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Preface 

This volume contains the papers presented at the 9th Information Security Conference 
(ISC 2006) held on Samos Island, Greece, during August 30 – September 2, 2006. 
The Conference was organized by the University of the Aegean, Greece. 

ISC was first initiated as a workshop, ISW in Japan in 1997, ISW 1999 in Malay-
sia, ISW 2000 in Australia and then changed to the current name ISC when it was 
held in Spain in 2001 (ISC 2001). The latest conferences were held in Brazil (ISC 
2002), UK (ISC 2003), USA (ISC 2004), and Singapore (ISC 2005). 

ISC 2006 provided an international forum for sharing original research results and 
application experiences among specialists in fundamental and applied problems of in-
formation security. 

In response to the Call for Papers, 188 papers were submitted. Each paper was re-
viewed by three members of the PC, on the basis of their significance, novelty, and 
technical quality. Of the papers submitted, 38 were selected for presentation, with an 
acceptance rate of 20%. 

We would like to express our gratitude to the members of the Program Committee, 
as well as the external reviewers, for their constructive and insightful comments dur-
ing the review process and discussion that followed. Moreover, we would like to 
thank all the members of the Organizing Committee for their continuous and valuable 
support. We also wish to express our thanks to Alfred Hofmann and his colleagues 
from Springer, for their co-operation and their excellent work during the publication 
process. Finally, we would like to thank all the people who submitted their papers to  
ISC 2006, including those whose submissions were not selected for publication, and 
all the delegates from around the world, who attended the ISC 2006 9th Information 
Security Conference. Without their support the conference would not have been  
possible. 
 
August 2006                                                                                     Sokratis K. Katsikas 

Javier Lopez  
Michael Backes  

Stefanos Gritzalis  
Bart Preneel  
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Extending .NET Security to Unmanaged Code

Patrick Klinkoff1, Christopher Kruegel1, Engin Kirda1, and Giovanni Vigna2

1 Secure Systems Lab
Technical University Vienna

{pk, chris, ek}@seclab.tuwien.ac.at
2 Department of Computer Science

University of California, Santa Barbara
vigna@cs.ucsb.edu

Abstract. The number of applications that are downloaded from the
Internet and executed on-the-fly is increasing every day. Unfortunately,
not all of these applications are benign, and, often, users are unsus-
pecting and unaware of the intentions of a program. To facilitate and
secure this growing class of mobile code, Microsoft introduced the .NET
framework, a new development and runtime environment where machine-
independent byte-code is executed by a virtual machine. An important
feature of this framework is that it allows access to native libraries to
support legacy code or to directly invoke the Windows API. Such native
code is called unmanaged (as opposed to managed code). Unfortunately,
the execution of unmanaged native code is not restricted by the .NET
security model, and, thus, provides the attacker with a mechanism to
completely circumvent the framework’s security mechanisms.

The approach described in this paper uses a sandboxing mechanism
to prevent an attacker from executing malicious, unmanaged code that
is not permitted by the security policy. Our sandbox is implemented
as two security layers, one on top of the Windows API and one in the
kernel. Also, managed and unmanaged parts of an application are auto-
matically separated and executed in two different processes. This ensures
that potentially unsafe code can neither issue system calls not permit-
ted by the .NET security policy nor tamper with the memory of the
.NET runtime. Our proof-of-concept implementation is transparent to
applications and secures unmanaged code with a generally acceptable
performance penalty. To the best of our knowledge, the presented ar-
chitecture and implementation is the first solution to secure unmanaged
code in .NET.

1 Introduction

With the growth of the Internet, applications are increasingly downloaded from
remote sources, such as Web sites, and executed on-the-fly. Often, little or no
knowledge exists about the author or her intentions. Therefore, users are suscep-
tible to executing potentially malicious programs on their computers. Malicious
programs contain code that executes in any unauthorized or undesirable way.

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 P. Klinkoff et al.

To secure users and increase the proliferation of mobile code, Microsoft re-
cently introduced a new development and runtime framework called .NET [5].
This framework leverages the previous experiences gathered with the Java vir-
tual machine concepts and includes a fine-grained security model that allows one
to control the level of access associated with software built upon .NET. These
applications are referred to as composed of managed code. The model signifi-
cantly limits the damage that can be caused by malicious code. To address the
important problem of backward compatibility and legacy code support, .NET
also offers a mechanism to tie in native libraries. These libraries, however, ex-
ecute outside of the .NET security model, and therefore are called unmanaged
code. As a consequence, the usage of this feature in .NET applications may al-
low an attacker to completely circumvent the framework’s security mechanisms,
leading to the unrestricted execution of arbitrary code. This security problem
is important because the use of unmanaged code will probably be common in
future Windows .NET applications. Millions of lines of legacy native Windows
code exist that will need to be integrated and supported over the next decade.
Also, software engineering research [10] has shown that it is not realistic to ex-
pect existing applications to be entirely rewritten from scratch in order to take
advantage of the features of a new language.

This paper describes our approach to extend the current .NET security model
to native (unmanaged) code invoked from .NET. To this end, we use a sandbox-
ing mechanism that is based on the analysis of Windows API and system call
invocations to enforce the .NET security policy. Our approach ensures that all
unmanaged code abides by the security permissions granted by the framework.
Our primary contributions are as follows:

– Extension of existing sandboxing methods to .NET unmanaged code invo-
cations.

– Two-step authorization of system calls by placing the security layer in the
Windows API and the enforcement mechanisms in a loadable kernel driver.

– Separation of untrusted native library and trusted managed code into two
separate processes by way of .NET remoting.

The paper is structured as follows. The next section provides an overview of the
.NET framework and its security-relevant components. Section 3 introduces the
design of our proposed system. Section 4 discusses the evaluation of the security
and performance of the system and shows that our approach is viable. Section 5
presents related work. Finally, Section 6 outlines future work and concludes the
paper.

2 Overview of the .NET Framework

Microsoft’s .NET framework is an implementation of the Common Language
Infrastructure (CLI) [6], which is the open, public specification of a runtime
environment and its executable code. A part of the CLI specification describes
the Common Type System (CTS), which defines how types are declared and
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used in the runtime. An important property of the .NET framework is that it
is type-safe. Type safety ensures that memory accesses are performed only in
well-defined ways, and no operation will be applied to a variable of the wrong
type. That is, any declared variable will always reference an object of either that
type or a subtype of that type. In particular, type safety prevents a non-pointer
from being dereferenced to access memory. Without type safety, a program could
construct an integer value that corresponds to a target address, and then use it as
a pointer to reference an arbitrary location in memory. In addition to type safety,
.NET also provides memory safety, which ensures that a program cannot access
memory outside of properly allocated objects. Languages such as C are neither
type-safe nor memory-safe. Thus, arbitrary memory access and type casts are
possible, potentially leading to security vulnerabilities such as buffer overflows.

The runtime environment can enforce a variety of security restrictions on the
execution of a program by relying on type and memory safety. This makes it
possible to run multiple .NET programs with different sets of permissions in the
same process (on the same virtual machine). To specify security restrictions, the
CLI defines a security model that is denoted as Code Access Security (CAS) [9].
CAS uses evidence provided by the program and security policies configured on
the machine to generate permissions set associated with the application. Secu-
rity relevant operations (for example, file access) create corresponding permission
objects, which are tested with respect to the granted permission set. If the per-
mission is not found in the granted set, the action is not permitted and a security
exception is thrown. Otherwise, the operation continues.

Managed code executes under the control of the runtime, and, therefore, has
access to its services (such as memory management, JIT compilation, or type
and memory safety). In addition, the runtime can also execute unmanaged code,
which has been compiled to run on a specific hardware platform and cannot
directly utilize the runtime. In general, developers will prefer managed code
to benefit from the services offered by the runtime. However, there are cases
in which unmanaged code is needed. For example, the invocation of unmanaged
code is necessary when there are external functions that are not written in .NET.
Arguably, the most important library of unmanaged functions is the Windows
API, which contains thousands of routines that provide access to most aspects
of the Windows operating system.

To support interoperability with existing code written in languages such as
C or C++ (e.g., the Windows API), the CLI uses a mechanism called platform
invoke service (P/Invoke). This service allows for invocation of code residing in
native libraries. Because code in native libraries can modify the security state
of the user’s environment, the .NET permission to call native code is equal to
full trust [18]. Furthermore, native code launched by P/Invoke is run within the
same process as the .NET CIL, and, as a consequence, malicious native code
could modify the state of the .NET runtime itself. Microsoft suggests to only
allow P/Invoke to be used to execute highly-trusted code. Unfortunately, users
generally cannot determine the trust level of an application and will likely grant
access also to non-trustworthy applications.
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3 System Design

Our goal is to bring unmanaged native code invoked with P/Invoke from .NET
under the control of the CAS rule-set. That is, we aim to combine the flexibility
of unmanaged code with the security constraints enforced by managed code.
When unmanaged code is executed, we assume that the attacker has complete
control over the process’ memory space and the instructions that are executed.

As a first approach, one could attempt to use the on-board operating system
security model to enforce the desired .NET restrictions at the process level. That
is, the downloaded application together with its native components is launched
in a dedicated process. Then, operating system access control mechanisms are
employed to restrict the privileges of this process such that the .NET Code
Access Security settings are mirrored. Unfortunately, this is not easily possible.
One problem is that Microsoft’s Windows security model, though extensive, is
different from the CAS model. That is, Windows security permissions differ
from .NET permissions and do not provide a similar level of granularity. For
example, in the CAS model, it is possible to allow a program to append to a file
while simultaneously deny write access to the file’s existing parts. In Microsoft
Windows, on the other hand, the file system permissions have to be set to permit
write access for a process to be able to append to a file. As another example, one
can finely restrict network access to specific hosts using CAS, while this is not
possible using OS-level Windows security mechanisms. Furthermore, Windows
access control is based on user and role-based credentials. CAS, on the other
hand, is based on the identity of the code, via its evidence. A comparable concept
of evidence does not exist in the Windows security model. For example, it is
not possible to define Windows security based on the URL the program was
downloaded from.

Because the Microsoft Windows security mode is significantly different than
CAS, we propose a dedicated security layer to extend the .NET code access
security to unmanaged code. The goal of this security layer is to monitor the
actions performed by the unmanaged code and enforce those restrictions specified
by the CAS permission set. In the following sections, we discuss details about
the design and implementation of our security layer.

3.1 Security Layer

The first design decision is concerned with the placement of the security layer.
Ideally, this layer should be transparent to the application that it encapsulates.
Also, it requires full access to all security-relevant functions invoked by the ap-
plication (with parameters), so that sufficient information is available to make
policy decisions. Finally, it must be impossible for malicious code to bypass the
security layer.

The fundamental interface used by applications to interact with the envi-
ronment, and the operating system in particular, is the Windows API. The
Windows API is the name given by Microsoft to the core set of application
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programming interfaces available in the Microsoft Windows operating systems.
It is the term used for a large set of user mode libraries, designed for usage by
C/C++ programs, that provide the most direct way to interact with a Windows
system. We can, therefore, expect all security-relevant operations, such as file
access, networking, memory, etc.1, to pass through the Windows API.

In a first step, we decided to place the security layer between the Windows API
and the native library. More precisely, we intercept calls to security-relevant Win-
dows API functions and evaluate their function parameters. Fortunately, .NET
security permissions map well to Windows API calls. Thus, we can evaluate
the parameters of Windows API calls by creating and checking corresponding
.NET permission objects. For example, we can evaluate the parameters of the
CreateFile2 API call and create a corresponding .NET permission object rep-
resenting the filename and the requested action (create or open). Then, this
permission object can be checked against the granted CAS permissions, appro-
priately permitting or denying the request.

To intercept Windows API functions, we make use of Detours [14]. Detours is a
general purpose library provided by Microsoft for instrumenting x86 functions.
This is achieved by overwriting the first few instructions of a target function
with an unconditional jump to a self-provided function. Using this technique,
we create hooks in security-relevant functions of the Windows API. The hook
functions evaluate the parameters and create corresponding .NET permission
objects. These permissions are then tested against the permission set granted to
the application. If the requested action represented by the security permission is
not permitted, a security exception is thrown. A valid request is passed on to the
original Windows API call to perform the requested operation. By placing the
security layer on top of the Windows API, it is possible to make the mechanism
transparent to applications, and, in addition, it allows for comprehensive access
to security-critical functions and their arguments.

Unfortunately, an attacker who has access to native code has great flexibility
and can use a range of possible techniques to evade our naive security layer.
The main reason is that the Windows API is user-level code that can be eas-
ily bypassed by interacting with the operating system directly. This could be
achieved, for example, by invoking functions from ntdll.dll, which is the user
space wrapper for kernel-level system calls, or by calling the system calls di-
rectly with assembly code. Another attack vector that needs to be mitigated is
that parts of the .NET framework can be modified. Unmanaged code has com-
plete and unrestricted access to the virtual address space that it is executed in.
Unrestricted memory access can be leveraged by an attacker to overwrite man-
agement objects of the .NET runtime. For example, the variables holding the
granted permission set could be modified. The attacker could also modify exe-
cutable parts necessary for security enforcement, or simply tamper with objects
on the managed heap, thereby crashing other .NET threads running on the same
virtual machine. To protect from these kinds of attacks, the security layer has to

1 For details on the Windows API, refer to [25].
2 The name of this call is slightly misleading, as it is also used to open files.



6 P. Klinkoff et al.

shield the .NET runtime and concurrently executing processes from tampering
with their allocated memory.

In the following Section 3.2, we introduce our approach to prevent unmanaged
code from bypassing the Windows API when calling security-relevant functions.
Then, in Section 3.3, we discuss our techniques to protect memory objects of the
runtime from modifications.

3.2 Securing the Security Layer

In this section, we discuss our mechanism to prevent an attacker from bypass-
ing the Windows API. To this end, we require a mechanism that allows us to
enforce that certain user-mode library functions are called before corresponding
operating system calls are performed. This mechanism is a second security layer
that resides in kernel space. In a fashion similar to the previously mentioned
layer at the API level, this second layer intercepts and analyzes operating sys-
tem invocations. In particular, it enforces that each system call invocation must
first pass through our security layer in the Windows API. To this end, the func-
tions in the Windows API are modified such that subsequent system calls must
be authorized. That is, whenever a security relevant Windows API function is
invoked, this function authorizes the corresponding operating system calls that
it is supposed to make. To make sure that only the security layer can authorize
system calls (and not the native code controlled by the attacker), we have to
ensure (i) that the authorization call originates from the security layer and (ii)
that the security layer was not modified by the attacker. The mechanisms to
enforce these two conditions are explained in more detailed later.

When unsafe code attempts to bypass the checks in the first security layer and
performs a system call directly, the kernel space layer identifies this invocation as
unauthorized and can abort the operation. The kernel driver is the only trusted
component in the system, as it cannot be modified directly by a user process.
Thus, if the attacker circumvents the Windows API, the invoked system call is
not authorized and is therefore blocked by the driver.

Of course, the attacker could attempt to bypass the parameter evaluation in
the security layer and jump directly to the instructions that grant the system
call. We prevent this with a two-step authorization process. The check routine
in the security layer immediately grants authorization for the system call. The
parameters are then evaluated and, if any check fails, the security layer revokes
its authorization. Thus, to authorize a system call, the attacker must always
jump before the actual argument check routines and run through the entire
process. Figure 1 shows the two-step authorization process.

The second security layer is implemented as a device driver loaded directly
into kernel space. Russinovich [22] describes a method for hooking operating
system calls in Windows NT by replacing the function pointer in the system call
table. The driver employs this method to hook operating system calls and mon-
itors the invocation of these calls from the unmanaged code. The security layer
that resides at the Windows API level communicates with the kernel driver via
IOCTL messages. These messages allow user space applications to communicate
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Fig. 1. Two-Step Authorization

with kernel-level drivers by passing buffers between them. In particular, IOCTL
messages are used to perform authorization and revocation of system calls.

As discussed previously, the system must not allow the native code to communi-
cate with the kernel driver directly (via IOCTL messages). Otherwise, the attacker
could authorize (and later invoke) a certain system call without going through the
security layer. Thus, only the security layer can be allowed to grant and revoke sys-
tem calls. The problem is that both the security layer (at the Windows API level)
and the native code are executed in the same address space, and it is not imme-
diately obvious how a call from the security layer can be distinguished from one
of the native code. To solve this problem, we permit IOCTL calls only from Win-
dows API library code segments (where the security layer is implemented), and
not from the native code itself (or from other segments such as the heap or stack).
To this end, the system call handler for the IOCTL call first determines the address
of the instruction that invoked the system call. If this address is not in the code
segment of a library, it is not forwarded to the kernel driver. When the attacker
attempts to jump directly to the instruction in the library that authorizes a call,
the two-step authorization process ensures that arguments are checked properly.
Otherwise, the authorization would be revoked immediately.

In addition, the correct operation of the two-step authorization process relies
on the fact that the native code cannot alter the code executed by Windows API
functions. Otherwise, it would be easy for an attacker to rewrite the code parts
that check arguments or simply remove the statements that are responsible for
revoking authorization when a CAS policy violation is detected. Fortunately,
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ensuring that code sections are not modified is relatively straightforward. The
reason is that executable code sections are stored in memory pages that are
marked execute-only. Thus, to modify these sections, the attacker must first
change the protection of the corresponding pages. To prevent this, the driver
hooks the system call that handles page protection modifications. Pages con-
taining executable code are typically marked as only PAGE EXECUTE. This pre-
vents reading or writing to any memory location in the page. To modify the
functions, an attacker would have to change the page protection to allow for
write access. To prevent this, we deny write modifications to any PAGE EXECUTE
pages. More precisely, we query the desired page protection before modification
and do not allow elevation to write access for any page that has the execute
flag set. This approach prevents an attacker from modifying executable code,
but still allows for dynamic library loading. When a library is loaded dynami-
cally, for example through the LoadLibrary call, memory is first allocated with
PAGE READWRITE protection [21]. After the library is loaded, the protection is
changed to PAGE EXECUTE. Because of this, the unmanaged code is effectively
prevented from writing to executable pages in memory.

The security of the whole system relies on the fact that a user process cannot
modify objects that reside in kernel space, and thus, cannot tamper with our
second security layer. The astute reader might wonder why the security layer was
placed in the Windows API in the first place, given the security advantages from
placing it in kernel space. One important reason is the absence of a published
documentation of the native API3, which is subject to changes without notice
even between different service packs of Windows. In contrast, the Windows API
is well-documented and explicitly designed to shield application code from sub-
tle changes of the native API. In addition, Windows API calls exist that map
to multiple system calls. In such cases, the Windows API function parameters
indicate the actual purpose of the invocation and checks are easier to perform
at the Windows API level than based on arguments of individual system calls.

As mentioned previously, unmanaged code cannot tamper with the driver
because it is located in kernel space. We can, therefore, use the driver as a
trusted storage for important data. In particular, to mitigate the danger of an
attacker modifying the CAS permission set, we safely store it in the trusted
storage. To this end, we serialize the permission set and store it in the driver
before we launch any native code. This is, again, achieved with IOCTL messages.
Note that permission sets are stored on a per-process basis. That is, multiple
processes with different permission sets can be sandboxed at the same time.
When checking a requested action, the security layer does not check against the
(possibly modified) permission set residing in .NET. Instead, the security layer
first retrieves the trusted permission set from the driver and then checks against
this set. Of course, the permission set stored in the driver cannot be modified
directly by the unmanaged code through another IOCTL, because that invocation
would be trapped and checked with respect to the established permission set.

3 Even though [19] does an excellent job at documenting the native API, the docu-
mentation can never be complete without support from Microsoft.
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In the previous discussion, the two steps of granting and revoking autho-
rization were explained in the context of a process. However, when considering
multi-threaded applications, this two-step authorization process would contain
a race condition. This race condition can be exploited when one thread attempts
a particular forbidden call, while another thread attempts to sneak in the same
call between the time it is originally authorized and the time it is revoked. This
problem is solved by granting and revoking authorization for system calls on a
per-thread basis. That is, whenever the kernel driver is consulted to grant or re-
voke permissions for a system call, it checks the thread identified of the currently
running thread instead of its process ID.

3.3 Remoting

Using security layers and the two-step authorization process, the CAS protection
is successfully extended to unmanaged code. That is, the CAS model is enforced
by monitoring all relevant interaction with the operating system and the permis-
sion set is safely stored in the trusted kernel driver. Unfortunately, the objects
in the managed heap and data structures of the runtime can still be altered
by an attacker, possibly causing the virtual machine or other .NET threads to
crash or behave unexpectedly. Another problem is that there are system calls
invoked by the runtime (or certain managed classes) that do not necessarily pass
through the Windows API. Although these system calls are not authorized by
our security layer, they are still valid. Of course, these calls must be permitted
as blocking them would prevent managed classes from functioning correctly.

Remote

Object

Managed

Application

Remoting ServerManaged Application

Stubs Native

Library

by-valby-ref by-ref

by-val

Fig. 2. Remote Parameter Passing

To protect the managed heap of .NET threads (and the runtime) and to make
tracking of system calls easier, we isolate the unsafe code from the managed
code that invokes it. More specifically, we create a process boundary between
the managed code and the unmanaged code. Existing sandboxing techniques
consider the entire process untrusted. For our purposes, however, we must dis-
tinguish between managed and unsafe code, even though these run in the same
process. We therefore isolate the untrusted native library from the trusted man-
aged code by running them in two different processes. In this way, we leverage
the basic memory protection mechanisms offered by the operating system and
prevent unmanaged code from accessing memory allocated by managed code.
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When the native, unmanaged parts of an application are executed in a process
different from the one where the managed part of the application resides, the
question naturally arises how communication between these processes is realized.
In particular, we need to explain how parameters and return values can be
exchanged between the process that runs managed code and the process with
the native code piece. While simple data types such as integers can be easily
passed (copied) between address spaces, the situation is more difficult when
complex data structures such as linked lists are involved. In these cases, the
data structures have to be serialized by the sender and appropriately rebuilt by
the receiver.

To accomplish the data exchange between the managed and the native pro-
cesses, we make use of .NET remoting, the Remote Procedure Call (RPC) mech-
anism of .NET. To use .NET remoting, two proxy libraries have to be generated.
The first proxy library contains the stubs for the native calls and is linked with
the managed part of the application. More precisely, this library acts as an in-
terceptor that replaces the original native library. It contains one method stub
for each function of the unmanaged code that the managed code can invoke.
Each method stub uses .NET remoting to invoke its corresponding method in
the second proxy library. The second proxy library, called remote object, ex-
poses a remote method for each function that the managed code uses in native
libraries. These remote methods then perform the actual invocation of the na-
tive library in the remote process. Conceptually, the .NET remoting process can
be viewed as an additional level of indirection between the managed code and
the native libraries. Instead of passing values directly to the native code via
the P/Invoke function, these values are first copied to the remote process using
.NET remoting and only there passed to the native library. Note that both proxy
libraries are automatically generated from the managed assembly. To this end,
we use a combination of .NET reflection and an analysis of the disassembly of
the intermediate language code. The goal is to obtain the required information
to generate the proxy libraries, namely, the number of parameters of each native
function and their respective types.

One problem that has not been discussed so far are parameters that are passed
by-reference from managed code to the native library. The problem is that vari-
ables cannot be transfered across the process boundary with remoting when they
are by-reference. This is because pointer values have no meaning outside the pro-
cess address space. As a result, remoting parameters are always passed by-value.
However, P/Invoke allows for by-reference parameters and we must take this
into account. To solve this problem, we have to simulate by-reference parameter
passing by copying the variables back and forth by-value. More precisely, the
proxy library on the managed side transforms a by-reference argument into the
corresponding value that is then copied to the remote process. Once the call into
the native library is completed by the remote object, the stub method requests
the parameter variables back. Then, the reference parameters are copied back
into the original locations, as changes in the remote process must be reflected
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in the original object. Figure 2 shows the process of simulating by-reference
parameter passing.

The remoting server (see Figure 2) hosts both the remote object (which con-
tains managed code) and the native library that should be confined. Before the
unmanaged code is executed, the remoting server has to perform a number of
initialization tasks. First, the Windows API hooks are installed to perform API
function monitoring. Then, the .NET security manager is used to generate the
granted permission set based on the evidence provided by the managed appli-
cation. This permission set is then serialized to an XML format and sent to the
trusted storage. Finally, the kernel driver has to be initialized. To this end, the
remoting server registers its own process ID for subsequent monitoring. From
that point onward, the remoting server process is subject to the CAS policy en-
forcement and can no longer perform any unauthorized system calls. Of course,
the native library can freely tamper with the process memory and possibly crash
the virtual machine or return arbitrary results to the managed code. However,
such actions only affect this single process, while the managed code and the run-
time (together with other threads) is successfully shielded by the process barrier.
In particular, note that values returned by the unmanaged code are automati-
cally integrated into the .NET type system when received by the proxy on the
managed side. If values are returned that do not correspond to valid types, the
situation is detected and an appropriate unmarshaling exception thrown.

4 Evaluation

To evaluate the proposed approach, we developed a proof-of-concept implemen-
tation of our system. Our prototype implements both the security layer at the
kernel level and the layer at the Windows API level. Also, we support running
the native process in a dedicated process with the automatic generation of the
.NET proxy libraries. The system extends CAS to the following areas: file access,
registry handling, and interaction with environment variables.

We investigated whether the current prototype achieves our stated goal of
extending .NET’s CAS mechanism to native libraries. We report on results of
our simulations of the attack methods discussed previously. We continue by
shedding light onto the performance penalty incurred by the design and conclude
with experiments that demonstrate that our system can successfully isolate the
native libraries of real-world applications.

4.1 Functionality

Functionality testing is directly linked to our stated goal. We would like to ensure
that native code cannot perform actions that are restricted by the code access
security (CAS) policy. For this purpose, we first constructed a CAS rule set that
denies access to a certain file. The check of the file name to enforce this policy
is performed in the CreateFile Windows API function, which in turn has to
authorize the invocation of the corresponding operating system call. Then, we
attempted to bypass our checks and illegitimately obtain access to this file.
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In a first test, we attempted to bypass the Windows API function and called
NtCreateFile from ntdll.dll directly. As expected, our kernel-level security
layer denied the call as it was not authorized by the Windows API security
layer. In the second approach, we decided to avoid using libraries altogether
and used in-line assembly code to invoke system calls directly. Again, our kernel
driver prevented the system call invocation. Next, we simulated an attacker’s
attempt to subvert the runtime or the security layer. We simulated this attack
by attempting to modify an executable function. As expected, the driver hook
for page protection denied this modification.

The results obtained from our attacks indicate that our system works as ex-
pected, and we successfully showed that all system call invocations must first
pass through the security layer, and the checks therein.

4.2 Performance

After testing the system’s functionality, we ran performance analysis to deter-
mine the overhead incurred by the security layer and, in particular, the remoting
infrastructure. To this end, we conducted a series of micro benchmarks to mea-
sure the performance overhead of individual calls to native library functions. All
experiments were run on a machine with an Intel Pentium 4 1.8GHz and 1GB
of RAM, running Windows XP with Service Pack 2.

We anticipated the .NET remoting infrastructure to incur the largest perfor-
mance penalty. To measure this penalty, we isolated the remoting infrastructure
from the remaining system. For this, we modified our remoting server to not
instantiate the security layer and to not interact with the driver. Our first test
library function takes no parameters and returns no variables. The test function
solely invokes the CreateFile function from kernel32.dll to create a file. The
remoting server is hosted on the same machine, preventing network delays from
skewing the results. The first entry (i.e., Test 1) in Table 1 compares the av-
erage running time over ten calls of a direct P/Invoke call to a call redirected
over .NET remoting. As we expected, the .NET remoting mechanism creates a
considerable performance penalty, which arises from the need to perform inter-
process communication. In our next test, we used the remoting server as outlined
in Section 3.3. That is, the security layer was in place and interacted with the
driver. Our test function was the same as above, i.e., it took no parameters and
returned no value. The second entry (i.e., Test 2) in Table 1 shows the average
running time over ten calls. The results indicate that our security layer intro-
duces no measurable performance penalty (less than one millisecond). Finally,
we investigated how parameter passing affects performance. To this end, our
next test compared the overhead produced by parameters in the .NET remoting
call. This overhead stems from the need to marshal arguments at the sender and
restore them at the receiver. The CreateFile call has seven parameters and
one return parameter, which need to be serialized and exchanged between pro-
cesses. The last entry (i.e., Test 3) in Table 1 shows that including parameters
exacerbates the performance penalty.
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Table 1. P/Invoke vs. Remoting

Test Test Description Direct Call Remoting Call
(P/Invoke) (ms) (ms)

1 No Security Layer 15 234

2 Active Security Layer 15 234

3 Active Security Layer
+ Function Parameters 15 286

While the overhead of a remote procedure call is an order of magnitude larger
than invoking unmanaged code within a process, this is not surprising. Also, note
that the in-process P/Invoke call incurs significantly more overhead than a reg-
ular function call. Thus, we do not expect this mechanism to be used frequently
by performance-critical applications and believe that the increase in security
clearly outweighs the performance loss.

4.3 Remoting

Another feature that we evaluated is the remoting infrastructure and the gener-
ated stub libraries. In particular, we want to ensure that we have not introduced
limitations on parameter passing and that we maintain transparency for man-
aged real-world applications that use native library components.

As mentioned in Section 2, an important reason for the introduction of
P/Invoke and the ability to include unmanaged code into .NET applications is
the need to call Windows API functions. Thus, we have to ensure that our protec-
tion infrastructure supports the invocation of (almost) all API functions. To test
the ability of our system to call Windows API functions, we selected a represen-
tative subset of ten routines from important areas such as process management,
file handling, and helper functions (all implemented in the kernel32.dll, the
core Windows kernel library). We then tested whether these functions can be
invoked from managed code running in a different process. We observed that our
design successfully passed the relevant parameters across the process boundary
via .NET remoting and invoked the native functions in the remote server pro-
cess. After invoking the respective function, possible return parameters were
successfully passed back to the original process.

Besides tests with Windows API functions, we also investigated our system
when running real-world managed applications that make use of native library
routines. To this end, we tested our infrastructure on two popular libraries: Sleep-
ycat Software’s Berkeley Database [23] and the OpenGL graphics library [20].

Berkeley Database (BDB) is an embedded database. This is, the database
engine component is compiled as a library and linked with the application. BDB
is officially available as libraries for multiple languages such as C, C++, and
Java. In addition, an unofficial C# wrapper [1] exists to port BDB to .NET.
This wrapper uses P/Invoke to call the functions of the original BDB library.
To test our system, we used the C# wrapper to invoke functions of the BDB
library. More precisely, our test application uses the C# BDB wrapper to open a
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database, store and retrieve records, and close the database. Function parameters
include strings, integers and enums for supporting flags.

For testing OpenGL, we used a C# wrapper called CsGL [4] that encapsulates
a native OpenGL library. To test our prototype, we exercised basic OpenGL
functionality, such as filling the background of a window and drawing a rectangle.
However, because most OpenGL functions use a similar syntax, we are confident
that this covers the majority of OpenGL.

In both cases, our system automatically generated the necessary proxy li-
braries to split the managed part and the native library into two processes. That
is, instead of invoking unmanaged library functions directly with P/Invoke, the
parameters were first transfered to a remote process via .NET remoting. Only
there were the native functions executed (via P/Invoke). Also, in case where a
function returned a value, these values were properly returned to the managed
application. This demonstrates that our system can automatically and transpar-
ently isolate native components from managed code.

5 Related Work

The system presented in this paper uses a sandbox to confine the execution of po-
tentially untrusted applications. Sandboxing is a popular technique for creating
confined execution environments that has been of interest to systems researchers
for a long time.

An important class of sandboxing systems uses system call interposition to
monitor operating system requests. That is, system calls are intercepted at the
kernel interface. Then, these calls and their arguments are evaluated against se-
curity policies and denied when appropriate. Numerous approaches have been
proposed [2, 11, 17, 3] that implement a variation of a sandboxing mechanism
based on system calls. These approaches typically differ in the flexibility and
ease-of-use of the policy language and the fraction of system calls that are cov-
ered.

One problem with kernel-level sandboxing mechanisms is the need to install
the necessary policy enforcement infrastructure (e.g., kernel drivers or operating
system modifications). To circumvent this problem, techniques [15, 12] have been
proposed that rely on existing monitoring infrastructure in the kernel (e.g., APIs
used for tracing and debugging such as ptrace) to intercept system calls, which
are then processed by a monitor that resides in user space.

The main differences between our proposed approach and sandboxing tech-
niques that operate on system calls are twofold. First, we do not only analyze
the invoked system calls but can also force native code to go through user-mode
libraries first (in our case, Windows API functions) before invoking a system call.
That is, our two-step authorization process extends system call interposition to
user libraries. The second difference is that we distinguish between a trusted,
managed part and an untrusted, native part of an application, which originally
run together in the same address space. To protect the managed code from
malicious, unmanaged code, both parts have to be run in separated processes.



Extending .NET Security to Unmanaged Code 15

Forcing native code to go through user libraries can also be achieved with
program shepherding [16], a method for monitoring control flow transfers during
program execution to enforce security policies. The difference to our system is
that program shepherding cannot prevent data values from being overwritten,
a property that we obtain by executing managed and unmanaged code in two
separate address spaces.

Being at the boundary between potentially untrusted user programs and the
trusted kernel, system calls have received interest also from other areas of security
research. In particular, system calls have been extensively used for performing
host-based intrusion detection. To this end, specifications of permitted system
calls were either learned by observing legitimate application runs [8] or extracted
statically from the application [24, 7].

Finally, Herzog and Shahmehri [13] present an approach that extends the
Java policy syntax for resource control. While we do not extend the .NET policy
syntax per se, we extend its reach by applying it to native code.

6 Conclusions

The number of applications that are being downloaded from Web sites and au-
tomatically executed on-the-fly is increasing every day. Unfortunately, some of
these applications are malicious. The .NET framework provides a security mech-
anism called Code Access Security (CAS) to help protect computer systems from
malicious code, to allow code from unknown origins to run with protection, and
to help prevent trusted code from intentionally or accidentally compromising se-
curity. CAS succeeds in restricting undesired actions of managed code. However,
the permission to invoke unmanaged (i.e., native) code gives a potential attacker
complete freedom to circumvent all restrictions.

This paper introduced a system to extend the CAS rule-set to unmanaged
code. The evaluation of the proof-of-concept prototype of our proposed system
shows that our design is viable. In particular, we successfully extended the CAS
rule set to important Windows API functions. By confining a possible attacker
to using the Windows API, we subjected unmanaged code to our security layer.
Further, we successfully protected our system against possible attack vectors,
such as circumvention of the security layer and memory corruption. To the best
of our knowledge, the presented architecture and implementation is the first
solution to secure unmanaged code in .NET.
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Abstract. Format-string attack is one of the few truly threats to software secu-
rity. Many previous methods for addressing this problem rely on program source
code analysis or special recompilation, and hence exhibit limitations when ap-
plied to protect the source code unavailable software. In this paper, we present
a transparent run-time approach to the defense against format-string attacks via
dynamic taint and flexible validation. By leveraging library interposition and ELF
binary analysis, we taint all the untrusted user-supplied data as well as their prop-
agations during program execution, and add a security validation layer to the
printf-family functions in C Standard Library in order to enforce a flexible
policy to detect the format string attack on the basis of whether the format string
has been tainted and contains dangerous format specifiers. Compared with other
existing methods, our approach offers several benefits. It does not require the
knowledge of the application or any modification to the program source code,
and can therefore also be used with legacy applications. Moreover, as shown in
our experiment, it is highly effective against the most types of format-string at-
tacks and incurs low performance overhead.

1 Introduction

Because of some innate features of C programming language such as lack of memory
safety and function argument checking, ever since it became the mainstream program-
ming languages of choice, there have been problems with the programs produced using
it. Format string vulnerability, discovered about six years ago [1], is a case of such prob-
lems. It applies to all format-string functions in C Standard Library and still exists in
many software (e.g., a recent last-3-months search in the NIST National Vulnerability
Database had returned 28 matching records of this vulnerability [2]).

Due to the ability to write anything anywhere [3,4], attacks exploiting format-string
vulnerabilities are extremely dangerous: they can lead to the program denial of service
(e.g., to crash the program by using multiple instances of %s-directive), or can read sen-
sitive data from nearly any readable location in the process memory (e.g., information
leakage attack by using some %x-directives), or can write arbitrary integers to the area
the attacker desires to with carefully crafting the format-string (e.g., the most dangerous
%n-directive attack). Like buffer overflows, format string attacks are well-recognized
as one of the few severe and truly threats to software security [5,15].

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 17–31, 2006.
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Many defensive methods against format-string attacks have been investigated in the
past several years, including static checking (e.g., [22]), compiler extensions and run-
time guarding (e.g., [15,16]), safe library functions (e.g., [13,14]), execution monitoring
(e.g., [31]), and so forth. As discussed in Section 6 in details, these approaches are all
valuable and they can catch real attacks. However, some of them such as FormatGuard
[16], TypeQualifiers [17] and White-listing [15], require access to program source code
for special analysis or recompilation, and hence exhibit limitations when applied to
protect the source code unavailable software; and some of them although do not rely
on program source code and appear almost transparent, they either tend to restrict code
for the protection (e.g., preventing %n-directive in non-static format string [13]), or
just provide small scope checking (e.g., only detecting malicious write of %n-directive
associated with the return address or frame pointer [14]).

In this paper, we present an improved dynamic and transparent approach to the de-
tection and prevention of format-string attacks. Specifically, we employ library interpo-
sition technique to intercept the printf-family functions in C Standard Library, i.e.,
glibc (we consider Linux platform in this paper), to do a security validation against
the format string; intercept the I/O as well as string related functions to taint all the un-
trusted data originating from untrusted sources and their propagations during program
execution. In order to get a good tradeoff between false positive and false negative, we
provide two security policies, a default policy and a fine-grained policy. In our default
policy, we validate the format string on the basis of whether it has been tainted and
contains dangerous format specifiers. If so, a format-string attack is detected and we ei-
ther signal an input/output error or kill the program to prevent it. With our fine-grained
policy, we validate not only the tainted format string but also the untainted non-static
one. For these untainted non-static, we check the %n corresponding argument whether
or not points to those security critical areas such as return address, GOT (Global Offset
Table) and DTORs (Destructor function table) [18]. We have developed a practical tool,
FASTV (FormAt String Taint and Validation), to demonstrate this idea.

Compared with other existing methods, our approach offers several advantages:

– Practical in application. Our approach operates on a normally compiled binary pro-
gram, and appears transparent to the protected software. This makes it practical
to be used for a wide variety of programs, including proprietary and commodity
programs whose source code is unavailable.

– Effective against “real-world” attacks. We collected 6 notable format-string at-
tacks published at securityfocus.com [1,7,8,9,10,11]. Our approach successfully
prevented all of them.

– Easy to use. For protections, users only need to set the environment variable and
restart the program. Moreover, it can be simply set for the protection of either spe-
cific program or all processes on the machine.

– Low run-time overheads. As the experiment indicated, our approach only imposes
about 10% run-time overhead on the protected software.

Our work makes the following contributions. We propose a novel dynamical taint and
flexible validation approach to the detection and prevention of format-string attacks.
In general, it is a practical and efficient solution in defending against these attacks.
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Besides, we have implemented the prototype, and made an empirical evaluation show-
ing the feasibility of our approach. In addition, perhaps more importantly, we believe
our approach is also applicable for the prevention of other attacks such as SQL
injection [6].

The rest of this paper is organized as follows. Section 2 presents a technical descrip-
tion of our approach. Section 3 describes the design and implementation of our proto-
type. Section 4 provides the experimental results on the effectiveness and performance
evaluation. The security analysis and limitations are discussed in Section 5, followed
by the related work in Section 6. Finally, Section 7 concludes the paper and outlines
future work.

2 Approach Description

Since the root cause of format-string vulnerability lies in the format string, which is an
argument to the printf-family functions, trusting the user-supplied input
[3,4,14,15,16,17], the format-string argument (essentially, it is a string pointer) be-
comes our focus. If we can ensure the format-string argument is trustworthy or con-
tains no dangerous format specifier when it is untrustworthy, we could hence prevent
the format-string attacks. This is the key idea of our approach.

Upon the observation, we find out that the format-string argument passed to
printf-family functions often falls into three categories:

I. Format-string argument pointing to a static string.
II. Format-string argument pointing to a program dynamically generated string.

III. Format-string argument pointing to a user-supplied input string.

For the static string to act as a format-string argument, since it is constant and attack-
ers cannot modify such strings (we do not cover static binary patching attack before
program running in this paper), it is trustworthy and secure. We can distinguish it by
ELF [18] binary analysis from the other two kinds, because static string resides in the
program read-only data area and its address space is different from other program vari-
ables.

The second kind of format-string argument is internally maintained by the program
itself, and in most cases is trustworthy. However, if attackers can influence the dynami-
cally generated string (e.g., by buffer overflow attacks) or programmers carelessly deal
with these data (e.g., forgetting to pass the corresponding argument), then it can also
become untrustworthy. Therefore, we need to validate the format-string argument if
tough checking required. Yet, we should mark this kind of format-string argument as
trustworthy if no buffer overflow like attack occurs, because the bugs caused by care-
lessness should be eliminated before code ships.

The last kind of format-string argument is the common form of format-string vul-
nerability and undoubtedly the most dangerous. Our security validation mainly aims to
find out this kind of format-string argument, which comes from user-supplied input and
contains dangerous %n-directive (we currently focus on this specifier). It is an impor-
tant part in our approach of how to identify and taint the untrusted user supplied data.
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Here, suppose we have tainted all the untrusted data (its detail explanation is provided
in the next section).

To detect the format-string attacks, we add a security validation layer to those
printf-family functions in glibc. The security validation firstly determines whether
the format string is static, since static format string is much more frequently used than
that of other two kinds. (1) If the format string is static, we believe it trustworthy, and
the function continues its original functionality (either to call the original function or
execute code that is functionally equivalent). (2) Otherwise, the format string would be
either dynamic generated or user-supplied (i.e., the tainted), and next we distinguish
them based on whether it is tainted. (2.1) If the format string is tainted, then it is un-
trustworthy and we parse it to check whether it contains dangerous format specifiers.
If it does, we report the format-string attack detected, and set the running printf-
family function error; otherwise the function also continues its original functionality.
(2.2) If the format string is untainted (this is the case for dynamically generated string),
as stated it may be untrustworthy, and then if tough checking required we need to check
it too. This is why we provide flexible policy. The default policy does not check it. In
our fine-grained policy, the checking operation is to determine whether the %n corre-
sponding argument points to return address, frame pointer, GOT (containing addresses
of shared library functions) and DTORS (containing address of special destructor func-
tions), because these areas are easily exploited as the attack target [4].

We employ ELF binary analysis and library interposition technique to achieve our
goals. ELF binary analysis is used to identify the read-only static string and those at-
tacker’s target address, such as GOT and DTORS. Library interposition enables us to
intercept those I/O and string propagation related functions in C Standard Library, so as
to taint the user-supplied input. Another reason for using library interposition is that this
technique does not require access to program source code, which makes our approach
a more wider application.

3 Design and Implementation

We have developed a prototype, FASTV, to demonstrate our approach. The internal
architecture of FASTV is illustrated in Figure 1. As shown in this figure, its core com-
ponents are the dynamic taint of user-supplied input and flexible validation of format-
string argument. We describe in detail these two parts design and implementation in this
section, and additionally present the reactions when detected the format-string attacks.
We provide the techniques to taint the user-supplied input in Section 3.1, and discuss
how to validate the format-string argument according to different security policy in
Section 3.2. The security reaction is provided in Section 3.3.

3.1 Dynamic Tainting Untrusted Data

Previous work [31] has suggested the use of taint analysis to track the input data that
may lead to malicious attacks. However, their approach makes program run in an em-
ulation environment and adds instrumentation to every data movement or arithmetic
instruction, thereby imposing significant runtime overheads. In contrast, based on the
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observation that format string attack is usually caused by user-supplied input and these
data are often string related, we could hence just intercept those I/O and string related
functions in glibc instead of using hardware or software emulation based approach to
track and taint the untrusted data.

Run-Time Representation of Tainted Data. In our approach, the taint operation is
just to track the starting address and size information of those untrusted data in memory.
We use a red-black tree [19] to store the tainted address and size in order to promote
the performance. By associating taint operation with the starting address and size rather
than other information, we can make our approach space cost little, and ensure the
correctness of tainting in the presence of pointer aliasing. Why we do not store the
content of every tainted data, the reason is when parsing the string content, we can get
it from the tainted address.

Tainting Original Untrusted Data. For these directly user-supplied data, whenever
the I/O related glibc functions are called, we intercept them and taint these input by
inserting their buffer’s starting address and size into our red-black tree. Here we should
ensure that only one copy of a given buffer address exists in the tree. Thus, if the buffer
has been tainted (by first searching the red-black to determine), we would not taint it
again.

Note for the environment variable (e.g., user-supplied command-line data such as
argv), we also need to taint them by inserting their associated address and size into the
tree if tough checking required, because these data are also untrustworthy. In our current
implementation, we have tainted these environment variables when loading FASTV by
using the external variable environ to locate their address.
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Tainting the Propagation of Original Untrusted Data. In our approach, tainting the
propagation of original untrusted data is achieved by intercepting those string related
glibc functions. Once these functions are called, we check firstly whether their cor-
responding original string (source string) is tainted. We determine this string is tainted
on the basis of whether it exists in the red-black tree (its address equals to the node’s
address) or it belongs to the scope of certain node (we use the node’s size to determine),
for example, if address p is tainted and its length is 10, then “p + 5” is also implicitly
tainted since it lies in the scope of p.

After that, (1) if we find the source string has been tainted, then we taint the desti-
nation string. For the destination string, they may have been tainted previously, so we
need to search the tree to determine whether it has been tainted. If it has not, we insert
the destination starting address and size into our tree, and next the function continues.
(2) If the source string is untainted, then we also need to ensure the consistency of the
destination string untainted, and subsequently if it has been tainted before this time we
need to delete it from or update the node’s size in our red-black tree. We believe this
consistency operation is reasonable since every string related operation is been guarded,
and the most recent string to format functions would be the corresponding most recent
modified.

3.2 Format-String Validation

The format-string validation is used to detect the format-string attacks. As described
in Section 2, not every format-string argument is necessary for the validation, only
those tainted data or when tough checking needed the dynamically generated string is
included for. Thus, we provide a default policy and a fine-grained policy to handle the
validation flexibly.

Default Policy. Our default policy is primarily to catch those user-supplied format
string, which contains dangerous format specifiers. Specifically, if the tainted data con-
tains %n-directive and is used as a format-string argument, then the format-string attack
is detected.

The other remained two kinds of format string are not addressed in our default policy,
and we regard them as trustworthy (this is reasonable as we have stated in Section 2).
However, it might lead to false negatives if attackers gain control over the dynamically
generated string. So in order to complement the default policy, we provide the other
policy, fine-grained policy, to handle the dynamically generated format-string argument
(no need to static string since it is secure).

Fine-grained Policy. The fine-grained policy aims to determine wether the
%n-directive corresponding argument is secure when the format string dynamically
generated. If this argument points to a program return address, frame pointer, entry of
GOT or DTORS, then it is insecure and the attack is detected. Otherwise, the function
continues.

We construct a reference table, which contains the base address and whole size infor-
mation of program GOT and DTORS, when loading FASTV. We achieve ELF binary
analysis to find out these security critical address as well as their associated size to cre-
ate this table. As for the return address and frame pointer, these data are dynamically
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changed and we cannot determine them by ELF binary analysis. Fortunately, Tsai et al.
have proposed a solution to address this problem in Libsafe [14], and we adapt their
approach here to locate the return address and frame pointer.

3.3 Reaction to Format-String Attacks

Many approaches when detected format-string attacks usually kill the running process.
However, when attacks occur repeatedly, which is a common scenario with automated
attacks, these protection mechanisms would lead to repeated restarts of the victim ap-
plication and render its service unavailable. Thus, unlike their approaches we present a
flexible mechanism for the preventions.

In our scheme, (1) if the format-string attacks are detected during the validation, then
we report the format-string attack detected to syslogd, and set the glibc global
variable errno=EIO to indicate this is an input/ourput error and let the program itself
handle this problem. We believe for many server applications, they will take appropriate
steps to deal with this input/output error. (2) If the output error is fatal (e.g., an interme-
diate output for after calculation) and the program itself ignores that, then here we also
abort the running process in such a way as other approaches currently. We are planning
to look for some alternative approaches (e.g., attack repair technique [20]) to remedy
this (our aim is not to abort the running process).

4 Evaluation

We conducted a serials of experiments to evaluate the effectiveness and performance of
our approach. In order to compare our results with others, we chose Libsafe in that we
both adapt library interposition, and White-listing, which is the most recent work, to do
the evaluation. All the experiments were carried out on two 2.4G Pentium processors
with 1G RAM running Linux kernel 2.6.3. The tested programs were compiled by gcc
3.2.3 with default option, and linked with glibc 2.3.2.

4.1 Vulnerability Prevention

In our evaluation, we focused on real-world format-string attacks and selected six of
such programs. The vulnerability of these programs and our security test against them
are described below.

– wu-ftpd. The wu-ftpd 2.6.0 and earlier is vulnerable to a serious remote attack
in the “SITE EXEC” implementation, in which user-supplied data can be used as a
format-string argument [1]. For the security test of this program, we exploited the
return address as the %n target.

– rpc.statd. The rpc.statd program (for the version of nfs-utils before
0.1.9.1), passes user-supplied data to the syslog function as a format string.
Thus, attackers can inject malicious code to be executed with the privileges of the
rpc.statd process [7]. In our test, we tried to overwrite GOT entries as the %n
corresponding pointer.
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– splitvt. The splitvt before 1.6.5 program exists a vulnerability in the com-
mand line with -rcfile, which is not properly handled as a format-string argu-
ment [8]. Our attack test was targeted return address.

– rwhoisd. The rwhoisd 1.5 server contains a remotely exploitable format-string
vulnerability, which allows attackers to execute arbitrary code on affected hosts by
supplying malicious format specifiers as the argument to the -soa directive [9].
Again, our attack test was to patch the return address.

– pfinger. A format-string vulnerability exists in pfinger 0.7.5 through 0.7.7,
which allows remote attackers to execute arbitrary command via format-string
specifiers in a .plan file [10]. For this program test, we also tried to overwrite the
return address.

– tcpflow. The tcpflow 0.2.0 program contains an exploitable format-string vul-
nerability during the opening of a device with the command-line argument. Thus,
local users can gain an unauthorized root shell by this vulnerability [11]. We made
our security attack target on GOT entries to test this program.

The results of our effectiveness evaluation are presented in Table 1. As shown in this
table, our approach, not only the default policy (DP) but also the fine-grained policy
(FP), successfully prevented all the format-string attacks listed above. This is expected
because all the security test was used the user-supplied data which comes from local or
network to launch the format-string attack.

For the White-listing approach, though it also reliably fixed all the vulnerabilities, it
may lead to denial of service attack for some cases (though in our protectionspfinger
and tcp-flow aborted the running process, we should note this is the behaivor of
program itself). The Libsafe approach, also as expected, missed the attack which does
not target return address or frame pointer, and only caught 4 out of the 6 attacks.

Table 1. Results of effectiveness evaluation

CVE# Program Libsafe White-listing FASTV(DP) FASTV(FP)

CVE-2000-0573 wu-ftpd D & A D & A P & C P & C
CVE-2000-0666 rpc.statd M D & A P & C P & C
CVE-2001-0111 splitvt D & A D & A P & C P & C
CVE-2001-0913 rwhoisd D & A D & A P & C P & C
CVE-2001-1215 pfinger D & A D & A P & A P & A
CAN-2003-0671 tcp-flow M D & A P & A P & A

D: Detected, A: Aborted, P: Prevented, C: Continued, M: Missed

4.2 Performance Overhead

In order to test the performance overhead of our approach, we first did the micro-
benchmark test to measure the overhead at the function call level, and then measured
the overall performance at the application level by running a typical printf-intensive
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application man2html (to test the overhead of print and string related functions), and
a network program tcpdump (to test the overhead of input related functions, such as
read, recv). All the tested programs were run multiple times with the highest priority
in single-user-mode except for tcpdump which run in the network-mode due to its
network requirement.

Micro Benchmarks. To determine the overhead of per printf-style function, we ran
a serial of simple programs consisting of a single loop containing one single sprintf
call, with a varied number of format string length. We choose sprintf in that we
can use this function to test the performance of both format-string validation (parse
and check the format string) and related string taint (taint the relevant destination string
if the corresponding printed string is tainted), and its performance is greater than that
of other printf-family functions. In addition, we choose strcpy to test the micro-
benchmark of string related functions since in our approach we also wrapper
them.

With static format string which contains no format specifiers, our approach as well
as Libsafe added almost no performance overhead (the performance added rate is zero).
As for White-listing, it had a different performance added rate, which is greater than
ours and Libsafe’s. To be more specific, when the format-string length is not too long
in our test, e.g., less than 100, White-listing only incurred little performance overhead;
and when format-string length is added, e.g., to 1k, it added the performance overhead
of 3μs (about 75%).

For dynamically generated string which contains two %n directives, our approach
with DP did not add any overhead, which is similar to Libsafe. This is expected, because
our default policy does not check these program dynamically generated string. As for FP
of our approach, which will check all the dynamically generated string, the performance
added rate was less than White-listing’s; and in the worst case of our test, it added 2.4μs
(about 60%), and White-listing added 3.5μs (about 90%).

With user-supplied different length format string (it is just a performance test here,
though it appears insecure) which contains no format specifier, our overhead for both
DP and FP was similar to the result of dynamically generated string with FP: the per-
formance added rate was less than White-listing’s.

We also tested vsprintf by replacing the printing loop with vsprintf, and cor-
respondingly modifying its relevant argument, to test the performance of per vprintf-
style function call. We observed a similar performance overhead to sprintf function
for the above three test cases, respectively.

For the micro-benchmark of strcpy function, in our test, except for Libsafe which
improves the performance by replacing strcpy with memcpy [14] (this is based on
the fact that copying with memcpy is 6 to 8 times faster than that of strcpy for large
buffers [21]), our approach as well as White-listing almost did not add any performance
overhead.

All the results for our micro benchmarks are depicted in Figures from 2(a) to 2(d).
Some of these overheads may seem relatively high, but we stress that these are micro
benchmarks and not realistic programs. And as we show below for real-world applica-
tions, our approach only incurs a little performance overhead.
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(a) Sprintf micro-benchmark with static for-
mat string containing no specifiers

(b) Sprintf micro-benchmark with dynami-
cally generated format string containing 2 %n
directives

(c) Sprintf micro-benchmark with user-
supplied format string

(d) Strcpy micro-benchmark with user-
supplied string

(e) Man2html macro-benchmark (f) Tcpdump macro-benchmark

Fig. 2. Results of benchmark test

Macro Benchmarks. We used man2html program to evaluate the macro-benchmark.
Our test was to batch translate 1k man pages which is 129.6k bytes each, via
man2html-1.6. The result for the macro benchmark of this program is presented in
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Figure 2(e). As shown in the Figure, our approach incurred the performance overheadof
10.36% with DP and 10.84% with FP, which is a little less than that of White-listing
with the overhead of 10.94%. For the Libsafe, the performance overhead was 5.83%.

We also tested our approach against a network program tcpdump-3.9.4. We ran
this program by capturing 1k network packets in a high-speed transferring LAN. Our
approach added the overhead of 4.04% with DP and 4.72% with FP. Libsafe added 3.28%,
and White-listing added 1.75%. Figure 2(f) summarizes the result of this program.

5 Discussion

In this section, we discuss the false positive and false negative of our approach with
different security policy, and its limitations when applied to the software protections.

False Positive and False Negative. As stated, our default policy guards all the dan-
gerous tainted data partly or completely acting as the format string, there would be
few false negatives (false negatives may exist in the un-caught string propagation if
the application does not use the string related glibc functions) in this policy when
handling user-supplied data. From theoretic analysis, we could find our default policy
may have false positives, but from practice we could say almost no false positive. We
have examined a large number of real-world applications and found none of them needs
user-supplied %n-directive except for attacks. We believe this case, i.e., requiring users
to input the %n-directive, does not exist in normal released software. So we believe it
is not a common case and does not deserve our attention.

While our default policy is adequate for the format-string attack prevention in most
circumstances, those untainted dynamically generated string might cause false nega-
tives since we ignore the validation of these untainted data. As a result, we provide the
fine-grained policy to complement our default policy. In our fine-grained policy, there
are very few false positives since we used the mis-use detection approach (each %n
corresponding argument is validated whether or not pointing to our guarded area). But
there are false negatives in this policy, which is caused by the limitations described
below.

Limitations. One of the limitations of our approach is in the fine-grained policy, we
only guard the most common attacked areas: return address, frame pointer, GOT and
DTORS. If an attack makes use of a program legal function-pointer for the %n corre-
sponding written address, we would not be able to detect it. Because there is no useful
information (e.g., type to tell us this is a function pointer) in the normal binary file to let
us identify program legal function-pointers from other variables. As for the GOT and
DTORS, due to a different memory region they reside in, we can find out their address
via ELF binary analysis.

There is another limitation. Our approach requires the program being dynamically
linked (this is because library interposition technique only intercepts the function refer-
ences to dynamic library). However, the statically linked applications are not too much
used if we consider Xiao’s study that 99.78% applications in Unix platform are dy-
namically linked [12]. In addition, if the program invokes its own functions instead of
glibc for I/O and string manipulation, our approach also would not work.
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6 Related Work

A considerable amount of approaches have been developed for the defense against
format-string attacks. Those related to ours could be divided into three categories:
compile-time analysis, run-time techniques, and combined compile-time/run-time
techniques.

Compile-Time Analysis. This technique typically analyzes and/or instruments pro-
gram source code to detect possible format-string attacks. PScan [22] is such a kind of
simple and notable tool for discovering format-string vulnerabilities. It works by look-
ing for the common case of the printf-style function in which the last parameter is
the format string and none-static. Similar to the functionality of PScan, gcc itself also
provides a compiler flag, “-Wformat=2”, to cause gcc to complain about the non-static
format string [23]. Both PScan and the “-Wformat” enhancement operate on the lexi-
cal level, and they offer the advantage of fixing bugs before software release. However,
these two approaches are less complete, and usually subject to both missing format-
string vulnerabilities and issuing warnings about safe code.

Compile-time analysis with taint technique is useful to find out bugs or identify po-
tentially sensitive data. Perl’s taint mode [24] is the first proposed solution showing this
idea, which taints all the input to applications, and enforces a runtime checking to see
whether the untrusted data is used in a security-sensitive way. Inspired by Perl’s taint
analysis, many approaches then have been proposed (e.g., [25,26,27,28]). One of them
for particularly detecting format-string attacks is TypeQualifier presented by Shankar
et al. [17]. In their approach, if the potentially tainted data is used as the format string,
then an error is issued. From this point, it seems very similar to ours. However, these
two approaches are based on different mechanism to implement (static analysis for this
technique, run-time tracking in ours). Besides, this technique requires programmers’
efforts to specify which object is tainted, and consequently presents an additional bur-
den on developers. In contrast, our approach appears almost transparent. In addition,
this approach is more conservative than necessary because static analysis is inherently
limited and much supposedly tainted data is actually perfectly safe, whereas our ap-
proach is not so conservative since we only prevent those tainted data which contains
dangerous format specifier and is used as a format string.

Run-Time Techniques. In contrast to compile-time analysis, run-time techniques
present a low burden on developers and uniformly improve the security assurance of ap-
plications. Libformat [13] (a preloaded shared library) is a case of such examples, which
aborts any processes if they call printf-family functions with a format string that is
writable and contains %n-directive. This technique is effective in defending against real
format-string attacks, but in most cases both writable format strings and %n-directives
associated destination are legal, and consequently it generates many false alarms. De-
spite the similarity of both our approach and Libformat guard the writable and %n-
directive contained in format-string argument, ours is not so much conservative as this
technique, and we provide more flexibility.

Another notable run-time approach is referred as Libsafe [14], which implements
a safe subset of format functions that will abort the running process if the inspected
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corresponding pointer of %n directive points to a return address or frame pointer. This
approach also looks very close to ours. However, we should note the major difference
is Libsafe provides every format string (despite static or not) checking on limited scope
(i.e., return address and frame pointer), whereas we only check apparently-tainted areas
to identify the root-cause (untrusted data) of format string attacks. Thus, as shown in
our experiment, Libsafe would sometimes lead to false negatives, while our approach
could catch almost all of them.

The idea of using dynamic taint analysis for detecting security attacks was attracted a
lot of attention. Suh et al. [29] proposed a dynamic information flow tracking scheme to
protect programs against malicious attacks. Chen et al. [30] developed a pointer taint-
edness detection architecture to defeat the most memory corruption attacks. These two
approaches were demonstrated useful and efficient, but both of them require processor
modifications to support taint-tracking. Unlike these two hardware solutions, Newsome
et al. proposed a software approach, TaintCheck [31], to monitor and control the pro-
gram execution at a fine-grained level. While this approach is very promising and can
defend against a large number of security attacks with fewer false positives, the main
drawback is that it incurs significant performance overhead by a factor of 10 or more
because of its emulator-based implementation. Our approach follows their way in dy-
namic taint but differs in the granularity and interception.

Combined Compile-Time/Run-Time Approaches. FormatGuard [16] is an extension
to glibc that provides argument number checking for printf-like functions with
the support of GNU C Preprocessor. Programs need to be recompiled but without any
modifications for its protection. Although FormatGuard can protect the printf-like
functions efficiently, it cannot protect the format functions which use vararg such as
vprintf (in this case it is not possible to count the actual number of parameters at
compile time). Besides, FormatGuard may result in false negatives when another format
specifier is replaced with %n-directive.

White-listing [15] is another approach which tries to achieve the benefits of both
static and run-time techniques. By cleverly using a source code transformation, this
approach automatically inserts the code that maintains and checks against the white-
listing containing safe %n-writable address ranges via the knowledge gleaned from
static analysis. White-listing gains high precision with very few false negatives and few
false positives, and imposes little performance overhead. However, one limitation of
this approach is that applications which are only re-compiled using White-listing can
benefit from its protection.

7 Conclusion and Future Work

In this paper, we have proposed a practical and transparent approach to the detection and
prevention of format-string attacks. We exploit the dynamic taint analysis and library
interpositions technique, which allow us to protect the software without any recompi-
lation, to achieve our goals. Through the thorough analysis and empirical evaluation,
we show that our approach has very few false negatives and false positives, and just
imposes a little performance overhead on the protected software.
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Due to the similarity to format-string attacks, SQL injection is another dangerous
attack caused by unvalidated input. We feel our approach is also applicable for the
prevention of this attack, for instance, we can taint the input data and check against
SQL syntax to see if these data represent an invalid user input. One of our future work
will apply our approach to deal with this attack. Other future work includes to port our
approach to other platforms (e.g., Windows), to investigate attack repair approaches and
so on.
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Abstract. We introduce mix rings, a novel peer-to-peer mixnet archi-
tecture for anonymity that yields low-latency networking compared to
existing mixnet architectures. A mix ring is a cycle of continuous-time
mixes that uses carefully coordinated cover traffic and a simple fan-out
mechanism to protect the initiator from timing analysis attacks. Key
features of the mix ring architecture include decoupling path creation
from data transfer, and a mechanism to vary the cover traffic rate over
time to prevent bandwidth overuse. We analyze the architecture with
respect to other peer-to-peer anonymity systems – onion routing and
batching mixnets – and we use simulation to demonstrate performance
advantages of nearly 40% over batching mixnets while protecting against
a wider variety of adversaries than onion routing.

1 Introduction

In 1981, Chaum proposed a method for anonymous communication called a
mixnet[3]. Chaum envisioned a network of proxies, called mixes, each with a well-
known public key. In this system, when an initiator wishes to send a message
anonymously to a responder, the initiator chooses a route through the mixes
and wraps the message in a series of encrypted layers, one layer per mix in
the route. Each layer contains next-hop information and the encrypted next-
innermost layer; the layers are peeled off one by one as the message traverses
the route to the responder. Chaum’s original system has descendants in a wide
variety of anonymity-providing systems, including systems for anonymous web
surfing[18, 2], peer-to-peer anonymity[11], and network level anonymity in the
form of onion routing[12, 10].

Onion routing, equivalent to Chaum’s system as described thus far, yields low-
latency connectivity but is vulnerable to timing analysis. An adversary observing
all links in an onion routing network can record arrival and departure times for
all messages in the network and use statistical methods to determine exactly
who is communicating with whom[19, 17]. Mixnets go further and attempt to
address this vulnerability by processing messages in batches to disguise timing
correlations. However, each mix along a route must delay processing a batch
until the batch is full, so, in practice, mixnet communication is generally slower
than onion routing. The result is, broadly, two designs: one provides strong
anonymity at the expense of performance, the other provides weaker anonymity
with performance.

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 32–45, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We introduce an intermediate solution, mix rings, that give better perfor-
mance than mixnets while maintaining anonymity that is stronger than onion
routing. The goal of a mix or onion router is to disguise the correspondence
between the input and output messages that each relays. This goal is achieved
through cryptographically transforming each message so an observer cannot link
the messages and then, in the case of mixes, obscuring timing information ei-
ther through batching or individually delaying the messages. The work presented
here introduces a third mechanism for obscuring timing information that elim-
inates the need for batching (and the corresponding performance degredation
that comes with batching) while maintaining the anonymity properties of the
standard mixnet.

The intuition is that the batching process in a continuous-time mixnet inher-
ently reduces performance, since a message has to be delayed at each mix until
the batch is full before it is forwarded. Batching is used to protect against timing
analysis, and we show that the mix ring architecture protects against the same
attacks, while paying a reduced performance penalty.

We route cover messages in a ring of mixes that contains the initiator. Using
mechanisms described later, the source (i.e., the initiator) of these cover mes-
sages is hidden, so an outside observer only sees an unbroken stream of messages
traversing the ring, with no obvious source or destination. When the initiator
wants to send a message to the responder, the initiator replaces a cover message
with a data message that “forks” (we will use the term fan-out) into two mes-
sages when it reaches an arbitrary point on the ring. One of the messages contains
the data destined for the responder, the other is a cover message that continues
around the ring. Since all traffic movement in the ring is coordinated, timing
analysis can determine no more than that the message originated somewhere
in the ring. We demonstrate that this system gives performance advantages of
nearly 40% over batching mixnets, while providing a stronger form of anonymity
than onion routing.

Note that there exists a form of mixnet, called a mix cascade, that similarly
provides low latency traffic. A mix cascade consists of a dedicated set of servers
that redirect traffic from a large set of users on a predefined route. There is
considerable discussion in the field of anonymity research on the merits of mix
cascades vs. peer-to-peer style anonymity systems; [9] contains an excellent sum-
mary of both sides of the discussion. Mix rings are a peer-to-peer network, and
thus we compare them only with other peer-to-peer anonymity systems.

The rest of this paper is organized as follows: in Section 2, we discuss related
work. In Section 3, we define our threat model and give a detailed explanation
of our system. In Sections 4 and 5, we examine the anonymity and performance
of mix rings. We conclude the paper in Section 6.

2 Related Work

Systems based on onion routing include Tarzan[11], a peer-to-peer, IP-layer
anonymizing network and Tor[10]. Tor extends onion routing by adding support
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for integrity protection, congestion control, and location-hidden services through
rendezvous points. Batching mixes add protection from timing analysis attacks
by pooling messages in batches. Mixes have been used in a wide variety of ap-
plications such as ISDN service[15], IP-layer infrastructure[14], and email[6].

Stop-and-go mixes[13], or sg-mixes, come from a subtype of mixes called
continuous-time mixes. Messages in a continuous-time mixnet are delayed in-
dividually, rather than in batches. In sg-mix networks, message delays are ran-
domly chosen from an exponential distribution within a window of estimated
arrival time for that mix. Of course, this requires the initiator to predict traf-
fic levels throughout the mixnet. Mix rings are closely related to sg-mixes but
use constant rather than random delays so a principal does not have to predict
network traffic levels. (There exist attacks on connection based continuous-time
mixes that are based on observation of injected traffic[5], but these attacks do
not apply to mix rings, as mix rings are not connection-based.)

Pipenet[4] is effectively a mix network with the addition of pairwise cover
traffic between all mixes. This network provides strong theoretical anonymity
but is impractical due to its considerable bandwidth requirements. Mix rings are
similar to Pipenet but we reduce bandwidth requirements through mix ring’s
ability to increase and decrease cover traffic on demand.

Pfitzmann, et al., consider anonymity in a ring topology in the context of
local area networks [16] and describe such a system as being both fault tolerant
and efficient. Mix rings may be considered an extension of this work into the
inter-network realm. Other ring-related work includes [1] which uses tokens to
carry messages on routes that they compare to public transportation bus routes.

Danezis, et al. route dummy messages in a ring through an anonymity system
in what they call heartbeats [8]. Using heartbeats, an anonymity system can
detect some forms of tampering on the network, including an adversaries who
might speed up or slow down network links, or block them entirely. Mix rings
inherently provide the same protections, since every cover traffic message in the
ring can be viewed as a heartbeat.

3 Design and Operation

We begin our discussion by describing our threat model and the design goals for
the system, then move on to the design of the system.

3.1 Threat Model

We consider the broad categories of adversaries first described in [18]: a local
eavesdropper (e.g., a malicious first-hop router), one or more malicious mixes, a
malicious responder, and finally a global adversary who can observe and modify
all network links. We further assume that the global adversary can compromise
some, but not all, mixes in the network. We assume no adversary can reverse
cryptographic transformations.
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3.2 Design Goals

Our broad goal is to design a peer-to-peer system that finds a compromise be-
tween the (relatively) weak anonymity/low latency of onion routing and the
strong anonymity/high latency of mixnets. Thus, the specific goals of the ar-
chitecture proposed in this paper are to provide the flexibility of a peer-to-
peer anonymity system, while demonstrating anonymity comparable to that of
a mixnet, but with lower latency than a mixnet. We specifically consider latency
rather than bandwidth due to the batching nature of mixnets; the batching
process affects latency but does not inherently affect bandwidth.

3.3 System Model

The basic mix ring infrastructure is a set of continuous-time mixes, each with
a well-known public key. (Note that in continuous-time mixes, messages are
delayed individually, rather than in batches.) The initiator must be a mix, but
the responder need not be.

When a mix receives a message, it decrypts the message to obtain next-hop
information, a set of options, and a recursively defined body. (See Section 3.4 for
more details on the structure of a message.) The mix performs any operations
specified by the options, pads the body out to the original length of the message,
and then forwards it on to the specified next hop.

Consider an initiator who wants anonymous communication with a particular
responder. This initiator chooses a random set of mixes, logically organizes them
into a ring, and negotiates session keys with each. The initiator then uses the
method described in Section 3.5 (below) to anonymously start routing cover
traffic around the ring.

Initiator

Exit point

Responder

Fig. 1. The initiator routes both cover traffic and data traffic around the ring. The
data traffic leaves the ring through a randomly chosen exit point.

The initiator sends a message to the responder, outside the ring, by con-
structing a special message that fans out when it reaches a randomly chosen
exit point on the ring. That is, when the message is processed by the exit point,
the processing generates two messages: one message destined for the responder
and one message that continues along the ring, indistinguishable from other cover
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traffic. The result is that the total number of cover messages circling the ring is
unchanged, and from an adversary’s point of view, each member of the ring is
equally likely to have been the source of the message. (See Figure 1.)

3.4 Mix Ring Messages

Messages in mix rings are similar to other forms of onion-style messaging, e.g.,
Minx[7]. Each message has the following form:

{T,H1, B1, [H2, B2], P}

A message consists of a set of options T (defined below), a header H1 con-
taining the next-hop IP address and port, and a recursively defined body B1

encrypted using the next hop’s session key. The message may contain an op-
tional second header and body, H2 and B2, in the case of a fan-out message.
Finally, as each layer of the message is removed, padding P is appended so the
total message length remains constant.

We define the following options T on a message:

set-rate. A set-rate option has a field that indicates the rate at which the mix
should forward every subsequent message.

delay. A delay option instructs a mix to wait for some time period d before
processing the rest of the message, including any other options that may be
set.

fan-out. A message with the fan-out option set contains in its body two next-
hop messages, H1, B1 and H2, B2. Typically, one of these next-hop messages
is standard cover traffic which is forwarded to the next hop in the ring; the
other is routed to the responder.

Each option may be set in any of the encrypted layers in a message, and a single
layer may have multiple options. Note that set-rate applies to all future messages
received by the mix, whereas delay is specific to the message layer containing
that option.

3.5 Constructing the Ring

An initiator μ0 uses a trusted, well-known, directory server (similar to the Tor[10]
directory server) to arbitrarily select a set of mixes μ1, μ2, ..., μn that will
comprise the ring. The initiator then selects a second set of mixes ν1, ν2, ..., νn

which form a tunnel through the mixes to μi, an arbitary mix in μ. Through
this tunnel, the initiator negotiates a session key with each mix in the ring be
used for encrypting the layers of each message (see Figure 2).

Note that when a mix is sent a message with no option set (as are the mixes
in the tunnel) it behaves as a standard continuous-time mix. The purpose of the
tunnel at startup is to protect against a local adversary (an adversary situated on
the initiator’s local network) who can otherwise observe the initiator constructing
the ring. See Section 4.1 for further discussion.
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Mixnet
(4)

Initiator

(2)

(1)

tunnel
(3)

Fig. 2. Injecting cover traffic into the ring. The initiator tunnels all cover traffic (1)
to an arbitrarily chosen mix on the ring (2), from which the traffic is routed around
the ring (3). When the traffic returns to the initiator, it is replaced with cover traffic
routed directly through the the ring (4), rather than through the tunnel.

Now with a session key for each mix in the ring, the initiator begins trans-
mitting cover traffic at some rate r, routed through the tunnel and around the
ring, destined for the initiator itself. The first of these messages has the set-rate
option defined on each of its layers, instructing each mix on the default rate
r to transmit each subsequent message. As each cover message returns to the
initiator, it is seamlessly replaced with a new cover message routed through μ1

rather than the tunnel. When the desired number of cover messages has entered
the ring, the initiator closes the tunnel. The desired number of cover messages
is a factor of the bandwidth requirements of the initiatior and the bandwidth
limitations of the links on the ring itself. It can be as small as one, or as large
as the network infrastructure of the ring can handle.

Reiter et al. showed that all anonymity systems must reset periodically to
allow new nodes to join[18, 21]. We use the standard network time protocol
(NTP) to coordinate periodic resets across the mix ring system for this purpose.
We assume that, after each reset, every participating mix builds a new ring. This
protects from an adversary observing the initiator’s local network who might
otherwise be able to identify the initiator by observing which mix is the first to
send traffic (since this would have to be the initiator). With the above method,
that same adversary can only determine that the initiator is a participant in one
or more rings, but not that he or she is a given ring’s creator.

At this point, the construction of the ring is complete. The cover traffic is
flowing around the ring, each message advancing at a rate of r. This is the
default behavior of the ring when no message is being sent.

3.6 Default Behavior

The default behavior occurs when no message is being sent. At some rate r the
initiator sends cover messages through the ring. As each cover message traverses
the ring and returns to the initiator, it is seamlessly replaced with a new one. If
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a cover message fails to arrive within some window of its appointed time, or if
the messages arrive out of order, the initiator considers such messages lost and
does not transmit a new cover message; instead it uses the method described in
Section 3.7 to refill these gaps in the cover traffic.

If the initiator filled each gap as it appeared, an adversary could drop one or
more cover messages and then observe at what point the messages were replaced;
whichever mix replaced the messages would be the initiator. Thus, we use another
method, described below.

3.7 Filling Gaps in the Cover Traffic

When the initiator discovers a gap in the cover traffic, it cannot simply insert
a new cover message because it would be clear to an adversary that the mix
which filled the gap was the initiator. Instead, the initiator chooses a random
mix μj on the ring and instructs that mix to fill the gap. This instruction is
performed using tools already described: on the gap’s second trip around the
ring, the initiator replaces the message immediately preceding it with a message
constructed in the following manner. In the message layer corresponding with
μj , the initiator sets the fan-out flag. The message headers H1 and H2 have
the same next-hop destination (the next mix in the ring) but each is set with
a different delay value, one d = r and one d = 2r, such that the gap is filled
when the second message is relayed. For larger gaps, this procedure is repeated
as necessary.

3.8 Varying the Traffic Rate

Under normal circumstances, the traffic rate in the ring is set to a low volume to
avoid consuming unnecessary bandwidth. Only when the initiator wishes to send
traffic is the rate increased. When the initiator wishes to increase or decrease
the traffic rate, it constructs a message to each mix in the ring with carefully
calculated delay and set-rate values such that all mixes in the ring execute the
set-rate at approximately the same time (this instruction actually takes the form
of a single message, with each layer in the message instructing that particular
hop on its rate and delay values). Perfect coordination is not required so long
as the initiator’s rate change is not statistically unique with respect to the rate
changes of the other mixes.

Over time, due either to properties of the network or actions of an adversary,
the cover traffic may become unevenly distributed around the ring. That is, the
traffic may become grouped together in “clumps.” We do not consider it further
here, but in future versions of the system, the initiator may counter this action
through judicious use of the delay option.

3.9 Sending a Message

To send a message, the initiator chooses a random member of the ring μe as the
exit point for that message. It then constructs a message which is identical to
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the other cover messages except that the layer of the message destined for μe

has the fan-out option set. One branch of the fan out, the data, is destined for
the responder; the other, cover traffic, is routed to the next hop on the ring. The
initiator can vary the ratio of data to cover messages to increase or decrease the
traffic bandwidth.

3.10 Receiving a Message

The current mix rings implementation does not include a mechanism for a return
channel. However, we include in this section a draft for this mechanism which
will be built in future work. Briefly, the initiator includes in the message a reply
block which the responder may use to send messages back to the initiator. The
reply block is essentially an empty onion, designed to travel along the return
route of the ring. The responder fills in the body of the message and sends it
to the first hop of the return path (i.e., the exit point on the ring). When the
initiator receives the message, the return path is complete, but the initiator
must generate a new cover message that continues along the ring in place of the
return message. Otherwise an adversary could simply observe the path of return
message to identify the initiator.

4 Analysis

In this section, we analyze the mix ring architecture by comparing it with onion
routing and mixnet architectures. We show performance advantages of nearly
40% over batching mixnets and demonstrate a stronger form of anonymity than
strict onion routing.

Table 1. Comparison of initiator exposure in onion routing, mix rings, and mixnets.
The columns represent, respectively, a malicious first-hop router, a malicious interme-
diate mix or set of mixes, and a malicious responder.

Local Bad End
eavesdropper mixes host

Onion routing Exposed No No
Mix rings Possibly No No

Mixnets Possibly No No

Table 1 gives a comparison of the three architectures with respect to vari-
ous adversaries, each of which will be analyzed further in the remainder of this
section. We examine attack vectors by breaking them into three classes: adver-
saries at or near the initiator (a local eavesdropper), adversaries in the middle
of the network (compromised mixes), and adversaries at or near the responder.
We then consider some specific attacks against the cover traffic in the ring, and
attacks by a global adversary.
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4.1 Attacks from a Local Eavesdropper

In onion routing, an initiator is immediately exposed to an adversary of this
type, since the adversary can observe the construction of the onion route. In
mixnets, the adversary can detect initiator activity, but generally cannot distin-
guish whether the initiator is truly an initiator or simply an intermediate node
on a mix route. Initiator activity in mix rings is identical to that of mixnets –
the initiator is simply building up mix routes, and thus the initiator is no more
or less exposed than an initiator in a mixnet.

4.2 Attacks from Compromised Mixes

In both onion routing and mixnets, a malicious intermediate mix can identify
its predecessor and successor on a given route. Also, if the responder is a node
outside the network and the compromised mix is the last hop on the route before
the responder, the adversary is trivially able identify the responder.

Similarly, a malicious mix in a ring can identify its predecessor and successor.
It has knowlege of the traffic rate in the ring, and whether or not it is an exit
point. If the mix is an exit point, it can identity the responder.

When a compromised mix knows it is on a route of interest, it can record its
predecessor on that route. Since the initiator has to be on the route between
itself and the responder after every reset, while all other mixes will only be on
that route with some probability less than one, over time the initiator will be the
predecessor of the compromised mix more often than any other mix. This attack
is called the predecessor attack and was first proposed by Reiter and Rubin[18].

Of course, the compromised mix must identify when it is in a route of interest;
this is only achieved when multiple compromised mixes are on the same route. In
onion routing, if a compromised mix is the exit point for a route, it uses timing
analysis to identify whether any of its collaborators are also on that route. If
there is one, then the collaborator records its predecessor. In this case, Wright, et
al., showed that after O(n2 lnn) resets, the adversary can with high probability
identify the initiator[20].

The mixnet attack is similar, but requires all mixes in a route of length l
be compromised before recording a predecessor data point. Wright showed that
mixnets survive for O(nl lnn) resets before the adversary can identify the initia-
tor with high probability .

Under the predecessor attack, mix rings behave as mixnets. The portion of the
ring past the fan-out is irrelevant since the attack takes place over the portion of
the ring between the initiator and the exit point. This is a segment of the ring and
a segment of the ring is also a mix route. If the distance from initiator to exit point
is i, then the initiator in a mix ring is compromised after O(ni lnn) resets.

4.3 Attacks from the Responder

Consider a ring of circumference 2n and an onion or mix route of length n.
(These are comparable since, on average, assuming randomly chosen exit points,
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a message will traverse n mixes before it reaches the exit point and leaves the
ring.) A malicious responder in a standard onion or mix route must unroll the
route, compromising each of the n mixes in turn, to identify the initiator. Simi-
larly, a malicious responder in a mix ring must, on average, compromise n mixes
from the exit point back to the initiator to make positive indentification. Mix
rings, mixnets and onion routing are equally strong against attacks of this form
from the responder.

4.4 Attacking the Cover Traffic

Cover traffic is a key difference between mix rings and mixnets. The cover traffic
in a mix ring is cryptographically transformed in the same fashion as the data-
carrying traffic. An adversary is therefore unlikely to be able to distinguish
cover traffic from data traffic without reversing the crytographic transforms.
The adversary can, however, attempt to inject new cover traffic, or drop, delay,
modify or replay.

New cover traffic introduced by the adversary will be detected and dropped
at its first hop since we assume only the initiator possesses the session key
required to construct a valid message. However, if the adversary cuts an arbitrary
link for a short time but does not drain the cover traffic completely, then the
mechanism described in Section 3.7 is sufficient to fill any gaps. Meanwhile, the
remaining cover traffic is still useful for carrying data. If the adversary drains
the cover traffic completely, the ring must be reconstructed as in Section 3.5.
This is effectively a denial of service.

If, instead, the adversary attempts to delay the traffic (this may also occur due
to properties of the underlying network) the cover traffic may become unevenly
distributed around the ring. This is handled as described in Section 3.8.

4.5 Attacks from a Global Adversary

Similar to mix nets and onion routing, a global adversary is able to observe the
construction of the ring, and this compromises the initiator from the start.

4.6 Further Analysis

An important consideration in mix rings is that there must be members of the
community willing to operate nodes in a mix ring in which they, themselves,
are not the initiator. Given that there are members of the community who have
shown willingness to operate Tor and Mixminion nodes, for example, we believe
it a reasonable assumption that like-minded individuals would also be willing to
operate nodes in a mix ring.

5 Performance

To compare the performance of onion routing, mix rings, and mixnets, we de-
signed and deployed a simulator on PlanetLab, a worldwide experimental
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Fig. 3. Transfer time for a 50kb file over varying route lengths

overlay network. The simulator is designed to emulate onion routing, mix rings,
and mixnets. It is important to note that we only consider peer-to-peer anony-
mity systems; we do not consider mix cascades. The simulator is a daemon that
runs on each node. At startup, the daemon is configured to operate as a node
in an onion routing system, a mix ring system, or a mixnet system. The differ-
ence between these modes of operation consist primarily of batching for mixnets
and handling the message options for mix rings. More specifically, the daemon
behaves as follows.

– When configured as an onion-router, the daemon listens for messages on
a pre-defined port. On receipt of a message m, the daemon decrypts the
message using its private key to obtain next-hop information. The message
is then immediately forwarded to the next hop.

– When configured as a router in a mix net, the daemon collects messages
arriving on a pre-defined port until the specified number of messages has
arrived (the batch size). Then each message is decrypted to obtain next-hop
information and forwarded onwawrd.

– Finally, when configured as a node in a mix ring, the daemon behaves as
an onion router, but obeys any options that may be set in the message (see
Section 3.4).

We deployed the simulator on approximately 30 PlanetLab nodes. For testing
mixnets and onion routing, we chose six nodes at random to behave as onion
routers or mixes, respectively. In the case of mix rings, we chose twelve of the
nodes at random, since in a mix ring a one-way message only traverses half the
ring, on average. We configured the mixnet with a batch size of 10 messages;
we configured the mix ring with a default cover traffic rate of 10ms between
messages. Each message is 8192 bytes.

In each of the following tests, we chose one node as the initiator and a node
outside the route or ring as the responder. The measurements do not take into
account interactions with other users, nor do they compare startup times; these
will be the subject of future analysis.
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Figure 3 compares the transfer time of a 50kb file under each of the three
schemes as the length of the route increases. In the case of the mix ring, the exit
point on the mix ring was pegged at the n

2 node. It is clear that, while the mix
ring does not outperform onion routing, it has considerably lower latency than
the mixnet, on the order of 40% improvement for a given path length.
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Figure 4 compares the three schemes as the file size increases. In this case,
the mix ring exit point is chosen randomly, so the variance of the mix ring plot
has increased due to the randomly chosen exit points. However, the trend is still
clear: mix ring performance is considerably better than mixnets and approaches
that of onion routing.

6 Conclusion

This paper presents mix rings, an anonymity system stronger than onion routing,
with better performance than mixnets. Mix rings are a compromise between the
weaker anonymity/low latency of onion routing and the strong anonymity/high
latency of mixnets. Mix rings use cover traffic to protect against timing analysis
and provide a mechanism to vary the cover traffic rate to prevent bandwidth
overuse. We show that mix rings provide anonymity that is stronger than onion
rings, and comparable to mixnets. For file transfers, we show that mix rings
exhibit nearly 40% performance improvements over mixnets. This work makes
strong anonymity a possibility for low-latency applications that may not have
previously had the option available.

In future work, we will consider bidirectional traffic, perhaps using reply
blocks. We will also give futher study to the bandwidth interactions between
multiple rings.
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Abstract. Universal Re-encryption allows El-Gamal ciphertexts to be
re-encrypted without knowledge of their corresponding public keys. This
has made it an enticing building block for anonymous communications
protocols. In this work we analyze four schemes related to mix networks
that make use of Universal Re-encryption and find serious weaknesses in
all of them. The Universal Re-encryption of signatures is open to exis-
tential forgery, and the two mix schemes can be fully compromised by
an passive adversary observing a single message close to the sender. The
fourth scheme, the rWonGoo anonymous channel, turns out to be less
secure than the original Crowds scheme, on which it is based. Our at-
tacks make extensive use of unintended ‘services’ provided by the network
nodes acting as decryption and re-routing oracles. Finally, our attacks
against rWonGoo demonstrate that anonymous channels are not auto-
matically composable: using two of them in a careless manner makes the
system more vulnerable to attack.

Keywords: Universal re-encryption, re-encryption mix networks, anony-
mous communications, traffic analysis.

1 Introduction

An important technique to achieve anonymous communication is the mix, an
anonymizing relay, first proposed by David Chaum [1]. In his scheme messages
to be anonymized, on their journey from Alice to Bob, are first encrypted under
the public keys of all intermediate mixes. The messages are then relayed by all
mixes in succession that decrypt them, effectively pealing off a layer of encryption
at the time, and forwarding them to the next mix. As a result an observer of the
network should find it hard to link senders and receivers of messages.

Many mix based systems, inspired from this architecture, have been designed
and deployed [2,3,4]. They all use a hybrid encryption scheme, that combines
the necessary public key cipher with a symmetric key cipher for bulk encryption.
This technique keeps the computational cost of running a mix low, and allows
more messages to be mixed together. Yet this architecture suffers from replay
attacks: the same message, if routed twice in the mix network, will at each
stage decrypt to bitwise exactly the same plaintext. To prevent adversaries from
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making use of this property to facilitate traffic analysis, most schemes keep track
of the messages processed and refuse to process them again. The storage cost is
proportional to the number of messages processed.

An alternative approach – also with the independent advantages of proofs of
robustness – relies on mixed messages being re-encrypted instead of decrypted.
In such schemes [5,6] messages are encrypted using the El-Gamal public key ci-
pher [7], and each mix node re-encrypts them on their way. Finally all messages
are decrypted by a threshold decryption scheme at the end of the route. The
re-encryption is randomized, and replaying a message will lead to different inter-
mediate messages in the network. The re-encryption operation does not require
any secrets, but requires the knowledge of the public key used for encryption.

Golle et al. [8] proposed a scheme, named Universal Re-encryption, that does
away with the requirement to know the public key, under which a ciphertext was
encrypted, to be able to re-encrypt it. A plaintext m encrypted under public key
(g, gx) has four components (using fresh k, k′):

UREx(m) := (a, b, c, d) := (gk′
, (gx)k′

; gk, (gx)k · m) (1)

Such a ciphertext can be re-encrypted by anyone, and become unlikable to the
original one using fresh z, z′:

(a′, b′, c′, d′) := (az′
, bz′

; az · c, bz · d) (2)

Note that the re-encrypted product of Universal Re-encryption is a valid cipher
text of message m, encrypted under the secret key x, i.e. UREx(m).

The Universal Re-encryption primitive itself, and its extensions [9], are be-
lieved to be secure. In this work we study the applications of this primitive,
in the context of anonymous communications, that turn out to have numerous
weaknesses.

First we demonstrate that the attempt of Klonowski et al. [10] to make re-
encryptable RSA signatures is insecure, and vulnerable to existential forgery.
Then we consider the mix scheme of Klonowski et al. [11] and Gomulkiewicz et
al. [12] that attempt to use Universal Re-encryption to build replay resistant mix
networks. Their schemes can be attacked by a passive adversary that observes
the message ciphertext at just one point, close to the sender Alice. Finally we
consider the rWonGoo scheme by Lu et al. [13]. The scheme takes into account
that the careless use of Universal Re-encryption is susceptible to tagging attacks,
and a variant of re-encryption is used. Yet rWonGoo fails to protect against all
attacks, and we demonstrate that it is in fact weaker then the simple Crowds [14]
anonymity scheme. We propose a fix to make rWonGoo as secure as Crowds, yet
the heavy cryptography used becomes superfluous.

2 Breaking the “Universal Re-encryption of Signatures”

Klonowski et al. [10] extend the universal re-encryption scheme by Golle et
al. [8], that allows ElGamal [7] ciphertexts to be re-encrypted along with a valid
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RSA [15] signature. The transform is key less, and can be performed by any
third party. The key feature of the Klonowski et al. scheme is that the signature
associated with the ciphertext remains valid, despite the ciphertexts being mod-
ified through re-encryption. Schemes with such properties have the potential to
be used in anonymous credential, e-cash and electronic election schemes, as well
as a plethora of other application in the field of privacy enhancing technologies.
Unfortunately their scheme is insecure since signed ciphertexts can be combined,
without the knowledge of any signing secrets, to produce valid signatures.

Assuming that N = pq with p and q being two random large primes and let g
be in Z∗

N . All operations are performed modulo N , unless otherwise stated. For
a message m an authority creates an RSA signature md (d being its signature
key). To encrypt the message to a public key y = gx, the authority chooses
uniformly at random two values k1 and k2. A cipher text in the Klonowski et al.
scheme is composed of the following elements:

(α0, β0;α1, β1;α2, β2;α3, β3) :=

(m · yk0 , gk0 ; yk1 , gk1 ; (m · yk0)d, (gk0)d; (yk1)d, (gk1)d) (3)

It corresponds to an ElGamal encryption of the message, and an ElGamal en-
cryption of the element 1 (necessary to perform a key less re-encryption), along
with an RSA [15] signature (exponentiation using d) of all these elements. To
re-encrypt the ciphertext anyone can choose two values k′

0 and k′
1, an perform

the following operation:

(α0 · αk′
0

1 , β0 · βk′
0

1 ;αk′
1

1 , β
k′
1

1 ;α2 · αk′
0

3 , β2 · βk′
0

3 ;αk′
1

3 , β
k′
1

3 ) (4)

Klonowski et al. propose to accept the signature as valid if α0 = αe
2 holds, where

e is the public verification key, corresponding to the signature key d (the RSA
property is that e ·d mod (p−1)(q−1) ≡ 1 ⇒ ae·d mod N ≡ a mod N). This
unfortunately does not guarantee that the ciphertext has not been modified, and
does not therefore provide neither integrity nor non-repudiation as a signature
scheme should.

2.1 Attacking the Scheme

The attack relies on the algebraic properties of RSA, in that the product of
two signatures, results in the signature of the product, or more formally md

0 ·
md

1 = (m0 ·m1)d. Therefore if an attacker knows a signed plaintext m′, (m′)d, it
can construct a valid Klonowski et al. ciphertext by multipying it into another
ciphertext in the following way:

(α0 · m′, β0;α1, β1;α2 · (m′)d, β2;α3, β3) (5)

The verification equation holds since α0 · m′ = m · m′ · yx = (m · yk · (m′)d)e =
(α2 ·(m′)d)e. The known plaintext and signature can therefore be multiplied into
a valid ciphertext, at any stage, and produce another valid plaintext.
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An adversary can also use two valid but unknown ciphertexts signed and
encrypted to the same keys, and combine them to produce another valid, and
apparently signed ciphertext.

(α0 · α′
0, β0 · β′

0;α1, β1;α2 · α′
2, β2 · β′

2;α3, β3) (6)

Which would be a valid ciphertext since m · yk
0 · m′ · yk′

0 = ((m · yk
0 )d · (m′ ·

yk′
0)d)e. Therefore an adversary can use ciphertexts, with unknown plaintexts

and combine them into another valid ciphertext. This leads to existential forgery.

3 Breaking Onions Based on Universal Re-encryption

In Klonowski et al. [11] and Gomulkiewicz et al. [12] two very similar mix format
schemes based on Universal Re-encryption are described. The first paper [11] dis-
cusses how such construction can be used to route messages in the mix network,
including mechanisms for reply blocks and detours [4]. The second paper [12]
claims that the use of Universal Re-encryption makes the mix scheme invulner-
able to replay attacks. We will show that both schemes are vulnerable to tracing
attacks by an adversary that observes the sender injecting an onion into the
network, has the ability to use the network, and controls one corrupt mix.

The encoding schemes proposed are very simple. The sender (or a third party
as described in [11]) wants to send a message m though a sequence of mixes
J1, J2, . . . , Jλ+1, to the final receiver Jλ+1. The public keys corresponding to
each node Ji are globally known and are yi = gxi . Each address in sequence and
the message is universally re-encrypted using El-Gamal:

UREx1(J2),UREx1+x2(J3), . . . ,UREx1+x2+...+xλ
(Jλ+1),UREx1+x2+...+xλ+1(m)

(7)
UREx(m) denotes the ciphertext one gets by performing universal

re-encryption on the message m under private key x. Note that only the public
component y = gx of the private key x is required to perform this operation.

Routing and decryption are taking place in parallel. The onion is first relayed
to J1, that uses its secret key x1 to decode all blocks, retrieve J2 and forward the
message. There is no discussion in [11,12] about removing the blocks that have
been decoded, or adding blocks to pad the message to a fixed size, but these can
easily be done to hide the position of different mixes on the path and the overall
path length.

3.1 Attacking the Scheme

Universal re-encryption, UREx(m), of a plaintext has some important properties
that make our attacks possible. The ciphertext UREx(m) has two components:
an ElGamal encryption of 1 under the public key gx and the encryption of the
message m under the same public key.

UREx(m) ≡ (gk1
1 , gk1x

1 , gk2
2 , gk2x

2 m) (8)
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It is possible for anyone that knows UREx(m) to encrypt an arbitrary message m′

under the same public key. Simply chose random k3, k4 and encode the message
m′ by multiplying it by the blinded encryption of 1:

UREx(m′) ≡ ((gk1
1 )k3 , (gk1x

1 )k3 , (gk1
1 )k4 , (gk1x

1 )k4m′) (9)

Given UREx(m) it is easy to further encrypt it under an additional, arbitrary,
key xa and get UREx+xa

(m) without the knowledge of the secret x:

UREx+xa
(m) ≡ (gk1

1 , (gk1
1 )xa · gk1x

1 , gk2
2 , (gk2

2 )xa · gk2x
2 m) (10)

An interesting property is that UREx(m′) is indistinguishable from UREx(m)
by anyone who does not know the secret key x. Even if a party knows x it is
impossible to determine that UREx(m′) was derived from UREx(m).

We further note that each mix in fact acts as a decryption oracle:

1. The mix Ji receives an onion composed of universally re-encrypted blocks.

. . . ,URExi
(Ji+1),URExi+xi+1(Ji+2), . . . ,URExi+xi+1+...+xλ+1(m) (11)

2. The Mix Ji decrypts all blocks using its secret xi. The result is:

. . . , Ji+1,URExi+1(Ji+2), . . . ,URExi+1+...+xλ+1(m) (12)

3. The mix reads the next address Ji+1. If it is not well formed it stops (or starts
the traitor tracing procedure described in Section 4.5 of [12]). Otherwise it
re-encrypts all blocks and sends the resulting message to Ji+1.

Using the properties of universal re-encryption and the protocol that each mix
implements an attacker that observes a message can trace it to its ultimate
destination. Each block UREx1+...+xi

(Ji+1) is replaced by a block that redirects
the onion to the corrupt node A followed by another block that contains the
next address encrypted under the public key of the corrupt node xa. A ‘label’
block that is the encryption of a fixed, per onion, label L has to also be included
in oder to be able to run multiple tracing attacks in parallel.

UREx1+...+xi
(Ji+1)

← UREx1+...+xi
(A),UREx1+...+xi+xa

(Ji+1),UREx1+...+xi+xa
(L) (13)

Each mix Ji on the route will decode the message without realizing that it
has been modified. Furthermore it will decode the block containing the address
of the next mix Ji+1 and the label L. The decoded message will contain:

. . . , A,URExa
(Ji+1),URExa

(L), . . . (14)

The address A is interpreted by the honest mix Ji as the first address and
the decoded message is redirected there. Once the adversary received it he can
decode URExa

(Ji+1) and URExa
(L) using his secret xa to retrieve the next node

Ji+1 and the label L respectively.
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Fig. 1. After intercepting Alice’s mix packet, the attacker redirects the message to
themselves

The attack results in the path of the traced onion becoming J1, A, J2, A,-
J3, A, . . . , A, Jλ+1, as illustrated in Figure 1. The attacker is able to receive the
onion every time it exists a mix, decode the next address and the label L, and
re-insert it in the correct node to continue the tracing.

Our attack only requires a brief observation of the network to capture the
onion to be traced. After that the onion is modified, and the mixes will not
only decode the next address, but also forward that information to the attacker
node. Therefore there is no need to perform any further passive or active attacks
against messages in the network. Note that such onions can be traced even after
they have been routed, since no duplicate detection mechanism is implemented.
A replay prevention mechanism is difficult to implement in the context of univer-
sal re-encryption since all ciphertext (even of the same plaintext) are unlinkable
without all the keys.

The fact that onions in a mix network are required to be of fixed size does
not foil the attack. Since the linkage of the different parts of the message is so
week, it is possible to remove the tail blocks to allow for enough space to modify
the message, as described above, to trace the connection. In case the message is
too short to do this, it is still possible to perform the tracing in multiple steps,
that only require replacing (over-writing) one section of the message to redirect
it to the adversary. Then the same message is injected in the network with the
next section / header overwritten to re-direct to the attacker again until the final
recipient is found.

3.2 Replay and Tagging Attack

Besides the attack described above, the design in [12] fails to protect against
replay attacks. An attacker can embed a tag that can be recognized after each
mix Ji has processed the packet: he simply appends to or replaces the last block
of the message with URE∑

xi+xa
(L). Once the message is processed the output

will contain URExa
(L), which the adversary can decode to retrieve the label L.

If the same message is inserted again it will output a message with the the same
label, which leads to the classic replay attack.

Lu et al. [13] also point out that the scheme is susceptible to tagging attacks
similar to those first proposed by Birgit Pfitzmann [16]. Their attack allows
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a corrupt receiver to trace the message and uncover Alice as its sender. They
correctly point out that this attack is outside the threat model of Klonowski et
al. [11] and Gomulkiewicz et al. [12], since they assume that Alice and Bob trust
each other. Our attacks do not make this assumption, and allow an arbitrary
third party that acts as an active adversary and controls one node to fully trace
and decrypt the messages exchanged.

4 Weaknesses of the rWonGoo Scheme

Lu et al. [13], note that Universal Re-encryption is susceptible to tagging attacks,
but also propose rWonGoo, a novel anonymous communications scheme based
on re-encryption. rWonGoo was designed to protect against tagging attacks,
where an adversary modifies a message to trace it through the networks, and
replay attacks, where a message is replayed to help tracing. We next provide a
quick description of rWonGoo that will help us highlight its vulnerabilities (a
full description is provided in [13]).

rWonGoo is broadly inspired by the Crowds anonymization scheme [14], and
aims to be deployed in a decentralized network of thousands of peers. It assumes
that an adversary is prevented from snooping on the network by link encryption,
but may also control a fraction of nodes to assist the attack. The communication
in rWonGoo is divided into two phases. In the fist phase the channel is opened
through the network between Alice and Bob, and the keys necessary to perform
the re-encryption are distributed to all nodes through the channel. In the second
phase messages between Alice and Bob can be exchanged. They start off being
encrypted under the keys of all intermediary nodes, that each decrypt, re-encrypt
and forward messages.

An rWonGoo channel is composed of two types of relaying nodes: those that
perform re-encryption and those that are simply re-routing the message. The
nodes that perform re-encryption, shall be called Pi (for 1 ≤ i ≤ λ) with El-
Gamal keys (g, yi) respectively, while those that simply redirect shall be called
Qj (no keys are necessary since only redirection is taking place at nodes Qj).
Conceptually all communication between P nodes is done using a Crowds anony-
mous channel over Q nodes. In some sense rWonGoo routes already on top of
a crowds anonymous channel. The final node Pλ is assumed to be Bob, the
ultimate recipient of the anonymous messages from Alice (also P0).

The channel establishment protocol is of special interest to an attacker. Alice
first picks a node P1 and extends her tunnel to it. This extension is done using the
crowds protocol, until node P1 is reached. The node P1 sends back to Alice a set
of potential next nodes, with their IP addresses, TCP ports and El-Gamal public
keys. Alice chooses one of them and, through an encrypted channel described
below, extends her tunnel to P2. The communications between P1 and P2, are
using the crowds protocol. This is repeated λ−1 time until Alice instructs Pλ−1

to connect to Bob.
All communications between Alice and node Pi (including Bob i.e. Pλ) are en-

crypted in a layered manner. Alice always knows the public keys y1 . . . yi and uses
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them to generate a key distribution message that distributes to all intermediates
P1 . . . Pi the keys necessary to re-encrypt messages. These are conceptually the
composite public keys under which the messages seen by each Pi are encrypted.
Alice sends the key distribution message:

A → P1 : ((y1 · . . . · yi)r, gr; yr′
0 , gr′

) ≡ (P forward
0 , P backward

0 ) (15)

P1 removes his key from the first part of the message, to retrieve the public
key P forward

1 := ((y1 · . . . · yi)r/(gr)x1 , gr) ≡ (y1f , g1f ) necessary to re-encrypt
messages traveling forward in the channel. Similarly he adds his public key to the
second part of the message to calculate the key P backward

1 := (yr′
0 · (gr′

)x1 , gr′
) ≡

(y1b, g1b) necessary to re-encrypt messages traveling back towards Alice. P1 then
sends the new key set (P forward

1 , P backward
1 ) to node P2. This procedure is repeated

by all P in the channel, until the final message arrives at Pi:

Pi−1 → Pi : (yr
i , gr; (y0 · . . . · yi−1)r′

, gr′
) (16)

This key distribution procedure ensures that all intermediate Pi know the public
keys under which the messages they receive on the forward and backward path
are encrypted. As a result they can decrypt them and re-encrypt them on their
way. Upon receiving a message M := (a, b) node Pj performs the decryption
using its secret key (g, yj , xj) and re-encryption using the key (gj(b|f), yj(b|f)),
under which the message is encrypted, and passes the resulting M ′ to the next
node in the path (using Crowds as transport).

M ′ := ReEnc(gj(b|f),yj(b|f))(Dec(g,yj ,xj)(M)) (17)

Following this process a message sent from Alice to Bob encrypted under key
P forward

0 , arrives encrypted under Bob’s key (g, yλ), and a message send back
from Bob to Alice under key P backwards

λ arrives encrypted under her key (g, y0).

4.1 Attacking rWonGoo: Capturing the Route

The key vulnerability of rWonGoo is that it is susceptible to man-in-the-middle
attacks, that allow the rest of the channel to get captured after a malicious node
is encountered. This means that after Alice chooses a bad node to include on the
channel path, all subsequent nodes can be made to be bad too. The intuition
behind this attack is that Alice knows very little about the network, and relies
on intermediaries to discover other nodes and their public keys. She is therefore
unable to tell the difference between a genuine interaction with the network, and
a interaction that is simply simulated by an adversary.

The attacks proceeds quite simply: we assume that there is a first dishonest re-
encrypting node on the path, named Pm. Once the dishonest node Pm receives the
request to extend the channel, it starts simulating a network of nodes Pmk

, and
provides Alice with their fictitious IP addresses, TCP ports and public keys (for
which Pm knows the secret component). Alice chooses one of them to extend her
tunnel, but no matter which one she chooses Pm never forwards any message but
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keeps simulatingmorenodes, all running the rWonGooprotocolwithAlice. Finally
Alice connects toBob,directly throughPm.Note that the fact thatAlice is provided
a choice of nodes to chose from does not eliminate any attacks, since they are all
corrupt, or even non-existent. As Alice does not have any first hand experience of
any of the nodes she is asked to choose (she cannot even query them to see if they
exist, since this would reveal she is the originator of the tunnel), the attacker can
populate these choices with not only malicious but also fictitious nodes.

During the key distribution phase of the protocol the malicious nodes substi-
tute the keys communicated to Bob, for use in the backward channel, with their
own keys. Therefore the key distribution message received by Bob is (yr

λ, gr; yr′
m,

gr′
), where ym is the public key of the adversary. As a result any message sent

by Bob back to Alice can be read by the malicious nodes. Those messages can
then be re-encrypted under the key f b

m and sent to Alice.
Our attacks so far allows an adversary to perform a predecessor attack [17],

and probabilistically find Alice after she engages in consecutive interactions with
Bob. We can estimate how long, in terms of the number of fresh channels Alice
has to open to Bob, the attack is likely to take. We assume that a fraction f of
the network is controlled by the adversary [18]. The intersection attack succeeds
immediately (for reasons explained below) if the first Crowds node after Alice, Q1

belongs to the adversary, which it is with probability f . Consider the random
variable L, which denoted the number of fresh rWonGoo channels that Alice
opens to Bob, until a channel in which the first node Q1 is corrupt. The random
variable L follows a geometric distribution with parameter f , and Alice is on
average expected to have (L) = (1− f)/f secure anonymous tunnels until her
association with Bob is uncovered.

4.2 Decrypting Any Message Using Re-routing Oracles

First we note that any node in the network, including Alice and Bob, can be
used as a decryption oracle for messages encrypted under their keys. During the
key setup operation a node is asked to effectively decrypt the first part of the
message it receives and relays it to the next node on the path. Consider the
victim node Pi with public key yi which is to be used to decrypt a ciphertext
m := (a, b) ≡ (gk, yk

i m′). The adversary sets up an rWonGoo channel Pm, Pi, P
′
m,

where the nodes Pm and P ′
m are controlled by the adversary. Then Pm sends to

Pi the following message, that is to Pi indistinguishable from a key distribution
message (k is a random factor chosen by the adversary):

Pm → Pi : (b · k, a; yr′
m, gr′

) (18)

The node Pi removes its key from the first component of the message and sends
the result to the next node P ′

m, which is also controlled by the adversary. The
new message will be:

Pi → P ′
m : (b · k/axi , a; . . .) (19)

As a result P ′
m gets b·k/axi = yk

i m′ ·k/yk
i = m′ ·k and can divide it by the known

factor k to retrieve the encrypted message m′. We will denote the decryption of
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a ciphertext m by the adversary as m′ = Deci(m), which only takes subscript i
(and not the private key xi) since it can be performed even if just the name of
the node is known1.

We have shown in the previous section that a malicious Pm can always uncover
the receiver Pλ (or Bob) of any message seen, and see in clear all messages send
by Bob to Alice. Since any malicious node can also force any other node in the
network to act as a decryption oracle, it follows that the attacker can also see
in clear all messages sent by Alice to Bob. Each ciphertext m destined to Bob,
has to travel through Pm, and is encrypted only under Bob’s public key. The
attacker can just use Bob as an oracle to retrieve the plaintext m′ = Decλ(m).

4.3 Using Any Qm to Attack the Crowds Routing

In rWonGoo communication between any two P is done using the Crowds pro-
tocol, and we name the nodes that merely perform crowds redirection Qi. Those
simply forward the message and perform link encryption.

First, using the decryption attacks presented above, any corrupt Qm node can
capture the rest of the route until Alice asks to be connected to Bob. This is
possible because the corrupt Qm sees all the key distribution and actual messages
that are relayed, starting from the first message in which Alice asks to have
the rWonGoo channel connected to the next Pi on the route. At this point
the corrupt rerouting node Qm uses Pi as a decryption oracle to retrieve all
information sent by Alice. As a result Qm can simulate all interactions where
the secret keys of Pi are needed, without ever relaying the channel through it.
Our route capture attacks can now be performed by any corrupt Pm or just Qm

node on the path.
Secondly we note that a Qm can test whether its predecessor is Alice by us-

ing it as a decryption oracle on a backwards message (which is only encrypted
under Alice’s key), and checking if the result is plaintext. In case the result is
plaintext, Qm can confirm that its predecessor is Alice. This turns the predeces-
sor attack into an exact attack, and makes rWonGoo weaker than the original
Crowds. Similarly the attacker can test any other node in the network to see if
it is the originator of the message. This breaks anonymity after at most O(N)
decryptions, where N is the size of the network, by a Qm between Alice and P1.

A confirmation attack can be mounted by any Qm, even if it is not on the
Crowds route of the first hop between P0, or Alice, and the first mix P1. Any
Qm observes in clear the key ((y0 . . . yi)r′

, gr′
) ≡ ms, which is the combination

of all the public keys of the Pi’s so far on the route. Qm wants to test whether
the path used is made of the guess set of nodes Pj0 . . . Pjk

. To do this Qm can
consecutively decrypt, using each of the nodes Pj0 . . . Pjk

as oracles message
1 Note that if the message decrypted using Pi as an oracle is not encrypted under

the corresponding key yi, it will result in a plaintext that is indistinguishable from
random. This property can be used to detect valid decryptions, when the correct
plaintext is expected to have some structure. In case the correct plaintext is also
indistinguishable from random for the adversary, it is difficult to tell if the correct
or incorrect node was used as a decryption oracle.
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ms, (i.e. m′
s = Decj0(. . . Decjk

(ms))). If it is the case that the plaintext equals
one (m′

s = 1), then the guess is correct, and Qm has established that the path
so far was made of the nodes in the guess set. This is an all-or-nothing test
that provides no partial information. As a result it does not scale well with the
number of honest network nodes N and the path length l, since Qm will have to
perform c =

(
N
l

)
· l decryption requests.

4.4 The Stronger Crowds the Weaker rWonGoo

The complexity of the attack presented above, in terms of the parameters of the
system, is counter intuitive. The attack becomes more difficult as the number
of honest P s that re-encrypt the messages increases before the message is ‘seen’
by either a dishonest Pm or a dishonest Qm (a node that only performs Crowds
between P nodes, yet can see the ciphertext and perform the guessing attack).
In case the message is seen by a corrupt Qm as it is traveling between Alice and
P1, only O(N) decryptions are required.

We assume that until a corrupt Pm or Qm is reached, say node number v
(at which point we can capture the route or perform the guessing attack) all
nodes are selected uniformly at random. This allows us to calculate the expected
position v of the first corrupt node, if we know that a certain fraction f of
the network is corrupt. The number v follows a geometric distribution with
parameter f and its expected value is (v) = (1 − f)/f . As the fraction of
corrupt nodes increases we expect the message to be seen by the attacker earlier.

At the same time the Crowds protocol can be tuned with a parameter h, which
is the probability a message is forwarded to its final destination (versus being
forwarded to a random member of the crowd) by each node that receives it. It
is also trivial to see that the average length u of each journey into the crowds
subsystem (that is used to route between P s) follows a geometric distribution
with parameter h, with average path length [u] = (1 − h)/h.

As mentioned before our guessing attack is most effective when the number
of P s on the route is small, before the message is seen by the adversary. We
know that on average the message will be seen in (v) = (1 − f)/f hops, but
the average length of its first Crowds trip between Alice (P0) and the first re-
encryptor P1 is expected to be [u] = (1 − h)/h. We can conclude that if the
parameter h is smaller than f (the corrupt fraction of nodes in the network) it
is expected on average that the attacker will see the message on its first hop and
be able to perform the most trivial guessing attack. The adversary only has to
perform at most N decryption operations until Alice is revealed.

This result is counter-intuitive: the parameter h being smaller means that the
number of intermediaries in the Crowds protocol is larger. One should expect
this to increase the anonymity of the system. Contrary to this, increasing the
length of the crowds path allows the adversary to observe the raw message earlier
with higher probability, despite link encryption. Since the rWonGoo scheme is
very vulnerable when the attacker can observe messages early on, increasing the
‘anonymity’ provided by the Crowds transport, decreases the overall anonymity
of the system.
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4.5 Partial Fix for rWonGoo

As it stands rWonGoo is weaker than Crowds (that only uses link encryption, and
no other cryptographic protection.) It is possible to make its security as good as
Crowds with a minor modification: the sender Alice, chooses a fresh key pair (g, y0)
for each channel. This would defeat the confirmation attacks that make rWonGoo
weaker than crowds, since Alice cannot be forced to decrypt a ciphertext correctly,
confirming that she is the sender. This makes rWonGoo as strong as Crowds, but
much more complex and unnecessarily costly at the same time.

5 Conclusion

The properties of RSA that make the ‘Universal Re-encryption of signatures’
scheme vulnerable to our attacks have been known, and used in the past by Bir-
git Pfitzman to break anonymous communications schemes [16]. To overcome
them special padding schemes such as PKCS#1 [19] are used to give ciphertexts
a special structure that is infeasible to reconstruct by multiplying different ci-
phertexts together. These padding schemes require a verifier to have access to the
message plaintext in order to verify its validity, making it therefore impossible to
check the validity of re-encrypted ciphertexts (since they still hide the message
m). To allow decrypted ciphertexts to be verified using a signature scheme none
of the fancy cryptography is necessary: it is sufficient to encrypt using Golle et al,
a signed message, and transmit the corresponding ciphertext. The receiver then
decrypts the ciphertext and can check the signature. Therefore we see little hope
in fixing this scheme while retaining its interesting re-encryption properties.

The attack against the onions based on universal re-encryption is possible
because of many factors: We can modify the onions, since their integrity is not
protected, and their different parts are not linked to each other in a robust
manner. The mixes allow themselves not only to be used as decryption oracles
for arbitrary ciphertexts, but also can be used to redirect traffic to the attacker
making tracing effortless. Our attack shows that the claim in section 4.3 of [12],
that the insertion of blocks in the onion structure is not possible, is unfounded
which directly leads to our attack.

Finally we show that rWonGoo is a very fragile scheme. The additional cryp-
tography in rWonGoo has made the overall system more susceptible to attack,
than the original Crowds proposal, that only used link encryption. In particular
it is possible for all messages between Alice and Bob to be read by the adversary
with high probability, following route capture. Since any participant acts as a
decryption oracle, it is possible to mount confirmation attacks to find Alice more
quickly than if simple Crowds was used.

Our attacks lead to two important and novel intuitions, that anonymous com-
munication system designers should carefully take into account in the future.
First, the weakness of the rWonGoo scheme demonstrates that anonymous chan-
nels are not automatically composable: rWonGoo using the crowds protocols as
a transport between mixes makes the system more vulnerable, not stronger.
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Furthermore choosing more secure parameters for the Crowds transport used in
rWonGoo, makes the overall scheme less secure, which is highly counter-intuitive.

Second, our attacks against the mix and signature schemes based on Universal
Re-encryption, demonstrate the inherent difficulty in using this primitive in a
secure fashion. Its power comes from its neat structure, which allows for re-
encryption given only a ciphertext, and the use of multiple keys along with
incremental decoding. It is these properties that made it a promising primitive
for anonymous communications.

On the other hand to preserve these properties, and allow ciphertext to be
universally re-encryptable, a designer is forced to let them be malleable, leak the
public keys used, and is unable to add any redundancy for integrity checking of
messages on their way. That is the weakness our attacks exploited, and it is a
weakness that should have been foreseen given the rich literature on attacking re-
encryption networks. The literature on (non-Universally) re-encryption networks
demonstrates that, to be secured, such schemes require, identification of senders,
expensive zero-knowledge proofs of knowledge of the plaintexts, and proofs of
correct shuffle and threshold decryption. Such proofs have not yet been adapted
to Universal Re-encryption, and would be difficult to adapt them to the dynamic
setting of free-route mix networks, and the multiple threats that such networks
face (dynamic membership, sybil attacks,. . . ). Unless there is a breakthrough in
this field, Universal Re-encryption will should always be used, in this context,
with uttermost care.
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Abstract. Sharing microdata tables is a primary concern in today in-
formation society. Privacy issues can be an obstacle to the free flow
of such information. In recent years, disclosure control techniques have
been developed to modify microdata tables in order to be anonymous.
The k-anonymity framework has been widely adopted as a standard tech-
nique to remove links between public available identifiers (such as full
names) and sensitive data contained in the shared tables. In this paper
we give a weaker definition of k-anonymity, allowing lower distortion on
the anonymized data. We show that, under the hypothesis in which the
adversary is not sure a priori about the presence of a person in the ta-
ble, the privacy properties of k-anonymity are respected also in the weak
k-anonymity framework. Experiments on real-world data show that our
approach outperforms k-anonymity in terms of distortion introduced in
the released data by the algorithms to enforce anonymity.

Keywords: data privacy, k-anonymity, low distortion.

1 Introduction

Privacy protection can have different meanings and can be addressed at different
levels. In this paper we concentrate on individual privacy, in the strict sense of
non-identifiability, as prescribed by the European Union regulations on privacy,
as well as US rules on protected health information (HIPAA rules). Privacy is
regulated at the European level by Directive 95/46/EC (October 24, 1995) and
Regulation (EC) No 45/2001 (December 18, 2000). In such documents, general
statements about identifiability of an individual are given, such as:

“To determine whether a person is identifiable, account should be taken
of all the means likely to be reasonably used either by the controller or
by any person to identify the said person. The principles of protection
should not apply to data rendered anonymous in such a way that the data
subject is no longer identifiable.”

According to this perspective, we focus on anonymity of individuals, and analyze
how the release of tables (databases) containing sensitive information may open
up the risk of privacy breaches that may reveal individual identity.
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An operative way to anonymize data is the removal of attributes that could
potentially be used to identify specific individuals, based upon a set of guide-
lines (e.g., HIPAA rules.) Unfortunately, in some instances the practice of these
guidelines does not achieve individual anonymity, while in other instances data
are unnecessarily removed, resulting in the release of data that do not satisfy
the information needs of the requesting parties. Violations in anonymity can
occur when person-specific data records are uniquely joined with external tables
containing quasi-identifiers. Fig. 1 illustrates this potential threat to privacy

Fig. 1. Public data containing names and the released (private) data containing sensi-
tive information such as diseases can be joined by using the quasi-identifiers QI

through the join of publicly available information (here referred to as public
data) and medical claims records on a private table (released data) through a
set of common attributes that can be used as quasi-identifiers (QI ).

In literature, the concept of k-anonymity has been proposed to solve this
problem, requiring each record to be indistinguishable from at least (k − 1)
other records with respect to a given set of attribute values in the released
data [1, 2, 3, 4]. Althought this definition of anonymity is simple, elegant and
therefore extensively considered standard in literature, it has to face two practical
problems when used in the context of real-world data (as we will point out in
Section 2):

1. The running time requirements to find optimal anonymous tables are un-
practical; and,

2. Even for optimal solutions, the distortion of the data introduced by the
anonymization process is too high in terms of data quality, leading to un-
useful tables.

To cope with this phenomenon in this paper we introduce an alternative to
k-anonymity, namely weak k-anonymity, which overcomes both problems, since
it requires to be enforced in just a subset of the records that do not respect
k-anonymity. This property conduces to qualitatively better output results with-
out giving up the privacy guarantees of original k-anonymity, allowing an effec-
tive use of non-optimal algorithms (i.e., also leading to reduced computational
requirements.)
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Paper Organization. The rest of this paper is organized as follows. Section 2
gives an overview of related work. In Section 3, we present our novel definition
of weak k-anonymity and show its theoretical properties and relations with k-
anonymity. In Section 4 we describe two algorithms to enforce weak k-anonymity
on a given table. We point out the assumptions on the adversary knowledge in
Section 5. Empirical results on the distortion introduced in the released tables are
discussed in Section 6. Finally, Section 7 summarizes our research and concludes
the paper.

2 Related Work

There are two general approaches to transform a set of partitioned records into
a set of indistinguishable records [5,4]. One approach, referred to as data gener-
alization, modifies similar records by replacing the distinct values of an attribute
with a more general value (e.g., actual ages ranging from ‘21’ to ‘30’ replaced
with the interval value ‘21-30’). The other approach referred to as data suppres-
sion, removes records from the table (tuple suppression), or merges some records
into a single record by suppressing the individual values of one or more attributes
(cell suppression). The objective is to generalize or suppress the minimum num-
ber of attribute values in order to satisfy a given k-anonymity requirement.
Unfortunately, this optimization problem (even if relaxed to find approximated
solutions within given bounds) is known to be NP-hard [6,7]. Several microag-
gregation techniques have been developed, including the datafly [4] and the
k-optimize [8] algorithms. Although k-optimize has been proved to find op-
timal solution, as mentioned in Section 1, in practical cases two big problems
arise: 1) the exponential time complexity makes it unfeasible if used with large
datasets, and 2) the solution, despite its optimality, can be too much distorted
to be useful [9].

In the following we present a relaxation of the k-anonymity problem, which
we named weak k-anonymity, in order to overcome drawbacks of the (original)
k-anonymity framework.

3 Weak k-Anonymity

Before defining weak k-anonymity, let us give some basic notation and review
the original k-anonymity framework in a formal setting.

Definition 1 (Record). A record t is a vector in the form (A1 = vA1 , . . . , An =
vAn). {A1, . . . , An} are called attributes of the record t. Given a set of attributes
A ⊂ {A1, . . . , An}, we say that t[A] is the projection of the record t over the
attributes A. t[A] is the vector with |A| elements obtained from t by removing
the entries not in A.

Sometimes, we will also refer to records as rows or tuples.
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Definition 2 (Tables). A table T is a multiset1 of records with same attributes.
Given a set of attributes A ⊂ {A1, . . . , An}, we say that T [A] is the projection
of the table T over the attributes A. T [A] is the multiset obtained by mapping
each element t ∈ T into t[A].

From now on we will assume that information stored into records refers to specific
individuals.

Definition 3 (k-Anonymity). A table T is k-anonymous w.r.t. a set of at-
tributes QI if each record in T [QI] appears at least k − 1 other times.

The idea behind this definition is that each record contains public available
information in some attributes QI (often referred to as quasi-identifiers). The
values of these attributes can be exploited to (almost uniquely) link those records
to other records on other tables.

Definition 4 (Link). Given two records t1 and t2 we say that they are linked
and use the notation t1 � t2 when in our domain they refer to the same entity.

In general, two records are linked if they have the same unique key. In relational
databases, links between records of two tables are done by specifying the same
value for the primary key. Notice that also sets of attributes can be used to
uniquely link two records.

The goal of k-anonymity is therefore to prevent linking a record from a set of
released records to a specific individual. As shown in Fig. 2, in this framework
the adversary has access to all public available information (represented in the,
possibly huge, public table P ) that links names to other set of attributes (e.g., day

Fig. 2. A graphical representation of a violation of k-anonymity in the released part
of the private table

1 A set in which elements can appear more than once. Notice that, given a multiset M
and an element e, we may have that e ∈ M match more than once, i.e., {e | e ∈ M}
is a multiset and its cardinality can be larger than 1. The usual set operations are
extended to multisets accordingly.
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of birth, sex, race.) When a company (e.g., a medical institution) releases a table
with sensitive data (released table T , i.e., the released part of the private table),
then the adversary can play with quasi-identifiers (i.e., the attributes in common
with the two tables) in order to discover unique links between records in the
public and released tables. A k-anonymous table guarantees that the adversary
cannot be able to link names to sensitive data by using the so-called quasi-
identifiers, i.e., set of values that can be used as keys. The following property
describes the desiderata behind k-anonymity.

Property 1 (Anonymity). An adversary cannot link the released data to less than
k individuals by exploiting released and public data.

Intuitively, it means that, in the worst case, an adversary can only infer that
a record is referred to one out of a certain k users. It is easy to prove that
k-anonymity ensures that property.

Proposition 1. Given a public identity information table P and a k-anonymous
table T , Property 1 is satisfied.

In other words, we can release a k-anonymous table without the risk of linking
attacks. Now we have the necessary notation to give our novel definition of weak
k-anonymity.

Definition 5 (Weak k-Anonymity). Given an external public table P , we
say that a table T is weakly k-anonymous, if

P(t1 � t2) ≤
1
k

∀ t1 ∈ P, t2 ∈ T

The following proposition shows that k-anonymity implies weak k-anonymity,
i.e., any k-anonymous table is also weakly k-anonymous.

Proposition 2. Given a public table P and a k-anonymous table T , the follow-
ing is satified:

P(t1 � t2) ≤
1
k

∀ t1 ∈ P, t2 ∈ T

Proof. k-Anonymity requires that any linking information in T should appear
at least other k − 1 times. Therefore, for each t1 ∈ P , we have two cases: no
t2 ∈ T which can be linked to t1, or, k or more t2 ∈ T that can be linked. In
the first case the adversary can derive P(t1 
� t2) = 1, or equivalently P(t1 �
t2) = 0. Therefore, in the case at hand the inequality is satisfied. In the second
case, the adversary cannot link t1 to less than k records. Therefore, in terms of
probability, since there are at least k choices with equal probability (records are
indistinguishable), the adversary has no more than 1

k probability to guess the
right link between two records. ��

Notice that the upper bound on the probability is tight, in the sense that if we
use an upper bound smaller than 1

k , the proposition is false. The above result
shows that k-anonymity implies weak k-anonymity. The viceversa is false, since,
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as we are going to show, we can have a valid weakly k-anonymous table with
a row appearing less than k times. Although weak, Def. 5 surprisingly provides
the same anonymity properties of the original k-anonymity under reasonable
assumptions (see Section 5.)

Proposition 3. Given a public identity information table P and a weakly k-
anonymous table W , Property 1 is respected.

Proof. It follows directly from the definition of weak k-anonymity. Since it re-
quires that the probability of linking is no larger than 1

k , the adversary has to
choose among (at least) k different records. ��

One may wonder whether k-anonymity and weak k-anonymity are actually
equivalent. Although apparentely equivalent to k-anonymity, the definition of
weak k-anonymity is stricly weaker. Infact, by focusing on Fig. 3 we can observe

Fig. 3. A graphical representation of the adversary uncertainty exploited by k-
anonymity and weak k-anonymity

how k-anonymity and weak k-anonymity blocks the adversary from linking in-
formation, thus guaranteeing a probability of linking less or equal to 1

k . The
continued arrows from left to right show that the first and the third records
in the private table are 2-anonymous. In fact, because they are indistinguish-
able (values in QI are the same), the adversary cannot link ‘Jack’ to them (in
the public table.) Notice that the second row is not 2-anonymous since values
Birth = 8/16/1974, Sex = F , Race = Black appear together in only one record.

The dashed arrows from right to left show instead that the second record in
the private table is weakly 2-anonymous. In fact, although the record is not 2-
anonymous, it can be linked to (at least) two individuals, ‘Ashley’ and ‘Jessica’.
This means that the probability of linking the second tuple in the private table
to any tuple in the public table is at most 1

2 . In other words, the private table
is not 2-anonymous but it is weakly 2-anonymous. This is a good news, since as
we will see later these differences allow weak k-anonymity to be less distortive
while maintaing the same privacy guarantees.
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4 Algorithms to Enforce Weak k-Anonymity

In this section we discuss how to exploit any existing algorithm for k-anonymity
to release lower-distorted weak k-anonymity tables. Clearly, as shown by Prop. 2,
any k-anonymity algorithm already releases weakly k-anonymity tables. But
since we want to improve distortion, we would like to get weakly k-anonymous
tables that are not necessarily k-anonymous.

The idea behind these algorithms is that, whenever the original algorithm
verifies that a record occurs other k − 1 times in the released table, we instead
verify that the record matches with at least k records in the public table. If it is
so, we do not have to modify the record; otherwise, we enforce k-anonymity by
tuple suppression or generalization.

We present wabs and waboa, two algorithms to enforce weak k-anonymity
on tables. wabs (Algorithm 1.) is a very simple algorithm that tests records for
weak k-anonymity on the set of records in the public information table (line 5).
It suppresses (i.e., does not allow to release) records in the private table that
can be linked to less than k records in the public table. The time complexity of
wabs is trivially linear if the public table P is hash-indexed on QI, O(|P | log |P |)
otherwise (since we can fairly assume |P | ≥ |T |).

Algorithm 1. Wabs - Weak Anonymity By Suppression
Input: public available table P ; private table T ;
Output: weakly k-anonymous table W
1: QI ← Attributes(P )∩ Attributes(T )
2: W ← ∅; // table W will contain weakly k-anonymous records
3: for all tT ∈ T do
4: S ← {tP ∈ P | tP [QI] matches tT [QI]}; // S is the “link table” of tT

5: if |S| ≥ k then
6: W ← W ∪ {tT };
7: output W ;

The second algorithm, waboa (Algorithm 2.), exploits any existing algorithm
for k-anonymity (line 2) to enforce the k-anonymity requirement on the public
table. Then, the algorithm substitutes the actual values in the private table
with the corresponding generalized or suppressed values (depending on the k-
anonymity algorithm used) in the anonymized table (line 8.)

Since, in general, it is expected that the public table has more records than
the private table to be released, the k-anonymization will be less distorsive. For
waboa, time complexity is again O(|P | log |P |) if the public table is not indexed
on QI, plus the complexity of the algorithm for k-anonymity.

It is worth to note that both algorithms described so far do not ensure k-
anonymity but instead they enforce only weak k-anonymity. This fact leads to
lower distortion of the resulting anonymized table if compared with k-anonymity
algorithms, as shown in Section 6.
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Algorithm 2. Waboa - Weak Anonymity By Outer Anonymization
Input: public available table P ; private table T ;
Output: weakly k-anonymous table W
1: QI ← Attributes(P )∩ Attributes(T )
2: P k ← k-anonymity-algorithm(P, QI); // P k is anonymized on QI
3: W ← ∅; // table W will contain weakly k-anonymous records
4: for all tT ∈ T do
5: S ← {tP k ∈ P k | tP k [QI] matches tT [QI]}; // S is the “link table” of tT

6: // ASSERT: |S| ≥ k, since P k is k-anonymous on QI
7: tS ← an element from S (any);
8: W ← W ∪ {tT [Attributes(T )\QI] ∪ tS[QI]};
9: output W ;

5 Discussion on Weak k-Anonymity

In this section we point out the differences between weak k-anonymity and k-
anonymity, and discuss about what assumptions must be true in order to have
the same anonymity guarantees but with lower distortion. We showed so far that
weak k-anonymity avoids linking attacks as well as the k-anonymity. This is true
under two assumptions:

1. the table P containing public information must be available to the data
owner;

2. the adversary must not know a priori (i.e., before accessing the released
table) whether an entity is in the table or not.

The former assumption is slightly stronger than the one used in the (non-weak)
k-anonymity framework. Here, instead of needing just the set of quasi-identifier,
we require the public table. Notice that also a subset of the information contained
in the public table can improve the final distortion of the anonymized table. This
requirement needs to be respected in order to minimize the distortion as much
as possible. However, there is no risk of loss of privacy if it is not met. Infact,
in the very worst case in which the publisher has no access to the public table,
k-anonymity and weak k-anonymity collapse becoming completely equivalent.

The latter is also quite reasonable, but there are applications in which it
does not hold. Whenever the adversary is a priori informed about the presence
of some entities in the released table, then weak k-anonymity can be faulty in
anonymity preservation. Although this kind of attack also affects k-anonymity
(see d-relative anonymity in [10] and �-diversity in [11]), in the context of weak
k-anonymity this could be more severe.

Example 1. Suppose it is publicly known that in our district there are 947 people
s.t. age = 53, sex = M , education = Ph.D. Since in our private table (that we
are willing to share) there is only one person matching such characteristics,
he is 1-anonymous and weakly 947-anonymous. But releasing information such
age = 53, sex = M , education = Ph.D and disease = A (allowed by the weak
k-anonymity if k ≤ 947) is not secure if the adversary already knows that the
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person matching name = Jack, age = 53, sex = M , education = Ph.D is for
sure in the private database, since it is possible to derive P(name = Jack �
disease = A) = 1.
Since in several applications k-anonymity is impractical because of the high dis-
tortion [9], we suggest an hybrid approach when the adversary is expected to have
information on the presence of an entity in the private table: releasing weakly k-
anonymous tables such that are also l-anonymous with l � k. In fact, we can pre-
vent such kind of attacks (as the one in Example 1) by assuring a minimum level of
k-anonymity in the released data, without compromizing the output quality.

6 Experiments on Real-World Data

In this section we experimentally prove that weak k-anonymity is feasible and
sensibly less distortional than k-anonymity. The results confirm that, even with
the näıve method of suppression, enforcing weak k-anonymity is feasible for
real-world applications, and outperforms k-anonymity in terms of number of
suppressed tuples.

For the experiments, as a public table we used the well-known census-income
dataset [12], containing census, demographic and employment data extracted
from the 1994 and 1995 current population surveys conduced by the US Cen-
sus Bureau, with 41 attributes and 299285 records2. For the private table, we
used a subset of the records in the public table (1% to 5% of the public ta-
ble, as expected in the real application scenarios.) Therefore we suppose that
the adversary has access to the census-income dataset (without the sensitive
data) and that we have a smaller table containing private information to be kept
anonymous. The quasi-identifiers used in the experiments are: age, education,
marital status, major occupation code, sex, country of birth, citizenship.

Experiment 1. We compared k-anonymity and weak k-anonymity in terms of
percentage of records in the released dataset (1% or 5% of the whole set) that
need to be suppressed in order to accomplish k-anonymity and weak k-anonymity
requirements.
The experimental results are shown in Fig. 4. Weak k-anonymity clearly out-
performs k-anonymity. For instance, consider we want to release the table being
sure that the adversary can guess the right link of released records on our table
with public records with probability at most 10%, i.e., k = 10. In this case we
have that 73.6% of the tuples are not k-anonymous (and therefore need to be
suppressed or generalized, depending on the algorithm), while only 30.8% are
not weak k-anonymous.

It is also worth noting that weak k-anonymity is very scalable on the k pa-
rameter, while k-anonymity has a peak around k = 150 because no record in
the randomly-chosen 5% of the dataset was 150-anonymous3. Another important

2 The dataset was actually split into training data and test data for classification
purposes. In our study we merged them back.

3 Infact, the most frequent record was found 138 times in the dataset.
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remark is that weak k-anonymity distortion does not sensibly depend on the size
of the subset we use, while k-anonymity became unpractical for small tables.

Experiment 2. In this experimentwe compare k-anonymity andweak k-anonymity
by using a 5% private table and varying the number of quasi-identifiers.

The results are shown in Fig. 5. Weak k-anonymity always outperforms k-
anonymity. For example, weak 100-anonymity, that guarantees P = 1% of link-
ing attacks, needs to suppress less records than 10-anonymity, that ensures only
P = 10%.

7 Conclusions

In this paper we gave a weaker definition of k-anonymity, which allows lower
distortion when enforcing anonymity on the releasing tables. We showed that,
under the hypothesis in which the adversary cannot be sure a priori about the
presence of a person in the table, the privacy properties of k-anonymity are
respected also in the weak k-anonymity framework. Experiments on real-world
data showed that our approach outperforms k-anonymity in terms of distortion
introduced in the released data by the algorithms to enforce anonymity.
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Abstract. The paper extends the idea of negative representations of
information for enhancing privacy. Simply put, a set DB of data ele-
ments can be represented in terms of its complement set. That is, all the
elements not in DB are depicted and DB itself is not explicitly stored.

