category PatternDecl with a slot
EmployerSlot typed by the metaclass Attribute. The form is contained in
the file PersonTemplate.4

Listing 1.1. Fragment component in BETA.
PersonTemplate = {

2name ’/home/assmann/PersonTemplate ’
Person : PatternDecl // typed by the s yn t a c t i c category

4Person : begin
PersonMembers : begin name : @ St r ing <<EmployerSlot : Attr ibute>>

end
6end

}

The slot of this form can be bound with the content of some other form. For
example, the code in the Listing 1.2 defines a fragment PersonFiller that has
as its origin PersonTemplate. The origin construct specifies that the fragment
EmployerSlot should be substituted for the corresponding slot in the compo-
nent PersonTemplate. Hence, the substitution is implicit, in the sense that a
definition of a slot is implicitly bound to its use. Since the substitution is typed
by a metaclass, it is type-safe.

Listing 1.2. Fragment component in BETA.
1de f i n e fragment component Pe r s onF i l l e r = {

name ‘ ‘/home/assmann/ Per sonF i l l e r ’ ’
3o r i g i n ‘ ‘/home/assmann/PersonTemplate ’ ’

EmployerSlot : Att r ibute // typed by the s yn t a c t i c category
5EmployerSlot : employer : @ Employer ; s a l a r y : I n t eg e r

}
3 The word slot has here a slightly different meaning than a slot of a frame in frame

logic. However, it also indicates a “hole in a template”.
4 For readability, the original BETA brackets (# and #) have been replaced by begin

and end, respectively.
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The result of the parameterization or substitution—the extent of the
fragment—is the composition of the two initial forms and is represented List-
ing 1.3.

Listing 1.3. Result component in BETA.
Person : begin

2name : @ St r ing ;
employer : @ Employer ;

4s a l a ry : I n t eg e r ;
end

Hence, the BETA compiler treats fragments as components; it can even compile
fragment forms separately and link them in binary form. As a composition opera-
tion, the compiler applies type-safe parameterization, filling a fragment into a slot.
Hence, the interface of a BETA component consists of named slots typed by the
BETA metamodel. Through this composition interface, language constructs flow
from fragments to fragment forms: definitions, types, expressions, statements.

Because BETA allows for genericity on all language constructs, we define the
following:

Definition 2. A language is called universally generic, if it provides genericity
for every language construct.

1.2 Hyperspace Programming

Hyperspace programming proposes universal extension. This principle means
that every collection-like language construct can be extended from a use context.

Hyperspace programming also builds on the concepts of fragments and frag-
ment groups (although forms are neglected), and adds the concepts of concerns
and hyperslices. Concerns are sets of semantically related fragment groups, which
describe one aspect of the software. Concerns can be grouped to hyperslices,
declaratively complete concerns, that define all items they use, so that they can
be compiled and executed. Finally, hyperslices are composed to an executable
system. Several composition operators are available for hyperspace program-
ming. The most interesting one is the merge operator, which merges collection-
like fragments that have the same name. For instance, when two classes in dif-
ferent hyperslices have been defined under the same name (denoting two differ-
ent views of a class), the merge operator can merge the classes together, while
eliminating replicates and signaling conflicts. The merge operator also merges
entire hyperslices, point-wisely applying merges on the contained collection-like
constructs.

Hyperspace programming has been realized for Java in the tool Hyper/J [48].
Hyper/J can deal with class and method fragments (signature definitions and
method bodies). It can extract semantically related method fragments from Java
packages, and group them to concerns. From such concerns, Java hyperslices
can be composed. Those are then complete Java packages, which contain several
concerns, and can be compiled and executed. Hence, hyperslices correspond to
views for Java classes that can be composed, merging all contained classes with
identical names together, and resulting in complete Java systems.
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Example 2. As an example, consider the following two concerns that define views
for the classes Person.

1de f i n e concern PersonalConcern = {
c l a s s Person {

3St r ing name ;
i n t age ;

5}
}

7de f i n e concern EmploymentConcern = {
c l a s s Person {

9Employer employer ;
i n t s a l a r y ;

11}
c l a s s Employer { }

13}
de f i n e concern Po l i t i c a lConce rn = {

15c l a s s Person {
St r ing p o l i t i c a l P a r t y ;

17i n t con t r i bu t i on ;
}

19}
de f i n e hyp e r s l i c e Employment =

PersonalConcern . merge (EmploymentConcern ) ;
21de f i n e hyp e r s l i c e PartyMember =

PersonalConcern . merge ( Po l i t i c a lConce rn ) ;
d e f i n e hyp e r s l i c e PersonInfo = Employment . merge (PartyMember ) ;

In this example, all concerns define information about persons from different
perspectives. Hyperslices can be composed from two basic concerns, merging
all their class fragments together with a point-wise merge. Finally, a hyperslice
PersonInfo assembles a complete Java package that can be reused5.

That a class in a hyperslice can be merged with another class, can also be
interpreted as an extension of one class with another. As a necessary condition,
an extensible construct in a hyperslice must have the form of a collection (e.g.,
classes or method bodies). In general, a merge of two hyperslices can be inter-
preted as a point-wise extension of all contained constructs. To this end, we can
introduce, similarly to slots, extension points (hooks) in the constructs that can
indicate where a construct can be extended. Hooks obey the following syntax:

Hook : := ’<<HOOK’ Name ’ : ’ Metac lass ’>>’
2| ’<+’ Name ’ : ’ Metac lass ’+>’

With hooks, the above example can be rephrased as extension of hooks [4]:

de f i n e concern PersonalConcern = {
2c l a s s Person {

St r ing name ;
4<+ personHook : Att r ibute+>

i n t age ;
6}

}
8de f i n e concern EmploymentConcern = {

c l a s s Person {
10Employer employer ;

i n t s a l a r y ;
12}

c l a s s Employer {

5 For composition expressions, we use an object-oriented style, i.e., group composition
operations to fragments. Also functional style can be employed.
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14<+ employerHook : Att r ibute+>
}

16}
de f i n e concern Po l i t i c a lConce rn = {

18c l a s s Person {
St r ing p o l i t i c a l P a r t y ;

20i n t con t r i bu t i on ;
}

22}
de f i n e hyp e r s l i c e Employment =

24PersonalConcern . personHook . extend (EmploymentConcern ) ;
d e f i n e hyp e r s l i c e Fu l l =

Employment . personHook . extend ( Po l i t i c a lConce rn ) ;

resulting in
1hyp e r s l i c e Fu l l = {

c l a s s Person {
3St r ing name ;

Employer employer ;
5i n t s a l a r y ;

S t r ing p o l i t i c a l P a r t y ;
7i n t con t r i bu t i on ;

i n t age ;
9}

c l a s s Employer {
11}

}

Extension operations have several advantages over merge operations. While
merge operations usually provide a shorter notation, extension operations use
extension points to steer the composition in a more fine-grained way. Because
extension points are explicitly specified, they offer a extension interface for frag-
ment components, i.e., inform a composition system where they can be extended.
In this way, parts of components can be hidden, i.e., protected against changes,
while, when merge operations have to be applied, the component is opened
up as a white-box. We conjecture, that such an extension interface is better
for component-based engineering, because it provides information hiding [37]. In
the following, we will use both operations, supposing that merges and extensions
are related, and merges can always be reduced to extensions, given appropriate
extension points.

While Hyper/J employs the extension principle only to classes and method
bodies, we can generalize it to all collection-like language constructs of a pro-
gramming or modeling language:

Definition 3. A language is called universally extensible, if it provides exten-
sibility for every collection-like language construct.

1.3 Distinguishing Modeling-In-The-Large

A further issue is that the comprehension of large systems and models can be
improved by the distinction of an architectural description. [15] were the first to
argue that programs in-the-small are essentially different from programs in-the-
large. They suggest that in a system, two layers, architecture and application-
specific components, should be distinguished. Then, the architecture gives an
overview of the system and abstracts from application-specific details, hiding
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them in the components, so that the system can be comprehended much more
easily. Clearly, this abstraction feature would be useful also to comprehend large
ontologies. But what is the architecture of an ontology?

With an explicit architecture, appropriate languages can be employed for
programming in-the-large and for programming in-the-small that are tailored to
their purpose. Depending on the kind of system, researchers have suggested dif-
ferent Architecture Description Languages (ADL). Standard ADL are based on
structured, reducible process graphs [21] that are connected by connectors, spe-
cial components responsible for communication. Other architectural languages
are expression-based, i.e., rely on side-effect free functions [47]. [14,12] have sug-
gested to use higher-order functions (skeletons) to describe architectures. Noth-
ing seems to prevent logic-based architectural languages, but this idea is not yet
explored; instead, logic is only used as a specification language for architectural
constraints [20]. So, how does the architectural language of an ontology look?

Also, the separation of an architectural aspect introduces two dimensions of
reuse: components can be reused for different architectures, and architectures
can be reused for components. Beyond simple component-based engineering, this
principle strengthens the reuse factor because reuse combinations are quadratic
and no longer linear. So, how to reuse the architecture and the components of
an ontology?

Unfortunately, architectural description languages cannot easily be transfered
to ontologies, because they define component models for communication archi-
tectures. In an architectural language, the component interface describes data
flow in and out of a component, or, which services are provided in the form of
procedure calls and returns. Since logic languages are declarative, other types of
components interfaces and composition operations have to be developed; classi-
cal component models are out of question. We have seen that fragments can be
used as components.6 But how do fragment composition languages look?

1.4 Invasive Software Composition

Invasive software composition (ISC) combines the previouslypresented ideas, com-
bining universal genericity, universal extension, and a language for composition-
in-the-large [4]. Firstly, principles of universal genericity and extensibility are sup-
ported with a primitive set of explicit composition operators that combine
fragments: bind (parameterization, substitution), extend, copy, and rename. The
bind operation fills slots with fragments, the extend operation appends new frag-
ments to the hooks, and the copy and rename operations do what their names in-
dicate. More complex composition operations, such as merge, connectors, or as-
pect weavers can be reduced to universal genericity and extensibility. Thus, with
ISC, several complex composition paradigms, such as generic programming [33],
connector-based programming [21], view-based programming [47], or aspect-
oriented programming [29] can easily be modeled. Basically, invasive composition
reduces all paradigms to the basic techniques of genericity and extensibility.
6 It should be remarked that binary components also consist of fragments, but frag-

ments of a binary language.
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Secondly, ISC describes the structure of a system in-the-large with a com-
position language, which glues the basic operations on components together.
This language is used not only to specify architectures, but also to build ex-
pressions and programs, that describe compositions of fragments in-the-large.
That is, composition programs describe how components are plugged together
to systems.Essentially, invasive composition consists of a composition algebra in
the spirit of [7], but is based on parameterization and extension. Finally, while
the basic operations are ubiquitous, ISC does not rely on a specific composition
language; imperative, functional, and rule-based languages can be employed.

Example 3. Generic programming in the way of BETA can easily be simulated
by ISC. The bind operation binds slots to fragments, i.e., instead of implicitly
binding a slot to a fragment as in BETA, the binding must be done explicit.
Examples in Listings 1.1–1.2 would be written in ISC as an explicit parameter-
ization:

Listing 1.4. Explicit binding of forms.
PersonTemplate . EmployerSlot . bind ( Pe r s onF i l l e r ) ;

which results in the same component as in Listing 1.3. The second mechanism,
extensibility, is realized by the ubiquitous operator extend. It can be applied to all
collection-like constructs in a language. For instance, extending the component
PersonalConcern from above works in ISC similarly to hyperspaces:

Listing 1.5. Extending forms.
1de f i n e fragment component Employment =

PersonalConcern . personHook . extend (EmploymentConcern ) ;

An important observation is that in general, the principles of invasive compo-
sition can be superimposed on all languages. The requirements—bindings rely
on slots, i.e., unexpanded nonterminals, extends rely on collection-like language
constructs—are general enough that every language, also a rule-based ontology
language, can meet them. However, since every language has a data definition
(DDL) and a data manipulation sub-language (DML), the task of invasive com-
position falls into two categories:

Concept Composition. This task composes fragments of the DDL, i.e.,
classes, types, or views on them are composed. Basically, a set of types
is computed from a set of fragments.

Expression Composition. This task is about composing fragments of expres-
sions (DML composition). Basically, expressions, statements, queries, rule
sets, or methods are composed from a set of fragment components.

At this point, it should be clear that a fragment-based component model for
rule-based ontologies has many advantages, so that a future composition environ-
ment for rule-based ontologies should support it. Such a system could, building
on the principles of universal genericity, universal extension, and a composi-
tion language, offer view-based, connector-based, and aspect-based development
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techniques, by which large ontologies can more easily be constructed. The rest
of the paper applies these principles of invasive software composition to rule-
based and ontology languages, transferring several programming paradigms to
DDL and DML ontology compositions. We start in the next section with invasive
composition of queries.

2 Invasive Query Composition

In this section, we demonstrate the principles of invasive composition on the
XML query and transformation language Xcerpt [9]. As in BETA, our approach
is metamodel-supported to enable type-safe compositions. For the case of Xcerpt,
we assume a metamodel describing all the constructs of the language and their
relationships. In addition, to enable universal genericity and extensibility, this
metamodel is augmented with slot and hook constructs, each derived from con-
structs in the core language metamodel. These additional constructs allow us to
explicitly define the variation points (i.e. the interface) of the components.

A difference between Xcerpt, often stressed in its favor, and other XML query
and transformation languages [6,17], is the separation in its rules of the way
documents are queried and the way the result is constructed.

Listing 1.6. An Xcerpt rule constructing a list of all clerks for each manager from a
database document.

de f i n e fragment component al lClerksForManagerConstruct = {
2CONSTRUCT

r e s u l t {
4a l l r e s u l t {

var Manager ,
6a l l var Clerk

}
8}

FROM
10in {

r e sou r c e { ‘ ‘ http :// employee . example . com ’ ’ } ,
12management {{

s t a f f {{
14var Manager −> manager ,

c l e r k s {{
16var Clerk −> c l e r k

}}
18}}

}}
20}

END
22}

In Listing 1.6, we find an Xcerpt rule which extracts information about man-
agers and clerks from a document and constructs the result by listing all clerks
for each manager. Thanks to this clear separation of concerns found in Xcerpt,
we are able to produce components which can be reused in several rules. In this
example, we have made a component out of the query part of the rule in Listing
1.6, to be found in Listing 1.7. This query component can then be re-used in
several rules which might construct the result in a different manner.
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Listing 1.7. Xcerpt component describing an Xcerpt fragment, a query fetching all
managers and clerks from a database document.

de f i n e fragment component employeeQuery = {
2in {

r e sou r c e { ‘ ‘ http :// employee . example . com ’ ’ } ,
4management {{

s t a f f {{
6var Manager −> manager ,

c l e r k s {{
8var Clerk −> c l e r k

}}
10}}

}}
12}

}

The remaining part of the original rule, found in Listing 1.8, now contains a
slot where the query used to be (Line 10). Note that this slot is a valid construct
of the extended language description.

Listing 1.8. Xcerpt component describing how to construct an answer, listing all clerks
for each manager.

1de f i n e fragment component al lClerksForManagerConstruct = {
CONSTRUCT

3r e s u l t {
a l l r e s u l t {

5var Manager ,
a l l var Clerk

7}
}

9FROM
<<employeeQuery : Query>>

11END
}

Using a composition script (Listing 1.9), we can assemble the two components
in Listing 1.8 and 1.7 and produce the complete Xcerpt as expected (Listing 1.6).

Listing 1.9. Composition script producing Listing 1.6
al lClerksForManagerConstruct . employeeQuery . bind ( employeeQuery ) ;

In-line template expansions for comprehensibility For ease of specification of
the compositions, also in-line specifications are possible. They improve compre-
hensibility, because parameterizations and extensions are seen in the context of
their embedding. The composition script would then be included in one compo-
nent and the overall composition would be specified from there. The component
allClerksForManagerConstruct, from the previous example, would look a lit-
tle bit different (Listing 1.10). Instead of specifying a slot on Line 10 in Listing
1.10, a bind operation is performed in-line during composition. Binding the com-
ponent employeeQuery (Listing 1.7) in that position would again produce the
expected Xcerpt program (Listing 1.6).

Listing 1.10. Example of in-line template expansion
1de f i n e fragment component al lClerksForManagerConstruct = {

CONSTRUCT
3r e s u l t {

a l l r e s u l t {
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5var Manager ,
a l l var Clerk

7}
}

9FROM
bind ( employeeQuery )

11END
}

Using in-line template expansions in this fashion speeds up the writing of
composition-based applications, because components and compositions are spec-
ified together.

Semantic macros for context parameterization Semantic macros provide param-
eterized in-line compositions, another form of in-line compositions that go one
step beyond type-safe template expansion, because they incorporate context in-
formation into the compositions [31]. Instead of parameterizing a slot with a
fixed fragment, they take fragments from their application context as param-
eters, bind them to the slots of a body template, and embed the expanded
template in-place, i.e. where the composition was specified:

Listing 1.11. A semantic macro and how to use it.
de f i n e semmacro cons t ruc tResu l t ( q : Query ) = {

2CONSTRUCT
r e s u l t {

4a l l r e s u l t {
var Manager ,

6a l l var Clerk
}

8}
FROM

10<<q : Query>>
END

12}

14fragment component r e s u l t = cons t ruc tResu l t ( employeeQuery ) ;

The composed component result in Listing 1.11 is constructed on Line 14 by
parameterizing the semantic macro constructResult with the fragment com-
ponent employeeQuery.

An application of a semantic macro reduces to parameterizations of copies of
its fragment form. Every actual parameter that is passed to a semantic macro is
equivalent to a parameterization statement that fills a slot of the body template
of the semantic macro. For instance, the above application is equivalent to:

// copy template
2fragment component r e s u l t = new cons t ruc tResu l t . Body ;

// paramete r i za t i on
4r e s u l t . q . bind ( employeeQuery ) ;

In summary, a semantic macro contains a fragment component, which is in-
stantiated with slot parameters and expanded in-place. All bindings are type-
safe, i.e., they are controlled by the type specifications of the macro parameters.

Aspect-oriented queries Beyond template expansion, semantic macros offer a
limited form of aspect orientation [29]. For instance, one can weave a name
component into many slots of a core construction component (aka joinpoints):
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de f i n e semmacro cons t ruc tResu l t (manager :Name, c l e r k :Name) = {
2CONSTRUCT

r e s u l t {
4a l l r e s u l t {

var <<manager :Name>>,
6a l l var <<c l e r k :Name>>

}
8}

FROM in {
10r e sou r c e { ‘ ‘ http :// employee . example . com ’ ’ } ,

management {{
12s t a f f {{

var <<manager :Name>> −> manager
14c l e r k s {{

var <<c l e r k :Name>> −> c l e r k
16}}

}}
18}}

}
20END

}
22de f i n e fragment component ManagerComp = { Man }

de f i n e fragment component ClerkComp = { Cle }
24

fragment component query = cons t ruc tResu l t (ManagerComp , ClerkComp) ;

Here, variable names for managers and clerks can be tailored to different
names, by weaving some name components over several points in the core query.

Thus, semantic macros offer a simple form of aspect-oriented query language.
Furthermore, since semantic macros have parameters that can be filled with
information from the application context, they can even tailor the aspect with
regard to the context into which it is woven.

3 Invasive Rule Composition

In Section 2, we looked at how to invasively compose fragments of a rule-based
language, the XML query and transformation language Xcerpt. In this section,
we will look at a more standard form of rule language, Prolog. This section will
take us one step closer to demonstrating how it is possible to compose fragment
components of rule-based ontology languages. Rules will play a big role in future
ontology languages, see Section 4 for further discussion.

In a rule-based language with universal extensibility, all language constructs
are extensible that can be embedded into collections [3]. This means that rules
can be extended by additional preconditions or conclusions (open rules), predi-
cates can be extended by new members (open predicates), precondition clauses
can be extended (open clauses), and rule sets can be extended by new rules
(open queries). Such open constructs can be extended by composition programs
to add more preconditions, conclusions, clauses, or rules to a query. Below we
will look at an example that applies this to Prolog rules.

Listing 1.12 defines a generic depth-first search algorithm in Prolog.

Listing 1.12. Depth-first search algorithm.
1de f i n e fragment component search = {

<<SearchCommand :PName>>(X,Y) :−
<<SearchCommand :PName>>(X,Y, So lu t i on ) .
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3<<SearchCommand :PName>>(X,Y, So lu t i on ) :−
<<Edge :PName>>(X, ) , <<Edge :PName>>( ,Y) ,

5d ep t h f i r s t s e a r c h (X,Y, So lu t i on ) .
d e p t h f i r s t s e a r c h ( Start , Dest inat ion , So lu t i on ) :−

7d ep t h f i r s t s e a r c h ( Start , [ S ta r t ] , Dest inat ion , So lu t i on ) .
d e p t h f i r s t s e a r c h ( Dest inat ion , Path , Dest inat ion , So lu t i on ) :−

9So lu t i on = Path,<+ActionAtDest inat ion : Pred i cate + > ,!.
d e p t h f i r s t s e a r c h (NodeA , Path , Dest inat ion , So lu t i on ) :−

11<<Edge :PName>>(NodeA ,NodeN) ,
not (member(NodeN , Path ) ) ,

13d ep t h f i r s t s e a r c h (NodeN , [ NodeN | Path ] , Dest inat ion , So lu t i on ) .
}

In Listing 1.13, we have a set of facts, but with an unnamed fact-relation.
The relations are slots to be filled with a predicate name through a composition
program, before the final rule is produced. In this fact-base, all relations will be
bound to the same predicate name.

Listing 1.13. Facts for the generic search algorithm.
de f i n e fragment component whoKnowsWho = {

2<<KnowsAboutRelation :PName>>(amy , l i l l y ) .
<<KnowsAboutRelation :PName>>(amy , james ) .

4<<KnowsAboutRelation :PName>>( l i l l y , james ) .
<<KnowsAboutRelation :PName>>(amy , profSmith ) .

6<<KnowsAboutRelation :PName>>(james , profSmith ) .
<<KnowsAboutRelation :PName>>(amy , b i l lGa t e s ) .

8<<KnowsAboutRelation :PName>>(james , b i l lGa t e s ) .
<<KnowsAboutRelation :PName>>(profSmith , b i l lGa t e s ) .

10}

The components in Listing 1.14 define names for parameterizations and a
semantic macro.

Listing 1.14. Name components and a semantic macro.
de f i n e fragment component knows = { knows }

2de f i n e fragment component connect ion = { connect ion }
de f i n e semmacro output ( v : Var iab le ) = {

4wr i t e ( ‘ ‘ found a f r i end ’ ’ ) , wr i t e ( v )
}

Listing 1.15 shows the composition program which defines how the fragment
components will be put together to produce the complete Prolog program shown
in Listing 1.16.

Listing 1.15. Composition program
1whoKnowsWho . KnowsAboutRelation . bind ( knows ) .

s earch . Edge . bind ( knows ) .
3search . SearchCommand . bind ( connect ion ) .

s earch . Act ionAtDest inat ion . extend ( output ( Des t inat ion ) ) .

Listing 1.16. Composed Prolog program
knows (amy , l i l l y ) .

2knows (amy , james ) .
knows ( l i l l y , james ) .

4knows (amy , profSmith ) .
knows ( james , profSmith ) .

6knows (amy , b i l lGa t e s ) .
knows ( james , b i l lGa t e s ) .

8

connect ion (X,Y) :− connect ion (X,Y, So lu t i on ) .
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10connect ion (X,Y, So lu t i on ) :−
knows (X, ) , knows ( ,Y) ,

12d ep t h f i r s t s e a r c h (X,Y, So lu t i on ) .
d e p t h f i r s t s e a r c h ( Start , Dest inat ion , So lu t i on ) :−

14d ep t h f i r s t s e a r c h ( Start , [ S ta r t ] , Dest inat ion , So lu t i on ) .
d e p t h f i r s t s e a r c h ( Dest inat ion , Path , Dest inat ion , So lu t i on ) :−

16So lu t i on = Path ,
wr i t e ( ‘ ‘ found a f r i end ’ ’ ) , wr i t e ( Des t inat ion ) , ! .

18d ep t h f i r s t s e a r c h (NodeA , Path , Dest inat ion , So lu t i on ) :−
knows (NodeA ,NodeN) ,

20not (member(NodeN , Path ) ) ,
d e p t h f i r s t s e a r c h (NodeN , [ NodeN | Path ] , Dest inat ion , So lu t i on ) .

Hence, the principles of universal genericity and universal extension, including
in-line template parameterization and semantic macros, can be transfered to
rule-based logic languages, too. This paves the way for rule components, also in
ontology languages, as the next section shows.

4 Invasive Rule-Based Ontology Composition

In Section 3, we looked at how to invasively compose fragments of a rule lan-
guage, Prolog. While some of the well-known ontology languages, based on De-
scription Logic [38,13], do not include rule constructs, rules have come to play a
larger role for ontologies. Recently, much effort has been put into how to solve a
long standing issue for the Semantic Web, how to integrate rules with ontology
languages [24,23,18,2,36,40].

There exists several approaches to integrating rules and ontologies. For a
survey of such approaches, please refer to [27]. Examples of such integrations
include, for example, the rule extension of the standardized Web Ontology Lan-
guage OWL [38], whose XML encoding is known as the Semantic Web Rule
Language (SWRL) [24]. Description Logic Programs (DLP) [23] form an inter-
section between Description Logics and monotonic rules. Such an intersection
creates a minimal rule-based ontology language; the entire ontology is described
in rules and can be solved in a rule reasoner. Another attempt tries to devi-
ate from the popular approach of extending OWL with rules, instead the lesser
language RDF [22] is extended with rules into Extended RDF [1]. The purpose
here is not to give an extensive overview of the different integration approaches
and their semantics, but rather to make the reader aware of the current trend
to include the concept of rules in ontology languages. Different rules languages
have been investigated for this kind of integration. However, the most common
rule language is Datalog, or one of its extensions. The syntax of these rules are
similar to the logic programming rules that were composed in Section 3. Thus,
rules are becoming a key ingredient in ontology languages and play an important
role in the Semantic Web and its languages.

In the following, we discuss rule-based ontology compositions, i.e., composing
concepts and rules together. It should be clear from the previous sections that
universal genericity and extensibility can be provided for all concepts of rule-
based ontology languages, also classes and rules. As a first example, we consider
the extension of base classes in concept inheritance hierarchies, for instance,
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from legacy ontologies. This is important in ontology integration and alignment.
As a second example, we look at the composition of classes with mixin-based
inheritance, a systematic structuring of classes, which is useful in particular if
the class descriptions grow large. In the following, we use F-logic as a rule-
based ontology language [30]. However, since the ideas of universal genericity
and universal extensibility applies to every languages, ontology and rule-based
ontology languages such as OWL and SWRL can also be treated.

In Section 5, we provide an outlook on what needs to be accomplished to
structure ontologies in-the-large. The key idea is to extend mixin-based class
composition such that the model can be structured in layers (mixin layers),
forming a structural outline of the model. Then, every final class is composed
from class components, the mixins, each for every layer.

4.1 Base Class Extension

Often, in evolution of ontologies, it is necessary to extend a base class of a concept
hierarchy. Because inheritance is hard-wired in class specifications, this is usu-
ally impossible to do directly. Base class extension can be achieved with design
patterns such as Decorator [19], but then, extended and extension information
reside in two classes (an effect called object schizophrenia [46]). Alternatively,
base classes can be re-defined, or multiply defined, i.e., the extension does not
introduce a new class, but contributes its features as a view. From Section 1, it
is clear that the merge operator in hyperspace programming can be applied to
merge the views; alternatively, the universal extend operator can be employed.

Example 4. As an example, consider the following F-logic fragment, a simple
inheritance hierarchy defining customers. As an integrity constraint, person cus-
tomers are not allowed to have debts, companies do (:: means inheritance, []
are scope brackets for classes, => means type annotation, and members is an
implicitly defined hook for the end of a class member list).

Listing 1.17. Base class extension in F-logic.
1person [ name=>s t r i n g ] ;

company : : o r gan i za t i on [ money=>i n t e g e r ] ;
3customer : : person [ money=>natura l ] ;

FORALL X <− customer [ money=>X] , X >= 0; // no debts a l lowed
5companyCustomer : : company ;

companyCustomer : : customer ;
7personCustomer : : customer ;

The base class person in this inheritance hierarchy can be extended as follows:

Listing 1.18. Base class extension in F-logic.
1personExtens ion [ age=>natura l ] ;

3// Base c l a s s extens i on with the merge operator
person . merge ( personExtens ion ) ;

5// or with an imp l i c i t ex tens i on point members
person . members . extend ( personExtens ion ) ;

which introduces a second definition to the class person, enriching it with the
feature age.
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Base class extension is very important for the integration of legacy ontologies
into applications, because it makes it easy to enrich legacy inheritance hierarchies
with new information. OWL (and thus SWRL) offers base class extension in a
similar way by allowing classes and relationships to be re-defined at any time,
thus providing a “built-in” merge operator for such concepts.

Hence, in the following, whenever we employ the merge and extend operators
for F-logic on classes and relationships, the arguments also hold for OWL and
SWRL.

4.2 Mixins Composition

Besides the standard notion of inheritance, several object-oriented languages
have employed mixin-based inheritance [35,8]. Mixins are partial and abstract
classes, i.e, cannot be instantiated to objects. However, they contribute to classes
by contributing their features to them (that is why they are called mixins).
Because the order, in which several mixins are inherited into a base class, must
be explicitly specified, mixin-based inheritance seems to be easier to understand
than standard multiple inheritance, in which the strategy of feature resolution
is often implicit and hidden [35]. The following is an example in F-logic. The
feature money is defined and replicated in company and customer. From which
should companyCustomer inherit it?

Listing 1.19. Multiple inheritance in F-logic.
person [ name=>s t r i n g ] ;

2company [ money=>i n t e g e r ] ;
customer : : person [ money=>natura l ] ;

4FORALL X <− customer [ money=>X] , X >= 0; // no debts a l lowed
companyCustomer : : company ;

6companyCustomer : : customer ;
personCustomer : : customer ;

With mixin-based inheritance, the example looks as follows:

Listing 1.20. Mixin-based inheritance in F-logic.
1person [ name=>s t r i n g ] ;

mixin company [ money=>i n t e g e r ] ;
3mixin customer [ money=>natura l ] ;

FORALL X <− customer : : person [ money=>X] , X >= 0; // no debts a l lowed
5companyCustomer = customer . members . extend ( company) ;

personCustomer : : customer ;

This example is more comprehensible, because the extension order is explicitly
specified: companyCustomer is composed by extending company with customer,
which implies that features of customer override those of company, so that the
companyCustomer is not permitted to make debts.

If a language does not offer hooks, but generic classes, an alternative to the
application of the extend operator exists. Batory has shown how to realize mixin-
based inheritance in a universally generic language [44]. The trick is to combine
inheritance with parameterization, i.e., the extend operator can be simulated
by parameterizing a superclass reference. Then, a mixin becomes a class with a
parameterized superclass:
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Listing 1.21. Mixin-based inheritance in generic F-logic.
person [ name=>s t r i n g ] ;

2company::<< super : Class >>[money=>i n t e g e r ] ;
customer ::<< super : Class >>[money=>natura l ] ;

4FORALL X <− customer [ money=>X] , X >= 0; // no debts a l lowed

6companyCustomer = customer . super . bind ( company) ;
personCustomer = customer . super . bind ( person ) ;

In this way, company becomes a superclass of companyCustomer, which means
that its features are overridden.

5 Applications

Mixins can systematically be arranged in layers, which structures a class model
in-the-large [44]. This is further explored in this section.

5.1 Composing Class Variants with Mixins

Mixins can be arranged in layers, so that each layer realizes a concern of the
domain. When there exist variants for mixins on each layer, the result is a variant
space for class composition.

Example 5. When modeling graphs with a graph ontology, many concerns play
a role, for instance, whether or not the nodes should have a type (core concern),
whether or not there should be explicit edge objects (explicit edges concern) or
whether the graph should be unidirectional or bidirectional (symmetry concern).
Every concern leads to one or several variabilities, i.e., modeling decisions about
the features of the class with regard to the concerns (=>> means a set of typed
objects).

1concern core = {
Core : : Thing ;

3UntypedNode : : Core [ name=>s t r i n g ] ;
TypedNode : : UntypedNode [ type=>s t r i n g ] ;

5}
concern edge = {

7Neighbor : : Thing ;
Node : : Neighbor ;

9Edge : : Neighbor ;
ForwardEdges [ outgoing=>>Neighbor ; fanOut=>i n t ] ;

11BackwardEdges [ incoming=>>Neighbor ; fanIn=>i n t ] ;
}

13concern symmetry = {
Un id i r e c t i ona l = ForwardEdges ;

15B id i r e c t i o n a l = ForwardEdges . members . extend (BackwardEdges ) ;
}

When a graph node it modeled, its features have to be selected according to
the variability decisions: for instance, a graph node should be composed from a
core concern, talking about names and/or types; an edge concern, talking about
neighbor edges or edge objects (outgoing, fan-out); and a symmetry concern,
talking about also incoming edges. Hence, composing a graph node means to
select one alternative mixin from every concern and extend the core class with
them. For instance, a typed node with bidirectional relations is composed as
follows:
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TypedNodeBidirect ional = TypedNode . members . extend ( B i d i r e c t i o n a l ) ;

resulting in
1TypedNodeBidirect ional : : Thing [

name=>s t r i n g ;
3type=>s t r i n g ;

outgoing=>>Neighbor ; fanOut=>i n t ;
5incoming=>>Neighbor ; fanIn=>i n t ;

] ;

On the other hand, an untyped node with forward relations is composed as
follows:

UntypedNodeUnidirect ional =
UntypedNode . members . extend ( Un id i r e c t i ona l ) ;

resulting in
1UntypedNodeUnidirect ional : : Thing [

name=>s t r i n g ;
3outgoing=>>Neighbor ; fanOut=>i n t ;

] ;

Similarly, other ingredients of a graph, edges or graph objects can be com-
posed [44,43].

With mixins, classes can systematically be defined in variants. Variants can
offer alternative interfaces for concerns, or alternative implementations for an
interface. Using variants of mixins for a concern leads to different composition
results. All variants for all concerns form a variant space, and the selection of a
mixin for a variant means to select a variant configuration.

Usually a mixin characterizes one concern of a class, for instance, a role in a
collaboration. Recent research has found out that associations between classes
define roles that an object plays in a certain context (the roles taking part in an
association form a collaboration [16]). Hence, mixins characterize the behavior
of a class in a certain collaboration context, and if the behavior of the class
should be modeled in variants, mixins can model the behavioral variants. In our
example, the concerns describe the behavior of a graph node in the context of
other graph nodes, i.e., in a collaboration with other nodes and edges of a graph.
Hence, variants of such collaborative behavior can be modeled systematically,
grouped to concerns, and composed to classes in the variant space for graphs.

For ontology engineering, mixin composition is useful in several respects. First,
it should be employed, if an ontology must be modeled in a variant space, i.e.,
if several basic variability decisions (modeling alternatives) exist, and all combi-
nations of these alternatives form valid domain objects. Such ontology variant
spaces are by no means restricted to mathematical domains like the graphs, but
relate to all domains, where collaborations of an object or concept can be varied.
Then, collaboration variants can be composed by mixin composition. Addition-
ally, commercial reasons may create a need for mixin composition. Most often,
business domains, such as business rules or product data domains, require variant
spaces, because they form the backbone of a product line, a set of products that
differ only marginally, but should be sold separately. With mixin composition,
it is easy to model the feature space of a product line systematically.
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Next, it is well-known that many classifications are based on dimensions (facet
classifications) [49]. Whenever objects have several orthogonal partitions, facets
can be defined, independent classification dimensions, in which objects can be de-
scribed, and whose cross-product gives the whole characterization. Because every
facet provides a basic variability decision for the model, a concrete classification
selects a combination of variants. Hence, facet spaces form orthogonal variant
spaces for ontologies. Furthermore, facet classifications may underly restriction
constraints [49]. Then, the facets are not independent, but several combinations
are excluded. For instance, it might be prohibited for a graph to contain both
untyped and typed edges. Such illegal combinations can be excluded from the
variant space by integrity constraints, but, anyway, faceted domains are subject
to concern modeling and mixin composition.

5.2 Composing Class Variant Spaces with Mixin Layers

Mixin compositions form singular objects or concepts. However, for a set of col-
laborating concepts or objects, layers can group dependent mixin variants of all
collaborating objects together. Then, we speak of mixin layer composition [44].
Composing mixin layers means to compose all classes of the model together from
all collaborating mixin parts. To this end, collaborating mixins are grouped in
layers. These mixin layers, like single mixins, can be defined in variants, and
every variant forms an aligned, syntonic set of mixins who collaborate consis-
tently. Hence, a concern that crosscuts several objects, can be described by a
single layer of collaborating mixins. If several variants of the layer exist, the
appropriate realization of the concern can be chosen by selecting a mixin layer
variant, containing a set of coherently collaborating mixins. This coherent selec-
tion is very important for defining consistent large ontologies: in one go, large
collaborations of concepts and objects can be selected and wired together easily.

Example 6. For the graph ontology, apart from graph nodes, also graph edges
and graph objects must be modeled. Naturally, since all these concepts interact,
they should be modeled consistently. For instance, depending on whether a uni-
directional or bidirectional graph is modeled, edges and nodes must fit together;
either both have to model only the forward relationship or both have to model
also the backward relationship.

concern core = {
2l a y e r UntypedCore = {

Node : : Thing [ name=>s t r i n g ] ;
4Edge : : Thing ;

Graph : : Thing [ name=>s t r i n g ; nodes=>>Node , edges=>>Edge ] ;
6}

l a y e r TypedCore = {
8Node : : Thing [ name=>s t r i n g ; type=>s t r i n g ] ;

Edge : : Thing [ type=>s t r i n g ] ;
10Graph : : Thing [ name=>s t r i n g ; nodes=>>Node , edges=>>Edge ] ;

}
12}

concern edge = {
14l a y e r ForwardRelation {

Node [ outgoing=>>Edge ; fanOut=>i n t ] ;
16Edge [ Node=>s u c c e s s o r ] ;



88 U. Aßmann et al.

Graph [ sourc e s=>>Node ] ;
18Sink : : Node ; FORALL X: Sink [ fanOut=>X] , X=0. // no su c c e s s o r s

}
20l a y e r BackwardRelation {

Node [ incoming=>>Edge ; fanIn=>i n t ] ;
22Edge [ Node=>predec e s so r ] ;

Graph [ s i nk s=>>Node ] ;
24Source : : Node ; FORALL X: Source [ fanIn=>X] , X=0. // no

p r ede c e s s o r s
}

26}
concern symmetry = {

28l a y e r Un id i r e c t i ona l = ForwardRelation ;
l ay e r B i d i r e c t i o n a l = ForwardRelation . merge ( BackwardRelation ) ;

30}

A mixin layer has to define an extension for every corresponding core object.
(Here, in this simple case, the correlation is indicated by the same name, but
more complicated schemes can be applied.) This time, the graph ontology is
composed from mixin layer variants:

UntypedForwardGraph = UntypedCore . merge ( Un id i r e c t i ona l ) ;
2TypedSymmetricGraph = TypedCore . merge ( B i d i r e c t i o n a l ) ;

resulting in
UntypedForwardGraph = {

2Node : : Thing [ name=>s t r i n g ; outgoing=>>Edge ; fanOut=>i n t ] ;
Sink : : Node ; FORALL X: Sink [ fanOut=>X] , X=0. // no su c c e s s o r s

4Edge : : Thing [ Node=>s u c c e s s o r ] ;
Graph : : Thing [ name=>s t r i n g ; nodes=>>Node ; edges=>>Edge ; s ource s=>>Node ] ;

6}
TypedSymmetricGraph = {

8Node : : Thing [ name=>s t r i n g ; type : s t r i n g ; outgoing=>>Edge ;
incoming=>>Edge ; fanIn=>i n t ; fanOut=>i n t e g e r ] ;

10Source : : Node ; FORALL X: Source [ fanIn=>X] , X=0. // no p r ede c e s s o r s
Sink : : Node ; FORALL X: Sink [ fanOut=>X] , X=0. // no su c c e s s o r s

12Edge : : Thing [ type=>s t r i n g ; Node=>s u c c e s s o r ; Node=>predec e s so r ] ;
Graph : : Thing [ name=>s t r i n g ; nodes=>>Node , edges=>>Edge ,

14sou r c e s=>>Node ; s i nk s=>>Node ] ;
}

Essentially, mixin layers are hyperslices that group collaborating mixins to-
gether. For ontology engineering, mixin layer composition enables the composi-
tion of partial classes, together with their constraints. Integrity constraints and
production rules can be composed together with mixins and mixin layers, and
they can be parameterized and extended in the same way as seen in the previous
sections.

Mixin layers provide an important type of fragment components for compo-
nent-based ontology engineering. Classes in an ontology, together with their re-
lations, integrity constraints, and production rules, may be composed from con-
sistently defined mixin layers. This composition style is very important for large
ontologies that must be designed in variant spaces, and have sets of collaborat-
ing concepts. Whenever interaction between concepts of an ontology is required,
mixin layer composition is a good means to specify all classes, relationships, and
constraints together. Due to the layering, this improves comprehensibility of the
ontology, because larger ontologies are constructed from smaller building blocks
in a structured way.
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6 Related Work

In contrast to component-based ontology composition, which attempts to con-
struct an ontology from scratch, ontology alignment attempts to integrate legacy
ontology components [45]. Of course, this is a related approach, which is impor-
tant as such, because the world of ontologies will be heterogeneous, evolving,
and legacy-aware. However, universal genericity and universal extension are two
basic principles that will also improve ontology alignment work, as can be seen
from the section on base class extension and mixin composition.

[34] presents an ontology composition algebra ONION that is mainly tailored
to the integration of existing ontologies. It is a set-based algebra, with union,
intersection, difference and selection as basic operations. Hence, merges and ex-
tensions are realized by set union. However, the ONION algebra lacks parame-
terization and extension of hooks. Since it offers merges mainly on concepts, it
is similar to hyperspace programming. On the other hand, ONION offers artic-
ulation rules, which create relationships between concepts in different ontologies
(homonymic mappings).

A second-order logic programming language directly provides the parame-
terizations and extensions of invasive component models, in the form of higher
order functions and clauses. However, full second-order logic programming is un-
decidable. Hence, one could say that the decisive difference of a fragment-based
composition system to a second-order language is that the invasive composition
operations are executed in a stage before the actual system (staged metapro-
gramming) [41]. Hence, a fragment component model relies on staged metapro-
gramming principles.

Lämmel’s work on language composition has applied static metaprogramming
to attribute grammars [32]. He uses the λ-calculus as a composition language
(with the bind operation), realizes extend operations by function composition,
and is able to compose attribute grammar components. Fragment-based compo-
sition works in this spirit, but can be universally applied to all languages.

7 Conclusions

This paper has explained several techniques that will help the ontology engineer
to define architectures of ontologies, i.e., structures of ontologies in-the-large.
Templates, semantic macros, views, mixin layers allow for structuring concepts,
relationships, and entire ontologies into components, which can be constructed
and comprehended in isolation, but reused in many ontologies. These techniques,
successfully applied in software engineering for programs and system models, will
certainly contribute to the future field of component-based ontology engineering.
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Abstract. For realizing the Semantic Web vision, extensive work is underway
for getting the layers of its conceived architecture ready. Given that the Ontol-
ogy Layer has reached a certain level of maturity with W3C recommendations
such as RDF and the OWL Web Ontology Language, current interest focuses on
the Rules Layer and its integration with the Ontology Layer. Several proposals
have been made for solving this problem, which does not have a straightforward
solution due to various obstacles. One of them is the fact that evaluation prin-
ciples like the closed-world assumption, which is common in rule languages,
are usually not adopted in ontologies. Furthermore, naively adding rules to on-
tologies raises undecidability issues. In this paper, after giving a brief overview
about the current state of the Semantic-Web stack and its components, we will
discuss nonmonotonic logic programs under the answer-set semantics as a pos-
sible formalism of choice for realizing the Rules Layer. We will briefly discuss
open issues in combining rules and ontologies, and survey some existing pro-
posals to facilitate reasoning with rules and ontologies. We will then focus on
description-logic programs (or dl-programs, for short), which realize a transpar-
ent integration of rules and ontologies supported by existing reasoning engines,
based on the answer-set semantics. We will further discuss a generalization of dl-
programs, viz. HEX-programs, which offer access to different ontologies as well
as higher-order language constructs.

1 Introduction

For the realization of the Semantic Web, the integration of different layers of its con-
ceived architecture is a fundamental issue. In particular, the integration of rules and
ontologies is currently under investigation, and many proposals in this direction have
been made. They range from homogeneous approaches, in which rules and ontologies
are combined in the same logical language (e.g., in SWRL and DLP [31,24]), to hybrid
approaches in which the predicates of the rules and the ontology are distinguished and
suitable interfacing between them is facilitated, like, e.g., [18,14,59,30] (see [4] for a
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survey about such approaches). While the former approaches provide a seamless se-
mantic integration of rules and ontologies, they suffer from problems concerning either
limited expressiveness or undecidability, because of the interaction between rules and
ontologies. Furthermore, they are not (or only to a limited extent) capable of dealing
with ontologies having different formats and semantics (like, e.g., RDF Schema and
OWL DL, which have some semantic incompatibilities) at the same time. This can be
handled, in a fully transparent way, by approaches which keep rules and ontologies
separate. Here, ontologies are treated as external sources of information, which are ac-
cessed by rules that also may provide input to the ontologies. In view of well-defined
interfaces, the precise semantic definition of ontologies and their actual structure does
not need to be known. This in particular facilitates ontology access as a Web service,
where also privacy issues might be involved (e.g., a customer taxonomy in a financial
domain).

In this paper, we shall consider reasoning with rules and ontologies from the answer-
set programming (ASP) [6] perspective. The latter is nowadays a general term for a
powerful knowledge representation (KR) and declarative programming paradigm which
includes many language features from nonmonotonic logics, as well as support for
reasoning with constraints and preferences. ASP has recently been used as a reliable
specification tool in a number of promising applications. For instance, several tasks in
information integration, knowledge management, security management, and configura-
tion, which require complex reasoning capabilities, have been successfully tackled us-
ing ASP. In particular, these applications have been explored in several recent projects
funded by the European Commission (e.g., the projects WASP [61], INFOMIX [35],
and ICONS [33]).

Some attractive benefits of ASP are summarized as follows:

– Full declarativity: ASP is fully declarative. The order of rules and atoms in a logic
program is not important, and, in general, no knowledge of the operational seman-
tics a specific solver adopts is required.

– Decidability: ASP programs are, in their basic flavor, decidable. No special restric-
tions are needed in order to keep this important property.

– Support of nonmonotonicity: ASP supports strong negation as well as negation as
failure. The latter facilitates default reasoning and nonmonotonic inheritance.

– Nondeterminism: Concepts may be defined which “range” over a space of choices
without any particular restriction. Combined with extensions for preferences and
different kinds of constraints, this enables a compact specification of search and
optimization problems.

– Scalability: Despite the computational expressiveness of ASP, current state-of-the-
art solvers, such as DLV [36], GnT [34], or Cmodels-3 [38], have reached a level
of maturity which allows them to deal even with large datasets.

We refer to [60] for a repository of ASP solvers, and to [63] for a comprehensive
report on recent ASP applications; a showcase collection is available online at

http://www.kr.tuwien.ac.at/projects/WASP/showcase.html.

In the Semantic Web perspective, significant efforts have been made to highlight
the benefits of ASP for the Rules Layer of the Semantic Web architecture and its
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Fig. 1. Ontology and rule languages in the Semantic-Web layer cake

interactions with the Ontology Layer. A variety of upcoming applications supports
adopting ASP as a formalism for realizing the Rules Layer. The inherent nondeter-
minism and the possibility to enrich the semantics with weak (i.e., soft) constraints
make ASP a well-suited candidate for applications like Web-service matchmaking and
ontology alignment [58]. It is worth mentioning that an ASP application for Web-
service composition [49] earned first prize in the EEE Web-Service Composition Con-
test [13].

The remainder of this paper is organized as follows. The next section contains pre-
liminaries on the relevant parts of the Semantic Web architecture, and Section 3 intro-
duces ASP. In Section 4, we point out issues in combining rules and ontologies, and
briefly survey approaches in this direction. After that, Section 5 presents nonmonotonic
description-logic programs (or dl-programs, for short) as an example of an approach
for combining rules and ontologies. The subsequent Section 6 presents an extension of
this approach towards an integration of rules and general external software, in which
the usage of higher-order predicates is facilitated. Finally, Section 7 provides a short
discussion and concludes the paper.

In order to have a cohesive flow and to illustrate the different ASP extensions, we in-
troduce an example in a storyboard-like fashion, which will serve as a running example
throughout the paper.

2 Ontology Formalisms

Rules and ontologies represent two main components in the Semantic-Web vision which
are expected to tightly interplay for making this vision a reality. In order to illustrate
a plausible scenario where rules and ontologies interact, we will incrementally build a
simple, yet conceivable, example.

Example 1 (Motivating Example, Part I). The Reasoning-Web Summer School is plan-
ning the organization of its social dinner. In order to make the attendees happy with this
event and to make them familiar with ontologies, they decide to ask them to declare their
preferences about wines, in terms of a class description reusing the (in)famous Wine
Ontology [62]. The organizers realize that only one kind of wine would not achieve the
goal of fulfilling all the attendees’ preferences. Thus, they aim at automatically finding
the cheapest selection of bottles such that any attendee can have his or her preferred
wine at the dinner.
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The organizers quickly realize that several building blocks are needed to accomplish
this task. First of all, a good formalism to express the domain of interest (involving
wines, their properties, and bottles) is needed. So they search among the currently avail-
able technologies and return with a strange brew of acronyms such as RDF, RDFS, and
OWL. �
The realization of reasoning with rules and ontologies affects basically four components
of the so-called “Semantic-Web layer cake” [7]: RDF, RDFS, the Ontology Layer, and
the Rules Layer. A slightly simplified version of this relevant part of the architecture
proposal for the Semantic Web is shown in Fig. 1.

Layered on top of standards which mainly serve to provide common syntax for in-
formation exchange on the Web, the Resource Description Framework (RDF) [57,27]
provides a common flexible data model for the Semantic Web. Based on arbitrary
labeled graphs, RDF does not enforce a particular data schema upfront. Next, RDF
Schema (RDFS) provides facilities to define simple taxonomies among concepts and
relations.

While RDFS as such could already be viewed as a simple ontology language, in
order to provide more expressiveness for describing formal conceptualizations, the On-
tology Layer was introduced and is realized by means of the OWL Web Ontology
Language [11], which can be seen as a syntactic variant of an expressive description
logic.

As we already see in Fig. 1, the “Semantic-Web layer cake” is in fact not strictly lay-
ered, since rules and ontologies appear side by side. Whereas RDF, RDFS, and OWL
have already achieved an acceptable level of maturity as W3C recommendations, it is
not yet completely clear where and how to fit in rules, possibly involving nonmono-
tonicity, preferences, or other expressive features. Defining a proper standard for in-
tegrating the plethora of rules languages around is yet to be investigated by W3C’s
recently established Rule Interchange Format (RIF) working group.3

A natural choice of rule languages relevant for the integration of rules and ontologies
are those originating from logic programming and nonmonotonic reasoning, in particu-
lar languages which are based on the answer-set programming paradigm (cf., e.g., [6]),
on which we focus here. The latter paradigm is a purely declarative problem-solving
formalism which gained increasing momentum in the knowledge-representation com-
munity over the last decade.

Before introducing this paradigm in more detail though, we briefly recapitulate
the established building blocks RDF(S) and OWL, and discuss their formal under-
pinnings.

2.1 RDF(S)

The Resource Description Framework (RDF) defines the data model for the Semantic
Web. Driven by the goal of a least possible commitment to a particular data schema,
the simplest possible structure for representing information was chosen in RDF, a la-
beled graph. An RDF graph can be viewed as a set of its directed edges, commonly
represented by triples of form 〈Subject Predicate Object〉, also called statements.

3 cf. http://www.w3.org/2005/rules/wg/charter.
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http://polleres.net/
foaf.rdf/#me

foaf:knows foaf:knows

Giovambattista Ianni

Axel Polleres

Roman Schindlauer

foaf:name foaf:name

foaf:name

↔

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

<rdf:Description rdf:about="http://polleres.net/foaf.rdf#me">
<foaf:knows rdf:nodeID="x"/>
<foaf:knows rdf:nodeID="y"/>
<foaf:name>Axel Polleres</foaf:name>

</rdf:Description>

<rdf:Description rdf:nodeID="a">
<foaf:name>Roman Schindlauer</foaf:name>

</rdf:Description>

<rdf:Description rdf:nodeID="b">
<foaf:name>Giovambattista Ianni</foaf:name>

</rdf:Description>

</rdf:RDF>

�
<http://polleres.net/foaf.rdf#me> foaf:knows _:ja .
<http://polleres.net/foaf.rdf#me> foaf:knows _:jb .
<http://polleres.net/foaf.rdf#me> foaf:name

"Axel Polleres".
_:jx foaf:name "Roman Schindlauer" .
_:jy foaf:name "Giovambattista Ianni" .

↔
∃x∃y .triple(me, foaf:knows, x)

∧triple(me, foaf:knows, y)
∧triple(me, foaf:name, “AxelPolleres′′)
∧triple(x, foaf:name, “RomanSchindlauer ′′)
∧triple(y, foaf:name, “GiovambattistaIanni′′)

Fig. 2. Different representations of RDF

Predicates, also referred to as properties in RDF terminology, denote the labels, and
link a resource, identified by a URI, with another resource, datatype literal, or XML
literal.

Moreover, RDF graphs may contain anonymous (“blank”) nodes, in order to express
incomplete information or queries. Fig. 2 shows an example demonstrating three com-
mon notions for RDF graphs: RDF/XML syntax, N-Triples, and representing an RDF
graph as a closed first-order formula where blank nodes are conceived as existentially
quantified variables. We use the ternary predicate triple to represent RDF statements:
Alternative representations, like representing triples 〈S P O〉 by P (S, O), have some
disadvantage for RDF, as we will see below.

This graphs contains the following information: The resource

“http://polleres.net/foaf.rdf#me”

with the name “Axel Polleres” knows someone named “Giovambattista Ianni” and
someone named “Roman Schindlauer”. Terms like foaf:knows are shortcuts for full
URIs like http://xmlns.com/foaf/0.1/knows,4 i.e., using so-called name-
space prefixes from XML, for ease of legibility.

Moreover, basic RDF defines a special property rdf:type, which allows the specifica-
tion of “is-a” relations, such as, for instance,

〈http://polleres.net/foaf.rdf#me rdf:type foaf:Person〉.

RDF supports two basic types, viz. rdf:Property and rdf:XMLLiteral, and a basic set of
XML schema datatypes.

4 This represents typical information which you might find in a so-called FOAF descrip-
tion, an RDF vocabulary for expressing personal information with growing popularity, see
http://www.foaf-project.org/.
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Table 1. Semantics of RDFS

∀S, P, O.(triple(S, P, O) ⊃ triple(P, rdf:type, rdf:Property)) ,

∀S, P, O.(triple(S, P, O) ⊃ triple(S, rdf:type, rdfs:Resource)) ,

∀S, P, O.(triple(S, P, O) ⊃ triple(O, rdf:type, rdfs:Resource)) ,

∀S, P, O.(triple(S, P, O), triple(P, rdfs:domain, C)) ⊃ triple(S, rdf:type, C)) ,

∀S, P, O, C.(triple(S, P, O) ∧ triple(P, rdfs:range, C) ⊃ triple(O, rdf:type, C)) ,

∀C.(triple(C, rdf:type, rdfs:Class) ⊃ triple(C, rdfs:subClassOf, rdfs:Resource) ,

∀C1, C2, C3.((triple(C1, rdfs:subClassOf, C2) ∧
triple(C2, rdfs:subClassOf, C3)) ⊃ triple(C1, rdfs:subClassOf, C3) ,

∀S, C1, C2.((triple(S, rdf:type, C1) ∧
triple(C1, rdfs:subClassOf, C2)) ⊃ triple(S, rdf:type, C2)) ,

∀S, C.(triple(S, rdf:type, C) ⊃ triple(C, rdf:type, rdfs:Class) ,

∀C.(triple(C, rdf:type, rdfs:Class) ⊃ triple(C, rdfs:subClassOf, C) ,

∀P1, P2, P3.((triple(P1, rdfs:subPropertyOf, P2) ∧
triple(P2, rdfs:subPropertyOf, P3)) ⊃ triple(P1, rdfs:subPropertyOf, P3)) ,

∀S, P1, P2, O.(triple(S, P1, O) ∧ triple(P1, rdfs:subPropertyOf, P2) ⊃ triple(S, P2, O)) ,

∀P.(triple(P, rdf:type, rdf:Property) ⊃ triple(P, rdfs:subPropertyOf, P ))

The semantics of RDF can be essentially viewed as corresponding to the first-order
representation chosen in Fig. 2 plus entailment of several axiomatic triples, such as that
the triple 〈X rdf:type rdf:Property 〉 is an axiom for all X which occur in the predicate
position of any other triple. In particular, this also makes, for instance, 〈 rdf:type rdf:type
rdf:Property 〉 an axiom.

The semantics of RDF involves some more peculiarities in the handling of XML
literals, RDF containers, and lists. Most remarkably, it should be noted that the RDF
vocabulary contains an infinite number of predefined properties rdf: 1, rdf: 2, . . . for
container membership, and thus gives rise to an infinite number of axiomatic triples
〈rdf: 1 rdf:type rdf:Property〉, . . .. We refer the interested reader to [27] for details.

RDF Schema (RDFS) is a semantic extension of basic RDF essentially by giving
special meaning to the properties rdfs:subClassOf and rdfs:subPropertyOf, as well as to
several types (like rdfs:Class, rdfs:Resource, rdfs:Literal, rdfs:Datatype etc.), in order to
express simple taxonomies and hierarchies among properties and resources.

The semantics of RDFS can to a large extent be approximated by a set of sentences of
first-order logic (FOL), reusing the notion from above (see Table 1)5 plus the axiomatic
triples from [27, Sections 3.1 and 4.1]. Note that our choice of using a ternary predicate
triple in favor of a binary representation helped us to avoid higher-order-like rules such
as ∀S, P, O. P (S, O) ⊃ rdf:type (P ,rdf:Property) in this axiomatization. Again, we do

5 We use ’⊃’ for material implication to avoid confusion with ’←’ as commonly used in logic
programming.
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Table 2. Expressing OWL DL Property axioms to DL and FOL

OWL property axioms as RDF Triples DL syntax FOL short representation
〈P rdfs:domain C〉 � � ∀P −.C ∀x, y : P (x, y) ⊃ C(x)
〈P rdfs:range C〉 � � ∀P.C ∀x, y : P (x, y) ⊃ C(y)
〈P owl:inverseOf P0〉 P ≡ P −

0 ∀x, y : P (x, y) ≡ P0(y, x)
〈P rdf:type owl:SymmetricProperty 〉 P ≡ P − ∀x, y : P (x, y) ≡ P (y, x)
〈P rdf:type owl:FunctionalProperty 〉 � �� 1P ∀x, y1, y2 : P (x, y1) ∧ P (x, y2) ⊃ y1 =y2

〈P rdf:type owl:InverseFunctionalProperty 〉 � �� 1P − ∀x1, x2, y : P (x1, y) ∧ P (x2, y) ⊃ x1 =x2

〈P rdf:type owl:TransitiveProperty 〉 P+ � P ∀x, y, z : P (x, y) ∧ P (y, z) ⊃ P (x, z)

not elaborate upon peculiarities and additional rules or axioms in the context of RDF
containers and XML literals here.

2.2 Description Logics and the OWL Web Ontology Language

The next layer in the Semantic-Web stack serves to formally define shared conceptu-
alizations, i.e., ontologies [25], on top of the RDF/RDFS data model. In order to for-
mally specify such domain models, the W3C has chosen a language which is close to
a syntactic variant of an expressive but still decidable description logic (DL), namely
SHOIN (D). More precisely, the OWL DL variant coincides with this description
logic, at the cost of imposing several restrictions on the usage of RDF(S). These re-
strictions (e.g., disallowing that a resource is used both as a class and an instance) are
lifted in OWL Full which combines the description logic flavor of OWL DL and the
syntactic freedom of RDF(S). For an in-depth discussion of the peculiarities of OWL
Full, we refer the interested reader to the language specification [11] and restrict our
observations to OWL DL here.

While RDFS itself may already be viewed as a simple ontology language, OWL
adds several features beyond the simple definition of hierarchies (rdfs:subPropertyOf,
rdfs:subClassOf) to define relations between properties and classes.

As for properties, OWL allows to specify transitive, symmetric, functional, inverse
functional, and inverse properties. The correspondences of respective OWL properties
and classes with description logics and first-order logic axioms expressible in OWL can
be found in Table 2. Note that we switch to the binary representation P (S, O) of triples
here, since in description logics (and thus in OWL DL), predicate names and resources
are assumed to be disjoint.

Moreover, OWL allows the specifications of complex class descriptions to be used
in rdfs:subClassOf statements. Complex descriptions may involve class definitions in
terms of union or intersection of other classes, as well as restrictions on properties. Ta-
ble 3 gives an overview of the expressive possibilities of OWL for class descriptions and
its semantic correspondences with description logics and first-order logics.6 Such class
descriptions can be related to each other using rdfs:subClassOf, owl:equivalentClass, or
owl:disjointWith keywords, which allow us to express description-logic axioms of the
form C1 � C2, C1 ≡ C2, or C1 � C2 � ⊥, respectively, in OWL.

6 We use a simplified notion for the first-order logic translation here—actually, the translation
needs to be applied recursively for any complex description-logic term. For a formal spec-
ification of the correspondence between description-logic expressions and first-order logic,
cf. [5].
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Table 3. Mapping of OWL DL Complex Class Descriptions to DL and FOL

OWL complex class descriptions∗ DL syntax FOL short representation
owl:Thing � x = x

owl:Nothing ⊥ ¬x = x

owl:intersectionOf (C1 . . . Cn) C1  . . .  Cn

∧
Ci(x)

owl:unionOf (C1 . . . Cn) C1 � . . . � Cn
∨

Ci(x)
owl:complementOf (C) ¬C ¬C(x)
owl:oneOf (o1 . . . on) {o1 . . . on} ∨

x = oi

owl:restriction (P owl:someValuesFrom (C)) ∃P.C ∃y.P (x, y) ∧ C(y)
owl:restriction (P owl:allValuesFrom (C)) ∀P.C ∀y.P (x, y) ⊃ C(y)
owl:restriction (P owl:value (o)) ∃P.{o} P (x, o)
owl:restriction (P owl:minCardinality (n)) � nP ∃n

i=1yi.
∧n

j=1 P (x, yj) ∧ ∧
i�=j yi �=yj

owl:restriction (P owl:maxCardinality (n)) � nP ∀n+1
i=1 yi.(

∧n
j=1 P (x, yi) ⊃ ∨

i�=j yi =yj

)
∗For reasons of legibility, we use a variant of the OWL abstract syntax [47] in this table.

Finally, OWL allows to express explicit equality or inequality relations between in-
dividuals by means of the owl:sameAs and owl:differentFrom properties, e.g., the triples

〈http://www.polleres.net/foaf.rdf#me owl:sameAs
http://polleres.net/foaf.rdf#me〉 and

〈http://polleres.net/foaf.rdf#me owl:differentFrom
http://www.gibbi.com/foaf.rdf#me〉

boil down to

http://www.polleres.net/foaf.rdf#me=http://polleres.net/
foaf.rdf#me∧ http://polleres.net/foaf.rdf#me �=
http://www.gibbi.com/foaf.rdf#me.

For details on the description logics notion used in the Tables 2 and 3, we refer the
interested reader to, e.g., [5]. For our purposes, basic understanding of the correspond-
ing definitions in term of first-order logic will be sufficient. What makes description
logics the formalism of choice is the fact that it defines a decidable fragment of first-
order logic, i.e., queries for entailment of subclass relationships or class membership of
a particular individual are effectively computable.

Example 2 (Ontologies in Description Logics). Taking the wine ontology from [62], let
us illustrate some of the conceptualizations therein in their corresponding description-
logics syntax:

Wine � PotableLiquid� = 1hasMaker � ∀hasMaker .Winery ;
Wine �≥ 1madeFromGrape� = 1hasFlavor ;

∀hasColor−.T � {“White”, “Rose”, “Red”};
WhiteWine ≡ Wine � ∀hasColor .{“White”}.

This knowledge base expresses the following information: A wine is a potable liquid,
having exactly one maker, who is a member of the class Winery . Moreover, wines are
made from at least one sort of grapes and have exactly one of the flavors, and one of
the colors “White”, “Rose”, and “Red”. A WhiteWine is a wine with color “White”.
Finally, Welschriesling is an instance of WhiteWine . �
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3 Answer-Set Programming

After having introduced some foundations of the Semantic Web in terms of a data model
(RDF) and ontology languages (RDFS and OWL), let us now turn to logic programs as
a way to realize the Semantic-Web Rules Layer. For illustration purposes, consider the
following continuation of our running example:

Example 3 (Motivating Example, Part II). As soon as the wine domain is described,
the social-dinner organizers now have to face the problem of quickly modeling rules
that describe a set of bottles that are suitable for all the participants, and to express the
choice criteria among these candidate sets. They realize soon that domain-description
languages accomplished their job well, but now they need some different tool: First,
how to express possible choices of bottles? How to determine the set of attendees (say,
the class nonSatisfied ) that are not assigned a compliant bottle? Unfortunately, un-
der an open-world assumption, no attendee can be entailed as belonging to this class.
Moreover, is it possible to exclude the situations where nonSatisfied is non-empty, and
where the price of this selection of bottles is possibly minimal?

They conclude that a rule-based formalism with disjunction and nonmonotonic fea-
tures would be the most appropriate formalism, and, among others, choose to investigate
on the characteristics of ASP (answer-set programming). �
Answer-set programming has its roots in the seminal work by Gelfond and Lifschitz
[22], who presented a semantics for logic programs with negation as failure and strong
negation, where multiple answer sets (or stable models) may be ascribed to a pro-
gram. This inherent nondeterminism can be exploited to represent different solutions
to a problem in the answer sets of a logic program, as fostered, e.g., in [39,42,44].

3.1 Syntax

Let Φ be a first-order vocabulary with nonempty finite sets of constant and predicate
symbols, but no function symbols.7 Let X be a set of variables. A term is either a
variable from X or a constant symbol from Φ. An atom is an expression of the form
p(t1, . . . , tn), where p is a predicate symbol of arity n ≥ 0 from Φ, and t1, . . . , tn are
terms. A literal l is either an atom or an expression of form −p, where “−” denotes
strong negation and p is an atom. The complementary literal −l of l is −p if l = p
and p if l = −p. A negation-as-failure literal (or NAF-literal) is either a literal or an
expression of form not l, where “not” denotes negation as failure, or default negation,
and l is a literal. A disjunctive rule (or simply a rule) r is an expression of the form

a1 ∨ · · · ∨ al ← b1, . . . , bk,not bk+1, . . . ,not bm, (1)

where l ≥ 0, m ≥ k ≥ 0, and all ai and bj are literals. The disjunction a1 ∨ · · · ∨ al

is the head of r, while the conjunction b1, . . . , bk, not bk+1, . . . ,not bm is the body of
r, where b1, . . . , bk (resp., not bk+1, . . . ,not bm) is the positive (resp., negative) body

7 Gelfond and Lifschitz allowed function symbols and inconsistent answer sets in their seminal
paper [22]. Current ASP solvers have limited support of function symbols, while inconsistent
answer sets are not allowed as valid answers.
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of r. We use H(r) to denote the set of all head literals {a1, . . . , al} of r, and B(r) to
denote the set of all body literals B+(r) ∪ B−(r) of r, where B+(r) = {b1, . . . , bk}
and B−(r) = {bk+1, . . . , bm}.

A disjunctive program (or simply program) P is a finite set of (disjunctive) rules.
If the body of a rule r is empty (i.e., if B(r) = ∅), then r is a fact, and we often omit

“←” in such a case. A rule is positive if B−(r) = ∅, and normal if the head of r is a
literal. Similarly, a program is positive resp. normal, if each rule in it is positive resp.
normal. A rule without head literals is an (integrity) constraint.

Example 4 (Simple Wine Program). The following program is a simplistic representa-
tion of a part of the wine scenario described previously, in which a plain ontology is
natively represented within the logic program.

% A suite of wine bottles and their kinds
wineBottle(“SelaksIceWine”); isA(“SelaksIceWine”, “whiteWine”);

isA(“SelaksIceWine”, “sweetWine”);
wineBottle(“CheninBlanc”); isA(“CheninBlanc”, “whiteWine”);

isA(“CheninBlanc”, “dryWine”);
wineBottle(“Chardonnay”); isA(“Chardonnay”, “whiteWine”);

isA(“Chardonnay”, “dryWine”);
wineBottle(“ChiantiClassico”); isA(“ChiantiClassico”, “redWine”);

isA(“ChiantiClassico”, “dryWine”);
wineBottle(“TaylorPort”); isA(“TaylorPort”, “redWine”);

isA(“TaylorPort”, “sweetWine”).

% Persons and their preferences
person(“axel”); preferredWine(“axel”, “whiteWine”);
person(“gibbi”); preferredWine(“gibbi”, “redWine”);
person(“roman”); preferredWine(“roman”, “dryWine”).

% Available bottles a person likes
compliantBottle(X, Z) ← preferredWine(X, Y ), isA(Z, Y ).

The last rule describes bottles which are compliant with a person’s preference. �

Let us now consider a more elaborate version of this program.

Example 5 (Wine Program II). Compared to Example 4, we add the following rules:

doesNotLike(X, Z) ← person(X),wineBottle(Z),not compliantBottle(X, Z).

% This rule generates multiple answer sets
bottleChosen(X) ∨ −bottleChosen(X) ← compliantBottle(Y, X).

% Ensure that each person gets a bottle
hasBottleChosen(X) ← bottleChosen(Z), compliantBottle(X, Z);
← person(X),not hasBottleChosen(X).

The first rule concludes that somebody does not like wine bottles which do no com-
ply with the personal desires. The second rule generates different worlds: ones in which
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a given bottle is chosen and others in which it is not. The third rule, together with the
constraint, prunes all worlds (under closed-world assumption, CWA) in which some
person has no bottle chosen.

Moreover, note that the second rule (the “choice” rule) may be equivalently replaced
with

−bottleChosen(X) ← not bottleChosen(X), compliantBottle(Y, X);
bottleChosen(X) ← not −bottleChosen(X), compliantBottle(Y, X).

Under the answer-set semantics (introduced next), this pair of rules enforces that either
bottleChosen(X) or −bottleChosen(X) is included in an answer set (but not both),
providing it contains compliantBottle(Y, X). �

3.2 Semantics

The Herbrand universe of a program P , denoted HUP , is the set of all constant symbols
appearing in P . If there is no such constant symbol, then HUP = {c}, where c is an
arbitrary constant symbol from Φ. As usual, terms, atoms, literals, rules, programs, etc.
are ground iff they do not contain any variables. The Herbrand base of a program P ,
denoted HBP , is the set of all ground (classical) literals that can be constructed from
the predicate symbols appearing in P and the constant symbols in HUP . A ground
instance of a rule r ∈P is obtained from r by replacing every variable that occurs in
r by a constant symbol from HUP . We use ground(P ) to denote the set of all ground
instances of rules in P .

A set of literals X ⊆ HBP is consistent iff {p, −p} �⊆X for every atom p ∈HBP .
An interpretation I relative to a program P is a consistent subset of HBP . A model of a
positive program P is an interpretation I ⊆ HBP such that B(r)⊆ I implies H(r)∩I �=
∅, for every r ∈ ground(P ). An answer set of a positive program P is a minimal model
of P with respect to set inclusion. In particular, if P is positive and does not involve
disjunction, then there exists a single answer set (if one exists).

Example 6 (Simple Wine Program, continued). Our simple wine program does not con-
tain disjunction. Its Herbrand universe is

HUP={“SelaksIceWine”, “CheninBlanc”, “Chardonnay”, “ChiantiClassico”,
“TaylorPort”, “whiteWine”, “redWine”, “sweetWine”, “dryWine”,
“axel”, “gibbi”, “roman”}

and its single answer set consists of all the facts of the program, together with the
following items:

compliantBottle(“axel”, “SelaksIceWine”);
compliantBottle(“axel”, “CheninBlanc”);
compliantBottle(“axel”, “Chardonnay”);
compliantBottle(“gibbi”, “ChiantiClassico”);
compliantBottle(“gibbi”, “TaylorPort”);
compliantBottle(“roman”, “CheninBlanc”);
compliantBottle(“roman”, “Chardonnay”);
compliantBottle(“roman”, “ChiantiClassico”).

�
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The Gelfond-Lifschitz reduct [22] of a program P relative to an interpretation I ⊆
HBP , denoted P I , is the ground positive program that is obtained from ground(P ) by

(i) deleting every rule r such that B−(r)∩ I �= ∅, and
(ii) deleting the negative body from every remaining rule.

An answer set of a program P is an interpretation I ⊆ HBP such that I is an answer
set of P I .

Note that, for positive P , P I = ground(P ), and thus the answer sets of P are its
minimal models, as we recall from above. This applies to the program in Example 4.

Example 7 (Wine Program II, continued). Let us extend the answer set of the program
in Example 4 by the atoms

doesNotLike(“axel”, “ChiantiClassico”), doesNotLike(“axel”, “TaylorPort”),
doesNotLike(“gibbi”, “SelaksIceWine”), doesNotLike(“gibbi”, “CheninBlanc”),
doesNotLike(“gibbi”, “Chardonnay”), doesNotLike(“roman”, “SelaksIceWine”),
doesNotLike(“roman”, “TaylorPort”), −bottleChosen(“SelaksIceWine”),
−bottleChosen(“CheninBlanc”), bottleChosen(“Chardonnay”),
bottleChosen(“ChiantiClassico”), −bottleChosen(“TaylorPort”),
hasBottleChosen(“axel”), hasBottleChosen(“roman”),
hasBottleChosen(“gibbi”),

and let I be the resulting interpretation. Then, the program P I contains all ground
instances of positive rules on HU P , plus the rules (originally containing negation in P )

doesNotLike(c, c′) ← person(c),wineBottle(c′),

where (c, c′) is from the set

{(“axel”, “ChiantiClassico”), (“axel”, “TaylorPort”), (“gibbi”, “SelaksIceWine”),
(“gibbi”, “CheninBlanc”), (“gibbi”, “Chardonnay”), (“roman”, “TaylorPort”),
(“roman”, “SelaksIceWine”)}.

As easily checked, I satisfies all rules in P I , and moreover is a minimal model of P I .
Therefore, I is an answer set of P . However, other answer sets do exist. �

3.3 Reasoning Tasks

The main reasoning tasks associated with programs under the answer-set semantics are
the following:

– decide whether a given program P has an answer set;
– given a program P and ground literals l1, . . . , ln, decide whether l1, . . . , ln simul-

taneously hold in every (resp., some) answer set of P (this is known as cautious
resp. brave reasoning);

– given a program P and nonground literals l1, . . . , ln over variables X1, . . . , Xk,
list all assignments ν of values to X1, . . . , Xk such that l1ν, . . . , lnν is cautiously
(resp., bravely) true (query answering); and

– compute the set of all answer sets of a given program P .
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Example 8 (Simple Wine Program, continued). In our simple wine program, we have
a single answer set, and thus cautious and brave reasoning coincides. For instance,
compliantBottle(“axel”, “SelaksIceWine”) is both a cautious as well as a brave con-
sequence of the program. For the query person(X), we obtain the answers “axel”,
“gibbi”, and “roman”. �

Example 9 (Wine Program II, continued). The more elaborated wine program has 20
answer sets, corresponding to the possibilities whether a bottle is being chosen or
not. The cautious query bottleChosen(“SelaksIceWine”) fails, while the brave query
bottleChosen(“SelaksIceWine”) succeeds. For the query bottleChosen(X), we ob-
tain no answer under cautious reasoning. �
The basic ASP language, as introduced above, has been extended in the literature with
many features like weak constraints [8], aggregates [20] (as familiar from database
query languages), or cardinality and weight constraints [45]. The fruitful combina-
tion of these features allowed ASP to become an important knowledge-representation
formalism for declaratively solving AI problems.

Example 10 (Wine Program III). Suppose we want to single out situations in which a
smallest number of bottles is chosen. This is effected in DLV [36] by the weak con-
straint

:∼ bottleChosen(X) [1].

Intuitively, each fact bottleChosen(c) in an answer set is assigned a penalty of 1,
and total penalties are minimized. In our example, the optimum are two bottles (e.g.,
bottleChosen(“Chardonnay”) and bottleChosen(“ChiantiClassico”)). For a formal
definition of the syntax and semantics of weak constraints, and a refinement using pri-
ority levels, we refer to [36]. �

4 Combining Rules with Ontologies

Motivated by our wine selection example, we have illustrated that answer-set program-
ming might be a good candidate for filling the gap extending the Semantic-Web layers
with a suitable rules component. However, there are several obstacles in finding the
right combination of rich ontology languages such as OWL, which are based on clas-
sical logic, with logic-programming based languages such as answer-set programming
(see also [53] for a discussion).

4.1 Logic Programming vs. Classical Logic

As well-known, the core of logic programming, i.e., definite positive programs, has a
direct correspondence with the Horn subset of classical first-order logic. To wit, a rule
of form (1) which is definite (i.e., when l = 1) and not -free (i.e., when m = k) can be
read as a first-order sentence

(∀) b1 ∧ . . . ∧ bk ⊃ a (2)
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where (∀) denotes the universal closure operator. This subset of first-order logic allows
for a sound and complete decision procedure for entailment of ground atomic formulae,
which is in the function-free (datalog) case computable in finite polynomial time.

However, there are some slight but important differences between the logic-pro-
gramming view and the first-order view already for definite programs.

Non-ground entailment. The first divergence becomes apparent already in case of pos-
itive programs. The logic-programming semantics is defined in terms of minimal Her-
brand models, i.e., sets of ground facts. Take for example the logic program

potableLiquid (X) ← wine(X);
wine(X) ← whiteWine(X);
whiteWine(“Welschriesling”).

Both the logic-program reading and the Horn-clause reading of this program yields
the entailment of facts whiteWine(“WelschRiesling”), wine(“WelschRiesling”), and
potableLiquid (“WelschRiesling”). The first-order reading of the program would allow
further non-factual inferences, such as

wine(“WelschRiesling”) ⊃ potableLiquid (“WelschRiesling”) and
∀ X .whiteWine(X) ⊃ PotableLiquid (X),

which are not entailed by the logic program. Logic programs, minimal Herbrand models
(and answer sets as their extension) are mainly concerned with facts.

Negation as failure vs. classical negation. Divergences become more severe when con-
sidering programs with negation. Negation as failure not is evaluated with respect to
a closed-world assumption (CWA) whereas negation in description logics and thus in
OWL (owl:complementOf) is interpreted classically. Let us again demonstrate this
with a small example:

wine(X) ← whiteWine(X);
nonWhite(X) ← not whiteWine(X);
wine(myDrink).

Not given any additional information, under the answer-set semantics this program
entails both bravely and cautiously the fact nonWhite(myDrink). However, this con-
clusion would not be justified in a first-order or description-logics reading of the above
program, such as:

∀X. (WhiteWine(X) ⊃ Wine(X))∧ WhiteWine � Wine
∀X. (¬WhiteWine(X) ⊃ NonWhite(X))∧ ¬WhiteWine � NonWhite
Wine(myDrink). myDrink ∈ Wine.

The reason for this is the different purposes classical negation and negation as failure
serve: the latter to be understood as modeling (defeasible) default assumptions with
nonmonotonic behavior. While some people argue that such a kind of nonmonotonic
negation is unsuitable for an open environment like the Web, there are several applica-
tions, e.g., in information integration, where negation as failure has proved particularly
useful (see Subsection 5.3).
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Strong negation vs. classical negation. Note that also strong negation, as used in ASP
has a slightly different flavor than its classical counterpart. That is, the following two
representations of a logic program and an OWL knowledge base again slightly diverge:

Wine(X) ← Whitewine(X);
−Wine(myDrink).

Whitewine � Wine;
myDrink ∈ ¬Wine .

Whereas the description-logic knowledge base would entail myDrink ∈ ¬whiteWine ,
the corresponding fact −whiteWine(myDrink) is not a justified conclusion in a logic-
programming setting, i.e., neither the law of the excluded middle nor contraposition
does hold upfront in ASP. Nonetheless, one can “emulate” classical behavior of certain
predicates in ASP. For instance, adding a rule whiteWine(X) ∨ −whiteWine(X) in
the above example would achieve this.

Logic Programming and equality. Answer-set programming engines typically deploy
a unique-names assumption (UNA) and do not support real equality reasoning, i.e.,
equality in the head of rules. This does not comply necessarily with the view in clas-
sical logic, and thus with RDF and OWL, where no such assumption is made. While
equality “=” and inequality “ �=” predicates are allowed in rule bodies, they represent
syntactic equality and (default) negation thereof only. This shall not be confused with
OWL’s owl:sameAs and owl:differentFrom directives. Following up the example from
Section 2.2, consider the following rule base:

knowsOtherPeople(X) ← knows(X, Y ), X �= Y ;
knows(“http://polleres.net/foaf.rdf#me”,

“http://www.polleres.net/foaf.rdf#me”).

Under standard ASP semantics where UNA is deployed, “ �=” amounts to “not =”.
Thus,

knowsOtherPeople(“http://polleres.net/foaf.rdf#me”)

would be entailed.
Enabling reasoning with equality has usually a very high computational cost. Indeed,

common description-logic reasoners like FACT++ [55] or RACER [26] also do not
support full equality reasoning and nominals.

Decidability. Finally, the probably largest obstacle towards combining the description-
logics world of OWL and the logic-programming world of ASP stems from the fact that
these two worlds face undecidability issues from two completely different angles.

Indeed, decidability of ASP follows from the fact that it is based on function-free
Horn logic where ground entailment can be determined by checking finite subsets of the
Herbrand base, i.e., decidability and termination of evaluation strategies is guaranteed
by the finiteness of the domain. However, this is not so for description logics. Decidabil-
ity of reasoning tasks such as satisfiability, class subsumption, or class membership in
description logics is often strictly dependent from the combination of constructs which
are allowed in the terminological language.

It is often possible to prove decidability by means of the so called tree-model prop-
erty. This property basically says that a description-logic knowledge base has a model
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iff it has a finite tree shaped model whose depth and branching factor are bounded by the
size of the knowledge base [5]. In general, it is possible to attempt to prove decidability
by means of a generic finite-model property, although it is worth noting that SHOIN
neither has the tree-model property nor the finite-model property [32].

Unfortunately, it is difficult to combine two decidable fragments coming from the
two worlds. As shown in [37], the naive combination of even a very simple description
logic with an arbitrary Horn logic is undecidable.

4.2 Strategies for Combining Rules and Ontologies

As one can expect by the above-mentioned problems, combining the two worlds of logic
programming and classical logic, underlying description logics, is not straightforward.

However, a naive combination of description logics and Horn rules could be imag-
ined as a possible approach for the Rules Layer of the Semantic Web. Indeed, the Se-
mantic Web Rule Language (SWRL) [31] proposal, a recent W3C member submis-
sion, straightforwardly extends OWL DL in this spirit. Given an OWL knowledge base,
SWRL allows to extend it by Horn rules using unary and binary atoms representing
classes (concepts) and roles (properties), respectively. This allows, for instance, com-
bined knowledge bases such as the following:

shareFood(W1, W2) ← hasDrink(D, W1), hasDrink (D, W2),
Whitewine � Wine;
“Trout grilled” ∈ Dish;
(“Trout grilled”, “WelschRiesling”) ∈ hasDrink ,

(3)

where the definition of the role “shareFood” by means of the first rule is not expressible
directly in description logic alone. However, as mentioned above, this freedom comes
at he cost of undecidability in the general case.

On the other extreme, the overcautious approach of allowing interoperability only on
the intersection of description logics and Horn logic seems to be too restricted. Grosof
et al. [24] have defined this intersection where the logic-programming and description-
logic worlds coincides which they call DLP. However, such an approach leaves a rule
and ontology language with very restrictive expressivity. Layering several extensions in
the direction of logic programming and ASP on top of the DLP fragment have lead to
the Web Rule Language (WRL) [2] proposal, an alternative W3C member submission.

In the following, we want to take a closer look at approaches which go beyond DLP
but still retain decidability in a more cautious integration than SWRL. Especially, when
we want to combine full description logics with full answer-set programming (i.e., not
only Horn Rules), things become more involved. In principle, the different approaches
in the literature can be divided into two major streams, as described below.

Interaction of ontologies and rules with tight semantic integration. Rules are intro-
duced by adapting existing semantics for rule languages directly in the Ontology Layer.
The DLP fragment on the one end and the undecidable SWRL approach on the other
mark two extremes of this stream. Nonetheless, in between, recently several proposals
have been made to extend expressiveness while still retaining decidability, remarkably
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Fig. 3. Integrating Ontologies and Rules by defining “safe interaction” (left) vs. “safe interfaces”
(right)

several attempts in the ASP field. Common to these approaches are syntactic restrictions
of the combined language in a way that guarantees “safe interaction” of the rules and
ontologies parts of the language (see Fig. 3).

The first such approach, AL-Log [12], extends the description logic AL by Horn
rules, but with the additional “safety” restriction that every variable of a rule r must
appear in at least one of the rule atoms occurring in the body of r, where rule atoms are
those predicates which do not appear in the description-logic knowledge base part, but
only in rules. This restriction, which retains decidability, is for instance violated by (3).
The decidability result for such so-called DL-safe rules is extended to a more expressive
description logic SHIQ in [43] bringing us closer to OWL.

Another approach [29] in this direction shows decidability for query answering in
ALCHOQ(, �) with DL-safe rules by an embedding in extended conceptual logic
programming, a decidable extension of the answer-set semantics by open domains.

The most recent work in this direction [51,52,53] loosens the safety restriction fur-
ther, by allowing non-rule atoms also in rule heads, and also gives a nonmonotonic
semantics for non-Horn rules in the spirit of answer-set programming.

Integration of ontologies and rules with strict semantic separation. In this setting, ASP
should play a central role in the Rules Layer, while OWL/RDF flavors would keep their
purpose of description languages, not aimed at intensive reasoning jobs, in the under-
lying Ontology Layer. The two layers are kept strictly separate and only communicate
via a “safe interface”, but do not impose syntactic restrictions on either the rules or the
ontology part (see again Fig. 3).

From the Rules Layer point of view, ontologies are dealt with as an external source of
information whose semantics is treated separately. Nonmonotonic reasoning and rules
are allowed in a decidable setting, as well as arbitrary mixing of closed and open world
reasoning. This approach typically involves special predicates in rule bodies which al-
low queries to a description-logic knowledge base, and exchange factual knowledge,
Examples for this type of interaction are [18,14,41] and the call of external description-
logic reasoners in the TRIPLE [54] rules engine. In the remainder of this paper, we
will focus on nonmonotonic description-logic programs [18,14] as a showcase solution
among these approaches.

For excellent surveys which classify the numerous proposals for combining rules and
ontologies we refer the interested reader to [4,46].

5 Nonmonotonic Description-Logic Programs

In this section, we introduce description-logic programs (or simply dl-programs), which
are a novel combination of normal programs and description-logic knowledge bases.
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5.1 Syntax

Informally, a dl-program consists of a description-logic knowledge base L and a gener-
alized program P , which may contain queries to L. Roughly, in such a query, it is asked
whether a certain description-logic axiom or its negation logically follows from L or not.

A dl-query Q(t) is either

(a) a concept inclusion axiom F or its negation ¬F ; or
(b) of the form C(t) or ¬C(t), where C is a concept and t is a term; or
(c) of the form R(t1, t2) or ¬R(t1, t2), where R is a role and t1, t2 are terms.

A dl-atom is an expression of the form

DL[S1op1p1, . . . , Smopm pm; Q](t) , (4)

where m ≥ 0, and such that each Si is either a concept or a role, opi ∈{�, −∪}, pi is
a unary resp. binary predicate symbol, and Q(t) is a dl-query. We call p1, . . . , pm the
input predicate symbols of (4). Intuitively, opi =� (resp., opi = −∪) increases Si (resp.,
¬Si) by the extension of pi.

A dl-rule r has the form (1),8 where any literal b1, . . . , bm ∈ B(r) may be a dl-atom.
We denote by B̃+(r) (resp., B̃−(r)) the set of all dl-atoms in B+(r) (resp., B−(r)). A
dl-program KB =(L, P ) consists of a description-logic knowledge base L and a finite
set P of dl-rules.

Positive and normal dl-rules are defined like for ordinary programs. A dl-program
KB =(L, P ) is positive, if P is “not”-free, and is normal, if rule heads are literals (i.e.,
if l = 1 in (1)).

We illustrate dl-programs in terms of our running example.

Example 11 (Wine program, OWL). Suppose now that an ontology is available, formu-
lated in OWL, which describes information about available wine bottles (as instances of
a concept Wine), and contains (among others) further concepts SweetWine, DryWine,
RedWine, and WhiteWine for different types of wine. The earlier program is modified
by fetching the wines now from the ontology, using the following rule:

% A suite of wine bottles and their kinds
wineBottle(X) ← DL[“Wine”](X).

The isA predicate can then be defined by means of the following rules:

% A suite of wine bottles and their kinds
isA(X, “sweetWine”) ← wineBottle(X), DL[“SweetWine”](X);

isA(X, “dryWine”) ← wineBottle(X), DL[“dryWine”](X);
isA(X, “redWine”) ← wineBottle(X), DL[“redWine”](X);

isA(X, “whiteWine”) ← wineBottle(X), DL[“WhiteWine”](X).

However, the isA predicate may be eliminated; instead of

compliantBottle(X, Z) ← preferredWine(X, Y ), isA(Z, Y ),

we may write simply use

8 In [18], only rules with l =1 are considered; the extension to arbitrary l is straightforward.
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% A suite of wine bottles and their kinds:

wineBottle(X) ← DL[“Wine”](X). (5)

% Persons and their preferences:

person(“axel”); preferredWine(“axel”, “whiteWine”); (6)

person(“gibbi”); preferredWine(“gibbi”, “redWine”); (7)

person(“roman”); preferredWine(“roman”, “dryWine”). (8)

% Available bottles a person likes:

compliantBottle(X, Z) ← preferredWine(X, “SweetWine”),wineBottle(Z),
DL[“SweetWine”](Z);

(9)

compliantBottle(X, Z) ← preferredWine(X, “DryWine”),wineBottle(Z),
DL[“DryWine”](Z);

(10)

compliantBottle(X, Z) ← preferredWine(X, “RedWine”),wineBottle(Z),
DL[“RedWine”](Z);

(11)

compliantBottle(X, Z) ← preferredWine(X, “WhiteWine”),wineBottle(Z),
DL[“WhiteWine”](Z).

(12)

% Available bottles a person dislikes:

doesNotLike(X, Z) ← person(X), wineBottle(Z), not compliantBottle(X, Z). (13)

% Generation of multiple answer sets:

bottleChosen(X) ∨ −bottleChosen(X) ← compliantBottle(Y, X). (14)

% Ensuring that each person gets a bottle:

hasBottleChosen(X) ← bottleChosen(X), compliantBottle(X, Z); (15)

← person(X),not hasBottleChosen(X). (16)

Fig. 4. dl-program for wine selection

compliantBottle(X, Z) ← preferredWine(X, c),wineBottle(Z), DL[c](Z),

for each c ∈ {“SweetWine”, “DryWine”, “RedWine”, “WhiteWine”}. The resulting
program is depicted in Fig. 4. Notice that Rules (5)–(12) form a positive normal dl-
program. �

Example 12 (Wine program, OWL II). Suppose now that we learn that there is a bottle,
“SelaksIceWine”, which is a white wine and not dry. We may add this information to
the logic program using the facts

white(“SelaksIceWine”) and not dry(“SelaksIceWine”).
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In our program, we may pass this information to the ontology by adding in the dl-atoms
the operations

“WhiteWine” � white and “DryWine”−∪not dry .

For instance, DL[“Wine”](X) is changed to DL[“WhiteWine”�white , “DryWine”−∪
not dry ; “Wine”](X). �

5.2 Semantics

We first define Herbrand interpretations and the truth of dl-programs in Herbrand inter-
pretations. In the sequel, let KB = (L, P ) be a dl-program.

The Herbrand base of P , denoted HBP , is the set of all ground literals with a stan-
dard predicate symbol that occurs in P and constant symbols in Φ. We denote by DLP

be the set of all ground instances of dl-atoms with constant symbols in Φ.
An interpretation I relative to P is a consistent subset of HBP . We say that I is

a model of � ∈HBP under L, denoted I |=L �, iff � ∈ I , and of a ground dl-atom a of
form (4) under L, denoted I |=L a, iff L ∪

⋃m
i=1 Ai(I) |= Q(t), where

– for opi = �, Ai(I)= {Si(e) | pi(e)∈ I}, and
– for opi = −∪, Ai(I)= {¬Si(e) | pi(e)∈ I}.

We say that I is a model of a ground dl-rule r under L, denoted I |=Lr, iff I |=L

H(r) whenever I |=L l for all l ∈B+(r) and I �|=L l for all l ∈ B−(r). Furthermore,
I is a model of a dl-program KB =(L, P ), denoted I |= KB , iff I |=L r for all
r ∈ ground(P ). We say that KB is satisfiable (resp., unsatisfiable) iff it has some (resp.,
no) model.

Note that the herein introduced dl-atoms are monotonic: A ground dl-atom a is said
to be monotonic whenever given two interpretations I ′ ⊆ I ′′ it holds that if I ′ |=L a
then I ′′ |=L a as well.

Example 13 (Wine program, OWL, continued). Consider the interpretation

I = {wineBottle(“TaylorPort”), preferredWine(“gibbi”, “redWine”),
isA(“TaylorPort”, “redWine”)},

and the rule r, given by:

isA(“TaylorPort”, “redWine”) ← wineBottle(“TaylorPort”),
DL[“RedWine”](“TaylorPort”).

Suppose “RedWine”(“TaylorPort”) is true in the ontology. Then, we have that I |=L

DL[“RedWine”](“TaylorPort”), and hence I |=L r. On the other hand, I �|=L s,
where s is given by

compliantBottle(“gibbi”, “TaylorPort”) ← preferredWine(“gibbi”, “redWine”),
wineBottle(“TaylorPort”),
DL[“RedWine”](“TaylorPort”),

since I contains all atoms in the body of s but not H(s) = compliantBottle(“gibbi”,
“TaylorPort”). �
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Minimal-model semantics of positive dl-programs. We first consider positive dl-pro-
grams. Like for ordinary positive programs, every nondisjunctive positive dl-program
which is satisfiable has a single minimal model, which naturally characterizes its se-
mantics. Observe that, as pointed out above, dl-atoms considered here are monotonic.

For ordinary normal positive programs P , it is well-known that the intersection of
two models of P is also a model of P . A similar result holds for dl-programs.

Theorem 1. Let KB =(L, P ) be a normal positive dl-program. If the interpretations
I1, I2 ⊆HBP are models of KB , then I1 ∩ I2 is also a model of KB .

As an immediate corollary of this result, every satisfiable positive dl-program KB has
a unique least model, denoted MKB , which is contained in every model of KB .

Corollary 1. Let KB = (L, P ) be a normal positive dl-program. If KB is satisfiable,
then there is a unique model I ⊆ HBP of KB such that I ⊆J for all models J ⊆ HBP

of KB .

Example 14. Consider Rules (5)–(12) in Fig. 4. Combined with the classical wine on-
tology, which is consistent, they have a single minimal model. �

On the other hand, if a dl-program contains disjunction, then multiple minimal models
of KB may exist.

Example 15. Consider again the program in Fig. 4, and disregard the rules contain-
ing default negation “not”. In the wine ontology, each class RedWine, WhiteWine ,
and DryWine has several instances (and some of them have common instances, e.g.,
“TaylorPort”). Therefore, for each of axel , gibbi , and roman , multiple possibilities to
choose a compliant bottle exist. In combination, they give rise to multiple answer sets
of the reduced program. �

Strong answer-set semantics of dl-programs. We now define the strong answer-set se-
mantics of general dl-programs. It reduces to the minimal model semantics for positive
dl-programs, using a generalized transformation that removes all NAF-literals.

In the sequel, let KB =(L, P ) be a dl-program.

Definition 1. The strong dl-reduct of P relative to L and an interpretation I ⊆HBP ,
denoted sP I

L, is the set of all dl-rules obtained from ground(P ) by

(i) deleting every dl-rule r such that I|=L � for some � ∈B−(r), and
(ii) deleting from each remaining dl-rule r all literals in B−(r).

Note that (L, sP I
L) is a positive dl-program. Moreover, by Corollary 1, it has a least

model if it is satisfiable and normal.

Definition 2. Let KB =(L, P ) be a dl-program. A strong answer set of KB is an in-
terpretation I ⊆HBP such that I is a minimal model of (L, sP I

L).

Example 16 (Wine program, OWL continued). Suppose that the concept RedWine pos-
sesses the instances “TaylorPort” and “ChiantiClassico”, WhiteWine the instance
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“SelaksIceWine”, and DryWine the instance “ChateauMargaux ”, and assume that
SweetWine is empty. Note that these concepts are all subconcepts of Wine.

Consider the interpretation I which includes, besides the facts in the program, the
following items:

compliantBottle(“axel”, “SelaksIceWine”);
compliantBottle(“gibbi”, “TaylorPort”);
compliantBottle(“gibbi”, “ChiantiClassico”);
compliantBottle(“roman”, “ChateauMargaux ”);

bottleChosen(“axel”); bottleChosen(“gibbi”); bottleChosen(“roman”);
hasBottleChosen(“axel”); hasBottleChosen(“gibbi”);
hasBottleChosen(“roman”);

doesNotLike(“axel”, “TaylorPort”);
doesNotLike(“axel”, “ChiantiClassico”);
doesNotLike(“axel”, “ChateauMargaux ”);
doesNotLike(“gibbi”, “SelaksIceWine”);
doesNotLike(“gibbi”, “ChateauMargaux ”);
doesNotLike(“roman”, “SelaksIceWine”);
doesNotLike(“roman”, “TaylorPort”);
doesNotLike(“roman”, “ChiantiClassico”).

It can be checked that I is a strong answer set of KB . Indeed, I satisfies all positive
rules in P , as well as all rules of form

doesNotLike(p, w) ← person(p),wineBottle(w),

stemming from Rule (13) in Fig. 4, for each pair p, w such that compliantBottle(p, w)
is not contained in I . Furthermore, Rule (16) vanishes in the reduction. Thus, I is a
model of (L, sP I

L). Moreover, I is minimal as no facts can be removed from it without
losing modelhood. Therefore, I is an strong answer set of KB . �

The following result shows that the strong answer-set semantics of a dl-program
KB =(L, P ) conservatively extends the ordinary answer-set semantics of P .

Theorem 2. Let KB =(L, P ) be a dl-program without dl-atoms. Then, I ⊆HBP is a
strong answer set of KB iff it is an answer set of the ordinary program P .

As desired, strong answer sets of a dl-program KB are also models, and, moreover,
minimal.

Theorem 3. Let KB = (L, P ) be a dl-program and let M be a strong answer set of
KB . Then, (a) M is a model of KB , and (b) M is a minimal model of KB .