We review the negative database (NDB) representation scheme for
storing a negative image compactly and propose a design for depicting
a multiple record DB using a collection of NDBs—in contrast to the
single NDB approach of previous work. Finally, we present a method for
creating negative databases that are hard to reverse in practice, i.e., from
which it is hard to obtain DB, by adapting a technique for generating
3-SAT formulas.

1 Introduction

Protecting sensitive data—controlling access to information and restricting the
types of inferences that can be drawn from it—is a concern that has to be
continually addressed in a world where the demands on the availability of data,
and the criteria for its confidentiality evolve. Current technologies of encryption
(for the data itself) and query restriction (for controlling access to data) help
ensure confidentiality, but neither solution is appropriate for all applications.
In the case of encryption, the ability to search data records is hindered; in the
case of query restriction, individual records are vulnerable to insider attacks.
Furthermore, many of the current solutions rely on the same set of assumptions,
e.g., prime factoring—diversification in approaches ensures robustness.

In this paper, we discuss an approach for representing data that addresses
some of these concerns and provides a starting point for the design of new ap-
plications. A motivating scenario involves a database of personal records which
an outside entity might need to consult, for example, to verify an entry in a
watch-list. It is desirable to have a database that supports a restricted type of
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queries, disallowing arbitrary inspections (even from an insider), and that can
be updated without revealing the nature of the changes to an onlooker.

In our approach, the negative image of a set of data elements is represented
rather than the elements themselves (Fig. 1). Initially, we assume a universe U
of finite-length strings (or records), all of the same length l and defined over
a binary alphabet. We logically divide the space of possible strings into two
disjoint sets: DB representing a set of positive records (holding the information
of interest), and U − DB denoting the set of all strings not in DB. We assume
that DB is uncompressed (each record is represented explicitly), but we allow
U − DB to be stored in a compressed form called NDB. We refer to DB as
the positive database and NDB as the negative database. From a logical point
of view, either will suffice to answer questions regarding DB; however, they
present different advantages. For instance, in a positive database, inspection of
a single string provides meaningful information; inspection of a single ’negative’
string reveals little about the contents of the original database. Given that the
positive tuples are never stored explicitly, a negative database could be much
more difficult to misuse.

The basic concept was introduced in [19,16] and establishes the general the-
oretical foundations for some of the properties of the representation, especially
with regards to privacy and security. The present goal is to address some of
the practical concerns regarding the security of negative databases, and the
efficiency of updating them. We introduce a novel storage design that better
supports update operations and adapt techniques from other fields to create
negative databases that are more secure in practice.

In the following section we review the negative database representation, give
some examples, and explain how to query it. We then investigate some of the
implications the approach has for privacy and security. In particular, we take
advantage of the fact that the general problem of recovering the positive set
from our negative representation is NP-hard (see Ref. [19,20,16]) and present a
novel scheme that creates negative databases that are indeed hard to reverse. We
introduce a setup that overcomes some of the update inefficiencies of previous
approaches and, finally, review related work, discuss the potential consequences
of our results, and outline areas of future investigation.

2 Representation

In order to create a negative database (NDB) that is reasonable in size, we
must compress the information contained in U -DB while retaining the ability
to answer queries. We introduce an additional symbol to the binary alphabet,
known as a “don’t-care” and written as ∗. The entries in NDB will thus be
strings of length l over the alphabet {0, 1, ∗}. The don’t-care symbol has the
usual interpretation and represents a one and a zero at the string position where
the ∗ appears—positions set to one or zero are referred to as “defined positions”.
The use of this new symbol allows for large subsets of U − DB to be depicted
with just a few entries in NDB (see example in Fig. 1).
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A string s is taken to be in DB if and only if s fails to match all the entries
in NDB. The condition is fulfilled only if for every string y ∈ NDB, s disagrees
with y in at least one defined position.

DB U − DB NDB

000 001 001
100 010 *1*
101 011

110
111

DB U − DB NDB

0001 0000 11**
0100 0010 001*
1000 0011 011*
1011 0101 0000

0110 0101
0111 1001
1001 1010
1010
1100
1101
1110
1111

Fig. 1. (a),(b). Different examples of a DB, its corresponding U -DB, and a possible
NDB representing U -DB.

Boolean Formula NDB

(x1 or x2 or x̄5) and 00**1
(x̄2 or x3 or x5) and *10*0
(x2 or x̄4 or x̄5) and ⇒ *0*11
(x̄1 or x̄3 or x4) 1*10*

Fig. 2. Mapping SAT to NDB: In this example the boolean formula is written in
conjunctive normal form (CNF) and is defined over five variables {x1, x2, x3, x4, x5}.
The formula is mapped to a NDB where each clause corresponds to a record, and each
variable in the clause is represented as a 1 if it appears negated, as a 0 if it appears
un-negated, and as a ∗ if it does not appear in the clause at all. It is easy to see that
a satisfying assignment of the formula such as {x1= FALSE, x2= TRUE, x3= TRUE,
x4= FALSE, x5= FALSE } corresponding to string 01100 is not represented in NDB
and is therefore a member of DB.

Queries are also expressed as strings over the same alphabet; when a string, Q,
consists entirely of defined positions—only zeros and ones—it is interpreted as “Is
Q in DB?”, and we refer to it as a simple membership or authentication query.
Answering such a query requires examining NDB for a match, as described
above, and can be done in time proportional to |NDB|. On the other hand, the
work in [19] demonstrates an efficient mapping between boolean satisfiability
formulas and NDBs (see Fig. 2) and shows that the problem of reversing a
NDB—recovering DB—is NP-hard even when the size of the resulting DB is
polynomial in the input size—determining the size of DB or even if it’s empty



Protecting Data Privacy Through Hard-to-Reverse Negative Databases 75

or not is NP-hard as well. Consequently, answering queries with an arbitrary
number of * symbols is also intractable.

Take, for example, a negative database of the tuples < name, address, pro-
fession >. The query “Is <Tintan, 69 Pine Street, Plumber> in DB?” (written
as a binary string Q) would be easily answered, while retrieving the names and
addresses of all the engineers in DB (expressed as a query string with the pro-
fession field set to the binary encoding of ’engineer’ and the remaining positions
to *) would be intractable. Note that it is possible to construct NDBs, with spe-
cific structures, for which complex queries can be answered efficiently (see Refs.
[19,16]). Indeed, creating negative databases that are hard to reverse in practice
can be a difficult task; in the next section, we address this issue and present
an algorithm for creating negative databases that only support authentication
queries efficiently.

3 Hard-to-Reverse Negative Databases

The creation of negative databases has been previously addressed in
[19,17,20,16], where several algorithms are given that either produce NDBs that
are provably easy to reverse, i.e., for which there is an efficient method to recover
DB, or that have the flexibility to produce hard-to-reverse instances in theory,
but have yet to produce them experimentally. It was shown in [19] that reversing
a NDB is an NP-hard problem, but this, being a worst case property, presents
the challenge of creating hard instances in practice.

In this section, we focus on a generation algorithm that aims at creating hard-
to-reverse negative databases in practice; we take advantage of the relationship
negative databases have with the boolean satisfiability problem (SAT) (Fig. 2)
and look into the body of work devoted to creating difficult SAT instances (e.g.,
[39,2,31,30]). As an example, we focus on the model introduced in [30] and use it
as a basis for creating NDBs. The resulting scheme has two important differences
with the algorithms of Refs. [19,17,20,16] besides the ability to produce hard
instances: first, it generates an NDB for each string in DB, and second, it creates
an inexact representation of U -DB, meaning that some strings in addition to
DB will not be matched by NDB.

In what follows we present the generation algorithm, outline how the prob-
lem of extra strings can be dealt with, and empirically show that the resulting
databases are hard to reverse.

3.1 Using SAT Formulas as a Model for Negative Databases

Reference [30] presents an algorithm for creating SAT formulas which we use
as the basis for our negative database construction. Their objective is to create
a formula that is known to be satisfiable, but which SAT-solvers are unable to
settle. The approach is to take an assignment A (a binary string representing the
truth values for the variables in the formula), and create a formula satisfied by
it—much like the algorithms in [19,17,20,16], except that the resulting formula
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might be satisfied by other unknown assignments. Given the assignment A, the
algorithm randomly generates clauses with t > 0 literals satisfied by it with
probability proportional to qt for q < 1 (q is an algorithm specific parameter
used to bias the distribution of clauses within the formula). The purpose of
the method is to balance the distribution of literals in such a way as to make
formulas indistinguishable from one another in this respect. The process outputs
a collection of clauses, all satisfied by A, which can be readily transformed into
a negative database (see Fig. 2).

Given a database (DB) of size at most one (Sect. 3.4 discusses DBs with more
than one record) , containing a l-length binary string A, we create a negative
database (NDB) with the following properties:

1. Each entry in the negative database has exactly three specified bits.
2. A is not matched by any of NDB’s entries.
3. Given an arbitrary l-bit string, it is easy to verify if it belongs to NDB or

not (in time proportional to the size of NDB).
4. The size of NDB is linear in terms of the length of A. Let l be the number

of bits in A and m the number of strings in NDB; the tunable parameter
r = m/l determines the size of the database and its reversal difficulty.

5. The size of NDB does not depend on the contents of DB, i.e., it has the
same size for |DB| = 1 and |DB| = 0.

6. A is “almost” the “only” string not matched by NDB, i.e., almost the only
string contained in the positive image DB′ of NDB. The other entries in
DB′ are close in hamming distance to A (see Sect. 4).

7. The negative database NDB is very hard to reverse, meaning no known
search method can discover A in a reasonable amount of time (provided
that the number of bits in A be greater that 1000, as explained below).

Properties one through five follow from the isomorphism of negative databases
with a 3-SAT formulae (see Fig. 2) and the characteristics of the algorithm.
Point six is addressed in the next section, and completes the negative database
generation scheme. Property seven is ascertained empirically in Sect. 3.3.

3.2 Superfluous Strings

A consequence of the above method for generating negative databases, is the
inclusion of extra strings in the corresponding positive database. That is, DB′—
the reverse of NDB—will include strings that are not in the original DB from
which it was created; we refer to these strings as superfluous 1.

Figure 3 displays the expected number of strings not represented by NDB
(and hence members of DB′) as a function of their normalized Hamming distance
to A—the true member of DB— and shows that all superfluous strings are within
0.13 distance from A (for the given parameter settings)2.
1 Note that DB ⊆ DB′.
2 The definition of the plotted function is: f(α) = 1

αα(1−α)1−α

(
1 − (q(1−α)+α)k−αk

(1+q)k−1

)r

,

for details see [30].
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Fig. 3. Number of strings not matched by NDB (members of DB′) as a function of the
hamming distance to A—the original DB entry. The plot shows the expected numbers
for q = 0.5 and several r values: from top to bottom r = 5.5, 6.0, 7.0, 8.0, 9.0, 10.0. An
interplay between q and r determines how difficult the NDB will be to reverse and
how many “extra” strings will go unmatched by NDB.

Increasing the value of r reduces the number of superfluous strings; however,
it also increases the size of the database and, more importantly, leads to NDBs
that are potentially easier to reverse (see [25,3,1]).

To address the incidence of superfluous strings, we introduce a scheme that
allows us to distinguish, with high probability, the true members of DB from the
artifacts. Rather than creating a NDB using A as input, we construct a surrogate
string A′—appending to A the output of some function F of A—and use it
to generate NDB. The membership of an arbitrary string B is established by
computing F (B) and testing whether B concatenated with F (B) is represented
in NDB 3. The purpose of the function is to divide the possible DB′ entries
into valid and invalid—valid strings having the correct output of F appended
to them—and reduce the probability of including any unwanted valid strings in
DB′.

The choice of function impacts both the accuracy of recovery (avoidance of su-
perfluous strings) and the performance of the database: the more bits appended
to A, the less likely to mistake a false string for a true one (assuming a reason-
able code) and the larger the resulting NDB. There is a wide variety of codes
that can be used for this purpose: parity bits, checksums, CRC codes, and even
hash functions like SHA or MD5 with upwards of a 100 bits 4.

3 Naturally F needs to be public known.
4 It’s important to emphasize that the proposed scheme relies on F solely for reducing

the incidence of false entries and not, in any way, for the secrecy of the true ones.



78 F. Esponda et al.

To provide an idea of how the function impacts accuracy we consider a gen-
eral model which assumes, for simplicity, valid strings are uniformly distributed
and sampling with replacement. The chance of randomly finding a valid string
is 2−c, where c is the number of bits introduced by the function. The proba-
bility of including an unwanted valid string is 1 − (1 − 2−c)|DB′|, where |DB′|
is the number of strings unmatched by NDB. The model illustrates (see Fig.
4) the dependence of accuracy on the code size—the density of valid strings—
and the number of strings introduced by the generation algorithm. Clearly, a
sophisticated code such as the CRC, which attempts to maximize the minimum
hamming distance between valid strings, will greatly increase the accuracy of
section’s 3.1 generation scheme.
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Fig. 4. Probability of including an unwanted valid string as a function of the error
correcting code, c, according to 1− (1−2−c)|DB′|. |DB′| denotes the expected number
of strings unmatched by NDB; it is calculated for a string length, l, of 1000 and r = 5.5.

3.3 Hardness

To illustrate how hard to reverse these NDBs are, we produced instances for
strings ranging from 50 to 300 bits in length and r = 5.5. Their difficulty is as-
sessed by the ability of well established SAT-solvers to find a string in DB′. There
are two types of solvers: complete and incomplete. Complete solvers search the
space exhaustively, while incomplete solvers explore only a fraction of it and can
handle much larger instances (in terms of string length l); however,unlike complete
solvers, their failure to find a solution does not imply that one doesn’t exit.

Figure 5 shows the results for the zChaff complete solver (zChaff is often
the champion of the yearly SAT competition) and Fig. 6 shows the results for
WalkSAT, a well known incomplete solver. The experiments show that both
zChaff and WalkSAT find a DB′ entry in time exponential in the length of the
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string l. Consider that fully reversing NDB, i.e., finding all of the strings in
DB′, will entail running the solver |DB′| +1 times (the extra run is to establish
that there are no more strings left). Additionally, we tested 100 NDBs with
l = 1000 on zChaff and WalkSAT, as well as on two other solvers: SATz and SP
(the first complete the second incomplete). No DB′ entry was found for any of
them before the incomplete solvers terminated and the complete solvers ran out
of memory.
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3.4 Multi-record Negative Databases

The preceding section explored how to create a hard-to-reverse negative repre-
sentation of a DB with zero or one entries; now, we briefly outline how this can
be extended for DBs of an arbitrary size—the work in [19,17] is concerned with
creating negative databases for any DB, regardless of its size, but does not show
that the instances they output are hard to reverse in practice.

Our scheme can be used to generate the negative representation of any set
of strings DB by creating an individual NDBAi for each string Ai in DB, i.e.,
each record in the resulting NDB is itself some negative database (see Fig. 7).
It is important to point out that all NDBAi’s are the same size (and are thus
indistinguishable by this measure) and that some may represent the empty (pos-
itive) set.

Compare this scheme to the method described in [19,17] and the examples in
Fig. 1, where a monolithic NDB represents all of DB. First, there is additional
information leakage 5, as the size of the underlying DB can be bounded by the
number of records (NDBAi’s) in NDB—a bound, since NDB may contain any
number of records that represent the empty set. Second, a NDB created in this
manner is much easier to update: inserting a string Ai into DB is implemented
as finding which records in NDB represent Ai and removing them; deleting Ai

5 Determining the size of DB from a hard-to-reverse NDB is an intractable problem.
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DB NDB0 NDB4 NDB5 NDB∅
000 *1* *1* 0** 0**
100 1** **1 **0 *1*
101 0*1 000 *11 10*

Fig. 7. A sample DB with possible NDBAi (NDB∅ represents the empty set). The
final NDB collects all NDBAi’s. Note that the output of the algorithm presented
in Sect. 3 generates NDBAi’s with exactly three specified bits per record and does
not exactly represent U -DB; the present example, however, serves to illustrate the
non-monolithic structure of the final NDB.

from DB amounts to generating its corresponding NDBAi and appending it as
a record to NDB. The result is a database in which updates take linear time (or
better as discussed below) and whose size remains linear in |DB|. Moreover, our
scheme allows many operations to be parallelized, given that the database can
be safely divided into subsets of records and the results easily integrated. This
contrasts with the databases and update operations presented in [17], where a
single “insert into DB” requires access to all of NDB, runs in O(l4|NDB|2|)
time, and may cause the database to grow exponentially when repeatedly ap-
plied. Finally, the nature of updates remain ambiguous to an observer, given
that a record can represent the empty set and that different records (different
NDBAi’s) can stand in for the same DB entry.

We foresee other differences between the two schemes as more complex oper-
ations such as joins, projections, etc., are investigated in the context of negative
representations of data.

4 Related Work

Reference [19] introduced the concept of negative information, presented negative
databases (NDBs) as a means to compactly represent negative information,
and pointed to the potential of NDBs to conceal data. Additional properties of
representing information in this way are outlined in [16]. To date, there are three
basic algorithms for creating NDBs: the Prefix algorithm [19] is deterministic
and always creates a NDB that is easy to reverse; the Randomized algorithm
[19] is non-deterministic and can theoretically produce hard-to-reverse NDBs,
but the required settings are unknown; and finally the On-line algorithms [17,18]
designed to update NDBs (insert and delete strings) rely on having an already
hard-to-reverse NDB for their security.

There are many other topics that relate to the ideas discussed in this pa-
per. Most relevant are the techniques for protecting the contents of databases—
database encryption, zero-knowledge sets, privacy-preserving data mining and
query restriction—security systems based on NP-hard assumptions, and one-
way functions.

Some approaches for protecting the contents of a database involve the use
of cryptographic methods [23,22,8,41], for example, by encrypting each record
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with its own key. Zero-knowledge sets [34,38] provide a primitive for constructing
databases that have many of the same properties as negative databases; namely,
the restriction of queries to simple membership. However, they are based on
widely believed cryptographically secure methods (to which NDBs are an al-
ternative), require a controlling entity for answering queries, and are difficult to
update.

In privacy-preserving data mining, the goal is to protect the confidentiality of
individual records while supporting certain data-mining operations, for example,
by computating aggregate statistical properties [6,5,4,13,15,41,40]. In one exam-
ple of this approach (Ref. [6]), relevant statistical distributions are preserved, but
the details of individual records are obscured. Negative databases contrast with
this, in that they support simple membership queries efficiently, but higher-level
queries may be expensive.

Negative databases are also related to query restriction [32,11,13,14,40], where
the query language is designed to support only the desired classes of queries.
Although query restriction controls access to the data by outside users, it cannot
protect from an insider with full privileges inspecting individual records.

Cryptosystems reliant on NP-complete problems [21] have been previously
studied, e.g., the Merkle-Hellman cryptosystem [33], which is based on the gen-
eral knapsack problem. These systems rely on a series of tricks to conceal the ex-
istence of a “trapdoor” that permits retrieving the hidden information efficiently
(NDBs have no trapdoors); however, almost all knapsack cryptosystems have
been broken [37]. There is a large body of work regarding the issues and tech-
niques involved in generating hard-to-solve NP-complete problems [29,28,37,33]
and in particular of SAT instances [35,12]. Much of this work is focused on the
case where formulas are generated without knowledge of their specific solutions.
Efforts concerned with the generation of hard instances possessing some specific
solution, or solutions with some specific property include [30,24,2].

One-way functions [26,36] and one-way accumulators [7,10] take a string or
set of strings and produce a digest from which it’s difficult to obtain the original
input. One distinction between these methods and negative databases is that
the output of a one-way function is usually compact, and the message it encodes
typically has a unique representation (making it easy to verify if a string corre-
sponds to a certain digest). Probabilistic encryption studies how a message can
be encrypted is several different ways [27,9].

As the availability of data, the means to access it, and its uses increase, so do
our requirements for its security and our privacy. There is no single solution for
all of our demands, as evidenced by the many methods reviewed in this section;
hard-to-reverse NDBs, with their unique characteristics, are an addition to this
toolbox.

5 Discussion and Conclusions

In this paper we took the work presented in [19,17,16] and addressed some of
its practical concerns. In particular, the previous work outlines algorithms that
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are expected to generate hard-to-reverse NDBs once their parameters are ap-
propriately set; however, no hints on what their values should be or evidence of
them generating any hard instances is provided. The present paper introduced a
novel and efficient way to generate negative databases that are extremely hard
to reverse. The scheme takes advantage of the relationship the negative data rep-
resentation has with SAT formulae and borrows from that field a technique for
generating the database and the means to test its reversal difficulty. The method
we adopted creates an inexact negative image of DB, in that the resulting NDB
negatively represents DB along with a few additional strings. We addressed this
issue with the inclusion of error detecting codes that help distinguish between
DB and the extra, superfluous strings.

In addition, our design departs significantly from the previous work’s con-
struction of negative databases by securing the contents of the database on a
per record basis, i.e., we create a hard-to-reverse NDBAi for each entry Ai in
DB, the collection of which constitutes our NDB. The present work sketched
this setup and outlined some of its characteristics; our current efforts include
exploring these database constructions and its applications in more detail.

We have also shown how knowledge from the well established field of SAT can
be successfully adapted for the creation and evaluation of negative databases,
albeit not always straightforwardly—witness our need to introduce error detect-
ing codes. We expect that more tools and techniques will be transfered in the
future, and that better technologies for SAT, e.g., harder formulas to solve, will
lead to improved techniques for negative databases and vice versa.

Finally, we are optimistic that some of the problems presented by sensitive
data can be addressed by tailoring a negative representation to its particular
requirements.
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Abstract. Based on the compression function of the hash function stan-
dard SHA-256, SHACAL-2 is a 64-round block cipher with a 256-bit
block size and a variable length key of up to 512 bits. In this paper, we
present a related-key rectangle attack on 42-round SHACAL-2, which
requires 2243.38 related-key chosen plaintexts and has a running time of
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1 Introduction

In 2000, Handschuh and Naccache [7] proposed a 160-bit block cipher SHACAL
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two versions, known as SHACAL-1 and SHACAL-2 [8], where SHACAL-1 is the
same as the original SHACAL, while SHACAL-2 is a 256-bit block cipher based
on the compression function of SHA-256 [20]. Both SHACAL-1 and SHACAL-2
were submitted to the NESSIE (New European Schemes for Signatures, Integrity,
and Encryption) project [18] and selected for the second phase of the evaluation;
however, in 2003, SHACAL-1 was not recommended for a NESSIE portfolio
because of concerns about its key schedule, while SHACAL-2 was selected to be
in the NESSIE portfolio.

The published cryptanalytic results on SHACAL-2 are as follows: Hong et al.
presented an impossible differential attack [2] on 30-round SHACAL-2 [9] and
Shin et al. presented a differential-nonlinear attack on 32-round SHACAL-2 [21],
which is a variant of the differential-linear attack [15]. Shin et al. also presented
a square-nonlinear attack on 28-round SHACAL-2. Recently, Kim et al. [14]
presented a related-key differential-nonlinear attack on 35-round SHACAL-2 and
a related-key rectangle attack on 37-round SHACAL-2, where the latter attack
is based on a 33-round related-key rectangle distinguisher. As far as the number
of the attacked rounds is concerned, the Kim et al.’s related-key rectangle attack
on 37-round SHACAL-2 is the best cryptanalytic result on SHACAL-2, prior to
the work described in this paper.

Like the amplified boomerang attack [11] and the rectangle attack [3,4], the
related-key rectangle attack [5,10,13] is also a variant of the boomerang attack
[22]. As a result, it shares the same basic idea of using two short differentials with
larger probabilities instead of a long differential with a smaller probability, but
requires an additional assumption that the attacker knows the specific differences
between one or two pairs of unknown keys. This additional assumption makes it
very difficult or even infeasible to conduct in many cryptographic applications,
but as demonstrated in [12], some of the current real-world applications may
allow for practical related-key attacks [1], say key-exchange protocols and hash
functions.

In this paper, based on relatively low difference propagations for the first sev-
eral rounds in the key schedule of SHACAL-2, we explore a 34-round related-key
rectangle distinguisher. We also introduce a differential property in SHACAL-2
such that we can apply the exploited “early abort” technique to discard some
disqualified candidate quartets earlier than usual. Relying on the 34-round dis-
tinguisher and the “early abort” technique, we mount a related-key rectangle
attack on 40-round SHACAL-2 when used with a 512-bit key. Finally, based
on several more delicate observations, we eventually mount a related-key rect-
angle attack on 42-round SHACAL-2, which requires 2243.38 related-key chosen
plaintexts and has a running time of 2488.37.

The rest of this paper is organized as follows: In the next section, we briefly
describe some notation, the SHACAL-2 cipher and the related-key rectangle at-
tack. In Sect. 3, we introduce four properties in SHACAL-2. In Sect. 4, we present
our related-key rectangle attacks on 40 and 42-round SHACAL-2, respectively.
Sect. 5 concludes this paper.
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2 Preliminaries

2.1 Notation

The following notation will be used throughout this paper:

– ⊕ : the bitwise logical exclusive OR (XOR) operation
– & : the bitwise logical AND operation
– � : the addition modulo 232 operation
– ¬ : the complement operation
– ej : a 32-bit word with zeros in all positions but bit j (0 ≤ j ≤ 31)
– ei1,···,ij : ei1 ⊕ · · · ⊕ eij

– ej,∼ : a 32-bit word that has 0’s in bits 0 to j−1, 1 in bit j and unconcerned
values in bits (j + 1) to 31

2.2 The SHACAL-2 Cipher

SHACAL-2 [8] uses the compression function of SHA-256 [20], where the plain-
text enters the compression function as the chaining value, and the key enters
the compression function as the message block. Its encryption procedure can be
described as follows:

1. The 256-bit plaintext P is divided into eight 32-bit words A0, B0, C0, D0,
E0, F 0, G0 and H0.

2. For i = 0 to 63:
T i+1

1 = Ki � Σ1(Ei) � Ch(Ei, F i, Gi) � Hi � W i,
T i+1

2 = Σ0(Ai) � Maj(Ai, Bi, Ci),
Hi+1 = Gi,
Gi+1 = F i,
F i+1 = Ei,
Ei+1 = Di � T i+1

1 ,
Di+1 = Ci,
Ci+1 = Bi,
Bi+1 = Ai,
Ai+1 = T i+1

1 � T i+1
2 .

3. The ciphertext is (A64, B64, C64, D64, E64, F 64, G64, H64),

where Ki is the i-th round key, W i is the i-th round constant1, and the four
functions Ch(X, Y, Z), Maj(X, Y, Z), Σ0(X) and Σ1(X) are defined as follows,
respectively,

Ch(X, Y, Z) = (X&Y ) ⊕ (¬X&Z),
Maj(X, Y, Z) = (X&Y ) ⊕ (X&Z) ⊕ (Y &Z),

Σ0(X) = S2(X) ⊕ S13(X) ⊕ S22(X),
Σ1(X) = S6(X) ⊕ S11(X) ⊕ S25(X),

where Sj(X) represents right rotation of X by j bits.
1 In the specifications of [8,20] the term Ki is used for the round constant, and the

term W i is used for the round subkey. In this paper, we use the more standard
notation.
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The key schedule of SHACAL-2 takes as input a variable length key of up
to 512 bits. Shorter keys can be used by padding them with zeros to produce a
512-bit key string; however, the proposers recommend that the key should not be
shorter than 128 bits. The 512-bit user key K is divided into sixteen 32-bit words
K0, K1, · · · , K15, which are the round keys for the initial 16 rounds. Finally, the
i-th round key (16 ≤ i ≤ 63) is generated as

Ki = σ1(Ki−2) � Ki−7 � σ0(Ki−15) � Ki−16, (1)
with σ0(X) = S7(X) ⊕ S18(X) ⊕ R3(X),

σ1(X) = S17(X) ⊕ S19(X) ⊕ R10(X),

where Rj(X) represents right shift of X by j bits2.

2.3 The Related-Key Rectangle Attack

The related-key rectangle attack [5,10,13] treats the block cipher E : {0, 1}n ×
{0, 1}k → {0, 1}n as a cascade of two sub-ciphers E = E1 ◦ E0. It assumes that
there exists a related-key differential α → β with probability p∗β for E0 (i.e.,
Pr[E0

K(X)⊕E0
K∗(X∗) = β|X⊕X∗ = α] = p∗β), where K and K∗ are two related

keys with a known difference, and a regular differential γ → δ with probability qγ

for E1 (i.e., Pr[E1
K(X)⊕E1

K(X∗) = δ|X⊕X∗ = γ] = Pr[E1
K∗(X)⊕E1

K∗(X∗) =
δ|X ⊕X∗ = γ] = qγ). In our attack on SHACAL-2 we use a related-key differen-
tial for the first sub-cipher and a regular differential for the second sub-cipher,
i.e., our second differential has no key difference. Note that the related-key rect-
angle attack can also use related-key differentials for both the sub-ciphers in
similar ways.

Let a quartet of plaintexts be denoted by (Pi, P
∗
i , Pj , P

∗
j ) with Pi ⊕ P ∗

i =
Pj ⊕ P ∗

j = α, where Pi and Pj are encrypted under EK , and P ∗
i and P ∗

j are
encrypted under EK∗ . Out of N pairs of plaintexts with related-key difference α
about N · p∗β pairs have a related-key output difference β after E0. These pairs

can be combined into about
(N ·p∗

β)2

2 candidate quartets such that each quartet
satisfies E0

K(Pi) ⊕ E0
K∗(P ∗

i ) = β and E0
K(Pj) ⊕ E0

K∗(P ∗
j ) = β. Assuming that

the intermediate values after E0 distribute uniformly over all possible values,
the event E0

K(Pi) ⊕ E0
K(Pj) = γ holds with probability 2−n. Once this occurs,

E0
K∗(P ∗

i ) ⊕ E0
K∗(P ∗

j ) = γ holds as well, for E0
K∗(P ∗

i ) ⊕ E0
K∗(P ∗

j ) = (E0
K(Pi) ⊕

E0
K∗(P ∗

i )) ⊕ (E0
K(Pj) ⊕ E0

K∗(P ∗
j )) ⊕ (E0

K(Pi) ⊕ E0
K(Pj)) = β ⊕ β ⊕ γ = γ. As a

result, the expected number of the quartets satisfying both E1
K(Pi)⊕E1

K(Pj) = δ
and E1

K∗(P ∗
i ) ⊕ E1

K∗(P ∗
j ) = δ is

∑
β,γ

(N · p∗β)2

2
· 2−n · (qγ)2 = N2 · 2−n−1 · (p̂∗ · q̂)2,

where p̂∗ =
√∑

β′ Pr2(α → β′) and q̂ =
√∑

γ′ Pr2(γ′ → δ).

2 We alert the reader to the somewhat confusing notation of S(·) as cyclic rotation
and of R(·) as a shift operation.
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On the other hand, for a random cipher, the expected number of right quartets
is about N2

2 ·2−2n = N2 ·2−2n−1. Therefore, if p̂∗ · q̂ > 2−n/2 and N is sufficiently
large, the related-key rectangle distinguisher can distinguish between E and a
random cipher.

3 Properties in SHACAL-2

Property 1. (from [21]) Let Z = X � Y and Z∗ = X∗ � Y ∗ with X, Y, X∗, Y ∗

being 32-bit words. Then, the following properties hold:

1. If X ⊕ X∗ = ej and Y = Y ∗, then Z ⊕ Z∗ = ej,j+1,···,j+k−1 holds with
probability 1

2k (j < 31, k ≥ 1 and j + k − 1 ≤ 30). In addition, in case
j = 31, Z ⊕ Z∗ = e31 holds with probability 1.

2. If X ⊕ X∗ = ej and Y ⊕ Y ∗ = ej, then Z ⊕ Z∗ = ej+1,···,j+k−1 holds with
probability 1

2k (j < 31, k ≥ 1 and j+k−1 ≤ 30). In addition, in case j = 31,
Z = Z∗ holds with probability 1.

3. If X ⊕ X∗ = ei,∼, Y ⊕ Y ∗ = ej,∼ and i > j, then Z ⊕ Z∗ = ej,∼ holds.

A more general description of this property can be obtained from the following
theorem in [16],

Theorem 1. Given three 32-bit differences ΔX, ΔY and ΔZ. If the probability
Pr[(ΔX, ΔY ) �→ ΔZ] > 0, then

Pr[(ΔX, ΔY ) �→ ΔZ] = 2−s,

where the integer s is given by s = #{i|0 ≤ i ≤ 30, not((ΔX)i = (ΔY )i =
(ΔZ)i)}.

Property 2. (from [21]) The two functions Ch and Maj operate in a bit-by-bit
manner, therefore, each of them can be regarded as a boolean function from a
3-bit input to a 1-bit output. Table 1 shows the distribution probability of XOR
differences through them. The first three rows represent the eight possible differ-
ences of the 3-bit inputs x, y, z, and the last two rows indicate the differences
in the outputs of the two functions, where a “0” (resp., “1”) means that the
difference will always be 0 (resp., 1), and a “0/1” means that the difference will
be 0 or 1 with probability 1

2 .

Let’s introduce two other properties in SHACAL-2, as follows.

Property 3. Consider the difference propagation between a pair of data for any
four consecutive rounds i to i + 3. If the difference (ΔAi, ΔBi, · · · , ΔHi) just
before the i-th round is known, then we can easily learn that:

1. The differences ΔBi+1, ΔCi+1, ΔDi+1, ΔF i+1, ΔGi+1 and ΔH i+1 just
before the (i + 1)-th round can be definitely determined, which are equal to
ΔAi, ΔBi, ΔCi, ΔEi, ΔF i and ΔGi, respectively.
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Table 1. Differential distribution of the functions Ch and Maj

x 0 0 0 1 0 1 1 1
y 0 0 1 0 1 0 1 1
z 0 1 0 0 1 1 0 1

Ch 0 0/1 0/1 0/1 1 0/1 0/1 0/1
Maj 0 0/1 0/1 0/1 0/1 0/1 0/1 1

2. The differences ΔCi+2, ΔDi+2, ΔGi+2 and ΔH i+2 just before the (i + 2)-
th round can be definitely determined, which are equal to ΔBi+1, ΔCi+1,
ΔF i+1 and ΔGi+1, respectively.

3. The differences ΔDi+3 and ΔH i+3 just before the (i + 3)-th round can be
definitely determined, which are equal to ΔCi+2 and ΔGi+2, respectively.

Property 4. Let the two related keys K and K∗ have the difference e31 in both
the 0-th and 9-th round keys and have all zero difference in the others of the
first 16 round keys, then we can conclude by Eq. (1) that the round keys from
16 until 23 ( i.e., K16, K17, · · · , K23) have all zero differences, for the following
equation holds with probability 1,

K∗16 = σ1(K∗14) � K∗9 � σ0(K∗1) � K∗0

= σ1(K14) � (K9 ⊕ e31) � σ0(K1) � (K0 ⊕ e31)
= σ1(K14) � K9 � σ0(K1) � K0

= K16.

4 Related-Key Rectangle Attacks on Reduced
SHACAL-2

In this section, based on Properties 1, 2 and 4, we explore a 34-round related-key
rectangle distinguisher, which can be directly used to mount a related-key rectan-
gle attack on 38-round SHACAL-2. Furthermore, by Property 3, we can partially
determine whether a candidate quartet is a valid one earlier than usual; if not,
we can discard it immediately, which results in less computations in the left steps
and may allow us to proceed by guessing one or more round subkeys, depending
on how many candidate quartets are remaining. We call this technique “early
abort”. In the case for SHACAL-2, we find that the “early abort” technique can
allow us to break two more rounds, that is to say, 40-round SHACAL-2 can be
broken faster than an exhaustive key search. Finally, based on several delicate
observations, we mount a related-key rectangle attack on 40-round SHACAL-2.
The details are as follows.

A 34-Round Related-Key Rectangle Distinguisher. The key schedule of
SHACAL-2 has low difference propagations for the first several rounds. Partic-
ularly, as exploited in [14], if the two related user keys K and K∗ have zero
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differences in the first 16 rounds (0 ∼ 15) except the eighth round key K8, one
can easily learn from Eq. (1) in the key schedule that the keys from rounds
16 until 22 (K16, K17, · · · , K22) have all zero differences. Consequently, Kim et
al. [14] exploited a 23-round related-key differential characteristic3 α → β for
Rounds 0 ∼ 22 with probability 2−33: (0, 0, e6,9,18,20,25,29, e31, 0, e9,13,19, e18,29,
e31) → (0, 0, 0, 0, 0, 0, 0, 0). This 23-round related-key differential characteristic
requires 22 fixed bits in any pair of plaintexts to increase the differential proba-
bility for Round 0.

Then, they exploited a 10-round differential characteristic γ → δ for Rounds
23 ∼ 32 with probability 2−74: (0, e9,18,29, 0, 0, e31, e6,9,18,20,25,29, 0, 0) → (e11,23,
e3,14,15,24,25, e5,27, e9,18,29, e31, 0, 0, 0).

As a result, a 33-round related-key rectangle distinguisher with probability
2−470(= (2−33 · 2−74)2 · 2−256) can be obtained by combining these two differen-
tials. Finally, by counting many possible 10-round differentials γ′ → δ for Rounds
23 ∼ 32, they obtained a lower bound 2−464.32(= (2−33 ·2−71.16)2 ·2−256) for the
probability of this 33-round distinguisher. Based on this 33-round related-key
rectangle distinguisher, Kim et al. presented a related-key rectangle attack on
37-Round SHACAL-2.

However, we find that the property that the 22-th round key is the furthest
round key such that all the round keys from Rounds 16 to 22 have all zero
differences is just for the case that the two related user keys K and K∗ have
non-zero difference in only one of the first 16 round keys. If we study the key
schedule more delicately, allowing two, three or more round keys of the first 16
round keys have non-zero differences, we can get that the 23-th round key is the
furthest round key such that all the round keys from Rounds 16 to 23 have all
zero differences, which requires that K and K∗ have the difference e31 in both the
0-th and 9-th round keys and have all zero differences in the others of the first 16
round keys. This observation has already been introduced as Property 4 in Sect.
3. Thus, we get one more round with a zero subkey difference than Kim et al..
Moreover, we observe that these related keys K and K∗ produce K24 = L0 �L1

and K∗24 = L0 � (L1 ⊕ e13,24,28), respectively, where L0 = σ1(K22) � K17 � K8

and L1 = σ0(K9).
Now, we face the problem: could these delicate properties of the key schedule

incur a 34-round related-key rectangle distinguisher such that its probability is
far greater than 2−512 ? Our answer is positive.

Note that e31 happens to be the difference in the eighth round key K8 in the
Kim et al.’s 23-round related-key differential characteristic. It follows that we
can append one more round in the beginning of the Kim et al.’s 23-round related-
key differential characteristic with the first round key difference e31, which re-
sults in a 24-round related-key differential characteristic with probability 2−66:

3 We notice that the probability of the second round of the first differential characteris-
tic presented in [14] is 2−13, and not 2−11 as claimed. Hence, the 23-round related-key
differential characteristic holds with probability 2−33, not 2−31 as claimed in [14].
However, it can be repaired with a little more complexity by the way described below.
The corrected probability 2−33 is used in our paper.
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Table 2. The 24-round related-key differential characteristic for E0 (Rounds 1 to 24)
and the preceding differential for Eb (Round 0), where M = {6, 9, 18, 20, 25, 29}

Round(i) ΔAi ΔBi ΔCi ΔDi ΔEi ΔF i ΔGi ΔHi ΔKi Prob.

0 0 eM e31 · e9,13,19 e18,29 e31 · e31 ·
1 0 0 eM e31 0 e9,13,19 e18,29 e31 0 1

2 e31 0 0 eM 0 0 e9,13,19 e18,29 0 2−12

3 0 e31 0 0 e6,20,25 0 0 e9,13,19 0 2−7

4 0 0 e31 0 0 e6,20,25 0 0 0 2−4

5 0 0 0 e31 0 0 e6,20,25 0 0 2−3

6 0 0 0 0 e31 0 0 e6,20,25 0 2−4

7 0 0 0 0 0 e31 0 0 0 2−1

8 0 0 0 0 0 0 e31 0 0 2−1

9 0 0 0 0 0 0 0 e31 e31 1

10 0 0 0 0 0 0 0 0 0 1
...

...
...

...

23 0 0 0 0 0 0 0 0 0 1

24 0 0 0 0 0 0 0 0 · 2−6

25 e13,24,28 0 0 0 e13,24,28 0 0 0 · ·

(0, e6,9,18,20,25,29, e31, 0, e9,13,19, e18,29, e31, e2,3,7,8,13,16,20,26,30) → (0, 0, 0, 0, 0, 0, 0,
0). Similar to the Kim et al.’s attack, we can adopt some delicate improvements
to conduct a related-key rectangle attack on 38-round SHACAL-2 based on this
24-round related-key differential and our 10-round differential below. Neverthe-
less, to make maximally use of Property 3, we will use this appended round
for a key recovery in our following attack on 40-round SHACAL-2. Further,
let’s consider the round key difference K24 ⊕ K∗24 in Round 24. Obviously,
many difference possibilities are caused due to the addition modulo 232 oper-
ations in the key schedule. This round key is then taken the addition modulo
232 operation with the output of Round 23. Due to the zero difference in the
output of Round 23, we can count over the possibilities for all the additions
together when we compute p̂∗ in the following. Here, we can add one more
round to the end of the Kim et al.’s 23-round related-key differential char-
acteristic to obtain a 24-round (1 ∼ 24) related-key differential characteristic
α → β with probability 2−38: (0, 0, e6,9,18,20,25,29, e31, 0, e9,13,19, e18,29, e31) →
(e13,24,28, 0, 0, 0, e13,24,28, 0, 0, 0). See Table 2 for details. Note that our 24-round
related-key differential characteristic described in Table 2 requires the following
12-bit conditions on the two inputs to Round 1, (A1, B1, C1, D1, E1, F 1, G1, H1)
and (A∗1, B∗1, C∗1, D∗1, E∗1, F ∗1, G∗1, H∗1) whose difference is α:

a1
6 = b1

6, a1
9 = b1

9, a1
18 = b1

18, a1
20 = b1

20,
a1
25 = b1

25, a1
29 = b1

29, a1
31 = b1

31, e1
9 = 0,

e1
13 = 0, e1

18 = 1, e1
19 = 0, e1

29 = 1,
(2)

where a1
i , b1

i and e1
i are the i-th bits of A1, B1 and E1, respectively. If the two

input values to Round 1 meet the α difference and Eq. (2), we can remove the
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Table 3. The 10-round differential characteristic for E1 (Rounds 25 to 34), where
M ′ = {6, 9, 18, 20, 25, 29, 31}

Round(i) ΔAi ΔBi ΔCi ΔDi ΔEi ΔF i ΔGi ΔHi Prob.

25 e31 e31 eM′ 0 0 e9,13,19 e18,29,31 0 2−15

26 e31 e31 e31 eM′ 0 0 e9,13,19 e18,29,31 2−12

27 0 e31 e31 e31 e6,20,25 0 0 e9,13,19 2−7

28 0 0 e31 e31 e31 e6,20,25 0 0 2−8

29 0 0 0 e31 e31 e31 e6,20,25 0 2−7

30 0 0 0 0 e31 e31 e31 e6,20,25 2−4

31 0 0 0 0 0 e31 e31 e31 1

32 0 0 0 0 0 0 e31 e31 2−1

33 0 0 0 0 0 0 0 e31 1

34 e31 0 0 0 e31 0 0 0 2−11

35 e6,9,18,20,25,29 e31 0 0 e6,20,25 e31 0 0 ·

differential probabilities incurred by the Ch and Maj functions in Rounds 1 and
2 (for Round 2, only the condition a1

31 = b1
31 is used).

On the other hand, we can use the Kim et al.’s 10-round differential charac-
teristic for Rounds 25 to 34 to construct a 34-round related-key rectangle dis-
tinguisher. However, we explore a more powerful 10-round differential character-
istic γ → δ for Rounds 25 ∼ 34: (e31, e31, e6,9,18,20,25,29,31, 0, 0, e9,13,19, e18,29,31,
0) → (e6,9,18,20,25,29, e31, 0, 0, e6,20,25, e31, 0, 0) 4, which holds with probability
2−65. See Table 3.

To compute p̂∗ (resp., q̂) (defined in Sect. 2.3), we need to sum the square
of the probabilities of all the differentials with the input difference α through
E0 (resp., all the differentials with the output difference δ through E1), which
is computationally infeasible. As a countermeasure, to compute p̂∗, we can
count some of such possible differentials that have the same first 23-round
differences as the 24-round related-key differential characteristic in Table 2.
The 192-bit difference (ΔB25, ΔC25, ΔD25, ΔF 25, ΔG25, ΔH25) in such a pos-
sible output difference of Round 24 can be determined to be all 0’s by the
corresponding 192-bit difference in the input difference to Round 24, there-
fore, we only need to count the possible 64-bit output difference (ΔA25, ΔE25)
of Round 24. By counting 42 possible differentials, we can compute a lower
bound 2−37(≈ (2−38·2 + 6 · 2−39·2 + 15 · 2−40·2 + 20 · 2−41·2)

1
2 ) for the prob-

ability p̂∗ of the 24-round differentials α → β′. The upper part of Table 4
gathers some of these differences according to their probabilities. Similarly, we
can compute a lower bound 2−63.38(= (2 · 2−65·2 + 22 · 2−66·2 + 32 · 2−67·2)

1
2 )

for the probability q̂ of the 10-round differentials γ′ → δ by counting 56 out
of those that have the same last 9-round differential as the 10-round differ-
ential in Table 3: (e31, e31, e6,9,18,20,25,29,31, ΔD25, 0, e9,13,19, e18,29,31, ΔH25) →
(e6,9,18,20,25,29, e31, 0, 0, e6,20,25, e31, 0, 0). The lower part of Table 4 lists some of

4 Note that this 10-round differential can be also used to improve the Kim et al.’s
33-round related-key rectangle distinguisher.
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Table 4. Possible differences in E0 and E1 with their respective probability

Prob. (ΔA25, ΔE25) in E0

2−38 (e13,24,28, e13,24,28)

2−39 (e13,14,24,28 , e13,24,28), (e13,24,25,28 , e13,24,28), (e13,24,28,29 , e13,24,28),
(e13,24,28, e13,14,24,28), (e13,24,28 , e13,24,25,28), (e13,24,28, e13,24,28,29)

Prob. (ΔD25, ΔH25) in E1

2−65 (0, 0), (0, e31)

(e9, e9), (e18, e18), (e29, e29), (0, e9), (0, e13), (0, e18), (e18, e31), (e9, e31),
2−66 (0, e19), (0, e29), (0, e9,31), (0, e13,31), (0, e18,31), (e29, 0), (e18, 0), (e9, 0),

(0, e19,31), (0, e29,31), (e9, e9,31), (e18, e18,31), (e29, e29,31), (e29, e31)

these (ΔD25, ΔH25) according to their probabilities. Therefore, we can obtain
a lower bound 2−456.76(= (2−37 · 2−63.38)2 · 2−256) for the probability of our
34-round related-key rectangle distinguisher (Rounds 1 to 34).

4.1 Attacking 40-Round SHACAL-2

We are now ready to explain our related-key rectangle attack on 40-round
SHACAL-2. Assume that 40-round SHACAL-2 uses related keys K and K∗

whose difference is (e31, 0, 0, 0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0, 0). First, we use the 34-
round related-key rectangle distinguisher to obtain a small portion of subkey
candidates in Rounds 0, 35, 36, 37, 38 and 39. Second, we do an exhaustive
search for the obtained subkey candidates and the remaining key bits to recover
the 512-bit related keys K and K∗. In order to apply the 34-round distinguisher
to this attack, we need to collect enough input pairs to Round 1 which meet the
α difference and Eq. (2). For this, we use enough pairs of plaintext structures.
The details of our attack are as follows:

1. Choose 2178.38 structures Si of 264 plaintexts Pi,l each, i = 1, 2, · · · , 2178.38,
l = 1, 2, · · · , 264, where in each structure the 192 bits of words A, B, C, E, F,
G are fixed. With a chosen plaintext attack scenario, obtain all their corre-
sponding ciphertexts under the key K, denoted Ci,l.

2. Compute 2178.38 structures S∗
i of 264 plaintexts each by XORing the plain-

texts in Si with the 256-bit value (0, e6,9,18,20,25,29, e31, 0, e9,13,19, e18,29, e31, 0).
With a chosen plaintext attack scenario, obtain all their corresponding ci-
phertexts under the key K∗.

3. Guess a 32-bit subkey K0 in Round 0 and compute K∗0 = K0⊕e31. Encrypt
each plaintext Pi,l through Round 0 with K0 to get its intermediate value
just after Round 0. We denote the encrypted value by xi,l. Check if xi,l meets
Eq. (2). If yes, compute x∗

i,l = xi,l ⊕α and then decrypt x∗
i,l through Round

0 with K∗0 to get its plaintext, denoted by P ∗
i,l. Find P ∗

i,l in S∗
i . We denote

by C∗
i,l the corresponding ciphertext for P ∗

i,l.
4. Guess a 96-bit subkey pair ((K37, K38, K39), (K∗37, K∗38, K∗39)) in Rounds

37, 38 and 39. For the guessed subkey pair, do the following:
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(a) Decrypt all the ciphertexts Ci,l through Rounds 37, 38 and 39 with
K37, K38 and K39 to get their intermediate values just before Round
37. We denote these values by C37

i,l . Keep them in a table. Decrypt all
the ciphertexts C∗

i,l through Rounds 37, 38 and 39 with K∗37, K∗38 and
K∗39 to get their intermediate values just before Round 37. We denote
these values by C∗37

i,l . Keep them in another table.
(b) Check if C37

i0,l0
⊕ C37

i1,l1
and C∗37

i0,l0
⊕ C∗37

i1,l1
belong to δ(2), for all 1 ≤

i0 < i1 ≤ 2178.38, 1 ≤ l0, l1 ≤ 264 and all 1 ≤ i0 = i1 ≤ 2178.38,
1 ≤ l0 < l1 ≤ 264, where δ(2) is the set of all the possible differences
caused by the δ difference after 2 rounds. Record (K0, K37, K38, K39)
and all the qualified quartets and then go to Step 5.

5. Guess a 32-bit subkey pair (K36, K∗36) in Round 36. For the guessed subkey
pair, do the following:

(a) For each remaining quartet (C37
i0,l0

, C37
i1,l1

, C∗37
i0,l0

, C∗37
i1,l1

), decrypt C37
i0,l0

and C37
i1,l1

through Round 36 with K36 to get their intermediate val-
ues just before Round 36, and decrypt C∗37

i0,l0
and C∗37

i1,l1
through Round

36 with K∗36 to get their intermediate values just before Round 36. We
denote the decrypted quartet by (C36

i0,l0
, C36

i1,l1
, C∗36

i0,l0
, C∗36

i1,l1
).

(b) Check if C36
i0,l0

⊕C36
i1,l1

and C∗36
i0,l0

⊕C∗36
i1,l1

belong to δ(1), where δ(1) is the
set of all the possible differences caused by the δ difference after 1 round.
Record (K0, K36, K37, K38, K39) and all the qualified quartets and then
go to Step 6.

6. Guess a 32-bit subkey pair (K35, K∗35) in Round 35. For the guessed subkey
pair, do the following:

(a) For each remaining quartet (C36
i0,l0

, C36
i1,l1

, C∗36
i0,l0

, C∗36
i1,l1

), decrypt C36
i0,l0

and C36
i1,l1

through Round 35 with K35 to get their intermediate val-
ues just before Round 35, and decrypt C∗36

i0,l0
and C∗36

i1,l1
through Round

35 with K∗35 to get their intermediate values just before Round 35. We
denote the decrypted quartet by (C35

i0,l0
, C35

i1,l1
, C∗35

i0,l0
, C∗35

i1,l1
).

(b) Check if C35
i0,l0

⊕ C35
i1,l1

= C∗35
i0,l0

⊕ C∗35
i1,l1

= δ. If there exist more than
5 quartets passing this δ test, record (K0, K35, K36, K37, K38, K39) and
go to Step 7. Otherwise, repeat Step 6 with another guessed key pair (if
all the possible key pairs for Round 35 are tested, then repeat Step 5
with another guessed key pair for Round 36; if all the possible key pairs
for Round 36 are tested, then repeat Step 4 with another guessed key
pair for Rounds 37, 38 and 39; if all the possible key pairs for Rounds
37, 38 and 39 are tested, then repeat Step 3 with another guessed key
pair for Round 0).

7. For a suggested (K0, K35, K36, K37, K38, K39), do an exhaustive search for
the remaining 320 key bits using trial encryption. If a 512-bit key is sug-
gested, output it as the master key of the 40-round SHACAL-2. Otherwise,
run the above steps with another guess of subkey pair.
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This attack requires 2243.38 related-key chosen plaintexts. The required mem-
ory for this attack is dominated by Step 4, which is approximately 2243.38 · 32 ≈
2247.38 memory bytes.

The time complexities of Steps 1 and 2 are 2243.38 40-round SHACAL-2 en-
cryptions each. The time complexity of Step 3 is about (2242.38+2230.38)·232 · 1

40 ≈
2269.06 40-round SHACAL-2 encryptions, for Eq. (2) has a 12-bit filtering. More-
over, for each guessed subkey pair, we have about 2230.38×2/2 = 2459.76 quartets
tested in Step 4. Since the decryptions in Step 4 can be done independent of
Step 3, Step 4 requires about 2231.38 · 2192 · 3

40 ≈ 2419.64 40-round SHACAL-2
encryptions and about 2231.38 · 2192 · 232 = 2455.38 memory accesses.

From the difference δ, we can definitely determine the differences in words C,
D, G, and H of every possible difference in the set δ(2). Moreover, we observe
that there are about 228 possible differences in word B and 217 possible differ-
ences in F . Hence, there are about 264+28+17 = 2109 possible differences in δ(2).
It follows that about 2459.76·2(−256+109)·2 = 2165.76 quartets are suggested in Step
4. Since Step 5-(a) runs about 2288 times (equivalent to the number of guessed
subkey pairs), it requires about 2165.76 ·4 ·2288 · 1

40 ≈ 2450.43 40-round SHACAL-2
encryptions. Similarly, δ(1) and δ additionally have a 64-bit and a 45-bit filter-
ings, so about 2165.76 · 2−64·2 = 237.76 and 237.76 · 2−45·2 = 2−52.24 quartets (for
each wrong guess of subkey pairs) are expected to be suggested in Steps 5 and
6, respectively, and thus Step 6 requires 237.76 · 4 · 2352 · 1

40 ≈ 2386.43 40-round
SHACAL-2 encryptions. By the Poisson distribution X ∼ Poi(λ = 2−52.24),
PrX [X > 5] ≈ 2−323, the expected number of wrong subkey pairs suggested in
Step 6 is about 2−323 ·2352 = 229. It follows that the time complexity of Step 7 is
about 2349(= 229 · 2320) 40-round SHACAL-2 encryptions. Therefore, the total
time complexity of this attack is about 2450.43 40-round SHACAL-2 encryptions.

If the guessed subkey pair is right, then the expected number of the quartets
suggested in Step 6 is about 2459.76 · 2−456.76 = 23, for about 2459.76 quartets are
tested in this attack and the 34-round related-key rectangle distinguisher holds
with probability 2−456.76. Thus, the probability that the number of remaining
quartets for the right subkey pair is more than 5 is 0.8 by the Poisson distribution,
X ∼ Poi(λ = 23), PrX [X > 5] ≈ 0.8. Hence, this attack works with a success
probability of 0.8.

4.2 Attacking 42-Round SHACAL-2

We find that the above attack can be improved to break as far as 42-round
SHACAL-2 by guessing the differences between the most significant bits of cer-
tain related subkey pairs, instead of guessing the values of these most significant
bits. Our improved attack is based on the following observations.

Observation 1: If we know the actual values of (Ai, Bi, · · · , Hi) and (A∗i, B∗i,
· · · , H∗i), and the additive difference between Ki−1 and K∗i−1, then we know
the actual values of (Ai−1, Bi−1, · · · , Gi−1) and (A∗i−1, B∗i−1, · · · , G∗i−1), and
the additive difference between Hi−1 and H∗i−1.
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Observation 2: If we know the actual values of (Ai−1, Bi−1, · · · , Gi−1) and
(A∗i−1, B∗i−1, · · · , G∗i−1), and the additive difference between Hi−1 and H∗i−1,
then we know the actual values of (Ai−5, Bi−5, Ci−5) and (A∗i−5, B∗i−5, C∗i−5),
and the additive difference between Di−5 and D∗i−5.

Observation 3: The additive difference between 32-bit words X and Y is the
same as their XOR difference if X ⊕ Y = 0 or X ⊕ Y = e31.

Based on these observations the above attack algorithm can be improved to an
attack on 42-round SHACAL-2. Here, we use the early abort technique one step
earlier. Let’s briefly describe the attack procedure as follows:

– We perform the above Steps 1, 2 and 3.
– In Step 4, we guess a 64-bit subkey pair ((K40, K41), (K∗40, K∗41)) and an

additive difference between K39 and K∗39, and then decrypt all the cipher-
texts to obtain the actual values of (A39, B39, · · · , G39) and (A∗39, B∗39, · · · ,
G∗39), and the additive difference between H39 and H∗39 (by Observation
1). It allows to know (A35, B35, C35) and (A∗35, B∗35, C∗35), and the additive
difference between D35 and D∗35 (by Observation 2), so we can discard some
wrong quartets by checking if the decrypted quartets satisfy the first half
of the δ difference. Since it has a 256-bit filtering for the decrypted quar-
tets, about 2459.76 ·2−256 = 2203.76 quartets are suggested. This step requires
about 264·2+32 · 2231.38 · 7

42 = 2388.80 42-round SHACAL-2 encryptions and
264·2+64 · 2231.38 = 2423.38 memory accesses.

– In Step 5, we guess a 64-bit subkey pair of (K38, K39) and (K∗38, K∗39) (note
the additive difference between K39 and K∗39 is fixed in the previous step),
and then decrypt all the remaining quartets to obtain their input values of
round 38. Since H38 is the same as E35, we can discard all the quartets
which do not satisfy the e6,20,25 XOR difference in H38. It has a 64-bit
filtering for the decrypted quartets, so about 2203.76 · 2−64 = 2139.76 quartets
are suggested. This step requires about 264·4+32 · 2203.76+2 · 1

42 = 2488.37

42-round SHACAL-2 encryptions.
– In Step 6, we guess an additive difference between K37 and K∗37 to check if

the remaining quartets satisfy the e31 difference in H37, which is the same as
F 35. In Step 7, we guess a 64-bit subkey pair of (K36, K37) and (K∗36, K∗37)
(note the additive difference between K37 and K∗37 is fixed in the previous
step) to check if the remaining quartets satisfy zero difference in H36, which
is the same as G35. In Step 8, we guess a 64-bit subkey pair of (K35, K36) and
(K∗35, K∗36) (note the additive difference between K36 and K∗36 is fixed in
the previous step) to check if the remaining quartets satisfy zero difference
in H35. We go to the final step with the guessed subkey pair which has more
than 5 remaining quartets. Finally, in Step 9, we do an exhaustive search to
find the 512-bit master keys. Each of Steps 6, 7, 8 and 9 takes a dramatically
less time complexity than Step 5.

Therefore, the time complexity of the attack is dominated by Step 5, which is
about 2488.37 42-round SHACAL-2 encryptions. Obviously, the attack is faster
than an exhaustive key search.
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Table 5. Comparison of our result and previous ones on SHACAL-2 when used with
a 512-bit key

Type of Attack Rounds Data T ime Memory Source

Impossible differential 30 744CP 2495.1 214.5 [9]

Differential-nonlinear 32 243.4CP 2504.2 248.4 [21]

Square-nonlinear 28 463 · 232CP 2494.1 245.9 [21]

RK differential-nonlinear 35 242.32RK-CP 2452.10 247.32 [14]

RK Rectangle 37† 2235.16RK-CP 2486.95 2240.16 [14]

40 2243.38RK-CP 2448.43 2247.38 This paper
42 2243.38RK-CP 2488.37 2247.38 This paper

RK: Related-Key, CP: Chosen Plaintexts, Memory unit: Byte, Time unit: Encryption
†: The indicated attack complexity is a corrected one.

Note: We can reduce the time complexity of our attack on 40-round SHACAL-2
in Section 4.1 to about 2448.43 40-round SHACAL-2 encryptions by adopting the
following two delicate improvements: First, we only guess the least significant 31
bits of the subkey K0 in Step 3, due to the fact that the most significant bit in
the key difference is fixed. Second, we guess the least significant 31 bits of the
subkey pairs (K36, K∗36) and the difference between their most significant bits
to check the δ(1) test in Step 5, instead of guessing all the 32-bit values of the
subkey pairs. In Step 6, we guess the least significant 31 bits of the subkey pairs
(K35, K∗35) and the difference between their most significant bits to check the δ
test. Since the total time complexity of this attack is dominated by Step 5-(a),
it is reduced by a factor of 4.

5 Conclusions

In this paper, we exploit a 34-round related-key rectangle distinguisher after
finding a delicate property in the key schedule of SHACAL-2. We also introduce
a differential property that can allow us to apply the “early abort” technique to
discard some disqualified candidate quartets earlier than usual. Based on them,
we mount a related-key rectangle attack on 40-round SHACAL-2. Finally, based
on several more delicate observations, we improve it to a related-key rectangle
attack on 42-round SHACAL-2. Table 5 compares the results obtained in this
paper with the previous ones on SHACAL-2 when used with 512 key bits.
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Abstract. In this article, the RIPEMD-160 hash function is studied
in detail. To analyze the hash function, we have extended existing ap-
proaches and used recent results in cryptanalysis. While RIPEMD and
RIPEMD-128 reduced to 3 rounds are vulnerable to the attack, it is not
feasible for RIPEMD-160. Furthermore, we present an analytical attack
on a round-reduced variant of the RIPEMD-160 hash function. To the
best of our knowledge this is the first article that investigates the impact
of recent advances in cryptanalysis of hash functions on RIPEMD-160.

Keywords: RIPEMD-160, low-weight codewords, hash function, crypt-
analysis, collision attack, differential attack.

1 Introduction

Recent results in cryptanalysis show weaknesses in commonly used hash func-
tions, such as RIPEMD, MD5, Tiger, SHA-0, and SHA-1 [1,2,9,11,12,13,14].
Therefore, the analysis of alternative hash functions, like RIPEMD-160, the
SHA-2 family, and Whirlpool is of great interest. Since RIPEMD-160 is part
of the ISO/IEC 10118-3:2003 standard on dedicated hash functions, it is used in
many applications and is recommended in several other standards as an alterna-
tive to SHA-1. Based on the similar design of RIPEMD-160, MD5, SHA-1, and
its predecessor RIPEMD, one might doubt the security of RIPEMD-160. There-
fore, we investigated the impact of recent attack methods on RIPEMD-160 in
detail. We are not aware of any other published analysis with respect to collision
attacks of the RIPEMD-160 hash function. In the analysis of the RIPEMD-160
hash function we have extended existing approaches using recent results in crypt-
analysis. In the analysis, we show that methods successfully used to attack SHA-1
are not applicable to full RIPEMD-160. Furthermore, we use analytical methods
to produce a collision in a RIPEMD-160 variant reduced to 3 rounds. However,
no attack has been found for the original RIPEMD-160 hash function. In sum-
mary, we can state that RIPEMD-160 is secure against known attack methods.
Nevertheless, further analysis is required to get a good view on the security of
RIPEMD-160.
� The work in this paper has been supported by the Austrian Science Fund (FWF),

project P18138.
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Table 1. Notation

Notation Meaning

A ⊕ B logical XOR of two bit-strings A and B
mi input message word i (32-bits)
wi expanded input message word i (32-bits)

A  n bit-rotation of A by n positions to the left
A � n bit-rotation of A by n positions to the right
step single execution of the step function

round set of consecutive steps, has a size of 16 (1 round = 16 steps)

The remainder of this article is structured as follows. A description of the
RIPEMD-160 hash function is given in Section 2.1. In Section 2.2, we give an
overview of existing attacks on RIPEMD, the predecessor of RIPEMD-160. In
Section 2.3, the basic attack strategy we use in our analysis is described. Section 3
presents the results of the analysis following this attack strategy. In Section 4,
we describe some methods for improving the results of the analysis. Moreover,
we present a theoretical attack on a simplified variant of RIPEMD-160 reduced
to 3 rounds using analytical methods in Section 5. We conclude in Section 6.

2 Finding Collisions for RIPEMD-160

In this section, we will give a short description of the RIPEMD-160 hash function.
We will present the basic strategy we used for the attack on RIPEMD-160 and we
will show why existing attacks on RIPEMD are not applicable to RIPEMD-160.
For the remainder of the article we will follow the notation given in Table 1.

2.1 Short Description of RIPEMD-160

The RIPEMD-160 hash function was proposed by Hans Dobbertin, Antoon
Bosselaers and Bart Preneel in [8] to replace RIPEMD. It is an iterative hash
function that processes 512-bit input message blocks and produces a 160-bit
hash value. Like its predecessor RIPEMD, it consists of two parallel streams. In
each stream the state variables are updated according to the expanded message
word wi and combined with the initial value IV after the last step, depicted
in Figure 1. While RIPEMD consists of two parallel streams of MD4, the two
streams are designed differently in the case of RIPEMD-160.

In the following, we briefly describe the RIPEMD-160 hash algorithm. The
hash function basically consists of two parts: message expansion and state update
transformation. A detailed description is given in [8].

Message Expansion. The message expansion of RIPEMD-160 is a permuta-
tion of the message words in each round, where different permutations are used
for the left and the right stream.

State Update Transformation. The state update transformation starts from
a (fixed) initial value IV of five 32-bit registers and updates them in 5 rounds of
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Fig. 1. The RIPEMD-160 compression function

16 steps each by using the expanded message word wi in step i. Figure 2 shows
one step of the state update transformation of RIPEMD-160. The function f is
different in each round. fj is used for the j-th round in the left stream, f6−j

is used for the j-th round in the right stream (j = 1, . . . , 5). A step constant
Kj is added in every step; the constant is different for each round and for each
stream. Different rotation values s are used in each step and in both streams.
After the last step of the state update transformation, the initial value and the
values of the right and the left stream are combined, resulting in the final value
of one iteration (feed forward). In detail, the feed forward is a modular addition
of the permutations of the IV and the output of the left and right stream (see
Figure 1). The result is the final hash value or the initial value for the next
message block.
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Fig. 2. The step function of RIPEMD-160

For the analysis of RIPEMD-160 in Section 3, we use a linearized variant of
the state update transformation. Every addition identified in the hash function is
replaced by an XOR and the nonlinear functions f2, f3, f4, f5 are approximated
by a 3-input XOR; f1 is already an XOR.
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2.2 Existing Attacks on the Predecessor RIPEMD

In this section, we will discuss the results in cryptanalysis of RIPEMD, the pre-
decessor of RIPEMD-160. We will describe the attack of Dobbertin and Wang et
al. and discuss why these attacks are not applicable to RIPEMD-160. A detailed
description of both attack strategies is given in [6].

Attack of Dobbertin [7]. In 1997, Hans Dobbertin presented an attack on
RIPEMD reduced to 2 rounds with complexity about 231 hash computations.
The basic idea of the attack is to find an inner collision for the compression
function using a very simple input differential pattern (having only a difference
in one message word mi). Hence, there are differences in the state variables after
step i. Since mi has to be applied in the second round as well, it is chosen in such
a way that the differences in state variables cancel out and the remaining steps
are equal. Once an inner collision has been found, the remaining free variables
have to be determined to meet the IV by calculating backward from step i in
both streams.

In the attack, Dobbertin uses modular differences to describe the whole hash
function by a system of equations. In general, such a system is too large to be
solved, but Dobbertin used several constraints to extremely simplify the system
such that it becomes solvable in practice. In the attack, he exploits the fact that
the left and the right stream of RIPEMD are quite similar. A detailed description
of the attack is given in [7].

However, applying the attack to RIPEMD-160 is impractical. Due to the
different permutation and rotation values used in the left and the right stream
of RIPEMD-160 and due to the increased number of rounds, the system of
equations would be too large to be solvable in practice.

Attack of Wang et al. [12]. In 2004, Wang et al. presented collision attacks
on MD4, MD5, and RIPEMD. The attack on RIPEMD has a complexity of
about 218 hash computations. The basic idea of all attacks is to use differences
in more than one message word to find an inner collision within a few steps in the
last round and then find a suitable characteristic for the remaining steps. Hash
functions with only 3 rounds seem to be vulnerable to this method in general.
Hash functions with more than 3 rounds can only be broken if it is possible to
exploit weaknesses of the design [6]. For instance, in the case of RIPEMD, Wang
et al. take advantage of the similar design of the two streams of the hash func-
tion. Since the permutation and rotation values are equal for both streams, it is
sufficient to find a collision-producing characteristic for one stream (3 rounds)
and apply it simultaneously to both streams. Nevertheless, the number of nec-
essary conditions increases for two streams. Hence, it is more likely to have
contradicting conditions. In fact, Wang et al. reported that among 30 selected
collision-producing characteristics only one can produce the real collision.

However, due to different permutation and rotation values in the left and the
right stream of RIPEMD-160 and the increased number of rounds (each stream
has 5 rounds), this attack is not applicable to RIPEMD-160.
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2.3 Our Attack Strategy

In the following, we will present our attack strategy against RIPEMD-160 based
on recent results in cryptanalysis of SHA-1. All attacks basically use the same
strategy:

1. Find a collision-producing characteristic that holds with high probability.
2. Find values for the message bits such that the message follows the charac-

teristic.

There are several methods for finding a characteristic, i.e. the propagation of
input differences through the compression function of the hash function. In the
following, we will describe the method of Chabaud and Joux [5] and the method
of Wang et al. [15] which is used in their attack on SHA-1.

Method of Chabaud and Joux [5]. In 1998, Chabaud and Joux presented
an attack on the SHA-0 hash function. In this attack a linearization of the
hash function was used to obtain a characteristic (in this paper referred to as
L-characteristic). The probability that the characteristic holds in the original
hash function is related to the Hamming weight of the characteristic. In general,
a characteristic with low Hamming weight has a higher probability than one
with a high Hamming weight.

Remark 1. For the first steps, the probability of the characteristic is not impor-
tant, because the conditions that have to be satisfied such that the characteristic
holds can be easily fulfilled for these steps [5].

Method of Wang et al. [15]. Considering the recent results of Wang et al., it
seems to be a good approach to use a general (possibly non-linear) characteristic
for the first 16 steps and a characteristic that follows the linear approximation
for the remaining steps. This is shown in Figure 3. For the remainder of this
article the first 16 steps are referred to as V1 and the remaining steps are re-
ferred to as V2. The basic idea of this method is to maximize the probability of
the L-characteristic in V2 and to ignore the probability of the characteristic in
V1. This is based on the fact that the probability of V1 can be neglected (see
Remark 1).

Observation 1. Wang’s method to find a characteristic for the hash function
can be generalized as follows:

1. Find an L-characteristic with good probability resulting in a pseudo-collision
for V2.

2. Find a general characteristic for V1 to turn a pseudo-collision into a collision.

Observation 2. Multi-block messages can be used to turn near-collisions into
collisions.

Since Biham and Chen observed in [1] that near-collisions are easier to find than
collisions, we will use Observation 2 in Section 3.3 to improve the attack.
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Fig. 3. Attack method of Wang et al.

3 Finding an L-characteristic with Good Probability

Finding an L-characteristic for V2 with good probability is the most important
part of the attack. Since the first 16 steps (V1) can be fulfilled by using mes-
sage modification techniques [13,14] and neutral bits [1], the attack complexity
only depends on the probability of the chosen L-characteristic in V2. A com-
mon approach to find an L-characteristic with good probability is to search for
one with low Hamming weight. In [10,11], algorithms from coding theory were
used to obtain an L-characteristic for SHA-1 with low Hamming weight, i.e. an
L-characteristic with good probability. Even if these algorithms are probabilis-
tic and do not guarantee to find the best L-characteristic, they are expected to
produce good results as they did in the case of SHA-1.

For the remainder of this article, we will only give the Hamming weight of the
state variable A of the L-characteristic, since this gives us a good heuristic for
its probability. More precisely, we use 2−2·HW(A), where HW(A) is the Hamming
weight of the state variable A. Note that this is a quite conservative method to
estimate the probability of the L-characteristic. The probability might be lower
in practice.

3.1 Collision and Near-Collision Producing Characteristics

To find a collision-producing characteristic with good probability (low Hamming
weight), we use algorithms from coding theory like it is done in [10,11] for SHA-1.
To construct the generator matrix G, we use the linearized variant of the state
update transformation having zero differences as input in the first step and
forcing zero differences after the feed forward (a collision). To keep the generator
matrix and the search space small, only state variable A of each step is used.
Bi, Ci, Di, Ei and Wi of step i can be reconstructed from Ai, . . . , Ai+5. The
Hamming weight of the codewords found and hence the attack complexity is too
high for an attack on RIPEMD-160. In Appendix C, the Hamming weight of the
codewords found for RIPEMD-160, RIPEMD-128 and round-reduced variants is
shown. Considering these results, we conclude that the final attack complexity
would be too high for an attack.



On the Collision Resistance of RIPEMD-160 107

Table 2. Hamming weight of A using an NL-characteristic in V1

type Hamming weight projection* steps stream

RIPEMD - 160

pseudo-collision 1471 704 16–80 both
near-pseudo-collision 907 480 16–80 both
pseudo-collision 657 352 16–80 left
pseudo-collision 665 352 16–80 right
pseudo-collision 959 384 16–64 both
near-pseudo-collision 675 352 16–64 both
pseudo-collision 432 192 16–64 left
pseudo-collision 424 192 16–64 right
pseudo-collision 458 256 16–48 both
near-pseudo-collision 428 224 16–48 both
pseudo-collision 187 96 16–48 left
pseudo-collision 180 128 16–48 right

RIPEMD - 128

pseudo-collision 659 448 16–64 both
near-pseudo-collision 561 448 16–64 both
pseudo-collision 298 256 16–64 left
pseudo-collision 311 192 16–64 right
pseudo-collision 178 - 16–48 both
near-pseudo-collision 18 - 16–48 both
pseudo-collision 28 - 16–48 left
pseudo-collision 10 - 16–48 right

RIPEMD pseudo-collision 20 - 16–48 both

(*)Results achieved by using a projection as described in Section 4.

3.2 Pseudo-collision Producing Characteristics

Since we assume that we are able to turn a pseudo-collision into a collision within
V1 (see Observation 1), we can extend the low-weight search to pseudo-collisions
in V2. As we want zero differences in the end (after the feed forward) the gener-
ator matrix G is constructed by going backwards in V2, having zero differences
after the feed forward. More precisely, this is done by going backwards in the left
and the right stream using the linearized inverse state update transformation.
We have a difference δL in the left stream and a difference δR in the right stream
after step 80, where the differences δL and δR cancel out due to the feed forward.

Table 2 lists the Hamming weight of the codewords found for RIPEMD-160,
RIPEMD-128 and round-reduced variants. Note that this weight includes the
weight of variable A in the left and the right stream without considering the
weight of the first 16 steps. As can be seen in Table 2, we found a codeword for
RIPEMD with weight of 20, which might be low enough for an attack following
the attack strategy described in this article. Based on the assumed heuristic,
we estimate the final attack complexity to be 22·20. Since the heuristic for the
estimation of the attack complexity is quite conservative, the final attack com-
plexity might be higher in practice. Note that the round-reduced variant of the
left and the right stream of RIPEMD-128 is very close to an MD4 computation.
This explains the low Hamming weight of the codewords found. The results of
the left and the right stream differ, because different permutations are used in
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the message expansion for both streams. However, the probability of the found
L-characteristic is too low for an attack on RIPEMD-160 following the strategy
described in Section 2.3.

3.3 Near-Pseudo-collision Producing Characteristics

The results of Section 3.2 can be further improved by extending our search
to near-collisions. In [13], Wang et al. show how this can be done for SHA-1
by using 2 message blocks. They use different characteristics in V1, but the
same L-characteristic in V2 in both blocks. Due to the permutation of the state
variables of the left and the right stream before the addition of both streams
and the initial value in the feed forward, we would need 5 instead of 2 message
blocks to turn a near-collision into a collision for RIPEMD-160 if we use the
same L-characteristic in V2 in each message block.

The results of the low-weight search are shown in Table 2. We found a code-
word with weight of 18 for RIPEMD-128 reduced to 3 rounds which is compa-
rable to the result of RIPEMD for a pseudo-collision. However, the Hamming
weight of the codewords for RIPEMD-160 is still too high for a reasonable attack
complexity. This has several reasons:

– The search space is very large and the problem of finding low-weight code-
words in a linear code is NP-hard.

– We do not know any lower bound for the Hamming weight in the code defined
by the generator matrix G.

– The search algorithms are probabilistic and certain parameters need to be
tuned to optimize the performance. While there exist guidelines, which values
to chose for a random code [4], we do not know which values would be optimal
in the case of RIPEMD-160.

4 Improving Search Algorithms

Considering the results from the previous section, we have to think about im-
provements of the probabilistic algorithms. There are several possibilities to in-
crease the speed (success probability for finding a codeword with low Hamming
weight) of the algorithms.

4.1 Optimization of the Algorithms/Implementation

Since these algorithms are well known and have been studied by many re-
searchers, we can assume that they are almost optimal in the general case (for a
random code). There is still space for some optimizations in the implementation
of the algorithms, but the speedup we can obtain is not significant enough.

4.2 Reducing the Search Space

Reducing the search space might be the best way to increase the speed of the
probabilistic algorithms we used in the analysis. Since the code describing the
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linearized hash function is not a random code, its structure can be exploited to
reduce the search space, i.e. size of the generator matrix describing the linear
code. This method was successfully used for SHA-1. It was observed that dif-
ferences in the expanded message words and state variables occur in bands of
successive ones [11]. For RIPEMD-160, no structure in the low-weight codewords
could be found so far. Nevertheless, several methods can be applied to reduce
the size of the generator matrix and/or the search space of the algorithms. Some
of these methods are:

1. Restricting the analysis to the left (right) stream of the hash function.
2. Looking at round-reduced variants of RIPEMD-160.
3. Using other linearizations for non-linear functions f2, f3, f4 and f5.
4. Forcing zero bits (like it is done in [10] for SHA-1). In detail the search

space is reduced by setting certain bits (differences) to zero before doing the
low-weight search.

5. Reducing the search space by using a projection, P (w) =
∑32

i=1 bi > 0, where
bi is the i-th bit of the word w. The main idea is to reduce the search space
by looking at words instead of bits. In detail, P (w) is 1 if there are differences
in the word w and 0 if there are no differences. This reduces the number of
columns and rows of the matrix by a factor of 32.

Some of the methods described in this section substantially increase the qual-
ity of the results. While the improvements are marginal for reducing the search
space by forcing (random) zero bits in the generator matrix or using other lin-
earizations for f2, f3, f4 and f5, the other methods worked quite well as shown
in Table 2. On the one hand, codewords with lower Hamming weight can be
found by reducing the search space but on the other hand the Hamming weight
of the codewords found is still too high for an attack on RIPEMD-160 or round-
reduced variants. Therefore, we need other (analytical) methods to improve the
results.

5 A Variant of RIPEMD-160

In this section, we will describe an approach using analytical methods to find a
characteristic with low Hamming weight through the hash function. Since this
is very difficult for the original hash function, we concentrate the analysis on a
variant of RIPEMD-160, where the rotation of register C is removed, as shown
in Figure 4. For this variant, reduced to 3 rounds, we can find a collision using
fixed-points.

5.1 Fixed-Points in the RIPEMD-160 Variant

By removing the rotation of register C, it is possible to construct fixed-points in
one and two steps of the hash function, where a fixed-point is defined as a fixed
differential pattern in a single step or two steps of the RIPEMD-160 variant. In
Figure 4, a fixed-point for one step of the RIPEMD-160 variant is shown, while
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Fig. 4. A fixed-point for one step of the RIPEMD-160 variant

Figure 5 shows fixed-points for two steps of the RIPEMD-160 variant. The gray
lines and shadowed rectangles indicate a difference in the MSB. These fixed-
points can be used to produce a collision in the RIPEMD-160 variant reduced
to 3 rounds with complexity 264 and 251.

Note that in [3] a similar attack has been applied to MD5 and we can assume
that the designers of RIPEMD-160 included the rotation of register C to prevent
this kind of attack.

From a Fixed-Point to an Attack. In the analysis, we assume that the
conditions for the first 16 steps (V1) of the hash function can be fulfilled and
we can construct differences in the MSB in arbitrary state variables of the left
and the right stream after V1 using a general characteristic. More precisely, if
we have differences in the MSB in all state variables of both streams at the first
step of V2 then we can use the fixed-point shown in Figure 4 for the remaining
64 steps in V2. The output difference of f with input differences δ = (1, 1, 1) is
1 or 0, depending on the values of the input variables. Since the difference in
the MSB of Ai can be canceled by f , the difference in Ei propagates to Bi+1.
This results in a collision after the feed forward of the RIPEMD-160 variant.
By choosing the differences in the MSB, we reduce the complexity of the attack
enormously, since the modular addition behaves linearly for differences in the
MSB. So only the conditions for the nonlinear functions f2, f3, f4, f5 have to be
considered for the attack complexity. In detail, one condition has to be fulfilled
for the nonlinear functions fj in each step of the left and the right stream in V2.

To cancel a difference in the expanded message word wi, we exploit the prop-
erties of the functions fj . The output of the functions f2, f3, f4 and f5 is either
1 or 0 with probability 1/2 for an input difference δ = (1, 1, 1), which allows
us to cancel differences in the expanded message words in round 2, 3, and 4 of
the RIPEMD-160 variant. In the first round of the left stream and in the last
round of the right stream, the linear function f1 is used, making it impossible
to cancel a difference there, because f1 flips with probability 1 for δ = (1, 1, 1).
Since there are differences in all message words in the MSB, f2, f3, f4 have to
be blocked in each round of V2. We use another (general) characteristic in V1.
Hence, we have an attack on the RIPEMD-160 variant reduced to 3 rounds. We
derive the following set of conditions for round 2 and 3 of the right and the left
stream. Note that the conditions are equal for the right and the left stream.
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Fig. 5. Two fixed-points for two steps of the RIPEMD-160 variant

Bi,32 = ¬Ci,32 = Di,32 i = 16
Bi,32 = ¬Bi−1,32 i = 17, . . . , 47

This results in a set of 64 conditions (32 for each stream). Satisfying all these
conditions with the most naive method (random trials), we get a complexity close
to 264 hash computations. Note that no conditions are needed for the modular
addition in the feed forward, since we have only differences in the MSB of all
state variables of the left and the right stream.

Finding a pseudo-collision in the according RIPEMD-320 reduced to 4 rounds
has a complexity of at most 276 hash computations. RIPEMD-320 is an extension
of RIPEMD-160 which has the same security level as RIPEMD-160, but produces
a hash value of 320 bits. In Appendix B, the conditions for all 4 rounds as well
as a sample pseudo-collision on a round-reduced variant (2 rounds) are given.

Improving the Attack Complexity. The attack complexity can be further
improved by using one of the fixed-points shown in Figure 5 and by choosing
differences in the MSB of wi, for i = 1, 4, 6, 7, 10, 11, 12, 15. Using one of these
fixed-points, we can construct an attack on the RIPEMD-160 variant reduced to
the first 3 rounds with complexity close to 251 hash computations. By choosing
differences in the MSB of wi, for i = 1, 4, 6, 7, 10, 11, 12, 15, only 8 conditions are
needed instead of 16 in round 3 of the left and the right stream. This is due to
the fact that the differences in the message words are chosen in such a way that
only the even or odd words of the left and the right stream have differences in
the MSB. Hence, the number of conditions is reduced from 64 to 48. In more
detail, if f3 flips for an input δ = (0, 1, 0), then it also flips in the next step with
input δ = (1, 0, 1). Hence, round 3 has a probability of 2−8 and not 2−16 as one
may expect. Since we need 5 message blocks to have a collision after the last
block, the final attack complexity is 248 · 5. Since all the differences in the state
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variables are in the MSB, no additional conditions have to be fulfilled for the
feed forward. Note that the same L-characteristic is used in each message block
and only the general characteristic is different for each block. The conditions for
the used L-characteristic are given in Appendix A.

5.2 Attack on the RIPEMD-160 Variant Using Fixed-Points

Since we assume that we use a general characteristic in V1 (first round) to obtain
the desired target differences at the input of the first step of V2, we have an
attack on the RIPEMD-160 variant reduced to the first 3 rounds using one of
the fixed-points described before. The attack works as follows:

1. Choose differences in the MSB in message words wi.
2. Use a general characteristic to construct differences in the MSB in the state

variables at the input of the first step in V2 (to match the desired target
difference) and fulfill the conditions for the first 16 steps (V1) using message
modification techniques and neutral bits. Note that if more than one message
block is needed to produce a collision then this step has to be repeated for
each block.

3. Construct the set of conditions for the L-characteristic in V2 corresponding
to the chosen differences in the message words wi.

4. Fulfill the conditions for V2 by random trials. The final attack complexity is
related to the number of conditions in V2.

Using one message block to construct a collision, the attack has complexity
264 and complexity 251 using 5 message blocks. Even though we cannot extend
this attack to the full RIPEMD-160 variant, we conjecture that the rotation
of state variable C in the state update transformation enhances the security of
RIPEMD-160.

6 Conclusion

In this article, we used recent results in the cryptanalysis of hash functions
to analyze the security of RIPEMD-160. We combined methods from coding
theory with recent attack techniques which were successfully used in the attack
on SHA-1. While RIPEMD and RIPEMD-128 reduced to 3 rounds are vulnerable
to this kind of attack, the attack is not suitable for RIPEMD-160.

Furthermore, we analyzed a variant of RIPEMD-160, where the rotation of
state variable C was removed. We show that for this variant an attack on 3
rounds is possible using fixed-points. Hence, we conclude that the rotation of
state variable C enhances the security level of RIPEMD-160.

We found no attack on the original RIPEMD-160 hash function including all 5
rounds. In summary, we state that RIPEMD-160 is secure against known attacks.
Neither the attack of Dobbertin or Wang et al. on RIPEMD can be extended
to RIPEMD-160, nor recent methods used in the cryptanalysis of SHA-1 are
applicable to full RIPEMD-160. Even though this paper gives new insights on
the security of RIPEMD-160, further analysis is required to get a good view on
its security margin.
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A Set of Sufficient Conditions for the L-characteristic of
the RIPEMD-160 Variant Reduced to 3 Rounds

In this section, we will give the complete set of sufficient conditions for the attack
on the RIPEMD-160 variant reduced to 3 rounds using a fixed-point for 2 steps
as described in Section 5. For the analysis, we assume that we can find a general
characteristic for round 1 such that we have differences in state variable C of the
left stream and the right stream in the input of the first step of round 2. Since
there are differences in the message words wi, for i = 1, 4, 6, 7, 10, 11, 12, 15, the
number of conditions is reduced as described in Section 5. Hence, we derive the
following set of equations for the L-characteristic for round 2 and 3 of the right
and the left stream.

– Left Stream:

Bi,32 = 0 i = 18, 26, 28
Bi,32 = 1 i = 16, 20, 22, 24, 30, 32, 34, 36, 38, 40, 42, 44, 46

Bi,32 = Bi−2,32 i = 19, 23, 25, 31
Bi,32 = ¬Bi−2,32 i = 17, 21, 27, 29

– Right Stream:

Bi,32 = 0 i = 14, 26, 28, 32, 34, 36, 38, 40, 42, 44, 46
Bi,32 = 1 i = 16, 18, 20, 22, 24

Bi,32 = Bi−2,32 i = 17, 19, 23, 25, 29
Bi,32 = ¬Bi−2,32 i = 21, 27

Bi,32 = Bi−1,32 ⊕ Bi−2,32 i = 31
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B Set of Sufficient Conditions for a Pseudo-collision in a
Round-Reduced RIPEMD-320 Variant

In this section, we will give a set of sufficient conditions for a pseudo-collision
in a RIPEMD-320 variant. Note that there are no differences in the message
words and the IV has differences in the MSB of all words. This would result
in an attack complexity of 2128 for a pseudo-collision of RIPEMD-320. Since
we assume that we can fulfill the first 16 to 20 steps of the right stream (no
conditions have to be fulfilled for the first 16 steps in the left stream), the attack
complexity would be 2108.

– Left Stream:

Bi,32 = Ci,32 = Di,32 = 1 i = 16
Bi,32 = Bi−1,32 i = 17, . . . , 79

– Right Stream:

Bi,32 = Ci,32 = Di,32 = 1 i = 1
Bi,32 = Bi−1,32 i = 2, . . . , 63

Below, a message and the according IV is given for a pseudo-collision in the
first 2 rounds of the RIPEMD-320 variant, which has a complexity of 228 hash
computations. A pseudo-collision for the first 3 rounds would require about 260

hash computations.

i M

0-7 1330C95E D6E82F5D 1902E1F8 040C42B4 F51D77D2 B8EF7ED0 D075FEE3 1CB083FD
8-15 37246C9D 72205B19 703A3DCD E7E5AFFD FD9D1E57 4C64C76F 4B424959 56B11DB4

i IV

0-4 A99DA4B3 257D7E0C 56D85144 8F93F035 79096694
5-9 58EEE5C0 AA910BAB BD91DCA9 8D5BE12A 14C72EF0

C Hamming Weight of Codewords Found for Using an
L-characteristic in V1 and V2

In this section, we will give the Hamming weight of the codewords found for
using an L-characteristic in V1 and V2 as described in Section 3.1. In Table 3,
the Hamming weight of the codewords found for RIPEMD-160, RIPEMD-128,



116 F. Mendel et al.

and round-reduced variants are shown. Since we assume that it is possible to turn
near-collisions into collisions by using multi-block messages (see Observation 2),
we can improve the Hamming weight of the codewords found and hence the
probability of the characteristic. For a near-collision, the condition of having
zero differences after the feed forward can be ignored. The Hamming weight
of the codewords found are also shown in Table 3. Note that we only give the
Hamming weight after step 16, since the first 16 steps (V1) can be fulfilled in
advance, and only the probability of V2 is significant for the attack complexity.
We conclude that the final attack complexity would be too high for an attack.

Table 3. Hamming weight of A using an L-characteristic in V1 and V2

type Hamming weight projection* steps stream

RIPEMD - 160

collision 1760 768 16–80 both
near-collision 1568 768 16–80 both
collision 895 448 16–80 left
collision 848 576 16–80 right
collision 1184 576 16–64 both
near-collision 1184 576 16–64 both
collision 608 320 16–64 left
collision 644 352 16–64 right
collision 863 384 16–48 both
near-collision 768 352 16–48 both
collision 421 160 16–48 left
collision 414 128 16–48 right

RIPEMD - 128

collision 1303 640 16–64 both
near-collision 880 512 16–64 both
collision 602 256 16–64 left
collision 576 320 16–64 right
collision 800 256 16–48 both
near-collision 640 256 16–48 both
collision 377 64 16–48 left
collision 374 128 16–48 right

(*)Results achieved by using a projection as described in Section 4.
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Abstract. Blind signatures are a useful ingredient to design secure so-
phisticated systems like electronic voting or sensitive applications like
e-cash. Multi-users signature schemes, like ring or group signatures, are
also a useful tool to provide to such systems some properties like scala-
bility, anonymity, (dynamic) group structure, revocation facilities. . .We
propose in this article a simple blind ring signature scheme based on
pairings on algebraic curves. We formally prove the security (anonymity,
blindness and unforgeability) of our scheme in the random oracle model,
under quite standard assumptions.

Keywords: blind ring signatures, e-cash systems, provable security.

1 Introduction

Blind signatures were introduced by Chaum [13]. They allow a person to get a
message signed by another party without revealing any information about the
message to this other party. Blind signatures have been intensively studied since
their birth. A precise security model is provided in Pointcheval and Stern’s paper
[20]. Possible applications of blind signatures can be found in electronic auctions
and electronic voting systems. However, the original motivation for the use of
such signatures came from e-cash and untraceable payments. Roughly speaking,
an electronic coin corresponds to a certain amount of money and it is blindly
signed by a bank (therefore, the bank does not know the true value of the coin).
It is then withdrawn from the bank, spent by a user, and deposited by a shop.

To make this system more scalable by supporting many banks (to fit with real
life scenarios), and to possibly add some other properties like strong anonymity
of the signing banks, non linkability of two different signatures, revocation fa-
cilities, etc., Lysyanskaya and Ramzan introduced the concept of blind group
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signatures [17], which combines the concepts of blind signatures and group sig-
natures. Group signatures allow any member of a group to sign a document in
such a way that a verifier can confirm that the signature comes from the group,
but he does not know which member of the group actually signed the document.
The protocol allows for the identity of the signer to be discovered, in case of
disputes, by a designated group authority that has some auxiliary information.
Group signatures have been introduced by Chaum and van Heyst [14]. Like blind
signatures, lots of schemes arose in the literature and one can mention Ateniese,
Camenisch, Joye and Tsudik’s scheme [2] and Boneh, Boyen and Shacham’s
pairing-based scheme [8] among the most promising and efficient protocols. The
security model for group signatures has been finally properly defined by Bel-
lare, Micciancio and Warinschi in their paper [3]. Ring signatures, introduced by
Rivest, Shamir and Tauman [21], are somehow similar to group signatures, but
with some important differences: (1) the group is not fixed, but chosen by the
actual signer in an ad-hoc way, just before computing the signature; (2) there is
no group authority who can recover the identity of the author of a ring signature.
Ideally, anonymity in ring and group signature schemes should be satisfied in an
unconditional way: no information about the author of a signature must be ob-
tained, even if one has unlimited computational resources. In this way, a signer
can be sure that his identity as the author of a signature is perfectly protected
for the rest of his life. We refer the reader to Wang’s on line bibliography on
digital signature [22] for a full overview these different signature schemes.

As we have said before, the first proposed group blind signature scheme is
Lysyanskaya and Ramzan’s one [17], based on Camenisch and Stadler’s group
signature scheme with constant size signatures [11]. Applied to the scenario of
distributed electronic banking, a central bank behaves as the group authority
and monitors the group members, which are banks issuing e-cash. Nguyen, Mu
and Varadharajan [19] also proposed a blind variant of Camenisch and Stadler’s
scheme.

Obviously, combining blind and ring signatures also brings solutions to these
scenarios of e-banking, e-voting or e-auctions. Indeed ring signatures provide
more spontaneity and flexibility to the design of such systems. Namely, suppose
that a client wants some bank to sign some electronic coin corresponding to a
certain amount of money; the client can choose ad-hoc a set (or ring) of potential
signing banks, depending on some conditions (for example, the use that the client
is going to make of the obtained coin). If some bank in the ring accepts to sign
this coin, it starts running the interactive signing protocol with the client. The
bank can therefore preserve its anonymity inside the ring of banks, if desired; on
the contrary, if it wants to publicly show its identity, it can simply run a standard
(not ring) blind signature scheme, or to use a blind ring signature scheme where
the considered ring has this bank as the only member. Summing up, the ring
can be chosen by the client or by the actual signer, because of the interactive
nature of the protocols, and this increases the number of real-life applications of
this kind of schemes.
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Only few blind ring signature schemes have been proposed up to now. Chan,
Fung, Liu and Wei [12] proposed the first one in 2005. This scheme is obscure and
it is unclear who actually engages the different protocols. Furthermore, the proofs
provided in the paper are not very convincing. All these facts make us suspect
that this scheme does not satisfy some required properties such as blindness
or anonymity. Finally, Wu, Zhang, Susilo and Mu have recently described an
efficient static blind ring signature [23], with constant signature size and efficient
algorithms. In this scheme, each user knows the factorization of an RSA modulus
ni = piqi. Basically, the underlying ring signature consists for the signer, given
y = gn1...nk mod N where N is a public RSA modulus of unknown factorization,
and g a generator of (Z/NZ∗)2, in proving that he knows pi and u = gqi

∏
j �=i nj

such that y = upi , with pi in a certain range. An external trusted entity is
therefore needed, at least in the setup phase of the system, to generate N .
Another drawback of the scheme is that anonymity only holds computationally:
an adversary with enough computational resources can factorize all the RSA
moduli and automatically obtain the identity of the author of each signature. As
discussed above, this is not desirable for some applications; maybe a bank does
not want its identity to be revealed in the future as the issuer of some (possibly
controversial) e-cash. Furthermore, the unforgeability of this scheme relies on
strong (and quite debatable) assumptions like the “extended ROS” one, and is
proved in the generic group model (which is stronger than the random oracle
model). Even if the authors claim that their scheme supports only static groups,
we think that this is not true, and that the client who wants to obtain a blind
signature can choose the ring of signers in an ad-hoc way. Apparently, authors of
[23] consider only static groups to avoid some attacks against blindness. We think
that the blindness property definition only makes sense when the two considered
signatures involve the same ring of signers; this is independent of the fact that
the scheme can be employed for different rings. See more details on this point
in Section 3.1, where we propose a formal and quite natural definition for the
blindness property of a blind ring signature scheme.

Our Contributions. In this article, we extend Boneh, Gentry, Lynn and Shacham’s
pairing-based ring signatures [9] by adding the feature of blindness. This scheme
accepts in essence the pairing-based blindness techniques described by Boldyreva
in [7]. We analyze the security of the resulting blind ring signature scheme by pro-
viding first a suitable model for the required properties: anonymity, blindness and
unforgeability. Then we prove the security of our new scheme in the random ora-
cle model, under quite standard assumptions, without using the generic model or
ROS-like assumptions. Our scheme suffers from the drawback that the number of
computations and the size of signatures grow linearly with the number of signers
in the ring. This problem is recurrent and inherent to ring signatures supporting
dynamic rings, because the description of the ring is necessary to verify a signa-
ture. This description usually consists in the set of public keys, and so the length
of the (blind) ring signature is always linear with respect to the number of users.
Techniques based on accumulators allow to obtain constant-size ring signatures,
see [15], when the same ring is used for many signatures.
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Our scheme is advantageous with respect to the solutions employing group
signatures because it is dynamic, in the sense that the group is chosen “ad-
hoc” by the client who wants to obtain a blind signature. Furthermore, neither
interaction among the set of users nor initialization phase are required: each user
generates his own secret/public keys in an independent way. Contrary to Wu et
al.’s scheme in [23], the anonymity property is obtained in an unconditional
way, which means that the identity of the author of a signature is perfectly
protected. Finally, it is easily implemented and based on simple operations, due
to the spectacular progress of pairing-based tools.

The rest of the paper is organized as follows: in Section 2, we recall the
basics about bilinear pairings and give the computational assumptions (of the
chosen-target problem family) which underlie our scheme, and especially the
chosen-target-inverse-CDH problem that we prove equivalent to the traditional
chosen-target CDH, used in [7] to prove the unforgeability of the blind signature
scheme. Then we precisely define in Section 3 a blind ring signature scheme
and the security properties that such a scheme should satisfy. In Section 4, we
present our new scheme, and formally prove its security. The conclusions of the
work and some open problems are given in Section 5.

2 Bilinear Pairings and Computational Assumptions

In this section, we recall some basic facts about bilinear maps and introduce the
computational assumptions needed to prove the security of our scheme.

Definition 1. Let G be an additive group of prime order q, generated by some
element P . Let H be a multiplicative group with the same order q.

A symmetric admissible bilinear map e : G × G → H satisfies the following
three properties:

i) it is bilinear;
ii) it can be efficiently computed for any possible input pair;
iii) it is non-degenerate, which means that e(P, P ) 
= 1.

The typical way of obtaining such pairings is by deriving them from the Weil
or the Tate pairing on (hyper-)elliptic curves over a finite field (see for instance
[1]).

The security of blind signature schemes is based, in general, on the hardness of
the chosen-target versions of standard computational problems, such as chosen-
target RSA problem [4] for the scheme in [13], or the chosen-target CDH problem
for the scheme in [7].

The Chosen-Target-CDH problem is defined as follows: the solver S receives
as input a pair (P, aP ), where P is a generator of G1 with prime order q, and
a ∈ Zq is a random value. The solver S has adaptive access to two oracles:

– target oracle: this oracle outputs a random element Zi ∈ G1,
– helper oracle: this oracle takes as input an element Wi ∈ G1 and outputs

the element aWi.
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We say that S (qt, qh, d)-solves the Chosen-Target-CDH problem, for qt ≥ d > qh,
if it makes qt and qh queries, respectively, to the target and helper oracles, and
after that it outputs d pairs ((V1, j1), . . . , (Vd, jd)) such that:

1. all the elements Vi are different,
2. for all i ∈ {1, 2, . . . , d}, the relation Vi = aZji

is satisfied, where Zji
is the

element output by the target oracle in the ji-th query.

To fit our purpose, we define a very similar problem, which in fact is equivalent
(see Prop. 1) to the Chosen-Target-CDH problem. This new problem, that we
call Chosen-Target-Inverse-CDH problem, is defined as follows: the solver S ′

receives as input a pair (P ′, a′P ′), where P ′ is a generator of G1 with primer
order q, and a′ ∈ Zq is a random value. The solver S ′ has adaptive access to two
oracles:

– target oracle: this oracle outputs a random element Zi ∈ G1,
– helper oracle: this oracle takes as input an element Wi ∈ G1 and outputs

the element 1
a′ Wi.

We say that S ′ (qt, qh, d)-solves the Chosen-Target-Inverse-CDH problem, for
qt ≥ d > qh, if it makes qt and qh queries, respectively, to the target and helper
oracles, and after that if outputs d pairs ((V1, j1), . . . , (Vd, jd)) such that:

1. all the elements Vi are different,
2. for all i ∈ {1, 2, . . . , d}, the relation Vi = 1

a′ Zji
is satisfied, where Zji

is the
element output by the target oracle in the ji-th query.

Lemma 1. The Chosen-Target-CDH problem and the Chosen-Target-Inverse-
CDH problem are equivalent.

Proof. We show only one of the implications, since the other one can be proved in
an identical way. Let us assume, for example, that there exists S which (qt, qh, d)-
solves the Chosen-Target-CDH problem, and let us construct from it a solver S ′

which (qt, qh, d)-solves the Chosen-Target-Inverse-CDH problem.
S ′ receives as input a pair (P ′, a′P ′), has access to its target and helper

oracles, and wants to solve the Chosen-Target-Inverse-CDH problem. To do this,
it initializes the (qt, qh, d)-solver S with input pair (P, aP ) = (a′P ′, P ′). Note
that this means a = 1/a′. To obtain from S a solution of the Chosen-Target-CDH
problem, S ′ must simulate the environment of S, by answering all the queries
that S makes to its oracles:

– target oracle: when S makes a query to this oracle, S ′ makes a query to
its own target oracle, and sends to S the obtained random element Zi ∈ G1;

– helper oracle: when S makes a query Wi to this oracle, S ′ makes the same
query Wi to its own helper oracle. By definition, the helper oracle of S ′

returns the element
1
a′Wi = aWi.

Therefore, S ′ sends to S this value, which is consistent with the answers of
a real helper oracle for S.
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After qt and qh queries to the respective oracles, S finally outputs d pairs
((V1, j1), . . . , (Vd, jd)) such that:

1. all the elements Vi are different,
2. for all i ∈ {1, 2, . . . , d}, the relation Vi = aZji

= 1
a′ Zji

is satisfied, where Zji

is the element output by the target oracle in the ji-th query.

Note that such a list of pairs is a valid solution for the instance (P ′, a′P ′)
of the Chosen-Target-Inverse-CDH problem that S ′ received. Therefore, S ′ has
(qt, qh, d)-solved the Chosen-Target-Inverse-CDH problem. ��

3 Blind Ring Signature Schemes

Given an integer k, a blind ring signature scheme BRS with security parameter
k consists of the following four algorithms:

– generation of public parameters: BRS.Setup is a probabilistic algorithm
which takes as input k and outputs public parameters (which include a
description of the signature space, hash functions, etc.);

– key generation: BRS.KeyGen is a probabilistic algorithm which takes as
input the public parameters and outputs a signing key pair (pkj , skj) for
a user Uj . The value pkj is made public, whereas the value skj is secretly
stored by user Uj .

– blind ring signature generation: BRS.Sign is an interactive 2-party pro-
tocol which is initialized by a client C. This client chooses a message M and
a ring U = {U1, . . . , Un} of users, and engages an interaction with some of
the members Us of the ring, who can use his secret key skj as part of the
input. We denote as IC the secret inputs that client C uses, and as Tsig the
values that are obtained by the signer, during this interaction.

At the end, the private output OC for the client is a valid ring signature
Σ for the message M and the ring of users U .

– Verification of a blind ring signature: BRS.Verify is a deterministic al-
gorithm which takes as input a message M , a ring of users U = {U1, . . . , Un},
their public keys pk1, . . . , pkn and bit string Σ. The output is 1 if the signa-
ture is valid, and 0 otherwise.

A blind ring signature scheme must satisfy 4 requirements:

1. Correctness means that a verifier always accepts as valid a signature that
has been properly generated by a honest client and a honest signer in the
corresponding ring of users.

2. Anonymity means that the client has no information about which member
of the ring has actually participated in the interactive blind ring signature
generation.

3. Blindness intuitively means that the users in the ring obtain no information
about the message that they are actually signing for the client.
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4. Unforgeability means that a client is not able to produce � + 1 valid and
different ring signatures if he has queried for at most � executions of the
blind ring signature protocol.

We now recall the formal definition of the two last properties.

3.1 Blindness

Blindness of a blind ring signature scheme is defined by a game played between
a challenger and an adversary. This adversary B models the dishonest behaviour
of a ring of users who try to distinguish which message (between two messages
chosen by them) is being signed in an interactive execution of the signing protocol
with a client. The game is as follows:

1. Setup: the adversary B chooses a universe U∗ of users and a security param-
eter k. The challenger runs the setup protocol of the blind signature scheme
with input k, as well as the key generation protocol for each user Uj ∈ U∗.
The adversary B is given all the resulting information: the public common
parameters, the public and secret keys of all users in the universe.

2. Challenge: the adversary chooses a ring U = {U1, . . . , Un} of users, and two
messages M0 and M1. The challenger chooses at random one bit b ∈ {0, 1}
and initializes the interactive blind ring signature protocol with message Mb

and ring U as inputs. The adversary B chooses some user Us ∈ U and plays
the role of the signer in the protocol (note that B knows the secret key of
Us). At the end, the adversary obviously obtains Tsig.

3. Guess: the adversary B finally outputs its guess b′.

We say that such an adversary B succeeds if b′ = b. A scheme has the blindness
property if, for all adversary B, its probability of success in this game is only
negligibly bigger than 1/2.

If this probability is exactly 1/2, for any adversary B, then the blindness
of the scheme is unconditional. A standard way of proving that a (ring) blind
signature scheme enjoys unconditional (or perfect) blindness is by showing that
the information Tsig, that the signer obtains from an execution of the signing
protocol, follows the same probability distribution for any possible message.
If this is proved, then in the challenge phase of the game defined above the
adversary cannot obtain from Tsig any information about which message Mb is
actually being signed, and therefore its success probability (random guess) is
limited to 1/2. This is the argument that will be use to analyze the blindness of
our blind ring signature scheme.

As opposed to what is claimed by the authors of [23], where they present some
“attacks” on the scheme in [12] and they consider only static groups for their
scheme to avoid exactly this kind of attacks, we think that a natural definition
for blindness in a blind ring signature scheme must consider only one ring of
signers. Otherwise, suppose that a member of a ring executes the protocol for
two pairs (m1,U1) and (m2,U2) of message/ring, with U1 
= U2, such that he is
in both rings. Later, when seeing the resulting valid signature for some of the
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two messages, this signature will in particular contain the involved ring, and so
he will be trivially able to distinguish which of the two passed executions was
indeed the one corresponding to this message. In this way, such an adversary
would break this weak notion of blindness. For this reason, we think that our
definition is the good one (in particular, in step 2 of the game above, we only
consider one ring and not two rings U0 and U1). This fact does not imply that
a scheme with this blindness property should be used also with one ring (as
suggested in [23]). The only point is that the client will only be sure that a
blind signature obtained from a ring U is perfectly hidden and untraceable with
respect to all the blind signatures obtained from this particular ring U .

3.2 Unforgeability

Unforgeability for blind ring signatures is adapted from the concept of (�, � +
1)-unforgeability, introduced in [20] and maintained in [4,7] for standard blind
signatures. A (�, � + 1, qi)-forger A against a blind ring signature scheme is thus
defined by means of the following game that it plays against a challenger:

1. Setup: the adversary A chooses a universe U∗ of users and a security param-
eter k. The challenger runs the setup protocol of the blind signature scheme
with input k, as well as the key generation protocol for each user Uj ∈ U∗.
It gives to the adversary A the resulting common parameters and the public
keys pkj , and keeps secret the secret keys skj .

2. Queries: the forger A makes different queries to the challenger:
– qi hash queries: if the scheme involves some hash function Hi which is

assumed to behave as a random oracle [5] in the security proof, then
the challenger must answer qi queries of the adversary to this oracle,
providing it with consistent and totally random values.

– � blind ring signature queries (M,U), where U ⊂ U∗: the challenger must
answer with a valid blind ring signature Σ for this pair message/ring of
users.

All these queries can be made in an adaptive way; that is, each query may
depend on the answers obtained to the previous queries.

3. Forgery: the adversary A outputs a list of �+1 tuples {(Mi,Ui, Σi)}1≤i≤�+1.
We say that A succeeds if:
– The � + 1 ring signatures are valid; and
– (Mi1 ,Ui1) 
= (Mi2 ,Ui2), for all indices 1 ≤ i1, i2 ≤ �+1 such that i1 
= i2.

Note that we require the adversary to output valid blind ring signatures for
different pairs message/ring of users. That is, we do not consider as successful, for
example, a forger which asks for a valid blind ring signature for the pair (M,U)
and later outputs as forgery two valid signatures (M,U , Σ) and (M,U , Σ′). Even
if we do not consider, with this restriction, all the kinds of adversaries against
a blind ring signature scheme, we believe that our model captures the most
powerful attacks that such a scheme can suffer in practice. In effect, consider
for example the application of blind ring signatures to electronic payments: a
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message (a coin) is signed by a ring of banks, and later this coin is spent in some
electronic transaction. The coin usually contains the date, a serial number, etc.,
and sellers are assumed to maintain a database with the received pairs coin/ring
of banks. Therefore, an attacker which would try to spent two times the same
coin, signed by the same ring of banks, should be easily detected.

4 The New Scheme

In this section we propose a blind ring signature scheme quite simple and efficient.
It combines the ideas of the ring signature scheme which appears in [9] and the
blind signature scheme which appears in [7]. The protocols of the new scheme
are described below.
Setup and key generation. On input a security parameter k, an additive group G1

of prime order q > 2k, generated by some element P , and a multiplicative group
G2 with the same order q are chosen, such that they admit a bilinear pairing
e : G1 × G1 → G2 as defined in Section 2. A hash function H : {0, 1}∗ → G∗

1 is
also chosen. All these parameters are common and public.

Each user Ui chooses his secret key xi ∈ Zq at random; the matching public
key is Yi = xiP ∈ G1.
Blind ring signature generation. The client who wants to obtain a blind ring
signature on a message M with respect to a ring U = {U1, . . . , Un} of users,
proceeds as follows: he chooses at random r1, . . . , rn ∈ Zq and computes the
value

M̄ = H(M,U) +
n∑

i=1

riYi.

This value, along with the ring U , is sent to the members of the ring. Then
some of these members, say Us, where s ∈ {1, . . . , n}, acts as follows:

1. For all i ∈ {1, . . . , n}, i 
= s, choose ai uniformly at random in Zq, and
compute σ̄i = aiP .

2. Compute

σ̄s =
1
xs

⎛⎝M̄ −
∑
i�=s

aiYi

⎞⎠ .

3. Send to the client the tuple (σ̄1, . . . , σ̄n).

The client verifies if

e(M̄, P ) =
n∏

i=1

e(σ̄i, Yi).

If so, he computes the values

σi = σ̄i − riP, for all i = 1, . . . , n

and defines the signature of the message M made by the ring U = {U1, . . . , Un}
to be (M,U , σ1, . . . , σn).

Following the notation introduced in Section 3, we have IC = (M, r1, . . . , rn),
Tsig = (U , M̄ , {ai}i�=s, σ̄1, . . . , σ̄n) and OC = (M,U , Σ), where Σ = (σ1, . . . , σn).
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Verification of a blind ring signature. The validity of the signature (M,U , σ1, . . . ,
σn) is verified by checking if

e(H(M,U), P ) =
n∏

i=1

e(σi, Yi).

Correctness and anonymity of the resulting scheme directly infer from the
properties satisfied by the aforementioned schemes in [9,7]. In particular, the
anonymity property holds unconditionally: even if a client has unlimited compu-
tational resources (which means for example that he can obtain the secret keys
of all the members of a ring) he cannot obtain any information about which
member has actually participated in the interactive protocol to compute a blind
ring signature.

Note that unconditional anonymity directly implies a different property, un-
linkability [16], which means that nobody (including the client) will be able to
distinguish if two different interactive executions of the blind ring signature pro-
tocol have been performed by the same member of the ring or not. In effect, if a
scheme is linkable, then there exists a polynomial-time linking algorithm which
takes as input two executions of the blind ring signature protocol and outputs
1 if and only if the same member of the ring has participated in both execu-
tions. If this holds, then a client with unlimited resources who tries to break the
anonymity of some execution of the protocol can act as follows: (1) he obtains
all the secret keys of the members of the ring; (2) for each member Ui of the
ring, the client uses the obtained secret key to run by himself a new interactive
execution of the blind ring signature protocol; (3) the client applies the linking
algorithm to this last execution and to the initial execution whose anonymity
he is trying to break; (4) if the output of the linking algorithm is 1 for user Ui,
then this user was the one who participated in the initial (target) execution.

We now prove that the scheme also satisfies the properties of blindness and
unforgeability.

4.1 Blindness of the Scheme

As stated in Section 3.1, we can prove that the proposed scheme achieves un-
conditional blindness if we prove that the probability distribution of the infor-
mation Tsig that the signer (the adversary in the blindness game) obtains in an
execution of the signing protocol is exactly the same for any possible message.
In the case of our scheme, we have Tsig = (U , M̄ , {ai}i�=s, σ̄1, . . . , σ̄n), where
Us ∈ U = {U1, . . . , Un} is a user chosen by the adversary.

The value M̄ = H(M,U) +
∑n

i=1 riYi follows a completely random and uni-
form distribution in G1, independently of the message M , because all the integers
ri ∈ Zq are chosen uniformly and at random. For the rest of values in Tsig, ei-
ther they are chosen by the adversary or they depend on M̄ . In any case, their
probability distribution does not depend on the signed message M .

Summing up, during the challenge phase of the blindness game (see Section
3.1), the information that the adversary obtains if the challenger chooses M0
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is perfectly indistinguishable from the information that the adversary obtains if
the challenger chooses M1. Therefore, the scheme achieves perfect blindness.

4.2 Unforgeability of the Scheme

We are going to prove that our scheme is (�, � + 1)-unforgeable in the random
oracle model, and under the assumption that the Chosen-Target-Inverse-CDH
problem is hard to solve. We denote as q1 the number of queries that an adversary
A against the unforgeability of our scheme can make to the (random) oracle
which models the behaviour of the hash function H : {0, 1}∗ → G∗

1.

Theorem 1. If there exists a (�, � + 1, q1)-forger A against the unforgeability
of our blind ring signature scheme, which succeeds with probability ε, then there
exists a (qt, qh, d)-solver S ′ of the Chosen-Target-Inverse-CDH problem, which
also succeeds with probability ε′ ≥ ε− �+1

q , where q is the order of the group G1,
qt =, d = � + 1 and qh = �.

Proof. Assuming the existence of such a forger A, let us construct a solver S ′

of the Chosen-Target-Inverse-CDH problem. First of all, S ′ initializes A, which
chooses a security parameter k and a universe of users U∗. Solver S ′ chooses a
group G1 with primer order q > 2k which admits a bilinear pairing e : G1×G1 →
G2.

After that, solver S ′ asks for an instance of the Chosen-Target-Inverse-CDH
problem in the group G1. It receives a pair (P ′, Y ′), where Y ′ = a′P ′ for some
random and secret value a′ ∈ Zq; it is also provided with access to the target
and the helper oracles.

For each user Uj ∈ U∗, solver S ′ defines his public key to be Yj = αjY
′,

for some random value αj ∈ Z∗
q . At this point, S ′ sends to A all the common

parameters q, G1 = 〈P ′〉, G2, e, the public keys Yj of all the users Uj in the
universe, and provides it with access to a random oracle for a hash function
H : {0, 1}∗ → G∗

1.

Hash queries: the forger A makes qh queries Qi = (Mi,Ui) to the random
oracle. Solver S ′ maintains a table TAB where it stores the relations H(Qi) = Zi

that it computes as follows: if a received query Qi = (Mi,Ui) is already in the
table, S ′ sends to A the stored value Zi. If not, S ′ makes a query to its target
oracle; it receives as answer a random element Zi ∈ G1. Then it stores the new
relation H(Qi) = Zi in TAB and sends Zi to the forger A.

Blind ring signature queries: the forger A is assumed to initialize � times
the interactive blind ring signature protocol, playing the role of the client. Solver
S ′ must play the role of the signers and simulate the information that A should
obtain in a real execution of this protocol. The forger A sends a message M̄ ∈ G1

to be signed by a ring U = {U1, . . . , Un}. Then solver S ′ acts as follows:

1. it chooses at random a user Us ∈ U . For i ∈ {1, . . . , n}, i 
= s, the solver
chooses random values ai ∈ Zq and computes σ̄i = aiP

′;
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2. it sends to the helper oracle the value

Wi =
1
αs

⎛⎝M̄ −
∑
i�=s

aiYi

⎞⎠ ,

and obtains as answer the value σ̄s = 1
a′ Wi;

3. S ′ sends to A the tuple (σ̄1, . . . , σ̄n).

In effect, this tuple perfectly simulates the information that A would have
obtained in a real execution of the protocol, since

n∏
i=1

e(σ̄i, Yi) = e(σ̄s, Ys)
∏
i�=s

e(aiP
′, Yi) =

= e

⎛⎝ 1
a′αs

⎛⎝M̄ −
∑
i�=s

aiYi

⎞⎠ , αsa
′P ′

⎞⎠ ∏
i�=s

e(aiP
′, Yi) =

= e(M̄, P ′)
∏
i�=s

e(−aiYi, P
′)e(aiP

′, Yi) = e(M̄, P ′).

The environment of A is thus perfectly simulated by S ′, so with probability ε
the forger A outputs � + 1 tuples {(Mi,Ui, Σi)}1≤i≤�+1 of valid ring signatures
such that all the pairs (Mi,Ui) in these tuples are different. Since the hash
function H is assumed to behave as a random function, the probability that A
obtains a valid ring signature for (Mi,Ui) without asking for the value H(Mi,Ui)
is 1/q. Therefore, we have that with probability 1− �+1

q the forger A has queried
the random oracle with (Mi,Ui), for the � + 1 forged pairs. This means that, for
i = 1, . . . , � + 1, we have that H(Mi,Ui) = Zji

where Zji
are elements given to

S ′ by its target oracle. The signatures are valid, so

e(H(Mi,Ui), P ′) =
∏

Uj∈Ui

e(σij , Yj) = e

⎛⎝ ∑
Uj∈Ui

αja
′σij , P

′

⎞⎠
For i = 1, . . . , � + 1, solver S ′ outputs the pair (Vi, ji), where

Vi =
∑

Uj∈Ui

αjσij

satisfies Vi = 1
a′ H(Mi,Ui) = 1

a′ Zji
, as desired. Furthermore, since all the pairs

(Mi,Ui) are assumed to be different, we have that all the values Vi are also
different.

Summing up, solver S ′ makes qt ≤ q1 queries to its target oracle, makes qh = �
queries to its helper oracle, and with probability ε′ ≥ ε− �+1

q outputs d = � + 1
valid pairs (Vi, ji). ��
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5 Conclusions

We proposed a simple and quite efficient pairing-based ring signature scheme.
It is based on Boneh et al. ring signatures and on Boldyreva’s blind signature,
and naturally inherits the advantages and drawbacks of both constructions: the
number of scalar multiplications to compute a signature grows linearly with the
number of members in the ring, as well as the number of pairing evaluations for
the verification, and the size of the signature itself. The scheme remains practi-
cal anyway, for rings of reasonable size. Furthermore, it achieves unconditional
blindness and anonymity, as opposed to previous blind ring signature schemes.
Unforgeeability of the scheme is proved in the random oracle, under some quite
standard assumptions.

An open problem would be to build a practical scheme whose unforgeability
could be proved in the standard model. Blind signatures and ring signatures
without random oracles have been recently proposed [10,6], so maybe it is pos-
sible to combine them and obtain blind ring signatures in the standard model.
Another open question deals with the possibility of modifying our scheme so
that the size of the signatures becomes constant, independent of the number
of signers in the ring. A possible strategy to achieve this could be the use of
accumulators based on pairings [18].
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Abstract. The concept of concurrent signatures was introduced by
Chen, Kudla and Paterson at Eurocrypt 2004. In a concurrent signature
scheme, users sign their messages in an ambiguous way so that the sig-
natures are only verifiable by the users themselves but not by any other
outsiders. At a later stage, one of the users releases an extra bit of in-
formation called the keystone, then all the signatures become binding
to their signers concurrently. At this stage, any outsider can verify the
signatures. Chen, Kudla and Paterson proposed a concurrent signature
scheme for two users. Recently, Susilo and Mu constructed a scheme
for three users. It is an open problem to construct concurrent signature
schemes for multi users. In this paper, we answer this open problem af-
firmatively. Using techniques of ring signatures and bilinear pairings, for
the first time we construct a concurrent signature scheme for multi-users.

Keywords: concurrent signature, ring signature, bilinear pairings.

1 Introduction

Fair exchange in digital signatures is one of the fundamental problems in cryp-
tography. Fair exchange is a necessary feature in many applications for electronic
commerce. One of such applications is contract signing protocol where a number
of parties need to exchange their signatures on a contract.

Two party fair exchange has been studied extensively in the literature
[12,11,2,13,3,4,5,10,17]. One of the techniques [12,11,4,14] is based on the idea of
timed release or timed fair exchange of signatures in which two parties
interactively exchange their signatures “little-by-little”. The other technique
[2,13,3,5,10,17] involves the use of a semi-trusted third party or arbitrator, who
can be called upon handle disputes between signers.

In 2004, Chen, Kudla and Paterson [6] introduce a weaker version of two
party fair exchange called concurrent signature that does not require any third
trusted party and does not require many interactive exchange protocols. In this
two-party concurrent signature, two signers produce two signatures in such a
way that from any outsider’s point of view, both signatures are ambiguous. And
after an additional information called keystone is released by one of the parties,
both signatures are binding concurrently.

Chen, Kudla and Paterson questioned the existence of multi-party concurrent
signatures.Theynoted that ifmulti-partyconcurrent signatures canbeconstructed
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and modelled correctly, this will move closer to the full solution of multi-party fair
exchange problem. Recently, Susilo and Mu [19] have successfully constructed a
three-party concurrent signature scheme. However, their solution as well as Chen
et al. solution seem difficult to be extended to the multi-party case.

Our contribution. In this paper, we propose for the first time a multi-party
concurrent signature scheme, thus, solving affirmatively the open problem ques-
tioned by Chen et al. and Susilo et al. The main ingredient in our construction
is a ring signature scheme. Ring signature was introduced by Rivest, Shamir and
Tauman [18] in 2001. Without the help of any trusted third party, it allows a
user to sign a signature for a ring of users in an anonymous way. From the point
of view of an outsider, the signature could have been generated by anyone in
the ring. Our multi-party concurrent signature scheme is based particularly on
a recently proposed ring signature by Chow, Yiu and Hui [8].

To extend to multi-user scenario, we introduce a new model for using key-
stones. In previous models, only a single keystone selected by the initial user is
used in the signing phase. This gives the initial user a decisive power over the
other users that the initial user can throw the keystone at anytime even when
some of the users have not signed their messages. In our model, the initial user
chooses a group keystone and additionally, all users can select their own individ-
ual keystones. Thus, the binding of the signatures happens after all users release
their keystones.

Related works. Concurrent signature schemes remove the requirement of a
dispute-resolving TTP in fair exchange of signatures; however, it still requires
a CA, like a normal signature scheme. This notion has been extended in [20]
to a new concept called perfect concurrent signatures, with the aim to further
anonymize the signatures before the keystone is released. In this concept, even
the signers are known to be trustworthy, the signatures remain anonymous to the
third party before the keystone is released. The generic construction of perfect
concurrent signatures was recently proposed in [7].

Designated verifier proofs were proposed in [15]. The idea is to allow signatures
to convince only the intended recipient, who is assumed to have a public-key.
As noted in [18], ring signature schemes can be used to provide this mechanism
by joining the verifier in the ring. However, it might not be practical in real
life since the verifier might not have any public key setup. As noted in [6],
intuitively concurrent signatures can be built from either ring signature schemes
or designated verifier proofs, but [6] also noted that construction from designated
verifier proofs is not straightforward and it cannot achieve the required properties
of concurrent signatures.

The paper is organized as follows. In Section 2, we present the formal model of a
multi-party concurrent signature scheme and its security consideration. We also
introduce bilinear pairings and related complexity assumptions. In Section 3, we
present our multi-party concurrent signature scheme which is based on a recently
proposed Chow-Yiu-Hui’s ring signature scheme, together with its security proof.
Section 4 concludes the paper.
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2 Definitions

In this section, we give the description of a multi-party concurrent signature
scheme. Main algorithms in a multi-party concurrent signature scheme are de-
fined in Section 2.1. Section 2.2 shows how these algorithms are used in the
multi-party concurrent signature scheme. Security requirements for concurrent
signatures are discussed in Section 2.3. We briefly introduce bilinear pairings
and their related complexity assumptions in Section 2.4.

Let there be n users. We will call these n users the insiders to distinguish
them with any other parties as the outsiders. Intuitively, multi-party concurrent
signature schemes work as follows.

One of the users will initiate the signing of concurrent signatures. Let us call
this user the initial signer. The initial signer U1 chooses a group keystone and
an individual keystone and keeps them secret. The group keystone is hashed to
a group keystone-fix by a public hash function. U1 uses the individual keystone
together with the group keystone-fix to produce an anonymous signature. U1

then sends the first ambiguous signature together with the group keystone-fix to
all users. This signature can be verified in two different levels by the outsiders and
the insiders, respectively. The outsiders can verify the signature as an anonymous
signature but cannot link the signature to any specific user. In the other words,
the outsiders can be sure that the signature is created by one of the users but
cannot identify the signer of the signature. The insiders, on the other hand, can
verify the signature in a deeper level. With their secret keys, the insiders can
verify the signature as a true signature of the initial user U1.

After the insiders have all verified U1’s signature, another user, say U2, re-
sponses to U1. User U2 then chooses a second individual keystone, keeps it secret,
and uses it together with the group keystone-fix to produce a second ambiguous
signature. Again, this signature of U2 is sent to all users and can be verified
differently on two levels by the outsiders and the insiders as the first signature.
Proceeding similarly, eventually, after all users have signed their messages, the
keystone releasing phase starts. In this phase, all users release their individual
keystones. The initial user also releases the group keystone. With these released
keystones, all signatures bind to their signers concurrently. At this point, any
outsider is able to use the keystones to verify all signatures to their signers (and
hence, the signatures are valid from their point of view as well).

We should remark a crucial difference in our model with the previous mod-
els [6,19] on the uses of keystones. In previous models, only a single keystone
is used in the signing phase. This gives the initial user a decisive power over
the other users. The initial user in these models can maliciously releases the
keystone anytime he/she wants even when some of the users have not signed
their messages. In our model, by allowing each user chooses his/her own indi-
vidual keystone, we distribute the keystone-releasing right evenly to all users.
We think that this model is a natural generalization of the previous model in
multi-user setting. One may wonder what would happen if some users decide to
release their keystones before the signing phase completes. In this case, these
users dispose their identities and have their signatures linked to them, while
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the other users who have not released the keystones remain anonymous with
their signatures. So the single keystone in the previous models corresponds to
what is now called the group keystone in our model. The group keystone is
hashed to a keystone-fix and initially sent to all users so that all users can
produce their signatures consistent and synchronized with each other via the
keystone-fix.

We also remark that the users do not necessarily sign their signatures on
the same message. Following the previous models, we allow each user to sign
signature on his/her own arbitrary message.

2.1 Multi-party Concurrent Signature Algorithms

A multi-party concurrent signature scheme consists of the following main algo-
rithms:

– Setup(�, n): On input � – a security parameter, n – number of users, the algo-
rithm Setup outputs n user secret keys SK = {ski}n

i=1, a public key PK, the
descriptions of a message space M, a keystone space K, a keystone-fix space
F , other system public parameter params, and a function KGEN : K → F ;

– Sign(m,PK,F, sk, ik): On input a message m, the public key tuple PK, a
keystone-fix F , a user’s secret key sk, and an individual keystone ik, the
algorithm Sign outputs an anonymous signature σ for m. This algorithm is
used by an insider to generate an anonymous signature;

– OutsiderVerify(m,σ, PK,F ): On input a message m, a signature σ, the public
key tuple PK, a keystone-fix F , the algorithm OutsiderVerify outputs either
accept or reject. This algorithm is used by an outsider to check an anonymous
signature;

– InsiderVerify(m,σ, PK,F, j, sk): On input a message m, a signature σ, the
public key tuple PK, a keystone-fix F , a user identity j, and a user’s secret
key sk, the algorithm InsiderVerify outputs either accept or reject. This algo-
rithm is used by an insider (with a secret key sk) to check whether the user
j has signed the signature or not;

– KeystonesRelease: After the initial user releases the group keystone gk and
his/her individual keystone ik1, and other users release their individual key-
stones iki, the algorithm KeystonesRelease outputs the final binding signature
in an agreed format 〈gk, F, ik1, . . . , ikn,m1, σ1,m2, σ2, . . . , mn, σn〉, where
(mi, σi) is the signature of user i;

– BindingVerify(PK, 〈gk, F, ik1, . . . , ikn,m1, σ1,m2, σ2, . . . ,mn, σn〉): On input
the public key tuple PK and a concurrent signature

〈gk, F, ik1, . . . , ikn,m1, σ1,m2, σ2, . . . , mn, σn〉,

the algorithm BindingVerify outputs either accept or reject. This algorithm is
used by anyone to check the validity and binding of a list of n signatures.
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2.2 Multi-party Concurrent Signature Scheme – How Does it
Work?

A multi-party concurrent signature scheme works as follows

1. All users get together and run Setup algorithm, which gives them all system
public parameters and their secret keys.

2. An initial user, U1, initiates a concurrent signature signing. U1 picks a ran-
dom group keystone gk and an individual keystone ik1. U1 computes the
group keystone-fix F = KGEN(gk). With the keystone-fix F , the individual
keystone ik1, the public key tuple PK, and U1’s secret key sk1, user U1 then
uses the Sign algorithm to sign a message m1, which produces an anonymous
signature σ1 = Sign(m1, PK,F, sk1, ik1). User U1 keeps the group keystone
gk and the individual keystone ik1 secret and sends (m1, σ1, F ) to all other
users;

3. Upon receiving U1 signature (m1, σ1) and the group keystone-fix F , each
user Uj uses its secret key skj , executes the algorithm

InsiderVerify(m1, σ1, PK,F, U1, skj)

to verify whether the signature is valid from user U1;
4. If no users reject U1 signature, another user U2 may response to U1. User

U2 picks an individual keystone ik2. With the group keystone-fix F , the
individual keystone ik2, the public key tuple PK, the secret key sk2, user U2

calls the Sign algorithm to sign a message m2, which produces an anonymous
signature σ2 = Sign(m2, PK,F, sk2, ik2). User U2 then sends (m2, σ2) to all
other users;

5. If no users reject U2 signature, another user U3 may response to U2 and
sends (m3, σ3) to all other users. This process is repeated until eventually
all users sign their messages and send their signatures to other users;

6. After all users sign their messages, the initial user U1 releases the
group keystone gk and his/her individual keystone ik1. Other user Uj fol-
lows to release his/her corresponding individual keystone ikj . The algorithm
KeystonesRelease is executed to output the concurrent signature in its final
form. From this point, anyone can execute the BindingVerify algorithm

BindingVerify(PK, 〈gk, F, ik1, . . . , ikn,m1, σ1,m2, σ2, . . . , mn, σn〉)

to verify the concurrent signature;
7. Note that any outsider can execute OutsiderVerify(mi, σi, PK,F ) in steps 3,

4, and 5 to check the validity of the signature (mi, σi) that indeed it is gen-
erated by one of the users. However, this signature still remains anonymous
and an outsider cannot prove that Ui has signed (mi, σi).

Remark

– Even it is not stated explicitly in the scheme description, we assume that
each time a user chooses a keystone, the user must pick a new keystone that
has not been used before.
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– There are two verification algorithms that can be executed by the outsiders.
The first algorithm OutsiderVerify is to be executed before the release of key-
stones and the outsiders do not know the identity of the signature owner. The
second algorithm BindingVerify is to be executed after the release of keystones
and the outsiders do know which user has signed which individual signature.

2.3 Security Requirements

We require a multi-party concurrent signature scheme to satisfy four properties:
correctness, unforgeability, ambiguity and fairness. Intuitively, these notions are
described as follows.

– Correctness: if a signature has been generated correctly by invoking Sign
algorithm, then checking this signature, the two algorithms InsiderVerify and
OutsiderVerify will output accept. Moreover, after a keystone is released, the
algorithm BindingVerify also outputs accept on this signature.

– Unforgeability: there are two different cases that we need to consider
• Outside Attacker: when an adversary does not have users’ secret keys,

then no valid signature that will pass the OutsiderVerify algorithm can
be produced;

• Inside Attacker: for any two users u and v, any group of other users
cannot frame user v by producing a signature that makes user u believe
that the signature is created by user v when user u executes the algorithm
InsiderVerify.

– Ambiguity: before the individual keystone ikj is released, an adversary cannot
prove that user j is the actual signer of a signature. Instead, the only thing
that the adversary can be sure is that the actual signer belongs to the group
of n users.

– Fairness: We require that any valid ambiguous signatures generated using
the same group keystone-fix will all become binding after the keystones are
released. Hence, a matching signer cannot be left in a position where a key-
stone binds his signature to him whilst some of the other signers’ signatures
are not bound to them.

2.4 Bilinear Pairings and Complexity Assumptions

Let G1 and G2 be two groups of the same prime order q. Normally, G1 is a group
of elliptic curve points and G2 is a subgroup of a group of non-zero elements of a
fields. We will write group operation in G1 additively and in G2 multiplicatively.
Elements of G1 are usually presented as capital letters like P , Q, S, . . ., and
elements of G2 are presented as lower case letters.

A bilinear pairing is a map ê : G1×G1 → G2 with the following three properties

1. Bilinearity: for any α, β ∈ Zq and P,Q ∈ G1,

ê(αP, βQ) = ê(P,Q)αβ ;
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2. Non-degeneracy: for all P ∈ G1, if P 
= O then ê(P, P ) 
= 0;
3. Computability: there exists an efficient algorithm to calculate ê(P,Q) for all

P,Q ∈ G1.

We consider the following bilinear Diffie–Hellman assumption.

Computational Bilinear Diffie–Hellman Assumption. The bilinear Diffie–
Hellman problem in (G1, G2, ê) is as follows: given (P, xP, yP, zP ) for some
x, y, z ∈ Z∗

q , compute g = ê(P, P )xyz ∈ G2. The computational bilinear Diffie–
Hellman assumption over (G1, G2, ê) states that any poly-time algorithm A has
negligible success in solving the bilinear Diffie–Hellman problem, that is,

Pr[A(P, xP, yP, zP ) = ê(P, P )xyz]

is negligible in log q, where the probability is over the random choice of x, y, z ∈
Z∗

q and the random choice P ∈ G1.

Computational Diffie–Hellman Assumption on G1. The Diffie–Hellman
problem in G1 is as follows: given (P, xP, yP ) for some x, y ∈ Z∗

q , compute
xyP ∈ G1. The computational Diffie–Hellman assumption over G1 states that
any poly-time algorithm A has negligible success in solving the Diffie–Hellman
problem, that is,

Pr[A(P, xP, yP ) = xyP ]

is negligible in log q, where the probability is over the random choice of x, y ∈ Z∗
q

and the random choice P ∈ G1.

Relationship between the two assumptions
Clearly, if from P , xP , yP we can calculate xyP then with zP we can calcu-
late ê(P, P )xyz = ê(zP, xyP ). Thus the Computational Bilinear Diffie–Hellman
Assumption is stronger than the Computational Diffie–Hellman Assumption.

3 The Proposed Multi-party Concurrent Signatures

In this section we will describe our multi-party concurrent signature scheme.
Our construction is inspired by the recently proposed ring signature scheme of
Chow, Yiu and Hui [8].

– Algorithm Setup(�, n):
• Select bilinear map ê : G1 × G1 → G2 where G1 and G2 are groups of

prime order q of � bits, and four cryptographic hash functions

H1,H2 : {0, 1}∗ → G1 and H3,H4 : {0, 1}∗ → Zq;

• Select a generator P of G1 and random numbers sk0, sk1, . . . , skn ∈ Z∗
q .

For each 0 ≤ i ≤ n, set pki = Pi = skiP ;
• For each i ∈ [1, n], the secret key for user i is ski;
• The public key tuple is PK = (P, P0, P1, P2, . . . , Pn);
• Set K = {0, 1}∗, F = G1, M = Zq;
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• The function KGEN : K → F is defined as KGEN = H1.

– Algorithm Sign(m,PK,F, sk, ik):
A user j uses a secret key sk = skj and an individual keystone ik = ikj to
sign a message m = mj as follows,
• For each i = 1, . . . , n such that i 
= j, compute

Ui = H2(mj ||j||F ||ê(P0, Pi)skj ) ∈ G1

and
hi = H3(mj ||i||PK||F ||Ui) ∈ Zq;

• Compute
Uj = H4(ikj)Pj −

∑
i�=j

(Ui + hiPi) ∈ G1,

hj = H3(mj ||j||PK||F ||Uj) ∈ Zq

and
V = skj(hj + H4(ikj))F ∈ G1;

• The signature is σ = (V,U1, U2, . . . , Un).

– Algorithm OutsiderVerify(m,σ, PK,F ):
• For each i = 1, 2, . . . , n, compute hi = H3(m||i||PK||F ||Ui) ∈ Zq;
• Outputs accept if ê(P, V ) = ê(F,

∑n
i=1 (Ui + hiPi)).

– Algorithm InsiderVerify(m,σ, PK,F, j, sk):
A user i uses a secret key sk = ski to check signature σ on a message m = mj

from user j as follows,
• If Ui 
= H2(mj ||j||F ||ê(P0, Pj)ski) then outputs reject, otherwise con-

tinue;
• For each i = 1, 2, . . . , n, compute hi = H3(mj ||i||PK||F ||Ui) ∈ Zq;
• Outputs accept if ê(P, V ) = ê(F,

∑n
i=1 (Ui + hiPi)).

– Algorithm BindingVerify(PK, 〈gk, F, ik1, ik2, . . . , ikn, r1, r2, . . . , rn,m1, σ1,
m2, σ2, . . . , mn, σn〉): consequently check the following conditions, outputs
reject if any condition fails,
• Check if F

?= KGEN(gk) holds;
• For each j = 1, 2, . . . , n, in signature from user j, check if

ê(P, V ) ?= ê(F,

n∑
i=1

(Ui + hiPi)),

and
ê(P, V ) ?= ê(Pj , (hj + H4(ikj))F ),

where hi = H3(mj ||i||PK||F ||Ui) ∈ Zq.
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Remarks

– The difference between algorithms OutsiderVerify and InsiderVerify is that,
the algorithm InsiderVerify requires an additional checking

Ui
?= H2(mj ||j||F ||ê(P0, Pj)ski).

This can be executed by user i who has the secret key ski, but cannot be
executed by any outsider.

– The difference between algorithms OutsiderVerify and BindingVerify is that,
the algorithm BindingVerify requires additional checkings

F
?= KGEN(gk) and ê(P, V ) ?= ê(Pj , (hj + H4(ikj))F ).

This can only be executed when the group keystone gk and the individual
keystone ikj are known.

– Efficiency: Since we allow each user to sign signature on his/her own arbi-
trary message, for n user, a final concurrent signature size must be n times
the size of each individual signature. Our proposed concurrent signature
scheme is based on a linear-size ring signature [8], thus, each individual sig-
nature is of size O(n), and the final concurrent signature is of size O(n2).
It is an open problem to construct a concurrent signature scheme based on
a constant-size ring signature. If constant-size ring signatures [9,16] can be
used then the resulted concurrent signature would have the size reduced to
O(n).

3.1 Security Analysis

Correctness. If a signature has been generated correctly by invoking Sign al-
gorithm then it should pass all three algorithms InsiderVerify, OutsiderVerify and
BindingVerify.

Theorem 1. The proposed scheme satisfies the correctness property.

Proof
1. Checking algorithm OutsiderVerify:
Since Uj = H4(ikj)Pj −

∑
i�=j (Ui + hiPi) we have∑

i�=j

(Ui + hiPi) = H4(ikj)Pj − Uj ,

thus,
n∑

i=1

(Ui + hiPi) = (H4(ikj)Pj − Uj) + (Uj + hjPj) = (H4(ikj) + hj)Pj .

Therefore,

ê(F,

n∑
i=1

(Ui + hiPi)) = ê(F, (H4(ikj) + hj)Pj) = ê(F, skj(H4(ikj) + hj)P ).
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On the other hand, V = skj(hj + H4(ikj))F . Thus,

ê(P, V ) = ê(F,

n∑
i=1

(Ui + hiPi)),

and the signature passes the algorithm InsiderVerify.

2. Checking algorithm InsiderVerify
Since ê(P0, Pi)skj = ê(P, P )sk0 ski skj = ê(P0, Pj)ski , we have

Ui = H2(mj ||j||F ||(P0, Pi)skj ) = H2(mj ||j||F ||(P0, Pj)ski).

In addition, as shown above, ê(P, V ) = ê(F,
∑n

i=1 (Ui + hiPi)), thus, the signa-
ture passes the algorithm InsiderVerify.

3. Checking algorithm BindingVerify
Since V = skj(hj + H4(ikj))F , we have

ê(P, V ) = ê(P, skj(hj + H4(ikj))F ) = ê(Pj , (hj + H4(ikj))F ).

In addition, as shown above, ê(P, V ) = ê(F,
∑n

i=1 (Ui + hiPi)), thus, the signa-
ture passes the algorithm BindingVerify. This completes the proof.

Unforgeability
Outside Attacker: when an adversary does not have users’ secret keys, then no
valid signature that will pass the OutsiderVerify algorithm can be produced.

Theorem 2. (Outsider Unforgeability) The proposed scheme is existential
unforgeable against adaptive chosen message attack under the random oracle
model assuming the hardness of the Computational Diffie-Hellman problem in
G1.

Proof: We consider an adversary A playing the following forgery game. A is
given with the following resources:

– Public key: initially, the adversary is given the public key tuple PK;
– Hash queries: at anytime, the adversary can ask a hash value for any input.

For each hash function, we will maintain a hash list so that the hash outputs
will be consistent;

– Sign query: at anytime, the adversary can ask for a signature on any mes-
sage corresponding to any valid keystone-fix (i.e. keystone-fix that has been
output by the KGEN hash query). The adversary will be answered with a
signature that passes the OutsiderVerify algorithm.

The goal of the adversary is

– to construct a signature with a keystone-fix that passes the OutsiderVerify
algorithm,

– the forgery signature is not equal to any signature that has been given to
the adversary from the sign query.
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Suppose that there exists an adversary that plays with non-negligible success
in the above attack game, we will show that by using such adversary, we can
solve the computational Diffie-Hellman problem in G1. That is given P , xP and
yP , we can calculate xyP with non-negligible probability. We play as follows.

– Choose a random index j ∈ [1, n]. For each i 
= j, i ∈ [0, n], choose a random
ski ∈ Zq and set Pi = skiP . Choose random s ∈ Zq and set Pj = s xP . Give
the adversary the public key tuple PK = (P, P0, P1, P2, . . . , Pn).

– For each new hash query to KGEN = H1, choose a random number t ∈ Zq

and output the hash value t yP . If the adversary queries with an old input
then just output the value recorded in the hash list. Store the t values to a
T-list.

– For each sign query, use a secret key ski where i 
= j to sign the message and
give back the adversary the signature. This signature will pass the OutsiderVer-
ify algorithm because it was generated by a legitimate secret key ski.

Suppose that the adversary can produce a forgery signature with a keystone-
fix (m,V,U1, . . . , Un, F ). The requirement to pass the OutsiderVerify algorithm
is that

ê(P, V ) = ê(F,

n∑
i=1

(Ui + hiPi)), (1)

where hi = H3(m||i||PK||F ||Ui).
Since the output of H3 is totally random, the adversary must have queried

H3 with m||i||PK||F ||Ui for each i = 1, . . . , n. The probability that among these
n hash queries, the query on m||j||PK||F ||Uj was made last is non-negligible.
Thus, the hash query H3(m||j||PK||F ||Uj) = hj was made when all of the
following values are known to (or chosen by) the adversary:

m,F,U1, . . . , Un, h1, . . . , hj−1, hj+1, . . . , hn.

From (1) we have

ê(P, V ) =

⎡⎣ê(F,
∑
i�=j

(Ui + hiPi))ê(F,Uj)

⎤⎦ ê(F, hjPj).

Note that in the above equation, the value inside the square brackets and F
and Pj are all known to the adversary at the hash query H3(m||j||PK||F ||Uj) =
hj . Thus, upon receiving the value hj returned from the hash oracle, the adver-
sary can determine with non-negligible the value of V such that

ê(P, V ) =

⎡⎣ê(F,
∑
i�=j

(Ui + hiPi))ê(F,Uj)

⎤⎦ ê(F, hjPj).

By forking lemma, we can replay the adversary to produce another forgery
(m,V ′, U1, . . . , Un, F ) where H3(m||j||PK||F ||Uj) = h′

j . Thus, we obtain an-
other equality
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ê(P, V ′) =

⎡⎣ê(F,
∑
i�=j

(Ui + hiPi))ê(F,Uj)

⎤⎦ ê(F, h′
jPj).

Hence,
ê(P, V ′ − V ) = ê(F, (h′

j − hj)Pj).

Recall that Pj = s xP and F = t yP for some random t in the T-list. Thus,
the above equality gives

ê(P, V ′ − V ) = ê(t yP, (h′
j − hj)s xP ).

It follows that V ′ − V = (h′
j − hj)s t xyP . Therefore, we can calculate the value

xyP = [(h′
j − hj)s t]−1(V ′ − V ).

This completes the proof.

Inside Attacker: for any two users u and v, any group of other users cannot
frame user v by producing a signature that passes the algorithm InsiderVerify
and makes user u believe that the signature is created by user v.

Theorem 3. (Insider Unforgeability) The proposed scheme is existential
unforgeable against adaptive chosen message attack under the random oracle
model assuming the hardness of the Computational bilinear Diffie-Hellman prob-
lem in (G1, G2, ê).

Proof: We consider an adversary A playing the following forgery game. A first
chooses two user identities u and v. Let Xuv = {1, . . . , n} \ {u, v}. A is given
with the following resources:

– Public key and secret key: initially, the adversary is given the public key
tuple PK and n − 2 secret keys {ski : i ∈ Xu,v};

– Hash queries: at anytime, the adversary can ask a hash value for any input.
For each hash function, we will maintain a hash list so that the hash outputs
will be consistent;

– Sign query: since the adversary has the secret key of every user i in Xuv,
the adversary can sign any message on behalf of user i ∈ Xuv. In addition,
we allow that, at anytime, the adversary can ask for a signature signed
on the secret key sku or skv on any message corresponding to any valid
keystone-fix (i.e. keystone-fix that has been output by the KGEN hash query).
The adversary will be answered with a signature that passes the algorithm
InsiderVerify which is executed against any secret key skj of user j ∈ Xuv.

The goal of the adversary is

– to construct a forgery signature that makes user u believe that it is created
by user v, i.e. this signature must pass the InsiderVerify algorithm when
executed with secret key sku against the sender v,
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– the forgery signature is not equal to any signature that has been given to
the adversary from the sign query.

Suppose that there exists an adversary that plays with non-negligible success
in the above attack game, we will show that by using such adversary, we can solve
the computational bilinear Diffie-Hellman problem in (G1, G2, ê). That is given
P , xP , yP and zP , we can calculate ê(P, P )xyz with non-negligible probability.
We play as follows.

– For each i ∈ Xuv, choose a random ski ∈ Zq and set Pi = skiP . Choose
random s0, su, sv ∈ Zq and set P0 = s0 xP , Pu = su yP and Pv = sv zP .
This corresponds to sk0 = s0z, sku = suy and skv = svz. Note that we do
not know the values of sk0, sku, skv but we can calculate P0, Pu and Pv.
Give the adversary the public key tuple PK = (P, P0, P1, P2, . . . , Pn) and
n − 2 secret keys {skj : j ∈ Xuv}.

– For each new hash query to KGEN = H1, choose a random number t ∈ Zq

and output the hash value tP . If the adversary queries with an old input
then just output the value recorded in the hash list. Store the t values to a
T-list.

– For each sign query on secret key sku, use the normal Sign algorithm to sign.
There are two places in algorithm Sign that we need to use the secret key
value sku:

ê(P0, Pi)sku for i 
= u and V = sku(hu + H4(iku))F.

However, we do not know the value sku, so we need to show that we can calcu-
late these values without explicitly use sku. Firstly, for i 
= u, v, ê(P0, Pi)sku

can be calculated as ê(P0, Pu)ski since we know P0, Pu and ski. Secondly,
the value ê(P0, Pv)sku is chosen as a random element of G2. And finally, we
can check in the T-list for the value t such that F = tP , so V can calcu-
lated as V = t(hu + H4(iku))Pu. This signature clearly passes the algorithm
InsiderVerify against the sender u for any secret key ski of user i ∈ Xuv.
Thus, we have shown that we can answer sign requests on secret key sku.
Sign requests on secret key skv can be answered similarly.

Suppose that the adversary canproduce a forgery signature (mv, V, U1, . . . , Un, F ).
To convince user u that this signature is signed by user v, it must hold that

Uu = H2(mv||v||F ||ê(P0, Pv)sku).

Since the output of H2 is totally random, the adversary must have queried H2

with the exact input mv||v||F ||ê(P0, Pv)sku . We can look up in the hash list for
this input, thus, we can obtain ê(P0, Pv)sku . However,

ê(P0, Pv)sku = ê(P, P )sk0 sku skv = ê(P, P )s0susv xyz.

Therefore, we can calculate the value

ê(P, P )xyz =
[
ê(P0, Pv)sku

] 1
s0susv .

This completes the proof.
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Ambiguity. An adversary cannot prove that user j is the actual signer of a
signature before the individual keystone ikj is released, except that from the
algorithm OutsiderVerify, the adversary knows that the actual signer is among
the users.

Theorem 4. The proposed scheme satisfies the ambiguity property.

Proof: The difference between the algorithm OutsiderVerify and the algorithm
BindingVerify is the checking that links a signature to a user j by the validity of
the equation

ê(P, V ) ?= ê(Pj , (hj + H4(ikj))F ).

This is equivalent to the relation V = skj(hj + H4(ikj))F . Since the output
of H4 is totally random, before the release of the individual keystone ikj , the
value skj(hj + H4(ikj))F is totally random as a random element of G1, thus,
from the value V in the signature, there is no way to establish the relation
V = skj(hj + H4(ikj))F . This completes the proof.

Fairness. Clearly, our scheme satisfies the fairness property because after all
the keystones are released no matching signer left in a position where a keystone
binds his signature to him whilst some of the other signers’ signatures are not
bound to them. Thus, we have the following theorem.

Theorem 5. Our proposed multi-party concurrent signature scheme satisfies all
four properties: correctness, unforgeability, ambiguity and fairness, assuming the
computational bilinear Diffie–Hellman assumption in random oracle model.

4 Conclusion

In this paper, we have constructed for the first time a multi-party concurrent
signature scheme based on Chow-Yiu-Hui’s ring signature scheme. There are two
types of ring signatures. One with linear signature size and one with constant
signature size. The Chow-Yiu-Hui’s ring signature scheme belongs to the first
type, thus our multi-party concurrent signature scheme has signature size O(n2).
The remaining as an open problem is to construct a multi-party concurrent
signature scheme based on constant-size ring signatures.
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Abstract. A multisignature scheme enables multiple signers to coop-
erate to generate one signature for some message. The aim of the mul-
tisignatures is to decrease the total length of the signature and/or the
signing (verification) costs. This paper first discusses a formal security
model of multisignatures following that of the group signatures [1,4].
This model allows an attacker against multisignatures to access five or-
acles adaptively. With this model, we can ensure more general security
result than that with the existence model [14,11,12]. Second, we propose
a multisignature scheme using a claw-free permutation. The proposed
scheme can decrease the signature length compared to those of existence
multisignature schemes using a trapdoor one-way permutation (TWOP)
[11,12], because its signing does not require the random string. We also
prove that the proposed scheme is tightly secure with the formal security
model, in the random oracle model. Third, we discuss the security of the
multisignature schemes [11,12] using a TOWP with the formal security
model to confirm that these schemes can be proven to be tightly secure.

Keywords: multisignature scheme, formal security model, claw-free per-
mutation, random oracle model.

1 Introduction

The notion of multisignatures was introduced by Itakura and Nakamura [8], and
a great deal of research has been done on this subject [18,16,17,14,15,5,10,11,12].
In a multisignature scheme, two or more signers cooperate to generate one (multi)
signature for some message: The same result is accomplished by concatenating sig-
natures generated by the signers individually; however, the aim of the multisig-
nature scheme is to decrease the total length of the signature and/or the signing
(verification) costs.

As for the provably secure multisignature schemes using a trapdoor one-way
permutation (TOWP) like an RSA permutation [19], Mitomi and Miyaji1 [15]
and Kawauchi and Tada [10] proposed multisignature schemes based on the
full domain hash (FDH, [2]) and the probabilistic signature scheme (PSS, [3]),
1 See Appendix A in [15].

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 146–160, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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respectively. In these schemes, the signing is performed by signers sequentially,
and the length of signature increases as often as signers proceed the signing.
Since the signing is proceeded by substituting an intermediate multisignature2

for a TOWP, the key length (input size of the permutation) should be longer
than the signature length. Namely, if each signer publishes own key pair, the
signing order is restricted by the key length. Moreover, as the signing order
proceeds, the computation cost is enlarged because of the increase of the key
length.

Recently, several provably secure multisignature schemes using a TOWP [11,12]
in which the key length is independent from the signing order were proposed. These
schemes are based on the probabilistic full domain hash (PFDH, [7]) and PSS, re-
spectively, and are tightly secure in the random oracle model. The optimal lengths
of random strings in these schemes is estimated by log2 qΣ bits (≈ 30 bits) [12].
Since the random string is required in the verification process, it should be attached
with the signature, and hence, the length of the signature increases by log2 qΣ bits
per a signer. Note that if a system with themultisignature scheme is desired towork
for a long term (i.e., each signer will generate many signatures), then the length of
random string should be enlarged (in log order of the number of signatures). This
also enlarges the signature length.

1.1 Our Contribution

This paper first formalizes a security model of multisignatures following that
of the group signatures [1,4]. In our model, an attacker against multisignatures
can adaptively access five oracles; add user, register, corrupt, signing, and hash
oracles. Note that the previous security consideration has not discussed the reg-
istration of signers sufficiently. Our model casts light on the security in active
signer registration. With this model, we can ensure more general result than
that with the existence model [14,11,12].

Second, this paper proposes a multisignature scheme using a claw-free per-
mutation (CFP), and proves that the proposed scheme is tightly secure in
EUF-ACMA&AIA in the random oracle model [2], where EUF-ACMA&AIA de-
notes unforgeability against adaptive chosen message attack and adaptive insider
attack. In the proposed scheme, the increase of signature length is by one bit per
a signer; while, in the existence multisignature schemes using a TOWP [11,12],
the increase is by 30 bits (≈ log2 qΣ bits) per a signer.

Third, we discuss the security of multisignature schemes [11,12] using a TOWP
with the formal security model. With this model, we can show that these schemes
can be also proven to be tightly secure and that the optimal length of random string
can be also estimated by log2 qΣ bits (≈ 30 bits). The proof is fairly complicated;
however, if we modify the schemes by adding the public keys of signers to input of
hash function, we can easily prove their security in the same manner as the security
proof of multisignature scheme using a CFP.

2 More precisely, the exclusive-or of the intermediate multisignature and hash value
are utilized.
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1.2 Related Work

Boneh et al. [6] proposed a notion of an aggregate signatures which resembles
the multisignatures. In an aggregate signature scheme, each signer individually
generates her signature and an aggregator (maybe he is not one of the signers)
aggregates the signatures into one signature. Note that the messages shold be
distinct in order to proceed the aggregation correctly.

The original concept of the multisignatures is that signers cooperate to gen-
erate one signature for the same message. Note that only the signers (not an
aggregator who has no signing key) can generate the multisignature. On the
other hand, Mitomi and Miyaji [15] introduced a notion of message flexibility
to the multisignatures. The message flexibility allows signers to sign distinct
messages.

The difference between the aggregate signgatures and multisignatures can be
explained not by the message flexibility but by the entity who joints signatures
into one. From this viewpoint, the sequential aggregate signature scheme [13]
should be regarded as a multisignature scheme.

2 Definitions

We first introduce the definitions of a multisignature scheme and its security, a
trapdoor one-way permutation (TOWP), and a claw-free permutation (CFP).

Hereafter, we assume that the total group of signers G consists of (constant
ordered) L players (signers), P1, P2, · · · , and PL who have a pair of identification
number and public key, (ID1, pk1), (ID2, pk2), · · · , and (IDL, pkL), respectively,
and also assume that L′ signers Pi1 , Pi2 , · · · , and PiL′ in G′(⊆ G) execute a
multisigning algorithm. Note that these L′ signers may be selected adaptively
in the process of the multisigning algorithm3.

Definition 1 (multisignature scheme). A multisignature scheme consists
of the following three algorithms, (K,MS,V).

— Key generation algorithm K is a probabilistic algorithm which, given a security
parameter k, outputs a key pair (public and private keys), K(1k) = (pkij

, skij
)

for each signer Pij
of G where j ∈ [1, L] and ij ∈ [1, L].

— Multisigning algorithm MS is performed by Pij
∈ G′ where j ∈ [1, L′] and

ij ∈ [1, L]. The inputs of this algorithm are message mij
(concatenated with

the previous signer’s message mij−1), a signature of Pij−1 σij−1 and secret key
skij

, and the output is a signature σij
= MSskij

(mij
, σij−1). This algorithm

may be probabilistic.
— Verification algorithm V takes message miL′ , multisignature σiL′ , and public

keys of signers pki1 , · · · , pkiL′ , and returns Vpki1
,··· ,pki

L′
(miL′ , σiL′ ) = 1 if

σiL′ is a valid multisignature of miL′ and G′, and otherwise, returns 0 (⊥).
This algorithm is deterministic.

3 This paper discusses an order flexible multisignature scheme [15], in which each
signer can decide whether she joins the signature or not in signing process.
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Add(i) : Crpt(i) :
If Pi ∈ List then return ⊥ If Pi �∈ List\C-List then return ⊥
(pki, ski) ← K(1k) Pi → C-List
Pi → List return ski

return pki Σ(IDij , m, σij−1) :
Reg(i, pki) : If Pij �∈ List\C-List then return ⊥

If Pi ∈ List then return ⊥ If σij−1 is invalid then return ⊥
Pi → List; Pi → C-List return MS(skij , m)
return 1 H(m) : return H(m)

Fig. 1. Oracles

We then introduce the formal security model of multisignature schemes, fol-
lowing that of group signatures [1,4].

Definition 2 (formal security model of multisignatures). Let (K,MS,V)
be a multisignature scheme and let F be an attacker against the scheme. F
accesses the following five oracles (Fig. 1) to mount an attack. Here, let List and
C-List be lists which include the whole signer (an identity and her public key)
registered into the system, and the malicious signers who are registered (with
Reg oracle) or corrupted (with Crpt oracle) by F , respectively.
— Add(i) : An add user oracle is invoked to add an honest signer with identity
i to List. If a signer with identity i already exists, then the oracle returns ⊥.
Otherwise, the oracle runs the key generation algorithm and adds the signer
(and her public key) to List. Finally, the oracle returns pki.
— Reg(i, pki) : With a signer register oracle, F can register a new signer with
public key pki in List. The oracle also adds the signer to C-List.
— Crpt(i) : A corrupt oracle is utilized to corrupt the signer whose identity is i.
F can draw the secret key ski of signer Pi from the oracle.
— Σ(IDij

,Mij
, σij−1) : A signing oracle is given the identity of an honest signer

Pij
, message Mij

, and (multi)signature σij−1 to output a multisignature σij
.

— H(m) : A hash oracle (random oracle, [2]) is given a message m as an input
and outputs a string H(m).

We define the success probability of F with

Pr
[Vpki1

,pki2
,··· ,pki

L′
(m,σiL′ ) = 1

∧∃j ∈ {1, · · · , L′} where Pij
is not corrupted nor asked to sign m for G′

]
.

Here, G′ = {Pi1 , Pi2 , · · · , PiL′ } is a subgroup of G = {P1, P2, · · · , PL} chosen by
F adaptively.

We say that the multisignature scheme (K,MS,V) is EUF-ACMA&AIA (exis-
tential unforgeable against adaptive chosen message attack and adaptive insider
attack) secure in (L, τ, qΣ , qH , ε) if there is no attacker F who can achieve the
success probability more than ε within time bound τ even if F accesses the add
user and signer register oracles L times in total, the corrupt, signing, and hash
oracles at most L − 1, qΣ , and qH times, respectively.
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Fig. 2. Multisignature Scheme using Claw-free Permutation

We then review the definitions of the trapdoor one-way permutation (TOWP)
and claw-free permutation (CFP).

Definition 3 (TOWP). Assume that f : X → Y be a bijective map. We say
that a polynomial time algorithm A breaks the one-wayness of f in (τ ′, ε′) if A,
given y ∈ Y , outputs x ∈ X such that f(x) = y holds within time bound τ ′

and with success probability more than ε′. We say that f is a (τ ′, ε′) trapdoor
one-way permutation (TOWP) if (i) a polynomial time attacker can break the
one-wayness of f with secret information (trapdoor), and (ii) no attacker can
break the one-wayness of f in (τ ′, ε′) without the secret information.

Definition 4 (CFP). Assume that f, g : X → X be TOWPs over the set X.
We say that a polynomial time algorithm A finds a claw of (f, g) in (τ ′, ε′) if
A outputs the claw (x1, x2) such that f(x1) = g(x2) holds within time bound
τ ′ and with success probability more than ε′. We say that (f, g) is a pair of
claw-free permutations (CFPs) if no attacker can find a claw of (f, g) in (τ ′, ε′).

3 Multisignature Scheme Using Claw-Free Permutation

In this section, we propose a multisignature scheme using a CFP and discuss
its security. The proposed scheme can be regarded as a multisignature scheme
based on the signature scheme using a CFP proposed by Katz and Wang [9].

3.1 Construction

Suppose that the system contains L signers P1, P2, · · · , and PL with identity
numbers ID1, ID2, · · · , and IDL, respectively, and that the number of signers
who join the multisignature by L′. For simplicity, let us assume that each signer
signs only once in the signing process of one multisignature, namely assume
1 ≤ L′ ≤ L.
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Let PKI be a trusted third party who manages public keys of signers registered
in the multisignature system. When each signer Pi generates a key pair of public
and private keys, Pi asks the PKI to register the public key with her identity
number IDi.

Protocol 1 (multisignature scheme using a CFP, Fig. 2) . For a security
parameter k, let H : {0, 1}∗ → {0, 1}k be a hash function (random oracle).

— Key Generation: Each signer Pi runs the key generation algorithm K to
generate a pair of CFPs and their inverses (fi, gi, f−1

i , g−1
i ). Note that fi and

gi are the permutations over {0, 1}k. Moreover, Pi constructs a one-bit output
function Si : {0, 1}∗ → {0, 1} secretly. Pi then chooses one of the CFPs fi and
gi (without loss of generality, we assume that Pi selects fi), publishes fi as a
public key to the PKI, and holds (f−1

i , Si) secretly as a private key.
— Multisigning: SignerPij

receives aprevious signer’s (multi)signature (IDij−1 ,
pkij−1

,Mij−1 ,bij−1 , σij−1) and, if necessary, checks its validity with the verifi-
cation algorithm below. If the signer Pij

is the first one (i.e., j = 0), she regards
the previous signer’s signature IDi0 = IDi0 = φ,pki0 = fi0 = φ,Mi0 =
Mi0 = φ,bi0 = bi0 = φ, σi0 = 0k. Pij

sets IDij
= IDij−1 ||IDij

,pkij =
pkij−1

||fij
, andMij

= Mij−1 ||Mij
, computes bij

= Sij
(IDij

,pkij
,Mij

,bij−1),
and fixes bij

= bij−1 ||bij
. Pij

finally computes hij
= H(IDij

,pkij
,Mij

,bij
),

and zij
= hij

⊕ σij−1 ; and outputs σij
= f−1

ij
(zij

) as a multisignature with
IDij

,pkij
,Mij

,bij
.

— Verification: Verifier V checks the validity of a pair of message and multisig-
nature with some additional information (IDiL′ ,pkiL′ ,MiL′ ,biL′ , σiL′ ) as fol-
lows. For j = L′, L′−1, · · · , 1, V computes the followings: For σij

, V calculates
zij

= fij
(σij

) and hij
= H(IDij

,pkij
,Mij

,bij
). V then sets σij−1 = hij

⊕ zij

and divides IDij
= IDij−1 ||IDij

,pkij
= pkij−1

||fij
,Mij

= Mij−1 ||Mij
, and

bij
= bij−1 ||bij

. When V recovers σi0 for j = 1, V checks whether σi0 = 0k

holds or not. V accepts the multisignature if the above equation holds; other-
wise, rejects it.

The proposed scheme in Protocol 1 is message and order flexible, and order
verifiable [15].

Note: The secret function Si for each signer Pi in Protocol 1 can be constructed
with a random oracle as follows. Suppose that H ′ is a random oracle. Pi chooses
a secret information Ki with an arbitrary length, and defines Si(M) as the least
significant bit of H ′(M,Ki) for a message M .

Note that no one, except the signer herself, can check the validity of the
equality bi = Si(M). Namely, the (multi)signature for message M is unique as
(M,Si(M), f−1

i (H(M,Si(M)))) for the signer Pi; while, for a verifier, there are
two signatures for message M , (M,Si(M), f−1

i (H(M,Si(M)))) and (M,Si(M)⊕
1, f−1(H(M,Si(M) ⊕ 1))), acceptable in the verification algorithm.
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if (i, ∗, ∗) ∈ List return ⊥
else if i = t

(i, f, φ) → List
return ft = f

else
(fi, f

−1
i , Si) ← K(1κ)

(i, fi, f
−1
i ) → List

return fi

Fig. 3. Simulation of Add(i)

if (i, ∗, ∗) ∈ List return ⊥
else if i = t

Abort (fail the proof)
else

(i, fi, φ) → List
(i, fi, φ) → C-List
return 1

Fig. 4. Simulation of Reg(i, fi)

if (i, ∗, ∗) �∈ List\C-List then return ⊥
else if i = t

Abort (fail the proof)
else

(i, fi, f
−1
i ) → C-List

return f−1
i

Fig. 5. Simulation of Crpt(i)

3.2 Security Consideration

We then discuss the security of the proposed scheme. The following theorem
claims that the proposed scheme is EUF-ACMA&AIA secure if it is intractable to
find a claw of the CFPs (f, g).

Theorem 1. Suppose that there is an attacker who can break the proposed
scheme in (L, τ, qΣ , qH , ε) in the sense of EUF-ACMA&AIA. Then, we can con-
struct an algorithm which, given a claw-free permutation (f, g), can find a claw
of (f, g) in (τ ′, ε′), where {

ε′ ≥ 1
2L

(
ε − 1

2k

)
τ ′ ≤ τ + (qH + qΣ + 1)Tf

hold. Here, Tf denotes the time complexity of f (and g) required to operate the
permutation once.

Proof: Let F be an attacker against the proposed scheme. The proof is done by
reducing the problem of finding a claw of CFPs (f, g) to the problem of break-
ing the proposed scheme in EUF-ACMA&AIA, i.e., constructing an algorithm I
which, given a security parameter k and CFPs (f, g), uses F as an oracle to
output a claw (x1, x2) such that f(x1) = g(x2) holds.

I first selects t
R← [1, L] and regards f as the public key of signer Pt with an

identity number IDt. I moreover sets a secret function St : {0, 1}∗ → {0, 1}.
I then interacts with F as follows. I activates F with the security parameter

k. If F outputs the add user query (Add), signer register query (Reg), corrupt
query (Crpt), signing query (Σ), or hash query (H), then I simulates the corre-
sponding answer by following figures from 3 to 9, respectively. In these figures,
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IDij = IDij , fij = pkij
, Mij = Mij

if (ij , ∗, ∗) ∈ C-List then return ⊥
else

bij = Sij (IDij ,pkij
,Mij , φ)

bij = bij

query IDij ,pkij
,Mij ,bij to H

to get (0, IDij ,pkij
,Mij ,bij , ∗, 0k, σij ) ∈ H-List

return σij

Fig. 6. Simulation of Σ(IDij ,pkij
,Mij ,bij−1 , σij−1), |IDij | = 1

List and C-List are the lists of a whole signers registered in the system and of the
signers registered (with Reg) or corrupted (with Crpt) by F , respectively. Let
H-List be a list of H-queries and the corresponding answers. More precisely, it
consists of octuplet (d, IDij

,pkij
,Mij

,bij
, hij

, σij−1 , σij
). In the octuplet, d in-

dicates whether some information for finding a claw is embedded with the query
(d = 1) or not (d = 0). Note that d = 0 indicates the octuplet has been simulated
in case F queries (IDij

,pkij
,Mij

,bij−1 , σij−1) to Σ. As for the other elements,
the triplet (IDij

,pkij
,Mij

,bij
) is a query to H and hij

is the corresponding an-
swer. The pair (σij−1 , σij

) or (∗, τij
) is utilized in the simulation of the answer hij

.
I finally achieves the forgery (ID∗

iL′ ,pk∗
iL′ ,M

∗
iL′ ,b

∗
iL′ , σ

∗
iL′ ) from F . Note that

the forgery passes the verification algorithm. If ID∗
iL′ does not contain IDt, then

I aborts (fails the proof). Note that I successes the guess of t with probability
more than 1

L .
If ID∗

iL′ contains IDt, then I searches the octuplet (d, ID∗
iu

,pk∗
iu

,M∗
iu

,b∗
iu

,
h′

iu
, ∗, σ′

iu
) ∈ H-List with u such that iu = t. If such octuplet does not exist in

H-List, then I aborts (fails the proof). This failure happens with probability 1
2k

from the property of the random oracle.
If the octuplet (d, ID∗

iu
,pk∗

iu
,M∗

iu
,b∗

iu
, h′∗

iu
, ∗, σ′∗

iu
) ∈ H-List exists, then I

checks whether d = 1 or not. If d = 1, then f(σ∗
iu

) = h′ = g(σ′
iu

) holds and I can
find a claw (σ∗

iu
, σ′

iu
). Otherwise, namely if d = 0, since σ∗

iu
= σ′

iu
, I cannot find a

claw and fails the proof. Since St is a secret function of Pt (simulated by I), in F ’s
view, Siu

(ID∗
iu

,pk∗
iu

,M∗
iu

,b∗
iu−1

) is uniformly distributed in {0, 1}. Therefore, the
probability with which I fails because of b∗iu

= Siu
(ID∗

iu
,pk∗

iu
,M∗

iu
,b∗

iu−1
) is 1

2 .
Therefore, the success probability ε′ and running time τ ′ of I are estimated

by ε′ ≥ 1
2L (ε − 1

2k ) and τ ′ ≤ τ + (qH + qΣ + 1)Tf . �

4 Reconsideration of Multisignatures Using TOWP

References [11,12] proposed multisignature schemes using a TOWP and dis-
cussed their security with an ad-hoc security model. This section reconsiders the
security of multisignature schemes [11,12] with the formal security model.

We can show that the original schemes [11,12] can be proven to be tightly
secure with the formal security model, too, and that the optimal length for the
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IDij−1 ||IDij = IDij ,pkij−1
||fij = pkij

,Mij−1 ||Mij = Mij

if ij = t
bij = Sij (IDij ,pkij

,Mij ,bij−1)

bij = bij−1 ||bij

query IDij ,pkij
,Mij ,bij to H

to get (0, IDij ,pkij
,Mij ,bij , hij , σ′

ij−1 , σij )

if σij−1 = σ′
ij−1 then return σij

else then return “σij−1 is invalid.”
else

bij = Sij (IDij ,pkij
,Mij ,bij−1)

bij = bij−1 ||bij

query IDij ,pkij
,Mij ,bij to H

to get (d, IDij ,pkij
,Mij ,bij , hij , σ′

ij−1 , σij )

if d = 0
if σij−1 = σ′

ij−1 then return σij

else then return “σij−1 is invalid.”
else

for u = j down to v such that iv−1 = t
σiu−1 = fiu(σiu) ⊕ hiu

if ft(σt) = g(τt)
output σt, τt as a claw of (f, g)

else
return ⊥

Fig. 7. Simulation of Σ(IDij ,pkij
,Mij ,bij−1 , σij−1), |IDij | > 1

IDij = IDij , fij = pkij
, Mij = Mij , bij = bij

if ij = t
if bij = Sij (IDij ,pkij

,Mij , φ)

σij ←R {0, 1}k

hij = fij (σij )

(0, IDij ,pkij
,Mij ,bij , hij , 0k, σij ) → H-List

return hij

else

τij ← {0, 1}k

hij = g(τij )
(1, IDij ,pkij

,Mij ,bij , hij , φ, τij ) → H-List
return hij

else

σij ←R {0, 1}k

hij = fij (σij )

(0, IDij ,pkij
,Mij ,bij , hij , 0k, σij ) → H-List

return hij

Fig. 8. Simulation of H(IDij ,pkij
,Mij ,bij ), |IDij | = 1
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IDij−1 ||IDij = IDij ,pkij−1
||fij = pkij

,Mij−1 ||Mij = Mij , bij−1 ||bij = bij

if ij = t
if bij = Sij (IDij ,pkij

,Mij ,bij−1)

query IDij−1 ,pkij−1
,Mij−1 ,bij−1 to H

to get (0, IDij−1 ,pkij−1
,Mij−1 ,bij−1 , hij−1 , ∗, σij−1)

σij ←R {0, 1}k

hij = fij (σij ) ⊕ σij−1

(0, IDij ,pkij
,Mij ,bij , hij , σij−1 , σij ) → H-List

return hij

else
query IDij−1 ,pkij−1

,Mij−1 ,bij−1 to H

to get (0, IDij−1 ,pkij−1
,Mij−1 ,bij−1 , hij−1 , ∗, σij−1)

τij ← {0, 1}k

hij = g(τij ) ⊕ σij−1

(1, IDij ,pkij
,Mij ,bij , hij , φ, τij ) → H-List

return hij

else
query IDij−1 ,pkij−1

,Mij−1 ,bij−1 to H

to get (d, IDij−1 ,pkij−1
,Mij−1 ,bij−1 , hij−1 , ∗, σij−1)

if d = 0

σij ←R {0, 1}k

hij = fij (σij ) ⊕ σij−1

(0, IDij ,pkij
,Mij ,bij , hij , σij−1 , σij ) → H-List

return hij

else

hij ←R {0, 1}k

(1, IDij ,pkij
,Mij ,bij , hij , ∗, ∗) → H-List

return hij

Fig. 9. Simulation of H(IDij ,pkij
,Mij ,bij ), |IDij | > 1

length of random string can be also estimated by log2 qΣ bits (≈ 30 bits). The
proof, however, is a fairly complicated and tedious one; therefore, we omit it.

In order to achieve multisignature schemes which are tightly secure with
the formal model (whose security proofs are easier than those for the original
schemes), we slightly modify the multisignature schemes [11,12]. In the multi-
siganatures [11,12], the input of hash function includes identification numbers
IDij

in the same manner. In order to ensure the provable security with the for-
mal security model, we add public keys pkij

to the input of hash fnction, as
the multisignature scheme using a CFP described in section 3. See Appendix for
their construction and security results.

5 Discussion

References [11,12] proposed multisignature schemes using a TOWP. These
schemes utilize a random string in order to ensure the tight security, and the
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optimal length for the string is log2 qΣ bits (≈ 30 bits) [12]. Since the random
string is required in the verification process, it should be attached with the
resulting signature, and hence, the signature length4 increases by log2 qΣ bits
(≈ 30 bits) per a signer.

On the other hand, the increase of signature length in the proposed scheme
(using a CFP) is one bit per a signer. The proposed scheme can decrease the
increase by log2 qΣ − 1 bits (≈ 29 bits) per a signer, and it is more effective if
the number of signers is increased. It is important that, in the proposed scheme,
the increase does not depend on the number of signatures (qΣ) published in the
system. Note also that the proposed scheme relies its security on the stronger
assumption (claw-freeness) than the one-wayness. These imply that there is a
trade-off between the strength of assumption and the signature length.

With regard to the security, the proposed scheme is sufficiently tight security
(ε′ ≈ 1

2Lε) compared to the multisignature scheme [15] based on the full domain
hash [2].

6 Conclusion

This paper first discussed a formal security model of multisignatures. With the
model, in which the attacker can access five oracles adaptively, we can ensure
more general result than that with the existence model [14,11,12].

Second, this paper constructed a multisignature scheme using a claw-free per-
mutation (CFP) and proved its security based on the hardness of breaking the
claw-freeness in the random oracle model. The proposed scheme uses the secret
function for each signer which maps {0, 1}∗ to {0, 1}; while the scheme does
not require the random string. It may not be adequate to compare the pro-
posed scheme with the previous multisignature schemes [11,12] because these
schemes do not use the claw-free permutation but a trapdoor one-way permu-
tation (TOWP); however, the proposed scheme can decrease the increase of
signature length compared to them.

Third, we discuss the security of the multisignature schemes [11,12] using a
TOWP with the formal security model to confirm that these schemes can be
proven to be tightly secure.
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A Modification to Multisignature Schemes Using TOWP

In this section, we modifiy two multisignature schemes using a TWOP in order
to ensure the tight security with the formal security model. One of the schemes
is based on the probabilistic full domain hash (PFDH, [7]), named PFDH-MSS
[11], and the other is based on PSS with short signature, named S-PSS-MSS [12].
Let fij

and its inverse f−1
ij

be k bit permutations5. We first give the description
of (modified) PFDH-MSS [11].

Protocol 2 (PFDH-MSS [11], Fig. 10 (a)) . For a security parameter k, let
H : {0, 1}∗ → {0, 1}k be a hash function (random oracle).

— Key Generation: Each signer Pi runs the key generation algorithm K with
a security parameter k and gets a pair of a TOWP and its inverse (fi, f

−1
i ).

Pi publishes fi as a public key and holds f−1
i secretly as a private key.

— Multisigning: Assume that signer Pij
in G′ = {Pi1 , · · ·PiL′} ⊆ G signs on a

message mij
. Pij

, given identification number IDij−1 , public keys pkij−1
, mes-

sage Mij−1 , random string rij−1 , and signature σij−1 from a previous signer

Pij−1 (IDi0 = pki0 = Mi0 = ri0 = φ and σi0 = 0k), chooses rij

R← {0, 1}k0 .
Then, Pij

sets IDij
= IDij−1 ||IDij

, pkij
= pkij−1

||fij
, Mij

= Mij−1 ||mij
,

and rij
= rij−1 ||rij

, and computes τij
= H(IDij

,pkij
,Mij

, rij
) ⊕ σij−1 and

σij
= f−1

ij
(τij

). Finally, Pij
gives IDij

, pkij
, Mij

, rij
, and σij

to the next
signer.

— Verification: For IDiL′ , pkiL′ , MiL′ , riL′ , and σiL′ , the verifier V checks
the validity of the signature by recovering σij

(j = L′, · · · , 0) and checking
the validity of σi0 as follows: for IDij

, pkij
, Mij

, rij
, and σij

, we first com-
pute τij

= fij
(σij

). V recovers σij−1 = H(IDij
,pkij

,Mij
, rij

) ⊕ τij
. Then,

V divides IDij
= IDij−1 ||IDij

, pkij
= pkij−1

||fij
, Mij

= Mij−1 ||mij
, and

rij
= rij−1 ||rij

, and executes the verification for ij−1-th signer’s signature.
Finally, if σi0 = 0k−1, V accepts the signature. Otherwise, V rejects it.

We then give the description of (modified) S-PSS-MSS [12]. Here, |x| denotes
the bit length of x.

Protocol 3 (S-PSS-MSS [12], Fig. 10 (b)) . For a security parameter k, let
G : {0, 1}k1 → {0, 1}k−k0−k1 and H : {0, 1}∗ → {0, 1}k1 be hash functions
(random oracles).
5 For a specific fij , like the RSA permutation [19], see the reference [12] for detail.
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Fig. 10. Multisignature Scheme using Claw-free Permutation

— Key Generation: Key generation algorithm K is the same as that described
in the Protocol 2.

— Multisigning: Assume that signer Pij
in G′ = {Pi1 , · · ·PiL′} ⊆ G signs on a

message mij
. Pij

, given identification number IDij−1 , public keys pkij−1
, mes-

sage Mij−1 , and signature σij−1 from a previous signer Pij−1 (IDi0 = pki0 =

Mi0 = φ and σi0 = 0k−k0+k1), first chooses rij

R← {0, 1}k0 and divides σij−1

(k+(j−1)k0 bits) into three parts; the least significant k−k0−k1 bits, σR,ij−1 ,
the most significant k1 bits, σL,ij−1 , and the remaining part, σM,ij−1 . Then,
Pij

sets IDij
= IDij−1 ||IDij

, pkij
= pkij−1

||fij
, and Mij

= Mij−1 ||mij
, and

computes w′
ij

= H(IDij
,pkij

,Mij
, σM,ij−1 , σR,ij−1 , rij

), wij
= σL,ij−1 ⊕ w′

ij
,

and sij
= (σR,ij−1 ||rij

)⊕G(wij
). Pij

generates a signature σ′
ij

= f−1
ij

(sij
||wij

).
Finally, Pij

gives IDij
, pkij

, Mij
, and σij

= σM,ij−1 ||σ′
ij

to the next signer.
— Verification: For IDiL′ , pkiL′ , MiL′ , and σiL′ , the verifier V checks the

validity of the signature by recovering σij
(j = L′, · · · , 0) and checking the

validity of σi0 as follows: For IDij
, pkij

, Mij
, and σij

, V first divides σij

into two parts; lower k bits, σ′
ij
, and the remaining part, σM,ij−1 . Then, V

computes sij
||wij

= fij
(σ′

ij
), where |sij

| = k−k1−1 and |wij
| = k1. V recovers

σR,ij−1 ||rij
= sij

⊕ G(wij
) and σL,ij−1 = H(IDij

,pkij
,Mij

, σM,ij−1 , σR,ij−1 ,
rij

) ⊕ wij
, where |σR,ij−1 | = k − k0 − k1 and |rij

| = k0. V then divides
IDij

= IDij−1 ||IDij
, pkij

= pkij−1
||fij

, and Mij
= Mij−1 ||mij

, and recov-
ers σij−1 = σL,ij−1 ||σM,ij−1 ||σR,ij−1 , and executes the verification for ij−1-th
signer’s signature.
Finally, if σi0 = 0k−k0+k1 , V accepts the signature. Otherwise, V rejects it.

As for the security, the following theorems hold. The strategy of proofs is
almost the same as that of section 3.2.

Theorem 2 (Security of PFDH-MSS). Let F be an attacker who breaks
PFDH-MSS in (L, τ, qΣ , qH , ε) in accordance with EUF-ACMA&AIA. Then we
can break the one-wayness of f within time bound τ ′ and with success probability
Succow(τ ′):
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Succow(τ ′) ≥ 1

L (ε − qΣ(qH+qΣ)
2k0

− qΣ+1
2k−1 )

τ ′ ≤ τ + ((qH + qΣ) + L)Tf

where Tf denotes the time complexity of f .

Theorem 3 (Security of S-PSS-MSS). Let F be an attackerr who breaks S-
PSS-MSS in (L, τ, qΣ , qG, qH , ε) in accordance with EUF-ACMA&AIA. Then we
can break the one-wayness of f within time bound τ ′ and with success probability
Succow(τ ′):{

Succow(τ ′) ≥ 1
L (ε − qHqΣ

2k0
− qH((qH+qΣ)2+qG)+qΣ(qG+qH+qΣ)+1

2k1
)

τ ′ ≤ τ + ((qH + qΣ) + L)Tf

where Tf denotes the time complexity of f .

The optimal lengths of the random string in PFDH-MSS and S-PSS-MSS are
estimated by log2 qΣ bits, respectively [12].
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Abstract. The Unbalanced Oil and Vinegar scheme (UOV) is a sig-
nature scheme based on multivariate quadratic equations. It has o oil
variables and v vinegar variables. UOV has m equations and n variables,
where m = o and n = v + o. In this paper, we define the weak key of
UOV and study how to find the weak key from the public key. Second, we
study the security when m > o. And our result shows that the security
strengths of the current version of TTS, TRMS, Rainbow and MFE are
259 ∼ 267.6 3DES operations.
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1 Introduction

The ”Oil and Vinegar” signature was proposed by Patarin [10]. The idea consists
in hiding quadratic equations in o unknowns called ”oil variables”, v unknowns
called ”vinegar variables” and v = o. This scheme was broken by Aviad Kipnis
and Adi Shamir [8]. Aviad Kipnis et al. [9] proposed a variation of the original
signature called ”Unbalanced Oil and Vinegar” signature. The number of vinegar
variables is more than the number of oil variables, i.e. v > o.

The idea of the attack against ”Oil and Vinegar” [8] is to separate the oil and
the vinegar variables such that the attacker can extract an isomorphic copy of
the private key from the public key. Kipnis et al. [9] extended the idea of [8] for
UOV and its expected complexity of this attack is approximately CUOV (q, v, o) =
qv−o−1o4. Braeken et al. [2] showed that the case v ≥ o is particularly vulnerable
to Gröbner basis attacks. Solving some quadratic equations in some variables is
an intuitive way to attack MQ schemes. Yang et al. [15] stated that FXL is the
best method for MQ schemes and they also proposed its complexity estimation.
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In this paper, we study a variation of UOV, which the number of equations
is more than o. The result shows that when the number of equations is v, the
security strength is at the peak. Moreover, we review applications of the multi-
layer UOV, like MFE [14], Rainbow [5], TRMS [13] and TTS [16], and show
their security strengths are lower than they are claimed.

In Section 2, we describe UOV and its attacks. In Section 3, we show and
analyze our method. In Section 4, we apply our method to the multi-layer UOV.
And our conclusion is in Section 5.

2 UOV and Its Attacks

We introduce MQ schemes and describe UOV and its attacks.

2.1 MQ Scheme

For a typical MQ scheme, it operates on a base field K. And its public key is
composed of three maps, T ◦P ◦S, and its private key is the triple (T−1, P, S−1).
S(X) = MSX +VS and T (X) = MT X +VT are affine transformations in Kn and
Km respectively, where MS ∈ Kn×n, VS ∈ Kn, MT ∈ Km×m, and VT ∈ Km. S−1

and T−1 are their inverse transformations. P is a quadratic transformation and
the structures of P in MQ schemes are different. It is well known that finding a
solution for m general equations in n variables is a NP-complete problem [6].

2.2 UOV

Kipnis et al. [9] proposed a variation of ”Oil and Vinegar” signature called
”Unbalanced Oil and Vinegar”. In UOV, the number of vinegar variables is
more than the number of oil variables.

Private Key. The private key is the pair (P , S−1). S−1 is the inverse of the
affine transforation, S. P = (y1, · · · , ym) is a polynomial map with each compo-
nent in the following form, where for 1 ≤ i ≤ m = o, 1 ≤ j ≤ v, 1 ≤ k ≤ n =
v + o, aijk, bik ∈ K.

yi =
[
x1 · · · xn

]
(

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai11 · · · ai1v ai1(v+1) · · · ai1n

...
. . .

...
...

. . .
...

aiv1 · · · aivv aiv(v+1) · · · aivn

ai(v+1)1 · · · ai(v+1)v 0 · · · 0
...

. . .
...

...
. . .

...
ain1 · · · ainv 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ x1

...
xn

⎤⎥⎦ +

⎡⎢⎣ bi1

...
bin

⎤⎥⎦).

x1, · · · , xv are called vinegar variables and xv+1, · · · , xn are called oil variables. If
a multivariate polynomial is like the above form, we call it a kernel form of UOV.
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Public Key. The public key is the composed of P ◦ S = (y′
1, · · · , y′

m). Each
component is as follows. αijk , βij ∈ K.

y′
i =

[
x′

1 · · · x′
n

]
(

⎡⎢⎢⎢⎢⎢⎢⎣

αi11 · · · αi1v · · · αi1n

...
. . .

...
. . .

...
αiv1 · · · αivv · · · αivn

...
. . .

...
. . .

...
αin1 · · · αinv · · · αinn

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ x′

1
...

x′
n

⎤⎥⎦ +

⎡⎢⎣ βi1

...
βin

⎤⎥⎦).

Signing. To sign a message Msg, first we compute its hash Z = H(Msg) ∈ Km

by a publicly agreed hash function. Then choose v random numbers r1, r2, . . . , rv.
Then get xv+1, · · · , xv+o by solving linear equations zi = yi(r1, . . . , rv, xv+1, · · · ,
xv+o), where 1 ≤ i ≤ m. If there is no solution, repeat to choose random numbers
and solve again. Finally, the signature Sig = S−1(X).

Verifying. To verify a signature Sig, simply check whether V (Sig) = (P ◦
S)(Sig) = H(Msg) holds.

2.3 Extension Attack Against Balanced Oil and Vinegar

The original attack against the Balanced Oil and Vinegar scheme is from [8]. It
separates the oil and vinegar variables such that the attacker can forge signa-
tures. We focus on the quadratic terms of the public and private keys. Let Gi,
for 1 ≤ i ≤ m, be the respective matrix of the quadratic form of y′

i in the pub-
lic key. The quadratic part of the equations in P is represented as a quadratic

form with a corresponding (v + o)× (v + o) matrix of the form:
[
Ai Bi

Ci O

]
, where

Ai, Bi, Ci, O are v × v, v × o, o × v, o × o submatrices and O is a zero matrix.

After applying S = MSx + VS , Gi = MT
S

[
Ai Bi

Ci O

]
MS. It is clear that

[
Ai Bi

Ci O

]
maps the oil subspace (x1 = x2 = · · · = xv = 0) to the vinegar subspace
(xv+1 = xv+2 = · · · = xv+o = 0). And if Gi is invertible, G−1

i Gj maps the oil
space to the oil space. Therefore, the oil subspace is invariant subspace under
MS , called OM , is a common invariant subspace of all G−1

i Gj . And Kipnis et
al. show two algorithm to find OM , and choose a spaces VM for VM +OM = Kn

[8]. Now, we can separate the oil and vinegar variables and forge signatures.
Aviad Kipnis et al. extended the attack against the ”Balanced Oil and Vinegar”

to UOV scheme and gives the complexity estimate CUOV (q, v, o) = qv−o−1o4 [9].

2.4 Solving Multivariate Quadratic Equations

XL [4] is a method to solve equations. Among all XL family, FXL seems to have
the best performance [16]. XL stands for ”eXtended Linearizations”. XL consists
the following steps:
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1. Multiply: Generate all equations xi ∗ yj. xi is the variable in equations. yj is
the multivariate equation.

2. Linearize: Consider each monomial in all equations as a new variable and
perform Gaussian elimination.

3. Solve: If the result of previous step has a univariate equation, we solve this
equation and try other equations if possible.

4. Repeat: If Step 3 can not solve all variables, we treat the equations generated
in Step 1 as new equations and repeat.

We can get a solution when the degree of the monomial in XL is D. There are at
most E = (n+D−2

D−2 ) × m linear equations in V = (n+D
D ) variables. Hence we can

consider XL as solving a lot of linear equations. There are two questions here.
How to determine the minimum of D and the complexity of solving E linear
equations in V variables?

Yang et al. give the rigorous estimation of D [16]. D is not easy to expressed
as a function of m, n. [xd]f(x) is the coefficient of xd in f(x).

D = min{d | [xd]((1 − x)m−n−1(1 + x)m) < 0} (1)

Yang et al. also list several estimations to linearize a big matrix. In solving
MQ schemes, the matrix generated by quadratic equations is sparse. We chose
the complexity estimation in Section 6.2 in [16].

CL(E, V, q) ≈ (c0 + c1lgV )EV q (2)

q is the number of monomials in each equation and c0 = 4, c1 = 1
4 . The complex-

ity of XL is the complexity of finding D and linearizing the big matrix generated
by XL. CD(m, n) is the complexity to find D.

CXL(m, n) = CD(m, n) + CL((n+D−2
D−2 ) × m, (n+D

D ),
n(n + 1)

2
) (3)

In the original UOV, m is less than n. We can fix n − m variables to random
values. Then the number of the variables is equivalent to the number of equations.
This idea equals to add n − m equations to find a solution in attacking HFE
with Gröbner Basis [3]. Hence the complexity of XL to UOV is CXL(m, n) =
CXL(m, m).

3 Our Attack

3.1 Weak Keys of UOV

Definition 1. If M in the affine transformation of the private key of UOV is
like Mw in Fig. 1, then the private key is a weak key.

Let (P̂ , Ŝ) be a private key of UOV and Ŝ = MŜx + VŜ be an affine transfor-
mation. If MŜ is a matrix like in Fig. 1 and P̂ is a kernel form of UOV, P̂ ◦ Ŝ is
still a kernel form of UOV. Hence one can find another private key (P̂ ◦ Ŝ, I), I
is the identity matrix.
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Mw =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 · · · r1v 0 · · · 0
r21 r22 · · · r2v 0 · · · 0
...

...
. . .

...
...

. . .
...

rv1 rv2 · · · rvv 0 · · · 0
r(v+1)1 r(v+1)2 · · · r(v+1)v r(v+1)(v+1) · · · r(v+1)(v+o)

...
...

. . .
...

...
. . .

...
r(v+o)1 rn2 · · · r(v+o)v r(v+o)(v+1) · · · r(v+o)(v+o)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Fig. 1. A Matrix Transformation of Weak Keys in UOV

3.2 Steps of Our Method Against UOV

Assume the public key is P̂ ◦ Ŝ and the private key is (P̂ , Ŝ). Let Ŝ = MŜx+VŜ ,

MŜ =
[

A B
C D

]
, A, B, C and D are v × v, v × o, o × v and o × o submatrices

respectively. If A is an invertible matrix, we can find a matrix Mu =
[

Iv A−1B
O Io

]
,

where Iv and Io are v × v and o × o identity matrices and O is a zero matrix,

such that MŜMu =
[

A O
C CA−1B + D

]
is in the form of Fig. 1.

The following are the steps against UOV. We find Mu first. We let Mi be a
matrix like in Fig. 2, Mu can be expressed as Mv+1Mv+2 · · ·Mv+o. And the first
v elements in i-th column of MŜMi are all 0’s. Therefore, the coefficients of x2

i in
P ◦ (MŜMix + V ) are all 0’s. We then get m quadratic equations in v variables.

Mi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 0 · · · u1,i · · · 0
...

. . .
...

...
...

...
...

...
0 · · · 1 0 · · · uv,i · · · 0
0 · · · 0 1 · · · 0 · · · 0
...

. . .
...

...
. . .

...
...

0 · · · 0 0 · · · 1 · · · 0
...

. . .
...

...
. . .

...
. . .

...
0 · · · 0 0 · · · 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Fig. 2. A Matrix Form of Mi

We thus reduce finding Mi to solving the m quadratic equations in v variables.
After repeating o times, we can get Mu and find the weak key of any private key
of UOV. The complexity is o × CXL(m, v).

After finding Mu, we apply Mu to the public key P̂ ◦ Ŝ ◦Mu = P̂ ◦ (MŜMux+
VŜ). From Definition 1, MŜMu is the weak key of UOV. (P̂ ◦Ŝ◦Mu, I) is another
private key of UOV.
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If we have a message, Msg. We can get its signature, Sig, by (P̂ ◦ Ŝ ◦ Mu,
I). Therefore, H(Msg) = P̂ ◦ Ŝ ◦ Mu(Sig), where H is a publicly agreed hash
function. It is easy to get Mu(Sig), which is one of the signatures by P̂ ◦ Ŝ.

Lemma 2. If A of MŜ is an invertible matrix, we can find a transformation,
Mu, such that MŜMu is the weak key of UOV.

A has a high probability to be an invertible matrix. Even if A is not an invertible

matrix, we can find a permutation matrix such that MŜM ′ =
[

A B
C D

]
M ′ =[

A′ B′

C′ D′

]
and A′ is an invertible matrix. P̂ ◦ Ŝ and P̂ ◦ Ŝ ◦ M ′ are similar keys

[7]. Therefore, we can still get one of the signatures by P̂ ◦ Ŝ.

Lemma 3. If A of MŜ is not an invertible matrix, we first find a permutation
matrix, M ′, such that MŜM ′Mu is the weak key of UOV.

If (P, S) and (P̂ , Ŝ) are the equivalent keys of UOV [12] and (P̂ , Ŝ) is the weak
key of UOV, we can find a matrix such that (P, S) becomes a weak key of UOV.
The time complexities depend on the MQ schemes.

3.3 Discussion of the Number of Equations and Its Security

In the original UOV scheme, m = o and n = v + o, the attack of our scheme is
not better than solving variables directly, i.e. XL algorithm. The complexities
are CXL(m, n) = CXL(o, o) and o × CXL(m, v) = o × CXL(o, o) respectively.

However when the number of equations is more than the number of vinegar
variables, our method is better than using XL directly. For example, the key of
TRMS is a variant of UOV, although their concepts are different. The param-
eters in the current version of TRMS are m = 20, n = 28, v = 19, o = 9. The
complexities are CXL(m, n) = CXL(20, 28) = CXL(20, 20) and o×CXL(m, v) =
9 × CXL(20, 19) respectively. Our method is better than applying XL directly.

In multivariate signature schemes, the number of the variables is more than the
number of the polynomials. Consequently CXL(m, n) is similar to CXL(m, m).
When o and v are fixed, the security strength will be raised if m is larger.
However, when the number of the equations is more than v, o × CXL(m, v) is
smaller than CXL(m, n). In our experiment, the best choice of m is almost v.

4 Our Attack for the Multi-layer UOV

4.1 The Multi-layer UOV

The multi-layer UOV is first described in [5]. The idea is to classify P to sev-
eral sets. Each set is a independent kernel form of UOV. Let l be the number
of layers, mi is the number of equations and vi and oi are the numbers of vinegar
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and oil variables in the i-th layer. The number of vinegar variables is the sum
of the numbers of vinegar and oil variables in last layer, vi+1 = vi + oi and
mi+1 = mi + oi+1, for 1 ≤ i < l.

Rainbow [5] is a kind of the multi-layer UOV. Its parameters are l = 4,
(m1, v1, o1) = (6, 6, 6), (m2, v2, o2) = (11, 12, 5), (m3, v3, o3) = (16, 17, 5) and
(m4, v4, o4) = (27, 22, 11).

Since Rainbow is a variant of UOV, we can apply the attack for UOV. Its
complexity is CUOV (q, v, o) = CUOV (256, 22, 11) = 25622−11−1 × 114 > 293.

4.2 Separation of the Layers

We apply our method described in Section 3 to separate the layers. If the matrix
A, defined in Section 3.2, is invertible, we first transform the private key to the
weak key. We can separate the outermost layer of multi-layer UOV in complexity
o4×CXL(m4, v4) = 11×CXL(27, 22) ≈ 265.5 3DES operations. After transferring
to the weak key, only equations in the fourth layer has the terms with fourth
oil variables. Therefore, we can separate the fourth layer with others. Now, we
eliminate the outermost layer in the multi-layer scheme. We can repeat to take
off each layer to find the isomorphic copy of the private key or use XL to find
a solution only. As our experiment, when we take off the outermost layer of the
multi-layer UOV, we apply XL to get a solution.

4.3 Apply to Multi-layer UOV Schemes

We list the schemes that which private key can be viewed as a multi-layer UOV.
Although their concept are not the same as UOV, their private key can be treated
as a multi-layer UOV. We first use our method to take off the outermost layer
UOV and then use XL to get a solution of the rest equations.

MFE [14] is a variate of TRMC, however their private key can be viewed as
2 layers UOV, l = 2, (m1, v1, o1) = (20, 16, 16) and (m2, v2, o2) = (60, 32, 16).
The complexity to take off the outermost layer is o2 × CXL(m2, v2) = 16 ×
CXL(60, 32) ≈ 259 3DES operations. And the rest is 20 equations in 16 variables.

Rainbow [5] is a standard of the multi-layer UOV. As we described in previous
subsections, its has 4 layers. But we can treat it as 2 layers, l = 2, (m1, v1, o1) =
(16, 17, 5) and (m2, v2, o2) = (27, 22, 11). After taking off the second layer, the
rest is 16 equations in 22 variables. We can attack it with XL.

TRMS [13] and TRMC are based tractable rational maps. Its private key still
can be viewed as 2 layer UOV, l = 2, (m1, v1, o1) = (11, 13, 6) and (m2, v2, o2) =
(20, 19, 9).The complexity to take off the outermost layer is o2×CXL(m2, v2) = 9×
CXL(20, 19) ≈ 267.6 3DES operations. And the rest is 11 equations in 19 variables.
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TTS [16] is built on a combination of the Oil and Vinegar and Triangular
ideas. We treat its private key as 2 layer UOV, l = 2, (m1, v1, o1) = (11, 12, 7)
and (m2, v2, o2) = (20, 19, 9). The complexity to take off the outermost layer is
o2 × CXL(m2, v2) = 9 × CXL(20, 19) ≈ 267.6 3DES operations. And the rest is
11 equations in 19 variables.

We analyze the security strength with Equ. (1) and (2) in Section 2.4. We
are informed by Prof. Bo-Yin Yang and Jiun-Ming Chen that the parameters
in Equ. (2) may be too optimal. On the contrary, the estimates of Equ. (2)
only have a bit of overestimate in our experiment. Our experiment data is in
Table 1. Therefore, we still use the formula in Equ. (2) to analyze the security
strength.

Table 1. Estimations and Running Time of Equation 2

CXL(m, n) Estimate by Equ. (2) Running time of our experiment
in cycle numbers in log2 (in second)

CXL(10, 8) 32.07 32.53(1.8)

CXL(11, 9) 33.81 35.11(10.79)

CXL(12, 10) 38.33 39.11(173.119)

When attacking current version of these schemes, first we try to get the weak
key, and then use XL to find a solution to its rest equations. Here we tabulate
the complexity estimate in Table 2.

Table 2. Complexity estimate of Rainbow, MFE, TRMS, TTS in log2

Scheme taking off outermost layer XL to the rest forging a signarure

Rainbow 65.5 60.5 65.5

MFE 59 44.4 59

TRMS 67.6 43.8 67.6

TTS 67.6 43.8 67.6

5 Conclusion

There are two attacks against UOV. One is extended from the attack of the
”Balanced Oil and Vinegar” signature. The other is to solve the equations di-
rectly.

In this paper, we define the weak key of UOV and propose a scheme to transfer
to the weak key from the public key. Our scheme is suitable for the case m > v.
When v ≥ m > o, applying XL directly can get better performance.

We apply our scheme to the multi-layer UOV applications. First we take off
the outermost layer and then use XL to get a solution to the rest equations. We
also use the complexity estimates of [15] and implement to check the parameters
of these estimates. Our result shows that the current version of Rainbow, MFE,
TRMS and TTS is not as secure as they are claimed to be.
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Abstract. In this paper, we propose a new stream cipher construction
based on block cipher design principles. The main idea is to replace
the building blocks used in block ciphers by equivalent stream cipher
components. In order to illustrate this approach, we construct a very
simple synchronous stream cipher which provides a lot of flexibility for
hardware implementations, and seems to have a number of desirable
cryptographic properties.

1 Introduction

In the last few years, widely used stream ciphers have started to be systematically
replaced by block ciphers. An example is the A5/1 stream cipher used in the
GSM standard. Its successor, A5/3, is a block cipher. A similar shift took place
with wireless network standards. The security mechanism specified in the original
IEEE 802.11 standard (called ‘wired equivalent privacy’ or WEP) was based on
the stream cipher RC4; the newest standard, IEEE 802.11i, makes use of the
block cipher AES.

The declining popularity of stream ciphers can be explained by different fac-
tors. The first is the fact that the security of block ciphers seems to be better
understood. Over the last decades, cryptographers have developed a rather clear
vision of what the internal structure of a secure block cipher should look like.
This is much less the case for stream ciphers. Stream ciphers proposed in the
past have been based on very different principles, and many of them have shown
weaknesses. A second explanation is that efficiency, which has been the tradi-
tional motivation for choosing a stream cipher over a block cipher, has ceased
to be a decisive factor in many applications: not only is the cost of comput-
ing power rapidly decreasing, today’s block ciphers are also significantly more
efficient than their predecessors.
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Still, as pointed out by the eSTREAM Stream Cipher Project, it seems that
stream ciphers could continue to play an important role in those applications
where high througput remains critical and/or where resources are very restricted.
This poses two challenges for the cryptographic community: first, restoring the
confidence in stream ciphers, e.g., by developing simple and reliable design cri-
teria; secondly, increasing the efficiency advantage of stream ciphers compared
to block ciphers.

In this paper, we try to explore both problems. The first part of the article
reviews some concepts which lie at the base of today’s block ciphers (Sect. 3), and
studies how these could be mapped to stream ciphers (Sects. 4–5). The design
criteria derived this way are then used as a guideline to construct a simple and
flexible hardware-oriented stream cipher in the second part (Sect. 6).

2 Security and Efficiency Considerations

Before devising a design strategy for a stream cipher, it is useful to first clearly
specify what we expect from it. Our aim in this paper is to design hardware-
oriented binary additive stream ciphers which are both efficient and secure. The
following sections briefly discuss what this implies.

2.1 Security

The additive stream cipher which we intend to construct takes as input a k-bit
secret key K and an n-bit IV. The cipher is then requested to generate up to
2d bits of key stream zt = SK(IV, t), 0 ≤ t < 2d, and a bitwise exclusive OR
of this key stream with the plaintext produces the ciphertext. The security of
this additive stream cipher is determined by the extent to which it mimics a
one-time pad, i.e., it should be hard for an adversary, who does not know the
key, to distinguish the key stream generated by the cipher from a truly random
sequence. In fact, we would like this to be as hard as we can possibly ask from
a cipher with given parameters k, n, and d. This leads to a criterion called
K-security [1], which can be formulated as follows:

Definition 1. An additive stream cipher is called K-secure if any attack against
this scheme would not have been significantly more difficult if the cipher had been
replaced by a set of 2k functions SK : {0, 1}n×{0, . . . , 2d−1} → {0, 1}, uniformly
selected from the set of all possible functions.

The definition assumes that the adversary has access to arbitrary amounts of
key stream, that he knows or can choose the a priory distribution of the secret
key, that he can impose relations between different secret keys, etc.

Attacks against stream ciphers can be classified into two categories, depending
on what they intend to achieve:

– Key recovery attacks, which try to deduce information about the secret key
by observing the key stream.
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– Distinguishing attacks, the goal of which is merely to detect that the key
stream bits are not completely unpredictable.

Owing to their weaker objective, distinguishing attacks are often much easier to
apply, and consequently harder to protect against. Features of the key stream
that can be exploited by such attacks include periodicity, dependencies between
bits at different positions, non-uniformity of distributions of bits or words, etc.
In this paper we will focus in particular on linear correlations, as it appeared
to be the weakest aspect in a number of recent stream cipher proposals such
as Sober-tw [2] and Snow 1.0 [3]. Our first design objective will be to keep
the largest correlations below safe bounds. Other important properties, such as
a sufficiently long period, are only considered afterwards. Note that this ap-
proach differs from the way LFSR or T-function based schemes are constructed.
The latter are typically designed by maximizing the period first, and only then
imposing additional requirements.

2.2 Efficiency

In order for a stream cipher to be an attractive alternative to block ciphers, it
must be efficient. In this paper, we will be targeting hardware applications, and
a good measure for the efficiency of a stream cipher in this environment is the
number of key stream bits generated per cycle per gate.

There are two ways to obtain an efficient scheme according to this measure.
The first approach is illustrated by A5/1, and consists in minimizing the number
of gates. A5/1 is extremely compact in hardware, but it cannot generate more
than one bit per cycle. The other approach, which was chosen by the designers of
Panama [4], is to dramatically increase the number of bits per cycle. This allows
to reduce the clock frequency (and potentially also the power consumption)
at the cost of an increased gate count. As a result, Panama is not suited for
environments with very tight area constraints. Similarly, designs such as A5/1
will not perform very well in systems which require fast encryption at a low
clock frequency. One of the objectives of this paper is to design a flexible scheme
which performs reasonably well in both situations.

3 How Block Ciphers Are Designed

As explained above, the first requirement we impose on the construction is that
it generates key streams without exploitable linear correlations. This problem is
very similar to the one faced by block cipher designers. Hence, it is natural to
attempt to borrow some of the techniques used in the block cipher world. The
ideas relevant to stream ciphers are briefly reviewed in the following sections.

3.1 Block Ciphers and Linear Characteristics

An important problem in the case of block ciphers is that of restricting linear
correlations between input and output bits in order to thwart linear cryptanal-
ysis [5]. More precisely, let P be any plaintext block and C the corresponding
ciphertext under a fixed secret key, then any linear combination of bits
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Fig. 1. Three layers of a block cipher

ΓT
P · P + ΓT

C · C ,

where the column vectors ΓP and ΓC are called linear masks, should be as
balanced as possible. That is, the correlation

c = 2 · |{P | ΓT
P · P = ΓT

C · C}|
|{P}| − 1

has to be close to 0 for any ΓP and ΓC . The well-established way to achieve
this consists in alternating two operations. The first splits blocks into smaller
words which are independently fed into nonlinear substitution boxes (S-boxes);
the second step recombines the outputs of the S-boxes in a linear way in order to
‘diffuse’ the nonlinearity. The result, called a substitution-permutation network,
is depicted in Fig. 1.

In order to estimate the strength of a block cipher against linear cryptanalysis,
one will typically compute bounds on the correlation of linear characteristics.
A linear characteristic describes a possible path over which a correlation might
propagate through the block cipher. It is a chain of linear masks, starting with a
plaintext mask and ending with a ciphertext mask, such that every two successive
masks correspond to a nonzero correlation between consecutive intermediate
values in the cipher. The total correlation of the characteristic is then estimated
by multiplying the correlations of all separate steps (as dictated by the so-called
Piling-up Lemma).

3.2 Branch Number

Linear diffusion layers, which can be represented by a matrix multiplication Y =
M ·X , do not by themselves contribute in reducing the correlation of a character-
istic. Clearly, it suffices to choose ΓX = MT ·ΓY , where MT denotes the transpose
of M , in order to obtain perfectly correlating linear combinations of X and Y :

ΓT
Y · Y = ΓT

Y · MX = (MTΓY )T · X = ΓT
X · X .

However, diffusion layers play an important indirect role by forcing characteris-
tics to take into account a large number of nonlinear S-boxes in the neighboring
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layers (called active S-boxes). A useful metric in this context is the branch num-
ber of M .

Definition 2. The branch number of a linear transformation M is defined as

B = min
ΓY �=0

[wh(ΓY ) + wh(MTΓY )] ,

where wh(Γ ) represents the number of nonzero words in the linear mask Γ .

The definition above implies that any linear characteristic traversing the struc-
ture shown in Fig. 1 activates at least B S-boxes. The total number of active
S-boxes throughout the cipher multiplied by the maximal correlation over a
single S-box gives an upper bound for the correlation of the characteristic.

The straightforward way to minimize this upper bound is to maximize the
branch number B. It is easy to see that B cannot exceed m+1, with m the number
of words per block. Matrices M that satisfy this bound (known as the Singleton
bound) can be derived from the generator matrices of maximum distance separa-
ble (MDS) block codes.

Large MDS matrices are expensive to implement, though. Therefore, it is often
more efficient to use smaller matrices, with a relatively low branch number, and
to connect them in such a way that linear patterns with a small number of active
S-boxes cannot be chained together to cover the complete cipher. This was the
approach taken by the designers of Rijndael [6].

4 From Blocks to Streams

In this section, we try to adapt the concepts described above to a system where
the data is not processed in blocks, but rather as a stream.

Since data enters the system one word at a time, each layer of S-boxes in
Fig. 1 can be replaced by a single S-box which substitutes individual words
as they arrive. A general mth-order linear filter can take over the task of the
diffusion matrix. The new system is represented in Fig. 2, where D denotes the
delay operator (usually written as z−1 in signal processing literature), and f and
g are linear functions.

4.1 Polynomial Notation

Before analyzing the properties of this construction, we introduce some nota-
tions. First, we adopt the common convention to represent streams of words
x0, x1, x2, . . . as polynomials with coefficients in the finite field:

x(D) = x0 + x1D + x2D
2 + . . . .

The rationale for this representation is that it simplifies the expression for the
input/output relation of the linear filter, as shown in the following equation:

y(D) =
f(D)
g(D)

·
[
x(D) + x0(D)

]
+ y0(D) . (1)
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g

Fig. 2. Stream equivalent of Fig. 1

. . . , 0, 0, 1 0 0 1 0 y

Fig. 3. A 4th-order linear filter

The polynomials f and g describe the feedforward and feedback connections of
the filter. They can be written as

f(D) = Dm ·
(
fmD−m + · · · + f1D

−1 + 1
)

,

g(D) = 1 + g1D + g2D
2 + · · · + gmDm .

The Laurent polynomials x0 and y0 represent the influence of the initial state s0,
and are given by x0 = D−m ·

(
s0 · g mod Dm

)
and y0 = D−m ·

(
s0 · f mod Dm

)
.

Example 1. The 4th-order linear filter depicted in Fig. 3 is specified by the poly-
nomials f(D) = D4 · (D−2 + 1) and g(D) = 1 + D3 + D4. Suppose that the
delay elements are initialized as shown in the figure, i.e., s0(D) = D. Knowing
s0, we can compute x0(D) = D−3 and y0(D) = D−1. Finally, using (1), we find
the output stream corresponding to an input consisting, for example, of a single
1 followed by 0’s (i.e., x(D) = 1):

y(D) =
D−1 + D + D2 + D4

1 + D3 + D4
+ D−1

= D + D3 + D5 + D6 + D7 + D8 + D12 + D15 + D16 + D18 + . . .

4.2 Linear Correlations

In order to study correlations in a stream-oriented system we need a suitable way
to manipulate linear combinations of bits in a stream. It will prove convenient
to represent them as follows:

Tr
[
[γx(D−1) · x(D)]0

]
.
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The operator [·]0 returns the constant term of a polynomial, and Tr(·) denotes the
trace to GF(2).1 The coefficients of γx, called selection polynomial, specify which
words of x are involved in the linear combination. In order to simplify expressions
later on we also introduce the notation γ∗(D) = γ(D−1). The polynomial γ∗ is
called the reciprocal polynomial of γ.

As before, the correlation between x and y for a given pair of selection poly-
nomials is defined as

c = 2 ·
|{(x, s0) | Tr[[γ∗

x · x]0] = Tr[[γ∗
y · y]

0
]}|

|{(x, s0)}| − 1 ,

where deg x ≤ max(deg γx, deg γy).

4.3 Propagation of Selection Polynomials

Let us now analyze how correlations propagate through the linear filter. For each
selection polynomial γx at the input, we would like to determine a polynomial
γy at the output (if it exists) such that the corresponding linear combinations
are perfectly correlated, i.e.,

Tr[[γ∗
x · x]0] = Tr[[γ∗

y · y]
0
], ∀x, s0 .

If this equation is satisfied, then this will still be the case after replacing x by
x′ = x+x0 and y by y′ = y+y0, since x0 and y0 only consist of negative powers,
none of which can be selected by γx or γy. Substituting (1), we find

Tr[[γ∗
x · x′]0] = Tr[[γ∗

y · f/g · x′]
0
], ∀x, s0 ,

which implies that γ∗
x = γ∗

y ·f/g. In order to get rid of negative powers, we define
f� = Dm · f∗ and g� = Dm · g∗ (note the subtle difference between both stars),
and obtain the equivalent relation

γy = g�/f� · γx . (2)

Note that neither of the selection polynomials γx and γy can have an infinite
number of nonzero coefficients (if it were the case, the linear combinations would
be undefined). Hence, they have to be of the form

γx = q · f�/ gcd(f�, g�) and γy = q · g�/ gcd(f�, g�) , (3)

with q(D) an arbitrary polynomial.

Example 2. For the linearfilter inFig. 3,wehave thatf�(D) = 1+D2 andg�(D) =
D4 · (D−4 + D−3 + 1). In this case, f� and g� are coprime, i.e., gcd(f�, g�) = 1. If
we arbitrarily choose q(D) = 1 + D, we obtain a pair of selection polynomials

γx(D) = 1 + D + D2 + D3 and γy(D) = 1 + D2 + D4 + D5 .

By construction, the corresponding linear combinations of input and output bits
satisfy the relation

Tr(x0 + x1 + x2 + x3) = Tr(y0 + y2 + y4 + y5), ∀x, s0 .

1 The trace from GF (2n) to GF (2) is defined as Tr(a) = a + a2 + a4 + · · · + a2n−1
.
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4.4 Branch Number

The purpose of the linear filter, just as the diffusion layer of a block cipher,
will be to force linear characteristics to pass through as many active S-boxes as
possible. Hence, it makes sense to define a branch number here as well.

Definition 3. The branch number of a linear filter specified by the polynomials
f and g is defined as

B = min
γx �=0

[wh(γx) + wh(g�/f� · γx)]

= min
q �=0

[wh(q · f�/ gcd(f�, g�)) + wh(q · g�/ gcd(f�, g�))] ,

where wh(γ) represents the number of nonzero coefficients in the selection poly-
nomial γ.

From this definition we immediately obtain the following upper bound on the
branch number

B ≤ wh(f�) + wh(g�) ≤ 2 · (m + 1) . (4)

Filters for which this bound is attained can be derived from MDS convolutional
(2, 1, m)-codes [7]. For example, one can verify that the 4th-order linear filter
over GF(28) with

f(D) = D4 ·
(
02xD−4 + D−3 + D−2 + 02xD−1 + 1

)
,

g(D) = 1 + 03xD + 03xD2 + D3 + D4 ,

has a branch number of 10. Note that this example uses the same field polynomial
as Rijndael, i.e., x8 + x4 + x3 + x + 1.

5 Constructing a Key Stream Generator

In the previous section, we introduced S-boxes and linear filters as building
blocks, and presented some tools to analyze how they interact. Our next task is to
determine how these components can be combined into a key stream generator.
Again, block ciphers will serve as a source of inspiration.

5.1 Basic Construction

A well-known way to construct a key stream generator from a block cipher is to
use the cipher in output feedback (OFB) mode. This mode of operation takes
as input an initial data block (called initial value or IV), passes it through the
block cipher, and feeds the result back to the input. This process is iterated and
the consecutive values of the data block are used as key stream. We recall that
the block cipher itself typically consists of a sequence of rounds, each comprising
a layer of S-boxes and a linear diffusion transformation.

By taking the very same approach, but this time using the stream cipher
components presented in Sect. 4, we obtain a construction which, in its simplest
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Fig. 4. Two-round key stream generators

form, might look like Fig. 4(a). The figure represents a key stream generator
consisting of two ‘rounds’, where each round consists of an S-box followed by a
very simple linear filter. Data words traverse the structure in clockwise direction,
and the output of the second round, which also serves as key stream, is fed back
to the input of the first round.

While the scheme proposed above has some interesting structural similarities
with a block cipher in OFB mode, there are important differences as well. The
most fundamental difference comes from the fact that linear filters, as opposed
to diffusion matrices, have an internal state. Hence if the algorithm manages to
keep this state (or at least parts of it) secret, then this eliminates the need for a
separate key addition layer (another important block cipher component, which
we have tacitly ignored so far).

5.2 Analysis of Linear Characteristics

As stated before, the primary goal in this paper is to construct a scheme which
generates a stream of seemingly uncorrelated bits. More specifically, we would like
the adversary to be unable to detect any correlation between linear combinations
of bits at different positions in the key stream. In the following sections, we will see
that the study of linear characteristicsprovides someguidance onhow to design the
components of our scheme in order to reduce the magnitude of these correlations.

Applying the tools from Sect. 4 to the construction in Fig. 4(a), we can easily
derive some results on the existence of low-weight linear characteristics. The term
‘low-weight’ in this context refers to a small number of active S-boxes. Since we
are interested in correlations which can be detected by an adversary, we need both
ends of the characteristic to be accessible fromthe key stream. In order to construct
such characteristics, we start with a selection polynomial γu at the input of the first
round, and analyze how it might propagate through the cipher.
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First, the characteristic needs to cross an S-box. The S-box preserves the po-
sitions of the non-zero coefficients of γu, but might modify their values. For now,
however, let us only consider characteristics for which the values are preserved
as well. Under this assumption and using (2), we can compute the selection
polynomials γv and γw at the input and the output of the second round:

γv = g�
1/f�

1 · γu and γw = g�
2/f�

2 · γv .

Since all three polynomials γu, γv, and γw need to be finite, we have that

γu = q · f�
1 f�

2 /d , γv = q · g�
1f�

2 /d , and γw = q · g�
1g�

2/d ,

with d = gcd(f�
1 f�

2 , g�
1f�

2 , g�
1g�

2) and q an arbitrary polynomial. Note that since
both γu and γw select bits from the key stream z, they can be combined into a
single polynomial γz = γu + γw.

The number of S-boxes activated by a characteristic of this form is given by
W = wh(γu) + wh(γv). The minimum number of active S-boxes over this set of
characteristics can be computed with the formula

Wmin = min
q �=0

[wh(q · f�
1 f�

2 /d) + wh(q · g�
1f�

2 /d)] ,

from which we derive that

Wmin ≤ wh(f�
1 f�

2 ) + wh(g�
1f�

2 ) ≤ wh(f�
1 ) · wh(f�

2 ) + wh(g�
1) · wh(f�

2 ) .

Applying this bound to the specific example of Fig. 4(a), where wh(f�
i ) =

wh(g�
i ) = 2, we conclude that there will always exist characteristics with at most

8 active S-boxes, no matter where the taps of the linear filters are positioned.

5.3 An Improvement

We will now show that this bound can potentially be doubled by making the
small modification shown in Fig. 4(b). This time, each non-zero coefficient in
the selection polynomial at the output of the key stream generator needs to
propagate to both the upper and the lower part of the scheme. By constructing
linear characteristics in the same way as before, we obtain the following selection
polynomials:

γu = q · f�
1 f�

2 + f�
1 g�

2

d
, γv = q · f�

1 f�
2 + g�

1f�
2

d
, and γz = q · f�

1 f�
2 + g�

1g
�
2

d
,

with d = gcd(f�
1 f�

2 + f�
1 g�

2 , f�
1 f�

2 + g�
1f

�
2 , f�

1 f�
2 + g�

1g�
2). The new upper bounds

on the minimum number of active S-boxes are given by

Wmin ≤ wh(f�
1 f�

2 + f�
1 g�

2) + wh(f�
1 f�

2 + g�
1f

�
2 )

≤ 2 · wh(f�
1 ) · wh(f�

2 ) + wh(f�
1 ) · wh(g�

2) + wh(g�
1) · wh(f�

2 ) ,

or, in the case of Fig. 4(b), Wmin ≤ 16. In general, if we consider extensions of this
scheme with r rounds and wh(f�

i ) = wh(g�
i ) = w, then the bound takes the form:

Wmin ≤ r2 · wr . (5)
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This result suggests that it might not be necessary to use a large number of
rounds, or complicated linear filters, to ensure that the number of active S-
boxes in all characteristics is sufficiently large. For example, if we take w = 2 as
before, but add one more round, the bound jumps to 72.

Of course, since the bound we just derived is an upper bound, the minimal
number of active S-boxes might as well be much smaller. First, some of the
product terms in f�

1 f�
2 + f�

1 g�
2 or f�

1 f�
2 + g�

1f
�
2 might cancel out, or there might

exist a q 
= d for which wh(γu) + wh(γv) suddenly drops. These cases are rather
easy to detect, though, and can be avoided during the design. A more important
problem is that we have limited ourselves to a special set of characteristics,
which might not necessarily include the one with the minimal number of active
S-boxes. However, if the feedback and feedforward functions are sparse, and the
linear filters sufficiently large, then the bound is increasingly likely to be tight.
On the other hand, if the state of the generator is sufficiently small, then we can
perform an efficient search for the lowest-weight characteristic without making
any additional assumption.

This last approach allows to show, for example, that the smallest instance of
the scheme in Fig. 4(b) for which the bound of 16 is actually attained, consists
of two 11th-order linear filters with

f�
1 (D) = 1 + D10 , g�

1(D) = D11 · (D−3 + 1) ,

f�
2 (D) = 1 + D9 , g�

2(D) = D11 · (D−8 + 1) .

5.4 Linear Characteristics and Correlations

In the sections above, we have tried to increase the number of active S-boxes
of linear characteristics. We now briefly discuss how this number affects the
correlation of key stream bits. This problem is treated in several papers in the
context of block ciphers (see, e.g., [6]).

We start with the observation that the minimum number of active S-boxes
Wmin imposes a bound on the correlation cc of a linear characteristic:

c2
c ≤ (c2

s)
Wmin

,

where cs is the largest correlation (in absolute value) between the input and the
output values of the S-box. The squares c2

c and c2
s are often referred to as linear

probability, or also correlation potential. The inverse of this quantity is a good
measure for the amount of data that the attacker needs to observe in order to
detect a correlation.

What makes the analysis more complicated, however, is that many linear
characteristics can contribute to the correlation of the same combination of key
stream bits. This occurs in particular when the scheme operates on words, in
which case there are typically many possible choices for the coefficients of the
intermediate selection polynomials describing the characteristic (this effect is
called clustering). The different contributions add up or cancel out, depending
on the signs of cc. If we now assume that these signs are randomly distributed,
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then we can use the approach of [6, Appendix B] to derive a bound on the
expected correlation potential of the key stream bits:

E(c2) ≤ (c2
s)

Wmin−n
. (6)

The parameter n in this inequality represents the number of degrees of freedom
in the choice for the coefficients of the intermediate selection polynomials.

For the characteristics propagating through the construction presented in
Sect. 5.3, one will find, in non-degenerate cases, that the values of n = r ·
(r − 1) · wr−1 non-zero coefficients can be chosen independently. Hence, for ex-
ample, if we construct a scheme with w = 2 and r = 3, and if we assume that it
attains the bound given in (5), then we expect the largest correlation potential
to be at most c2·48

s . Note that this bound is orders of magnitude higher than
the contribution of a single characteristic, which has a correlation potential of
at most c2·72

s .

Remark 1. In order to derive (6), we replaced the signs of the contributing linear
characteristics by random variables. This is a natural approach in the case of
block ciphers, where the signs depend on the value of the secret key. In our case,
however, the signs are fixed for a particular scheme, and hence they might, for
some special designs, take on very peculiar values. This happens for example
when r = 2, w is even, and all non-zero coefficients of fi and gi equal 1 (as in
the example at the end of the previous section). In this case, all signs will be
positive, and we obtain a significantly worse bound:

c2 ≤ (c2
s)

Wmin−2·n
.

6 Trivium

In this final section, we present an experimental 80-bit key stream cipher based
on the approach outlined above. Because of space restrictions, we limit ourselves
to a very rough sketch of some basic design ideas behind the scheme. The com-
plete specifications of the cipher, which was submitted to the eSTREAM Stream
Cipher Project under the name Trivium, can be found at http://www.ecrypt.
eu.org/stream/ [8].

6.1 A Bit-Oriented Design

The main idea of Trivium’s design is to turn the general scheme of Sect. 5.3 into
a bit-oriented stream cipher. The first motivation is that bit-oriented schemes
are typically more compact in hardware. A second reason is that, by reducing the
word-size to a single bit, we may hope to get rid of the clustering phenomenon
which, as seen in the previous section, has a significant effect on the correlation.

Of course, if we simply apply the previous scheme to bits instead of words,
we run into the problem that the only two existing 1 × 1-bit S-boxes are both
linear. In order to solve this problem, we replace the S-boxes by a component
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which, from the point of view of our correlation analysis, behaves in the same
way: an exclusive OR with an external stream of unrelated but biased random
bits. Assuming that these random bits equal 0 with probability (1 + cs)/2, we
will find as before that the output of this component correlates with the input
with correlation coefficient cs.

The introduction of this artificial 1× 1-bit S-box greatly simplifies the corre-
lation analysis, mainly because of the fact that the selection polynomial at the
output of an S-box is now uniquely determined by the input. As a consequence,
we neither need to make special assumptions about the values of the non-zero
coefficients, nor to consider the effect of clustering: the maximum correlation in
the key stream is simply given by the relation

cmax = cWmin
s . (7)

The obvious drawback, however, is that the construction now relies on exter-
nal streams of random bits, which have to be generated somehow. Trivium
attempts to solve this problem by interleaving three identical key stream gen-
erators, where each generator obtains streams of biased bits (with cs = 1/2) by
ANDing together state bits of the two other generators.

6.2 Specifying the Parameters

Let us now specify suitable parameters for each of those three identical ‘sub-
generators’. Our goal is to keep all parameters as small and simple as possible,
given a number of requirements.

The first requirement we impose is that the correlations in the key stream
do not exceed 2−40. Since each sub-generator will be fed with streams of bits
having correlation coefficient cs = 1/2, we can derive from (7) that a minimum
weight Wmin of at least 40 is needed. The smallest values of w and r for which
this requirement could be satisfied (with a fairly large margin, in fact) are w = 2
and r = 3. As an additional requirement, we would like the minimum weight to
reach the upper bound of (5) for the chosen values of w and r. In this case, this
translates to the condition Wmin = 72, which is fulfilled if wh(γu) + wh(γv) +
wh(γw) ≥ 72 for all q 
= 0, where

γu = q · f�
1 f�

2 f�
3 + f�

1 f�
2 g�

3 + f�
1 g�

2g�
3

d
, γv = . . . , etc.

Although the preceding sections have almost exclusively focused on linear cor-
relations, other security properties such as periodicity remain important. Con-
trolling the period of the scheme is difficult because of the non-linear interaction
between the sub-generators, but we can try to decrease the probability of short
cycles by maximizing the periods of the individual sub-generators after turning
off the streams feeding their 1 × 1-bit S-boxes. The connection polynomial of
these (completely linear) generators is given by f�

1 f�
2 f�

3 +g�
1g

�
2g�

3 , and ideally, we
would like this polynomial to be primitive. Our choice of w prevents this, though:
for w = 2, the polynomial above is always divisible by (D + 1)3. Therefore, we
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just require that the remaining factor is primitive, and rely on the initialization
of the state bits to avoid the few short cycles corresponding to the factor (D+1)3

(see [8]).
Finally, we also impose some efficiency requirements. The first is that state

bits of the sub-generators should not be used for at least 64/3 iterations, once
they have been modified. This will provide the final scheme with the flexibility
to generate up to 64 bits in parallel. Secondly, the length of the sub-generators
should be as short as possible and a multiple of 32.

We can now exhaustively run over all possible polynomials f�
1 , . . . , g�

3 in order
to find combinations for which all previous requirements are fulfilled simultane-
ously. Surprisingly enough, it turns out that the solution is unique:

f�
1 (D) = 1 + D9 , g�

1(D) = D31 · (D−23 + 1) ,

f�
2 (D) = 1 + D5 , g�

2(D) = D28 · (D−26 + 1) ,

f�
3 (D) = 1 + D15 , g�

3(D) = D37 · (D−29 + 1) .

zi
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Fig. 5. Trivium
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In order to construct the final cipher, we interleave three of these sub-generators
and interconnect them through AND-gates. Since the reasoning above does not
suggest which state bits to use as inputs of the AND-gates, we simply choose to
minimize the length of the wires. The resulting scheme is shown in Fig. 5. The 96
state bits s1, s4, s7, . . . , s286 belong to the first sub-generator, s2, s5, s8, . . . , s287

to the second one, etc.

6.3 Security and Efficiency Evaluation

The scheme presented above is currently being evaluated in the framework of
the eSTREAM Stream Cipher Project, and to conclude this paper we briefly
summarize the current status of the evaluation.

The complexities of the different attacks discovered so far are listed Table 1.
The most efficient dedicated attack is a guess-and-determine attack presented by
S. Khazaei [9]. However, with a time complexity of 2135, it is still considerably
less efficient than a generic exhaustive key search.

The hardware efficiency of Trivium was independently evaluated by Gür-
kaynak et al. [11] and by Good et al. [12]. The first paper reports a 64-bit
implementation in 0.25μm 5-metal CMOS technology with a throughput per
area ratio of 129Gbit/s · mm2, which is three times higher than for any other
eSTREAM candidate. The second paper presents a compact FPGA implemen-
tation with an estimated equivalent number of gates of 2682, making Trivium
the second most compact candidate after Grain.

Table 1. Cryptanalytical results

Attack Time Data Reference

Linear distinguisher 2144 2144 [8]
Guess-and-determine attack 2195 288 [8]
Guess-and-determine attack 2135 288 [9]
Solving system of equations 2164 288 [10]

Exhaustive key search 280 80
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Abstract. In this paper we analyze the E0 cipher, which is the cipher
used in the Bluetooth specifications. We adapted and optimized the Bi-
nary Decision Diagram attack of Krause, for the specific details of E0.
Our method requires 128 known bits of the keystream in order to re-
cover the initial value of the four LFSR’s in the E0 system. We describe
several variants which we built to lower the complexity of the attack.
We evaluated our attack against the real (non-reduced) E0 cipher. Our
best attack can recover the initial value of the four LFSR’s, for the first
time, with a realistic space complexity of 223 (84MB RAM), and with
a time complexity of 287. This attack can be massively parallelized to
lower the overall time complexity. Beyond the specifics of E0, our work
describes practical experience with BDD-based cryptanalysis, which so
far has mostly been a theoretical concept.

Keywords: Stream cipher, Cryptanalysis, Bluetooth, BDD.

1 Introduction

1.1 Background

Bluetooth, a technology used for short range fast communications, has quickly
spread worldwide. Bluetooth technology is used in a large set of wired and wire-
less devices: mobile phones, PDA’s, desktop and mobile PC’s, printers, digital
cameras, and dozens of other devices.

Bluetooth employs a stream cipher as the data encryption mechanism. This
stream cipher, E0, is based on 4 LFSR’s (Linear Feedback Shift Registers) of
different lengths, along with a non-linear blender logic (finite state machine). The
keystream is xor-ed with the plaintext, to create the ciphertext, and decryption
is performed in exactly the same way using the same stream used for encryption.

1.2 Related Work

A number of crypt-analytical results regarding E0 ([JW01], [FL01], [LW05],
[Kra02], [Saa00], [HN99], [EJ00], [GBM02], [LV04], [LMV05], [KS06]) have ap-
peared over the last five years. These attacks can be organized into two classes:
Short Keystream attacks - attacks that need at most 3,100 known keystream

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 187–202, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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bits; and Long Keystream attacks - attacks that require more (usually much
more) known keystream. Long keystream attacks are generally not applicable
within the Bluetooth settings since a maximal Bluetooth continuous frame is
shorter than 3,100 bits (5 slots, 625μsec each, 1Mbit burst rate; see [Blu03],
Vol 2, part B, page 59) after which Bluetooth rekeys the E0 registers. There-
fore, all long keystream attacks, except for the attack suggested in [LMV05], are
applicable only if E0 is used outside the Bluetooth system.

Short Keystream Attacks

1. D. Bleichenbacher has shown in [JW01] that an attacker can guess the ini-
tial state of the three smaller LFSR’s and the non-linear blender; Then the
attacker can compute the contents of the longest LFSR, (whose length is
39 bits) by “reverse engineering” it from the outputs of the other LFSR’s
and the blender state. This attack requires approximately 132 bits of known
keystream with a computational complexity of O(2100).

2. S. Fluhrer and S. Lucks have shown in [FL01] an optimized backtracking
method of recovering the secret key with a computational complexity of
O(284) if a 132 bits are available.

3. O. Levy and A. Wool have shown in [LW05] a uniform framework for crypt-
analysis, whose best setting can recover the initial state of the LFSR’s after
solving O(286) systems of boolean linear equations.

4. The best reported short keystream attack against E0 was suggested by
Krause [Kra02] as part of a general framework. The general attack frame-
work uses Free Binary Decision Diagram (FBDD’s), a data structure that is
used to represent a boolean function, for attacking LFSR-based key stream
generators in general, and E0 in particular. In his paper, Krause claims that
for E0 his attack requires O(277) space, and a time complexity of O(281),
based on some quick estimations. Krause’s attack is the starting point of
this paper: we adapted and optimized his attack for the specifics of E0, and
evaluated the attack’s viability.

The work closest to ours was very recent recently suggested, independently,
by Krause and Stegemann [KS06]. They too attempt to make BDD-based crypt-
analysis practical, via a divide-and-conquer strategy. They evaluated their at-
tacks against reduced versions of E0, with random feedback polynomials, and
extrapolated a space complexity of O(242) against the real E0, with roughly the
same time complexity estimate of [Kra02]. In contrast, we evaluated our attacks
against the real E0 cipher, and show a greatly improved and practical space
complexity of 223 BDD nodes (without the O() notation).

Currently, the best long keystream attack against E0 is by Y. Lu, W. Meier
and S. Vaudenay in [LMV05]. The attack is a conditional correlation attack on
the two-level Bluetooth E0, that fully recovers the original encryption key using
the first 24 bits of 223.8 frames with O(238) computations. Since it is against
the two-level cipher, the attack is not limited to a single continuous Bluetooth
frame—so the requirement of 223.8 frames is attainable in principle.
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Another BDD-based cryptanalysis attack against a different cryptosystem was
presented by J.F Michon, P. Valarcher and J.B Yunés in [MVY03]. They used
BDD’s to implement a ciphertext only attack against HFE (Hidden Field Equa-
tions - a public key cryptosystem). They report that the attack was not efficient.

1.3 Contributions

In this paper we describe an implementation of an attack against E0 that is based
on the use of Binary Decision Diagrams (BDD’s). Our attack is based upon the
theoretical BDD-based attack framework of M. Krause [Kra02]. Krause’s work
covered several keystream generators including the E0; Consequently, we needed
to supply missing details to adjust the attack for the E0 system. Furthermore, we
discovered that Krause’s general attack can be greatly simplified and optimized
when it is used against E0: We discovered that it is possible to use OBDD’s
rather than FBDD’s throughout the algorithm; We re-engineered the algorithm
to adjust to the different LFSR lengths; We developed an efficient composable
BDD for the Blender ; and after discovering that standard BDD algorithms and
libraries are very inefficient for this algorithm we wrote our own BDD code that
is optimized for attacking E0.

In addition, we built several hybrid variants of the basic BDD-based algo-
rithm. These variants include: (i) partially guessing LFSR’s initial data, (ii) using
an intentionally “defective” Blender, and (iii) enumerating the satisfying assign-
ments and testing them. We evaluated our attacks against the full, non-reduced,
E0 cipher. Our best heuristics can recover the initial state of the LFSR’s, for
the first time, with a practical space complexity of 223 (84MB RAM). Our time
complexity is 287: slightly higher complexity than reported by [Kra02], [KS06]—
however, the attack is massively parallelizable. In addition to the specifics of
Bluetooth, our work describes practical experience with BDD-based cryptanal-
ysis, which so far has mostly been a theoretical concept.

Organization: In Section 2 we give an overview of the E0 cipher, a brief
overview of Binary Decision Diagrams and a description of Krause’s attack.
Section 3 describes adapting the attack to E0 and analyzes the theoretical com-
plexity of the attack. Section 4 describes the implementation of the attack, the
heuristics used to lower attack complexity, and the performance we achieved.
Section 5 concludes our work. Appendix A contains a detailed explanation of
the bounds used in the theoretical complexity analysis of Section 3.4.

2 Preliminaries

2.1 Overview of the E0 System

A full specification of Bluetooth security mechanisms can be found in part H of
Vol 2 of [Blu03]. The security layer of Bluetooth, which is a part of the link layer,
includes key management and key generation mechanisms, a challenge-response
authentication scheme, and a data encryption engine. The data encryption en-
gine used within Bluetooth is the E0 keystream generator.
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Table 1. The finite state machine transition function. NS stands for Next State. Each
of the five main columns stands for a possible sum of the 4 LFSR bits that is input to
the state machine.

Input
Current 0 1 2 3 4
State Out NS Out NS Out NS Out NS Out NS

0 0 0 1 0 0 4 1 4 0 8

1 0 12 1 12 0 8 1 8 0 4

2 0 4 1 4 0 0 1 0 0 12

3 0 8 1 8 0 12 1 12 0 0

4 1 5 0 1 1 1 0 13 1 13

5 1 9 0 13 1 13 0 1 1 1

6 1 1 0 5 1 5 0 9 1 9

7 1 13 0 9 1 9 0 5 1 5

8 0 14 1 14 0 2 1 2 0 6

9 0 2 1 2 0 14 1 14 0 10

10 0 10 1 10 0 6 1 6 0 2

11 0 6 1 6 0 10 1 10 0 14

12 1 11 0 7 1 7 0 3 1 3

13 1 7 0 11 1 11 0 15 1 15

14 1 15 0 3 1 3 0 7 1 7

15 1 3 0 15 1 15 0 11 1 11

E0 is initialized using a 128 bit session key (denoted K ′
c), the Bluetooth

address of the master device and a clock, which is different for every packet.
Details regarding the generation of K ′

c appear in section 2.2. E0 generates a
binary keystream, Kcipher, which is xor-ed with the plaintext. The cipher is
symmetric; decryption is performed in exactly the same way using the same key
as used for encryption.

The E0 system employs four linear shift feedback registers (LFSR’s), of lengths
25, 31, 33, and 39 (total length of 128 bits), a Summation Combiner Logic and a
non-linear Blend machine. We can represent the summation combiner logic and
the blend machine together as a 4 bit finite state-machine. At each clock tick
the LFSR’s are clocked once, and the output of the four LFSR’s is xor-ed with
the output bit of the finite state machine, to create the next output bit of the
encryption stream Kcipher. The sum of the four output bits of the LFSR’s is
input into the finite state machine to update the state of the machine. In the
remainder of this paper, the finite state machine will be denoted as the Blender
unit. The finite state machine transition function (following [LV04], [LW05]) can
be found in Table 1.

2.2 Detailed Specifications of the Encryption System

When two Bluetooth devices wish to establish a secure communication link,
they first undergo through the pairing and authentication process. The specific
details of this process are not given in this paper, see [SW05] for the full details
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Fig. 1. The E0 System

of this process. At the end of this process, both devices hold a 128 bit secret
key (the link key, Kab). This key is stored in a non-volatile memory area of the
two devices, for future communication between these devices. This key is used
to generate the encryption key (Kc), also known as the session key. Using an
algorithm (E3), both devices derive the encryption key from the link key (Kab),
a ciphering offset number (COF ), that is generated during the authentication
process done prior to the encryption phase, and a public known random number
(EN RAND) that is exchanged between the devices. The encryption key (Kc) is
then modified into another key denoted K ′

c. This modification is done to lower
the effective size of the session key, according to the effective length the devices
have decided upon negotiation in a preliminary phase. K ′

c is used in a linear
manner, along with some publicly known values (the Bluetooth address of the
master device and a clock, which is different for every packet) to form the initial
value of E0, for a two level keystream generator. E0 generates a binary keystream,
Kcipher, which is xor-ed with the plaintext. The cipher is symmetric; decryption
shall be performed in exactly the same way using the same key as used for
encryption.

2.3 Binary Decision Diagrams

A binary decision diagram (BDD) is a data structure that is used to represent
a Boolean function. Let Xn denote the set of boolean variables (x0, ..., xn−1) of
some boolean function. A BDD P over Xn is a rooted, directed, acyclic graph
where each non-terminating node is labeled by a query (xi?) and has outdegree
two, one edge labeled 0 and one edge labeled 1, connecting to child nodes. There
are two terminating nodes: one 0-sink and one 1-sink. The root node is considered
the source node. Each assignment w(x0 = w0, x1 = w1, ..., xn−1 = wn−1) where
wi ∈ {0, 1} defines a unique path in P, which starts at the source node, answers
wi on queries (xi?) and always leads to a unique sink. The ending sink is the
result of the boolean function under the assignment w. Two BDD’s are considered
equivalent if they compute the same boolean function.

A BDD is a Free Binary Decision Diagram (FBDD) if along each path in
the BDD each variable appears at most once.
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A BDD is an Ordered Binary Decision Diagram (OBDD) if on all paths
in the BDD the variables respect a given ordering x0 < x1 < x2 < .... < xn−1

(While FBDD’s allow different orderings along each path).

2.4 BDD-Based Cryptanalysis of E0

Problem model: The general attack framework of Krause [Kra02] works as
follows. Given some known keystream bits, we would like to calculate the initial
value of the LFSR’s. Let L(x) denote the internal linear bitstream in the E0

keystream generator. L(x) is actually comprised of the output sequence of the
four parallel LFSR’s in E0. E.g., for an E0 keystream of 128 bits, L(x) comprises
of 512 bits. Let C(z) denote the non-linear component in E0. C(z) is actually
the Blender unit, including the output xor operation that is used to derive the
keystream. According to these declarations, Kcipher equals C(L(x)), where x is
the secret initial value of the LFSR’s.

Krause’s observation is that finding a secret key x fulfilling Kcipher = C(L(x))
for a given keystream Kcipher, is equivalent to the problem of finding the minimal
FBDD P for the decision whether x fulfills Kcipher = C(L(x)). This idea is the
basis for the BDD attack against the E0 system.

The algorithm: Let L(x), C(z) and Kcipher be as before. Let n be the key
length (=128).

1. For all m ≥ 1 let Qm denote a minimal FBDD which decides for z ∈ {0, 1}m

whether C(z) is a prefix of Kcipher. In other words, Qm is a FBDD which is
built based on the value of the known keystream bits (Kcipher). This FBDD
receives prefixes of the internal bitstreams which are generated by each LFSR
as input. If this internal bitstream generates a prefix of the known keystream
bits (Kcipher) - the FBDD accepts it. Otherwise, the FBDD rejects the input.

2. For all m ≥ n let Sm denote a minimal FBDD which decides for z =
(z0, z1, ..., zm) whether zm = L(z0, z1, ..., zn−1). In other words, Sm is a
FBDD which is build based on the feedback polynomials of the LFSR’s.
This FBDD receives the initial value of the LFSR’s as input. If this initial
value generates the correct value of zm (the m-th internal stream bit) - the
FBDD accepts it. Otherwise, the FBDD rejects the input.

3. Construct a third set of FBDD’s, denoted Pm, which is the minimal FBDD
which decides whether z ∈ {0, 1}m is a linear bitstream generated via L
and if C(z) is a prefix of Kcipher. Note that Pm is actually the result of
the intersection between Qm and Sm: Pm = SY NTH(Qm, Sm) — where
SY NTH denotes the BDD synthesis operation (cf. [Weg00]).

The strategy of Krause’s algorithm is as follows: It incrementally computes
Pm for increasing values of m until only one assignment will be accepted by Pm.
This assignment is the initial value of the LFSR’s generating Kcipher.
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Fig. 2. Indexing method used in implementation

3 Adapting the Attack to E0

3.1 Reduction of the Algorithm

The algorithm described by Krause is generic, and needs to be adapted for use
on E0. We made the following reductions and changes before implementing the
algorithm:

1. A key observation is that E0 is regularly clocked. Every clock tick, one
bit from each LFSR is input to the Blender, and each LFSR is stepped
once. This regularity gives us two important advantages: First, E0 induces
a natural order on the internal bit stream Z: In our implementation, the
variable ordering we used is: π = (z0, z1, z2, z3, z4, ..., zj , ..., z511): for j =
4 ∗ m + Li − 1 we have that m is the clock tick index (0 ≤ m ≤ 127), and
Li is the index of the LFSR (1 ≤ Li ≤ 4). Figure 2 describes the indexing
method we used in implementation of the algorithm. Second, we can switch
from using FBDD’s to using OBDD’s. This switch can be done, since on each
path of the BDD we are creating, the variable ordering is the same. This has
critical implementation benefits, since the data structures for supporting
OBDD’s are much simpler and more efficient than those of FBDD’s.

2. We needed to adjust for the fact that the four LFSR’s in E0 have differ-
ent lengths. This changes the implementation details and the complexity
analysis.

3. As Section 2.4 implies, we had to implement a synthesis operation between
two BDD’s. Our implementation was based on the synthesis algorithm sug-
gested by Wegener (See Section 3.3 of [Weg00]). However, we found that (1)
all our BDD’s are OBDD’s; (2) none of them contain a self loop; and (3) all
our BDD’s are already reduced (minimal in size); Therefore, the use of a hash
table in the algorithm is redundant and can be eliminated. This modifica-
tion made our code specific for the E0 attack—but it tremendously improved
the performance of the algorithm in comparison with general purpose BDD
libraries that we tried to use.

3.2 Building the LFSR Consistency OBDD

As described in Section 2.4, Si denotes the BDD that computes whether the
internal bit zi is consistent with the prefix {zj}i−1

j=1. Since each internal bit is
produced by one of the LFSR’s, its consistency depends on 4 earlier bits of the
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Table 2. LFSR’s consistency equations

LFSR Basic consistency Normalized
# equation consistency equation
1 zi = zi−8 ⊕ zi−12 ⊕ zi−20 ⊕ zi−25 zi = zi−32 ⊕ zi−48 ⊕ zi−80 ⊕ zi−100

2 zi = zi−12 ⊕ zi−16 ⊕ zi−24 ⊕ zi−31 zi = zi−48 ⊕ zi−64 ⊕ zi−96 ⊕ zi−124

3 zi = zi−4 ⊕ zi−24 ⊕ zi−28 ⊕ zi−33 zi = zi−16 ⊕ zi−96 ⊕ zi−112 ⊕ zi−132

4 zi = zi−4 ⊕ zi−28 ⊕ zi−36 ⊕ zi−39 zi = zi−16 ⊕ zi−112 ⊕ zi−144 ⊕ zi−156

Fig. 3. Example of an OBDD representing the LFSR-1 consistency check for bit Z100

same LFSR as determined by the LFSR’s taps. For example, for the shortest
LFSR each bit must comply with the LFSR feedback polynomial: t25 + t20 +
t12 + t8 + t0 ; meaning, bit zi equals :

zi = zi−8 ⊕ zi−12 ⊕ zi−20 ⊕ zi−25 (1)
Using our bit ordering (see Figure 2) changes the equation to:

zi = zi−32 ⊕ zi−48 ⊕ zi−80 ⊕ zi−100 (2)
Table 2 summarizes the basic consistency equations and the normalized consis-
tency equations for all four LFSR’s. Note that LFSRi produces bits with index
j such that j ≡ (i − 1) mod 4.

Notation: For register Li of length |Li|, we call the first |Li| bits in its bit stream
(bits {Zk} : k = 4j + Li − 1 for 0 ≤ j ≤ |Li| − 1) its native bits. The goal of
the algorithm is to compute the native bits of all 4 LFSR’s (128 bits in total).

An OBDD representing an LFSR consistency condition contains 5 variables
and 11 nodes (including the 0 sink and 1 sink). Figure 3 shows the OBDD
which checks the consistency condition for bit number 100. Note that a different
number of OBDD’s is created for each LFSR; this is because each LFSR is of
different length and produces a different number of non-native bits. The number
of non-native bits each LFSR produces equals to the keystream length minus
the size of the LFSR. Therefore, the total number of OBDD’s representing an
LFSR consistency condition is 4n− 128 which is 384 (since n = 128).

3.3 Building the Blender OBDD

The OBDD representing the non-linear component of E0 (denoted Qm in Sec-
tion 2.4) represents the Blender unit (see Section 2.1). This OBDD is built
according to the known keystream bits, and according to the transition function
of the Blender (see Table 1).

As stated before, the Blender updates its value according to the sum of the
LFSR’s output bits. Therefore, we need a BDD structure to represent the sum
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Fig. 4. The structure of a single basic chain in the Blender

of 4 bits. We call such a structure a basic chain. For each state and each of the 5
possible sums, Table 1 tells us what the output bit should be. If it matches the bit
given in the known keystream, we can advance to the next chain, and test the next
four bits; Otherwise, this path will lead to the 0-sink. Figure 4 shows the structure
of a basic chain. Table 1 shows that for all states, exactly half the paths advance
to the next chain, and the other half are connected directly to the 0-sink.

The Blender BDD is built from blocks, each consisting of 16 basic chains (one
for each possible state of the Blender). Half the paths from each block lead to
the 0-sink, while the other half advance to appropriate states on the next block.
Figure 5 illustrates the full structure of the OBDD representing the Blender.

A single Blender block consists of 160 nodes and uses 4 (consecutively num-
bered) bits. Note, though, that each of the 4 bits “contributes” a different number
of nodes to a block. Furthermore, attaching a sequence of blocks produces a non-
minimal BDD, which can be reduced. For instance, for 128 blocks, the reduced
Blender BDD consists of ≈ 14,500 nodes, rather than 20,480.

3.4 Theoretical Complexity Analysis

The time complexity of the algorithm is determined by the space complexity of
the synthesized OBDD throughout the entire process of synthesis. At any stage
in the process, the size of the synthesized OBDD is bounded by two bounds (See
Wegener [Weg00]):

1. The number of assignments satisfying the OBDD bounds the size of the
minimal OBDD representing that boolean function:

|P | ≤ m · |One(P )| (3)

where One(P ) denotes the set of satisfying assignments of the BDD P , and
m is the number of variables the BDD contains (m : 4 −→ 512).

2. Each synthesis operation bounds the size of the synthesis result: In general,
the bound is |SY NTH(P, Q)| ≤ |P | · |Q|. However, when P is an LFSR
consistency check OBDD, we can use a tighter bound. This is mainly due
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Fig. 5. Two consecutive blocks in an OBDD representing the Blender

to the structure of the OBDD’s representing the LFSR’s consistency check;
These OBDD’s effectively keep a parity bit to “remember” if the consistency
is held at each point. This is why each variable appears twice in the LFSR
consistency OBDD. When synthesizing another OBDD with an LFSR con-
sistency OBDD, each node within the “window” of the parity between the
lowest and highest numbered variables in the LFSR consistency OBDD is
duplicated, therefore the resulting OBDD must be at most twice the size of
the larger OBDD. This bound can be summed in:

|P | ≤ |Q(m)| · 2m−n (4)

where |Q(m)| is size of the OBDD representing the Blender, m is the number
of variables (m : 4 −→ 512) and n is the amount of given keystream (n :
1 −→ 128 bits). Note that this bound is still loose because only nodes within
the “window” of the parity are duplicated, while this bound assumes that
all OBDD nodes are duplicated.

The bound on the size of the OBDD throughout the process is the lower envelope
of bounds (3) and (4). Figure 6 shows the two bounds.

Using (3) (number of satisfying assignments), we get that during the first
steps, each clock tick introduces 4 new variables, and one constraint since the
output bit is known. This means the number of satisfying assignment is multi-
plied by 23 in each clock tick. Once we pass 25 clock ticks, all the native bits of
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Fig. 6. The two bounds

LFSR #1 are fully determined, so the number of satisfying assumptions grows by
a factor of 22 per clock tick. When the native bits of all four LFSR’s are already
set due to the consistency condition of the LFSR’s (i.e., when n ≥ 39), the num-
ber of satisfying assignments starts to decrease by half on each clock tick. The
bound due to the number of satisfying assignment for n ≥ 39 is |P | ≤ m ·2128−n.
See appendix A.1 for a detailed calculation of this bound.

Using (4) (magnitude of the synthesis result), we get that as long as we didn’t
start synthesizing with LFSR consistency OBDD’s (n ≤ 25), the OBDD size
is at most the size of the OBDD representing the Blender (C OBDD). When
we begin the synthesis operation, the OBDD starts growing by a factor of 2 for
each synthesis operation. Note that the number of synthesis operations for one
tick depends on n. The bound due to the magnitude of the synthesis result for
n ≥ 39 is |P | ≤ |C OBDD| · 24n−128 (The size of C OBDD is approximately
214). See appendix A.2 for a detailed calculation of this bound.

Calculating the intersection point of the two bounds, we get that the maximal
size of the OBDD synthesized throughout the process is |P | ≈ 286. This maximal
size of the OBDD appears at clock tick n = 50. This gives a total time complexity
of O(290), since we need to run the algorithm with different value of the 4 bits
initializing the state machine. Note that this estimate is significantly larger than
the quick estimation made by Krause. However this is still a relatively loose
bound; The actual size of the OBDD synthesized throughout this process is in
fact lower. To refine this bound, we ran a simulation which builds a histogram
representing the number of nodes in the synthesized OBDD for each bit index.
Using the simulation results we calculated that the maximal size of the OBDD
synthesized during the process is |P | ≈ 282.5. This gives a total time complexity
of O(286.5), i.e., the BDD attack is roughly equivalent to the attack of [FL01] in
terms of time complexity.
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Table 3. Complexity results for different numbers of guessed bits

Total number of Maximal Total
guessed bits in OBDD size time
LFSR’s #3+#4 (# nodes) complexity

12 218.3 290.3

10 218.7 288.7

8 219.9 287.9

6 221.7 287.7

4 223.4 287.4

4 Advanced Heuristics

Since running the algorithm as-is would take impractically long, and would re-
quire an unreasonable amount of memory, we used several heuristics to lower
the time and space complexity of our attack.

4.1 Guessing Initial LFSR Bits

The first idea was to guess the value of some initial LFSR bits and use the
BDD method only in the remaining bits. This gives us two advantages: (a)
Lower space complexity, since the size of the OBDD representing the Blender
is lower, and more importantly the number of OBDD’s one has to synthesize
with is significantly lower. (b) This idea also allows parallelization of the attack,
since one can run the algorithm with different values of guessed bits on different
machines.

On our test computer (a Pentium IV with 1Gb RAM running WinXP) we were
only able to run the BDD attack by guessing all 56 bits of LFSR’s #1 and #2,
plus a few bits of LFSR’s #3 or #4 (or both). When we guessed fewer bits,
the program exhausted all the available RAM and failed to complete. The best
results were obtained when guessing the entire content of LFSR’s #1 and #2
plus another four bits, two bits from each of the remaining LFSR’s. The latter
were located at the end of LFSR’s #3 and #4. In this case the maximal size of
the OBDD synthesized was ≈ 223 nodes, which used 84Mb RAM1; Since we guess
a total number of 60 bits (25+31+4), and we have to run the algorithm for all
possible initial states of the Blender (4 bits), the total time complexity is O(287).
Table 3 summarizes the results obtained when trying to run the algorithm with
different numbers of guessed bits in LFSR #3 and #4.

4.2 Changing the Position of the Guessed Bits

Another heuristics we tested was to change the position of the 4 guessed bits in
LFSR #3 and LFSR #4. Recall that these guessed bits were originally selected
1 The program needs to maintain two such data structures during the synthesis op-

eration, plus various other data structures. We observed that the program’s peak
RAM usage reached about 400MB.
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at the end of the two LFSR’s, so we decided to test how changing their location
would affect the attack’s complexity. The positions we tried include:

1. Guessing 2 native bits at the end of each LFSR (original position).
2. Guessing native bits that are positioned exactly where the LFSR taps are.
3. Guessing the first non-native bits of each LFSR.
4. Guessing bits only from one LFSR (#3 or #4).
5. Guessing bits from parallel positions in LFSR #3 and #4.

The reason for trying to guess bits on the LFSR taps positions (test #2) is that
this can cause a single LFSR consistency OBDD (See Section 3) that is used
during the synthesis procedure, to be totally eliminated.

However, the best results were obtained when the guessed bits were located
at the end of the LFSR’s (i.e., in the original bit positions). All the other al-
ternatives increased the maximal OBDD size by factors of 2–4. Thus, the time
complexity in this case is O(287) and the space complexity is O(223).

4.3 Using an Intentionally Defective Blender

A close examination of the transition function of the Blender (see Table 1)
shows that from every state there are only 3 possible next states. Furthermore,
the probability of entering each of these states is not uniform; For every state,
there exists one next state that is reached with probability 1/16. For example,
if we look at the reachable states from state #0, we note that state #8 is reach-
able with probability of 1/16. This leads to our next suggested heuristic: build a
Blender that lacks the low-probability transition in every state. Naturally, this
causes our attack to fail, if one bit of the known keystream was generated us-
ing such a transition. Therefore, instead of eliminating all the low probability
transitions, we eliminate them only on the first 32 blocks of the Blender BDD.
This means that the probability of performing a successful attack on a given
known keystream is (15/16)32 = 12.6%. This heuristic lowered the size of the
synthesized OBDD by 14%. Thus, the overall complexity of the attack using an
intentionally defective Blender has decreased, but is still around O(287).

4.4 Changing the Order of Synthesis

Another type of heuristic we tried was to change the order in which the OBDD’s
are synthesized: the order in which the various LFSR consistency OBDD’s are
synthesized does not affect the final outcome. The default synthesis order was
by increasing bit index order. However, we conjectured that the OBDD will
grow more slowly if we order the synthesis so all the LFSR OBDDs that “hit”
some Blender block are synthesized consecutively, then those that hit some other
Blender block, etc. We built a simulation to calculate the best order using the
above criterion, and then ran the algorithm using the order produced by the
simulation. Unfortunately, this heuristic produced poor results: the attack in
which 4 bits of LFSR’s #3 and #4 are guessed crashed for lack of memory
(whereas the same attack using the default order ran to completion).
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4.5 Enumerating Satisfying Assignments

The typical failure mode of the BDD attack is that all available memory is
exhausted. However, just before such a failure occurs, we can trade time for the
missing space, and still run the attack to completion. The idea is to stop the
synthesis operation when the synthesized OBDD is close to the memory upper
limit. Then, we enumerate all the satisfying assignments for the last synthesized
OBDD, and test each assignment by generating the corresponding keystream for
that assignment and comparing it to the given keystream. The overall complexity
of this procedure is dominated by either the size of the synthesized OBDD or the
number of satisfying assignments, whichever is larger. The time complexity of
this approach is obviously poorer than using the previous heuristics—it’s main
advantage is that it allows one to obtain results even if the available RAM is
insufficient.

5 Conclusion

We have presented an implementation of a BDD-based attack that is a short
keystream cryptanalysis of the E0 cipher. We have shown that several significant
reductions and changes needed to be made to Krause’s general attack. These
changes include using OBDD’s instead of FBDD’s, using the exact size of the
LFSR’s, and skipping the use of a hash table in the implementation of the
synthesis operation. We also performed an accurate complexity analysis of this
attack. Furthermore, we presented some heuristics that lower the time and space
complexity of this attack, and to allow parallelization of the attack on multiple
machines. Our best heuristic has a time complexity which is roughly equivalent
to that of the attacks of S. Fluhrer and S. Lucks [FL01] and O. Levy and A.
Wool [LW05], and has significantly better space complexity than the recent work
of Krause and Stegemann [KS06].
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Appendix

A Detailed Bounds Calculation

A.1 Bound Due to the Number of Satisfying Assignments

Using the first bound term, we get that:
n = 1 |P | ≤ m · 23 On the first step, we have 3 free bits,

and the last bit is determined

n = 2 |P | ≤ m · 26 Same for the next step
n ≤ 25 |P | ≤ m · 23n Same for the next steps, as long as

we take initial bits from LFSR #1
25 ≤ n ≤ 31 |P | ≤ m · 275 · 22n−25 One bit is already set due to the

consistency condition of LFSR #1;
So we have two free bits, and the
last bit is determined
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31 ≤ n ≤ 33 |P | ≤ m · 275 · 212 · 2n−31 Two bits are already set due
to the consistency condition of
LFSR’s #1-#2; So we have one
free bit, and the last bit is deter-
mined

33 ≤ n ≤ 39 |P | ≤ m · 275 · 212 · 22 Three bits are already set due
to the consistency condition of
LFSR’s #1-#3; The last bit is
determined

39 ≤ n |P | ≤ m · 275 · 212 · 22 · 239−n Four bits are already set due
to the consistency condition of
LFSR’s #1-#4; Only half of the
satisfying assignments survive in
each step

A.2 Bound Due to Magnitude of the Synthesis Result

n ≤ 25 |C OBDD| No synthesis operations
done so far, since all
bits are native

25 ≤ n ≤ 31 |C OBDD| · 2n−25 One synthesis opera-
tion per each bit pro-
duced by LFSR #1

31 ≤ n ≤ 33 |C OBDD| · 2n−25 · 2n−31 Two synthesis opera-
tions per each tick; For
the two bits produced
by LFSR’s #1-#2

33 ≤ n ≤ 39 |C OBDD| · 2n−25 · 2n−31 · 2n−33 Three synthesis opera-
tions per each tick; For
the three bits produced
by LFSR’s #1-#3

39 ≤ n |C OBDD| ·2n−25 ·2n−31 ·2n−33 ·2n−39 Four synthesis opera-
tions per each tick; For
the four bits produced
by LFSR’s #1-#4

Where |C OBDD| denotes the size of the OBDD representing the compressor.
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Abstract. We describe an attack on the RSA cryptosystem when the
private exponent d is chosen to be ’small’, under the condition that a suf-
ficient amount of bits of d is available to the attacker. The attack uses a
2-dimensional lattice and is therefore (in the area of the keyspace where
it applies) more efficient than known attacks using Coppersmith tech-
niques. Moreover, we show that the attacks of Wiener and Verheul/Van
Tilborg, using continued fractions techniques, are special deterministic
cases of our attack, which in general is heuristic.
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1 Introduction

Since the introduction of the RSA cryptosystem in 1977, people have been look-
ing for its vulnerabilities. A summary of attacks on RSA up to 1999 was given
by Boneh in [2]. Although none of these attacks totally break RSA, they provide
a certain guideline for the use of RSA and show in which cases the cryptosystem
is unsafe.

For instance, it is known that using a small private exponent d can be dan-
gerous. In 1990, Wiener showed in [13] that if the size of d is less than 1

4 th of the
size of the modulus N , it can be found by continued fractions methods. Verheul
and Van Tilborg [11] generalized this result in 1997, to obtain an attack based
on continued fractions that works if d is slightly larger than N

1
4 . In 2000, Boneh

and Durfee [3] extended Wiener’s bound to d < N0.292.
The concept of partial key exposure attacks on RSA was introduced in 1997

by Boneh, Durfee and Frankel in [4], and deals with the situation where an
attacker has obtained some bits of the private exponent d. The main question
is: How much information on the bits of d is needed such that an attacker can
reconstruct d, thereby breaking the RSA instance?
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The motivation for exploring partial key exposure attacks comes from side-
channel attacks such as power analysis, timing attacks, etc. Using a side-channel,
an attacker can expose a part of d, generally an MSB (most significant bit) part
or LSB (least significant bit) part.

In all the subsequent papers about partial key exposure attacks, the assump-
tion is made (besides knowledge of MSBs/LSBs of d) that one of the exponents
e, d is chosen to be small (at least significantly smaller than the modulus N).
This is a common practice, since a small exponent yields faster modular expo-
nentiation. For instance, e = 216 +1 = 65537 is a popular choice, and for signing
operations on constrained devices such as smartcards, it is useful to have the
private (signing) exponent d to be small, though obviously larger than N0.292.

The first partial key exposure attacks by Boneh, Durfee, and Frankel [4] re-
quired the public exponent e to be smaller than N

1
2 . Blömer and May extended

their result in [5] with attacks for e ∈ [N0.5, N0.725]. Ernst, Jochemsz, May, and
De Weger [7] recently showed attacks for both the situations where the private
exponent d or the public exponent e is chosen to be small. Both their attacks
work up to full size exponents.

In the papers [3,5,7], lattice methods are used instead of continued fractions
methods. Generally, one starts by describing an RSA situation in terms of an
integer polynomial that has a small (unknown) root, or a polynomial that has a
small (unknown) root modulo a known constant. After that, one uses the theory
initiated by Coppersmith [6], to construct a lattice with polynomials with the
same root, and reduce the lattice to obtain a polynomial, again having the same
root, whose coefficients are small enough to find the root.

These attacks using lattice methods are asymptotic, meaning that if one comes
close to the maximal value for the unknown part of d for which an attack should
work, the lattices involved are very large. This implies that the lattice reduc-
tion phase, for which the LLL-algorithm [8] is used, may take a prohibitively
long time.

Therefore, it may be useful to look at very small lattices instead of very large.
In this paper, we explore for which sizes of d, one can mount an attack in a few
seconds with a very simple method using a 2-dimensional lattice. Our result is
summarized in the following theorem.

Theorem 1. Under a reasonable heuristic assumption that we specify in As-
sumption 1, the following holds: Let N = pq be an n-bit RSA-modulus, and p,
q primes of bitsize n

2 . Let 0 < β < 1
2 , and let e, d satisfy ed ≡ 1 mod φ(N)

with bitsize(e) = n and bitsize(d) = βn. Given a (total) amount of (2β − 1
2 )n

MSBs and/or LSBs of d (see Figure 1), N can be factored very efficiently, using
a 2-dimensional lattice.

We will comment on what ’very efficiently’ means in Section 5, when we compare
the performance of this attack on small d to the method of Ernst et al. [7].
Moreover, we show that the results of Wiener and Verheul/Van Tilborg can be
obtained by our attack on small d and are simply special (homogeneous and
deterministic) cases. One could also say that our partial key exposure attack
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d: 100100010101111011100010100110111011001101

sizes: NΚN
1����2 �ΒN2�Β� 1����2 �Κ

� LSBsMSBs �

Fig. 1. Partition of d for small d

is the inhomogeneous counterpart of the results by Wiener and Verheul/Van
Tilborg. We will comment on this, and on the heuristic assumption in the other
cases, in Section 4.

The rest of this paper is organized as follows. In Section 2, we will state pre-
liminaries on RSA and on lattice techniques, define some notation and introduce
Assumption 1. Section 3 will contain the description of the attack for small d.
In Section 4, we will comment on the cases where our attack does not depend
on Assumption 1 and is therefore deterministic, and at the experimental results
for the heuristic in the cases where we do need Assumption 1. In Section 5, we
look at the efficiency of our method and compare our 2-dimensional attack with
the existing partial key exposure attacks on small d of [7]. Finally, we will give
a conclusion in Section 6.

2 Preliminaries on RSA and Lattices

In this section, we state some basic properties of RSA, the cryptosystem we are
attacking and of 2-dimensional lattices, the tool we use to do so.

Let p, q, N, d, e be as usual, i.e. p and q are distinct primes, N = pq is taken
as modulus, and the encryption exponent e and decryption exponent d satisfy
ed ≡ 1 (mod φ(N)). For the attack in this paper, we assume that p and q have
the same bitsize, thus p + q < 3N

1
2 . Let k ∈ Z be defined by the RSA key

equation

ed − 1 = kφ(N), where φ(N) = (p − 1)(q − 1) = N − (p + q − 1).

In our attack in this paper, we assume that the private exponent d is chosen
to be small, for efficient modular computations. From the RSA key equation, it
follows directly that k < d.

We define a 2-dimensional lattice L as the set of all integer linear combinations
of two linearly independent vectors {b1,b2}, which are basis vectors. We usually
say that L is the lattice spanned by the columns of the matrix Γ = (b1 b2).
The determinant of L is det(L) = | det(Γ )|, and though there are infinitely many
bases possible, the determinant is always the same.

To find a small, so-called reduced basis {r, s}, one can use a reduction al-
gorithm. For a 2-dimensional lattice, the Lagrange reduction algorithm (which
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is simply a generalization of Euclid’s algorithm) finds a reduced basis, and this
basis also contains the smallest nonzero vector of the lattice. We are interested
in how small the reduced basis vectors are in norm.

We use the following notation for size-computations in this paper. With u ≈
Nλ, we mean that u ’has the size of’ Nλ, that is |u| = CuNλ for some number

Cu that does not deviate much from 1. Naturally,
(

v1

v2

)
≈

(
Nλ1

Nλ2

)
is a short

notation for v1 ≈ Nλ1 and v2 ≈ Nλ2 .
When we reduce the matrix Γ to Γred = (r s), with r the smaller reduced basis

vector and s the larger reduced basis vector, it holds that ||r|| · ||s|| ≈ det(L).
So, we assume ||r|| ≈ a−1 det(L)

1
2 and ||s|| ≈ a det(L)

1
2 for some a ≥ 1.

Hence,

Γred = (r s) =
(

r1 s1

r2 s2

)
, and Γ−1

red = 1
det(Γ )

(
s2 −s1

−r2 r1

)
=

(
s′T

r′T

)
.

It follows that the first row s′ of Γred satisfies ||s′|| ≈ a det(L)
1
2 . Analogously,

||r′|| ≈ a−1 det(L)
1
2 .

If the two reduced basis vectors r, s are ’nearly-equal’ in length, that is
when a does not deviate much from 1, then ||r|| ≈ ||s|| ≈ det(L)

1
2 . In other

words, all reduced basis vectors of L have a norm of size det(L)
1
2 . However, it

is also possible that there is one ’extremely small’ basis vector, which makes
the lattice ’unbalanced’. For the attacks in this paper, we make the following
assumption.

Assumption 1. The reduced basis vectors given by the columns of Γred both
have a norm of size det(L)

1
2 . In other words, the parameter a used to describe

the unbalancedness of the lattice is near to 1.

In Section 4, we comment on how this assumption holds in practice.