Proof. (a) Let I be a strong answer set of KB . To show that I is also a model of KB , we
have to show that I |=L r for all r ∈ ground(P ). Consider any r ∈ ground(P ). Suppose
that I |=L � for all � ∈B+(r) and I �|=L � for all � ∈B−(r). Then, the dl-rule r′ that is
obtained from r by removing all the literals in B−(r) is contained in sP I

L. Since I is a
minimal model of (L, sP I

L) and thus in particular a model of (L, sP I
L), it follows that

I is a model of r′. Since I |=L � for all � ∈B+(r′) and I �|=L � for all � ∈B−(r′)= ∅,
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it follows that I |=L �′ for some �′ ∈ H(r). This shows that I |=L r. Also, each rule
r ∈ ground(P ) having no counterpart in sP I

L is trivially modeled by I since I �|= B(r).
Hence, I is a model of KB .

(b) By Part (a), every strong answer set I of KB is a model of KB . We show that I
is a minimal model of KB . Towards a contradiction, suppose that there exists a model
J of KB such that J ⊂ I . Since J is a model of KB , it follows that J is also a model
of (L, sP J

L ). As every dl-atom in DLP is monotonic relative to KB , it then follows
that sP I

L ⊆ sP J
L . Hence, J is also a model of (L, sP I

L). But this contradicts that I is a
minimal model of (L, sP I

L). Hence, I is a minimal model of KB . �
Note that every normal positive dl-program KB has at most one strong answer set,
which coincides with the single minimal model of KB .

5.3 Further Examples

Closed-world reasoning. As stressed in Section 4, it is acknowledged that many Seman-
tic-Web application scenarios require some form of closed-world reasoning [1,28].

Using dl-programs, the CWA may be easily expressed on top of an external knowl-
edge base which can be queried through suitable dl-atoms. We show this here for a
description-logic knowledge base L.

Intuitively given a concept C, its negated version C̄ (under CWA) is defined by
adding to a given dl-program the rule

C̄(X) ← not DL[C](X)

For example, given that L = {WhiteWine � Wine, Wine(“ChiantiClassico”)}, for
concepts WhiteWine and Wine, the CWA infers ¬WhiteWine(“ChiantiClassico”).

As well known, the CWA can lead to inconsistent conclusions. If, in the above ex-
ample, L contains further axioms

Wine = WhiteWine  ¬RedWine and

⊥ = WhiteWine � ¬RedWine,

then the CWA infers

WhiteWine(“ChiantiClassico”) and RedWine(“ChiantiClassico”),

which is inconsistent with L.
We can check inconsistency of the CWA with the further rule

fail ← DL[WhiteWine −∪WhiteWine,RedWine−∪RedWine; ⊥](b),not fail ,

where ⊥ is the empty concept (entailment of ⊥(b), for any constant b, is tantamount to
inconsistency).

Workarounds to these semantic difficulties are well known in the literature: mini-
mal-model reasoning, or the extended closed-world assumption (ECWA), for instance,
avoid the problem of CWA inconsistency [9,23]. These extensions can be easily imple-
mented in the framework of dl-programs, by means of a suitable encoding that computes
minimal models of a knowledge base L. Intuitively, building minimal models of L cor-
responds to concluding as much negative facts as possible while keeping consistency.
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Default reasoning. By maximizing rather than minimizing extensions, default reason-
ing, as in the approach by Poole [48], on top of a description-logic knowledge base may
be supported. The rationale is to associate to individuals default values for concept and
roles. Default information is maximized, in the sense that it is propagated as much as
possible unless inconsistency arises.

Although acknowledged as being essential for modeling reasoning in the Semantic-
Web context (see, e.g., [3]), description-logic knowledge bases do not allow nonmono-
tonic inheritance. This often causes many ontology design problems, especially in those
cases where overriding some default-concept property value is the most natural way of
defining a subclass. Defaults are especially tailored at implementing nonmonotonic in-
heritance. For example, the rules

shouldbewhite(W ) ← DL[sparklingWine ](W ),not nonwhite(W ),
nonwhite(W ) ← DL[WhiteWine � shouldbewhite ; ¬WhiteWine](W )

on top of a part, L, of the wine ontology express that sparkling wines are white by
default. Given

L = { sparklingWine(“VeuveCliquot”),
(sparklingWine � ¬whiteWine)(“Lambrusco”)},

we then can conclude white(“VeuveCliquot”) and nonwhite(“Lambrusco”).

5.4 Additional Features of dl-programs

An interesting fragment of dl-programs are stratified dl-programs, which are, intu-
itively, composed of hierarchic layers of positive dl-programs linked via default nega-
tion. This generalization of the classic notion of stratification embodies a fragment of
the language having single answer sets. Semantics for programs (or sub-programs) be-
longing to this fragment can be evaluated at a less expensive computational cost [15].

Furthermore, it is possible to evaluate dl-programs either under weak answer-set
semantics [18] and a well-founded semantics [19]. The former does not make any as-
sumption on the nature of a dl-atom (whereas monotonic dl-atoms are treated explicitly
in the semantics discussed here), while the latter is a generalization of the traditional
well-founded semantics [56] for dl-programs.

5.5 Prototype Implementation

A fully operational prototype, named NLP-DL, ready for experiments, is available via
a Web interface at

http://www.kr.tuwien.ac.at/staff/roman/semweblp/

The system accepts nondisjunctive dl-programs as input,9 given by an ontology formu-
lated in OWL DL (as processed by RACER [26]) and a set of dl-rules in the language
above, where ←, �, and −∪, are written as “:-”, “+=”, and “–=”, respectively. The fol-
lowing reasoning tasks are featured:

9 An implementation of disjunctive dl-programs is available through dlvhex, an implementation
of HEX-programs (see next section for details about HEX-programs and dlvhex).
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(i) Computing models (answer sets or the well-founded model) of a given dl-program:
For computing the answer sets, a preliminary computation of the well-founded
model may be issued, which semantically approximates the answer sets—this is
exploited for optimization.

(ii) Evaluating a given query on a given dl-program: Under the answer-set semantics,
both brave reasoning and cautious reasoning are available.

The system architecture integrates the external DLV [36] and RACER engines, the
latter being embedded into a caching module, a well-founded semantics module, an
answer-set semantics module, a pre-processing module, and a post-processing module.

Each internal module has been implemented using the PHP scripting language; the
overhead is insignificant, provided that most of the computing power is devoted to the
execution of the two external reasoners. In particular, efficient usage of RACER is criti-
cal for the system performance. Respective techniques, mainly based on caching query
results and exploiting monotonicity of description-logic reasoning, are described in [15].

6 Extensions

Example 17 (Motivating Example, Part III). Now that a machinery, automatically gen-
erating a selection of wine bottles for the social dinner, is ready, the organizers wonder
whether it is possible to accomplish this task in a better way. After all, the Semantic
Web envisions a world where machine-to-machine protocols express their full poten-
tial, and people are freed from most annoying jobs. In this context, multiple domain
descriptions (i.e., multiple ontologies), possibly with differing semantics, may interact
closely and have to be ready for information exchange.

For instance, most of the attendees may have his or her own FOAF [21] descrip-
tion on-line. These description might potentially publish all the public data about an
attendee, including his or her preferred wine. However, now the organizers notice that
they need some formalism powerful enough to interface several formalisms and multi-
ple ontologies at once. �

6.1 HEX-programs

HEX-programs generalize dl-programs with regard to the following features:

– The notion of a dl-atom is generalized to that of an external atom. The latter kind
of atom may bind knowledge coming from different external formalisms, with pos-
sibly differing semantics. Also, an external atom can delegate special tasks to tra-
ditional programs (such as string processing), for which logic programming is not
tailored at. For instance, it is possible to merge RDF ontologies with OWL ontolo-
gies, as in the following small program:

triple(X, Y, Z) ← url(U), &rdf [U ](X, Y, Z);
← &DLinconsistent [triple].

Also, possible external sources of knowledge can be merged with arbitrary strate-
gies, and can bring in new symbols not appearing elsewhere in a given program
(“value invention”).
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– It is made possible to quantify over sets of concepts just as it is done with in-
dividuals, and to freely exchange the former objects with the latter ones. These
meta-reasoning features are enabled by means of higher-order atoms, such as in
the rule

“wine:Wine”(X) ← triple(X, “rdf:type”, “wine:Wine”).

– Logic programs are made compatible with naming conventions employed in the
Semantic-Web world. Thus, a directive such as

#namespace(wine, “http://www.w3.org/TR/2003/
PR-owl-guide-20031209/wine#”)

allows to interpret the constant symbol “wine:Wine” as a shortcut for the symbol

“http://www.w3.org/TR/2003/PR-owl-guide-20031209/
wine#Wine”.

In this section, we briefly discuss HEX-programs; for further details, see [14].

6.2 Syntax and Semantics

HEX-programs are built on mutually disjoint sets C, X , and G of constant names, vari-
able names, and external predicate names, respectively. Unless stated otherwise, ele-
ments from X (resp., C) are denoted with first letter in upper case (resp., lower case);
elements from G are prefixed with “ & ”.10 Constant names serve both as individual and
predicate names. Importantly, C may be infinite.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a tuple
(Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms; n ≥ 0 is its arity. Intuitively, Y0 is the
predicate name; we thus also use the familiar notation Y0(Y1, . . . , Yn). The atom is
ordinary, if Y0 is a constant. For example, (x, rdf :type, c) and node(X) are ordinary
atoms, while D(a, b) is a higher-order atom. An external atom is of the form

&g[Y1, . . . , Yn](X1, . . . , Xm),

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input list and output
list, respectively), and &g ∈ G is an external predicate name. We assume that &g has
fixed lengths in(&g) = n and out(&g) = m, respectively. Intuitively, an external
atom provides a way for deciding the truth value of an output tuple depending on the
extension of a set of input predicates.

Example 18. The external atom &reach[edge, a](X) may compute the nodes reachable
in the graph edge from the node a. Here, in(&reach)= 2 and out(&reach)= 1. �

A HEX-program, P , is a finite set of rules of form (1), where literals in the heads of rules
are (higher-order) atoms, and literals in the bodies of rules contain either (higher-order)
atoms or external atoms.
10 In [14], “ # ” is used instead of “ & ”; the change is motivated to be in accord with the syntax

of the prototype system.
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The semantics of HEX-programs generalizes the answer-set semantics [22], and is
defined using the FLP-reduct [20], which is more elegant than the traditional reduct
and ensures minimality of answer sets.

The Herbrand base of a HEX-program P , denoted HBP , is the set of all possible
ground versions of atoms and external atoms occurring in P obtained by replacing
variables with constants from C. The grounding of a rule r, ground(r), is defined ac-
cordingly, and the grounding of program P is ground(P ) =

⋃
r∈P ground(r).

Example 19. For C = {edge, arc, a, b}, ground instances of E(X, b) are, for instance,
edge(a, b), arc(a, b), and arc(arc, b); ground instances of &reach[edge, N ](X) are
&reach[edge, edge](a), &reach[edge, arc](b), and &reach[edge, edge](edge), etc. �

An interpretation relative to P is any subset I ⊆ HBP containing only atoms. We
say that I is a model of atom a ∈HBP , denoted I |= a, if a ∈ I . With every external
predicate name &g ∈ G we associate an (n+m+1)-ary Boolean function f&g (called
oracle function) assigning each tuple (I, y1 . . . , yn, x1, . . . , xm) either 0 or 1, where
n = in(&g), m = out(&g), I ⊆ HBP , and xi, yj ∈ C. We say that I ⊆ HBP is a
model of a ground external atom a = &g[y1, . . . , yn](x1, . . . , xm), denoted I |= a, iff
f&g(I, y1 . . ., yn, x1, . . . , xm)= 1.

Example 20. Associate with the external predicate name &reach a function f&reach

such that f&reach(I, E, A, B) = 1 iff B is reachable in the graph E from A. Let
I = {e(b, c), e(c, d)}. Then, I is a model of the external atom &reach[e, b](d) since
f&reach(I, e, b, d) = 1. �

Let r be a ground rule. We define (i) I |=H(r) iff there is some a ∈ H(r) such
that I |= a, (ii) I |=B(r) iff I |= a for all a ∈B+(r) and I �|= a for all a ∈B−(r), and
(iii) I |= r iff I |=H(r) whenever I |=B(r). We say that I is a model of a HEX-program
P , denoted I |=P , iff I |= r for all r ∈ ground(P ).

The FLP-reduct [20] of P with respect to I ⊆HBP , denoted fP I , is the set of all
r ∈ ground(P ) such that I |= B(r). I ⊆HBP is an answer set of P iff I is a minimal
model of fP I .

Differences between the FLP-reduct and the strong dl-reduct. The two above semantics
are not equivalent in the presence of nonmonotonic external atoms, where the notion of
monotonicity for an external atom generalizes that for dl-atoms. Let us assume to have
an external predicate &neg , defined in such a way that the ground atom &neg[p](a)
satisfies I �|= &neg[p](a) whenever an interpretation I is such that I |= p(a) (i.e., &neg
reproduces the behavior of the usual negation as failure). The program P , consisting of
the single rule

p(a) ← not &neg[p](a),

has S1 = {p(a)} as a strong answer set. However, also S2 = ∅ is a strong answer set
of P , thus S1 is not minimal. It is often desirable that answer sets are incomparable as
in the above case: intuitively, self-supportedness of an atom such as in the rule p(a) ←
p(a) should not give evidence of the truth of p(a).

The FLP-reduct overcomes these drawbacks. Indeed, it can be proven that this reduct
produces only incomparable answer sets: under FLP semantics, S1 is not an answer set.
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6.3 Further Examples

With HEX-programs, it is possible to extract information from different sources in the
same program.

Assume we want to invite all friends of Axel Polleres for dinner, and that their wine
preferences are given by means of their FOAF descriptions. To this end, we introduce
the &rdf atom for dealing with RDF sources, and the &dlC atom that mimics par-
tially the semantics of a dl-atom. An atom &rdf [u](s, p, o) is true if 〈s p o〉 is an RDF
triple asserted at URI u. Also, &dlC [u, c](x ) is true if x is an individual which can
be proved to belong to class c in the knowledge base located at URI u (under OWL
semantics).

First, namespace directives allow us to deal with individuals and concepts (constant
symbols) coming from different Web sources:

#namespace(wine, “http://www.w3.org/TR/2003/
PR-owl-guide-20031209/wine#”);

#namespace(foaf , “http://xmlns.com/foaf/0.1/”);

#namespace(rdf , “http://www.w3.org/1999/02/
22-rdf-syntax-ns#”);

#namespace(foafplus , “http://www.example.org/foafplus”);

#namespace(rdfs , “http://www.w3.org/2000/01/rdf-schema#”).

<foaf:PersonalProfileDocument rdf:about="">
<foaf:maker rdf:resource="#me"/>
<foaf:primaryTopic rdf:resource="#me"/>
...

</foaf:PersonalProfileDocument>

<foaf:Person rdf:ID="me">
<foaf:name>Axel Polleres</foaf:name>
...
<foaf:knows>

<foaf:Person>

<foaf:name>Giovambattista Ianni</foaf:name>
<foaf:mbox>ianni@mat.unical.it</foaf:mbox>
<rdfs:seeAlso rdf:resource=
"http://www.gibbi.com/test_foaf.gibbi.rdf"/>

</foaf:Person>
</foaf:knows>

...
<foafplus:winePreference rdf:resource="&vin;SweetWine"/>

</foaf:Person>

Fig. 5. An example FOAF description, extended with the foafplus:winePreference property
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Suppose now that a FOAF description is given, like in Fig. 5. This FOAF description
is enriched with the propertyfoafplus:winePreferencewhich expresses a wine
preference for a given person. This small description can be interfaced with a HEX-
program in the following way:

Y (X, Z, triple) ← &rdf [U ](X, Y, Z), foafurl(U);
T (X, triple) ← “rdf:type”(X, T, triple).

The above rules materialize the RDF triples contained in Axel’s FOAF description.
Then, the predicate preferredWine is now computed by extracting data from exter-

nal descriptions of Axel’s friends (note that further external ontologies are consulted
whose locations depend on the first consulted ontology):

mainEntity(M, triple) ← “foaf:primaryTopic”(X, M, triple),
“foaf:PersonalProfileDocument”(X, triple);

community(A, Y ) ← “foaf:knows”(X, A, triple),
“rdfs:seeAlso”(A, Y, triple);

preferredWine(M, Y ) ← “foafplus:winePreference”(M, Y, triple),
mainEntity(M, triple);

preferredWine(X, Y ) ← community(X, U),
&rdf [U ](,“foafplus:winePreference”, Y ).

The next rule facilitates the quantification over concept names given to the predicate
&dlC:

compliantBottle(X, Z) ← wineurl(U), preferredWine(X, Y ),
&dlC [U, Y ](Z).

Note that this rule allows to generalize, for instance, Rules (9)–(12) of the program
given in Fig. 4. The rest of the program is very similar to the latter one:

bottleChosen(X) ∨ −bottleChosen(X) ← compliantBottle(Y, X);
hasBottleChosen(X) ← bottleChosen(Z), compliantBottle(X, Z);

← preferredWine(X, Y ),not hasBottleChosen(X);
:∼ bottleChosen(X) [1].

6.4 Prototype Implementation

An experimental prototype for evaluating HEX-programs, called dlvhex, is available and
executable on the Web at

http://www.kr.tuwien.ac.at/research/dlvhex/

Apart from implementing the semantics of HEX-programs, dlvhex supports a number
of built-in functions as well as integrity and weak constraints. Its further development
is work in progress.

The principle behind dlvhex is to represent a framework that integrates a native
answer-set solver—here, DLV [36]—and the external reasoners underlying the external
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atoms. Optionally, dlvhex can integrate DLT [10] as a pre-parser to allow for templates
and frame syntax within HEX-programs. Due to the bidirectional nature of external
atoms, they cannot be evaluated prior to calling the answer-set solver. Instead, dlvhex
builds the dependency graph of the HEX-program, identifying minimal sets of nodes that
involve external atoms, which have to be solved by specifically tailored algorithms. This
strategy, which is described in more detail in [16] and [17], relies basically on a modi-
fied version of the well-known splitting-set theorem for ordinary logic programs [40].

The evaluation functions of the external atoms are defined completely independent
from dlvhex by so called plug-ins, which can contain the implementations of several
atoms. The currently available external atoms are the RDF Plug-in, the Description-
Logics Plug-in and the String Plug-in, described below.

The RDF Plug-in. The RDF plug-in currently provides a single external atom, the
&rdf atom, which enables the user to import RDF triples from any RDF knowl-
edge base. It takes a single constant as input, which denotes the RDF source (a file
path or a Web address). The &rdf atom interfaces with the RAPTOR RDF library.

The Description-Logics Plug-in. In order to model dl-programs [18] in terms of HEX-
programs, the Description-Logics Plug-in has been developed. This plug-in in-
cludes three external atoms (these atoms, in accord to the semantics of dl-programs,
also allow for extending a description-logic knowledge base, before submitting a
query, by means of the atoms’ input parameters):

– the &dlC atom, which queries a concept (specified by an input parameter of
the atom) and retrieves its individuals;

– the &dlR atom, which queries an object property and retrieves its individual
pairs;

– the &dlDR atom, which queries a datatype property and retrieves its pairs; and
– the &dlConsistent atom, which tests the (possibly extended) description-logic

knowledge base for consistency.

The Description-Logics Plug-in can access OWL ontologies, i.e., description-logic
knowledge bases in the language SHOIN (D), utilizing the RACER [26] reason-
ing engine.

The String Plug-in. The task of the String Plug-in is to realize simple string manipu-
lations.

Currently, dlvhex, together with the presented plug-ins, are available as source pack-
ages. Moreover, a toolkit for developing custom plug-in is supplied as well, embedded
in the GNU auto-tools environment, which takes care for the low-level, system-specific
build process and which allows the plug-in author to concentrate his or her efforts on
the implementation of the plug-in’s actual core functionality.

7 Discussion and Conclusion

We have considered reasoning with rules and ontologies, taking an answer-set program-
ming perspective. A number of approaches for combining rules and ontologies have
been presented so far, and the quest for the Holy Grail of an ideally suited formalism
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(which might not exist) is still ongoing. As we have briefly discussed, a number of is-
sues come up when combining rules as in logic programming and ontologies formalized
in classical logic. Bridging the quite different worlds of logic programs and ontologies
has been attempted in different approaches, which may be grouped in “tightly” coupled
and “loosely” coupled approaches.

The approach which is closest in spirit to dl-programs is Rosati’s DL+log formal-
ism [52,53], which extends his previous work [50,51]. In this approach, predicates are
split into ontology predicates and into logic-program (datalog) predicates. A notion of
model of a combined rule and ontology knowledge base is defined using a two-step
reduct in which, in the first step, the ontology predicates are eliminated under the open-
world assumption (OWA) and, in the second step, the negated logic-programming pred-
icates under the closed-world assumption (CWA). As shown by Rosati, the emerging
formalism (which focuses on first-order models under the standard-names assumption),
is decidable provided that conjunctive-query answering over the underlying ontology is
decidable. The main differences between DL+log and dl-programs are as follows:

– DL+log is a tight coupling, while dl-programs provide a loose coupling of rules
and ontologies.

– While extensions of dl-programs to integrate ontologies even in different formats
are straightforward, there is no corresponding counterpart in DL+log .

– The approach of dl-atoms is more flexible for mixing different reasoning modali-
ties, such as consistency checking and logical consequence. In the realm of HEX-
programs, almost arbitrary combinations can be conceived.

– The coupling as realized in dl-programs aims at facilitating interoperability of ex-
isting reasoning systems and software (such as DLV and RACER). On the other
hand, the loose coupling requires a bridging between the two worlds of ontologies
and rules, which has to be provided by the user. In particular, this applies to the
individuals at the instance level.

The development and theoretical study of HEX-programs is ongoing. Algorithms
and techniques for efficient implementation are in an advanced stage of progression. In
a sense, rules are per se a form or knowledge that needs to be exchanged and evaluated
under different semantics. To this end, we are developing an exchange format aimed at
fitting answer-set programming in the RuleML standard. In conclusion, although quite
some efforts have been spent on combining rules and ontologies, there is still a lot of
work to be done.
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Abstract. We present some recent results on the definition of logic-
based systems integrating ontologies and rules. In particular, we take
into account ontologies expressed in Description Logics and rules ex-
pressed in Datalog (and its nonmonotonic extensions). We first intro-
duce the main issues that arise in the integration of ontologies and rules.
In particular, we focus on the following aspects: (i) from the semantic
viewpoint, ontologies are based on open-world semantics, while rules are
typically interpreted under closed-world semantics. This semantic dis-
crepancy constitutes an important obstacle for the definition of a
meaningful combination of ontologies and rules; (ii) from the reasoning
viewpoint, the interaction between an ontology and a rule component is
very hard to handle, and does not preserve decidability and computa-
tional properties: e.g., starting from an ontology in which reasoning is
decidable and a rule base in which reasoning is decidable, reasoning in
the formal system obtained by integrating the two components may not
be a decidable problem. Then, we briefly survey the main approaches
for the integration of ontologies and rules, with special emphasis on how
they deal with the above mentioned issues, and present in detail one of
such approaches, i.e., DL+log. Finally, we illustrate the main open prob-
lems in this research area, pointing out what still prevents us from the
development of both effective and expressive systems able to integrate
ontologies and rules.

1 Introduction

1.1 Ontologies and Description Logics

The integration of ontologies and rules has recently received considerable atten-
tion in the research on ontologies and the Semantic Web (see e.g.,[24,2]). De-
scription Logics (DLs) [6] are currently playing a central role in this field. DLs
are a family of knowledge representation formalisms based on first-order logic (in
fact, almost all DLs coincide with decidable fragments of function-free first-order
logic with equality) and exhibiting well-understood computational properties. In
the last years, a significant body of the Semantic Web research was devoted to
defining a suitable language for ontology modeling [33]. In 2004, this endeavor
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resulted in the Web Ontology Language (OWL). OWL is based on Description
Logics, and has successfully been applied to numerous problems in computer
science, such as information integration or metadata management. Prototypes
of OWL reasoners, such as RACER, FaCT++, Pellet, or KAON2, have been
implemented and applied in research projects; commercial implementations and
projects using them are currently emerging.

1.2 Limitations of Current Ontology Formalisms

However, the experience in building practical applications has revealed several
shortcomings of OWL and, in general, of Description Logics. In particular, the
typical expressiveness of DLs does not allow for addressing the following aspects:

– the possibility of defining predicates of arbitrary arity (not just unary and
binary)

– the use of variable quantification beyond the tree-like structure of DL con-
cepts (many DLs actually correspond to subsets of the two-variable fragment
of first-order logic)

– the possibility of formulating expressive queries over DL knowledge bases
(beyond concept subsumption and instance checking)

– the possibility of formalizing various forms of closed-world reasoning over
DL knowledge bases

– more generally, the possibility of expressing forms of nonmonotonic knowl-
edge, like default rules [34]

The issue of how to overcome these limitations of OWL and DLs is currently
receiving a lot of attention in the Semantic Web community [1]. In this respect,
we observe that several of the representational abilities which are missing in DLs
require nonmonotonicity of the underlying logical formalism. This is in contrast
with the well-known monotonic nature of classical first-order logic, which cor-
responds to the following property: if a theory T entails a conclusion φ, then,
for every formula ψ, the theory T ∪ {ψ} entails φ. Such a property dos not hold
anymore in the presence of closed-world knowledge and default knowledge [34,7].

This implies that the attempt to extend the expressive abilites of DLs, in order
to fully overcome the above limitations, requires to leave the realm of classical
first-order logic, and to look at nonmonotonic logic.

1.3 Rule-Based Knowledge Representation

Almost all the kinds of knowledge that cannot be formally addressed in a clas-
sical, first-order logic setting have a “rule-like” form, i.e., can be expressed by
statements of the form “if the precondition ψ holds then the conclusion φ holds”,
where the precondition and the conclusion are logical properties.

However, such a piece of knowledge cannot simply be formalized through the
standard material implication of classical logic: in other words, it is not possible
to capture the intended meaning of the above statement by an implication in
classical first-order logic of the form ψ → φ.



130 R. Rosati

In this respect, a very relevant role is played by research in logic programming.
In fact, logic program rules are implications with a non-standard semantics. And,
in the context of ontologies, nonmonotonic extensions of logic programming are
of particular interest [7].

Therefore, rule-based formalisms grounded in logic programming have repeat-
edly been proposed as a possible solution to overcome the above limitations, so
adding a rule layer on top of OWL is nowadays seen as the most important task
in the development of the Semantic Web language stack. The Rule Interchange
Format (RIF) working group of the World Wide Web Consortium (W3C) is
currently working on standardizing such a language.

Most of the proposals in this field focus on logic programs expressed in Datalog
(and its nonmonotonic extensions) [14]. With respect to DLs, Datalog allows for
using predicates of arbitrary arity, the explicit use of variables, and the ability
of expressing more powerful queries. Moreover, its nonmonotonic features (in
particular, the negation-as-failure operator not) allow for expressing default rules
and forms of closed-world reasoning.

1.4 Integrating DLs and Rules: Main Issues

Many semantic and computational problems have emerged in the combination
of DLs and rule-based representation formalisms. Among them, we concentrate
on the following main issues/goals:

(1) OWA vs. CWA: DLs are fragments of first-order logic (FOL), hence their
semantics is based on the Open World Assumption (OWA) of classical logic,
while rules are based on a Closed World Assumption (CWA), imposed by the
different semantics for logic programming and deductive databases (which
formalize various notions of information closure). How to integrate the OWA
of DLs and the CWA of rules in a “proper” way? i.e., how to merge monotonic
and nonmonotonic logical subsystems from a semantic viewpoint?

(2) UNA vs. non-UNA: some DLs, in particular the ones specifically tailored for
the Semantic Web, i.e., OWL and OWL-DL, are not based on the Unique
Name Assumption (UNA) (we recall that the UNA imposes that different
terms denote different objects). On the other hand, the standard semantics
of Datalog rules is based on the UNA (see e.g. [12] for a discussion on this
semantic discrepancy). How to define a non-UNA-based semantics for DLs
and rules? and most importantly, is it possible to reason under the non-UNA-
based semantics by exploiting standard (i.e., UNA-based) Datalog engines?

(3) decidability preservation: as shown by the first studies in this field [28], decid-
ability (and complexity) of reasoning is a crucial issue in systems combining
DL knowledge bases and Datalog rules. In fact, in general this combination
does not preserve decidability, i.e., starting from a DL knowledge base in
which reasoning is decidable and a set of rules in which reasoning is de-
cidable, reasoning in the knowledge base obtained by integrating these two
components may not be a decidable problem.

(4) modularity of reasoning: can reasoning in DL knowledge bases augmented
with rules be performed in a modular way, strongly separating reasoning



Integrating Ontologies and Rules: Semantic and Computational Issues 131

about the DL component and reasoning about the rule component? This
is a very desirable property, since it allows for defining reasoning tech-
niques (and engines) on top of deductive methods (and implemented sys-
tems) developed separately for DLs [6] and for Datalog and its nonmonotonic
extensions [16].

1.5 Structure of the Paper

The paper is structured in the following way. We start by briefly introducing
Description Logics in Section 2, and Datalog and its nonmonotonic extensions
in Section 3. Then, in Section 4 we analyze the main issues that arise when
integrating Description Logics and rules. In Section 5 we review the main ap-
proaches to the integration of ontologies and Datalog rules. Then, in Section 6
we present DL+log, one of the most powerful formalisms integrating Descrit-
pion Logics and Datalog rules: in particular, we show how DL+log deals with
the main issues previously discussed. Finally, in Section 7 we briefly illustate
some of the main open problems towards the integration of Description Logics
and Datalog rules.

2 Description Logics

We start by introducing Description Logics. For a more detailed introduction to
this topic, we refer the reader to [6].

Description Logics (DLs) are logics that represent the domain of interest in
terms of concepts, denoting sets of objects, and roles, denoting binary relations
between (instances of) concepts. Complex concept and role expressions are con-
structed starting from a set of atomic concepts and roles by applying suitable
constructs.

Different DLs allow for different constructs. Properties of concepts and roles
are specified through inclusion assertions, stating that every instance of a concept
(respectively, role) is also an instance of another concept (respectively, role).

As an example of a DL, in the following we formally introduce ALC, which
actually constitutes a subset of the DLs of the OWL family defined as ontology
languages.

2.1 Syntax

In ALC, concepts and roles are formed according to the following syntax:

C ::= � | ⊥ | A | C1 � C2 | C1  C2 | ¬C | ∃P.C | ∀P.C

where A denotes an atomic concept, P denotes an atomic role, and C1, C2 denote
general concept expressions.

A DL knowledge base (KB) K = (T ,A) represents the domain of interest in
terms of two components, a TBox T , specifying the intensional knowledge, and
an ABox A, specifying extensional knowledge.
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A TBox is formed by a set of inclusion assertions of the form

C1 � C2

where C1 and C2 are general concepts. As we said before, such an inclusion
assertion expresses that all instances of concept C1 are also instances of concept
C2.

An ABox is formed by a set of membership assertions on atomic concepts and
on atomic roles, of the form

C(a), P (a, b)

stating respectively that the object denoted by the constant a is an instance of
the concept C and that the pair of objects denoted by the pair of constants (a, b)
is an instance of the role P .

2.2 Semantics

The semantics of a DL is given in terms of standard first-order interpretations.
Formally, a DL-interpretation I = (ΔI , ·I) consists of an interpretation domain
ΔI and an interpretation function ·I defined as follows. First, I assigns to each
atomic concept A a subset AI of ΔI , and to each role P a binary relation P I

over ΔI :

�I = ΔI

⊥I = ∅
AI ⊆ ΔI

P I ⊆ ΔI × ΔI

Based on the above interpretation of atomic predicates, I assigns a subset of
ΔI to general concept expression. For the constructs of ALC, the interpretation
of general concepts is defined inductively as follows:

¬CI = ΔI \ CI

C1 � CI
2 = CI

1 ∩ CI
2

C1  CI
2 = CI

1 ∪ CI
2

∃P.CI = {d ∈ ΔI | ∃d′.(d, d′) ∈ P I and d′ ∈ CI}
∀P.CI = {d ∈ ΔI | ∀d′.(d, d′) ∈ P I implies d′ ∈ CI}

A concept C is satisfiable if there exists an interpretation I such that CI �= ∅,
otherwise C is unsatisfiable. An interpretation I is a model of a concept C if I
satisfies C.

A DL-interpretation I is a model of an inclusion assertion C1 � C2, if
CI

1 ⊆ CI
2 .
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To specify the semantics of membership assertions, we extend the interpreta-
tion function to constants, by assigning to each constant a an object aI ∈ ΔI .1 A
DL-interpretation I is a model of a membership assertion C(a), (resp., P (a, b))
if aI ∈ CI (resp., (aI , bI) ∈ P I).

Given an (inclusion, or membership) assertion α, and a DL-interpretation
I, we denote by I |= α the fact that I is a model of α. A model of a KB
K = (T ,A) is a DL-interpretation I that is a model of all assertions in T and
A. A KB is satisfiable if it has at least one model. A KB K entails an assertion
α, written K |= α, if all models of K are also models of α. Analogously, a TBox
T entails an assertion α, written T |= α, if all models of T are also models
of α.

Observe that ALC (and, in practice, every DL) is actually a fragment of
function-free first-order logic, with a special syntax which avoids the explicit use
of variable symbols. In fact, it is immediate to verify that a DL knowledge base
K is semantically equivalent to a FOL theory FO(K) in which each assertion in
the knowledge base is expressed by a first-order sentence (for details on such a
translation see [6]). For instance, the TBox inclusion assertion

A1 � ∃P1.A2 � ∀P2.A3  ¬A4

is equivalent to the first-order sentence

∀x.A1(x) ∧ (∃y.P1(x, y) ∧ A2(y)) → (∀z.P2(x, z) → A3(z)) ∨ ¬A4(x)

Finally, we remark that, due to the above FOL semantics, DLs are interpreted
over an unbound (possibly infinite) domain. Moreover, unique names are not
always assumed2.

3 Disjunctive Datalog

In this section be briefy recall disjunctive Datalog [14], denoted by Datalog¬∨,
which is the well-known nonmonotonic extension of Datalog with negation as
failure and disjunction.

3.1 Syntax

We start from a predicate alphabet, a constant alphabet, and a variable alphabet.
An atom is an expression of the form p(X), where p is a predicate of arity n
and X is a n-tuple of variables and constants. If no variable symbol occurs in X,
then p(X) is called a ground atom (or fact). A Datalog¬∨ rule R is an expression
of the form

p1(X1) ∨ . . . ∨ pn(Xn) ← r1(Y1), . . . , rm(Ym),not s1(W1), . . . ,not sk(Wk)
1 We recall that, if we enforce the unique name assumption on constants, then the

interpretation aI of each constant a must be such that, for each constant b different
from a, bI 	= aI [6].

2 Even though some DLs are based on the UNA, the most expressive ones, like the
ones in the OWL family, are not.
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such that n ≥ 0, m ≥ 0, k ≥ 0, each pi(Xi), ri(Yi), si(Wi) is an atom
and every variable occurring in R must appear in at least one of the atoms
r1(Y1), . . . , rm(Ym). This last condition is known as the Datalog safeness condi-
tion for variables. The variables occurring in the atoms p1(X1), . . . , pn(Xn) are
called the head variables of R. If n = 0, we call R a constraint.

A a Datalog¬∨ program is a set of Datalog¬∨ rules. If, for all R ∈ P, n ≤ 1,
P is called a Datalog¬ program. If, for all R ∈ P, k = 0, P is called a positive
disjunctive Datalog program. If, for all R ∈ P, n ≤ 1 and k = 0, P is called a
positive Datalog program. If there are no occurrences of variable symbols in a
rule R, then R is called a ground rule. A ground program is a program containing
only ground rules.

3.2 Semantics

The semantics of disjunctive Datalog is given in terms of stable models of a
program P, which we recall below.

The ground instantiation of P, denoted by G(P ), is the program obtained
from P by replacing every rule R in P with the set of ground rules obtained by
applying all possible substitutions of variables in R with constants occurring in
P (such a set of constants is called the Herbrand universe of P).

We denote by HB(P) the Herbrand base of P, i.e. the set of all ground in-
stantiations of predicates occurring in P over the Herbrand universe of P.

A Datalog interpretation I of P is a subset of HB(P). I satisfies a positive
ground rule

p1 ∨ . . . ∨ pn ← r1, . . . , rm (1)

if the following condition holds: if each atom in {r1, . . . , rm} belongs to I, then
at least one atom pi belongs to I.

I is a model of P if I satisfies each rule in G(P). A model of P is minimal if
it does not properly contain any other model of P.

Given a Datalog interpretation I ⊆ HB(P), the GL-reduct of P with respect
to I (denoted as GL(P, I)) is the program obtained from G(P) by removing all
clauses of the form (1) such that there exists sj ∈ I for some j ∈ {1, . . . , k}, and by
removing all negated predicates of the form not si from the remaining clauses.

A Datalog interpretation I ⊆ HB(P) is a stable model of P if I is a minimal
model of GL(G(P), I).

We say that a program P entails a ground query (i.e., a ground literal predi-
cate) q(a), denoted as P |= q(a), if q(a) belongs to all stable models of P.

We remark that, based on the above semantics, every disjunctive Datalog pro-
gram is interpreted over a finite domain, which coincides with the set of constants
occurring in the program. Moreover, every Datalog interpretation enforces the
unique name assumption (different constants are interpreted as different objects).

4 Integrating DLs and Rules: Main Issues

In this section we address the main issues arising when trying to combine DLs
and (disjunctive) Datalog in a single formalism.
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Syntax. From the syntactic viewpoint, integrating a DL with (disjunctive) Dat-
alog simply means the possibility of writing a “hybrid” knowledge base contain-
ing a TBox, an ABox, and a set of Datalog rules.

Semantics. From the semantic viewpoint, the meaning of such an integrated
knowledge base can be provided in two ways:

1. the whole knowledge base is considered as a first-order theory, by interpret-
ing Datalog rules as first-order implications. More specifically, let R be the
following Datalog¬∨ rule:

p1(X1, c1) ∨ . . . ∨ pn(Xn, cn) ←
r1(Y1, d1), . . . , rm(Ym, dm),
s1(Z1, e1), . . . , sk(Zk, ek),
not u1(W1, f1), . . . ,not uh(Wh, fh)

where each Xi, Yi, Zi, Wi is a set of variables and each ci, di, ei, fi is a set
of constants. Then, we denote by FO(R) the first-order sentence

∀x1, . . . , xn, y1, . . . , ym, z1, . . . , zk, w1, . . . , wh.
r1(y1, d1) ∧ . . . ∧ rm(ym, dm)∧
s1(z1, e1) ∧ . . . ∧ sk(zk, ek)∧
¬u1(w1, f1) ∧ . . . ∧ ¬uh(wh, fh) → p1(x1, c1) ∨ . . . ∨ pn(xn, cn)

and, given a Datalog¬∨ program P, we denote by FO(P) the set of first-order
sentences {FO(R) | R ∈ P}.

Finally, the semantics of a knowledge base (K,P) composed of a DL-KB
K and a Datalog program P is given by the first-order theory corresponding
to the union of FO(P) and the first-order translation FO(K) of K.

While the above semantic account has the advantage of being clear and
easy to define, it has the drawback of not being conservative with respect
to the semantics of Datalog rules. In other words, the meaning of a Datalog
program P in the new semantics is different from its meaning according to
the standard Datalog semantics (the CWA of Datalog is missing in the new
semantics).

2. the semantics is defined in a way such that it is a “conservative extension”
of both the DL and Datalog. However, this is not as immediate as the above
semantic account, due to the different semantic nature of the two formalisms:
in fact, one has to simultaneously deal with two semantic discrepancies: the
OWA of DLs and the CWA of Datalog on the one side, and the UNA of
Datalog and the absence of the UNA of (some) DLs on the other side. In
Section 6 we will define such a semantics.

Reasoning. From the reasoning perspective, an important aspect is the “degree
of integration” of the two components (the DL-KB and the Datalog program).
Indeed, as we will explain in Section 5, the complexity of reasoning in systems
combining DLs and rules is directly related to such a degree of integration.
In particular, it is well-known that the “full” interaction between a DL-KB
and a Datalog program leads to undecidability of reasoning under the above
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presented FOL semantics, even for extremely simple DLs [28]. On the other side
of the spectrum, rules may not interact at all with the DL-KB, and of course
this kind of (uninteresting) integration is not problematic at all with respect to
the reasoning task, since the two components can be processed separately by
standard (DL and Datalog) reasoners.

Obviously, in order to represent some kind of significant interaction, the DL
KB and the rules have to share some predicate symbols. A measure of the degree
of interaction between the two components depends on these shared predicates,
and on how they can be used within DL statements and rules.

More specifically, the alphabet of predicates is divided into DL predicates and
Datalog predicates, where Datalog predicates are the ones that do not occur in
the DL-KB, while DL predicates may occur both in the DL-KB and in rules.
Then:

– the full interaction does not make any assumption on the form of rules based
on the above classification of predicates;

– the loose interaction imposes some limitations on the use of DL predicates
in rules.

For instance, as we will illustrate in Section 5, a common approach to the
loose integration of DLs and rules is realized through the so-called DL-safeness
condition for Datalog rules. This is a syntactic condition that can be expressed
as follows: every variable occurring in an atom with a DL predicate must occur
in a atom with a Datalog predicate in the body of the rule. Such a condition
is sufficient to allow for a nice computational behaviour of reasoning, but has
the drawback of restricting the expressiveness of the combined language thus
defined. E.g., DL-safe rules are not able to express arbitrary conjunctive queries
to the DL-KB. Conjunctive queries correspond to a simple form of non-recursive
Datalog rules, are computable in many DLs, and there are known algorithms for
conjunctive query algorithms in many DLs [9,32]. Therefore, DL-safeness seems
to imply a too severe limitation in the expressiveness of rules.

Finally, another measure of the degree of integration lies in the direction of the
information flow between DL-KB and rules, which may be either bidirectional
(from the DL-KB to the rules and vice versa), or unidirectional (only from the
DL-KB to the rules). In the latter case, the presence of rules does not affect the
semantics of DL predicates. Often, the restriction to the unidirectional flow is
realized through the syntactic restriction that DL predicates may not occur in
the head of rules (they can only occur in the body of rules).

We conclude this section with two examples of knowledge bases combining
DLs and rules.

Example 1. Let B = (K,P) be the knowledge base reported in Figure 1, where
the DL-KB K defines an ontology about persons, and the disjunctive Datalog
program P defines nonmonotonic rules about students. For the sake of readabil-
ity, we denote DL predicates by uppercase names, and denote Datalog predicates
by lowercase names.

It is immediate to verify that B satisfies the DL-safe condition described
above.
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PERSON 
 ∃FATHER−.MALE
MALE 
 PERSON
FEMALE 
 PERSON
FEMALE 
 ¬MALE
MALE(Bob)
PERSON(Mary)
PERSON(Paul)

(a) DL-KB K (ontology about persons)

boy(X) ← enrolled(X, c1),PERSON(X),not girl(X) [R1]
girl(X) ← enrolled(X, c2),PERSON(X) [R2]
boy(X) ∨ girl(X) ← enrolled(X, c3),PERSON(X) [R3]
FEMALE(X) ← girl(X) [R4]
MALE(X) ← boy(X) [R5]
enrolled(Paul, c1)
enrolled(Mary, c1)
enrolled(Mary, c2)
enrolled(Bob, c3)

(b) disjunctive Datalog program P (rules about students)

Fig. 1. Knowledge base B = (K, P) of Example 1

RICH � UNMARRIED 
 ∃WANTS-TO-MARRY−.
UNMARRIED(Mary)
UNMARRIED(Joe)

(a) DL-KB K

happy(X) ← famous(X),WANTS-TO-MARRY(Y, X) [R1]
RICH(X) ← famous(X),not scientist(X) [R2]
famous(Mary)
famous(Paul)
famous(Joe)
scientist(Joe)

(b) disjunctive Datalog program P

Fig. 2. Knowledge base B = (K, P) of Example 2

Example 2. Let B = (K,P) be the knowledge base reported in Figure 2.
Again, DL predicates are denoted by uppercase names, while Datalog predi-

cates are denoted by lowercase names. In this case, the rules in P (in particular,
rule R1) do not satisfy the DL-safeness condition.
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5 A Brief State of the Art

In this section we briefly survey recent work in integrating ontologies and rules.3

We divide such studies in two main streams: (i) approaches dealing with forms
of DL-safe (and, more generally, loose) interaction between DL-KBs and rules;
(ii) approaches concerning forms of “non-DL-safe” (or tight) interaction.

5.1 Loose Integration

The first formal proposal for the integration of Description Logics and rules
is AL-log [13]. AL-log is a framework which integrates KBs expressed in the
description logic ALC and positive Datalog programs. Then, disjunctive AL-log
was proposed in [35] as an extension of AL-log, based on the use of Datalog¬∨

instead of positive Datalog, and on the possibility of using binary predicates
(roles) besides unary predicates (concepts) in rules. Such approaches realize a
form of loose integration between DLs and Datalog that precisely corresponds
to the DL-safeness condition described in the previous section. Moreover, both
in AL-log and in disjunctive AL-log DL predicates can occur only in the bodies
of rules, which forces the information flow to be unidirectional.

The framework of AL-log has been extended in a different way in [30]. There,
the problem of extending OWL-DL with positive Datalog programs is analyzed.
Again, the interaction between OWL-DL and rules is restricted through the DL-
safeness condition. With respect to disjunctive AL-log, in [30] a more expressive
DL and a less expressive rule language (interpreted under first-order semantics)
are adopted: moreover, the information flow is bidirectional, i.e., DL predicates
may appear in the head of rules.

All the above approaches based on DL-safeness have been generalized in [36]
to the integration of arbitrary, decidable, first-order theories and disjunctive
Datalog rules. This paper establishes an important computational result, which
states that the DL-safe based integration preserves (under very general condi-
tions) decidability of reasoning.

The work presented in [21] can also be seen as an approach based on a form of
safe interaction between the DL-KB and the rules: in particular, a rule language
is defined such that it is possible to encode a set of rules into a semantically
equivalent DL-KB. As a consequence, such a rule language is very restricted.

A different approach is presented in [23,22], which proposes Conceptual Logic
Programming (CLP), an extension of answer set programming (i.e., Datalog¬∨)
towards infinite domains. In order to keep reasoning decidable, a syntactic re-
striction on CLP program rules is imposed. This approach is related to integrat-
ing DLs and rules, since the authors also show that CLPs can embed expressive
DL-KBs, which in turn implies decidability of adding CLP rules to such DLs.
However, the syntactic restriction on CLP rules, whose purpose is to impose a
“forest-like” structure to the models of the program, is different from the safeness
conditions analyzed so far, which makes it impossible to compare this approach
with the studies previously mentioned.
3 For other surveys on this topic see, e.g., [5,15].
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Another approach for extending DLs with Datalog¬ rules is presented in
[17,18]. Differently from the other approaches above described, this proposal
allows for specifying, in rule bodies, queries to the DL component, where every
query also allows for specifying an input from the rule component, and thus for
an information flow from the rule component to the DL-KB. The meaning of
such queries in rule bodies is given at the meta-level, through the notion of skep-
tical entailment in the DL-KB. Thus, from the semantic viewpoint, this form of
interaction-via-entailment between the two components is more restricted than
in the approaches previously mentioned; on the other hand, such an increased
separation in principle allows for more modular reasoning methods, which are
able to completely separate reasoning about the DL-KB and reasoning about
the Datalog program. For a more detailed description of this approach see [15].

Finally, [3,2,4] present approaches for the combination of defeasible reasoning
with Description Logics, under a safe interaction-via-entailment scheme which is
semantically analogous to the one proposed in [17]. Besides the differences with
the studies on nonmonotonic extensions of DL-KBs previously mentioned due
to the semantics of nonmonotonic rules, a main characteristic of these proposals
consists in the fact the information flow is unidirectional, i.e., it only goes from
the DL-KB to the rules.

5.2 Tight Integration

Research in non-safe interaction of DLs and rules actually started with the work
on carin [26,27,28], which established very important decidability and undecid-
ability results concerning the integration of DL-KBs and rules. Roughly speak-
ing, such results clearly indicate that, in case of unrestricted interaction between
a DL-KB and a set of rules, decidability of reasoning holds only if at least one
of the two components has very limited expressive power: e.g., in order to re-
tain decidability of reasoning, allowing recursion in rules imposes very severe
restrictions on the expressiveness of DL-KB.

Then, we remark that query answering over a knowledge base can be seen as a
problem of reasoning in a DL-KB augmented with rules which encode the query.
In this respect, an important undecidability result concerning query answering
over databases with integrity constraints is reported in [10]. More precisely, it
is shown that answering recursive Datalog queries over a database with simple
integrity constraints (keys and foreign keys), interpreted as a knowledge base,
i.e., under an open-world assumption, is undecidable. This setting also can be
viewed as a DL-KB with non-DL-safe interaction between a knowledge base
(database with integrity constraints) and a rule component (the query).

As already observed, it is difficult to provide a good semantic account for non-
safe interaction between DL-KBs and nonmonotonic rules, due to the classical,
open-world semantics of DL-KBs, and the closed-world assumption underlying
nonmonotonic systems. For instance, [29] illustrates the problems in providing a
semantic account for non-safe interaction of ontologies and Datalog¬∨ programs.

Finally, another recent proposals in this field is SWRL [24], a non-safe ap-
proach to the integration of rules and DL-KBs in which rules are interpreted
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under the classical FOL semantics. The addition of this kind of rules to DLs
leads to undecidability of reasoning.

5.3 Loose vs. Tight Integration

Summarizing, what emerges from the studies in the integration of DL-KBs and
rules is that while, on the one hand, a safe form of interaction between DLs
and rules generally allows for decidable reasoning and nice computational prop-
erties, on the other hand, the results concerning non-safe interaction indicate
that a tight connection between the two components can only be obtained at
the price of severely restricting the expressive power of either the DL-KB or the
rules.

In the next section we present in detail DL+log, which is currently one of the
most expressive and decidable combinations of Description Logics and disjunc-
tive Datalog. DL+log overcomes the DL-safeness condition to obtain a tighter
form of interaction between DLs and rules.

6 The DL+log Approach

In this section we introduce DL+log (we refer to [38] for more details).