Fig. 2. a ≈ 1 Fig. 3. a � 1

Having discussed the necessary preliminaries, we are now ready to explain the
2-dimensional partial key exposure attack on RSA for small d.
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3 The Attack on Small d

3.1 Description of the Attack

Let d = Nβ < N
1
2 and e < φ(N) < N . In this section, we will prove the

statement in Theorem 1, namely that we can factor N very efficiently if we
know a (total) amount of (2β − 1

2 )n MSBs and/or LSBs of d.
This implies that our method will work if the ’unknown middle part’ of d is

of size N δ with δ < β − (2β − 1
2 ) = 1

2 − β. The situation is sketched in Figure 4.

d: 100100010101111011100010100110111011001101

dM x dL

sizes: NΚNΔNΒ�Δ�Κ

� LSBsMSBs �

Fig. 4. Partition of d when MSBs and/or LSBs are known

Let dL be the known LSB part of d of size Nκ, followed by an unknown
middle part x of size N δ, which itself is followed by a known MSB part dM , of
size Nβ−κ−δ. Hence, we can write

d = dL + 2	κn
x + 2	κn
+	δn
dM ,

where � � is simply rounding to the nearest integer.
When we substitute the partition of d in the RSA key equation, we obtain

e2	κn
x + edL + e2	κn
+	δn
dM − 1 = k(N − (p + q − 1)).

Therefore, we must find the solution (x, y, z) = (x, k, p + q − 1) of the trivariate
equation

e2	κn
x − Ny + yz + R − 1 = 0, with R = edL + e2	κn
+	δn
dM .

The equation above implies that

|e2	κn
x − Ny + R| = |1 − yz| ≤ |k(p + q − 1)| ≤ |d(p + q)| ≤ 3Nβ+ 1
2 .

This is an inhomogeneous diophantine approximation problem in the un-
knowns x and y. To solve it, we define a lattice L spanned by the columns
of Γ , with

Γ =
(

C 0
e2	κn
 N

)
, and v =

(
0

−R

)
,

where C is a convenient integer of size Nβ−δ+ 1
2 .
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The lattice point Γ

(
x
−y

)
is close to v, since

Γ

(
x
−y

)
− v =

(
Cx

e2	κn
x − Ny + R

)
≈

(
Nβ+ 1

2

Nβ+ 1
2

)
.

Our strategy to find x and y is therefore to start with a lattice vector v′ close
to v, and add small multiples of the reduced basis vectors of the lattice L until

we get Γ

(
x
−y

)
. To do so, we apply lattice basis reduction to the columns of Γ ,

and obtain a reduced matrix Γred, whose columns still span L. We aim to find
an integer pair (z1, z2) for which

Γred

(
z1

z2

)
= Γ

(
x
−y

)
− Γred

⌊
Γ−1

redv
⌉
,

where
⌊
Γ−1

redv
⌉

= v′ is the vector we get from rounding the elements of Γ−1
redv to

nearest integers. Alternatively, one could also solve the closest vector problem
to obtain a lattice vector v′ to start with, but in practice the closest vector will
almost immediately appear in this way as well.

It can be checked that

Γred

(
z1

z2

)
= (Γ

(
x
−y

)
− v) − (Γred

⌊
Γ−1

redv
⌉
− v) ≈

(
Nβ+ 1

2

Nβ+ 1
2

)
+ Γred

(
ε1
ε2

)
,

with |εi| < 1
2 . Therefore(

z1

z2

)
≈ Γ−1

red

(
Nβ+ 1

2

Nβ+ 1
2

)
+

(
ε1
ε2

)
=

(
s′T

r′T

)(
Nβ+ 1

2

Nβ+ 1
2

)
+

(
ε1
ε2

)
�

(
a det(L)−

1
2 Nβ+ 1

2 + ε1
a−1 det(L)−

1
2 Nβ+ 1

2 + ε2

)
≈

(
aN

1
2 (β+δ− 1

2 ) + ε1
a−1N

1
2 (β+δ− 1

2 ) + ε2

)
.

Each pair (z1, z2) leads to a pair (x,−y). If we substitute x as the unknown part
of d, and y as k, we can find a φ that satisfies ed−1 = kφ. First we test whether
φ, computed as ed−1

k is integral (unfortunately we see no way how to use this
condition earlier). The next test will be to solve for the integer roots p, q of the
quadratic equation X2 − (N + 1 − φ)X + N = 0.

The number of pairs (z1, z2) to try is of size

(aN
1
2 (β+δ− 1

2 )) · max{a−1N
1
2 (β+δ− 1

2 ), 1}.

Hence, the number of pairs (z1, z2) to try is either

– O(Nβ+δ− 1
2 ), when a < N

1
2 (β+δ− 1

2 ), or
– O(aN

1
2 (β+δ− 1

2 )), when a > N
1
2 (β+δ− 1

2 ).

Note that in the latter case, z2 = 0, but we do have to check for all z1

separately.
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In the next section, we show the relation between our method and the attacks
of Wiener [13] and Verheul/Van Tilborg [11], which are special cases of this
attack. For these situations, we show that the attacks are deterministic instead

of heuristic, simply because the lattice vector Γ

(
x
−y

)
is small enough to ensure

that the search region does not depend on a.
However, if we are outside the range of Wiener’s and Verheul/Van Tilborg’s

attacks, it is highly unusual that the lattice involved contains an exceptionally
small nonzero vector, which would make the lattice unbalanced and the attack
inefficient. By Assumption 1, we take a to be close to 1. Under this heuristic,
the number of pairs (z1, z2) to try is O(Nβ+δ− 1

2 ). In Section 4.2, we will show
that this assumption is reasonable in practice.

Under our heuristic assumption, and provided that δ is smaller than or at
most only marginally larger than 1

2 − β, then we can efficiently try all pairs
(z1, z2) and find the factorization of N .

One might note that by knowing MSBs of d, one can also obtain an MSB
part of k. However, splitting k into a known and an unknown part results in
more combinations of variables, which we can only represent in a 3-dimensional
lattice instead of a 2-dimensional one. The 3-dimensional lattice attack will give
a worse analysis then the method described in this section. This is an example
of a common phenomenon in lattice based cryptanalysis, namely that sometimes
one can get better results by leaving out information that one knows, just by
the monomials of the equation involved.

3.2 Complexity

We now study the total complexity of the above attack.
Firstly it requires one lattice basis reduction for a 2-dimensional lattice. This

is just Lagrange reduction, which takes at most O((log N)3) bit operations.
Secondly, a number of O(Nβ+δ− 1

2 ) pairs (z1, z2) have to be checked for coming
from a solution. For each vector this check takes O((log N)2) bit operations.

It follows that the bit complexity of our attack is O((log N)3) when δ ≤ 1
2 −β,

which is polynomial. When δ = 1
2−β+ε the bit complexity becomes exponential,

namely O(N ε(log N)2). This results in an increased workload by a factor N ε.
In other words, for an additional amount of r unknown bits, the complexity is
equivalent to an exhaustive search over r bits. Furthermore, in the case that we
let both d and the unknown part of d grow r bits, such that the known part
of d stays of the same size, one can check that the extra workload will be an
exhaustive search over 2r bits. This relates directly to a result of Verheul and
Van Tilborg [11], on which we shall comment in Section 4.1.

3.3 Examples

We have done several experiments for this attack. A typical case is with 2048
bit N and δ = 0.156, β = 0.350 (e.g. ε = 0.006), meaning that d has about 717
bits, of which at most the 320 least significant bits are unknown.
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Then N
1
2 (δ+β− 1

2 ) ≈ 70. Indeed, we typically find a hit with ‖z‖ � 200. A
search area like this takes only a few seconds with Mathematica 5 on a 2GHz
Pentium 4 PC. And with δ ≤ 1

2 −β typically ‖z‖ ≈ 1, and the computation time
is only a fraction of a second.

Here’s a baby example for {δ = 0.156, β = 0.35}. Let the 128-bit public key
be given by

N = 269866491905568049204176579604167754067,
e = 222981052634419442506270512141611354797.

Now suppose we know some MSBs of d, hence we know an approximation

d̃ = 24584250313023

of d for which d0 = d − d̃ is 0.156 · 128 ≈ 20 bits. We take

C = 2	128·(0.35−0.156+0.5)
 = 289, and
R = ed̃ = 5481822013025924218218657989757723471271758362621331,

and we know that we are looking for {d0, k} such that

Γ ·
(

d0

−k

)
− v =

(
C 0
e N

)
·
(

d0

−k

)
−

(
0

−R

)
is a small vector. Then Γred is given by(

93923748720621086836871453999104 −645630915298759729739927100850176
223858603616044679201441362439981 239654325473299927083414831489037

)
and �Γ−1

redv� =
(
−21188034626414783992
−3082348742879388262

)
.

We then enumerate the pairs {z1, z2}, for each value computing(
x
−y

)
= Γ−1

(
Γred

(
z1

z2

)
+ Γred�Γ−1

redv�
)

.

We try d = d̃ + x and k = y, and solve N + 1 −
(

p +
N

p

)
=

ed − 1
k

to get a

possible factor p.

At z =
(
−2
−1

)
we have a hit, namely x = 1016998, y = 20313089635876, so

we find that d = 24584251330021, and k = 20313089635876.
It follows that φ(N) = 269866491905568049171299025219693706736, and

then we obtain the factors

p = 15833051453602685849,
q = 17044502930871361483.
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4 The Deterministic and Heuristic Cases of the Attack

4.1 Wiener and Verheul/Van Tilborg

In [11,13], attacks were described for small d. Wiener showed that when d < N
1
4 ,

it can be found in polynomial time. Verheul and Van Tilborg’s extension of
Wiener’s result shows the price for d slightly larger than this. Their attacks can
be seen as homogeneous diophantine approximation problems, and continued
fraction techniques are used to solve them.

In this section, we will show that Wiener’s and Verheul/Van Tilborg’s attacks
are special cases of our method. Moreover, we will show that in these cases the
method is deterministic, in other words, it does not depend on the size of a (the
parameter that describes the unbalancedness of the lattice).

Wiener [13] bases his attack on the fact that
k

d
can be found as a convergent

of
e

N
if ∣∣∣∣ e

N
− k

d

∣∣∣∣ <
1

2d2
.

It is commonly known (see for instance [9]) that this can also be described using
a 2-dimensional lattice. When we assume no part of d is known (dM = dL = 0),
it follows that R = 0 and

Γ =
(

C 0
e N

)
, v = 0,

with C of size Nβ−δ+ 1
2 = N

1
2 , will reproduce Wiener’s result, namely that the

method will work if β < 1
4 . Later in this section we will show that the solution

will be found by the shortest lattice vector only, making this case deterministic.
Verheul and Van Tilborg [11] have given an extension of Wiener’s attack,

where d is at most slightly larger than N
1
4 and no bits are known. To find k

d ,
they look not only at convergents of e

N , but also at ’linear combinations’ of
consecutive convergents, which, be it not the best, nevertheless are pretty good
approximations. To be precise, when

pi−1

qi−1
,
pi

qi
are consecutive convergents, then

they also look for approximations to
e

N
of the form

λpi + μpi−1

λqi + μqi−1
for parameters

λ, μ ∈ N. Then they have a weaker inequality to satisfy, of the form of∣∣∣∣ e

N
− k

d

∣∣∣∣ <
c

d2
,

where the exact value for c depends on the search region for λ and μ. In this
way they show that in order to extend Wiener’s result for d < N

1
4 by r bits, one

has to do an additional computation of the complexity of an exhaustive search
over 2r bits.

In the language of lattices this becomes immediately clear. With Γ as above
and v = 0 (as we’re still in the homogeneous case), the results of Section 3.2
show that for δ = β = 1

4 + ε, the complexity of the attack is O(N2ε(log N)2).
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The example given in [11] will go as follows in our method. We start with the
lattice

Γ =
(

238 0
e N

)
=

(
238 0

7 115 167 804 808 765 210 427 31 877 667 548 624 237 348 233

)
(note that in [11] the value of e contains a misprint).

We compute the reduced basis

Γred =
(

42 694 311 384 449 024 87 227 281 088 446 464
34 997 160 860 155 755 −133 735 834 148 055 649

)
.

The lattice point we need is Γ

(
2d
−k

)
= Γ

(
3 295 186
−735 493

)
= Γred

(
11
5

)
. Here 2d

appears instead of d because in [11] ed ≡ 1 (mod lcm(p− 1, q− 1)) is taken, and
in this case gcd(p − 1, q − 1) appears to be equal to 2.

This shows that, at least in this example, the efficiency of our method is
comparable to [11], since we had to search for the numbers 11 and 5 of resp. 3.5
and 2.3 bits, together less than 7 bits (rather than 6 bits, because we have to
allow negative values for one of the coordinates).

The fact that Verheul and Van Tilborg require a computation of the com-
plexity of a 2r bit exhaustive search to allow r unknown bits more than 1

4 th of
N for both d and the unknown part of d (which, in this case, are of course the
same), corresponds to our complexity results of Section 3.2. However, it does not
directly imply that their method can be used in a partial key exposure setting.
In that sense our result, with the homogeneous case being a special case of the
general case, implies the result of [11], but not the other way around. We believe
that the method of Verheul and Van Tilborg can be combined with the method
of Baker and Davenport [1], for solving inhomogeneous diophantine approxima-
tion problems, but we see no advantages above our uniform and clean lattice
method.

Finally, we will show that the cases of Wiener and Verheul/Van Tilborg are
deterministic situations in our method.

Recall that we look for a small pair (d, k) such that(
C 0
e N

) (
d
−k

)
=

(
Cd

ed − kN

)
≈

(
Nβ+ 1

2

Nβ+ 1
2

)
.

We will argue that if d < N
1
4 (Wiener’s case), this small vector is actually the

smallest nonzero lattice vector, which will be found by the Lagrange reduction.
Suppose it is not the smallest vector. Then the smallest vector cannot be

linearly independent from it, for else the product of their sizes is smaller than
N2β+1 < N

3
2 , whereas the determinant of the lattice is det(L) = CN = N

3
2 .

This is a contradiction. The other option when
(

Cd
ed − kN

)
is not the smallest

vector, is that the smallest vector is(
Cx

ex − yN

)
= α

(
Cd

ed − kN

)
, for some α ∈ [−1, 1].
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It follows that d = 1
αx and k = 1

αy, and since ed− kφ(N) = 1, it must hold that

ex − yφ(N) = α.

Since the left hand side is an integer, α 
= 0, and α ∈ [−1, 1], it follows that
|α| = 1. Therefore, d = |x| and k = |y|. Hence, the shortest reduced basis vector
immediately gives us d and k. Thus, the method is clearly deterministic.

In the case of Verheul/Van Tilborg’s attack, d = N
1
4 +ε, so(

Cd
ed − kN

)
≈

(
Nβ+ 1

2

Nβ+ 1
2

)
=

(
N

3
4+ε

N
3
4+ε

)
,

so this vector is not the smallest reduced vector. However, one can see that the
smallest vector must be linearly independent of it, so we know that

a−1 det(L)
1
2 · N 3

4+ε ≥ det(L).

It follows that a < det(L)−
1
2 N

3
4+ε = det(L)−

1
2 Nβ+ 1

2 = N
1
2 (β+δ− 1

2 ) and from
the computations in Section 3.1, we know that this means that the search area
is O(Nβ+δ− 1

2 ) = O(N2ε). So one can see that in this case, one also does not
depend on Assumption 1.

4.2 Comments on the Size of a in Other Cases

When we are outside the regions where the known continued fractions methods
from Wiener and Verheul/Van Tilborg apply, the attack depends on Assumption
1, namely that the elements of Γred are all of size det(L)

1
2 . In this section, we

will comment on how this assumption holds in practice.
Let m be the maximal entry of Γred, and m = a det(L)

1
2 . We want to check

that for the matrices involved in the attacks of this paper, a is close to 1. There-
fore, we performed tests for the attacks for small d in the following setup: N is
an 2048 bit modulus, β ∈ [0.25, 0.5], ε ∈ [0, 0.1], and δ = Min{β, 1

2 − β + ε}.
For this case, the lattices behaved as expected. In 500 experiments, the aver-

age value of a was approximately 1.9, and the maximal value of a was approxi
mately 39.

5 Efficiency of the Attack

Now let us give some intuition on how our attack compares in running time to
the other known results on partial key exposure attacks on small d, by Ernst
et al. [7].

Figure 5 and 6 are two pictures of the attacks that are currently known and
that use knowledge of MSBs or LSBs of d for relatively small d. The pictures
show, for each value of β (the size parameter of d) what fraction of d we need to
know in order to mount a successful attack. The area where the attack of this
paper applies is dark.
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Fig. 5. Small d with known MSBs
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Fig. 6. Small d with known LSBs

One can see that our results do not exceed or match the optimal bounds which
are already available. This is not surprising, since the attacks of [7] use large
lattices, containing shifts of the RSA key equation and therefore combinations
of monomials. Besides that, the attacks of [7] have asymptotic bounds. Hence,
in those cases, to be able to perform close to the theoretic bound, there can
be immensely large lattices involved, of which the reduction takes hours, days,
or longer. Our attack belongs to those situations of partial key exposure that
require only the reduction of a 2-dimensional lattice to solve, which an attacker
can perform in just a few seconds. Moreover we can even exceed the theoretical
bounds of the attacks with a small value ε.

To give some intuition of what this means in practice, we matched the 2-
dimensional attack on small d and known MSBs against those of Ernst et al. [7].
The result is shown in the following table. For different values of β and δ, and
different moduli N of 2048 bits, we computed the time to perform an attack for
both methods.

This time includes:

– lattice reduction, resultant computations, and using the root p+ q−1 of the
resultant polynomials to find p and q, for [7],

– lattice reduction and trying all pairs (z1, z2) to find p, q, for the 2-dimensional
method.

In the table, it shows that for β = 0.30, and δ = 0.205, our attack works in
approximately 2 seconds (this is an average over 50 experiments). It uses a sim-
ple Mathematica program that runs on a computer with Pentium III processor of
733 MHz.

On the other hand, for the same parameters we need about 40 minutes to solve
the problem using one of the methods of [7], and the smallest lattice for which
their attack works is of dimension 30 in this case. These experiments were done
using Shoup’s Number Theory Library [10], on a shared server with a Pentium
IV Xeon processor of 2.80 GHz.

For the cases {β = 0.30, δ = 0.210}, {β = 0.35, δ = 0.150}, and {β = 0.35, δ =
0.160}, one can see from the table that there are ’breaking points’ for the methods
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β δ Dim. lattice [7] Time method [7] Time 2D-method

0.30 0.050 10 35 sec. 1 sec.
0.30 0.100 10 35 sec. 1 sec.
0.30 0.150 10 35 sec. 1 sec.
0.30 0.200 30 40 min. 1 sec.
0.30 0.205 30 40 min. 2 sec.
0.30 0.210 30 / 50 40 min. / 4 1

2 hrs. 21 min.

0.35 0.050 10 35 sec. 1 sec.
0.35 0.100 10 35 sec. 1 sec.
0.35 0.150 14 / 30 1 min. / 40 min. 1 sec.
0.35 0.155 30 40 min. 2 sec.
0.35 0.160 30 / 50 40 min. / 4 1

2 hrs. 21 min.

0.40 0.050 10 35 sec. 1 sec.
0.40 0.100 14 1 min. 1 sec.
0.40 0.105 14 1 min. 2 sec.
0.40 0.110 14 1 min. 21 min.

0.45 0.050 14 1 min. 1 sec.
0.45 0.055 14 1 min. 2 sec.
0.45 0.060 14 1 min. 21 min.

Fig. 7. Experimental results: Comparison with [7]

of Ernst et al. For instance, if β = 0.30 and δ = 0.210, the 30-dimensional lattice
attack of [7] might suffice in some situations, whereas in others it will not lead
to the solution. Therefore, for these parameters, it is possible that the attack
takes either 40 minutes (if the attack using the 30-dimensional lattice works),
or approximately 4 1

2 hours (if the 30-dimensional attack does not work and one
has to use the 50-dimensional lattice attack).

6 Conclusion

We have shown how to perform a partial key exposure attack on RSA using a 2-
dimensional lattice. The attack applies when the private exponent d is chosen to be
small, which occurs in practice. In most cases, the attack is heuristic, but the un-
derlying assumption is a reasonable one and supported by experiments. Although
the attack does not achieve the theoretic bounds of known partial key exposure
attacks using Coppersmith’s method, it is much faster in the area where it applies.
Moreover, the attack shows what you can achieve with the simplest lattices possi-
ble, and also provides a link with the known attacks based on continued fractions
techniques, as they appear as special deterministic cases of our attack.
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Abstract. In this paper, we consider the problem of combining a pub-
lic key encryption (PKE) scheme and a public key encryption with key-
word search (PEKS) scheme proposed by Boneh, Di Crescenzo, Ostro-
vsky and Persiano (BDOP) in Eurocrypt 2004. We argue that the two
schemes need to be treated as a single scheme to securely provide the
PEKS service that BDOP envisioned. We formally define such a scheme,
which we call “PKE/PEKS” and its security against chosen ciphertext
attack, which we call “IND-PKE/PEKS-CCA”. We then construct a
highly efficient PKE/PEKS scheme using the PEKS scheme presented
by BDOP and a variation of ElGamal encryption scheme and show that
it is IND-PKE/PEKS-CCA secure in the random oracle model assuming
that the Computational Diffie-Hellman (CDH) problem is intractable.
We also propose a generic construction of PKE/PEKS, which is slightly
less efficient than the first one. Finally, we present two extensions of
a PKE/PEKS scheme to the multi-receiver setting and multi-keyword
setting.

1 Introduction

1.1 Motivation

Suppose that Bob’s email is encrypted under Alice’s public key and the en-
crypted email is stored in Alice’s email server. The public key encryption with
keyword search (PEKS) scheme proposed by Boneh et al. [4] enables the server
to test whether the encrypted email contains a particular keyword that Alice
has requested and routes the email accordingly.

Following the descriptions given in [4], we describe this mechanism more pre-
cisely as follows. Let (pk, sk) be Alice’s public/private key pair. Bob encrypts his
message (email) m using an encryption algorithm E of the public key encryption
(PKE) scheme under Alice’s public key pk. Bob also encrypts a keyword w using

� A part of this work was done while the first author was with the School of Information
Technology and Computer Science, University of Wollongong, Australia.

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 217–232, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



218 J. Baek, R. Safavi-Naini, and W. Susilo

PEKS algorithm of the PEKS scheme under Alice’s public key pk. The resulting
ciphertext

C = c||τ = E(pk, m)||PEKS(pk, w) (1)

is sent to Alice’s email server. Upon receiving a “trapdoor” tw associated with
the keyword w, the server checks whether τ encrypts w and if it does, the server
sends c to Alice, otherwise, it sends off a message informing a search error. (Note
that since Alice knows sk, she will be able to decrypt c).

The basic security requirement of the above scheme is that τ does not reveal
any information about the keyword w to the server unless it receives the trapdoor
tw from Alice. We emphasize, however, that this requirement is concerned only
with the security of a PEKS part of the ciphertext (that is, τ in C) and is not
concerned with the security of the integrated scheme that combines PKE and
PEKS and outputs C = c||τ in Equation (1).

The security of the integrated scheme has practical importance as in reality,
one cannot always assume that the server behaves honestly. For example, there is
a chance that the server is broken into by malicious intruder Eve. Obviously, Eve
can delete some or all of the ciphertexts entries (C’s), stored in the server so that
Alice cannot receive the intended emails. This “deletion attack” is possible but
the number of entries in the server can easily be recorded and audited later, and
as a result the malicious behavior can be detected. What we focus on in this paper
is a more sophisticated attack whereby Eve modifies C(= c||τ)’s to deceive Alice
or get useful information about the plaintext that c encrypts. An example of such
attack is what we call, “swapping attack”. In this attack, Eve simply interchanges
τ ’s so that Alice does not receive the correct message that Bob has sent to her.
More precisely, Eve replaces τ in c||τ with τ ′ in c′||τ ′, where τ and τ ′ are PEKS
for the keyword w and w′ respectively, so that when Alice sends the trapdoor
tw′ (that corresponds to w′) to the honest server, the server administrator will
retrieve c (instead of c′) for her. This attack is serious especially when Alice wants
to retrieve the messages with high priority, for example, the messages associated
with a keyword “urgent”. By launching this attack, Eve can randomize priority
so that Alice gets the messages that are not really urgent. In addition to this
swapping attack, a more active attack can be considered based on the fact that
PEKS is a public key algorithm, so Eve can generate a PEKS ciphertext of a
keyword of her choice. That is, Eve can modify c||τ by creating a new PEKS τ ′′

and replaces τ with it.
An immediate solution for preventing PEKS from the above-described attacks

might be providing an authentication tag by applying a message authentication
code (MAC) scheme, together with a shared key between the sender and receiver,
to τ . However, we do not favor this trivial solution as this method will destroy
the asymmetric nature of PEKS. One may then consider applying a digital sig-
nature scheme to τ but in fact, this method will not prevent the above-described
attacks since anyone who has obtained τ can create a valid signature on it.
Difficulties in providing authentication for PEKS will further be discussed in
Section 4.1.
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1.2 Related Work

The attacks illustrated in the previous section show that PEKS should not be
treated as a stand-alone scheme, and it is important to carefully define and
analyze a scheme in which PEKS is combined with PKE. However, there are
few papers that discuss this issue in the context of PEKS. Boneh, Di Crescenzo,
Ostrovsky and G. Persiano (BDOP) [4] briefly mention without giving an actual
implementation that Equation (1) is not secure against chosen ciphertext attack
but it can be made to be so using the techniques of [5]. However, as widely known,
the techniques of [5] are based on non-interactive zero-knowledge proof, so the
resulting scheme may not be efficient enough to be used in practice. Different
from BDOP, our approach is more practice-oriented: We use a special property
of ElGamal encryption to provide chosen ciphertext security for the scheme
that combines PKE and PEKS, which actually prevents the attacks informally
described in the previous section.

To our knowledge, other research papers dealing with PEKS including [11],
[10] and [9] do not elaborate on the above issues. Most recently, Park, Cha and
Lee (PCL) [8] has proposed a scheme that integrates PKE and PEKS, which they
call “Searchable Keyword-Based Encryption (SKBE)”. They provide a chosen
ciphertext security notion called “IND-SKBE-CCA” but this is different from
our security notion which will be presented in the later section in that SKBE
allows Alice to use a delegatable private key called “decrypt trapdoor” derived
from her private key to decrypt the ciphertext.

1.3 Our Contributions

In this paper, we elaborate on the issues regarding integration of a PKE and
PEKS. We formally define a combined scheme for PKE and PEKS, which we
call “PKE/PEKS” and its security against chosen ciphertext attack, which we
call “IND-PKE/PEKS-CCA”. We then provide a highly efficient construction
of PKE/PEKS based on the PEKS scheme presented in [4] and the variation of
ElGamal encryption scheme with the randomness reuse technique [6] and show
that it is IND-PKE/PEKS-CCA secure in the random oracle model [3] assuming
that the Computational Diffie-Hellman (CDH) problem is computationally hard.
Additionally, we present another construction of PKE/PEKS scheme which is
generic but slightly less efficient than the first one. We also present two extensions
of the proposed PKE/PEKS scheme to multi-receiver setting and multi-keyword
setting.

2 Preliminaries

2.1 Symbols and Notations

We use the notation A(·, . . . , ·) to denote an algorithm (modeled as a proba-
bilistic Turing machine), with input arguments separated by commas. The no-
tation AO(·)(·, . . . , ·) denotes that algorithm A makes calls to an oracle O(·). We
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use a ← A(x1, . . . , xn) to denote the assignment of a uniformly and indepen-
dently distributed random element from the output of A on input (x1, . . . , xn)
to the variable a. Given a set S, we denote by b

R← S the assignment of a uni-
formly and independently distributed random element from the set S to the
variable b.

2.2 Formal Definition of PEKS and Description of BDOP-PEKS

We review the formal definition of PEKS given in [4]. In PEKS, three parties,
which we call “sender”, “receiver” and “server”, are involved. (One can think the
server as a physical storage device and its administrator). Once the sender sends
a “PEKS ciphertext” which encrypts a keyword using the receiver’s public key,
it is stored in the server. Upon receiving a trapdoor associated with a particular
keyword, the server can check whether its one or some PEKS ciphertexts indeed
encrypt the keyword that the receiver is referring to. A formal definition is as
follows.

Definition 1 (PEKS). A public key encryption with keyword search (PEKS)
scheme consists of the following algorithms.

– KeyGen(k): Taking a security parameter k ∈ IN as input, this algorithm
generates a private and public key pair (sk, pk) of the receiver. Note that
pk includes the security parameter k and the description of a finite keyword
space SPw. We write (sk, pk) R← KeyGen(k).

– PEKS(pk, w): Taking the receiver’s public key pk and a keyword w as input,
this algorithm generates a PEKS ciphertext τ which encrypts w. We write
τ ← PEKS(pk, w).

– Trapdoor(sk, w): Taking a private key sk and a keyword w as input, this
algorithm generates a trapdoor tw for the keyword w. We write tw ←
Trapdoor(sk, w).

– Test(tw, τ): Taking a trapdoor tw for a keyword w and a PEKS ciphertext
τ = PEKS(pk, w′), this algorithm returns a symbol “yes” if w = w′ and
“no” otherwise.

The security notion for PEKS, called “semantic security of PEKS against chosen
keyword attack” [4] concerns the confidentiality of keyword: Informally, if a
PEKS scheme is secure against chosen keyword attack, the attacker who is able
to query a number of keywords to the Trapdoor oracle should not be able to
distinguish an encryption of a keyword w0 from an encryption of a keyword w1

for which he did not obtain the trapdoor.
Figure 1 describes the first PEKS scheme based on the bilinear pairings pro-

posed by Boneh at al. [4], which we call “BDOP-PEKS”. Note that the bilinear
pairing e that will be used throughout this paper is the admissible bilinear pair-
ing, which is defined over two groups of the same prime-order q denoted by G1

and G2. Suppose that G1 is generated by g. Then, e : G1 × G1 → G2 has the
following properties: 1) Bilinear: e(ga, gb) = e(g, g)ab, for all a, b ∈ ZZq and 2)
Non-degenerate: e(g, g) 
= 1.
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KeyGen(k)

Construct a group G1 of prime order q, generated by g ∈ G1.
Construct a bilinear pairing e : G1 ×G1 → G2, where G2 is a group
of order q.

x
R← ZZ∗

q ; y ← gx

pk ← (k, q, g, e, G1, G2, y); sk ← (pk, x)
Return (pk, sk)

Trapdoor(sk, w)

tw ← H1(w)x; Return tw

PEKS(pk, w)

r
R← ZZ∗

q ; τ1 ← gr; τ2 ← H2(e(H1(w), y)r)
Return (τ1, τ2)

Test(tw, (τ1, τ2))

If H2(e(tw, τ1)) = τ2 then return “yes”
Else return “no”

Fig. 1. BDOP-PEKS

3 PKE/PEKS

3.1 Formal Model

Recall that simply appending a PEKS ciphertext to a ciphertext that encrypts
a message is vulnerable to the attacks described in Section 1.1. These attacks
suggest that some mechanism should be provided to bind the ciphertext c that
encrypts a message m and the PEKS ciphertext τ that encrypts a keyword w
in such a way that any alteration of c and τ en route to B should be detected.
We call this mechanism “tagging”. We argue that this tagging is essential in
providing the PEKS service that BDOP originally envisioned [4]. Definition 2
presents formal description of a scheme that combines PKE and PEKS together
with the tagging mechanism, which we call “PKE/PEKS”.

Definition 2 (PKE/PEKS). A PKE/PEKS scheme consists of the following
algorithms.

– KeyGen(k): Taking a security parameter k ∈ IN as input, this algorithm
generates a private and public key pair (sk, pk). Note that pk includes the
security parameter k and the description of a finite keyword space SPw. We
write (sk, pk) ← KeyGen(k).

– ENC-PKE/PEKS(pk, w, m): Taking (pk, w, m), where w and m denote a key-
word and a plaintext respectively, as input, this algorithm generates a ci-
phertext c that encrypts m, a PEKS ciphertext τ that encrypts w and a tag
σ. We write (c, τ, σ) ← ENC-PKE/PEKS(pk, w, m).

– Trapdoor(sk, w): Taking (sk, w) as input, this algorithm generates a trapdoor
tw for the keyword w. We write tw ← Trapdoor(sk, w).
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– Test(tw, c, τ, σ): Taking (tw, c, τ, σ) as input, this algorithm returns (c, τ, σ)
if τ encrypts w and “no” otherwise.

– DEC-PKE/PEKS(sk, c, τ, σ): Taking (sk, c, τ, σ) as input, this algorithm checks
whether σ is a valid tag of c and τ . If it is, this algorithm outputs a decryption
of c, which is a plaintext m or “reject”. Otherwise, this algorithm simply
outputs “reject”. We write m/reject← DEC-PKE/PEKS(sk, c, τ, σ).

We note that Test is run by the server, and when it finds that τ encrypts w,
the server sends (c, τ, σ) to the receiver (instead of sending “yes” message). By
running DEC-PKE/PEKS, the receiver can obtain the message that the sender
originally sent.

3.2 Security Notion for PKE/PEKS

Notice that in the scheme of PKE/PEKS, PEKS is no longer regarded as a
stand-alone scheme but a scheme that is run together with the data encryption
and tagging mechanism. In terms of security, we of course require that a PEKS
ciphertext part of the PKE/PEKS ciphertext (that is, τ in (c, τ, σ)) does not
reveal any information about a keyword that it encrypts. This is covered by
the “semantic security of PEKS against chosen keyword attack” [4] explained
in Section 2.2. In addition to this notion, we define a new security notion for
PKE/PEKS.

As mentioned earlier, the ciphertexts that encrypt a message and a keyword,
that is (c, τ) should not be modified en route to the intended receiver. On top
of this, confidentiality of the message m should be provided. In fact, these re-
quirements are covered by the following security notion, which we call “IND-
PKE/PEKS-CCA”.

Definition 3 (IND-PKE/PEKS-CCA). LetAbeanattacker. LetPKE/PEKS=
(KeyGen, ENC-PKE/PEKS, Trapdoor, Test, DEC-PKE/PEKS) be a PKE-PEKS
scheme. Consider the following game.

Game Gind-pke/peks-cca(k)
Phase 1: (sk, pk) ← KeyGen(k)
Phase 2: (m0, m1, w) ← ADEC-PKE/PEKS(sk,·,·,·)(pk) (Here, |m0| = |m1|, w 
=
m0 and w 
= m1).
Phase 3: β

R← {0, 1}
Phase 4: (c, τ, σ) ← ENC-PKE/PEKS(pk, w, mβ)
Phase 5: β′ ← ADEC-PKE/PEKS(sk,·,·,·)(pk, (c, τ, σ))

Note that in the above game, A is not allowed to query the target PKE/PEKS
ciphertext (c, τ, σ) to the oracle DEC-PKE/PEKS(sk, ·, ·, ·).

We define A’s advantage as

Advind-pke/peks-cca(k) =
∣∣ Pr[β′ = β] − 1

2

∣∣.
A breaks IND-PKE/PEKS-CCA of PKE/PEKS with (t, qD, ε) if and only if

the advantage of A that makes qD decryption queries is greater than ε within
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running time t. The scheme PKE/PEKS is said to be (t, qD, ε)-IND-PKE/PEKS-
CCA secure if there is no attacker A that breaks IND-PKE/PEKS-CCA of
PKE/PEKS with (t, qD, ε).

4 PKE/PEKS Constructions

4.1 Difficulties in Realizing Secure PKE/PEKS

Before describing our PKE/PEKS scheme, we show that constructing a secure
PKE/PEKS scheme is not very straightforward as it seems to be. We note that
Appendix ?? which presents our chosen ciphertext attack on Park et al.’s recent
proposal [8] also shows that caution must exercised when constructing a scheme
that combines PKE and PEKS.

Suppose that we use any ElGamal-like CCA-secure public key encryption
scheme for encrypting a plaintext message m, the BDOP-PEKS scheme [4] for
encrypting a keyword w and some Diffie-Hellman key exchange-style message
authentication code for creating a tag σ. Assuming that the same public key
y = gx, where x is a private key, is used, one may create a PKE/PEKS scheme
as follows:

(c, τ, σ) = (c, (gr, H2(e(H1(w), y)r), (gr′
, H3(yr′

, c, τ))), (2)

where r, r′ ∈ ZZ∗
q are chosen at random; c is a ciphertext that encrypts m, out-

put by the CCA-secure public key encryption scheme; and H1, H2 and H3 are
appropriate hash functions.

One can notice that the security of Equation (2) can easily be broken by the
following chosen ciphertext attack even though the underlying encryption for
the message m is CCA-secure: Leave c as it is and modify τ to τ ′ (which is
different from τ). Then create another tag σ′ by choosing a new random element
r′′ from ZZ∗

q and computing (gr′′
, H3(yr′′

, c, τ ′)). Query (c, τ ′, σ′)(
= (c, τ, σ)) to
the decryption oracle DEC-PKE/PEKS. Note that (c, τ ′, σ′) will pass the tagging
check in the decryption process as σ′ is a valid tag (of c and τ ′) and hence will
return m, which implies breaking the confidentiality!

Considering the above attack, one may attempt to construct an extended
PEKS scheme using the randomness re-use technique [6] as follows:

(c, τ, σ) = (c, (gr, H2(e(H1(w), y)r), H3(yr, c, τ)), (3)

where r ∈ ZZ∗
q is chosen at random.

However, Equation (3) also suffers from a similar problem as in the previ-
ous scheme as the attacker can create τ ′ = (gr′

, H2(e(H1(w), y)r′
) and σ′ =

H3(yr′
, c, τ) for r′ 
= r.

Intuitively, the above two attacks suggest that some secret key should be
shared between c, τ and σ in such a way that any modification of them should
result in invalid ciphertext which can detected by the DEC-PKE/PEKS oracle.
In the following sections, we show that this intuition actually works.
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4.2 Construction Based on ElGamal/BDOP-PEKS

We use a PKE scheme similar to DHIES [1] or ElGamal version of REACT [7]
and the BDOP-PEKS scheme (reviewed in Section 2.2) for our PKE/PEKS pro-
posal. Importantly, we make use of the randomness re-use technique [6] (which
is exploited more in [2]) to provide secure binding of PKE and PEKS ciphertexts
and a high level of efficiency. In Figure 2, the proposed PKE/PEKS scheme is
described.

KeyGen(k)

Construct a group G1 of prime order q, generated by g ∈ G1.
Construct a bilinear pairing e : G1 ×G1 → G2, where G2 is a group
of order q.
Choose hash functions H1 : G1 → {0, 1}l1 , H2 : {0, 1}∗ → G1;
H3 : G2 → {0, 1}l3 ; H4 : {0, 1}∗ → {0, 1}l4

x
R← ZZ∗

q ; y ← gx

pk ← (k, q, g, e, G1, G2, y); sk ← (pk, x)
Return (pk, sk)

ENC-PKE/PEKS(pk, w, m)

r
R← ZZ∗

q ; c1 ← gr; κ ← yr

K ← H1(κ); c2 ← K ⊕ m
h ← H2(w); μ ← e(h, y)r; τ ← H3(μ)
σ ← H4(κ, m, c1, c2, τ )
Return (c1, c2, τ, σ)

Trapdoor(sk, w)

tw ← H2(w)x; Return tw

Test(tw, c1, c2, τ, σ)

If H3(e(tw, c1)) = τ then return (c1, c2, τ, σ)
Else return “no”

DEC-PKE/PEKS(sk, c1, c2, τ, σ)

κ ← cx
1 ; K ← H1(κ); m ← K ⊕ c2

If H4(κ, m, c1, c2, τ ) = σ then return m
Else return “reject”

Fig. 2. Our PKE/PEKS Scheme Based on BDOP-PEKS/ElGamal

Now, we analyze the security of the above scheme. First, we review the defi-
nition of the Computational Diffie-Hellman (CDH) problem.

Definition 4 (CDH). Let p and q be primes such that q|p − 1. Let g be a
generator of G1. (We assume that a bilinear pairing e : G1 × G1 → G2 is
defined). Let A be an attacker. A tries to solve the following problem: Given
(g, ga, gb) for uniformly chosen a, b ∈ ZZ∗

q , compute κ = gab.
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Formally, we define A’s advantage by Pr[A(g, ga, gb) = gab]. A solves the CDH
problem with (t′, ε′) if and only if the advantage of A is greater than ε′ within
running time t′. The CDH problem is said to be (t′, ε′)-intractable if there is no
attacker A that solves the CDH problem with (t′, ε′).

In the following theorem, we prove that our scheme described in Figure 2 is
IND-PKE/PEKS-CCA secure.

Theorem 1. The PKE-PEKS scheme based on ElGamal, BDOP-PEKS and the
randomness re-use technique, presented in Figure 2, is (t, qH1 , qH2 , qH3 , qH4 , qD, ε)-
IND-PKE/PEKS-CCA secure in the random oracle model assuming that the
CDH problem is (t′, ε′)-intractable, where ε′ > ε− qD

2l4 and t′ = t + (qH1 + qH2 +
qH3 + qH4)O(1) + (qH1 + qH4)(Te + O(1)) + qD(Te + O(1)) where qH1 , . . . , qH4

denote the number of queries to the random oracles H1, . . . , H4 respectively and
Te denotes the execution time for computing bilinear pairing.

Proof. Let A be an IND-PKE/PEKS-CCA attacker. (The number of queries
to the oracles that A makes and its running time are as defined in the above
theorem statement). We show that using A, one can construct an attacker B
that can solve the CDH problem.

Suppose that B is given (p, q, g, G1, G2, ga, gb) as an instance of the CDH
problem. (Note that B can test whether a given tuple is Diffie-Hellman one
or not using the bilinear pairing e : G1 × G1 → G2). B can simulate the
Challenger’s execution of each phase of IND-PKE/PEKS-CCA game for A as
follows.

[Simulation of Phase 1] B sets y = gb and gives A (p, q, g, G1, G2, y) and
simulate A’s queries to the random oracles H1, H2, H3, and H4 as follows.
On receiving a query κ to H1:

1. If e(g, κ) = e(ga, y) then stop the simulation. (This means that κ is a Diffie-
Hellman key of ga and y(= gb)).

2. Else do the following:
(a) If 〈κ, K〉 exists in H1List then return K as answer.
(b) Else pick K ∈ {0, 1}l1 at random, add 〈κ, K〉 to H1List and return K as

answer.

On receiving a query w to H2:

1. If 〈w, h, z〉 exists in H2List then return h as answer.
2. Else pick z ∈ ZZ∗

q at random, add 〈w, h, z〉 to H2List and compute h = gz and
return h as answer.

On receiving a query μ to H3:

1. If 〈μ, τ〉 exists in H3List then return τ as answer.
2. Else pick τ ∈ {0, 1}l3 at random, add 〈μ, τ〉 to H3List and return τ as

answer.
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On receiving a query (κ, m, c1, c2, τ) to H4:

1. If e(g, κ) = e(ga, y) then stop the simulation. (This means that κ is a Diffie-
Hellman key of ga and y(= gb)).

2. Else do the following:
(a) If 〈(κ, m, c1, c2, τ), σ〉 exists in H4List then return c3 as answer.
(b) Else pick σ ∈ {0, 1}l4 at random, add 〈(κ, m, c1, c2, τ), σ〉 to H4List and

return σ as answer.

[Simulation of Phase 2] B answers A’s decryption queries as follows. (B answers
A’s other queries as described in Phase 1).

On receiving a decryption query (c1, c2, τ, σ):

1. Search H4List for a tuple 〈(κ, m, c1, c2, τ), σ〉.
2. If such a tuple exists then do the following:

(a) If e(g, κ) = e(c1, y) then run the above H1 oracle simulator to get a tuple
〈κ, K〉 ∈ H1List and checks whether c2 = m ⊕ K. If the equality holds
then return m and “Reject” otherwise.

3. Else return “Reject”.

[Simulation of Phase 3] B creates a target ciphertext as follows.
On receiving a challenge query ((m0, m1), w∗), where |m0| = |m1| and w∗ 
= m0

and w∗ 
= m1:

1. Run the above H2 oracle simulator taking w∗ as input to get a tuple 〈w∗, h∗, z∗〉 ∈
H2List.

2. Computeμ∗ = e(gb, ga)z∗
and run theH3 simulator to get a tuple 〈μ∗, τ∗〉 ∈ H3List.

3. Pick c∗2 ∈ {0, 1}l1, σ∗ ∈ {0, 1}l4 and β ∈ {0, 1} at random.
4. Set c∗1 = ga and K∗ = c∗2 ⊕ mβ.
5. Define K∗ = H1(κ∗) and σ∗ = H2(κ∗, mβ, c∗1, c

∗
2, τ

∗). (Note that B does not
know the value κ∗ yet).

6. Update H4List by adding 〈(−, mβ, c∗1, c
∗
2, τ

∗), σ∗〉 as entry.
7. Return (c∗1, c

∗
2, τ

∗, σ∗) as a target ciphertext.

[Simulation of Phase 4] In this phase, B answers A’s queries to the random
oracle H1 and H4 using the target ciphertext (c∗1, c∗2, τ∗, σ∗) as follows. Note
that the simulation for the random oracles H2 and H3 remains the same as
Phase 1.

On receiving a query κ to H1:

1. If e(g, κ) = e(c∗1, y) then return K∗ (set in the simulation of Phase 3) as
answer and stop the simulation (since κ is a Diffie-Hellman key of c∗1(= ga)
and y(= gb)).

2. Else do the following:
(a) If 〈κ, K〉 exists in H1List then return K as answer.
(b) Else pick K ∈ {0, 1}l1 at random, add 〈κ, K〉 to H1List and return K as

answer.
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On receiving a query (κ, m, c1, c2, τ) to H4:

1. If (m, c1, c2, τ) = (mβ , c∗1, c∗2, τ∗) then do the following:
(a) If e(g, κ) = e(c∗1, y) then return σ∗ (set in the simulation of Phase 3)

as answer and stop the simulation (since κ is a Diffie-Hellman key of
c∗1(= ga) and y(= gb)).

2. Else do the following:
(a) If 〈(κ, m, c1, c2, τ), σ〉 exists in H4List then return c3 as answer.
(b) Else pick σ ∈ {0, 1}l4 at random, add 〈(κ, m, c1, c2, τ), σ〉 to H4List and

return σ as answer.

[Simulation of Phase 5] When A outputs its β′, B stops the whole game.
[Analysis] We first evaluate the simulations of the random oracles given above.
From the construction of H1 and H4, it is clear that the simulations of H1 and
H4 are perfect as long as A does not query κ∗ to H1 nor query (κ∗, m, c1, c2, τ)
to H4, where κ∗ is a Diffie-Hellman key of ga and gb. By AskH∗

1 and AskH∗
4

we denote the events that such κ∗ has been queried to H1 and H4 respec-
tively. Notice that the simulations of the random oracles H2 and H3 are
perfect.

Next, one can notice that the simulated target ciphertext is identically dis-
tributed as the real one from the construction.

Now, we evaluate the simulation of the decryption oracle. We note that sim-
ulation errors may occur while B is running the decryption oracle simulator
specified above. Suppose that (c1, c2, τ, σ) has been submitted as a valid decryp-
tion query to the decryption oracle simulator. Even if (c1, c2, τ, σ) is valid, there
is a possibility that it can be rejected by the decryption oracle simulator. Accord-
ing to its construction, the decryption oracle simulator will reject the ciphertext
unless (κ, m, c1, c2, τ) has been queried to H4. There are two cases when this
event occurs:

– Case 1: σ∗ (output of H4) has been obtained from the target ciphertext.
– Case 2: The value for H4(κ, m, c1, c2, τ) has been correctly guessed without

invoking H4.

Case 1 leads to a contradiction as (κ, m, c1, c2, τ) must be the same as
(κ∗, mβ , c∗1, c

∗
2, τ

∗) by the collision-free property of H4. (Note that the target
ciphertext is not allowed to queried to the decryption oracle). Case 2 occurs
only with negligible probability of 1/2l4.

Let DecErr be an event that a valid ciphertext is rejected during the en-
tire attack game. Then, since qD decryption oracle queries are made, we have
Pr[DecErr] ≤ qD

2l4 .
Now define an event E to be AskH∗

1 ∨ DecErr. If E does not happen, it is
clear that A does not gain any advantage greater than 1/2 to guess β due
to the randomness of the output of the random oracle H1. Namely, we have
Pr[β′ = β|¬E] ≤ 1

2 . Hence, by splitting Pr[β′ = β], we obtain Pr[β′ = β] =
Pr[β′ = β|¬E] Pr[¬E] + Pr[β′ = β|E] Pr[E] ≤ 1

2 Pr[¬E] + Pr[E] = 1
2 + 1

2 Pr[E] and
Pr[β′ = β] ≥ Pr[β′ = β|¬E] Pr[¬E] = 1

2 − 1
2 Pr[E].
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By definition of ε, we then have ε <
∣∣ Pr[β′ = β]− 1

2

∣∣ ≤ 1
2 Pr[E] ≤ Pr[AskH∗

1 ∨
DecErr] ≤ Pr[AskH∗

1 ]+Pr[DecErr]. Since Pr[DecErr] ≤ qD

2l4 , we obtain Pr[AskH∗
1 ] >

ε− qD

2l4 . Meanwhile, if AskH∗
1 happens then B will be able to solve the CDH prob-

lem, that is, Pr[AskH∗
1 ] = ε′. Thus we obtain ε′ > ε − qD

2l4 .
The running time of the CDH attacker B is t′ > t + (qH1 + qH2 + qH3 +

qH4)O(1)+(qH1 +qH4)(Te+O(1))+qD(Te+O(1)) where Te denotes the execution
time for pairing computation (to check whether a given tuple is a Diffie-Hellman
one or not).

KeyGen(k)

(pk′, sk′) ← KeyGen(k)
Choose hash functions H1 : {0, 1}∗ → {0, 1}l1 and
H4 : {0, 1}∗ → {0, 1}l4

pk ← (pk′, H1, H4); sk ← sk′

Return (pk, sk)

ENC-PKE/PEKS(pk, w, m)

c1 ← E(pk,R); K ← H1(R)
c2 ← K ⊕ m
τ ← PEKS′(pk, w)
σ ← H4(R, m, c1, c2, τ )
Return (c1, c2, , τ, σ)

Trapdoor(sk, w)

tw ← Trapdoor′(sk, w)

Test(tw, (c1, c2, τ, σ))

If Test′(tw, τ ) = “yes” return (c1, c2, τ, σ)
Else return “no”

DEC-PKE/PEKS(sk, (c1, c2, τ, σ))

R ← D(sk, c1); K ← H1(R)
m ← c2 ⊕ K;
If H4(R, m, c1, c2, τ ) = σ then return m
Else return “reject”

Fig. 3. Generic Construction of PKE/PEKS

4.3 Generic Construction

Our second construction of the PKE/PEKS scheme is based on more generic
primitives. Let PKE = (KeyGen, E, D) be any public key encryption scheme se-
cure in the OW-PCA (One Wayness under Plaintext Checking Attack) sense.
(OW-PCA will be formally defined shortly). Let PEKS = (KeyGen′, PEKS′,
Trapdoor′, Test′) be any PEKS scheme in which public/private key pairs gen-
erated by KeyGen′ are the same as the public/private key pairs generated by
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KeyGen of PKE. Below in Figure 3, we describe our generic construction of
PKE/PEKS.

Before analyzing the security of the scheme in Figure 3, we review the OW-
PCA notion.

Definition 5 (OW-PCA). Let A be an attacker. Let PKE = (KeyGen, E, D) be
a PKE scheme. Consider the following game.

Game Gow-pca(k)
Phase 1: (pk, sk) ← KeyGen(k)
Phase 2: m ← SPm (SPm denotes “message space”).; c ← E(pk, m)
Phase 3: m′ ← APCO(·,·)(pk, c)

Note that in the above game, PCO (Plaintext Checking Oracle) checks, given
a message and ciphertext pair (m, c), whether c encrypts m or not.

We define A’s advantage as

Advow-pca(k) = Pr[m′ = m].

A breaks OW-PCA of PKE with (t, qO, ε) if and only if the advantage of A
that makes qO PCO queries is greater than ε within running time t. The scheme
PKE is said to be (t, qO, ε)-OW-PCA secure if there is no attacker A that breaks
OW-PCA of PKE with (t, qO, ε).

Regarding the second construction, we obtain the following theorem.

Theorem 2. The generic construction of PKE-PEKS scheme presented in
Figure 3 is (t, qH1 , qH4 , qD, ε)-IND-PKE/PEKS-CCA secure in the random ora-
cle model assuming that the underlying PKE encryption scheme PKE is (t′, qO, ε′)-
OW-PCA secure, where ε′ > ε− qD

2l4
, qO = qH1 + qH4 +O(1) and t′ = t + (qH1 +

qH4)O(1)+(qH1 +qH4)(TO+O(1))+qD(TO+O(1)) where qH1 and qH4 denote the
number of queries to the random oracles H1 and H4 respectively and TO denotes
the execution time for the PCO to check whether a given ciphertext encrypts a
given plaintext.

Due to lack of space, the proof is given in the full version of this paper.

5 Extensions to Multi-receiver Multiple Keywords
Setting

Assume that the sender wants to send confidential messages to a group of re-
ceivers, to which a PEKS ciphertext that encrypts a keyword is attached. In
this setting, we assume that the receivers have their own public keys denoted by
pk1, . . . , pkn. Based on the PKE/PEKS scheme described in Figure 2, one can
build a Multi-Receiver (MR)-PKE/PEKS scheme. See Figure 4.
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KeyGen(k)

Construct a group G1 of prime order q, generated by g ∈ G1.
Construct a bilinear pairing e : G1 ×G1 → G2, where G2 is a group
of order q.
Choose hash functions H1 : G1 → {0, 1}l1 , H2 : {0, 1}∗ → G1;
H3 : G2 → {0, 1}l3 ; H4 : {0, 1}∗ → {0, 1}l4

For i = 1, . . . , n do

xi
R← ZZ∗

q ; yi ← gxi

pki ← (k, q, g, e, G1, G2, yi); ski ← (pki, xi)
End For
pk ← (pk1, . . . , pkn); sk ← (sk1, . . . , skn)
Return (pk, sk)

ENC-MR-PKE/PEKS(pk, w, m(= (m1, . . . , mn)))

r
R← ZZ∗

q ; c1 ← gr

For i = 1, . . . , n do
κi ← yr

i ; Ki ← H1(κi); c2i ← Ki ⊕ mi

End For
h ← H2(w); μ ← e(h, y)r; τ ← H3(μ)
For i = 1, . . . , n do

σi ← H4(κi, mi, c1, c2i, τ )
End For
Return (c1, c21, . . . , c2n, τ, σ1, . . . , σn)

Trapdoor(sk, w)

tw ← H2(w)x; Return tw

Test(tw, c1, c21, . . . , c2n, τ, σ1, . . . , σn)

If H3(e(tw, c1)) = τ then return (c1, c2i, τ, σi) for some i ∈ [1, n]
Else return “no”

DEC-PKE/PEKS(ski, c1, c2i, τ, σi) for some i ∈ [1, n]

κi ← cxi
1 ; Ki ← H1(κi); mi ← Ki ⊕ c2i

If H4(κi, mi, c1, c2i, τ ) = σi then return mi

Else return “reject”

Fig. 4. Extension of Our PKE/PEKS Scheme to Multi-Receiver Setting

Notice that in Figure 4, the same random value r is used for encrypting all
the messages (m1, . . . , mn) in the ENC-MR-PKE/PEKS algorithm, so the length
of the resulting ciphertext has been reduced by factor n.

Another natural extension of the PKE/PEKS scheme in Figure 2 to multiple
keyword setting can be considered. Suppose that multiple keywords denoted
by w1, . . . , wn are associated with a message m and the receiver wants to find
a ciphertext that encrypts m which matches any of w1, . . . , wn. On receiving
trapdoor twi for wi, the server searches the ciphertext c and sends it together
with a PEKS component τi for wi and a tag σi. In Figure 5, we describe this
scheme. (The security analysis of this scheme is very similar to that of the
PKE/PEKS scheme in Section 4.2 and hence is omitted).
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KeyGen(k) : Same as KeyGen of the PKE/PEKS scheme in Section 4.2
ENC-PKE/PEKS(pk, w1, . . . , wn, m)

r
R← ZZ∗

q ; c1 ← gr; κ ← yr

K ← H1(κ); c2 ← K ⊕ m
For i = 1, . . . , n do

hi ← H2(wi); μi ← e(hi, y)r; τi ← H3(μi)
σi ← H4(κ, m, c1, c2, τi)

End For
Return (c1, c2, τ1, σ1, . . . , τn, σn)

Trapdoor(sk, wi) for i = 1, . . . , n

twi ← H3(wi)
x; Return twi

Test(twi , c1, c2, τ1, σ1, . . . , τn, σn)

If there exists τi such that H3(e(twi , c1)) = τi then return
(c2, c2, τi, σi) for some i ∈ [1, n]
Else return “no”

DEC-PKE/PEKS(sk, c1, c2, τi, σi) for some i ∈ [1, n]

κ ← cx
1 ; K ← H1(κ); m ← K ⊕ c2

If H4(κ, m, c1, c2, τi) = σi then return m
Else return “reject”

Fig. 5. Extension of Our PKE/PEKS Scheme to Multi-Keyword Setting

Due to lack of space, the security notions for the above two extensions and
their security analysis are given in the full version of this paper.

6 Concluding Remarks

In this paper, we discussed the security issues related to the integration of
PEKS and PKE. We formalized a scheme that combines PKE and PEKS, called
“PKE/PEKS” and formulated its security security against chosen ciphertext at-
tack. We proposed a provably-secure and highly efficient PKE/PEKS scheme
based on ElGamal, BDOP-PEKS [4] and the randomness re-use technique [6].
We also proposed a generic construction PKE/PEKS. Finally, we considered
two extensions of the proposed PKE/PEKS scheme to the multi-receiver and
multi-keyword settings.
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Abstract. A policy-based encryption scheme allows a user to encrypt a mes-
sage with respect to a credential-based policy formalized as monotone boolean
expression written in standard normal form. The encryption is so that only a user
having access to a qualified set of credentials for the policy is able to success-
fully decrypt the message. An inherent property of policy-based encryption is
that in addition to the recipient an encrypted message is intended for, any col-
lusion of credential issuers or end users who are able to collect a qualified set
of credentials for the policy used to encrypt the message can decrypt it as well.
In some applications, the collusion property may be acceptable or even useful.
However, for most other applications it is undesirable. In this paper, we present a
collusion-free policy-based encryption primitive, called policy-based public-key
encryption. We provide precise definition for the new primitive as well as for the
related security model. Then, we describe a concrete implementation using pair-
ings over elliptic curves and prove its security in the random oracle model.

Keywords: Pairing-Based Cryptography, Policy, Credentials.

1 Introduction

Policy-based encryption, recently formalized in [4], allows to encrypt a message with
respect to a credential-based policy formalized as monotone boolean expression written
in standard normal form. The encryption is so that only a user that is compliant with
the policy is able to decrypt the message. A policy involves conjunctions (logical AND
operation) and disjunctions (logical OR operation) of conditions, where each condition
is fulfilled by a digital credential representing the signature of a specific credential is-
suer on a set of statements about a certain entity. A user is thus compliant with a policy
if and only if he has been issued a qualified set of credentials for the policy i.e. a set of
credentials fulfilling the combination of conditions defined by the policy. More gener-
ally, policy-based encryption belongs to an emerging family of cryptographic schemes
sharing the ability to integrate encryption with credential-based access structures. This
ability allows for several interesting applications in different contexts including but not
restricted to oblivious access control [4,7,14], trust negotiation [6,9,13], and crypto-
graphic workflow [3].

Suppose that Alice wants to send a sensitive message to Bob, while requiring that
Bob fulfills a specific credential-based policy in order for him to be authorized to read
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the message. In order to enforce her policy, Alice first encrypts her message according
to her policy using a policy-based encryption algorithm, then she sends the resulting ci-
phertext to Bob. If Bob has access to a qualified set of credentials for Alice’s policy, then
he is compliant with the policy and can thus use his credentials to successfully decrypt
the received message. An inherent property of the policy-based encryption primitive is
that, in addition to Bob, any collusion of credential issuers or end users who are able
to collect a qualified set of credentials for Alice’s policy can decrypt the message as
well. In some applications, where it is acceptable to assume that the credential issuers
are trusted for not colluding with each other to spy the end user’s communications and
that no end user is willing to share his credentials with other end users, the collusion
property is not a problem. In other applications, collusion of end users is useful when
collaboration is required to authorize access to sensitive information, while collusion of
credential issuers may even be desirable for law enforcement. However, for other appli-
cations such as trust establishment in large-scale open environments like the Internet,
the collusion property is undesirable.

In this paper, we present a collusion-free variance of the policy-based encryption
primitive defined in [4], that we call policy-based public key encryption. The intuition
behind our encryption primitive is as follows: we assume that each end user is asso-
ciated to a public/private key pair. We suppose that no end user is willing to share his
private key with the others, and thus keeps secret his valuable key in a secure storage
system such as a smart card. Furthermore, we suppose that a credential delivered by
a credential issuer is associated to the requester’s public key, and that it is issued af-
ter checking that the requester possesses the corresponding private key. As opposed to
the basic policy-based encryption primitive, our encryption algorithm takes as input,
in addition to a credential-based policy, the public key of the recipient the encrypted
message is intended for. The policy taken as input is fulfilled by qualified sets of cre-
dentials for which all the credentials are associated to the recipient’s public key. Our
decryption algorithm is such that, in order to successfully decrypt the message, one
needs to have access to a qualified set of credentials for the policy as well as to the
recipient’s private key. Thus, our policy-based public-key encryption primitive prevents
collusions of credential issuers by making the decryption algorithm involve a secret el-
ement (private key) held only by the recipient the encrypted message is intended for.
Besides, our primitive prevents collusions of end users by associating all the creden-
tials fulfilling the policy according to which a message is encrypted to the same public
key, and making these credentials useful only in conjunction with the corresponding
private key.

In the following, we present the related work found so far in the literature.

1.1 Related Work

As said before, policy-based encryption and policy-based public-key encryption be-
long to an emerging family of cryptographic schemes sharing the ability to integrate
encryption with credential-based access control structures. This ability is mainly en-
abled by pairings over elliptic curves, and more particularly by the Boneh-Franklin
identity-based encryption from bilinear pairings [5]. Note that identity-based encryption
could be seen as a particular case of policy-based encryption. In fact, an identity-based
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encryption scheme corresponds to a policy-based encryption scheme for which policies
are reduced to a single credential representing the signature of a centralized credential
issuer (called private key generator) on the identity of an end user.

In [7], the authors present various applications of the use of multiple trusted author-
ities and multiple identities in the type of identity-based cryptography. They show how
to perform encryption according to disjunctions and conjunctions of credentials. How-
ever, their solution remains restricted to a limited number of disjunctions. In [14], the
author further pursues the ideas discussed in [7] and presents an elegant and efficient
mechanism to perform access control based on encryption with respect to monotone
boolean expressions written in standard normal forms. The proposed solution remains
limited to credentials generated by a centralized trusted authority. Furthermore, it lacks
adequate security arguments. In [4], the authors provide a further generalization of [14]
by considering credentials that might be generated by independent credential issuers.
They formalize the concept of policy-based cryptography and provide precise defini-
tions for policy-based encryption and policy-based signature primitives. Furthermore,
they show how such primitives could be used to enforce policies with respect to the data
minimization principle according to which only strictly necessary information should
be collected for a given purpose. Unfortunately, the presented schemes lack formal se-
curity analysis as for [14].

In [9], the authors introduce hidden credentials as a solution to perform privacy-
enabled trust negotiation. Their solution uses the Boneh-Franklin encryption scheme [5]
and relies on onion-like encryption and multiple encryption operations to deal, re-
spectively, with conjunctions and disjunctions of credentials. Such approach remains
inefficient in terms of both computational costs and bandwidth consumption (cipher-
text size), especially when authorization structures become complex. In [6], the au-
thors propose a solution to improve decryption efficiency as well as policy concealment
when implementing hidden credentials with sensitive policies. They prove the chosen
ciphertext security of their solution under the identity-based security models defined
in [5].

Although used in application scenarios with different security requirements, the en-
cryption schemes presented above share the fact that they allow to encrypt a message
according to a credential-based policy so that only the users having access to a qualified
set of credentials for the policy are able to successfully decrypt the message. While the
schemes of [6,9] consider policies formalized as monotone boolean expressions written
as general conjunctions and disjunctions of atomic terms, the schemes of [4,14] con-
sider the ones written in standard normal forms. All the presented schemes are based
on the Boneh-Franklin identity-based encryption primitive described in [5], from which
they inherit the collusion property. In fact, the Boneh-Franklin scheme suffers from the
key-escrow property i.e. the credential issuer is able to decrypt the confidential mes-
sages intended for the end users. As for the collusion property faced by policy-based
encryption, the key-escrow property might be necessary in some contexts, especially
within organizations, for monitoring and law enforcement. However, in most applica-
tions, it is undesirable.

In [1], the authors describe a modification of the Boneh-Franklin encryption scheme
that allows to avoid the key-escrow problem. Their primitive, called certificateless
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public-key encryption, requires each end user to have a public key. The encryption of a
message is performed with respect to the identity of the recipient as well as with respect
to his public key. The decryption algorithm requires both the recipient’s private key and
his identity credential. In [3], the authors consider general access structures and use a
similar technique to achieve the policy-based encryption functionality while avoiding
the collusion property. Their scheme could be seen as the collusion-free variance of the
encryption scheme proposed in [6]. They underline the fact that their scheme supports
cryptographic workflow, which is a feature inherited from the Boneh-Franklin encryp-
tion primitive and supported by the policy-based encryption primitive as well. They
define formal security models to support their encryption primitive. Their ’recipient se-
curity model’ considers indistinguishability against chosen plaintext attacks, where the
adversary does not have access to the decryption oracle. Security against the stronger
chosen ciphertext attacks is left as an open research problem.

1.2 Contributions and Outline of the Paper

In this paper, we define a new policy-based cryptographic primitive, called policy-based
public-key encryption, and describe a provably secure concrete implementation based
on bilinear pairings over elliptic curves. Our primitive allows to overcome the collusion
problem faced by the original policy-based encryption primitive defined in [4]. We use
a technique similar to the one used in [1] to overcome the key-escrow problem from
which may suffer the identity-based encryption primitive defined in [5]. The escrow-
free encryption scheme proposed in [3] may be considered as a policy-based public-key
encryption scheme when applied to policies written in standard normal forms. Some
may consider that restricting our scheme to standard normal forms is a limitation com-
pared to the scheme of [3] which deals with general-form policies. We argue that this is
not so, as in real-world scenarios security policies are typically written in standard nor-
mal forms. For example, the Web Service policy languages WS-Policy and WSPL con-
sider policies converted to the standard disjunctive normal form. Our concrete scheme
improves the performance of the key-escrow encryption scheme of [3] (when applied to
standard-form policies) both in terms of computational cost and bandwidth consump-
tion (size of the resulting ciphertext). Furthermore, we prove the security of our scheme
against chosen ciphertext attacks as opposed to the approach of [3] that consider the
weaker chosen plaintext attacks.

The rest of the paper is organized as follows: in Section 2, we first set the context for
our encryption primitive including the terminology, the notation and the policy model.
Then, we provide a precise definition for policy-based public-key encryption schemes
as well as for the related security model. The latter adapts the strong security notion
of indistinguishability against chosen ciphertext attacks to the specific features of the
new policy-based cryptographic primitive. In Section 3, we describe a concrete policy-
based public-key encryption primitive based on bilinear pairings over elliptic curves.
Our scheme is a modification of the original policy-based encryption scheme described
in [4] that integrates the public and private keys in the encryption and decryption al-
gorithms respectively. As opposed to the scheme presented in [4] which lacks formal
security analysis, we provide reductionist security arguments for our scheme in the ran-
dom oracle model.
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2 Definitions

2.1 Setting the Context

We consider a public key infrastructure where each end user holds a pair of keys
(pku,sku). An end user is identified by his public key pku. The public key does not
has to be bound to the end user’s name/identity (through public-key certification) as
for standard PKI systems such as X.509. In fact, in large-scale open environments, the
identity of an end user is rarely of interest to determining whether the end user could be
trusted or authorized to conduct some sensitive transactions. Instead, statements about
the end user such as attributes, properties, capabilities and/or privileges are more rele-
vant. The validity of such statements is checked and certified by trusted entities called
credential issuers through a digital signature procedure.

We consider a set of credential issuers I = {I1, . . . , IN}, where the public key of Iκ,
for κ ∈ {1, . . . ,N}, is denoted Rκ while the corresponding master key is denoted sκ.
We assume that a trustworthy value of the public key of each of the credential issuers
is known by the end users. Any credential issuer Iκ ∈ I may be asked by an end user
to issue a credential corresponding to a set of statements. The requested credential is
basically the digital signature of the credential issuer on an assertion denoted Apku . The
assertion contains, in addition to the set of statements, the end user’s public key pku

as well as a set of additional information such as the validity period of the credential.
As the representation of assertions is out of the scope of this paper, they will simply be
encoded as binary strings.

Upon receiving a request for generating a credential on assertion Apku , a credential
issuer Iκ first checks the fact that the requester has access to the private key sku asso-
ciated to pku. Then, the credential issuer checks the validity of the assertion Apku . If it
is valid, then Iκ executes a credential generation algorithm and returns a credential de-
noted ς(Rκ,Apku). Otherwise, Iκ returns an error message. Upon receiving the credential
ς(Rκ,Apku), the end user may check its integrity using Iκ’s public key Rκ. The process
of checking the validity of a set of statements about a certain entity is out of the scope
of this paper.

We consider credential-based policies formalized as monotone boolean expressions
involving conjunctions (AND / ∧) and disjunctions (OR / ∨) of credential-based con-
ditions. A credential-based condition is defined through a pair 〈Iκ,Apku〉 specifying an
assertion Apku ∈ {0,1}∗ (about an end user whose public key is pku) and a credential
issuer Iκ ∈ I that is trusted to check and certify the validity of Apku . An end user whose
public key is pku fulfills the condition 〈Iκ,Apku〉 if and only if he has been issued the
credential ς(Rκ,Apku).

We consider policies written in standard normal forms, i.e. written either in conjunc-
tive normal form (CNF) or in disjunctive normal form (DNF). In order to address the
two standard normal forms, we use the conjunctive-disjunctive normal form (CDNF)
introduced in [14]. Thus, a policy denoted Polpku is written as follows:

Polpku = ∧m
i=1[∨

mi
j=1[∧

mi, j
k=1〈Iκi, j,k ,A

pku
i, j,k〉]], where Iκi, j,k ∈ I and Apku

i, j,k ∈ {0,1}∗

Under the CDNF notation, policies written in CNF correspond to the case where mi, j = 1
for all i, j, while policies written in DNF correspond to the case where m = 1.
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Let ς j1,..., jm(Polpku) denote the set of credentials {{ς(Rκi, ji,k
,Apku

i, ji ,k
)}mi, ji

k=1}m
i=1, for

some { ji ∈ {1, . . . ,mi}}m
i=1. Then, ς j1,..., jm(Polpku) is a qualified set of credentials for

policy Polpku .

2.2 Policy-Based Public-Key Encryption

A policy-based public-key encryption scheme (denoted in short PB-PKE) is specified
by six algorithms: System-Setup, Issuer-Setup, User-Setup, CredGen, Encrypt and De-
crypt, which we describe below.

System-Setup. On input of a security parameter k, this algorithm generates the pub-
lic parameters P which specify the different parameters, groups and public functions
that will be referenced by subsequent algorithms. Furthermore, it specifies a public key
space K , a message space M and a ciphertext space C .

Issuer-Setup. This algorithm generates a random master key sκ and the corresponding
public key Rκ for credential issuer Iκ ∈ I .

User-Setup. This algorithm generates a random private key sku and the corresponding
public key pku.

CredGen. On input of the public key Rκ of a credential issuer Iκ ∈ I and an assertion
Apku ∈ {0,1}∗, this algorithm returns the credential ς(Rκ,Apku).

Encrypt. On input of a message M ∈ M , a public key pku ∈ K and a policy Polpku , this
algorithm returns a ciphertext C ∈ C representing the encryption of M with respect to
policy Polpku and public key pku.

Decrypt. On input of a ciphertext C ∈ C , a pair of keys (pku,sku), a policy Polpku and
a qualified set of credentials ς j1,..., jm(Polpku), this algorithm returns either a message
M ∈ M or ⊥ (for ’error’).

The algorithms described above have to satisfy the following consistency constraint:

C =Encrypt(M,Polpku, pku) ⇒ Decrypt(C,Polpku, pku,sku,ς j1,..., jm(Polpku)) = M

Finally, we define ϕ j1,..., jm(C, pku,Polpku) to be the information from C that is re-
quired to correctly perform the decryption of C with respect to policy Polpku and pub-
lic key pku using the qualified set of credentials ς j1,..., jm(Polpku). A concrete example
is given when describing our PB-PKE scheme. Such information is used in the spec-
ification of the security model associated to the policy-based public-key encryption
primitive.

2.3 Security Model

Our security model for PB-PKE schemes follows the following reasoning: the standard
acceptable notion of security for public key encryption schemes is indistinguishability
against chosen ciphertext attacks (IND-CCA). Hence, it is natural to require that a PB-
PKE scheme also satisfies this strong notion of security. However, the definition of this
security notion must be adapted to the policy-based setting. A PB-PKE scheme is such
that a user should not be able to decrypt a message if he does not fulfill the policy
according to which the message was encrypted or if he does not have access to the
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private key corresponding to the public key used to encrypt the message. Assume, for
instance, that a user Alice wants to send a sensitive message to a user Bob whose public
key is pkb. Moreover, assume that Alice wants to be sure that Bob is compliant with a
specific policy Polpkb in order for Bob to be able to read the message. Thus, Alice uses
a PB-PKE scheme to encrypt her message using Bob’s public key pkb according to her
policy Polpkb . Two attack scenarios should be considered:

– In the first scenario, a third user Charlie that has somehow access to a qualified set
of credentials for policy Polpkb tries to decrypt the intercepted message. For exam-
ple, Charlie may represent a collusion of the different credential issuers specified
by Polpkb . As Charlie has not access to Bob’s private key skb, he must not be able to
successfully achieve the decryption. Because Charlie is not the legitimate recipient
of the message he will be called Outsider.

– In the second scenario, the user Bob (who has access to the private key skb) does not
have access to a qualified set of credentials for policy Polpkb and tries to illegally
decrypt the message. As Bob does not fulfill Alice’s policy, he must not be able to
successfully decrypt the message. As opposed to the Outsider adversary, Bob will
be called Insider.

Our security model is defined in terms of an interactive game played between a chal-
lenger and an adversary, where the adversary can be either Insider or Outsider. The
game consists of five stages: Setup, Phase-1, Challenge, Phase-2 and Guess, which we
describe below.

– Setup. On input of a security parameter k, the challenger does the following: (1)
Run algorithm System-Setup to obtain the system public parameters P which are
given to the adversary, (2) Run algorithm Issuer-Setup once or multiple times to
obtain a set of credential issuers I = {I1, . . . , IN}, (3) Run algorithm User-Setup to
obtain a public/private key pair (pkch,skch). Depending on the type of the adver-
sary, the challenger does the following: If the adversary is an Outsider, then the
challenger gives to the adversary the public keys as well as the master keys of the
credential issuers included in I . Furthermore, the challenger gives the public key
pkch to the adversary while keeping secret the corresponding private key skch. How-
ever, if the adversary is an Insider, then the challenger just gives to the adversary,
in addition to the pair of keys (pkch,skch), the public keys of the credential issuers
included in I while keeping secret the corresponding master keys.

– Phase-1. The adversary performs a polynomial number of oracle queries adaptively
i.e. each query may depend on the replies to the previously performed queries.

– Challenge. This stage occurs when the adversary decides that the Phase-1 stage
is over. The adversary, be it Insider or Outsider, gives to the challenger two equal
length messages M0,M1 and a policy Polpkch

ch on which he wishes to be challenged.
The challenger picks at random b ∈ {0,1}, then runs algorithm Encrypt on input of
the tuple (Mb, pkch,Polpkch

ch ), and returns the resulting ciphertextCch to the adversary.
– Phase-2. The adversary performs again a polynomial number of adaptive oracle

queries.
– Guess. The adversary outputs a guess b′, and wins the game if b = b′.
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During the Phase-1 and Phase-2 stages, the adversary may perform queries to two ora-
cles controlled by the challenger. On one hand, a credential generation oracle denoted
CredGen-O. On the other hand, a decryption oracle denoted Decrypt-O. While the or-
acles are executed by the challenger, their input is specified by the adversary. The two
oracles are defined as follows:

– CredGen-O. On input of a credential issuer Iκ ∈ I and an assertion Apku ∈ {0,1}∗,
run algorithm CredGen on input of the tuple (Iκ,Apku) and return the resulting cre-
dential ς(Rκ,Apku). Note that an Outsider does not need to perform queries to this
oracle as he has access to the credential issuers’ master keys. Besides, an Insider is
not allowed to obtain a qualified set of credentials for the policy Polpkch

ch which he
is challenged on.

– Decrypt-O. On input of a ciphertext C ∈ C , a policy Polpku and a set of indices
{ j1, . . . , jm}, first run algorithm CredGen multiple times to obtain the qualified set
of credentials ς j1,..., jm(Polpkch), then run algorithm Decrypt on input of the tuple
(C, pkch,skch,Polpkch ,ς j1,..., jm(Polpkch)), and return the resulting output.
Note that an adversary, be it Insider or Outsider, cannot perform a query to oracle
Decrypt-O on a tuple (C,Polpkch

ch ,{ j1, . . . , jm}) such that ϕ j1,..., jm(C, pkch,Polpkch
ch )=

ϕ j1,..., jm(Cch, pkch,Polpkch
ch ).

The game described above is denoted IND-Pol-CCAX
PK, where X = I for Insider adver-

saries and X = O for Outsider adversaries. A formal definition of chosen ciphertext
security for PB-PKE schemes is given below. As usual, a real function g is said to be
negligible if g(k) ≤ 1

f (k) for any polynomial f .

Definition 1. The advantage of an adversary AX in the IND-Pol-CCAX
PK game is de-

fined to be the quantity AdvAX = |Pr[b = b′]− 1
2 |. A PB-PKE scheme is IND-Pol-CCAX

PK
secure if no probabilistic polynomial time adversary has a non-negligible advantage in
the IND-Pol-CCAX

PK game.

Note. Our security model could be viewed as an extension to the policy-based public-
key setting of the IND-ID-CCA model defined in [5]. In IND-ID-CCA, the adversary
is not allowed to make decryption queries on the challenge tuple (Cch, IDch). In the
policy-based public-key setting, for an encrypted message with respect to a policy with
disjunctions, there is more than one possible qualified set of credentials that can be
used to perform the decryption. That is, forbidding the adversary from making de-
cryption queries on the challenge tuple (Cch,Polpkch

ch ) is not sufficient anymore. In fact,

we may have tuples such that (C,Polpkch) 
= (Cch,Polpkch
ch ) while ϕ j1,..., jm(C,Polpkch) =

ϕ j1,..., jm(Cch,Polpkch
ch ). Decryption queries on such tuples should then be forbidden.  

3 Our PB-PKE Scheme

3.1 Description

Before describing our PB-PKE scheme, we define algorithm BDH-Setup as follows:

BDH-Setup. Given a security parameter k, generate a tuple (q,G1,G2,e,P) where the
map e : G1 ×G1 → G2 is a bilinear pairing, (G1,+) and (G2,∗) are two groups of the
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same order q, and P is a random generator of G1. The generated parameters are such
that the Bilinear Diffie-Hellman Problem (denoted BDHP) is hard.

Note-1. We recall that a bilinear pairing satisfies the following three properties: (1) Bi-
linear: for Q,Q′ ∈G1 and for a,b∈Z∗

q, e(a ·Q,b ·Q′) = e(Q,Q′)ab, (2) Non-degenerate:
e(P,P) 
= 1 and therefore it is a generator of G2, (3) Computable: there exists an efficient
algorithm to compute e(Q,Q′) for all Q,Q′ ∈ G1.  
Note-2. BDHP is defined as follows: on input of a tuple (P,a ·P,b ·P,c ·P) for randomly
chosen a,b,c ∈ Z∗

q, compute the value e(P,P)abc. The hardness of BDHP can be en-
sured by choosing groups on supersingular elliptic curves or hyperelliptic curves over
finite fields and deriving the bilinear pairings from Weil or Tate pairings. The hardness
of BDHP implies the hardness of the so called Computational Diffie-Hellman Prob-
lem (denoted CDHP) which is defined as follows: on input of a tuple (P,a ·P,b ·P) for
randomly chosen a,b ∈ Z∗

q, compute the value ab ·P. As we merely apply these mathe-
matical primitives in this paper, we refer for instance to [10,15] for more details.  
Our PB-PKE scheme consists of the algorithms described below.

System-Setup. On input of a security parameter k, do the following:

1. Run algorithm BDH-Setup to obtain a tuple (q,G1,G2,e,P)
2. Let M = {0,1}n, K = G1 and C = G1 × ({0,1}n)∗ ×{0,1}n (for some n ∈ N∗)
3. Define four hash functions: H0 : {0,1}∗ → G1, H1 : {0,1}∗ → Z∗

q,
H2 : {0,1}∗ → {0,1}n and H3 : {0,1}∗ → {0,1}n

4. Let P = (q,G1,G2,e,P,n,H0,H1,H2,H3).

Issuer-Setup. Let I = {I1, . . . , IN} be a set of credential issuers. Each credential issuer
Iκ ∈ I picks at random a secret master key sκ ∈ Z∗

q and publishes the corresponding
public key Rκ = sκ ·P.

User-Setup. This algorithm picks at random a private key sku ∈ Z∗
q and computes the

corresponding public key pku = sku ·P.

CredGen. On input of issuer Iκ ∈ I and assertion Apku ∈ {0,1}∗, this algorithm outputs
ς(Rκ,Apku) = sκ ·H0(Apku).

Encrypt. On input of message M∈M , public key pku and policy Polpku, do the following:

1. Pick at random ti ∈ {0,1}n (for i = 1, . . . ,m)
2. Compute r = H1(M‖t1‖ . . .‖tm), then compute U = r ·P and K = r · pku

3. Compute πi, j = ∏
mi, j
k=1 e(Rκi, j,k ,H0(A

pku
i, j,k)) (for j = 1, . . . ,mi and i = 1, . . . ,m)

4. Compute μi, j =H2(K‖πr
i, j‖i‖ j), then vi, j = ti⊕μi, j (for j = 1, . . . ,mi and i = 1, . . . ,m)

5. Compute W = M⊕H3(t1‖ . . .‖tm)
6. Return C = (U, [[vi, j]

mi
j=1]

m
i=1,W )

The intuition behind the encryption algorithm is as follows: each conjunction of condi-
tions ∧mi, j

k=1〈Iκi, j,k ,A
pku
i, j,k〉 is first associated to a mask μi, j that depends not only on the dif-

ferent credentials related to the specified conditions but also on the specified public key.
Then, for each index i ∈ {1, . . . ,m}, a randomly chosen intermediate key ti is associated
to the disjunction ∨mi

j=1 ∧
mi, j
k=1 〈Iκi, j,k ,A

pku
i, j,k〉. Finally, each intermediate key ti is encrypted
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mi times using each of the masks μi, j. This way, it is sufficient to compute any one of the
masks μi, j in order to be able to retrieve ti. In order to be able to retrieve the encrypted
message, an entity needs to retrieve all the intermediate keys ti using not only a qualified
set of credentials for policy Polpku , but also the private key sku corresponding to pku.

Decrypt. On input of ciphertext C = (U, [[vi, j]
mi
j=1]

m
i=1,W ), the pair of keys (pku,sku),

policy Polpku and the qualified set of credentials ς j1,..., jm(Polpku , pku), do the following:

1. Compute π̃i, ji = e(U,∑
mi, ji
k=1 ς(Rκi, ji,k

,Apku
i, ji,k

)) (for i = 1, . . . ,m), then compute K̃ =
sku ·U

2. Compute μ̃i, ji = H2(K̃‖π̃i, ji‖i‖ ji), then compute ti = vi, ji ⊕ μ̃i, ji (for i = 1, . . . ,m)
3. Compute M = W ⊕H3(t1‖ . . .‖tm), then compute r = H1(M‖t1‖ . . .‖tm)
4. If U = r ·P, then return the message M, otherwise return ⊥

Note. Our PB-PKE scheme is such that ϕ j1,..., jm(C = (U, [[vi, j]
mi
j=1]

m
i=1,W ),Polpku) con-

sists of the values U and W as well as the pairs {(vi, ji ,∧
mi, ji
k=1 〈Iκi, ji,k

,Apku
i, ji,k

〉)}m
i=1.  

3.2 Consistency and Efficiency

The algorithms described above satisfy the standard consistency constraint. In fact, we
have, on one hand, K̃ = sku ·U = sku · (r ·P) = r · (sku ·P) = r · pku. On the other hand,
the following holds

π̃i, ji = e(r ·P,

mi, ji

∑
k=1

sκi, ji,k
·H0(A

pku
i, ji,k

)) =
mi, ji

∏
k=1

e(sκi, ji,k
·P,H0(A

pku
i, ji,k

))r = πr
i, ji

The essential operation in pairing-based cryptography is pairing computations. Al-
though such operation can be optimized, it still have to be minimized. In Table 1, we
provide the computational costs of our encryption and decryption algorithms in terms of
pairing computations as well as the size of the resulting ciphertext. Note that l1 denotes
the bit-length of the bilinear representation of an element of group G1.

Table 1. Performance of our PB-PKE scheme compared with the scheme of [3]

Encryption Decryption Ciphertext Size

Our PB-PKE scheme ∑m
i=1 ∑mi

j=1 mi, j m l1 +(∑m
i=1 mi).n+n

The scheme of [3] ∑m
i=1 ∑mi

j=1 mi, j ∑m
i=1 mi, ji l1 +(∑m

i=1 ∑mi
j=1 mi, j).n+n

In Table 1, we provide the performance of the key-escrow scheme of [3] when applied
to policies written in standard normal forms following the notation defined in Section 2.
While the encryption algorithms require the same amount of pairing computations, our
decryption algorithm more efficient as mi, ji ≥ 1 for i = 1, . . . ,m. Furthermore, as mi, j ≥ 1
for j = 1, . . . ,mi and i = 1, . . . ,m, the size of the ciphertexts resulting from our scheme
is at least as short as the one of the ciphertexts produced by the scheme of [3].

Note. As for standard asymmetric encryption schemes, PB-PKE schemes are much less
efficient than symmetric encryption schemes. In practice, they should be used to ex-
change the symmetric (session) keys that are used for bulk encryption.  
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3.3 Security

In the following, we show respectively that our PB-PKE scheme is both IND-Pol-CCAI
PK

and IND-Pol-CCAO
PK secure in the random oracle model.

Notation. Given the notation used in Section 2, the maximum values that the quantities
m, mi and mi, j can take are denoted, respectively, m∨∧ ≥ 1,m∨ ≥ 1 and m∧ ≥ 1. We
assume that these upper-bounds are specified during system setup.  

Theorem 1. Our PB-PKE scheme is IND-Pol-CCAI
PK secure in the random oracle model

under the assumption that BDHP is hard.

Proof. Theorem 1 follows from a sequence of reduction arguments that are summarized
in the following diagram:

Our PB-PKE scheme � BasicPubhy � BDHP

(1) (2)

IND-Pol-CCAI
PK

�

........

IND-CCA
�

........

1. Lemma 1 shows that an IND-Pol-CCAI
PK attack on our PB-PKE scheme can be con-

verted into an IND-CCA attack on the BasicPubhy algorithm defined in [5].
2. In [5], algorithm BasicPubhy is shown to be IND-CCA secure in the random oracle

model under the assumption that BDHP is hard.

Lemma 1. Let A◦ be an IND-Pol-CCAI
PK adversary with advantage AdvA◦ ≥ ε when

attacking our PB-PKE scheme. Assume that A◦ has running time tA◦ and makes at most
qc queries to oracle CredGen-O, qd queries to oracle Decrypt-O as well as q0 queries to
oracle H0. Then, there exists an IND-CCA adversary A• the advantage of which, when
attacking the BasicPubhy scheme, is such that AdvA• ≥ F(qc,qd ,q0,N,m∨∧,m∨,m∧).ε.
Its running time is tA• = O(tA◦).

Note-1. Lemma 1 stated below uses the quantity ζ = F(qc,qd ,q0,N,m∨∧,m∨,m∧)
defined as follows:

ζ = (1− qcm∨∧m∨
Nq0

).(1− qdϒ′(Nq0,m∨∧,m∨,m∧)
ϒ(Nq0,m∨∧,m∨,m∧)

).
1

ϒ(Nq0,m∨∧,m∨,m∧)

where

ϒ′(Nq0,m∨∧,m∨,m∧) = ϒ(Nq0,m∨∧,m∨,m∧)−ϒ(Nq0 − (m∨∧m∨)2,m∨∧,m∨,m∧)−1

Computing F(.) relies on computing the quantity ϒ(X ,m∨∧,m∨,m∧), which is defined
to be the total number of ’minimal’ (reduced) policies written in CDNF, given the
upper-bounds (m∨∧,m∨,m∧) and X possible credential-based conditions. Computing
ϒ(X ,m∨∧,m∨,m∧) is similar, but not exactly the same as the problems of computing
the number of monotone boolean functions of n variables (Dedekind’s Problem [12])
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and computing the number of antichains on a set {1, . . . ,n} [11]. As opposed to these
problems, the order of the terms must be taken into consideration when dealing with our
policies. This is a typical, yet interesting, ’counting’ problem. Due to space limitation,
we do not elaborate more on the details.  
Note-2. In the case where N = m∨∧ = m∨ = m∧ = 1, we have ϒ′(Nq0,m∨∧,m∨,m∧) = 0
and ϒ(Nq0,m∨∧,m∨,m∧) = q0. In this case, our PB-PKE scheme when attacked by the
Insider adversary is equivalent to the FullIdent scheme of [5]. Note that our results match
Result 5 of [8]. In fact, our reductionist security proof follows a strategy similar to the
one used in [8].  
Note-3. The result of our security reduction remains theoretical. The function F(.) de-
pends exponentially on the policy size bounds which is not acceptable in practice. We
are currently working on improving the tightness of our reduction in order to determine
exact security arguments for real-world scenarios.  

Theorem 2. Our PB-PKE scheme is IND-Pol-CCAO
PK secure in the random oracle model

under the assumption that CDHP is hard.

Proof. Theorem 2 follows from two reduction arguments that are summarized in the
following diagram:

Our PB-PKE scheme � ElG-HybridPub � CDHP

(1) (2)

IND-Pol-CCAO
PK

�

........

IND-CCA
�

........

1. Lemma 2 shows that an IND-Pol-CCAO
PK attack on our PB-PKE scheme can be con-

verted into an IND-CCA attack on the EIG-HybridPub algorithm defined in [2].
2. In [2], algorithm EIG-HybridPubhy is shown to be IND-CCA secure in the random

oracle model under the assumption that CDHP is hard.

Lemma 2. Let A◦ be an IND-Pol-CCAO
PK adversary with advantage AdvA◦ ≥ ε when

attacking our PB-PKE scheme. Then, there exists an IND-CCA adversary A• the advan-
tage of which, when attacking the EIG-HybridPub scheme, is such that AdvA• ≥ ε. Its
running time is tA• = O(tA◦).

The details of the proofs of Lemma 1 and Lemma 2 are given in the full version of this
paper.

4 Conclusion

In this paper, we presented a collusion-free policy-based encryption primitive. We pro-
vided formal definitions for the new primitive and described a concrete implementation
using bilinear pairings over elliptic curves. We defined a strong security model for our
primitive following the notion of indistinguishability against chosen ciphertext attacks,
and proved the security of our pairing-based scheme in the random oracle model. The
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goal of the new primitive is to overcome the weakness of the original policy-based
encryption primitive defined in [4] when used in application scenarios for which col-
lusions of credential issuers and end users are undesirable. The key-escrow encryption
scheme presented in [3] allows to achieve the same security goals when applied to poli-
cies written in standard normal forms. Our proposal improves the scheme of [3] in terms
of both performance and formal security analysis. Our security analysis remains theo-
retical and the results of our reductionist proof are unacceptable for practical use of our
primitive. We are currently working on improving the tightness of our reduction and
determining exact security parameters for real-world scenarios. A target application for
our primitive is trust establishment and negotiation in large-scale open environments.
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Using Multiple Smart Cards for
Signing Messages at Malicious Terminals

István Zsolt Berta

Microsec Ltd.

Abstract. Having no trusted user interface, smart cards are unable to communi-
cate with the user directly. Communication is possible with the aid of a terminal
only, which leads to several security problems. For example, if the terminal is
untrusted (which is a very typical scenario), it may perform a man-in-the mid-
dle attack. Thus, a malicious terminal can make the user sign documents that she
would not sign otherwise. A signature that a card computes at a malicious termi-
nal does not prove anything about the content of the signed document. What it
does prove, is that the user did insert her card into a malicious terminal and she
did intend to sign – something.

In this paper we propose a solution where a user has multiple smart cards, and
each card represents a ’signal’, a certain piece of information. The user encodes
her message by using a subset of her cards for signing at the untrusted terminal.
The recipient decodes the message by checking which cards were used. We also
make use of time stamps from a trusted time stamping authority to allow cards to
be used more than once.

1 Introduction

Electronic commerce applications require participants to send messages over a network.
If these messages contain sensitive information, they need to be protected. For instance,
a remote recipient who makes important decisions based on such a message would like
to be convinced that the message is authentic: it originates from the sender and it has
not been modified underway.

Digital signatures provide a way for a sender to ensure the authenticity of the mes-
sage. Moreover, signatures allow a recipient to later prove it to a third party that the
message originates from the sender. Today some signatures are even legally binding, so
courts accept them as non-repudiable evidence.

In this paper that practical scenario is considered, where a human user would like to
send a digitally signed message to a remote partner. Our user is mobile, and she does
not have a trusted computer on her. All she has is a smart card that stores her private
signing key. She would like to send a message of utmost importance, and she supposes
that every terminal she can access is possibly malicious.

Signing messages at malicious terminals is dangerous. The digital signature is a very
complex operation, the user is unlikely to be able to compute it without any computa-
tional aid. Typically, the signature is either computed by a terminal, or by the smart card
of the user. It is unwise to trust a malicious terminal with computing a digital signature,
because it may abuse the user’s signing key. If the signature is computed by the smart

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 246–256, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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card of the user, the terminal cannot get hold of the key itself. However, the smart card
does not have any user interface of its own, so the user still has to rely on the malicious
terminal for sending the message to the smart card before the card signs the message.
In this step, the malicious terminal may perform an obvious attack: it may replace the
message with another one that the user would not want to sign.

As a matter of fact, malicious terminal can make the user sign an arbitrary message.

2 Related Work

The problem of man-in-the-middle attacks of untrusted terminals was addressed by
Abadi et al. first, by analyzing the dangers of delegation of rights to a terminal. [1]
They show that this problem could be solved with a smart card that has peripherals
to communicate directly with the user, and they also show secure protocols for such
a device. Later on, they strip as much of these peripherals from the card, as possible.
Schneier and Shostack also give a good overview of this problem. [2] Literature pro-
vide three branches of solutions for the problem of sending authentic messages from
untrusted terminals. Some works (e.g. [3], [4], [5]) propose solutions based on super
smart cards, that do have some peripherals for communicating with the user directly.

Some other works are based on human-computer cryptography, they provide solu-
tions where the human user protects the message without the help of a smart card. Ex-
amples for this approach are visual cryptography, and the human authentication scheme
of Matsumoto. [6], [7] These solutions rely on the fact the human can perform certain
special operation much faster than computer can. There are some cryptographic algo-
rithms that are optimized for being executed by humans. The “Solitaire” encryption
algorithm is a good example for this. [8] We do not know of such an algorithm for
message authentication.

In contrast to the above two branches, this paper provides a solution based on realis-
tic smart cards, devices that exist today and that are feasible to deploy at large scale. In
our solution the human user does not have to perform any cryptographic operations for
authenticating the message.

In case of solutions based on realistic smart cards, it is assumed that the card does not
have any peripherals for direct communication with the user. This means that the user,

User Terminal

Card

Remote
Partner

insecure
channel

Fig. 1. A model for systems with malicious terminals
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the card and the remote partner of the user are three entities that can communicate with
each other only through the malicious terminal that is a part of the insecure channel.
(See Figure 1.) Thus, establishing secure communication between the user and her card
is exactly the same problem as establishing secure communication between the user and
the remote partner.

The model on Figure 1 was introduced by Stabell-Kulo et al. [9] who proposed
that the user may authenticate her message by encrypting it using a one-time-pad and
a monoalphabetic substitution table. Unfortunately, there are severe key management
problems concerning the one-time-pad. For example, in case of long messages the user
is unable to memorize the long one-time keys.

Asokan et al. proposed a solution that allows the user to authenticate untrusted ter-
minals, but their solution does not deal with the problem of sending messages from
malicious terminals. [10]

Berta and Vajda provided a formal model for the computational abilities a human user,
and they have formally proven that this problem has no solution in case of messages that
are longer than the key the user can memorize (which implies that one-time-pads can-
not be used securely). They have proven that if the human user is unable to securely
encrypt or authentiate a message without the help of a trusted computer, than the human
is unable to take part in any protocol that would allow her to establish an encrypted or
authenticated communications channel that the malicious terminal cannot easily attack.
[11] This implies that the problem of sending authentic messages from malicious termi-
nals cannot be solved if we model the user as a slow computational network device. If
there is a solution to this problem, it should be sought in a different model.

Berta et al. proposed a solution that change the model by posing lesser requirements
on digital signatures computed at untrusted terminals. [12], [13] In this solution, the user
can later revoke unintended signatures under well-defined circumstances. This solution
is suitable for signing transactions of small value, but fails if the user can gain too much
by repudiating a single signature. In contrast to the above work, signatures cannot be
revoked in the solution we propose in this paper, so they can be used for authenticating
transactions of arbitrary high value.

The solutions of Gruschka et al. ([14]) and Girard et al. ([15]) also pose lesser re-
quirements on digital signature: in their model signatures cannot be used for any pur-
pose. Their solutions protect the user by making the trusted smart card enforce lim-
itations on what documents the user can sign. Thus if the card limits the messages
that can be signed to small value bank transfers, the malicious terminal cannot make
it compute a signature over a million-dollar contract. There are two problems with this
approach: The first one is that this solution prevents the user from having a general pur-
pose digital signature. The second one is that the malicious terminal can still alter the
message within the limitations posed by the smart card. For example, if the card limits
the messages that can be signed to million-dollar contracts, then the user would like to
be absolutely sure, which million-dollar contract she signs. The work of Gruschka et al.
also proposes solutions where certain parts of the terminal are secure, but in this paper
we consider that particular situation only where the terminal is fully under the control
of the attacker. The solution proposed in this paper does not place any restrictions on
the messages the user can authenticate.
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Berta and Vajda also proposed a solution [16] where the human user does not sign
a plaintext message, but she signs a biometric (e.g. voice or video) message with her
trusted smart card. The biometric message carries her biometric identity, so if the ma-
licious terminal would like to make her sign a different message, then the malicious
terminal needs to counterfeit the biometry of the user too. We assume that it takes sig-
nificantly more time to counterfeit a biometric message than to counterfeit a plaintext
one. There is a timestamping mechanism in the system that ensures that the malicious
terminal has very little time to tamper with the biometric message before it is signed by
the trusted smart card of the user. The solution we propose in this paper does not rely
on the fuzziness of biometry, it employs purely algorithmic countermeasures.

3 Model

We can summarize previous solutions with the following statement: A human user, who
does not have a trusted computational device at her disposal, is helpless. If the terminal
she is using is malicious, it can make the user sign an arbitrary message. Previous works
either assume that the user has some trusted computational device she can communicate
with through a trusted channel, or they assume that the user has an exceptional memory
or some exceptional computational abilities – which means that she (i.e. her brain) is
the aforementioned trusted computational device. Some works try to protect the user by
placing limitations on what documents she can sign, and prevent her from authenticating
any message she chooses. Some others pose different requirements on signatures (and
e.g. allow them to be revoked).

We do not know of any solution that allows the average human user to authenticate
long messages without having a trusted computational device at her disposal that she
can communicate with through a trusted channel.

In this paper, we propose such a solution. Our solution does not require the user
to memorize any keybit or to perform any computations. Our solution includes trusted
computational devices (smart cards), but does not assume that the user can communicate
with them in a trusted way. What the user has to do, is allowing and blocking communi-
cation between the untrusted terminal and the smart cards. Naturally, the ’work’ she has
to perform is directly proportional to the length of her message. Our solution requires a
global trusted time stamping service to be available.

According to the model we use in the rest of this paper, user U is a human who
would like to send messages to remote partner, recipient R from malicious terminal T .
The user has one or more smart cards that she can use for signing messages, and each
smart card contains one signing key.

We define our model by the following assumptions:

1. The user, her smart cards and the remote partner can communicate with each other
through the malicious terminal only (see Figure 1).

2. The terminal is fully under the control of the attacker, so the attacker is able to
record, modify and replay any message passing through the untrusted terminal.

3. There is no cryptographic algorithm that a human user can execute to protect the au-
thenticity of messages from the malicious terminal. This means that existing cryp-
tographic algorithms are either too complex, so a human user cannot execute them
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on “long” messages (i.e. where one-time-pads are out of the question), or they are
too weak, so a malicious terminal can easily break them. (See [11] for the formal-
ization of this assumption.)

4. The user is able to block the communication channels between her smart cards and
the malicious terminal. She has a straightforward way for doing this: the terminal
is not able to communicate with a card unless the user inserts it into the card reader
of the terminal.
On the other hand, if the user inserts a card into card reader of the terminal, the
terminal can make the card compute one or more1 signatures over messages chosen
by the malicious terminal until the card is removed from the reader. (We do not
make any assumption on whether the card protects the signing keys by PIN codes.
Although PIN codes are useful against e.g. card theft, they provide little protection
against the threat of untrusted terminals, so their use is not discussed in this paper.)

5. The attacker cannot attack the digital signature algorithm with a non-negligible
probability. This means that the attacker has a negligible chance to produce the
signature for a given datablock, if the attacker does not know the corresponding
private key. The attacker also has just a negligible chance for obtaining the signing
key from a signature.

6. Smart cards generate their own signing keys, and it is impossible to extract these
keys from the smart cards.

We assume that the attacker controls the terminal of the user when she sends messages
m1, m2, ..., mn. The aim of the attacker is to make the remote partner accept mes-
sage m′ as an authentic message originating from the user, where m′ is not a message
originating from the user (∀i : m′ 
= mi). [17]

4 Our Solution in a Nutshell

According to Assumption 3, the user is unable to perform cryptographic operations that
would allow her to send authentic messages to her smart card. This implies that the
malicious terminal can make the user sign an arbitrary message, so in case of malicious
terminals, the digital signature of the card does not prove anything about the content of
the signed message.

However, a signature computed at a malicious terminal is not totally useless. Such a
signature can still be used for proving the following: [16]

– The user signed something with her card.
– Whatever datablock was signed, it was not altered after the signing.
– If there are any securely obtained timestamps protecting the signature, they can be

used for proving the time of the signing.

1 It is possible to prevent the terminal from obtaining a signature without the user entering the
PIN code by using trusted smart card readers with integrated PIN pads. However, not even a
trusted reader with an integrated PIN pad can prevent the terminal from replacing the message
the user would like to sign with an arbitrary message. In this paper we assume that the terminal
is completely under the control of the attacker and it does not have any parts that are trusted
by the user (Assumption 2).
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In the solution we propose in this paper, we make heavy use of the first and the last
of the above statements.

Let us assume that if the user wishes to send message ’1’ from a malicious termi-
nal to the remote partner, and she inserts her card and signs a message. If the remote
partner receives any message signed with the user’s private key, then the remote partner
can make sure that the user sent message ’1’. If the remote partner does not receive
any message signed by the user’s private key, then the remote partner cannot decide
whether the user did not send anything, or she sent message ’1’ but the malicious ter-
minal blocked it.

User Terminal
Remote

Partner

insecure

channel

C1 Cn...

smart cards
trusted by the 
user

Fig. 2. Our model with multiple trusted smart cards

There are two problems with the above approach. On the one hand, the signing key
(and the corresponding smart card) can be used only once. The user should not use the
card ever again, otherwise the remote partner may not be able to differentiate between
the received messages. On the other hand, it is not obvious how to send message ’0’.

We propose that the if the user has multiple smart cards, she can authenticate mes-
sages even at malicious terminals. In the solution we propose, the user does not au-
thenticate the message by signing it with her card, but by signing some datablocks with
subset of her cards. (Figure 2 shows the model with the user having multiple trusted
smart cards.) Henceforth, we call a datablock and a signature on it created with one of
the user’s cards a signal. Signals should have a structure that can be recognized by the
remote partner, but the content of the signed datablock in the signal is irrelevant. Each
card of the user contains a different private key, so each card produces a different signal.
At the untrusted terminal, the human user encodes her message as a list of signals, and
the remote recipient obtains the message by decoding the list of signals received from
the user. As the malicious terminal is able to obtain signatures on any datablock, we
assume that the digital certificates of the signing keys clearly state that signatures with
the signing keys can be used for sending signals only, and such signatures do not prove
the consent of the user.

There is a theoretically workable solution for sending an n-bit-long message from an
untrusted terminal: The user should be equipped with 2n smart cards, cards one[1..n]
for sending signal ’1’, and cards zero[0..n] for sending signal ’0’. If the user wishes to
send message ’101’, she has to send three signals, i.e. she has to perform three signa-
tures with three cards: one signature with card one[1], another one with card zero[2]
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and one with card one[3]. The remote partner expects three signals to arrive, and each
signal to denote a bit at a different position in the message. Unfortunately, this solution
allows the user to send only one message, and this message must have a fixed length.
If n, the length of the message is large, then this solution requires the user to carry a
truckload of cards on her – cards she cannot use ever again. We improve this solution
in the next section by allowing the user to use cards more than once. More precisely,
we allow her to send multiple messages of variable length while carrying a constant
number of cards only.

5 A Detailed Practical Solution

It is possible to reduce the number of cards required for sending the message by intro-
ducing the notion of time in our protocol. If the time of signing was included in the
signals, the remote partner would be able to detect if the malicious terminal tampered
with the order of the signals before sending it to the remote partner.

We can safely assume that the user has a source of time independent from the ter-
minal, e.g. a watch. (The biometric protocol of Berta and Vajda also uses this concept.
[16]) According to Assumptions 1 and 3, the user cannot send the value of the exact
time to the smart card in an authentic way. Unfortunately, most smart cards today do
not have a timer of their own, so they need to rely on a trusted source of time, like a time
stamping authority (TSA). A time stamping authority is a trusted party who puts digi-
tally signed timestamps on incoming messages. A TSA who receives input x answers
timestamp(x) = (tcurrent , signTSA(tcurrent , x)). The user trusts TSA for having a
having a secure source of time and for functioning correctly. The TSA also handles its
signing key in a secure way (i.e. Assumption 6 is true for the TSA).

We assume the user and the remote partner agreed on a set of time frames. The first
frame is between t1 and t2, the second frame is between t2 and t3, etc. We assume that
the time frames are of equal length, i.e. ∀i, ti+1 − ti = ts.

It should not be complicated to agree on these time frames and the time frames
should not be kept secret. For example, the user and the remote partner may agree that a
new time frame starts with every minute, every minute past 20 seconds and every minute
past 40 seconds. In this example, we assumed that time frames are 20-seconds-long. The
length of time frames may depend on how well the user’s watch is synchronized with
the TSA. In case of precise watches, the protocol is viable with shorter (e.g. 5-seconds-
long) time frames too. (See the work of Sánta for description of a similar experiment.
[18]) If the user’s watch cannot be synchronized with the TSA, then longer time frames
(of 30 seconds, 1 minute or even 10 minutes) can be used. Thus, there is a possible
tradeoff between speed and time synchronization.

If user U would like to send the signal of card C to the remote partner R using the
malicious terminal T , she needs to engage in the following protocol:

1. The user inserts card C into the reader.

2. C → T : r /where r is a fresh random number generated by C/

3. T → TSA: r

4. TSA → T : timestamp(r)
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5. T → C: timestamp(r)

6. C → T : signC(timestamp(r)) /if the timestamp is valid/

7. T → TSA: signC(timestamp(r))

8. The user removes the card from the reader.

9. TSA → T : timestamp(signC(timestamp(r)))

10. T →R: r, timestamp(r), signC(timestamp(r)), timestamp(signC(timestamp(r)))

11. R accepts the signal of the user if the digital signature of C is correct and both timestamps
are within the same time frame (i.e. ∃i, where both time stamps are between ti and ti+1).

Note that most steps of the above protocol can be automated. In fact, the user needs
to perform only two actions for sending a signal: she has to insert her card before she
would like to send a signal, and she has to remove her card afterwards.

The user initiates the protocol by inserting card C into the card reader of the terminal.
Steps 3 to 9 has to be performed in the same timeframe, otherwise the remote partner
will reject the signal. After Step 9, the untrusted terminal obtains the signal. The signal
itself is the message that the untrusted terminal sends to the remote partner in Step 10.

Using the above protocol the user may send various signals to the remote partner who
can interpret a series of signals as a single message. There are two major principles the
user and the remote partner must adhere to:

P1 User: After the user started sending a message she has to send a signal in every
time frame until the end of the message. The user must not send more then one
signal in a time frame, and she must not insert more than one card in a time frame
into the card reader of the terminal.
Recipient: Every time frame in the message may contain one and only one signal. If
it is not so, the remote partner should consider that the message has been tampered
with.

P2 User: Apart from the signals used for transmitting messages, the user has to clearly
mark the beginning and the end of the message. Otherwise the untrusted terminal
could tamper with the message by chopping signals off from either the beginning
or the end of the message. One possibility for marking the beginning and the end
of the message is sending a special startstop signal (using a dedicated smart card).
The other possibility is to use a special combination of signals that may not appear
during the message.
Recipient: If the remote partner receives a message that does not have a startstop
symbol at the beginning or it is not terminated by a startstop symbol, then the
remote partner should consider that the message has been tampered with.

In other words, messages should be started by and terminated by startstop signals,
and they may not contain any empty time frames. Each time frame in a message may
contain one and only one signal.

The user is able to send binary messages of an arbitrary length if she has three smart
cards: a card called one for sending message bit ’1’, a card called zero for sending mes-
sage bit ’0’, and a startstop card for marking the beginning and the end of messages.
See Figure 3 for an example.



254 I.Z. Berta

time

... ...

startstop
signal

startstop
signal

"one" "one" "zero" "one"

Fig. 3. An example

There is a possible tradeoff between the number of cards and the speed of protocol.
The user and the remote partner may agree on a different set of signals, and on a dif-
ferent way of encoding the message into signals. For example, when sending numbers,
the user may have one card for sending number ’1’, another for sending number ’2’,
’3’, etc. In case of sending text messages, it may be beneficial to select an encoding
optimized for sending text.

In the next section, we are going to show that this protocol is secure against a certain
attack model.

6 Analysis

We consider that the attacker controlling the terminal has possibilities described by the
attack tree below. [19] The aim of the attacker is to make the remote recipient accept
a message that the user did not sign as an authentic message originating from the user.
(See Section 3 for the model of the attacker.)

1. The attacker may insert additional signals into a message.
2. The attacker may remove one or more signals from

(a) the beginning of a message.
(b) the end of a message.
(c) the middle of a message (i.e. from parts other than the beginning and the end

of the message).
3. The attacker may modify the message by changing one or more signals into dif-

ferent ones. The attacker can do this by removing a signal from the message and
inserting a different one instead by
(a) obtaining a signature from a card that is used for sending a different signal, and

obtaining the necessary timestamps from the TSA.
(b) forging a signature of a card that is used for sending a different signal, and

obtaining the necessary timestamps from the TSA.
(c) obtaining a signature from a card that is used for sending a different signal, and

forging the necessary timestamps of the TSA.
(d) forging a signature of a card that is used for sending a different signal, and

forging the necessary timestamps of the TSA.
4. The attacker may perform cut-and-paste attacks.

Proposition 1. If our assumption in Section 3 hold, then the solution we proposed in
Section 5 is secure against the attacks in the above attack tree.

Proof. We show that – according to our assumptions – none of the attacks on the leaf
nodes of the attack tree are possible.
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– Attack 1 is not possible. Between the starting and the terminating startstop signals,
every time frame in the message contains one and only one signal. If the attacker
inserts an additional signal, then one of the time frames contain more than one
signal (Principle P1 is violated), so the message is invalid and is rejected by the
recipient.

– Attack 2a is not possible. If the attacker removes the first startstop signal, then the
message becomes invalid (because Principle P2 is violated), so it is rejected by the
recipient.

– Attack 2b is not possible. If the attacker removes the terminating startstop sig-
nal, then the message becomes invalid, because Principle P2 is violated. Invalid
messages are rejected by the recipient.

– Attack 2c is not possible. If the attacker removes any one or zero signals from the
message, then an empty time frame appears in the message, so it becomes invalid
because Principle P1 is violated. Invalid messages are rejected by the recipient.

– Attack 3a is not possible. According to Principle P1, the user does not allow the
terminal to communicate with two cards in the same time frame. This means that the
terminal is unable to obtain signature from a different card in the same timeframe.
The terminal is able to obtain signature from a different card in a different time
frame. Since both timestamps in a signal must reside in one time frame, the attacker
cannot delay any step in the protocol for sending signals to make the valid signal
appear in a different time frame.

– Attack 3b is not possible, because the attacker is unable to forge the signature of
an unknown private key (Assumption 5) and the attacker cannot extract keys from
smart cards (Assumption 6).

– Attack 3c is not possible, because the attacker is unable to forge the signature of an
unknown private key (Assumption 5), and the attacker cannot extract the key from
the TSA.

– Attack 3d is not possible, because neither Attack 3b nor Attack 3c is possible.
– Attack 4 is not possible, because each signal contains a timestamp that clearly

marks time frame of the signal.

7 Conclusion

We propose that – using multiple smart cards – the user can sign or authenticate mes-
sages even at malicious terminals. The user can achieve this by blocking the communi-
cation channel between the terminal and certain cards and by allowing the terminal to
communicate with other cards. It is not the datablocks she signs that contain the content
of the message (because she has no means to guarantee the integrity of these datablocks
before they are signed), but she encodes this content as a set of cards she uses for sign-
ing. In fact, the user signs her message by inserting smart cards into the reader of the
terminal and by removing them.

We showed a protocol where she has a watch and she can access a trusted time
stamping authority (TSA). Using this protocol, she can send messages of any length
with a constant amount of cards. We have also proven that the protocol is secure against
a certain attack model.



256 I.Z. Berta

The solution we propose might sound awkward. However, we do not know of any
other solution that allows the average human user to send long authentic messages with-
out a trusted terminal.
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Abstract. Currently, the most popular ways of dealing with the key dis-
tribution problem in sensor networks are random predistribution
schemes. For relaxed, realistic assumptions about the attacker, the key
infection protocol [1] is also available. In this paper, by accepting the
relaxed assumptions from [1], we propose a scheme which makes pair-
wise keys “drift” or diverge, which enhances security and can be used
as a key distribution method. The most notable feature of this scheme
is that, under some assumptions about the sensor nodes, it incurs no
communication overhead at all.

Keywords: Sensor Network Security, Node Compromise Attack, Di-
verging Keys.

1 Introduction

Sensor networks, that is, wireless networks of small nodes with sensing abilities
are becoming more and more prevalent in a wide variety of applications. These
networks are deployed mostly in inaccessible and hazardous conditions. They are
also widely used in military applications in a hostile environment. As technology
matures, there is a tendency for the nodes to become cheaper and more capable.
Thus they will become attractive for home use also.

The security of these networks is a prime concern for the application devel-
opers if they are deployed in military applications or in critical applications like
medical monitoring. In addition to node compromise and jamming of commu-
nication channel, several other attacks can be mounted on the sensor network,
notably Sybil Attack [10], Wormhole attack [7], Node Replication Attack [11],
Denial of Message Attack [9], etc.. In the Sybil attack, a single node takes on
multiple identity to deceive other nodes. In the wormhole attack, presented in [7],
the attacker captures message bits at one location and replays them in another
location. They also present an algorithm, known as packet leashes, to defeat
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search (I2R) in 2005 under I2R’s sponsorship.

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 257–269, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



258 M. Ren, T.K. Das, and J. Zhou

such attacks. In one recent paper, McCune et al. [9] highlighted the Denial-of-
Message (DoM) attack and proposed detection algorithm to thwart the attack.
In the DoM attack, a set of nodes act maliciously and prevent broadcast mes-
sages from reaching certain section(s) of the sensor network. Authors [9] propose
Secure Implicit Sampling algorithm to detect such attacks. In the node replica-
tion attack, cryptographic secrets from the compromised sensor nodes are used
to create duplicate sensor nodes in large number. Then these sensor nodes are
placed in critical locations of the sensor network to mount the attack. Several
protocols were proposed to defend the sensor network from the replication attack
and most promising among them is distributed detection protocol [11]. These at-
tacks present some interesting security challenges, especially for key management
and distribution.

A typical sensor node is neither tamper proof, nor suitable for public-key
cryptography as they possess very little computing capability. Thus the sym-
metric key cryptography is the preferred solution for the application developers
where each node shares a key with another neighbour for secure communication.
In most of the applications, it is impossible to predict how the nodes will be
positioned with respect to one another, thus predistribution of keys shared be-
tween the neighbours is not possible. The other option of loading each node with
all possible shared keys is impossible because of memory constraints. However,
random key predistribution is possible.

Most of the papers, available in the existing literature, assume a strong ad-
versary model. In this model, it is assumed that the attacker is present prior,
during, and after the deployment of the network and the attacker possesses
enough resources to monitor all the communications of the network at all times.
Furthermore, it is assumed that the attacker may compromise a few nodes and
turn them into malicious ones. Such strong assumptions are suitable for mil-
itary and other mission-critical applications. However, for commodity sensor
networks such assumptions may not be practical. Also the use of resource hun-
gry protocols in the strong adversary model increases the cost of deployment
which may discourage everyday use of sensor networks. Relaxing the assump-
tions about the attacker to be more realistic, namely, assuming that the ad-
versary cannot eavesdrop on all communication links all the time, allows for
development of counterintuitively secure protocols for commodity sensor net-
works [1].

In this paper, by accepting the relaxed assumptions from [1], we propose a
scheme which makes pairwise keys “drift” or diverge, which enhances security
and can be used as a key distribution method. The most notable feature of
this scheme is that, under some assumptions about sensor nodes, it incurs no
communication overhead at all.

The rest of the paper is organized as follows. We review the related work in
Section 2. After that, we present the key divergence protocol in Section 3, and
discuss the security and benefits of our protocol in Section 4. We conclude in
Section 5.
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2 Related Work

In the past, many solutions have been proposed to the problem of key distri-
bution and management in sensor networks. Most of the recent work has been
focused on random predistribution schemes [5,8], first proposed by Eschenauer
and Gligor [6]. Let us recall the phases of the basic scheme:

1. Key predistribution phase is conducted offline. It consists of generating a
large pool of keys and loading a small amount of different randomly drawn
keys into each node. Every key should also have an assigned identifier.

2. Shared key discovery phase takes place in the target environment, after the
sensor nodes are deployed. Every node discovers its neighbors, and tries
to establish a common key with every one of them. The simplest method
of achieving that is for every node to broadcast, in plaintext, the list of
identifiers of keys that it possesses. This phase establishes network topology,
as two nodes are “linked” only if they share a common key.

3. Path-key establishment phase allows the nodes that are neighbors (that is,
are within wireless communication range of each other) but do not share a
common key from the pregenerated pool, to establish a common path-key.

Another solution to the key distribution and management problem is proposed
by Anderson, Chan and Perrig in [1] — the key infection protocol relies on
weakening of the assumptions about the attacker. In most of the research papers,
it is assumed that the attacker is very powerful and capable. Most of these
assumptions are directly adopted from cryptography and based on the experience
of World War II. In those days, communication resources were limited, and it
was possible to monitor all the communications all the time. Thus came the
assumption of strong adversary. Now consider that a large number of sensor
nodes are dropped from air into hostile territory. If there is no prior knowledge
of deployment, it is practically impossible for the enemy to be readily present
there with their own sensor network. Another obstacle that deters the enemy
from using this type of targeted surveillance is the limited battery-life of these
devices. However, this type of targeted surveillance is possible for high value
targets. Commodity sensor network for non-critical applications have completely
different threat perception and it is simply not economical to attack them using
universal surveillance. Thus the attack model considered in [1] is as follows:

1. The deployment site is inaccessible to the attacker during deployment of the
network.

2. During deployment, the attacker can only monitor a small fraction of all
communications. In real-world scenarios, in a couple of seconds immediately
after the deployment the attacker will not be able to eavesdrop on all the
communications, but only intercept a fraction of them.

3. Similarly, the attacker cannot mount active attacks during the deployment.

Thus it is assumed that the attacker is fully capable except during the deploy-
ment of the network. This enables a counterintuitive protocol in which the nodes
agree on their pairwise keys by broadcasting them in the clear.
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In the paper of Anderson et al. [1], authors assume that the adversary may
not be able to listen all communications all the time. This may be true. However,
attacker may be able to listen to a fraction of all communications and this will
compromise some of the shared keys transmitted in the clear, rendering those
links vulnerable. Thus pre-loading all the nodes with a master key will prevent
the attacker from listening to initial communication as it will be encrypted using
that key. After two nodes setup a shared key, the master key will no longer be
used for encrypting any communication. If the shared keys diverge with time
and communication, the attacker will find little use of compromised keys as they
would need to listen to all the communications to re-compute the new shared
keys generated from the compromised keys. As the attacker is unable to listen to
all the communications all the time, this type of key divergence will improve the
security. Also, the same key divergence protocol can also be used for generating
shared secrets from the “master key”.

In this paper, we present a protocol in which the keys that the nodes possess
change continuously, therefore forcing the adversary to keep monitoring all the
communication links all the time. If the adversary is unable to monitor all the
traffic immediately after deployment, this key divergence protocol can also be
used for key distribution. As it incurs no communication overhead, it can be
used with every other protocol for very little additional energy cost, provided
that the nodes are able to perform symmetric encryption/decryption efficiently.
We make a similar assumption regarding the adversary as done in [1], that the
adversary is unable to monitor all communication links all the time. For key
distribution, it is sufficient to assume that the adversary is unable to monitor
all the communications right after the network deployment.

3 Diverging Keys

Computation and cryptography on sensor node is made difficult by their lack
of tamper resistance and the limited amounts of energy available. The latter
is especially limited, and every joule must be carefully metered. Most of the
protocols devised for sensor networks are optimized for the limited resources
available [2,3,4,12]. For a typical sensor node, the most expensive operation
in terms of energy expenditure is wireless communication. For a small node,
sending a bit can be many orders of magnitude more expensive than encrypting
it by symmetric encryption. (Public-key operations are currently regarded as too
expensive to be used on sensor nodes.) For instance, Carman, Kruus and Matt
reported in [2] that the energy cost of just 9nJ per bit for AES encryption, and
21μJ for sending a bit; a difference of over three orders of magnitude. It can
only be expected that the gap will increase as processor technology progresses.
In fact, on modern, specialized hardware, the energy cost of encrypting one bit is
just 60pJ [13]. It is therefore imperative to minimize communication, rather than
the amount of symmetric encryption/decryption. In this scenario, we propose a
protocol that enables key distribution and increases link security without any
communication overhead.
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3.1 Basic Scheme

1. The sensor nodes are deployed with a common master key. Strictly speaking,
the master key is not necessary, as it is sufficient that the nodes are able to
agree on pairwise shared keys. We discuss this in detail later.

2. Each sensor node establishes communication with its neighbors, and allocates
enough space to hold one key, and two counters (to prevent replay attacks)
for every neighbor — one for sent and one for received messages. At the
beginning, every such pairwise key is identical and is a copy of the common
master key from step 1.

3. When communicating with any of the neighbors, each sensor node encrypts
the message, but with the key that differs by one bit from the pairwise key
that it shares with the neighbor (unless the preceding exchange has failed,
in which case the key should be used as-is). The position of the flipped
bit should be chosen at random. Then, the node transmits the encrypted
message, preceded by the identifier of the node that it wants to communicate
with (to wake it up), and by its own identifier (so the receiving node knows
which key to use). It is assumed that the message will contain a counter to
prevent replay attacks. The node then waits for a response in step 6.

4. Upon receiving its identifier, the node listens to the following message, and
then tries to discover the new key by brute-force attack, starting with the
previous key. Of course, since the new key can differ only in one bit from
the previous key, the maximum number of tries is equal to the length of the
key in bits, and on average, only half as many tries will be needed. If the
previous exchange has failed and was initiated by this node, the node may
also try every key that differs by one bit from the key that it wanted to
establish in the failed exchange.

5. If the listening node succeeds in decrypting the message, it checks if the
counter is greater than the one held in memory. If it is not, the message is
discarded as an attempted replay attack. If the message is fresh, the node
updates the counter, changes the pairwise key that it shares with the sending
node, and replies using the new key. The old key is discarded.

6. After receiving the response, encrypted with the new key, the first node also
discards the old key and replaces it with the new one. If an incorrect response
is received, or none at all, the node considers the key change to have failed.

7. Steps 3–6 are repeated when the nodes wish to communicate again, for as
long as the network is active.

The following diagram illustrates a typical exchange, showing the keys that are
in possession of the nodes during each step:

Ak0 Bk0

Ak0
IDB ||IDA||Ek1(msg1||cA

1 )
−−−−−−−−−−−−−−−−−−→ Bk0

Ak0 Bk1

Ak0
IDA||IDB ||Ek1(ack1||cB

1 )
←−−−−−−−−−−−−−−−−−− Bk1

Ak1 Bk1
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Legend:
|| : concatenation

IDX : identifier of node X
msgi : message i

acki : acknowledgment to msg i
Ek(m): m encrypted with key k

cX
i : counter sent by node X

We have described the protocol assuming the presence of a master key
(step 1, 2). However, the scheme can operate on top of any random key predis-
tribution scheme. In that case, the pairwise shared key used for communication
start to diverge. Thus the steps 1 and 2 are replaced by the following step.

1. Each node discovers the shared keys that it share with other node using
any random key predistribution scheme. This phase establishes network
topology, as two nodes are “linked” only if they share a common key.

Several assumptions must be made about the message structure in order for
this scheme to work. First of all, it is assumed that the messages are subjected
to error detection code or other means of checking their integrity; otherwise,
there will be no easy way to check if the brute-force in step 4 has succeeded
or not. There should be enough redundancy to make the probability of a false-
positive (when the node has the wrong key, but it thinks it decrypts the message
correctly) sufficiently small. The messages should also contain an incrementing
counter, to prevent a replay attack. Note that, our scheme is not designed to be
forward secure as the new key is dependent on the old key.

Another assumption that must be made but which holds for most sensor net-
works, is that no node may execute different steps of the protocol at once, espe-
cially no simultaneous sending and receiving of messages is possible. Otherwise,
communication may be permanently severed. Consider the following diagram:

Ak0 Bk0

Ak0
IDB ||IDA||Ek1(msg1||cA

1 )
−−−−−−−−−−−−−−−−−−→ Bk0

IDA||IDB ||Ek′
1
(msg′

1||cB
1 )

←−−−−−−−−−−−−−−−−−− (received while sending)

Ak′
1 Bk1

Both A and B will start receiving each other’s message at the same time and
they might start executing steps 4 and 5, without completing step 3. Then,
node A will change the key from k0 to k′

1, discarding k0, and B will change
the key from k0 to k1, also discarding k0. So A and B will have two different
keys, and will never be able to communicate again. However, if a sending node
completes step 3, it then expects a reply as per step 6, encrypted with the new
key; otherwise the key exchange will fail. Obviously this scenario is theoretical
in nature at present, as current generation sensor nodes can not send and receive
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simultaneously. However, in the future, it may become possible for sensor nodes
to send and receive at the same time. We will present a variant of the present
scheme which can effectively deal with such situations without assuming that
the operations must be sequential.

3.2 A Variant

A major goal of our protocol is to minimize the communication overhead in key
distribution. However, the acknowledgment required in the basic scheme is in-
deed an overhead for many networks where acknowledgment for communication
is not used. We propose a variant of the protocol, in which the requirement of
the acknowledgment message in every step is replaced with much more modest
addition of a counter value of previous message. We will make use of a technique
similar to one used when an “ack” message gets lost. The scheme is as follows:

1. The sensor nodes are deployed with a common master key.
2. Each sensor node establishes communication with its neighbors using a pair-

wise key which is a copy of the master key. Each node also keeps a pair of
counters for every neighbor and a pair of hashes of the last message sent to
and received from every neighbor. Note that, one can also use the counter
value in place of hash value.

3. When communicating with any of the neighbors, each sensor node encrypts
the message using a key that differs by one bit from the pairwise shared key.
However, present node can not change the key if the previous key
change is initiated by it, in that case, same key is used for encryption.
Then, the node transmits the encrypted message, preceded by the identifier
of the node that it wants to communicate with (to wake it up), and by its
own identifier (so the receiving node knows which key to use). It is assumed
that the message will contain a counter to prevent replay attacks, and a
counter/hash of the previous message received from that node. (We will
discuss the necessity of the hash below.) Old key is kept in the memory to
recover from potential loss of message.

4. Upon receiving its identifier, the node listens to the following message and
then tries to discover the new key by brute-force attack starting with the
previous key. Of course, since it knows the previous key, the maximum num-
ber of tries is equal to the length of the key in bits, and on average, only half
as many tries will be needed. The node may also try every key that differs
by one bit from the “old key”.

5. If the listening node succeeds in decrypting the message, it checks if the
counter is greater than the one held in memory. If it is not, the message
is rejected as a reply attack. If the message is fresh, the node updates the
counter, and checks if the hash corresponds to the last message sent to that
node (unless that is the first message received from that node). If it does,
the node changes the pairwise key that it shares with the sending node. The
previous pairwise key is now remembered as the “old key”.

6. Steps 3-5 are repeated when the nodes wish to communicate again, for as
long as the network is active.
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This scheme does not require any acknowledgment message. However, here com-
municating nodes can only change the shared key alternatively. If any one node
sends more than one message without receiving a message from the other node,
all the messages will be encrypted using the same key. Thus while communicat-
ing, a pair of nodes change the key alternatively. Let us illustrate it with the
following diagram.

Ak0 Bk0

Ak1
IDB ||IDA||Ek1 (msg1||cA

1 )
−−−−−−−−−−−−−−−−−−−−−−−−→ Bk0

Ak1 Bk1

Ak1
IDA||IDB ||Ek2(msg2||cB

1 ||h(msg1))
←−−−−−−−−−−−−−−−−−−−−−−−− Bk2

Ak2 Bk2

Ak2
IDA||IDB ||Ek2(msg3||cB

2 ||h(msg1))
←−−−−−−−−−−−−−−−−−−−−−−−− Bk2

Ak3
IDB ||IDA||Ek3 (msg4||cA

2 ||h(msg3))−−−−−−−−−−−−−−−−−−−−−−−−→ Bk2

Ak3 Bk3

Note that, when node B sends two consecutive messages there is no change in
the key. Furthermore, nodes may change the key only if received hash matches
the one from last sent message. Consider what might happen if message hashes
were not checked:

Ak1
IDB ||IDA||Ek1(msg1||cA

1 )
−−−−−−−−−−−−−−−−−−→ E(intercepts)

Ak1
IDB ||IDA||Ek1(msg2||cA

2 )
−−−−−−−−−−−−−−−−−−→ E(intercepts)

E
IDB ||IDA||Ek1(msg1||cA

1 )
−−−−−−−−−−−−−−−−−−→ Bk0

Ak1 Bk1

Ak1
IDA||IDB||Ek2 (msg3||cB

1 )
←−−−−−−−−−−−−−−−−−− Bk2

Ak2 Bk2

E
IDB ||IDA||Ek1(msg2||cA

2 )
−−−−−−−−−−−−−−−−−−→ Bk2

Ak2 Bk1

Ak3
IDB ||IDA||Ek3 (msg4||cA

3 )
−−−−−−−−−−−−−−−−−−→ E (blocks)

Ak3 Bk1

Ak3
IDA||IDB||Ek4 (msg5||cB

2 )
←−−−−−−−−−−−−−−−−−− Bk4

Ak3 Bk4
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Here, eavesdropper E records two messages from the node A, then replays the
first one, waits until node B responds trying to change the key and replays the
second intercepted message. To node B, it looks like its previous message got lost
in transit, and so it changes the key as per node A’s former request. Now, both
nodes think that they should initiate the next key change. E waits until both A
and B do that, blocking messages if necessary. Once both nodes do so, they are
not able to communicate again. On the diagram, in the last phase, node A has
key k3, and remembers k2 as the “old key”, while B has key k4 and remembers
k1. Thus, communication would be lost.

Now, let us discuss how this scheme can handle simultaneous message com-
munications.

Ak0 Bk0

Ak1
IDB ||IDA||Ek1(msg1||cA

1 )
−−−−−−−−−−−−−−−−−−−−−−−−→ Bk′

1

IDA||IDB ||Ek′
1
(msg′

1||cB
1 )

←−−−−−−−−−−−−−−−−−−−−−−−− (Simultaneously sent)

Ak′
1 Bk1

Ak2
IDB ||IDA||Ek2 (msg2||cA

1 ||h(msg′
1))−−−−−−−−−−−−−−−−−−−−−−−−→ Bk1

Ak2 Bk2

After the simultaneous message exchange, we have a key disagreement. Let us
analyze what happens at node A. Keys are changed in following sequence: k0 →
k1 → k′

1. In this protocol, we always store the old key, so two stored keys are
k1 (old key) and k′

1 (present key). Similarly at node B, two stored keys are k′
1

(old key) and k1(present key). Note that at this point both the node A and B
think that they can change the key as the last key change is not initiated by
either. However, we regain the key synchronization with the next message. Let’s
assume that node A wishes to send the next message and encrypts it with key
k2 which differs from k′

1 (present key at node A) by one bit. After receiving the
message, node B will first try to decrypt it using all the keys that differ by one
bit from k1. This will fail, and the node will then try using all the key that differ
by one bit from the old key k′

1. This time it will be able to decrypt the message
successfully and will change the key to k2. Thus, key synchronization will be
regained.

4 Further Discussions

4.1 Benefits

In any random key predistribution scheme, nodes are preloaded with a small
number of keys selected from a large pool of keys. It is presumed that any two
nodes willing to communicate will have at least one common key. The problem
with this approach is that a single node capture affects many other nodes due
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to the presence of common keys between the captured node and un-captured
ones. This is a real problem with any key predistribution scheme. However, our
scheme is resilient to such node compromise. Only the keys used for communicat-
ing with the captured nodes are affected. All other nodes can continue to com-
municate without any hindrance. Another advantage of our scheme is that the
adversary needs to continuously record messages from the compromised nodes;
otherwise the keys will change, making their re-discovery by the attacker difficult
or impossible, unless the attacker has physical access to the memory of compro-
mised nodes. Some predistribution schemes, where each node stores a pairwise
key for every node present in the network, are not scalable. In contrast, our
scheme is scalable. One can easily add our scheme over any key predistribution
scheme.

The main objective of the proposed scheme is making the pairwise keys in the
nodes diverge over time, thus safeguarding against node capture. It might seem
that the same effect could be realized by a simpler protocol, such as transmitting
a new random key, encrypted with the old one, at predetermined intervals. How-
ever, the proposed protocol offers significant advantages over such a simplistic
scheme, the foremost being the lack of communication overhead, or — in case of
the variant protocol — only modest overhead caused by transmitting message
hashes or additional counters.

The energy cost of adding the basic scheme on top of normal communications
between nodes is quite low, provided that the messages exchanged between sensor
nodes already use error detection codes and counters. If that is the case, there is
no extra communication overhead at all (or in the case of the variant scheme, only
slight additional energy cost of transmitting short message hashes or additional
counters), and the only additional energy cost is the brute-force breaking of
the key. If we assume 60pJ/bit for encryption/decryption [13], 21μJ/bit for
sending [2], 128-bit keys and blocks, then the cost of one bit ”flip” (128 bits,
and 64 decryptions on average) will be only about 0.5μJ . We can compare it
to the cost of generating a new key, encrypting it with the old one and just
transmitting it. However, the transmission of just 128 bits (key only, no node
IDs, error correction, etc.) will cost about 2500μJ – which would be enough for
about five thousand bit ”flips”. The difference is likely to increase even more in
the future.

The memory cost is also quite low — just the cost of storing the pairwise
keys for all neighbors, two counters for every neighbor, some space for tem-
porarily storing old keys, and possibly (in the variant scheme) a hash for every
neighbor.

4.2 Security

One vulnerability of the scheme is that if the neighboring nodes ever disagree
on their pairwise key by two bits or more, they may never communicate again.
However, there is no way for the attacker to cause that, short of breaking the
key, and in case of normal communication failures everything shortly returns
to normal as explained. It might seem that in the basic scheme, loss of the
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acknowledgment message could cause that. However, the scheme can handle
that as follows:

Ak0 Bk0

Ak0
IDB ||IDA||Ek1(msg1||cA

1 )
−−−−−−−−−−−−−−−−−→ Bk0

Ak0 Bk1

lost
IDA||IDB||Ek1 (ack1||cB

1 )
←−−−−−−−−−−−−−−−−− Bk

1

Ak0 Bk1

Legend:
|| : concatenation

IDX : identifier of node X
msgi : message i

acki : acknowledgment to msg i
Ek(m): m encrypted with key k

cX
i : counter sent by node X

After the acknowledgment message is lost, node A thinks the pairwise key is
k0 and node B thinks the key is k1. Everything returns to normal with the next
message. If node A sends it, it will use key k0, because the last exchange with B
has failed (see step 3). Since k0 differs from k1 by one bit, B will decrypt success-
fully. If node B sends the next message, node A will also decrypt it successfully,
since it will try all keys differing by one bit from k0 and k1 (see step 4).

Let us now consider the situation in the variant scheme where we require no
acknowledgment for key divergence:

Ak0 Bk0

Ak1
IDB ||IDA||Ek1(msg1||cA

1 )
−−−−−−−−−−−−−−−−−→ lost

Ak1 Bk0

Ak1
IDA||IDB||Ek′

1
(msg2||cB

1 )

←−−−−−−−−−−−−−−−−− Bk′
1

Ak′
1 Bk′

1

Thus when the first message sent by node A get lost, node B thinks that the
shared key is k0, but the key is k1 at node A, so there is mismatch of keys
between node A and B. However, when node B randomly changes key k0 to k′

1

and sends an encrypted message to A, node A is able to decrypt the message
because node A does not only try all keys that differ by one bit from k1 but also
all that differ by one bit from the “old key” k0 (step 4). Thus, node A is able to
regain key synchronization. Also, if A decides to send the message after the lost
message, it cannot change the key and so encrypts the message using the same
key k1. B is able to decrypt the message as k1 differs from k0 by one bit only. B
then changes the key to k1, regaining synchronization.
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Under common omnipresent adversary assumption, this scheme pays only a
relatively small penalty in energy consumption and memory capacity, accom-
plishing essentially nothing. However, under a more realistic set of assump-
tions [1], where the attacker is unable to observe all communications, it succeeds
in performing safe key distribution. It also offers the following fringe benefits:

– Even if the adversary monitors a part of the network, he can never cease to
do so, or the nodes will change keys while he is not looking.

– The keys on high-traffic links naturally change faster, so the security in the
critical parts of the network is higher.

Let us now consider a case of adding the present scheme over a random key
predistribution scheme. In random key predistribution scheme, every node is
pre-loaded with keys selected randomly from a large pool of keys. After network
deployment, nodes trying to communicate first identify a common key that they
both possess to encrypt the messages. However, these schemes, as stated earlier,
are vulnerable to node capture attacks. Because same keys are present in many
nodes, and capture of single node exposes several other links where keys present
in the captured node were used. Now, if we add the key divergence protocol on
top of random key predistribution, then each pair-wise key used for communica-
tion will start diverging with the communication. So, if a node is compromised,
no key already in use elsewhere will be similar to the keys stored in the mem-
ory of captured node. Thus, except for the links passing through the captured
nodes, no other link will be exposed. Therefore, our scheme is able to rectify a
significant vulnerability of existing random key predistribution schemes.

5 Conclusion

In this paper, we have proposed a key divergence protocol having no (or very lit-
tle) communication overhead. In some cases, even the modest energy cost of this
protocol could be too much for a particular sensor network. In that case, present
protocol can be suitably modified so that every message only has a certain chance
of introducing a new key, thus reducing the overhead further. Also the nodes can
always start brute force checking with the last key, so that if it was not changed,
only one decryption is necessary. In addition, this scheme can be used with other
means of key distribution, essentially acting as link security enhancement. For in-
stance, it can be used with the key infection protocol [1], or, as already explained,
one of the random key predistribution protocols [5,6,8]. Furthermore, proposed
scheme when used with any random key predistribution scheme, is able to thwart
the node capture attack to the extent that communication links, other than those
passing through the compromised nodes, remain unaffected.
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Abstract. Broadcast Encryption (BE) schemes allow a sender to effi-
ciently encrypt messages for a large set of receivers. The currently most
efficient BE schemes in the stateless receiver scenario are based on sym-
metric cryptography. However, a variety of business models with mutu-
ally mistrusting senders necessitates the use of asymmetric cryptography.
We propose a generic framework that allows to transform a large class of
symmetric BE schemes into asymmetric schemes, where the transforma-
tion employs an arbitrary hierarchical identity based encryption scheme.
Applying our framework, we transform a recent symmetric scheme, called
layered punctured interval scheme, for which no asymmetric version has
yet been published. In addition, we give a formal proof of the chosen ci-
phertext security of our framework, which allows to generically transform
any future symmetric BE scheme within the large class into a chosen-
ciphertext-secure asymmetric scheme with the same efficiency measures.

1 Introduction

Broadcast Encryption (BE) schemes allow a sender to efficiently encrypt mes-
sages for a large set of receivers and subsequently send the ciphertext over an
insecure broadcast channel. BE has found many applications such as pay-TV,
distribution of copyrighted multimedia content on CD or DVD, and Internet
audio/video streaming [2,3,4]. Many variants of BE schemes have been stud-
ied: The set of receivers may be static or dynamically changing; the number of
revoked (or excluded) receivers may be bounded or unbounded; the receivers
may have static keys, termed stateless receivers, or periodically update them,
called stateful receivers; traitor tracing may be possible, meaning that cheating
users can be detected when illegal receiving devices are found. We analyze the
probably most general and difficult variant: the set of receivers is dynamically
changing, the number of revokable receivers is unbounded, the receivers are state-
less, and traitor tracing is possible. As argued by Naor, Naor and Lotspiech [5],
this scenario is quite realistic and relevant for many applications.

The currently most efficient BE schemes in this scenario are symmetric key BE
schemes [5,6,7,8]. The sender uses the same keys for encryption as the receivers
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use for decryption. This is suitable for many applications in which there is a single
trusted sender, who is in possession of all keys and thus a single point of failure
for the complete scheme. However, there are practically relevant business models
which cannot be implemented with symmetric BE schemes. Consider the case
of several mutually mistrusting senders, such as several pay-TV providers using
the same set-top box infrastructure, or several content providers broadcasting
to the same CD or DVD players. In this case, it remains unclear which trusted
party should be in possession of the symmetric encryption keys.

Dodis and Fazio [9] therefore transformed three symmetric BE schemes into
asymmetric schemes on an individual case basis. The asymmetric version of the
schemes allows the public encryption keys to be shared by any number of mu-
tually mistrusting senders. As encryption and decryption keys are different, this
does not compromise security. However, the authors do not formalize a generic
approach, but individually transform three specific schemes: the Complete Sub-
tree (CS) and the Subset Difference (SD) scheme from [5] and the Layered Sub-
set Difference (LSD) scheme from [6]. Yet there are more recent symmetric BE
schemes [7,8] for which, to the authors’ knowledge, no asymmetric version exists.

1.1 Our Contribution

We propose a generic framework that allows to transform a large class of sym-
metric BE schemes into asymmetric BE schemes, where only the decryption keys
are secret. The only required property of the symmetric scheme is that each of
its secret keys must be derived from exactly one key among a finite set of master
keys; we call these schemes derivation BE schemes. We stress that all of the
most efficient symmetric BE schemes are derivation BE schemes [5,6,7,8]. As
proof of concept, we instantiate our framework with two BE schemes; namely,
the SD scheme of [5] and the Layered Punctured Interval (LPI) scheme of [7].
Although the authors of [9] already transformed SD into an asymmetric BE
scheme, we show, to the best of our knowledge, the first asymmetric version of
LPI. Our framework employs an arbitrary Hierarchical Identity Based Encryp-
tion (HIBE) scheme; if instantiated with the currently best HIBE scheme [10],
the efficiency measures of the symmetric BE scheme, such as transmission over-
head and receivers’ key storage size, directly transfer to its asymmetric version.

In addition, we give a formal proof of the IND-CCA1 security of our framework.
Although Dodis and Fazio provided reasonable arguments for the existence of
such a proof, they did not formalize their arguments into an actual proof [9].
The combination of our framework and security proof allows to transform any
future symmetric BE scheme within the large class to be generically transformed
into an IND-CCA1-secure asymmetric scheme.

The main idea is to replace the pseudo-random key trees used by the deriva-
tion BE scheme with a hierarchical private key tree of an HIBE scheme. The
efficient storage size of any derivation BE scheme, which mainly depends on key
derivation in pseudo-random chains, thus transfers to its asymmetric version.
The constant ciphertext size of the HIBE scheme [10] ensures an identical trans-
mission overhead of the asymmetric version. The major task in the definition of
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our framework is to find an efficient mapping that maps the pseudo-random key
trees in the original scheme to a hierarchy of identifiers in the HIBE scheme.

2 Related Work

Fiat and Naor were the first to formally define the functional requirements of
a BE scheme [11]. Naor et al. introduced a generic class of BE schemes called
Subset Cover BE (SCBE) schemes, which cover the set of non-revoked receivers
with a collection of well-defined subsets [5]. Specifically, they proposed two SCBE
schemes based on binary key trees: CS and SD. With the LSD scheme, Halevy
and Shamir reduced the storage size of receivers at the price of doubling the
header length [6]. Two recent SCBE scheme based on one-way chains are due
to Jho et al. [7,8]: They introduced the layered punctured interval scheme in [7]
and the tree-based circle scheme in [8]. However, to the best of our knowledge
no asymmetric version of these schemes has yet been published.

A trivial transformation from symmetric to asymmetric BE schemes results in
huge private keys due to the loss of key derivation capabilities [5,9]. Dodis and
Fazio therefore non-trivially extended CS, SD, and LSD to the asymmetric setting
using (hierarchical) identity based encryption schemes [9]. Other existing asym-
metric BE schemes can only revoke a bounded number of receivers, which needs
to be fixed a-priori in the setup phase [12,13,14]. This is contrary to our focus
on the unbounded scenario discussed above. Moreover, the transmission overhead
of these schemes grows with the a-priori bound, whereas that of the symmetric
schemes [5,6,7,8] only grows with the number of actually revoked receivers.

Boneh et al. propose an asymmetric BE scheme for unbounded revocations,
where ciphertext and private keys have constant size [15]. However, during de-
cryption even the receivers need the public encryption key, which grows linearly
with the number of receivers, whereas ours has constant size and only applies
for encryption. In addition, their attack model is non-adaptive, whereas ours
is adaptive. Finally, their scheme does not provide traitor tracing capabilities,
whereas our framework maintains those of the original schemes, e.g., [5,6].

3 Preliminaries

3.1 Roles in Our System Model

In symmetric BE schemes, there is a single sender that often coincides with the
trusted (broadcast) center, which manages the broadcast channel and distributes
key material. The N users obtain content via devices that we refer to as receivers ;
the set of receivers is U := {ui | 1 ≤ i ≤ N }. When a user violates the terms and
conditions of the application, the center revokes the keys in this user’s receiver
and thus makes them useless for decryption purposes. We denote the set of
revoked receivers with R := {r1, r2, . . .} ⊂ U .

In asymmetric BE schemes, the roles of sender and center are separate. There
are at least two mutually mistrusting senders. In addition to distribution of
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the private decryption keys to receivers, the role of the center, which is still
trusted by all parties, comprises distribution of public encryption keys to the
senders.

3.2 Notation

We use some standard notations throughout the paper. First, we denote scalar
objects with lower-case variables, e.g., o1, and object tuples with upper-case
variables, e.g., T1. When we summarize objects or roles in set notation, we use
an upper-case calligraphic variable, e.g., O := {o1, o2, . . .} or T := {T1,T2, . . .},
where P(O) denotes the powerset of O, which is the set of all subsets of O.
Second, let J be a finite index set. Then {oj |j ∈ J } denotes a set of objects
indexed by J . Third, let A be an algorithm. By y ← A(x ) we denote that
y was obtained by running A on input x . Fourth, o1

R← O denotes the se-
lection of a random element of the set O with uniform distribution. Last, we
use upper-case calligraphic variable for roles in security proofs, e.g., A for the
adversary.

We define negligible functions and probabilistic polynomial-time algorithms
in the usual way; further details can be found in [1].

Identifiers. An identifier is a string of arbitrary length: id ∈ {0, 1}∗. A hier-
archical identifier of depth d is a d-tuple of identifiers: HID := (id1, . . . , idd) ∈
({0, 1}∗)d, where the hierarchy descends from left to right. In other words, the
ancestors of HID are root := (), (id 1), (id1, id2), . . ., and finally (id1, . . . , idd−1),
which is HID ’s parent. Note that root has depth d = 0. We denote the i-th an-
cestor of HID with HID |−i, where HID |−1 is the first ancestor or parent (id1,
. . . , idd−1) of HID and HID |−d the d-th ancestor of HID , which is the root
identifier root. Finally, we map integers to identifiers by using their binary rep-
resentation, e.g., id ← 5 leads to id = 101 due to (5)2 = 101.

3.3 Cryptographic Building Blocks

Pseudo-random Sequence (PRS). We formally define the term PRS in the
technical report [1]. Informally, a PRS is a long bit string that no probabilistic
polynomial-time algorithm can distinguish from a truly random bit string of
identical length. In order to create a PRS, a Pseudo-Random Sequence Generator
(PRSG), which is a deterministic polynomial-time algorithm G, derives the bit
string from a random seed. As in [5,6,7,8] we define this derivation to occur
sequentially: The output of G has the same length as its input, and the long bit
string is produced by recursively applying G several times.

Hierarchical Identity Based Encryption. In short, an HIBE scheme allows
to use the recipient’s hierarchical identity as the public key of an asymmetric
encryption scheme [16,17,18,19,10]. To set up the scheme, the center generates
system parameters par and the secret master key MK using the key generation
algorithm (par ,MK ) ← SetupH(dmax, λH), where dmax is the maximum hier-
archical depth (or tree height), λH a security parameter, and MK = SK root
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the secret key at the root. To derive the secret key SKHID of a child node
HID from its parent HID |−1, the parent uses the key generation algorithm
SKHID ← GenH(HID ,SKHID |−1). To encrypt message M exclusively for HID
(and its ancestors HID |−1, . . ., HID |−(d − 1), root), the center uses the encryp-
tion algorithm C ← EncH(HID ,M ), where the output is the ciphertext C . Only
HID (and its ancestors) has a matching secret key SKHID that allows to decrypt
C and obtain M using the decryption algorithm M ← DecH(SKHID ,C ).

Symmetric Broadcast Encryption. A symmetric BE scheme allows the cen-
ter to efficiently encrypt a message intended for a large set of non-revoked re-
ceivers. To set up the scheme, the center generates the secret master key MK
using the key generation algorithm MK ← GenB(N , λB), where N is the number
of receivers and λB a security parameter. To add receiver ui to the system, the
center uses the key extraction algorithm SKi ← ExtrB(MK, i) to extract the
secret key SKi of ui . To encrypt message M exclusively for the non-revoked re-
ceivers U \R, the center uses the encryption algorithm C ← EncB(MK,R,M ),
where the output is the ciphertext C . Only a non-revoked receiver ui has a
matching secret key SKi that allows to decrypt C and obtain M using the
decryption algorithm M ← DecB(i ,SKi ,C ).

As mentioned in Sect. 2, the schemes [5,6,7,8] are subset cover BE schemes.
In all such schemes, EncB covers any set of non-revoked receivers U \ R using
a well-chosen set {Sj |j ∈ J } ⊆ P(U) of subsets of U . Specifically, each of the
chosen subsets Sj is related to a key, which ExtrB gives to all receivers within
Sj . To cover U \ R, EncB finds a disjoint union COV of subsets containing only
non-revoked receivers, such that all receivers in U \R are part of the cover and
the cover size |COV| is minimal.

To achieve efficiency, the ciphertext C consists of three parts C := (I ,K ,C ′),
where I is the indexing information that describes COV , K := (Enc(dk1, k),
. . . , Enc(dk |COV|, k)) a sequence of symmetric encryptions of the same session key
k under all subset keys dk1, . . . , dk |COV| related to COV, and C ′ := Enc(k ,M )
the symmetric encryption of M under the session key [5,6,7,8]. The efficiency
gain arises from the fact that M is a long message and k a short session key,
avoiding several encryptions of the long message.

Derivation Broadcast Encryption. A symmetric BE scheme uses a generic
symmetric encryption scheme as a building block. Center and receivers thus have
to use the same key for encryption and decryption, respectively. The encryption
algorithm EncB derives some symmetric keys dk1, dk2, . . . from MK, such that
each receiver in U \ R can derive one such key from its secret key SKi .

In short, a derivation BE scheme is a symmetric subset cover scheme in which
MK := {mk j |j ∈ J } and DK := {dk l |l ∈ L} are finite sets of keys indexed by
J and L such that each subset key dk l is derived from exactly one element mk j

of MK using a set of PRSGs. More formally, we define the scheme as follows:

Definition 1. Let PRSG := {Gm|1 ≤ m ≤ n} be a finite set of distinct PRSGs.
Let dmax ∈ N be finite. Then the symmetric subset cover BE scheme SBE is a
derivation BE scheme if for all dk l ∈ DK we have that dk l = Gmd

◦· · ·◦Gm2(mk j )
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for exactly one master key element mk j ∈ MK and a specific depth d, where
Gm2 , . . . ,Gmd

∈ PRSG and d ≤ dmax.

As already pointed out in [5,7], we can replace the n distinct PRSGs with a
single PRSG whose output is n times longer than its input. To calculate Gm, we
then need to parse the output in order to obtain the m-th substring.

Based on Definition 1, we can represent all derived subset keys in DK as the
leaves of a forrest of trees that has (i) |MK| trees, (ii) one element mk j of MK at
the root of each tree, (iii) maximum depth dmax − 1, and (iv) at most n children
per node. In addition, we can easily assign the index m of the corresponding
PRSG as a tag to each edge of the trees. Setting m1 := j , we can unambiguously
assign the index l := (m1, m2, . . . , md) to dk l . In the example of Fig. 1, we have
dk l = G1 ◦ Gn ◦ G1(mk j ) with l = (j , 1, n, 1).

Fig. 1. Example of a key derivation tree for d − 1 = 3

4 Security Requirements

In this section we formalize the security requirement of a generic asymmetric BE
scheme. Following common practice [20,15], we do not analyze the security of the
symmetric encryption scheme used to encrypt message M under the session key
k . Instead, we only analyze the security of the broadcast header (I ,K ), which
encapsulates k for the non-revoked receivers. In the technical report [1] we prove
that this approach is valid as long as the symmetric encryption scheme is IND-
CPA-secure. An interesting detail of the proof in [1] is the fact that this scheme
only needs to withstand an IND-CPA attack in which the adversary does not
have access to an encryption oracle. The security requirement on the symmetric
encryption scheme is therefore quite moderate.

The algorithms of an asymmetric BE scheme are similar to those of a symmet-
ric BE scheme. Compared to symmetric BE schemes as introduced in Sect. 3.3,
an asymmetric BE scheme differs in two ways. First, the key generation algo-
rithm has the public key PK as additional output: (MK,PK ) ← GenB(N , λB).
Second, the encryption algorithm uses the public key instead of the master key:
C ← EncB(PK ,R, k).

We require the asymmetric BE scheme generated by our transformation to pro-
vide the same security as the symmetric scheme from which it is derived. All
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relevant symmetric schemes provide chosen ciphertext security of type IND-CCA1
[5,6,7,8], where the adversary may query its oracles only prior to the challenge.

More precisely, IND-CCA1 security of ABE is defined under the following at-
tack game between an adversary A and a challenger C: In the setup phase, C
uses GenB(N , λB) to generate an instance of the scheme, initializes the set of
revoked receivers as R = ∅, and sends (N , λB,PK ) to A. The find phase begins,
and A may send adaptive key extraction and decryption queries to an oracle.
A key extraction query asks for the secret key SKi of a specific receiver ui ,
which C then adds to R. A decryption query (i , I ,K ) asks for decryption of a
broadcast header (I ,K ) chosen by A, where the decryption oracle plays the role
of a specific non-revoked receiver ui that executes DecB. When A believes to
have gathered enough information to mount a successful attack, it tells C that
the find phase is over. Then C generates two independent random session keys
k0 and k1, tosses a coin b R← {0, 1} and executes (I ,Kb) ← EncB(PK ,R, kb),
where R is the final set of revoked receivers after all key extraction queries. In
the guess phase, A needs to guess b from the challenge k0, k1, (I ,Kb) and wins if
the guess b′ equals b. We define the IND-CCA1 advantage of A against ABE as
Advind-cca1

ABE,A (λB) := Pr [b′ = 1|b = 1] − Pr [b′ = 1|b = 0], where the randomness is
taken over all coin tosses of C, A, GenB, and EncB.

Definition 2. The scheme ABE is (nX,nD)-IND-CCA1-secure if for any prob-
abilistic polynomial-time adversary A that makes at most nX key extraction
queries and at most nD decryption queries in the above game, we have that
Advind-cca1

ABE,A (λB) is a negligible function.

We will reduce the security of our asymmetric BE scheme to that of the HIBE
scheme with which it is instantiated. We therefore need to define IND-CCA1
security of HIBE. As the attack game is analogous to that of a BE scheme,
we only describe the differences. In the find phase, A also performs adaptive
key extraction and decryption queries, but obviously queries the oracle with a
specific hierarchical identifier HID instead of a specific receiver. C adds HID to
the set RH of revoked hierarchical identifiers. At the end of the find phase, A
chooses two message M0 and M1 as well as a hierarchical identifier HID∗ on
which it wishes to be challenged, where no ancestor of HID∗ may be in RH. The
challenge is Cb := EncH(HID∗,Mb), where b R← {0, 1} is a coin that C tosses.

5 Proposed Solution

5.1 Overview

The transformation from the symmetric to the asymmetric setting generically
uses an HIBE scheme in order to translate the derivation pattern of the sym-
metric scheme to that of an asymmetric scheme. The major task is to find an
efficient mapping between the derivation pattern and a hierarchical identifier of
the HIBE scheme. To define this mapping, we reuse the indices of the PRSGs
used in the derivation BE scheme and interpret them as identifiers in a hierar-
chical identifier. The hierarchical identifier starts with the index of the master
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key from which the derived key originates. The remaining elements of the hi-
erarchical identifier are the indices of the PRSGs used to compute the derived
key. With this mapping, the center and the receivers can compute all derived
(private) keys in the asymmetric setting just like they would in the symmetric
setting. A receiver obtains the keys at the same position in the HIBE hierarchy
as in the symmetric key derivation tree. The application of the HIBE key gen-
eration algorithm replaces the application of a PRSG. All other algorithms of
the symmetric BE scheme transfer to the asymmetric setting. Specifically, the
algorithms for finding a cover, structuring the ciphertext tuple C = (I ,K ,C ′),
and finding a receiver’s subset in the cover remain unchanged.

5.2 Details on the Transformation to the Asymmetric Setting

In this section we specify the mapping between the derivation pattern in Defini-
tion 1 and the hierarchical identifiers used in the generic HIBE scheme. Let mk j ∈
MK and dk l ∈ DK be any pair of a master key and a key derived from this mas-
ter key. Further, let dk l follow the derivation pattern dk l = Gmd

◦ · · ·◦Gm2(mk j )
of Definition 1. Then we define m1 := j , which is the index of mk j , and set the
hierarchical identifier of depth d to be

HID := (id1, id2, . . . , idd) ← (m1, m2, . . . , md)

In the asymmetric setting, the key generation algorithm GenB first generates an
instance of an HIBE scheme using SetupH. Then it generates the asymmetric
master key elements mk (id1) ∈ MK by deriving them from the HIBE master
key, which serves as the root:

mk (id1) ← GenH((id1),MK ) with MK = mkroot

All derived keys follow the same derivation pattern as in the symmetric setting,
but the application of the HIBE key generation algorithm replaces the applica-
tion of the PRSG:

dk (m1,...,md) ← Gmd
(dk (m1,...,md−1)) becomes dkHID ← GenH(HID , dkHID|−1)

Note that the first derivation dk (id1,id2) ← GenH((id1, id2), dk (id1,id2)|−1) starts
at the master key element dk (id1,id2)|−1 = dk (id1) := mk (id1). Assembling all
derived keys, we obtain a tree structure in which root represents a common root
for the forrest of trees of the derivation BE scheme. The only other difference to
the symmetric setting is that HIBE encryptions (and decryptions) replace the
symmetric encryptions of the session key:

Enc(dk (m1,...,md), k) becomes EncH(HID , k)

As a special case for depth d = 1, the HIBE scheme becomes an identity
based encryption (IBE) scheme without hierarchy. Thereby we can transform any
improper derivation BE scheme to the asymmetric setting, i.e., any scheme that
only uses the master keys, but does not derive any keys, resulting in MK = DK.
Dodis and Fazio [9] have also used an IBE scheme to transform the CS scheme,
which is an improper derivation BE scheme. However, their solution is individual
and not part of a generic framework as in our proposed solution.
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5.3 Security Analysis

We summarize the security of our proposed framework in the following theorem:

Theorem 1. Let SBE be an IND-CCA1-secure derivation BE scheme. Let ABE
be the asymmetric BE scheme generated by our framework. Let HIBE be the
(|SKi | ·nX,nD)-IND-CCA1-secure HIBE scheme of ABE. Then ABE is (nX,nD)-
IND-CCA1-secure.

C A A′

1)

−−
dmax, λH, par
−−−−−−−−−−−→

2)

−
PK ,N , λB−−−−−−−−−→

3)

←−
i or i , I ,K
−−−−−−−−−

4)

←−
{HID j} or CH−−−−−−−−−−−−

5)

−
{SKHIDj } or k
−−−−−−−−−−−−→

6)

−SKi or k−−−−−−−−→

7)

←−−
ready

−−−−−−−−
8)

←−−
HID∗, k0, k1−−−−−−−−−−−

9)

−−− Cb−−−−−−−−−→
10)

−
k0, k1, I ,Kb−−−−−−−−−→

11)

←−− b′
−−−−−−−−

12)

Fig. 2. Construction of HIBE adversary A based on ABE adversary A′

Proof. (Sketch) The proof is by contradiction. Let there be an IND-CCA1 ad-
versaryA′ against ABE such that the advantage Advind-cca1

ABE,A′ (λB) is not negligible.
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By using A′ as a subroutine, we construct an IND-CCA1 adversary A against
HIBE with an advantage Advind-cca1

HIBE,A(λH) that is not negligible, which contra-
dicts the IND-CCA1 security of HIBE and concludes the proof. We show each
step of A’s construction in Fig. 2:

1. The HIBE challenger C sets up the HIBE scheme (par ,MK ) ← SetupH(dmax,
λH), initializes RH ← ∅, and sends (dmax, λH, par) to A.

2. A determines the constant-size public key PK of the asymmetric BE scheme,
which is simply the rule for determining HID using the mapping between
symmetric and asymmetric setting. Then A sends (PK ,N , λB) to A′.

3. A′ performs key extraction and decryption queries in any adaptively chosen
order (Steps 3 to 6). In a key extraction query, A′ selects the index i of a
specific receiver ui . In a decryption query, A′ selects the index i of a specific
receiver ui and a broadcast header (I ,K ). A′ sends the query to A, which
simulates the answers of the oracle that A′ calls.

4. In a key extraction query, A derives the hierarchical identifiers {HID j |j ∈ J }
of all subset keys in SKi using the derivation BE scheme and the mapping,
thus introducing the linear factor |SKi | of nX. Then A sends a key extraction
query for each element of {HID j |j ∈ J } to C. Finally, A adds ui to R.
In a decryption query, A parses K into |COV| encryptions of an unknown
session key k . Then A uses I to extract from K the encryption CH =
EncH(HID j , k) that corresponds with the subset Sj that covers ui . Finally,
A sends CH to C.

5. C responds with the answers of the two oracles, i.e., {SKHIDj |j ∈ J } or
k . For each key extraction query, C adds {HID j |j ∈ J } to the set RH of
revoked hierarchical identifiers. As the two oracles know MK , they answer
all queries correctly.

6. For a key extraction query, A assembles the |SKi | private HIBE keys into
the secret key SKi of ui . For a decryption query, A sends k to A′.

7. A′ tells A that the find phase is over.
8. A calculates the cover COV := {S1, . . . ,S|COV|} for the final non-revoked

receivers U \R and chooses one subset Sj∗ ∈ COV at random. Then it finds
the hierarchical identifier HID∗ := HIDj∗ that corresponds with Sj∗ . Finally,
it generates two random session keys k0 and k1 and sends (k0, k1,HID∗) to
C. Note that HID∗ cannot be in RH as Sj∗ ∈ COV and thus Sj∗ ∩ R = ∅,
whereas RH contains hierarchical identifiers of subsets with at least one
revoked receiver. The same holds for all ancestors of HID∗: If any of them
was in RH, then the scheme SBE could not be IND-CCA1-secure, as revoked
receivers could derive a key in the cover.

9. C tosses a coin b R← {0, 1} and sends challenge Cb = EncH(HID∗, kb) to A.
10. For all subsets Sj ∈ COV, A constructs a session key encryption in the

following way: For the first j∗−1 subsets in the cover, it encrypts k1. For the
j∗-th subset, it uses the challenge Cb . For the remaining |COV|−j∗ subsets,
it encrypts k0. Let HID j correspond with Sj according to the mapping. Then
the challenge from A to A′ is (k0, k1, I ,Kb) with Kb :=

(
EncH(HID1, k1), . . .,

EncH(HID j∗−1, k1), Cb , EncH(HID j∗+1, k0), . . ., EncH(HID |COV|, k0)
)
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11. A′ outputs the guess b′ and sends it to A.
12. A forwards b′ to C.

We need to prove that Advind-cca1
HIBE,A(λH) is not negligible. The proof uses a stan-

dard hybrid argument. The hybrid experiments are identical to the regular attack
game against ABE except for the session key encryptions in the challenge. In the
hybrid experiment indexed j ∈ {0, 1, . . . , |COV|}, A′ obtains the following ses-
sion key encryptions:

(
EncH(HID1, k1), . . ., EncH(HID j , k1), EncH(HIDj+1, k0),

. . ., EncH(HID |COV|, k0)
)
. Note that the first j session key encryptions involve

k1 and the last |COV|−j such encryptions involve k0. Let Prj [b′ = 1] denote the
probability that A′ outputs b′ = 1 in the hybrid experiment indexed j. For j = 0
A′ obtains the same broadcast header as in the regular attack game against ABE
for b = 0. Conversely, A′ obtains the same broadcast header for j = |COV| in
the hybrid experiment and b = 1 in the regular attack game:

Advind-cca1
ABE,A′ (λB) = Pr [b′ = 1|b = 1] − Pr [b′ = 1|b = 0]

= Pr|COV|[b′ = 1] − Pr0[b′ = 1] =
∑|COV|

j=1 Prj [b′ = 1] − Prj−1[b′ = 1] ,

where the last equality adds some intermediate terms that add to zero. As our
constructed adversary A uses A′ as a subroutine, we can express its advantage
using the same hybrid experiments. Note that for j∗ = j and b = 1, A′ obtains
from A the same input as in hybrid experiment j, whereas j∗ = j and b = 0
corresponds with hybrid experiment j−1:

Advind-cca1
HIBE,A(λH) = Pr [b′ = 1|b = 1] − Pr [b′ = 1|b = 0]

=
∑|COV|

j=1

[(
Pr [b′ = 1|b = 1, j∗ = j] − Pr [b′ = 1|b = 0, j∗ = j]

)
· Pr [j∗ = j]

]
=

1
|COV|

∑|COV|
j=1 Prj [b′ = 1] − Prj−1[b′ = 1] ,

where the last equality uses the fact that j∗ is selected with uniform distribution.
For our constructed adversaryA we therefore obtain Advind-cca1

HIBE,A(λH) = 1/|COV|·
Advind-cca1

ABE,A′ (λB), which is not negligible because Advind-cca1
ABE,A′ (λB) is not negligible.

This concludes the proof. The full version of this proof is available in [1].

6 Two Exemplary Instantiations

In the sequel, we apply our framework to two exemplary derivation BE schemes
as proof of concept. The first scheme is the SD scheme of [5], where our solution
is semantically identical to that of Dodis and Fazio in [9]. The second scheme is
the LPI scheme of [7], which has a smaller receiver storage size than SD and for
which no asymmetric version exists to the best of our knowledge.

6.1 Asymmetric Subset Difference Scheme

Overview of the Subset Difference Scheme. In this section we describe
only those parts of the original symmetric SD scheme that are required in order
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to understand our notation. For further details we refer to the original paper [5].
The key generation algorithm GenB assigns the N receivers to the leaves of a
binary tree. Without loss of generality, we assume that the tree is balanced and
its height log2 N an integer; otherwise the height is rounded up to #log2 N �.
GenB assigns to each non-leaf node vi a λB-bit string label i , which it chooses at
random with independent uniform distribution.

The key extraction algorithm ExtrB uses n = 3 distinct PRSGs G1, G2, and
G3. For each label label i , ExtrB derives a label for all children of node vi in the
following way: For the left child, the derived label is G1(label i), and analogously
G2(label i) for the right child. Let vj ′ be a child of node vj and let m = 1 for the
left and m = 2 for the right child. Then all derived labels follow a derivation
pattern starting with label i,i := label i :

label i,j ′ ← Gm(label i,j ) with m ∈ {1, 2} for left and right child (1)

Each label label i,j represents a specific subset Si,j of receivers. Specifically, Si,j

contains all receivers that are below node vi , but not below vj . Each receiver
obtains the labels of all subsets to which it belongs. However, the authors of [5]
ingeniously chose the derivation pattern (1) such that a receiver needs to store
only a small fraction of its labels and can still derive all of them. Specifically,
each receiver actually stores only the labels label i,j that are just one node off
the path from the receiver’s leaf to the root (for an example of these labels, see
the black solid dots on the left-hand side of Fig. 3).

Fig. 3. Left: The three labels indicated with black solid dots are one node off the path
from receiver u to the root (black thick line). By storing them, receiver u can derive
all labels indicated with grey shaded dots.
Right: By labeling the tree edges with the PRSG index, we can read the hierarchical
identifier from the path.

The encryption algorithm EncB finds a cover COV of minimal size. The au-
thors of [5] showed that the cover size is |COV| = 2 · |R| − 1 in the worst case.
For each subset Si,j ∈ COV, EncB calculates ki,j ← G3(label i,j ) and encrypts
the session key k with ki,j . The indexing information I describes the cover COV .

The decryption algorithm DecB executed by a non-revoked receiver u ∈ U \R
uses I to find the subset Si,j ′ in the cover to which u belongs. It decrypts the
session key using ki,j ′ , which it derives from a stored label label i,j such that vj
is an ancestor of vj ′ .
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Mapping to Our Notation for Derivation BE. The following mapping
describes how we map each key in the original scheme to our notation of a
derivation BE scheme. The master keys mk i are the labels label i,i = label i . The
set of PRSGs is PRSG = {G1, G2, G3}. Center and receivers derive the keys dk l

in the following way, which is of the form dk l = Gmd
◦ · · · ◦ Gm2(mk j ) from

Definition 1. Let label i,j be a (d − 2)-th descendant of master key mk i = label i ,
where the two PRSGs G1 and G2 have been applied in the following order:
label i,j = Gmd−1 ◦ · · · ◦ Gm2(mk i) with mα ∈ {1, 2} according to (1). Then
the derived key is dk l = G3 ◦ Gmd−1 ◦ · · · ◦ Gm2(mk i), which completes the
mapping. For example, by comparing left and right-hand side of Fig. 3, we obtain
ki,j ′ = G3(label i,j ′) = G3 ◦ G1 ◦ G1(mk i) = dk (i,1,1,3), which u can calculate.

6.2 Asymmetric Layered Punctured Interval Scheme

Overview of the Punctured Interval Scheme. Again we only describe the
parts relevant for our notation. As the original symmetric LPI scheme is more
involved than SD, we explain it incrementally as in [7]. First, we define punctured
intervals. Second, we explain the punctured interval scheme without layers, while
we add the layers in the technical report [1] due to lack of space.

Let the N receivers be N nodes on a straight line from left to right, with
u1 being the left-most and uN being the right-most receiver. A p-punctured
c-interval is a subset S ⊆ U of receivers that contains c or less consecutive
receivers starting from and ending at non-revoked receivers and containing p or
less revoked receivers. More specifically, Si,j ;r1,...,rq is the p-punctured c-interval
that starts at node ui , ends at node uj , and contains the revoked receivers
r1, . . . , rq , where 1 ≤ j − i + 1 ≤ c, 0 ≤ q ≤ p, and i < r1 < . . . < rq < j . We
give an example in Fig. 4, where black solid dots represent revoked receivers.

Fig. 4. From left to right, five 2-punctured 5-intervals contain all non-revoked receivers

For the p-punctured c-interval scheme (p;c)-π, we explain its four algorithms
(GenB, ExtrB, EncB, DecB) as introduced in Sect. 3.3. GenB generates N master
keys of length λB, which we denote k1,1, k2,2, . . . , kN ,N . The key extraction algo-
rithm ExtrB extracts all keys intended for receiver ui , which are the keys related
to all p-punctured c-intervals that contain ui as a non-revoked receiver. To do
so, ExtrB derives several keys from each master key. Specifically, each master key
ki,i is at the root of a key tree in which each leaf represents one p-punctured
c-interval that starts at ui . Each non-revoked receiver is on the path from root
to leaf, while the revoked receivers are not on the path. The keys of non-revoked
receivers indicate their relative position in the tree as shown in Fig. 5, where
each row represents one p-punctured 5-interval for 0 ≤ p ≤ 3. Similar to the
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p-punctured c-interval Si,j ;r1,...,rq , the derived keys ki,j ;r1,...,rq indicate the start
node ui (and thus the master key ki,i), the recipient uj of this particular key,
and the revoked receivers r1, . . . , rq between them, which obtain no key. For ex-
ample, the key k1,5;2,4 in Fig. 5 is derived from k1,1, given to receiver u5, and
excludes u2 as well as u4. Note that the corresponding 2-punctured 5-interval
S1,5;2,4 appears both on the left of Fig. 4 and as the fifth row of Fig. 5.

Fig. 5. Key tree starting at root k1,1 (left) and ending in leaves (right); each row is a
p-punctured 5-interval

It remains to define the PRSGs that actually derive the keys ki,j ;r1,...,rq from ki,i .
Let PRSG := {G1, G2, . . . ,Gp+1} be p + 1 distinct PRSGs. The master key ki,i
corresponds with a non-revoked node ui . For all non-revoked nodes further to the
right, the following rule applies: Let m ∈ {1, 2, . . . , p+1} be the distance between
the two nearest non-revoked receivers uj1 and uj2 such that m = j2 − j1 > 0.
Then PRSG Gm derives the key of uj2 from that of uj1 :

ki,j2 ;r1,...,rq+m−1 ← Gm(ki,j1 ;r1,...,rq ) with j2 = j1+m and 1 ≤ m ≤ p+1 (2)

We give five examples from Fig. 5 in order to illustrate this derivation pattern:
k1,2 ← G1(k1,1), k1,4;3 ← G2(k1,2), k1,5;2,4 ← G2(k1,3;2), k1,5;3,4 ← G3(k1,2), and
k1,5;2,3,4 ← G4(k1,1)

The encryption algorithm EncB finds a minimum-size cover for the non-
revoked receivers, such that each of them is contained in one p-punctured c-
interval (Fig. 4 is an example). For each such interval, EncB encrypts the session
key k with the last key of the corresponding key chain. The decryption algorithm
DecB executed by a non-revoked receiver uses the indexing information I to find
the p-punctured c-interval in which it is covered. Then it derives the last key of
this key chain, decrypts the session key, and subsequently the message.

Mapping to Our Notation for Derivation BE. The following mapping de-
scribes how each key in the punctured interval scheme is mapped to our notation
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of a derivation BE scheme (see Definition 1). The master keys mk i are the keys
ki,i . PRSG is the set of PRSGs. Center and receivers derive the keys dk l in the
following way, which is of the required form dk l = Gmd

◦ · · · ◦ Gm2(mk j ). Let
ki,j ;r1,...,rq be a descendant of master key mk i = ki,i . By tracing back the path
from leaf to root as in Fig. 5, we find the indices of the PRSGs that were used to
derive ki,j ;r1,...,rq by using (2) repeatedly. Let the order of indices be as follows:
ki,j ;r1,...,rq = Gmd

◦ · · · ◦ Gm2(ki,i) with mα ∈ {1, 2, . . . , p + 1} according to (2).
Then this representation already complies with Definition 1, which completes
the mapping. We cover the full LPI scheme in the technical report [1].

7 Conclusion

In this paper we have proposed a generic framework that allows to transform a
large class of secure symmetric Broadcast Encryption (BE) schemes into secure
asymmetric BE schemes. We have proven the framework to be as secure as the
hierarchical identity based encryption scheme with which it is instantiated. We
have given two examples of practically relevant BE schemes that fall within our
framework, the second of which hadn’t been solved so far.

References

1. Huber, U., Sadeghi, A.R.: A generic transformation from symmetric to asymmetric
broadcast encryption. Technical Report, Horst Görtz Institute for IT Security
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Abstract. Many application scenarios do not demand confidential en-
cryption of visual data, but on the contrary require that certain image
information is public (transparent encryption). One scenario is e.g., Pay-
TV, where a low quality version should become public to attract possible
customers. Transparent encryption can be implemented most efficiently
in case of scalable bitstreams by encrypting enhancement layer data and
baseline JPEG is therefore not well suited for designing such encryption
schemes in an efficient manner. This paper investigates how transparent
encryption can be realized through selective encryption of the progres-
sive JPEG modes. The traditional approach which encrypts enhancement
layers starting at the end of the bitstream suffers from high computa-
tional load. Encryption schemes with significantly reduced encryption
effort are shown to deliver equivalent image quality and security.

1 Introduction

Encryption schemes for multimedia data need to be specifically designed to pro-
tect multimedia content and fulfil the application requirements for a particular
multimedia environment [17].

For example, real-time encryption of visual data using classical ciphers re-
quires heavy computation due to the large amounts of data involved, but many
multimedia applications require security on a much lower level (e.g. TV news
broadcasting [11]). In this context, several selective or partial encryption schemes
have been proposed recently which do not strive for maximum security, but trade
off security for computational complexity by restricting the encryption to the
perceptually most relevant parts of the data.

However, encryption may have an entirely different aim as opposed to pure
confidentiality in the context of multimedia applications. Macq and Quisquater
[10, 11] introduce the term “transparent encryption” mainly in the context of
digital TV broadcasting: a broadcaster of pay TV does not always intend to pre-
vent unauthorised viewers from receiving and watching his program, but rather
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intends to promote a contract with nonpaying watchers. This can be facilitated
by providing a low quality version of the broadcasted program for everyone, only
legitimate (paying) users get access to the full quality visual data. This is meant
also by the term “try and buy” scenario. Therefore, privacy is not the primary
concern in such an environment. The simplest approach to achieve this would be
to simply distribute both versions, a low quality version to all potential viewers,
and a high quality version only to paying viewers. However, this is mostly not
desired due to the excessive demand of storage and bandwidth.

Transparent encryption usually transmits a high quality version of the visual
data to all possible viewers but aims at protecting the details of the data which
enable a pleasant viewing experience in an efficient manner. If this data are miss-
ing, the user is (hopefully) motivated to pay for the rest of the data which may
be accessed upon transmission of the required key material by the broadcaster.
Another application area of transparent encryption are preview images in image
and video databases. Therefore, there are two major requirements that have to
be met concurrently:

– To hide a specific amount of image information (security requirement).
– To show a specific amount of image information (quality requirement).

While the first requirement is a generalization of the confidentiality encryption
approach – the condition of full encryption of all image information is extended
to a “specific amount” – , the second requirement, namely to explicitly demand a
certain image quality, is completely different from scenarios where confidentiality
or privacy are the primary aims.

To implement transparent encryption, Macq and Quisquater [11] propose to
use line permutations in the transform domain of a lossless multiresolution trans-
form. The permutations are only applied in the region of the transform domain
corresponding to fine grained details of the data. Droogenbroeck and Benedett
[6] propose to encrypt bitplanes of the binary representation of raw image data,
contrasting to the privacy focused approach they suggest to start with the LSB
bitplane. With respect to JPEG encoded images, the authors suggest to encrypt
sign and magnitude bits of medium and high frequency DCT coefficients (note
that this is again exactly just the other way round as compared to encrypting
low frequency coefficients only for privacy protection [2, 9]). Droogenbroeck [5]
extends this latter idea to “multiple encryption” where different sets of DCT co-
efficients are encrypted by different content owners, and “over encryption” where
these sets do not have an empty intersection (i.e. coefficients are encrypted twice
or even more often). Bodo et al. [1] propose a technique called “waterscrambling”
where they embed a watermark into the motion vectors of an MPEG stream,
thereby reducing the video quality significantly – only a legitimate user has
access to the key and may descramble the motion vectors.

Transparent encryption may be implemented in the simplest way in the con-
text of scalable or embedded bitstreams. Transparent encryption is achieved in
this environment by simply encrypting the enhancement layer(s). This has been
proposed by Kunkelmann and Horn using a scalable video codec based on a spa-
tial resolution pyramid [9, 8] and by Dittmann and Steinmetz [3, 4] using a SNR
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scalable MPEG-2 encoder/decoder. Yuan et al. [19] propose to use MPEG-4
FGS for transparent encryption, JPEG2000 transparent encryption is discussed
in own earlier work [16].

The baseline JPEG format does not fit well into the transparent encryption
scenario. For example, in order to selectively protect high frequency AC co-
efficients of a JPEG image (as discussed for example by Droogenbroeck and
Benedett [6]), the file needs to be parsed for the EOB symbols 0x00 to iden-
tify the end of a 8 × 8 pixels block where the VLC codewords corresponding to
these coefficients will be located (with two exceptions: if 0xFF is followed by
0x00, 0x00 is used as a stuffbit and has to be ignored and if AC63 (the last AC-
Coefficient) does not equal 0 there will be no 0x00 and the AC coefficients have
to be counted). It is clear that transparent encryption will be fairly inefficient
under these circumstances where a significant parsing overhead is introduced.

In this work we systematically investigate the different JPEG progressive
modes as defined in the JPEG extended system [13] with respect to their use-
fulness for providing efficient and yet secure transparent encryption schemes.
Section 2 reviews the three modes which are also compared to the JPEG base-
line system in terms of compression performance and data organisation. Section
3 finally discusses the respective suitability in a transparent encryption context,
the paper is concluded in Section 4.

2 Progressive JPEG Modes

The basic idea of JPEG-based progressive coding [7, 15] is to organize the data
into a base layer which contains a low quality approximation to the original
data and several enhancement layers which, if combined with the base layer,
successively improve the quality.

The three JPEG progressive modes are defined as follows (JPEG uses the
term “scan” instead of layers, the first two modes are often denoted as sequential
progressive modes):

– Spectral selection: the first scan contains the DC coefficients from each block
of the image, subsequent scans may consist of a varying number of AC co-
efficients, always taking an equal number from each block. A typical choice
is to encode all DC coefficients into the first scan, subsequently groups of 6
and 7 AC coefficients are organized into one scan.

– Successive approximation: scans are organized according to the binary rep-
resentation of the coefficients. The first 6 bit of a coefficient is the smallest
fraction which the JPEG standard allows to specify. This fraction is coded
as in baseline JPEG, while the following bits are emitted without coding.
According to the standard DC and AC coefficients have to be treated sep-
arately. A typical setting is to use 6 scans (first 6 bit of all DC coefficients
Huffman coded, 1 bit more of DC coefficient data, 1 bit more of DC coeffi-
cient data, first 6 bit of all AC coefficients Huffman coded, 1 bit more of AC
coefficient data, 1 bit more of AC coefficient data).
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– Hierarchical progressive mode: an image pyramid is constructed by repeated
weighted averaging and downsampling. The lowest resolution approximation
is stored as JPEG (i.e. the first scan), reconstructed, bi-linearly upsampled,
and the difference to the next resolution level is computed and stored as
JPEG file with possibly different quantization strategy (similar to P and
B frames in MPEG). This is repeated until the top level of the pyramid is
reached.

The JPEG standard also allows to mix different modes. Note that the three
modes allow a different amount of scans. Whereas spectral selection offers a
maximum of 64 scans, the hierarchical progressive mode is restricted to 5 –
6 sensible scans (given a 28 × 28 pixels image). Successive approximation is
restricted to 6 scans (assuming 8 bpp grayscale data). Similar to the scalability
profiles of MPEG-2, the JPEG progressive modes are not used very much and
are poorly supported and documented in commercial software.

Although providing much better functionality for transmission based applica-
tions, the compression performance could be expected to decrease using JPEG
progressive modes. This would of course not favour the use of these techniques in
transparent encryption scenarios. We have shown in earlier work [15] that pro-
vided coding options are chosen carefully, compression performance equivalent
to and even exceeding the baseline system may be achieved. All tests concerning
the sequential progressive modes were conducted using the IJG’s (Independent
JPEG Group) reference library, the hierarchical mode is a custom implementa-
tion based on the IJG software [15]. All results in this work employ the Lena
image with 5122 pixels and 8bpp.

Figs. 1(a) and 1(b) show how the different scans contribute to the over-
all file size. This is important knowledge for subsequent transparent encryp-
tion since we want to design computationally efficient schemes. In the spectral
selection case (Fig. 1(a)) each scan contains one coefficient from each block
and as it is expected, the size of the scan decreases for increasing coefficient
frequency.

In our example, successive approximation uses the scan configuration used
as an example above. We realize that the two scans containing the single DC
coefficient bits do not contribute much to the overall file size, whereas the three
scans corresponding to single AC coefficient bits contribute 21% and 44% to the
overall data.

Table 1 shows two examples for the hierarchical JPEG case using 6 scans (6
pyramid levels), the first optimized for good compression performance (note that
in this case the quality of the base layer needs to be low, in our example it is set
to qf = 10 [15] resulting in a total of 48589 bytes), the second optimized for a
high quality base layer (qf = 95, resulting in a total of 53113 bytes).

It is clearly visible that the distribution of the amount of data among the scans
differs significantly depending on the compression settings. This also implies that
encrypting e.g. layer 4 only imples a variation in encryption amount between
2.55% and 18.89% of the entire data (which is rather significant since the overall
data volume differs only by 10% in our example).
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Fig. 1. Data distribution across different scans for sequential progressive modes

Table 1. Percentage of the overall file size contributed by the single layers

Layer 0 1 2 3 4 5

qf = 10 0.6% 0.7% 0.8% 1.3% 2.6% 94.1%

qf = 95 0.7% 1.3% 2.7% 6.9% 19.0% 69.4%

3 Transparent Encryption

3.1 The Classical Approach

The classical approach for transparent encryption of visual data in layered
representation is to simply encrypt the enhancement layers, successively en-
crypting more and more data starting at the end of the file. The remaining
scans (i.e. the base layer or scans left in plaintext) may be expected to con-
tain data corresponding to the visual information in lower quality. As we shall
see, this approach implies that large amounts of data need to be encrypted
to provide a sufficient quality decrease. As an alternative we will investigate
strategies where visually more important data, which is not located in the
last portions of enhancement information, is encrypted first. The goal is to
have similar results as compared to the classical approach but less encryption
effort.

Note that in most transparent encryption scenarios the encryption of DC co-
efficient data has to be avoided since otherwise luminance information is entirely
or partially lost and the result is a severely alienated image which might refrain
a potential costumer from getting interested in the data (quality requirement is
not met). This immediately results in a lower bound in achievable image quality
that may be achieved with the sequential progressive modes: this bound is at-
tained by reconstructing the image based on DC coefficient data only as shown
in Figs. 4 and 6. The situation is more complicated for the hierarchical mode
due to the flexibility in its coding parameters. Depending on the quality of the
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base layer (and the depth of the pyramid) employed, reconstructions using the
image pyramids’ base only may vary to a large extent in quality (see Fig. 2 for
corresponding examples of a two layer pyramid with high quality qf = 95 and
low quality qf = 10 base layers).

Rec. using 30% of data Rec. using 6% of data

PSNR=23.92,ESS=0.8 PSNR=22.99,ESS=0.64

Fig. 2. Image reconstruction based on the base layer only

Decoding a partially encrypted image by treating the encrypted data as being
unencrypted leads to images severely degraded by noise type patterns (which
originate from the encrypted parts). Using these images to judge the security
of the system leads to misinterpretations since a hostile attacker can do much
better. In particular, an attacker could simply ignore the encrypted parts (which
can be easily identified by statistical means) or replace them by typical non-noisy
data. This kind of attack is called “error-concealment” [18] or “replacement
attack” [14] in the literature. The IJG software ignores empty scans during
decoding – therefore a simple error concealment attack sets the scans affected
from encryption simply to zero. In the hierarchical JPEG case we set residual
pyramid levels to zero if affectd by encryption, the base layer is replaced by
uniform gray value 128. See also [7, 15] for these attacks against DCT-based
coding/encryption schemes. In order to assess the quality of the visual material
after reconstruction in addition to visual inspection we use PSNR and ESS (Edge
Similarity Score [12]), the latter measuring the similarity of dominating edges
on a block basis in the range [0, 1].

Figs. 3(a) and 3(b) show PSNR values when starting encryption at the end
of the file and successively increasing the amount of data encrypted, for spectral
selection and successive approximation, respectively, using direct reconstruction
and under an error concealment attack. We clearly note the effect of the attack
which improves the reconstructions by 4 – 5 dB.
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Fig. 3. Increasing the amount of data encrypted

The result curves bend sharply towards lower quality when DC coefficient
data is reached for both cases at about 90% of the data encrypted (which again
documents that encrypting DC coefficient data violates the quality requirements
of transparent encryption), in the successive approximation case we additionally
observe different behaviour also when the 6 significant AC coefficient bits are
met at about 65% of the data encrypted.

Fig. 4 gives a visual example of the effectiveness of the conducted attack
against transparent encryption of 89% spectral selection data. The attack im-
proves the visual quality and PSNR values considerably.

direct reconstuction replacement attack

PSNR=20.39,ESS=0.18 PSNR=23.74,ESS=0.16

Fig. 4. Transparent encryption of spectral selection (89% encrypted)

This example shows a dilemma which makes the parameters for transparent
encryption difficult to adjust. If the amount of encryption is selected to deliver
optimal quality without the assumption of a conducted attack (not too good to
motivate viewers to pay for better quality and not too low to raise the viewers’
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interest in the material), the quality is too high after a successful attack has been
mounted. In this scenario, customers able to perform a corresponding attack will
probably do so instead of paying. In case the amount of encryption is adjusted to
deliver optimal quality assuming an attack has been mounted, the non-attacked
material is of rather low quality and might not be suited to raise the average
viewers’ interest. Therefore, a compromise between those two strategies has to
be found. Also, the decision which strategy is applied of course also depends
on the business model and the target customer group of the overall application
scenario.

3.2 Reducing Encryption Effort

We have seen that the necessity of meeting the security requirement leads to the
encryption of a large amount of data in case encryption preceeds from the end
of the file to the beginning as done traditionally. However, since the last layers
do not contribute much to the image quality, it may be more reasonable not to
start encrypting at the end of the data, but at a specific point after the DC data
according to the required image quality. For most applications starting right
after the DC data will be appropriate, in order to minimize the image quality
and the encryption rate. Fig. 5 shows an example where encrypting the first AC
coefficient only (7% of the file size) results in almost the same image quality as
when encrypting 70% of the data starting from the end of the file in the case
of spectral selection. We result in a much more efficient transparent encryption
scheme employing this idea.

The same observations may be made and similar solution strategies can be
applied in case of successive approximation. Using the traditional approach,
large quantities of data need to be protected to meet both security and quality
requirements, respectively (see for example Fig. 6 where 92% of the data are
encrypted: all AC data plus the two single DC coefficient bit scans). Consid-
ering the results shown in Fig. 3(b), it is evident that the scan containing the
6 bit AC coefficient data mainly influences the image quality. However, when
encrypting this scan we have to process 22% of the overall data accordingly,
which is still too much for most applications. One possibility is to split up this
scan using spectral selection: Fig. 6 shows results for the encryption of the lead-
ing 5 AC coefficients (only the 6 most significant bits, which represent 14% of
coefficient data, are encrypted), which leads to similar image quality as the en-
cryption of about 92% of the data with the traditional approach. Again, we were
able to significantly reduce the encryption effort as compared to the traditional
technique.

Contrasting to the sequential progressive JPEG modes, hierarchical JPEG
can offer a great flexibility in its coding parameters. However, as we have seen in
the example of Fig. 2, using the traditional approach of encrypting enhancement
layers starting at the end of the file at the highest layer) requires the encryption
of 70% or 94% of the overall data in the examples of the two layer scenario.
When the number of layers is increased, a higher and higher percentage of data
has to be encrypted using this technique. Therefore we apply the same principle
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70% encrypted 7% encrypted

PSNR=27.68,ESS=0.89 PSNR=27.14,ESS=0.31

Fig. 5. Efficient transparent encryption of spectral selection (after attack)

92% encrypted 14% encrypted

PSNR=23.65,ESS=0.0 PSNR=23.73,ESS=0.42

Fig. 6. Efficient transparent encryption of successive approximation (after attack)

as discussed before and encrypt scans between the base layer (layer 0) and the
highest enhancement layers. Table 2 shows corresponding results when this idea
is applied to the two variants of 6-level pyramids given as an example at the end
of section 2 (and we also provide the amount of data in percentages contained
in the different layers).

Results in the table indicate that we may reduce the neccessary encryption
amount significantly using this approach. However, we notice an enormous gap
in the quality results between the direct reconstruction and the result obtained
by the error concealment attack. Note the extreme example when encryption
layer 3 where the difference in PSNR between the directly reconstructed image
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Table 2. Results of protecting various layers when applied to the compression opti-
mized pyramid (qf = 10) and to the quality optimized pyramid (qf = 95)

Layers encrypted 0 1 2 3 4 5

qf = 10, % enc. 0.6 0.7 0.8 1.3 2.6 94.1

PSNR direct 12.7 18.4 17.9 11.8 13.8 8.8
PSNR attacked 18.4 19.5 21.0 21.9 22.9 24.6

ESS direct 0.69 0.56 0.43 0.39 0.42 0.35
ESS attacked 0.81 0.61 0.53 0.49 0.57 0.47

qf = 95, % enc. 0.7 1.3 2.7 6.9 19.0 69.4

PSNR direct 16.7 20.5 20.0 14.5 8.5 8.8
PSNR attacked 18.4 22.9 25.1 26.9 26.6 23.9

ESS direct 0.64 0.51 0.40 0.43 0.47 0.53
ESS attacked 0.77 0.66 0.62 0.67 0.68 0.79

and the attacked version is more than 10 dB ! This fact makes it extremely
difficult to adjust the encryption parameters properly to meet both, security and
quality requirements (which is a difficult task in any case as discussed earlier):
the quality of a directly reconstructed image must not be too low, otherwise the
average customer will lose interest; but an attacker in this case will succeed in
generating a high quality version.

As a consequence, for real life applications we have to rely on settings min-
imizing this quality gap. Table 2 shows that this gap is by far less pronounced
when layer 1 or 2 are encrypted only. Fig. 7 displays the case of encrypting layer
2 for the compression optimized pyramid (qf = 10), Fig. 8 shows the case of
encrypting layer 1 for the quality optimized pyramid (qf = 95). If the quality
requirements are met for the target application, these settings are a very good

direct attacked

PSNR=17.85,ESS=0.43 PSNR=21.00,ESS=0.53

Fig. 7. Encryption of layer 2 (0.80% encrypted), compression optimized pyramid
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direct attacked

PSNR=20.52,ESS=0.51 PSNR=22.92,ESS=0.66

Fig. 8. Encryption of layer 1 (1.25% encrypted), quality optimized pyramid

choice since the encryption effort is very small (0.80% and 1.25% of the overall
file size) and the security is rather satisfactory since the discussed gap is rather
small in these cases.

Table 2 reveals an additional property when avoiding to encrypt the high-
est enhancement layer(s): as can be seen, the gap between quality using direct
reconstruction and attacked visual data is maximal when the high layers are
encrypted. Therefore, besides reducing the encryption amount as suggested in
this work we also improve the applicability in real-word scenarios of the scheme
by encrypting layers more closely to the base layer.

4 Conclusions

Progressive and hierarchical JPEG may be used for transparent encryption in an
efficient manner due to the scalable data format. Parsing the file and searching
for the data to be protected can be avoided in this fashion. We have shown
that the traditional approach applied to scalable data which starts encryption
from the end of the bitstream (enhancement layer encryption) suffers from high
encryption demands. The same functionality can be achieved by protecting data
situated between base and enhancement layers while reducing the computational
encryption effort significantly.
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Abstract. The predominance of short-lived connections in today’s In-
ternet has created the perception that it is perfectly acceptable to change
a host’s IP address with little regard about established connections. In-
deed, the increased mobility offered by laptops with wireless network
interfaces, and the aggressive use of short DHCP leases are leading the
way towards an environment where IP addresses are transient and last
for short time periods. However, there is still a place for long-lived con-
nections (typically lasting hours or even days) for remote login sessions,
over the network backups, etc. There is, therefore, a real need for a sys-
tem that allows such connections to survive changes in the IP addresses
of the hosts at either end of the connection.

In this paper we present a kernel-based mechanism that recognizes
address changes and recovers from them. Furthermore, we discuss the
security implications of such a scheme, and show that our system provides
an effective defense against both eavesdropping and man-in-the-middle
attacks.

1 Introduction

Applications based on the Internet Protocols generally assume that the address
of a given node remains the same over long periods of time. Long term con-
nections, especially those that use connection-oriented protocols such as TCP,
rely on this assumption to allow connections that may “last months” and can
even survive temporary disruptions to the network. The assumption of address
immutability is, however, increasingly difficult to sustain. Mobile nodes (e.g.,
laptops, phones, PDAs, etc.) can change addresses as they move from one net-
work to another, but even fixed nodes connected to the Internet via dial-up or
DSL link have addresses that change every time their connection is reset. In some
cases ISP’s initiate such address changes to force users that need a permanent
(static) IP address to pay for one. Unfortunately, established connections (e.g.,
ssh sessions) do not survive the address change, because they rely on fixed source
and destination IP addresses. In order to protect these connections when one of
the endpoints gets a new IP address, some kind of mechanism is required to allow
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both ends of the connection to update the addresses associated with that con-
nection, or to continue using their initial addresses through address translation
or tunnels.

In this paper we examine various techniques that have been proposed to ad-
dress this problem and describe a new technique based on “redirects.” We also
discuss the security implications of the use of such mechanisms and propose a
novel technique that prevents third parties from hijacking connections.

2 Connection Redirection

To better understand the redirect protocol, consider the following scenario shown
in Figure 1 where the communication between two hosts is disrupted because
the IP address of one of the hosts changes.

Fig. 1. When Bob acquires a new IP address, all established connections with Alice
will be lost

Assume two hosts, Alice and Bob. with IP addresses IPA and IPB respec-
tively. Initially, Alice and Bob establish a TCP connection and communicate
normally. At some stage in the communication, Bob is forced to acquire a new
IP address (IP ′

B). At that point if Alice sends a packet to Bob’s original address,
IPB, she will either get an ICMP error (e.g., ADDRESS UNREACHABLE), or
the packet will be lost (silently). Moreover, if another host has grabbed IPB ,
Alice will get a TCP RST. In the first and last cases Alice will immediately
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know that the connection has been lost and she will tear down her side of the
connection, but in the second case Alice will have to wait until the connection
times out.

In every case, the connection will be lost and will have to be reestablished. To
retain the connection, both sides must update the state of the IP tables in the
network stack, changing all instances of IPB to IP ′

B. Since Bob knows that his
address has changed, he can effect the local changes, but he also has to inform
Alice via an Address Change Message (ACM, shown in Figure 2), so that she
can update her network state.

Fig. 2. Format of the Address Change Message

The ACM may affect all established TCP connections between Bob and Al-
ice causing all applicable network stack entries to be updated. Alternatively,
it may apply only to a specific TCP connection. In the latter case Bob will
need to send individual ACMs for every TCP connection between himself and
Alice.

While the above protocol can be used to redirect TCP connections one has
to be sure that this mechanism cannot be used to hijack existing connections.
Specifically, the protection mechanism must address both packet injection at-
tacks and data modification attacks.

Packet Injection. A packet injection attack is one where an attacker sends a
specially crafted ACM causing an existing connection to be redirected to a host
controlled by the attacker. This attack is facilitated by the ability of the attacker
to eavesdrop on the communication channel and, hence, is particularly likely in
wireless networks where it is trivial to monitor network traffic.

To protect against such attacks, we can either use some pre-arranged secret
to guard the ACM, or use sequence numbers that the attacker is unlikely to
guess (unless, of course, the attacker is able to monitor the traffic). The extent
to which we want to protect hosts from redirect attacks will define which defence
mechanism one should use. Understanding the specific types of packet injection
attacks will help us form protection guidelines.

The ability to eavesdrop on the communication opens additional avenues of
attack such as replay attacks whereby the attacker records an earlier exchange
involving an ACM and reuses it to acquire a connection at some point in the
future. In order to understand this attack consider the following scenario.

In a LAN where address assignment is handled via DHCP, the attacker can
trigger an address change on a host causing it to emit an ACM message. A
further address change will cause the victim host to move to a different IP
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address allowing the attacker to use the original ACM to redirect traffic back to
the freshly released address.

Data Modification. In a man-in-the-middle scenario, the attacker is able to
inspect and modify packets exchanged between the two communicating parties.
While this attack is harder to carry out in general, if the attacker is in the same
LAN as the victim, ARP spoofing can be used to allow traffic to flow through
the attacker.

To appreciate the difficulty of countering data modification attacks, consider
the use of a shared secret to protect the ACM. If the secret is sent during the
current session, the attacker will be able to intercept it and modify it. Thus, the
two parties must exchange the secret ahead of time, or use a trusted third party
to introduce them to each other.

2.1 Global Versus Local Redirects

When redirecting connections we can opt to send a single redirect request which
applies to all active sessions between the two hosts, or send ACMs for each
connection separately.

By using individual ACMs for each connection we leverage TCP’s sequence
numbers in order to ensure that the connection is unlikely to be hijacked be-
cause the attacker must guess not only the source and destination ports, but the
sequence number as well. If the attacker cannot eavesdrop on the connection,
they are unlikely to be able to guess the correct combination or even to mount
a brute-force attack by trying all possible combinations due to the size of the
search space.

For global redirects we can use a token established at the beginning of the
session to authenticate the redirect request. This token can be a 32-bit or 64-bit
quantity sent in the original connection request packet. Either side can use that
token if it needs to send a redirect packet.

Neither of the two solutions above address the problem of an eavesdropping
attacker. Of course, if an attacker is able to monitor the traffic on a connection,
he or she will be able to mount a great variety of attacks against that session
(including message injection). However, it may not be acceptable to allow the
attacker to redirect the entire session.

A good way to address this problem is not to send the token in the clear
but to use Diffie Hellman exchange to establish a token, known by both sides
but unavailable to a potential eavesdropper. [17] The DH exchange, however
introduces extra overhead, is vulnerable to a man in the middle attack and may
allow an attacker to mount a denial of service attack on either side by forcing
them to perform repeated DH exchanges.

We have addressed these issues with a two level technique that (a) limits
the expensive negotiation to long-lived sessions and (b) allows information from
previous sessions to be used to enhance the level of security and resist man-
in-the-middle attacks as well. The latter technique is similar to the authentica-
tion mechanism employed by ssh, that is to transfer the host key when the first
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connection between the two hosts is made. Moreover, since the authentication
procedure involves the two hosts and not the individual connections we can
further reduce overheads by allowing one redirect message to affect all the con-
nections between the two hosts.

3 Design Considerations

We have developed a prototype to test our methods and provide feedback on the
efficacy of the various techniques described the previous section. It is important
to observe here that we are primarily concerned with authentication and, as we
shell see later, data integrity; privacy is not our concern and hence we avoid
encryption and its associated overhead. Existing systems such as ssh or TLS
may be used as needed to satisfy privacy requirements.

3.1 Initial Key Exchange

As we have seen above, in order to construct a system which is resistant to
both data monitoring (eavesdropping) and man-in-the-middle attacks, we need
to set up a session key. This is done as part of the initial TCP/IP handshake
(Figure 3).

Fig. 3. Session key agreement between parties that know each other. Alice sends her
ID along with a nonce to Bob. Bob uses the ID to find Alice’s key and then responds
with his ID along with the hashed value of the nonce along with their two keys.

Assuming that Alice and Bob have met before, they already know each other’s
secret key. This is used in the negotiation for the session key. Note that Bob does
not have a single key that he gives to all his friends, but rather maintains a list
in the form:

IDA KA KB timestamp
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The reason is that if hosts always use the same key for all their transactions, a
malicious host M could contact Alice to get her key and then contact Bob to
get his key and thus be in a position to impersonate either one. We prefer this
method of authentication as opposed to using public key cryptography because
our method is vastly cheaper in terms of CPU requirements.

The timestamp field is used to indicate the last time the host was contacted
to allow for pruning of the list to avoid maintaining old and potentially useless
information.

3.2 First Contact

If Alice and Bob have never met before, or if either host has purged the key
information from its database, they will need to exchange keys. This operation
is not performed by the kernel, as it involves a lot of operations that are better
done in user-land.

We have modified the network code in the OpenBSD kernel to call an appli-
cation (keyserv) during the initial stages of the session key exchange (Figure 4).
The keyserv program maintains a table with known hosts so that the storage
and management of these keys may be managed by the user.

Fig. 4. When an ACM-aware connection is initiated, the kernel asks a user-level ap-
plication to carry out the session key negotiation

3.3 Short Versus Long Lived Connections

Based on typical TCP/IP connection lifetimes we observe that a great many con-
nections are short lived, and do not require the use of our mechanism. For such
connections we should not attempt to use our mechanism to avoid burdening the
end-systems with the associated overhead. But how can we determine whether a
connection is likely to require the use of the connection redirection system? Ini-
tially we based our decision on the service (i.e.,we activated our protocol based
on the port used for the connection). This allowed us to use the mechanism for,
say, ssh connections, but not http. This approach assumes that we have a good
understanding of the type of services in use, the use various ports used and that
each service can be nicely categorized as short- or long-lived.
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So we looked for a more flexible mechanism and we ended up using the fol-
lowing heuristic: if a connection lasts longer than 10 seconds, it is likely to
be a long-lived connection. We, therefore, arrived at the state model shown in
Figure 5.

Fig. 5. State diagram showing the activation of the address redirection system

Initially the host is Idle (no connections). When a remote host connects, we
start a 10 second timer. Before the timer expires, we treat the connection as a
short-lived one, so that if an address change occurs, the connection is dropped.
Assuming that the connection is still up when the timer expires, we establish the
redirect key and enter the “long-lived” state where our mechanism can be used to
recover from address changes. This technique allowed us to reduce overheads and
yet has proven to be extremely accurate in predicting the long-lived connections.

3.4 Data Integrity

In RFC-2385 [9] the authors suggest that BGP sessions can be protected through
the use of MD5 hashes. The proposed technique involves calculating the hash of
the packet to which we have appended a “password.”

In our system we can do something similar using the session key as pass-
word and utilizing a more secure algorithm instead of MD5 (see discussion by
Dobbertin [7] on the problems with the MD5 hash). This scheme will enhance
the typical TCP session with integrity checks (but will not provide privacy) at
a very small overhead, since we have already carried out the key establishment
negotiation. Since this integrity support is available to long-lived sessions, it is
activated after the timer expires (see Figure 5 above).



306 V. Prevelakis and S. Ioannidis

Redirect

Application

Kernel Space

Redirect Daemon

Library

User Space

open(), close(),
read(), write(),

/dev/redirect

ioctl()Network SysCalls

Network

Filtering Routines

Fig. 6. Block diagram of the redirect implementation. IP addresses are modified on
the fly using filtering routines to maintain the network connections.

4 Implementation

We implemented the redirect architecture under OpenBSD 3.6 [1] as a proof of
concept. Our implementation consists of three components: (1) a set of kernel
extensions, that are responsible for locating and enabling the modification of
IP addresses dynamically in the kernel; (2) a user-level daemon process, which
implements the redirect monitoring system; and (3) a device driver, which is used
to modify the IP data structures according to the requirements of the redirect
monitor. Our prototype is very lightweight, consisting of a few hundred lines of
C code.

Figure 6 shows a graphical representation of the system, with all its compo-
nents. The core of the redirect mechanism lives in kernel space and is comprised
of the filtering routines and the device driver. The redirect monitoring engine
lives in user space, inside the redirect daemon process. Any incoming or outgoing
IP packets go through the filter and are subject to possible redirect.

Kernel Extensions. We implemented a set of kernel extensions to permit to mod-
ify the Protocol Control Block of existing network connections. This functionality
is supported by two operations: search pcb and modify pcb. More specifically,
we search all the Protocol Control Blocks for connections of interest and then
we modify them accordingly. In the case of a local IP address change, we need
to modify the source address of every existing connection. Whereas in the case
of a remote IP address change, we only need to modify existing connections to
that remote host.

Redirect Device. To maximize the flexibility of our system and allow for easy
experimentation, we decided to make the redirect daemon a user level pro-
cess. To support this architecture, we had to implement a pseudo device driver,
/dev/redirect, that serves as a communication path between the user–space
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redirect daemon, and the IP packet redirect engine in the kernel. Our device
driver, implemented as a loadable module, supports the usual operations
(open(2), close(2), read(2), write(2), and ioctl(2)).

struct redirect_request {
int local_or_remote;
in_addr_t oldIPaddress, newIPaddress;

};

for (ever) {
if (IP local address change) {

update Protocol Control Block with new source IP address
for (every existing connection)

notify remote redirect daemons
} else if (IP remote address change) {

update Protocol Control Block with new destination
IP address

}
}

Fig. 7. Pseudocode of redirect daemon

Redirect Daemon. The last component of our system is the redirect daemon. It
is a user-level process responsible for making decisions on whether to redirect IP
packets or not. These decisions are based on the changes of the host IP address.

The redirect daemon continuously monitors the network interface for IP ad-
dress changes. When it detects a change it starts executing the protocol described
in Section 3. The redirect daemon of the host that experienced the IP address
change, communicates with the redirect daemon of all the network hosts it has
established connections to notify them of the IP address change. It then issues
a call to the redirect device driver to update the in-kernel Protocol Control
Block tables of the existing connections with the new IP address. Similar up-
date actions are taken by the remote redirect daemons upon the receipt of the
notification (see Figure 7).

5 Related Work

The problem of maintaining existing connections when the IP address changes
is not unique to home networks. As with cell phone networks, Mobile IP (MIP)
systems have to address the problem of “handoff” i.e., what happens if the cell
phone or mobile PC moves from one area to another [16].

However, MIP systems must also satisfy additional requirements related to
the roaming nature of mobile users. In particular, what happens whenever a
mobile PC remains disconnected from the network for a significant amount of
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time (e.g., during a long flight, or over the weekend) [18]. Another issue is how
to ensure that other computers can establish connections to the mobile PC while
it moves from network to network.

5.1 Forwarding Node

These problems necessitate the use of a forwarding node that has a fixed IP ad-
dress [3,5,6]. The mobile PC contacts the forwarding node in order to send and
receive packets. A popular way of handling this transparently is via an overlay
network: the mobile PC establishes a tunnel with the forwarding node and sends
all packets over the tunnel (i.e., the tunnel is designated the default route), while
the forwarding node performs NAT on the packets using the tunnel. Other hosts
think that packets from the mobile PC originate from the forwarding host due
to the use of NAT, while incoming packets are sent over the tunnel to the mobile
PC. Packets flow though the tunnel oblivious to the changes of the IP address
of the mobile PC.

We have a similar setup in operation for almost 8 years. The forwarding
station is an OpenBSD machine connected to the network, while the “mobile
PCs” are located in home networks connected via DSL or cable modems. The
home networks use an embedded system (running a special version of OpenBSD
that boots off a compact flash memory device) acts as an integrated firewall and
VPN gateway [15,14].

We use IPsec in tunnel mode to implement the overlay network (Figure 8).
Our recent implementation based on OpenBSD 3.0 has been in continuous op-
eration for almost three years (1022 days uptime) demonstrating that sessions
can survive even migrations between ISPs (Verizon DSL to Comcast cable).

However, the overlay network technique has two major limitations: one is that
it requires a forwarding node with a fixed, globally unique IP address, and the
other is that packets always have to take a detour via the forwarding station in
order to reach hosts in the Internet. The latter both increases latency and leaves
the system vulnerable to failures in the forwarding node, the network hosting the
forwarding node, or the transit networks linking the mobile PC to the forwarding
node [2].

Fig. 8. The overlay network hides changes in the external addresses of the gateway
hosts. Internal hosts (Bob and Alice) can use their own addresses all the time.
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While these issues may be acceptable in the case of a truly mobile PC, we
do not believe that they are acceptable in a home setting, where the end-user
is unlikely to be willing to shoulder the cost of the forwarding station or the
latency imposed by the detour to the forwarding node.

5.2 Proxy-Based systems

Another way to handle address changes is to use a common rendezvous host
[3,19,8]. Both sides connect to the third part that has a fixed address. In this
way even if one or even both hosts change addresses, they can locate each other
via the common host. This technique is used mainly by voice telephony (VoIP)
applications. Such applications also have the added benefit of using connection-
less protocols allowing much flexibility in dealing with address changes.

5.3 Mobile IPv6

The design of IPv6 has created a special address class (link-local addresses)
within the huge available address space. Link-local addresses are not routable,
but are unique and serve to identify a host within a LAN. Though the use
of tunneling, hosts can communicate using their link-local addresses and hence
be immune to address changes in the intervening network. A special mecha-
nism based on two new destination option fields within packets (binding update
and binding acknowledgement) are used to facilitate the updates to the tunnels
[13,12,4,10,11].

6 Conclusions

We have presented a system that allows TCP connections to survive addresses
changes in the communicating hosts. Our system is designed to allow existing
connections to be migrated to new IP addresses without the knowledge or coop-
eration of the application. Under our system, when an address change occurs, all
instances of the original IP address in the kernel IP tables, are dynamically re-
placed with the new address. Remote systems that have established connections
are also notified so that they can update their own data structures.

Recognizing that without adequate safeguards this procedure would create seri-
ous security problems, we have implemented a comprehensive security mechanism
that protects connections from hijacking even against man-in-the-middle attacks.

Care has been taken to minimize the costs associated with this mechanism,
both by reducing the computational overheads and by deferring the expensive
cryptographic operations until we are reasonably sure that the connection is in
fact long-term and can, therefore, benefit from our services. Another benefit of
our approach is that having carried out the necessary mutual authentication
between the two hosts, we can use this information to provide integrity checking
of the connection with almost negligible overhead. We believe that our system
combines efficiency and utility and we would like to see it become a standard
feature of all IP-based systems.
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Abstract. This paper describes a security architecture for a LAN. The
architecture uses the 802.1X access control mechanisms and is supported
by a Key Distribution Centre built upon an 802.1X Authentication Server.
The KDC is used, together with a new host identification policy and mod-
ified DHCP servers, to provide proper resource allocation and message
authentication in DHCP transactions. Finally, the KDC is used to authen-
ticate ARP transactions and to distribute session keys to pairs of LAN
hosts, allowing them to set up other peer-to-peer secure interactions using
such session keys. The new, authenticated DHCP and ARP protocols are
fully backward compatible with the original protocols; all security-related
data is appended to standard protocol messages.

1 Introduction

In the last decade a major effort as been made, and is still being made, to pro-
vide basic security mechanisms to communication networks. However, we still
lack a basic security architecture for dealing with security issues in Local Area
Networks (LANs). A LAN is not usually considered a dangerous computing
environment; instead it is regarded as a trusted network environment. There-
fore, all management and configuration activities occurring between hosts in a
LAN are not protected at all. The result is that the management of LANs is
highly sensitive to several local attacks using eavesdropping and origin spoofing
techniques.

Spoofing attacks launched locally in a LAN usually require a direct connection
of the attacker to the LAN. In other words, require an inside attacker. Inside
attackers can be prevented to a certain level by physical barriers, ensuring that
only trustworthy people are connected to the same LAN. But computers in a
LAN can be compromised by cyberplagues, therefore trusting only on people for
building up the confidence in the correct exploitation of a LAN is a dangerous
assumption to take.

Furthermore, LANs are not shared only by trustworthy people, or even by
people that know each other. For instance, cabled LANs used as distribution
networks for Wireless LANs (WLANs) deployed in hot spots are used by com-
munities of users that only have in common an authorization for accessing the
network. Such LANs cannot be regarded at all as trusted network environments
by the people using them.

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 311–326, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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1.1 Contribution

In this paper we propose a security architecture for cabled LANs capable of
providing a flexible set of security attributes for local communications within the
LAN. Each and every LAN host can choose a set of mandatory security attributes
for interacting with other local hosts. We will call to such hosts Secure LAN
hosts (or SLAN hosts for short). Each SLAN host can decide on its particular
protection policy and SLAN peers should negotiate pairwise agreements ensuring
the most secure set of common security requirements.

The SLAN architecture does not impose a single protection model for all hosts.
Instead, it provides a basic service for local, authenticated secret key distribu-
tion. This service is then used to build a flexible set of secure communication
mechanisms within the LAN. Namely, each host uses the keys distributed to
enforce a set of security requirements towards other SLAN hosts. SLAN hosts
can even use differentiated policies for dealing with different LAN interactions.

The SLAN architecture provides protection mechanisms for LANs indepen-
dently of the hardware used for connecting LAN hosts. Namely, it allows hosts
to get local privacy even when using hubs and origin authentication even when
not using switching devices with port filtering capabilities. This fact simplifies
the deployment of secure LANs without requiring sophisticated hardware; all
that is required from the network hardware is a basic support of the 802.1X
authentication framework [1], in order to authenticate SLAN hosts or users.

In the design of the SLAN architecture we tried to make it as transparent
as possible for the users of LAN hosts. Consequently, we designed a Key Dis-
tribution Centre (KDC) extending the 802.1X authentication and authorization
service [1], which is being deployed in many WLANs but can also be used in
cabled LAN scenarios. Keys distributed by the KDC are provided to hosts in
specific, critical interactions, namely DHCP and ARP configurations [2,3].

A prototype was implemented on Linux hosts, for testing the KDC and the
new, secure ARP. The prototype also uses session keys distributed along secure
ARPs to set up IPSec Security Associations between pairs of hosts. But, for lack
of space, the prototype will not be described.

To avoid confusions, in this paper we will use the term MAC as an acronym of
Message Authentication Code and L2 address instead of MAC (Medium Access
Control) address. We will also use the expression [D] & MAC(K) to denote the
set formed by the datum D and its MAC computed with key K.

The paper is structured as follows. Section 2 overviews security threats in
cabled LANs. Section 3 presents the SLAN architecture. Section 4 evaluates the
security of SLAN. Section 5 describes related work and compares it with SLAN.
Finally, Section 6 presents the conclusions and the future work.

2 Security Threats in Cabled LANs

LANs provide an illusion of security because users typically disregard the prob-
ability of inside attacks. In this section we will provide a few examples on how
insecure LANs can be, in order to motivate our work.
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Layer 1 Insecurity. This type of security breach is related with physical access
to the networking infrastructure. If not protected, attackers can get access to it
and, in most cases, perform eavesdropping and compromise network availability
and performance. The difficulty of tapping depends on the technology used: it’s
straightforward in WLANs, easy in cabled LANs using copper cables, and hard,
or impossible, in cabled LANs with fibber optics.

Because users need to have access to network resources, layer 1 security based
on physical protection is very difficult to implement. Network administrators
usually put network infrastructure devices inside closed racks but this only pro-
tects those devices from direct manipulation. Network plugs are still distributed
along working areas, so anyone can plug in and access the network.

In this scenario, it seems that the use of IEEE 802.1X specification could be
the solution [1] to limit the access to the network infrastructure only to autho-
rized users. Even if a user gets access to the medium through a network plug, he
must still provide valid credentials to have access to the remaining network. But
once a user gets connected, he gets access to all the information that “passes
by” his network plug. If the network has a broadcast nature, then information
generated by one user can be ”viewed” by all other users. Typically, network
administrators resolve this issue using layer 2 or layer 3 switching devices. This
solution, however, has some flaws as described below.

Layer 2 Insecurity. Layer 2 security issues are mainly related with addressing
and switching. ARP [3] is the only protocol responsible for providing layer 3-to-
layer 2 address mappings. Since no message authentication is provided, ARP is
vulnerable to spoofing, modifying and replaying attacks. Through the manipu-
lation of ARP Request and Reply packets, it’s possible to corrupt ARP cache
tables of remote devices; this attack is called ARP cache poisoning. Using this
vulnerability, an attacker can execute Denial-of-Service (DoS) and Man-in-the-
Middle (MitM) attacks. GrabitAll1 is a publicly available tool that can perform
such attacks.

Several solutions for this problem have been devised, namely:

– Static ARP entries in the ARP cache table, disabling ARP transactions.
This approach is only suitable on small, very stable networks, but these are
exactly the ones where ARP spoofing is not a major concern.

– Port security features on switching devices, preventing the L2 address asso-
ciated with a port to change once set. This approach requires sophisticated
hardware support and management policies for releasing mappings between
access ports and L2 addresses.

– Detection techniques alerting when different L2 addresses are detected for
the same layer 3 address. But since ARP Replies are unicast messages, these
tools fail to detect ARP poisoning initiatives in switched networks.

– Cryptographically protected ARP transactions. Crypto-Ethernet NIC [4],
SLL [5], S-ARP [6], Secure ARP [7] and TARP [8] are cryptographic solutions
that will be discussed in Section 5.

1 http://ntsecurity.nu/toolbox/grabitall
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The other layer 2 security issue is switching. Network administrators typi-
cally replace hubs with switches to restrict frames forwarding only to the re-
quired network segments, and not all. This means that other network seg-
ments will not see this traffic, hence eavesdropping is impossible. However,
switches can be mislead by attackers sending frames with spoofed L2 addresses,
allowing them to get frames targeted to the spoofed host. In this scenario
an attacker can execute a DoS or a MitM attack against a specific victim.
GrabitAll, a publicly available tool previously referred, can perform such
attacks.

Another way of eavesdropping on a switched network is by “converting” a
switch on a hub by interfering with cache tables of source L2 addresses. Ether-
flood2 is one of many publicly available tools that perform this kind of attack.
In environments with multiple switches, eavesdropping or DoS attacks can also
be launched by using spanning-tree protocol manipulation [9].

Both addressing and switching vulnerabilities can be minimized through the
use of Virtual LANs (VLANs). VLANs permit a physical network to be divided
into a set of smaller logical networks, making communication between LANs only
possible through the use of a router. Because the attack techniques described
before are only possible in layer 1 and 2 switching environments, by using VLANs
network administrators reduce the scope of attacks. VLANs, however, suffer the
“VLAN hopping” security issue [9].

Layer 3 Insecurity. One major security issue of layer 3 concerns routing. Be-
cause routers, by default, don’t authenticate routing updates, an attacker can
send bogus routing packets and impersonate himself as a router, and perform
DoS or MitM attacks. Of course, one can use static routing instead of dynamic,
but that just doesn’t scale well. So the solution resides on configuring authentica-
tion on routing protocols. The problem with this is that not all routing protocols
support authentication, for example RIPv1 [10] and IGRP.

Dynamic routing on a LAN, using ICMP Redirect datagrams [11], does not
also provide any form of authentication. Attackers can configure default gateways
of local LAN hosts using false ICMP Redirect packets, spoofing both IP and L2
addresses of the real gateway. The redirection can serve different purposes, such
as DoS (redirection into a black hole) or MitM attacks. Note that this is a very
convenient way to get access to all the traffic sent by a victim on a switched
LAN. Hosts can be configured to reject all ICMP Redirect packets, but that
reduces the flexibility in the management of LAN routes.

The most accepted solution to mitigate layer 3 vulnerabilities is IPSec [12].
IPSec can provide authentication, integrity, confidentiality and anti-replay ser-
vices, both for IPv4 and IPv6, in two different modes: transport and tun-
nel. However, IPSec is not easy to manage and its key distribution protocol
— IKE [13] — requires some sort of secrets bound to hosts. This fact com-
plicates the deployment of IPSec protection upon a user authentication
protocol.

2 http://ntsecurity.nu/toolbox/etherflood
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3 SLAN Architecture

The previous section showed that protecting the traffic on a LAN is much more
than just protecting a single communication layer or a single protocol. In fact, we
need to protect each and every interaction capable of being spoofed or tampered
by a local attacker. Thus, protecting interactions in a LAN requires an integrated
security architecture, rather than a set of independent, non-cooperative security
solutions, one for each protocol used in a LAN. The security architecture must
provide a minimum set of services capable of authenticating users accessing the
LAN and authenticating basic host configuration activities. Finally, the security
architecture should also provide the basic means for protecting, in many different,
configurable ways, all the remaining interactions within a LAN.

Looking at the usual behavior of hosts in LAN, they follow the next sequence
of steps:

– Get connected to the LAN and eventually authenticated. Authentication is
usually skipped in cabled networks, being more frequent in wireless networks.

– Run a DHCP transaction in order to get a set of network configuration pa-
rameters. The most relevant parameters are the IP address of the DHCP
client and the network mask; other important parameters are the IP ad-
dresses of the default gateway and of the local DNS server.

– When using IP for the network protocol, run ARP transactions for getting
proper mappings between IP and L2 addresses within the LAN.

– Communicate using the parameters obtained with DHCP and the IP-L2
mappings in ARP cache tables.

Thus, for protecting a LAN we need to protect each of these separate actions.
This means that the SLAN architecture should (i) enforce the authentication of
hosts (users) that get connected to the LAN (ii) enforce the correct configuration
of hosts using DHCP, ensuring that they get the proper configuration parameters
to operate in the LAN, (iii) enforce the correct population of hosts’ ARP cache
tables and (iv) provide hosts with session keys and mechanisms for protecting
other local, peer-to-peer (P2P) interactions.

3.1 Overview

The services provided by the SLAN security architecture are the following:

1. Protected DHCP. This implies the authentication of all replies provided by
a genuine DHCP server and the detection of replays of past replies.

2. Protected ARP. This implies the authentication of ARP Request and Replies,
namely the authentication of the IP-L2 mappings provided, and the detection
of past request/replies.

3. Protection of other network protocols between any pair of hosts in the LAN.
In this case we don’t know anything about the protocols that are going to
be used. Therefore, what as to be done is to provide peers with key material
suitable for enforcing the origin of the data and/or its confidentiality using
ad-hoc security mechanisms.
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All this services are supported by secret, shared session keys between inter-
acting hosts. Session keys are associated with pairs of SLAN hosts. For the first
service, the DHCP client must share a session key with a genuine DHCP server;
the key should allow both DHCP client and server to authenticate data in DHCP
messages. The key should also allow them to detect and reject replays of old,
authenticated DHCP messages. For the second service, the ARP requester must
share a session key with the ARP responder; the key should allow the ARP re-
quester to validate the data in the ARP Reply and, most important, the legality
of the IP-L2 mapping provided. The key should also allow the ARP requester
to detect and reject replays of old, authenticated ARP Replies. For the third
service, each host must share a session key with the peer it is communicating
to; the key should allow both peers to protect packets exchanged between them,
providing origin and data authentication and/or data confidentiality. The key
should also allow receivers to detect and reject replays of previous packets.

For distributing all these session keys, the SLAN architecture has a local
KDC. The KDC provides session keys to authenticated hosts whiling to interact
with other specific hosts. Hosts authenticate themselves against the KDC us-
ing a shared, short-term secret key. For distributing session keys among pairs of
SLAN hosts we chose to integrate it with the existing DHCP and ARP protocols
messages. However, the SLAN versions of DHCP and ARP are fully backward
compatible: they use the same standard protocol messages, but these are ex-
tended to include extra security-related data. Hosts not SLAN-enabled do not
use this extra data but can still get the usual data from the standard DHCP and
ARP message fields. SLAN-enabled hosts, on the contrary, should require secure
DHCP and ARP interactions, but can still interact with non-SLAN enabled
hosts if allowed by security policies.

3.2 Key Distribution Centre (KDC)

The KDC must share a secret with each SLAN-enabled local host. A possible
solution was to force hosts and KDC to share a password, like in Kerberos [14].
However, we chose a more flexible approach, building up the KDC on top of an
802.1X authentication framework [1].

The 802.1X authentication framework was designed to provide authentica-
tion, authorization and key distribution services for cabled or wireless LANs. In
the 802.1X terminology, hosts are called Supplicants. When a Supplicant first
accesses the LAN, it gets connected to an uncontrolled port, which lets it inter-
act only with an Authentication Server (AS) through an Authenticator. After a
successful EAP-based authentication protocol [15] between the Supplicant and
the AS, both the Supplicant and the Authenticator end up with a shared, secret
key generated and distributed by the AS — the Pairwise Master Key, PMK.
When the Supplicant gets the PMK, it runs the four-way handshake with the
Authenticator and, finally, gets connected to a controlled port, with full access
to the network resources allowed by the Authenticator.

In the SLAN architecture, the KDC is build upon an 802.1X AS (see Fig. 1).
The SLAN client first runs an 802.1X authentication protocol with the AS/KDC
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Fig. 1. Relationship between the 802.1X authentication framework and the SLAN
KDC. The KDC is build upon the AS and stores mappings between resulting PMK
keys and the corresponding users and hosts. The triplets 〈username,PMK, NID〉 are
computed both by the KDC and the authenticated Supplicant.

and both end up with a PMK after a successful authentication of the former; the
four way-handshake with the Authenticator is irrelevant for our architecture. A
PMK will then be the authentication secret shared between the KDC and an
authenticated SLAN host, and gets associated to some identification of the user
— username, X.500 Distinguished Name, e-mail address, etc. — that ran the
802.1X authentication protocol (see next section).

SLAN administrators are free to choose the best EAP-based authentica-
tion protocols for 802.1X authentication; that is completely transparent for
the SLAN key distribution. However, the SLAN trust model requires confi-
dence on the KDC, therefore all EAP-based authentication protocols ran within
the 802.1X must require mutual authentication, to properly authenticate the
AS/KDC.

3.3 Network Identification

Before describing how key distribution happens, we will first describe how hosts
are identified within a SLAN. This is a critical issue for distributing the right
keys to the right hosts and users.

As we already saw, L2 addresses can be manipulated at will. This means
that it is possible to have two hosts with equal L2 addresses in the same LAN
without being able to decide which one is legitimate, if any. Therefore, we need to
have some mechanism for distinguishing SLAN hosts using equal L2 addresses.
Simultaneously, this mechanism should preserve network privacy, thus usernames
are not acceptable for identifying users in SLAN-related packets.

We decided to use a dynamic, collision free numerical identification tag for
authenticated hosts. This tag, hereafter referred by Network ID (NID), is the
digest of two values: the username and the PMK of the (authenticated) user that
is using the host:

NIDhost = digest (username,PMKusername,host)
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Peers Main message contents MAC key
1 h1 → KDC NID1, NID2, Options

PMK1
2 h1 ← KDC {SK1,2}PMK1

, KeyProp1→2, NID2 info
3 h2 ← h1 another message , KeyProp1→2 SK1,2

KeyProp1→2 ≡ {NID1, NID2, SK1,2,Options}PMK2

Fig. 2. Basic protocol for distributing a session key SK1,2, provided by the KDC, from
host h1 to host h2; PMK1 and PMK2 are the secret keys shared between the KDC
and the users using hosts h1 and h2, respectively; NID1 and NID2 represent the NID
of hosts h1 and h2, respectively

The term username means some form of user identification used in the 802.1X
authentication process. The KDC gets 〈username, PMK〉 pairs from the 802.1X
AS, computes a NID from them and keeps a table of 〈username, PMK,NID〉
triplets. Authenticated hosts can compute by themselves the NID after getting
the PMK (see Fig. 1).

Hereafter, we will simply use the expression NIDi for referring the NID of the
host hi and the expression PMKi for referring the PMK of the user using host
hi. Naturally, there is a direct correspondence between NIDi and PMKi values
for each authenticated user in the SLAN.

3.4 KDC Key Distribution

Session keys distributed by the KDC are associated to pairs of NID values: a
NID identifies a session key requester and the peer that will share that key.
However, since on a SLAN we need to manage correct mappings between IP and
L2 addresses, key distribution will also consider such mapping.

The KDC key distribution paradigm closely follows Kerberos: an authenti-
cated host sends a Key Request message for requiring a session key to interact
with other (authenticated) host; and the KDC replies with a Key Reply mes-
sage, containing a new, random session key encrypted with the PMK of both
peers (messages 1 and 2 in Fig. 2). The data block containing the session key
and encrypted with the peer PMK is similar to a Kerberos ticket; we will call
it a key propagator. The requester is responsible for sending the received key
propagator to the peer. Such interaction will not happen isolated, but instead
by piggybacking key propagators in other messages (see message 3 in Fig. 2 and
messages 4 in Figs. 3 and 4).

Besides a session key, the key propagator includes the NID of the peers asso-
ciated to the enclosed session key and an Options field. This field is intended
to disseminate, in an authenticated way, relevant characteristics of the host re-
questing the key propagator. These characteristics may a priori be known by
KDC or may be proposed by the requester. Examples of possible uses are (i)
the IP and L2 addresses or (ii) relevant administration capabilities (e.g., DHCP
server, IP gateway, etc.) of the requester. The value of the Options also depends
on the value of the Options field in the KDC Key Request.
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The session key requester may also get, from the KDC, some relevant informa-
tion about the other host that is going to share the session key. This information
is provided in the NID info field of the KDC reply, authenticated by the mes-
sage MAC.

Unlike Kerberos tickets, our key propagators do not have timestamps nor a
lifetime. The reason for not having them is that it is highly unlikely to someone
be able to reuse a key propagator some other time, because it depends on a
short-term, temporary key — the PMK currently held by the target host —
while, in Kerberos, tickets are always encrypted using long-term keys, shared
between Kerberos and principals.

A KDC is free to choose and use a caching policy for the provided session
keys. Each time a host requests a new session key for interacting with another
host, the KDC generates a new session key or provides a previous one, if still in
the cache. This cache is not critical for the system to work, but it can improve
its efficiency and resilience to DoS attacks.

Hosts are free to cache session keys, indexed by peers’ NID, for the time
they may consider more appropriate, and may require new session keys at any
time. But the lifetime of session keys is closely tied to the lifetime of PMK keys,
since the renewal of a host PMK implies the renewal of the corresponding NID.
This means that a cached session key becomes automatically stale whenever the
corresponding PMK expires.

3.5 Authenticated DHCP

The first step of a host that gets connect to a LAN, after an 802.1X authentica-
tion process, is to get properly configured for using the LAN — get its IP address
and local network mask, the default gateway, the local DNS domain suffix and
server, etc. Such parameters are usually provided by DHCP servers.

As stated before, we want DHCP messages to be authenticated for SLAN
hosts. Therefore, we need to negotiate session keys between DHCP servers and
authenticated DHCP clients. Furthermore, SLAN DHCP clients need to know if
they are interacting with the correct DHCP server, and not just with some bo-
gus DHCP server. One possibility was to integrate DHCP services in the KDC,
which could facilitate the use of the hosts’ PMKs to authenticate DHCP inter-
actions. However, we considered this a very limitative approach, so we designed
an authenticated DHCP where KDC and DHCP can easily be implemented by
different hosts. The only requirement is that the KDC knows which hosts are
DHCP servers and shares a PMK with each of them.

The authenticated DHCP is presented in Fig. 3 and runs like this:

1. The client broadcasts a DHCP Discover with its NID.
2. A server uses its NID and the client NID to send a Key Request to the KDC.
3. The KDC returns the client username, a session key and a key propagator

for the DHCP client.
4. The server uses the username for getting an IP address and sends to the

client an authenticated DHCP Offer with the key propagator.
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Peers Main message contents MAC key
1 h → DS DHCP Discover , NIDh —

2 DS → KDC NIDDS, NIDh

PMKDS3 DS ← KDC {SKDS,h}PMKDS
,KeyPropDS→h(Options = DHCP),

NIDh info = username

4 h ← DS DHCP Offer ,KeyPropDS→h(Options = DHCP)
SKDS,h5 h → DS DHCP Request ,[IPh, L2h] &MAC(PMKh)

6 h ← DS DHCP Acknowledge ,IPL2Proph

IPL2Proph ≡ [[IPh, L2h] &MAC(PMKh)]& MAC(PMKDS)

Fig. 3. Authenticated DHCP. All DHCP messages, except the Discover, are authen-
ticated with a MAC computed with a session key (SKDS,h) requested by the DHCP
server (DS) and propagated to the client in the DHCP Offer. The Options field in
the key propagator states that it was requested by a DHCP server. IPL2Proph, IP-L2
propagator, is an authenticated IP-L2 address mapping build together by the DHCP
client and server; IPh and L2h represent the IP and L2 addresses of the DHCP client,
respectively.

5. The client sends an authenticated DHCP Request with an extra, authenti-
cated IP-L2 address mapping.

6. The server sends an authenticated DHCP Acknowledge with IPL2Prop —
IP-L2 propagator, a secure token with the client’s IP-L2 address mapping.

The messages in the authenticated DHCP extend the usual protocol messages,
being backward compatible. The extensions can be implemented in two different
ways: using the DHCP authentication option [16] or appending the extra data
to layer 2 packets.

This protocol uses a radically different approach for identifying DHCP clients.
In fact, typical DHCP negotiations deal with the configuration of nodes given
their L2 addresses. However, this simple approach is not advised, because at-
tackers could get control of IP addresses pre-allocated for specific L2 addresses
belonging to specific hosts. Thus, DHCP resource allocation must evolve and the
Discover message should include some sort of mapping to usernames to manage
pre-allocated IPs, instead of using simply L2 addresses. We used a NID for re-
ferring to a username — the same that is used to compute it and is stored by
the KDC. Given the client NID, its username is provided to the DHCP server
in the NIDh info field of the KDC reply. For network privacy, usernames may
be transmitted to DHCP servers encrypted with their PMK.

The session key for authenticating the DHCP transaction is requested by the
DHCP server, because the DHCP client does not know at the beginning the
NID of the DHCP server. The key propagator is sent to the DHCP client in first
occasion, i.e., within the DHCP Offer. The Options field in the key propagator
stands that it was requested by an authorized DHCP server. This way, the client
can be sure that the offer was produced by a correct DHCP server, and not just
by any other authenticated host. All messages, excluding the DHCP Discover,
are authenticated using a MAC computed with the session key.
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The last two messages of the DHCP protocol include, besides the MAC for
authentication, two extra values that will be used as an IP-L2 mapping com-
mitment. The client appends an extra version of the mapping, authenticated
with its PMK, to the DHCP Request ; the server further authenticates it with
its PMK. The final value, returned to the client, is the IP-L2 propagator.

IP-L2 propagators can be fully validated only by the KDC, allowing it to
easily learn current mappings between IP and L2 addresses. This will be useful
for authenticating ARP Requests and Replies (see next section).

3.6 Authenticated ARP

The ARP is the base mechanism to learn mappings between IP and L2 ad-
dresses in a LAN. Hosts keep an ARP cache table with such mappings, which
are frequently refreshed to ensure accuracy. ARP caches can also be feed with
information gathered from other packets.

One of our goals was to assure the correctness of ARP cache tables. There-
fore, ARP caches are populated exclusively with (i) information provided by au-
thenticated ARP Replies or (ii) information gathered for building ARP Replies.
Furthermore, during an authenticated ARP run, both hosts should agree on a
protection policy concerning their own P2P interaction. Namely, they should
say to each other if they want to receive authenticated messages and/or if their
interaction should be encrypted. The keys used for securing the P2P interaction
should be derived from the session keys distributed along ARP protocol runs.

Therefore, in our SLAN architecture, ARP caches keep five values, instead of
pairs of IP and L2 addresses. The quintets are formed by: the peer NID, IP and
L2 addresses, the shared session key and the protection policy. The session key is
used to protect, according to the protection policy, the communication between
the local host and the peer referred by the cache entry.

The authenticated ARP is presented in Fig. 4 and runs like this:

1. h1 broadcasts an ARP Request with its NID, IP-L2 propagator and intended
P2P protection policy.

2. The correct responder h2 uses its NID and the requester’s NID to get a new
session key from the KDC. We assume that SLAN hosts use a well-known
L2 address or a well-known IP-L2 mapping for the KDC. Both values can
be provided to SLAN hosts in many ways, namely within extensions of the
EAP authentication protocol or by DHCP servers.

3. The KDC returns a session key, a key propagator and the (validated) IP-L2
address mapping of the ARP requester.

4. The responder sends an authenticated ARP Reply with the key propagator
— providing the P2P session key and assuring the correct IP-L2 mapping of
the responder — and the final P2P protection policy.

The Options field of the session key request contains the IP-L2 propagators
held by h2 and h1. If both are valid, then the KDC will include the IP-L2
address pair of h2 in the Options field of the provided key propagator and the
IP-L2 address pair of h1 in the NID1 info field of its reply.
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Peers Main message contents MAC key
1 h1 → h2 ARP Request (looking for h2),NID1, IPL2Prop1,P2P Options —

2 h2 → KDC NID2, NID1,Options = 〈IPL2Prop2, IPL2Prop1〉,
PMK23 h2 ← KDC {SK2,1}PMK2

,KeyProp2→1(Options = 〈IP2, L22〉),
NID1 info = 〈IP1, L21〉

4 h1 ← h2 ARP Reply ,KeyProp2→1(Options = 〈IP2, L22〉),P2P Options SK2,1

Fig. 4. Authenticated ARP. The IP-L2 mapping in the ARP Request is validated by
the KDC. The ARP Reply is authenticated with a session key (SK2,1) requested by
the responder and included in the key propagator. The P2P Options field allows peers
to exchange security requirements for protecting their future interaction, using SK2,1

after the execution of the ARP.

At the end of this protocol both h1 and h2 have complete and trustworthy
quintets in SLAN ARP caches:

h1: NID2, IP2, L22 and SK2,1 are provided and authenticated by the key prop-
agator; the P2P protection policy is authenticated by the MAC.

h2: the correct mapping between NID1, IP1, L21 and SK2,1 is provided by the
KDC reply; the P2P protection policy is the one sent in the ARP Reply.

If the KDC keeps a cache of past session keys provided to pairs of hosts,
then both hosts may get the same session key on future authenticated ARP
transactions, independently of the requester. But if they get a different key, all
they have to do is to adjust accordingly the P2P protection mechanisms already
being used between them, if any.

3.7 Authenticated and Encrypted Interactions Within a LAN

After an ARP protocol run, both interacting hosts on the SLAN share a session
key. This session key can then be used to add security attributes to the traffic
between both hosts. Namely, the session key can be used to encrypt data and to
compute MACs for integrity control. But such traffic protection can be enforced
in some different ways.

One possibility is to apply security mechanisms at the link layer for protecting
each packet. Another possibility is to use those session keys to setup a pair of
IPSec Security Associations (SAs) between both hosts, one for each communi-
cation direction. This is a natural approach, because the session key is obtained
after an ARP, which means that both hosts will interact using IP. The IPSec
SAs can be set up in two different ways:

1. After setting up a pair of IKE SAs using the IKE protocol and the session
key as an IKE pre-shared secret. This allows the hosts to use IPSec security
policies for protecting IP traffic without bothering with the management and
the configuration of IKE authentication.

2. Directly and off-line by both peers, using only the session key and the set of
security policies agreed on the ARP protocol run. This approach does not
require any configuration of IPSec policies but may require a richer dialog
at the ARP level to support many different protection policies.
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Using IPSec has the advantage of using a mature technology for protecting IP
traffic, while using the novel key distribution protocol to deal with the authenti-
cated set up of SAs. On the other hand, IPSec is a complex and heavy protocol,
and in some operational scenarios it may be too overwhelming to deal with the
security risks on a LAN.

3.8 SLAN Novel Security Policies

The SLAN security architecture requires new security policies that break with
several traditions in common LAN environments.

The first security policy is that hosts are not free to choose their IP address;
they should get it from a DHCP server. Otherwise, they cannot get a proper IP-
L2 propagator required for running an authenticated ARP transaction. But this
lost of freedom is a natural consequence: for certifying IP-L2 address mappings,
the SLAN architecture cannot allow free, ad-hoc mappings defined only by hosts.
Server hosts belonging to a SLAN, such as DHCP servers, must run some sort
of bootstrap code to get a PMK shared with the KDC.

The second security policy is that DHCP resource reservation moves from
L2 address-based into username-based, which is a new identification paradigm
within DHCP.

Finally, the third security policy is that the lifetime of PMKs stored in the
KDC defines the lifetime of all local credentials — key propagators and IP-
L2 propagators — as well as the access to the network through the 802.1X
Authenticator. This is very important for simplifying network management, but
need to be properly integrated with DHCP. Namely, the lifetime of DHCP leases
should be coordinated with the lifetime of hosts’ PMKs stored in the KDC and
in the 802.1X Authenticator.

4 Security Evaluation

We will now evaluate the security of SLAN taking in consideration the threats
presented in Section 2.

L2 Address Stealing. In a SLAN, L2 address stealing no longer helps at-
tackers to get other people’s resources from DHCP servers, because these should
implement an alternative, username-based resource allocation. However, resource
allocation in network switches is still an issue. In fact, switch’s cache tables may
implement learning mechanisms restricting an L2 address to a single port. In
this case, an attacker, possibly an authenticated host, can jam network switches
and implement DoS attacks on specific hosts by using a copy of their L2 address.

DHCP Impersonation. SLAN DHCP servers must authenticate their Offer
and Acknowledge replies using a session key that is shared with the DHCP client.
This key is provided by a key propagator which can only be generated by the
KDC, and includes a flag stating that the peer is an authorized DHCP server.
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Key propagators are sent to clients inside authenticated messages, such as
a DHCP Offer, and their authentication is assured by a MAC computed with
the key hidden inside the key propagator. Since the key propagator is encrypted
with the client’s PMK, an attacker would have to know this key to forge a key
propagator and the DHCP Offer message where it is used. Therefore, though
attackers can forge dummy key propagators, they cannot make good use of them
to impersonate DHCP servers in sending a DHCP Offer message.

After getting a valid DHCP Offer, the client has a session key shared with the
DHCP server, allowing them to authenticate the subsequent Request and Ac-
knowledge messages. Since attackers cannot guess this key, they cannot usefully
forge this final part of the DHCP protocol.

Concerning message replies, they can be detected by using the XID field of
DHCP messages [2] and the authentication of them all but the Discover message.

ARP Poisoning Attacks. SLAN clients build their ARP tables solely from
IP-L2 propagators, and not from the ordinary ARP reply fields. Thus, ARP poi-
soning attacks can only be conducted by using forged or replayed IP-L2 prop-
agators. In the following paragraphs we will show that they cannot be either
forged or replayed with useful results.

IP-L2 propagators are jointly build by SLAN hosts and authorized DHCP
servers, thus cannot be solely created by hosts. Furthermore, their authenticated
information is only useful (i.e., accepted by the KDC) if correctly authenticated
by both a host and a DHCP server. Therefore, DHCP servers fully control the
correctness of IP-L2 mappings in new IP-L2 propagators.

Authorized DHCP servers cannot be impersonated by attackers because they
share a PMK with the KDC, which is used to authenticate IP-L2 propagators.
Thus, only authorized DHCP servers can produce valid IP-L2 propagators.

IP-L2 propagators can be captured by attackers but cannot be used by them
in a useful way. The initial component provided by a host is authenticated with
its PMK, thus only attackers with an equal PMK could make good use of a
captured IP-L2 propagator. With long, random PMKs generated in each network
authentication, it is highly unlikely to get two equal PMKs, thus preventing the
reuse of captured IP-L2 propagators.

5 Related Work

Some solutions have been proposed to tackle layer 2 security problems. The scope
of the solution, for the great majority of proposals, resides in protecting only the
ARP protocol. In this section we will provide a brief comparison of SLAN with
the solutions that we considered more relevant.

The S-ARP [6] approach to authenticate DHCP transactions is somewhat
similar to the SLAN approach. However, SLAN uses secret, shared keys and
MACs, while S-ARP uses asymmetric keys, certificates and digital signatures,
which is a slower approach. Furthermore, S-LAN does not address the problem of
stolen L2 addresses. Thus, SLAN provides a more efficient and effective approach
for dealing with the secure allocation of network resources using DHCP.
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The TARP [8] approach, using tickets to distribute IP-L2 mappings, looks
similar to the SLAN approach, though being totally different. Tickets’ signed
mappings are valid for a specific time, and can not be revoked before, while
SLAN mappings, provided by IP-L2 propagators, are valid while PMKs are in
use. Therefore, SLAN provides a better solution for preventing the illegal use of
such mappings when no longer valid.

Both Crypto-Ethernet NIC and SLL [4,5] distribute session keys between
LAN hosts, like SLAN. But they use asymmetric cryptography, while SLAN
uses symmetric cryptography. Thus, SLAN should perform better, even when
considering the deployment of asymmetric algorithms in NICs’ hardware.

Secure ARP [7] uses, like SLAN, a central service with secret keys shared
with all the hosts in the LAN. However, Secure ARP uses a totally new service
for this, for managing long-term shared keys, while SLAN extends transparently
the 802.1X authentication paradigm for using short-term PMKs. Secure ARP
does not distribute session keys, while SLAN does. Finally, Secure ARP requires
clock synchronization.

None of the solutions referred above prevents unauthorized access to the LAN,
and consequently the injection of malicious messages. Furthermore, they keep
the usual DHCP policies for allocating resources, i.e., based on the L2 address
presented by clients. Also, their goal is to protect specific network transactions,
such as ARPs, and not to inter-operate with other protocols. Finally, they require
an initial phase where an administrator manually configures keys in each of the
LAN hosts.

With the SLAN architecture we follow a different approach, building up from
the 802.1X authentication architecture. Only authenticated and authorized hosts
access the network, authenticated hosts can get trustworthy DHCP configura-
tions and IP-L2 mappings, and ARP transactions distribute trustworthy IP-L2
mappings and P2P session keys that can be used by other protocol layers, such
as IPSec. The use of a novel DHCP policy for allocating IP-L2 mappings makes
the network more secure against DoS attacks using stolen L2 addresses. Finally,
we don’t require synchronized clocks.

6 Conclusions and Future Work

In this paper we presented a new security architecture for LAN environments,
either wired or wireless. The architecture is build on top of an 802.1X authen-
tication framework. Namely, a KDC is added to an 802.1X AS, allowing PMKs
distributed to authenticated hosts to be used for authentication and key distri-
bution in the LAN. Thus, the management overhead for configuring SLAN hosts
is minimal if starting from an 802.1X authentication scenario.

Authenticated hosts are identified by NIDs, instead of L2 or IP addresses,
and NIDs are computed from usernames and PMKs. Modified DHCP servers,
implementing novel resource allocation policies and authenticated DHCP inter-
actions, allow a correct configuration of SLAN hosts. An authenticated ARP
allows SLAN hosts to get trustworthy IP-L2 mappings and to distribute session
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keys among LAN peers. Those session keys can then be used by other network
protocols to implement other P2P security mechanisms.

A prototype implementation was developed for Linux systems, though not
presented here for lack of space. It demonstrated experimentally the suitabil-
ity of authenticated ARPs and subsequent IPSec configurations based on the
negotiated session keys.

There are many research topics for further improving SLAN. First, the defini-
tion of novel DHCP resource allocation policies for SLANs and their integration
with the lifetime of PMKs in the KDC. Second, the negotiation of P2P security
policies within ARPs. Third, the implementation of P2P security mechanisms,
namely at layer 2, instead of using IPSec. Forth, the study of several caching
strategies for session keys in the KDC and in SLAN hosts. And fifth, the design
of security mechanisms and policies for multicast/broadcast traffic on a SLAN.
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Abstract. The paper considers the software simulation tool DDoSSim which 
has been developed for comprehensive investigation of Internet DDoS attacks 
and defense mechanisms. This tool can be characterized by three main peculi-
arities: agent-oriented approach to simulation, packet-based imitation of net-
work security processes, and open library of different DDoS attacks and 
defense mechanisms. DDoSSim allows deeply investigating various attacks and 
defense methods and generating valuable recommendations on choosing the 
best defense. In the paper the agent-oriented approach suggested is considered. 
The taxonomy of input and output parameters for simulation is outlined. The 
main DDoSSim components are specified. One of the experiments on protec-
tion against DDoS attacks demonstrates some DDoSSim possibilities. We con-
sider different phases of defense operations – learning, decision making and 
protection, including adaptation to the actions of malefactors.  

Keywords: Security modeling and architecture, Security models for ambient 
intelligence environments, Infrastructure security, Security simulation, DDoS.  

1   Introduction  

The present theoretical investigations in information security of large-scale systems 
do not allow security experts to formalize adequately the antagonistic counteraction of 
network attacks and defense. Though the researchers can represent particular defense 
mechanisms, the understanding of security systems as holistic entities is a very diffi-
cult task. This understanding depends on many dynamical interactions between par-
ticular security processes and cyber-counteraction between antagonistic elements. It is 
especially right, taking into account the evolution of the Internet into decentralized 
distributed environment where a huge number of cooperating and antagonistic soft-
ware agents exist and interact.  

One of the very dangerous classes of malefactors’ attacks is DDoS [16]. Distrib-
uted, dynamical and cooperative character of such attacks complicates attack detec-
tion and protection. Realizing effective DDoS defense system is a very complicated 
problem. Effective defense includes the mechanisms of attack prevention, attack de-
tection, tracing the attack source and attack counteraction. Adequate protection can 
only be achieved by cooperation of different distributed components [17].  
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The main task of defense systems against DDoS is to accurately detect these at-
tacks, quickly respond to them [26] and recognize the legitimate traffic that shares 
the attack signature and deliver it reliably to the victim [17]. Traditional defense in-
clude detection and reaction mechanisms. Different network characteristics are used 
for detection of malicious actions (for example, source IP address [21], traffic vol-
ume [8], and packet content [19], etc.). To detect abnormal network characteristics, 
many methods can be applied (for instance, statistical [12], cumulative sum, pattern 
matching, etc). As a rule, the reaction mechanisms include filtering [20], congestion 
control [14] and traceback [11]. But, as a result of several reasons (detection of 
DDoS attack is most accurate close to the victim, separation of legitimate is most 
successful close to the sources, etc.), adequate victim protection to constrain attack 
traffic can only be achieved by cooperation of different distributed components [16, 
17]. There are a lot of architectures for distributed cooperative defense mechanisms 
[2, 4, 10, 17, 19, 26, 27, etc.]. For example, [2] proposes a model for an Active Se-
curity System, comprising components that actively cooperate in order to effec-
tively react to a wide range of attacks. COSSACK [19] forms a multicast group of 
defense nodes which are deployed at source and victim networks. The SOS [10] 
uses a combination of secure overlay tunneling, routing via consistent hashing, and 
filtering. A collaborative DDoS defense system proposed in [27] consists of routers 
which act as gateways. The distributed defense system described in [26] protects 
web applications from DDoS attacks. The DefCOM system [17] uses a peer-to-peer 
network of cooperative defense nodes.  

In our opinion, it is possible to answer soundly on the questions about defense 
against network attacks, including DDoS attacks, by modeling and simulation of pre-
sent and new attacks and defense mechanisms. It is very important to use adequate 
modeling and simulation approach and powerful simulation environment which give a 
researcher an opportunity to comprehensively investigate various modes of attack and 
defense operation, insert new methods, analyze efficiency of defense (for example, 
false positives, false negatives; percent of normal traffic filtration), etc.  

Our research goal is to suggest a common approach and simulation environment 
for investigation and elaboration of adequate defense methods against DDoS attacks 
which can produce well-grounded recommendations on the choice of defense mecha-
nisms that are the most efficient in particular conditions. The rest of the paper is struc-
tured as follows. Section 2 outlines the common approach for simulation. Section 3 
describes attack and defense mechanisms used. Section 4 presents the taxonomy of 
input and output parameters for simulation. Section 5 considers the software environ-
ment developed and analyses the issues of network topology selection. Section 7 
demonstrates the example of experiments provided. Conclusion outlines the main re-
sults and future work guidelines.  

2   Simulation Approach  

We try to use the agent-oriented approach to simulate security processes in the Inter-
net. It supposes that the cybernetic counteraction is represented as the interaction of 
different teams of software agents [6, 24, 25]. The aggregated system behavior be-
comes apparent by means of the local interactions of particular agents in dynamic 
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environment that is defined by the model of computer network. We distinguish at 
least two agent teams: the team of agents-malefactors and the defense team. The 
agents from the same team collaborate to realize the threat or to defense the network.  

It is assumed the competing agents gather information from different sources, 
operate with uncertain knowledge, forecast the intentions and actions of opponent, 
estimate the possible risks, try to deceive each other, and react on opponent’s ac-
tions. The choice of behavior for each team depends on the chosen goal of function-
ing and is defined dynamically depending on the opposite team actions and the 
environment state.  

The mechanisms of agent coordination are based on the three groups of proce-
dures [24, 25]: acts consistency maintenance; agents’ functionality monitoring and 
recovery; and communication selectivity support (to choose the most “useful” 
communication acts). The models of agent functioning are to foresee, what each 
agent knows, what task has to be solved and to which agent it must address its re-
quest to receive such information if it is outside of its competence. The messages of 
one agent are to be represented in such terms that are understandable by other 
agents.  

It is supposed that agents are to be able to realize the mechanisms of self-
adaptation. The team of agents-malefactors evolves with the aid of generation of new 
instances and types of attacks and attack scenarios to overcome the defense subsys-
tem. The team of defense agents adapts to the actions of malefactors by changing the 
security policy, forming new instances of defense and security profiles.  

The conceptual model of agents’ counteraction includes: (1) Ontology of applica-
tion domain containing application notions and relations between them; (2) protocols 
of teamwork (for team of malefactors and team of defense); (3) Models of individual, 
group and team behavior of agents; (4) Communication component for agent message 
exchange; (5) Models of environment – the computer network, including topological 
and functional components.  

It is proposed to use various models to research the processes of cybernetic coun-
teraction. The choice of specific models depends on the necessary simulation fidelity 
and scalability. For example, analytical models let imitate the global processes hap-
pening in Internet, but describe the processes only on an abstract level. Packet-level 
simulation gives the opportunities to imitate the proceeding processes with high fidel-
ity. They represent the network attack and defense actions as the exchange of packets. 
The greatest fidelity is archived with the hardware testbeds, but it succeeds in simulat-
ing the sufficiently limited fragments of agents’ interactions. The approach used in the 
paper is based on packet-level simulation with the use of tools for network processes 
imitation as basic level of simulation environment.  

3   Attacks and Defense Mechanisms  

DDoS attacks agents are divided into two classes: “daemon” and “master”. Daemons 
are attack executors. Master coordinates them. On the preliminary stage daemons and 
master are deployed on available (already compromised) hosts. The important pa-
rameters are the quantity and “distribution” of agents. Then the phase of team estab-
lishing takes place. Daemons send to master the messages with information that they 
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are alive and ready to work. Master stores the information about team members and 
their status. The malefactor sets the mutual team goal – to start the DDoS attack in the 
given moment of time. Master receives the attack parameters. Its goal is to send it to 
all available daemons. Then daemons begin to act. Their local goal is to execute the 
master instruction. They start to send the attack packets to the given host in the given 
mode. Master examines daemons periodically to know that they are workable. Master 
controls the given attack mode by receiving the replies from daemons. When a dae-
mon does not answer, master decides to change attack parameters. For example, it can 
send the commands to change the attack intensity to all or particular daemons. Dae-
mons can execute the attack in several modes. This influences on the possibility of de-
fense team to detect and block the attack and to trace and defeat the attack agents. The 
mode can be specified, for example, by the intensity of packet sending (packets per 
second) or (and) the method of IP address spoofing. The malefactor can stop the at-
tack giving to master the command “stop the attack”. Master resends this command to 
daemons, and they stop the attack. 

Defense agents are classified into the following classes: initial information proc-
essing (“sensor”); secondary information processing (“sampler”); attack detection 
(“detector”); filtering (“filter”); investigation (“investigator”).  

In the initial moment the defense agents are deployed on the hosts corresponding to 
their roles: sensor and sampler – on the way of traffic to the defended host; detector – 
on any host of defended host subnet; filter – in the entrance to the defended host sub-
net; investigator – on any host outside of defended host subnet.  

Sensor processes information of network packets and collects statistical traffic data 
for the defended host. Sensor can calculate the amount of traffic (bits per second – 
BPS) and determine the addresses of hosts that make the largest traffic. The functions 
of sensor can be fulfilled by sampler. Sampler processes the network packets and cre-
ates the model of normal functioning for the given network (in learning mode). Then 
in normal mode it analyses and compares the traffic with the model of normal traffic. 
It picks out the addresses of hosts that do not correspond to the model and sends them 
to detector. The examples of methods which can be realized by sampler are Hop 
counts Filtering (HCF) [9], Source IP address monitoring (SIPM) [22], Bit per Second 
(BPS), etc.  

The detector local goal is to make a decision about the beginning of attack on the 
basis of sensor or (and) sampler data. Detector sends the list of attack addresses re-
ceived from sensor or (and) sampler to filter and investigator.  The filter local goal is 
to filter the traffic on the basis of detector data. The investigator goal is to trace and 
defeat the attack agents. After receiving a message from detector it examines the ob-
tained IP addresses for the presence of attack agents and tries to defeat them.  

4   Taxonomy of Input and Output Parameters for Simulation  

We differentiate the input parameters which specify DDoS attack and defense mecha-
nisms for simulation.  

The scheme of DDoS attack parameters is based on the attack taxonomy sug-
gested in [15]. The following criteria were selected:  
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• Victim type. Application, host or network can be chosen. It is necessary to set vic-
tim IP address and port.  

• Attack type. Brute-force (UDP/ICMP flood, smurf/fraggle, etc.) or semantic (TCP 
SYN, incorrect packets, hard requests).  

• Impact on the victim. One can choose a disruptive attack (when all daemons attack 
simultaneously) or a degrading attack (when daemons join the attack one by one). 
It is easier to detect the attack in the first case.  

• Attack rate dynamics. It can be constant or variable when the intensity changes in 
time. The function of changing attack packet rate is given to daemons. The change 
can be increasing (daemons send more and more packets) or fluctuating.  

• Agents’ set permanency. The set of agents can be persistent (all daemons partici-
pate in attack) or variable. In last case master can divide all daemons to several 
groups and each of them attacks alternately.  

• Possibility of exposure. The attack can be discovered when it is possible to distin-
guish the attack packets. We distinguish non-filterable and filterable attacks. In 
non-filterable attack, the attack packets are formed to be indistinguishable from 
legitimate. In filterable attack, the attack packets can be discovered by field val-
ues, size, exploited protocol, etc.  

• Source addresses validity. Attacker can use the valid (real) or spoofed source ad-
dress sending the attack packets. This address can be routable or non-routable. 
The method of spoofing may be as follows: (1) Without spoofing (“no”) – the real 
address of host (where daemon is deployed) is used; (2) “Constant” – an address 
is randomly chosen, then it is used for sending the attack packets; (3) “Random” – 
with every new attack packet a new address from the given range of addresses is 
randomly chosen. This range does not intersect with the range of addresses used 
in the given network; (4) “Random real” – with every new attack packet a new 
address from the given range of addresses is randomly chosen. This range is in the 
range of addresses used in the given network.  

• Degree of automation. Attack can proceed automatically after setting the parame-
ters or by the malefactor control. In such a case he (she) can interfere and change 
one of parameters on all phases of attack. The communication mechanisms be-
tween daemons and master can be direct (master knows the addresses of all dae-
mons) or indirect (agents communicate via a server).  

The scheme of DDoS defense parameters is built on the basis of classification 
proposed by authors. The criteria selected are as follows:  

• Deployment location: source, intermediate or defended subnets.  
• Mechanism of cooperation. The mechanism of particular components operation 

can be centralized or decentralized. In the last case the defense components are 
autonomous and can combine their efforts.  

• Covered defense stages. The stages (mechanisms) the defense method can imple-
ment are as follows: (1) attack prevention; (2) attack detection; (3) attack source 
detection; (4) attack counteraction.  

• Attack detection technique. There are two types of detection: misuse and anomaly. 
One chooses one particular detection method or the set of methods.  
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• Attack source detection technique. Attack source detection (or “traceback”) can 
be realized by packet signatures, packet marking, generation of auxiliary pack-
ets, etc.  

• Attack prevention/counteraction technique. One can use filtering (of packets or 
flows), resource management (differentiation, change of quantity, roaming) and 
authentication.  

• Technique for model data gathering. Data can be generated by learning or be ob-
tained from external sources.  

• Determination of deviation from model data. One can use thresholds, rules (for 
packets and connections), determining fluctuation in probabilistic traffic parame-
ters, and data mining (depending on the kind of defense mechanism).  

The output parameters used to estimate the defense mechanisms are as follows: 
List of detectable attacks; Time of attack detection (from the start of attack); Time of 
attack reaction (time from detection to counteraction); Percent of false positives; Per-
cent of false negatives; Percent of normal traffic filtration; Computational complexity 
(quantity of computational resources used), etc.  

5   Simulation Environment  

The simulation environment DDoSSim architecture consists of the following compo-
nents (figure 1): OMNeT++ Framework, INET Framework, Multi-agent & DDoS 
Framework.  

Multi-agent simulation is implemented in Multi-agent Framework that uses the li-
brary of DDoS attack and defense mechanisms called DoS Framework. INET Frame-
work is used to simulate the IP nodes. It is an OMNeT++ model itself.  

OMNeT++ Framework [18] is a discrete event simulator. Simulation models are 
composed of hierarchically nested modules that interact due to message passing 
(figure 1, OMNeT++ Framework: simulation model and component library). INET 
Framework and Multi-agent DDoS Framework are the OMNeT++ models. The ex-
change of messages between modules happens due to channels (modules are con-
nected with them by the gates) or directly by gates. A gate can be incoming or outgo-
ing to receive or to send messages accordingly. Channel has the following properties: 
propagation delay, bit error rate and transmission data rate.  

OMNeT++ INET Framework is the OMNeT++ modular simulation suite with a 
realistic simulation of the Internet nodes and protocols. The highest IP simulation ab-
straction level is the network itself, consists of IP nodes. IP node can represent router 
or host. IP node in INET Framework corresponds to the computer representation of 
Internet Protocol (figure 1, INET Framework). The modules of IP node are organized 
in such a way like operating system process IP datagram. The module that is respon-
sible for network layer (implementing IP processing) and the “network interface” 
modules are mandatory. Additionally one can plug the modules that implement higher 
layer protocols: transport (UDP, TCP, including TCP Sockets; routing: MPLS, LDP, 
RSVP, OSPF-TE) and application (HTTP, Telnet).  
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Fig. 1. DDoSSim Simulation environment architecture  

Multi-agent & DDoS Framework is the INET Framework modular suite aimed to 
simulate the DDoS attack and defense mechanisms on the basis of agent team coun-
teraction (figure 1, Multi-agent DDoS Framework). One can distinguish between 
DDoS Framework and Agent Framework architecturally.  

DDoS Framework suite consists of DDoS attack and defense modules (figure 1, 
Attack module, Defense module) and the modules that expand IP node from INET: 
the filtering table and the packet analyzer. Attack and defense modules are the appli-
cations and are deployed on the network layer of IP node. There were implemented 
different DDoS attacks and defense mechanisms, for example, Hop-count Filtering 
(HCF), Source IP address monitoring (SIPM), BPS, etc. To set the DDoS attack con-
ditions it is necessary to define the corresponding parameters, including victim type 
(host), attack rate dynamics (function of attack packets sending rate), spoofing tech-
nique (no spoofing, random, subnet), etc. Also one need to set up the defense parame-
ters, including deployment location (defended, intermediate, source subnet), detection 
technique, model data gathering technique and its parameters (time interval and time 
shift of data collection), etc.  

Agent Framework consists of modules representing agents which are implemented 
as applications. There were used the elements of abstract FIPA architecture [7] during 
agent modules design and implementation. Agent communication language is imple-
mented for agent interactions. The message passing happens above TCP protocol 
(transport layer). Agent directory is mandatory only for agents that coordinate other 
agents in teams. Agent can control other modules (including DDoS Framework mod-
ules) due to messages.  

Agents are deployed on hosts in the simulation environment. Their installation is ful-
filled by connecting to the modules serving transport and network layers of protocol 
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stack simulated in OMNeT++ INET Framework. The generalized representation of 
agent “sampler” structure is depicted in figure 2. Sampler contains the transport layer 
(depicted as a message), needed to communicate with other agents, network layer (de-
picted as a blue cube) to collect traffic data and agent kernel (depicted as a shape of hu-
man image). The agent kernel contains communication language, knowledge base and 
message handlers from the neighbor modules. The representation of sampler deploy-
ment into simulation environment is depicted in figure 3. One can see that the agent is 
plugged into host through the “tcp” module implementing TCP protocol. Agent is also 
connected with the “sniffer” module used to analyze network packets.  
 

 
Fig. 2. General structure of agent “sampler” Fig. 3. Deployment of agent “sampler” into the 

environment  

 
The example of multi-window user interface of the simulation environment is de-

picted in figure 4. At the basic window of visualization (figure 4, at upper right), a 
simulated computer network is displayed.  

The window for simulation management (at the bottom right of figure 4) allows 
looking through and changing simulation parameters. It is important that you can see 
the events which are valuable for understanding attack and defense mechanisms on a 
time scale. The time scale is depicted above windows with the events description.  

Corresponding status windows show the current status of agent teams (see the de-
fense team status window at the upper left of figure 4). It is possible to open different 
windows which characterize functioning (the statistical data) of particular hosts, pro-
tocols and agents (see these windows at the bottom left of figure 4).  

The example of hierarchy of simulated objects is represented in figure 5 (from left 
to right there are showed the nested objects “network”, “host”, “agent”). During in-
vestigation one can move from one hierarchy level to another and analyze functioning 
parameters of various objects.  
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Fig. 4. Common representation of the simulation environment  

 

Fig. 5. Example of object hierarchy: “network” → “host” → “agent” 

At the basic window of visualization (figure 6), a simulated computer network is 
displayed. The network represents a set of hosts and channels. Hosts can fulfill differ-
ent functionality depending on their parameters or a set of internal modules. The 
routers are depicted with the sign “ ”. Attack agents are deployed on the hosts 
marked with red color. Defense agents are located on the hosts marked with green 
color. Above the colored hosts there are strings indicating the corresponding state of 
deployed agents. The other hosts are standard hosts that generate normal traffic.  

Each network for simulation consists of three types of sub-networks: (1) the sub-
net of defense where the defense team is deployed;  (2) the intermediate subnet where 
the standard hosts are deployed. They produce the generic traffic including the traffic 
to defended host;  (3) the subnet of attack where the attack team is deployed.  
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Fig. 6. Example of computer network for simulation  

The subnet of defense as a rule includes at least five hosts. The following agents 
are deployed on the first four hosts: detector, sampler, filter and investigator. The 
web-server which is under defense is deployed on the fifth host. The agents and the 
web-server are the applications installed on corresponding hosts. The IP addresses are 
being set automatically. It is necessary to set the other application parameters. Web-
server is deployed on the host d_srv. The interaction port and the answer delay must 
be set. Detector is deployed on the host d_det. The following parameters are used for 
detector: the defended host IP address, the port for team interaction, the interval for 
sensor inquiry, and the maximum allowed data-rate to server (BPS, bit per second). 
Sampler is placed on the host d_firewall (on the entrance to the server subnet). Filter 
is installed on the host d_r (router). Investigator is deployed on the host d_inv. For 
each of the last three agents, the private port, the IP address of detector and the port 
for team interaction must be determined.  

The intermediate subnet includes N hosts i_cli[…] with generic clients. They are 
connected by the router i_r. The number of hosts N is the simulation parameter which 
can be set. The following parameters of clients must be specified: IP-address and port 
of server, the time of work start, the quantity and size of requests while connecting to 
server, the size of reply and the time of reply preparation, the idle interval.  

The subnet of attack consists of M hosts i_cli[…] with daemons and one host with 
master. The number of hosts M must be set. Master has the following parameters: port 
for team interaction, IP-address and port of attack target, the time of start of attack 
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and its rate (measured in packets per second). Daemon has the following parameters: 
the port, masters’ IP-address and port for team interaction.  

To simulate the Internet processes (including DDoS defense and attack mecha-
nisms), we needed the models of single hosts and topology as the representation of the 
way these hosts are connected. In relevant publications (e.g. [1], [23]) the Internet is 
represented as a graph built due some analytical dependencies. One of the main pa-
rameters to build the correct graph is node degree k. It is the amount of nodes with 
which the given node is connected. The average node degree is defined by the follow-
ing formulae: k = 2 m / n, where m is the amount of connections, and n is the amount 
of nodes in the network.  