6.1 Syntax

We start from three mutually disjoint predicate alphabets:

– an alphabet of concept names ΣC ;
– an alphabet of role names ΣR;
– an alphabet of Datalog predicates ΣD.

We call a predicate p a DL predicate if either p ∈ ΣC or p ∈ ΣR.4 Then, we
denote by C a countably infinite alphabet of constant names.

An atom is an expression of the form p(X), where p is a predicate of arity n
and X is a n-tuple of variables and constants.5 If no variable symbol occurs in
X, then p(X) is called a ground atom (or fact). If p ∈ ΣC ∪ ΣR, the atom is
called a DL-atom, while if p ∈ ΣD, it is called a Datalog atom.

To define a DL+log knowledge base, we can start from any description logic
DL: in other words, the construction defined in the following is parametric with
respect to the description logic used to express the DL-KB.

Definition 1. Given a description logic DL, a DL+log-knowledge base B is a
pair (K,P), where:

– K is a DL-KB, i.e., a pair (T ,A) where T is the TBox and A is the ABox;
– P is a set of Datalog¬∨ rules, where each rule R has the form

4 For DLs which allow for using equality, we assume that the equality predicate is a
DL predicate.

5 As usual, atoms involving equalities are written using the infix notation t1 = t2.
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p1(X1) ∨ . . . ∨ pn(Xn) ← r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk),
not u1(W1), . . . ,not uh(Wh)

such that n ≥ 0, m ≥ 0, k ≥ 0, h ≥ 0, each pi(Xi), ri(Yi), si(Zi), ui(Wi) is
an atom and:

• each pi is either a DL predicate or a Datalog predicate;
• each ri, ui is a Datalog predicate;
• each si is a DL predicate;
• (Datalog safeness) every variable occurring in R must appear in at least

one of the atoms r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk);
• (weak safeness) every head variable of R must appear in at least one of

the atoms r1(Y1), . . . , rm(Ym).

We remark that the above notion of weak safeness allows for the presence of
variables that only occur in DL-atoms in the body of R. On the other hand, the
notion of DL-safeness of variables adopted in previous approaches [35,31,36] can
be expressed as follows: every variable of R must appear in at least one of the
atoms r1(Y1), . . . , rm(Ym). Therefore, DL-safeness forces every variable of R to
occur also in the Datalog atoms in the body of R, while weak safeness allows for
the presence of variables that only occur in DL-atoms in the body of R.

Without loss of generality, in the rest of the paper we assume that in a
DL+log-KB (K,P) all constants occurring in K also occur in P.

6.2 Semantics

We now define a semantics for DL+log-KBs which is a “conservative extension”
of both the open-world semantics of DLs and the closed-world semantics of
disjunctive Datalog.

Given an interpretation I and a predicate alphabet Σ, we denote by IΣ

the projection of I to Σ, i.e., IΣ is obtained from I by restricting it to the
interpretation of the predicates in Σ.

Given a set of constants C, the ground instantiation of P with respect to C,
denoted by gr(P, C), is the program obtained from P by replacing every rule
R in P with the set of rules obtained by applying all possible substitutions of
variables in R with constants in C.

Given an interpretation I of an alphabet of predicates Σ′ ⊂ Σ, and a ground
program Pg over the predicates in Σ, the projection of Pg with respect to I,
denoted by Π(Pg, I), is the ground program obtained from Pg as follows. For
each rule R ∈ Pg:

– delete R if there exists an atom r(t) in the head of R such that r ∈ Σ′ and
tI ∈ rI ;

– delete each atom r(t) in the head of R such that r ∈ Σ′ and tI �∈ rI ;
– delete R if there exists an atom r(t) in the body of R such that r ∈ Σ′ and

tI �∈ rI ;
– delete each atom r(t) in the body of R such that r ∈ Σ′ and tI ∈ rI ;
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Informally, the projection of Pg with respect to I corresponds to evaluating
Pg with respect to I, thus eliminating from Pg every atom whose predicate is
interpreted in I. Thus, when Σ′ = ΣC ∪ΣR, all occurrences of DL predicates are
eliminated in the projection of Pg with respect to I, according to the evaluation
in I of the atoms with DL predicates occurring in Pg.

Then, we introduce the notions of minimal model and stable model for
Datalog¬∨ in the absence of the UNA.6

Given two interpretations I1, I2 of the set of predicates Σ and the set of
constants C, we write I1 ⊂Σ,C I2 if (i) for each p ∈ Σ and for each tuple t of
constants from C, if tI1 ∈ pI1 then tI2 ∈ pI2 , and (ii) there exist p ∈ Σ and
tuple t of constants from C such that tI1 �∈ pI1 and tI2 ∈ pI2 .

Given a positive ground Datalog¬∨ program P over an alphabet of predicates
Σ and an interpretation I, we say that I is a minimal model of P if: (i) I
satisfies the first-order translation FO(P) of P (defined in Section 4); (ii) there
is no interpretation I ′ such that I ′ satisfies FO(P) and I ′ ⊂Σ,C I.

Given a ground Datalog¬∨ program P and an interpretation I for P, the GL-
reduct [19] of P with respect to I, denoted by GL(P, I), is the positive ground
program obtained from P as follows. For each rule R ∈ P:

1. delete R if there exists a negated atom not r(t) in the body of R such that
tI ∈ rI ;

2. delete each negated atom not r(t) in the body of R such that tI �∈ rI .

Given a ground Datalog¬∨ program P and an interpretation I, I is a stable
model for P iff I is a minimal model of GL(P, I).

Definition 2. An interpretation I of ΣC ∪ ΣR ∪ ΣD is a model for B = (K,P)
if the following conditions hold:

1. IΣC∪ΣR
satisfies K;

2. IΣD
is a stable model for Π(gr(P, C), IΣC∪ΣR

).

B is called satisfiable if B has at least a model.

We say that a ground atom p(c) is entailed by B iff, for each model I of B, I
satisfies p(c).

According to the above semantics,DLpredicates are interpretedunder theopen-
world assumption, while Datalog predicates are interpreted under the closed-world
assumption of disjunctive Datalog (see [37] for a detailed discussion of this aspect).

Notice that, under the above semantics, entailment can be reduced to satisfi-
ability, since it is possible to express constraints in the Datalog program. More
precisely, it is immediate to verify that (K,P) entails p(c) iff (K,P ∪ {← p(c)})

6 Observe that the notions of minimal model and stable model presented here slightly
differs from the standard ones for Datalog¬∨ presented in Section 3, since they are
expressed in a more general framework in which unique names are not assumed.
Consequently, the interpretation of constants must be considered in the definition of
minimal and stable model.
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is unsatisfiable. In a similar way, it can be seen that conjunctive query answer-
ing can be reduced to satisfiability in DL+log (see [38]). Consequently, in the
following we concentrate on the satisfiability problem in DL+log-KBs.

Example 1.(contd.) Let us consider again the knowledge base B = (K,P) re-
ported in Figure 1, where the DL-KB K defines an ontology about persons, and
the disjunctive Datalog program P defines nonmonotonic rules about students.

First, since all rules in P are DL-safe, the rules in P also satisfy the weak
safeness condition of Definition 1: consequently, B is a DL+log-KB.

Then, it can be easily verified that all models for B satisfy the following ground
atoms:

– boy(Paul) (since rule R1 is always applicable for X = Paul and R1 acts like a
default rule, which can be read as follows: if X is a person enrolled in course
c1, then X is a boy, unless we know for sure that X is a girl);

– girl(Mary) (since rule R2 is always applicable for X = Mary)
– boy(Bob) (since rule R3 is always applicable for X = Bob, and, by rule R4,

the conclusion girl(Bob) is inconsistent with K);
– MALE(Paul) (due to rule R5);
– FEMALE(Mary) (due to rule R4).

Notice that B |= FEMALE(Mary), while K �|= FEMALE(Mary). In other words,
adding rules has indeed an effect on the conclusions one can draw about DL
predicates.

Example 2.(contd.) Let us consider again the knowledge base B = (K,P) re-
ported in Figure 2.

First, observe that B is a DL+log-KB: in particular, the variable Y in rule
R1 is weakly-safe according to Definition 1 (we also recall that rule R1 is not
DL-safe, since Y does not occur in any Datalog predicate in rule R1).

Then, it can be easily verified that all models for B satisfy the following
formulas:

– RICH(Paul) and RICH(Mary), since the default rule R2 is always applicable
for X = Paul and X = Mary, but not for X = Joe, since the fact scientist(Joe)
holds in every model for B;

– ∃WANTS-TO-MARRY−.�(Mary),due to the first axiom of theDL-KB and to
the fact that bothRICH(Mary) andUNMARRIED(Mary) hold in every model
of the DL+log-KB B (while ∃WANTS-TO-MARRY−.�(Paul) is not forced by
such axiom to hold in every model of B, because UNMARRIED(Paul) is not
forced to hold in every such model);

– happy(Mary), due to the above conclusions and to the rule R1. Indeed, since
∃WANTS-TO-MARRY−.�(Mary) holds in every model of B, it follows that
in every model there exists a constant x such that WANTS-TO-MARRY
(x,Mary) holds in the model, consequently from rule R1 it follows that
happy(Mary) also holds in the model.
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6.3 Reasoning

In this section we study reasoning in DL+log. In particular, we study satisfiabil-
ity for finite DL+log-KBs (as mentioned above, entailment can be easily reduced
to satisfiability in DL+log).

For ease of exposition, in the following we deal with the case when the DL is
interpreted under the UNA: however, the algorithm can be easily extended to
the case when unique names are not assumed in the DL (in a way analogous to
the technique reported in [37] in the case of DL-safe rules).

We start by introducing Boolean conjunctive queries (CQs) and Boolean
unions of conjunctive queries (UCQs), and the containment problem for such
queries. A Boolean UCQ over a predicate alphabet Σ is a first-order sentence of
the form ∃x.conj1(x)∨ . . .∨conjn(x), where x is a tuple of variable symbols and
each conji(x) is a set of atoms whose predicates are in Σ and whose arguments
are either constants or variables from x. A Boolean CQ corresponds to a Boolean
UCQ in the case when n = 1.

Given a DL-TBox T , a Boolean CQ Q1 and a Boolean UCQ Q2 over the
alphabet ΣC ∪ ΣR, Q1 is contained in Q2 with respect to T , denoted by T |=
Q1 ⊆ Q2, iff, for every model I of T , if Q1 is satisfied in I then Q2 is satisfied in
I. In the following, we call the problem of deciding T |= Q1 ⊆ Q2 the Boolean
CQ/UCQ containment problem.7

Algorithm. Given a program P, we denote by CP the set of constants occurring
in P.

In the following definition, we assume that a rule R in P has the form αR(x) ←
βR(x,y,w), γR(x,y,z), where γR(x,y,z) is the set of DL-atoms occurring in
the body of R (and, of course, βR(x,y,w) is the set of Datalog atoms in the body
of R), x are the head variables in R, y are the existential variables occurring
both in DL-atoms and in Datalog atoms in R, and z (respectively, w) are the
existential variables of R that only occur in DL-atoms (respectively, Datalog
atoms) in R.

Definition 3. Let B = (K,P) be a DL+log-KB. The DL-grounding of P, de-
noted by grp(P), is the following set of Boolean CQs:

grp(P) = {γR(c1/x, c2/y,z) | R ∈ P and c1, c2 are tuples of constants in CP}
∪
{p(c/x) | p is a DL predicate occurring in a rule head in P

and c is a tuple of constants in CP}

Notice that grp(P) constitutes a partial grounding of the conjunctions of DL-
atoms that occur in P with respect to the constants in CP , since the variables
that only occur in DL-atoms in the body of rules are not replaced by constants
in grp(P).

7 This problem was called existential entailment in [28].



Integrating Ontologies and Rules: Semantic and Computational Issues 145

Let G be a set of Boolean CQs. Then, we denote by CQ(G) the Boolean CQ
corresponding to the conjunction of all the Boolean CQs in G, i.e., CQ(G) =∧

γ∈G γ. We also denote by UCQ(G) the Boolean UCQ corresponding to the
disjunction of all the Boolean CQs in G, namely UCQ(G) =

∨
γ∈G γ.8

Similarly to gr(P, CP), we define the partial grounding of P on CP (denoted by
pgr(P, CP)) as the program obtained from P by grounding with the constants in
CP all variables except the existential variables of R that only occur in DL-atoms.

Finally, given a partition (GP , GN ) of grp(P), we denote by P(GP , GN ) the
ground Datalog¬∨ program obtained from pgr(P, CP) by:

– deleting all occurrences of the conjunction γ from the body of the rules, for
each γ ∈ GP ;

– deleting each rule in which γ occurs in the body, for each γ ∈ GN ;
– deleting each rule in which γ occurs in the head, for each γ ∈ GP ;
– deleting all occurrences of the conjunction γ from the head of the rules, for

each γ ∈ GN .

Notice that P(GP , GN ) is a ground Datalog¬∨ program over ΣD, i.e., no DL
predicate occurs in such a program.

We are now ready to present the algorithm DL+log-SAT for deciding sat-
isfiability of DL+log-KBs. The algorithm is shown in Figure 3. The algorithm
has a very simple structure, since it decides satisfiability by looking for a guess
(GP , GN ) of the Boolean CQs in grp(P) that is consistent with the DL-KB K
and such that the Datalog¬∨ program P(GP , GN ) has a stable model.

Algorithm DL+log-SAT(B)
Input: DL+log-KB B = (K, P) with K = (T , A)
Output: true if B is satisfiable, false otherwise
begin

if there exists partition (GP , GN ) of grp(P)
such that

(a) P(GP , GN ) has a stable model and
(b) T 	|= CQ(A ∪ GP ) ⊆ UCQ(GN )

then return true
else return false

end

Fig. 3. The algorithm DL+log-SAT

Correctness of the algorithm is based on the following property, which relates
consistency of a guess (GP , GN ) of Boolean CQs with the problem of containment
of a Boolean CQ in a Boolean UCQ with respect to a DL-TBox.
8 Without loss of generality, we assume that each γ in G uses different existential

variable symbols, so that the expression
∧

γ∈G γ can be immediately turned into
a Boolean CQ by factoring out all existential quantifications (an analogous simple
transformation is needed for turning UCQ(G) into a Boolean UCQ).
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Lemma 1. There exists a model M for K = (T ,A) such that every Boolean
CQ in GP is satisfied in M and every Boolean CQ in GN is not satisfied in M
if and only if T �|= CQ(A ∪ GP ) ⊆ UCQ(GN ).

Based on the above lemma, we are able to prove correctness of the algorthm
DL+log-SAT.

Theorem 1. Let B be a DL+log-KB. Then, B is satisfiable iff DL+log-SAT(B)
returns true.

Decidability and complexity. First, from the analysis of the algorithm
DL+log-SAT presented above, we are able to prove a very general property
that states decidability of reasoning in DL+log whenever the Boolean CQ/UCQ
containment problem is decidable in DL.

Theorem 2. For every description logic DL, satisfiability of DL+log-KBs is
decidable iff Boolean CQ/UCQ containment is decidable in DL.

From the above theorem and from previous results on query answering and query
containment in DLs, we are able to state decidability of reasoning in DL+log
in the case when DL corresponds to several known DLs. In particular, in the
following we briefly analyze the description logics ALCNR, SHIQ, and DL-Lite.

First,weobserve that, for thedescription logicALCNR it is known thatBoolean
CQ/UCQ containment is decidable [28], hence reasoning in ALCNR+log-KBs is
decidable.

Theorem 3. Satisfiability of ALCNR+log-KBs is decidable.

Of course, this result implies decidability of adding weakly-safe Datalog¬∨ rules
to all the DLs that are subsets of ALCNR.

For (a large fragment of) the description logic SHIQ [25], it is known that an-
swering conjunctive queries is decidable (see [32,20]), but decidability of Boolean
CQ/UCQ containment in SHIQ has not been established yet, therefore satis-
fiability in SHIQ+log is still an open problem: however, we conjecture that
Boolean CQ/UCQ containment in SHIQ is decidable as well, and hence that
reasoning in SHIQ+log is decidable.

Finally, for the description logic DL-Lite [8], there are known results about the
complexity of query answering, which allow us to establish the computational
complexity of reasoning in DL-Lite+log for different classes of Datalog programs.
More precisely, the following theorem refers to data complexity of satisfiability,
which in the framework of DL+log corresponds to the analysis of the computa-
tional complexity of the problem when we only consider the size of the ABox A
and of the EDB of P, i.e., the set of facts contained in P. In other words, data
complexity considers the TBox T and the rules not corresponding to facts (i.e.,
the IDB) in P as fixed, hence they are not part of the input. Data complexity
is a very significant measure when the size of the data, i.e., the ABox and the
EDB of P, is much larger than the size of the intensional knowledge, i.e., the
TBox and the IDB of P.
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The following results are based on the analysis of the previous algorithms and
on the fact that conjunctive query answering in DL-Lite is in PTIME in data
complexity (actually it is in LOGSPACE) [8].

Theorem 4. Let B = (K,P) be a DL-Lite+log-KB. Then:

– if P is a positive Datalog program, then deciding satisfiability of B is PTIME-
complete with respect to data complexity;

– if P is a positive disjunctive Datalog program, then deciding satisfiability of
B is NP-complete with respect to data complexity;

– if P is an arbitrary Datalog¬∨ program, then deciding satisfiability of B is
Σp

2 -complete with respect to data complexity.

Therefore, in DL-lite, under both semantics, the data complexity does not in-
crease with respect to the data complexity of the Datalog program alone [11]. In
other words, connecting a DL-Lite-KB to a Datalog program does not increase
complexity of reasoning in the size of the data. We also point out that DL-Lite
with arbitrary, non-weakly-safe recursive Datalog rules is undecidable (which
follows from the results in [28,10]).

7 Open Problems

We conclude the paper by pointing out some of the most interesting open prob-
lems in the integration of DLs and rules.

Semantics. A first and crucial issue concerns the semantic account for log-
ical systems integrating Description Logics and rules. In the paper, we have
illustrated the technical problems due to the OWA of DLs and the CWA of non-
monotonic Datalog. However, there is also an orthogonal problem which can be
summarized as follows: what is the “intended” semantics of a system combin-
ing DLs and rules? Research in this field is still far from providing an ultimate
answer to the above question. With respect to this issue, in this paper we have
only claimed that a minimal requirement that an appropriate semantics for such
systems should satisfy is to constitute a “conservative extension” of both the
semantics of DLs and the semantics of disjunctive Datalog.

Expressiveness. Another important problem (which is directly related to the
previous issue) concerns the expressiveness of a language integrating DLs and
rules. In fact, the representational abilities that a system combining DLs and
rules should provide to match “practical” needs are not completely clear.

In this respect, we believe that one of the most important expressive limita-
tions of many of the current approaches to the integration of DLs and rules is the
rigid separation between DL predicates and Datalog predicates. For instance, in
DL+log, since DL predicates have an open interpretation while Datalog predi-
cates have a closed interpretation, it is not possible to express complex pieces
of information in which the same predicate is interpreted in different ways (i.e.,
both under an open-world assumption and under a closed-world assumption) in
different parts of the same knowledge base.
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Reasoning. As we have explained in the paper, decidability (and complexity) of
reasoning is a crucial issue in systems combining DLs and rules. In this respect,
there are numerous computational open problems, and the results obtained so far
can be seen as the first, preliminary results towards the identification of general
computational properties for systems combining DLs and rules.

One important general goal in this direction concerns the identification of the
frontier between decidability and undecidability of reasoning with respect to the
semantics and the expressiveness (in particular, the “degree of integration”) of
the formalism combining DLs and rules. In more abstract terms, this corresponds
to analyze the trade-off between the expressiveness and the computational prop-
erties of such formalism, as usual in Knowledge Representation.

With respect to the above general goal, examples of more specific open prob-
lems are the following: (i) it is possible to identify tighter forms of decidable
interaction between DL-KBs and rules, which are able to overcome the limita-
tions of DL+log? (ii) within the interaction between DLs and rules imposed by
the DL+log framework, is it possible to establish more general computational
properties? for instance, is it possible to establish decidability of DL+log for
very expressive DLs (like OWL-DL)?

Implementation. There is still a considerable distance between the current
state of the art in the integration of DLs and rules and the implementation
of effective systems. In many approaches, reasoning techniques have not been
defined yet, and even in the approaches which have addressed the reasoning
problem, the proposed techniques for reasoning in DLs combined with rules have
the main goal of establishing general computational properties (decidability and
worst-case complexity) of the combined language. Therefore, the problem of
turning such techniques into effective and implementable algorithms is still open
and mainly unexplored.

As we have explained in the introduction, an important property towards this
goal is modularity, i.e., the possibility of reducing reasoning in a system combin-
ing a DL component and a rule component to reasoning as “locally” as possible
in the single components. On the other hand, it is clear that this modularity is
in contrast with the representational goal of increasing the interaction between
the DL component and the rule component. So, again, it is necessary to identify
suitable trade-offs between such desiderata.9

Relationship between Rules and Queries. Finally, the relationship between
the integration of DLs and rules and query answering in DLs has not been
fully explored yet. As described in the paper, the two problems are very strictly
related, since queries can in principle be expressed in terms of rules. Therefore,
the known results concerning query answering in DLs could be profitably used
towards the design of an expressive and computationally attractive rule language
for DLs (and vice versa). The DL+log approach presented above constitutes a
first step in this direction.
9 Modular techniques for dealing with the DL-safe integration of DLs and rules are

described in [36,37].
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Abstract. The semantic web community and the business rules community 
have common roots. This article explores the differences and similarities be-
tween the two fields in order to encourage collaboration between the communi-
ties with respect to standardization efforts and research topics. 
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1   Introduction 

Research analysts are reporting more and more on the semantic web community (in-
cluding the ontology research field and reasoning on the web) this last year. Their 
interest in this topic is triggered by the standardization efforts of the semantic web 
community at the W3C and the OMG.  

In March of this year (2006) the OMG published the draft specification of “Seman-
tics of Business Vocabulary and Business Rules” (SBVR) and the W3C Rule Inter-
change Format (RIF) working group published its first public working draft of RIF 
Use Cases and Requirements. 

These are just two of several recent developments indicating that business rules are 
maturing, with standards emerging, clear positioning of rules in business and IT sys-
tems, and with regulatory compliance as a major driver. 
My visits of several workgroups and conferences in the semantic web community, 
given my background as a practitioner in the business rules community, has let me to 
make the following observation: "the business rules community and semantic web 
community talk about the same things, but by people with a different background; the 
business rules community is driven by the practical experiences of business people 
and business consultants while the semantic web community is a vision of scientists 
driven by (mostly) scientific publications". 

If this observation is correct, it is important that there is more understanding of 
each other's work so that we can end up with a 'semantic business' that supports a 
practical approach to business problems and is supported by a long-term vision.  

If this observation is not correct, and the business rules community and the seman-
tic web community do talk about different things, then we need to get a better under-
standing of the border between the two communities so that we can develop standard 
transformations or processes to cross these borders. 
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The aim of this article is to get a better understanding of the differences and simi-
larities between the semantic web and business rules community to encourage the 
collaboration between the two communities. The semantic web community is particu-
larly driving the W3C standards, while the business rules community drives the OMG 
standards. Although there is no official collaboration between the W3C and the OMG 
on rules, there is quite strong informal interaction. For example: the OMG hosted the 
first W3C RIF meeting; 10 members of the RIF working group are also involved in 
related OMG specifications; the OMG’s Ontology Definition Metamodel makes sub-
stantial use of the W3C’s OWL Web Ontology Language.  

Since these communities consist of individuals with private opinions, the choice 
for particular quotes and definitions influences the resulting conclusion in this article. 
Hopefully these form a basis for further, fruitful, discussions. 

1.1   Organization 

This article is organized as follows: 

- Paragraph 2 gives a short overview of the semantic web, describing these topics 
that are needed for a comparison to business rules. 

- Paragraph 3 gives a short overview of business rules, describing these topics that 
are needed for a comparison to semantic web. 

- Paragraph 4 makes a comparison between similarities and differences of the ideas 
in the semantic web and business rules communities 

- Paragraph 5 discusses the OMG specification of “Semantics of Business Vocabu-
lary and Business Rules” (SBVR) 

- Paragraph 6 makes some final conclusions. 

2   Semantic Web 

A business oriented description of the Semantic Web is: " … an extension of the cur-
rent Web in which information is given well-defined meaning, better enabling com-
puters and people to work in cooperation" [3]. A more technical description of the 
Semantic Web emphasizes the need to have interoperability between software pro-
grams on a semantic level, and not just at a precompiled-syntax level. When we look 
at the literature on and uses of the Semantic Web the support of the interaction be-
tween machines/software is very dominant as a goal. On a second place we find inter-
actions between machines/software and humans.  

The focus of the semantic web community on machine-machine interaction makes 
it a candidate to solve long existing integration problems in enterprise architecture. 
The semantic web should help in making more 'sense' out of software application data 
to improve interoperability between applications in an enterprise. Software analysts 
are already picking up this new trend by writing business oriented executive reports 
on this topic. See for example [1], [2]. 
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The Semantic Web defines the semantics of data in an ontology. The word ontol-
ogy has very distinct meanings. In the context of the semantic web an ontology struc-
tures data in a predefined way so that the semantics of the data can be derived from 
the relations between the data. An ontology description for a particular domain is 
referred to as an ontology model. An ontology model consists of concepts (also called 
classes) and relations between classes. 

Typical relations in an ontology language are "sub class of", "class has property", 
"class is equivalent with". The semantics of the relations are defined in the ontology 
language specification and the expression power of the language is determined by the 
expression power of the pre-defined relations and, eventually, the other knowledge 
representation forms allowed by the language. 

Software applications that share an ontology model can exchange information, 
even if they are not aware of each other's existence at compile time. These software 
applications are also called 'intelligent agents'. To model the behavior of intelligent 
agents they may have rules that are defined using the ontology model or in the ontol-
ogy model (when the ontology language includes a rule language). Since a rule is 
always expressed in domain terms, any rule language needs to have a model of the 
domain and this model can be an ontology model. 

The question whether the Semantic Web should be augmented to support behavior 
specification (with rules) is subject to debate (see debate "where are the rules" [4]). 
Question is if we should augment ontology languages with rules and what type of 
rules we would need. Take as an example the following rule that can not be expressed 
in OWL: 

 
If a city code is associated with a state code, and an address uses that city code, 

then that address has the associated state code. 
 
Current developments seem to point in the direction of augmenting ontology lan-

guages with rules. The first steps in this direction seem to restrict the expression 
power of the rule languages to particular rule types [5]. 

3   Business Rules 

Business rules describe strategies that restrict or guide the behavior of enterprises [6]. 
An example is a statement that introduces an obligation: 

 
A Customer who appears intoxicated or drugged must not be given possession of a 

Rental Car. 
 

Such rule is called an operative business rule. These are rules that govern the con-
duct of business activity. In contrast to Structural Rules, Operative Rules are ones that 
can be directly violated by people involved in the affairs of the business. 
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A structural rule, like the following: 

A Customer has at least one of the following:  

• a Rental Reservation. 
• an in-progress Rental. 
• a Rental completed in the past 5 years. 

introduces a necessity. These are rules about how the business chooses to organize 
(i.e., ‘structure’) the things it deals with. 

A business rule is situated in the context of an enterprise, being under business ju-
risdiction’. ‘Under business jurisdiction’ is taken to mean that the business can enact, 
revise and discontinue business rules as it sees fit.  If a rule is not under business 
jurisdiction in that sense, then it is not a business rule.  For example, the ‘law’ of 
gravity is obviously not a business rule.  Neither are the ‘rules’ of mathematics. 

Business rules are described in a language that is natural to business people that are 
also responsible for the formulation and enforcement of the business rules.  

Enforcement of business rules by software programs is a natural phenomenon in 
enterprises but is not the main goal of formulating and managing business rules. Busi-
ness rules may be used directly in software programs if the business vocabulary can 
be mapped to an enterprise data model and a machine using the vocabulary can inter-
pret the business rule expressions. 

Rules should be unambiguous. There are several sources that give practitioners 
guidelines to write non-ambiguous business rules [7, 8 ]. They all share that all terms 
used in rules should be defined in a business vocabulary. The business vocabulary 
defines all the concepts and lists signifiers for those concepts (terms) relevant to de-
scribe the business rules of a domain (read: particular business area of interest) in a 
particular language. Besides the definitions of concepts a business vocabulary defines 
all the relations between concepts (needed for expression of all business rules). A 
structural definition defines a concept in terms of its relations to other concepts (simi-
lar to the way concepts are defined in an ontology model). 

One or more concepts that are related are called 'fact types' and they form the basis 
for business rule expressions. Different type of relations may be predefined so that 
relations have consistent semantics in different vocabularies. Examples of those pre-
defined relations are "is assorted to", "is a generalization of", "is a category of". There 
is an obvious overlap when we compare these relations with the relations we typical 
find in an ontology-model. 

The examples in table 1 show that the synonyms 'car' and 'automobile' are not de-
fined with a relation between the concepts 'car' and 'automobile', but that they are in 
fact different signifiers for the same concept in a particular language. The definition 
of the concept is considered part of the vocabulary, while such descriptions are not a 
required element of an ontology model. The simple relations between concepts (Fact  
Type 1 and 5) are defined in a similar way as in an ontology-model. Expression of the 
derived fact types (Fact type 2 and 3) and the rule may be very different in an ontol-
ogy model, depending on the ontology language in use. 

Current standardization efforts at the OMG are standardizing the semantics for 
business rules [9]. 
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Table 1. Example of what you can find in a business vocabulary including business rules 

Concept Concept with definition 'a motorized vehicle' has signifier 'car' and 
'automobile' for the English language 

Fact type 1 A car has wheels 
Fact type 2 A normal car is a category of an automobile where the car has ex-

actly four wheels 
Fact type 3 A car drives with a speed 
Fact A Mercedes is a 'normal car' 
Rule It is forbidden to drive with a speed greater than 100 km. per hour 

with a three-wheeled-car 

4   Comparison Business Rules and Semantic Web 

4.1   Common Roots 

The semantic web and the business rules communities have their roots in Artificial 
Intelligence. However, the players in both communities like to decouple themselves 
from this ancestor. This seems to be due to the failure of AI technologies to deliver 
when the pioneers set high expectations. The idea to formalize and reason with do-
main knowledge using logic and logical inference is known in the field of AI as the 
study of knowledge representation. The offspring of this research are expert systems. 
Product vendors in this area are now positioning themselves as business rule man-
agement systems. Product vendors in the area of the semantic web position them-
selves more in the field of knowledge management where the challenge is to present 
the right information on the right time and in the right place. 

4.2   Different Target Audience 

Improvement of communication between humans is a goal of the business rules ap-
proach while improvement of the communication between machines is the goal of the 
semantic web. Both emphasize that improvement of the communication between 
humans and machines can be a happy side effect. 

Given this difference in target audience the two approaches are also positioned dif-
ferently in the Model Driven Architecture (MDA) of the Object Management Group 
[10]. An ontology-model is used in a run-time environment and should therefore be 
positioned at the PSM-level, while a vocabulary is used at the CIM level to improve 
human communication about a domain. 

A survey under ontology tool builders [11, 12] shows a different trend. There focus 
is to decrease the complexity of building full-blown and full proof ontology's, espe-
cially for domain experts (business people without training in formal logics or com-
puter programming) rather than professionals trained in formal logic and ontology 
design. 
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4.3   Same Goal 

Both the business rules and semantic web techniques are supposed to capture seman-
tics about real world domains (independent of a particular application or task). This 
distinguishes them (ontology models and vocabularies) from conceptual modeling 
approaches (like UML and ORM) that are both intended to describe the domain 
knowledge for one specific application.  

The idea to be more independent of a particular application or task should en-
courage the reuse of business vocabularies and ontology models. There is an inter-
esting friction here that is recognized in the business rules community [13] and the 
semantic web community [14] in that rules are affected by the nature of the problem 
(or business strategy) that they support and the inference strategy to be applied to 
the problem. Therefore the resulting rules that are captured in the context of a par-
ticular task will be less reusable and more specific to a particular (class of similar) 
task(s). 

4.4   Similar Form 

A business vocabulary and ontology both consist of interrelated concepts and rules 
(e.g. identity, cardinality, taxonomy etc.) that constrain and specify the intended 
meaning of concepts.  

In an ontology-model only the structural relations between concepts define the se-
mantics. In a business vocabulary the semantics can also be described by giving a 
definition for a concept. This definition may be informal and every concept needs to 
have a definition. In an ontology-model, concepts do not have a definition. You can 
just stop somewhere at the border of your domain with connecting a concept with 
other concepts. 

The business rules approach focuses more on natural language / human readable 
descriptions, for example the expression of definitions and business rules is not re-
stricted to a specific formal specification language.  In the Semantic Web every ele-
ment that is part of the ontology model should be compliant with a formal language 
because otherwise it cannot be used in a run-time environment. 

4.5   Different Expression Power 

The formal specification languages used by the semantic web and the business rules 
communities differ in expression power and assumption. The expression power that 
is requested in the business rules community is high, including the notion of higher 
order logic, deontic logic and predicate logic. The initiatives of rules in the Seman-
tic Web are mostly based on horn clause logic or other descriptive logics and the 
expressiveness of these languages is questioned (see also the discussion in 
[4]).  Another difference is that the business rules languages often work under a 
'closed world assumption' while the semantic web languages uses an 'open-world 
assumption'.  

The next paragraph gives an overview of the a business rules standard developed 
by the business rules community and provides more detail on the expression power 
available to the business rules community by this standard.  



158 S. Spreeuwenberg and R. Gerrits 

5   Semantics of Business Vocabulary and Rules (SBVR)1 

The OMG has traditionally a strong technology focus, for example with a standard 
like CORBA. With the UML standard they entered the more conceptual side of IT. In 
recent years, its Business Modeling and Integration Domain Task Force has been 
widening the OMG’s scope to include business modeling. SBVR (Semantics of Busi-
ness Vocabulary and Rules) will be the first to emerge from this programme.  

SBVR is a specification for building and interchanging business vocabulary and 
business rules at the business level, regardless of whether the rules will be automated 
in IT systems, or applied and enforced by people in the enterprise.   

SBVR has a theoretical foundation of formal logic. The base is first-order predicate 
logic (with possible extensions into higher-order logics), with some limited extensions 
into modal logic – notably some deontic forms, for expressing obligation and prohibi-
tion, and alethic forms for expressing necessities. 

5.1   Terminology Basis 

The SVBR “Vocabulary for Describing Business Vocabularies” is based on the ISO 
terminology standards: 

- ISO 1087-1 (2000) “Terminology work — Vocabulary — Theory and application”,  
- ISO 704 (2000) “Terminology work — Principles and methods”, and 
- ISO 860 (1996) “Terminology work – Harmonization of concepts and terms”. 

These standards have been used for many decades for multilingual vocabularies in 
support of language translation work. An SBVR-based business vocabulary strength-
ens the semantics of ordinary business glossaries of terms and their definitions in 
several ways.  It provides: 

1. a multi-dimensional, hierarchical categorization capability to organize concepts 
from general to specific. This is often referred to as taxonomies or categorization 
schemes.  The ability to define categories is also included. 

2. the capabilities associated with Thesauri including synonyms, abbreviates, ‘see 
also’, multiple vocabularies for same set of meanings for different languages, etc.   

3. the ability to specify definitions (both intensional and extensional) formally and 
unambiguously in terms of other definitions in the business vocabulary as a result 
of its formal logics and linguistic underpinning. 

4. the ability to define connections between concepts that are of interest to the or-
ganization.  These connections provide the business-level semantic structure re-
quired to find information about such relationships in text documents and rela-
tional databases, as well as providing the ability to specify business rules formally 
and unambiguously.   The function in the ISO/IEC 13250:2000 “Topic Maps” 
standard is included in SBVR-based business vocabularies. 

                                                           
1 SBVR is in the OMG’s finalization process and is scheduled to become a released OMG 

specification in October 2006. The draft specification is available publicly for comment 
and issues (www.omg.org/technology/documents/bms_spec_catalog.htm) until 24 July 
2006. 
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5. a semantically rich set of templates to facilitate capturing the full semantics of 
each concept and connection between concepts of interest to the business commu-
nity owning the business vocabulary. 

6. a basis for identification and/or definition of individual entities. 
7. the basis for tools that can support powerful visualization and ‘navigation’ of 

business vocabulary based on business meaning. 
8. business community ownership and management of their independent business 

vocabularies and business rules. 
9. the ability to minimize the number of definitions an organization needs to create by 

providing powerful, pragmatic features for vocabulary adoption on a well-managed 
basis.  The SBVR approach encourages (a) incorporation of ready-made ‘outside’ 
vocabularies and (b) communication between people in different communities. 

10. a comprehensively integrated capability to support the specification of the mean-
ing of all kinds of business rules. 

5.2   Rules in SBVR 

In SBVR, rules are always constructed by applying necessity or obligation to fact 
types. Informally, a fact type is an association2 between two or more concepts; for 
example, the rule “A Rental must not have more than three Additional Drivers” is 
based on the fact type “Rental has Additional Driver”. 

By this means, SBVR realizes a core principle of the Business Rules Approach at 
the business level, which is that “Business rules build on fact types, and fact types 
build on concepts as expressed by terms.”  This notion is well-documented in pub-
lished material by foremost industry experts over the past 10 years. 

It is specifically not the intention of the BRT to mandate any particular notation(s) 
that must or should be used with the SBVR Metamodel. SBVR Structured English 
(presented in Appendix F of the specification) is just one of possibly many notations 
that can be used to express the SBVR Metamodel, and, as a notation, is non-
normative in the SVBR standard. 

Two styles of SBVR Structured English are documented in this submission:  

- Prefixed Rule Keyword Style 
- Embedded (mix-fix) Rule Keyword Style 

The prefix style introduces rules by prefixing a statement with keywords that convey 
a modality. Examples of some of the prefixes are shown in the table below. 

Operative Structural 
It is obligatory that It is necessary that 
It is prohibited that It is impossible that 
It is permitted that It is possible that 

The embedded style features the use of rule keywords embedded (usually in front of 
verbs) within rules statements of appropriate kinds. The table below shows a sample 
of embedded keywords used to form rules. 

                                                           
2 “Association” is used here in its everyday, business sense - not the narrower, technical sense 

that would apply to a UML class model.  
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Operative Structural 
… must … … always … 
… must not … … never … 
… may … … sometimes … 

This style is an existing, documented notation3 (RuleSpeak®, by Business Rule Solu-
tions, LLC) that has been used with business people in actual practice for a number of 
years, as requested by the RFP. 

5.3   Formal Logic 

The SBVR initiative is intended to capture business facts and business rules that may 
be expressed either informally or formally. Business rule expressions are parsed, and 
are classified as formal only if they are expressed purely in terms of fact types in the 
pre-declared schema for the business domain, as well as certain logical/ mathematical 
operators, quantifiers etc. Formal rules are transformed into a logical formulation that 
is used for exchange with other rules-based software tools. Informal rules may be 
exchanged as un-interpreted comments.  

All and only formal logic-based entries in SBVR will be able to be transformed 
into other standards based on formal logic like RDF(S) and/or OWL. 

5.4   Open / Closed World 

SBVR supports both open and closed world semantics. For any given domain, the busi-
ness might have complete knowledge about some parts and incomplete knowledge about 
other parts. Therefore, a mixture of open and closed world assumptions is supported. 

Adopting closed world semantics basically means that all relevant facts are known. 
So if a fact cannot be proved true, it is assumed to be false. This closed world assump-
tion entails negation by failure, since failure to find a fact implies its negation. Open 
world semantics allows that some knowledge may be incomplete; so if a proposition 
and its negation are both absent, it is unknown whether the proposition is true. 

In modeling any given business domain, SBVR restricts the facts in the vocabu-
lary, to facts of interest to that domain. If a fact is not relevant to that domain, it is not 
included, but it is not assumed to be false, rather it is not considered. However, it is a 
practical issue whether one’s knowledge pertaining to the population of a given fact 
type is complete or not, since this may impact how the business derives other facts 
(e.g. negations) or how it reacts to query results (e.g. whether to treat “not” as “not the 
case” or merely “not known to be the case”). Therefore SBVR regards the issue of 
open/closed world semantics to be relevant to the fact model itself, not just automated 
implementations of the fact model. 

SBVR use the term “local closure” for the application of the closed world assump-
tion to just some parts of the overall schema. One might assume open world semantics 
by default, and then apply local closure to specific parts as desired; or alternatively, 
assume closed world semantics by default and then apply “local openness”.  

                                                           
3 Principles of the Business Rule Approach, by Ronald G. Ross, Addison-Wesley, Boston, MA, 

2003, Chapters 8-12. 
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Local closure may be explicitly asserted for any object type, on an individual basis, 
to declare that for each state the fact model population agrees with that of the object 
type’s population in the actual business domain. The relevant meta-fact type is: “con-
cept is closed in conceptual schema”.   

Closure may also be asserted for fact types. Semi-closure is with respect to the fact 
model population of the object types playing a role in the predicate. If closure has also 
been declared for the object types, then (full) closure also holds for the fact type (i.e. 
closure with respect to the domain population of the object types). The relevant meta-
fact types are: “fact type is semi-closed in conceptual schema” and “concept is closed 
in conceptual schema”, which applies to both object types and fact types. 

Closure for a fact type is sometimes implied. A mandatory role with a frequency 
constraint, implies that the fact is semi-closed by implication. For example given the 
sentences: 

- each employee has at most one employee name 
- each employee must have an employee name 
- employee is closed 

The closed world assumption is implied for the employee name fact type (employee is 
closed, so we have all the employees; having a name is mandatory, so we have at least 
one name for each employee; the uniqueness constraint means that each employee has 
at most one name; so for all employees we now have all their names). 

5.5   Higher Order Logic 

SBVR allows both first-order logic and higher-order logic restricted to Henkin seman-
tics. Henkin semantics restricts quantifiers to range over only individuals and those 
predicates that are specified in the universe of discourse (the business domain), where 
the n-ary predicates/functions (n > 0) range over a fixed set of n-ary rela-
tions/operations. By restricting the ranges of predicate, the Henkin interpretation 
retains certain desirable first-order properties (e.g. completeness, compactness, and 
the Skolem-Löwenheim theorems) that are lost in the standard interpretation of 
higher-order logic.   

SBVR supports ‘intentional roles’ for sentences where a subject or object is really 
an intension, rather than a denotation. This results in sentences like: 

If the average of salaries of employees in a department increases by 10% in 
a given month then . 

This sentence is based on the fact: 

quantity [intensional] increases by percentage 

A logician may rewrite this rule to a first order statement: 

If the average of salaries of employees in a department at a point in time in a 
given month is 10% less than the average of salaries of employees in that 
department at another point in time in that month and the other point in 
time follows the first point in time then .. 
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However, ‘normal’ people will not write such a statement. Support for higher order 
statements is motivated by the more ‘natural’ way of writing rules for business 
people. 

In [15], some ways are suggested to avoid higher-order types, by treating types as 
intensional objects whose instances may sometimes be in 1:1 correspondence (but not 
identical) to subtypes, by requiring subtype definitions to be informative, by remodel-
ing (including demotion of metadata to data), and by treating types as individuals in 
separate models. 

The decision on whether to use higher-order types is left to the user of SBVR. 

6   Conclusion 

The similarities between the two approaches should encourage researchers and practi-
tioners to work more closely together to explore fundamental issues at the level of 
capturing the semantics of real world domains. This collaboration is already started, 
for example with a W3C workshop on business rules (see http://www.w3.org/ 
2005/rules). Tool builders that want to serve both communities to broaden their mar-
ket drive these collaborations. Given the differences between the expression power 
and target audience of business rules and semantic web rules, they will need clearly 
defined transformations between business rules standards and semantic web stan-
dards.  I see the most important challenge and research topic as the mapping from 
business rules that should be automated, written in a non technical language under a 
'closed world assumption', to technical executable rules that can be used by IT sys-
tems with semantic web technology and an 'open world assumption'. 
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Abstract. The life sciences are a promising application area for seman-
tic web technologies as there are large online structured and unstruc-
tured data repositories and ontologies, which structure this knowledge.
We briefly give an overview over biomedical ontologies and show how
they can help to locate, retrieve, and integrate biomedical data. Anno-
tating literature with ontology terms is an important problem to support
such ontology-based searches. We review the steps involved in this text
mining task and introduce the ontology-based search engine GoPubMed.
As the underlying data sources evolve, so do the ontologies. We give a
brief overview over different approaches supporting the semi-automatic
evolution of ontologies.

1 Introduction

Researchers in various areas, e.g. medicine, agriculture and environmental sci-
ences, use biological data sources and tools to answer different research questions
or to solve various tasks [CGG03]. One of the main goals is to understand how
various organisms function as biological systems. To achieve this goal, it is im-
portant to explore functions and interactions of genome-encoded components.
This type of knowledge may be used for different purposes. For instance, it is
used to identify genes responsible for a disease, to develop drugs enabling treat-
ment of diseases and to predict organisms’ responses to a drug. Also, research
is conducted on how the genomes vary between species, how mutations affect
functioning of different components in organisms and what differences they cause
between organisms. Also, the influence of environmental factors on human health
and diseases is investigated.

During recent years an enormous amount of biological data, such as DNA
and protein sequences, gene regulatory and protein interaction networks, and
secondary together with tertiary structures of molecules, has been generated.
This data is spread in a large number of autonomous data sources that are often
publicly available on the Web. There are also numerous tools available on the
Web such as BLAST, a sequence alignment tool.

Researchers that need to use these databases and tools experience a number
of difficulties (e.g. [Lam05]). A first difficulty is to locate the relevant data sources

P. Barahona et al. (Eds.): Reasoning Web 2006, LNCS 4126, pp. 164–183, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and tools. There are many data sources and users need to have good knowledge
about which data sources exist and what information they contain. Often data
sources contain overlapping information and the required information can be
obtained in a number of ways. Depending on which way is chosen, there may be
a difference in the time it takes to obtain results as well as in the quality of the
obtained results. Further, it is not easy to stay up to date as the environment is
changing frequently. New data is added to the data sources on daily basis. For
instance, in 1986 SWISS-PROT, a protein database, contained a few thousand
data entries, while in 2006 the database contains over 200 000 entries. Further,
new data sources appear frequently. For instance, the yearly database issue of the
Nucleic Acids Research [NAR] journal and the NAR Molecular Biology Database
Collection reported on 386 data sources in 2003, 548 in 2004, 719 in 2005 and 858
in 2006. Data sources may also disappear. A specific property of biological data
sources is further that their structure is frequently modified. This happens, for
instance, when new types of data are generated by novel tools and approaches.

A second difficulty is to, once the relevant data sources are identified, retrieve
the relevant information. Current retrieval approaches are often syntax based
and do not provide good precision and recall. This means that the query results
often contain information that is not relevant for the user’s query. One reason
is that terms are often ambiguous. For instance, when looking for information
about jaguars, the result will include documents about the animal as well as doc-
uments about the car. It is also the case that much relevant information may not
be found. For instance, when looking for information about signal transducers
also documents about receptors are interesting as receptors are a special kind of
signal transducers. However, syntax-based retrieval systems will not return these
documents unless signal transducer also occurs explicitly in these documents.

A third difficulty is that for most tasks data from different sources needs to
be integrated. For instance, to find publications describing a given disease that
relates to a certain type of sequences may require analysis of data sources for
publications, diseases and sequences together with some other data sources com-
bining these types of information [LMN04]. To predict properties of a new protein
sequence, data sources containing information about protein sequences, protein
families and protein structures may be needed. Because the data sources are
developed and supported independently by different groups and organizations,
the data sources are highly heterogeneous in various aspects [LJ03]. They differ
in content, i.e. the type of information that they store, although data sources
may also contain overlapping information. The quality of the data may differ.
For instance, some data sources contain experimentally verified data while other
data sources contain predicted data (e.g. generated by data mining programs).
Different kinds of data models are used for the representation of the data such as
the relational model, the object-oriented model, semi-structured data and flat
files. The sources are also heterogeneous regarding their query languages and
query capabilities. Further, there is a terminology discrepancy problem. Data
sources can use different terminology to represent the same data or the same
term may be used by different sources to refer to different data items.
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In the remainder of the paper we introduce the vision of the Semantic Web and
show how a first step towards this vision can be taken using ontologies and text
mining. We show which efforts are being made to create bio-ontologies serving
as source of a common vocabulary in a domain. Ontologies formulate biological
knowledge. We show how ontologies are used to annotate biological databases
like UniProt enabling the connection to other biological sources. We discuss cases
in which overlapping ontologies are being aligned. A huge amount of biological
knowledge is only accessible through texts. We show how text mining can be used
the alleviate the access to large document sources. We present GoPubMed, an
ontology-based literature search system. GoPubMed provides 33 million ontology
annotations for articles in the literature database PubMed. This is a valuable
source used for a bibliometrical analysis of all PubMed abstracts published since
1972. As scientific research develops, domain ontologies have to evolve. We give
an overview over the design, maintenance and evolution of ontologies. Finally,
we discuss how ontological knowledge can be used to support the querying of
multiple biological data sources.

2 Semantic Web

The current Web is essentially a collection of documents that are interconnected
by links and it is used as a portal to applications. For instance, the biological
data sources available on the Web provide access through Web pages. To query
the data sources often the users fill out forms. The results are again presented
to the users as Web pages. The Web pages are presented to the users based
on mark-up. This mark-up mainly represents rendering information, such as the
font and color of the text, and links to other Web pages. Therefore, the current
Web is mostly a medium of documents for people rather than for information
that can be processed automatically by computers [BHL01].

The Semantic Web is a vision of a further development of the World Wide Web
“in which information is given well-defined meaning, better enabling computers
and people to work in cooperation” [BHL01]. The World Wide Web Consortium
states it as follows [W3C-sw]: “The Web can reach its full potential only if it
becomes a place where data can be shared and processed by automated tools as
well as by people. ... The Semantic Web is a vision: the idea of having data on
the Web defined and linked in a way that it can be used by machines not just
for display purposes, but for automation, integration and reuse of data across
various applications.”