The network topology which is similar to Internet can be built on the basis of node 
degree. The function that can determine k for every node in network is needed. [13] 
summarizes the data on investigating this function. The probability density function 
(PDF) of node degree is built upon the data from the distributed sensors (“skitters”), 
BGP tables and WHOIS [13]. PDF of k for the Internet is similar to the function 

( ) γ−= ckkf , and the values of k are bounded in the following way [5]: 
( )1/1

min
−≤≤ γkkk .  

The graph that represents the network topology is built in the following way [3]. 
There is chosen the amount of nodes n. It is generated the random value 

ik  on the ba-

sis of distribution ( )f k  for every node (the sum of 
ik  must be even). Then every 

node i from the set is connected with the other 
ik  randomly chosen node. There are 

the other ways to build the random graph. The generation due to clustering method 
and joint degree distribution are more precise [13]. The basic network that is used for 
simulations in the developed environment is built in compliance with described algo-
rithm and PDF (*). The value 25.2=γ  is borrowed from [13]. On the basis of ex-

perimental data the minimum node degree is 2.  

6   Simulation Scenario Examples  

The attack parameters used in the experiments represented in the paper are as follows 
(see section 4): Victim type – host (server that provides some service); Attack type – 
brute-force; Impact on the victim – disruptive; Attack rate dynamics – constant, vari-
able; Agents’ set permanency – constant, variable; Possibility of exposure – discover-
able filterable attack; Source addresses validity – valid (real), spoofed: random, sub-
net; Degree of automation – semi-automatic with direct communication.  

In the experiments considered in the paper the following defense parameters were 
used (see section 4): Deployment location – intermediate, defended subnets; Mecha-
nism of cooperation – centralized; Covered defense stages – attack prevention, attack 
detection, attack source detection, attack counteraction; Attack detection technique – 
anomaly detection (Hop-count Filtering (HCF), Source IP address monitoring 
(SIPM), Bit per Second (BPS)); Attack source detection technique – can detect when 
source address is not spoofed; Attack prevention technique – packet filtering; Tech-
nique for gathering of model data – learning; Determination of deviation from model 
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data: thresholds (HCF, BPS), determination of fluctuation in probabilistic traffic pa-
rameter (SIPM).  

Learning mode. The main task of learning mode is to create the model of generic 
traffic for the given network. The clients send the requests to the server and it replies. 
At this time sampler analyses requests and uses them to form the models of normal 
traffic and other parameters. During the learning it is possible to watch the change of 
traffic models (see figures 7-11).  

Figure 7 represents the list of hosts that sent requests to server and hops to them af-
ter 300 seconds of learning and the time of last request. As mentioned above the hop 
count is calculated on the basis of TTL packet field.  

Figure 8 depicts the change of new addresses amount for sampler during first 300 
seconds of learning. One can see that in the beginning when clients requested server 
at the first time there were many new addresses (the maximum is 6 addresses, the 
time interval is 10 seconds, and the shift is 3 seconds). The last unknown address ap-
peared in the region of 100 first seconds. At least, when all clients have requested the 
server there were no new addresses.  

Figure 9 shows the list of clients requested the server and considered as legitimate 
after first 300 seconds of learning. One can see here that in the interval between 0 and 
50 seconds there were many new addresses.  

Figure 10 represents the graph of change of maximum BPS (for interval 10 seconds 
and shift 3 seconds) after 300 seconds from the beginning of learning. The maximum 
value was 1742.4 bit/s and was recorded in the area of 100 seconds. One can see also 
the values of BPS for clients that requested server in the current time interval.  

Figure 11 depicts the values of transmitted bits for every client that requested 
server in the interval of 10 seconds.  

Decision making and acting. Simulation scenario is realized on the same configura-
tion as was used during learning. The only difference is that the attack team is en-
gaged. Attack team initial parameters are as follows: target_ip="d_srv" (target of at-
tack is server d_srv); target_port="2001" (target port); t_ddos=300 (time of attack 
start); attack_rate=5 (intensity of attack in packets per second); ip_spoofing="no" (no 
IP spoofing is used).  

Figure 12 represents the graphs of channel throughput (bits/s to seconds) on the en-
trance to the defended network before (dashed line) and after (firm line) filter.  

After modeling start the clients begin to send requests to the server and it replies. 
This is the way the generation of generic network traffic takes place (figure 12, inter-
val 0 – 300 seconds). The formation of defense team occurs after some time from 
start. Investigator, sampler and filter connect to detector and send it the messages that 
they are alive and ready to work. Detector stores this information. The attack team is 
formed in the same way. Daemons connect to master and report their status. After es-
tablishing the defense team begins to function. Sampler collects traffic data and com-
pares it with the model data acquired during learning mode. The addresses that are the 
source of anomalies are sent to detector every n seconds (in this scenario n=60). De-
tector makes the decision about the attack and sends to filter and investigator the ad-
dresses of suspicious hosts.  
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Fig. 7. List of hosts that sent requests to server and hops to them after 300 sec of learning 

  

Fig. 8. Change of new IP addresses amount Fig. 9. List of clients requested server and con-
sidered as legitimate after 300 sec of learning 

 

Fig. 10. Change of BPS parameter  Fig. 11. Values of transmitted bits  

After 300 seconds from simulation start the attack team begins attack actions. Mas-
ter examines all daemons that it knows. Then it sends the command of attack to all 
workable daemons. This command includes address and port of attack target, intensity 
(distributed among daemons) and the method IP spoofing. In this case they are: target 
– d_srv, port – 2001, intensity of attack for every daemon (calculated as intensity 
divided by the number of daemons) 5/10=0.5, spoofing “no” (no IP spoofing). When 
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daemons receive the command they begin to send the attack packets (figure 12, time-
stamp 300 seconds). 

After a while, sampler determines the suspicious hosts with the use of BPS 
method. The BPS parameter of these hosts exceeds normal value. Detector receives 
the addresses of these hosts from sampler and sends them to filter and investigator. 
Filter sets the filtering rules and the packets from the given hosts begin being dropped 
(figure 12, timestamps 400 – 600 seconds, firm graph).  

Investigator tries to inspect the given hosts and to defeat the attack agents deployed 
there. It succeeds in defeating of four daemons. The string “defeated” appears above 
the defeated agent in the window of network structure. However the other daemons 
continue the attack (figure 12, after 400 seconds, dashed graph).  

Master examines daemons next time 600 seconds after simulation has started. It 
does not succeed to connect with all daemons as some of them were defeated by in-
vestigator. Master makes the decision to redistribute the intensity of attack to keep the 
overall intensity on the given level. Also it decides to change the method of IP spoof-
ing to complicate the detection and defeating of attack agents by defense team. Master 
sends to alive daemons the command: target – d_srv, target port – 2001, intensity – 
5/(10–4)=0.83, IP spoofing method – “random”. When daemons receive the command 
they continue to send the attack packets having applied the new parameters (figure 12, 
timestamp 600 seconds).  

Detector sees that the input channel throughput has noticeably lowered since the 
traffic from attack team has raised (figure 12, after 600 seconds). Detector does not 
receive the anomaly report from sampler though. This is because the method BPS 
used by sampler does not work fine when attacker changes the sender address in 
every packet. That is the reason detector fails to confront some address with the big 
traffic. Therefore detector decides to apply another DDoS defense method – SIPM. 
The large amount of new IP addresses for sampler will lead to attack detection and 
dropping malicious packets. This method however does not allow tracing the source  
 

Fig. 12. Graphs of channel throughput  
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of attack directly, and investigator will fail to defeat attack agents. But the attack 
packets will be filtered and the traffic in the subnet of defended host will return to 
normal state dropped (figure 12, timestamps 400 – 600 seconds, firm graph).  

The following effectiveness and efficiency parameters of different defense mecha-
nisms were studied during experiments: rate of dropped legitimate traffic (false posi-
tive rate); rate of admitted attack traffic (false positive rate); attack reaction time. 
These parameters were investigated in dependence on the following input parame-
ters: network configuration (the amount of legitimate clients); attack intensity; IP ad-
dress spoofing technique used in attack; internal parameters of defense mechanisms 
and their combinations; quantity and distribution of defense teams, etc.  

7   Conclusion  

The main results of the work we described in the paper consist in developing an ap-
proach to agent-based simulation of defense mechanisms against attacks and imple-
menting the software environment DDoSSim intended for simulation of DDoS attacks 
and defense. The goal of the paper is not to present an investigation of new defense 
methods, but to show the possibilities of the simulation tool developed. One of the 
features of this tool is the possibility to insert new attack and defense methods and in-
vestigate them. The environment developed is written in C++ and OMNeT++. It al-
lows imitating a wide spectrum of real life DDoS attacks and defense mechanisms.  

Various experiments with this environment have been fulfilled. These experiments 
include the investigation of attack scenarios and protection mechanisms for the 
networks with different structures and security policies. One of the scenarios was 
demonstrated in the paper. Future work is connected with building more powerful 
simulation environment based on large library of DDoS attack and defense mecha-
nisms, investigating new defense mechanisms, and conducting experiments to both 
evaluate computer network security of large-scale network security solutions and ana-
lyze the efficiency and effectiveness of different security policies against various at-
tacks. The special attention will be given to cooperative defense mechanisms that are 
based on the deployment of defense components in various Internet subnets. 
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Abstract. Fuzzing is a well-known black-box approach to the security
testing of applications. Fuzzing has many advantages in terms of simplic-
ity and effectiveness over more complex, expensive testing approaches.
Unfortunately, current fuzzing tools suffer from a number of limitations,
and, in particular, they provide little support for the fuzzing of stateful
protocols.

In this paper, we present SNOOZE, a tool for building flexible, security-
oriented, network protocol fuzzers. SNOOZE implements a stateful
fuzzing approach that can be used to effectively identify security flaws in
network protocol implementations. SNOOZE allows a tester to describe
the stateful operation of a protocol and the messages that need to be gen-
erated in each state. In addition, SNOOZEprovides attack-specific fuzzing
primitives that allow a tester to focus on specific vulnerability classes. We
used an initial prototype of the SNOOZE tool to test programs that im-
plement the SIP protocol, with promising results. SNOOZE supported the
creation of sophisticated fuzzing scenarios that were able to expose real-
world bugs in the programs analyzed.

Keywords: Stateful Fuzzing, Network Protocols, Security Testing.

1 Introduction

Security is a critical factor in today’s networked world. The complexity of many
network protocols combined with time-to-deliver constraints imposed on devel-
opers and improper or insecure coding practices make errors inevitable. As a
result, new vulnerabilities in network-based applications are found and adver-
tised on a daily basis. The impact of vulnerability exploitation can be severe,
and, in addition, the cost of correcting errors after a system has been deployed
can be very high. Therefore, we need effective methods and tools to identify bugs
in network-based applications before they are deployed on live networks.

One of the methodologies used to carry out this task is fuzzing [1,2,3]. Fuzzing
is a form of black-box testing whose basic idea is to provide a system with
unexpected, random, or faulty inputs, which expose corner cases not considered
during implementation.

Fuzzing has a number of advantages over other testing techniques, such as
manual code review, static analysis, and model checking. First, fuzzing can be
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applied to programs whose source code is not available. Second, fuzzing is largely
independent of the internal complexity of the examined system, overcoming prac-
tical limits that prevent other testing methods (e.g., static analysis) from being
able to operate on large applications. Being completely independent of the tested
program’s internals, the same fuzzing tool can be reused to test similar pro-
grams regardless of the language in which they are implemented. Finally, bugs
found with fuzzing are reachable through user input, and, as a consequence, are
exploitable.

A number of tools make use of fuzzing as a technique to test systems. They
generally present limitations that hinder their wider and more effective use. In
many cases, the means available to inject faults in the generated input are re-
strictive and do not include methods to specifically generate inputs that would
likely trigger well-known, target-specific attacks. Furthermore, support for test-
ing complex, stateful protocols is generally lacking; thus, requiring the tester to
manually bring the system to the desired state before starting the actual test.
Finally, the language adopted to describe how fuzzing should be performed is
often very primitive, and, as a consequence, the activity of specifying fuzzing
tests can require significant effort.

In this paper, we propose SNOOZE, a tool for building flexible, security-
oriented, network protocol fuzzers. In SNOOZE we try to integrate the strengths
of existing fuzzing tools, while correcting the limitations discussed above.

We have built a prototype of SNOOZE, and we used it to perform fuzzing of
network applications that implement the Session Initiation Protocol (SIP) [4].
We decided to focus on SIP-based applications for several reasons. First, SIP
is one of the core protocols of the VoIP infrastructure, which is becoming in-
creasingly popular. Second, there are many competing implementations of SIP,
some of which are not completely stable and have not undergone a full security
assessment. Finally, SIP is a fairly complex, stateful protocol with many nuances
and details that complicate its implementation and, therefore, its testing.

The contributions of this work are twofold:
1. We identify the requirements for a class of sophisticated fuzzers that can be

used to test complex protocols.
2. We present the design and discuss the prototype implementation of a fuzzing

approach that supports the testing of stateful protocols.

Our approach allows testers to build better fuzzers to evaluate more easily and
more thoroughly the security strengths and weaknesses of complex, stateful pro-
tocol implementations. As a result, our tool can be used to limit the number
and severity of vulnerabilities in deployed systems. We tested our tool on three
real-world implementations of the SIP protocol, and we were able to identify
previously unknown vulnerabilities.

The rest of the paper is organized as follows. In the next section we discuss the
fundamental characteristics of fuzzing. In Section 3 we review related work. In
Section 4 we present our approach and analyze the first prototype of SNOOZE.
The evaluation of our tool is presented in Section 5. Section 6 concludes and
discusses future work.



SNOOZE: Toward a Stateful NetwOrk prOtocol fuzZEr 345

2 Background

Fuzzing is a black-box approach to testing the security properties of a software
component. Fuzzing operates on the input and output of a component without
requiring any knowledge of its internal working. The technique of fuzzing aims
to expose flaws in applications by exercising them with invalid inputs.

Fuzzing requires three basic operations: generating random or unexpected
input that could lead the application under test into an invalid state; injecting
this input into the application; and, finally, observing whether the input causes
the application to fail. Fuzzing relies on two fundamental assumptions:

1. A significant part of the faults contained in an application can be triggered
through a limited number of input sources controlled by the user.

2. The execution of a faulty portion of an application manifests itself in visible
ways, e.g., by producing unexpected output, crashing the application, or
making it unresponsive.

This approach is different from white-box techniques, such as static analysis
and model checking, where an explicit model of the tested application, or of
some of its properties, is built and validated for correctness.

Fuzzing, unlike many white-box approaches, is not complete in the sense that
it is not guaranteed to expose all faults in a program. On the other hand, all
flaws found through fuzzing are guaranteed to correspond to some bug in the
tested code, and, therefore, fuzzing can be considered as sound.

In general, there are two orthogonal strategies for creating faulty input for
an application: generation and mutation. The generation strategy uses a formal
specification of the input accepted by the tested system to generate a set of valid
input values. These values are then modified by applying fuzzing primitives to
obtain faulty test data. Mutation, on the other hand, relies on a set of valid
input values (e.g., extracted from normal sessions), which, as before, are modified
using fuzzing primitives. Generation requires that a formal specification of input
values be available, but it is capable of generating all valid input. The efficacy of
mutation, instead, is critically dependent on the completeness of the input set
that is used. However, the generated input is generally more tractable and can
focus on a specific area of weakness or type of flaw.

Fuzzers can also be differentiated on the basis of their level of understanding
of input semantics. More sophisticated fuzzers automatically take into account
rules constraining various parts of the input. For example, the value of some input
parts may be dependent on characteristics of the whole input (e.g., checksums
or content length fields), while other fields may be required to be encoded in
particular formats (e.g., encrypted). Less sophisticated fuzzers leave the burden
of taking care of these aspects to the user.

Fuzzers also differentiate themselves in the heuristics implemented to fuzz
input and in their flexibility of use. Heuristics can be based on data types (e.g.,
for integer types, they may test boundary conditions such as large or small
numbers, zero, and negative values) or on the expected vulnerability nature (e.g.,
SQL injection or format string). The complexity of applying fuzzing heuristics
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can range from the invocation of a function call to the modification of an input
grammar.

In some scenarios, faults in a system can only be reached after performing
several intermediate steps, bringing the system to a certain state. For example,
it might be necessary to perform a login step before gaining access to the appli-
cation functionality that needs to be tested. Stateful fuzzers have knowledge of
the system’s state machine and are able to perform actions that differ depending
on the current state. Stateless fuzzers, however, regard each input as completely
independent. This is a substantial limitation and the main motivation behind
the development of our stateful fuzzer.

3 Related Work

Fuzzing has been long used as a testing technique in areas not directly related
to security (e.g., for reliability and fault tolerance assessment). One of the first
uses of fuzzing is described by Miller et al. in [1]. In this paper the authors
tested several standard UNIX utilities by giving them random input. The same
methodology was used in later tests on the same applications [2] and on Win-
dows [3] and MacOS [5] applications. All these tests make use of very simple
fuzzing techniques, based on the generation of large chunks of random data, and
have limited support for the testing of network protocol implementations.

Similar approaches proved useful when testing large, heterogeneous and com-
plex systems, such as hardware components, real-time systems, and distributed
applications. Loki, ORCHESTRA, and NFTAPE are significant examples of
fault injectors1 specifically designed for their environments. Loki allows one to
inject faults in a distributed system on the basis of a partial view of the global
state [6]. ORCHESTRA is a fault injection framework for distributed systems in
which faults are specified as Tcl scripts, which are injected in a layered protocol
stack [7]. NFTAPE adds support for multiple fault models and fault injection
methods [8]. These approaches are very interesting but their focus is not on
security.

More recently, fuzzing has been applied to the testing of web services. For
example, one effort describes a fuzzer for web form-based services [9], while an-
other presents dependability tests of SOAP components [10]. WSDigger is an
open source tool for black-box testing of web services that takes the WSDL
file of a web service as an input and tests the service with a specially crafted
payload [11]. While the general ideas proposed in these works are probably ap-
plicable to different domains, they propose tools that are restricted to the testing
of web services.

There are a number of tools that specifically target network protocols. The
most representative of this class of fuzzers are SPIKE [12] and PROTOS [13].
The former, developed by Dave Aitel, is a framework which provides an API
and set of tools to aid in the creation of network protocol fuzzers in C. In
1 Fuzzing is usually considered to be a variant of the fault injection approach which

uses randomized input.
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SPIKE, a protocol packet is divided into a set of blocks, each of which can be
fuzzed independently and automatically. Any change in a block size caused by a
fuzzing transformation is handled automatically by SPIKE. However, the block
abstraction provided by SPIKE is fairly low-level and does not allow one to
easily model stateful protocols and complex messages, and their dependencies.
In addition, because SPIKE-based fuzzers have to be implemented in C, their
development can be effort-intensive and more complex than when using higher-
level languages.

PROTOS, which was developed by the Oulu University Secure Programming
Group, unlike SPIKE, does not provide an API for building custom fuzzers.
Instead, it provides reusable test suites consisting of carefully crafted protocol-
specific messages. Unlike other fuzzers that just send random input to a target
system, PROTOS strives to generate input more intelligently by starting from
the formal specification of a protocol and then using fuzzing values to generate
faulty inputs. These inputs are based on heuristics that focus on triggering spe-
cific vulnerabilities, such as format string vulnerabilities and buffer overflows.
The PROTOS approach has proven to be very effective: in 2002 it led to the dis-
covery of many vulnerabilities in implementations of the Simple Network Man-
agement Protocol [14]. However, PROTOS does not provide fuzzing primitives
or the ability to modify test cases without changing the protocol grammar itself,
which can be a non-trivial task. Finally, it is difficult to completely evaluate
because the engine used to generate test cases is not publicly available.

The goal of our project is to create a fuzzing tool that incorporates the best
features of the existing fuzzers and, in addition, supports the creation of stateful
protocol fuzzers. In the next section, we present the architecture of our fuzzing
tool, which we call SNOOZE.

4 Architecture

SNOOZE is an extensible tool for the development of stateful network protocol
fuzzers. It consists of the Fault Injector, the Traffic Generator, the Protocol
Specification Parser, the Interpreter, the State Machine Engine, and the Monitor.
Figure 1 shows the high-level architecture of SNOOZE.

The Interpreter is responsible for running the fuzzing tests. It takes as input a
set of protocol specifications, a set of user-defined fuzzing scenarios, and a module
implementing scenario primitives. A protocol specification defines the general
characteristics of a protocol. These characteristics include, but are not limited
to, the protocol type (e.g., whether it is binary or character based), the general
format of header fields, the syntax of messages that can be exchanged in the
protocol, and the allowed message flows (i.e., a state machine). The specification
language is XML-based.

While SNOOZE has a number of protocol specifications included, new spec-
ifications can easily be added as needed. In addition, these specifications need
only be written once, and they then can be reused to write testing scenarios.
The Parser parses a protocol specification and makes it available to other parts
of the tool.



348 G. Banks et al.

Fig. 1. Main components of SNOOZE

An example of a protocol specification is presented in Figure 2, which defines
the syntax of the SIP INVITE message. In a protocol specification, each mes-
sage is defined by a <msg-rule> element. Each <msg-rule> element consists of
<build-rule> elements, which reference <rule> elements. The <rule> element
either contains references to other building rules or specifies a default value for
the corresponding message field. More specifically, in the example in Figure 2,
the element <build-rule id="SIP-Version"/> specifies that each SIP INVITE
message is required to contain a SIP-Version field, the syntax of which is de-
fined by the <rule> element with ID SIP-Version. The default value for the
SIP-Version field in this case is the string SIP/2.0 concatenated with a value
generated by the CRLF rule.

The default values assigned to fields are subject to change through the use
of the mutation primitives described later. This makes it possible to modify the
values of fields and to insert additional and user-defined fields into the message
generated from the specification.

The dynamic aspects of a protocol, i.e., the valid sequences of exchanged
messages, are specified with a state transition diagram. Each state represents
a different step in the evolution of a conversation between two end-points: one
state, for example, could record the fact that an INVITE message has been sent
but the corresponding acknowledgment has not been received yet. The rules of
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a protocol dictate the allowable transitions from one state to the other. For
example, a rule would describe that when a CANCEL message is received the
system should transition back to the initial state. Transitions are guarded by a
condition that specifies which events can trigger the transition. Events can be
the reception or the transmission of a message with specific values in determined
message fields. Figure 3 shows a fragment of the specification of the SIP state
diagram for a client user-agent.

<protocol type="ascii">
<msg-rule id="INVITE">

<build-rule id="INVITEm"/>
<build-rule id="Request-URI"/>
<build-rule id="SIP-Version"/>
<build-rule id="Via"/>
<build-rule id="Max-Forwards"/>
<build-rule id="From"/>
<build-rule id="To"/>
<build-rule id="Call-ID"/>
<build-rule id="CSeq"/>
<build-rule id="Contact"/>
<build-rule option="optional" max="inf" id="message-header"/>
<build-rule id="Content-Length"/>
<build-rule id="CRLF"/>
<build-rule option="optional" max="1" id="message-body"/>

</msg-rule>
...
<rule id="SIP-Version">

<field type="string">SIP/2.0</field>
<build-rule id="CRLF"/>

</rule>
...

</protocol>

Fig. 2. Part of the specification of the SIP INVITE message

In the current implementation of our tool, protocol specifications are manually
extracted from standards, such as Request for Comments (RFC) documents, and
can describe a protocol’s features with the level of detail desired by the user. In
addition, the specifications can be used by the user to define default values to
be used for the various protocol fields.

Scenario primitives are the basic operations that are available for a user to
test a system; that is, they are the building blocks to derive test “drivers”.
Currently, scenario primitives include mechanisms to build messages according
to a protocol description, to send and wait for messages, to fuzz specific fields
in a message, and to explore and leverage the state information available for a
stateful protocol. Some of the available primitives are shown in Table 1.

The Fault Injector component allows a user to manipulate “normal” messages
of a protocol in ways that, ideally, will cause faults in the target implementation.
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<graph xmlns="http://www.martin-loetzsch.de/DOTML" id="SIP">
<!-- states -->
<node id="Start" root="true"/>
<node id="Invite.Calling"/>
<node id="Invite.Proceeding"/>
<node id="Invite.Completed"/>
<node id="Invite.CompletedAck"/>
<node id="Terminated"/>
...

<!-- transitions -->
<edge from="Start" to="Invite.Calling">

<send-message protocol="SIP" type="INVITE"/>
</edge>
<edge from="Invite.Calling" to="Invite.Proceeding">

<recv-message protocol="SIP" type="RESPONSE">
<field name="code" value="1??"/>

</recv-message>
</edge>

...
</graph>

Fig. 3. Part of the specification of the SIP state diagram

The current prototype includes a set of functions that can be used to fuzz string
and integer fields in a scenario. The fuzzing functions implement various heuris-
tics based on the testing of boundary conditions, such as very long strings, large
numbers, or exploit inputs for common vulnerabilities such as SQL or command
injection.

A fuzzing scenario encodes the fuzzing activity to be performed. A scenario
uses the protocol specifications, scenario primitives, and the fuzzing module de-
scribed above to build messages appropriate for a target protocol by fuzzing
some of their fields and sending them to the target system. In the current im-
plementation of our tool, a fuzzing scenario is a Python script that makes use
of SNOOZE components and is run by the standard Python interpreter.

Figure 4 shows a complete, albeit simple, fuzzing scenario. In this scenario, we
specify that we want to use SIP over UDP. We then build a SIP INVITE message
with default values for every required field. After the INVITE message is built
automatically by the SNOOZE engine, we set the Request-URI and To fields to
some fixed value and specify that we want the From field to be fuzzed with values
that are likely to expose an SQL injection vulnerability. The message is sent ten
times using a loop. For each iteration of the loop, any piece of the SnoozeMessage
that should be fuzzed, in this case, part of the From field, will contain a new
fuzzed value that is automatically generated by the Fault Injector. Recall that
the Fault Injector is responsible for performing fuzzing transformations on the
data stored in a generic type (e.g., SnoozeString) as specified in that generic
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Table 1. The SNOOZE primitives

Name Description

snoozeUse Parses the specification of the provided protocol
snoozeOpen Opens a session with the given host and performs any required

initialization
snoozeClose Closes the given session and performs cleanup

SnoozeMessage A class modeling protocol-independent messages
setField Method of SnoozeMessage that allows one to set a field in a

message to a given value

snoozeSend Sends a message
snoozeExpect Waits for a message

SnoozeString Generic string type used in SnoozeMessage
SnoozeInt8 Generic eight bit integer type used in SnoozeMessage
SnoozeInt16 Generic sixteen bit integer type used in SnoozeMessage
SnoozeInt32 Generic thirty-two bit integer type used in SnoozeMessage
SnoozeInt64 Generic sixty-four bit integer type used in SnoozeMessage

fuzz string repeat Fuzzes a field repeating a given pattern multiple times
fuzz string binary Fuzzes a field inserting binary content
fuzz string x86nop Fuzzes a field inserting x86 NOP instructions
fuzz string sql inj Fuzzes a field inserting strings likely to expose an SQL injection

vulnerability
fuzz string sh inj Fuzzes a field inserting strings likely to expose a shell command

injection vulnerability
fuzz terminator Fuzzes a field inserting a field terminator string
fuzz intX usig Fuzzes a field inserting unsigned integer values. There exist ver-

sions for 8, 16, 32 and 64 bits integers
fuzz intX sig Fuzzes a field inserting signed integer values. There exist versions

for 8, 16, 32 and 64 bits integers

getValidSendMsgs Returns the set of messages that may be validly sent in the cur-
rent state of the protocol

getInvalidSendMsgs Returns the set of messages that cannot be validly sent in the
current state of the protocol

getValidReceiveMsgs Returns the set of messages that may be validly received in the
current state of the protocol

getInvalidReceiveMsgs Returns the set of messages that cannot be validly received in
the current state of the protocol

getCurrentState Returns an object holding information about the current state
of the protocol

type’s constructor. At the end of the scenario, the session is closed. Figure 5
shows a selection of the messages generated by this scenario.

Figure 6 shows the use of some of the state-related primitives. As before,
from the initial state, an INVITE message is sent. Since this represents a valid
transition, the State Machine Engine updates the current state. The scenario,
then, sends all messages that are not supposed to be sent from the current state
and waits for a message. The scenario at this point could, for example, check the
received packet to determine whether the invalid messages caused an unexpected
transition in the implementation under test.
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from snooze_scenario_primitives import *
from snooze_types import *

# fuzz SIP over UDP (the network profile)
profile = snoozeUse(’SIP’, ’udp’)

host = ’127.0.0.1’
port = 5060

sd = snoozeOpen(host, port, profile)

# build an INVITE message
m = SnoozeMessage(’SIP’, ’INVITE’)
# modify default values of some fields
m.setField(’Request-URI’, [

SnoozeString(’ru’, ’sip:test@’ + host + ’:’ + str(port) + ’ ’)])
m.setField(’To’, [SnoozeString(’tn’, ’To: ’),

SnoozeString(’tv’, ’sip:test@’ + host), SnoozeString(’fe’, ’\r\n’)])
m.setField(’From’, [SnoozeString(’fn’, ’From: ’),

SnoozeString(’fr’, ’sip:’),
SnoozeString(’ff’, ’A’, fuzz_string_sql_inj),
SnoozeString(’fv’, ’@’ + host), SnoozeString(’fe’, ’\r\n’)])

for i in range(10):
snoozeSend(sd, m)

snoozeClose(sd)

Fig. 4. An example fuzzing scenario

The SnoozeExpect primitive provides a mechanism to wait for messages,
based on what type of protocol is being fuzzed (e.g., text or binary), the type of
message, and the message’s content. A scenario developer can then make condi-
tional decisions based on the return value of the primitive, thereby navigating
paths in the protocol state machine dynamically.

The operation of sending messages to the target system is performed by the
Traffic Generator component. It receives messages created by a user scenario and
transforms them into network packets while taking into account fields that need
to be updated (e.g., checksums or content length fields). Then, it sends those
packets to the target system.

The State Machine Engine keeps information about the state of network op-
erations. In practice, it keeps track of transmitted and received messages, and
it uses the protocol state diagram specification to check whether the messages
trigger some transition from the current state to a new state.

Finally, the Monitor component analyzes the traffic data and the behavior
of the target system, looking for manifestations of a fault. These manifesta-
tions include, but are not limited to, events such as a segmentation fault in
the target system, a hang, an abnormal behavior, or an unexpected output
that is the result of the system being put into an inconsistent state. In the
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INVITE sip:test@127.0.0.1:5060 SIP/2.0
Via: SIP/2.0/TCP foo.cs.ucsb.edu:4040;branch=z9hG4bK74bf9
Max-Forwards: 70
From: sip:(SELECT%20*)@127.0.0.1
To: sip:test@127.0.0.1
Call-ID: UniQue1@tester.com
CSeq: 1 INVITE
Contact: <sip:whatever.com>
Content-Length: 0

INVITE sip:test@127.0.0.1:5060 SIP/2.0
Via: SIP/2.0/TCP foo.cs.ucsb.edu:4040;branch=z9hG4bK74bf9
Max-Forwards: 70
From: sip:%20OR%201=1@127.0.0.1
To: sip:test@127.0.0.1
Call-ID: UniQue1@tester.com
CSeq: 1 INVITE
Contact: <sip:whatever.com>
Content-Length: 0

Fig. 5. An example of the messages sent when executing the scenario in Figure 4

current SNOOZE prototype, rudimentary monitoring is available. This is pro-
vided through the snoozeExpect primitive, which will alert the tester when
either an unexpected message is received or a timeout expires without receiving
any data, which usually indicates the target system has crashed or hung because
of the last snoozeSend. In addition to this automated monitoring, manual in-
spection must be done on the target system to identify whether the system is
“behaving” correctly when a fault does not manifest itself in the messages being
exchanged between the fuzzer and the target system.

5 Evaluation

Evaluating a fuzzer’s performance is difficult. Generally, there is no direct feed-
back about the effectiveness of the fuzzer, other than the fact that the target
system crashed or stopped functioning correctly. For this reason, the common
evaluation practice is to run the fuzzer on a test suite of programs and evaluate
its effectiveness based on the number of bugs found or the number of programs
crashed. However, as discussed in previous sections, no conclusion can be de-
rived about the completeness of the analysis performed through black-box test-
ing. Therefore, an interesting extension to this basic practice would be to couple
the number of bugs found with the amount of code exercised as a quantitative
evaluation metric. We plan to investigate this extension in future tests as we
believe that code coverage provides an estimate of how thorough the fuzzing
process is. The assumption is that the more code paths that are traversed, the
more potential bugs are discovered.
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from snooze_scenario_primitives import *
from snooze_types import *

# fuzz SIP over UDP (the network profile). Enable the State Machine Engine
profile = snoozeUse(’SIP’, ’udp’, ’client’, True)
target_port = 5062
snooze_port = 5060

# open the session
sd = snoozeOpen(’128.111.48.24’, target_port, profile, snooze_port)

# build and send an INVITE message
m_inv = SnoozeMessage(’SIP’, ’INVITE’, {’Content-Type’: ’Content-Type’})
...[packet setup not shown]...
snoozeSend(sd, m_inv)

# send invalid messages
for msg in getInvalidSendMsgs():

snoozeSend(sd, msg)

# wait for reply
snoozeExpect(sd)
...

Fig. 6. A scenario that uses state-related primitives

Qualitative metrics are also valuable. The ease of creating powerful fuzzing
scenarios is a key factor in the adoption of one tool over another. In addition
to providing fuzzing functionality, the ability to build simple, general-purpose
clients is another metric to consider when comparing fuzzers.

Having decided on the appropriate metrics for evaluating our tool, we chose
to focus our attention on the Session Initiation Protocol (SIP) [4]. SIP is an
application-layer signaling protocol used to create, modify and terminate ses-
sions with one or more participants, such as those found in Internet conferences
and Internet telephone calls. Managing sessions involves multi-step operations.
Consider for example the steps involved in the setup of a call: the caller sends an
INVITE message to the callee; the user agent of the callee sends back a Ringing
status response; when the user answers the call, an OK message is generated; the
caller replies to this message with an ACK message. A similar exchange of mes-
sages is required for call termination. A consequence of the statefulness of SIP
is that many bugs can be exposed only by exploring states that are “deep” in
the protocol state machine, i.e., states that are reachable only after exchanging
a coherent series of messages with the application under test.

We chose SIP for our evaluation for several reasons. First, there are several
open-source implementations available. This allowed us to assemble a set of
applications to test and to investigate the problems we found by code inspec-
tion. Second, SIP is not yet fully mature. Several implementations are still not
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completely RFC-compliant and most projects have been started within the last
couple of years. Finally, SIP is currently being used as the signaling protocol for
many popular IP telephony, chat, and video conferencing applications.

We built a testbed of different SIP implementations consisting of the following
programs: Linphone 1.1.0 [15] compiled with libosip 2.2.2 [16], Kphone 4.2 [17],
and SJphone 2.99a [18]. These programs are a representative set of commonly
used programs that utilize SIP.

Our tests consisted of running a scenario that fuzzed different combinations
of fields, using all of the fuzzing primitives that are currently implemented in
SNOOZE. The scenario explores different states of the programs under test,
by sending the sequence of messages INVITE, CANCEL, ACK. Note that, in this
way, we set up a complete SIP dialog, comprising several transitions in the SIP
state machine, and we can perform fuzzing at all of the traversed states. We let
this scenario replay this message sequence 19,000 times using different fuzzing
values. This fuzzing scenario did not cause any fatal error, e.g., crash or hang,
in SJphone or Kphone. However, it found several problems in Linphone and
hereafter we describe three bugs that are representative of the types of flaws
that SNOOZE can expose.

The first example is a crash caused by the initial INVITE message in our
test sequence. Linphone shows the identity of a caller by presenting the content
of the From field of a SIP INVITE message. When receiving fuzzed messages,
the message parsing routine in Linphone is unable to parse the From field and
returns a NULL value to its caller instead of a valid pointer to the parsed content.
Unfortunately, the caller routine does not check the returned value and blindly
dereferences it, causing a segfault and a subsequent crash of the program. Even
though this error cannot generally be used to further escalate privileges, it can
be considered a denial of service attack. The bug has been acknowledged by the
author of the program and corrected in the following release [19].

A second crash resulted from a malformed ACK message, the last in the se-
quence that we were playing. The message, on its own, had no effect, and the
bug only manifested itself in the case where there was an open call. That is,
there was state saved in the form of a dialog. This bug, similar to the previ-
ous one, results from an attempted NULL pointer dereference in libosip. In this
particular iteration of the scenario, an INVITE message had been sent which
caused Linphone to enter the ringing state. The subsequent CANCEL message
for that call was then ignored by Linphone because it was being fuzzed with bi-
nary data, making it non-parsable. A new call was then attempted with another
INVITE message, causing Linphone to save the current state. Several message
sequences later, an ACK message was sent with no Call-ID field present. Lin-
phone received the parsed message from libosip, recognized that it was an ACK,
and iterated through the dialogs associated with each phone call, calling the
libosip routine osip dialog match as uas. The first step of this routine is to
convert the Call-ID field of the received message to a string and then com-
pare it to the same field in the stored dialog. In this case, the internal routine
to convert the Call-ID field to a string returns -1, indicating an error, which
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osip dialog match as uas fails to check. The resulting NULL pointer is then
passed to strcmp which causes the segmentation fault to occur. This bug would
not have been found without the ability to drive the application to a state deep
in the SIP state machine.

A third crash was related specifically to the application’s graphical interface.
Although the details are not clear at this point, an improper series of messages
cause debug statements of the form “Xlib: unexpected async reply” to be printed
to the console. This problem is most likely caused by threading issues affecting
the use of Xlib. The exact problem, however, is still to be determined.

From a qualitative point of view, SNOOZE, even in its first prototype version,
has some advantages over other fuzzers. First, SNOOZE follows an object-oriented
approach to the creation and manipulation of protocol messages by allowing the
user to abstract away irrelevant details. This feature, coupled with the use of proto-
col specifications, greatly eases the task of dealing with messages. The result is that
users can build valid protocol messages by simply invoking the SnoozeMessage
constructor and message fields can later be manipulated by calling methods of the
SnoozeMessage class. This contrasts with other fuzzers that require users to man-
ually construct each message (e.g., SPIKE), and with those that allow users to
modify messages only by manipulating the protocol grammar (e.g., PROTOS).
Second, it provides a set of fuzzing methods that can be easily reused in multi-
ple scenarios. Third, by design, it should be easy to use SNOOZE as the basis for
general-purpose network clients, implemented using calls to SNOOZE primitives
like SnoozeMessage, snoozeSend and snoozeExpect. This is not possible with
fuzzing tools that only build test cases.

6 Conclusions

The complexity of current network protocols and the increasing number of at-
tacks against protocol implementations require a stronger emphasis on the test-
ing of programs. Not only more powerful but also more intuitive tools for assess-
ing the security of network programs are needed.

We believe that fuzzing, i.e., injecting faults into a program by exercising it
with random and unexpected input, can be a powerful testing tool. Even though
fuzzing does not guarantee completeness of the analysis, it provides a practical
way to quickly assess the robustness of an implementation to malicious input.

We described the initial design and implementation of SNOOZE, a tool for
building flexible, security-oriented, multi-protocol network fuzzers. The first pro-
totype of SNOOZE provides a set of primitives to flexibly generate fuzzed
messages. It also provides support for stateful protocols, allowing for rapid devel-
opment of fuzzing scenarios. The tool is protocol-independent and can be easily
extended.

The preliminary results from using SNOOZE on a testbed of programs imple-
menting the SIP protocol show that SNOOZE can be effectively used for finding
bugs that are hidden deep in the implementation of stateful protocols. Moreover,
the combination of reusable fuzzing primitives together with initial support for
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stateful protocols allowed for implementation of quite complex stateful scenarios
with reduced user effort.

In the future, we plan to extend SNOOZE in a number of directions. First, we
plan to enhance the support for stateful protocols, particularly exploring ways
to synchronize the state of the communication as seen by the fuzzer with the
state of the application under test. Also, we plan to develop a GUI that will
allow a scenario developer to build stateful scenarios graphically, in an intuitive
manner. In addition, we intend to further evaluate SNOOZE using the code
coverage metric. Finally, we will test the idea of composing SNOOZE with model
checking tools to better model the exploration of the protocol state machine.
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Abstract. We propose a rights protection scheme for data cubes. The scheme
embeds ownership information by modifying a set of selected cell values. The
embedded message will not affect the usefulness of data cubes in the sense that
the sum queries at any aggregation level are not affected. At the same time, the
errors introduced to individual cell values are under control. The embedded mes-
sage can be detected with a high probability even in the presence of typical data
cube attacks. The proposed scheme can thus be used for protecting data cubes
from piracy in an open, distributed environment.

1 Introduction

Data cube is a common data model that supports exploration of a large amount of elec-
tronic data from many different perspectives, in a multi-dimensional and multi-level
manner. In many applications, valuable data cubes are provided to multiple users or
customers. For example, business and government organizations often outsource valu-
able data cubes, such as sales patterns data, financial data, or customer information,
to certain parties that are specialized in analyzing the data. For another example, data
cubes of online interactions (e.g., airline reservation and scheduling portals) are usu-
ally provided for direct and interactive uses by many customers across the internet. In
these applications, it is critical to protect the owner’s rights so as to thwart any illegal
use of data. Without appropriate rights protection, some dishonest users may copy and
redistribute the data without its owner’s permission.

Watermarking techniques have been frequently used for protecting data ownership.
The ownership information is embedded into the target data in a way that it has no
significant impact on the usefulness of the data and that a malicious user cannot de-
stroy it without making the data less useful. When a pirated copy of data is discovered
somewhere, the owner of the data can assert its ownership with a high probability by ex-
tracting the embedded information from the watermarked data. Watermarking has been
extensively studied in the context of multimedia data (text, image, sound or video) [9]
[5] [14] [15] [10] [18]. Since multimedia objects are ultimately watched or listened by
human beings, it is critical that the embedded watermark has no significant impact on
human perceptual systems. Recently, there have been growing interests in watermark-
ing non-media data [3] such as relational databases [1], softwares [8], natural language
texts [4], and sensor network streams [19]. The challenges posed in these new domains
are quite different from those posed in the multimedia domain. As pointed out in [1][3],
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non-media data have characteristics and operations very different from multimedia data,
thus requiring different watermark algorithms to be designed.

Agrawal et al. first proposed a watermarking scheme for relational databases [2].
A private key, known only to the owner of the data, was used to determine where to
embed a watermark and how to detect it. Li at el. extended Agrawal’s watermarking
scheme to embed user-specific information, called fingerprint, into relational databases
[17]. The fingerprint can be used to identify or track whom the traitor is from a pirated
copy of data. For numerical data, Sion et al. introduced a multi-bit distribution encoding
scheme that can survive the linear transformation of data among other types of attacks
[20]. For categorical data, Sion proposed another watermarking technique that swaps
certain categorical values so as to embed watermark information [21]. Other works in-
clude Gross-Amblard’s watermark framework [12], in which a set of parametric queries
can be preserved within a certain level of distortion, and Bertino’s hierarchical water-
marking scheme [7] for preserving the privacy and ownership of outsourced medical
data against generalization attacks. All these works are targeted on watermarking rela-
tional databases.

The watermarking techniques customized for relational databases cannot be directly
applied to data cubes. One reason is that the structure of data cubes is different from that
of databases. While most schemes for watermarking databases depend on the existence
of a primary key attribute, there is no such concept in data cubes. Another reason is that
data cubes are primarily used for answering sum queries regarding the aggregations
of cell values at different levels. A watermarking scheme should have as less impact as
possible, better no impact, on the data cube queries. In comparison, no special treatment
has been made in watermarking relational databases for reducing or eliminating the
errors in sum queries.

The contribution of this paper is multi-fold. Firstly, we propose the first watermark-
ing scheme for protecting the ownership of data cubes. A data cube owner can use
his private key to control all watermarking parameters. Neither original data cube nor
the watermark is required in watermark detection. Secondly, we devise the concept of
mini-cube and apply it in the process of watermarking. As a result, all sum queries in
a watermarked data cube can be answered without any error, yet the robustness of the
embedded watermark is not affected by the use of mini-cubes. Thirdly, we extend our
basic scheme to improve watermarking efficiency for very large data cubes. Detailed
analysis and extensive experiments are conducted for the proposed schemes in terms of
watermark detectability, robustness, imperceptibility, and efficiency. Our results show
that the scheme perform well in actual applications.

The rest of this paper is organized as follows. Section 2 revisits the basic model
of data cubes. Section 3 presents our watermarking algorithms. Section 4 analyzes the
properties of the proposed algorithms. Section 5 evaluates our watermarking technique
using real data. Section 6 concludes this paper.

2 The Basic Model of Data Cubes

We follow the data cube model proposed in paper [11]. Conceptually, a cube consists
of a base cuboid, surrounded by a collection of aggregation cuboids that represent the
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Fig. 1. An example data cube

aggregation of the base cuboid along one or more dimensions. We refer to the attribute
to be aggregated as the measure attribute, while the other dimensions are seen as the
feature attributes. Figure 1 gives an example of data cube from the automotive industry.
The data cube is in 3 dimensions, where each cell (m, c, t) represents a combination of
three feature attributes make, color, and time, and where a single measure attribute of
the cell is sale. The measure attribute value of cell (m, c, t) indicates the sale of the car
model m in color c on day d.

The base unit of each dimension may be aggregated to higher level units in “roll-up”
operations. For example, the time dimension can be aggregated from the basic unit day
to higher level units month, year, and all. Consequently, the cell values (i.e., car sales)
are aggregated in terms of the new units in roll-up operations. If the 3-D based cuboid
is rolled-up from day to all along time dimension, then it becomes a 2-D plane, which
is labelled as “by make and color” in figure 1. The 2-D plane can be further rolled-up
to a 1-D line and to a 0-D point (the 0-D point represents the grand total of the car
sales for all make, all color, at all time). From higher level aggregations, one may also
“drill-down” to lower level aggregations or individual cells.

Roll-up and drill-down are basic OLAP functions which can be used for knowledge
discovery in decision support systems. By rolling up from the base cuboid, one can ag-
gregate the measure attribute at various levels, thus discovering general trends of the un-
derlying data. By drilling down to lower level aggregations or individual cells, one may
discover outliers or exceptions. The interactive exploration of rolling-up and drilling
down may repeat until a satisfactory understanding of the underlying data is reached.
Based on the data cube model, we can design our watermarking scheme for data cubes.

3 Embedding and Detecting Watermarks

In this section, we introduce our watermarking scheme in detail. We assume that all
watermarkable values in a data cube are numeric, and that small changes in a small por-
tion of these values are acceptable. Note that the same assumption has been commonly
used in watermarking relational data. It has been argued that such an assumption is sup-
ported by many applications for various types of data (e.g., parametric specifications in
manufacturing industry, geological and climatic surveys, and life science data) [1].
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Table 1. Notations and parameters

Xi, Yj , Zk Three feature attributes of a cell
Nx, Ny , Nz Sizes of three feature attributes in the base cuboid

η Total number of cells in the data cube
ξ Number of least significant bits available for watermarking in each cell

1/γ Fraction of cells selected for embedding a watermark
ω Number of cells selected for embedding a watermark
α Significance level of the test for detecting a watermark
τ Minimum number of correctly detected cells for ownership claim

Algorithm 1. Watermark embedding
1: for i = 1 to Nx, j = 1 to Ny , k = 1 to Nz do
2: HMAC(i, j, k) = H(K ⊕ opad,H(K ⊕ ipad, Xi ◦ Yj ◦ Zk))

3: mark(i, j, k) = HMAC(i, j, k) mod γ
4: end for
5:
6: for i = 1 to Nx, j = 1 to Ny , k = 1 to Nz do
7: if (mark(i, j, k) = 0) then // This cell is selected for marking
8: bp = HMAC(i, j, k) mod ξ // Mark position at this cell is bpth bit
9: wm = HMAC(i, j, k) mod 2 // Watermark allocated to this cell is wm

10: bm = (d(i, j, k) >> bp)&1 // The bpth LSB of the cell value is bm
11: if (bm �= wm) then // The cell value should be changed for marking
12: set the bpth least significant bit of the cell value to wm
13: df = the difference between marked cell value and original cell value
14: minicube(i, j, k, df, D, mark) // Construct a minicube for the modified cell
15: end if
16: end if
17: end for

Without loss of generality, we present our scheme for a 3-dimensional data cube D,
where each cell has three feature attributes (X, Y, Z) and one measure attribute M . The
sizes of three feature attributes (i.e., the numbers of base units) are Nx, Ny, Nz , respec-
tively. The total number of cells η is Nx×Ny ×Nz . We use d(Xi, Yj , Zk) to denote the
cell value at the position (Xi, Yj , Zk). For each watermarkable cell, we assume that any
change in one of its ξ least significant bits is imperceptible, where ξ is a parameter in
our scheme. Another parameter γ determines the number ω of watermarkable cells that
are used to embed a watermark. Approximately one out of every γ values is used in wa-
termarking (i.e., ω ≈ η/γ). A significance level α is used to determine how amenable
the watermarking system is to the false detection of a watermark from non-watermarked
data. A parameter τ is used to denote the minimum number of correctly detected cells
for ownership claim. The two parameters will be further explained in Section 3.2. For
ease of reference, Table 1 gives the notations that will be used in this paper.

3.1 Watermark Embedding

The procedure of watermark embedding is shown in Algorithm 1. Let HMAC be a MAC
function seeded with a private key [6][16]. For each cell in a 3-D data cube, the owner
of the data computes a HMAC value from the cell’s feature attributes (Xi, Yj , Zk) us-
ing his private key K. The HMAC value will be used to determine whether the cell is
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Fig. 2. An example mini-cube

selected to embed a watermark (see lines 3 and 7 in algorithm 1). On average, one out
of every γ cells is selected. Because of the use of the HMAC function and the private
key, only the owner of the data can determine which cells are actually selected. For each
selected cell, line 8 in algorithm 1 determines a bit position among ξ least significant
bits, and line 9 computes a watermark bit value which is assigned to the bit position.
The watermark bit has a probability of 1/2 to be the same as the original bit in the bit
position, in which case the selected cell does not change. Otherwise (see line 11), the
original bit is flipped, in which case the selected cell is modified so as to embed the
watermark bit.

According to our assumptions, the change made in watermarked cells is acceptable
for individual values; however, it can be potentially significant to some aggregations of
the cell values. In order to reduce or eliminate the accumulative errors that are intro-
duced in watermark insertion, a mini-cube is constructed for each cell that is modified
in watermarking (see line 14 in algorithm 1). Figure 2 illustrates a simple example for
constructing a mini-cube. Suppose that the value of cell d(Xi, Yj , Zk) is decremented
by 1 in watermark insertion. Based on the position of d(Xi, Yj , Zk), three other cell
values d(Xxc, Yj , Zk), d(Xi, Yyc, Zk), and d(Xi, Yj , Zzc) are selected. The values of
these cells are incremented by one so as to balance the deviation in any 1-D aggregation
(i.e., aggregation along one feature dimension) that involves cell (Xi, Yj , Zk). Simi-
larly, three more cell values d(Xxc, Yj , Zzc), d(Xi, Yyc, Zzc), and d(Xxc, Yyc, Zk) are
decremented by one, and one last cell value d(Xxc, Yyc, Zzc) is incremented by one.
These seven cells, which we call balance cells, form a mini-cube together with the wa-
termarked cell (Xi, Yj , Zk). With a mini-cube constructed, any data cube aggregation
that involves at least two cells in the mini-cube remains unchanged after watermark
insertion. Algorithm 2 gives the procedure for constructing a mini-cube.

A mini-cube is not constructed without a constraint. Firstly, the balance cells should
not be selected from any cell that has been selected in watermark insertion so as to avoid
interfering the watermark insertion and detection. Secondly, a mini-cube should be con-
structed in a way that most, if not all, aggregation queries would involve at least two
cells in the mini-cube. To achieve this, (i) the balance cells should be selected as close to
the watermarked cell as possible, and (ii) any two cells in the mini-cube should have the
same attribute values in terms of the smallest aggregation units above the base unit (e.g.,
“brand” for attribute model and “month” for attribute day are such aggregation units in
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Algorithm 2. Tow functions: mini-cube embedding and choosing cells for mini-cube
1: mini-cube(X-index i, Y-index j, Z-index k, value-difference df , data cube D, embedding position mark)
2: xc = 0; yc = 0; zc = 0; // Parameters used for deciding cell positions for mini-cube
3: (xc, yc, zc) = CellPosition(i, j, k, D, mark) // Choose cell positions for mini-cube
4: if (xc �= i) then // Construct mini-cube
5: d(xc, j, k) = d(xc, j, k) − df
6: d(i, yc, k) = d(i, yc, k) − df
7: d(i, j, zc) = d(i, j, zc) − df
8: d(xc, yc, k) = d(xc, yc, k) + df
9: d(xc, j, zc) = d(xc, j, zc) + df
10: d(i, yc, zc) = d(i, yc, zc) + df
11: d(xc, yc, zc) = d(xc, yc, zc) − df
12: end if
13:
14: CellPosition(X-index i, Y-index j, Z-index k, data cube D, embedding position mark)

return (X-position xc, Y-position yc, Z-position zc)
15: lx = round(i/λx) ∗ λx // Round real value to integer
16: my = round(j/λy) ∗ λy

17: nz = round(k/λz) ∗ λz

18: xc = i; yc = j; zc = k; // Parameters used for deciding cell positions for mini-cube
19: SumThresh = 0 // Value used for finding optimal mini-cube
20: for l = lx to lx + λx − 1, m = my to my + λy − 1, n = nz to nz + λz − 1 do
21: // Balance cells are not selected from the cells that are selected in watermark insertion
22: if ((mark(l, j, k) �= 0) and (mark(i, m, k) �= 0) and (mark(i, j, n) �= 0) and (mark(l, m, k) �= 0)

and (mark(l, j, n) �= 0) and (mark(i, m, n) �= 0) and (mark(l, m, n) �= 0)) then
23: sum = |d(l, j, k)|+|d(i, m, k)|+|d(i, j, n)|+|d(l, m, k)|+|d(l, j, n)|+|d(i, m, n)|+|d(l, m, n)|
24: if (sum > SumThresh) then
25: SumThresh = sum; xc = l; yc = m; zc = n;
26: end if
27: end if
28: end for
29: return (xc, yc, zc)

Figure 1). We use three parameters λx, λy , and λz to decide how far away along each
dimension to search the balance cells from a watermarked cell. These parameters can be
fixed or floating for different watermarked cells. The last requirement for constructing
a mini-cube is that the modification to the balance cells should be minimum. The cells
with larger values are better to be selected to be balance cells, for smaller values are
more sensitive to the modification that are introduced to the individuals cells during the
construction of a mini-cube. In our scheme, we sum up the absolute values of candidate
balance cells and select those with maximal sum value.

Note that in watermark insertion, a small portion of the cells, the bit positions of the
selected cells, and the bit values assigned to the selected bit positions are all algorith-
mically determined under the control of a private key. The bit pattern constitutes the
watermark. Without knowing the private key, an attacker is not able to know where ex-
actly the watermark is embedded. We also note that the same HMAC function is used
to determine the cells, the bit positions and the bit values in our scheme. To further
increase the randomness of this process, different HMAC functions can be employed
instead of single HMAC function.

3.2 Watermark Detection

The watermark detection algorithm is blind. It neither requires the knowledge of the
original data cube nor the watermark in detection. Since the mini-cubes do not interfere



Rights Protection for Data Cubes 365

Algorithm 3. Watermark detection
1: for i = 1 to Nx, j = 1 to Ny , k = 1 to Nz do
2: HMAC = H(K⊕ opad,H(K ⊕ ipad, Xi ◦ Yj ◦ Zk))

3: if (HMAC mod γ equals 0) then // This cell was marked
4: bp = HMAC mod ξ // bpth bit was marked
5: totalcount=totalcount+1
6: matchcount=matchcount+match(HMAC, b(Xi, Yj , Zk), bp)
7: end if
8: end for
9:
10: τ = threshold(totalcount, α) // See section 4.1
11: if (matchcount≥ τ ) then
12: suspect piracy
13: end if
14:
15: match(MAC value HMAC, cell value v, bit-index j) return int
16: if (HMAC is even) then
17: return 1 if the jth least significant bit of v is 0 else return 0
18: else
19: return 1 if the jth least significant bit of v is 1 else return 0
20: end if

with any cells that have been selected in watermark insertion, there is no need to con-
sider the mini-cubes in watermark detection.

The watermark detection is shown in Algorithm 3. Line 3 determines whether a cell
has been watermarked. Line 4 determines the bit position that have been watermarked.
The function match compares the observed bit value at the bit position with the correct
watermark bit that should be allocated at the position if the data is correctly water-
marked. To claim the ownership over the detected data, one must know how many cells
were tested (total count) and how many of them contained the expected watermark bit
values (match count). In a probabilistic framework, only if a certain minimum number
τ of cells contain the expected bit values, the ownership is claimed(see Line 10). The
match count is compared with the minimum number, τ , which is returned by a threshold
function (see Line 11).

A significance level α is used in the threshold function to determine the minimum
match count τ (see Line 10). The significance level is the upper bound of the probability
that the ownership is falsely claimed for a non-watermarked data cube. If the signifi-
cance level is α = 10−9, for example, the probability of falsely detecting a watermark
is less than 10−9. A formal analysis on the detection probability and the threshold func-
tion is given in Section 4.1.

3.3 Extensions

The computational cost of our scheme is mainly determined by the amount of HMAC
computation in the watermark insertion and detection. In our original scheme, an HMAC
value is computed for each cell. The computation cost is O(Nx ×Ny ×Nz) in terms of
HMAC operations, where Nx, Ny, and Nz are the sizes of the feature attributes (Nx ×
Ny × Nz is the total number of cells). We can extend the scheme such that an HMAC
value is computed for each feature attribute value, rather than each cell. The HMAC
value decides whether the feature attribute value is selected for embedding a watermark.
An attribute value is selected if its HMAC modular 3

√
γ yields zero. On average, one
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Fig. 3. Proportion of correctly detected marks required for claiming ownership in watermark
detection with a significance level α

out of every 3
√

γ attribute values is selected in each dimension. A cell is selected for
embedding a watermark if all its feature attributes are selected. Overall, one out of every
3
√

γ × 3
√

γ × 3
√

γ = γ cells is selected. This number is again the same as in our original
scheme. For each selected cell, a bit position and a bit value can be determined based on
the sum of the HMAC values that have been computed for the cell’s feature attributes. It
is easy to know that the computational cost of this extended scheme is O(Nx+Ny+Nz)
in terms of HMAC operations. Compared with the original scheme, the extended scheme
is more efficient for watermarking large data cubes.

4 Analysis

In the above section, we have designed a watermarking scheme for numeric data cubes
and the scheme satisfies some particular requirements on aggregation, localization, non-
watermarkable values, and computational cost. We now analyze the properties of the
proposed scheme.

4.1 Detectability

To make our watermark detection reliable, the probability of falsely detecting a wa-
termark from non-watermarked data must be low. This probability is controlled in our
scheme by adjusting the significance level α and the number ω of watermarked cells.
Bernoulli trials are employed for analyzing the probability of detecting each watermark
bit from non-watermarked data. Since each watermark bit is determined by a HMAC
pseudo-randomly, it has a probability of 1/2 to match the corresponding bit in non-
watermarked data. Let b(i; n, p) be the probability that n Bernoulli trials result in i
successes and n − i failures, where p is the probability of success and q = 1 − p the
probability of failure. The probability of having at least k successes in n trials (i.e., the
cumulative binomial probability) can be written as

B(k; n, p) =
n∑

i=k

b(i; n, p) =
n∑

i=k

n!
i!(n − i)!

piqn−i (1)

We now specify the threshold function that is used in Line 10 of Algorithm 3. Sup-
posing totalcount = ω, the watermark detection would examine ω “watermark bits”
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from non-watermarked data. The probability of falsely detecting a watermark (i.e., at
least τ out of ω “watermark bits” match their expected values by sheer chance) is
B(τ ; ω, 1/2). Given the significance level α, the threshold function threshold(ω, α)
returns the minimum value τ such that B(τ ; ω, 1/2) < α.

The significance level α determines how amenable the watermarking system is to
the false detection of a watermark. By choosing a lower value of α, the confidence
level in the detection can be raised up if the detection algorithm discovers the owner’s
watermark in a suspicious data cube. Figure 3 plots the required proportion (i.e., τ/ω =
τγ/η) of the correctly detected marks for different values of α and γ. Clearly, we need
to proportionately increase the number of the correctly detected marks as the value of α
decreases. The figure also shows that the required proportion of the correctly detected
marks decrease as the percentage of the watermarked cells increases. This illustrates
that for larger data cubes, a smaller percentage of the total number of cells can be
watermarked without increasing the significance level α.

4.2 Robustness

We now analyze the robustness of our watermarking technique against several malicious
attacks including value modification, value selection, additive attack, and invertibility
attack.

Value Modification. In a value modification attack, an attacker tries to destroy the
owner’s watermark by modifying some cell values. There are various forms of value
modification attack including bit-flipping, zero-out, and randomization. In all value
modification attacks, the exact positions where a watermark is embedded are hidden
from an attacker who does not know the private key. What an attacker can do is to apply
the attacks to all cell values (or bits), or a portion of them in a random manner. The
effect of these attacks is reflected in the portion Vm of the watermarked bits that have
been changed/flipped. For example, if 30% of the least significant bits of all cell values
are flipped in a bit-flipping attack, then the portion Vm is 30%. In a zero-out attack,
we have Vm = min(ν/(2ξ), 1/2) if ν least significant bits of each cell value are set
to zero. In a randomization attack, one has Vm = 1/(2r) if one out of every r cells
is modified in a random manner. Given the portion Vm of the watermarked bits that
have been changed, the sufficient and necessary condition that the embedded water-
mark can still be detected with a significance level α is Vm ≤ 1− τ/ω, or equivalently,
Vm ≤ 1 − τγ/η. Taking Figure 3 as an example, the portion Vm can be as large as
1 − 52% = 48% for γ = 1000, α = 10−5 and η = 256 × 256 × 256.

Value Selection. In a value selection attack, a subset of cells are selected from the
original data cube with an intension that the embedded watermark cannot be detected
from this subset of cells with a high probability. Typical value selection attacks in a
data cube include data cube slicing, iceberg-cube, and random value selection. For all
types of the value selection attack, the number ω′ of the watermarked cells that are
included in the value selection is proportional (i.e., 1/γ) to the total number η′ of the
watermarkable cells that are included in this selection. By a value selection attack only,
no errors are introduced to the watermarked values. Therefore, the watermark detection
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will claim ownership for any non-zero significance level as long as ω′ is greater than
zero. The probability of ω′ = 0 is (1 − 1/γ)η′

, which can be made extremely low for
a reasonably large η. For example, let η = 256 × 256 × 256 and assume that only
one thousandth of the cells are selected in a value selection attack (i.e., η′ = η/1000).
Then the probability that no watermarked cells are included in the selection is about
5.9 × 10−74 for γ = 100, and about 5.1 × 10−8 for γ = 1000.

Additive Attack. In an additive attack, an attacker simply inserts his watermark into
a data cube that has already been watermarked by its owner. If both watermarks are
detected, then the ownership of the data is in dispute. To thwart this type of attack,
Agrawal et al. [1] suggested to locate the overlapping regions of the two watermarks in
which the bit values conflict. However, this may not be always possible if there is a value
modification attack. To reach a decision with certain significance level, a enough num-
ber of watermarked cells that collide must be detected. This may not be realistic since
the probability that the bit values of two watermarks conflict in any given cell is 1

2(γξ)2 ,
which is extremely low for reasonably large γ (e.g., γ = 100). To solve this problem,
one may consider using public watermark schemes (i.e., asymmetric watermarking, see
[13]) that involve public key primitives such as trusted registration authorities and veri-
fiable certificates to resolve any ownership dispute.

Invertibility Attack. An invertibility attack has also been identified in [1] for falsely
claiming ownership using counterfeit watermarks. This attack discovers a key, which
may or may not be the same as the original private key, to detect a satisfactory wa-
termark from watermarked data for certain significance level α. This attack can be
thwarted by imposing two additional requirements on watermarking schemes by con-
vention. First, the private key should be long enough to thwart brute force search. Sec-
ond, the significance level α should be low enough (e.g., 10−10) such that the probabil-
ity of accidently finding a key that yields a satisfactory watermark is negligible.

5 Real Data Experiments

We now report experimental results that complement the analysis presented in Section
4. The experiments are performed using a real 3-D data cube, the LCDM (Lambda-
dominated Cold Dark Matter) cluster simulations in astronomy, available from the De-
partment of Astronomy and Astrophysics at the University of Chicago (http://astro.
uchicago.edu/d̃aisuke/Research/simdata.html#threed).

The data cube has 16,777,216 cells, and each cell value can be converted to an integer
of 32 bits. In experiments, we vary γ from 1 to 10000, and fix ξ, λx, λy , and λz to 8. Our
watermarking scheme is implemented in Visual C++ Version 6 using HMAC-SHA1 1

as the HMAC function. All the experiments are run on a HP Compaq computer with
a Pentium(R) 4 CPU of clock rate 3.00GHz, 1.0 GB of RAM, and 40 GB hard-disk
running Microsoft Windows XP.

1 SHA-1 was recently found not as secure as it was believed to be [22]. Any one-way hash
function can be used in our scheme. The reason for using SHA1 in our experiment is simply
because of the availability of the HMAC-SHA1 code.
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Table 2. Computational cost of watermark insertion and detection

γ = 1 γ = 10 γ = 100 γ = 1000 γ = 10000
Number of cells selected for watermarking 16,777,216 1,676,954 167,124 16,764 1,703
Number of cells modified for watermarking 8,387,424 803,837 80,185 8,094 825
Time for embedding a watermark without mini-cubes (sec.) 299 158 144 142 141
Time for embedding a watermark with mini-cubes (sec.) 340 221 160 154 153
Percentage of watermarked cells for which mini-cubes 0 100% 100% 100% 100%
can be constructed
Time for detecting a watermark (sec.) 254 158 143 141 140

5.1 Computational Cost

The first set of experiments evaluate the computational cost of the watermark insertion
and detection. The experimental result is summarized in Table 2. The performance of
our algorithms is measured in elapsed time. For the watermark insertion, the computa-
tional cost for constructing mini-cubes can be assessed by comparing the running time
with mini-cubes and without mini-cubes.

In the watermark insertion, the computational cost can be broken down into three
components: 1) The computation of a HMAC value for each cell, determining whether
the cell is selected for embedding a watermark; 2) The modular computation for each
cell that is selected, determining which bit position is selected, what the watermark
bit value is, and whether the original cell value is to be modified for embedding the
watermark bit; and 3) The computation of modifying a bit value and constructing a
mini-cube for each cell that is modified.

The experimental results show that the computational cost increases as the percent-
age of the watermarked cells increases. In the extreme case where γ = 1, the number
of the watermarked cells reaches its maximum. In this case, however, no mini-cube can
be constructed, for every cell is selected for watermarking. Nonetheless, it takes longer
for embedding a watermark with mini-cubes than without mini-cubes because of the
time taken to attempt to construct mini-cubes. When γ is set to 10, the time required for
mini-cube construction is 221−158 = 63 seconds. When γ increases to 10000, the time
used for mini-cube construction is down to 12 seconds because much less mini-cubes
need to be constructed. In all of the experiments, the computation of HMAC values is
the major component of the cost for watermark insertion.

Table 2 also gives the running time for watermark detection. The cost of watermark
detection is similar to that of watermark insertion except that there is no need of mini-
cube construction. Again, the major component of the cost is the computation of HMAC
values. Note that the watermark insertion or detection can be done within five minutes in
our experiments for a data cube with 2563 cells. This result indicates that our algorithms
have adequate performance to allow for their use in real world applications.

5.2 Imperceptibility

Since a data cube is a generalization of aggregation functions, the main service provided
by a data cube (e.g., in OLAP) is to answer aggregation queries at various aggregation
levels. To maintain the usefulness of data, the embedded watermark must be impercep-
tible; that is, it does not introduce intolerable errors to any aggregation queries that can
be answered by a data cube. Consider the data cube shown in Figure 1. An example of
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Fig. 4. Comparison of imperceptibility between two watermarking schemes

the aggregation queries asks for the total sale of red Ford GT cars. To answer this query,
a row is localized in the data cube according to the color attribute “red” and the make
attribute “Ford GT.” Then, all the cell values in the row are summed up to get the whole
sale. To measure the effect to the aggregation queries of the watermark insertion, we
calculate the differences between the sums of the original cell values and those of the
watermarked cell values.

In our real data experiments, we evaluate typical aggregation queries that sum the
cell values in each row in a randomly chosen slice, where a slice is a 2-D plane in the
data cube. Let X, Y and Z denote the three feature attributes of the data cube, each
of which has 256 values (i.e., from X0 to X255). A 2-D slice w.r.t. X235, for example,
denotes the 2-D plane in which the cells have the same attribute value X = X235. For
watermarking the data cube, we use γ = 9 and ξ = 8 in our experiments.

Figure 4 illustrates the differences in the sums of rows for three randomly chosen
slices w.r.t. X235, Y130, and Z51 respectively. The differences in the sums are measured
between the original and watermarked cell values. The differences indicate the errors
that are introduced by the watermark insertion to the sum queries. We compare two
types of watermark insertion, with mini-cubes and without mini-cubes. In Figure 4, the
scattered points ‘*’ indicate the errors introduced by watermark insertion without mini-
cubes. The points ‘.’, which are lined-up horizontally at zero value, indicate zero error
that watermark insertion with mini-cubes always introduces. In comparison, the errors
that are introduced by the watermark insertion without mini-cubes are notably large.

6 Conclusion

With the wide spread applications of data cube models in on-line analytical processing,
security techniques for data cube ownership protection is becoming increasingly im-
portant. However, to our knowledge, little research work has been done to assert rights
over distributed or sold data cubes.

In this paper, we proposed the first robust watermarking scheme for protecting the
ownership of numerical data cubes. In our watermarking scheme, a data cube owner
uses his private key to control watermark embedding parameters, including cell po-
sitions, bit positions, and specific bit values. Our blind detection algorithm requires
neither the original data cube nor the watermark during watermark detection. The most
prevalent data cube operations are aggregation queries. To eliminate errors introduced
by watermark to aggregation queries, we invented a novel concept called mini-cubes.
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Based on clearly defined optimization rules, a mini-cube is constructed for each cell that
is modified in watermarking such that all sum queries in the watermarked data cube can
be answered error-free, while without introducing any degradation on the robustness of
the embedded watermark. In addition, we presented an extension of our basic scheme
to improve watermarking efficiency when dealing with very large data cubes. We con-
ducted extensive analysis as well as empirical evaluation for the proposed schemes in
terms of watermark detectability, robustness, imperceptibility, and efficiency. Our re-
sults indicate that the schemes perform extremely well in real world applications.

Our future research efforts include development of public watermark (in which own-
ership can be publicly proved) and fragile watermark (by which value modification can
be detected and localized) schemes for data cubes.
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Abstract. This paper describes an efficient scheme of probabilistic
packet marking. The main idea is to preserve the victims’ IP addresses
at the routers participating in the packet marking scheme, based on the
precondition that a router won’t begin to marking until it receives a sig-
nal from the victim. Then, the destination address field of IP header can
be used to carry edge information without fragmenting, and the identifi-
cation field can be used to check attack paths’ validity under DDoS. We
describe the scheme and discuss the number of packets required for re-
constructing the attack paths, the number of false positives of attackers
and the extra cost at routers in this paper.

1 Introduction

DoS(denial-of-service) attack floods the target host with a large amount of traf-
fic, reducing the host’s ability to service to legitimate users. In case of many
attackers towards one target, it is called Distributed DoS (DDoS). 32% of re-
spondents detected DoS attacks directed against their sites by 1999[6]. More
severely, with the tools such as TBN, TFN2K and Trino, DDos can be easily
launched.

IP traceback is considered to be a solution against DoS attacks, which aims
at identifying the attack source. There are many ways of IP traceback such as
link testing, logging, ICMP-based traceback and packet marking. Our approach
is one kind of edge sampling marking belonging to Probabilistic Packet Marking
(PPM ).

Edge sampling algorithm was originally proposed by Savage et al [2]. They
proposed an approach putting the routing information into the IP headers of
packets. The victims can reconstruction the attack paths without the support
from ISPs.

After [2], more attention is paid to PPM. Song and Perrig [3] improved the
performance of PPM by assuming the victim possesses a complete network map.
Instead of storing the address, this approach reduce storage requirement by stor-
ing a hash of each address. [3] also proposed an authenticated marking scheme
to prevent compromised routers from forging or tampering markings from other
uncompromised routers.

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 373–382, 2006.
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Drew Dean et al [4] proposed an algebraic approach using techniques from
the coding theory and learning theory fields. Michael Goodrich [5] used large
checksums to serve both as associative addresses and integrity verifiers.

In this paper, we propose a scheme maintaining victims’ addresses at routers
and using the destination address field of IP header to carry edge information. At
the same time, the identification field is used to check the attack paths’ validity
in order to reduce the number of false positives of attackers under DDoS. We will
refer our scheme as NOD-PPM (kNow Of Destination PPM) and the Compressed
Edge Fragment Sampling using identification field of IP header in [2] as CEFS
in the rest of the paper.

The rest of the paper is organized as follows: Section 2 introduces the CEFS
in summary and then proposes the NOD-PPM scheme. Section 3 analyzes the
NOD-PPM in several aspects, and experiments are carried out to show the per-
formance of the NOD-PPM scheme. Section 4 comes the conclusion.

2 NOD-PPM Scheme

2.1 CEFS (Compressed Edge Fragment Sampling)

NOD-PPM is based on edge sampling [2]. CEFS is an interesting edge sampling
scheme. In CEFS, each router marks its address information into packets with a
probability p. In the case of flood-type DoS attack, the victim will collect enough
marked packets and reconstruct the attack path. [2] uses the 16-bit identification
field (seldom used) to store mark information: 5 bits for distance, 3 bits for index
and 8 bits for fragments of the edge and its hash value. For more details, please
refer to [2].

CEFS is interesting and elegant, but it has the disadvantage of the extraor-
dinarily time-consuming process of grouping the fragments and the high false
positive of attackers under DDoS attacks.

2.2 NOD-PPM (kNow of Destination PPM)

Fig.1 shows a network seen from the victim, V . Ri represent routers and Ai

represent potential attackers. We call the tree with V as its root and Ai as its
leaves attack tree, and call the paths form the root Ai to V attack paths.

When a victim site V suffers a Dos (or DDos) attack, it will send marking-
request-signals to a set of routers requesting their participation in the proba-
bilistic packet marking process. The set of routers may be in the same AS or
under control of the same ISP or within d hops away from V, depending on the
network’s situation and the concern of the victim.

Each marking-request-signal contains the IP address of the victim (V) and its
hash value H(V). When a router receives a marking-request-signal and decides
to take part in the edge marking process, it will insert an entry (H(V) , V) into
the table Tvic (a table preserving victims’ addresses at routers) and process
the Marking-and-Routing procedure. If a router does not have a Tvic table or
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Fig. 1. Upstream routers map from a victim

its Tvic table is empty, it means that the router has not participated in any
NOD-PPM process.

Each entry of Tvic will be deleted automatically a period of time after its
creation, as the router supposes the victim has already have enough marked
packets to reconstruction the attack tree. We assume that there are only a few
victims in network that want routers to mark packets towards them at the same
time. However, as the time of collecting enough packets for reconstructing attack
tree is short (we will discuss it later), the routers can update the table Tvic
quickly and server more victims. Besides the destination field of IP header, we
use the undefined bit in flags field of IP header to denote whether the packet is
marked, and use the identification field (only 0.25% packets use this field in the
Internet [10]) to store distance, the hash value of the victim’s IP address and
the digest of the router’s address (Fig.2) . More details are listed as follows:

(Let w be the packets marked.)
Destination address (w.dstIP, 32 bits): XOR of two adjacent routers’ ad-

dresses. If the marking router R is connected directly to V, this field is the
address of R.

Undefined flag (w.marked, 1 bit): 1, where w is marked; 0, otherwise.
Identification 0-4 (w.distance, 5 bits): the distance from Ri to V, maximum

31, which is sufficient for almost all Internet Paths [7, 8, 9].
Identification 5-7 (w.IndVic, 3 bits): the hash value of victim’s IP address.

For marked packets, routers refer to the Tvic table with it and find the victim’s
IP address.

Identification 8-15 (w.dgstR, 8 bits): the digest of Ri−1 (Suppose <Ri−1, Ri>
is the marking edge, and Ri−1 is closer to V.). When there are several routers at
the distance of i from V, we need to know whose address w.dstIP should XOR
with. This field will give us some information. If some Ri−1’s digest is equal to
w.dstR, we get Ri by w.dstIP XOR Ri−1.



376 H. Yin and J. Li

Fig. 2. Marking fields of IP header

When reconstructing, the victim firstly orders the marked packets by distance,
then calculates the routers’ IP addresses as Fig.3 shows. The algorithm is as
follows.

Fig. 3. Reconstructing the routers’ addresses
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Marking and routering procedure:(at router R)

for each packet w
{ let x be a random number from [0..1]

if x<p //decide to mark
{

w.IndVic = H(w.dstIP)
w.dstIP = R
w.marked = 1
w.distance = 0

}else // not to mark
{

if w.marked==1 //marked packet
{

if w.distance==0
{

w.dstIP = w.dstIP XOR R
w.dgstR = Dgst(R)

}
w.distance++

dstadd = Tvic(w.IndVic)
route w to dstadd

}else //unmarked packet
do regular routing

}
}

Reconstruction procedure:(at victim V)

order marked packets by the value of w.distance;
let V be the root of the attack tree T;
for all marked packets with w.distance==0;
{

add the edge(v,w.dstIP) to T;
calculate the digest for every leave l;

}
for distance = 1 : max_distance
{

if w.distance==l.distance && w.dgstR==Digest(l)
add edge(w.dstIP XOR l , l) to T

calculate the digest for every leave l
}
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3 Analysis

3.1 Packets Required for Victims to Reconstruct Attack Paths

It is obvious that the probability of receiving a marked packet form a router d
hops away from the victim is p(1−p)d−1. The victim always collects more packets
marked by near routers, so the number of packets needed for reconstruction
(N) depends on the arrival of the packets marked by the routers closest to the
attackers. As the [2] analyzes, N follows the bounded expectation: (d is the
distance between Ai and V .)

E(N) < ln(d)
p(1−p)d−1 , where single attack path, no fragmenting.

E(N) < kln(kd)
p(1−p)d−1 , where single attack path, k fragments.

Similarly, we can get:
E(N) < mln(md)

p(1−p)d−1 , where m attack paths, no fragmenting.

We can see our scheme requires less than 1/8 times of the packets CEFS re-
quires. For example, let d=10, m=1, and p=1/25, the CEFS needs about 1300
packets on average to perform reconstructing process [2], while NOD-PPM re-
quires less than 90 packets. In other words, it cost routers less time to mark for
each victim. Therefore, though the Tvic table can preserve only a few victims’ ad-
dresses, the table can update quickly for the new coming marking-request-signals.
In DDos attacks, E(N) increases with the number of attackers. For example, if
there are 100 attackers and the average packet arrival rate is 100p/s, it will cost
250s which is still reasonable.
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Fig.4 and Fig.5 shows the experimental results of the number of packets
needed for reconstruction. In the experimental we choose p=1/25 and assume
the attack(s) generate(s) packets at a constant rate.([9] do several experiments
on the time needed to collect enough packets in different traffic arrival processes,
including Poisson arrivals, constant-rate arrivals, and burst mode arrivals. The
results seem close to each other in different arrival processes.)Fig.4 shows the
case with only one attacker (m=1), while Fig.5 shows the case with 10 attackers
(m=10). The y-axis ”number of packets” in both figures is the average of more
than 100 tests. We also assume that all the attackers are in the same depth
in Fig.5 for simpleness. We can see that the number of packets needed grows
significantly more slowly in the NOD-PPM than in CEFS with the growing of
the depth of attackers.

3.2 Reconstructing Time

If there is only one attacker, NOD-PPM performs almost the same as the CEFS
does. However, under DDos, grouping the edge fragments is extraordinarily time-
consuming. If there are m completely independent edges at the depth of i, there
will be O(m8) combinations to be considered just at the depth of i. Let m=10,
it is 100 million. For every combination, the hash value of the edge must be
calculated and compared. Since a victim always has limited computing resource,
it is hard to execute the reconstructions in a reasonable time.

On the other hand, in NOD-PPM, edge information is not fragmented by
using the 32-bit destination address field, so the process of grouping is totally
omitted.
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3.3 The Number of False Positives of Attack Paths (NPF)

Another benefit of NOD-PPM comes from the 8-bit dgstR field. Under DDos
attacks, there are several routers at depth of i (i=1,2,d) in the attack tree. When
calculating the routers at the depth of i+1 of the tree, the victim does not know
which router should be chosen as downstream router without dgstR fields. The
NPF will increase exponentially, in the worst case, O(md). With dgstR, if the
digest function is ideal, the complexity of the problem can be reduced min(28,
m ) times at every depth. (m is the number of attackers and d is the maximum
depth of the attack tree.)

To test the benefit, we simulate the processing of reconstruction with Internet
topology dataset obtained form Lucent Bell Lab [1]. (As our concern is the col-
lision of IP addresses’ hash values, we leave the routers with ”HOLE ” identifier
out.) We randomly select attackers 10 hops away from the victim. The result is
in Fig. 6.
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Fig. 6. False positives of NOD-PPM

Though using digest of router’s address reduces false positives, the perfor-
mance is not good enough. 8-bit digest is not sufficient for 32-bit address. To
improve the performance, we try to use two or more independent hash functions.
In this case, we should modify our algorithm. When marking, the router choose
one of these hash functions in some order to generate the dgstR field; when re-
constructing, we consider one edge to be linked to a leaf router in attack tree
only when all of the router’s hash values are matched by some packets with the
same dstIP filed. We can use part of the IndVic field (1 bit for 2 hash functions,
2 bits for 4 hash functions) to denote the chosen function in packets.
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In Fig.6, we can see there are only about 25 false positives attacked by 500
attackers in 4-hash check scheme. The performance result is good, though this
modification causes the increase of the number of packets needed for reconstruc-
tion and decrease the number of entries in Tvic.

3.4 Cost at Routers

Obviously, the NOD-PPM increases the routers’ work. As long as a router par-
ticipates in the NOD-PPM process, it will check every packet transiting it to
make sure whether the packet is marked. In addition, a table Tvic is needed.
However, since regular routing process will check the fields of IP header such
as destination address, TTL, checksum and so on, checking one more field (the
”marked” field) won’t significantly increase the routers’ load. Moreover, com-
pared to routing table and forwarding table in a router, the table Tvic is tiny
(at most 8*(32+3) = 35B), so searching and reading Tvic is fast.

3.5 Limitations

The NOD-PPM is based on the request-marking-signal, but the signal may be
under attacks. If the request-marking-signal is invalid, the whole packet-marking
process is meaningless. Besides, the table Tvic at routers should be synchronized
in some way.

If some routers may not take part in the NOD-PPM scheme, marked packets
will be delivered incorrectly. If some routers are compromised, they will send out
false information. Therefore the scheme depends on the routers’ participation
and reliability.

As all packet marking schemes, the scheme can only find the nearest slaver
attackers and require enough packets from every attacker.

4 Conclusion

In this paper, we proposed a modified PPM approach to IP traceback called
NOD-PPM. Require-marking-signal is prerequisite to our approach, which
should be sent from the victim and received by the routers correctly. Looking up
the table Tvic (preserving addresses of the sources of Require-marking-signals),
the routers know exactly the destination of the marked packets, so the destina-
tion address field of IP header can be used to carry the edge information without
fragmenting. Though the table Tvic is small, it updates quickly according to our
discussion. This modification reduces the numbers of packets required to recon-
struct attack paths by 1/8 times at least and eliminates the time-consuming
processing of grouping fragments in DDos. In addition, the introduction of di-
gests of routers’ addresses can decrease the number of false positives of attackers
in DDos. The NOD-PPM increases the routers’ work, but it is little compared
to the regular work of routers.
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Abstract. Most network intruders launch their attacks through a chain of 
compromised hosts (stepping-stones) to reduce the risks of being detected or 
captured. Detecting such kind of attacks is important and difficult because of 
intruders’ evasion to detection, such as time perturbation, and chaff 
perturbation. In this paper, we propose a clustering algorithm to detect stepping-
stone intrusion based on TCP packet round-trip time to estimate the 
downstream length of an interactive terminal session and give its resistibility to 
intruders’ evasion. The analysis and simulation results show that this algorithm 
can detect stepping-stone intrusion without false alarm, and low misdetection. It 
can resist to intruders’ time perturbation completely, as well as chaff 
perturbation to a certain extent.  

Keywords: Network security, intrusion detection, stepping-stone, evasion, time 
perturbation, chaff. 

1   Introduction 

Network Intruders tend to launch their attacks through compromised hosts, which are 
called stepping-stones [1], to reduce the risks to be detected or captured. Such kind of 
attack is called stepping-stone intrusion. To detect stepping-stone intrusion, bunch of 
approaches [2], [1], [3], [4], [5], [6], [7], [8] have been proposed since 1995 even 
though the concept ‘Stepping-stone’ was formally defined in 2000. Some approaches, 
such as the method in paper [2], are unavailable in detecting encrypted TCP 
interactive sessions because they are content-based. Some other approaches, such as 
[1], and [3], are vulnerable to intruders’ time and chaff perturbation. Even though the 
approaches presented in [5], and [6] have the ability to detect intruders’ evasion, as 
well as the theory analysis of detecting stepping-stone on jittered sessions, but they all 
suffer from high false alarm rate in detecting intrusion because being used as a 
stepping-stone does not mean an intrusion. The paper [1] pointed out that legitimate 
stepping-stone users could be as high as 100 each day in the one large site of the 
University of California at Berkeley. Our experiment also showed that the false alarm 
rate could be as high as 80% sometimes in the main site of Computer Science 
Department, University of Houston by using the approach in [1]. The main reason is 



384 J. Yang, Y. Zhang, and S.-H. Stephen Huang 

that many applications (users), which are obviously not intruders, need to connect out 
through one or two hosts to do something necessarily. 

However, through long time observation and careful analysis, we found that such 
legitimate users (applications) connect out through at most two hosts, most of the 
time, only one host. As intruders, they prefer to compromise more hosts to make them 
safe, usually more than three hosts. This motivated us to detect stepping-stone 
intrusion by estimating the number of hosts compromised to reduce false alarm rate. 
K. H. Yung proposed an approach in paper [4] to estimate the length of an interactive 
session by exploiting the TCP packet round-trip time (RTT). Its main idea is to use 
the length of a connection from the monitor point (one of the stepping-stones) to the 
next neighbor host to measure the length of the whole session relatively. An intrusion 
is detected if the whole session is relatively long. This method can largely reduce the 
false alarm rate in detecting stepping-stone intrusion, but still suffer from 1) yard-
stick problem [9]; 2) computing TCP packet RTTs of an interactive session 
inaccurately.  

J. Yang and S. Huang proposed an algorithm, which can overcome yard-stick 
problem, to detect stepping-stone intrusion in papers [7], [8]. The basic idea of Yang’s 
approach is to estimate the number of connections of an interactive session by 
monitoring all the TCP ‘send’ and ‘echo’ packets from the start to the end of the 
session, finding all the matches (‘match’ will be defined later) between each send and 
echo packet, and computing all the RTTs between matched send and echo packets. 
When a session has only one connection from the monitor point at the beginning, we 
get bunch of RTTs which are different, but should be bounded within a narrow range, 
called a level. Similarly, when the session has two, three, even more connections, we 
should get RTTs in different levels. In other words, if we compute all the RTTs, and 
count the number of levels, we are supposed to know the number of the connections 
of the session. The accuracy of this method depends on the performance of an 
algorithm to match send and echo packets. Two algorithms, the Conservative and the 
Greedy, are proposed in Yang’s paper [8]. The Conservative algorithm could give 
high quality match but with only little packets matched; the Greedy algorithm could 
give more ‘matched’ packets but with some unsure matches. A novel algorithm called 
Clustering-Algorithm, which can get both high matching-accuracy and matching-rate, 
is proposed in this paper to detect stepping-stone intrusion. 

In this paper, first we describe the Clustering-Algorithm, and then mainly focus on 
analyzing its resistibility to time and chaff perturbation. The analysis result shows that 
this algorithm is robust in detecting intruders’ time perturbation, as well as robust to a 
certain degree in detecting intruders’ chaff evasion. The experiment and simulation 
results also showed that the Clustering-Algorithm can detect stepping-stone intrusion 
with zero false alarm rate and very low misdetection. The miss detecting would be as 
low as zero if we assumed that the detecting point is always far away from the victim 
site. The detail analysis is in Section 2. 

The rest of this paper is arranged as following. Section 2 gives the problem 
statement. Section 3 describes the Clustering-Algorithm and its experimental 
verification. Section 4 and 5 focuses on analyzing the resistibility of the Clustering-
Algorithm to intruders’ manipulation. In Section 6, related work is discussed. Finally, 
in Section 7, the whole work is summarized and future work is presented.  
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2   Problem Statement 

A network intruder may compromise some hosts h1, h2, …, hn to invade any host hn+1, 
which is assumed the victim site, from host h0. Before launching his attack, the 
intruder may establish a TCP session through first connecting to h1 from h0, then to h2 
from h1, and eventually to hn+1 from hn by using tools, such as Telnet, SSH, rlogin, 
and so on. The hosts h1, h2, …, hn are called stepping-stones on any of which we are 
able to run our detecting program. The host we can run our detecting program is 
called a monitor point (MP). We use flow hi hi+1 to represent a network connection, 
and the sequence of network connections h0 h1 ….hi hi+1 …hn hn+1 is called a 
connection chain which length is n+1 connections. The chain toward the victim side 
from a MP is called a downstream connection chain. Correspondingly, the chain 
toward the intruder side from the MP is called an upstream connection chain. In this 
case, if we assume hi is a MP, and 0<i<j<n+1, then the chain h0 h1 … hi is called 
an upstream connection chain of the MP, and hi hi+1 … hn+1 is called a 
downstream connection chain. The connection hi hi+1 is an upstream connection of 
the connection hj hj+1, while hj hj+1 is a downstream connection of hi hi+1. The 
length of a downstream (upstream) connection chain is called a downstream 
(upstream) length.  

For each MP, an incoming connection is a connection connected to the MP, and an 
outgoing connection is the one connected out from the MP. For example, if hi is a MP, 
then hi-1 hi is its one incoming connection, and hi hi+1 is its one outgoing connection. 
Most of the previous approaches focus on detecting if a host is used as a stepping-
stone by correlating incoming and outgoing connections; these methods introduce lots 
of false alarms in detecting stepping-stone intrusion. To reduce the false alarms, our 
approach to determine an intrusion is first to estimate the downstream length and then 
compare it with a given threshold (in this paper, we assume it is 3) to see if a user 
comprises more hosts. Obviously the misdetection depends on where the MP is in a 
connection chain. Actually we could not appoint which host is our MP because the 
reality is that we even do not know which host is going to be used as a stepping-stone. 
What we could do is to install our detecting program in all the hosts (host-based 
detection) or gateways (network-based detection) which are under control. In this 
case, if we assumed our MP is the host hn, we would miss the possibility to detect any 
intrusion because the downstream length is only one connection. However, if we 
assumed our MP is the host h1, we would not miss any intrusion. The closer to the 
victim’s host a MP, the higher misdetection the detecting algorithm. In this paper, to 
reduce misdetection, we simply assume that our MP is far away from the victim site. 
So the statement of detecting stepping-stone intrusion is reduced to estimating a 
downstream length. 

Intuitively, all the packets in an incoming connection of a MP are forwarded to an 
outgoing connection if the two connections are in a same chain. For a TCP session, 
our algorithm only focuses on two kinds of packets: Send and Echo, which are 
defined as the following, 

Send: A TCP packet is defined as a Send if it propagates downstream and has either 
both flags ‘Push (P)’ and ‘Acknowledgement (A)’ or only flag ‘P’ [10]; 
Echo: A TCP packet is defined as an Echo if it propagates upstream and has either 
both flags ‘Push (P)’ and ‘Acknowledgement (A)’ or flag only ‘P’. 
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In each outgoing connection of a MP, we put the packets captured into two 
sequences S and E depending on if a packet is a Send or an Echo, respectively. If we 
monitor an outgoing connection for a certain period of time, we have S={s1, s2, …, sn}, 
and E={e1, e2, …, em} where we use si (ej) to represent the timestamp of a Send (an 
Echo), 1<i<n (1<j<m). If a Send matches an Echo, then the gap between them is 
called the RTT of the Send; this gap can also be used to measure the downstream 
length of a connection chain at that time. For example, if (si, ej) is a matching pair, the 
gap ej-si can be used to represent the downstream length. We give the definition of 
‘Match’ as the following, 

Match: If a given Echo is directly triggered by a Send, then the Echo is defined as a 
matched packet of the Send. 

It would be trivial to match send and echo packets if only one Echo was triggered by 
only one Send. The complicated cases are more Sends correspond to one Echo or one 
Send corresponds to more Echoes. Under these situations, we use the shortest gap to 
measure the downstream length based on the definition of Match. For example, if send 
packets (s1, s2, …, sk) only trigger one Echo (ej), then the RTT between them is ej-sk; if 
one Send si triggers more Echoes (e1, e2,…eq), then the RTT between them is e1-si.   

Through our observation, we found that the case more Sends trigger one Echo 
seldom occurred in an interactive session. Even though it happened occasionally, we 
also found that the timestamps among these Sends are so close that we might consider 
them as one Send in terms of computing the RTT. To simplify our analysis, we 
assume that different Sends will trigger different Echoes. Each Send has and only has 
one RTT. So if we assume that a connection chain does not increase or decrease in a 
certain period of time, for all the n send packets captured in the outgoing connection, 
we have n RTTs that are different but within a very narrow range, which is called one 
level. Here is a real world example which may give us a practical sense of RTTs. We 
take one host (Acl08) of our lab as a MP, and connect out to a host in California 
through five hosts spanning from the United States to Mexico. Part of the RTTs is 
(212.34, 216.02, 211.37, 212.63, 210.71, 216.55, 212.26, 211.52, 213.10, 212.34, 
218.24, 215.57, 212.93, 215.82, 215.91, 211.61, 212.49) in ms (millisecond). We 
increased the chain one more connection, and got another RTT sample: {265.26, 
265.47, 264.06, 262.91, 276.74, 263.55, 266.37, 266.75, 264.83, 265.32, 265.59, 
265.16, 262,91} in ms. Look at these two real world RTTs examples, we find that 
even though the RTTs in each sample vary, but the RTTs in the first one is bounded 
within the range <210, 219>, and in the second one bounded within the range <262, 
267>. It is not difficult to distinguish the two levels unless they are overlapped. In 
other words, we can estimate the number of connections of a chain by counting the 
number of RTTs’ levels through monitoring a connection chain from the start to the 
end. Apparently, the key is to compute the RTTs or to find matching pairs between 
Sends and Echoes. Now the statement of estimating a downstream length in terms of 
connections is reduced to finding the RTTs of the Sends of a connection chain.  

There is one issue we must mention, which is how to get the RTTs before we 
propose the Clustering-Algorithm and guarantee the RTTs are correct. One obvious 
way is to use Telnet to set up a chain and match the packets based on their contents. 
But here we use a simple way, and still efficient to generate the correct RTTs. In fact, 
the reason we cannot match each Send with its corresponding Echo or Echoes is that 
usually a user types so fast that there are many Send-Echo overlaps which make it 
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difficult to match a Send and an Echo. An example here could be helpful for 
understanding this point. As a regular user, his/her typical keystroke speed is about 6-
10 keys per second, which means the gap between two consecutive keystrokes is 
about 100-166 ms. Here we assume each keystroke generates one packet. Suppose we 
take the upper bound 166 ms, it means the Echo corresponding to a Send cannot come 
back before the next Send is sent if the length of a connection chain is longer than 166 
ms, such that the scenario {s1, s2, e1, e2} would be generated. In this case, we are pretty 
sure that s1 can match e1, but we cannot guarantee that s2 can match e2 because it is 
possible that s1 could match both e1 and e2, and s2 is going to match the packet after e2. 
But if the situation turns into the case, like {s1, e1, s2, e2}, it should be clear that s1 
matches e1, and s2 matches e2 whatever what kind of packets follow e2. To generate 
this kind of situation, we only need to control our typing speed slow enough to 
guarantee that the Echo of one Send comes back before the next keystroke. So under 
this situation, if the packet sequence captured was like {s1,e1,s2,e2,e3,s3,e4,…, sn,em, 
em+1, …, em+k}, finding the RTTs of all Sends would be effortless.  

3   Clustering-Algorithm 

3.1   The Basic Idea 

Given two sequences S={s1, s2, …, sn} and E={e1, e2, …, em}, we assume that these 
packets are captured in one outgoing connection of a MP from the time a user 
connects to the first downstream host to the time the user connects to the victim site. 
Our purpose is to find the RTTs for all Sends in S. If we knew the matched pairs 
between S and E, it would be simple to find the RTTs. However, matching each Send 
in S with an Echo in E is the same difficult as finding the RTTs. Through the 
discussion in Section 2, we know that the RTTs in each level are within a very narrow 
range. We monitored many connection chains their length are fixed for a long time, 
and got hundreds of thousands RTTs. We found the occurrence of the RTTs of each 
session obeys Poisson distribution. One of the distribution results is showed in Fig.1, 
where Y axis represents the occurrence probability of a specific range of RTT, and X 
axis represents the value of each range of RTT in unit microsecond. 

Fig.1 shows clearly that more than 95% of the RTTs distribute around 137,000 in 
microsecond. It means if we mined all the RTTs, more than 95% RTTs would be in 
one cluster with center 137,000 in microsecond. Any Send si in S must be matched by 
one or more Echoes in E, but we do not know the one or ones exactly. However, we 
do know that the Echoes of E only after si have possibility to match si; we assume 
those Echoes are {ej, ej+1, …em}. By computing the gaps between si and each of ej, …, 
em, we get a data set Si={siej, siej+1, …, siem} in which any element siev represents the 
time gap between si and ev, that is siev=ev-si (v is an integer, and j v m). Even though 
we do not know which element in Si is the right one to represent the RTT of si, but we 
do know it must be one element of Si. If we only check one data set Si, it might be 
difficult to determine an element in Si to represent the real RTT. However, by 
checking more such kind data sets, we found a very interesting and useful point that is 
each data set contains one element which is very close to an element in other data 
sets. In other words, if we check data sets Si, Si+1, …, Si+k, most probably there is one 
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element in Si which is very close to one element in Si+1, as well as close to an element 
in Si+2, Si+3,…, Si+k, respectively. The more data sets we check, the higher probability 
we find the RTTs precisely. The above discussion is based on the length of a 
connection is fixed. If we monitor a connection chain which length is increasing from 
the start to the end, and capture all the n Sends, and m Echoes, we get n data sets S1, 
S2, …, Sn each of which corresponds to one different Send. We combine all the data 
sets together to form a set D, D=S1 S2 … Sn, where  represents union 
operation. If we use data mining method to mine D, the number of the significant 
clusters (defined below) is the downstream length in terms of connections.  

 

3.2   Clustering-Algorithm 

Based on the above basic idea, we propose a Clustering-Algorithm to find the RTTs 
of all the Sends in a connection chain by exploiting the distribution feature of RTTs. 

Step 1 of this algorithm is simply a clustering algorithm, the maximum-minimum 
distance clustering (MMD), with a predefined threshold th. The MMD algorithm can 
result in v clusters. We shall assume the elements of these clusters are sorted in an 
increasing order of the index i which is the send packet index. The range of a cluster C 
is defined as the maximum i-index of the elements in C minus the minimum i-index 
plus one. In Step 2, we filter out duplicated elements either with the same send packet or 
with the same echo packet in each cluster. The preference is given to a smallest RTT.  

In Step 3, we measure the likelihood of a cluster truly representing a level in the 
RTTs. A true RTT cluster should have elements representing consecutive send 
packets with very few exceptions. So we first define a subset of a cluster containing 
“Connected” elements, i. e., elements having neighbors with a distance of g. A typical 
value for g is 2 (allowing one missing send packet). “Disconnected” elements are 
mostly not part of this cluster. 

The purpose of Steps 4 and 5 is to select the clusters that have very high likelihood 
of true RTTs. According to the Chebyshev inequality, there are very few elements in 

Fig. 1. The distribution of RTTs of an interactive session 
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the set R outside two standard deviations of the mean of the set R. A true RTT cluster 
is a partition of all send packets satisfying the following two conditions: (1) all 
clusters are mutually disjointed, and (2) the union of all clusters is equal to the whole 
send packet set. In reality, condition (1) is easy to be satisfied, but it is very difficult 
to make the union of the clusters exactly equal to the send packet set S. In our 
algorithm it turns out to find the clusters which union has the largest distribution in S.  

Clustering-Algorithm (D, th, g): 
1. Call MMD(D, th), output clusters C1, C2, …, Cv.  
2. For each cluster C, (1) if t(i,j), t(i,k) ∈ C, and j < k, delete t(i,k), and (2) if 

t(i,j), t(k,j) ∈ C, and i < k, delete t(i,j). 
3. For each cluster C, compute the clustering ratio ri = |Cn|/range(C), where Cn = 

{t(i,j) ∈ C | t(p,q) C, and |i-p|  g}. 
4. Select clusters X1, …, Xs from the clusters C1, C2, …, Cv. They have 

significantly higher ratios among set R={r1, …, rv}. We consider ri to be 
significantly higher than the rest of the values if it is two standard deviations 
higher than the mean of R; the corresponding cluster is called significant 
cluster. 

5. Find a maximum disjoint subset among X1, …, Xs. If there is a tie, select the 
subset whose union is the largest.  

6. Output the number of the clusters in Step 5 as the number of connections. 
End 

The detailed MMD algorithm can be found in [11], [12], [13]. It first finds all the 
cluster centers, and then adds all the elements to each cluster. Its cluster results 
depend on its first element, rather than the input elements order. If we assume m=n, 
the time complexity of MMD is O(n2v2) with the worst case O(n4). The MMD 
algorithm still has many computations. One future work is to make MMD more 
efficient by reducing the space of set D.  

3.3   Experimental Verification 

Intuitively the above algorithm is correct, but so far we cannot prove its correctness in 
terms of estimating the downstream length of a session in theory. In this section we 
justify its correctness through experimental result. We did the experiments hundreds 
of times under different situations, each time it can give us the expected results. Here 
we show one of the results.  

We set up a connection chain by using SSH starting from one host (Acl08) of our 
lab to a host VH in California which is assumed the victim’s site, and the connection 
is Acl08 Acl09 H1 H2 H3 H4 VH, where a user operates at host Acl08 and 
we take Acl09 as the MP. H1, H2, H3, and H4 are remote hosts spanning the United 
States and Mexico. We monitored the outgoing connection of Acl09, captured all the 
Sends and Echoes, and ran the Clustering-Algorithm with parameters th=0.1, and g=2. 
The final result is showed in Fig. 2 in which Y axis represents the clustering ratio, and 
X axis represents the cluster center value in ms. 
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In this experiment, we already knew that the connection chain has five connections 

from the MP. Even though there are more than 50 clusters got by MMD, but only five 
of them have the clustering ratios higher than 60% while the others are lower than 
11%. The number of the clusters with significant ratios is exactly the same as the 
downstream length in connections. Fig.2 shows that the five significant clusters center 
on 65.7, 130.4, 197.3, 260.5, and 390.4 ms, which represent five levels of the RTTs, 
respectively. For example, the value 65.7 ms means most of the RTTs are around this 
value when the chain is at the level with one connection. As we have discussed 
before, the accuracy of the Clustering-Algorithm depends on the number of Sends 
captured. An intruder might evade the detection by typing characters as little as 
possible to make this detection unable to work. But this would be difficult because a 
user must type the username, password, and a domain name which are necessary 
information for connecting to another host. And more, once an intruder logs into one 
host, he/she must do something to make sure there is no surveillance program in this 
host before connecting out. To avoid typing too much would put an intruder in a very 
embarrassed environment and make it hard to invade other hosts.  In fact, most 
intruders usually evade detection by conducting time and chaff perturbation. In the 
following two sections, we center our discussion on how the Clustering-Algorithm 
resists to intruders’ evasion.  

4    Resistance to Time Perturbation 

We have proposed the Clustering-Algorithm to detect stepping-stone intrusion by 
estimating the downstream length of a connection chain. The experimental results 
showed that it works perfect without any perturbation on the session. How does it 
work under perturbation? In this section we center on analyzing the performance of 
the Clustering-Algorithm under time perturbation. 

For an interactive session established by an intruder, it could be perturbed at any 
one or some of the hosts of a connection chain. To simplify our analysis, we assume 

 Fig. 2. One of the cluster results of the algorithm
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that an intruder could conduct time perturbation on any one host of a chain, rather 
than on some hosts. Like the assumption in paper [5], [6], we assume that the 
perturbation is bounded, as well as assuming that the perturbation can only be 
conducted on the Sends of an outgoing connection, rather than the Echoes of both 
outgoing and incoming connection.  Even though an intruder could be on any host of 
a chain to manipulate the session, but there are only three positions with different 
effects. We assume H0 is the intruder’s host, Hi is our MP, and Hn+1 is the victim’s 
host. Fig.3 shows the three positions: one is on any host (except the intruder’s host) 
before the MP; the second one is on the MP; and the third one is on any host (except 
the victim’s host) after MP. In Fig.3, the solid black arrow represents the Send 
direction in a connection chain, and the dash one represents the Echo direction in the 
same chain.  

 
 
 
 
 
 
 
 
 
If time perturbation is implemented on any host before the MP, it does not affect the 

Clustering-Algorithm to detect stepping-stone intrusion at all. We use symbol S(i,1), S(i,2) 
to represent the Send sequence in the incoming connection and outgoing connection of 
the host Hi respectively. Similarly, E(i,1) and E(i,2) are used to represent the corresponding 
Echo sequence. Before any time perturbation, the send and echo packets captured on H1, 
and Hi in a certain period of time are as sequence set (1) shows. 
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Here, each element represents the timestamp of a Send or an Echo. For simplifying 
our analysis, we assume that there is no packet drop, combination, insertion, and 
generation. Actually removing all these assumptions does not affect our analysis 
result. If there is time perturbation in the outgoing connection of H1, most probably 
this perturbation can propagate to host Hi. We use i to represent the perturbation over 
packet si. The perturbed sequences in H1, and Hi are as sequence set (2) shows. From 

sequence set (1), we know for any Send, such as )2,(i
ks in the outgoing connection of 

Hi, assuming its Echo is )2,(i
ke , its RTT is )2,()2,( i

k
i

k se − . From sequence set (2), even 

though the kth Send has been perturbed to k
i

ks Δ+)2,( , but the corresponding Echo is 

affected to k
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ke Δ+)2,( as well, so the RTT keeps the same. Our conclusion is that 

time perturbation on any host before the MP does not affect the performance of the 
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Clustering-Algorithm. It holds the same conclusion to the case when a time 
perturbation is implemented in the host MP.  
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However, if time perturbation is performed on any host after the MP, the RTTs are 
affected, but the downstream length estimated by the Clustering-Algorithm remains 
the same. We assume that the host Hi+k is manipulated by an intruder, and the time 
perturbation for each Send is bounded by Δ . Obviously, for any Sends, their RTTs are 
not affected by the time perturbation conducted on Hi+k until the connection chain goes 
through Hi+k. The RTTs are affected when the chain connects to any host after Hi+k. 
But we still could distinguish two levels of the connection chain by observing the 
RTTs under the condition that the time perturbation is bounded. We assum there are 
two hosts Hu, Hv after Hi+k, and i+k<u<v<n+1. When the chain is extended to Hu, the 
Send and Echo sequence captured on the MP is as sequence set (3) shows. Sequence 
set (4) shows the Send and Echo sequence when the chain is extended to Hv.  
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Here we use u, and v as the superscript to distinguish two different hosts, and as the 
subscript to distinguish different time perturbation. Even though the time 
perturbations on host Hi+k are different for different Sends, but all the perturbations are 
assumed to be bounded by Δ . For a Send q, its RTT under the cases (3) and (4) are 
computed as the following, respectively.  
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Here
),(),( , vquq TRTTRT ′′ represent the RTT before any perturbation conducted on host 

Hi+k. From (5a) and (5b), we see it is still able to distinguish 
),( uqRTT from 

),( vqRTT . 
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Even though the RTTs are changed after time perturbation, but we are still able to 
estimate the number of connections of a chain by applying the Clustering-Algorithm.  

5   Resistance to Chaff Perturbation 

Another way to evade detection is chaff perturbation, which means an intruder could 
manipulate an outgoing connection by inserting some meaningless packets into the 
original Send sequence. This section is to analyze the resistance of the Clustering-
Algorithm to intruders’ chaff perturbation. Most probably an intruder would 
manipulate a session by combining time and chaff perturbation together, rather than 
only any one of them. But here we only focus on analyzing the resistance analysis to 
chaff perturbation. To simplify our analysis, we make the following two assumptions: 

1) An intruder could insert meaningless packets into any two consecutive Sends, but 
the timestamps of the original Sends cannot be changed; 

2) Whatever how many meaningless packets are inserted, the meaningful packets 
are still the majority. 

We define inserting ratio as the proportion between the number of inserted packets and 
the number of whole packets including chaff and original packets. Assumption 2) 
indicates the inserted packets cannot be the majority. If we have n normal Sends, the 
number of the inserted packets among the n Sends cannot be more than n. So 
assumption 2) indicates that the inserting ratio is bounded by 50% in chaff perturbation.  

For an interactive session, the inputs are supposed to be executed at the victim site. 
Any chaff should be removed before it reaches the victim site, otherwise it would 
affect the execution of an input command. Depending on the different locations where 
an intruder sets up and removes a chaff perturbation, our analysis focuses on the 
following situations: 1) a chaff attack is set up before a MP (included), and removed 
before the MP (included); 2) a chaff attack is set up before a MP (included), and 
removed at any host after the MP; 3) a chaff attack is set up at any host after the MP, 
and removed at any host before the victim site.  

We detect stepping-stone intrusion with the Clustering-Algorithm by recognizing 
the significant clusters which are the clusters with significant clustering rate. The 
study of the Clustering-Algorithm about the resistance to intruders’ chaff perturbation 
is equivalent to the study of clustering rate affected by chaff perturbation.  

The clustering rate is not affected if a chaff attack is set up before a MP, and 
removed at any host before the MP. We monitor and capture all the Sends and Echoes 
at the host MP, so the Send and Echo sequences are not affected any more by 
the chaff perturbation. Obviously this attack cannot affect the performance of the 
Clustering-Algorithm in detecting stepping-stone intrusion. Similar to this case, the 
clustering rate is also not affected if a chaff attack is set up at any host after the MP 
and removed the chaff at any host before the victim site. The Send sequence at the 
MP cannot be changed because the chaff attack is after the MP, as well as the Echo 
sequence because the chaff packets have been removed before they are echoed and 
the timestamps of the original Sends cannot be changed based on our first assumption.  

However, the clustering rate would be affected if a chaff perturbation was set up 
before a MP (included), and removed at any host after the MP. Our study shows that 
the Clustering-Algorithm can still detect stepping-stone intrusion if the inserting ratio 
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of a chaff perturbation is bounded by 50%. Similar to what Fig.3 shows, we still 
assume that Hi is the MP, H0 is the intruder’s host, and Hn+1 is the victim’s host. 
Because the chaff is set up at any host before Hi, comparing to the original Send 
sequence S  of the outgoing connection in Hi, the current Send sequence is S ′  and the 
Echo sequence is E′ .  

},...,,{

},,...,,...,,...,,{

},...,,{

21

),1()1,1(1,2),,1()1,1(1

21

m

nqnnnk

n

eeeE

sccssccsS

sssS

=′
=′
=

−−−
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here we use c(i,j) to represent the timestamp of a chaff packet. We use S and E′ to find 
the significant clusters if without chaff perturbation. But with the chaff perturbation, 
we need to use S ′ and E′ to find the significant clusters. This will affect the 
performance of the Clustering-Algorithm in two aspects. First, if the timestamps of 
the chaff are very close to either the Send before them or the Send after them, this 
only affects the clustering rate of each significant cluster without affecting the number 
of significant clusters. Second, if the timestamps of the chaff were not close to the 
original Sends, it would form one or more new clusters with probably a high 
clustering rate, and further affect the number of the significant clusters. In this case, 
the performance of the Clustering-Algorithm would be affected. But the experimental 
simulation result showed that the Clustering-Algorithm could still estimate the 
downstream length accurately under the situation that the chaff ratio is bounded by 
50%. Fig.4 and Fig.5 show the affection to the clustering rate and to the estimation of 
the downstream length, respectively. 

We did the simulation as the following. First, we monitor a connection chain from 
its start to its end at our MP. Its downstream ending length is 5 connections. We 
capture the whole Sends and put them into sequence S , as well as Echoes into E . 
Then we form S ′ by randomly inserting some packets into S , but control the inserting 
ratio to be 10%, 20%, …, 80% respectively. We use the Clustering-Algorithm with 
input S ′  and E  to estimate the downstream length and study the affection to the 
 

 Fig. 4. The Affection to clustering rate 
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clustering rate of a specific significant cluster, and the affection to the downstream 
length estimation with the variation of the inserting ratio. The Simulation result 
showed that we can still distinguish a significant cluster from the other noise clusters 
and the Clustering-Algorithm can work well in detecting stepping-stone intrusion if 
the inserting ratio is bounded by 50%. In Fig.4, the clustering rate varies upon the 
variation of inserting ratio. The blue curve in Fig.4 represents variation between the 
clustering rate of a significant cluster and the inserting ratio. And the purple cure 
represents the variation between the biggest clustering rate of other non-significant 
clusters and the inserting ratio. The bigger the gap between the above two clustering 
rate, the easier to distinguish them. Fig.4 shows that this gap is as high as 45% when 
the inserting ratio is 50%, but it decreases to as low as no more than 5% when the 
inserting ratio is increased to 60%. Fig.5 shows that the downstream length is 5 
connections that corresponds the real downstream length of the chain under the 
situation that the chaff ratio is no more than 50%. However, if the chaff ratio is more 
than 50%, the downstream length estimated is not accurate. As Fig.5 shows, if the 
chaff ratio is as high as 70%, the downstream length estimated by the Clustering-
Algorithm would be 11 connections which is 6 connections more than the real case. 
From this simulation results, we conclude that the Clustering-Algorithm can resist 
intruders’ chaff perturbation to a certain extent. 

6   Related Work 

The related work can be classified into two categories: a) detecting stepping-stone; b) 
detecting stepping-stone intrusion. Category a) includes the approaches proposed in 
papers [2], [1], [3], [5], [6]; Category b) includes the algorithms proposed in papers 
[4], [7], [8], [9]. The difference between the two categories is that the approaches in 
category a) can only detect if a host is used as a stepping-stone, but the approaches in 
category b) can detect not only a host is used as a stepping-stone, but also if the host 
is used by an intruder. Being used as a stepping-stone does not mean being used by an 
intruder because some legitimate users (applications) also need a host to be used as a 
stepping-stone. So there is one problem to judge if host is used by an intruder. Most 

 Fig. 5. The Affection to downstream length estimation 
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probably the approaches used to detect a stepping-stone intrusion are to exploit a 
common sense that some legitimate applications (users) may use a host as a stepping-
stone, but the number of the compromised hosts may not be too much. If a user could 
connect to an end host directly, there is no reason to access the end host indirectly via 
some stepping-stones. So the key in the approaches of category b) is to estimate the 
number of compromised hosts (networks) from a MP.  

To determine if a host is used as a stepping-stone is easier than to determine if a 
host is used by an intruder. Most approaches in category a) are to compare an 
incoming connection with an outgoing connection, such as content-based method [2], 
time-based method [1], [3], packet-number-based method [6]. They have a problem of 
being vulnerable to intruders’ evasion except the method in paper [6]. And they all 
have a common problem which is high false alarm rate in detecting stepping-stone 
intrusion. The approaches in category b) can overcome this disadvantage, but they all 
suffer from estimating a downstream length imprecisely and being vulnerable in 
detecting intruders’ evasion.  

7   Conclusions and Future Work 

In this paper, a Clustering-Algorithm has been proposed to predict stepping-stone 
intrusion. Comparing with the previous approaches, it has the advantage of detecting 
stepping-stone intrusion without false alarms and low misdetection. Moreover, the 
analysis and simulation results showed that the Clustering-Algorithm can resist an 
intruder’s time perturbation completely, as well as chaff perturbation to a certain degree.  

The problems of this algorithm is 1) we need to monitor a connection chain from 
the start to the end; 2) to obtain zero misdetection, we need to assume that a MP must 
be close to an intruder’s site. The reason for second problem is that the Clustering-
Algorithm only estimates the downstream length of a connection chain. To overcome 
this, in the future, we need to design a new algorithm which can estimate both the 
downstream length and the upstream length of a connection chain to avoid 
misdetection.  
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Abstract. Intrusion detection and secure routing schemes have been
proposed for increasing the security and reliability in critical scenarios
like mobile ad hoc networks. In this paper we present an integrated secure
routing system based on Intrusion Detection Systems (IDS) and SUCV
(Statistically Unique and Cryptographically Verifiable) identifiers. The
proposed IDS has been used for the support of secure AODV routing,
named IDS-based Secure AODV (IS-AODV), in a wireless ad hoc net-
work scenario. Our IDS solution is based on the detection of behavior
anomalies on behalf of neighbor hosts, with passive reactions, aiming to
create a cluster whose route paths will include only safe nodes, eventu-
ally. Simulation results show that the proposed IDS is effective in isolat-
ing misbehaving hosts, and it assists the AODV secure routing scheme
to converge in finding end-to-end safe routes.

Keywords: Intrusion Detection System, Secure Clustering and Routing,
Statistically Unique and Cryptographically Verifiable Identifiers, Mobile
Ad Hoc Networks.

1 Introduction

In Mobile Ad Hoc Networks (MANETs) the set of dynamically interacting mo-
bile hosts should cooperate and each one should act like a router to enable end-to-
end communications along a multi-hop dynamic routing path of radio links. The
MANET scenario is considered a stressing scenario for routing protocols due to
hosts’ mobility, causing frequent route updates and link failures. Several multi-hop
routing protocols for ad hoc networks have been proposed: most popular ones in-
clude DSR [4], OLSR [2], DSDV [3], AODV [5]. A majority of these protocols relies
on the assumption of a trustworthy cooperation among all participating devices:
unfortunately, this may not be a realistic assumption in real systems. Malicious
nodes could exploit characteristics of MANETs to launch various kinds of attacks.
Conventional methods and infrastructures for hosts’ identification and authenti-
cation may not be available on MANETs, since the availability of a Certification
Authority (CA) or a Key Distribution Center (KDC) cannot be always assumed
over dynamic and infrastructureless networks. Many Intrusion Detection System
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(IDS) solutions have been proposed for wired networks, based on monitoring of re-
altime traffic at staticallydefined strategic points: switches, gateways,and routers.
In MANETs, nodes’ mobility cannot be restricted in order to let the IDS to oper-
ate or collect data. Security solutions have been proposed at the routing layer in
MANETs. As an example, Secure Routing schemes have been designed to incorpo-
rate security features into routing protocols. Several architectures and detection
mechanisms for realizing integrated IDSs and secure routing protocols have been
proposed for MANETs. They will be sketched in the Appendix A.

In this paper, we illustrate the design of a secure routing protocol (based on
AODV), called IDS-based Secure AODV (IS-AODV), implemented by adopting
an IDS solution and the concept of Statistically Unique and Cryptographically
Verifiable (SUCV) identifiers [20] [21], [25], for IPv6-based MANETs. IS-AODV
is based on SUCV and mutual verification of nodes’ behaviors during the path
creation processes. SUCV identifiers are used to realize a secure binding be-
tween IPv6 addresses and cryptography keys, without requiring any trusted CA
or KDC. To the best of our knowledge, different solutions incorporating the same
concepts have been proposed in SecAODV [22], and DSR-based solutions [25]
concerning the SUCV adoption, and in the watchdog solution [9], concerning
the mutual verification concept. IS-AODV is basically different from secAODV
[22], because it uses the IDS as the basis for implementation of secure AODV
routing. In order to control the behavior of neighbors during the route discovery
and data forwarding phases, in IS-AODV, each node monitors the traffic whose
path includes the node itself: when a node N perceives a suspect behavior from
a neighbor host, the IDS reaction is passive: the information is not advertised
to local nodes, and the node N does not rely/assist any suspect neighbor node
communication. In this way, only safe routes will survive in the route creation
and route maintenance processes, and a cluster would emerge that will even-
tually include only safe nodes. In addition, unlike secAODV, the proposed IS-
AODV scheme does not require any cryptography operation in the intermediate
nodes. IS-AODV is different from the watchdog solution proposed in [9], because
our mechanism is designed to defend a Distance Vector routing protocol (like
AODV), while the watchdog is created to defend a Source Routing protocol (like
DSR). Basically, the watchdog node must know where a packet will be in two
hops: this information is given with the DSR protocol, but not with distance vec-
tor protocols, like AODV. For this reason, the IS-AODV mechanism introduces
one low-overhead additional field for standard AODV Route Request (RREQ)
and Route Reply (RREP) messages (see section 2.3). In addition, a public key
cryptography (or more lightweigth symmetric cryptography, after a safe path
is found), is used to verify the signature added in routing and data packets,
only by end-nodes. This allows the end-to-end packet verification. Moreover, un-
like the watchdog mechanism, IS-AODV does not accuse a node if it drops a
packet: i) because this may happen due to collisions, and ii) because the node
realizing a drop-attack would be self-excluded from the path creation process.
To summarize, IS-AODV is different with respect to the watchdog mechanism,
and other cooperation enforcement schemes like CORE [18] and CONFIDANT
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[19], because i) IS-AODV is realized to defend a Distance Vector protocol like
AODV, ii) the information about corrupted or safe nodes is not advertised to
other nodes and iii) the spoofing attack has not critical effects [24]. The effect
of MAC layer collisions on IS-AODV is discussed in section 3.

The paper structure is the following: in Section 2 we illustrate the design,
implementation and assumptions of the proposed IDS mechanism, in Section 3
we illustrate a simulation model and results obtained, and in Section 4 we draw
some conclusions. In the Appendix we sketch the state of the art in secure rout-
ing protocol solutions and IDSs. A discussion and solutions to possible attacks
considered for this system can be found in [24].

2 The Security System Design

At the network layer, we can assume that a MANET is defined as the set of
cooperating nodes adopting a common routing protocol. Under this assumption,
it is possible for safe nodes to assume the routing protocol specification as a
common set of guidelines representing the normal behavior. Every node diverging
from the normal behavior is locally considered unsafe. So, the proposed anomaly-
based detection mechanism allows the detection of many types of attacks, by
defining an attack (or anomalous behavior) as “a different behavior than the one
defined by homogeneous protocol specifications”.

2.1 Design Goals and System Assumptions

The proposed security system is realized to achieve the following objectives. As
described in [1], an IDS for ad hoc networks:

g1) should not introduce new weaknesses in the system, that is it should ensure
self-integrity without enabling new attack directions;
g2) should need few system resources and should not degrade the system perfor-
mances by introducing significant computation and communication overheads;
g3) should be always on in background, transparently to the users.
In addition, under the routing viewpoint, we define the additional objectives:
g4) end-to-end communications are performed only on safe routes: a safe route
is a path realized by safe nodes, connecting two safe end-points;
g5) if a safe route exists between two safe end-points, it will be adopted, eventually;
g6) a cluster composed by safe nodes transparently emerges as a side effect of
the IDS passive reactions: that is, without propagating any information about
the node corruption;
g7) no need for cryptography operations in the intermediates nodes : only end-
points implement cryptography functions (like in transport/application level ser-
vices). This choice saves energy resources and increases communication efficiency
in the system (see g2 ). This is even more important for battery-based and low
computation-power portable devices;
g8) no need to identify the attack type, if any: the system activity simply pre-
serves correct routing protocol specifications;
g9) support for end-to-end authentication, confidentiality and integrity.
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The following assumptions are the basis for the proposed mechanism realized in
a MANET environment:

a1) At the routing viewpoint, the end-points of a communication (source S and
destination D) are implicitly safe;
a2) every link between the participating nodes is bidirectional;
a3) nodes operate in promiscuous mode at the MAC layer, meaning that nodes
can listen to their neighbors’ transmissions;
a4) all safe nodes have the IDS activated, unless they may be considered as
malicious nodes;
a5) all system nodes (both safe and malicious ones) know a pre-defined one-way
hash function, which characterize the MANET;
a6) the MANET is implicitly homogeneous under the AODV routing protocol
viewpoint.

2.2 System Components and Definitions

The security system mechanism presented in this work to support a secure rout-
ing solution for the AODV protocol, is based on two main components:

1) the Intrusion Detection System (IDS), which is based on host and anomalies
detection with passive reaction.
2) the Statistically Unique and Cryptographically Verifiable (SUCV) identifiers,
to ensure a secure binding between IPv6 address and public key, without re-
quiring any CA or KDC. If a safe route between two safe end-points exists, the
aim of our mechanism is to find that route, eventually. On the other hand, the
secondary aim of our scheme is to create an emerging cluster of safe nodes. To
realize such aims, the first point is the safe route construction and maintenance
process. This is obtained by exploiting:
i) the AODV definition (of RREQ and RREP phases, see section 2.3),
ii) the end-to-end authentication of source and destination nodes. This authen-
tication is obtained by adopting a Public Key Cryptography scheme, where keys
are bound to node identities by means of a SUCV mechanism,
iii) the end-to-end signature verification for routing and data packets, to detect
any malicious activity by corrupted nodes appearing in the originated path,
iv) the IDS-based mutual observation and control of routing and data transmis-
sions between neighbor hosts, to detect behavior anomalies.

To summarize, during a path-discovery process, each node belonging to the
forming-path monitors the routing or data packets forwarded by other nodes,
within one-hop distance, to detect anomalous behaviors. When the number of
behavior anomalies exceeds a predefined threshold (see section 2.4), the mis-
behaving node is considered corrupted by the observer. In this case, the IDS
reaction is passive, that is, the information about host corruption is not adver-
tised to neighbor nodes. As a reaction, the accused node is not trusted and not
assisted (undefinitely or temporarily, see 2.4) by the accusing node. The choice
to adopt passive reactions against malicious nodes is motivated because active
reactions would require some kind of distributed majority (voting or ranking)
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procedure. This procedure may be very expensive, due to high number of service
messages. In addition, all voting messages would need authentication obtained
by cryptography operations. In absence of authentication, corrupted nodes could
bias the majority or, under some scenarios, they could coordinate themselves to
locally attack and control the voting process, and to accuse safe nodes. For these
reasons, we decided to adopt the passive reaction, based on the “trust nobody”
assumption: every safe node aims to create a secure cluster by exploiting only
local (implicitly trusted) information obtained by sniffing packets forwarded by
one-hop neighbors. After the creation and maintenance of the secure path be-
tween end-nodes, the data confidentiality, integrity, and authentication can be
implemented by a more lightweigth symmetric cryptography scheme.

In general, IS-AODV is independent by the cryptography schemes adopted:
as an example, one-way hash functions (like MD5 or SHA-1) could be used for
SUCV IDs, public key cryptography scheme (like ECC or RSA) and the sym-
metric cryptography scheme (like AES or DES) can be freely adopted according
to the system, network and application requirements.

2.3 System Overview

The AODV routing algorithm is based on the flooding of Route Requests (RREQs)
packets for Route Discovery phases, and unicast Route Reply (RREPs) packets for
the route reply phase. Details can be found in [5]. Figure 1 shows the modules’
architecture of a node implementing the IDS. The IDS module captures all the

Fig. 1. Modules’ architecture of a node with the proposed IDS

node traffic from/to the MANET, and it filters packets that should be further pro-
cessed by the AODV routing protocol. Every packet received by adjacent nodes
during a path discovery process is checked, to verify if the packet is sent by a pre-
viously identified malicious node. Every packet received by an adjacent node in
a pre-defined path, is checked to verify if it has been corrupted (like in watchdog
mechanism). In both cases the packet is immediately discarded. In other words,
malicious nodes are excluded from the paths they attempt to attack.

2.3.1 AODV Modifications
AODV has been slightly modified to implement IS-AODV:
i) RREQ and RREP message headers have been extended to include a pair of
SUCV identifiers. The overhead introduced is quite marginal;
ii) the AODV routing table is made more connection-oriented, being enriched by
including data structures about end-nodes, defined within the IDS mechanism.
SUCV identifiers and the extension fields for AODV routing packets introduced
by the IDS implementation will be defined in the following, together with the
definition of the mutual verification scheme, and the IDS detection and reactions.
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2.3.2 SUCV Identifiers
Differently from IP addresses, SUCV identifiers [20] are flat identifiers with no
topology-related meanings. Basically, the SUCV IDs introduce the advantage of
an implicit cryptography binding between a node’s identifier and its public key
(or certificate). A node auto-configures its own Crypto-Based IDentifier (CBID)
by doing the following operations:
1) it creates a pair of public and private keys (PK and PrK).
2) it creates its own CBID: CBID = hash(PK), where the hash function is a
system configuration parameter (assumption a5 ).

In this way the key management is simplified, since no third parties need to
be involved either in creating or in distributing the public keys. Provided that
the bit-length of the CBID’s is large enough, these identifiers have two very
important properties: they are statistically unique and bound in secure way to a
given node. Any other node can easily verify the CBID signature without relying
on any centralized security service, such as a Public Key Infrastructures (PKIs).
The authentication, confidentiality and integrity (see g9) implemented in our
target system is based on public key cryptography, and more specifically on the
SUCV (or CBID) identifiers. When a node receives the [CBID,PK] pair (in a
message header), it calculates the hash function of the public key PK , and it
compares the result with the received CBID: if the value is the same, the PK

will be used to decrypt the {DIGEST}PrK included into the RREQ or RREP.

2.3.3 RREQ Header Extension
To adopt the CBID identifiers we have extended the RREQ and RREP messages
by adding some fields (see figure 2). With the IPv6 protocol, the CBID is half
of the IPv6 address.

Fig. 2. RREQ and RREP extensions

In the RREQ message the following fields have been added:
PKS : public key of the source node;

{DIGESTRREQ}PrKS : Digest of the RREQ message, including the extension
fields, excepted the destination sequence number and hop count value.

IPv6prev: IPv6 address of the previous node propagating the RREQ during the
path creation process between source S and destination D, used to implement
the mutual verification of the path creation (see below).

The route discovery phase is based on public key fields to be included into
the RREQ (and RREP) header extensions. In this way the IDS supports the
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safe route creation over the most general scenario, without any assumption
about any information sharing among MANET’s nodes. Conversely, if a sys-
tem information-sharing exists about the node identifiers and the related public
key (as an example, by using an Hello-type broadcast message), the PKS and
PKD could be removed in the RREQ and RREP extension fields, to reduce
overheads. After the creation of the safe route-path, successive data transmis-
sions are based on a more efficient and lightweigth symmetric key mechanism.
The symmetric key exchange could be realized just after the creation of the safe
route, that is, without including symmetric keys in the headers of broadcasted
RREQ and RREP messages.

2.3.4 Mutual Verification of the Path Creation
By looking at figure 3, the mutual verification process is explained: IPv6prev is
set on a node to identify the previous node in the path (as indicated by arrows):

Fig. 3. IPv6prev setting

1) the intermediate node N1 will receive RREQ from source node S;
2) upon reception of one RREQ from previous node S, N1 sets the IPv6prev

value with IPv6S. N1 then re-broadcasts the RREQ (which will propagate to
neighbors N2 and S);
3) mutual verification of node S: S will detect the RREQ forwarded by N1. S
checks that IPv6prev = IPv6S , and it compares last RREQ with its own cached
RREQ copy. S determines in this way if N1 has correctly forwarded the RREQ,
or not;
4) all intermediate nodes, including N1 and N2, do behave like S when propa-
gating RREQs (and RREPs along the reverse path).

2.3.5 RREP Header Extension
In the RREP message the following fields have been added to the RREP header
(see figure 2):
PKD: public key of the destination node;
IPv6prev: IPv6 address of the previous node along the return path;
{DIGESTRREP }PrKD : Digest of the RREP message, extension fields included;
RREQ ID: copy of the RREQ ID value that has generated this RREP;
SEQ No: copy of the RREQ’s originator sequence number value that has gen-
erated this RREP.

The IPv6prev-based mutual verification management, as shown in figure 3, is
repeated in the opposite forwarding direction for RREPs.
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2.3.6 Conservative Property to Avoid the RREQ ID and Sequence
Number Attack Effects

The RREQ ID and SEQ No fields are used in RREPs to verify the definition of a
safe route. This is required because the RREQ ID attack and the sequence num-
ber attack could be performed by byzantine nodes to interfere with the route
construction. When an intermediate node NI receives a RREP from NI+1, it
checks (in its own local log) if it previously overheard the corresponding RREQ
forwarded in the opposite direction (from NI+1 to NI+2). The checks performed
include the correct IP settings, and the originator sequence number and RREQ
ID corresponding to the RREP received. In addition, NI checks if it has previ-
ously received and forwarded a RREQ from NI−1 (that is, its previous node in
the path between NI and the source node). If the two conditions are true, then
NI forwards the RREP back to NI−1, by contributing in this way to define the
bidirectional verified route path between S and D.

2.4 IDS Detection and Reactions

In this section, the IDS detection and reaction processes are defined. In previous
section, we illustrated how each network node is assumed to monitor only the
traffic whose transmission path (or route discovery phase) includes it as an inter-
mediate node. The IDS management of RREQs and RREPs requires additional
data structures. The IDS reaction is based on a counter MBi,j of malicious be-
haviors detected by node i for each neighbor j. This counter is similar to the
“reputation” concept used in other works. When the counter MBi,j exceeds a
predefined threshold value, TV (TV = 3 in our experiments) then the node
i will undefinitely (or temporarily) consider node j as a corrupted node. The
value of TV is related to the degree of security: e.g. TV = 10 would result in
tolerant networks (low security level) while TV = 1 would result in low tolerant
network (high security level). If network nodes are assumed to be possibly in-
fected by malicious code (as an example, virus-like attacks), then they could be
temporarily suspected. In this way, once a “suspect validity time” expires (this
validity time value must be properly defined according to the network features)
the node could be reconsidered during path formation processes.

The IS-AODV RREQ-management requires the maintenance of three sets of
IDs, for each node N in a path:
First Nodes: the set of nodes from which N receives the first valid RREQ that
must be forwarded, according to the AODV specifications;
Alternative Nodes: the set of nodes from which N receives an RREQ whose
RREQ IDs was already processed (that is, RREQ copies);
Next Nodes: the set of nodes from which N should receive the RREP. These
nodes are identified as the nodes that correctly forwarded an RREQ received
from N (i.e. whose IPv6prev indicated N).

The IS-AODV RREP-management requires an additional set of IDs for each
node, to be updated during every route discovery process:
Selected Paths: the set of nodes to whom N sent an RREP that must be
forwarded back to S, according to the AODV specifications;
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The purpose of the above mentioned sets will be illustrated in the following
examples. Let’s consider the following path where the arrows illustrate the di-
rection of the target packet flow:

N1 → N2 → N3

if N1 sends a (routing or data) packet along the route to N3, then N1 is assumed
to overhear the packet forwarded by N2. If N2 corrupts the packet, then N1 can
detect the corruption, by counting an anomalous behavior for node N2. When
the counter of malicious behaviors for node N2 exceeds a threshold value on
N1, then N1 will not interact with N2, by locally assuming a link-break, under
the routing protocol viewpoint, that is, by excluding the malicious node N2

from the route path. Corrupted nodes are considered the same way as nodes
that moved away, unless they behave in a correct way. Anyway, this reaction is
not enough, to create a safe path between two safe end-points. The following

Fig. 4. Network with an attacker node

example illustrates how unsafe paths can be avoided by the IDS reactions. By
looking at figure 4, let us assume that NC1 realizes a RREQ corruption, (for
this case the RREQ ID attack is excluded), and that the RREP sequence from
D to S, obtained after the route discovery process, is going to be forwarded on
the following reverse path:

D → N8 → N5 → N4 → NC1 → N2 .

Node N2 stops the RREP forwarding because it has checked the NC1 RREQ’s
corruption. For this reason, after a timeout, S will start a new route discovery
process, by sending a new RREQ broadcast message. Note that malicious node
NC1 still participates to this process. On the other hand, N4 (like each other
node) maintains a Selected Paths set indicating the nodes where N4 has already
forwarded a RREP message (that is, including NC1), and an Alternative Nodes
set indicating the nodes where N4 has not still forwarded a RREP message.
For this reason, upon reception of a new RREQ message from S to D, N4 will
exclude nodes belonging to the Selected Paths set (that is, NC1). As an example,
in figure 4, N4 will select N3 to receive the RREQ, and to respond later with
the RREP message. When the Alternative Nodes set is empty, the Selected Paths
set is restarted (that is, all nodes propagating RREQs are considered valid for
forwarding RREPs). This management is implicitly derived by the concept of
AODV black list, that we sketch in the following. When a node N4 forwards
a RREP on a reverse path, it would expect to receive data packets, and not
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another RREQ message from the path source S. If a node N4 receives another
RREQ from the same source S to destination D, it may realize that:
i) at least one unidirectional (S to D) link is present between N4 and S, or
ii) at least one attacker node is present between N4 and S.
In both scenarios the RREP path must be (at least temporarily) discarded by
node N4. If alternative paths exist, N4 will select one of these, as an example:

D → N7 → N6 → N4 → N3 → N1 → S.

The route validity and the identity of previous- and next-hop nodes in a valid
path can be assumed by a node N4 when it receives an ACK (e.g. from N6)
under a bidirectional TCP-like connection, or a Data packet (e.g. from N3) under
a unidirectional UDP-like connection. While this happens, N4 would discard
every other RREQ aiming to find a route between S and D. If the routing path
explicitely expires on N4 due to AODV route entry expiration or a link-layer
failure, then RREQs would be accepted again by N4 to recover the S-to-D path
failure. Solutions for attacks to these policies can be found in [24].

2.4.1 Corrupted RREPs
If the destination node D receives a corrupted RREQ and no other safe RREQ
has been received in the discovery process, then D will send an explicitly cor-
rupted RREP anyway. This will allow to identify the current path as a path
including at least a corrupted node, by causing the updates to the Selected Path
set of intermediate nodes. In general, any corrupted RREP will not modify any
routing table, and will be simply discarded by the source node S.

2.4.2 Conservative Property to Avoid Routing Loops
The following rule is implemented to avoid route loops: if a RREP is received
from a node N that belongs to RREQ’s Alternative Nodes set or First Nodes
set, then N will be accused, because a node can receive RREPs only from nodes
belonging to Next Nodes set of the corresponding RREQ message. For the same
reason a data packet is forwarded from S to D only if it is received by the last
node inserted into the Selected Path set.

2.4.3 AODV’s Route Maintenance
The definition of AODV’s issues on route maintenance, sequence numbers, Route
Cache and Route Error management have been considered for IS-AODV and can
be found in [24] due to space limitations.

2.5 Attacker Model

The attacker model considered is based on active and internal attack types.
The following list illustrates a set of attacks described in [7],[8], that have been
considered in the IDS and IS-AODV design. A short description of the IDS
solution to contrast a given attack type is provided in [24]. The list of attacks
includes: Black Hole, Route Disruption, Route Invasion, Modify and Forward,
Denial of Service, End-node impersonation, Coordinated DOS attack, RREQ ID
attack, IP attacks,Coordinated adjacent nodes’ attack.
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3 Performance Analysis

3.1 Introduction

To perform the performance investigation, a MANET system model has been
implemented with the ns2 Network Simulator. The MAC layer model implements
the IEEE 802.11 DCF protocol. The IS-AODV model is derived from the Uppsala
University AODV model (AODV-UU)[23], freely available, and almost compliant
with a real AODV implementation code. The complete IDS implementation has
been modeled as an additional feature of MANET nodes.

3.2 Simulation Parameters and Metrics

Table 1 shows some most significant simulation parameters. It is worth noting
that the speed of nodes is 10m/s on the average, and 20m/s maximum, with the
pause time of 100 seconds under a Random Waypoint mobility model on a long
rectangle-shaped area.

Table 1. Simulation parameters

Simulation duration 300 sec Maximum Speed 20 m/s

Simulation Area 1500m * 300m Packet rate (CBR) 4 pkt/sec

Mobile hosts number 50 Host pause time 100 sec

Transmission Range 250 m Connections Number 10, 20, 30

Movement model Random waypoint Corrupted nodes number 10 %, 25%, 50%

These assumptions may be considered quite unrealistic, but they have been de-
fined in this way in order to stress the IDS and the routing mechanisms. All the
attack types that have been implemented in the model, mainly against the RREQ
and the RREP messages, are listed in [24]. Corrupted nodes try to establish con-
nections with others nodes (both safe and corrupted ones). Our interest in the
analysis is on connections originated between two safe end-points (as assumed
in the mechanism’s design). Our main interest is on effects and overheads of the
proposed IDS and secure routing scheme (IS-AODV), with respect to standard
AODV: i) the packet overheads introduced in RREQ and RREP packets, ii) the
additional computation required for implementing the IDS and secure routing
scheme, and iii) the number of additional RREQs needed to find a safe route,
in a given scenario. The packet and computation overheads introduced can be
considered marginal (see section 2). The proposed IDS system creates additional
virtual link breaks, and route discovery processes, due to corrupted nodes’ effects,
and due to possible ambiguous effects of collisions and hidden terminals on the
mutual verification mechanism. For these reasons, the main evaluation metric we
will discuss here is the comparison of the average number of RREQs issued by a
source node, needed to establish a end-to-end connection (under AODV), and a
safe end-to-end connection (under IS-AODV). The Average Number of RREQs
shown in the figures is the average number of RREQs that the source node must
send to complete a route path creation (as a reaction to missing path or link
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failures in existing paths). This evaluation will be obtained under different per-
centages of attacker nodes, and under different mobility and collision effects, in
the MANET scenario:
i) while the network is attacked and all the nodes were static during last 100
seconds, that is, when IS-AODV is active and nodes start to have good knowl-
edge of their respective one-hop neighbors: IS-AODV On (only safe routes), 100
sec. static scenario;
ii) while the network is attacked, IS-AODV is On, and mobile nodes cause more
difficult secure-path creations: IS-AODV On (only safe routes), steady-state mo-
bile scenario;
iii) without attacker nodes, that is, by matching the standard AODV path for-
mation process: IS-AODV Off (pure AODV).
These three scenarios are compared to test the security system behavior un-
der the attacks, with respect to ideal scenarios with no attacks (with standard
AODV). We performed experiments with runs of 300 seconds of simulated time,
and 50 nodes in the area. Results shown are within confidence intervals whose
confidence level is 95%.

3.3 Simulation Results

In this section we present the obtained simulation results, with variable percent-
age of corrupted nodes, effects of mobility, collisions and hidden terminals for
the performance index shown. Only most significant figures are shown due to
space limitations. The figures 5.a (left) and 5.b (right) show the Average Num-
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Fig. 5. Average Number of RREQs as a function of the mobility and hop distance

ber of RREQs needed for each active route-path under the AODV protocol in
the MANET scenario with 50 active nodes, 30 active end-to-end connections
(whose hop-count is indicated in the X axis). The percentage of corrupted nodes
is 10% in figure 5.a and 50% in figure 5.b, respectively. By looking at the figures,
the curves IS-AODV Off (pure AODV) show the average number of RREQs
required by sources to find a generic route in the system, as a function of the
path hop-count. The average value is comprised between 1 (that is, the optimal
value) and 2. This slightly sub-optimal effect is produced by the mobility and
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by some MAC-layer frame-loss effects (as an example, collisions due to RREQs
broadcast storms on the destination node). The difference between static and
mobile scenarios is marginal for this performance index (so only one is shown),
because a path creation is fast enough to complete without significant effects of
the modeled node mobility. The route-path length has marginal effect, and this
indicates that one route path can be easily found within few attempts, given the
simulated system characteristics. The curve IS-AODV On (only safe routes),
steady-state mobile scenario show the same index above, as a function of the
path length, in a steady-state scenario with mobile nodes, IS-AODV active, 10%
attacker nodes in figure 5.a, and 50% attacker nodes in figure 5.b, respectively.
The average number of RREQs to obtain a secure path increases with the path
length, as expected, because the probability to have attackers in the candidate
paths increases accordingly. The same consideration is valid in the comparison
between 10% and 50% attacker nodes scenarios. The mobility effect of nodes con-
trasts the secure clustering that would emerge given the IDS effect in IS-AODV:
nodes that locally accuse other nodes may move and lose this knowledge-base
useful to create safe paths. The effect of the secure clustering is shown in the
curve IS-AODV On (only safe routes), 100 sec. static scenario. The only differ-
ence with respect to previous curve is given by the static uniform distribution of
nodes in the area. The average number of RREQs in the system reduces because
nodes acquire more persistent information about neighbor nodes, and identify
the attackers by excluding them in the current and future path creation pro-
cesses. The average number of RREQs attempts that would be aborted during a
path creation by the IS-AODV effects can be obtained as the difference between
the IS-AODV On and IS-AODV Off curves.
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The figures 6.a (left) and 6.b (right) show a comparison of the effects of
collisions and hidden terminals on the IS-AODV mechanisms (10% and 50%
corrupted nodes). The critical effects, under this viewpoint, are given by the
signal collisions on the receivers, and by the hidden terminal effects on nodes
implementing the mutual verification of path creation. A discussion of these
critical effects can be found in the discussion of watchdog problems in [9]. As
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an example, by looking at figure 4, if N1 is unable to sniff the RREQ sent by
N3 to N4 (e.g. due to S transmitting) then N1 will not propagate the related
RREP received from N3. This is due to the conservative design of our IDS.
In IS-AODV, these effects translates in an increase in the number of RREQs
needed to obtain a safe route. This overhead is shown in the curves IS-AODV
On, mobile scenario with collision effects compared with IS-AODV On, mobile
scenario without collision effects for the mobile scenario. In the static scenario,
the overhead effect is shown in the curves IS-AODV On, static scenario with
collision effects compared with IS-AODV On, static scenario without collision
effects. We are currently working on less conservative IDS solutions to overcome
this problem.

Additional results on the percentage of safe nodes that accuse a corrupted
node, and the percentage of corrupted nodes that have been discovered by at
least one safe node as a function of time is shown in [24].

4 Conclusions

In this work, we defined a new solution based on IDS and SUCV identifiers to
assist the AODV routing protocol in finding end-to-end safe routes in a MANET
scenario, called IDS-based Secure AODV (IS-AODV). The overhead represented
by the number of RREQs during route discoveries and the impact of MAC layer
collisions have been evaluated. Simulation results confirmed that the proposed
IDS contributes to a transparent clustering of safe nodes, which isolate the at-
tackers with a passive reaction.
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Appendix

A Related Works

A.1 Secure Routing Protocol

Recent solutions for implementing secure routing protocols and IDSs over mo-
bile ad hoc networks can be found in this section. The Secure Routing Protocol
(SRP) proposed in [14] is based on DSR protocol [4], and contrasts the mali-
cious behavior that may be originated by the discovery process of topological
information. The basic assumption of SRP is that any two end-to-end nodes
of a communication process would have a preliminary security association. Ac-
cordingly, SRP does not require: i) that any of the intermediate nodes perform
cryptography operations, and ii) that intermediate nodes have a prior security
association with the end nodes. ARIADNE [15] is a secure on-demand rout-
ing protocol that relies on highly efficient symmetric cryptography solutions.
The ARAN [16] mechanism prevents modification, impersonation and fabrica-
tion attacks through the implementation of message authentication, integrity
and non-repudiation mechanisms. SEAD [17] supports DSDV routing [3], and it
is a robust solution against multiple uncoordinated attackers aiming to create
incorrect routing information in other nodes. The protocol uses efficient one-way
hash functions and it does not use asymmetric cryptography operations.

A.2 Intrusion Detection Systems

In [9], two techniques to improve throughput in ad hoc networks are described:
i) in an effort to enforce the node cooperation, and ii) to detect the presence
of byzantine nodes that fails to forward packets. The proposed solution is based
on the implementation of watchdogs that identify misbehaving nodes, and a
pathrater that helps end-nodes to avoid malicious nodes in the routing path
choice. In [10] nodes are classified into trusted and ordinary nodes, and a watch-
dog mechanism is executed on the trusted nodes. Every node that subsequently
joins the network has to prove its trustworthiness to be admitted to the trusted
group. The main assumption in [10] is that any node will always behave in
trusted or malicious way, undefinitely. In [6], an IDS prevents attacks by im-
plementing an Intrusion Detection Module (IDM) and an Intrusion Response
Module (IRM). The IRM is based on a local counter (for every node i) Ci,j re-
spectively associated to any other neighbor node j, that is incremented whenever
a malicious act of node j is encountered. When the Ci,j value reaches a prede-
fined threshold then the suspect-warning about the node j is actively propagated
to the entire network by node i. In [11], individual IDS agents are placed on every
node, to monitor all local activities (including user and system side activities).
When an IDS agent detects a local intrusion, it initiates a global response: all
IDS agents will cooperatively participate in global intrusion detection actions to
isolate the corrupted node. In [12] the system uses Network Monitors distributed
on a subset of selected nodes into the network, to detect attacks against AODV
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routing. In [13] the system uses an IDS based on neighbor node’s snooping of
packets transmissions: a node hearing two consecutive transmissions, along the
path from source to destination, checks that the packet and its route information
is not modified in flight by malicious nodes. This approach uses two modes of
operation: i) passive (to protect a single host from attacks), or ii) active (to
cooperatively protect the nodes of an ad hoc cluster). In [22], a secure routing
protocol based on AODV and IPv6 is proposed. It includes the SUCV mecha-
nism (like in [25]) for non-repudiation and authentication, and it does not require
the availability of a CA or KDC. RREQ and RREP packets have been extended
by adding the RSA public key of the source node and the digital signature of
the routing message. Upon receiving an RREQ message, each intermediate node
authenticates the source node, by verifying the message integrity and by verify-
ing the signature with the source node’s public key. In this solution, the routing
protocol and the IDS can be considered independent to each other. Each node
(out of the route path) monitors the traffic activity within the radio range, to
detect intrusions, determined as anomalous behavior of observed nodes.
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Abstract. In anomaly intrusion detection, how to model the normal behavior of 
activities performed by a user is an important issue. To extract the normal 
behavior as a profile, conventional data mining techniques are widely applied to 
a finite audit data set. However, these approaches can only model the static 
behavior of a user in the audit data set. This drawback can be overcome by 
viewing the continuous activities of a user as an audit data stream. This paper 
proposes a new clustering algorithm which continuously models a data stream. 
A set of features is used to represent the characteristics of an activity. For each 
feature, the clusters of feature values corresponding to activities observed so far 
in an audit data stream are identified by the proposed clustering algorithm for 
data streams. As a result, without maintaining any historical activity of a user 
physically, new activities of the user can be continuously reflected to the on-
going result of clustering.  

Keywords: Intrusion detection, Anomaly detection, Data mining, Clustering, 
Data stream. 

1   Introduction 

Due to the advance of computer and communication technology, the amount of 
damage caused by unexpected intrusions and other computer related crimes have been 
increased rapidly. Intrusion detection systems are usually classified as host-based or 
network-based in terms of target domain. A host-based system detects an intrusion for 
a single host by monitoring its system log. A network-based system detects an 
intrusion for a network by examining its on-going network packets. The methodology 
of intrusion detection is classified into a misuse detection model [1, 2] and an 
anomaly detection model [3, 4, 5, 6, 7]. In the misuse detection model, well-known 
attacks are manufactured to attack profiles. When an online user activity occurs, it is 
compared with attack profiles. If it is matched to one of attack profiles, it is regarded 
as an attack. The misuse detection model utilizes the well-known weaknesses of a 
target domain. Intrusion methods have, however, evolved into more sophisticated 
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forms and many new intrusion methods are being invented as well. As a result, 
individually handling well-known intrusion methods is no longer enough to preserve 
the security of a target domain. The anomaly detection model has been studied as a 
possible alternative for coping with this problem. In the anomaly detection model, the 
historical activities of a user are manufactured by a profiling method and then long-
term profiles are generated. When an online user activity occurs, it is transformed to a 
short-term profile. Therefore, if the difference between the short-term profile and any 
one of the long-term profiles is large, the activity is regarded as an attack. 

Recently, many data mining methods [8, 9, 10] for a data stream have been 
actively introduced. A data stream is an ordered sequence of objects o1, …, on that 
must be accessed in order and that can be read only once or a small specified number 
of times. As a result, it is impossible to maintain all objects of a data stream in the 
main memory. Consequently, each object should be examined at most once to analyze 
a data stream. In addition, memory usage for data stream analysis should be confined 
finitely, although new objects are continuously generated in a data stream. So that it 
can be instantly utilized upon request, newly generated objects should be processed as 
quickly as possible in order to maintain an up-to-date analysis result of the data 
stream, so that it can be instantly utilized upon request. To satisfy these requirements, 
data stream processing sacrifices the correctness of its analysis results by allowing 
some errors. 

Meanwhile, clustering methods [11, 12, 13, 14, 15] are suitable for modeling a 
large number of data objects as long as there exists a distance measure among them. 
This is because it is based on data similarity. Clustering is a process of partitioning a 
plain collection of data ob`jects into meaningful groups called clusters. In other words, 
the purpose of clustering is to locate the groups of similar data objects which are 
defined by a given similarity measure. Consequently, the potential groups and 
structures of data objects in a data set can be identified. 

In this paper, we propose an anomaly detection method based on clustering a data 
stream. In most conventional clustering methods on data streams, only a given 
number of clusters are identified. However, since the number of clusters in a data 
stream is unknown, their quality can be poor. On the other hand, in the proposed 
method, a cluster can be split into two clusters or two clusters can be merged into one 
cluster with respect to the distribution of objects occurring in a data stream. Therefore, 
clusters can be more effectively identified. In the proposed method, the various 
statistics of the objects in terms of identified clusters are modeled as a profile in order 
to improve the performance of anomaly detection. Whenever a new activity is 
performed, the profile is updated instantly. In addition, to evaluate the proposed 
method, synthetic data sets and 1998 DARPA data sets [16] are used. 

This paper is organized as follows. In Section 2, related works are presented. 
Section 3 describes a method of clustering a generated data stream. In addition, it also 
presents how to continuously update the profile of the user. In Section 4, based on the 
profile of the user, an anomaly detection method is introduced. In Section 5, the 
simulation results of the proposed anomaly detection method are comparatively 
analyzed. Finally, this paper is concluded in Section 6. 
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2   Related Work 

2.1   Intrusion Detection Methods  

Typical anomaly detection models include statistical analysis [3, 4, 5], predictive 
pattern generation [6] and data mining method [7]. The statistical analysis maintains 
the historical activities of a user as a statistical profile. For a set of activities, the rate 
of inconsistency with the profile is represented as its anomaly rate. The typical 
systems of statistical analysis are IDES [3], NIDES [4], and EMERALD [5] 
developed in SRI. NIDES which is the improved version of IDES utilizes a statistical 
technique for anomaly detection as well as a rule-based technique for misuse 
detection. For anomaly detection, NIDES models the historical behavior of a user in 
terms of various features and generates a long-term profile containing a statistical 
summary for each feature. For detecting an anomaly, the information of the new 
activities of the user is summarized into a short-term profile, and then it is compared 
with the long-term profile of the user. If the difference between two profiles is large 
enough, the new activities are considered as anomalous behavior. In the EMERALD 
system that is similar to NIDES, the target of intrusion detection is extended from a 
single host to network environment. In the predictive pattern generation technique, it 
is assumed that the sequence of events follows a discernible pattern. This approach 
uses inductively generated time-based rules that characterize the patterns of normal 
user behavior. The rules are dynamically modified during the learning phase and only 
interesting rules remain in the system eventually. Therefore, an anomaly is detected if 
the observed sequence of events matches the left hand side of a rule but the 
subsequent events deviate significantly from those events predicted by the rule. 

Predictive pattern generation [6] is a technique of anomaly detection that is based 
on the hypothesis that sequences of events are not random but follow a discernible 
pattern. These results in better intrusion detection because it takes into account the 
interrelationships and ordering among events. The approach of time-based inductive 
generation uses time-based rules that characterize the normal behavior patterns of 
users. The rules, generated inductively, are modified dynamically during the learning 
phase and only “good” rules, i.e., rules with high prediction accuracy and a high level 
of confidence remain in the system. A rule has high accuracy of prediction if it is 
correct most of the time, and it has a high level of confidence if it can be successfully 
applied many times in observed data.  

For a network based anomaly detection system, agent-based intrusion detection 
methods [7] are developed. JAM (Java Agent for Meta Learning) [7] uses frequent-
episode mining to generate the normal usage patterns of a specific node in a network. 
These patterns are used to build a base-classifier that determines the abnormality of 
the network node. In order to guarantee correct classification, a sufficient amount of 
normal and abnormal log data should be gathered for the learning phase of a classifier. 
A set of base-classifiers can be used to build a meta-classifier. Since each base-
classifier monitors a different node of a network, an intrusion for the network can be 
detected by a meta-classifier combining the results of its base-classifiers. However, 
due to the nature of frequent episode mining, numeric data such as the size of a 
network packet may be modeled inaccurately. This is because it should be quantized 
to one of predefined ranges in order to represent it as a categorical data item. 
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2.2   Clustering Methods 

Clustering techniques are categorized into several different methods: partitioning, 
hierarchical clustering, density-based clustering and grid-based clustering. 
Partitioning algorithm [11] divide the data space of a data set into mutually disjoint 
regions called clusters. In the hierarchical clustering algorithms [12, 13, 16], a pair of 
initial clusters are successively merged until the predefined number of clusters is left. 
Unlike other methods, the density-based clustering method regards a cluster as a 
region in a data space with the proper density of data elements. Typical density-based 
clustering methods are DBSCAN [14] and CLIQUE [15].  

Clustering on a data stream is categorized by k-means/k-median and grid-based 
methods. In order to identify the clusters of objects occurring in a data stream, a k-
median algorithm is proposed [8]. It regards a data stream as a sequence of stream 
chunks. A stream chunk is a set of consecutive objects occurring in a data stream. 
Whenever a new stream chunk containing a set of newly generated objects is formed, 
the LSEARCH routine which is an O(1)-approximate k-median algorithm is 
performed to select k objects from objects of the stream chunk as the local centers of 
the chunk. The algorithm confines its memory space to holding the local centers of a 
fixed number of previous stream chunks. Therefore, if retaining ik centers is 
impossible at the ith stream chunk, the LSEARCH routine is performed again to 
cluster the weighted ik local centers to retain k centers, which are the up-to-date 
centers of the k clusters for all the data elements generated so far in the data stream. 

In the grid-based method [9], the data space of the feature is partitioned into a set 
of mutually exclusive equal-size initial cells. As a new user activity is performed 
continuously, each initial cell monitors the distribution statistics of its corresponding 
feature values within its range. When the transaction support of an initial cell g 
becomes dense enough, the range of the cell is dynamically divided into two mutually 
exclusive smaller cells, called intermediate cells. In addition, the distribution statistics 
of the cell g are used to estimate those of each divided cell. Similarly, when an 
intermediate cell itself becomes dense, it is partitioned by the same way. Eventually, a 
dense region of each initial cell is recursively partitioned until it becomes the smallest 
cell called a unit cell. A cluster is a group of adjacent dense unit cells. Each cluster 
represents the frequent range of the activities of the user with respect to the feature. 

3   Clustering Streaming Data 

When multiple dimensions are associated with each object in a data stream, 
multidimensional clustering can be used to find a set of multidimensional clusters in a 
data stream. However, the number of dimensions i.e. features can be large in anomaly 
detection and each object in a data stream is not necessarily related to all the 
dimensions of the data stream. In other words, each object maintains a set of values 
for only related dimensions. Therefore, in the proposed method, anomaly detection is 
performed by using a one-dimensional clustering method.  

In most conventional clustering methods, the number of clusters is given in 
advance. However, since the number of clusters in a data stream is unknown, 
inaccurate clusters may be identified. Unlike conventional methods, in the proposed 
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method, a set of clusters are dynamically identified with respect to the distribution of 
objects occurring in a data stream. For the purpose, each object is considered as a 
cluster until the number of objects occurring in a data stream is the same as a given 
initial_cluster_number. In the proposed method, a center point represents each 
cluster. Therefore, whenever a new object occurs, the object is inserted into a cluster 
whose center is closest to the object. As time goes by, the range of each cluster can 
become too large and several clusters can be very close to one another. Therefore, in 
order to maintain the quality of the clusters identified from a data stream, any cluster 
whose range is too large should be split into more than two clusters and very close 
clusters should be merged into one cluster.  

A data stream is represented by S = {o1, o2, …, oh} and an object oi is represented 
by n-dimensional vector i.e., oi = (o1

i, o
2

i, …, on
i). Therefore, a stream data projected 

to the kth dimension from the data stream S is represented by Sk = {ok
1, o

k
2, …, ok

h}. 
Let Xk denote a set of clusters identified from Sk. In order to effectively maintain the 
quality of the clusters, each cluster has a set of grid-cells. The interval of a grid-cell is 
defined by a non-overlapped and equal-sized unit. In order to represent a unit, only 
one value, a unit identifier, is used in this paper. For instance, an object ok is 
transformed to a unit identifier Ik (Ik = ok/ρk ) where ρk represents an interval size for 
the kth dimension. A grid-cell gk contains the following information: the unit identifier 
Ik, linear sum glk, square sum gsk and total number gnk of objects contained in the 
interval of gk i.e., gk = (Ik, glk, gsk, gnk). The properties of a cluster Ck ∈ Xk are 
represented by Definition 1. 

Definition 1. Cluster Properties 
Given a cluster Ck of similar data objects for the kth dimension, the properties of a 
cluster Ck are represented by a tuple Ck(δk, μk, SSk, gSetk). 

where, δk: The density of the cluster Ck is represented by δk. It is set to the total 
number of objects in the cluster Ck, and μk: The central value of the cluster Ck is 
represented by μk. It is calculated by the average of objects in the cluster i.e., 
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grid-cell set of objects contained in Ck is represented by gSetk.  

When a new object ok occurs from a data stream Sk, a cluster whose center is closest 
to the object should be selected from Xk in order to insert the object ok into the cluster. 
The updated properties of the cluster Ck are calculated as follows: 
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To update the grid-cell set gSetk consider the only grid-cell whose interval contains 
the object ok. In other words, when the unit identifier of a grid-cell gk is same as the 
unit identifier of the object ok, the properties of the grid-cell gk can be updated. Let 

k
gl , 

k
gs and 

k
gn denote the old properties of gk and let kgl , kgs and kgn denote the 

new properties of gk, respectively. Ultimately, for a grid-cell gk ∈ gSetk whose unit 
identifier Ik equals to ok/ρk , the new properties of gk are calculated as follows: 

 ( )1,)(, 2 +++= kkkkkk gnogsoglg  

When many objects occur between two adjacent clusters, they are very close each 
other. If the standard deviation of all the objects in them becomes smaller than or 
equal to a user-defined threshold minimum deviation, they are merged into one 
cluster. For two adjacent clusters Ck

1 and Ck
2 contained in Xk, let σ denote the 

standard deviation of all objects in the two clusters and it is calculated as follows: 

 
2

21

2211

21

21

+
⋅+⋅−

+
+=

kk

kkkk

kk

kk SSSS

δδ
δμδμ

δδ
σ . 

If minimum_deviation, the two clusters are merged into one cluster Ck. The 
properties of the cluster Ck is updated as follows: 
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In the above equations, the center of the cluster Ck is set to the weighted average of 
the centers of the two clusters Ck

1 and Ck
2 with respect to their densities δk

1 and δk
2. 

Also, the square sum of the cluster Ck is set to the sum of SSk
1 and SSk

2. When the 
cluster Ck

1 and Ck
2 are merged to the cluster Ck, the grid-cell set gSetk of Ck can be 

obtained by the union of their grid-cell sets gSetk
1 and gSetk

2, i.e., gSetk = gSetk
1 ∪ 

gSetk
2. This is because the grid-cells of two clusters are not overlapped according to 

the definition of a grid-cell. 
Meanwhile, as the number of objects occurring from a data stream becomes larger, 

the standard deviation of objects in each cluster becomes higher. In other words, the 
quality of each cluster can be low. Therefore, to maintain the quality of each cluster, 
the cluster is split into two clusters with respect to minimum_deviation as follows. For 
a cluster Ck ∈ Xk, let gSetk be {gk

1, g
k
2, ..., g

k
p, ..., g

k
q}. If σk > minimum_deviation, 

then the cluster Ck is split into two clusters Ck
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i denote a set of objects 
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2 can be obtained as follows: 
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Algorithm 1 describes the process of clustering a data stream. In this algorithm, 
input parameters are a data stream Sk, a minimum deviation, and an initial cluster 
number. In Line 1, each object is generated as a cluster with respect to the initial 
cluster number. And then, when a new object occurs, the following processes are 
performed. In Lines 3~4, a cluster whose center is closest to a new object is selected 
from the cluster set and the properties of the cluster are updated. In Lines 5~10, when 
the standard deviation of all the objects in any two adjacent clusters is less than or 
equal to the minimum deviation, two clusters are merged. In Lines 11~15, when the 
standard deviation of any cluster becomes larger than the minimum deviation, the 
cluster is split into two clusters and then newly generated clusters are inserted into the 
cluster set Xk. 

Algorithm 1. Clustering a data stream 
Clustering (Sk, minimum_deviation, initial_cluster_number) 
1: Generate initial clusters w.r.t initial_cluster_number and then 

insert them into Xk. 
2: foreach o ∈ Sk do 
3:   Select the closest cluster Ck in Xk from o. 
4:   Update the properties of the cluster Ck. 
5:   Select the most adjacent cluster Ck’ of the cluster Ck. 
6:  Calculate the standard deviation σ of objects in two clusters Ck and 

Ck' 
7:   if σ ≤ minimum_deviation, then 
8:      Merge Ck and Ck’ into Ck. 
9:      Update the properties of the cluster Ck. 
10:     Delete Ck’ from Xk. 
11:  if σk > minimum_deviation, then  
12:     Split Ck into two clusters. 
13:     Update the properties of the two clusters.  
14:     Insert the two clusters into Xk. 
15:     Delete Ck from Xk. 

4   Anomaly Detection  

For each feature, the on-going result of clustering is summarized in a profile, which is 
composed of the two properties of each cluster, a center and a standard deviation. An 
anomaly in a newly occurring object can be identified by comparing the new object 
with the current profile of each feature. For this purpose, as a new object occurs from 
a data stream, if the difference between the object and its closest cluster becomes 
large, this object is considered as an anomaly. The difference diff(Xk, ok) between an 
objects and its closest cluster Ck is defined as follows: 

 
k

kk
kk o

oXdiff
σ

μ ||
),(

−=   (Ck ∈ Xk) 



422 S.-H. Oh et al. 

In the above equation, the distance between the cluster Ck and the object ok should 
be divided by the standard deviation σk. This is because the common characteristics of 
the features should be normalized. As a result, when the number of features 
participating in anomaly detection is n, the overall abnormality of a new object can be 
calculated as follows: 
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In order to decide the rate of abnormal behavior in the new object o, a set of 
different abnormality levels can be defined relatively to the normal behavior of the 
historical activities. In this paper, two different abnormality levels (green, red) are 
considered in order to classify whether the activities of a new object are anomalous or 
not. The green level is safe while the red is warning. Let ϒ(ν, λ, χ) denote the 
statistics of abnormalities until now. ν, λ and χ are represented as the total number of 
objects occurring from a data stream S, the linear sum of their abnormalities and the 
square sum of their abnormalities, respectively. Based on the statistics ϒ, the average 
Φ and its standard deviation Θ of abnormalities can be calculated as follows.  

 2, Φ−=Θ=Φ νχνλ  

The new object o is in 
 Green level: if 0  abnormality(o)  Φ + Θ ⋅ξ 
 Red level: if Φ + Θ ⋅ξ< abnormality(o).  

A detecting factor ξ is a user-defined parameter which determines how strictly the 
anomaly of a new object is classified. As it is decreased, a new object is more strictly 
examined. Given a set of normal object, its false alarm rate is represented by the ratio 
of the number of objects that are within the range of the red level over the total 
number of normal objects. Similarly, given a set of anomalous objects, its anomaly 
detection rate is represented by the ratio of the number of objects that are within the 
range of the red level over the total number of anomalous objects. 

5   Experimental Results 

We present the results of experiments comparing the performance of LSEARCH and 
the proposed method. We conducted all experiments on a Pentium II with dual 350 
MHz processors running LINUX 2.6.7. To demonstrate the performance of the 
proposed algorithm, synthetic data sets are generated as in Table 1. The data sets D20, 
D40 and D80 contain clusters which are explicitly separated and the number of 
clusters in each data set is 20, 40 and 80, respectively. The data set RAN contains 
randomly generated objects. In all experiments in this paper, the interval of grid-cell 
and the minimum deviation are set to 5 and 30, respectively. 
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Table 1. Synthetic data sets 

Data sets # of objects # of clusters Data size 

D20 11,600 20 51 Kbytes 
D40 23,200 40 109 Kbytes 
D80 46,400 80 225 Kbytes 
RAN 79,200 unknown 374 Kbytes 
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(a) Execution time                                     (b) Memory usage 

Fig. 1. Performance of the proposed method 

Figure 1-(a) illustrates the execution time and memory usage of the proposed 
method when the number of objects in the RAN data set is varied. In Figure 1, as the 
number of objects becomes larger, the execution time increases linearly. This is 
because the complexity of the proposed algorithm is O(n). Figure 2-(b) illustrates the 
memory usage of the proposed method with respect to the number of objects 
occurring in the RAN data set. The memory usage is represented by the total number 
of grid-cells in clusters. In this experiment, the memory usage is saturated with about 
900 when the number of objects is 1000. 

Table 2. Average SSQ for each data set 

 D20 D40 D80 RAN 

Proposed Method 70.4 72.9 78.1 550.8 

LSEARCH 70.0 13399.2 44858.6 13834.3 
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Fig. 2. The number of clusters 

Table 1 illustrates the average SSQ's of the proposed method and LSEARCH 
which is popularly used for representing clustering quality. Average SSQ is the 
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average of squares of the distances to the cluster centers. In LSEARCH, the lower and 
upper bounds on the numbers of clusters to find are set to 10 and 80. For the data set 
D20, the average SSQ's of two methods are similar while those of LSEARCH are 
very higher than those of the proposed method for other data sets D40, D80 and RAN. 
It means that the proposed method finds clusters more correctly than LSEARCH. The 
reason of that result is shown in Figure 2. Figure 2 describes the number of clusters 
generated by the proposed method and LSEARCH. The proposed method finds 
correctly explicit clusters in data sets while LSEARCH do not. 

In order to evaluate the performance of the proposed algorithm in a real world 
environment, we use DARPA log data sets collected in 1998 [17]. The feature values 
of the log data sets are extracted by BSM (Basic Security Module) [18] of Solaris 2.6. 
Among these signals, 84 signals are used as basic features in the experiments. In a log 
data set, an object is defined by the number of system calls occurring in a unix 
command on a host computer. We use two types of data sets for real world 
experiment: a programmer and a system administrator. A programmer writes a public 
domain C code via a “vi editor”, compiles the C code (sometimes successfully), reads 
and sends mails, and executes unix commands. A system administrator runs 
privileged commands. In this experiment, the programmer is regarded as a target user 
for anomaly detection. To simulate the environment of each data stream, a data set is 
replicated multiple times and its transactions are looked up one by one in sequence. 
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Fig. 3. Detection results 

In Figure 3, the false alarm and detection rates in the proposed method are 
compared with those of the LSEARCH and NIDES. In this experiment, the value of 
the detecting factor ξ is set to 1.5. As shown in Figure 3, the false alarm rates of 
LSEARCH and NIDES are higher than that of the proposed method. Furthermore, the 
detection rate of NIDES is much lower than those of the proposed method and 
LSEARCH. As a result, the proposed method can detect an anomaly more effectively 
than LSEARCH and NIDES.  

6   Conclusions and Future Work 

This paper proposes an anomaly detection method that employs a clustering algorithm 
for a data stream. For each feature, its clusters can be effectively found upon without 
maintaining any object of the data stream physically. For the purpose, clusters are 
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dynamically generated by splitting a cluster into two clusters or merging two adjacent 
clusters into one cluster. As a result, the proposed method can find clusters more 
correctly than other conventional methods. For anomaly detection, new objects are 
continuously reflected to both the on-going result of clustering and the profile at the 
same time. Therefore, an anomaly can be detected easily without additional processes. 
In the future, the method of dynamically finding the interval size of a grid-cell and a 
minimum deviation is researched.  
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Abstract. Cooperative defensive systems communicate and cooperate
in their response to worm attacks, but determine the presence of a worm
attack solely on local information. Distributed worm detection and im-
munization systems track suspicious behavior at multiple cooperating
nodes to determine whether a worm attack is in progress. Earlier work
has shown that cooperative systems can respond quickly to day-zero
worms, while distributed defensive systems allow detectors to be more
conservative (i.e. paranoid) about potential attacks because they manage
false alarms efficiently.

In this paper we begin a preliminary investigation into the complex
tradeoffs in such systems between communication costs, computation
overhead, accuracy of the local tests, estimation of viral virulence, and
the fraction of the network infected before the attack crests. We evaluate
the effectiveness of different system configurations in various simulations.
Our experiments show that distributed algorithms are better able to bal-
ance effectiveness against viruses with reduced cost in computation and
communication when faced with false alarms. Furthermore, cooperative,
distributed systems seem more robust against malicious participants in
the immunization system than earlier cooperative but non-distributed
approaches.

1 Introduction

Increasing innovation among attackers, the increasing penetration of broadband
Internet service and persistent vulnerabilities in host software systems have led
to new classes of rapid and scalable mechanized attacks on the information in-
frastructure. Leveling the playing field requires scalable, automated responses
to malicious code that can react in the short propagation windows evident with
network worms such as Slammer [1]. Traditional approaches have relied on sig-
natures, manual containment and quarantine (e.g., [12]), and while tools are
improving, reliance on identifying signatures and other improvements in detec-
tion processes is by itself insufficient. What is needed to complete the defensive
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technology portfolio is a scalable, distributed, adaptive response mechanism,
based on cooperative behavior amongst a set of responding nodes. Since näıve
cooperative behaviors might introduce new risks, including fragility in the face
of poor or maliciously-generated information, particular attention must be paid
to robustness in the cooperative strategy.

The problem of detecting, quarantining and recovering from day-zero viruses1

is made easier if local detectors are allowed more room for error. If we err on
the side of allowing false alarms, then detectors can be cautious (paranoid!) and
conservatively flag anything that looks suspicious, and depend on cooperative
corroboration to determine whether the attack is real or not. For this strategy to
be effective, though, requires the entire anti-virus system to handle false alarms
quickly and cheaply and still respond rapidly to real virus attacks.

Handling individual false alarms is not sufficient, however; by allowing more
false alarms we increase the probability that the system will be called upon
to manage multiple simultaneous potential viral attacks. Simultaneous attacks
complicate the anti-virus response because increasing the defense against one
virus involves either decreasing the defense against another virus or incurring
higher costs (if the system can afford any further anti-virus costs). Simultaneous
attacks may occur because of multiple day-zero viruses [10], or because early-
stage false-alarms are not yet distinguishable from real virus attacks, or because
of the resurgence of old viruses. Old viruses are still potentially virulent, since
a measurable fraction of hosts do not upgrade or patch to eliminate security
bugs, as the persistence of Code Red and other worms has demonstrated. A
good analysis of the persistence of Blaster is given in [4], which shows that
tens of thousands of instances of the virus remain active a full year after the
initial outbreak. More surprisingly, 73%–85% of infected class-C subnets were
not detected as infected during the first Blaster outbreak.

These observations expose several significant problems that must be dealt
with. Any node that responds to a potential virus carries a cost: a node has
finite resources and therefore can only engage a limited number of viruses at
a time. Deciding to counter one virus entails ignoring some other virus. In the
absence of cost, the best response to a potential virus attack is to flood the
network as rapidly as possible, causing as many cooperating agents to respond
at once. The main question is simply whether the response is quick enough to
stifle the virus. In the presence of a cost model, however, we still need to respond
quickly, but no more quickly than necessary. A false alarm, whether malicious
or unintended, can trigger a DoS attack by the response mechanism itself.

In this paper, we investigate tradeoffs in global, distributed response mecha-
nisms that must respond quickly to real viruses and do not over-react to false
alarms. These systems should be efficient in terms of bandwidth and global

1 In this paper we use the term “virus”, in an extremely broad manner, to refer to any
epidemic-like attack communicated over the network. We use this term, regardless,
whether the virus is an active worm that attacks a system even without the unwitting
involvement of a legitimate user or a passive virus, that is embedded in a document
or email, that requires (unintentional) user assistance to become active.
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computation. Moreover, the response mechanism must be robust against ma-
licious agents spreading false information and be able to manage its resources
even when many distinct viruses are active at any time. This approach is or-
thogonal to, and can augment, any proposals for the detection of and recovery
from day-zero viruses. It has the added advantage of also performing well in the
face of false alarms resulting from malicious behavior or failed detectors.

We focus here on an algorithm called coverage, whose core ideas were orig-
inally introduced in [2]. This algorithm takes into consideration shared informa-
tion about the observed rate of infection for each virus, verifying that new reports
are compatible with a node’s own empirical observations, and determines (prob-
abilistically) which viruses to respond to. We evaluate its effectiveness through
large-scale simulation. We discuss also, although to a lesser extent, tradeoffs in
a similar cooperative (but non-distributed) approach, called NRL03, described
in [13], which differentiates between slow and fast-spreading viruses.

In our previous work, we determined that our basic cooperative and dis-
tributed approach was effective, but only in the sense of measuring the abil-
ity of the two approaches to detect and respond to worms of different infection
rates, as well as their resistance to malicious nodes that spread misinformation.
Here, we offer refined algorithms over the earlier coverage work, and, using
a more detailed model we begin to examine the three-way tradeoff between
communication costs, computation overhead, and the percentage of the network
that gets infected before the reaction mechanism manages to limit the worm
propagation. When evaluating alternative approaches in this model, we deter-
mine that COVERAGE always has much lower scanning costs; whether in the
cases of slowly-propagating worms, fast worms, or in the presence of malicious
nodes injecting false alarms. coverage has significantly lower communication
cost when dealing with false alarms. Furthermore, the distributed approaches
(both coverage and our refined version) can trade off higher communication
cost to to detect and react to slow-propagating worms more quickly than the
purely cooperative NRL03. Finally, both NRL03 and the coverage variants
can use increased communication costs to perform better against fast worms,
but the distributed approaches require much higher communication costs than
NRL03 — perhaps an unavoidable consequence of their robustness against false
alarms.

2 System Model

In this section, we describe our model of how viruses, switches/routers, hosts
and our detection mechanism behave.

Modeling Viruses. We use a fairly simple model to describe the behavior of
potential attackers (viruses) that we consider in our work. After infecting a node,
a virus attempts to infect other nodes; it may attempt to only infect a (small)
fixed number of other nodes, or exhibit a greedier behavior. For our purposes,
the distinction between the two types is simply in the probability of detection
of a probe or attack by a detector. A virus may exhibit high locality of infection
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(i.e., probing and attacking nodes based on network-topological criteria, such as
“adjacent” IP addresses), or could use a random (or seemingly random) targeting
mechanism, e.g., using a large hit-list, or some pseudo-random sequence for
picking the next address to attack. We expect that viruses that exhibit high
locality are more difficult to detect using an Internet-wide distributed detection
mechanism, but easier to do so on a local basis. We completely characterize a
virus by the rate at which it attempts to infect other nodes and by the fraction
of local attempts it makes. All attacks on susceptible nodes are successful, and in
our simulation a virus never attempts to attack a non-existent node. As a result,
our simulated viruses are more virulent than equally aggressive viruses in the real
world. We make no assumptions about the infection vector: although perhaps
the more “interesting” cases are those where the virus is able to automatically
subvert a machine or application, our model does not preclude human interaction
in the infection process (e.g., mail viruses as attachments).

Furthermore, we only assume that, once detected, there is some detection
and/or response “module” associated with each virus — we do not investigate
its details: the mechanism may be as simple as a content filter. There is some cost
(in terms of CPU, memory, impact on legitimate communications, etc.) associ-
ated with each of these modules, which requires the prioritization of the various
threats (viruses) in terms of allocating resources for detection and response.

Detection of Zero Day Worms. Although our algorithm is orthogonal to and
agnostic about the method(s) with which new (zero day) worms are detected,
we briefly discuss different techniques and how they may interact with COVER-
AGE. A zero day worm detector consists of roughly three components. First, we
must detect anomalous behavior. The behavior may range from specific activi-
ties (e.g. port scans, system/application crashes, incorrect password attempts) to
statistical changes (e.g. increased network traffic, slow response time, variation
in system call signatures, number of TCP connections in TIME-WAIT). Sec-
ond, the transmission vector must be identified (finding a set of network packets
whose arrival seems to herald the onset of the anomalous behavior). Third, a
detectable “signature” of the traffic must be generated so that hosts can scan
for, and filter out, the potentially offending traffic. It is important to note that
a “signature” in our model is not necessarily simply a pattern of bits to match
inside a packet — it can be any profile that detects anomalous behavior, ranging
from packet inspection to longer term multi-packet behavior.

Perhaps the most promising approach is that of monitoring the number of
packets aimed at the unused portion of an organization’s address space, as was
suggested in [6]. In that work, it was shown that with as few as 4 such probes, it
is possible to infer the existence of a new worm aimed at a previously untargeted
service/port. A similar approach is proposed in [19], where sudden changes in the
traffic statistics maintained on a per source IP address and per destination port
number indicate a high-visibility event, such as a scanning worm. Similar works
have proposed measuring the entropy of traffic (e.g., in terms of distinct source
IP addresses seen) as an indication of unusual activity. These mechanisms act as
early warnings, alerting administrators and perhaps automatically reconfiguring
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a firewall to assume a more defensive posture. However, without corroboration
with outside sources (e.g., through COVERAGE) they can be manipulated by
an attacker to generate false positive reports. It is also worth noting that these
mechanisms can only give a rough fingerprint of a new worm’s activity, such as
the targeted service/port—thus, they can be fairly accurate about the presence
of an attack, but inaccurate about mapping specific packets to the attack, as
would be the case with a worm targeting a protocol such as HTTP.

A second, more accurate but also more expensive (computationally, as well as
in terms of necessary infrastructure) mechanism for detecting worms is through
use of properly instrumented honeypots or virtual machines, as is done in [16,9],
or through payload analysis [8,17] that can yield a potential worm signature.
Finally, anomaly detection techniques, such as those proposed in [5], can indicate
the presence of packet payloads that do not conform to the typical contents of
packets for a particular service (e.g., binary content containing a buffer overflow
payload uploaded to a web server).

These mechanisms identify different points in the zero-day worm detection
space, trading off between the likelihood of false positives, the time needed to col-
lect enough evidence before raising an alarm, and the expense of testing whether
an alarm should go off.

These observations are taken into consideration by the COVERAGE algo-
rithm to balance the cost of detection (e.g., coordination, scanning as well as
collateral damage that may be caused by false alarms) and the ability to respond
effectively to virus attacks.

Network Topology. Our simulation topology is dictated by our assumptions
about the vulnerabilities and capabilities of network nodes with respect to virus
attacks. We assume that, as a general rule, routers/switches are less likely to be
infected by a virus, and thus that only hosts are susceptible to infection.

Here, we assume that the only nodes in our system capable of scanning packet
sequences for potential viruses are end-hosts or last-hop routers. While consider-
able advantage can be gained by exploiting the great levels of traffic aggregation
seen in routers closer to the network core, it is unlikely that such nodes can
actively scan for viruses without significantly affecting their performance.

Thus, our model of the network topology consists entirely of a collection of
subnets (LANs) containing a number of hosts. Each subnet connects to the
global network through a single router. All routers are connected together in
a single cloud where each router can address and forward packets to each other
directly. End-hosts can only see their traffic, while routers can inspect all traf-
fic to or from their associated LAN. It is likely that some organizations con-
tain multiple subnets that frequently communicate among themselves. Therefore
we collect together several subnets into a domain. A domain captures particu-
lar communication patterns but has no structural impact on the topology for
simulation.

State of Nodes. A node in our environment can be in one of three states with
respect to a virus: susceptible, protected, or immune. A susceptible node can be
either infected or uninfected. Susceptible nodes will become infected if subjected
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to an attack. Protected nodes may be infected or uninfected, but only if the
detection module does not have the ability to detect and disinfect an infected
machine. A protected node will not become infected as long as the protection
mechanism (typically, a module that screens packets or email) is in place. An
immune node does not have the vulnerability exploited by the virus.

Operations. A COVERAGE agent can monitor traffic and, for each virus, it can
either ignore the virus or perform one or more of the following operations: collect
and exchange information about a virus, scan for the presence of a virus (actually,
scan for the presence of patterns of network traffic used as a “signature” for
that virus), or filter viruses (by dropping one or more packets that are part
of a virus signature). We assume that there is a cost inherent in checking for
virus signatures. That is, a node cannot be actively “on the lookout” for an
arbitrary number of viruses without adversely affecting its performance. (Some
experimental measurements of such real-world limits are given in [3]). Edge-
routers are more likely to be constrained by high packet rates, and therefore
limited in the amount of scanning they can perform. Hosts can afford to scan
for more viruses without interfering with their (lower) packet rate, but, on the
other hand, have work other than packet forwarding to perform. In either case
there is an upper bound on the number of viruses a node can scan for.

We assume that nodes periodically exchange information about viral infec-
tions. Although the per-virus cost of such an exchange is low, we assume that
the number of known plus potential day-zero viruses exceeds the amount of
information that can be reasonably exchanged at any given time. Thus, ac-
tively exchanging information about a virus incurs a cost, albeit lower than
scanning.

Routers can additionally scan for suspicious behavior on all traffic to or from
their LAN (and drop when necessary). We further assume that if a router de-
tects a rampant viral infection for a virus that has an associated disinfectant
component, the router can invoke a disinfection operation (perhaps alerting an
administrator) on all the nodes in its LAN.

Model of Anti-virus Epidemic. Each node participating in the anti-virus response
must make certain decisions: (a) the rate at which it polls other local nodes for
virus information, (b) the rate at which it polls other remote nodes, chosen at
random, for virus information, (c) whether for each virus to collect information
about it, (d), whether to include that information in virus exchange packets, and
(e) whether to scan for the virus (collecting the results of those scans as part of
the local information for that virus).

3 Cooperative Virus Response

COVERAGE tries to balance the cost of scanning and filtering packets for a
specific virus against the benefit of detecting, other, real viruses in several ways.
First, COVERAGE models the virulence of viruses and ranks them in virulence
order. With probability proportional to their virulence, COVERAGE decides
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in rank order whether to actively scan for the virus or not. It stops making
decisions, and scans no more viruses, once the scanning schedule consumes the
entire scanning budget available. Second, each COVERAGE agent exchanges
information about the state of a virus with other cooperating agents in order to
construct a model of the virus and determine whether incoming reports are em-
pirically consistent with the observed state of the network. Third, COVERAGE
agents determine their polling rate to maximize the probability of seeing enough
viruses to confirm the current local estimate of the virus state, while reducing
the probability that communication will add no new knowledge to either of the
participants. We now describe the algorithm in more detail.

3.1 COVERAGE Algorithm

Agent communication. Each COVERAGE agent polls other agents, selected
randomly. Assuming that only a small fraction of the nodes are reporting false
information, a randomly selected node is more likely to be trustworthy than a
node that actively contacts us — a small number of malicious nodes may try
to flood the rest of the network. At each poll, the sender reads the response
and updates its local state variables to track the operation of the cooperative
response mechanism and the status of the network in terms of observed attacks.

First, it records whether the remote agent is actively scanning. This allows the
agent to estimate the fraction of agents in the network that are actively scanning
for a particular virus. Second, it updates estimates of possible infections e.g., the
fraction of infected nodes for each virus. We distinguish two types of estimates:
direct and remote. Direct estimates are updated based on whether each remote
agent has directly observed an attack (either to itself or, if a router, to a node in
its LAN). Remote estimates are updated based on the fraction of infected nodes
as estimated by the remote agent (the “direct” estimates of the remote agent).
Direct measurements performed by the local node are absolutely trustworthy —
there is no issue of false positives. The direct measurements of agents that we
poll (which become our remote estimates) are next in trustworthiness. Remote
estimates of agents who we poll are more suspect, and information reported by
agents who contact us are the most suspicious of all. However, we can validate
any information reported to us — if someone reports that a particular virus
is attacking 25% of the Internet at the moment, then if we poll 20 agents at
random, then with 80% probability we would expect to find that between 3 and
7 of those agents had directly seen an attack in the last measurement interval.
Values outside that range would cast doubt on the remote estimate.

Finally, in this paper we ignore the details of how COVERAGE nodes authen-
ticate themselves to each other. However, we note that even strong authentication
is not sufficient for our system. If a COVERAGE agent is taken over by a malicious
attacker, then the attacker can (presumably) still authenticate itself and discover
which nodes are not scanning for a particular virus, and use that information when
choosing targets. To defend against such a vulnerability in COVERAGE , we pro-
pose (but havenot yet implemented or experimented with) a simple defense. When
polling, the identity of the target agent is not important — just the fact that we
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chose it randomly, and it did not choose us. And, while we are interested in the
statistics of the sample as a whole, we need not link a particular set of direct mea-
surements to a particular IP address. Consequently, each agent stores a randomly
selected response from the last measurement interval (the local measurements are
one of the candidates that may be selected), and returns that random selection in
response to any COVERAGE poll, for the direct measurements and scan list only.
(The cumulative counters are still stored and reported accurately). The poller still
receives an accurate response — just perhaps from a different IP address than the
one it polled, and perhaps slightly older than expected. This adds a level of indi-
rection to the polling process.

Periodic updates. At regular intervals each COVERAGE agent updates its
state based on the information received since the last update. To track the
progress of the infection each COVERAGE agent maintains a smoothed history
for each type of estimate (direct and remote), each as exponentially decaying
averages with varying time constants, to approximate recent infection rate, past
rate, and background rate.

Using these estimates, an agent can compute the fraction of nodes believed to
be infected as well as the growth of the infection, assuming exponential growth2.

If we assume that each infected node infects α nodes at each timestep, and
that a fraction p� of all nodes are infected at some start time t0, then at time t
we expect the fraction of infected nodes to be p�(1+α)t−t0 . Consequently, if our
direct samples at times t0, t1, and t2 report a fraction pd[t] nodes are infected3,
we can estimate p�

d and αd for future growth by fitting

pd[t0] = p�
d

pd[t1] = p�
d(1 + αd)(t1−t0)

pd[t2] = p�
d(1 + αd)(t2−t0)

Given estimates of p�
d and αd, we can calculate the virulence, vd, of a virus as the

estimated number of timesteps needed by the virus to infect the entire network.
Note that we independently calculate virulence for global and local growth,

in order to identify attacks that are non-uniformly distributed throughout the
network. Using the same method as above the agent also computes αr, p�

r and
vr based on the remote estimates.

Scanning/filtering. Given the estimates an agent can decide whether it needs
to scan for a given virus. There is a basic, low level of scanning for every virus.
2 We assume all growth is exponential for the purpose of deciding whether to trigger

a reaction. We believe that linear growth worms can be detected by humans, and
need not be countered by an automatic, distributed, algorithm. If our assumption is
incorrect and growth is, in practice, sub-exponential then we recover naturally be-
cause we observe a decrease in α and gradually back-off as the predicted “virulence”
of the virus drops.

3 In fact, we use the smoothed averages rather than instantaneous samples, and the
details of the actual calculation are a bit more complicated, but are not relevant to
the main point of this paper.
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When a virus becomes active the scanning rate may increase. In the general case,
the agent can sort viruses in order of their virulence vd and decide whether to
scan for each virus, in turn, stopping when the scanning budget is filled. (In our
simulation, we only scan viruses whose vd is below threshold.)

To maintain a basic, low level of scanning for every virus, every agent measures
the fraction fscanning of nodes in the network that are actively scanning for a
given virus based on information exchanged with other nodes. If this fraction is
below a threshold ftarget (around 2-5%) and the node has enough resources for
scanning, it activates with probability ftarget − fscanning, and disables scanning
in a similar way if too many nodes seem to be active. To avoid turning “blind” to
certain worms because of a fraction of malicious nodes falsely reporting that they
are actively scanning, nodes need to aim for ftarget +fmalicious, where fmalicious

is the maximum tolerable fraction of malicious nodes. Although this increases
scanning cost, nodes can trade-off this cost for higher communication costs.

An inactive agent, A, may also start scanning seemingly low-virulence viruses,
if enough other agents claim the virus is virulent, and A finds that the fraction
of scanning nodes is too low to detect virus activity in a single timestep at the
current polling rate. The test is whether n (simply the fraction of agents that
were polled and found to be scanning in the last interval) is less than twice the
estimated fraction of infected hosts (e.g., if n < 2p�

r). Similarly, if the agent
is active but n > p�

r then it decides to stop. The agent also stops scanning if
αr approaches 0. This ensures that the fraction of scanning agents is bounded
if there is insignificant progress for a given infection or if the infection is small
compared to the number of actively scanning agents. Such heuristics are essential
for controlling the behavior of the algorithm, keeping the response mechanism
“ahead” of the virus but also limiting the damage and cost when malicious agents
spread false information.

A small number of agents need to be watching for each dormant virus. The
number of active scanners monitoring a virus may be more than warranted by
the level of virus activity. An agent detecting this will stop monitoring the virus.
If the agent finds that it now has ample room within its scanning budget to
consider another virus, it chooses another virus to monitor uniformly at random
from the (large) virus database. The agent may choose a virus that almost no
one else is scanning for — in which case it will stay on the scanning list for a long
time, and be inspected by the agent as long as there are not too many virulent
virii. If the new virus is dormant, but enough people are already looking at it,
then the agent will drop it, and randomly choose another.

Polling rate. An agent communicates with agents within the same domain at
a constant, high rate, as the cost of intra-domain communication is assumed to
be very small. Inter-domain communication is generally more expensive; agents
therefore need to adapt the rate of polling remote agents, avoiding excessive
communication unless necessary for countering an attack. When there is no
virus activity, agents poll at a pre-configured minimum rate (at least an order
of magnitude lower than the rate for intra-domain communication). An agent
periodically adapts the remote polling rate if vr is less than a given threshold.
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The new rate is set so that the agent polls 1/(p�
r)

2 remote agents in each update
interval, unless this rate exceeds a pre-configured maximum rate. This is used
to increase the polling rate when the remote estimate indicates that an attack is
imminent (but not yet reflected in the direct estimate). If the more recent direct
estimate pd[n] is non-zero, then the polling rate is increased so that at least a
few samples can be collected in each update interval. Finally, if the estimated
virus population p�

r is small and the estimated virus growth rate is close to zero,
the agent throttles back its remote polling rate to the minimum rate.

These adjustments are always performed on the polling side. We avoid chang-
ing the state or behavior of the polled agent to reduce the risks associated with
malicious agents. Otherwise, they could spread misinformation and raise false
alarms more effectively by increasing their own communication rate.
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Fig. 1. Fractions of infected hosts and scanning nodes over time (top), and fraction of
actively infected nodes (bottom)

3.2 COVERAGE Behavior

To give a rough sense of how the COVERAGE algorithms described above be-
have, Figure 1 displays a single example run of the COVERAGE algorithm
against a single simulated virus called “worm 1”. We show the activity of the
virus (the number of nodes that were ever infected in their lifetime) in (a), and
the currently infected nodes in (b)), as well as the response of COVERAGE
(both the number of agents scanning for “worm 1”, as well as the number of
agents scanning for a dormant virus “worm 0”). (Section 4 describes how we
approximate a heavy load on the COVERAGE agents by using a simulation pa-
rameter threshold— each agent is too busy to consider any virii unless they are
likely to take over the entire network within threshold measurement intervals.)

One can see the initial stage of the infection and the response of the algo-
rithm: the virus manages to infect roughly 10% of the hosts; cooperation be-
tween COVERAGE agents results in a rapid activation of filtering on roughly
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75% of the network effectively eliminating the virus. Soon after stopping the
attack, the COVERAGE agents on uninfected parts of the network deactivate
scanning/filtering. However, as shown in Figure 1(b), a small number of hosts
remains infected and undiscovered, resulting in another three episodes where
COVERAGE agents are activated (each episode with a smaller fraction of agents
activated) to defend against a secondary outbreak. Although a tiny fraction of
infected nodes remains undiscovered, it does not cause any further harm and
COVERAGE gives users time to patch up their systems. The scanning for dor-
mant “worm 0” continues, except during the most virulent part of the outbreak,
where the number dips as resources are marshaled to defend against “worm 1”.

4 Simulation Results

To simplify the analysis of COVERAGE and to meaningfully include the non-
adaptive NRL03, we restrict the simulation to a single virus. We model the
impact of multiple active viruses by assuming that each node is busy handling
other viruses. To represent the load imposed by other viruses, we specify a thresh-
old under which a virus will not have high enough priority to be scheduled in
the scanning budget. If many viruses are active then the threshold will be a
small number, such as 5 (recall that the virulence is a measure of how many
measurement intervals it will take before the virus has covered the entire Inter-
net). Unless the current virus is poised to conquer the entire net at its current
rate of growth from its current coverage within threshold intervals, it will not
have high enough priority to be scheduled in the scanning budget. We only con-
sider cases where the net is already under heavy attack by other viruses, setting
threshold equal to 5 and 20.

To better understand the performance of COVERAGE, we limit our simula-
tion to a simple, relatively small network of 100,000 edge-routers, each connected
to 8 hosts, with 50 edge-routers in each of 2,000 domains. We also consider
the performance of our version of coverage in relation to NRL03 [13], an-
other cooperative algorithm, which makes different tradeoffs than coverage.
NRL03 uses cooperative peer-to-peer strategies to respond to large scale Inter-
net worm attacks. The model involves a number of friend nodes, which work
together by exchanging information to warn of suspicious worm-like network
behavior. As in COVERAGE, a small fraction of nodes is assumed to be scan-
ning for a given virus. When the virus is detected, the node broadcasts the
alert to its friends. When a node receives such an alert, it increments an alert
counter, and propagates the alert to its set of friends when this counter reaches a
threshold.

For the COVERAGE algorithm, we set the local-domain polling interval to
1.8 seconds , the maximum and minimum remote polling intervals to 6 seconds
and 1.8 seconds respectively. For both algorithms we assume that 4% of the
edge-routers are permanently scanning for the virus.

Our analysis uses three metrics. First, we model the success of the attack
by integrating the number of infected nodes over time. This is only relevant in
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the case of a real virus attack. Second, we consider the number of edge-routers
actively scanning/filtering this virus. This is a measure of the computational
overhead of the response mechanism. Our third metric, the total number of
messages sent, measures the communication cost.

We measure the progress of infections of differing virulence and the success
of the response mechanism as the integral over time of the fraction of infected
nodes. The results for COVERAGE and NRL03 with different parameters are
shown in Figure 2. (It may seem counter-intuitive that the more virulent viruses
cover less of the network; however, recall that we are integrating over time and
that the faster worms, while they spread faster are also detected and disin-
fected faster). COVERAGE reacts more slowly than NRL03 for fast worms —
we model COVERAGE dealing with other viral outbreaks, but let NRL03 as-
sume that this is the only virus in the Internet. Consequently, the virus takes a
larger initial toehold in the network under COVERAGE, and is active slightly
longer before being cleaned up. Because of this toehold, COVERAGE performs
relatively worse than NRL for fast worms. On the other hand, it detects the slow
worms before NRL03, and therefore does better. The slow response by COVER-
AGE in the case of fast worms has been a deliberate design choice in an attempt
to make the algorithm robust against false information from malicious nodes.
Figure 3 plots the high water mark of viral attacks as a function of the virus
infection rate for different communication settings in COVERAGE. We can see
that a moderate increase in communication rates in COVERAGE allows it to
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stop the virus with a lower high water mark than NRL, but at the expense of
more communication. 4

Figures 4 and 5 show the fraction of nodes scanning for a virus as a function
of the virulence of the virus and the fraction of malicious (or faulty) nodes.
The figures for COVERAGE are more pessimistic than for NRL, because in
NRL every edge-router is scanning for the virus (obviously impractical for a
large set of viruses), and the graphs report only those nodes that are actively
filtering the virus. The COVERAGE plots report the fraction of nodes that
even scan for the virus at all. A smaller number (unreported here) are filtering
for the virus. Nevertheless, a pessimistic (“worst-case”) results for COVERAGE
have far lower scanning costs than optimistic (“best-case”) results for NRL03.
COVERAGE manages to control the virus with a much smaller set of scanning
nodes, and it similarly detects false alarms with fewer nodes triggered to scan
or filter.

Figures 6 and 7 demonstrate that the communication costs for COVERAGE in
the face of false alarms is much lower than for NRL03 — understandably because
COVERAGE identifies the false alarms correctly. In the case of slow-growth
worms, COVERAGE requires significantly more communication to convince co-
operating peers that a virus attack is underway. However, this extra cost conveys
a benefit: COVERAGE detects slow-growth worms long before NRL03 is able to.
For fast worms, communication costs are generally comparable — NRL requires
considerably more communication when Friends = 8, but it should be noted that
NRL03 controls the infection more rapidly than COVERAGE in these cases. For
COVERAGE to control fast worms as effectively as NRL03 would require even
higher communication costs.

The impact of false alarms on detection performance (because nodes get con-
fusing reports from malicious nodes about another virus) is illustrated more
clearly in Figure 8. We see that the fraction of nodes that are left unprotected
by COVERAGE grows almost linearly with the number of malicious nodes –
roughly double the number of nodes are infected when 4% of the nodes are
malicious compared to a system without any malicious nodes.

5 Related Work

Reference [15] shows that a distributed worm monitor can detect non-uniform
scanning worms two to four times as fast as a centralized telescope, and that
knowledge of the vulnerability density of the population can further improve
detection time.

In [11], the authors coordinate the sharing of IDS alerts for detecting worm
attacks and port scanning across administrative domains. Porras et al. [14] argue
that hybrid defenses using complementary techniques (in their case, connection
4 The communication costs for COVERAGE scale with the virulence and number of

active viruses, and are thus more scalable than NRL — still, we are investigating
ways of conveying the necessary polling information more efficiently during quiet
periods.
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throttling at the domain gateway and a peer-based coordination mechanism),
can be much more effective against worms.

Reference [18] proposes the use of “predator” viruses that spread in much
the same way malicious viruses do but try to eliminate their designated “vic-
tim” viruses. The authors show that predators can be made to perform their
tasks without flooding the network and consuming all available resources. How-
ever, designers of predators would have to find their own exploits (or safeguard
exploits for future use), which is not an attractive proposition. Furthermore,
many recent worms have been closing the hole they exploited, after infecting a
machine.

DOMINO [20] is an overlay system for cooperative intrusion detection. The
system is organized in two layers, with a small core of trusted nodes and a larger
collection of nodes connected to the core. The experimental analysis demon-
strates that a coordinated approach has the potential of providing early warn-
ing for large-scale attacks while reducing potential false alarms. Reference [21]
describes an architecture and models for an early warning system, where the
participating nodes/routers propagate alarm reports towards a centralized site
for analysis. The question of how to respond to alerts is not addressed, and,
similar to DOMINO, the use of a centralized collection and analysis facility is
weak against worms attacking the early warning infrastructure.

The earliest work on cooperative response mechanisms is that of Nojiri et
al. [13]. They present a cooperative response algorithm where edge-routers share
attack reports a small set of other edge-routers. Edge-routers update their alert
level based on the shared attack reports and decide whether to enable traf-
fic filtering and blocking for a particular attack. Analysis by Kannan et al [7]
has shown that cooperative response algorithms can improve containment, even
when a minority of firewalls cooperate. That work, however promising, does not
directly relate to our work. They are more concerned with a single fast virus
— the analysis focuses on a single virus (consequently underplaying the cost
of over-aggressive response), has a weaker model of “malicious” firewalls (ma-
licious firewalls merely stay silent, but do not mislead through false alarms),
and does not explore the benefits of allowing more lattitude in generating false
alarms.
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6 Conclusions and Future Plans

We have described an algorithm, named COVERAGE, that allows cooperating
agents to share information about the spread of malicious virus in the Internet
and use this information for controlling the behavior of detection and filtering
resources. The algorithm operates without fully trusting such information, so as
to limit the damage of false alarms injected by malicious nodes. Our solution is
based on the idea of carefully sampling of global state to validate claims made by
individual participants. Simulation results confirm that this method is effective
in limiting the damage of virus attacks, and that it is robust against attacks by
malicious participants. When compared against a similar approach, the NRL03
algorithm [13], COVERAGE exhibits a lower cost in terms of scanning for worms
due to its resource-aware approach. Furthermore, it has a lower communication
cost in the presence of false alarms and fast worms, and can detect and react
to slow-propagating worms better. However, it does not react as quickly to fast
worms, and the price it pays for reacting to slow worms more quickly is higher
communication overhead than NRL03 for slow worms.

Our plans for future work include reducing the communication cost of polling
without measurably reducing the effectiveness of the mechanism, and examining
in detail the case of multiple, simultaneously active viruses. We believe that we
can tune the communication rate to adapt to the virulence of a virus, allowing
COVERAGE to react to fast worms quickly (at the cost of increased communica-
tion overhead for very virulent worms). Due to space considerations, this paper
simply assumes that many COVERAGE nodes are occupied by higher-virulence
viruses, and that we must reserve processing cycles to deal with lower virulence
viruses, too. Much work remains to be done in improving the actual choices each
node makes of which set of viruses to monitor.
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Abstract. In this paper, we propose a leakage-resilient and proactive
authenticated key exchange (called LRP-AKE) protocol for credential ser-
vices which provides not only a higher level of security against leakage
of stored secrets but also secrecy of private key with respect to the in-
volving server. The LRP-AKE protocol is provably secure in the random
oracle model with the reduction to the computational Diffie-Hellman
problem.

1 Introduction

The problem of safely storing client’s private keys for a long period of time can
be addressed with credential services. Consider a roaming client who accesses a
network from different locations in order to retrieve his private keys associated
with public keys for temporal use of PKI (for digital signature generation or
public-key decryption). This kind of roaming protocol can be supported by a
credentials server that authenticates the client and then assists in downloading
private keys for the client.

The simplest roaming protocol is EAP-SIM [12] that specifies an EAP-based
mechanism [8,2] using the GSM Subscriber Identity Module (SIM). The authen-
ticity is based on secret keys stored on SIM and in an authentication server.
EAP-SIM adds a physical security assumption for authentication, however some
security flaws are discussed in [17]. Another roaming protocol is SPX LEAP
[24], a tunneled EAP types such as TTLS (Tunneled TLS) and PEAP (Pro-
tected EAP), where a client transmits a password to a credential server through
secure channels for authentication and then performs subsequent retrieval of the
client’s private key. This approach prevents off-line dictionary attacks at the sac-
rifice of using PKI. Ford and Kaliski [11] further described protocols that utilize
multiple n servers, each of which holds a share of password-related data, in order
to provide the protection of the credential server database. However, their pro-
tocols rely on a prior server-authenticated channel such as SSL which means it is
vulnerable to web-spoofing attacks. Later, Jablon [13] proposed a password-only
multi-server roaming protocol without need for prior secure channels.

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 443–458, 2006.
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Bellovin and Merritt [5] first introduced a secure password-only protocols
where a client remembers a short password only (without any device and any
additional assumption) and the corresponding server authenticates the client
with the password or its verification data that is used to verify the client’s
knowledge of the password. By combining the roaming model and password-
only protocols, Perlman and Kaufman [18] showed that simple modifications of
the underlying password-only protocols are sufficient for secure roaming access
to credentials. In order to integrate the convenience of password into the con-
ventional PKI, two different approaches (called virtual soft token and virtual
smartcard) have been proposed [18,14,19] in the name of password-enabled PKI.
In the virtual soft token PKI [18,14], a private key encrypted with a password
is stored on a server so that a client, after authenticating himself to the server
and generating a strong session key, downloads the encrypted private key via the
secure channel, decrypt it and use the private key as in the conventional PKI.
In the virtual smartcard PKI [19], a client’s private key is split into two parts
(a password and a secret) where the latter is stored on a server. To perform a
cryptographic operation (signature generation or decryption), the client first au-
thenticates himself to the server using the password, generates a strong session
key, and does the operation via the secure channel. On both approaches, Wang
[26] proposed an intrusion-tolerant roaming protocol where a password verifica-
tion data as well as a password-encrypted private key (or a partial secret) are
shared among multiple servers using a threshold secret sharing scheme.

1.1 Motivation and Contribution

A more realistic threat on cryptographic techniques may be leakage of stored
secrets that may be secret keys, private keys, password verification data and/or
password-encrypted keys. When we consider a large number of password ver-
ification data and password-related credentials stored on a server, the leakage
of either secret allows an adversary to mount off-line dictionary attacks enough
to retrieve private keys. Such threat seems inevitable since, for example, an ad-
versary might gain the root privilege of a server by exploiting bugs in server
software. The other motivation is that the colluded servers in the password-only
roaming protocols and password-enabled PKI can recover private keys with pass-
words that are easily deduced with off-line dictionary attacks. Note that, even if
the functionality of one server is distributed to multiple servers, it doesn’t help
preventing collusion of all the servers. At the same time introducing multiple
servers drastically increases the operational complexity. A particular concern
is that the colluded servers generate thousands of digital signatures with large
number of client’s private keys (this indeed violates non-repudiation of digital
signature!).

Keeping in mind the above motivation, we propose a leakage-resilient and
proactive authenticated key exchange (LRP-AKE) protocol for credential services
which provides not only a higher level of security against leakage of stored secrets
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but also secrecy of private key with respect to the involving server.1 The LRP-
AKE protocol is provably secure in the random oracle model with the reduction
to the computational Diffie-Hellman problem.

This paper is organized as follows. In Section 2, we propose a leakage-resilient
and proactive authenticated key exchange (LRP-AKE) protocol. Section 3 and
4 are devoted to its model and security proof, followed by some discussions in
Section 5. Finally, we conclude in Section 6.

2 A Leakage-Resilient and Proactive AKE Protocol

2.1 Preliminary

Let G be a finite, cyclic group of prime order q and g be a generator of G
(quadratic residues modulo p where p = aq+1) where the Diffie-Hellman problem
is hard. Let h be another generator of G so that its discrete logarithm problem
with g (i.e., computing b = logg h) should be hard. Both g and h may be given
as public parameters. In the aftermath, all the subsequent arithmetic operations
are performed in modulo p unless otherwise stated.

Let k and l denote the security parameters for hash functions and public-
key cryptosystems, respectively. Let N be a dictionary size of passwords. Let
{0, 1}∗ denote the set of finite binary strings and {0, 1}l the set of binary strings
of length l. Let ”||” denote the concatenation of bit strings in {0, 1}�. Let ”

⊕
”

denote the exclusive-OR operation of bit strings. The hash functions are denoted
Hj : {0, 1}� → {0, 1}k for j = 1, 2, 3, 4 and 5 where Hj are distinct secure one-
way hash functions (e.g., SHA-256 or RIPEMD-160) one another. Let C and
S be the identities of client and server, respectively, with each ID ∈ {0, 1}�.
Let (K ′, CertC) be a credential where the former is a partial secret for client’s
private key K associated with a public key, which is included in the latter (i.e.,
the client’s certificate) with other information.

2.2 The LRP-AKE Protocol

Consider a roaming client who has easy-to-be-lost/stolen devices with some
memory capacity itself and wants to retrieve his private key with the help of
a credential server equipped with its database, which might be insecure against
possible attacks. In addition, neither PKI nor TRM is available.

The rationale of the LRP-AKE protocol2 is that (i) client’s password and ad-
ditional secret are combined to be used for authentication; (ii) client’s private

1 The conceptual idea is similar to [22], based on RSA, in order to avoid reliance of
PKI and TRM, and to deal with leakage of stored secrets in the model. In [25],
Tang et al., showed an off-line dictionary attack on the protocol of [22]. The attack
is possible due to the mistake of security model, and the corrected model and proof
appeared in [23]. Of course, their attack is not possible in the LRP-AKE protocol.

2 The main differences from [22] are its construction (based on the Diffie-Hellman
protocol), behavior of Leak-query (only limited to Ci), security reduction (of course,
to the CDH problem) and so on.
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key is divided into two parts each of which is stored on client’s or server’s side;
(iii) in order to provide proactive security of password and private key, the se-
crets are updated whenever client and server correctly run the protocol; (iv) a
similar technique appeared in [3,1,10] is used in order to resist against off-line
dictionary attacks after leakage of client’s stored secrets. The LRP-AKE pro-
tocol consists of two phases: initialization and i-th (i ≥ 1) protocol execution
(see Fig. 1).

Initialization. In this phase, client C registers two kinds of secrets to server S
in which one is used for authentication and generation of secure channels, and
the other is for recovering the client’s private key. First, the client chooses two
random numbers s1 from Z�

q and K11 from {0, 1}l where K11 is a partial secret
and has the same size of his private key K. The client generates a verification
data W1 ≡ hv1 , where v1 ≡ s1 + pw mod q, and the other partial secret K12

such that K12 ← K11

⊕
K. Then, client C registers securely W1 and K12 along

with his certificate CertC . At the end of this phase, the client stores secret value
s1 and one partial secret K11 on devices that may happen to leak the secrets,
and remembers his password pw in mind. On the other hand, the server stores
W1 and (K12, CertC) on its database. Finally, they set a counter i as 1. The
initialization is done only once.

i-th Protocol Execution. When client C wants to share a session key se-
curely with server S in the i-th (i ≥ 1) protocol execution, he should recover
vi by combining his password pw with secret value si stored on devices. The
client chooses a random number x from Z�

q and computes the Diffie-Hellman
public value X ≡ gx. The latter is masked in a way of the product of the pub-
lic value with the verification data hvi , and then sent to the server together
with the client’s identity and the counter. If i is not a correct counter, server
S terminates the protocol. Otherwise, the server chooses a random number y
from Z�

q and computes the Diffie-Hellman public value Y ≡ gy. The server also
computes X , by dividing the received masked public value with the verification
data, and from the resultant value the Diffie-Hellman key DHKey is derived.
With the latter, server S easily generates an authenticator that is just the hash
of some values and sends its Diffie-Hellman public value along with the server’s
identity and the authenticator. After computing DHKey from Y , client C ver-
ifies the received authenticator VS prior to generating his authenticator and a
session key. Similarly, server S verifies the authenticator VC before producing a
secure channel with the session key. In order to avoid so-called partition attacks
[16,28], both of client and server should check the subgroup order of Y and X∗,
respectively: Y q ≡ (X∗)q ≡ 1.

Using the session key in a symmetric-key encryption (e.g., AES-CBC), server
S sends the credential (Ki2, CertC) to client C through the secure channel.
Finally, the client recovers his private key from one partial secret (stored on own
devices) and the other secret (received from the server) so that a pair of private
key and certificate can be used as in usual PKI. If the verification of private
key is valid, client C stores the next counter and newly-generated secrets that
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Client C Server S

i, si, Ki1

vi ≡ si + pw mod q, Wi ≡ hvi

x
R← Z�

q , X ≡ gx, X∗ ≡ X × Wi

i, Wi, (Ki2, CertC)

(C, i, X∗)�
If i is incorrect, reject.

Otherwise, y
R← Z�

q , Y ≡ gy,

X ≡ X∗/Wi, DHKey ≡ Xy,

and VS ← H1(SID||DHKey).(S, Y, VS)�
DHKey ≡ Y x

If VS �= H1(SID||DHKey), reject.

Otherwise, VC ← H2(SID||DHKey),

SK ← H3(SID||DHKey).

VC�
If VC �= H2(SID||DHKey), reject.

Otherwise, SK ← H3(SID||DHKey),
�

Secure channel: (Ki2, CertC)�
W(i+1) ≡ Wi × hH4(SID||DHKey),

K(i+1)2 ← Ki2
⊕ H5(SID||DHKey),

and accept.

K ← Ki1
⊕

Ki2

If K is not the correct private key, reject.

Otherwise, s(i+1) ≡ si + H4(SID||DHKey)

K(i+1)1 ← Ki1
⊕ H5(SID||DHKey),

and accept.

(i + 1), s(i+1), K(i+1)1 (i + 1), W(i+1),
(
K(i+1)2, CertC

)

Fig. 1. The i-th (i ≥ 1) protocol execution of the LRP-AKE protocol where SID =
C||S||i||X∗ ||Y ||Wi plays a role of session identifier and the enclosed values in rectangle
represent stored secrets of client and server, respectively

are refreshed from the hash of the Diffie-Hellman key and other information.
In the same way, server S stores the next counter and refreshed secrets on its
database. These stored secrets will be used for the next session between the
parties without changing the client’s password. Note that the frequent change of
passwords might incur the risk of password to be exposed, simply because people
tends to write it down on somewhere or needs considerable efforts to remember
new passwords. The hash functions H4 and H5 used here can be replaced by
pseudo random functions to produce appropriate output sizes.

3 The Model and Security Notions

Here we introduce an extended model based on [6,4] and security notions.

The Model. We denote by C and S two parties that participate in the key
exchange protocol P . Each of them may have several instances called oracles
involved in distinct, possibly concurrent, executions of P where we denote C
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(resp., S) instances by Ci (resp., Sj), or by U in case of any instance. During
the execution of P , an adversary has the entire control of the network and
additionally has access to the parties’ stored secrets where the latter simulates
insecure devices and databases. Let us show the capability of adversary A each
query captures:

– Execute(Ci, Sj): This query models passive attacks, where the adversary gets
access to honest executions of P between Ci and Sj by eavesdropping.

– Send(U, m): This query models active attacks by having A send a message to
instance U . The adversary A gets back the response U generates in process-
ing the message m according to the protocol P . A query Send(Ci, Start)
initializes the key exchange protocol.

– Reveal(U): This query handles the misuse of the session key by any instance
U . The query is only available to A if the instance actually holds a session
key and the latter is released to A.

– Leak(U): This query handles the leakage of the ”stored” secrets by any in-
stance U . The adversary A gets back (si, Ki1) and (Wi, (Ki2, CertC)) where
the former (resp., the latter) is released if the instance corresponds to Ci

(resp., Sj).
– Test(U): The Test-query can be asked at most once by the adversary A and

is only available to A if the instance U is ”fresh” in that the session key is
not obviously known to the adversary. This query is answered as follows: one
flips a (private) coin b ∈ {0, 1} and forwards the corresponding session key
SK (Reveal(U) would output) if b = 1, or a random value except the session
key if b = 0.

Security Notions. The adversary A is provided with random coin tosses, some
oracles and then is allowed to invoke any number of queries as described above,
in any order. The aim of the adversary is to break the privacy of the session
key or the authentication of the parties in the context of executing P . The AKE
security is defined by the game Gameake(A, P ), in which the ultimate goal of
the adversary is to guess the bit b involved in the Test-query by outputting this
guess b′. We denote the AKE advantage, by Advake

P (A) = 2 Pr[b = b′] − 1, as
the probability that A can correctly guess the value of b. The protocol P is said
to be (t, ε)-AKE-secure if A’s advantage is smaller than ε for any adversary A
running time t.

Another goal is to consider unilateral authentication of either C (C-auth) or S
(S-auth) wherein the adversary impersonates a party. We denote by SuccC−auth

P (A)
(resp., SuccS−auth

P (A)) the probability that A successfully impersonates an C in-
stance (resp., an S instance) in an execution of P , which means that S (resp., C)
agrees on a key while the latter is shared with no instance of C (resp., S). A pro-
tocol P is said to be (t, ε)-Auth-secure if A’s success for breaking either C-auth or
S-auth is smaller than ε for any adversary A running time t.

3.1 Computational Diffie-Hellman Assumption

A (t, ε)-CDHg,G attacker, in a finite cyclic group G of prime order q with g as
a generator, is a probabilistic machine B running in time t such that its success
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probability Succcdh
g,G(B), given random elements gx and gy to output gxy, is greater

than ε. We denote by Succcdh
g,G(t) the maximal success probability over every

adversaries running within time t. The CDH-Assumption states that Succcdh
g,G(t) ≤

ε for any t/ε not too large.

4 Security

In this section we show that the LRP-AKE protocol of Fig. 1. is provably secure
in the random oracle model3 [7].

In order to simplify the security proof, we only consider the first two flows
of the i-th protocol execution (unilateral authentication of S to C) as in [6,4].
In the proof, we restrict the Leak-query to instance Ci only. This is due to
the fact that in a 2-party password-based AKE protocol one cannot prove the
security when an adversary gets the verification data. However, the Leak-query to
instance Sj would be considered for discussing about the security of the client’s
password and private key. For the sake of brevity, we also omit the index i in
the proof.

Theorem 1. (AKE/UA Security) Let P be the LRP-AKE protocol of Fig. 1.,
where passwords are chosen from a dictionary of size N . For any adversary A
within a polynomial time t, with less than qs active interactions with the parties
(Send-queries), qp passive eavesdroppings (Execute-queries) and asking qh hash
queries to any Hj, Advake

P (A) ≤ 4ε and AdvS−auth
P (A) ≤ ε, with ε upper-bounded

by

3qs

N
+ 3q2

h × Succcdh
g,G(t + 3τe) +

qs

2k1
+

8qs + 2qp + (qs + qp)
2

2q
, (1)

where k1 is the output length of H1 and τe denotes the computational time for
an exponentiation in G.

The proof appears in Appendix A. This theorem shows that the LRP-AKE pro-
tocol is secure against dictionary attacks since the advantage of the adversary
essentially grows with the ratio of interactions (number of Send-queries) to the
number of passwords. Note that in order to do on-line dictionary attacks suc-
cessively the adversary should obtain the client’s devices whenever refreshment
of stored secrets happens. This is of practical significance since in the real world
applications the leakage of stored secrets is limited by the physical power of the
adversary which are usually much less.

Now we consider about security of password and private key against the leak-
age of stored secrets from client and server, respectively.

3 Security in the random oracle model is only a heuristic: it does not imply security
in the real world [9]. Nevertheless, the random oracle model is a useful tool for
validating natural cryptographic constructions. Security proofs in this model prove
security against adversaries that are confined to the random oracle world.
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Theorem 2. The password and the private key in the LRP-AKE protocol is
information-theoretically secure with respect to the leakage of stored secrets from
client and server, respectively.

If an adversary gets the client’s stored secrets (si and Ki1), the secrets don’t
reveal any information about the password and the private key simply because
si is completely independent from the password and Ki1 is one share of (2, 2)-
threshold perfect secret sharing scheme. In the case where an adversary gets the
server’s stored secrets (Wi and (Ki2, CertC)), the adversary can freely imper-
sonate server S with Wi. We cannot avoid this impersonation attack as all of
the 2-party authentication protocols. Nevertheless, Wi and Ki2 don’t reveal any
information about the password and the private key with the same reason as
above.

Theorem 3. The LRP-AKE protocol provides proactive security of password and
private key.

In the context of executing the LRP-AKE protocol, it is obvious. One may regard
this protocol as an instantiation of [15]. Suppose that the client and the server
run the LRP-AKE protocol at a fixed period of time (e.g., a day) and an adversary
obtains the secrets (Wi and Ki2) at that time. If the parties complete refreshing
the secrets (e.g., in the next day) before the adversary does, the latter of course
cannot do the impersonation attack any more.

5 Discussions

At first, one can notice that the LRP-AKE protocol doesn’t allow even on-line
dictionary attacks without any leakage of stored secrets since the authentication
depends on the strong secret si as in [7,20].

A more interesting application of the LRP-AKE protocol may be a Grid com-
puting environment where a client obtains different short-term credentials (e.g.,
short-term X.509 certificates or proxy certificates), which can be subsequently
used for the access of other services on the Grid [27], from servers after suc-
cessful authentication with only one password. In the previous password-based
roaming protocols (e.g., SPX LEAP, [18,14,19]), a compromise of one server
unfortunately results in the total insecurity of the remaining servers since the
adversary can get the password (i.e., the only secret for authentication) through
off-line dictionary attacks on the password verification data. On the other hand,
this application can be realized by the LRP-AKE protocol due to the fact that
both the password and the partial credential are completely protected from the
leakage of server’s stored secrets. This also implies that both the verification
data and many partial credentials don’t need to be distributed or shared among
multiple servers.

Compared to the password-only roaming protocols and password-enabled PKI,
the stateful storage of client in the LRP-AKE protocol may be a strong assumption
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but it is a weak assumption rather than requiring TRM. As we pointed out in Sec-
tion 1.1, the previous protocols have vulnerability against the leakage of stored se-
crets on client side (e.g., EAP-SIM and smartcards) and don’t guarantee secrecy of
private key against an insider adversary even if the client’s private key is encrypted
with password or distributed among multiple servers. Remind that, without PKI
and TRM, the LRP-AKE protocol not only has resilience against the leakage of
client’s stored secrets but also provides secrecy of private key against the leakage
of server’s stored secrets. Actually, the LRP-AKE protocol has a sort of two-factor
protection for the private key: client needs a password and additional secret to
download the partial credential, and the other partial key stored on client’s devices
is used to retrieve the (full) private key. Thoughholding insecure devicesmay entail
inconvenience to clients, we can stress that it is significantly applicable to the real
world (e.g., think of a client who carries mobile devices, such as mobile phones or
PDAs, with some memory capacity) and it is a small price to pay for a higher level
of security against leakage of stored secrets (including several security properties)
and more efficiency over the previous ones [11,13,26] in terms of computation costs
and communication bandwidth among multiple servers.

6 Conclusions

In this paper, we have proposed a leakage-resilient and proactive authenticated
key exchange (LRP-AKE) protocol for credential services which not only im-
proves significantly security against leakage of stored secrets but also provides
secrecy of private key with respect to the involving server. We also proved its
security of the LRP-AKE protocol in the random oracle model with the reduction
to the computational Diffie-Hellman problem. The LRP-AKE protocol is concep-
tually similar to [22], but remember that an RSA-based AKE protocol cannot
be necessarily translated to a secure Diffie-Hellman based one.
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A Proof of Theorem 1

Proof. In this proof, we incrementally define a sequence of games starting at the
real game G0 and ending up at G5. We use Shoup’s lemma [21] to bound the
probability of each event in these games.

Game G0 (Real protocol): This is the real protocol in the random oracle
model. We are interested in the following two events:
– S0 (for semantic security) which occurs if the adversary correctly guesses

the bit b involved in the Test-query;
– A0 (for S-authentication) which occurs if an instance Ci accepts with no

partner instance Sj with the same transcript ((C, X∗), (S, Y, VS))

Advake
P (A) = 2 Pr[S0] − 1 AdvS−auth

P (A) = Pr[A0] . (2)

In any game Gn below, we study the event An and the restricted event SwAn =
Sn ∧ ¬An.

Game G1 (Simulation of hash and other queries): In this game, we sim-
ulate the hash oracles (H1 and H3, but as well additional hash functions, for
j = 1, 3, H′

j : {0, 1}� → {0, 1}kj that will appear in the Game G3) as usual
by maintaining hash lists ΛH and ΛH′ (see below). We also simulate all the
instances, as the real parties would do, for the Leak-queries and for the Send,
Execute, Reveal and Test-queries (see below). From this simulation, we can
easily see that the game is perfectly indistinguishable from the real attack.

Simulation of the hash functions: Hj oracles
– For a hash-query Hj(q) (resp., H′

j(q)), such that a record (j, q, r) appears
in ΛH (resp., ΛH′), the answer is r. Otherwise one chooses a random el-
ement r

R← {0, 1}kj , answers with it, and adds the record (j, q, r) to ΛH
(resp., ΛH′).

Simulation of the LRP-AKE protocol
Send-queries to C
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We answer to the Send-queries to a C-instance as follows:
– A Send(Ci, Start)-query is processed according to the following rules:

� Rule C1(1)

Choose random elements (b, ν, ω) R←
(
Z�

q

)3, and compute h ≡ gb

and W ≡ hν such that s ≡ ν − ω mod q.
� Rule C2(1)

Choose a random element θ
R← Z�

q , and compute X ≡ gθ

and X∗ ≡ X × W .
Then the query is answered with (C, X∗), and the instance goes to an
expecting state.

– If the instance Ci is in an expecting state, a query Send(Ci, (S, Y, VS))
is processed by computing the alleged authenticator and the session key.
We apply the following rules.

� Rule C3(1)

Compute DHKey ≡ Y θ.
� Rule C4(1)

Compute the expected authenticator and the session key:
V ′

S ← H1(C||S||X∗||Y ||W ||DHKey),
SKC ← H3(C||S||X∗||Y ||W ||DHKey).

If V ′
S = VS , then the instance accepts. In any case, it terminates.

Send-queries to S
We answer to the Send-queries to a S-instance as follows:
– A Send(Sj , (C, X∗))-query is processed according to the following rule:

� Rule S1(1)

Choose a random element ϕ
R← Z�

q and compute Y ≡ gϕ.
Then, the instance computes the authenticator and the session key. We
apply the following rules:

� Rule S2(1)

Compute X ≡ X∗/W and DHKey ≡ Xϕ.
� Rule S3(1)

Compute the authenticator and the session key:
VS ← H1(C||S||X∗||Y ||W ||DHKey),
SKS ← H3(C||S||X∗||Y ||W ||DHKey).

Finally, the query is answered with (S, Y, VS), and then the instance
accepts and terminates.

Other queries
– An Execute(Ci, Sj)-query is processed using successively the above sim-

ulations of the Send-queries: (C, X∗) ← Send(Ci, Start), (S, Y, VS) ←
Send(Sj , (C, X∗)), and thenoutputting the transcript ((C, X∗), (S, Y, VS)).

– A Reveal(U)-query returns the session key (SKC or SKS) computed by
the instance U (if the former has accepted).

– A Leak(Ci)-query returns the secret s computed by the instance C.
– A Test(U)-query first gets SK from Reveal(U), and flip a coin b. If b = 1,

we return the value of the session key SK, otherwise we return a random
value drawn from {0, 1}k3.
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Game G2 (Collisions): For an easier analysis in the following, we cancel
games in which some collisions (Coll2) are unlikely to happen:

– collisions on the partial transcripts ((C, X∗), (S, Y )): any adversary tries
to find out one pair (X∗, Y ), coinciding with the challenge transcript,
and then obtain the corresponding session key using the Reveal-query.
However, at least one party involves with the transcripts, and thus one
of X∗ and Y is truly uniformly distributed.

The probability is bounded by the birthday paradox:

Pr[Coll2] ≤
(qp + qs)

2

2q
. (3)

Game G3 (Using private oracles): In order to make the authenticator and
the session key unpredictable to any adversary, we compute them using the
private oracles H′

1 and H′
3 (instead of H1 and H3), respectively, so that the

values are completely independent from the random oracles. We reach this
aim by using the following rule:

� Rule C4/S3(3)

Compute the authenticator VS ← H′
1(C||S||X∗||Y ).

Compute the session key SKC/S ← H′
3(C||S||X∗||Y ).

Since we do no longer need to compute the values DHKey, we can simplify
the following rules:

� Rule C3/S2(3)

Do nothing.
Finally, the secret W is not used anymore either so that we can also simplify
the generation of X∗ using the group property of G.

� Rule C2(3)

Choose a random element x
R← Z�

q and compute X∗ ≡ gx.
The games G3 and G2 are indistinguishable unless some specific hash queries
are asked, denoted by event AskH3 = AskH3w13 ∨ AskH13:
– AskH13: H1(C||S||X∗||Y ||W ||DHKey) has been queried by A to H1 for

some execution transcripts ((C, X∗), (S, Y, VS));
– AskH3w13: H3(C||S||X∗||Y ||W ||DHKey) has been queried by A to H3

for some execution transcripts ((C, X∗), (S, Y, VS)), where some party
has accepted, but event AskH13 did not happen.

The authenticator is computed with a random oracle that is private to the
simulator, then one can remark that it cannot be guessed by the adversary,
better than at random for each attempt, unless the same partial transcript
((C, X∗), (S, Y )) appeared in another session with a real instance Sj . But
such a case has already been excluded (in Game G2). A similar remark holds
on the session key:

Pr[A3] ≤
qs

2k1
Pr[SwA3] =

1
2

. (4)

When collisions of the partial transcripts have been excluded, the event
AskH1 can be split in three disjoint sub-cases:
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– AskH1-Passive3: the transcript ((C, X∗), (S, Y, VS)) comes from an ex-
ecution between instances of C and S (Execute-queries or forward of
Send-queries, relay of part of them). This means that both X∗ and Y
have been simulated;

– AskH1-WithC3: the execution involved an instance of C, but Y has not
been sent by any instance of S. This means that X∗ has been simulated,
but Y has been produced by the adversary;

– AskH1-WithS3: the execution involved an instance of S, but X∗ has not
been sent by any instance of C. This means that Y has been simulated,
but X∗ has been produced by the adversary.

Game G4 (Introduction of DH instance): In order to evaluate the above
events, we introduce a random Diffie-Hellman instance (P, Q) (where both P
and Q are generators of G. Otherwise, the Diffie-Hellman problem is easy.)
We first modify the simulation of the party C, involving the element Q.

� Rule C1(4)

Choose random elements (v, w) R←
(
Z�

q

)2 and compute W ≡ Qv such
that s ≡ v − w mod q.

By the isomorphic property from G∗ to G∗, the new W is perfectly indis-
tinguishable from before since there exists a unique discrete logarithm for
W . We also introduce the other part P of the Diffie-Hellman instance in the
simulation of the party S.

� Rule S1(4)

Choose a random element y
R← Z�

q and compute Y ≡ P y.
It would let the probabilities unchanged, but note that we excluded the cases
W ≡ 1 and Y ≡ 1:

|Pr[AskH4] − Pr[AskH3]| ≤
qs + qp

q
. (5)

Game G5 (Collision of W and Probability of AskH): It is now possible to
evaluate the probability of the event AskH (or more precisely, the sub-cases).
Indeed, one can see that the password is never used during the simulation. It
doest not need to be chosen in advance, but at the very end only. Then, an
information-theoretic analysis can be done which simply uses cardinalities
of some sets.
To this aim, we first cancel a few more games, wherein for some pairs
(X∗, Y ) ∈ G2, involved in a communication between an instance Sj and
either the adversary or an instance Ci, there are two distinct elements W
such that the tuple (X∗, Y, W, CDHg,G(X∗/W, Y )) is in ΛH (which event is
denoted CollH5):

|Pr[AskH5] − Pr[AskH4]| ≤ Pr[CollH5] . (6)

The event CollH5 can be upper-bounded, granted the following lemma:

Lemma 1. If for any pair (X∗, Y ) ∈ G2, involved in a communication with
an instance Sj, there are two elements W0 and W1 such that (X∗, Y, Wi, Zi =



An Authentication and Key Exchange Protocol 457

CDHg,G(X∗/Wi, Y )) is in ΛH, one can solve the computational Diffie-Hellman
problem:

Pr[CollH5] ≤ q2
h × Succcdh

g,G(t + τe) . (7)

Proof. We assume that there exist (X∗, Y ≡ P y) ∈ G2 involved in a communica-
tion with an instance Sj , and two elements W0 ≡ Qv0 and W1 ≡ Qv1 such that
the tuple (X∗, Y, Wi, Zi = CDHg,G(X∗/Wi, Y )) is in ΛH, for i = 0, 1. Then,

Zi = CDHg,G(X∗/Wi, Y ) = CDHg,G(X∗, Y ) × CDHg,G(P, Q)y(−vi) . (8)

As a consequence, Z1/Z0 = CDHg,G(P, Q)y(v0−v1), and thus CDHg,G(P, Q) =
(Z1/Z0)ψ where ψ is the inverse of y(v0 − v1) in Z�

q . The latter exists since
W0 
= W1 and y 
= 0. By guessing the two queries asked to the Hj , one concludes
the proof. �

In order to conclude the proof, let us study separately the three sub-cases of
AskH1 and then AskH3w1 (keeping in mind the absence of several kinds of col-
lisions: for partial transcripts, and for W in H-queries):

– AskH1-Passive: About the passive transcripts (in which both X∗ and Y have
been simulated), one can state the following lemma:

Lemma 2. If for any pair (X∗, Y ) ∈ G2, involved in a passive transcript, there
is an element W such that (X∗, Y, W, Z = CDHg,G(X∗/W, Y )) is in ΛH, one can
solve the computational Diffie-Hellman problem:

Pr[AskH1-Passive5] ≤ qh × Succcdh
g,G(t + 2τe) . (9)

Proof. We assume that there exist (X∗ ≡ gx, Y ≡ P y) ∈ G2 involved in a passive
transcript and W ≡ Qv such that the tuple (X∗, Y, W, Z) is in ΛH. As above,

Z = CDHg,G(X∗, Y ) × CDHg,G(Q, Y )−v = P xy × CDHg,G(P, Q)−yv . (10)

As a consequence, CDHg,G(P, Q) = (Z/P xy)ψ where ψ is the inverse of −yv in
Z�

q . The latter exists since we have excluded the cases where y = 0 or v = 0. By
guessing the query asked to the Hj , one concludes the proof. �

– AskH1-WithC: This corresponds to an attack where the adversary tries to im-
personate S to C (break unilateral authentication). But each authenticator
sent by the adversary (who may have obtained the secret s in the Leak-query,
denoted by event Leak5) has been computed with at most one W value:

Pr[AskH1-WichC5] ≤
qs

q
+

qs

N
. (11)

– AskH1-WithS: The above Lemma 1, applied to games where the event CollH5

did not happen, states that for each pair (X∗, Y ) involved in a transcript with
an instance Sj , there is at most one element W such that for W ≡ Qs×Qpw,
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the corresponding tuple is in ΛH: the probability for the adversary (who may
have obtained the secret s in the Leak-query) over a random password is as
above:

Pr[AskH1-WithS5] ≤
qs

q
+

qs

N
. (12)

About AskH3w1 (when the above three events did not happen), it means that
only executions with an instance of S (and either C or the adversary) may lead
to acceptance. Exactly the same analysis as for AskH1-Passive and AskH1-WithS
leads to

Pr[AskH3w15] ≤
qs

q
+

qs

N
+ qh × Succcdh

g,G(t + 2τe) . (13)

As a conclusion, we get an upper-bound for the probability of AskH5 by com-
bining all the cases:

Pr[AskH5] ≤
3qs

q
+

3qs

N
+ 2qh × Succcdh

g,G(t + 2τe) . (14)

Combining equation (3), (4), (5), (7) and (14), one gets either

Pr[A0] ≤
qs

2k1
+ Δ Pr[SwA0] =

1
2

+ Δ , (15)

where

Δ ≤ 3qs

N
+ 3q2

h × Succcdh
g,G(t + 3τe) +

8qs + 2qp + (qs + qp)
2

2q
. (16)

One can get the result as desired by noting that Pr[S0] ≤ Pr[SwA0] + Pr[A0].



A Non-malleable Group Key Exchange Protocol

Robust Against Active Insiders

Yvo Desmedt1,�, Josef Pieprzyk2, Ron Steinfeld2, and Huaxiong Wang2

1 Department of Compter Science,
University College London, UK

2 Centre for Advanced Computing – Algorithm and Cryptography,
Department of Computing,

Macquarie University, Australia

Abstract. In this paper we make progress towards solving an open
problem posed by Katz and Yung at CRYPTO 2003. We propose the
first protocol for key exchange among n ≥ 2k + 1 parties which simulta-
neously achieves all of the following properties:
1. Key Privacy (including forward security) against active attacks by

group outsiders,
2. Non-malleability — meaning in particular that no subset of up to k

corrupted group insiders can ‘fix’ the agreed key to a desired value,
and

3. Robustness against denial of service attacks by up to k corrupted
group insiders.

Our insider security properties above are achieved assuming the avail-
ability of a reliable broadcast channel.

1 Introduction

An Authenticated Key Exchange (AKE) protocol is a fundamental public-key
cryptographic tool which allows a group of parties to establish a common secret
session key over an insecure network. This session key can then be used to allow
confidential and authenticated communication among the group members using
symmetric cryptography.

The most important security requirement for an AKE protocol is privacy
against group outsiders. Informally, this requirement prevents any outsider party
not belonging to the group of parties participating in the protocol from getting
any information on the session key, even if the outsider can observe and modify
protocol messages sent by group parties, or inject new messages into the network.

Recently Katz and Yung [13] presented the first constant-round AKE proto-
col provably secure against active group outsiders in the standard model under
known cryptographic assumptions. However, they left open the problem of con-
structing an AKE protocol which also offers security against attack by malicious
group insiders. In this paper, we make progress towards a solution to this prob-
lem. We consider two types of insider attacks:
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1. Denial of Service Attacks, in which the malicious group insiders send ‘bad’
protocol messages in order to abort an honest party or cause two honest
parties to compute different session keys.

2. Malleability Attacks, in which the malicious group insiders send ‘bad’ proto-
col messages in order to bias the probability distribution of the session key
or even force the session key to some desired value. Such an attack by the
insiders can allow a collaborating outsider to know some information on the
session key even if the insiders are shielded, i.e. prevented from communicat-
ing with the outsider after the protocol session begins.

To deal with an inside adversary who tries to use covert channels we need to de-
fine formal robustness and ‘shielded-insider’ privacy notions to capture security
of an AKE protocol against the denial of service and malleability attacks, respec-
tively. Both these notions assume a setting in which up to k out of n ≥ 2k + 1
insiders are corrupted, and all players have access to a reliable public broad-
cast channel. We then present a constant-round AKE protocol and prove that
it achieves these insider security notions in the standard model, under known
assumptions, as well as achieving privacy against group outsiders.

This paper is organized as follows. Section 1.1 compares our work with pre-
vious results. In Section 2 we summarize notation and building blocks we use.
We define the security models for both insider and outsider security in Sec-
tion 3. In Section 4 we present a basic unauthenticated version of our protocol
constructed from any public-key encryption scheme and prime-order group in
which the discrete-log problem is hard. Section 5 contains a statement of our se-
curity results for the basic protocol. In Section 6 we discuss how we strengthen
the basic protocol against active attacks by adding authentication. Due to page
limits, we have omitted the security proofs from this version of the paper. They
are included in the full version of the paper, available from the authors.

1.1 Related Work

Previous work on group AKE protocols has focussed on outsider security,
whereas our protocol achieves both outsider and insider security goals in a con-
stant number of rounds. Thus our work can be viewed as an extension of the work
of Katz and Yung [13] and Boyd and Nieto [3], who both described constant-
round protocols secure against outsider attacks. Earlier work on AKE protocols
includes [6,4,5]. All these previous protocols, however, are not designed to be
secure against ‘malleability attack’ by malicious insiders, who can choose their
protocol messages, based on the observed messages of honest parties, in order to
bias the session key (see section 3 for further details).

In an independent work from ours, Katz and Sun Shin [12] define insider
security for group key exchange protocols and show a generic compiler to trans-
form any AKE protocol to an insider-secure one. Our model of insider security
differs from the one in [12] both in the assumptions made and in the security
achieved (i.e. the types of attacks which are prevented). With regard to assump-
tions, the main difference is that our insider security model assumes a reliable
broadcast channel, whereas [12] does not make this assumption, allowing the
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attacker to modify or block any communications. With regard to the security
achieved, firstly we achieve robustness in our model (security against denial of
service attacks by a minority of corrupted parties), whereas no protocol can
achieve robustness in the model of [12] where the attacker can simply block all
communications (in their model, [12] achieve instead only the ‘agreement’ guar-
antee that all accepting honest players compute the same session key). Also,
our model achieves security against ‘key malleability’ attacks by insiders which
bias the key, whereas the model in [12] does not prevent such attacks. On the
other hand, unlike our model, the model in [12] addresses ‘impersonation’ insider
attacks (which arise only in their insider model, when the protocol views of differ-
ent players differ), and is analyzed within the modular Universal Composability
(UC) framework of Canetti [8].

Our protocol is an adaptation of existing techniques used for distributed key-
generation in threshold cryptography [11]. Indeed, we use the same approach
based on Pedersen’s verifiable secret sharing [15] to achieve robustness and pre-
vent biasing of the key. However, the authors of [11] assume both a reliable
broadcast channel as well as a private channel between shareholders, whereas
we only assume a reliable broadcast channel, and use public-key encryption to
implement a ‘virtual private channel’ over the broadcast channel. The adaptive
chosen-ciphertext security (i.e. non-malleability) of the public-key encryption
scheme is essential in proving the security against malleability attacks on the
protocol, in which the insiders try to adapt their messages based on those sent
by honest players.

2 Preliminaries

2.1 Covert Channel

Lampson [14, p. 614] informally specified a special type of communication being:

Covert channels, i.e. those not intended for information transfer at all,
such as the service program’s effect on the system load.

In our context, the concept of subliminal channel, introduced in the limited
context of authentication by Simmons [17] is more important. Insiders in a proto-
col can for example select randomness such that its (e.g. least significant) bit(s)
reveal private data to an outsider.

2.2 Cryptographic Primitives and Security Notions

2.2.1 Discrete-Log Problem [10]. Let GC denote an algorithm that on
input a security parameter ks, returns an instance (DG, g) of a multiplicative
group G of prime order q with generator g (the description string DG determines
the group and contains the group order q). The discrete-log problem DL is defined
as follows: Given (DG, g) = GC(ks) and y1 = gx1 for uniformly random x1 ∈ ZZq,
compute x1. We say that DL is hard if the success probability SuccA,DL(ks) of
any efficient DL algorithm A with run-time t(ks) is upper-bounded by a negligible
function InSecDL(t) of ks.
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2.2.2 Public-Key Encryption Schemes. Let ES = (GKE, E, D) denote a
public-key encryption scheme. Algorithm notation is as follows. On input secu-
rity parameter ks, GKE(ks) returns a secret/public key pair (sk, pk). On input
a public key pk and a message m, E(pk, m) returns a ciphertext c. On input a
secret key sk and a ciphertext c, D(sk, c) returns a message m or an ‘invalid ci-
phertext’ symbol Rej. We require that ES satisfies the standard security notion
INDCCA2 of indistinguishability under adaptive chosen-ciphertext attack [1],
which is defined by the following game. The attacker A = (A1, A2) runs in two
stages, find and guess. In the find stage, a key-pair (sk, pk) = GKE(ks) is gen-
erated and A1 is run on input pk1, and given access to the decryption oracle
D(sk, .). At the end of the find stage, A1 outputs a pair of messages (m0, m1)
and a state string s. A random bit b ∈ {0, 1} is chosen and a challenge ciphertext
c = E(pk, mb) is computed. In the guess stage, A2 is run on input (c, s) and given
access to the decryption oracle D(sk, .), with the restriction that A2 is disallowed
from querying c to this oracle. At the end of the guess stage, A2 outputs a bit
b′ ∈ {0, 1}. We say A wins the INDCCA2 game if b′ = b, and denote this event
by Succ. We define A’s advantage against scheme ES in the sense of INDCCA2
by SuccINDCCA2

A,ES (ks) = 2|Pr[Succ] − 1
2 |. We say that ES is secure in the sense

of adaptive chosen-ciphertext attack (INDCCA2) if the advantage of any effi-
cient attacker A with run-time t and qd decryption queries is upper-bounded by
a negligible insecurity function InSecINDCCA2

ES (t, qd) of ks. We say that ES is
secure in the sense of chosen-plaintext attack (INDCPA) if the advantage of any
efficient attacker A with run-time t and 0 decryption queries is upper-bounded
by a negligible insecurity function InSecINDCPA

ES (t) of ks.

3 Model

3.1 Background

As outlined in the introduction, our main goal for introducing the shielded-
insider privacy security requirement is to prevent a minority of corrupted group
insiders from biasing the session key, for example by fixing it to a value agreed
beforehand with an outsider, so that the outsider can get some information on
the session key. To give a better understanding of the issues involved, we first
point out in this subsection several types of attacks on existing protocols which
any good definition of shielded-insider privacy must exclude, and some attacks
that we do not address. Then we present our definition.

‘Direct’ Malleability Attacks. The basic idea of ‘direct’ malleability attacks is
as follows. When the protocol begins, the corrupted group players wait for the
honest players to send messages containing their intended contribution to the
session key. The corrupted players then use this information to compute their
messages adaptively as some function of the honest player messages, in order to
‘cancel’ the contributions of the honest players and fix the session key as desired.
It is important to remark that such attacks may be undetectable by the honest
players, in the sense that all honest honest players compute the same key. An
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attack of this type on the Burmester-Desmedt (BD) key exchange protocol [7] (as
well as similar attacks on other protocols) was given by Pieprzyk and Wang [16]
(see Appendix for details). The attack shows how a subset of only two corrupted
players out of n can force the key computed at the end of the protocol by the
honest players to any desired value. The attack applies also to the Katz-Yung
protocol [13] which is based on the BD protocol.

The ‘Halting Attack’. A more subtle type of attack than the above ‘direct’ at-
tacks, but still aimed at biasing the session key, was first described by Cleve [9]
in the context of distributed coin tossing algorithms (and later revisited by Gen-
naro, Jarecki, Krawczyk and Rabin [11]). In this type of attack, which we call
a ‘halting attack’, the corrupted players wait until the honest players send their
contributions as above. At that point in the protocol, the corrupted players can
compute the value of session key (or at least some partial information on the
key) that would result if they continue to honestly follow the protocol. If this
value matches the desired bias for the key, the corrupted players continue hon-
estly, but if it does not, the corrupted players simply halt (refuse to continue). If
the protocol is not well designed, this may cause a new session key value to be
computed (e.g. if the protocol is restarted). In this way the corrupted players can
bias the session key of completed protocol instances towards their desired form,
simply by deciding whether to halt or not based on the value of the key. Cleve
proved [9] that any protocol for distributed coin-tossing in which the number
of corrupted players is equal to or greater than the number of honest players,
can be biased by a non-negligible amount using a halting attack. Therefore, the
requirement for a honest majority in our protocol, which is a special type of
distributed coin-tossing protocol, is optimal in order to defend against this type
of attack.

The ‘Cloning Attack’. Besides the above attacks which attempt to control or
bias the key, one can also consider ‘unshielded insider’ attacks which ‘leak’ the
session key to an outsider who is able to eavesdrop on the protocol messages.
Our “shielded insider’ model does not address such attacks — the ‘shielding’
requirement in our ‘shielded insider’ model means that the outsider cannot ob-
serve the protocol messages nor communicate with the insiders once the protocol
session begins. We now motivate the need for this.

In fact, as we explain below, we believe that achieving resistance against
‘unshielded insider’ attacks is a problem related to elimination of ‘subliminal
channels.’ Firstly, it is clear that an ‘unshielded’ insider can directly leak the
session key to an eavesdropping outsider by broadcasting the session key in one
of the insider’s ‘corrupted’ messages. But there are other more subtle ways in
which the session key can be learned by an eavesdropping outsider even if the
insiders follow the protocol. In a ‘cloning attack’, the eavesdropping outsider
follows exactly the same steps as the corrupted insider (it is a program clone),
using a sequence of random coins which was agreed upon before the protocol
between the insider and outsider. Thus even if the insider follows the protocol,
the outsider observing the messages received by the insider recovers the same
session key as the insider. To avoid such generic attacks one may assume that
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each player is provided with a true random tape, and that there is a ‘public
key distribution’ initial stage in which a public function of each player’s ran-
dom tape is broadcast to all players (the corrupted players are not allowed to
temper with this initial broadcast). But even in this case we do not know how
to eliminate subliminal channels which arise due to the use of a probabilistic
encryption scheme in the protocol. So, addressing Katz-Yung’s open problem is
far from trivial. Practical solutions may need to restrict the attacks from active
insiders.

3.2 Definition of ‘Shielded-Insider’ Privacy and Robustness

Informal Discussion. Informally, we want the shielded-insider model to capture
security against a group of up to k corrupted insiders collaborating with an
outsider. The insiders can communicate with the outsider, but only until the
protocol session begins, after which the insiders are shielded, i.e. prevented from
further communication with the outsider. The insiders can then initiate several
protocol sessions to exchange session keys with honest players. The insiders can
try to choose their protocol messages in order to bias or correlate the session
keys computed by honest players. To defeat the privacy, the outsider’s goal is
then to distinguish these honest player session keys from independent random
session keys. To defeat the robustness, the insider’s goal is to cause some honest
players to compute different session keys from those computed by other honest
players participating in the session.

Attack Model. The attacker A is modelled by a pair (AI, AO) of probabilistic algo-
rithms (Turing machines) representing the collaborating insiders and outsiders,
respectively. The attack model has three stages and runs as follows on input a
security parameter ks.

Stage 1 (Initialization): A set of common parameters cp = GCProt(ks) is
generated using an algorithm GCProt. Long-Lived (LL) secret/public key-pairs
(ski, pki) = GK(k) (for i = 1, . . . , �) are generated for all potentially honest
players in Pin = {U1, . . . , U�} using the protocol LL key generation algorithm
GK. The common parameters cp and vector of public keys PK = (pk1, . . . , pk�)
are now given to all players.

Stage 2 (Protocol Executions): The insider attacker AI is run on input
(cp, PK) and initiates exactly qex protocol sessions (see Execute oracle below).
At any instant of time in this stage, we let P denote the set of potential par-
ticipating players in protocol executions. The set P is initialized to the set
Pin = {U1, . . . , U�} of honest players but grows as AI corrupted players to
P (see AddPlayer oracle below). In this stage AI is given access to the fol-
lowing oracles (we emphasize that the Execute and Send oracles are different
from the corresponding oracles in the K-Y model). Note that below, when we
say that a message is “broadcast” by some party, we mean that the message
is reliably delivered to all parties in the corresponding session (honest players
and AI):
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1. Execute(S): Starts a new protocol session among n unused instances of play-
ers specified by the set S = {Ui[1], . . . , Ui[n]}, where each Ui[j] ∈ P . The
set S must contain at most k corrupted players. The ‘start session’ message
(init, S) is broadcast to all honest players in S. The round clock for this
session is started an ‘end of round’ clock message (endrnd, i) is broadcast
at the end of the ith round. The duration Ti of the ith round is fixed in
advance as a function Ti(ks) of the security parameter. Thus each session
started by an Execute query terminates after time T =

∑
i Ti. At the end

of each round, the honest players process all the messages received during
this round and broadcast their messages for the next round (or terminate
after the last round). Then AI broadcasts up to μ messages for this round on
behalf of either corrupted players or honest players (see Send oracle below).

2. Send(s,M): Broadcasts message M to all parties in session s. The message
is added by each honest player instance to its receive buffer for the current
round (to be processed at the end of the round). The message M may be of
two types: (1) A corr message is a message on behalf of a corrupted player
(such messages have sender prefix Ui for some corrupted player Ui) or (2)
A spoof message is a message on behalf of an honest player (such messages
have sender prefix Ui for some honest player Ui). Note that in the latter
case all players will receive at least two messages with sender prefix Ui (one
correct and one spoofed). We allow AI up to μ messages for each session’s
round.

3. AddPlayer(U, pkU ): Adds new corrupted player U to potential player set P
with public-key pkU , which becomes available to all honest players in Pin.
Protocol sessions containing U as a partner can subsequently be started by
AI.

4. OutComm(M): Sends message M to outsider attacker AO and outputs AO’s
response message. Note that this query is allowed only before AI’s first
Execute query (“shielding” requirement).
Stage 2 ends when the last protocol session (number qex) initiated by AI

ends.

Stage 3 (Distinguish from Random): For i = 1, . . . , qex, let Si denote AI’s
Execute query for initiating the ith protocol session. We let sk1[i] denote the
session-key computed at the end of this session by the first honest player instance
in Si, and we let sk0[i] denote a key chosen independently at random from the
session key space SPsk, according to the session-key probability distribution
output by honest protocol executions. An independent random bit b ∈ {0, 1} is
chosen and the outsider AO is sent a message (Test, (skb[1], . . . , skb[qex])). Finally,
AO outputs an estimate b′ for the bit b.

Shielded-Insider Privacy Security Notion. We say A = (AI, AO) wins
in the sense of breaking ‘shielded-insider privacy’ (sh-pr notion) if AO’s es-
timate of b was correct (b′ = b). If Succpr denotes the event that A wins
then we define A’s advantage against protocol Prot in the shielder-insider no-
tion sh − ins by Succsh−pr

A,Prot(k) def= 2(Pr[Succpr] − 1/2). We define the insecurity
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InSecsh−pr
Prot (t, qex, qs, �B) of Prot in the sense of sh-pr against attackers A with

resource parameters: run-time t, qex Execute queries, qs Send queries, and Send
query length bound �B, as the maximal advantage Succsh−pr

A,Prot(k) of any attacker
A with these resource parameters. We say Prot achieves shielded-insider privacy
if InSecsh−pr

Prot (t, qex, qs, �B) is a negligible function of the security parameter ks

whenever the resource parameters are polynomial in ks.

Robustness Security Notion. We say that AI wins in the sense of break-
ing ‘robustness’ (rob notion) if at the end of Stage 2, there exists a pair
of honest player who were partners in the same protocol session, but com-
puted different session keys (or one or both of them aborted). We denote AI’s
winning probability in this game by Succrob

A,Prot(k), and define the insecurity
InSecrob

Prot(t, qex, qs, �B) of Prot in the sense of rob against attackers with re-
source parameters (t, qex, qs, �B) (defined above) as the maximal success prob-
ability Succrob

A,Prot(k) of any attacker with these resource parameters. We say
Prot achieves robustness if InSecrob

Prot(t, qex, qs, �B) is a negligible function of the
security parameter ks whenever the resource parameters are polynomial in ks.

Privacy and Robustness Against Non-spoofing (ns) Attackers. To sim-
plify our analysis, we will first present a basic protocol which achieves security
against a weaker attacker than described above, called a non-spoofing attacker.
Then we will show how to strengthen the protocol to be secure against the more
general attackers above. A non-spoofing (ns) attacker is restricted to make no
spoof queries to the Send oracle, i.e. it never sends any messages on behalf of
honest players. We call the corresponding shielded-insider privacy and robustness
notions ns-sh-ins and ns-rob, respectively.

3.3 Definition of Key Privacy Against Outsiders

Informal Discussion. To define security against outsiders, we use the Katz-Yung
model [13]. Note that in one sense, the attacker’s capability is weaker in this
outsider model compared to the insider model of the previous section, because
here all protocol players are assumed to be honest (compared with up to k
corrupted players in the insider model). However in another sense, the attacker’s
capability in this model is stronger because here the attacker has full control
over the network, and hence can modify or block any message sent by an honest
player (whereas in the insider model a reliable broadcast channel was available
to honest players). Also, in this model the attacker is allowed to view all the
protocol messages in order to help in distinguishing the final key from a random
key (whereas in the insider model, the outsider cannot see the protocol messages
— note that the insider who sees the protocol messages can trivially distinguish
the key from random by recovering it).

For completeness, we now recall this model [13].
Attack Model. The attacker A is modelled by a probabilistic algorithm (Turing
machine) representing the outsider. The attack model has three stages and runs
as follows on input a security parameter ks.
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Stage 1 (Initialization): A set of common parameters cp = GCProt(ks) is
generated using an algorithm GCProt. Long-Lived (LL) secret/public key-pairs
(skUi , pkUi) = GK(k) (for i = 1, . . . , �) are generated for all potentially honest
players in Pin = {U1, . . . , U�} using the protocol LL key generation algorithm
GK. The common parameters cp and vector of public keys PK = (pkU1 , . . . , pkU�

)
are now given to all players.

Stage 2 (Protocol Executions): Each player U ∈ Pin is allowed an unlimited
number of instances, each executing a session of the protocol. The ith instance of
player U is denoted by Πi

U , and may be used only for one session. Each instance
Πi

U maintains a set of variables statei
U , termi

U , acci
U , usedi

U , sidi
U , pidi

U and ski
U ,

as used in [2]. The goal of the protocol is for an instance Πi
U to end up in an

accepting state (acci
U = TRUE) with the session key stored in ski

U . The attacker
A has complete control over the network - this is modelled by giving A access to
the following oracles :

1. Send(U ,i,M) – Sends the message M to instance Πi
U and returns Πi

U ’s re-
sponse to A. The message M has two possible forms: (1) Send0 query: This
message has the form M = (Init, S), where S = {Ui[1], . . . , Ui[n]}, where each
Ui[j] ∈ Pin. This is the first message sent to instance Πi

U to prompt it to start
a session with the players in set S. (2) All other Send queries have the form
M = (U1|j|m1, U2|j|m2, . . . , Un|j|mn), where Ui|j|mi is a jth round broad-
cast from sender Ui, with ‘payload’ message mi. The instance Πi

U ’s response
always has the form U |j|m. Note: To be consistent with the ‘spoof’ queries
in the insider model, we actually allow Send queries with M = (S1, . . . , Sn),
where Si = {Ui|j|mi,1, . . . , Ui|j|mi,β} is a set of β received broadcasts with
sender prefix Ui.

2. Execute(S): Executes a protocol session (with reliable network) among n
unused instances of players specified by set S = {Ui[1], . . . , Ui[n]}, where
each Ui[j] ∈ Pin, and returns the complete protocol transcript to A.

3. Reveal(U ,i): Returns the session key ski
U to A.

4. Corrupt(U): Returns player U ’s LL key skU to A.
5. Test(U , i): This query is allowed just once during the attack. A random bit

b is generated. If b = 1, the oracle returns the session key ski
U , otherwise if

b = 0 it returns an independent random session key.

An active attacker has access to all of the above oracles. A passive attacker has
access to all oracles except the Send oracle. Below we define a third type of at-
tacker called a Block-or-Forward (BoF) attacker, which is intermediate between
a passive and an active attacker.

Stage 3 (Distinguish from Random): Eventually A returns an output bit b′

(which is A’s estimate of the bit b).

Partnering. The session ID sidi
U for instance Πi

U is a protocol-specified func-
tion of all communication sent and received by Πi

U . The partner ID pidi
U for

instance Πi
U consists of the set of identities of players with whom Πi

U intends
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to communicate, as defined by the set S contained in the Send0 query sent to
Πi

U . Two instances Πi
U and Πi′

U ′ are partnered if both (1) sidi
U = sidi′

U ′ and (2)
pidi

U = pidi′
U ′ hold.

Freshness. An instance Πi
U is fresh unless one of the following bad events oc-

curred (here Πi′
U ′ is any instance partnered with Πi

U ) : (1) A queried Reveal(U, i)
or Reveal(U ′, i′), (2) A queried Corrupt(V ) for some V ∈ pidi

U and then made a
Send query to either Πi

U or Πi′
U ′ .

Outsider Security Notion. We say A = (AI, AO) wins in the sense of breaking
‘outsider privacy’ (AKE notion) if A queried Test on a fresh instance Πi

U which
has accepted (i.e. acci

U = TRUE) and A correctly guessed the Test oracle’s bit b
(i.e. b′ = b). Let Succ denotes the event that A wins. Then we define A’s advan-
tage against protocol Prot by SuccAKE

A,Prot(k) def= 2|Pr[Succ] − 1/2|. We define the
insecurity InSecAKE

Prot (t, qex, qs, �B) of Prot in the sense of AKE against attack-
ers A with resource parameters (t, qex, qs, �B) (run-time t, qex Execute queries,
qs Send queries, and Send query length bound �B), as the maximal advantage
SuccAKE

A,Prot(k) of any attacker A with these resource parameters. We say Prot
achieves shielded-insider privacy if InSecAKE

Prot (t, qex, qs, �B) is a negligible func-
tion of the security parameter ks whenever the resource parameters (t, qex, qs, �B)
are polynomial in ks.

Privacy and Robustness Against “Block-or-Forward” (BoF) Attack-
ers. As mentioned above, we use a modular approach similar to that used by
Katz and Yung [13]. First we present a basic protocol which achieves security
against a weaker outsider attacker than the active attacker described above,
called a Block-or-Forward (BoF) attacker. Then we will show a generic con-
version to strengthen any protocol secure against BoF attackers to be secure
against active attackers. A BoF attacker is a restricted type of active attacker.
We impose the following restrictions on a BoF attacker A:

1. A is allowed to initiate at most one instance Π1
U of each player U (i.e. at

most one Send0 query to each player).
2. A is allowed to either block or forward (but not modify) messages

sent by players. More precisely, each Send query of A to instance
Π1

U , except the Send0 query, has the form Send(U, 1, M) with M =
(U1|j|m1, U2|j|m2, . . . , Un|j|mn), such that for each l = 1, . . . , n, either (a)
“Forward” case: Ul|j|ml was a response to a previous Send query of A to
Π1

Ul
, or (b) “Block” case: ml is the ‘empty’ string.

3. A makes at most qex = 1 Execute query, and makes no Reveal queries.

Note that we also slightly relax the definition of a BoF attacker A winning
(compared to the definition for active attackers) in that we do not require the
instance that A queries Test on to be fresh (so a BoF attacker can win even if
he queries Corrupt to all players). Otherwise, the definitions are identical, and
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we denote the corresponding security notion by KE-BoF and the corresponding
insecurity function of Prot against BoF attackers by InSecKE-BoF

Prot (t, qex, qs, �B).

Remark. Any protocol which is secure against passive attacks can be easily con-
verted into a protocol secure against BoF attacks if we do not require that the
protocol achieve insider security. Namely, one can modify the original protocol
to simply abort any player who does not receive a message (due to blocking).
But this method clearly does not apply if we also want the protocol to achieve
insider robustness.

4 The Basic Protocol

In this section we give a basic version of our protocol which is secure against
non-spoofing attacks (see Section 3). Later we upgrade it to achieve the full
security notions.
Cryptographic Primitives. Our basic protocol makes use of the following crypto-
graphic primitives (see Section 2.2 for notation and definitions) :

(1) Public Key Encryption Scheme ES = (GKE, E, D). We require that ES
satisfies the standard security notion IND-CCA2 of indistinguishability un-
der adaptive chosen-ciphertext attack [1]

(2) Group G of Prime Order q. We require that the discrete-log problem DL
is hard in G. We let lq = log2(q).

The Protocol. Our protocol incorporates the Pedersen Verifiable Secret Sharing
(VSS) scheme [15] over the group G. The Pedersen VSS scheme is also used in
a similar way in the distributed discrete-log threshold key generation scheme
in [11]. The protocol has a security parameter ks ∈ IN and a parameter k speci-
fying the number of corrupted insiders that can be tolerated.

Let Pin = (U1, . . . , U�) denote the set of all � ≥ 2k + 1 potential players in
future protocol instances (any subset of Pin may later run an instance of the
protocol). Before any session keys can be exchanged, the following initialization
phase is run.

Initialization. A set of common parameters is generated for the Pedersen VSS
scheme: An instance of group G of prime order q and generator g ∈ G is generated
with (DG, g) = GC(ks). A random x

R← ZZq is chosen and we set h = gx. The
common parameters are (DG, g, h), where DG contains q (We let lq = log2(q)).
There are no long-lived keys.

Protocol Instance. When a subset P of n ≥ 2k + 1 players from Pin wish to
generate a common session key, maintaining robustness against up to k corrupted
players, they use the following protocol (to simplify notation in the following we
assume these n players to be P = {U1, . . . , Un} — the n players can always be
ordered lexicographically by identity).
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1. Encryption Key Distribution:
(a) Send. Each player Ui generates a random encryption key-pair

(ski, pki) = GKE(ks) and broadcasts message Ui|1|pki.
(b) Receive. Each player Ui receives a vector of n encryption keys

(pk1, . . . , pkn), where pkj denotes the key received from Uj .
2. Pedersen (k + 1, n) VSS Subkey Commitment by k + 1 players:

(a) Send. Each player Ui ∈ {U1, . . . , Uk+1} chooses a uniformly random sub-
key Ki ∈ ZZq and computes n shares (yi[1], si[1]), . . . , (yi[n], si[n]) of Ki

along with a commitment vector vi = (vi[0], . . . , vi[k]) using a (k + 1, n)
Pedersen VSS scheme: Ui chooses two uniformly random polynomials
fi(z) and gi(z) of degree k over ZZq, where:

fi(z) = Ki+xi[1]·z+. . .+xi[k]·zk and gi(z) = Ri+ri[1]·z+. . .+ri[k]·zk.

Then for j = 1, . . . , n, the jth share is (yi[j], si[j]) = (fi(j) mod
q, gi(j) mod q), and Ui appends the sender prefix Ui and encrypts it
using Uj’s key to get ci[j] = E(pkj , Ui|(yi[j], si[j])). For j = 1, . . . , k, the
jth commitment is vi[j] = gxi[j]hri[j], and the zero’th commitment is
vi[0] = gKihRi . Ui broadcasts the message Ui|2|(vi, ci[1], . . . , ci[n]).

(b) Receive. Each player Ui receives a message Uj|2|(vj , cj[1], . . . , cj [n])
from each player Uj for j = 1, . . . , k, decrypts cj [i] to get share
sp|(yj [i], sj[i]) = D(ski, cj [i]) with sender prefix sp, and checks that
sp = Uj and the share validity relation gyj[i]hsj [i] =

∏k
l=0 vj [l]j

l

holds: if
either check fails, Ui adds Uj to a complaint set Compi.

3. Broadcast Complaints:
(a) Send. Each player Ui broadcasts the message Ui|3|Compi.
(b) Receive. Each player Ui receives a message Uj |3|Compj from each player

Uj . If Ui belongs to k + 1 or more received complaint sets Compj then
Ui aborts the protocol.

4. Broadcast Complaint Responses and Compute Qualified Set
QUALi:
(a) Send. Each player Ui ∈ {U1, . . . , Uk+1} responds to each com-

plaint set Compj which contains Ui by revealing the jth share
(yi[j], si[j]): Ui broadcasts the message Ui|4|CompRi, where CompRi =
{(j, (yi[j], si[j]))}j:Ui∈Compj

.
(b) Receive. Each player Ui receives a message Uj |4|CompRj from each

player Uj . Now Ui computes the player set QUALi as follows. Ui ini-
tializes QUALi to {U1, . . . , Uk+1}. For each complaint set Compl which
contains Uj (for l = 1, . . . , n), Ui checks that Uj responded correctly by
checking if CompRj contains a share (l, (yj[l], sj [l])) which satisfies the
share validity test gyj[l]hsj [l] =

∏k
m=0 vj [m]l

m

: if the check fails, or if
Uj belongs to k + 1 or more complaint sets Compj , then Ui removes Uj

from QUALi. Note that by definition, Ui now holds a valid ith share
(yj [i], sj [i]) for each Uj ∈ QUALi.
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5. SubKey Decommitment:
(a) Send. Each player Ui ∈ {U1, . . . , Uk+1} encrypts a decommitment

(Ki, Ri) (with appended sender prefix Ui) to his sub-key using Uj’s pub-
lic key to get c′i[j] = E(pkj , Ui|(Ki, Ri)), for j = 1, . . . , n. Ui broadcasts
the message Ui|5|(c′i[1], . . . , c′i[n]).

(b) Receive. Each player Ui receives a message Uj|5|(c′j [1], . . . , c′j [n]) from
each player Uj for j = 1, . . . , k, decrypts cj [i] to get decommitment
sp|(Kj , Rj) = D(ski, cj[i]) with sender prefix sp, and checks that sp = Uj

and the decommitment validity relation gKjhRj = vj [0] holds: if either
check fails, Ui adds Uj to a complaint set Comp′i, otherwise Ui holds a
valid decommitment (Kj , Rj).

6. Broadcast Decommitment Complaints:
(a) Send. Each player Ui broadcasts the message Ui|6|Comp′i.
(b) Receive. Each player Ui receives a message Uj |6|Comp′j from each

player Uj .
7. Broadcast Complaint Responses and Recover Session Key:

(a) Send. Each player Ui responds to a complaint on Uj by encrypting Uj ’s
i-th VSS share (yj [i], sj [i]) to each player: Ui computes the ciphertext
vectors c′′i,j = (c′′i,j [1], . . . , c′′i,j [n]), where c′′i,j [l] = E(pkl, Ui|(yj [i], sj[i]))
for l = 1, . . . , n. Ui broadcasts the message Ui|7|{(Uj , c′′i,j)}Uj∈Comp′ ,
where Comp′ is the union of Comp′1, . . . , Comp′n (the set of all play-
ers complained about in previous round).

(b) Receive. Each player Ui receives a message Ul|7|{(Uj, c′′l,j)}Uj∈Comp′

from each player Ul. For each Uj in QUALi which is also in Comp′i , Ui

recovers (Kj , Rj) by decrypting the ciphertexts containing Uj shares:
Ui computes sp|(yj [l], sj[l]) = D(ski, c

′′
l,j [i]) for l = 1, . . . , n. Using

k + 1 such valid shares with l ∈ S∗ for some subset S∗ ⊆ {1, . . . , n}
(satisfying the VSS relations gyj[l] · hsj [l] =

∏k
t=0 vj [t]l

t

, and having
valid sender prefix sp = Ul), Ui reconstructs (Kj , Rj) by Lagrange
interpolation:

Kj =
∑
l∈S∗

λS∗,l · yj [l] mod q and Rj =
∑
l∈S∗

λS∗,l · sj [l] mod q,

where λS∗,l is the lth Lagrange coefficient with respect to S∗ Now Ui

holds Kj for all Uj ∈ QUALi (otherwise Ui aborts the protocol), com-
putes the session key SKi =

∑
j∈QUALi

Kj mod q, and terminates with
success.

Note: At the end of each (say jth) round, each player Ui is receives a message
from each player Ul of the form Ul|j|m. However, it may happen due to attacker
behaviour, that Ui either (1) receives no messages from Ul or (2) more than one
message from Ul. In case (1), all validity checks specified above involving the
received message are defined to have failed. In case (2), we assume the receiver
picks an arbitrary single message from those that were received from Ul and
proceeds as described above.
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Efficiency Remarks

(1) Our basic protocol has 7 rounds. The dominant computation/communication
costs in the ‘optimistic case’ where all players follow the protocol are the VSS
computations in rounds 2, 5 and 7 (namely O(k) exponentiations in G and
O(n) multiplications modulo q by k + 1 sending players, and O(1) exponen-
tiations and O(kn log n) group operations in G by n receiving players) and
the encryption computations in rounds 2 and 5 (namely O(n) ciphertexts
encrypted/sent by first k + 1 players and O(k) ciphertexts decrypted by n
players). In the worst case of k corrupted players, round 7 requires also O(n)
encryptions/decryptions of messages/ciphertexts of length O(nk) per player.