As a first step towards this vision of making the content of Web pages machine-
understandable, people have started to use semantic annotation. One way to do
this is to annotate the Web pages with ’meaningful’ tags. In this case we annotate
the Web pages with XML mark-up to distinguish the meaningful parts of the
document. For instance, in a Web page about a protein we may distinguish
between its name, coding DNA, three dimensional structure, family, function,
source organism, etc. Then we use programs that recognize the mark-up and
the different parts of the document can then be used in other programs based
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on the meaning represented by the mark-up. However, for this approach to be
successful, there is a need for agreement on the annotation. A solution to this
is to use ontologies to specify the meaning of the annotations. The ontologies
define a vocabulary, specify the meaning of the terms and define how new terms
can be formed by combining existing terms.

The use of ontology-based annotations will alleviate the problems discussed in
section 1. An approach that would alleviate the difficulty of locating the relevant
data sources and tools is to use Semantic Web services. In the current Web ser-
vice [W3C-ws] approach, data sources and tools can be seen as service providers
and announce their services. Data sources, for instance, can announce their con-
tent and query capabilities. Users can be seen as consumers that request services
based on their task. User requests and services are matched by service match-
ers. When we semantically enable the Web service approach, service providers
are able to use ontologies to describe their services and users can use ontologies
when formulating their requests. The service matchers will then more easily find
relevant services. By using ontologies during information retrieval, it is possible
to reduce the amount of non-relevant information in the returned results. For
instance, when looking for information about jaguars, the user may use an ontol-
ogy to state that she is interested in the animal. The result will then only include
documents about the animal. It is also possible to find more relevant informa-
tion. For instance, when looking for information about signal transducers, we
may take into account information from an ontology that states that receptors
are a special kind of signal transducers. Therefore, also documents about recep-
tors will be returned. Finally, semantic annotations can enhance the integration
process. Entities in different data sources that are annotated with the same or
related ontology terms are likely related. Relations between data items could be
derived from relations (e.g. equivalent, is-a, part-of) between the ontology terms
they are annotated with.

3 Ontologies in Bioinformatics

Intuitively, ontologies (e.g. [Lam04, Gom99]) can be seen as defining the basic
terms and relations of a domain of interest, as well as the rules for combin-
ing these terms and relations. Ontologies are used for communication between
people and organizations by providing a common terminology over a domain.
They provide the basis for interoperability between systems. They can be used
for making the content in information sources explicit and serve as an index to
a repository of information. Further, they can be used as a basis for integra-
tion of information sources and as a query model for information sources. They
also support a clear separation of domain knowledge from application-based
knowledge as well as validation of data sources. The benefits of using ontologies
include reuse, sharing and portability of knowledge across platforms, and im-
proved documentation, maintenance, and reliability. Overall, ontologies lead to
a better understanding of a field and to more effective and efficient handling of
information in that field.
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In the field of bioinformatics the work on ontologies is recognized as essential
in some of the grand challenges of genomics research [CGG03] and there is
much international research cooperation for the development of ontologies (e.g.
the Gene Ontology (GO) [GO] and Open Biomedical Ontologies (OBO) [OBO]
efforts) and the use of ontologies for the Semantic Web (e.g. the EU Network of
Excellence REWERSE Working Group A2 [REWERSE]).

Many bio-ontologies exist. Many of the model organism databases such as Fly-
base and Mouse Genome database can be seen as simple ontologies. Further, there
are ontologies focusing on things such as protein functions, organism development,
anatomy and pathways. (For examples we refer to e.g. [Lam04, OBO, SOFG].) The
use of ontologies in bioinformatics has grown drastically since database builders
concerned with developing systems for different (model) organisms joined to create
the Gene Ontology Consortium in 1998. The goal of GO is to produce a structured,
precisely defined, common and dynamic controlled vocabulary that describes the
roles of genes and proteins in all organisms. Currently, there are three indepen-
dent ontologies publicly available: biological process, molecular function and cel-
lular component. The GO ontologies have become a de facto standard and are used
by many biological data sources for annotation.

Recently, Open Biomedical Ontologies was started as an umbrella Web address
for ontologies for use within the genomics and proteomics domains. The member
ontologies are required to be open, to be written in a common syntax, to be
orthogonal to each other, to share a unique identifier space and to include textual
definitions. Many bio-ontologies are already available via OBO.

The field has matured enough to start talking about standards. An example
of this is the organization of the first conference on Standards and Ontologies
for Functional Genomics (SOFG) in 2002 and the development of the SOFG
resource on ontologies [SOFG].

4 Ontological Knowledge in Bioinformatics

The publicly available ontological knowledge in bioinformatics includes not only
the actual ontologies, but there are also alignments between ontologies, ontolog-
ical annotations of data sources, and mappings between data values and onto-
logical terms. We briefly describe each of these.

Bio-ontologies. There is a large variety of bio-ontologies. They differ in the type
of biological knowledge they describe, their intended use, the adopted level of ab-
straction and the knowledge representation language. For instance, via OBO we
can access a number of ontologies having different biological focus and that are
developed for different purposes. We have already mentioned the GO ontologies.
MeSH is an ontology produced by the American National Library of Medicine and
is used for indexing, cataloging, and searching for biomedical and health-related
information and documents. Anatomical Dictionary for the Adult Mouse (MA) is
an anatomy ontology covering part of the lifespan of the laboratory mouse. The
TAMBIS ontology [GSN01] is an ontology covering a wide range of biological con-
cepts and is used as a unified schema to support queries over multiple data sources
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in an information integration system. With respect to the described knowledge ab-
straction the ontologies may range from high level ontologies that define general
biological knowledge to ontologies that describe selected biological aspects. For in-
stance, some general biological knowledge is covered in the TAMBIS ontology, like
protein and nucleic acid are biomolecules, and motif is-component-of protein. On
the other hand, the GO molecular function ontology defines the space of possible
biological functions, like signal transducer activity and the more specific function
receptor activity. The ontologies can be represented in a spectrum of representation
formalisms ranging from very informal to strictly formal. Depending on the types
of knowledge that are represented the ontologies can be classified from controlled
vocabularies, taxonomies, thesauri, data models, and frame-based ontologies to
knowledge-based ontologies [Lam04]. Many ontologies in bioinformatics started
as controlled vocabularies, which are essentially list of terms (e.g. MeSH). Nowa-
days, a number of ontologies are augmented to support more advanced represen-
tation. For instance, GO and MA can be classified as thesauri, as they organize
terms in a graph where the arcs in the graph represent a fixed set of relations.
For instance, MA organizes anatomical structures spatially and functionally, us-
ing is-a and part-of relations (e.g. brain is-a head organ and it is part-of central
nervous system). In addition, GO ontologies support the exact synonym and nar-
row synonym relations. The TAMBIS ontology can be classified as a knowledge
base which is based on description logics.

Ontology alignments. Several of the existing bio-ontologies contain overlap-
ping information, provide different views on an area or may cover different but
related areas. Often we would therefore want to be able to use multiple ontolo-
gies. For instance, companies may want to use community standard ontologies
and use them together with company-specific ontologies. Applications may need
to use ontologies from different areas or from different views on one area. On-
tology builders may want to use already existing ontologies as the basis for the
creation of new ontologies by extending the existing ontologies or by combining
knowledge from different smaller ontologies. In each of these cases it is impor-
tant to know the relationships between the terms in the different ontologies.
We call these inter-ontology relationships alignments. These alignments may de-
scribe equivalence, specialization or other relations between the terms. It has
been realized that this is a major issue and some organizations have started
to deal with it. For instance, the organization for Standards and Ontologies for
Functional Genomics (SOFG) [SOFG] developed the SOFG Anatomy Entry List
which defines cross species anatomical terms relevant to functional genomics and
which can be used as an entry point to anatomical ontologies. Currently, not so
many inter-ontology alignments are available. In the near future we expect an
increase of such knowledge as many ontology alignment tools are currently being
developed to support the identification of such alignments. For instance, given
the terms auditory bone (MA) and ear ossicle (MeSH), and knowing that incus
is a kind of auditory bone (MA), an alignment system should be able to iden-
tify that auditory bone and ear ossicle represent the same thing and it should
derive that incus is a kind of ear ossicle. The used matching techniques should
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also enable identifying relations between completely different terms, e.g. that
inner ear (MA) is a synonym to labyrinth (MeSH). For an overview of ontology
alignment systems see [LT06].

Annotations. To describe properties of biological objects in a uniform way, it
becomes common in bioinformatics to annotate data entries in data sources with
ontological terms. For instance, terms from the GO molecular function ontology
are used to describe gene and protein functions. Annotations can be stored as
separate mapping rules, included in an ontology or stored in a data source entry.
For instance, different data source annotations by GO terms can be found on the
web pages of the GO Consortium. In addition to other relations, GO ontologies
support the xref analog relation that allows to link ontological terms to biological
objects having the described properties.

Mappings between data values and ontological terms. In a similar way as
whole data entries are related to ontological terms, the allowed values for certain
data properties can be indexed based on ontology terms. For instance, keywords
used to describe data entries in UniProt, a data source of protein sequences and re-
lated data, are mapped to terms in GO ontologies. Similarly as for ontology align-
ments, different techniques could be used to support the identification of matching
terms.

Not only biological databases like UniProt are use to collect biological knowl-
edge. Most biological knowledge is still stored in texts. Text Mining is used
to annotate large corpora of text in order to automatically extract knowledge
from it. In a more advanced process text mining can even help discovering new
knowledge by combining facts retrieved from different documents.

5 Biological Knowledge in Text

The amount of literature available online today is enormous. Ingenta
(www.ingenta.com), an online index of 17,000 periodicals, has 7 million arti-
cles going back to 1988. Infotrieve (www.infotrieve.com) indexes over 20,000
journals with 15 million citations. CiteSeer (www.citeseer.com), a digital li-
brary, covers over 300,000 publications and over 4 million citations. Databases
for scientific literature are growing at an astonishing rate. PubMed, a biomed-
ical literature database, has grown by about half a million cited documents in
the last year ([DDK04]) and covers now more than 14 million abstracts of sci-
entific literature, although about half of them are retractions and corrections
(www.PubMed.org, [SC03]).

Without effective access to the knowledge in the above literature repositories
most of it will remain buried within the masses of text. Text mining addresses
this dilemma by aiming to extract useful knowledge from unstructured or semi-
structured text.

5.1 Text Mining

Text mining is the discovery of knowledge in natural language texts. The impor-
tant difference between regular data mining and text mining is that text mining
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deals with natural language text. So the data is not structured and thus directly
accessible for computer programs. We distinguish the discovery of new knowl-
edge, which was not stated before, and information extraction, which reads in
text and presents facts like author names, addresses or job skills from its content.
In order to extract particular information hidden in text, one approach is called
computational linguistics or natural language processing.

Natural language processing. Texts consist of sequences of sentences which
themselves consist of words. A goal of natural language processing is to annotate
the structure of sentences. The meaning of a sentence can be easier understood
when the grammatical structure is known. [Bri93] uses learning algorithms to
build a structural knowledge base which is then used to annotate sentences.
Other approaches use manually created knowledge bases for their annotation.
Such systems take sentences like ”The children play.” and assign the structural
information that children stands for the plural of child that play is a verb, that
the two words form a noun phrase and that all the words together form a sen-
tence. This process is called part of speech (POS) tagging. The biggest available
manually annotated corpus is the Penn Treebank corpus with one million anno-
tated words.

Sentence splitting aims to find the boundaries of each sentence in a text. A
simple approach is to search for periods followed by a space and an upper case
letter. Problems occur with identifiers containing periods and abbreviations,
which is frequently the case in the life sciences. For example, species are often
abbreviated, such as the worm C. elegans.

Tokenizing is the operation of splitting up a string of characters into a set
of tokens. The basic approach of splitting at each space character introduces
problems with multi word tokens sometimes written as hyphenated compounds.
Biological entities are often found in different spelling styles.

It is not trivial to decide how to tokenize GO terms. GO terms con-
tain hyphens, commas, brackets, apostrophes and other special characters.
If ”Interleukin-1” is split to interleukin and 1, it would become ambigu-
ous. The word low-density in low-density lipoprotein receptor binding
(GO:0050750), however, keeps the same meaning when written ”low density”.
Even the authors of GO use this phrase inconsistently. In the definition of the GO
term, they write: ”Interacting selectively with a low density lipoprotein receptor.”

Stemming transforms words of different morphological variants into their stem,
e.g. trees is transformed into tree. One well known algorithm is the Porter-
Stemmer. It applies rules to strings in order to transform them into their stem.
Other approaches use dictionaries of word stems.

PMID 7744799: ”The protein products of this gene contain the basic-helix-
loop-helix motif characteristic of a large family of transcription factors that
bind to the canonical DNA sequence CANNTG as protein heterodimers.”
is mentioning the GO term transcription factor binding (GO:0008134), but
stemming is needed here to identify bind as binding.
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Term extraction systems take a text document and return a list of potential
terms, one-word units or multi-word units, which characterize the content of
the document. Two approaches can be distinguished: The linguistic approach
uses morphological, syntactic and semantic information, such as known suffixes
of verbs, to find relevant terms. Statistical approaches on the other side try
to examine statistical properties of lexical units. One assumption is that terms
characterizing a document’s content occur very frequently in this document but
infrequently in other documents.

Extracting terms is difficult as the following examples illustrate:
The text ”Primed monocytes transcribed TNF mRNA at a higher rate than

freshly isolated monocytes upon activation with LPS.” contains the ontology
term monocyte activation (GO:0042117). Another example with even longer
gaps is: ”Although all nm23 proteins contain nucleoside diphosphate (NDP)
kinase activity, it has not been established that the enzyme activity mediated the
various functions of nm23 proteins.” (protein kinase activity (GO:0004672)).

The use of hyphenated compounds and spaced words is not always consis-
tent: Terms like thioredoxin-disulfide reductase activity (GO:0004791) oc-
cur with and without the hyphen between the first two words. Endonuclease
activity, active with either ribo- or deoxyribonucleic acids and produc-
ing 5’-phosphomonoesters (GO:0016893) most likely will be used without the
complementary subclause after the comma, although omitting it without refer-
ence to the context can make it ambiguous. 1,239 terms (7.3%) contain one or
more commas.

Terms have brackets in their names like: [methionine synthase] reductase
activity (GO:0030586).

1,101 of the GO terms (6.4%) contain expressions within parentheses.
Complementary expressions, as in glutathione dehydrogenase (ascorbate)
activity (GO:0045174), explanatory expressions, as in NAD synthase (AMP-
forming) activity (GO:0008795), differentiating expressions, as in poly(beta-
D-mannuronate) lyase activity (GO:0045135) as well as restricting ex-
pressions, as in hydrolase activity, acting on carbon-nitrogen (but not
peptide) bonds (GO:0016810) are frequently used.

Once we have a system able to annotate biological meaningful terms in text
we can use ontological information to assign semantic to those annotations. For
example a text mentioning car manufacturers is likely to talk about luxury cars
whereas texts mentioning the fauna of Guyana are more likely to talk about the
mammal Panthera onca.

5.2 Extracting Ontological Terms from Text

Semantic meta-information is useful for large collections of documents in or-
der to search them efficiently, identify document subsets of similar relevance or
characterize (or summarize) a document collection to abstract from the con-
tent of concrete documents. Meta-information is found in private music collec-
tions (title, artist, genre) as well as public databases of biological entities, e.g.
protein sequences in PDB (3D structure, side chains, experimental methods).
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Meta-information found for text documents is often very general (keyword list)
or still too complex for an automated evaluation (article abstract). Literature ab-
stracts are very useful for human readers in order to summarize the documents
content. Computer systems are necessary for handling millions of documents
but have difficulties understanding literature abstracts. Keyword lists are often
very short and abstract too much from the documents content. Better meta-
information than keyword lists are formal logical statements reflecting the state-
ment in the text. They are difficult to extract in an automated post-processing
step. A fine-grained list of domain terms characterizing the text is shown to be
useful ([DS05]). Domain ontologies can serve as a pool of useful domain terms.
They often contain vocabulary which a large number of experts can agree on,
e.g. most PubMed abstracts contain several terms of the Gene Ontology.

Structural problems identifying ontology terms. Scientific texts are often
partitioned into sections like Introduction, Background, Methods and Conclu-
sion. The sections about methods and conclusion contain new information con-
tributed by the authors in solving an open problem. Whereas the background
section summarizes the current research state for the topic and even might state
contrary statements from other researchers. The abstract section often contains
a summary of high level statements made in the text and is therefore a good
source for such information.

The abstract section of a text is often published separately and therefore
easy to identify. Other section of a document can only be identified when the
document is transformed into a structured representation.

5.3 GoPubMed - Ontology-Based Literature Mining

Finding relevant literature is an important and difficult problem. GoP-
ubMed is a web server which allows users to explore PubMed search results
with the Gene Ontology, a hierarchically structured vocabulary for molecular
biology. The system provides the following benefits:

1. It gives an overview over literature abstracts by categorizing abstracts ac-
cording to the Gene Ontology and thus allowing users to quickly navigate
through the abstracts by category.

2. It automatically shows general ontology terms related to the original query,
which often do not even appear directly in the abstract.

3. It enables users to verify its classification because Gene Ontology terms are
highlighted in the abstracts and as each term is labeled with an accuracy
percentage.

4. Exploring PubMed abstracts with GoPubMed is useful as it shows definitions
of Gene Ontology terms without the need for further look up.

The annotation database of GoPubMed contains 33 million Gene Ontology
annotations. This information can be used to analyse research interest over time.
Combining this data with spatial information about research institutes enables
a large scale analysis across countries.
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Fig. 1. GoPubMed is a web server which allows users to explore PubMed search results
with the Gene Ontology, a hierarchically structured vocabulary for molecular biology

Bibliometrical analysis. GoPubMed’s association of GO terms with PubMed
abstracts is a valuable resource to understand how a research topic - represented
by a GO term - develops. It shows how many articles were published over time,
which authors are most prolific for the topic, which journals cover the topic
best, and which countries publish most on the topic. The use of an ontology for
these analysis is very important as it includes synonyms and subterms. As an
example, [GM97] point out that during the 60s and 70s researchers in the US
used ”programmed cell death” while their European colleagues used ”apoptosis”.
In our analysis, these are treated as equivalent with the help of the underlying
ontology. Also it is important to consider subterms as some papers may mention
GTPases in general, while others refer to specific GTPases such as Ran, Rac,
Rho, etc. Again, the use of the ontology ensures that an analysis of GTPases
will include all specific GTPases.

Term extraction in GoPubMed. GoPubMed evaluates only the abstract
section of a biomedical publication in PubMed. Thus only the substantial high
level statements of a text are considered. The abstract is split into sentences
using a simple heuristic looking for common sentence endings. The tokenization
is optimized for a sensible tokenization of Gene Ontology terms, e.g. hyphenated
chemical names or typical biological terms containing apostrophes and paren-
theses within words like N-1-naphthylphthalamic acid binding, poly(A) binding
or mRNA 3-UTR binding are split appropriately. A modified version of the
Porter-Stemmer is then used to transform the tokens into there stems. Again
the stemmer avoids the modification of abbreviations or words with hyphens,
primes or parentheses.
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The matchvalue for each potential term is then calculated by the sum of the
information value of each Gene Ontology word found in a sentence. High frequent
words in the ontology, e.g. activity have a low information value single occurring
words of an information value of 1. The matchvalue is ratio of identified words
vs. term words.

The literature database PubMed is growing by 500.000 abstracts each year.
The scientific vocabulary constantly grows with the number of research fields
being discussed. As a research field becomes more mature the vocabulary con-
verges on a set of terms commonly used. There is the need to keep the domain
ontologies up to date with those changes.

6 Ontology Evolution

Ontology evolution can be defined as the adaption of an ontology which is based on
a consistent propagation of changes to the dependent artefacts [MBS03]. In other
words, it is a process of changing an ontology while maintaining its consistency.
Given the case, that a concept needs to be deleted, it has to be decided which ac-
tions have to be performed to reach a consistent state. One could decide to remove
all the subclass relationships, followed by removing all the concepts which are not
participating in a subclass relations after the first step. Another strategy would be
to ensure that all the concepts which were in subclass relationship to the deleted
concept become re-linked to other concepts. The chosen strategy depends on the
application. To ensure transparency and a deterministic nature in ontology evo-
lution, the tools used need to support the decision process and give the ontology
engineer the freedom to configure his tools accordingly.

As the complexity in ontology evolution increases with the size of the ontol-
ogy, the process has to be highly structured. The task can be compared with
the development of complex software. During the last decades a huge effort has
been undertaken to unify the software development process (e.g. [JBR99]) and
pass on the experiences of generations of software developers (e.g. [TH99]). This
knowledge is valuable in the context of ontology evolution and only a highly
structured and controlled development process will lead to well designed ontolo-
gies. Many features own to software development tools can directly be used.
Automatic consistency test are as important as a complete documentation. Col-
laborative tools and versioning will enable users to work at the same ontology
simultaneously. As reality changes, ontologies need to change as well. Knowl-
edge might change due to latest research results and terms need to be added,
reclassified or even deleted. Additionally, relations between terms and properties
of terms need to be revised. Despite some advances in semi-automatic ontology
design and evolution, most ontologies are created and maintained manually. In
these cases, the ontology editor plays a crucial role, as it provides support to
the ontology engineer for browsing, checking and modifying ontologies. Editors
will be discussed in section 7. An example of ontology evolution is described in
[AS05]. The authors analysed the Medical Subject Headings (MeSH) focusing
on syntactical and semantical consitency.
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Ontology Learning

Ontology learning is the automatization of the ontology building process aiming
for lower development costs and faster construction of ontologies. For automatic
learning information sources like the ontology itself or a text corpus of relevant
documents are needed.

Ontology-based approaches to ontology learning are using the ontology
itself as source of information. In [OCA04] the compositional structure of Gene
Ontology (GO) terms was analysed. The authors found that many GO terms
contain each other and many GO terms are derived from each other. For ex-
ample, the term membrane [GO:0016020] has inner membrane [GO:0019866] as
a direct subconcept. This and similar knowledge can be used to automatically
generate new candidate terms following the observed patterns. In a second step,
a filtering is necessary to select candidates based on a broad text base which
can then be propagated to the ontology. Additionally, the authors analysed the
relationships between terms. They calculated the percentage of cases with ex-
plicit substring relationships between terms, where approximately 65% of all GO
terms contain another GO term. A deeper analysis revealed, that complements
occur very frequently. Examples are negative/positive, binding/biosynthesis, or
female/male. These finding can be utilised for candidate generation.

Learning from text corpora is based on methods which try to extend ontolo-
gies by applying natural language processing techniques to text [GM03]. Early
publications focus on pattern-based concept and relation extraction, where a
concept or relation will be added to the ontology if it is found to match a pre-
defined pattern [Mor99]. As in classical shopping cart analysis, association rules
can also be used for corpus-based learning of ontologies [MS00]. Association rules
evaluate the co-occurrence of items within an item set and use the likelihood of
an item A being member of a set, if B is already a member. A different technique
called conceptual clustering was proposed in [FP00]. After the acquisition of syn-
tactic frames in a text, the learning method relies on the observation of syntactic
regularities in the context of words. Concepts found are grouped according to
their semantic distance and become this way ordered in a hierarchy. For this, no
annotation is needed beforehand, but the validation of the result is performed
manually and is therefore time-consuming. A pattern-based learning approach
instead would use labeled examples for extracting instances from texts. While
the annotation of the learning examples is time-consuming, the quality of the
learning results would be predictable and could be validated automatically.

Beside text corpora and ontologies other sources for semantic concepts can be
explored for ontology evolution. In [KMV00], a method named ontology pruning
uses GermaNet, the German counterpart to WordNet, natural language texts
and semi-structured domain-specific dictionaries. In this work the authors ac-
quire general concepts by measuring term frequencies in texts. A term occur-
ring more frequently in a domain-specific text corpus than in a general corpus
becomes a candidate to be included in the ontology. The ontologies subclass
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relationships are constructed following [Hea92], where a hypernym relations be-
tween words are induced according to patterns found in the text.

7 Ontology Editors

Current ontology editors use knowledge models of varying complexity and dif-
fer in scalability and usability. Numerous editors are available to the ontology
engineer, e.g. Protégé1, OntoStudio from Ontoprise2, OilEd3, pOWL4, and DIP
D2.8: Ontology Editing and Browsing tool. Protégé, OntoEdit (now OntoStu-
dio) and OilEd are stand-alone applications for managing standard ontologies
and were compared in [SM02]. A recent development is pOWL, a web-based ed-
itor and development platform for the semantic web that supports RDFS/OWL
ontologies of arbitrary size, and DIP D2.8 with support for ontologies specified
using the Web Service Modelling Language (WSML)5.

Functionalities

Features of the editor are features of the underlying ontology model. Most editor
include standard editing capabilities for concepts, properties, instances as well
as standard relations, namely concept inheritance based on part-of and is-a
relationships. For all these entities the operations add, remove and modify are
supported. All listed operations can be regarded as simple changes [SM02] and
are implemented in nearly every editor. On the other side there exist composite
changes. An examples for a composite change is moving a concept from one
parent to another one. Here the concept’s subclass relationships are deleted and
new subclass relationships to the new parent concept are created.

The identifiers of the subclass relationship will therefore change. Instance data
and/or properties of the relation might get lost. The operation of moving concept
or relation as a composite change will preserve the identifiers and the associated
data. Generally it can be said: moving concepts as a task cannot be replaced
by a sequence of deletions and additions, because the identity of the subject of
change itself gets changed.

Beside the described actions, certain constraints have to be maintained by the
editors. All changes performed within one encapsulated action need to transform
the ontology from one consistent and valid state to another one. Accordingly, the
constraints consistency and validity need to be ensured. The constraints which
have to be met in particular depend strongly on the actual type and application
of the ontology. In general it can be stated that an ontology is inconsistent if one
part of the ontology does not agree with another one. The language specification,
e.g. for OWL [PH04], is a source for consistency constraints. If an ontology is con-
sistent with its language specification it is regarded as well-formed. If an ontology
1 http://protege.stanford.edu
2 http://ontoedit.com/
3 http://oiled.man.ac.uk/
4 http://powl.sourceforge.net/
5 http://www.wsmo.org/TR/d16/d16.1/v0.2/
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is consistent with its language specification it is regarded as well-formed. Valid-
ity ranges from syntactical, are all concepts and relations declared when used, to
semantical validity, are all concepts or relations use as declared for the ontology.

Some editors include support for collaborative editing. Here, most of the nec-
essary features will regard usability aspects, but also the possibility to reverse
changes and a general versioning support is needed.

Features of an ideal ontology editor would adapt capabilities of software de-
velopment tools used today. It would support automatic consistency testing,
include learning components, support logging of changes, implement a variety
of composite changes and always make the user aware of side effects of his ac-
tions. Furthermore it would support the specification of a predefined workflow
for ontology evolution and allow the user to document his changes.

8 Ontology-Based Querying Over Multiple Data Sources

In this section we first discuss and exemplify how the ontological knowledge
identified in section 4 can be used to support the querying of multiple biological
data sources. Then, we present an approach for ontology-based support for access
to multiple biological data sources [JL05]. We focus on how knowledge should
be set up to support query processing.

8.1 Query Support

Some of the important steps in querying over multiple data sources are user
query formulation (important for locating and retrieving the relevant data), data
source selection (important for locating the relevant data) together with the query
rewriting into subqueries over the selected data sources, and identification of
relevant data items on which results from different subqueries can be joined (im-
portant for integration of data). The ontological knowledge identified in section
4 can be used to support these steps.

Query formulation. Ontologies can be used for guiding users through query
formulation. The ontology itself can be used as a query model or the inclusion
of ontology terms into a query may be allowed. High level ontologies enable the
selection of relevant types of biological knowledge, while specialized ontologies
(e.g. GO molecular function ontology) can be useful for the precise specification
of properties for data items. Different ontologies support querying from different
points of view, e.g. query for genes involved in a biological process or genes ex-
pressed in a particular cellular component. As the user query may cover different
types of biological knowledge that is spread over a number of ontologies, ontol-
ogy alignments are important. This enables ontological reasoning over different
domains. For instance, such alignments would allow reasoning based on relation-
ships between protein function and diseases. An important use of ontologies is for
query expansion. This leads to better query results. When queries are expanded
using terms equivalent to the query terms, the terminology discrepancy problem
is reduced. When is-a relationships are used, more relevant results are retrieved.
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For instance, knowing that receptor is-a signal transducer, a query asking for spe-
cific signal transducers can be expanded to retrieve receptors having the same
properties. Also, checking query validity can be performed with respect to the
domain knowledge.

Data source selection and query rewriting. The ontological knowledge
is important for describing data sources uniformly from the domain perspec-
tive. When user queries include ontological terms, such data source descriptions
provide support for data source selection and the user query rewriting into sub-
queries over data sources. Terms from high level ontologies can specify types of
biological data stored in data sources such as, for instance, that sequences stored
in UniProt represent protein sequences. At the same time relations between data
items in a data source could be derived by the available relations between on-
tological terms (e.g. domain is a part-of sequence). Specialized ontologies could
be used to specify the range of possible values for a data type (e.g. which or-
ganisms are covered in a data source). Also, ontological terms can be used to
refine the description of the content of a data source. Often, not all data is stored
explicitly in a biological data source. For instance, in a data source containing
mouse-related data, mouse will not be mentioned explicitly in the data entries. In
addition, the knowledge about existing ontological annotations of data sources
and mapping rules between data source and ontology terms should be used to
specify the data source schema. Ontological annotations are useful for fast and
focused searches on a certain type of data (e.g. search UniProt on GO terms de-
scribing protein function). The annotations directly lead to relevant data entries
in data sources. Mapping rules between data source and ontology terms provide
a basis for translating query constraints expressed over ontologies to data source
specific terms.

Data integration. When results for the subqueries are retrieved from different
data sources, the next step is to identify which data entries can be joined. A
straightforward approach is to require equality between the joined data items.
As there is no agreed terminology and there are no unique identifiers for terms
in bioinformatics, often this approach is not suitable. The joined data items may
have different but synonymous data values, they can be described at different
levels of granularity or use different lexical variations. For instance, a gene can
be referred to by different identifiers, like insulin promoter factor, a gene activat-
ing transcription of insulin genes, is named IPF1, IDX-1, STF-1, PDX-1, PDX1
and MODY4. For an organism its scientific or common name can be used, e.g.
mus or mice. In some data sources the type of organism could be specified more
precisely, e.g mus famulus. Also, B Cell Leukemia can be written as Leukemia, B
Cell. Ontological knowledge provides a range of possibilities on how to handle
these issues. Joins could be performed on the basis of ontological terms. Map-
ping rules between data source and ontology terms could be used to translate
values into a uniform representation. Also, data can be joined on the available
ontological annotations. Further, ontological knowledge about synonyms can be
used to locate alternative data item representations. To cover different granular-
ity of data items, is-a relationships in ontologies should be explored. Mapping
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rules between ontologies should be used to combine data items retrieved from
different domains.

8.2 Framework

Figure 2 represents the main types of knowledge that should be maintained for
ontology-based querying as well as the mapping rules (MR) between them. The
main types of knowledge in traditional information integration systems are data
source schemas and integrated schemas. An integrated schema combines the
relevant domain knowledge with data structures in the integrated data sources.
Such systems enable data source integration through e.g. global-as-view or local-
as-view rules (MR 1). Also, for joining data existing cross-references between
data entries at different data sources are used (MR 2). Ontological knowledge
may provide extra information and we suggest that in addition to the tradition-
ally used knowledge, also domain ontologies, ontological alignments (MR 3) and
ontology-based data source descriptions (MR 4) should be used. Ontology-based
data source descriptions use ontological annotations, mappings between data
values and ontological terms together with ontology-based data source schema
descriptions. To reuse the existing ontological knowledge and to uniformly specify
the integrated data, also ontology-based integrated schema descriptions should
be maintained (MR 5).

There are several information integration systems for integrating biological
data sources (for an overview see [Jak05]). Some of these information integra-
tion systems use ontology-based technologies to support querying (e.g. BACIIS
[MWL03], KIND [LGM03], SEMEDA [KPL03] and TAMBIS [GSN01]), but not
so much ontological knowledge is used yet. A common feature in these systems
is that the integrated schemas are seen as ontologies. In contrast, we expect
ontologies to be agreed upon and shared by many users [Lam04]. The inte-
grated schemas include domain knowledge and information on data structures
at the data sources. All the systems use the maintained ontology to describe
the content of data sources (MR 1). Though it is not explicitly stated, cross-
references between data sources are probably used to join the retrieved data
items (MR 2). KIND uses two ontologies describing static and process knowledge,
respectively. The ontologies combine domain knowledge from neuroanatomy and
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neurophysiology (MR 3). In SEMEDA controlled vocabularies can be used to
specify semantics of data type values, which covers part of MR 4 in our frame-
work. Also, data source content descriptions can be refined with integrated
schema terms. Ontological annotations and ontology alignments are not taken
into account in any of the systems.
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Abstract. In this paper we address computational aspects of protein structure 
and function, including prediction of secondary structure, folding, structure 
determination from Nuclear Magnetic Resonance data, modelling of protein 
interactions, and metabolic pathways. The subject is introduced with an 
overview of protein structure and chemistry and the algorithms and 
representations used to model protein structures. The main focus of the paper is 
the integration of information from sources relevant to protein structure 
modelling, such as structure databases and modelling servers, a task made 
difficult by the heterogeneity of formats, the diversity of data sources, and the 
sheer volume of information available, making evident the need for a standard 
framework for data sharing, i.e. the Semantic Web. To help solve this problem, 
we present tools being developed according to the concept of a Semantic Web. 
These include the UniProtRDF project and tools currently implemented on the 
Chemera molecular modelling software which can facilitate the search and 
application of information available from Internet servers and databases. 

1   Introduction 

Proteins are ubiquitous in living organisms, mediating all life processes from growth 
to thought. They catalyse chemical reactions and are involved in the movements of 
our muscles and in the structure of our bodies, and are the direct expression of the 
genome. The study of proteins ranges from molecular genetics, as a gene is the recipe 
for a protein, to protein structure, function, interactions, and metabolic pathways. The 
techniques involved are many and diverse, from gene sequencing to activity assays, 
kinetics, spectroscopy, cloning and over-expression, among others. 

There are four features of protein studies that make the semantic web such an 
attractive concept in this field: 

1. The importance of understanding how proteins are regulated and how they operate 
makes this a major research field in biochemistry, and such a research effort leads 
to a large output of data, both as databases and publications. 

2. The computational demands of gene database searches, structural analysis, and 
interaction modelling led to the availability of a variety of services on the internet. 

3. Research in this area often requires the integration of many information sources, 
models, and experimental data. 

4. The large throughput of the research community. 

The following sections outline different elements of protein structure, from primary to 
quaternary structure, and provide some examples of databases and services available 
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on the internet. Some familiarity with these concepts is necessary for anyone wishing 
to enter this field, but a detailed description of protein structure is outside the scope of 
this paper, so I refer the interested reader to introductory textbooks on protein 
structure (e.g. 1, 2).  

Genes and amino acid sequence  
Proteins consist of amino acid residues bound together in long chains, with a 
sequence determined by the sequence of nucleotides in the gene encoding for the 
protein. Figure 1 shows a segment of an amino acid chain. The repeating sequence of 
Nitrogen, Carbon, Carbon atoms forms the backbone, or main chain. Branching out 
from the main chain we can see the amino acid side chains, which are unique to each 
amino acid.  

The amino acid side chains have important properties that affect both the structure 
and the function of the protein, such as their interaction with solvent molecules, 
charge distribution, and chemical reactivity. Some side chains bind covalently 
forming cross-links between different parts of a protein chain, different protein 
chains, or even to non-proteic groups. 

 

Fig. 1. A short segment of four amino acid residues. The backbone is outlined in grey, and the 
atoms are represented in different colours (nitrogen and oxygen in grey, carbon in white). Each 
amino acid residue has a unique side chain and a common sequence of Nitrogen-Carbon-
Carbon in the main chain. 

The direct relation between gene sequence and protein sequence allows the determi-
nation of protein sequences with gene sequencing techniques, a great advantage because 
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gene sequencing is currently fast, inexpensive, and often fully automated. For example, 
while the UniProtKB/Swiss-Prot database contains approximately two hundred 
thousand annotated protein sequences (as of April 2006), the UniProtKB/TrEMBL 
database of protein sequences automatically generated from gene sequence data 
contains nearly three million different sequences (as of April 2006) (3, 4), and most of 
the protein sequences in the annotated database have been obtained by gene sequencing 
too. 

The relationship between gene (and thus protein) sequences resulting from 
evolution is an important aspect of these data. The change in lineages over time by the 
gradual accumulation of random mutations results in similar sequences being closely 
related, descending from a more recent ancestor than more differing sequences. 
Sequence similarity is thus highly correlated with structural and functional similarity, 
making sequence similarity searches and clustering important computational tools in 
this field. The BLAST algorithm and derivatives (4) is currently available in all major 
gene databases for searching and aligning gene and protein sequences. 

Also important are the annotations of the protein and gene sequences, and the 
associations with other databases. The UniProtKB/Swiss-Prot database (5), for 
example, provides links to literature references, annotated comments regarding 
function, activity and regulation, and cross references to approximately twenty other 
databases, ranging from protein structure, family classifications and interactions to 
genome mappings and metabolic pathways databases. The Gene Ontology Annotation 
project at the European Bioinformatics Institute (6, 7) currently provides manual 
annotations for seventy thousand UniProtKB entries and electronic (automatic) 
annotations for nearly two million UniProtKB entries. 

Secondary Structure 
Protein chains form several characteristic local structures due to hydrogen bonds 
between main chain atoms of different amino acids. Some examples are the alpha-
helix, the beta strand, and the beta turn. The important aspects of these structures, for 
our purposes in this paper, is that they are usually stabilized by the interaction of 
amino acid residues that are proximate in the sequence, and that they are stable 
structures that can be seen as building blocks for the tertiary structure of the protein, 
the large scale three dimensional folding. 

These are very important for structural modelling for several reasons. One reason 
is predictability; from sequence data alone it is possible to predict secondary structure 
motifs with 70-75% accuracy. Another reason is the conservation of secondary 
structure within protein families, both because of its strong correlation with local 
amino acid sequences and because evolution seems to favour the conservation of local 
structures in general. Finally, secondary structure elements are often easier to identify 
from experimental data, which even allows automated assignment procedures in 
multidimensional NMR spectroscopy. Figure 2 shows two common secondary 
structure elements, a beta sheet and alpha helices. A beta sheet is formed by a set of 
beta strands, parts of the protein chain in an extended conformation and oriented 
parallel or anti-parallel to each other. Alpha helices are segments of protein chain that 
 



 Integrating Web Resources to model Protein Structure and Function 187 

are rolled in a spiral conformation. Though the structures may vary slightly, as the 
three helix examples illustrate, these structural motifs are quite characteristic and well 
defined. 

 

Fig. 2. Two common secondary structure motifs. A beta sheet formed by five beta strands on 
the left, and three alpha helices on the right. 

Domains and tertiary structure 
Each protein chain folds over itself to form a three-dimensional structure, called the 
tertiary structure of the protein. The tertiary structure is organized at a larger scale 
than secondary structure, more dependent on interactions between amino acid 
residues distant in the sequence of the protein chain. It is this overall structure that 
determines most properties of the protein and how it interacts with other molecules, 
so knowledge of the tertiary structure is crucial for understanding and manipulating 
reaction pathways and for drug design. 

Except for the smallest proteins, the tertiary structure is generally organized in 
distinct structural elements, protein domains, which do not span the whole protein 
chain. These domains often have different functions and distinctive structures, and 
evolution often splits these regions apart into different genes, or splices genes together 
to form multi-domain proteins, as if they were several different proteins kept together 
by peptide linkers. 

The semi-independence of protein domains makes these structural features the 
natural unit of protein structure and function. When comparing different proteins, or 
even protein systems, it is often necessary to take into account the modular nature of 
protein chains. 

Protein Interactions 
Most proteins interact with other proteins. These interactions range from transient 
contacts, in which the partners meet briefly to perform some chemical reaction, to 
life-long partnerships, with each protein chain specifically adapted to be permanently 



188 L. Krippahl 

associated to its partners. The structure of such assemblies of protein chains is the 
quaternary structure, and one such assembly often referred to as a protein complex. 
Protein interactions play a central role in all living organisms, hence the importance 
of understanding the mechanisms and structure of protein complexes. 

2   Algorithms and Methods 

There are many different problems and solutions related to protein structure, ranging 
from finding a good model for a known sequence from known structures of similar 
proteins to modelling a protein complex or determining a protein structure from X-
Ray diffraction patterns. Though not in themselves the focus of this paper, it is useful 
to have an idea of these problems to better understand the usefulness of a Semantic 
Web approach to integrating knowledge in protein structural studies. 

In this section we will look at four cases. The first two, homology modelling and 
structure prediction with the Rosetta algorithm (8), illustrate two approaches to the 
general problem of modelling protein structures, and these tools are nowadays widely 
used by the community. The other two examples, protein structure determination 
using constraint processing with PSICO (9, 10) and constrained protein docking with 
BiGGER (11, 12) illustrate an ongoing effort at automating the integration of 
structural information from a wide range of sources. 

Homology modelling 
Homology modelling is based on the structural similarity of proteins with similar 
sequences. This similarity is a consequence of the evolutionary processes that connect 
genes, and their corresponding proteins, to common ancestors. Gene lineages 
spawned from a common ancestor will diverge by the accumulation of mutations, and 
given the huge number of possible gene sequences, sequence similarity indicates 
close kinship and proximity to the common ancestor. Furthermore, a mutation that 
results in a large change in the protein structure will most likely be deleterious and 
eliminated by natural selection, since a large random change on a highly complex and 
adapted mechanism will tend to reduce its performance. The consequence is that 
proteins that have similar sequences are most likely to have diverged from a recent 
ancestor gene by the accumulation of mutations that have a small impact on protein 
structure. 

The SWISS-MODEL server (16, 17, 18, 19) illustrates how easy it is to use this 
technique using current technology, even for non-experts. The server can select 
templates for different parts of the structure based on sequence homology, or use user 
defined templates, assemble the structure by threading the new sequence into the 
templates, and even optimise side chain conformations, all automatically. However, 
there is a cost to this convenient approach: the dependence on a centralised database 
and automation do not allow for the integration of different data sources, or for more 
flexible approaches to modelling when there are no good homologous templates for 
parts of the structure. 
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Ab-initio protein structure prediction 
The Rosetta algorithm was developed by the Baker group (8) and was very successful 
at several of the Critical Assessment of Structure Prediction (CASP) trials (14, 15). 
Rosetta is essentially a minimization by simulated annealing, but the algorithm 
assumes that local, smaller, structures to form and change rapidly until stabilized by a 
low-energy configuration that brings them together at a larger scale. This assumption 
is quite reasonable based on current knowledge of protein folding dynamics, and is 
probably the main reason for the success of this algorithm. 

Integrating structural information 
The previous two examples illustrate well-established approaches that are publicly 
available on the Internet. While easy to use and widely used, they are not meant to 
allow for flexible integration of structural data, relying on internal databases for all 
the information required for computation. The next two examples are the opposite in 
these respects, as one goal is flexible integration of information using the Semantic 
Web concepts and, like the Semantic Web, they are still in a development and testing 
stage.  

The PSICO (Processing Structural Information with Constraint propagation and 
Optimization) algorithm is primarily intended to help in the determination of protein 
structures from NMR data (10), but goes beyond that by using generic structural 
information that can be derived from databases, prediction servers, experimental data, 
or other sources (9). 

PSICO builds an approximate structural model by processing a set of structural 
constraints. These can include simple binary distance constraints (10) or global 
constraints on rigid groups of atoms (9), or even more complex constraints such as 
bond and dihedral angles. From the approximate model constructed by constraint 
processing, PSICO then refines the structure by local search and optimization, 
minimizing residual constraint violations. This is an efficient approach to 
incorporating a variety of structural information data into the modelling process, and 
can thus benefit greatly from the Semantic Web goal of data integration and reasoning 
over decentralized data sources. 

The BiGGER (12) algorithm (Bimolecular Complex Generation with Global 
Evaluation and Ranking) models protein-protein interactions by geometrically 
matching the shapes of the proteins and then evaluating physical properties of the 
interaction, such as solvation effects, electrostatics, side chain contacts. In this 
approach to modelling protein interactions without additional information, BiGGER 
is similar to other protein docking algorithms (see 13 for a review). However, using 
an approach similar to that used in PSICO, BiGGER is meant to incorporate any 
available data (11), and it is generally the case that experimental data is obtained 
before researchers attempt to model a protein complex.   

3   Web Resources 

There are many internet resources available on proteins structure and molecular 
biology in general, ranging from structure databases to software repositories and 
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prediction or computation servers. This section will show some examples that 
illustrate this diversity, some of which already provide structured access either as web 
services or in XML. 

UniProtKB 
The UniProt Knowledgebase is a large repository for annotated protein sequence data. 
It includes entries for sequences translated from gene sequencing data or direct 
protein sequences, annotations regarding organism, literature references, and cross-
references to other databases.  

The UniProtKB databases are available in XML format and the XML schema and 
document type definitions are available from the UniProt site. An independent project 
at the Swiss Institute of Bioinformatics also supplies the UniProtKB data in RDF 
format (21). Currently, the European Bioinformatics Institute (EBI) supports Simple 
Object Access Protocol (SOAP) access to web services for homology searches, 
multiple sequence alignment, data retrieval, and sequence analysis (22, 23, 24). Most 
of the data and the most used tools for sequence retrieval, alignment, and analysis are 
now available in structured formats or as web services. 

The UniProt databases are also connected to the Gene Ontology (GO) through the 
Gene Ontology Annotation project (6) at the European Bioinformatics Institute, aimed 
at assigning GO terms to gene and protein sequences.  

Secondary structure 
There are several free servers for secondary structure prediction, such as the 
Advanced Protein Secondary Structure Prediction Server (25), or the PHDSec or 
PROFsec services (26, 27) at the PredictProtein site (28). Though easy to use, these 
services are designed mainly for direct interaction with human users and not for 
machine access. 

Protein Data Bank 
The Protein Data Bank (PDB) is a repository of protein structures hosted at the 
Research Collaboratory for Structural Bioinformatics (29, 30). This is the most 
important database on protein structures at present, storing over 36,000 structures 
linked to the SCOP and CATH structural classification databases and the Gene 
Ontology. The PDB site provides browsers for accessing the data according to 
different classifications, such as GO terms for biological processes, cellular 
components, or molecular function, or structural classification according to the SCOP 
or CATH systems. 

More important for our purpose is the PDBML/XML format, an XML file format 
encoding the information that was until recently stored in the flat text file format of 
the original PDB files. This format structures complex information on amino acid 
residues, sequence, atomic composition, atomic coordinates, and annotations such as 
literature references and experimental techniques. 

Finally, the PDB website implements web services methods using SOAP and XML 
for querying entries by sequence homology, keywords, for obtaining literature 
references for a structure, for determining if the structure is obsolete, among others. 
This is a very important feature of the PDB site, already in use by some other 
bioinformatics services, such as the Protein Mutant Resource Database. 
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Domain classification: CATH, SCOP, and Pfam 
The Class, Architecture, Topology, and Homologous superfamily (CATH) protein 
domain database provides a hierarchical classification of protein domains from known 
structures (31, 32, 33). The identification of domains is an important part of protein 
structure modelling because genes can fuse together and split apart, and so domains 
are effectively the basic structural units of proteins, more so than amino acid chains, 
which can contain more than one domain. Though individual CATH query results can 
be retrieved in XML format, the CATH dataset is in a flat file format. 

The Structural Classification of Proteins (SCOP) database is another hierarchical 
classification of structural domains (34, 35), also widely used by the community, but 
SCOP only supplies the data as flat text files. 

The Pfam database, at the Sanger Institute (36, 37, 38), classifies protein domains 
using the SCOP domain definitions but extends protein families and domains to 
sequences of unknown structure, using multiple alignment techniques to find 
homologous region. This allows a tentative identification of domains in a protein before 
determining the structure. The full database is available from the Pfam website, but in a 
flat text format. Related to Pfam is the iPfam database of interactions between protein 
domains, also built from the SCOP domain definitions in known structures and extended 
by sequence comparison to proteins of unknown structure (39). 

4   Integration of Resources: A Work in Progress 

One of the main goals of the Semantic Web is the automated integration of data from 
multiple sources. In the previous sections we outlined the problem of studying protein 
structure and interactions, and the relevant data sources and services available. In this 
section we take a more detailed look at two examples of how queries to these services 
and databases could be composed in order to help model protein structures and 
interactions in a way that is consistent with the idea of the Semantic Web, taking 
advantage of decentralised data sources. 

For the first example we can consider the determination of a protein structure from 
a known sequence, using PSICO to combine any available experimental data and 
information from prediction models. The first step could be the identification of 
domains in the sequences using the Pfam database, obtaining the PDB code for the 
structure of any likely domains. The structures would then be retrieved from the PDB 
database, and used to provide rigid group constraints to be used by PSICO. PSICO 
would then process these constraints along with the experimental data constraints, 
possibly leading to the rejection of some domain models and to the search for 
alternate structure candidates for those regions. The whole process would have to take 
into account the reliability of the models and the coverage of the experimental data, 
and the plan would be quantitatively different depending on these factors. 

This simple example of structure determination could be part of a problem of 
interaction modelling. It is often the case that experimentally determined structures 
are not available for the docking simulations, and the modelling of the missing 
structures could be linked to the prediction of the interactions. Using the SCOP 
domain classifications of each partner, either directly from the structures or models or 
from the sequences by querying the Pfam database, one could look for similar domain 
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interactions in known structures (using the iPfam database, for example). This could 
lead to revising the domains attributed to a modelled structure, if this interaction was 
found to be less likely than the confidence in the domain assignment. It would also 
provide examples of similar interactions that should give similar results in a docking 
simulation, allowing a better evaluation of the quality of the results (see Figure 3). 

Additional considerations could increase the complexity of this plan. Identifying 
likely surface interaction sites would involve examining the co-evolution of surface 
patches, requiring multi-sequence alignments and phylogenetic tree computations. 
More detailed computations of physical and chemical properties that may help select 
good models for the interaction would require the use of specialized servers. Thus 
even a simple example of trying to model how two proteins interact can require a 
complex plan for identifying missing information, retrieving and integrating data, and 
evaluating the models, both at a final stage or at intermediate stages. 

Even more challenging would be the automatic generation of these plans by 
reasoning on the goals and available data. That would be truly in the spirit of a 
Semantic Web, wherein computers could compose complex sequences of steps 
towards the declared goal, and could adapt these plans according to the data and 
services available. 

Current technology is still a long way from that ideal, but there is constant progress 
in that direction. Conceptually, we can divide this technology in two levels. At the 
lower level we can consider data interchange, data and service descriptions, and 
standardization of formats; in other words, technology such as SOAP and XML. This 
technology is available today. For the researcher interested in a good scripting 
language to help process and access bioinformatics data and web services, Python 
would be a good starting point. Python is a widely used language in bioinformatics, 
being freely available and portable, and there are many code libraries for 
bioinformatics, such as those distributed by the BioPython project (41), and SOAP 
and XML tools, for example from the Python Web Services project (40). 

Figure 3 is a schematic representation of one such process. On the left side we can 
see a hierarchy of different tasks. At the lowest level, we have the task of mediating 
the communication with the different services. Currently this is a necessary 
inconvenience, due to the different formats and protocols for querying these services, 
but one that will tend to diminish as the application of Semantic Web principles and 
practice result in a more standardized service landscape. 

On the next level of the hierarchy we have one form of reasoning over a set of 
rules modelling a plan. This requires an interaction with the services because the rules 
may include conditional steps, or reactivity to updates.  For example, a homologous 
structure may be used to set up constraints for the determination of part of an 
unknown structure, but conditioned on acceptance criteria to ensure that the known 
structure is a reliable template. Reactivity is also important because databases can be 
revised, or additions may provide better models for homology, more potential partners 
for docking, or new experimental data. The engine reasoning over the plan would 
have to determine which steps have to be recalculated and which results to use in 
these cases. 
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Fig. 3. Diagram for the determination of protein interactions. On the right side the services, 
local or remote, from where the relevant information can be obtained. The queries and results 
are handled by a translation and parsing service (bottom left) that mediates between the 
structured (XML-based) representation used by the rules engines and the diverse formats of the 
services. The rules engines can execute a fixed plan (center left) or reason over the goals and 
results of previous plans to generate new plans (top left). 

At this level the technological requirements include a language that would allow 
users to specify these plans, expressive enough to encode the necessary conditional 
steps and reactivity. A natural candidate would be a language like RuleML (42), or 
the rule markup formalisms and tools being developed by the REWERSE (43) group 
I1. The advantage of such a system would be to decouple the gathering and 
integration of data from the details of each particular service, allowing the 
bioinformatics researcher to focus on the issues of what information is relevant and 
how to combine it. Thus the user would not specify the exact services to use, but 
rather model the plan using more general concepts like sequence homology, structure, 
contact interface, and so forth. 

As part of our participation in the REWERSE Bioinformatics group we are 
currently implementing this technology in Chemera, our molecular modelling 
package. One goal is to enable the application to link to remote bioinformatics 
services and databases in a seamless manner, so that the user has access to all 
information from the same interface, and in a coherent format. Current features 
already include secondary structure assignment, domain identification and multi-
alignment of sequences, and we are expanding the range of services. The next step is 
to tackle the more interesting problem of reasoning over the data, responding to 
information that is constantly updating, and inferring the sequence of services and 
databases to use in order to obtain specific information, such as a structure model or a 
set of potential interaction partners. This is the broader goal involving other working 
groups in the REWERSE project, as it requires intelligent querying languages such as 
Xcerpt (44) to perform complex queries combining different data sources, reactivity 
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languages such as Xchange (45) to respond to events such as updates in databases, 
model design technologies to better specify complex plans for data integration, and in 
general places high demands automated reasoning and planning capabilities. 

The long term challenge is to increase the abstraction level by automatically 
inferring the details of the plan needed to reach some goal. Ultimately, the user would 
be able to specify some high-level objective, like modelling the interaction between 
two proteins, and the system would devise the necessary plans to achieve such goal. 
This could be a gradual extension to simple plan execution, but one of increasing 
complexity as the system is expected to infer more complex plans from more abstract 
goals. For example, the problem of finding the best homology model would require a 
few steps, whereas the goal of finding the most likely interaction partner and 
respective complex could require obtaining multiple structures, combining these data 
with interaction information, screening likely candidates, running docking 
simulations, and so forth. This higher level of reasoning, represented in Figure 3 by 
the Plan Generation box at the top left, will require technology developed by several 
REWERSE groups, such as Rule Markup (I1), Composition and Typing (I3), Query 
(I4) and Reactivity (I5). Though hard to achieve in the near future, this would be a 
worthy objective that would allow the bioinformatics researcher to represent methods 
for data integration that based on goals instead of on procedural details. 

5   Conclusion 

The study of protein structure and function presents an important challenge to web 
reasoning. It is a large field within bioinformatics, with complex problems to solve; it 
has an abundance of freely available information and services, unlike many business-
oriented areas where information tends to be proprietary; it involves a large number of 
researchers all over the world, generating a great interest in web reasoning technologies; 
and finally it is a field where the rewards of optimizing information use can be high, 
given the impact on important fields like medicine, drug design, and genetics. 

The Semantic Web would help address the problem of integrating information, a 
problem that is becoming a limiting factor in the progress of bioinformatics. The 
technology being developed for data interchange and automated reasoning over data 
and services would greatly increase the effective use of research data, which we can 
expect would boost all areas of bioinformatics research. 
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Abstract. GALEN seeks to provide re-usable terminology resources for clinical 
systems. The heart of GALEN is the Common Reference Model (CRM) 
formulated in a specialised description logic. The CRM is based on a set of 
principles that have evolved over the period of the project and illustrate key 
issues to be addressed by any large medical ontology. The principles on which 
the CRM is based are discussed followed by a more detailed look at the actual 
mechanisms employed. Finally the structure is compared with other biomedical 
ontologies in use or proposed. 

1   Introduction 

1.1   Background 

GALEN seeks to provide re-usable terminology resources for clinical systems. The 
heart of GALEN is the use of an “ontology”, the Common Reference Model (CRM), 
formulated in a specialised description Logic, GRAIL [46] . Since GALEN’s 
inception there have been several other major efforts at medical “ontologies”, the 
most important being SNOMED-CT1 which has been made widely available in the 
United States via licensing by the National Library of Medicine and in the UK via 
licensing to the National Health Service [75].  

Likewise, since GALEN’s inception, “ontologies” have come to be much more 
widely studied in relation both to information systems theoretically (e.g. [20] [69]), 
practically (e.g. [5, 18, 81]) , in biomedical applications generally (e.g. [23, 70]) and 
in specific areas such as anatomy [32, 63]. Indeed, a track on “ontologies” is a feature 
of many conferences on the Semantic Web and database design in biohealth 
informatics. GALEN itself drew heavily on the pioneering work of the CANON 
group [11, 16, 79] and on ideas from early phases of the Cyc project [31].  

GALEN has been used, amongst other activities, for the development of the French 
national classification of surgical procedures CCAM [57], as part of the procedure for 
revising the Dutch classification of procedures, in the development of a drug ontology 
in the UK [72, 87] and in associated work “untangling” forms and routes of drug 
administration as part of a collaboration with HL7 [86]. Two independent studies 
have examined the issues in reconciling GALEN’s modelling of anatomy with that of 
                                                           
1 http:/www.snomed.org 
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the Digital Anatomist Foundational Model of Anatomy [35, 36, 88-90]. GALEN has 
also given rise to a methodology for normalising ontologies to promote 
modularisation [44].  

This paper presents a unified approach to the principles and details of the GALEN 
Common Reference Model (CRM), previously partly described in [26, 58, 59]. 
GALEN’s CRM is one of four models at the core of an overall architecture for use, 
and re-use, of clinical terminology [49, 51, 56]. A discussion of broader issues and the 
relation to Cimino’s desiderata for clinical terminologies [12] can be found in [52]. A 
discussion of the use of the ontology in representing pharmaceutical information can 
be found in [72, 87].  The discussion section of this paper reassesses some of the 
decisions in the GALEN CRM in terms of developments since its inception in the 
early 1990s and includes a brief comparison with Welty and Guarino’s 
Ontoclean/Dolce [18, 19, 83] and Smith’s Basic Formal Ontology (BFO) [69, 70]. 

1.2   GALEN’s Aims and Criteria for Success 

The overall aim of the GALEN terminology resources is to support clinical 
information systems. For individual patients, it aims to allow clinical information to 
be recorded faithfully in their electronic record, and then abstracted from it.  Such 
abstraction supports re-organisation or filtering to provide a clearer view of the 
patient, and linkage to knowledge resources such as decision support, bibliographic, 
and general web-based information systems. For populations of such patients it 
supports aggregation for secondary re-use in management, research, and 
administrative contexts. Abstraction, re-organisation, and re-use are fundamentally 
dependent on classification, and therefore the primary technical criterion for the 
GALEN ontology is: correct and complete classification of its definitions and 
descriptions.  

More generally, we can describe any ontology in terms of:  

1. Expressiveness – the ability to represent formally the notions required by its users; 
for medical ontologies this means all relevant symptoms, diseases, procedures, etc. 

2. Classification – the ability to infer the correct classification (indexing) of the 
expressions represented, a) soundly, and b) completely, where by “soundness” we 
mean that all inferences made are correct, and by “completeness” that all possible 
sound inferences are made. 

3. Parsimony – GALEN was specifically designed for use as a “post-coordinated 
system”, in which the classification of new expressions is inferred and dynamically 
maintained post hoc. This avoids the combinatorial explosion inevitable with pre-
coordinated systems, in which all legitimate expressions must be pre-enumerated 
and classified pre hoc. An explicit goal of post-coordinated systems is to obtain 
maximum expressiveness from a finite and limited range of basic notions. 

Achieving these goals, however, still requires greater complexity than clinical authors 
can be expected to cope with. The GALEN ontology is, therefore, designed as an 
internal ‘assembly language’, rarely to be seen directly by users or even by most 
software developers. Intuitive, user-oriented presentation is handled separately 
through ‘intermediate representations’ described elsewhere [56, 60].  
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2   Rationale for the GALEN Common Reference Model 

2.1   Basic Principles 

2.1.1   ‘Logical Approximations’ 
Any logical model for knowledge representation is at best an approximation of the 
relevant concepts as used in human language and thought. A “logical approximation” 
may seem an oxymoron, but logical models of any kind behave very differently from 
language or our internal conceptualisation. Thought and language are typically 
dependent on context in a fluid manner that eludes the rigidity of logical 
representation for at least three reasons:  

1. Logic, at least standard first order logic and description logics, are “two-valued” – 
they deal only in truth and falsehood. ‘Shades of grey’, or probabilities, are not 
supported.  

2. There are well known trade-offs between expressiveness and computational 
tractability in computational logical systems [6, 14]. 

3. Reality is fractal – no matter how much detail a model represents, it is always 
possible to represent more. Hence every formal representation must make choices 
of what to represent. 

2.1.2   ‘Linguistic Approximations’ 
Since any ontology is an approximation, the labels attached to representations 
internally in the ontology are necessarily also at best approximations. Arguments such 
as “Is the hand still a division of the upper extremity if it has been amputated?” or “Is 
there a difference between an ‘act’ and a ‘deed’?” rarely affect the utility of the 
ontology for the intended applications. When arguments over the labelling of 
representations occur, the GALEN team asks two questions: 

1. Does the representation represent some entity that most users or authors agree to be 
useful and clearly defined, even if they cannot agree on what it should be called? 

2. Is the label seriously misleading? Ambiguous? Does it mean different things to 
different groups?  

With respect to 1), GALEN has usually found agreement on substance to be easier 
than agreement on the words to describe that substance. Once the two issues are 
separated, agreement is possible. For example, whether “neoplasm” should mean any 
new growth or only any specifically malignant new growth was a matter for great 
debate. There was no debate, however, regarding whether or not separate 
representations could and should exist for each of “new growth, whether benign or 
malignant” and “malignant new growth”, merely about how they should be named. 

With respect to 2), GALEN has found non-understanding to be better than 
misunderstanding. Internal labels are often deliberately awkward, e.g. 
“PathologicalPhenomenon” rather than “disease” or “disorder”. 

2.1.3   Canonical Forms and “canonization” 
Most notions can be represented in more than one logically and/or semantically 
equivalent form. Although humans recognise such equivalences easily, one such form 
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must be selected as ‘canonical’ [16]  if logical computational systems are to be able to 
manipulate representations and data consistently. GALEN recognises two distinct 
levels of transformation (“canonization”) between equivalent forms to be dealt with: 

1. Logical – e.g. to transform “fracture of a long bone located in the femur” to 
“Fracture of femur”. This is a purely logical operation dependent on the 
representations of “Fracture”, “Long bone” and “Femur”, where “Femur” is a more 
specific subclass of ‘Long bone”. 

2. Ontological – e.g. to transform variants such as “Fixation of femur by means of 
insertion of pins” and  “Insertion of pins to fixate femur” to their preferred form 
[39].   Such variant forms are not logically equivalent  –  “Fixations” are not kinds 
of “Insertions” nor vice versa   [56]). Such alternatives can be resolved only by 
metamodel conventions embodying ontological commitments. (See 0.) 

2.2   Ontological Issues 

2.2.1   Categories, Instances and Natural Kinds 
The GALEN Common Reference Model (CRM) contains only “categories” 
(“classes”)2 and not “instances”.  

Categories can be abstract, such as “phenomenon” or “disease”, general such as 
“blood dyscrasia” or very specific such as “sugar-free syrup” or “foot”. In principle, 
however, all categories can be specialised to define new categories which can in turn 
be further specialised, indefinitely – e.g. “sugar-free syrup” to “flavoured sugar-free 
aspirin syrup”; “foot” to “left foot”, “deformed foot”, “deformed left foot”, etc.  

Statements in real world medical records represent statements about “instances”3 of 
these categories and, by contrast to categories, can not have kinds or subclasses (can 
not be “specialised”). It makes no sense to say “a sugar-free kind of this tablet of 
Aspirin” or “a kind of Alan’s left foot.”.  

Some authors on ontologies identify instances as being entities specialised to the 
level of detail required for a particular application, e.g Brachman et al.’s “Living with 
Classic” [7]. This approach is fatal to re-use, since, as Brachman et al. so elegantly 
demonstrate, the appropriate level of detail for different applications will almost 
certainly be different. It is for this reason that the GALEN Common Reference Model 
contains only categories and no instances. 

However, even though it deals only with categories, GALEN must still decide 
which categories should be “elementary” (“primitive”)4 and which “composite” 
(“defined”)5, i.e. defined by expressions made up of other categories. GALEN 
considers two issues in deciding whether to represent a given entity as elementary or 
composite: 
                                                           
2 GALEN categories are known variously in other systems as “types”, “classes”, or in Welty & 

Guarino’s writing “predicates”. The status of what many call “concept” is controversial; we 
use the word “entity” throughout this paper as a neutral term for either an instance or a 
category although - since GALEN does not represent instances - “entity” and “category” are 
for most purposes synonymous. 

3 In some other systems known variously as “individuals” 
4 Also known as “primitive” 
5 Also known as “defined” 
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1. Whether it is possible to define the category. A definition must give the complete 
set of all necessary and sufficient criteria for recognising that category. Many 
important categories defy complete definition by sufficient criteria. Such categories 
are related to concepts that are often termed “natural kinds” and include most 
simple notions such as “leg”, “tree”, “process”, “flow”, etc. Natural kinds can also 
occur at a more abstract level. For example, one might be tempted to define “Heart 
valve” as equivalent to “valve in the heart”, and “valve” as a “structure that 
controls flow”. However, this definition results in the “foramen ovale” being 
classified as a “heart valve”, since it undoubtedly is located in the heart and 
functions as a valve (to switch between the foetal and post-natal patterns of 
circulation) . Such experiences led GALEN to the rule that, in general, named body 
parts would be treated as natural kinds and represented as “elementary”. 
Exceptions include cases of generic parts that can be selected, e.g. “lobe of liver” 
(see 4.1.3) and  “named” entities (see 3.1.4). 

2. Whether it is useful to define the category, with respect to the needs of the 
applications expected to be supported within the scope of the model. Some 
categories are simply not worth the trouble to define, even though definition might 
be possible. This is particularly true if constructing the definition would necessarily 
involve the creation and modelling of new categories otherwise very much outside 
the scope of the ontology and applications. For example, although a sufficient 
definition of “stroboscope” might be possible in a much broader ontology, within 
the scope of GALEN it suffices to leave it as elementary.  

2.2.2   Explicitness and Orthogonal Taxonomies: “Normalising” the Ontology 
Potentially, it should be possible to re-arrange the ontology along any axis. In a 
description logic, this corresponds to saying that it should be possible to classify any 
entity according to each of its stated properties. Therefore, all properties must be 
represented explicitly and independently, even at the cost of apparent redundancy. For 
example, GALEN maintains that the indications for a drug should be represented 
separately from its actions even though one can often be inferred from the other, e.g. 
that an indication of “relief of bronchoconstriction” should be represented separately 
from the action of “bronchodilatation”.  

GALEN formulates this as the “principle of orthogonal taxonomies” [43, 45], and 
it has since been elaborated into a general rationale and methodology for 
“normalising” ontologies [44].  Interestingly, there is a close analogy between the 
“principle of orthogonal taxonomies” and Smith’s advocacy of single inheritance for 
the “is-a” relation [70], based on entirely different considerations. 

2.2.3   Self-standing Entities and Modifiers 
The entities in the GALEN ontology can be divided into two kinds: 

1. Those that represent things that can exist on their own, e.g. physical objects, 
processes, ideas, etc. Sowa [73] after Pierce terms these “first class objects, whilst 
Welty and Guarino term them “sortals” [20, 83]. In more recent work the authors 
of this manuscript have termed them “self-standing entities” [44]. 

2. Those that only make sense when linked to some other object e.g. modifier, 
modalities, or notions such as “collection of”. “Modifiers” are notions such as 
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“severe”, “soft” or “short” that describe other entities and specialise them further. 
“Modalities” are notions such as “presence”, “uncertainty”, “family history” etc. 
that take their meaning from the kernel entity. Sowa [73] after Pierce terms such 
entities “seconds” and “thirds” 

The most important principled differences between self-standing entities and 
modifiers in GALEN’s Common Reference Model are that: 

1. Lists of self-standing entities are almost always ‘open’, i.e. they cannot be assumed 
to be complete, so that it is not legitimate to infer from the negation of some that 
one of the others is present, even in formalisms supporting such inferences. 

2. Lists of modifiers may be ‘closed’, i.e. may be assumed to be complete so that 
inferences of the form “not raised or normal, therefore depressed” can be justified 
logically, although they must be used with care clinically. 

For both technical and clinical reasons, GALEN treats all lists of categories as ‘open’. 
It never makes inferences such as “not absent implies present” on the grounds that 
this risks imputing a degree of logical rigour to clinicians’ statements which is rarely 
intended. Nonetheless, it maintains the distinction between self-standing entities and 
modifiers as a top level dichotomy in the model. 

2.2.4   Reified Relations6 or “Features” 
The choice of what should be represented as an “Attribute” or “semantic link”7 is less 
simple than it seems, since any attribute can be reified (or “nominalised”) into a 
category, e.g. in GRAIL notation: 

 Disease which hasSeverity severe 

might also be expressed as 

 Disease which hasFeature (Severity which hasState severe) 

In the second form, the attribute hasSeverity has been ‘reified’ to the category 
Severity plus two subsidiary attributes, hasFeature and hasState. Such reified 
attributes, such as “Severity”, are known in GALEN as Features. 

Given that this transformation is always possible formally, in the extreme a system 
could be built with just two attributes (semantic links) for modifiers – hasFeature and 
hasState. How, then, should the decision be made as to which attributes to reify? 
GALEN offers two criteria 

1. Need for further description of the attribute – In most formalisms including 
GRAIL, attributes cannot themselves be described except in predefined ways in the 
formalism, such as being transitive or having a parent super-attribute in the kind-of 
hierarchy. Therefore, if the ‘fact of being linked’ may need to be described, even if 
only in a few cases, then the attribute representing the link must be reified to a 
Feature. 

                                                           
6 Note that the word “reify” is used differently with different technical meanings in each of the 

RDF and Topic Map communities.  
7 Known variously as a “semantic link” (CEN TC251/ISO 215), “property” (OWL), “role” 

(most other description logics) and slots (frame systems). 
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2. Consistency of representation – If there are a series of properties that appear 
analogous, it is almost impossible for authors to maintain a system in which some 
are represented as an attribute and some as a Feature. Therefore, if any must be 
described as in a) and therefore reified, then all similar attributes should be reified.  

In practice, GALEN reifies all modifiers such as severity, height, body temperature, 
etc. but not ‘selectors’ such as right in “right hand” about which nothing more can be 
said. Features in GALEN correspond closely to what Welty and Guarino term 
“qualities” [83], and GALEN’s values and States to what they call “quale”.8  

2.2.5   Dualities 
Many medical concepts come naturally in dualities, and it is not always obvious 
which should be represented as primary. For example, the “process of ulceration” has 
as its outcome “ulcer lesions”. Should the process be defined in terms of the lesion or 
vice versa? Or should both be treated as elementary and related by necessary but not 
sufficient conditions? The choice is unclear and possibly arbitrary, but it needs to be 
made consistently if classification is to work consistently, since “lesions”, “processes” 
and “situations” are different kinds of categories and one will never be inferred to be a 
subclass of another. GALEN represents the process as elementary and defines the 
lesion in terms of the process in virtually all cases, even when this requires some 
linguistic awkwardness (e.g. what is the name of the process by which a bullous 
lesion is formed?). 

2.2.6   Top Level Ontologies 
The original belief of those developing the GALEN ontology was that it would be 
built from the bottom up. The top level, domain independent, categories were seen as 
making little difference to classification and inference, since most inferences 
depended more on consistency of expression locally than on top level constraints. 
Experience has largely confirmed this view technically but, paradoxically, refuted it 
pragmatically with respect to the development process. An agreed and understandable 
top level ontology has proved essential to allow groups to co-operate effectively. 

However, just as all ontologies are approximations, so all high level ontologies are 
to some degree arbitrary. There were several candidate starting points early in 
GALEN’s development – PENMAN[3], Cyc [21, 31], traditional schemes from 
Artificial Intelligence and linguistics such as those deriving from Shank [64] and 
Sowa [73]. GALEN’s top level categories were originally adapted from those in early 
versions of Cyc [31]. Of recent developments, they are closely related to those in 
Guarino and Welty’s DOLCE [33] and conform to most of the precepts advocated in 
their OntoClean methodology [19]. 

In addition, it seems that each major field such as medicine requires one or two 
very high level abstractions which are broad disjunctions cutting across the traditional 
boundaries of top level categories. In GALEN, the category Phenomenon and the 
attribute involves are designed to range over anything that is, or might become, 
pathological – in common parlance anything that might be or become a disease, 
disorder or condition.  
                                                           
8 For a recent discussion of these issues in the context of OWL, see the Semantic Web Best 

Practice Committee’s note on “n-ary relations”, http://www.w3.org/TR/swbp-n-aryRelations/. 
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2.2.7   Normative Statements, Congenital Malformations, and Imputed 
Intentions 

Many of the descriptive axioms used in terminology models are actually ‘normative’ 
rather than absolute, i.e. they really pertain to our view of ‘normal’ anatomy, 
physiology, etc. This gives rise to problems when describing congenital 
malformations and mutilations. There are at least three complementary approaches to 
this problem: 

1. To adjust the interpretation of the attributes and categories. For example, GALEN 
interprets the has Division attribute in such a way that the “Hand isDivisionOf 
Arm” is true even if the hand is severed from the arm. Since we may still wish to 
represent information about the missing hand relating it to its original owner, this is 
the best ‘logical approximation’.  

2. To model both normal and abnormal, but use the interface and related mechanisms 
to limit the initial display view only to the normal conformation. The 
PEN&PAD/Clinergy systems based on GALEN[30, 38] used this approach in 
many places.  

3. To model anatomical normality explicitly, so that almost all statements become 
statements about “normal hand”, “normal body”, etc. Although elegant, and 
discussed at greater length in [47, 53], the additional complexity in both modelling 
and computation combined with the large size of the GALEN ontology made this 
approach impractical.  

Normative statements give more difficulty when applied to procedures and 
treatments. Consider O’Neil’s classic example, “Insertion of pins in the Femur” [39], 
which is almost always performed only in order to fixate a broken femur. If a 
classifier is to infer that it should be classified under “Operations to fixate long 
bones”, then the information about the goal of the procedure must be added to the 
description of the method. However, to do so risks imputing unstated intentions to the 
clinicians using the terminology. GALEN is cautious about adding such unstated 
normative descriptors, but has found that some cannot be avoided if the classification 
expected and intended by users is to be maintained. 

2.3   Logical Issues 

2.3.1   Negation and Uncertainty 
Negation and uncertainty lead to difficulties for at least four reasons: 

1. The meaning of negation and uncertainty in clinical observations is unclear. For 
example, where no mention of diabetes exists in a medical record, what should be 
the answer to a query “Does the patient have diabetes?” Most database systems 
would answer “no” on the basis of a ‘closed world assumption’ and ‘negation as 
failure’ – the assumption that all relevant information about the domain of 
discourse is contained in the database and that therefore failure to find a fact can be 
taken as equivalent to its negation. In many clinical applications, neither 
assumption seems safe. Furthermore, if uncertainty is catered for, should it be 
included with negation or be a separate dimension? e.g. what are the comparative  
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meanings of “possibly present” and “possibly absent”? Whatever choice is made, 
can we count on doctors to use it consistently? Dare we therefore support or 
depend on it? 

2. The scope of negation is often unclear. At least three cases must be distinguished: 
a) “It is not the case that the patient has X”; b) “The patient has non-X” e.g. 
apyrexia (no fever), atonia (no muscle tone), amastia (no breast); and c) “The 
patient has X but not some specific kinds of X”, e.g. “idiopathic hypertension” 
(hypertension but not any of a list of recognised kinds), “Non-toxic goitre”, (goitre 
but not any of the toxic varieties”) or “non-A non-B hepatitis” (hepatitis but not 
that caused by either the hepatitis A or B virus). 

3. Adding negation and uncertainty to formalisms increases their computational 
complexity and makes canonization difficult. Even ontologies based on underlying 
formalisms that support negation may choose not to use it.  

4. Negation and uncertainty are often represented in information systems models 
e.g. the HL7 Reference Information Model (RIM)9. If negation can be 
represented both in the information system and in the ontology, then the meaning 
of all possible combinations of negations in the two systems must be defined. 
(See[50, 54, 55].) 

GALEN’s GRAIL formalism does not support negation, but the GALEN Common 
Reference Model includes constructs such as “presence” and “absence” which 
provide a limited ‘work around’ and that can be qualified by an uncertainty.  

2.3.2   Defaults and Indexing 
The definition of “B is a kind of A” in formal logical representations is that “All Bs 
are As”. Hence, all of the properties in the definition and description of ‘As’ must also 
apply to ‘Bs’ without exception. Adding exceptions to such logical patterns has had 
little success [15], although it remains an area of ongoing research. This contrasts 
with most, although not all, frame systems in which default values for a ‘slot’ 
(equivalent to a GRAIL attribute) can be both inherited and overridden. 

However, if additional facts are indexed by an ontology that conforms to this 
logical definition of ‘is kind of’, then it is still possible to use the ontology in 
conjunction with other inference mechanisms to reason about defaults and exceptions.  
For example, a logical subsumption hierarchy from an ontology of drug classes can be 
used to index potential side effects, even though some side effects are subject to 
exceptions [71]  The scaffold provided by the subsumption hierarchy can be used to 
select the most specific candidate side effects using the standard “Touretzky distance 
measure” [78]. 

GALEN refers to such indexing statements as “extrinsic” because they do not 
affect the classification and are therefore not part of the ontology proper but rather use 
the ontology as, in Wood’s [85] phrase, a “conceptual coat rack” on which to hang 
other information. 

GALEN’s experience is that if the taxonomies are properly orthogonal – i.e. if the 
ontology is normalised – the set of candidate values usually has exactly one member. 

                                                           
9 http://www.hl7.org. 
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If it does have more than one member, then GALEN treats this as a signal that other 
reasoning methods and knowledge are required.  

2.3.3   Definitions and General Inclusion Axioms 
Unlike most DLs of its generation including that used in SNOMED-CT, GRAIL 
allows defined categories (“classes”) to be further described by “necessary 
statements”. This means that GALEN’s authors do not have to choose between 
making all of the characteristics of an entity part of its definition (i.e. necessary and 
sufficient) or all merely necessary. For example, consider the notion that “severing of 
an artery” causes “haemorrhage”.  One would not want “causing haemorrhage” as 
part of the definition of the severing of an artery – e.g. Severing which actsOn Artery  
– because then we should have to state explicitly that “severing the aorta” had caused 
a haemorrhage before a machine could classify it as a “severing of an artery”.  On the 
other hand, we would want the ontology to include the information that all such 
injuries are kinds of injuries that cause haemorrhage.   Such additional necessary but 
not sufficient conditions are known in description logic as “general inclusion 
axioms”.  

2.3.4   Embedded Expressions 
If a category’s representation depends on its use, then this limits its re-use. Categories 
such as “lobe of the liver” or “fluid in cyst in the kidney” should appear the same 
regardless of context – whether as aspects of disease, targets of surgery, substances to 
be injected or drained, or specimens in a pathology examination. Since many of these 
categories are themselves composite, a primary requirement on the GRAIL language 
was that it allow definitions to be recursively embedded within other definitions to 
any degree required. For example, GRAIL supports expressions such as “upper part of 
third segment of middle lobe of right lung”. Such embedding is impossible in most 
frame languages and has not been used in SNOMED-CT, beyond the mechanism of 
“role grouping” for a single level of embedding.  

2.3.5   Transitive Attributes and Inheritance Across Transitive Attributes 
Part-whole relations, causal links, and connections are all transitive. Some other 
attributes, though not themselves transitive, are ‘inherited’ across these transitive 
attributes. Establishing the pattern of transitive relations and the inheritance along 
them is a key part of any ontology of medicine [46].  

GALEN’s original primary use for transitive attributes was for part-whole 
relations; its original use case of inheritance across transitive attributes was for 
representing the patterns “The disease of the part is a disease of the whole” and “The 
procedure on the part is a procedure on the whole”. These two specific cases might 
now be implemented instead by SEP triples [24, 25] or one of their variants [42]. 
However, GALEN also uses inheritance across transitive attributes to support several 
other clinically important inferences in an otherwise relatively ‘weak’ description 
logic. For example:  

1. 1)In the representation of syndromes, to represent the fact that the presence of a 
syndrome implies the presence of each disease in the syndrome. 
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2. 2)In the representation of procedures, to represent that a global procedure acts on 
all of the structures acted on by its subprocedures.  

3. In the representation of anatomy, to represent that where a subbranch of a larger 
vessel supplies blood to a particular structure, then this implies that the larger 
vessel also supplies blood to that structure 

In GALEN, such axioms are implemented by the use of the specialisedBy construct, 
equivalent to “right identities” in SNOMED-CT’s representation. 

In addition, GRAIL supports a construct for ‘single valued’ transitive attributes, 
which is interpreted as indicating that the transitive attribute must form a tree. This 
avoids the need to provide non-transitive “direct” subattributes of transitive 
attributes.10 

2.3.6   Issues Minimally or Poorly Represented 
1. Adjacency and spatial/temporal reasoning. A “fracture of the tibia and fibula” makes 

sense; a “fracture of the tibia and humerus” does not. GALEN provides very limited 
support for this type of reasoning, although there have been experiments with several 
work arounds. Likewise for more complex relations involving spatiotemporal 
reasoning and its interaction with plausible mechanisms of injury or pathophysiology. 
It is assumed that these will be dealt with either by the information model or by 
separate reasoners outside the central terminology/ontology. 
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Fig. 1. Grail modeling constructs 

                                                           
10 See Simple Part-Whole Relations in OWL ontologies, Rector & Welty (eds.)  

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/  
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GRAIL OWL DLs

(FaCT/Racer)

OntoClean/

Dolce

Logic

Category Class Class (unary) Predicate unary predicate /
Type

Attribute Property Role Relation Binary predicate/
Relation

necessary statement
topicNecessarily

subclassOf() axiom “General inclusion
axiom”

implies (Ç)
 

Fig. 2. Comparsion of Grail and other vocabularies 

2. Numerical conversions, calculations and other ‘non-terminological’ reasoning. 
There are numerous services that users might naturally expect to be packaged with 
a terminology but which require entirely different types of reasoning from logical  
classification based on definitions, descriptions and first order logic. The most 
obvious of these are conversion between different unit and coordinate systems. 
GALEN’s intention has always been to package these services separately within 
the ‘terminology server’, and the architecture provides for them although, in 
practice, none have been implemented. However, they are strictly excluded from 
the “ontology” or Common Reference Model (CRM). 

3   The GALEN Upper Domain Ontology 

The GALEN Common Reference Model is presented here using the notation of 
GALEN’s GRAIL language. However, the presentation is intended to be sufficiently 
general to allow comparison and potential harmonisation with other clinical ontologies 
such as that of SNOMED-CT11, the Digital Anatomist Project [34, 63], where 
appropriate with the Gene Ontology and other ontologies from the Open Biomedical 
Ontologies (OBO) group [76, 77]12, with more language oriented work such as that of 
Zweigenbaum [91] or Hahn [23], or with more general upper ontologies such as 
DOLCE/OntoClean from Guarino and Welty [33, 74, 83], SUMO13 or Smith’s Basic 
Formal Ontology and its biological adaptations [13, 70]. The full ontology is available 
from the OpenGALEN web site, http://www.opengalen.org, and a detailed description 
of the GRAIL language is available in [46]. A short summary of GRAIL notation as 
used in this paper and its equivalents in OWL and standard German DL notation along 
with notes on unusual features is given in Figure 1, and additional vocabulary 
comparisons are given in Figure 2. The GALEN vocabulary is explained in the text. 

This paper focuses on the issues raised and is not intended as a guide to the current 
implementation. In some cases, the constructs and language used reflect more recent 
developments not fully implemented in the existing resources available from 
OpenGALEN. Where there are significant departures from the actual implementation, 
they are noted in the text.  

                                                           
11 http://www.snomed.org 
12 http://http://obo.sourceforge.net/ 
13 http://suo.ieee.org/ 
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Fig. 3. Primary structure of Galen’s Toplevel Categories 

The ontological patterns described in this paper are for the raw, underlying 
ontology. GALEN treats this ontology as an ‘assembly language’ that few users ever 
see. The goal of this underlying ontology is to be unambiguous and result in correct 
classification. Intuitive presentations to users are dealt with via intermediate 
representations and tools [48, 56, 60] which are outside the scope of this paper. 

3.1   The Top Level Categories 

3.1.1   Top Level Distinctions 
The primary structure of GALEN’s top level categories is shown in Figure 3. 
GALEN’s top level distinction is between self-standing entities, or Things, and 
everything else, termed Modifier Categories. Things are roughly equivalent to 
‘sortals’ in DOLCE and are further divided into 

 GeneralisedStructure abstract or physical discrete Things with parts that 
exist at particular times, e.g. bodies, organs, cells,… 

 GeneralisedSubstance abstract or physical continuous Things with parts 
which exist at particular times, e.g. tissues, fluids,… 

 GeneralisedProcess changes which occur over time, e.g. metabolic 
processes, procedures, … 

These distinctions are now common currency although under different names. 
GeneralisedStructure and GeneralisedProcess together are approximately equivalent 
to “endurants” in DOLCE , or “continuants” in the BFO and many other ontologies. 
GeneralisedProcess is equivalent to “occurents” in the BFO and “perdurants” in 
DOLCE. GeneralisedSubstance corresponds to “Amount of matter” in DOLCE but 
has no equivalent in BFO. The structure was originally adapted from Lenat and Guha 
[31], but where they maintain a distinction for processes analogous to that between 
GeneralisedStructure and GeneralisedSubstance – e.g. between “the digestion of a 
meal” and “the activity of digestion”– GALEN does not, because knowledge 
engineers and users found it to be confusing and difficult to maintain reliably. Neither 
DOLCE nor BFO support this distinction nor, it appears, does the current version of 
OpenCYC.14 For different reasons, the notion of “Thing” as the common parent of 
GeneralisedStructure and GeneralisedProcess was left implicit, as its labelling led to 
arguments about language. GALEN does not make the distinction between “function” 
                                                           
14 http://www.cyc.com/doc/ 
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and “process”, i.e. between the potential for a process to occur and an occurrence of 
the process, as made in BFO and DOLCE.  

3.1.2   Modifiers 
The first level break down of ModifierCategory falls into: 

• Aspect and Modality15 
Aspect ‘modifiers proper’ that refine a category, e.g. size, shape,

age, laterality, etc16.  
Modality Separate notions that take part of their meaning from the pri-

mary things, e.g. family history of, risk of, history of, etc.  
• Other categories that are dependent on self-standing entities for their full 

meaning 
Role sometimes arbitrary categories used to make elementary tax-

onomies orthogonal, e.g. DoctorRole, HormoneRole, Drug-
Role, etc.  

Collection set, system, multiple, etc. GALEN’s collections are not
mathematical sets but rather various forms of general
collection such as vertebrae, the cells in the liver, etc.
GRAIL supports no special operations on collections. 

• Miscellaneous categories with special significance or behaviour  
Unit units of measure, e.g. mg, ml, day, … 

Of the above, the most complex is Aspect, which is further subdivided into: 
 Feature reified attributes (see 0) representing mutable properties e.g.

severity, duration, etc. To have meaning, Features must be 
further refined either by one or more States in a “Feature-state 
pair” (e.g. Temperature which hasState hot) or by the entity 
that it is a property of (e.g. Length which isLengthOf Bone).  

 State (usually) closed sets of qualitative ‘value’s that may be
assigned to Features, e.g. mild, moderate, severe. 

 Quantity used to refine Features with quantitative values, including 
numerical magnitudes and units or levels 

 Selector immutable properties  e.g. laterality (left/right) and position 
(upper/middle/lower) etc. of anatomical parts. Selectors 
identify a specific entity rather than modifying it17.  

 Status Modifiers other than selectors that are not reified; many are used
to support special inference in the model or in applications 
using the model, e.g. normal/nonNormal, countable/indefinitely
Divisible/mass, and various topological indicators18.  

                                                           
15  The labels “Aspect” and “Modality” were arrived at after much internal discussion. “Modality” 

corresponds roughly to what SNOMED-CT refers to as “Axis modifying qualifiers” and 
“Aspect” to “Non-axis modifying qualifiers”. 

16 Corresponds approximately in SNOMED-CT to “non-axis changing qualifiers”. 
17 In terms of OntoClean, selectors are part of what gives an individual an identity. A left hand 

cannot cease to be of laterality left without becoming something different.  
18 Also used as a ragbag for qualitative values not currently represented as feature-state pairs.  
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Most mutable properties except Statuses are reified in GALEN to feature-state-
pairs, e.g. Disease which hasFeature (Severity which hasState severe). By contrast, 
Selectors are immutable and always linked directly to the entity they modify by a 
single attribute, e.g. Hand which hasLeftRightSelector rightSelection. Status in 
GALEN is defined by engineering rather than ontological principles; it includes 
primarily immutable properties such as an organs topology but also the sometimes 
mutable property of whether or not a given entity is nonNormal and/or 
pathological. 

The special Quantity19 Level is used amongst other things to represent the recurrent 
pattern in departures from expected values first pointed out by Shahar [68]. Level 
takes a series of subattributes of hasState – hasAbsoluteState, hasChangeInState, 
hasTrendInState, hasRelativeLevelState, and hasExpectedLevelState. This allows the 
expression of complex notions such as “temperature with an absolute state of 39°C, 
which is falling, but which is still elevated (i.e. higher than expected)”. 
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Collection 
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Role 

Unit 
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Aspect

 

Fig. 4. Sescondary structure of Galen’s top level categories 

3.1.3   Phenomenon – Secondary Structure for Top Level Categories 
As with many ontologies oriented to a particular domain, GALEN requires a very 
high level disjunctive category to allow representation of key clinical generalisations. 
In GALEN this category is labelled Phenomenon, the common ancestor of anything 
that can be, or can be modified to be, worth noting clinically as either nonNormal or 
pathological. GALEN lacks an operator for disjunction, so Phenomenon is added 
manually, as shown in Figure 4, as the common parent of the subsidiary categories. 
As defined, this is clearly too inclusive to meet GALEN’s original goal of 
representing all and only what is clinically sensible. However, the effort to tighten the 
constraints whilst avoiding arguments over issues such as whether or not an infected 
prosthesis can be pathological has not so far been warranted.  

                                                           
19 Whether “Level” should be a Quantity or a Feature has been a matter of some controversy 

but is without obvious consequences for the inferences to be made.  
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3.1.4   Breaking Up Long Lists: The NAMED… Convention 
The principle of orthogonal taxonomies combined with the principle that all 
anatomical entities be treated as natural kinds, results in a broad flat hierarchy of 
elementary categories that is difficult to work with. For convenience, GALEN breaks 
this hierarchy up by introducing categories such as NAMEDArtery, NAMEDJoint, 
NAMEDSensoryPart etc.  

3.2   Top Level Attributes20 

3.2.1   Primary Distinctions 

In GRAIL, as in many but not all other description logics, one attribute (“role”, 
“property”) can be a kind of one or more others, just as one category can be a kind of 
another. DomainAttribute is the root of the attribute polyhierarchy, and it breaks down 
into three major branches, each of which will be discussed in turn.  (Note that all 
attributes in GRAIL have inverses that have been omitted in this paper for clarity.  By 
convention, attributes and their inverses are named by analogy to isPartOf and 
hasPart.)  

 ConstructiveAttribute Relations between self-standing entities (Things), 
ie. GeneralisedStructures, GeneralisedSubstances, 
and GeneralisedProcesses 

 ModifierAttribute Relations between Things and ModifierCategories 
 TemporalAttribute Relations between Statuses involving time 

(deliberately weak, see 2.3.6) 
   WrapperAttribute Used in ClinicalSituations (see 5) 

3.2.2   ConstructiveAttribute 
ConstructiveAttribute further breaks down into three primary subattributes plus the 
domain specific secondary attribute, LocativeAttribute (alias involves).  

 PartitiveAttribute Part-whole relations –e.g.  isDivisionOf -  see 4.1.1 
 StructuralAttribute Non-partitive relations e.g. isServedBy, isBranchOf,  

isSpaceDefinedBy, etc.  
 FunctionalAttribute Functional relations such as isFunctionOf, actsOn 

etc. 
 LocativeAttribute   
   (involves) 

A heterogeneous disjunction of locative, purposive, 
functional and causal relations, e.g. 
isConsequenceOf, isFeatureOf 

- hasLocation The relation between a disease and the anatomical 
or physiological entity in which it is localised. NB 
does not imply physical location.21 

                                                           
20 “Properties” in OWL; “Roles” in standard DLs; “relations” in standard mathematical terms; 

“semantic link types” in CEN TC251/ISO TC215. 
21 Because the naming of the attribute “hasLocation” has led to confusion in alignment with 

other ontologies, for conversions and other external uses it has been renamed to “hasLocus”. 
Approximately equivalent to the SNOMED-CT “site”.  
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The key construction in most medical entities is to localise a disease or procedure to 
an anatomical or functional entity or to one of its parts. Correspondingly, the most 
common pattern in GALEN for disease or procedure entities is: 

Disease/Procedure which LocativeAttribute BodyStructure/Process 

specialisedBy Example 
hasLocation isDivisionOf Disease hasLocation (Part which isDivisionOf Whole)   

Disease hasLocation Whole 
isComponentOf isSubdivisionOf Bone isComponent of (Finger which isDivisionOf 

RightHand)  
          Bone isComponentOf RightHand 

isLayerOf isSubdivisionOf Skin isLayerOf (Hand which isSubdivisionOf 
UpperExtremity)  
          Skin isLayer of UpperExtremity.  

isBranchOf isLinearDivision
Of 

CoronaryArtery isBranchOf (AscendingAorta 
isLinearDivisionOf ThoracicAorta)  
          Vessel isBranchOf ThoracicAorta 

serves isDivisionOf BloodVessel serves (Part which isDivisionOf Whole)  
         BloodVessel serves Whole 

contains isLocationOf Abdomen contains (Liver isLocationOf Tumour)  
         Abdomen contains Tumour 

actsOn isFunctionOf Drug actsOn (PathologicalProcess isFunctionOf Organ) 
 

         Drug actsOn Organ 
actsOn makesUp  Process actsOn (Tissue makesUp Liver)  

        Process actsOn Liver 
contains isLocationOf BodySpace contains (Organ isLocationOf Lesion)  

       BodySpace contains Lesion  

Fig. 5. Important uses of the specialisedBy construct indicating inheritance along a transitive 
role and equivalent to SNOMED-CT right identities 

3.2.3   ModifierAttribute 
The modifier attributes and modifier categories are intimately tied, one main branch 
of the attribute hierarchy for each branch of the ModifierCategory hierarchy: 
modalityAttribute, RoleDesignatingAttribute, CollectionAttribute,  UnitAttribute and 
the attributes related to Aspect – isFeatureOf, isStateOf, QuantityAttribute, 
SelectorAttribute, and StatusAttribute.  

Two limitations of GRAIL lead to a proliferation of subattributes that are of no 
ontological significance but can obscure the overall structure. 

1. Cardinality can be controlled only at the level of attributes – in modern parlance 
“qualified cardinality restrictions” are not supported. GRAIL shares this feature 
with OWL (in all its flavours) and SNOMED-CT, although not with most modern 
DLs. Therefore, separate subattributes must be used for single valued variants of 
attributes. 

2. The GRAIL category hierarchy represents most modifiers by reifying the relation 
to a kind of Feature. Since each individual can have many Features, but only one 
of each kind of Feature, a separate subattribute of hasFeature is required for each 
Feature – hasTemperatureFeature, hasHeightFeature, etc.  
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3.2.4   Structure of Inheritance Across Transitive Attributes 
In addition to the attribute hierarchy as described above, GALEN provides the 
specialisedBy construct as described in 0 for inheritance of attributes across transitive 
roles.   Some of the most important specialisedBy axioms are given in Figure 5.  

3.2.5   Additional Uses of the Attribute Hierarchy 
Two further uses of the attribute hierarchy deserve special mention. The first two are 
logical; the third is ontological. 

1. To allow single-valued and multi-valued variants of an attribute. Logically, the 
single-valued variant must be a descendent of the multi-valued variant, and its 
purpose is signalled by the infix “specific” or “specifically”, e.g. 
hasSpecificConsequence or actsOnSpecifically. Such “specific” attributes are often 
used to indicate a main, or primary action, cause, etc. 

2. As a workaround for the lack of ‘shared variables’ in GRAIL (as in other 
description logics). GRAIL provides no mechanism to represent ‘X containedIn Y 

 X part of Y’. GALEN achieves an approximation to this inference by the 
attribute isPartitivelyContainedIn, which a descendant of both IsDivisionOf and 
Contains. 

3. To allow very general queries, such as “disorders of the heart”. LocativeAttribute 
(also known as involves ) has been steadily generalised in the course of the project 
until it has become the analogue of phenomenon, a domain specific disjunction of 
the attributes needed for high level generalisations and queries. It is worth noting 
that, in this very general form, LocativeAttribute subsumes causal relations since, 
for example, classifying “spider angiomata” under “phenomena involving liver 
disorder” is appropriate. Similarly, rheumatic heart disease involves bacterial 
disease as well as a heart disease since the lesions located in heart are in response 
to an infection caused by bacterium. 

4   The GALEN Common Reference Model 

4.1   Anatomy 

One of the key aspects of any biomedical ontology is its representation of anatomy. 
Because GALEN has been used most extensively for developing terminologies of 
surgical procedures, its anatomy representation is considered the best developed and 
tested and is presented in detail below.  

4.1.1   Physical Part Whole Relations and Physical Connection 
There has been much study of parts and wholes – in GALEN’s parlance “partitive 
relations”– in AI generally, e.g. [40, 84], and in description logics more specifically 
[1, 2, 41]. An entire subfield of philosophy and linguistics - “mereology” - is devoted 
to their study [4, 9, 82]. Technical details of how GALEN’s mechanism for 
inheritance across transitive properties is applied to parts and wholes, and how this 
relates to other formalisms, can be found in [42]. Since GALEN’s ontology was 
established, variants on Schulz and Hahn’s SEP triples formalism have been widely 
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used as a means to implement related ideas [24, 25, 65-67]; these will be further 
considered in the discussion section. 

As anatomy is physical, we deal here only with partonomy as it relates to physical 
things22. The basic axioms of the GALEN model of partonomy are as follows: 
Rule 1) All primary partitive attributes between discrete objects are transitive. This 

includes isLayerOf on the grounds that anatomical layers are always 
concentric [56].  

Rule 2) Diseases/disorders/procedures of/on a part pertain also to the whole 
Rule 3) “Connection” is transitive23 but not always partitive. A combined attribute, 

isPartitiveConnectionOf, is provided for cases where it is partitive;  
Rule 4) “Branching” is neither partitive nor transitive, although because isBranchOf 

is refined along isLinearDivisionOf (See  
Rule 5) and Section 2.3.5 above), branches of linear divisions are branches of the 

whole, e.g. branches of the infrarenal aorta are classified under branches of 
the abdominal aorta.  

Rule 6) Connected physical sets such as the “digestive tract” are distinct from 
functional systems such as “the digestive system” 

Rule 7) Membership in collections is not partitive, contrary to [40, 84]. 

GALEN then classifies the range of possible part-whole relationships between 
discrete physical parts along several axes, with strong constraints based on the 
topology of the arguments and whether they are Structures (discrete) or 
SubstanceOrTissues (continuous/mass). 

isDivisionOf The most general partitive attribute 
- isLinearDivisionOf Relates any two topologically linear structures, 

e.g. between an arterial segment and the artery 
- isSurfaceRegionOf Relates a two-dimensional structure to a three-

dimensional structure, such as between an 
organ and its surface 

- isSolidRegionOf Most general relationship between any two 
three-dimensional structures. 

- - isLayerOf Relates things like skin or muscle or 
periosteum that occur in all divisions of an 
entity to that entity. 

- - isSolidDivisionOf Relates all other three-dimensional entities, ie 
wherever the relationship is not ‘layer-of’ 

- isComponentOf Relates discrete things like joints, ligaments 
and organs that occur only in one or more 
divisions of an object 

- -
 isFunctionalComponentOf 

Participates in a specialisedBy axiom such that 
functions of the part are also functions of the 
whole. 

                                                           
22 Physical endurants/continuants in DOLCE/BFO’s parlance. 
23 Other authors take connection as only symmetric, and not transitive. GRAIL does not support 

symmetric relations, while GALEN’s “connection” corresponds to the transitive closure of 
all direct and indirect connectivity, where a true ‘directly connected to” relation would 
indeed not be transitive. 
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These partitive attributes are further related by the following rules: 

Rule 8) Components of any discrete part are components of the whole, e.g. the 
chordae of the leaflets of the valves of the ventricles are components of the 
heart. 

Rule 9) Layers of divisions are layers of the whole, e.g. the skin of the hand is a kind 
of skin of the upper extremity.  

Rule 8) above is a pragmatic approximation and the one case in GALEN where part-
hood and subsumption are deliberately conflated. The rule should be: “Layers of 
divisions are divisions of the corresponding layer of the whole”, e.g. “The hand is a 
division of the upper extremity; therefore the skin of the hand is a division of the skin 
of the upper extremity.” Unfortunately, this rule is outside the expressivity of 
description logics24 [42]. In practice, we have not discovered any errors due to this 
subsumption at the gross level of anatomy needed for GALEN’s focus on diseases 
and procedures, although it would not be adequate for some parts of developmental 
anatomy.  

Rules 2,4,7 & 8 are implemented by the use of the specialisedBy25 construct for 
propagation along transitive roles (see 2.3.5). 

One rule was not properly implemented in GALEN although it appears in various 
places in the documentation, because the distinction between discrete components and 
subdivisions was not fully implemented. 
Rule 10) Layers of discrete components should not be layers of the whole (e.g. the 

cartilage layer of the tibial plateau should not be a kind of layer of the 
knee joint) 

One further rule would be required in most other formalisms that - unlike GRAIL - do 
not support restrictions of transitive attributes e.g. to strict trees. 

Rule 11)  All transitive attributes have a direct non-transitive subproperty. 

4.1.2   Regions 
The problem of describing what clinicians refer to as regions of the body poses 
significant headaches for a logic based ontology, not least because regions have 
borders that are either ill defined or defined differently by different experts and even 
different text books. In addition to these difficulties, the following challenges were 
encountered: 
1. Regions named identically with the primary structure that they contain, e.g. ‘knee’ 

may refer either to the knee joint or the knee region. GALEN treats both “regions” 
and associated primary structures as primitives, with the structure being necessarily 
isStructuralComponentOf the region. (Note that GALEN’s naming convention 
assigns the ‘simple’ name to the surface region, e.g. “Chest” or “Knee”, whereas 
the FMA assigns it to the associated structure.  GALEN’s Knee corresponds to 
FMA’s “Region of the knee”; GALEN’s KneeJoint is FMA’s “Knee”) 

2. Regions defined as those areas of (unspecified) tissue that have a particular, though 
often loosely bounded, spatial relationship to some named structure (e.g. paracolic 

                                                           
24 It requires at least three variables to express the rule in formal logic. It is therefore is outside 

F2, first order logic with two variables. All DLs are subsets of F2.  
25 Often expressed in the actual source files by its converse, refinedAlong – see Fig 1.  
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gutter) or are simply ‘near’ them (e.g. perianal abscess). GALEN defines such 
structures using the special attributes hasProximity (e.g. perianus), isParallelTo 
(e.g. paramedian line), isColinearWith (transurethral route) and passesThrough 
(e.g. percutaneous route).  

3. Regions named according to their clinical significance and whose boundaries 
cannot be inferred on the basis of purely anatomical relations: e.g. the 
“precordium” is the region of the chest specifically associated with observation and 
auscultation of the heart. GALEN represents such structures as primitives, though 
these may be further described using one or more of the partitive, spatial and 
proximity attributes. 

4.1.3   Generic Bits and Pieces 
Notions such as “capsule”, “spine”, or “edge” are widely used in anatomy to identify 
elements of anatomical structure – e.g. “capsule of kidney”, “spine of 5th lumbar 
vertebra”, “edge of liver” etc. In modelling such generic notions there are two 
choices: 

1. To represent the generic notions as elementary and the real anatomic structures as 
defined compositions, e.g. “Angle which isSubdivisionOf Mandible”, ”Pole which 
isDivisionOf Kidney”, etc.  

2. To represent each occurrence of the substructure individually as elementary, e.g. 
AngleOfMandble, PoleOfKidney, etc. 

In general, GALEN has chosen 1) because a) there seems to be sufficient 
commonality in notions such as “lobe” or “pole” that some are used for 
classification, e.g. “Lobulated organ” e.g. in the FMA, and b) the partitive 
relationship between such substructures (e.g. renal pole) and the anatomical entities 
of which they are part (e.g. kidney) appears to be defining in nature, rather than 
only incidentally true26. 

4.1.4   Tissues, Cells and Substances: Mass, Discrete, and IndefinitelyDivisible27 
Most western languages make a distinction between a) “mass nouns” and “count 
nouns”. Mass nouns such as “water” and “sand” are normally used in the singular; 
count nouns may be either singular or plural. Lenat and Guha make a corresponding 
semantic distinction between mass “stuff” and discrete “things” [31]. DOLCE makes 
the corresponding distinction between “Amount of matter” and “Physical object”; the 
realist stance of the BFO28 [4] does not support this distinction. 

In GALEN, structures and substances have a countability that is one of: 

 discrete Bones, organs, membranes, etc.(“countable”) 
 mass Substances and tissues  
 - indefinitelyDivisible  
 - indefinitelyMultiple 

Cells, grains of sand, etc.  
(present but not used in existing model) 

                                                           
26 In terms of other philosophical constructs, the notion of “renal pole” can be considered as 

“analytic”.  
27 Actually termed “infinitelyDivisible” etc. in the implemented version.  
28 http://ontology.buffalo.edu/bfo/BFO.htm 
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The indefinitelyDivisible category covers things like cells that are usually treated en 
masse, as in their count-concentration in a body fluid, but which can have discrete 
parts. A general mechanism for dealing with granularity has been developed from the 
GALEN experience, though the issue was never extensively explored in GALEN 
itself. 

4.1.5   Topologies, Cavities, Spaces, Lines and Anatomical Landmarks 
All solid structures in GALEN have a topology that may be topologicalyHollow or 
topologicalySolid. Being solid is simple; GALEN recognises the following kinds of 
being hollow: 

surfaceHollow Surface regions such as the “abdomen” which overlie 
a cavity and are often seen as having things in them 

trulyHollow Properly hollow structures,  
- actuallyHollow Not bilayered 
- - closedHollow No openings 
- - tubularHollow One or two openings. The cavity defined is a Lumen. 
- bilayered Membranes such as the pericardium and pleura, 

where the layers are normally in apposition such that 
the space between them is abolished for all clinical 
purposes (a potential space) 

TrulyHollow body structures define a Cavity, which is related to the object that 
defines it by the attribute definesSpace, which is not partitive in the current 
implementation.  The more general notion of a Space may be defined or only partly 
described using the attribute boundsSpace to refer one or more objects that are 
coterminus with any part of the boundary of the space e.g the dura mater and the 
subarachnoid membrane boundsSpace the subdural space. 

Clinical anatomy also recognises a large number of points, lines and surfaces. 
These may be related to other anatomical structures (e.g. the pectineal line is the 
attachment of the pectineus muscle on the femur), while others such as the 
McBurney’s point, the midclavicular line, inguinal triangle and parasagittal planes are 
treated as structures by fiat. Surgical procedures may reference routes of approach 
(e.g. transoesophageal and percutaneous) that are conceptually linear in nature, 
though not strictly one dimensional. Furthermore, other notions such as the quadrants 
of the abdomen have uncertain dimensionality: though they may be defined as planar 
sections of a planar structure (e.g. the anterior abdominal wall) they may also be 
spoken of as either containing or having as part those structures lying directly below 
them. Similarly, tubular body structures (however highly convoluted in space they 
may be) are often referred to as having linear properties – they can have segments. 

Therefore, all PhysicalStructures are assigned (or inherit) a Topology29 value: 
linear, laminar or solid.  In addition, to deal with cases such as the intestine and 
quadrants of the abdomen they may be given an AnalogousTopology30 value.   The 
Topology governs constraints such as that only a SolidStructure may contain another 

                                                           
29 Actually “Shape” in OpenGALEN for historical reasons 
30 Actually “AnalogousShapeValue” in OpenGALEN for historical reasons 
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PhysicalStructure, and that a LinearStructure can only have another LinearStructure 
or a Point as a subpart. The AnalogousTopology governs constraints such as whether 
a topologically hollow structure is elongated to be Tubular and can therefore have 
linear divisions. 

GALEN recognises two further generic anatomical notions: SurfaceVisibility – 
whether a structure is internal or external – and PairedOrUnpaired – whether a 
structure comes in paired variants (left/right, medial/lateral etc.) and if so, whether 
they are mirror images of each other (e.g. hands) or not (e.g. cardiac ventricles). 

Finally, whilst GALEN has avoided many of the difficulties inherent in 
representing non-normative anatomy such as arises through disease (see 2.2.7), even 
‘normative’ human anatomy is inherently sexually dimorphic. GALEN’s approach to 
sexual dimorphism is as follows: all primitive anatomical structures that are specific 
to one sex only (e.g. uterus, testis) are assigned a male or female phenotype value. 
Structures present in both sexes and with no sexual dimorphism have no phenotype 
value. Structures with dimorphic variant subforms (e.g. breast) carry no phenotype 
value, but their male- and female-specific variant subforms are instead defined (e.g. 
Breast which hasPhenotype male). Part-whole relations are asserted so that e.g. the 
sex unspecific PelvicCavity is asserted to contain the Rectum, but only the 
FemalePelvicCavity contains the Uterus (and also, by inheritance from its ancestor 
PelvicCavity, the Rectum). 

4.1.6   Arbitrary Portions 
Clinical descriptions of practical interactions with real anatomy (as opposed to 
descriptions purely of idealised canonical anatomy) often involve the notion of an 
arbitrary portion of a named anatomical structure. For example: removal of a segment 
of artery; excision of a piece of liver; tumour in the distal third of the humerus. The 
particular term chosen to denote the portion – e.g. segment, chunk or slice – may 
imply a particular topology of both the target structure and the referenced portion, as 
well as a particular partitive relationship holding between them.  

Building on its strong typing of topology and partonomy as already described, 
GALEN represents arbitrary portions by means of a single primitive entity: 
SolidRegion. Individual arbitrary portions may then be described as a SolidRegion 
that has a particular partitive relationship with some structure. The topological 
properties of the portion itself may then be inferred from the topology of the structure 
of which it is part, and the nature of the partitive relation. Thus, a Segment can be 
defined as a SolidRegion which isLinearDivisionOf LinearStructure and must itself 
have LinearAnalagousShape. 

4.1.7   Reciprocal Expressions 
Unlike most representations of anatomy based on description logic, GALEN contains 
both statements of the form B is_part_of A, equivalent to  “All Bs are part of some A” 
and A has_part B, equivalent to “All As have part some B”. For example, both “(All) 
Hand isDivisionOf (some) Arm” and “(All) Arm hasDivision (some)Hand” can be 
represented. Such statements are terms “reciprocals”.  Neither separately implies the 
other even though is_part_of and has_part are mutual inverses. Modern “Tableaux 
reasoners” such as FaCT [27, 28] and Racer [22] are intrinsically exponentially 
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explosive in the face of even small numbers of reciprocal statements. This does not 
occur in GALEN because the structural algorithms used by GALEN’s GRAIL 
classifiers while incomplete, are efficient even for very highly connected ontologies 
containing many reciprocals. 

This allows GALEN to be much more precise about normative anatomy than 
systems, such as SNOMED-CT, which confine themselves to “isPartOf”. However, 
strictly speaking, it is not true to say that all arms have hands as parts, but only that 
normatively arms have hands as parts. However, the advantages of being able to 
express both sides of such relationships outweigh the disadvantages. For purposes of 
expressing clinical information, the normative interpretation is almost always 
appropriate, provided notions such as “missing” supplement it.  

4.2   Processes and Functions 

GALEN uses a relatively simple model of processes and functions. No distinction is 
made between mass and discrete processes or between processes and events. There 
are a few primary attributes linking the structure together 

actsOn Processes act on other phenomena: 
processes, structures, or substances.  

hasConsequence The primary causal attribute – see 4.3.2 
below 0 below 

– hasUniqueAssociatedProcess Links processes to their outcomes. 
Used in process-outcome duals such as 
UlcerProcess and UlcerLesion – see 
2.2.5 above 0 above  

isFunctionOf Links processes to their actor or the 
organs or organ system which carry 
them out  

isSubprocessOf The single primary partitive attribute 
for processes.  

hasGoal Links processes to their intention 
(either another process, or a state or a 
structure) 

All of the above functions except isSubprocessOf are locative – i.e. all are subsumed 
by involves – so that any pathological process linked to an anatomical structure or 
process by any chain of these attributes will be considered localised to that structure. 

Unusually, GALEN has no notion analogous to “agent” in other systems. Agency 
is a primary concern of most models of medical record and other information systems 
in which the GALEN Common Reference Model (CRM) is likely to be used. 
Therefore it is explicitly left to those systems and excluded from the CRM. There is, 
however, the notion of “intention” which is required to describe surgical procedures, 
and of a VolitionalAct – a process that has a voluntary intention. However, within the 
terminology resources, there is no need for a means to identify the actor who will, 
almost by definition, not be known to it. 

Despite its relatively simple structure, this pattern has proved sufficient for 
extensive modelling both diseases and surgical procedures, including the development 
of the complete French national surgical procedure classification CCAM [57]. 
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4.3   Diseases 

4.3.1   What is a “disease”? 
What is a “disease” or “disorder”? What does it mean to say that something is 
“normal”, “abnormal”, “pathological” or “physiological”? There are many 
philosophical definitions31. GALEN based its decisions on the pragmatic outcomes 
required: a sufficient logical approximation that would achieve classifications 
acceptable to our experts. Required consequences include being able to: 

1. Distinguish normal from abnormal anatomy and to list normal anatomical parts, 
connections, etc. for any structure. 

2. Identify entities whose presence was potentially noteworthy in a medical record  - 
i.e. “abnormal” 

3. Identify entities as in potential need of medical management – i.e. as 
“pathological” 

4. Represent the notion of being “abnormal but not pathological” – defined 
pragmatically as “note-worthy but not in need of medical management” 

5. Represent that the presence of some entities is always pathological, e.g. a 
malignant tumour or fracture. 

GALEN provides two separate status distinctions intended to address these specific 
requirements: normal vs nonNormal and pathological vs physiological with 
associated status attributes hasNormalityStatus and hasPathologicalStatus. In addition 
it provides stronger versions of nonNormal and pathological, intrinsicallyNonNormal 
and intrinsicallyPathological for those cases in which a category’s presence is always 
nonNormal or pathological. Using GRAIL’s necessary statement mechanism, it is 
possible to express the following rules: 

1. intrinsicallyPathological  pathological  nonNormal 
2. intrinsicallyNonNormal  nonNormal 

Note that intrinsicallyNormal does not imply normal nor does 
instrinsicallyPhysiological imply physiological. These categories are provided for 
symmetry and convenience only. 

The closest logical approximation to “disease” or “disorder” in GALEN is 
PathologicalPhenomenon, defined as:  

 Phenomenon which hasPathologicalStatus pathological. 

Combining this notion with the general locative attribute involves allows broad 
disease categories to be defined, e.g. “cardiovascular disease” is represented as 
CardiovascularPathology defined as: 

 Pathologica Phenomenon which involves CardiovascularSystem 

The label PathologicalPhenomenon has been explicitly chosen to avoid implying too 
close a mapping to any natural language phrase such as “disease”, “disorder”, or 

                                                           
31 Internal debate within GALEN revealed a surprising diversity of opinion regarding the 

meaning of both “normal” and “pathological”; the current solution is a pragmatic 
compromise intended to achieve specific functional goals. Others may prefer alternative 
labels. 
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“condition”. It has so far proved impossible to reach any consensus on reliable 
distinctions between such terms. 

4.3.2   Causation 
Causation, or aetiology, is a critical notion to medical knowledge but surprisingly 
slippery. GALEN recognises at least two dimensions around causation: 

1. Strength of association – from statistical association to physiological cause 
2. Timing – temporal relationship between cause and effect (motivated by rheumatic 

aortitis as a consequence of streptococcal infection but occurring many years later) 

Attributes indicating close causal connections are transitive – e.g. 
isImmediateConsequenceOf – whereas attributes indicating loose connections are not 
– e.g. isLateConsequenceOf or isAssociatedWith. This is a coarse grained logical 
approximation for the probabilistic attenuation of causal connection with the length of 
the causal chain.  

Multiple causation gives rise to still more complex issues. Many conditions are 
defined by their cause, e.g. “viral pneumonia”, “bacterial meningitis”, etc. What is to 
be done about conditions in which there is more than one cause? Clinicians do not 
accept the logical inference that “mixed pneumonia” is a kind of “bacterial 
pneumonia” because they have different implications for management; for the same 
reason clinicians require the ability to distinguish between a “mixed pneumonia” and 
a “viral pneumonia complicated by bacterial infection”.  

GALEN addresses this issue by providing special single-valued child attributes of 
each causal attribute marked by the naming convention “Specific”, e.g. 
isSpecificImmediateConsequenceOf. Using this convention, ViralPneumonia is 
defined as: 

Pneumonia which isSpecificImmediateConsequenceOf ViralInfection.  
Other dimensions that have been encount    ered but not modelled in detail include: a) 
which of multiple simultaneous effects is considered primary from a clinical point of 
view; and b) whether an effect is pathophysiologically a direct or indirect 
consequence of its cause.   

5   Application Constructs: Medical Records and Coding Schemes 

Two of GALEN’s specific objectives are to encapsulate categories so that they can be 
incorporated into medical records and to provide means of mapping to existing coding 
and classification schemes. A prerequisite for achieving these objectives is deciding 
what it is that must be entered into a record, and what should be mapped to a coding 
scheme. The answers to both questions require additional constructs.  

In many electronic medical records, all information must be in the coded 
expression [8, 10], e.g. a code from the Read  Clinical Terms [39], SNOMED-CT [75] 
or earlier schemes such as ICD and its clinical variants  [80].  

These terminologies have characteristics that are not easy to represent directly in 
GRAIL or similar formalisms:  
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1. They include negative as well as positive terms, for example “apyrexia” or “absent 
pedal pulse”. Many systems that include such terms have no other means of 
expressing negation. 

2. They include complexes of several conditions – e.g. A with B without C 

To cope with these characteristics, GALEN supports ‘wrapping’ one or more clinical 
entities in two outer modalities: 

 Existentiality presence or absence 
 ClinicalSituation A collection of several clinical entities to be 

recorded together as one “chunk” of clinical 
information  

For example, the expression for “Stomach ulcer with penetration but without 
haemorrhage” would be: 

ClinicalSituation which isCharacterisedBy < 
   (presence which isExistenceOf StomachUlcer) 
   (presence which isExistenceOf Stomach Penetration) 
   (absence which isExistenceOf Haemorrhage)> 

For consistency, the wrapping with ClinicalSituation and presence must be used even 
when the notion to be represented is just the presence of a single entity, e.g. 

ClinicalSituation which isCharacterisedBy (presence which isExistenceOf 
StomachUlcer) 

Note that presence/absence are not a proper substitute for negation. In the above what 
is stated logically is the absence of some Haemorrhage rather than any Haemorrhage.  
The difference between the semantics of presence/absence and true negation must be 
taken into account when retrieving information from medical records.  

However, presence/absence works well for mapping to ICD whose “broader than”/ 
“narrower than” notions work similarly. ClinicalSituation therefore provides the basis 
for mappings to traditonal coding and classification systems such as ICD9/10.  The 
details are beyond the scope of this paper, but key considerations include: 

1. The categories in the GALEN Common Reference Model (CRM) do not represent 
codes directly, rather they are mapped to codes using the indexing methods 
described in Section 2.3.2. Each ICD, or similar, code is mapped to the most 
specific corresponding GALEN entity or entities.  

2. An ICD, or similar, code may be mapped to more than one GALEN category. 
Typically this occurs if there is an “includes” or disjunctive clause in the code 
rubric. In this case it is treated as the disjunction of the GALEN categories to 
which it is mapped.  

3. “Excluding …” clauses in ICD – e.g. “hypertension excluding pregnancy” – indicate 
that a more specific code exists elsewhere in ICD. The indexing method in 1) deals 
with this automatically. No exceptions to this rule have so far been reported. 

4. Any code whose rubric includes “Not otherwise specified” (“NOS”) is mapped to 
the parent entity with a suitable annotation in the mapping. Likewise for “Not 
elsewhere classified” (“NEC”) and “Other” 

5. All consideration of the rules for handling multiple codes (volume 2 of ICD) are 
left to external reasoners. 
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6   Discussion 

6.1   Evaluation Against Criteria 

In terms of the original criteria of expressiveness, classification and parsimony, 
GALEN has been sufficiently used in real projects of significant scale to be confident 
of its expressiveness with respect to either surgical procedures or the clinical 
information needed to describe the effects and uses of drugs. Surgical procedures 
were the primary focus of the GALEN-In-USE project, and the tools developed there 
were subsequently used for the development of the French national surgical 
classification CCAM [57] and The UK Drug Ontology project [72, 86, 87]. The 
original use case in clinical information systems has been tested within a limited 
commercial deployment of a clinical user interface, PEN&PAD/Clinergy [30, 38], 
based in UK Primary Care.  

With respect to classification, cross comparisons have been undertaken with 
specific subsections of the Clinical Terms Version 3 [62] whilst the entire GALEN 
ontology has undergone extensive but ad hoc manual validation in the course of both 
GALEN-IN-USE and the Drug Ontology development. These comparisons and 
quality assurance mechanisms identified errors, but none that led to reconsideration of 
the basic structure of the ontology.  

With respect to parsimony, assessment is more difficult. Constructing an ontology 
by parsimonious re-use of a deliberately limited set of building blocks inevitably 
results in increased representational complexity in the way the building blocks are 
assembled. The question most often raised about GALEN is nearly the converse of 
parsimony, i.e. “Isn’t it over engineered?” Would a simpler starting point have been 
more effective? How much complexity is it worth accepting in return for parsimony?  
No definitive answer is available. GALEN’s response has been to hide the complexity 
wherever possible.  It treats the underlying representation suitable for logical 
classification as described in this paper as a low level “assembly language” and 
provides higher level “Intermediate Representations” for authors and users [56, 61].    

6.2   Issues with the GRAIL Formalism 

Many of the specific details of the Common Reference Model (CRM) follow from 
limitations of the GRAIL formalism; others are possible because of GRAIL’s non-
standard features.  

The most obvious easily remedied shortcoming is that cardinalities are assigned 
only to attributes and cannot be specialised when those attributes are used. This 
results in a proliferation of subattributes that obscure the basic structure.  Similarly, 
disjunction and conjunction of primitives would have helped to clarify the structure 
and made the intention of notions such as “Phenomenon” clearer.  The absence of true 
negation has not proved a serious problem; its inclusion would bring a major increase 
in complexity.  

That the structural algorithms in the GRAIL classifier are sound but incomplete is 
well known but has caused little difficulty. The main area of incompleteness can be 
dealt with relatively easily. Most concern variants on expressions of the form C1 
which attr1 (C2 which invAttr1 C1) – e.g. “a fracture in a limb which is the site of 
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trauma”. Such expressions – with cycles of whatever length – have been 
pragmatically banned from the Common Reference Model. Although legal in modern 
tableaux algorithm based reasoners, they often cause exponential explosions in 
classification time.  

As described in 2.3.5 and detailed in 3.2.4, GALEN’s constructs for inheritance 
across transitive attributes were originally designed for dealing with part-whole 
relations, but they have since proved valuable in other contexts.  The range of 
possibilities for achieving the same functionality is much greater today than when 
GALEN was devised. SEP triples [25, 67] might replace GALEN’s constructs in part-
whole relations, whilst many of their other functions might also be replaced by 
constructs in more expressive languages such as OWL.   Experimental reasoners 
supporting “role inclusion axioms” – of which GALEN’s specialisedBy construct is a 
subset – have been implemented although they are not yet widely available [29]. An 
evaluation of the alternatives against defined criteria – both human factors and 
computational tractability – would be a valuable piece of research. For a preliminary 
investigation see [42]. 

Almost uniquely amongst DL based ontologies, GALEN uses both “is part of” and 
its inverse “has part” (and their subattributes).  Both the NCI thesaurus and 
SNOMED-CT support only “is part of”, which is the form required to answer 
questions such as “What diseases affect the liver or anything that is part of the liver?” 
Including both “is part of” and “has part” makes classification computationally 
intractable using now standard tableaux based inference engines, e.g. FaCT or Racer. 
Both “is part of” and “has part” are present in the FMA, but it does not, currently, use 
DL reasoners. A solution to this limitation in description logic reasoners is urgently 
required before large biomedical ontologies can be satisfactorily managed using 
description logics based languages including OWL.32  

GRAIL is unusual in supporting general inclusion axioms (see Section 2.3.3), but 
they have proved essential for the ontology.  Serendipitously, a side effect of 
GRAIL’s restrictions and GALEN’s method of orthogonal taxonomies is that all such 
axioms are “absorbable” so that they do not have a global impact on the performance 
of tableaux reasoners [28]. 

Finally, GRAIL’s notation makes it natural to form ‘normalised’ ontologies with 
orthogonal taxonomies [44], although the language does not quite force this choice.  

6.2.1   Comparison with Other Ontologies 
In order to get meaningful comparisons between ontologies, it is first necessary to 
overcome superficial differences in naming conventions and organisations. For upper 
ontologies and their modelled extensions this requires careful examination. The most 
obvious high level comparisons are to DOLCE [17] and BFO [69, 70]. A detailed 
comparison is beyond the scope of the paper, but some general points follow. 
GALEN’s Thing maps very closely to DOLCE’s “sortals”; GALEN’s disjunction of 
GeneralisedStructure and GeneralisedSubstance maps to “Continuant” (BFO) or 
“Endurant” (DOLCE); GeneralisedProcess maps to “Occurrent” (BFO) and 
“Perdurant” (DOLCE). The major items map smoothly, but there are differences in 

                                                           
32 The computational issues are independent of philosophical discussions about the comparative 

status of the two statements, e.g. that “normal hands” have five fingers. 
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the placement of Collection and Feature that both other ontologies treat as 
“Continuants”.  GALEN is intended for use within medical record systems where 
temporal relations and reasoning are handled external to the ontology; therefore it has 
only weak notions of time. By contrast, temporal constructs are central to the BFO. 

GALEN’s Features are a reasonable match to DOLCE’s “Qualities” and GALEN’s 
States to DOLCE’s “quale”, but neither DOLCE nor BFO have made the distinction 
between “selectors” and “features” as made in GALEN.   

The major difference between the DOLCE and BFO is that DOLCE takes a 
“cognitivist” view whereas the BFO takes a “realist” view.  GALEN’s representation 
is broadly cognitivist.  DOLCE makes a distinction between “physical object” and 
“amount of matter” analogous to GALEN’s distinction between GeneralisedStructure 
and GeneralisedSubstance.  Correspondingly, DOLCE has a role “constitutes” 
representing the relation between substances and the things made of those substances.  
GALEN has an equivalent attribute makesUp/isMadeOf.  “Realists” reject the 
“constitutes” relation, maintaining that the “physical object” is identical to the 
“amount of matter” rather than being made of it.  

The other obvious comparison is with the anatomy modelling in the Digital Anatomist 
Foundational Model of Anatomy (FMA) [34, 37, 63]. The FMA, like GALEN, is a 
domain ontology but confined purely to structural relations. Two groups have 
independently attempted to reconcile the two ontologies [35, 36, 88-90]. Both met with 
only limited success, the greatest problem being systematic differences including a) 
naming conventions; b) the choice of whether or not to reify relations; and c) that 
GALEN does not enumerate all sanctioned variants, e.g. it does not pre-enumerate all 
possible left and right handed variants of anatomical structures, instead it allows them to 
be created and classified (post-coordinated) dynamically.  A more collaborative attempt 
at reconciliation dealing with these three issues remains to be performed.  

6.3   Outstanding Issues 

There are a series of issues that remain outstanding:  

• Normative statements, congenital disease, and imputed intentions (See 2.2.7) 
• Spatial temporal reasoning and numerical calculations (See 2.3.6) 
• Improved handling of the pattern exemplified in “the skin of the hand is a division 

of the skin of the upper extremity”. (See 4.1.1) 
• Testing of the consequences of use of SEP triples rather than GALEN’s 

specialisedBy axioms (See 6.2) 
• How best to take advantage of improvements in description logic and ontology 

technology now becoming available (See 6.2) 

6.4   Summary 

GALEN has pioneered the construction of large-scale biomedical ontologies based on 
description logic. Its experiences illustrate both the advantages and disadvantages of 
the approach in principle and the limitations of the current state of the art.  It provides 
a set of modelling conventions and patterns that have proved sufficiently robust to be 
used in practical developments – surgical terminologies, drug information, and data 
entry systems – which it hopes will continue to provide a useful resource both to 
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developers of biomedical ontologies and as a test corpus for those developing 
description logic reasoners.  

GALEN’s pursuit of its combined goals of expressivity, logical classification, and 
parsimony have led to a complex ontology.  However, this complexity can be 
mitigated for users by intermediate representations and tools.  Given adequate 
support, it has proved accessible and usable. Whether a simpler approach would 
suffice for future applications, or whether a still more complex approach will be 
required, remains to be seen. 
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Abstract. Semantic Web technology is being increasingly applied in a large 
spectrum of applications in which domain knowledge is conceptualized and 
formalized (e.g., by means of an ontology) in order to support diversified and 
automated knowledge processing (e.g., reasoning) performed by a machine. 
Moreover, through an optimal combination of (cognitive) human reasoning and 
(automated) machine reasoning and processing, it is possible for humans and 
machines to share complementary tasks. The spectrum of applications is 
extremely large and to name a few: corporate portals and knowledge manage-
ment, e-commerce, e-work, e-business, healthcare, e-government, natural 
language understanding and automated translation, information search, data and 
services integration, social networks and collaborative filtering, knowledge 
mining, business intelligence and so on. From a social and economic 
perspective, this emerging technology should contribute to growth in economic 
wealth, but it must also show clear cut value for everyday activities through 
technological transparency and efficiency. The penetration of Semantic Web 
technology in industry and in services is progressing slowly but accelerating as 
new success stories are reported. In this paper and lecture we present ongoing 
work in the cross-fertilization between industry and academia. In particular, we 
present a collection of application fields and use cases from enterprises which 
are interested in the promises of Semantic Web technology. The use cases are 
detailed and focused on the key knowledge processing components that will 
unlock the deployment of the technology in the selected application field. The 
paper ends with the presentation of the current technology roadmap designed by 
a team of Academic and Industry researchers. 
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1   Industry Perspective 

1.1   Introduction 

As a result of the pervasive and user-friendly digital technologies emerging within our 
information society, Web content availability is increasing at an incredible rate but at 
the cost of being extremely multiform, inconsistent and very dynamic. Such content is 
totally unsuitable for machine processing, and so necessitates too much human 
interpretation and its respective costs in time and effort for both individuals and 
companies. To remedy this, approaches aim at abstracting from this complexity (i.e., 
by using ontologies) and offering new and enriched services able to process those 
abstractions (i.e., by mechanized reasoning) in a fully automated way. This abstract-
tion layer is the subject of a very dynamic activity in research, industry and 
standardization which is usually called "Semantic Web" (see, for example, DARPA, 
European IST Research Framework Program, W3C initiative). The initial application 
of Semantic Web technology has focused on Information Retrieval (IR) where access 
through semantically annotated content, instead of classical (even sophisticated) 
statistical analysis, aimed to give far better results (in terms of precision and recall 
indicators). The next natural extension was to apply IR in the integration of enterprise 
legacy databases in order to leverage existing company information in new ways. 
Present research has turned to focusing on the seamless integration of heterogeneous 
and distributed applications and services (both intra- and inter-enterprise) through 
Semantic Web Services, with the expectation of a fast return on investment (ROI) and 
improved efficiency in e-work and e-business.  

This new technology takes its roots in the cognitive sciences, machine learning, 
natural language processing, multi-agents systems, knowledge acquisition, automated 
reasoning, logics and decision theory. It can be separated into two distinct – but 
cooperating fields - one adopting a formal and algorithmic approach for common 
sense automated reasoning (automated Web), and the other one “keeping the human 
being in the loop” for a socio-cognitive semantic web (automated social Web) which 
is gaining momentum today with the Web 2.0 paradigm1. 

On a large scale, industry awareness of Semantic Web technology has started only 
recently, e.g., at the EC level with the IST-FP5 thematic network Ontoweb2 [2001-
2004] which brought together around 50 motivated companies worldwide. Based on 
this experience, within IST-FP6, the Network of Excellence Knowledge Web3  [2004-
2008] is making an in-depth analysis of the concrete industry needs in key economic 
sectors, and in a complementary way the IST-FP6 Network of Excellence Rewerse4  
is tasked with providing Europe with leadership in reasoning languages, also in view 
of a successful technology transfer and awareness activities targeted at the European 
industry for advanced Web systems and applications.     

The rest of the paper is organized as follows. Four prototypical application fields 
are presented in Section 2, namely (i) healthcare and biotechnologies, (ii) knowledge 
                                                           
1 http://www.web2con.com  
2 http://www.ontoweb.org  
3 http://knowledgeweb.semanticweb.org  
4 http://rewerse.net  
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management (KM), (iii) e-commerce and e-business, and finally (iv) multimedia and 
audiovisual services. Then key knowledge processing tasks and components are 
presented in detail in Section 3. Finally, Section 4 reports on a current vision of the 
achievements and some perspectives are given. 

1.2   Overall Business Needs and Key Knowledge Processing Requirements 

1.2.1   Use Case Collection and Analysis 
In order to support a large spectrum of application fields, the EU FP6 Networks of 
Excellence Knowledge Web and Rewerse are tasked with promoting transfer of best-
of-the-art knowledge-based technology from academia to industry. The networks are 
made up of leading European Semantic Web research institutions and co-ordinate 
their research efforts while parallel efforts are made in Semantic Web education and 
transfer to Industry. 

In the Industry Area activities of Knowledge Web, we have formed a group of 
companies interested in Semantic Web technology. By the end of 2005, this group 
consisted of about 45 members (e.g., France Telecom, British Telecom, Institut Français 
du Pétrole, Illy Caffe, Trenitalia, Daimler Chrysler, Thalès, EADS, … ) from across 14 
nations and 13 economic sectors (e.g., telecoms, energy, food, logistics, automotive).  

The companies were requested to provide illustrative examples of actual or 
hypothetical deployment of Semantic Web technology in their business settings. This 
was followed up with face-to-face meetings between researchers and industry experts 
from the companies to gain additional information about the provided use cases. Thus, 
in 2004, we collected a total of 16 use cases from 12 companies as shown in Figure 1. 
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Fig. 1. Breakdown of use cases by industry sector 

In particular, it represents (the most active) 9 sectors, with the highest number of the 
use cases coming from the service industry (19%) and media & communications (18%) 
respectively. This initial collection of use cases can be found in [11], while a constantly 
growing and updated selection are available on the Knowledge Web Industry portal5.  

1.2.2   Analysis of Use Cases by Expert Estimations 
A preliminary analysis of the use cases has been carried out in order to obtain a first 
vision of the current industrial needs and to estimate the expectations from 

                                                           
5 http://knowledgeweb.semanticweb.org/o2i/ 
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knowledge-based technology with respect to those needs. The industry experts were 
asked to indicate the existing legacy solutions in their use cases, the service 
functionalities they would be offered and the technological locks they encountered, 
and eventually how they expected that Semantic Web technology could resolve those 
locks. As a result, we have gained an overview of: 

− Types of business or service problems where the knowledge-based technology is 
considered to bring a plausible solution; 

− Types of technological issues (and the corresponding research challenges) which 
knowledge based technology is expected to overcome. 

 

Fig. 2. Preliminary vision for solutions sought in use cases 

Figure 2 shows a breakdown of the areas in which the industry experts thought 
Semantic Web technology could provide a solution. For example, for nearly half of 
the collected use cases, data integration and semantic search were areas where 
industry was looking for knowledge-based solutions. Other areas mentioned, in a 
quarter of use cases, were solutions to data management and personalization. 

Figure 3 shows a breakdown of the technology locks identified in the use cases. 
There are three technology locks which occur the most often in the collected use cases. 
These are: ontology development, i.e., modeling of a business domain, authoring, 
reusing existing ontologies; knowledge extraction, i.e., populating ontologies by 
extracting data from legacy systems; and ontology matching, i.e., resolving semantic 
heterogeneity among multiple ontologies. 

Below, we illustrate, with the help of a use case from our collection, how a concrete 
business problem can be used to indicate the technology locks for which knowledge-
based solutions potentially might be useful. This use case addresses the problem of an 
intelligent search of documents in the corporate data of a coffee company. 

The company generates a large amount of internal data and its employees 
encounter difficulties in finding the data they need for the research and development 
of new solutions. The aim is to improve the quality of the document retrieval and to 
enable personalization services for individual users when searching or viewing the 
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Fig. 3. Preliminary vision of technology locks in use cases 

corporate data. As technology locks, the expert mentioned here the corporate domain 
ontology development and maintenance, and semantic querying. 

Eventually, this analysis (by experts estimations) provides us with a preliminary 
understanding of scope of the current industrial needs and concrete technology locks 
where knowledge-based technology is expected to provide a plausible solution. However, 
to be able to answer specific industrial requirements, we need to conduct further a 
detailed technical analysis of the use cases, thereby associating to each technology lock a 
concrete knowledge processing task and a component realizing its functionalities. 

1.2.3   Knowledge Processing Tasks and Components 
Based on the knowledge processing needs identified during the technical use cases 
analysis [12], we built a typology of knowledge processing tasks and a library of high 
level components for realizing those tasks, see Table 1. Our first tentative typology 
includes 12 knowledge processing tasks. Let us discuss knowledge processing tasks 
and components of Table 1 in more detail. 

Table 1. Typology of knowledge processing tasks & components 

N° Knowledge processing tasks Components 
1 Ontology Management Ontology Manager 
2 Ontology Matching Match Manager 
3 Ontology Matching results Analysis Match Manager 
4 Data Translation Wrapper 
5 Results Reconciliation Results Reconciler 
6 Composition of Web Services Planner 
7 Content Annotation Annotation manager 
8 Reasoning Reasoner 
9 Semantic Query Processing Query Processor 
10 Ontology Merging Ontology Manager 
11 Producing explanations Match Manager 
12 Personalization Profiler 
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Ontology Management, Ontology Merging and Ontology Manager. These tasks and 
component are in charge of ontology maintenance (e.g., reorganizing taxonomies, 
resolving name conflicts, browsing ontologies, editing concepts) and merging 
multiple ontologies (e.g., by taking the union of the axioms) with respect to evolving 
business case requirements, see [13, 14, 15].  

Matching, Matching Results Analysis, Producing Explanations and Match Manager. 
These tasks and component are in charge of (on-the-fly and semi-automatic) 
determining semantic mappings between the entities of multiple schemas, 
classifications, and ontologies, see [16, 17]. Mappings are typically specified with the 
help of a similarity relation which can be either in the form of a coefficient rating 
match quality in the (0,1] range (i.e., the higher the coefficient, the higher the 
similarity between the entities, see [18,19,20,21,22]) or in the form of a logical 
relation (e.g., equivalence, subsumption), see [23, 24]. The mappings might need to 
be ordered according to some criteria, see [25, 21].  

Finally, explanations of the mappings might be also required, see [26, 27]. 
Matching systems may produce mappings that may not be intuitively obvious to 
human users. In order for users to trust the mappings (and thus use them), they need 
information about them. They need access to the sources that were used to determine 
semantic correspondences between terms and potentially they need to understand how 
deductions and manipulations are performed. The issue here is to present explanations 
in a simple and clear way to the user.  

Data Translation and Wrapper. This task and component is in charge of automatic 
manipulation (e.g., translation, exchange) of instances between heterogeneous 
information sources storing their data in different formats (e.g., RDF, SQL DDL, 
XML …), see [28, 29]. Here, mappings are taken as input (for example, from the 
match manager component) and are analyzed in order to generate query expressions 
that perform the required manipulations with data instances.  

Results Reconciliation and Results Reconciler. This task and component is in charge 
of determining an optimal solution, in terms of contents (no information duplication, 
etc.) and routing performance, for returning results from the queried information 
sources, see [30].  

Composition of Web Services and Planner. This task and component is in charge of 
automated composition of web services into executable processes, see [31]. 
Composed web services perform new functionalities by interacting with pre-existing 
services that are published on the Web.  

Content Annotation and Annotation Manager. This task and component is in charge 
of automatic production of metadata for the contents, see [32]. Annotation manager 
takes as input the (pre-processed) contents and domain knowledge and produces as 
output a database of content annotations. In addition to the automatic production of 
content metadata, prompt mechanisms should enable the user with a possibility to 
enrich the content annotation by adding some extra information (e.g., title, name of a 
location, title of an event, names of people) that could not be automatically detected. 

Automated Reasoning. This task and component is in charge of providing logical 
reasoning services (e.g., subsumption, concept satisfiability, instance checking tests), 
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see [33]. For example, when dealing with multimedia annotations, logical reasoning 
can be exploited in order to check consistency of the annotations against the set of 
spatial (e.g., left, right, above, adjacent, overlaps) and temporal (e.g., before, after, 
during, co-start, co-end) constraints. Thus, this must certify that the objects detected 
in the multimedia content correspond semantically to the concepts defined in the 
domain ontology. For example, in the racing domain, the automated analyzer should 
check whether a car is located above a road or whether the grass and sand are adjacent 
to the road. 

Semantic Query Processing and Query Processor. This task and component is in 
charge of rewriting a query by using terms which are explicitly specified in the model 
of domain knowledge in order to provide a semantics preserving query answering, see 
[32, 34]. Examples of queries are “Give me all the games played on grass” or “Give 
me all the games of double players”, in the tennis domain. Finally, users should be 
able to query by a sample image. In this case, the system should perform an intelligent 
search of images and videos (e.g., by using semantic annotations) where, for example, 
the same event or type of activity takes place. 

Personalization and Profiler. This task and component is in charge of tailoring 
services available from the system to the specificity of each user, see [35]. For 
example, generation and updating of user profiles, recommendation generation, 
inferring user preferences, and so on. For example users might want to share 
annotations within trusted user networks, thus having services of personal metadata 
management and contacts recommendation. Also, a particular form of 
personalization, which is media adaptation, requires knowledge-based technology for 
a suitable delivery of the contents to the user’s terminal (e.g., palm, mobile phone, 
portable PC). 

2   Key Application Sectors and Problematic 

2.1   Healthcare and Biotechnologies 

The medical domain is a favourite target for Semantic Web applications just as the 
expert system was for Artificial Intelligence applications 20 years ago. The medical 
domain is very complex: medical knowledge is difficult to represent in a computer 
format, making the sharing of information even more difficult. Semantic Web 
solutions become very promising in this context. 

One of the main mechanisms of the Semantic Web - resource description using 
annotation principles - is of major importance in the medical informatics (or 
sometimes called bioinformatics) domain, especially as regards the sharing of these 
resources (e.g. medical knowledge in the Web or genomic database). Through the 
years, the IR area has been developed by medicine: medical thesauri are enormous 
(e.g., 1,000,000 terms in Unified Medical Language System, UMLS) and are 
principally used for bibliographic indexation. Nevertheless, the MeSh thesaurus 
(Medical Subject Heading) or UMLS6   have been used to provide data semantics with 
varying degrees of difficulty. Finally, the web services technology allows us to 
                                                           
6 http://www.nlm.nih.gov/research/umls/umlsmain.html 
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imagine some solutions to the interoperability problem, which is substantial in 
medical informatics. Below, we will describe current research, results and expected 
perspectives in these biomedical informatics topics in the context of Semantic Web. 

2.1.1   Biosciences Resources Sharing 
In the functional genomics domain, it is necessary to have access to several data bases 
and knowledge bases which are accessible separately on the Web but are 
heterogeneous in their structure as well as in their terminology. Among such 
resources, we can mention SWISSPROT7  where the gene products are annotated by 
the Gene Ontology8 , Gen-Bank9 , etc. When comparing these resources it is easy to 
see that they propose the same information in different formats. The XML language, 
which acts as a common data structure for the different knowledge bases, provides at 
most a syntactic Document Type Definition (DTD) which does not resolve the 
semantic interoperability problem. 

One of the solutions comes from the Semantic Web with a mediator approach [7] 
which allows for the accessing of different resources with an ontology used as the 
Interlingua pivot. For example and in another domain than that of genomics, the 
NEUROBASE project [8] attempts to federate different neuro-imagery information 
bases situated in different clinical or research areas. The proposal consists of defining 
an architecture that allows the access to and the sharing of experimental results or 
data treatment methodologies. It would be possible to search in the various data bases 
for similar results or for images with peculiarities or to perform data mining analysis 
between several data bases. The mediator of NEUROBASE has been tested on 
decision support systems in epilepsy surgery. 

2.1.2   Web Services for Interoperability 
The web services technology can propose some solutions to the interoperability 
problematic. We describe now a new approach based on a “patient envelope” and we 
conclude with the implementation of this envelope based on the web services 
technology. 

The patient envelope is a proposition of the Electronic Data Interchange for 
Healthcare group (EDI-Santé10) with an active contribution from the ETIAM 
society11. The objective of the work is on filling the gap between “free” 
communication, using standard and generic Internet tools, and “totally structured” 
communication as promoted by CEN12 or HL713. After the worldwide analysis of 
existing standards, the proposal consists of an “intermediate” structure of information, 
related to one patient, and storing the minimum amount of data (i.e. exclusively useful 
data) to facilitate the interoperability between communicating peers. The “free” or the 
“structured” information is grouped into a folder and transmitted in a secure way over 
the existing communication networks [9]. This proposal has reached widespread 
                                                           
 7 http://us.expasy.org/sprot/  
 8 http://obo.sourceforge.net/main.html  
 9 http://www.ncbi.nlm.nih.gov/Genbank/index.html  
10 http://www.edisante.org/ 
11 http://www.etiam.com/ 
12 http://www.centc251.org/ 
13 http://www.hl7.org/ 
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adoption with the distribution by Cegetel.rss of a new medical messaging service, 
called “Sentinelle”, fully supporting the patient envelope protocol and adapted tools. 

After this milestone, EDI-Santé is promoting further developments based on 
ebXML and SOAP (Simple Object Access Protocol) in specifying exchange (see, 
items 1 and 2 below) and medical (see, items 3 and 4 below) properties: 

1. Separate what is mandatory to the transport and the good management of the 
message (e.g., patient identification from what constitutes the “job” part of the 
message. 

2. Provide a “container” for the message, collecting the different elements, texts, 
pictures, videos, etc. 

3. Consider the patient as the unique object of the transaction. Such an exchange 
cannot be anonymous. It concerns a sender and an addressee who are involved in 
the exchange and who are responsible. A patient can demand to know the content 
of the exchange in which (s)he is the object, which implies  a data structure which 
is unique in the form of a triple {sender, addressee, patient}. 

4. The conservation of the exchange semantics. The information about a patient is 
multiple in the sense that it comes from multiple sources and has multiple forms 
and supporting data (e.g., data base, free textual document, semi-structured textual 
document, pictures). It can be fundamental to maintain the existing links between 
elements, to transmit them together, e.g., a scanner and the associated report, and 
to be able to prove it. 

The interest of such an approach is that it prepares the evolution of the transmitted 
document from a free form document (from proprietary ones to normalized ones as 
XML) to elements respecting HL7v3 or EHRCOM data types. 

2.1.3   What Is Next in the Healthcare Domain? 
These different projects and applications highlight the main consequence of the 
Semantic Web being expected by the medical communities: the sharing and 
integration of heterogeneous information or knowledge. The answers to the different 
issues are the use of mediators, a knowledge-based system, and ontologies, which are 
all based on normalized languages such as RDF, OWL, and so on. The work of the 
Semantic Web community must take into account these expectations, see for example 
the FP6 projects14,15,16. Finally, it is interesting to note that the Semantic Web is an 
integrated vision of the medical community’s problems (thesauri, ontologies, 
indexation, inference) and provides a real opportunity to synthesize and reactivate 
some research [10]. 

2.2   Knowledge Management 

2.2.1   Leveraging Knowledge Assets in Companies 
Knowledge is one of the key success factors for enterprises, both today and in the 
future. Therefore, company knowledge management has been identified as a strategic 
                                                           
14 http://www.cocoon-health.com 
15 http://www.srdc.metu.edu.tr/webpage/projects/artemis/index.html  
16 http://www.simdat.org  
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tool. However, if information technology is one of the foundational elements of KM; 
KM, in turn, is also interdisciplinary by its nature. In particular, it includes human 
resource management as well as enterprise organization and culture17.We view KM as 
the management of the knowledge arising from business activities, aiming at 
leveraging both the use and the creation of that knowledge for two main objectives: 
capitalization of corporate knowledge and durable innovation fully aligned with the 
strategic objectives of the organization. 

Conscious of this key factor of productivity in a faster and faster changing 
ecosystem, the European KM Framework (CEN/ISSS18, KnowledgeBoard19) has been 
designed to support a common European understanding of KM, to show the value of 
this emerging approach and help organizations towards its successful implementation. 
The Framework is based on empirical research and practical experience in this field 
from all over Europe and the rest of the world. The European KM Framework 
addresses all of the relevant elements of a KM solution and serves as a reference basis 
for all types of organizations, which aim to improve their performance by handling 
knowledge in a better way.  

2.2.1   Knowledge-Based KM Benefits 
The knowledge backbone is made up of ontologies that define a shared 
conceptualization of an application domain and provide the basis for defining 
metadata that have precisely defined semantics, and are therefore machine-
interpretable. Although the first KM approaches and solutions have shown the 
benefits of ontologies and related methods, a large number of open research issues 
still exist that have to be addressed in order to make Semantic Web technology a 
complete success for KM solutions: 

− Industrial KM applications have to avoid any kind of overhead as far as possible. A 
seamless integration of knowledge creation (i.e., content and metadata 
specification) and knowledge access (i.e., querying or browsing) into the working 
environment is required. Strategies and methods are needed to support the creation 
of knowledge, as side effects of activities that are carried out anyway. These 
requirements mean emergent semantics that can be supported through ontology 
learning, which should reduce the current time consuming task of building-up and 
maintaining ontologies. 

− Access to as well as presentation of knowledge has to be context-dependent. Since 
the context is setup by the current business task, and thus by the business process 

                                                           
17 Some of the well-known definitions of KM include: 

(Wiig 1997) " Knowledge management is the systematic, explicit, and deliberate building, 
renewal and application of knowledge to maximize an enterprise's knowledge related 
effectiveness and returns from its knowledge assets" [1]. 
(Hibbard 1997) "Knowledge management is the process of capturing a company's collective 
expertise wherever it resides in databases, on paper, or in people's heads and distributing it to 
wherever it can help produce the biggest payoff"  [2]. 
(Pettrash 1996) "KM is getting the right knowledge to the right people at the right time so 
they can make the best decision"  [3]. 

18 http://www.cenorm.be/cenorm/index.htm 
19 http://www.knowledgeboard.com 
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being handled, a tight integration of business process management and knowledge 
management is required. KM approaches can provide a promising starting point for 
smart push services that will proactively deliver relevant knowledge for carrying 
out the task at hand more effectively. 

− Conceptualization has to be supplemented by personalization. On the one hand, 
taking into account the experience of the user and his/her personal needs is a 
prerequisite in order to avoid information overload, and on the other hand, to 
deliver knowledge at the right level of granularity and from the right perspective. 

The development of knowledge portals serving the needs of companies or 
communities is still a manual process. Ontologies and related metadata provide a 
promising conceptual basis for generating parts of such knowledge portals. 
Obviously, among others, conceptual models of the domain, of the users and of the 
tasks are needed. The generation of knowledge portals has to be supplemented with 
the (semi-) automated evolution of portals. As business environments and strategies 
change rather rapidly, KM portals have to be kept up-to-date in this fast changing 
environment. Evolution of portals should also include some mechanisms to ‘forget’ 
outdated knowledge.  

KM solutions will be based on a combination of intranet-based functionalities and 
mobile functionalities in the very near future. Semantic Web technology is a 
promising approach to meet the needs of mobile environments, like location-aware 
personalization and adaptation of the presentation to the specific needs of mobile 
devices, i.e., the presentation of the required information at an appropriate level of 
granularity. In essence, employees should have access to the KM application 
anywhere and anytime. 

Peer-to-Peer computing (P2P), combined with Semantic Web technology, will be 
a strong move towards getting rid of the more centralized KM approaches that are 
currently used in ontology-based solutions. P2P scenarios open up the way to derive 
consensual conceptualizations among employees within an enterprise in a bottom-up 
manner.  

Virtual organizations are becoming more and more important in business 
scenarios, mainly due to decentralization and globalization. Obviously, semantic 
interoperability between different knowledge sources, as well as trust, is necessary in 
inter-organizational KM applications. 

The integration of KM applications (e.g., skill management) with e-learning is an 
important field that enables a lot of synergy between these two areas. KM solutions 
and e-learning must be integrated from both an organizational and an IT point of 
view. Clearly, interoperability and integration of (metadata) standards are needed to 
realize such integration.  

Knowledge Management is obviously a very promising area for exploiting Semantic 
Web technology. Document-based KM solutions have already reached their limits, 
whereas semantic technology opens the way to meet KM requirements in the future. 

2.2.2   Knowledge-Based KM Applications 
In the context of geographical team dispersion, multilingualism and business unit 
autonomy, usually a company wants a solution allowing for the identification of 
strategic information, the secured distribution of this information and the creation of 
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transverse working groups. Some applicative solutions allowed for the deployment of 
an Intranet intended for all the marketing departments of the company worldwide, 
allowing for a better division of and a greater accessibility to information, but also 
capitalisation on the total knowledge. There are three crucial points that aim at easing 
the work of the various marketing teams in a company: (i) Business intelligence, (ii) 
Skill and team management20, (iii) Process management and (iv) Rich document 
access and management. 

Thus, a system connects the "strategic ontologies" of the company group (brands, 
competitors, geographical areas, etc.) with the users, via the automation of related 
processes (research, classification, distribution, knowledge representation). The result 
is a dynamic Semantic Web system of navigation (research, classification) and 
collaborative features. 

At the end from a functional point of view, a KM system organises skill and 
knowledge management within a company, in order to improve interactivity, 
collaboration and information sharing. This constitutes a virtual workspace which 
facilitates work between employees that speak different languages, automates the 
creation of work groups, organises and capitalises structured and unstructured, 
explicit or tacit data of the company, and offers advanced features of capitalisation 
[36, 37, 38].  

Finally, the semantic backbone makes possible to cross a qualitative gap by 
providing cross-lingual data. 

2.3   E-Commerce and E-Business 

Electronic commerce is mainly based on the exchange of information between 
involved stakeholders using a telecommunication infrastructure. There are two main 
scenarios: Business-to-Customer (B2C) and Business-to-Business (B2B). 

B2C applications enable service providers to promote their offers, and for 
customers to find offers which match their demands. By providing unified access to 
a large collection of frequently updated offers and customers, an electronic 
marketplace can match the demand and supply processes within a commercial 
mediation environment.  

B2B applications have a long history of using electronic messaging to exchange 
information related to services previously agreed among two or more businesses. 
Early plain-text telex communication systems were followed by electronic data 
interchange (EDI) systems based on terse, highly codified, well structured, messages. 
A new generation of B2B systems is being developed under the ebXML (electronic 
business in XML) heading. These will use classification schemes to identify the 
context in which messages have been, or should be, exchanged. They will also 
introduce new techniques for the formal recording of business processes, and for the 
linking of business processes through the exchange of well-structured business 
messages. ebXML will also develop techniques that will allow businesses to identify 
new suppliers through the use of registries that allow users to identify which services 
a supplier can offer. ebXML needs to include well managed multilingual ontologies 

                                                           
20 Semantic Web, Use Cases and Challenges at EADS, http://www.eswc2006.org Industry 

Forum. 
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that can be used to help users to match needs expressed in their own language with 
those expressed in the service providers language(s). 

2.3.1   Knowledge-Based E-Commerce and E-Business Value 
At present, ontology and more generally knowledge-based systems, appear as a 
central issue for the development of efficient and profitable e-commerce and e-
business solutions. However, because of an actual partial standardization for business 
models, processes, and knowledge architectures, it is currently difficult for companies 
to achieve the promised ROI from knowledge-based e-commerce and e-business.  

Moreover, a technical barrier exists that is delaying the emergence of e-commerce, 
lying in the need for applications to meaningfully share information, taking into 
account the lack of reliability, security and eventually trust in the Internet. This fact 
may be explained by the variety of e-commerce and e-business systems employed by 
businesses and the various ways these systems are configured and used. As an 
important remark, such interoperability problems become particularly severe when a 
large number of trading partners attempt to agree and define the standards for 
interoperation, which is precisely a main condition for maximizing the ROI indicator.  

Although it is useful to strive for the adoption of a single common domain-specific 
standard for content and transactions, such a task is often difficult to achieve, 
particularly in cross-industry initiatives, where companies co-operate and compete 
with one another. Some examples of the difficulties are: 

− Commercial practices may vary widely, and consequently, cannot always be 
aligned for a variety of technical, practical, organizational and political reasons.  

− The complexity of a global description of the organizations themselves: their 
products and services (independently or in combination), and the interactions 
between them remain a formidable task.  

− It is not always possible to establish a priori rules (technical or procedural) 
governing participation in an electronic marketplace.  

− Adoption of a single common standard may limit business models which could be 
adopted by trading partners, and therefore, potentially reduce their ability to fully 
participate in e-commerce.  

A knowledge-based approach has the potential to significantly accelerate the 
penetration of electronic commerce within vertical industry sectors, by enabling 
interoperability at the business level, and reducing the need for standardisation at the 
technical level. This will enable services to adapt to the rapidly changing online 
environment. 

2.3.2   Knowledge-Based E-Commerce and E-Business Applications 
The Semantic Web brings opportunities to industry to create new services21, extend 
markets, and even develop new businesses since it enables the inherent meaning of 
the data available in the Internet to be accessible to systems and devices able to 
interpret and reason on the knowledge. This in turn leads to new revenue 
opportunities, since information becomes more readily accessible and usable. For 

                                                           
21 DIP Data, Information, and Process Integration with Semantic Web Services, http:// 

dip.semanticweb.org/  
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example, a catering company whose web site simply lists the menus available is less 
likely to achieve orders compared to one whose menus are associated with related 
metadata about the contents of the dishes, their origin (e.g., organic, non-genetically 
modified, made with local produce), links to alternative dishes for special diets, 
personalised ordering where a user profile can be established which automatically 
proposes certain menu combinations depending on the occasion (e.g., wedding 
banquet, business lunch). The latter case assumes that both provider-side knowledge 
generation and knowledge management tools are available, such that the asset owner 
can readily enhance their data with semantic meaning, and client-side tools are 
available to enable machine interpretation of the semantic descriptions related to the 
products being offered, such that the end user can benefit from the available and 
mined knowledge. Examples of some possible application areas were studied by the 
Agent Cities project22. 

In the e-business area Semantic Web technology can improve standard business 
process management tools. One prototypical case is in the area of logistics. The 
application of knowledge technology on top of today’s business management tools 
enables the automation of major tasks of business process management23 [39]. 

2.4   Multimedia and Audiovisual Services 

2.4.1   Multimedia and Semantic Technology 
Practical realisation of the Semantic Web vision is actively being researched by a 
number of experts, some of them within European collaborative projects such as 
SEKT24 and DIP, but these mainly focus on enhancing text based applications from a 
knowledge engineering perspective. Although significant benefits in unlocking access 
to valuable knowledge assets are anticipated via these projects, in various do-mains 
such as digital libraries, enterprise applications, and financial services, less attention 
has been given to the challenging and potentially highly profitable area of integration 
of multimedia and Semantic Web technologies for multimedia content based 
applications. 

Users express dissatisfaction at not being able to find what they want, and content 
owners are unable to make full use of their assets. Service providers seek means to 
differentiate their offerings by making them more targeted toward the individual 
needs of their customers.  Semantic Web technology can address these issues. It has 
the potential to reduce complexity, enhance choice, and put the user at the center of 
the application or service, and with future expected advances in mobile 
communication protocols, such benefits can be enjoyed by consumers and 
professional users in all environments using all their personal devices, in the home, at 
work, in the car and on the go. 

Semantic Web technologies can enhance multimedia based products to increase the 
value of multimedia assets such as content items which are themselves the articles for 
sale (songs, music videos, sports clips, news summaries, etc) or where they are used 
as supporting sales of other goods (e.g. promotional images, movie trailers etc).  

                                                           
22 Agentcities RTD project http://www.agentcities.org/EURTD/  
23 Semantic Business Automation, SAP, Germany http://www.eswc2006.org Industry Forum 
24 Semantically Enabled Knowledge Technologies http://www.sekt-project.com/  
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Value is added in search applications, such that returned items more closely match the 
user's context, interests, tasks, preference history etc, as well as in proactive push 
applications such as personalised content delivery and recommendation systems, and 
even personalised advertising. However, applications such as content personalisation, 
where a system matches available content to the user's stated and learned preferences, 
thereby enabling content offerings to be closely targeted to the user's wishes, rely on 
the availability of semantic metadata describing the content in order to make the 
match.  Currently, metadata generation is mostly manual, which is costly and time 
consuming.  Multimedia analysis techniques which go beyond the signal level 
approach to a semantic analysis have the potential to create automatic annotation of 
content, thereby opening up new applications which can unlock the commercial value 
of content archives.   

Automated multimedia analysis tools are important enablers in making a wider 
range of information more accessible to intelligent search engines, real-time 
personalisation tools, and user-friendly content delivery systems.  Such automated 
multimedia analysis tools, which add the semantic information to the content, are 
critical in realising the value of commercial assets e.g. sports, music and film clip 
services, where manual annotation of multimedia content would not be economically 
viable, and are also applicable to users' personal content (e.g. acquired from video 
camera or mobile phone) where the user does not have time, or a suitable user 
interface, to annotate all their content. 

Multimedia ontologies are needed to structure and make accessible the knowledge 
inherent in the multimedia content, and reasoning tools are needed to assist with 
identification of relevant content in an automated fashion.  Although textual analysis 
and reasoning tools have been well researched, fewer tools are available for semantic 
multimedia analysis, since the problem domain is very challenging. However, 
automated multimedia content analysis tools such as those being studied within 
aceMedia25 are a first step in making a wider range of information more accessible to 
intelligent search engines, real-time personalisation tools, and user-friendly content 
delivery systems.  Such tools will be described later in this paper. 

Furthermore, interoperability of multimedia tools is important in enabling a wide 
variety of applications and services on multiple platforms for diverse domains.   The 
W3C Multimedia Task Force recently published a review of image annotation on the 
semantic web26 in which the advantages of using Semantic Web languages and 
technologies for the creation, storage, manipulation, interchange and processing of 
image metadata were presented, along with some illustrative use cases.  In parallel, a 
multimedia ontology harmonisation effort has proceeded to the requirements stage27, 
in which requirements for multimedia ontologies for many applications (including 
authoring, annotation, search, personalisation, and simulation) are considered.  
Contributions from more than 16 organisations demonstrated the importance of 
harmonisation in ontologies as a key precursor to interoperability.   Interoperability is 
essential in achieving commercial success with semantic multimedia applications, 

                                                           
25 http://www.acemedia.com  
26 http://www.w3.org/2001/sw/BestPractices/MM/image_annotation.html  
27 http://www.acemedia.org/aceMedia/files/multimedia_ontology/cfr/ 

MM-Ontologies-Reqs-v1.3.pdf  



 The Semantic Web from an Industry Perspective 247 

since it enables multiple manufacturers, content providers and service providers to 
participate in the market.  This in turn enables consumer confidence to be achieved, 
and a viable ecosystem to be developed. 

2.4.2   Knowledge Enhanced Multimedia Services 
In aceMedia the main technological objectives are to discover and exploit knowledge 
inherent in multimedia content in order to make content more relevant to the user; to 
automate annotation at all levels; and to add functionality to ease content creation, 
transmission, search, access, consumption and re-use. 

Users in the future will access multimedia content using a variety of devices, such 
as mobile phones and set-top-boxes, as well as via broadband cable or wireless to 
their PC. aceMedia research outcomes will assist users interacting with their 
multimedia content through innovative search technologies, automated indexing and 
cataloguing methods, and content adaptation to best match the user’s available device 
and environment. aceMedia technologies will be supported by innovative user 
interfaces enabling advanced functionality, such as intelligent search and retrieval, 
self-organising content, and self-adapting content to be enjoyed by both professional 
content providers and end consumers. 

Another interesting reported experiment is MediaCaddy28 aiming at providing 
movie or music recommendations based on published online critics, user experience 
and social networks. Indeed, for the entertainment industry, traditional approaches to 
delivering meta-content about movies, music, TV shows, etc. were through reviews 
and articles that were done and published in traditional media such as newspapers, 
magazines and TV shows. With the introduction of the Internet, non-traditional forms 
of delivering entertainment started surfacing. The third quarter of 2003 in the U.S was 
the best ever for broadband penetration bringing such services as content on-demand 
and mobile multimedia. As of today more than 5000 movies and 2,500,000 songs are 
available on line. In the next couple of years this figure is expected to grow in leaps 
and bounds. With such a phenomenal rise in content over IP, a new need for 
secondary metacontent related to the movies/music emerged. Initially this was 
through movie reviews or music reviews published on web portals such as Yahoo, 
MSN and online magazine portals as well as entertainment sales sites such as 
Netflix.com and Amazon.com.  

Most consumers today get information about media content primarily from 
reviews/articles in entertainment/news magazines, their social network of friends 
(one user recommends a song or movie to a friend), acquaintances and 
advertisements. In most of the cases, one or all of the above influence user’s 
opinion about any content (s)he chooses to consume. In addition, a new breed of 
customizable meta-content portal has emerged, which specifically targets the 
entertainment industry. Examples of such portals include Rotten Tomatoes and 
IMDB. However, these services today are typically accessed via portals thereby 
limiting the interactions and access to the information to exchanges between a user 
and the source for non-PC environment. 
                                                           
28 MediaCaddy - Semantic Web based On-Demand Content Navigation System for Entertain-

ment. Shishir Garg et al. ISWC 2005. 
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Fig. 4. Conceptual Model of Content Navigation System 

MediaCaddy is a recommendation and aggregation service built around a self-
learning engine, which analyzes a click stream generated by user’s interaction and 
actions with meta-content displayed through a UI. This meta-content (Music 
/Movies/ TV reviews/ article/ synopsis/ production notes) is accessed from multiple 
Internet sources and structured as an ontology using a semantic inferencing 
platform.  

This provides multiple benefits, both allowing for a uniform mechanism for 
aggregating disparate sources of content, and on the other hand, also allowing for 
complex queries to be executed in a timely and accurate manner. The platform allows 
this information to be accessed via Web Services APIs, making integration simpler 
with multiple devices and UI formats. Another feature that sets MediaCaddy apart is 
its ability to achieve a high level of personalization by analyzing content consumption 
behavior in the user’s personal Movie/Music Domain and his or her social network 
and using this information to generate music and movie recommendations. Fig 4 
illustrates the conceptual model of MediaCaddy. 

2.5   Other Prominent Applications 

Here are listed some excellent illustrations of the applications of Semantic Web 
technology, as they have been selected from a worldwide competition29 offering 
participants the opportunity to show the best of the art.  

                                                           
29 Annual Semantic Web applications challenge: http://challenge.semanticweb.org  
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CONFOTO, Essen, Germany. CONFOTO is an online service which facilitates 
browsing, annotating and re-purposing of photo, conference, and people descriptions. 
1st Prize 2005: http://www.confoto.org/  

FungalWeb, Concordia University, Canada. 
“Ontology, the Semantic Web, Intelligent Systems for Fungal Genomics” 
2nd Prize 2005: http://www.cs.concordia.ca/FungalWeb/  

Personal Publication Reader, Uni Hannover, TU Vienna and Lixto Software GmbH –  
3rd Prize 2005: http://www.personal-reader.de/semwebchallenge/sw-challenge.html  

Bibster – A semantics-based Bibliographic P2P system 
http://bibster.semanticweb.org  
CS AKTive space – Semantic data integration 
http://cs.aktivespace.org  (Winner 2003 Semantic Web challenge) 
Flink: SemWeb for analysis of Social Networks 
http://www.cs.vu.nl/~pmika  (Winner 2004 Semantic Web challenge) 
Museum Finland: Sem Web for cultural portal 
http://museosuomi.cs.helsinki.fi  (2nd prize 2004 Semantic Web challenge) 
ScienceDesk: collaborative knowledge management system in NASA 
http://sciencedesk.arc.nasa.gov/  (3rd prize 2004 Semantic Web challenge) 
Also see Applications and Demos at W3C SWG BPD 
http://esw.w3.org/mt/esw/archives/cat_applications_and_demos.html  

3   Analysis of Some Knowledge Reasoning Tasks 

3.1   Multilingual Interface for QUERYING E-SERVICES  

One of the challenging problems that web service technology faces is the ability to 
effectively discover services based on their capabilities. An approach to tackle this 
problem in the context is to use description logics (DL) to describe their capabilities. 
Service discovery can be considered as a new instance of the problem of rewriting 
concepts using terminologies.  

The matchmaking algorithm that takes as input a service request (or query) Q and 
an ontology T of services, and find a set of services is called a “best cover” of Q 
whose descriptions contain as much as possible of common information with Q and as 
less as possible of extra information with respect to Q.  

The proposed discovery technique has been implemented and used in the context 
of Multilingual e-Commerce where it is supposed that the user is expressing his or her 
needs in his or her own language. This has been tested for Spanish, French and 
English successfully for the Multilingual Knowledge Based European Electronic 
Marketplace (MKBEEM30) project. 

3.1.1   Technical Architecture 
In MKBEEM, ontologies are used to provide a consensual representation of the 
electronic commerce field in two domains (tourism with both transportation and 
                                                           
30 http://www.mkbeem.com  
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accommodations as well as mail order of clothing) allowing the exchanges 
independently of the language of the end user, the service, or the content provider. 
Ontologies are used for classifying and indexing catalogues, for filtering user queries, 
for facilitating man-machine dialogues between users and software agents, and for 
inferring information that is relevant to the user requests. The ontologies are 
structured in three layers, as shown in Figure 5. 

The global ontology describes the common terms used in the given application 
domain. This ontology represents the general knowledge in different domains (e.g., 
date, time) while each domain ontology contains specific concepts (e.g., trip) 
corresponding to vertical domains such as transports and accommodations. The 
service ontology describes all the offers available in the MKBEEM platform in terms 
of classes of services, i.e., service capabilities, non-functional attributes. Service 
classes are generic in the sense that they are described independently from a specific 
provider (e.g., trains services offers from Italy or Portugal are conceptually 
equivalent). The source descriptions (views in the Database terminology) described in 
terms of the Domain ontology, specify concrete instances that can be retrieved from 
the sources (i.e., reservation on trains). A further ontology is the linguistic domain 
ontology which assures an unambiguous interpretation of the user requests (see below 
in section 3.1.2). 

Global Ontology

Domain Ontology

Train and Planes Hotels and B&B 

e-Services Ontology

Sources description

TrenItalia Train 
Portugal

Hotels in   
Liboa

 

Fig. 5. Knowledge Base architecture 
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The MKBEEM-system allows to fill the gap between customer queries and diverse 
concrete providers offers. In a typical scenario, an end user submits to the MKBEEM-
system a natural language query. The query is processed by a Human Language 
Processing Server (HLP Server) which is in charge of meaning extraction: it analyses 
the input string and converts the query into an ontological formula (OF) which is a 
language-independent formula containing the semantic information of the 
corresponding phrase in human language in terms of the service ontology. The OF is 
then sent to the Domain Ontology server (DO server). The DO server is responsible of 
storing, accessing and maintaining the ontologies used by the MKBEEM-system. It 
also provides the core reasoning mechanisms needed to support the mediation 
services. The DO server achieves a contextual interpretation of the formula using its 
knowledge about the application domain. This task consists mainly in the 
identification of the offers (services) delivered by the MKBEEM-system that best 
match the ontological formula. The aim here is to allow the users/applications to 
automatically discover the available services that best meet their needs, to examine 
their capabilities and to possibly complete missing information. The set of solutions 
computed by the DO server is sent back to the user to choose one solution and to 
complete the parameters, if any of that are missing. After this dialogue phase, the 
retained solution is sent back to the DO server to generate the query plans. A query 
plan contains information about the real services that are able to answer the user 
query. Then, by using the information provided in the source descriptions, a query 
plan is translated into specific provider requests which are executed on the remote 
provider platforms (e.g., train reservation systems, hotel booking, car rentals). 

Thus, the user poses queries in terms of the integrated knowledge (services and 
domain ontology) rather than directly querying specific provider information data-
bases. This enables users to focus on what they want, rather than worrying about how 
and from where to obtain the answers. 

3.1.2   Human Language Request Analysis 
Within MKBEEM, we currently cover three basic services of the tourism domain, i.e., 
train reservation, accommodation reservation, car rental as well as mail order of 
clothing. In all of these cases, human languages allow a wide range of expressions 
and the related linguistic ontology therefore contains all the necessary information. 
Another benefit of this is that it helps the user to specify as much parameters as 
needed in a single request, in natural language, thus avoiding tiresome form-filling. 
The combination of several requests (e.g., “I want to visit Lisbon and reserve an hotel 
next weekend”) is also possible. To ensure that the generated, language neutral 
ontological formulas will contain all relevant information given by the user, the user 
request is treated in several interdependent steps [40]. 

Since the MKBEEM-prototype is multilingual, the first step is to identify the 
language of the user request. In the next step, it is analysed and a language 
independent semantic graph is created. The linguistic analysis is based on dependency 
syntax, a set of language dependent rules comparable to the Semantic Interpretation 
Rules of Discourse Representation Theory [41] and a set of language independent 
predicates. To ensure the ontological appropriateness of the generated semantic graph, 
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it is checked by the linguistic domain ontology developed for this purpose31. Any 
inappropriate semantic graph is deleted from the set of possible solutions. Finally, in 
order to deal with e.g., travel dates (especially in the tourism domain), temporal 
expressions which are relative to the time of utterance (deictic elements like now, 
today, in two hours, in five days, next Monday, at ten to eleven pm) or incomplete or 
varying dates (the 12th of April, on Good Friday are transformed into the 
corresponding absolute temporal expression (if no exact time is specified, it is not 
generated):  

temporal expression  transformation 
now    17.06.2003 13:56 
today   17.06.2003 
next Monday   21.06.2003 
at ten to eleven pm  17.06.2003 22:50 
the 12th of April  12.04.2004 
on Good Friday  9.04.2004 

The next step is the transformation of the internal semantic representation into the 
ontological formula, which works as a KR interlingua for the other processing 
components. The concepts (and roles) differ considerably from the linguistic ontology 
due to the fact that linguistic expressions and semantic nuances are present in the 
semantic representation, which are not needed in the ontological formula. So for 
instance temporal or modal information (I want to/I would like to/we will/we have to) 
must be eliminated by the transformation. Further, different lexemes expressing a 
move (go/arrive/depart/travel/be in/visit) need to be mapped on the concept “trip”, 
which is the only move-concept of the service ontology (see Fig. 6) As an example 
we take a typical user request, as follows: 

Example1. “I’ll arrive in Lisboa on Monday evening and I look for an accommodation 
with swimming pool.” 

The request inquires information on public transport to Lisbon on (next) Monday 
evening (uttered on Tuesday, 17th June). After analysing the sentence and processing 
the relative temporal information, we obtain an internal, language independent, 
semantic representation: 

Semantic representation 2 (simplified) 
 
coord(coord1=x3005, coord2=x3006) & 
arrival(destination=x3009, origin=u3010, situation=x3005, agent=x3013) & 
speaker(theme=x3013) & 
Lisboa(town=u3015, location=x3009) & 
weekday˜monday(date=x3005, wday=u3014) & 
monthday˜23(date=x3005, day=u3069) & 
month˜june(date=x3005, month=u3070) & 
year˜2003(date=x3005, year=u3071) & 
hour˜18(time=x3005, hour=u3072) & 

                                                           
31 See PICSEL http://www.lri.fr/~sais/picsel3  (1999-2006) 
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minute˜0(time=x3005, minute=u3073) & 
staying(agent=x3021, situation=x3006, place=x3022, means=x3023, 
  leisure=x3024) & 
speaker(theme=x3021) & 
accomodationorg(city=x3022, theme=x3023, leisure=x3024) & 
swimmingPool(type=x3024). 
 

As users are not directly concerned by the organisation of data provided by 
information systems (in our case train, car rental, tourism), the main difficulty is to 
map efficiently the user concepts (go, arrive, depart, take a train, etc.), identified by 
the HLP, onto the domain concepts (ontologies). Since some user requests are 
complex utterances, mixing motion verbs with absolute or relative time and space 
representation, the linguistic ontology is first used to constrain the parser during the 
construction of the linguistic formulas and to reduce the ambiguity ([42], cf. also 
[43]). In a next step irrelevant information (from an application point of view) must 
be pruned to produce a new formula compliant to the DO server (cf. Fig. 7), devoted 
identify the service and to plan the data-base queries. 

The linguistic ontology has been designed using the experience and knowledge 
gained in a previous project (Picsel32) using Description Logics language (DL), and 
which tools have been enriched to fit the needs of the linguistic analyser. 

Usually, ontologies are organised as directed graphs and use multiple inheritance. In 
consequence the more general concepts subsume the more specific. In contrast to 
superordinates which are less specific concepts, the greatest common subsumee (GCS) 
are more complete. Our experience, however, shows that domain concepts are rather 
GCS than superordinates. As outlined in [42] we use a common formalism for 
information representation (ontology). The ontologies are represented in Carin- , 

where concepts are unary predicates and roles binary predicates joining two concepts or 
a concept and a constant. The common inter-module communication language is Carin-

 which is in the framework of DL. As a consequence the HLP must transform 

utterances into formulas (using the inter-module communication language). 
Picsel34 ontologies are organised as directed graphs and use multiple inheritance. 

Thus in Carin-  (and other DLs) the more generic concepts subsume the more 

specific ones. In natural languages, however, more general concepts combine features 
of more specific ones. In consequence, the greatest common subsumees (GCS) are the 

                                                           
32 The Use of CARIN Language and Algorithms for Information Integration: The PICSEL 

Project by F. Goasdoué, V. Lattes, and M.C. Rousset. International Journal of Cooperative 
Information Systems (IJCIS) World Scientific Publishing Company, Volume 9, Number 4, 
pages 383-401. 

33 Carin is a family of theoretical languages for knowledge representation, Carin-  is the 

most expressive description logic for which subsumption and satisfiability are polynomial. 
34 “Picsel is an information integration system over sources that are distributed and possibly 

heterogeneous. The approach which has been chosen in Picsel is to define an information 
server as a knowledge-based mediator in which Carin is used as the core logical formalism 
to represent both the domain of application and the contents of information sources relevant 
to that domain.” See http://www.lri.fr/~sais/picsel3/  
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best candidates to represent these more general concepts. Our experience shows that 
applications should rather use GCS than concepts of the linguistic sub-ontology 
(LSO) in order to keep the power of inheritance and to manage a more generic notion 
at the same time. 

Discrepancies between the semantic representation (of the user request) and the 
main ontology must thus be bridged: The semantic representations (graphs) are using 
the LSO (i.e. concepts and roles defined in the LSO). To obtain the ontological 
formula, we need to rewrite this representation in service ontology (SO) terms. In 
order to achieve this, the principal rewriting rule is to replace the LSO concept (as 
found during the syntactical-semantic analysis) by the GCS concept of the SO. 

Move action

be in goarrivedeparttravel

Trip GCS

take a train 

 

Fig. 6. Links between linguistic ontology and service ontology 

As figure 6 shows, the service ontology concept trip GCS is a more complete and 
less generic concept than the (linguistic) concepts "go", "arrive" etc., which express 
the meanings of the verbs in question. The motion verb is rewritten using the GCS (in 
this case trip GCS). The resulting formula can be correctly interpreted within the 
service ontology. Taking our example 1, the semantic representation 2 is thus 
transformed into the corresponding ontological formula 3 in service ontology terms. 

Ontological formula 3 
 
(trip)(V5609), 

 (arrPlace)(V5609, properName Paris), 

(date)(C63), 

 (weekday)(C63, monday), 

 (day)(C63, 23), 

 (month)(C63, june), 

 (year)(C63, 2003), 

 (arrDate)(V5609, C63), 
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(time)(C64), 

 (hour)(C64, 18), 

 (minute)(C64, 0), 

 (arrTime)(V5609, C64), 

(accommodation)(V5610), 

 (leisure)(V5610, swimmingPool) 

hour 

Date-C63 

properName_Lisboa 

swimmingPool

 18 
0

 23 
 June 

2003 
Monday 

leasure 
arrTime 

arrDate 
arrPlace 

minute 
weekday 

day 

Trip-V5609 Accomodation-V5610 

Time-C64

 

Fig. 7. Visualisation of the ontological formula used for the service identification 

3.1.3   Service Identification 
In MKBEEM, service identification is achieved by means of a dynamic service 
discovery reasoning mechanism. Dynamic service discovery is used in association 
with the Picsel system to achieve the reasoning tasks in the DO Server. The 
complementary roles of these two complex logical reasoning constitutes the descrip-
tion logic core for query processing in the MKBEEM-system. They are in fact two 
different instances of the problem of rewriting concepts using terminologies [44]. 

The following example illustrates the interest of the service discovery reasoning 
mechanism. 
 
Let us consider an e-commerce platform that delivers the following four offers: 
– hotel, which allows to consult a list of hotels. 

– apartment, which allows to consult a list of apartments. 

– timetable1, which allows to consult a journey given the departure place, the 

arrival place, the departure date and the departure time. 

– timetable2, which allows to consult a journey given the departure place, the 

arrival place, the arrival date and the arrival time. 
 
Let us assume that, according to architecture of the MKBEEM-ontology, these offers 
are formally described in a given service ontology. Consider now, the example 1 and 
the ontological formula 3 created by HLP-Server. Now the service discovery is used 
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by the DO Server to identify the corresponding relevant service(s) in the service 
ontology. This task is achieved in two steps: 

1. Converting an ontological formula F into a concept description QF: 
This task depends on the structure of the ontological formula and on the 
expressive power of the target language. The current ontological formulas 
generated by the HLP-Server have relatively simple structures that can be 
described using the small description logic   {(  nR)}. This logic contains 
the concept conjunction constructor ( ), the universal role quantification 
constructor ( R.C) and the minimal number restriction constructor (  nR). In this 
case, we can achieve this task by computing the so-called most specific concept 
[45] corresponding to the ontological formula. 

 
The concept description QOF1 corresponding to the ontological formula OF1 given in 
the previous example is: 
 

 
 
2. Selecting the relevant services: 

This problem can be stated as follows: given a user query QF and an ontology of 
services T, find a description E, built using (some) of the names defined in T, such 
that E contains as much as possible of common information with QF and as less as 
possible of extra information with respect to QF. We call such a rewriting E a best 
cover of QF using T. Therefore, our goal is to rewrite a description QF into the 
closest description expressed as a conjunction of (some) concept names in T. 
 

A best cover E of a concept Q using T is defined as being any conjunction of 
concept names occurring in T which shares some common information with Q, is 
consistent with Q and minimizes, in this order, the extra information in Q and not in E 
and the extra information in E and not in Q. Once the notion of a best cover has been 
formally defined, the second issue to be addressed is how to find a set of services that 
best covers a given query. This problem, called best covering problem, can be stated 
as follows: given an ontology T and a query description Q, find all the best covers of 
Q using T. 
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More technical details about the best covering problem can be found in [46, 47]. To 
sum up, the main results that have been reached are: 

– The precise formalisation of the best covering problem in the framework of  
languages where the difference operation is semantically unique (e.g., the description 

logic   {(  nR))}. 

− A study of complexity showed that this problem is NP-Hard. 
− A reduction of the best covering problem to the problem of computing the minimal 

transversals with minimum cost of a weighted hypergraph. 
− Based on hypergraph theory, a sound and complete algorithm that solves the best 

covering problem was designed and implemented. 
Continuing with the example, we obtain the following result from the DO Server: 

Table 2.  Results from the Domain Ontology Server 

 Identified 
services 

Rest Missing information 

Solution 1 Timetable2,  
apartment 

leisure 
 
 

depPlace, 
numberOfRooms, 
apartmentCategory 

Solution 2 Timetable2, 
hotel 

leisure 
 
 

depPlace 
numberOfBeds, 
hotelCategory 

These solutions correspond to the combinations of services that best match the 
ontological formula OF1. For each solution, the DO Server computes the extra 
information (column missing information) brought by the services but not contained 
in the user query. The column rest contains the extra information (leisure) contained 
in the user query and not provided by any services. This means that, in the proposed 
solutions the requirement concerning the leisure is not taken into account. 

To continue with the example, assume that the user chooses the first solution 
(timetable2, apartment). Then, he is asked to complete the missing information: the 
departure place, the apartment category and the number of rooms the user wants in the 
apartment. The result is a global query Q, expressed as a service formula that will be 
sent to the Query plan generation (Picsel) to identify the providers which are able to 
answer to this query. 

3.1.4   Summary 
In this key technology components presentation we have described the successful 
implementation of a multilingual interface to semantically enabled services, based on 
knowledge which is coded in ontologies. It shows, how after the identification of the 
language, a user request is analysed and transformed into a language independent 
ontological representation. This representation is used to identify the service (or 
product in an e-commerce environment) the user wants to consult/buy with the help of 
service ontologies. Existing parameters are extracted and missing ones might be 
requested to the user in a subsequent step. Finally, to get the instances (e.g., the travel 
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ticket, the room reservation) the selected content providers are contacted to present 
the user the results of his or her initial requests. 

3.2   Knowledge-Based Multimedia Services 

3.2.4   Multimedia Reasoning 
Several methods for extracting the meaning of image regions were introduced. All 
these methods share the characteristic that they mainly work on low-level features of 
the image, e.g. on comparing colours or the direction of edges. While this type of 
algorithm provides good results for very specific problems, e.g. person detection, they 
do not work as well when used on more generic problems, such as labelling of an 
image. Labelling of an image refers to finding the correct concept depicted in a region 
of the image. In Figure 9 and Figure 10, one can see the different stages of the image 
analysis procedure. In the upper right the image was divided into different regions, 
where each region is depicted in a different grey tone. Apparently, the sea was 
divided into different regions. Now, if one wants to find out what is depicted in these 
regions and just starts to compare the colours, one will have problems to distinguish 
e.g. between sea and sky. Both are blue in colour, so it is hard to tell what is depicted. 
Also other objects can be blue, such as cars, towels or clothes. In the multimedia 
reasoning step we try to overcome this problem.  

It is well known that correctly interpreting a scene does not only take typical low 
level features such as colours or textures into account, but that also higher level 
knowledge is of great importance. One very important type of such knowledge is the 
spatial context, i.e. how certain concepts are usually related in terms of their spatial 
arrangement. An example is that you will nearly always find the sky depicted above 
the sea. Also, an aeroplane will be usually depicted within the sky and not within the 
sea, and so on. This type of knowledge is of course not always true, but it is true with 
a high probability. Therefore we are implementing algorithms in order to refine the 
output of the knowledge assisted analysis (KAA) using such spatial knowledge, 
which is specified beforehand by a domain expert. Based on this we can exclude 
certain concepts, e.g. if we encounter a region that is completely surrounded by sky, 
and this region is supposed to be sea or sky (result of the knowledge assisted 
analysis), we can safely discard the sea label, as we know that sea is never depicted 
within the sky, but only below, and keep the sky one. After discarding false labels we 
also try to use this kind of spatial knowledge to further refine the regions, e.g. 
merging regions that all depict sky into one big sky region. 

3.2.1    Knowledge-Assisted Image/Video Analysis 
A knowledge-assisted analysis (KAA) platform has been developed, in the context of 
the aceMedia project35. The interaction between the analysis algorithms and the 
knowledge base is continuous and tightly integrated, instead of being just a pre- or 
post-processing step in the overall architecture (see Figure 8). To achieve this, a 
region adjacency graph for image representation is used, that can interact dynamically 
(i.e., save, update, create new information) with the analysis processes. 

                                                           
35 IST-aceMedia http://www.acemedia.org  
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Fig. 8. Overall architecture 

Whenever new multimedia content is provided as input for analysis, an initial 
segmentation algorithm generates a number of connected regions and then MPEG-7 
visual descriptors are extracted for each region. A matching process queries the 
knowledge base and assigns to each region a list of possible concepts along with a 
degree of confidence. Those concepts are used (along with the degrees and spatial 
information of the regions) for the construction of an RDF description that is the 
actual system output: a semantic interpretation of the multimedia content. 

 

Fig. 9. Knowledge Assisted Analysis 

The objective of this ontology-supported analysis, is to extract high-level, human 
comprehensible features and automatically create semantic metadata describing the 
multimedia content itself. For each image/video shot, an RDF description is 
generated, which is a set of triples for each region/graph vertex.  For example: 
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− Image X decomposed-into region Y 
− Region Y depicts concept-instance Z 
− Concept-instance Z has-degree-of-confidence d 
− Region Y is-left-of Region W 

 
The KAA’s user interface is depicted in Figure 9, where the four panels display the 

input image and the output of the analysis in different steps. This visualisation is 
much more user friendly than reading the produced RDF file. As illustrated in Figure 
10, the resulting system’s output includes also a segmentation mask outlining the 
semantic description of the scene. The different colours assigned to the generated 
regions correspond to concepts defined in the domain ontology. This labelled mask is, 
in effect, another representation of the concepts detected, without the strict format of 
RDF, but with the major advantage of being very easily interpreted by humans. 

 

Fig. 10.  Analysis carried out by KAA 

3.2.2   Person Detection and Identification 
Human body forms are usually what a person notices first in audiovisual content. The 
aceMedia person detection and identification module can detect persons, as well as 
identify them. Furthermore, human faces are detected. 

With the help of aceMedia KAA (Knowledge Assisted Analysis) and content 
classification modules, the person detection and identification module further extends 
the capabilities of aceMedia high-level intelligent modules. Figure 11 shows 
examples of person detection. It also shows how a combination of different aceMedia 
modules can form a very powerful search tool. Person detection detects people, face 
detection detects faces, and content classification detects image background – 
allowing high-level user queries such as “find all images with people playing 
football”. 
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Fig. 11. Person detection 

The aceMedia person detector represents the current state-of-the-art in person 
detection. The detector performs as much as 50 times better than previous state of the art 
detectors in our evaluation experiments [48]. The module uses a new paradigm by 
mapping images in a very high dimensional feature space – a feature space specially 
designed to reliably detect people irrespective of their clothing, poses, appearance, 
image background, and image illumination. Besides person detection, the detector is 
known to work well for other image classes also, such as detecting cars, motorbikes, etc. 

Another version of the aceMedia person detection module, which is work in 
progress, combines motion information, i.e., how people move. This module further 
improves the accuracy of person detection, enabling the new detector to reliably 
detect people in videos. This module also provides person part detection capabilities, 
allowing automatic labelling of body parts, such as arms, torso, legs. This will allow 
even more powerful search applications such as activity recognition. 

An efficient face detection technology based on convolutional neural network 
architecture has also been integrated and tested, within the aceMedia system. This 
detector is able to robustly detect, in real time, multiple highly variable face patterns, 
of minimal size 30x30 pixels, rotated up to±20 degrees in the image plane and turned 
by up to ±60 degrees. 

The robustness of the face detector to varying poses and facial expressions as well 
as lighting variations and noise was evaluated by considering its sensitivity with 
respect to various transformations of the face patterns and using real sets of difficult 
images. Experiments have shown high detection rates with a particularly low number 
of false positives, on difficult test sets. For instance, a good detection rate of 90.3 % 
with 8 false positives have been reported on the CMU test set2, which are the best 
results published so far on this test set. Figure 12 shows some examples of detected 
faces. We have also been working on how to automatically identify the detected faces. 
The idea is to attach an identity to each of the detected faces using a reference 
database of digital face images. An off-line processing step is performed to learn the 
faces in the reference database. A recognition model is then computed and used to 
identify newly detected faces online. Statistical approaches for face recognition have 
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been investigated and a novel method called Bilinear Discriminant Analysis has been 
developed [49]. This method achieves better results than state of the art technologies. 
Furthermore, facial feature extraction techniques (positions of the eyes, the nose and 
the mouth) have been implemented. These features enable a better alignment of facial 
images and hence significantly improve the face recognition performance. Other 
classification issues of faces in feature space are also being investigated in order to 
provide a rejection possibility of unknown people. 

 

Fig. 12. Face detection 

3.2.3   Onological Text Analysis in Acemedia 
For natural language processing within aceMedia, the domain ontology and their 
mapping onto a semantic thesaurus has been stabilized. This is essential, since the 
natural language processing tool needs to know the meaning of the ontological classes 
and relations in order to assign lexical or syntactical meanings onto the ontological 
entities. This work is an extension of the ontological text analysis presented for 
MKBEEM (see 3.1.2). 

During 2005, the linguistic data provided for aceMedia have been enhanced. This 
meant revising the lexicon for domain specific expressions not yet in the lexicon 
(words such as "jet-ski") and adding robust rules to the dependency grammar analysis 
in order to be able to parse ungrammatical textual input (the content annotation corpus 
provided for the prototype contained phrases such as "child at bottom of mountain", 
which normally would have passed the syntactic analysis). Secondly the natural 
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language processing application module (NLP AM) has been developed integrating 
FTRD's natural language toolbox ©Tilt. 

Another important achievement is the first implementation of the ontological 
correction. This means that the ontological representations created from natural 
languages (textual annotations or user queries) have to be coherent with aceMedia's 
(domain) ontologies. Finally, the RDF produced by the NLP AM goes directly into 
the semantic metadata. It is thus available for intelligent search and retrieval. 

4   Conclusions: Where We Are and Perspectives 

In 2000, three prominent authors in the Semantic Web activity expounded in a 
seminal Scientific American paper [50] the Semantic Web vision. In the time since 
then, the Semantic Web has become real. Currently, there are hundreds of millions of 
RDF triples, on tens of thousands of Web pages, and thousands of ontology pages 
have been published using RDF schema and OWL, with a growing level of industrial 
support. This very active support from industry was recently witnessed at a worldwide 
key conference36 very focused on the applications of the Semantic Web Technology. 
Indeed, about 100 talks on industry experience in testing and deploying the 
technology and about 30 technology showcases were actively followed by 700 
attendees mostly from the industry.  

However, the Semantic Web is still in its early days and there are many exciting 
innovations on the horizon.  

A keynote speech37 foresaw a "re-birth of AI" (or the end of the AI-winter) thanks 
to big-AI applications (Deep Blue, Mars Rover, Deep Space 1, Sachem-Usinor) and 
Web AI (IR, NLP, Machine Learning, Services, Grid, Agents, social nets) needed due 
to the tremendous amount of data continuously available on the Web and the 
emergence of new ways of doing things (loose coupling of distributed applications or 
services, new business models, etc.). 

From 2000 to 2005, we can mention three strong endeavours: DARPA, W3C and 
EU IST where DARPA and EU IST funded projects particularly were clearly forces 
towards production of recommendations to W3C (RDF-S, OWL, Rules,  …), for fast 
adoption in industry.  In the meantime, 2003 saw early government adoption and 
emerging corporate interest, in 2005 the emergence of commercial tools, lots of open 
source software and even good progress in the problem of scalability (tractable 
reasoning over 10 million triples has already been claimed!). 

So, a significant corporate activity is clearly noticable today compared to 5 years ago: 

− Semantic (Web) technology companies are starting and growing: Cerebra, 
Siderean, SandPiper, SiberLogic, Ontology Works, Intellidimension, Intellisophic, 
TopQuadrant, Data Grid, Software AG, OntoText, SAP AG, etc.  

− Bigger players are buying in: Adobe, Cisco, HP, IBM, Nokia, Oracle, Sun, 
Vodaphone etc. for use in 2006. 

− Government projects are in and across agencies: US, EU, Japan, Korea, China etc. 
                                                           
36 Semantic Technology Conference 2006 http://www.semantic-conference.com/  
37 SemWeb@5: Current status and Future Promise of the Semantic Web, James Hendler, Ora 

Lassila, STC 2006, 7 March 2006, San José, USA 
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− Life sciences/pharma is an increasingly important market, e.g. the Health Care and 
Life Sciences Interest Group at W3C38 

− Many open source tools are available: Kowari, RDFLib, Jena, Sesame, Protégé, 
SWOOP, Wilbur etc. see the W3C SWAD inititiative39 

Then, it is also witnessed that adding a few semantics to current web applications - 
meaning “not harnessing the full picture at once but step by step” – gives a significant 
push in todays applications: richer metadata, data harvesting and visualization, web-
based social network, digital asset management, scientific portals, tools for 
developers, and so gradually closing the semantic gap. 

Semantic Web lessons: What has been learned from AI? 
− Cross-breeding with AI succeeded, stand-alone AI did not 
− Tools are hard to sell (needed too much skill and education)  
− Reasoners are a means, not an end (a key component but not the end) 
− Knowledge engineering bottleneck (Ontology development and management) 

Semantic Web lessons: What has been learned from the Web? 
− Web needed high value sites: Internet and Intranet 

− As these linked up, new functionality emerged: Yahoo, Google, and in 
companies extranet etc. 

− New business models followed 
− Netscape, Amazon, GDS, eBay, Yahoo, Google, Apple etc. 

− The magic word: Sharing!   
− Internet (Web 1.0), Companies’ internal portals ….  
− And now Social Networks (Web 2.0), corporate Knowledge Management 

− Key technology locks are still:  
− Development of ontologies i.e. modelling of business domains, authoring, best 

practices and guidelines, re-use of existing ontologies and simple tools! 
− Knowledge Extraction i.e. the population of ontologies by finding knowledge 

within legacy data 
− Mapping i.e. overcoming heterogeneity  
− Scalability: approximation, modularization, distribution 
− Reasoners and KR: performance(!) and acceptable heuristics in real world 

applications  
− Web services: discovery, composition, choreography, execution frameworks, . 
− Language extensions: what aspects are missing? e.g. data types, fuziness, rules 

In summary, the performance of semantic technologies clearly shows efficiency 
gain, effectiveness gain and strategic edge. Those facts are based on a survey of about 
200 business entities engaged in semantic technology R&D for development of 
products and services to deliver solutions. More than 70 have announced and 
launched semantic technology based products or services. Most things that have been 
predicted have happened - the semantic chasm is closing. Some things happened 

                                                           
38 http://www.w3.org/2001/sw/hcls/  
39 Semantic Web Advanced Development for Europe http://www.w3.org/2001/sw/Europe/  
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faster than anticipated like – triple store scaling – and others still need to be realized: 
ontologies are there (but very little interlinking and the need is huge especially in the 
healthcare domain), public information sources and public re-usable ontologies (as 
RDF, OWL etc.), technology transparency for the final user and the practitioners, 
pervasive computing is just emerging. 
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