(2) When n is much bigger than k, one can improve the efficiency by running
the first 7 rounds among the first 2k + 1 players only, and then distributing
ciphertexts of the resulting session key K (together with the decommitment
randomness R to allow verification) to the remaining n − (2k + 1) players.

5 Security Proofs for the Basic Protocol

The insider security of the basic protocol is summarised by the following state-
ment (see full version of the paper for proof).

Theorem 1 (Security Against Non-Spoofing Insiders).(1) If the Discrete-
Log problem (DL) is hard in the group G generated by the common-parameter
algorithm GC, then protocol Prot achieves robustness against non-spoofing insider
attacks (ns-rob notion). (2) If in addition, the encryption scheme ES is secure
under adaptive chosen-ciphertext attack (INDCCA2 notion), then protocol Prot
achieves shielded-insider privacy against non-spoofing insider attack by k insiders
(ns-sh-pr notion). Concretely, the following insecurity bounds hold:

InSecns-rob
Prot (t, qex, qs, �B) ≤ InSecDL(t[D]),

InSecns-sh-pr
Prot (t, qex, qs, �B) ≤ 2[InSecDL(t[D])

+qex(� − 1)InSecINDCCA2
ES (t[E], qd[E])],

where t[D] = t+qexO((k+1)2l2q+(k+1)·�·lq), t[E] = t+O(�2k3(lc+lpk+lID+lq)),
qd[E] = k(k+2). Here lq is an upper bound on the group order q and lc, lID and
lpk denote upper bounds on the length of ciphertexts sent by corrupted players,
length of player identities and length of public keys for encryption scheme ES,
respectively.

The outsider security of the basic protocol is summarised as follows.

Theorem 2 (Security Against BoF Outsiders). If the encryption scheme
ES is secure under chosen-plaintext attack (INDCPA notion), then protocol Prot
achieves outsider privacy against Block-or-Forward attackers (KE-BoF notion).
Concretely, the following insecurity bounds hold:
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InSecKE-BoF
Prot (t, qs, �B) ≤ [�(� − 1)(k + 2) + 2(� − 1)(k + 1)]InSecINDCPA

ES (t[E]),

where t[E] = t + O(�2k(lc + lpk + lID + lq)). Here lq is an upper bound on the
group order q and lc, lID and lpk denote upper bounds on the length of ciphertexts
sent by corrupted players, length of player identities and length of public keys for
encryption scheme ES, respectively.

6 Adding Authentication to the Basic Protocol

In the full version of this paper, we describe a generic “compiler” KY′ which
takes any given input protocol Prot which is “weakly” secure (namely, achieves
KE-BoF security against BoF attackers in the outsider model and sh-pr-ns and
rob-ns security against non-spoofing attackers in the insider models) and outputs
a “strengthened” protocol Prot′ which is “strongly” secure (namely, achieves KE
security against active attackers in the outside model and sh-pr and rob security
in the insider models). Applying this compiler to our basic protocol Prot from
Section 4 gives our full authenticated protocol. Due to space limitations we could
not include this result in this version of the paper.

Our compiler KY′ is a slight modification of the compiler KY described by
Katz and Yung [13]. The modification is needed because the original compiler KY
upgrades outsider security but does not upgrade the insider security — indeed,
protocols output by the compiler KY are not robust in the insider model, since the
KY compiler aborts any honest player who receive an incorrectly signed message
(or zero messages or more than one message) from another player in some round.
To fix this problem, our modified compiler KY′ simply “filters out” (ignores) the
incorrectly signed received messages, and if no correctly signed message arrives,
passes the ‘empty’ string to the underlying input protocol player. Thanks to
this modification and the signatures added by KY′, the output protocol Prot′

of KY′ can be shown secure in the insider models as long as the input protocol
Prot is secure against non-spoofing attackers. On the other hand, in the outsider
model, the modification means that the input protocol Prot must be secure
against Block-or-Forward attackers in order for Prot′ to be secure against active
attackers. That is, outsider security of Prot against passive attackers does not
suffice for the compiler KY′, whereas it was enough for the KY compiler.
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A Malleability Attack on BD Protocol

For completeness, we describe the malleability attack [16] on the BD protocol
mentioned in Section 3. First we recall the BD protocol [7]. Given a group G
with generator g, the n players U0, . . . , U

′
n−1 generate a session key as follows:
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1. Each player Ui chooses random ri ∈ ZZq and broadcasts zi = gri .
2. Each player Ui broadcasts Xi = (zi+1/zi−1)ri .
3. Each player Ui computes their session key Ki = znri

i−1 ·Xn−1
i ·Xn−2

i+1 · · ·Xi−2.

The malleability attack by two corrupted players Un−2 and Un−1 to fix the
session key to some value KF proceeds as follows. In first round, the corrupted
players follow the protocol honestly. In the second round they wait until the
honest players (i ∈ {0, . . . , n − 3}) broadcast their Xi values. Then Un−2 and
Un−1 compute the session key K that would result if they proceed honestly, and
broadcast the ‘bad’ values X ′

n−2 = (KF /K) ·Xn−2 and X ′
n−1 = (K/KF ) ·Xn−1,

respectively (here Xn−2 and Xn−1 are the values that Un−2 and Un−1 should
have broadcasted if they wanted to follow the protocol). One can verify that
each honest player Ui computes a session key

Ki = znri

i−1 · · · (X ′
n−2)

i+1 · (X ′
n−1)

i · · ·Xi−2 = KF

since (X ′
n−2)i+1 ·(X ′

n−1)i = (KF /K)i+1 ·(K/KF )i ·X i+1
n−2 ·X i

n−1 = KF /K ·X i+1
n−2 ·

X i
n−1. Thus all honest players compute the key KF forced by the corrupted

players.
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Abstract. Receipt-freeness is the property of voting protocols that a
voter cannot create a receipt which proves how she voted. Since Benaloh
and Tuinstra introduced this property, there has been a large amount of
work devoted to the construction of receipt-free voting protocols. This
paper provides a generic and uniform formalism that captures the notion
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1 Introduction

In 2005, the Estonian government held elections for local office. Voters could
cast their votes online or in a traditional voting booth. This constituted the first
application of online voting on a national scale. Prior to the Estonian 2005 local
office elections, a large amount of research has been conducted into voting and
online voting. Voting is a means to establish consensus for a group of people
regarding a certain set of candidates or choices. There are various methods to
conduct an election, such as collecting one vote per voter (1V1V for short),
e.g. elections for a governmental office, or collecting a list for each voter which
orders the candidates by voter’s preference (e.g. the scheme used to determine
the Dutch Top 2000 music list). This paper focuses upon 1V1V online voting
protocols, in which all votes have equal weights.

Online voting schemes can offer an important advantage over traditional elec-
tions involving paper ballots in voting booths: voting is not restricted to a limited
number of locations which have limited opening hours, but can be done anywhere
a network connection is available, for as long as the elections are open. However,
there is also a danger: strengths of the paper ballot system may be lost and new
flaws can be introduced. To prevent this, electronic voting schemes should be
designed to comply with a complete set of requirements.

Over the years, several desirable properties of electronic elections have been
distinguished (see e.g. [15,10]). In this paper we focus on the property of receipt-
freeness. A receipt allows a voter to prove how she voted. If receipts cannot be
constructed, the voting protocol is said to be receipt-free.

Most other established properties of voting protocols, such as universal veri-
fiability (any party can verify that the result is compromised of all legitimately
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cast votes, and nothing else), democracy (only eligible voters can vote, and all
voters can vote once), accuracy (no vote can be altered, duplicated or forged
without being detected), robustness (the system can resist faulty behaviour of
any reasonably sized coalition of participants) and integrity (the result of a vote
consists precisely of all valid votes, and nothing more), are orthogonal to the
concept of receipt-freeness. However, the notion of individual verifiability can
be in conflict with it. Individual verifiability is the property that an individual
voter can verify that her vote is correctly taken into account in computing the
final tally. If this verification is transferable, the verification and the keys used to
encrypt and/or blind the vote together would constitute a receipt. One method
to reconcile the two properties is to use designated-verifier proofs [13].

This paper formalises the notion of receipt-freeness, which was introduced in
the seminal work of Benaloh and Tuinstra [3]. In the early nineties, this property
was violated by virtually all online voting schemes of that time. (Note that paper
ballot 1V1V voting systems usually are receipt-free, which means that an online
voting system which allows for receipts introduces a new flaw.) The lack of
receipt-free schemes prompted the development of voting schemes, which would
account for receipt-freeness in addition to other requirements.

In [3], the concept of receipt-freeness was introduced for a particular proto-
col (which we name BT). The definition does not lend itself for a convenient
generalisation, however. It relies on distinguishing votes for candidate ‘0’ from
votes for candidate ‘1’. The main contribution of our paper is a constructive,
generic formalisation of the notion of receipt-freeness in a uniform framework
for 1V1V voting schemes. The process algebraic setting adopted here facilitates
reasoning about and verification of receipt-freeness and enables detection and
identification of receipts. The proposed formalism is then applied to the voting
protocols BT of Benaloh and Tuinstra [3], SK95 of Sako and Kilian [18], HS of
Hirt and Sako [11], ALBD of Aditya et al. [1] (which are receipt-free) and the
RIES protocol as discussed in [12] (which is not).

Since Benaloh and Tuinstra’s work there has been much research into receipt-
freeness. In some works, e.g. [17], this notion is refined into two notions: receipt-
freeness, which holds if a protocol does not require receipts to function, and
uncoercibility which holds if receipts cannot be constructed. However, in this
paper receipt-freeness means that voters cannot construct a proof of how they
voted. These two concepts seem closely related, but as Chaum shows in [4], a
voting protocol may give tickets (which seem like receipts) to voters without the
voter being able to use these to prove how she voted. The reverse is also possible:
a voting protocol need not supply voters with receipts in order for voters to be
able to construct proofs of how they voted. An example of this is given by the
attack on Benaloh and Tuinstra, mentioned in [11].

We note that this attack is not targeted at the core of BT, but exploits an
auxiliary procedure in which voters prove that their encrypted vote is either
a ‘0’ or a ‘1’. This auxiliary problem can be mitigated without breaking receipt-
freeness, e.g. by applying the technique used in [2, Section 10.3.2]. We conclude
that receipt-freeness of the core of BT remains unchallenged. Below we will
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argue that the essence of the BT protocol indeed satisfies the receipt-freeness
requirement.

The remainder of this paper is organised as follows: Section 2 describes related
work. In Section 3, the notion of receipts in online voting systems is examined in
depth. Section 4 formalises the notion of receipts, and expresses receipt-freeness
in a process-algebraic setting. In Section 5, the application of this formalism
to various protocols (BT, SK95, HS, ALBD and RIES) is discussed. Section 6
presents conclusions and possible directions for future research.

2 Related Work

In [8], an earlier formalisation of receipt-freeness is proposed. This formalisation
does not define what constitutes a receipt, but instead relies on observational
equivalence between a system with a colluding voter and a system without a
colluding voter. A disadvantage of this formalism is that while it may be used to
establish receipt-freeness of a protocol, it offers little aid to identify receipts when
these are present. Our approach focuses on establishing what can constitute a
receipt. This enables the identification of receipts, and provides a heuristic to
take receipts into consideration in the early stages of designing a protocol.

Many voting protocols have been developed over the years. FOO [9] is well-
known and has served as a base for various implementations (e.g. [7]). Its main
goal is to allow voters to vote anonymously. RIES [12] has been used in two water
management board elections in the Netherlands, handling over 70,000 votes in
one case (making it one of the largest online elections). Where FOO and RIES
are geared towards implementations, CFSY [5] and CGS [6] are aimed at provid-
ing desirable properties. The protocol described in CFSY provides information-
theoretic privacy, universal verifiability and robustness. The main difference with
CGS is that CGS allows a significant reduction in workload per voter, but offers
only computational privacy.

Since Benaloh’s and Tuinstra’s work, various receipt-free voting protocols have
been proposed, such as [18,1,11]. Other research has been aimed at providing
receipt-freeness in more generic settings (as opposed to a single protocol), such
as [16], which focuses on mix-nets, and [17], which proposes the use of an external
trusted source of randomness.

The mechanisms to prove receipt-freeness given in these works are aimed at
the specific topics covered. There seems to be little work towards a general
formalisation of receipt-freeness that provides a uniform method to establish the
absence or presence of receipts. It is the aim of the present paper to provide such
a formalisation.

In the typical set-up adopted here, the adversary under consideration is an
outside observer. Juels et al. mention several privacy-related attacks on voting
protocols in [14]. Privacy and receipt-freeness are closely related, however, as
stated in [14], receipt-freeness does not prevent these attacks. Juels et al. offer a
stronger concept, which they call coercion-resistance, that offers receipt-freeness
and prevents these attacks. Like [8], the work of Juels et al. enables establishing
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coercion-resistance, but their computational adversary model provides no indi-
ciation of what constitutes a violation of this property when it is succesful.

This paper focuses on receipt-freeness (hence, it does not consider these
privacy-related attacks) and on providing a constructive approach to determin-
ing receipt-freeness.

3 Receipts in Online Voting Schemes

Intuitively, a receipt r is an object that proves that a voter v cast a vote for
candidate c. This means that a receipt r has the following properties:

(R1) r can only have been generated by v.
(R2) r proves that v chose candidate c.
(R3) r proves that v cast her vote.

The difference between property (R2) and proerty (R3) is highlighted by the
following example. Consider an election with paper ballots, where the ballots
authenticate voters. In this setting, a voter could fill in a ballot, leave the voting
booth with the ballot and show the ballot to anyone. This would satisfy prop-
erties (R1) and (R2), while clearly the voter did not cast a vote! Thus, a receipt
must also prove that the voter cast her vote, which provides the justification for
introducing (R3).

Although rather intuitive, the above properties do not catch receipt-freeness
in non-1V1V settings. Consider, for example, the cheating in Italian elections
for multiple posts (that are not 1V1V) as mentioned by Benaloh and Tuinstra
in [3]. The authentication in that attack is provided by assigning each voter a
permutation of posts. The voter authenticates herself by listing her choices in
the assigned order on the ballot. Since anyone can construct such a permutation,
this is usually not sufficient to satisfy (R1) because of the small number of
permutations involved.

Receipts are regarded as undesirable objects in voting systems, for the follow-
ing reason: if receipts can be created, an attacker can coerce (e.g. threaten) or
entice (e.g. bribe) voters to vote in a manner of his choosing, and the voters can
prove that they complied with this manner. This would mean that the result of
an election no longer reflects the consensus of the voters, which is the primary
goal of a voting system.

For many existing voting systems generation of receipts is possible. We il-
lustrate this for the FOO protocol [9]. The main goal of the FOO protocol is
to provide anonymity for the voters. This is achieved by the use of anonymous
channels and blind signatures. Blind signatures are a cryptographic mechanism
that allows a party to encrypt a message, have the encrypted message signed by
another party and then remove the encryption, whilst preserving the signature.

The FOO protocol works as follows: First, a voter has her blinded, encrypted
vote signed by a registration authority. Next, she removes the blinding and sends
the signed, encrypted vote anonymously to the counter. After all votes have been
received, the counter publicises an enumerated list of all received votes. The voter
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then sends her decryption key (and associated list number) to the counter. After
the counter has received all keys, he updates the public list to include the keys.

There is an obvious receipt here, given the public list: the key k used by the
voter and its number � in the list. This pair (�, k) matches the requirements for
receipts: k authenticates a specific voter (satisfying (R1)); using k, the �th entry
can be shown to be a vote for a specific candidate (satisfying (R2)); and since
the pair (�, k) is on the list, this refers to a cast vote (satisfying (R3)).

It should be noted that if the above receipt is shown to have been generated
before the keys are published, it remains a valid proof after the publication of
the keys. One way to prove that the receipt was constructed before publication
is to use timestamping. As timestamping can be used in general, we adopt the
view that the protocol is not receipt-free if at any time a voter can create a
receipt.

4 Formalisation

In this section the notion of receipts will be formalised and subsequently used
to specify what receipt-freeness means formally.

The architecture of 1V1V voting protocols is usually built from the following
fundamentals:

– agents taken from the set A, voters Vot ⊆ A
– choices or candidates in Can , ballots in B, and results (multisets of choices)

in M(Can)
– received ballots in RB, from which the result will be computed
– a choice function Γ : Vot → Can , which specifies how the voters vote
– a function tally : P(RB) → M(Can), which gives the election result for a

set of received ballots.

To denote receipts, the following notation is used:

– the set of receipts Rcpt
– Terms(v), the set of all terms that a voter v ∈ Vot can generate
– authentication terms AT (v) for each voter, such that

t ∈ AT (v) =⇒ ∀w 
= v : t /∈ Terms(w)

we put AT = {AT (v) | v ∈ Vot}
– a function auth : AT → Vot , which returns the unique voter that created an

authentication terms.

A voting system is a system which takes a choice function as input and returns
a set of received ballots as output.

Definition 1. Given the above ingredients, a voting system VS is a mapping:
VS : (Vot → Can) → P(RB).
The result of VS for choice function Γ is given by: tally(VS(Γ )).
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We have occasion to use the following auxiliary receipt decomposition functions:

– α : Rcpt → AT , which extracts the authentication term from a receipt
– β : Rcpt → B, which extracts the ballot from a receipt
– γ : Rcpt → Can , which extracts the candidate from a receipt.

Note that these functions depend on the structure of receipts, and thus vary from
voting system to voting system. For example, for the FOO protocol discussed
above, receipts are of the form (�, k) if RB was known. Assuming that elements
of RB are of the form (num, {vote}k), this means that in FOO (where B = RB):

– α(RB, (�, k)) = k,
– β(RB, (�, k)) = (�, e) ∈ RB, for some encrypted vote e, and
– γ(RB, (�, k)) = c, such that {c}k = e.

Using the above ingredients, the notions (R1) to (R3) can be expressed as
follows.

Definition 2. A receipt r for voter v concerning candidate c has the following
properties:

(r1) α(r) ∈ AT (v)
(r2) γ(r) = Γ (v)
(r3) β(r) ∈ RB.1

Thus, a valid receipt r of voter v for candidate c can now be characterised
as follows: auth(α(r)) = v =⇒ γ(r) = Γ (v) (satisfying (R1) and (R2)) and
β(r) ∈ RB (satisfying (R3)).

Since γ = Γ ◦ auth ◦ α satisfies auth(α(r)) = v =⇒ γ(r) = Γ (v), we can
now formulate when a voting system VS allows receipts.

Definition 3. A protocol VS(Γ ) grants receipts in Rcpt with derived functions
α, β, γ iff

γ = Γ ◦ auth ◦ α ∧ ∃� ∈ Vot → Rcpt : ∀v ∈ Vot : β(�(v)) ∈ RB

As is obvious from the definition, γ can be seen as an abbreviation for Γ ◦ auth ◦
α. Therefore, to determine presence of a receipt in a given protocol (for given
Γ, auth), only α and β need to be defined.

The advantage of the above generic formalism is that it covers all receipts, also
ones constructed by side-channels. The obvious disadvantage is that it does not
provide us with a procedure to verify receipt-freeness of a given protocol. Note
that a receipt is derived from a particular execution of a voting protocol, also
referred to as a run. Only the public and private information exchanged during
1 This assumes that RB ⊆ B. In case there are additional operations on the ballot

after the voter sends her ballot (such that RB �⊆ B), which the voter cannot ap-
ply to her ballot herself, an auxiliary partial function φ : B →∗ RB is introduced;
the requirement then is formulated as φ(β(r)) ∈ RB. Unless otherwise mentioned,
RB ⊆ B.
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the protocol run can be considered a building block of an associated receipt.
Information not present in the run does not qualify for this.

In our approach to abstract voting protocols, all data is represented by terms.
If we limit the notion of receipts to terms (i.e. Rcpt ⊆ Terms), procedural
verification of receipt-freeness becomes possible by examining the suitability of
terms as receipts. However, by limiting the formalism to terms, the ability to
detect receipts constructed using side-channels (e.g. the interval between sending
messages) is lost. In the remainder of this paper, we only consider receipts that
are terms.

The exact syntax of terms depends on the specific protocol, however, in general
terms it can be described by the following:

Definition 4. Given

– a set of choices or candidates Can
– a set of plaintexts PT (PTi for specific agent i)
– a set of keys Keys (Keysi for specific agent i)
– a set of functions Func (Funci for specific agent i)

the class of terms of agent i is defined by

mi ::= c ∈ Can | pti ∈ PTi | ki ∈ Keysi |
(m1, m2)i | {m}i

k | f(m)i, f ∈ Funci

which denotes respectively a candidate, a plaintext, a key, tupling of two terms,
encryption of a term or function application to a term.
We write t ∈ t′ if t is a subterm of t′.

We can now formulate what extraction of a term means: For all functions F which
extract one subterm from a term, it obviously holds that F (t) ∈ t. Therefore,
we have the following observation.

Lemma 1. (SUBTERMS) For all terms t ∈ Rcpt: α(t) ∈ t ∧ β(t) ∈ t.

The definition of AT (v) directly leads to

t ∈ t′ ∧ t ∈ AT (v) =⇒ t′ ∈ AT (v)

which in turn leads to the following.

Corollary 1. It holds that auth(α(r)) = v iff r ∈ AT (v).

5 Application

The purpose of this section is to illustrate how to apply the formalism from the
previous section to existing protocols. We provide a high-level analysis of the
receipt-freeness of various voting protocols.
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5.1 Application to Benaloh-Tuinstra

Since we are particulary interested in receipt-freeness, we restrict our examina-
tion of BT to just those parts related to receipt-freeness. As secret-sharing is
not related to receipt-freeness, we focus on the ‘scaled-down election protocol’
as opposed to the protocol for multiple authorities. The proof of receipt-freeness
of this specific protocol has not been disputed as far as we are aware. BT uses
probabilistic encryption, which we denote by x ∈ E(m) if x is an encryption
of m.

The protocol distinguishes the following parties: voters v ∈ Vot ; an author-
ity A, who instantiated a probabilistic encryption scheme with parameter n,
encryption function E() and decryption function D(), and a beacon BC. The
role of the beacon is to provide random bits, which are used in zero knowl-
edge proofs (ZKP). Public communications between A and B are denoted by
sa→b (send) and ra→b (receive), private communication (communication over
a private, untappable channel) is denoted by pa→b. A superscript ‘*’ denotes
communication of BT’s ZKP of the message instead of the actual message, so
p∗a→b(m) means A sends a ZKP of m over a private channel to B. As proven
in [3], no terms of this ZKP can identify the voter’s ballot (i.e., for all such terms
t, ∀b ∈ B : b /∈ t). Processes can be guarded: b → P denotes the process that can
only execute if b is true.

The voting authority A takes the following steps per voter v: A sends V an
encryption of ‘0’ and an encryption of ‘1’ in random order, and, over a private
channel, a ZKP of which is which. The voter then casts her vote by returning the
received value corresponding to her choice. This is modelled as follows (note that
min(), max() are used here to provide a random order of the two encryptions).

A(v) =
∑

x∈E(0), y∈E(1) sa→v(min(x, y), max(x, y)) ·
p∗a→v(x ∈ E(0) ∧ y ∈ E(1)) ·

(
rv→a(x) + rv→a(y)

)
A voter v thus receives two encryptions over a public channel and a ZKP over a
private channel proving which ciphertext denotes ‘0’. The voter then sends the
encryption corresponding to the vote of her choice (given by Γ (v)) over a public
channel. This is modelled by

V =
∑

x,y ra→v(x, y) ·
∑

i∈{0,1} p∗a→v(x ∈ E(i) ∧ y ∈ E(1−i)) ·(
Γ (v) = i → sv→a(x) + Γ (v) = 1−i → sv→a(y)

)
In examining the possible terms for voter v, note that v performs three actions:
a receive over a public channel; a non-transferable receive over a private, untap-
pable channel; and a send of a subterm of the message received in the first action
over a public channel. It is clear that the first receive action does not provide an
authentication term (communications over public channels can never constitute
authentication terms). Hence, the last send action cannot communicate an au-
thentication term. These actions thus cannot provide a term to satisfy the first
conjunct of Definition 3 (since these terms are not in AT , they are not in the
domain of α).
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The only possible terms which could supply a receipt are therefore the terms
used in the ZKP. Since for all these terms t, we have that �b ∈ B : b ∈ t, the
SUBTERMS lemma, Lemma 1, cannot be satisfied by any of these terms. Hence,
none of the terms used in the protocol can act as a receipt.

5.2 Receipt-Free Voting Using Mixnets

The well-known SK95 protocol [18] uses a mixnet to provide anonymity. The
protocol shuffles all possible votes and uses secure, untappable channels to the
voter to prove that the mixnet functions correctly. Due to the untappability, there
are no side-channel attacks on these proofs. Once again, these proofs are ment
to provide the voter with the ability to prove different ordenings of the shuffled
vote. This is done using “chameleon blobs” – zero knowledge bit commitments
that can be opened by a verifier in both ways. Because of this our analysis will
use the assumption that these proofs cannot be exploited to provide receipts.

SK95 works as follows: The mixnet shuffles all possible votes and provides a
proof of correctness of shuffling and a proof of the ordening of the votes to the
voter, over secure, untappable channels. The voter submits the vote correspond-
ing to her choice to the mixnet for the counter.

It is obvious from the above description that, aside from the proofs, voters
possess no distinguishing knowledge. This means that no terms outside the proofs
provide a means to distinguish voters, i.e. no term outside the proofs is in the
set AT (v). Since we assumed that the proofs cannot be exploited to provide
receipts, this lack of authenticating terms leaves us with no means to construct
an appropriate function α : Rcpt → AT , since AT = ∅. Thus, the protocol is
receipt-free.

Note that to fully prove receipt-freeness of SK95, obviously the transmitted
proofs have to be considered as well. These proofs do provide authentication
terms, but these terms are not linked to ballots, i.e.

∀t ∈ Terms(v) : t /∈ AT (v) ∨ �b ∈ B : b ∈ t

which violates the SUBTERMS lemma.

5.3 Receipt-Free Voting Using Homomorphic Encryption

In the work by Hirt and Sako [11] the shuffling of SK95 is applied to protocols
based on homomorphic encryption. In this respect, the HS protocol resembles
the SK95 protocol. They propose a voting protocol which works as follows: each
valid vote is encrypted in a deterministic way. Then, each authority takes the
set of encrypted votes supplied by the previous authority, reencrypts each vote
and outputs the votes in a random order. Again, each authority transmits a
proof of correctness of this shuffle is transmitted publicly and the permutation
is privately (untappably) communicated to the voter. The correctness of the
permutation is privately proven to the voter using a designated-verifier proof.

Due to the conceptual similarities with SK95, we will not delve deeply into
the analysis of HS here. We note that the analysis of SK95 applies to HS as well:
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voters cannot be distinguished except by terms used in proving the shuffle, and
assuming these proofs do not provide receipts, the protocol is receipt-free. Since
the proofs are for a designated verifier, these proofs cannot be used to convince
anyone but the voter of the order of the votes. Thus, again,

∀t ∈ Terms(v) : t /∈ AT (v) ∨ �b ∈ B : b ∈ t

and thus the proposed protocol is receipt-free.
Note that Schoenmakers proposed an attack on this scheme, as mentioned

in [14]: The coercer can force a voter to vote randomly. However, as mentioned
in the introduction, this does not violate receipt-freeness and therefore it is not
further considered.

5.4 Receipt-Freeness Despite Signing

The voting protocol ALBD, proposed by Aditya et al. in [1], differs from BT, HS
and SK95 because it requires voters to sign votes. This means that there exist
deliberate authentication terms for this protocol. On top of that, voter-supplied
randomness is used to encrypt their vote in violation of the analysis in [17, Sec-
tion 2.3]. However, receipt-freeness is attainable as these authenticating terms
are only used in communications over an untappable channel. Assuming the ad-
ministrator never discloses any knowledge of these terms, they cannot be linked
to cast ballots.

We use the following notation in the process description: E(m, k) denotes a
random encryption of message m using key k, and R(m, k′) denotes re-encryption
of m with key k′. {m}SK(v) denotes the signing of message m by agent v.
Again, pv→a(m) denotes communications over a private, untappable channel
and p∗a→v(m) denotes a communication over the private channel consisting of a
designated-verifier proof of m.

ALBD uses a two-way untappable channel. Vote casting works as follows:
A voter encrypts her vote (m = E(Γ (v), k)), signs it (s = {m}SK(v)), and
sends it over the untappable channel to the administrator. After the vote has
closed, the administrator publishes re-encryptions (r = R(s, k′)) of all received
votes in random order. The administrator sends each voter a designated-verifier
proof of the correctness of the re-encryption of their vote (denoted by ∃k′ : r =
R(E(Γ (v), k), k′)). This is modelled as follows:

V (v) =
∑

k pv→a({E(Γ (v), k)}SK(v)) ·∑
r sa→v(r) · p∗a→v(∃k′ : r = R(E(Γ (v), k), k′))

A(v) =
∑

y pv→a({y}SK(v)) ·
∑

k′ sa→v(R(y, k′)) ·
p∗a→v(∃k : R(y, k′) = R(y, k)).

The designated-verifier proof only involves communication from the adminis-
trator to the voter. Because of this and that it is a designated-verifier proof it
cannot be exploited to acquire a receipt.

Receipt-freeness of ALBD holds, because β(r) cannot be constructed, as

∀t ∈ AT (v) : �b ∈ B : b ∈ t
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This means that there is no term that authenticates a voter and points to a
ballot.

5.5 Application to RIES

The RIES protocol [12] deserves mentioning since it was used in two instances
of the Dutch regional water management board elections. RIES, however, has
trivial receipts. The purpose of its discussion here is as a more detailed example
of how receipts are caught by the proposed formalism. The protocol uses a central
administrator.

RIES works in three stages: pre-election, vote casting and post-election. In
the pre-election stage, voters are registered, voter keys are handed out, the total
number of voters is announced and for each voter, a ballot is constructed. The
ballot is created using a keyed hash-function (H(k, m) for key k and message
m) and a keyless hash function (G(m) for message m) and lists first the hashed
voter-id (G(H(kv, election id)), for a given voter v) and then in the specified
order a hash of each candidate (G(H(kv, c)), for c ∈ Can). Both hash-functions
are publicly known. The ballots are published as a list B. Note that, due to the
imposed order, it is known to which candidate each item on B belongs. This is
captured by the function can, defined as can(G(H(a, b))) = b.

A voter v casts a vote for candidate c by sending her voter-id
H(kv, election id) and her vote H(kv, c) via an anonymous, encrypted chan-
nel to the administrator. After the elections close, a list of all received ballots
RB is published. Tallying is done by, for each r ∈ RB, counting one vote for
can(G(r)).

Obviously, the voter-id together with the cast vote constitutes a receipt. How-
ever, due to the application of hash function G, RB 
⊆ B. Since all parties know
G, a voter can also hash his cast vote with G. Usually, it is assumed that the
used hash-functions are collision-free and that all voter keys are different. In this
case the hash of the cast vote would be sufficient to act as a receipt. Given a
tuple of voter-id a and hashed cast vote b = G(H(kv, can)), α and β can be
defined as:

– α((a, b)) = a (or b)
– β((a, G(H(kv , can)))) = G(H(kv , can)).

Concluding In case of the RIES scheme an explicit construction of receipts in-
validates the receipt-freeness of the protocol. For the other schemes, the absense
of receipts was argued based on requirements on the receipt structure.

6 Conclusion and Future Work

The SUBTERMS lemma, as exploited above, establishes a method to prevent
receipts: check that for all terms, the property of receipts does not hold. As
seen in the analysis of voting protocols, this is done by assuring that all terms
that can be used to authenticate a voter cannot be used to identify a ballot.
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The reverse is also true: all terms which can be used to identify a ballot cannot
authenticate a voter.

The analysis of BT, SK95, HS and ALBD shows that these protocols are
receipt-free. The example of FOO and the analysis of RIES demonstrate that
these protocols are not receipt-free. The receipt in RIES remains valid inde-
finately. Although the keys used in FOO are revealed, this does not prevent
construction of a receipt that remains valid by using timestamping.

A further line of research is to extend the intruder model to include the
possibility of one or more authorities colluding with the intruder. This can be
extended to the case where all authorities, but not the voter, cooperate with the
intruder.

On a final note, the notion of receipt-freeness also has its applicability in
online auctions, which we did not investigate for this paper. A formalisation of
receipt-freeness for use in auction protocols is another possible line of future
work.
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Abstract. Security is a major concern for all involved in E-Commerce
and particularly in the case of online transactions using debit/credit
card. Following the failure of Secure Electronic Transaction (SET), 3-D
Secure is an emerging industry standard for online transaction security.
Although 3-D Secure is a well designed protocol, it is still prone to some
security problems and excessive numbers of messages which could reduce
the speed of transaction. This paper uses a new cryptographic technique
based on password only authentication and key exchange to present a
new vision for 3-D Secure. The new vision covers the security problems
and reduces the number of messages for 3-D Secure. Moreover, the new
vision has the development ability to simulate SSL/TLS in its simplicity
and at the same time abolishes SSL/TLS security glitches. This simplic-
ity and security are the necessary factors for online transaction protocol
to be the future standard.

Keywords: 3-D Secure; SSL/TLS; password based authentication and
key exchange; online transaction security.

1 Introduction

Three-domain Secure or (3-D Secure) was developed by Visa [1,2]. The main
purpose of the protocol is to provide authentication for the client by providing
the ability for the issuer to authenticate the cardholder during online transac-
tion. 3-D Secure is built on three domains; issuer domain, acquirer domain and
interoperability domain. A brief description of these domains is as follows:

1. Issuer domain: this domain covers the relationship between the issuer and the
cardholder. It consists of the issuer, cardholder and Access Control Server
(ACS). The main function for ACS is to authenticate the cardholder during
the transaction.

2. Acquirer domain: this domain covers the relationship between the merchant
and acquirer. It consists of the acquirer and the merchant. The merchant
must install a special program, known as merchant plug-in (MPI). The main
function for MPI is to create and process the authentication messages.

3. Interoperability domain: this domain covers the relationship between issuer
domain and acquirer domain. It consists of Visa Directory Server and Au-
thentication History Server. The main function for Visa Directory Server is

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 489–501, 2006.
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to receive an enquiry from the merchant specific card number, forward the
enquiry to ACS in issuer domain and then forward the answer from ACS to
the merchant. ACS keeps a record in Authentication History Server for each
attempt of authentication from ACS whether the attempt is successful or
not.

1.1 3-D Secure

The 3-D Secure Scheme operates as follows [1]. The client browses the merchant’s
web site and decides to pay for goods or services. The protocol’s steps are as
follows, see figure 1:

1. The merchant’s web server establishes a secure connection, by using
SSL/TLS [12,13] channel, between the merchant and the client. The mer-
chant asks the client to enter his/her bank details including his/her credit
card details; these details are known as primary account number (PAN). Up
till now, these steps are the common steps for normal transaction by using
SSL/TLS. 3-D Secure continues as follows:

2. MPI queries Visa Directory Server if PAN is enrolled in 3-D Secure scheme
and authentication is available. If PAN is not enrolled or no authentication
is available, the process will stop and the transaction could only continue as
a normal transaction, i.e. without 3-D Secure. To improve the performance,
3-D Secure implements the possibility of MPI’s cache; in this cache MPI
copies from Visa Directory Server the enrolled PAN numbers. In case of
cache implementation, MPI stops 3-D Secure procedure directly if PAN is not
registered. The following steps are for enrolled PAN in 3-D Secure scheme.

3. Visa Directory Server queries ACS for PAN if authentication is available.
4. ACS answers Visa Directory Server in addition to the uniform resource lo-

cator (URL) for ACS where MPI can connect directly to ACS.
5. Visa Directory Server forwards the answer to MPI.
6. MPI formats a payer authentication request (PAReq) which contains the

transaction details. MPI signs this form by using his private key and posts
it to ACS through the client web browser by using JavaScript.

7. MPI directs the client web browser, by using JavaScript, to ACS web site.
8. ACS asks the client to authenticate him/herself by using password or Visa

smart card.
9. ACS signs the payer authentication result form (PARes) by using his private

key and posts it to MPI through the client web browser by using JavaScript.
ACS sends a copy from the authentication result in addition to selected data
from the transaction to authentication history server.

10. ACS redirects the client back to the merchant web site.
11. MPI Checks ACS certificate and then checks the PARes signature.
12. If the authentication succeeds, the merchant completes the transaction in

the normal way.



Enhancing the Security and Efficiency of 3-D Secure 491

Fig. 1. 3-D Secure Transaction

2 Measuring 3-D Secure Against Online Transaction
Security

The security requirements for online transaction include authentication, data
confidentiality, data integrity, non-repudiation and freshness of the transaction.
We will examine how much 3-D Secure fulfils these security requirements:

– Authentication for the entity: every party must be able to authenticate
the entity with whom they are dealing. In normal transactions, by using
SSL/TLS, there are only two parties, the client and the merchant, who have
to authenticate each other. In 3-D Secure, in addition to the client and the
merchant there are Visa Directory Server and ACS. 3-D Secure uses public
key certificate for the merchant, Visa Directory and ACS for their authen-
tication. The cardholder uses password or Visa smart card to authenticate
him/herself to ACS. As a result, the authentication for entire parties is
provided.

– Data confidentiality during and after the transaction: the data confiden-
tiality is provided during the transaction because 3-D Secure uses a se-
cure channel by using SSL/TLS. The confidentiality of user data after the
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transaction depends on the confidentiality of the merchant database, which
has the transaction details, but it is better than using naive SSL/TLS
because the authentication secret value for the client is not part of this
database. If 3-D Secure is widely used and the transaction is not possi-
ble without client authentication, then an attacker, who has access to this
database, is not able to complete a transaction on behalf of the cardholder.

– Data integrity: 3-D Secure uses SSL/TLS channel to exchange transaction
data. SSL/TLS provides data integrity for the exchanged data only during
the transaction. After the transaction the integrity of the transaction data
depends on the integrity of the merchant’s database which contains the trans-
action data but it is better than naive SSL/TLS because the selected data
from the transaction, which ACS keeps in the authentication history server,
can be considered as means of backup for the parties in case of dispute.

– Non-repudiation: the authentication history server keeps a selected data from
the transaction, from the merchant, in addition to the cardholder authenti-
cation result, so non-repudiation is provided.

– Freshness of the transaction: freshness of the transaction means after the
transaction has been conducted, neither the merchant nor third party is able
to repeat the same steps to perform other unauthorized transaction built on
authorized transactions. If 3-D Secure is widely used and the transaction is
not possible without client authentication, then the merchant or an attacker,
who knows the client account details, is not able to complete a transaction
on behalf of the cardholder.

As a result, 3-D Secure provides the security requirements for online transaction.
If the authentication is conducted by using a password, there is no need for any
additional software or hardware from the cardholder, no need for private/public
key pair for the cardholder and all the connections are secure by using SSL/TLS.

3 3-D Secure Under Fire

From the first reading, we can say the problem of online transaction has been
solved because, as mentioned above, 3-D Secure can provide all the security
requirements and it is not expected to have a major implementation problem [3].
However, in the cardholder authentication process, step 8 in figure 1 above, the
authentication for the far end of the connection, who is supposed to be ACS, is
achieved by its public key certificate during SSL/TLS connection establishment.
A faked merchant can carry out an attack against the client and reveal his/her
secret authentication value by using one of these methods:

3.1 Man in the Middle Attack

After MPI gets the URL of ACS (step 5 in figure 1 above), MPI does not redi-
rect the client web browser to ACS. Instead, MPI, or any web site under the faked
merchant control, acts as a proxy for the client and the connection to ACS will go
through MPI. In this case, MPI requests the page from ACS and forwards it to
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the client and vice versa with the possibility to read and modify all the exchanged
pages. If there is a secure channel, by using SSL/TLS, MPI makes two secure con-
nections; one with ACS and the other with the client. The client can discover the
attack by checking the origin of the page because it will give the name of MPI not
ACS. Theoretically, the client can discover the origin of the page from the page’s
URL, the status line for the page and from the source of the page. Practically, the
normal user, i.e. the majority of users, does not check these values. The check in
3-D Secure is more difficult because during the transaction the client is dealing
with the merchant. Therefore, the merchant’s URL is the correct URL and the
URL is changed only during the authentication process, i.e. during entering the
password. Finally and this is the worst, what should appear in the page’s URL
and the status line for the page can be changed to any desired value by using
JavaScript. The common recommendation for this attack is to disable JavaScript
in the web browser [4,5] but this solution is not possible in 3-D Secure because
MPI and ACS use JavaScript to redirect the client web browser (step 7 and 10 in
figure 1 above). Fortunately, the source of the page cannot be changed by using
JavaScript but the source of the page is written in HTML. So it is not possible
for non-programmer client to read this source and discover the real origin of the
page. The ideal method to inspect this type of attack, in the case of SSL/TLS se-
cure channel, is to inspect the certificate of the web site [5]. The certificate will
clearly identify the owner of the certificate, i.e. who establishes the secure con-
nection. Theoretically, checking the certificate is perfect solution but practically
the majority of clients do not know what the public key certificate is or how to
check the certificate. Furthermore, in 3-D Secure the client has three secure con-
nections (see figure 1 above), first client merchant (step 1), second client ACS (step
8) and third client merchant (step 10). Consequently, this check should be per-
formed three times. By using this attack, the faked merchant can reveal all the
client account details including his/her authentication value. Moreover, because
the merchant can modify the exchanged web pages between the client and ACS,
the merchant is able to send to ACS and the client different copies of transaction
details. Practically, the latter attack is not so desirable because it could put the
merchant under suspicion.

3.2 False Redirection

In this scenario, MPI, for a faked merchant, instead of redirecting the client
to ACS, step 8 in figure 7, redirects the client to a faked ACS (FACS) under
his/her control. FACS is able to form a web page exactly the same as the genuine
page because the merchant knows the transaction details and the client account
details. 3-D Secure uses personal assurance message (PAM) [1] to reduce spoofing
and a simple means of mutual authentication. PAM could not be considered as a
strong method to authenticate ACS to the client because, firstly, PAM appears
in clear text on the client’s screen during the authentication so anyone can read
PAM and, secondly, a faked merchant can use the client account details, from
previous transaction and a faked client under his/her control to simulate the real
client to obtain PAM from ACS. This attack can be conducted as follows:
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1. The faked client uses the real client’s account details to do a faked transaction
with any merchant. The reason for choosing another merchant is to remove
any suspicion of the faked merchant during the further attack. As previously
mentioned, ACS keeps a record of all the authentication attempts.

2. The merchant redirects the faked client to ACS.
3. ACS provides PAM, in clear text, to the faked client and asks him/her to

authenticate themselves
4. The faked client enters any password
5. The transaction is not completed because the password is not correct but

PAM has been revealed.

In any further transaction from the client, the merchant can redirect the client
to any faked web site to reveal his/her secret authentication value. To prevent
this attack, the client should deal with it as man in the middle attack mentioned
above by effectively checking the web site of ACS and the certificate of ACS
when there is secure connection between the client and ACS.

4 Password-Based Authentication

The main goal for 3-D Secure is to authenticate the client. 3-D Secure presents
many methods such as password, mobile phone and smart card. From these
authentication methods, using only password has many advantages, such as be-
ing simple and easy to use, no additional hardware is required, convenience and
traditional method for authentication. However, using a human-memorable pass-
word only authentication in the traditional method, which takes a hash function
of the password, is insecure because of the low entropy spaces for the password
that allow malicious guess attack and particularly the dictionary attack. Bellovin
and Merritt [6] first presented authenticated key exchange based on password
protocol known as Diffie-Hellman Encrypted key exchange, DH-EKE. This pro-
tocol was built on a combination of public key and secret key cryptography. The
main idea of the protocol is to deny the attacker from knowing if his/her guess of
the password is correct or not. Since the presentation of the first protocol, many
other protocols have been presented [7] which develop new ideas that make the
protocol stronger and add some advantages to the original protocol. Password-
based protocols for authentication and key exchange hold promise for the future
and recently have received significant attention. Currently, there is draft for an
IEEE standard [8] for some of these protocols in addition to RFC draft to build
a TLS secure channel by using only password [9]. The integration process for
password only authentication and key exchange in network applications such as
FTP, telnet and SSL/TLS is active in many research groups and there are beta
versions of the programs [17,18].

5 The New Approaches

Two approaches are presented in this section. The first approach tries only to
address the security loopholes mentioned above. The second approach presents
a new direction for 3-D Secure.
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5.1 First Approach

This approach covers the security loopholes mentioned above and no change is
required in 3-D Secure. During the authentication process, the connection be-
tween the client and ACS is protected in the actual protocol by using standard
SSL/TLS, which is based on the server public key. If this connection is built on
the new model of SSL/TLS, which uses cipher suite based on password from
the client and ACS [9], the security loopholes, mentioned above, will be covered.
From [14,15,16], it can easily be seen that man in the middle attack is impossi-
ble and false redirection does not leak any extra information about the password
because ACS receives the same messages as any other adversary. In this paper,
only two attacks are presented; [16] and many of similar protocols are proven
secure against attack from passive and active adversary. The mobility of the
client is still maintained, i.e. no need for any extra software or hardware. The
only requirement is to implement any protocol using only password as means for
SSL/TLS connection, as mentioned in [9]. In the author’s opinion it is only a
matter of when rather than if it will be done. Finally, it is important to mention
that no conflict between using password method for SSL/TLS connection and
other types of authentication, such as smart card, mobile phone, or any future
type of authentication, in contrast, using password can support the authentica-
tion process.

5.2 Second Approach

Client redirection seems to be attractive, particularly for the client, because it
simulates the traditional method of online transaction, by using naive SSL/TLS.
Client redirection has a major advantage that all steps are automated for the
client and no need for any extra hardware or software. However, in addition to
the possibility of potential attack as mentioned above, there is the possibility
of implementation difficulty and particularly the speed of transaction, since the
number of messages is big and consequently the number of authentications is big
with the possibility of many bottlenecks. This section tries to make an improve-
ment for 3-D Secure to reduce the number of messages in addition to make it
straightforward i.e. every party makes one connection with one party. Abdalla et
al [10] present a three-party password-based protocol to authenticate the client
through distrust server. In the following, a new protocol for online transaction
security is built on the protocol in [10] and 3-D Secure; this protocol from now
on will be called enhanced 3-D Secure, see Figure 2.
These abbreviations are used:
Zq : is a prime-ordered group, where Diffie-Hellman problem is hard.
q : is order of group Zq.
g : is a generato for Zq.
ϕ, h, h́ : are one way hash functions.
All the multiplications, additions and exponentiations are performed modulo q

1. The client browses the merchant web site and when he/she decides to pay for
goods or services, a secure connection, by using SSL/TLS based on the mer-
chant public key, is established. The client is asked to enter his/her account
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details including PAN. MPI checks with Visa Directory Server if authenti-
cation for PAN is available with the possibility of using MPI’s cache [1].

2. If authentication is available for PAN, MPI sends ’change cipher spec’ mes-
sage [12,13] for SSL/TLS connection with the client and new cipher suite,
which uses password-based protocol, is activated.

3. The client’s browser, CB, asks the client for his/her user name, c and pass-
word, pw, then CB computes PW=ϕ(c, G, pw) , where G is the merchant
identifier.

4. CB chooses a random number x ∈ Zq, computes X = gx, computes X∗ =
X × PW and sends X∗ to MPI

5. MPI chooses a random number y ∈ Zq and computes Y = gy

6. MPI establishes SSL/TLS connection with Visa Directory Server based on
the public key of the two parties, i.e. client and server must have public key
certificate.

7. MPI sends c,PAN,X∗,Y and some selected data from the transaction to
Visa Directory Server.

8. Visa Directory Server connects with ACS through a special financial con-
nection and passes the values c,PAN,X∗,Y and the selected data from the
transaction.

9. ACS calculates X = X∗/PW , chooses a random number s ∈ Zq ,computes
α = Xs, β = Y s and sends the values α, β to MPI through Visa Directory
Server

10. MPI computes k=αy , authG=h(c,G,X∗, β ,k) and sends β and authG to
CB, to continue SSL/TLS connection.

11. CB computes k=βx , authǴ = h(c, G, X∗, β, k) and accepts the result if and
only if authG = authǴ

12. CB and MPI compute the session key for SSL/TLS session as
sk = h́(c, G, X∗, β, k)

13. The merchant sends the transaction details, the client confirms the transac-
tion and then the transaction is completed.

The merchant keeps the transcript (c, G, X∗, β) as proof of authentication
from the client and authorization for the transaction from ACS.

Let us first compare the efficiency of the new protocol with 3-D Secure. We
will compare 3-D Secure steps, recall section 1.1 and figure 1 above, with the
new protocol. Before the comparison, an important point should be clarified.
The role of MPI cache is a little bit different between the two protocols. As
there will be a direct connection between MPI and the client to ACS, so the
steps 2-5 in figure 1 above are mandatory. Particularly, MPI should know the
URL where to redirect the client for authentication. If MPI uses cache, this step
can be avoided only if PAN is not enrolled and 3-D Secure will not be used [1].
In the new protocol steps 3 and 4 in figure 2 are necessary only if no cache is
used. Any required information to complete the transaction such as PAN, the
merchant identification and authentication such as Acquirer BIN, Merchant ID
and Merchant Password, which are included in Verification request (VEReq)
form, can be sent later with the message 5 in figure 2. In case of error, such as
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Fig. 2. Enhanced 3-D Secure Transaction

no authentication being available from ACS even when PAN is enrolled, which
could happen in 3-D Secure and in the new protocol, MPI in the new protocol
simply returns to cipher suite which is built on the server public key. Using the
cache in the new protocol is highly recommended.

In the comparison underneath, we consider that the MPI cache is implemented
as recommended in [1] and PAN is enrolled in 3-D Secure scheme:

Step 1: The merchant establishes SSL/TLS channel with the client and the client
enters his/her account details (PAN). This step is nearly the same in the two
protocols. Because MPI knows that PAN is enrolled in 3-D Secure scheme, from
its cache, MPI, in the new protocol, can directly change SSL/TLS connection
to a cipher suite that is built on password-based protocol. The client is asked to
enter his/her password,X∗ is calculated and sent to MPI. From the client view
there is only the password that is extra to 3-D Secure. Entering the password
is done directly after the client submits PAN information. From the MPI view
there is only one extra check for PAN in its cache. ACS and Visa Directory are
not involved in the transaction yet. As a result the time of this step is nearly
the same in the two protocols.
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Steps 2: In this step, MPI in 3-D Secure queries for PAN if it is enrolled in 3-D
Secure scheme. In addition to that, MPI will send VEReq form, which contains
the merchant identification and authentication. In the new protocol, MPI sends
the same information in addition to X∗, Y and some selected data from the
transaction.

Step 3: In this step, Visa Directory queries ACS if PAN is enrolled in 3-D Secure
scheme, i.e. forwards the coming message from MPI to ACS. This step is the
same in the two protocols.

Step 4: ACS answers Visa Directory. This step is nearly the same in the two
protocols. In the new protocol ACS calculates the values α, β , which is sim-
ple mathematical operations and will not cause any difference between the two
protocols.

Step 5: Visa Directory forwards the previous message (step 4) to MPI. This step
is exactly the same in the two protocols.

Steps 6-11: The important contribution in this investigation is the elimination
of steps 6-11 which contain the direct connections between MPI and the client to
ACS mentioned in section 1.1. These steps, which form the majority of time and
resource consuming for 3-D Secure operations, do not exist in the new protocol.
Step 12: Authorization from the acquirer. This step is the same in the two
protocols.

The theoretical calculation estimates the number of steps in the new protocol
will be reduced by up to half the steps in 3-D Secure. Speed of transaction
will be improved by reducing the number of messages. The percentage of this
improvement can be determined only by practical implementation of the protocol
which is a good idea for further work in this project.

It can be observed that the proposed protocol is able to achieve all the goals of
3-D Secure. The major advantages and features for the protocol can be summa-
rized as follows:

– No change to the theoretical basis for the protocol in [10], so the proof of
security in [10] is still valid. Particularly, as the protocol does not leak any
information about the client’s password even for the merchant and Visa
Directory server.

– As 3-D Secure, no need for any software or hardware for the client, to au-
thenticate him/herself by using password, the web browser should support
cipher suit for SSL/TLS connection based on password only protocol such
as [9]. Although, [10] and the protocol above are built on one mask Diffie-
Hellman key exchange protocol [11], which is password based protocol for
two parties it is not difficult to adopt the protocol for any other protocol
such as mentioned in [8].

– No conflict with other types of authentication. Broadly, if the authentication
is built on shared secret cryptography, this shared secret can be considered
as the password in the protocol above and no need for any change. If the
authentication is built on public key cryptography, it will not be a problem if
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the authentication value is passed through the merchant and Visa directory
server.

– MPI software for the new protocol is simpler than MPI software for actual 3-
D Secure. The authorization process is transparent for MPI, i.e. MPI deals
with one server and does not require knowing who ACS is. A worthwhile
idea is to search if the acquirer can perform the role of Visa Directory for
its registered merchants.

– The protocol is transparent to the client. He/she uses the same steps, which
is used in naive SSL/TLS, for online transactions. He/she only authenticates
him/herself by a password reasonably secure. It should only be secure against
online guess attack.

– ACS in the new protocol is background server. It only has connection with
Visa Directory Server and this gives many advantages such as being more
secure, faster, and with no need for many authentications process. Also there
is the possibility of an integrated system which consists of servers that have
access to a huge database of clients’ authentication values.

– In addition to the simplicity of the protocol, the redundancy is possible for
the servers, Visa Directory and ACS, to avoid any possibility of bottleneck.

– A disadvantage for the protocol is that because the authentication is per-
formed in an implicit way, the protocol should be repeated completely in case
of error, i.e. if the client makes a mistake in entering his/her password, the
protocol should be performed again completely. A policy can be applied in
the web browser to ask the client to enter the password and then to confirm
the password. The web browser does not continue if they are not identical.
The worse, if the client forgets his/her password, no way to add hint or re-
covery for the password; the client should use the enrolment procedure [1]
to recover his/her password.

– The protocol uses implicit authentication, i.e. ACS does not know if the
authentication process is successful or not, so online guessing attack for the
password is easier to be performed. ACS, by using authentication history
server, should perform an audit for suspicious transactions; for example,
too many authentication requests for a client and, particularly, incomplete
transactions.

6 Conclusion

3-D Secure is good protocol for online transaction. It tries to combine secure
electronic transaction (SET) with SSL/TLS to improve the security of naive
SSL/TLS as a means of online transaction security and at the same time do not
stuck in the implementation issues as SET. 3-D Secure reasonably achieves its
main goals. However, there are still some security risks such as threats of man in
the middle attack and false redirection for the client during the authentication.
Moreover, the number of messages is big and this could reduce the speed of
transaction in addition to the possibility of bottlenecks. By using a new technique
of cryptography, authentication and key exchange based on memorable password
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and implementation of this technique in SSL/TLS, a remedy for the security
glitches has been achieved as the first step. A new vision for 3-D Secure has
been designed that makes it more secure and simple. The theoretical bases for
the new approaches are ready. The practical implementation does not require any
additional hardware over actual 3-D Secure. In fact, the new approaches use the
hardware more efficiently. Software implementation for the new approaches starts
by implementing password only authentication and key exchange as cipher suit
for SSL/TLS. This step has been already started [9,17,18] but it could need some
time for adaptation by commercial web browser client providers. A worthwhile
idea for further research is to investigate if the acquirer is able to serve as Visa
Directory Server in the new approach of 3-D Secure system. This scheme has
many advantages such as enhanced security, minimal software alterations and
no hardware changes required to the actual setting which uses naive SSL/TLS
for online transaction security. A possible disadvantage of this scheme is that
the acquirer could be a potential bottleneck for the system.
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Designing and Verifying Core Protocols for

Location Privacy

David von Oheimb and Jorge Cuellar
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Abstract. Geographic privacy services provide location information on
roaming targets to location recipients via location servers, in a way that
protects the privacy of the individuals involved. In this paper we pro-
pose and discuss new protocols representing the core of Geopriv, with
particular focus on the security requirements stated in the IETF’s RFC
3693. Using the AVISPA tool, we check that these requirements, namely
anonymity against the location server, as well as confidentiality, integrity,
and authenticity of the location information, are actually met. In the de-
sign phase of such protocols, numerous variants are to be considered and
evaluated. Here the use of model checkers turns out to be very helpful
in exploring the security implications quickly and precisely.

Keywords: Geopriv, location information, privacy, model checking, ex-
ploration.

1 Introduction

With the widespread use of mobile devices like mobile phones and GPS receivers,
Location Based Services offer convenient and commercially attractive ways to
solve issues like “Please direct me to the nearest shopping mall.”, “Which time
zone is my boss currently traveling in?”, or “Has the kid reached home safely?”
However, location information needs to be gathered and transfered securely,
protecting the privacy of the individuals involved.

This paper explores some of the basic protocols that can be used to transfer
location data, respecting the authorization, integrity and privacy requirements.
See the RFCs 3693 [CMM+04] and 3694 [DMMP04] for more background on
requirements and threat analysis.
The IETF working group Geopriv [GWG06] has focused itself on
– the format of the Location Information to be sent (“Location Object”),
– the format of the Privacy Rules describing policies to be applied,
– particular cases of so-called “using” protocols, that is, protocols that carry

Location Information about a mobile user (the “Target”) from a Location
Server to a Location Recipient.

Nevertheless, to understand the requirements and goals of Geopriv, one needs
to consider also protocols that are out of scope at the IETF. The pieces missing
are protocols used to

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 502–516, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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– agree on pseudonyms and/or passwords for the Target and the Location
Recipient, which are to be used by the policies,

– request, using the credentials just mentioned, the Location Information from
a Location Server,

– transfer credentials to a Location Server,
– transfer the Privacy Rules to a Location Server,
– transfer the Location Information to an initial Location Server.

The main goals of this paper are to model a reference implementation of the
overall system and to evaluate its security in a systematic and holistic way. This
can be done only by including the just mentioned components.

The work described here has been done in an industrial context, at the in-
tersection of standardization bodies and commercial implementors. The main
principles of our design are:

– The most important requirements are to guarantee the correctness (integrity)
and confidentiality of the Location Information. This requires authenticating
the main entities of the protocol and securing the exchanged messages.

– A central role is played by user-controlled policies, which describe the per-
missions (or consent) given by the Target. The policies specify not only the
time and place when Location Information may be released to whom, but
also which component (or derived measure) of the information is to be re-
leased and in which granularity or accuracy.

– Whenever possible, the Location Information should not be linked to the
identity of the user. Rather, the user is able to specify which local identifier,
pseudonym, private identifier, or token is to be used instead.
Although complete anonymity may not be appropriate because of legal con-
straints or because some location services do in fact need the explicit identifi-
cation of the user, we argue that in most cases the location services may only
need some type of authorization information and/or perhaps an anonymous
identifier of the users, that may change as often as needed.

– To ease comprehendability and implementation, our reference model should
be as concise as possible. It shall clarify any issues left open by the RFCs.
Particular solutions and alternatives shall be motivated and explained.

Note that the main challenge and novelty aspect here is the anonymity goal
(identity protection), which inherently opposes the authentication requirements
and makes the use of existing protocols with standard certificates etc. impossible.

Given the recent advances in protocol analysis by the project AVISPA [AH-03]
and the availability of their tools, we have done the modeling in the High Level
Protocol Specification Language HLPSL [CCC+04] and have conducted our anal-
ysis with the tools contained in the AVISPA package [AT-05].

For reasons of space and to avoid confusion by two different syntactic levels,
we have decided to use for our presentation a pseudo-mathematical “Alice-Bob”-
style notation that seems to be widely accepted or at least easily understandable
without much further explanation. For more information on specifications in
HLPSL and on how to check them with the AVISPA Tool, please refer to the
HLPSL Tutorial [AVI05a] and the AVISPA User Manual [AVI05b].
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2 General Design

As already mentioned, typical Geopriv protocols involve a Target (T), whose
Location Information (LI) is to be conveyed to a Location Recipient (LR) by a
Location Server (LS). A Privacy Rule (PR) defines the policy: who is allowed to
learn whose location, under which circumstances, with which Granularity (GR).
The Granularity may be, for instance, the complete street address, the GPS
coordinates up to a given precision, or just the time zone.

Although it is assumed that Location Servers adhere to the protocol and
cannot be compromised by an attacker, at least some types of Location Servers
are considered untrusted in the sense that they should not learn the real identities
of the Location Recipient and of the Target. So when communicating with the
Location Server, these parties do not use their real names but just pseudonyms
and/or passwords. Each party can authenticate itself to the Location Server with
the help of such a password or a signature related to the respective pseudonym.
The pseudonyms and passwords, if any, form part of the Privacy Rules. As
opposed to passwords, pseudonyms in general need not be kept secret.

It is assumed that Location Recipients do not abuse the Location Informa-
tion they obtain, e.g. by publishing it. Yet in our analysis, we will consider not
only standard sessions with honest Targets and Location Recipients, but also
problematic sessions where the intruder is allowed to assume the role of either of
these two. This means that his initial knowledge is augmented with the private
keys that a legitimate player of the role usually has, enabling him to play that
role properly. Such sessions themselves do not make much sense because the
intruder is made a legitimate source or receiver of the Location Information. It
is interesting, however, to see if such degenerate sessions can have a bad effect
on standard sessions.

Usually, the Target subsumes the role of Rule Maker. In our presentation we
further assume that the Target is also the Location Generator.1 We also assume
that the Location Server is the Rule Holder.

The exchange between the Geopriv entities can be divided into the following
phases (or, sub-protocols).

Agreement. The Location Recipient and Target, who usually know and trust
each other, exchange credentials like pseudonyms and passwords. Typically,
this includes mutual authentication, as well as authorization of the Location
Recipient.

Policy. The Privacy Rule is transferred from the Target to the Location Server,
potentially via a separate Rule Holder. The main issue here is authorization
of the Target and authentication and integrity of the Privacy Rule.

Location. The Location Server learns the current location of the Target, po-
tentially via a separate Location Generator. The main issue here is secrecy,
authentication, and integrity of the Location Information.

1 A simpler — but in many cases not possible — alternative is that the Location Server
senses the presence of the Target directly (still without knowing T’s identity).
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Information. The Location Recipient requests the location of the Target and
receives an answer from the Location Server. The main issues here are au-
thentication and authorization of the Location Recipient, as well as the se-
crecy, authentication, and integrity of the Location Information, this time
from the perspective of the Location Recipient.

Policy

Location

AgreementTarget

Location
  Server

Location
Recipient

Information

Fig. 1. Geopriv Structure

The general Geopriv structure is depicted in Fig. 1. The order of the first three
of the four sub-protocols may vary, whereas — without loss of generality — we
assume the order just given.

For each of the four phases, there are various ways to implement them. In
this paper we describe in detail two Geopriv protocol variants that exhibit four
differences distributed over all these phases. These differences are orthogonal to
each other, such that in effect we implicitly cover 24 = 16 variants.

3 Variant with Two Self-signatures

In our first variant, both the Location Recipient and the Target use a pseudo-
nym and a self-signature. A self-signature is a digital signature where the sender’s
public key (or a hash of it) is included in the part signed with the corresponding
private key. No certificate is used to link the sender’s identity with the public
key, but still the receiver can check that the sender holds the corresponding pri-
vate key and therefore should be the owner of the public key. Self-signatures are
used here to protect the anonymity of the Location Recipient and the Target
when communicating with the Location Server. To this end, each of the two
parties X ∈ {LR, T } creates a public/private key pair (PX , P−1

X )2 and uses the
hash of the public key h(PX) as its pseudonym ΨX . We use the letter ‘P ’ rather

2 We use the handy notion X−1 to refer to the private key related to the public
key X, which does not imply that the former can be derived from the latter, but
alludes to the fact that encryption using X can be inverted by decryption using
X−1, and signatures (by decryption) using X−1 can be checked (by encryption)
using X.
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than the usual ‘K’ for the these keys to emphasize that they are related to a
pseudonym. The purpose of hashing is just to compress the relatively large public
key values to a short and fixed-length field. A message including a self-signature
typically has the format {M.h(PX)}P −1

X
.PX , i.e. consists of some payload M and

ΨX = h(PX) jointly signed3 with the private key P−1
X and concatenated with

PX . In this way, the receiver (which is the Location Server here) can use the
public key provided to check the signature and see if the hash of the public key
matches the corresponding value in the signed part. If so, he can be sure that the
sender holds the private key related to both the public key and the pseudonym,
without learning the identity of the sender. Of course, authentication can only be
ensured in combination with other means. If self-signatures are used in isolation,
any party can produce them and then mount, e.g., denial-of-service attacks.

Furthermore, this variant uses public key cryptography for securing the mes-
sages of the agreement phase and signing the location information message sent
by the Location Server.

3.1 Protocol Specification

The overall protocol, in the usual Alice-Bob notation, reads as follows.
Agreement. T ← {LR}KT .{{T.N1}KT .ΨLR}K−1

LR
– LR

T –––––––––––––––––{{N1}KLR .ΨT }K−1
T

→ LR

This phase is secured using ordinary public-key encryption and signatures of
T and LR, with the public keys KT and KLR as well as their private counter-
parts K−1

T and K−1
LR. In order to register with T and obtain T ’s pseudonym,

LR sends to T its own identity LR, T ’s identity (as a redundancy that can
be checked by T ), a nonce N1 (a “random” value used to ensure freshness
for the authentication of T ), as well as its own pseudonym ΨLR = h(PLR).
The name LR, used by T to identify LR, is encrypted with T ’s public key
such that LS has no chance to learn the association of ΨLR with the real
identity LR. Note that we cannot move the name LR inside the signed part,
because T first needs to derive LR’s public key from this name before being
able to decrypt the signed part.
If T is willing to share its location (up to some granularity) with LR, it
answers with the nonce just received and the pseudonym ΨT = h(PT ). Note
that the pseudonyms do not need to be encrypted, but just signed.

Policy. T –––––––––– {GR.ΨLR.ΨT }P −1
T

.PT ––→ LS

T sends to LS its policy aka Privacy Rule, comprising the granularity GR
and the pseudonyms of LR and T , in a self-signed way.

3 In practice, a message M is signed with a key Y −1 by appending M with the hash
of M decrypted with Y −1, which we would denote by the term M.{h(M)}Y −1 , but
for our purposes (assuming M contains enough redundancy, and abstracting from
other issues like computational efficiency) it suffices to use the simpler term {M}Y −1

that avoids repeating M.
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Location. T ––––– {TS.{LI.ΨT}KLS}P −1
T

.PT ––→ LS

T informs LS about its current location, by sending, again in a self-signed
way, a timestamp TS (which can be used to avoid replay attacks) as well as
the Location Information LI (with maximal accuracy) and its pseudonym
ΨT , both encrypted with the public key KLS.

Information. LS ←–––––––––– {ΨLR.ΨT .N2}P −1
LR

.PLR – LR

LS –––– {{GR(LI)}PLR .N2}K−1
LS

–––––––→ LR

Finally, LR requests T ’s current location by sending to LS, also in a self-
signed way, its own pseudonym, T ’s pseudonym, and a nonce N2. The nonce
ensures freshness for the authentication of LS and identifies the answer ex-
pected from LS. Therefore LS does not need to echo ΨLR or ΨT .
LS matches the pseudonyms with its Privacy Rule table, which is used also
for looking up the granularity GR specified by T . If found, LS replies with
a message containing the location data and the nonce, where the location
data is LI projected to the granularity GR and encrypted with PLR. Since
the encryption key PLR and the nonce N2 are not secret, such that anyone
could construct such a message, LS has to sign the message with its private
key K−1

LS in order to authenticate itself to LR.
Our model does not support location updates by re-sending the Location mes-

sage with new data. Therefore, replay protection for the authenticity of GR(LI)
is simple. If location updates are possible, one must do more to prevent replay at-
tacks, namely use a timestamp. Since HLPSL does not support time, we include
a pseudo-timestamp TS just as a reminder.

Furthermore, we do not explicitly model authorization (as opposed to authen-
tication) of the Location Recipient in the Agreement sub-protocol, or authoriza-
tion of the Target in the Policy sub-protocol. We simply take the worst-case
assumption that they are authorized unconditionally.

3.2 Requirements Specification

The protocol has been designed to enjoy the following security properties, which
(apart from the last two ones) are immediate formalizations of the requirements
stated in RFC3693 [CMM+04].

– secrecy of LI and of the filtered version GR(LI)
– LR strongly authenticates LS on N2

– LS weakly authenticates LR on PLR

– LS weakly authenticates T on GR
– LR strongly authenticates T on GR(LI)
– LR strongly authenticates T on N1

– T weakly authenticates LR on ΨLR

The phrase “X weakly authenticates Y on Z” means that X can be sure that
its peer is indeed Y and the two parties use the same value Z. This the same
as Lowe’s notion of non-injective agreement [Low97]. Strong authentication ad-
ditionally entails replay protection, i.e. freshness of the agreement (or session)
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between the two, and directly corresponds to Lowe’s injective agreement. The
term “LR strongly authenticates T ” appears twice — the first instance referring
to the authenticity of GR(LI) in the Information phase, the second one referring
to the authentication of T in the Agreement phase.

The formalization of both the protocol and its security requirements in the
specification language HLPSL can be found in the appendix as well as on-line
at http://www.avispa-project.org/library/self-signatures.html.

3.3 Design Process and Analysis Results

In designing the protocol, we have been careful to fulfill the anonymity require-
ments, which unfortunately cannot be checked by the tools at hand. Moreover,
we aimed at minimizing the number of message fields and the use of cryp-
tographic operations, and we have tried to get as far as possible wrt. replay
protection without adding extra message exchanges. For evaluating the large
number of intermediate protocol versions wrt. structural correctness, confiden-
tiality and authentication, the AVISPA Tool [AT-05] has proved very useful –
we have been able to check these versions in an exploratory way, very quickly
and easily.

For instance, in this way we have found that in the Location message, if we
encrypt LI only (resulting in the message {TS.{LI}KLS.ΨT }P −1

T
.PT ), we get

a man-in-the-middle attack against both authentication of LR and secrecy of
GR(LI), the trace4of which is the following:

i ← {LR}KT .{{T.N1}KT .ΨLR}K−1
LR

- LR

T ← {LR}KT .{{T.N1}KT .ΨLR}K−1
LR

- i

T –––––– {{N1}KLR .ΨT }K−1
T

–––––→ i

T ––––––– {GR.ΨLR.ΨT }P −1
T

.PT ––→ i

T – {TS.{LI}KLS .ΨT }P −1
T

.PT –→ i

i(T ) ––––– {GR.h(Pj).h(Pi)}P −1
i

.Pi → LS

i(T ) - {TS.{LI}KLS .h(Pi)}P −1
i

.Pi → LS

i(LR) ––––– {h(Pj).h(Pi).N2}P −1
j

.Pj → LS

i(LR) ←–– {{GR(LI)}Pj .N2}K−1
LS

––––––– LS

The essence of this attack is that after the Target has sent its messages, the
intruder can re-use the encrypted value {LI}KLS intercepted from T and pose
towards LS as both a Target and a Location Recipient, hijacking the original

4 In our setting, a trace is a kind of message sequence chart describing which mes-
sages are sent between which parties in which order. Due to the standard Dolev-Yao
intruder model [DY83] which we employ, messages between honest parties are al-
ways sent via the intruder, denoted by i, who may decide to suppress, modify, or
forward them to any party. Where the intruder poses as role R, we write i(R).
An attack trace is a trace leading to an attack state, i.e. a state of the parties
involved (including the intruder) where one of the desired security properties is
violated.
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session. In this way, he can trick the Location Server to send to him, rather
than to the legitimate Location Receiver, a copy of GR(LI) encrypted with a
public key Pj . Since Pj can be chosen freely by the intruder, he can decrypt
the location data. To prevent this attack, we simply move ΨT inside the en-
cryption, arriving at the message {TS.{LI.ΨT}KLS}P −1

T
.PT . Now any attempt

to replay {LI.ΨT}KLS in a different context does not fit because ΨT does not
match with the hash of any public key for which the intruder has the corre-
sponding private key needed for producing the self-signature for the Location
message.

Actually, due to anonymity, the Location Server cannot authenticate the Tar-
get and the Location Receiver individually but only check the consistency of the
self-signed messages received from the two. This also implies that the intruder
can always pose as both these parties simultaneously, provoking the following
degenerate exchange:

i(T ) ––––––––––– {GR.h(Pj).h(Pi)}P −1
i

.Pi → LS

i(T ) ––––––– {TS.{LI.h(Pi)}KLS}P −1
i

.Pi → LS

i(LR) –––––––––– {h(Pj).h(Pi).N2}P −1
j

.Pj → LS

i(LR) ←––––– {{GR(LI)}Pj .N2}K−1
LS

–––––– LS

Yet this is a useless attack (apart from wasting the Location Server’s re-
sources) because the intruder does not obtain anything interesting — he receives
just the location data that he has provided himself. As soon as a faithful Loca-
tion Recipient or Target is involved, correct authentication is guaranteed because
the Location Server can check the self-signed messages of these two parties for
consistency of the pseudonyms involved. This consistency, in turn, is guaranteed
by the mutual authentication of the Location Recipient and the Target. Hence
if one of these is authentic, then the other is, too.

4 Variant with Password and Certificate

Our second variant uses a pseudonym only for the Target and uses password for
the Location Recipient. The Target authenticates itself to the Location Server
not with a self-signature, but more stringently, with a certificate issued by a
trusted third party. The Agreement phase is secured using a shared secret key
(or any other form of a secure channel) rather than with public-key cryptography,
such that both the Target and the Location Recipient depend on a public-key
infrastructure (PKI) only for sending messages to the Location Server. In the
Information phase, the Location Recipient provides a (secret) temporary key
to be used for encrypting the location data. All this amounts to four major
differences to our first variant.

4.1 Protocol Specification

The protocol is specified as follows.
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Agreement. T ←––––––––––––––––––– LR.{T.N1}KT LR –––––––– LR
T ––––––––––––––––– {PWT .ΨT .N1}KTLR ––––––→ LR

This phase is secured with a secret key KTLR shared between T and LR.
In order to register with T and obtain the password, LR sends to T its own
identity LR, T ’s identity and a nonce N1. The name LR is sent in the clear
in this case, because T needs a way to tell who it is talking to and select the
right key KTLR. This is fine as long as LS cannot intercept and link the first
message with the anonymous request it receives in the Information phase.
If T is willing to share its location with LR, it answers with the nonce just
received, its pseudonym ΨT , and the password PWT . Actually, signing the
pseudonym would be sufficient, rather than encrypting it.

Policy. T – {GR.{PWT}KLS .ΨT }K−1
T

.{ΨT .KT }KCA → LS

T sends to LS its Privacy Rule, comprising the granularity GR, the password
(in encrypted form), and its pseudonym. All this is signed with T ’s private
key. The receiver LS does not know T ’s identity, yet in order to check the
signature, it is sufficient that T encloses a certificate — signed by a trusted
third party called CA — stating the relation between the pseudonym and T ’s
public key. Of course, this means an extra overhead, which can be reduced
in cases where LS is allowed to know the identity of the Target.

Location. T –––––––––––––––––––––– {TS.{LI}KLS .ΨT }K−1
T

→ LS

T conveys to LS its current location, by sending, again signed with K−1
T , its

pseudonym ΨT and a timestamp TS along with the Location Information
LI. Here only LI needs to be encrypted with the public key KLS because
LS can authenticate T independently of LR, using the certificate received
in the Policy phase. Therefore the two attacks explained in section 3.3 are a
priori not possible.

Information. LS ←–––––––––––––– {KLR.PWT .N2}KLS ––––––– LR
LS –––––––––––––––––––– {GR(LI).N2}KLR –––––→ LR

Finally, LR requests T ’s current location by sending to LS a temporary key
KLR, the password related to T (which actually renders sending along T ’s
pseudonym unnecessary) and a nonce N2. All this is encrypted with LS’s
public key.
LS matches the password (and T ’s pseudonym, if sent nevertheless) with
its Privacy Rule table. If found, LS replies with a message containing the
location data and the nonce. Since the encryption key KLR and the nonce
N2 have been kept secret, LR just needs to encrypt the location data and the
nonce with KLR in order to protect the location data and to authenticate
itself to LR.

The two notes wrt. location updates and authorization that we have given for
the other variant, apply also for this variant: location updates are not modeled,
which simplifies replay protection, and concerning authorization we have taken
the most pessimistic and simple assumption that any access is granted.
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4.2 Security Properties

This protocol variant has security properties very similar to the previous one:

– secrecy of LI and of the filtered version GR(LI)
– secrecy of PWT and KLR

– LR strongly authenticates LS on N2

– LS weakly authenticates T on GR
– LR strongly authenticates T on GR(LI)
– LR strongly authenticates T on N1

– T weakly authenticates LR on LR

Note that there are additional secrecy goals, namely for PWT and KLR.
We do not require that LS authenticates LR (e.g. on PWT ) in the usual sense

because the LS can only check that the agent requesting the location information
knows the correct password PWT . That is, we should require authentication
only modulo the group of agents allowed to know PWT . Yet if we consider the
(degenerate) session where the intruder legitimately plays the role of LR, he is
allowed to learn PWT in this session and obtain the location data from LS.
On the other hand, the model checkers would report an authentication failure
because the intruder can use PWT to pose as LR in a different (standard) session
where a honest agent has the role of LR and wants to talk to LS:

T ←––––––––––– i.{T.N1}KTi ––––– i(i)
T –––––– {PWT .ΨT .N1}KTi –––→ i(i)
T – {GR.{PWT}KLS .ΨT }K−1

T
.

{ΨT .KT }K−1
CA

→ i

i – {GR.{PWT}KLS .ΨT }K−1
T

.

{ΨT .KT }K−1
CA

→ LS

T –––– {TS.{LI}KLS.ΨT }K−1
T

→ i

i ––– {TS.{LI}KLS .ΨT }K−1
T

→ LS

i(LR) ––– {Ki.PWT .ΨT .N2}KLS –→ LS
i(LR) ←––––– {GR(LI).N2}Ki ––––– LS

In this “attack”, the intruder forwards the messages from T to LS (without
modification, as intended by T ), but then he poses as the Location Recipient of
a different5 session with the same LS. Although this is harmless in the given
scenario (where the intruder can legitimately learn GR(LI) anyway), the issue
cannot be properly expressed in HLPSL and therefore confuses the analysis tools.

To avoid getting reported this spurious attack, we do not check that LS
authenticates LR on PWT but resort to checking the secrecy of the password
and the location data, which is handled by the tools in an adequate way.

5 We do not reproduce the slightly obscure session indicators in the attack trace given
by the tools. The fact that two different sessions are involved in the above trace can
be inferred from the difference between the term i(i) where the intruder represents
himself and i(LR) where he poses a LR.
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No other (spurious or actual) attacks on this protocol have been found.
The formalization of both the protocol and its security requirements in

HLPSL are available on-line at http://www.avispa-project.org/library/
password.html.

5 Conclusion

We have proposed protocols that form the core of Geopriv services, meeting the
challenge of anonymity despite authentication. This is the main novelty of our pro-
tocol design. We have made explicit the design considerations that we took, such
that the protocols can easily be evaluated and re-used by others. We have em-
phasized that many variations of the protocols are possible and have exemplified
two of them. Others would be interesting, too, for instance combining the strong
certificate-based authentication of the Target given in our second variant with the
self-signed pseudonym approach for the Location Recipient given in our first vari-
ant (which is more strict than the password-based approach). Implementors are
free to choose among all those variations according to their preferences and side-
conditions imposed by the application context.

During the protocol design, it proved very helpful to formalize the various ver-
sions of the protocol, as well as their intended properties, in a designated protocol
specification language and to checkwith automatic toolswhether the given require-
ments are fulfilled. Since this approach greatly reduces both time and effort, we be-
lieve that it should — and soon will — become the standard approach for crypto
protocol design, be it academic or industrial.

Apart from the issues discussed, the model checkers do notfind attacks. Since we
have carefully reviewed our formalizations to validate that they faithfully describe
the protocol design, and since the tools used are quite mature, we can be confident
that in the proposed Geopriv core protocols there are no design flaws that can lead
to attacks on confidentiality and authentication. Of course, vulnerabilities at the
cryptographic or implementation level cannot be excluded with this approach, and
the anonymity aspect has been checked only informally.

6 Outlook

As mentioned, for each of the four Geopriv sub-protocols, there are various orthog-
onal ways to implement them. Therefore, it would be nice to reflect the inherent
modularity also during formal analysis, allowing to verify each of the variants of
the different phases separately and then perform some compositional reasoning to
arrive at the overall security properties, combining the common properties of the
variants for each of the phases involved.

Moreover, there are generalizations where several Geopriv instances are com-
bined on demand at runtime, to build a chain of Location Servers with the policies
and the Location Information flowing along a chain of trust among them. For in-
stance, a Local Location Server may immediately sense the location, pass it on via
an intermediate Remote Location Server to a Home Location Server, which is the
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only one theTarget trusts. In thisway, threeGeopriv instances forma single higher-
level instance. For analyzing sucha scenario,a compositional reasoning technique is
not only desirable, but actually indispensable because of combinatorial explosion.

Further complications can arise from a different sort of privacy: when policies
depend on the Location Server and, for a given untrusted Location Server L, the
part of their contents that is not relevant to L should not be visible for L.

Orthogonally, there is the issue of dynamic policies in the sense of Privacy Rules
evolving over time, granting additional access and/or revoking access to location
data ofvarious targets to various receivers. Thismay involve additionalpitfalls that
would better be checked with the meticulousness of formal methods.

In a project related to AVISPA, we plan to do further research that will tackle
all the issues mentioned above.

Acknowledgments. Initial versions of the protocol models described here were
done by Lan Liu in her master’s thesis [Liu05]. We thank Hariharan Rajasekaran
and some anonymous referees for their comments on earlier versions of this paper.
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A Formalization of the First Protocol Variant in HLPSL

role target(
T, LS, LR : agent,
K_T, K_LS, K_LR : public_key,
H : hash_func,
Snd_LR, Snd_LS, Rcv: channel(dy)) played_by T def=

local
State : nat,
N1 : text,
P_T : public_key,
Psi_LR : hash(public_key),
LI, TS : text,
GR : hash_func

init State := 1

transition

1. State = 1 /\ Rcv({LR}_K_T.{{T.N1’}_K_T.Psi_LR’}_inv(K_LR))
=|> State’:= 3 /\ P_T’ := new()

/\ Snd_LR({{N1’}_K_LR.H(P_T’)}_inv(K_T))
/\ witness (T, LR, lr_T_N1, N1’)
/\ wrequest(T, LR, t_LR_Psi_LR, Psi_LR’)

% could be new transition here, but not done for efficiency
/\ GR’ := new() % chooses some granularity (accuracy)
/\ Snd_LS({GR’.Psi_LR’.H(P_T’)}_inv(P_T’).P_T’)
/\ witness(T, LS, ls_T_GR, GR’)

% could be new transition here, but not done for efficiency
/\ LI’ := new()
/\ secret(LI’, li, {T, LS, LR})
/\ secret((GR’(LI’)), filtered_LI, {T, LS, LR})
/\ TS’ := new()
/\ Snd_LS({TS’.{LI’.H(P_T’)}_K_LS}_inv(P_T’).P_T’)

/\ witness (T, LR, lr_T_filtered_LI, (GR’(LI’)))
/\ witness(LS, LR, ls_LR_P_LR, LS)

end role

——————————————————————————————————————————

role locationServer(
T, LS, LR: agent, % but LS does not actually use identity of T and LR
Psi_Table: (hash(public_key).hash(public_key).hash_func) set,
K_LS : public_key,
H : hash_func,
Snd, Rcv : channel(dy)) played_by LS def=

local State : nat,
P_T,P_LR : public_key,
N2 : text,
Psi_LR : hash(public_key),
LI, TS : text,
GR : hash_func

init State := 5

transition

5. State = 5 /\ Rcv({GR’.Psi_LR’.H(P_T’)}_inv(P_T’).P_T’)
=|> State’:= 7 /\ Psi_Table’:= cons(Psi_LR’.H(P_T’).GR’, Psi_Table)

7. State = 7 /\ Rcv({TS’.{LI’.H(P_T)}_K_LS}_inv(P_T).P_T)
=|> State’:= 9
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9. State = 9 /\ Rcv({H(P_LR’).H(P_T).N2’}_inv(P_LR’).P_LR’)
/\ in(H(P_LR’).H(P_T).GR’, Psi_Table)
% uses Psi_LR and Psi_T to look up GR in the table

=|> State’:=11 /\ Snd({{(GR’(LI))}_P_LR’.N2’}_inv(K_LS))
/\ wrequest(LS, T , ls_T_GR, GR’) % delayed
/\ wrequest(LS, LR, ls_LR_P_LR, P_LR’)
/\ witness (LS, LS, lr_LS_N2, N2’) % to any LR!

end role

——————————————————————————————————————————

role locationRecipient(
T, LS, LR : agent,
K_T, K_LS, K_LR : public_key,
H : hash_func,
Snd, Rcv : channel(dy)) played_by LR def=

local
State : nat,
N1, N2 : text,
Psi_T : hash(public_key),
P_LR : public_key,
Filtered_LI : hash(text)

init State := 0

transition

0. State = 0 /\ Rcv(start)
=|> State’:= 2 /\ N1’ := new()

/\ P_LR’ := new()
/\ Snd({LR}_K_T.{{T.N1’}_K_T.H(P_LR’)}_inv(K_LR))
/\ witness(LR, T, t_LR_Psi_LR, H(P_LR’))

2. State = 2 /\ Rcv({{N1}_K_LR.Psi_T’}_inv(K_T))
=|> State’:= 8 /\ N2’ := new()

/\ Snd({H(P_LR).Psi_T’.N2’}_inv(P_LR).P_LR)
/\ witness(LR, LS, ls_LR_P_LR, P_LR)
/\ request(LR, T , lr_T_N1, N1)
/\ witness(LS, T , ls_T_GR, LS)

8. State = 8 /\ Rcv({{Filtered_LI’}_P_LR.N2}_inv(K_LS))
=|> State’:= 10/\ request(LR, T, lr_T_filtered_LI, Filtered_LI’)

/\ request(LS, LS, lr_LS_N2, N2)

end role

——————————————————————————————————————————

role session(T, LS, LR : agent,
K_T, K_LS, K_LR : public_key,
H : hash_func,
Psi_Table : (hash(public_key).hash(public_key).hash_func) set) def=

local STLR, STLS, RT, SLR, RLR, SLS, RLS: channel(dy)

composition

target (T, LS, LR, K_T, K_LS, K_LR, H, STLR, STLS, RT)
/\ locationServer (T, LS, LR, Psi_Table, K_LS, H, SLS, RLS)
/\ locationRecipient(T, LS, LR, K_T, K_LS, K_LR, H, SLR, RLR)

end role

——————————————————————————————————————————
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role environment() def=

local Psi_Table: (hash(public_key).hash(public_key).hash_func) set
% shared between all instances of LS

const li, filtered_LI,
ls_T_GR,
lr_T_N1,
t_LR_Psi_LR,
ls_LR_P_LR,
lr_LS_N2,
lr_T_filtered_LI : protocol_id,
t, ls, lr : agent,
k_T, k_LS, k_LR, k_i : public_key,
h : hash_func

init Psi_Table := {}

intruder_knowledge = {t, ls, lr, k_T, k_LS, k_LR, k_i, inv(k_i), h}

composition

session(t, ls, lr, k_T, k_LS, k_LR, h, Psi_Table)
% /\ session(t, ls, lr, k_T, k_LS, k_LR, h, Psi_Table)

% repeat session to check for replay attacks

/\ session(i, ls, lr, k_i, k_LS, k_LR, h, Psi_Table)
% It does not make much sense to let the intruder play the role of T
% since then the intruder knows its location information anyway.

/\ session(t, ls, i , k_T, k_LS, k_i , h, Psi_Table)
% It does not make much sense to let the intruder play the role of LR
% since then the intruder is allowed to know the (secret) location of T.

end role

——————————————————————————————————————————

goal

secrecy_of li, filtered_LI

% strong authentication and integrity of the Location Information,
% (including replay protection):
authentication_on lr_T_filtered_LI

% the Location Recipient Location authenticates the Location Server:
authentication_on lr_LS_N2

% the Location Server (weakly) authenticates the Location Recipient:
weak_authentication_on ls_LR_P_LR

% weak authentication and integrity of Granularity
weak_authentication_on ls_T_GR

% additional authentication goals, not in RFC3693:
authentication_on lr_T_N1

weak_authentication_on t_LR_Psi_LR

end goal

——————————————————————————————————————————

environment()
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Abstract. The development of infrastructures to facilitate the shar-
ing of data for healthcare delivery and research purposes is becoming
increasingly widespread. In addition to the technical requirements per-
taining to efficient and transparent sharing of data across organisational
boundaries, there are requirements pertaining to ethical and legal issues.
Functional and non-functional concerns need to be balanced: for resource
sharing to be as transparent as possible, an entity should be allowed to
delegate a subset of its rights to another so that the latter can perform ac-
tions on the former’s behalf, yet such delegation needs to be performed
in a fashion that complies with relevant legal and ethical restrictions.
The contribution of this paper is twofold: to characterise the require-
ments for secure and flexible delegation within the emerging distributed
healthcare context; and to evaluate existing approaches with respect to
these requirements. We also suggest how some of these limitations might
be overcome.

1 Introduction

The linking and aggregation of data to facilitate distributed healthcare deliv-
ery and research is becoming increasingly widespread. For example, the UK
government has invested in a National Programme for Information Technology
(NPfIT) in the National Health Service, which promises to deliver (amongst
other things) electronic records, electronic prescription of drugs and electronic
booking of appointments, all of which will be underpinned by an IT infrastruc-
ture [13]. Research has been characterised as a ‘secondary use’.

Within Europe, the evaluation of grid computing [7] technologies to sup-
port healthcare research and delivery has been undertaken within a number of
projects. Potential benefits of this emerging technology include large-scale shar-
ing of information between institutions to allow distributed data analysis. In this
respect, the EU HealthGrid initiative [11] is attempting to ensure that techno-
logical advances developed by the grid computing community benefit healthcare
research and delivery, and—more importantly—that the requirements associated
with applications in these areas influence the direction of these advances.

The context of the work described in this paper is being undertaken within
the context of the NeuroGrid project [10], which is developing an infrastructure
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to support collaboration between clinicians and researchers. It is intended that
NeuroGrid will allow algorithms and data management procedures to be made
more accessible and interoperable: current neuro-imaging research is typically
characterised by small studies carried out in single centres, which leads to lim-
ited possibilities for data and algorithm sharing. To this end, the NeuroGrid
project is seeking to provide a common grid-based infrastructure for data and
algorithm sharing for three clinical exemplars. Although each exemplar aims to
solve problems unique to its branch of neuro-sciece, all of the exemplars have use
cases and requirements in common: with the need for each site being capable of
temporarily delegating access to its data to users at other sites being one.

The development of an appropriate delegation mechanism requires the strik-
ing of a balance between functionality—in maximising the use of such data to
support research that may lead to improved healthcare—and ethical and legal
concerns—ensuring that the rights of the participants are respected. In [15], a
vision for secure Grid-enabled healthcare within the United Kingdom was out-
lined. (We shall base the remainder of our discourse upon the situation in the
United Kingdom as it is within this context that the work described is being un-
dertaken.) Within the United Kingdom, health grid research projects are obliged
to adhere to the principles of the Data Protection Act of 1998 [6], which include
“personal data processed for any purpose or purposes shall not be kept for longer
than is necessary for that purpose or those purposes”—which is, of course, par-
ticularly pertinent with respect to delegation. Of course, if any health grid were
to be successfully deployed within a healthcare environment in the UK, it would
be obliged to take into consideration requirements pertaining to patient data.
The National Health Service comprises a number of hospital trusts, each of which
is an independent legal entity. Each hospital trust is legally responsible for the
data held at its sites: this data is released only with respect to the principles
of the Caldicott Guardian, which include [4] “access to patient-identifiable in-
formation should be on a strict need to know basis: only those individuals who
need access to patient-identifiable information should have access to it, and they
should only have access to the information items that they need to see.”

The structure of the remainder of this paper is as follows. In Section 2 we
identify the requirements for a delegation mechanism within a decentralised
healthcare context. In Sections 3–6 we provide a survey of current delegation
mechanisms and evaluate them with respect to our requirements. Although var-
ious methods have been proposed, as we shall see none of them are guaranteed
to provide a solution that will satisfy our requirements. In Section 7 we out-
line areas of future work with a view to satisfying these requirements before, in
Section 8, summarising the contribution of this paper.

2 Requirements

To be able to evaluate possible mechanisms for achieving secure delegation within
a distributed healthcare context, we first need to identify what security require-
ments such a mechanism should satisfy. Some of these requirements are derived
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by the need for compliance with the Data Protection Act, while others are driven
by the fact that each site (for our purposes, a site is a hospital or research insti-
tute) is legally responsible for its data and may impose unique constraints upon
access to it. Further, the transfer of such data (within the healthcare delivery
context, if not the research context) can only happen in limited circumstances
as characterised by the principles of the Caldicott Guardian.

We do not restrict ourselves to those requirements that pertain only to
research—we consider that a healthgrid should be developed with both health-
care delivery and research in mind. It should also be noted that we do not claim
that these requirements are exhaustive: we restrict ourselves to functional re-
quirements. Non-functional requirements such as performance, scalability and
interoperability—although vital—are outside the scope of this paper.

2.1 Least-Privilege Delegation

Let us consider an example in which Doctor X would like to delegate permissions
associated with access to MRI data to Doctor Y from a different hospital, with
the intention that Doctor Y can review the scan and provide an opinion on
it.

In this scenario, we call Dr X the delegater and Dr Y the delegatee. When
delegating, the delegater would like to delegate only those rights which are ab-
solutely necessary to complete a certain task. Overdelegating is not only unde-
sirable, but it can also be quite dangerous. For example, consider a situation in
which the delegater does not have the possibility to delegate read permissions
to only one particular dataset from a pool of patient records. In this case, the
delegater will have to delegate the entire set of his rights, i.e., permissions em-
bracing the whole pool of patient records. This will allow the delegatee to access
not only the desired patient information, but also records pertaining to other
patients. This violates both the Data Protection Act and the principles of the
Caldicott Guardian. Least-privilege delegation is, therefore, a key requirement
for us.

2.2 Revocation

Another important requirement to impose on a potential delegation mechanism
is that it should provide the ability for the delegater to revoke credentials when-
ever he or she thinks this is appropriate. Such revocation may be driven by the
fact that credentials have been compromised or due to fact that the task has been
completed. In the healthcare context, this requirement is driven by the following
principle of the Data Protection Act: “personal data processed for any purpose
or purposes shall not be kept for longer than is necessary for that purpose or
those purposes.”

A simple revocation solution can be adopted in applications where security
considerations associated are not so critical, i.e., the confidentiality of the data
is not of a high priority and there are no ethical requirements (with the field
of High Energy Physics being an appropriate example). In such situations, this
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Fig. 1. Structural MRI analysis data flow

may be achieved by limiting the lifetime of the credentials and causing an auto-
matic revocation after this period. Unfortunately, this cannot be applied in the
healthcare domain as basic ethical constraints will be violated.

2.3 Onward Delegation

In many cases, multiple services may need to be iteratively invoked in order for
a job to be completed. As an example, we may consider the following processing
data flow performed within NeuroGrid.

Figure 1 provides an abstract view of the workflow for MRI structural dataset
processing. Performer is a process which has been delegated the necessary rights
to complete the task. The first step of the process is the normalisation (the pro-
cess of unifying images taken from different types of scanners) of data. Part of
normalisation in our example is harmonisation, which has to be invoked by the
normalisation service. Consequently, necessary rights need to be transferred to
the harmonisation service by the normalisation service. This requires delega-
tion to be applied multiple times and gives rise to a number of crucial security
questions.

Of course, it may be the case that the harmonisation service is not in the
same domain as the normalisation service. For example, this may be a service
provided by a different research institute and is covered by a completely different
Certification Authority. The normalisation service, on the other hand, should be
able to further delegate rights only in the case where a user whose rights are being
used trusts the corresponding normalisation service . Ideally, information about
the trusted entities should be included somehow and passed forward throughout
the lifetime of delegation credentials.

2.4 Dynamically Changing Credentials

It must be possible to allow users to constrain the permissions they delegate
based on some dynamic considerations. A typical use case is the scenario where
a doctor delegates permissions to sensitive and non-sensitive data to another
doctor at the same time. The non-sensitive data does not contain any patient-
related information and the delegatee can perform multiple access for a long
period of time. However, the delegater would also like to allow access to sensitive
data but under certain conditions. These may include constraints which limit the
access to the data to only once or for a limited period of time, or may oblige
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the delegatee to erase any copies of the data created locally as a consequence of
access to it.

Furthermore, as a consequence of the potentially dynamic nature of a grid,
credentials often become obsolete. For example, users move and remove files,
services stop working and hardware breaks down. In general, there is no insurance
that resources which have recently existed are still available or that services
previously running are still accessible. This problem arises from the fact that
each organization is in possession of its own resources and further down the
hierarchy, each user within the organization is in charge of his own resources.
This requires immediate measures, such as, for example, a URL update of the
file which has been replaced.

The above examples serve to illustrate the clear need for introducing dy-
namism of the credentials we are using to achieve delegation. Hard-coded cre-
dentials would not be convenient in this case.

Having defined a number of security requirements that a delegation mech-
anism should satisfy, we now survey some of the most popular current dele-
gation technologies and consider the extent to which each complies with our
requirements.

3 Proxy Certificates

X.509 proxy certificates [19] are a standard way of providing restricted proxying
and delegation within a PKI-based authentication system and, currently, this
approach is the most popular and most widely deployed approach to delegation
within grid-based systems. Proxy certificates allow an entity holding a standard
X.509 public key certificate to delegate some or all of its privileges to another
entity, which may or may not hold X.509 credentials at the time of delegation.
Once acquired, a proxy certificate is used by its bearer to authenticate and
establish secured connections with other parties in the same manner as a normal
X.509 end-entity certificate.

Proxy certificates use the format prescribed for X.509 public key certifi-
cates [12] and serve to bind a unique public key to a subject name, as a public
key certificate does. However, unlike a public key certificate, the issuer (and
signer) of a proxy certificate is identified by a public key certificate or another
proxy certificate rather than a certification authority (CA) certificate. This ap-
proach allows proxy certificates to be created dynamically without requiring
the normally heavyweight vetting process associated with obtaining public key
certificates from a CA.

Onward delegation could be achieved via a recursive chain of proxy certifi-
cates. The first one is signed with the private key corresponding to the public key
certificate of the issuer and each other down the chain is signed with a freshly
generated by the next delegater (which appears as a delegatee in the previous
step of the delegation chain) private key. The delegated rights are encoded in the
Proxy Certificate Information extension (PCI) which also contains the allowed
depth of a delegation chain. Proxy certificates, based on a mechanism described
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in [9], have been deployed in a number of grid-based projects, with the EU Data-
Grid [5] and Enabling Grid for E-sciencE (EGEE) [1] projects being pertinent
examples. However, this scheme is inherently weak in terms of security.

First, if restriction is required then the delegation policy has to be speci-
fied in the proxy certificate. This solution is not a panacea as it raises tricky
questions about how to specify the delegation policy, particularly if there are
multiple resources involved. Note also that the delegation policy would have to
specify whether onwards delegation was allowed, which rights could be delegated
onwards, and to whom. This introduces unnecessarily complicated proxy creden-
tials, in many cases too large as well, which have to be carried throughout the
entire delegation chain. The more precise we would like to be in specifying the
minimal rights the more complicated and large this credentials become.

Furthermore, revocation is not possible in this approach. All delegatees are
expected to destroy the secret component of their delegation key pair, to pro-
tect against subsequent compromise of any of the agents in the chain. However,
this mechanism provides no protection against compromise of an active delega-
tee and it requires all delegatees to be trusted to actually destroy their secret
keys when finished. By limiting the lifetime of the proxy certificate a certain
degree of security could be provided, but this does not provide the delegater
with insurance that their rights will not be violated and also requires user inter-
vention in the case of long lifetime jobs where the proxy certificate will have to
be renewed.

Although onward delegation can be achieved in a relatively straightforward
fashion using proxy certificates by simply creating a new proxy certificate for
each stage of the chain, a problem may arise in the trust relationship between
the participants in the chain. It is desirable that trust information is passed to
all delegaters in a delegation chain; although, proxy certificates do offer such a
possibility, they do not provide a flexible way for update of this information.
Considering the dynamic nature of grid-based environments, there is a potential
risk of resources being replaced/removed and, consequently, the related creden-
tials becoming obsolete. In such a situation, the authorization information in the
proxy certificate has to be updated. The only possible of achieving this is via a
recreation of the certificate. This, of course, will require user intervention and
fails to comply with the single sign-on requirement.

Although proxy certificates seem to be a compact and deployable solution,
their security (lack of revocation) and scalability (static authorization policy
encoded in the certificate) drawbacks make them a potential source of security
weaknesses in the widely-deployed Public Key Infrastructure.

4 Call-Backs

In [8] a set of protocols that are intended to solve delegation-related problems in
computational grids is proposed, with the architecture being based on the notion
of user and resource proxies. A user proxy (UP) is a session manager process
given permission to act on behalf of a user for a limited period of time. The user
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proxy acts as a representative of the user with its own short term credentials.
A resource proxy (RP) is an agent used to translate between inter-domain secu-
rity operations and local intra-domain mechanisms, and serves as the interface
between the grid security architecture and the local security architecture.

The architecture aims to specify protocols for implementing the following
typical scenario [8]: “A user (U) would like to run a job and delegates his rights
to a process, called User Proxy (UP) to execute the job on his behalf. When UP
requires access to a resource, it will first determines the identity of the Resource
Proxy (RP) for that resource. It then issues a request to the corresponding RP
and if the request is successful, the resource is allocated and a process is created
on this resource.”

This is achieved by specifying a set of protocols defining actions between users
(U), user proxies (UP) and resource proxies (RP). The first protocol is associated
with the creation of a user proxy. When created, the UP is supplied with the
necessary credentials to execute the job. The second protocol allows a user proxy
to obtain resources so as to run processes. The user proxy communicates with
a resource proxy, which allocates resources from some pool. The third protocol
enables a process P, acting on behalf of a user U with user proxy UP, to obtain
some other resource; thus the user proxy delegates rights to the process.

All resource allocation goes through the UP, so it is straightforward to ensure
that resources are allocated in a manner that is consistent with the wishes of
the user. The UP can be supplied with the necessary authorization information
and allow access in accordance with it. The third protocol enables a process P,
acting on behalf of a user U, with user proxy UP, to obtain some other resource;
thus the user proxy delegates rights to the process.

Unfortunately this mechanism lacks scalability, primarily due to the fact that
all resource allocations must go through the user proxy. This could potentially
cause the user proxy to become a bottleneck in the system, particularly on large
jobs, where many processes are to be acquired.

Another potential drawback of this approach is the problem of determining
the minimal set of rights. Take, for example, a solution in which a user’s job
needs to be able to authenticate on behalf of the user to facilitate access to a
mass storage system to store the results of a long computation. Even though the
user may have access to the entire storage facility, this particular job requires
only a limited amount of disk space to collect the results. In other words, there
is no need to delegate the complete set of rights the user possesses. In call-
back delegation, no mechanism for precisely defining only the necessary rights
has been suggested and this again implies delegation of rights to a much bigger
set of resources than is usually required. In addition to this, no dynamic rights
changes have been held in this regard either. An unexpected failure of the storage,
rendering it temporarily unavailable, will prevent the job from storing the results.
Consequently, the execution of the job will be resumed only after the storage
appears available again or until permissions for a different resource have been
granted, i.e., the delegater has to repeat the transfer of rights.
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Even though one of our requirements (revocation) is satisfied, the other three
(minimal set of rights, onward delegation and dynamic credentials) are not.
This makes the call-back mechanism suitable for smaller, centralized distributed
systems, where there is a local control over the resources. Unfortunately, it will
certainly fail to be secure in a larger trans-organisational network where there
is not quality insurance and trust relationships between entities can be rather
unstable.

5 XML-Based Approaches

5.1 SAML

Security Assertion Markup Language (SAML) [3] is an OASIS standard for a
framework for exchanging authentication, subject attribute and authorization
information that is based on XML. While the current SAML standard lacks
delegation capabilities, an extension that supports restricted onwards delegation
has been proposed [18]. It is this extension that we consider here.

The proposed framework, which contains three XML-based components—
delegation assertions, protocol requests and protocol responses—is based on At-
tribute statements and utilizes the SAML binding specification which defines
protocol bindings for the use of request-response messages; this particular im-
plementation uses the SOAP binding. Usually, a user delegates his rights to a
web portal, S1, with S1 then delegating the user’s rights to another web ser-
vice, S2, and so on (ending with Sn−1 delegating to Sn). The user can then
submit a job to S1 and go offline. After that, any entity Si (1 ≤ i ≤ n) can
access the web service W and act on the user’s behalf by presenting the del-
egated SAML assertion chain. The delegation from the user to S1 constitutes
direct delegation while any delegation from Si to Si+1 (1 ≤ i ≤ n) is considered
indirect.

The delegated rights (which do not describe which resources the delegatee is
allowed to access, but rather are concerned only with the issue of whether the
delegatee can further delegate the full set of delegater’s rights to another entity)
are described using special delegation SAML assertions. The delegation request
and response messages conform to the SAML request and response protocol.
The delegatee signs a delegation request to the delegater. The delegater uses an
included signature element to authenticate the request.

This solution allows an entity to grant permissions to another in order for the
latter to act on the former’s behalf. The provided mechanisms for SAML request
and response exchange and assertion validation ensure the successful and secure
transfer of the delegated credentials. In addition to this, its applicability to web
services-based technologies can be considered an advantage of this solution as
it adds to its deployability. However, this approach fails to provide the issuer of
the delegated assertions with the ability to restrict access to resources which are
not associated with the action under consideration.

Recall our example where Dr X wishes to delegate permissions to Dr Y. As
already stated, a critical requirement when delegating is the ability to provide
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the issuer (Doctor X) with the means of constraining the delegated rights as
much as possible. Moreover, in many cases, the delegater is obliged to restrict
the access to certain resources (in this case, patient data). As we saw in the
technical description of this approach, a SAML assertion contains only informa-
tion concerning whether a delegation chain could be allowed or not (under the
RIGHT field). In other words, Dr X cannot precisely express his wish to allow
access only to the relevant file. Instead, Dr X must delegate the entire set of his
permissions to Doctor Y.

Moreover, although it is possible to define whether the delegation can be
further expanded to a chain, again, there is no information about who can par-
ticipate in this chain. In the case when Dr X is willing to allow Dr Y to grant
access to other colleague, the approach does not offer a possibility to define to
who else the permissions could be transferred. If the RIGHT field is set to Full,
then Dr Y is permitted to further delegate to any other subject. This may re-
sult in delegating access rights to a doctor who is located in a different country,
potentially violating one of the principles of the Data Protection Act.

Finally, a secure revocation mechanism is not offered in the architecture. In-
stead, it suggests an approach similar to that adopted by proxy certificates,
i.e., once created, the SAML assertions cannot be revoked before their expire
date. We have already discussed the numerous disadvantages and hidden secu-
rity threats when allowing a delegation method that does not support revocation
on-demand, all of which are relevant here.

5.2 XACML

eXtensible Access Control Markup Language (XACML) [2] defines a core schema
and corresponding namespace for the expression of authorization policies in XML
against objects that are also identified in XML. XACML is emerging as a de facto
standard due to its flexibility, extensibility and expressiveness.

Attempts at extending XACML to deal with delegation have been limited
to achieving administrative delegation (see, for example, [17] and [14]). The
commonly accepted approach consists of simply adding the necessary rules, i.e.,
changing the access policy, which will allow the delegatee to gain access to desired
resources. Consequently, changing the policy back to its initial state has the effect
of revoking the delegated rights.

Only the necessary permissions can be added to the access policy in an
XACML policy document. As is the case for other approaches, this introduces
concerns about the way of ensuring that only the necessary rights have been
delegated. Revocation can be performed by changing the policy document back
to what it was before the delegation occurred. A delegation chain will be impos-
sible to be achieved here. If permissions concerning a particular participant has
been revoked, then there is no way of revoking rights delegated to other entities
down the delegation chain. Again, changing privileges could be performed by
changing the policy document.

Very often, a doctor responsible for that particular patient would like to dele-
gate temporary rights to an administrative assistant to perform some necessary
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updates on the the record. In order for this to be achieved, the hospital policy has
to be changed, i.e. the administrative assistant has to be allowed access to the
record. In other words, the whole policy document has to be rearranged in order
for such a simple delegation operation to be performed. In reality, access policies
tend to be very complicated, and appropriate tool support to aid readability
will be necessary in order for the system administrators to be able to adjust the
policy to the delegation needs. However, even providing such tools would not be
of a great help as in many cases it will be impossible for a human being to esti-
mate, by just reading through the policy, how any changes will affect the access
control system in overall. Certainly, some automatic correctness checks need to
be applied, in order to ensure a particular delegation effect without creating side
effects.

The second problem is scalability. If delegation is not the primary action per-
formed within a certain access system, and consequently it does not appear to
happen too often, than the policy and policy sets are not going to be changed
as often. Consider, though, a data store which is used in collaboration between
many research groups and upon which researchers are frequently running com-
putational jobs utilizing datasets. These jobs are performed by special services
which conduct the execution on behalf of users, and are required to be delegated
with the necessary permissions to do so. The number of times the access policy of
the storage will have to be changed will be significant. In addition, as discussed
in the previous paragraph, all changes need to be verified and checks proving
the absence of side effects will have to be performed upon each change. Clearly,
such an approach would not scale.

6 Role-Based Delegation

In [20] a role-based delegation framework is presented, which includes: a dele-
gation model that adapts the role-based delegation model RDM200 [21] and a
rule-based language for specifying and enforcing delegation and revocation poli-
cies. The model is an extension of RBAC96 [16], and addresses the user-to-user
delegation supporting role hierarchies and multi-step delegation in role-based
systems. The paper defines a delegation relation, which attempts to address the
relationship among deferent components involved in a delegation.

A declarative rule-based language is adopted to specify and enforce policies
that allow users to delegate their roles, and consequently, revoke delegated roles.
The system architecture is based on a delegation agent, which authorizes dele-
gation and revocation requests from users by applying derivation authorization
rules and processes delegation and revocation transactions on behalf of users.
The result of an authorized delegation or revocation is sent and saved to a role-
based access control database.

This approach provides a simple and intuitive way of achieving delegation. Its
useof the role-basedapproach for access controlminimizes theneed for complicated
access control policies to be composed by the user. Furthermore, an appropriate
mechanism for revocationwhich corresponds to the chosendelegationapproachhas
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been employed and secure onward delegation can be easily achieved. The method,
however, fails to meet the least-privilege requirement, and is arguably difficult to
apply within a decentralized system. Furthermore, a dynamic environment with
frequent policy changes would have the potential to result in inefficiency.

The actual transfer of rights here is achieved by assigning roles to the del-
egatees, which may give the delegatee a wider range of access control rights
than absolutely necessary. In many cases, the delegatee needs to access a sin-
gle file and for a very short period of time; as such, the role-based approach is
inappropriate.

The mechanism is presented in the context of a single institution, with future
consideration of an extension to support delegation across institutions suggested.
As the authors suggest, a sensible mapping between roles across institutions
would be necessary; this may not always be possible for virtual (and potentially
short-lived) collaborations.

There is also the potential for performance drawbacks. The authors consider
the case where the delegater knows which rights he or she would have to delegate
in order for a task to be completed. This, however, does not cover the case
where the delegater would like to perform a more complicated task and would
like to delegate the execution of this task to a service. The service may have
to delegate and revoke multiple times rights to another (or several) services in
order to complete the job. This will require an update on the local policy of each
participating institution, leading to afore-mentioned performance problems and
side-effects.

7 Towards Secure Delegation in a Distributed Context

In the previous four sections we surveyed potential mechanisms for achieving
delegation in a distributed environment, with none of the mechanisms satisfying
our requirements of Section 2. In this section we provide a (necessarily) brief
overview of initial steps towards the development a delegation architecture that
satisfies our requirements.

The least-privilege delegation requirement can be considered as two separate
aspects: determining the minimal set of rights to be delegated and represent-
ing this minimal set of rights. The problem of determining the minimal set of
rights in a healthcare context will be task-dependent. In the simple case where
the resources to which access is required are known to the delegater in advance,
this requirement will pertain to providing the necessary tooling which will allow
the user the simply describe the delegated rights; however, in the case where a
user submits a job, determining the minimal set of rights the job will require
throughout its lifetime is a significantly more complicated problem. Very fre-
quently the user is not, and should not, be aware of the intermediate results of
the job. Hence, he or she will not be able to precisely define the minimal set of
rights and the delegation architecture should provide the automated means to
do so without burdening the user with unnecessary information and actions. The
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approach we have undertaken in this direction attempts to determine the mini-
mal set of rights via examining the workflow description of the job in question.

After we have identified the minimal set of rights, we need to be able to
presented them in a standard way. For this purpose, we use XACML, which
is emerging as the de facto standard for representing access control policies.
Furthermore, by utilising this specification, we not only make use of the expres-
siveness it provides, but also of the standardisation of how the evaluation of
access control decisions is to be performed. This helps us to move away from our
delegation architecture the actual evaluation of the access control requests.

Once we have determined the minimal set of rights to be delegated, and
have the means to describe them in a standard and efficient way, we need a
mechanism via which it is possible to transform these rights to the delegatee(s).
Furthermore, the mechanism should provide to appropriate means for further
delegating these rights and revoking them at any point. We can consider two
classes of mechanism: those which require local policy changes to achieve the
desired delegation effect; and those which rely on external policy holders of
the delegated rights (a la proxy certificates). The latter approach results in a
more flexible architecture and does not introduce the potential for performance
overheads. The development of a prototype—based on the concept of a trusted
entity which will be supplied with delegation policy and will serve requests from
resource accompanied by a delegation ticket—is ongoing.

Finally, the dynamic nature of the environment implies the need for a flexible
means for updating credentials. It is hoped that later versions will allow such
changes to be performed in a relatively seamless fashion.

The above four strands of activity represent a summary roadmap for the
delivery of an infrastructure that satisfies our four requirements.

8 Conclusions

The development of infrastructures to facilitate the sharing of data for healthcare
delivery and research purposes is becoming increasingly widespread. Delegation
of permissions in such systems is vital with respect to maximising functionality,
and is important that such functionality is delivered in a secure fashion and is
consistent with the necessary legal and ethical frameworks.

The contribution of this paper is threefold. First, we have described the re-
quirements for a delegation mechanism within a distributed healthcare research
and delivery context, with these requirements being derived from our experi-
ences within the NeuroGrid project (as well as other projects) and the relevant
ethical and legal frameworks. Second, we have evaluated current delegation with
respect to these requirements. Third, we have indicated initial steps towards the
delivery of a delegation framework that satisfies our requirements.
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Abstract. For how long can a business remain without its information systems? 
Current business goals and objectives highly depend on their availability. This 
highly dynamic and complex system must be properly secured and managed in 
order to ensure business survivability. However, the lack of a universally accepted 
information security critical factors’ taxonomy and indicators make security 
management of information systems (SMIS) a tough challenge.  Effective 
information security management requires special focus on identifying the critical 
success factors (CSFs) when implementing and ensuring SMIS. The purpose of 
this paper is to share a group of 12 CSFs identified in the current information 
security literature as well as a set of 76 indicators which are easy to calculate and 
attempt to provide valuable information to organizations seeking information 
security level measurements. 

Keywords: Information systems, security management, critical success factors 
and indicators.  

1   Introduction 

Organizations, regardless of their size, are adopting Information Systems (IS) at a fast 
tempo in order to be more competitive. They have realized all the advantages that IS 
interconnections bring to organizations. This new way of communicating and doing 
business has placed information as one of the most critical assets for the majority of 
today’s organizations. 

The fast technology acquisition and IS “openness” increases systems’ complexity 
and dependency. These two factors plus the ever increasing interruptions of critical 
business systems, uninvestigated security incidents, gaps in user awareness and the 
sophistication of threats make current business reactive security strategies highly 
risky and irresponsible approaches [1]. 

Security management of information systems (SMIS) challenges cannot be 
addressed in isolation. However, the lack of a universally accepted information 
security (infosec) framework, theories or tendencies and the absence of ways to 
measure the effectiveness of implemented infosec controls restrain organizations from 
identifying the real mechanisms that control information security behaviors [2]. As a 
result, SMIS has been understood so far as the set of point solutions (patching and 



 Managing Information Systems Security 531 

fixing breaches) instead of adopting more preventive and dynamic information 
security strategies. 

Effective information security requires special focus on identifying the critical 
success factors (CSFs) for SMIS implementation and maintainability1. In addition, 
information security indicators2 should be implemented and analyzed in order to 
measure SMIS’ effectiveness and better allocate security resources. This way, 
organizations could align information security with business goals and improve future 
security strategies, investments, and policy’s enforcement. 

Throughout this paper, the endlessly discussed but still vague information security 
definition is presented. However, the real purpose of this research is to point out on 
the one hand, which CSFs should be looked at in order to achieve robust and optimal 
SMIS’s design, implementation and maintainability tasks. On the other hand, share a 
set of 76 indicators, identified in the current infosec literature, which could provide 
relevant information for organizations seeking ways to measure SMIS effectiveness. 
Certainly, there could be more complex and accurate ways to measure information 
security. However, practitioners’ demand indicates the current need to find simple and 
fast ways to calculate organizational information security levels.  

2   Information Security Definition 

Information security is a concept that still lacks of unambiguous definitions. After 
many years of debates, information security has not found a worldwide definition. In 
fact, neither a widely accepted information security definition nor standardized 
critical success factors taxonomy exists [4]. 

Throughout the years, people and organizations responsible for critical business 
assets and business survivability have found different terms to make reference to the 
same activity: “protecting the organization’s critical assets”. In some cases, it is 
referred as information systems security, in others as digital security, or security itself. 
Information security regulation initiatives such as Basel II, Sarbanes-Oxley Act, and 
the Companies Act have defined “the need to protect information resources and 
prevent unauthorized access of the organization” as network security [5]. It can also 
be found as security management, business security, and the list goes on.  

Information security, despite the variety of terms, has historically been defined as 
the process of ensuring information confidentiality, integrity and availability (CIA). 
This traditional way to understand information security helps us to handle this 
abstract, dynamic and complex phenomenon in a concrete way [6]. The recognized 
impact that human factors have on information security, along with new 
organizational structures which encourage employees’ self control and responsibility 
is only one aspect, out of many others, that must be considered when reformulating a 
complex definition such information security.  

Information security experts have tried to extent the existing CIA definition. This 
extension includes four human-oriented security aspects which are responsibility, 
                                                           
1 The ease with which information systems can be modified to correct faults, improve per-

formance, or other attributes, or adapt to a changed environment [3].  
2 Taking measurements over time and comparing two or more measurements with predefined 

baselines [6]. 
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integrity, trust and ethicality [7]. The combination of these four principles with CIA 
was one of the first indications that highlighted the need to find a wider and more 
accurate information security definition. Other authors have shared their viewpoint 
about information security. “The discipline responsible for protecting a company’s 
information assets against business risks” [8]. “The degree to which malicious harm is 
prevented, reduced and properly reacted to” [4]. “The contributor to strengthening the 
organization’s ability to adapt to new risk environments and accomplish its mission” 
[9]. Despite the correctness of these definitions, security professionals have to 
understand and agree on a worldwide definition in order to make information security 
to work [10]. 

After reviewing several definitions, one thing gets clear: information security is 
about technology, processes and people [11]. Therefore, we propose a definition 
which includes the following approaches: Information security is a well-informed 
sense of assurance that information risks and technical, formal and informal controls 
are in dynamic balance. Firstly, well-informed sense of assurance must be achieved 
because if there is not knowledge and practical assurance about the organization’s 
status, then information security gets very hard to accomplish [10]. Secondly, 
technical, formal and informal security controls (which are synonyms of technology, 
processes and people) must be implemented and managed since the absence of any of 
them also compromise information security [12,13,14]. Lastly, in dynamic balance 
makes reference to the fact that not only these controls must be implemented and 
managed, but also they must be equally and dynamically treated.  In fact, it has been 
demonstrated how using the latest technology and having security policies and 
procedures worth nothing if they are not upgraded on a regular basis or if the human 
side of security is ignored [15]. The controls mentioned above are defined as follow: 

• Technical controls: Hardware and software tools that restrict access to buildings, 
rooms, computer systems and programs in order to avoid unauthorized access or 
incorrect uses (antivirus, firewalls, IDS, backups, etc). 

• Formal controls: Set of policies and procedures to establish and ensure effective 
use of technical controls. For example, identifying roles, responsibilities, 
implementing indicators and training employees. 

• Informal controls: Interventions related to deploying digital information security 
through the workforce by enhancing users’ willpower and willingness. 

The proposed information security definition should be seen as a first approach 
into motivating organizations, security experts and researchers to agree upon a unique 
definition. A worldwide definition could help us explore new perspectives and 
moving from technical approaches to more business, human and law oriented 
definitions. We have reached a time where engineers, economist, lawyers, and 
policymakers must try to forge common approaches in the name of information 
security management improvements [16]. 

3   SMIS Critical Success Factors 

The following critical success factors (CSFs) for SMIS implementation and 
maintainability have been grouped based on already defined concepts: 
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• The CSFs have been grouped utilizing the technical, formal and informal approach 
discussed above. As it was stated in the definition, these three components work 
together as a whole and must be equally managed. 

• As a result, they have been arranged based on the “Swiss cheese” model developed 
by James Reason where the holes on the cheese represent equipment failures, 
policy’s failures or human errors waiting to happen. According to his model, the 
cheese has several slices (defense in depth) and each slide on the cheese represents 
an obstacle or defense to protect the system. When the holes in the cheese line up 
“trajectory”, vulnerabilities are exposed and an incident occurs [17]. 

However, Reason’s approach was modified, from a multi-layer approach to a 3 
dimensional cheese approach. Instead, of looking at the cheese slices as layers of 
security, each dimension of the cheese is seen as a security control. This 3D 
perspective highlights how by neglecting any of the three security controls, a failure 
could occur. Besides, the holes are constantly moving in all the three dimensions and 
if there is a trajectory in any of the three axes (neglecting a single control) an 
unwarranted event could happen [15]. 
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Fig. 1. CSFs arrangement using a 3D version of Reason’s Swiss cheese model 

The lack of information security data and empirical studies has forced us to 
identify these 12 CSFs based on revising published security experts’ perspectives. 
However, the 76 indicators have been designed by combining the information security 
literature review with the data from a current project that links university researchers, 
IS security experts and an engineering firm which aims to measure security 
effectiveness. 

3.1   Technical Components 

3.1.1   IS Security Architecture 
Defined as the way in which existent hardware and software business structures are 
introduced, arranged, protected and used. 
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Information security as well as IS reliability begins with an appropriate and robust 
IS security architecture design. The infrastructure that holds IS must be physically 
robust (indicators 1,2) and logically robust (indicators 3,4,5,6). Robust IS security 
architectures are also characterized by being highly dynamic (indicators 7,8) and 
organized (indicators 9, 10). 

Table 1. IS Security Architecture 

  Indicator Formula Unit 

1 % of securized areas 
(  of securized areas*100)/(Total areas defined 

as secure) 
[%] 

2 
% of critical equipment with 
adequate physical protection 

(Physically protected equipment*100)/(Critical 
business equipment) 

[%] 

3 % of secured configurations
3
 

(  of successfully secured 
configurations*100)/(total configurations) 

[%] 

4 
 of users with administrator 
passwords per workstation 

 of users with administrator privileges to critical 
workstation(s) 

[users/critical 
workstation (s)] 

5 
% of users with superuser 

privileges 
(  of users with superuser privileges*100)/(  of 

users) 
[%] 

6 % of viruses and worms hits (  of hits*100)/(  of incoming viruses per year) [%] 
7  of architecture changes  of all per year [changes/year] 

8 
 of technical internal/external 

audits 
 of all per year [audits/year] 

9 
% of software and hardware 

classified
4
 

(  of software&hardware classified*100)/(  of 
total software&hardware) 

[%] 

10 
 of contracts with third parties 

service suppliers 
(  of contracts*100)/(Total externalized services) [%] 

3.1.2   Business Connections 
Defined as external and internal connections to the organization’s intranet or critical 
data. 

Organizations have been approaching IS security as an external issue focusing on 
intrusions and connections from the outside. However, recent successful insider 
attacks experiences are changing the scenery making information security an internal 
as well as external business issue [18,19]. Security is not longer the perimeter [20] 
and therefore, it is vital to control remote accesses, business wireless equipment and 
their current security level (indicators 11,12). 

The new way of doing business allows outsiders (users, clients, guests, suppliers, 
stakeholders, etc) access the organization’s intranet or critical data.  These 
connections represent a great advantage for organizations production-wise. However, 
it only takes an organization’s guest connecting his/her laptop to the system, to lower 
your IS security level to a highly vulnerable state. 

Unauthorized access testing and penetration assessments are countermeasures that 
should be implemented to ensure proper organizational information security from the 
technical point of view (indicator 13). If these connections are left unattended, then 
the business’ IS security level will be as good as the security level of the connected 
device of the outsider or insider [21]. 

                                                           
3 Activating security features by default and ensuring robust security restrictions (i.e. robust 

firewall configuration, Wi-Fi restrictions, etc). 
4 To detect illegal downloaded software, verified licenses and control (if possible) external 

hardware devices (pendrives). 
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Table 2. Business Connections 

  Indicator Formula Unit 
11  of remote accesses and 

wireless devices 
 of accesses per month [accesses/month] 

12 Average wireless devices 
upgrade date (laptops) 

 (date of current upgrade (s)-date of last 
review (s))/(  of total wireless devices) 

[days] 

13 % of vulnerability and 
penetration assessments 

conducted 

(  of assessments conducted*100)/(  of 
assessment scheduled) 

[%] 

3.2   Formal Components 

3.2.1   IS Security Strategy 
Defined as well-planned and structured SMIS improvement process. It includes having 
“clearly defined” SMIS plan of action’s goals, scope, resources, implementation team, 
their responsibilities and realistic completion times for goals set. 

During the last decade, information security experts have provided organizations 
with several strategies to secure IS. Although they all try to achieve IS security, 
nearly all security experts’ strategies differ from each other. Some security experts 
recommend separating information security from information technology (IT) and 
integrate it with physical security [22]. Others highlight how security strategies based 
on deterrence, prevention, detection and response can be the difference between SMIS 
success and failure [23,24]. In addition, the information security ISO17799 
recommends designing the security strategy aligned with business goals.  

In order to achieve well-planned and structured security strategies, organizations 
need to compare their strategy with a universally accepted standard (indicator 14). 
Next, the strategy adopted must satisfy the organization’s security needs (indicators  
 

Table 3. IS Security Strategy 

  Indicator Formula Unit 
14 % of strategy robustness

5
 (  of security actions achieved*100)/(  of total 

actions recommend by an standard) 
[%] 

15 % of outsourced infosec 
processes  

(  of infosec processes outsourced*100)/(  of 
total business processes) 

[%] 

16  of audits to the infosec 
outsourced firm(s) 

 of audits per year [audits/year] 

17 % of qualified IS staff
6
 (Qualified staff*100)/(Average IS staff during 1 

year)  
[%] 

18 Responsibility sharing
7
 (  of responsibilities assigned to a single staff 

member*100)/(  of total security responsibilities) 
[%] 

19 Project delays
8
 ((Completion hours-Estimated hours for phase 

“n”)/project (s)) 
[hours behind 

schedule/project (s)] 
20 Evolution of infosec plan of 

action  
(  of infosec activities from last year)-(  of 

infosec activities from current year) 
[infosec activities] 

                                                           
5 Using a universally accepted standard such as ISO 17799 or CobiT (If certified = 100%). 
6 Qualified person with one or more information security certificates. 
7  In order to achieve responsibilities assignment balance (detecting or avoiding workloads). 
8 The project should be divided in “n” phases in order to accomplish smaller goals and witness 

progress. 
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15, 16). For example, depending on the business activity (financial vs. manufacturing) 
the needed strategy will vary (preventive, reactive or outsourcing). In fact, there are 
some information security studies that demonstrate how adopting a preventive 
security strategy is not the same as a corrective security strategy [25]. 

Proper allocation of information security human resources is the key to achieve 
robust information security strategies in the estimated completion time. Therefore, 
after evaluating the best strategy fit, organizations need to set and enforce realistic 
deadlines and have available qualified staff (indicators 17,18,19,20).  

3.2.2   Dynamic Evaluation of Information Security Effectiveness 
Defined as continuous evaluation of the SMIS’ effectiveness: Understanding and 
managing the highly dynamic mechanisms that control information security behaviors. 

Table 4. Dynamic Evaluation of Information Security Effectiveness 

  Indicator Formula Unit 
21  of internal and external systems 

audits 
(  of audits per month) [audits/month] 

22 % of daily monitorized processes  (  of infosec processes monitorized 
daily*100)/(  of total business processes) 

[%] 

23 % of in house specialized staff 
dedicated to assessment of 

infosec activities 

(  of hours dedicated to evaluate 
monthly)/(Average available qualified staff 

during 1 month) 

[%] 

24 Average time to respond to 
incidents 

 (detection time (s)- response time (s) in days)/(  
of total incidents) 

[time/detected 
incident] 

25 % of  incidents stopped per 
month 

(  of incidents stopped*100)/(  of total incidents 
detected per month) 

[%] 

26  of monthly incident responses (  of incidents responses*100)/(  of total 
incidents detected per month) 

[%] 

27 % of monthly systems' 
performance and assurance 

scheduled activities 

(  of fixed IS anomalies*100)/(  of total 
detected anomalies per month) 

[%] 

28 % of nonconformity aspects fixed 
(found during audits activities) 

(  of nonconformity aspects fixed*100)/(  of 
total nonconformity aspects detected) 

[%] 

29 % of maintenance processes 
executed 

(  of maintenance process executed*100)/(  of 
total maintenance processes scheduled) 

[%] 

30  of data recovery testing 
activities 

(  of business data recovery testing activities) [activities] 

Despite the powerful high-tech security countermeasures and the available process 
and procedure guidelines, organizations still fail to identify the real mechanisms that 
control information security behaviors. The need to analyze the dynamic aspects of 
information security is now in evidence and some studies have already shown results 
[18,19,26].  

Any organization using a modern operating system has to actively manage this 
complex and dynamically changing environment (indicators 21,22). Information 
security has become a challenging system to manage and near impossible to predict 
since attacking-tools’ developers, hackers, crackers and insiders dictate the speed of 
IS’ insecurity. Dynamic evaluation of information security has become the only way 
to keep up with the pace at which threat sophistication is traveling (indicators 
23,24,25,26,27,28,29,30).  
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3.2.3   Risk Assessment Process 
Defined as accurate identification, classification and prioritization of critical assets, 
vulnerabilities, threats, their impacts, and probability of happening. 

Information security studies have shown that accurate risk assessment, data 
analysis and economic evaluations are hard to achieve because organizations find 
difficult to collect or keep track of information security indicators [27]. As a result, it 
becomes hard to correlate formal security structures and actual security behaviors.  

Information security consultants and auditors have identified poor risk assessment 
processes as one of the most frequent reasons in SMIS implementation projects’ 
failures [28]. On the one hand, inaccurate risk assessment processes happen when 
organizations do not collect and analyze information security measurements 
(indicators 31,32,33,34). On the other hand, when the personnel involved in the 
process fail to identify critical assets, areas and threats (indicators 35,36,37,38,39) due 
to lack of knowledge about the organization’s security needs. 

Table 5. Risk Assessment Process 

  Indicator Formula Unit 
31 % of Risk Assessment (R.A) 

automatization 
(  of automated R.A. tasks*100)/(  of total R.A. 

tasks) 
[%] 

32 Current level of risk by area
9
 Depends on the tools and methodology used [risk level] 

33 % of countermeasures 
implemented 

(  of implemented countermeasures*100)/(  of 
identified countermeasures) 

[%] 

34 Average risk assessment review 
time 

(Time between consecutive reviews)/(  of 
reviews) 

[days] 

35  of high-impact incidents on 
processes not contemplated in 

previous R.A.  

 of incidents not contemplated [incidents not 
contemplated] 

36  of critical assets   of critical assets [assets] 
37  of critical areas  of critical areas [areas] 
38  of identified potential threats  of potential threats [threats] 
39  of new threats identified  (  of threats identified during previous revision)-

(  of threats identified during current revision) 
[threats] 

3.2.4 Information Security Integration  
Defined as the connection between information security and the organizations’ core 
activities and processes with the purpose of aligning information security with 
business objectives. 

The design of IS has been focused in enhancing organizations’ core competencies. 
Thus, it needs to be managed and secured like all the other critical business systems 
(indicator 40). SMIS relies on the interface between technology, policies-procedures 
and users. “If you think technology can solve your security problems, then you do not 
understand the problems and you do not understand the technology” [29]. Therefore, 
aligning end-users’ information security tasks with their professional goals is a 
reasonable solution for such problem (indicators 41,42).  

Technology has allowed us to enjoy acceptable secure IT systems. However, if 
end-users ignore information security activities, the system can be left susceptible to 
breaches and failures (indicator 43). End-users are more likely to adopt guidelines and 

                                                           
9 Applications, operating systems, servers, etc. 
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procedures during the SMIS implementation process if information security activities 
contribute to fulfilling their daily duties more effectively. The suggested indicators 
allow organizations to evaluate the degree of alignment between protecting the 
organization’s core assets and processes and business objectives. 

Table 6. Information Security Integration 

  Indicator Formula Unit 
40 % of systems availability  (  of hours available*100)/(hours expected to be 

available)  
[%] 

41  of BSP incentives  (  of best security practice incentives 
given/month) 

[incentives/month] 

42  of protected files (  of files in the backup folder*100)/(  of critical 
files) 

[%] 

43  of point solutions (patch, access 
controls, etc) 

(  of infosec point solutions)  [point solutions] 

3.2.5   Project Accomplishment 
Defined as the degree on which starting information security strategic, operational 
and technical goals are met and enforced.  

Several organizations have strictly followed proper SMIS implementation 
methodologies but have failed to protect their critical assets. The main cause of such 
failure is because the level of success, implementation-wise, at which the information 
security goals are reached, does not meet the high level of expectations set by 
management or consultants. In fact, it has been demonstrated how achieving fully 
accomplishment of previously stated SMIS implementation goals rarely happens [2]. 

A qualified, involved and motivated SMIS implementation team can be the 
difference between SMIS implementation’s failure and success (indicators 44,45,46,47). 
The leader of the implementation team should know the organization and possess legal 
knowledge (indicators 48,49). In addition, abilities such as leadership, accuracy when  
 

Table 7. Project Accomplishment 

  Indicator Formula Unit 
44 % of policies and procedures into 

the design phase (not approved)  
(  of policies & procedures into design*100)/(  

of total p&p identified in a standard) 
[%] 

45 % of policies and procedures 
documented and approved  

(  of policies & procedures approved*100)/(  of 
total p&p identified in a standard) 

[%] 

46 (average) hours dedicated to 
policies and procedures design 

(Hours dedicated to design)/(Average qualified 
staff during 1 year) 

[hours/team 
member-year] 

47 (average) hours dedicated to 
policies and procedures 

implementation 

(Hours dedicated to implement)/(Average 
qualified staff during 1 year) 

[hours/team 
member-year] 

48 (average) hours dedicated to 
policies and procedures reviews 

and upgrading activities 

(Hours dedicated to review and 
upgrade)/(Average qualified staff during 1 year) 

[hours/team 
member-year] 

49 Internal audits (  of internal audits perform*100)/(  of internal 
audits scheduled or planned)  

[%] 

50 Maturity level of current controls (  of incidents responses from current year)- (  
of incidents responses from previous year) 

[incidents responses] 
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estimating project costs, realistic evaluation of the “before and after” information 
security situation, downstream-upstream communication and time availability for 
information security activities, are key factors for successful SMIS implementation and 
maintainability (indicator 50). 

3.2.6    Law Enforcement and Compliance 
Defined as the degree of enforcement and compliance of implemented information 
security controls. Externally done by regulatory institutions such as the Sarbanes 
Oxley Act and the Spanish LOPD10 and internally done through internal controls 
within the organization. 

New regulations such as the Sarbanes-Oxley Act and the Spanish LOPD have had a 
visible impact on SMIS implementations. These regulations are slowly forcing 
organizations to increase their information security level. However, some organizations 
have taken these regulations as their security strategy by default. Adopting regulations 
as security strategy can lead organizations towards the compliance requirements of the 
moment leaving critical assets unattended. Regulations not only change security focus 
but also can cause costly and inefficient investments when organizations only consider 
assets and processes subjected to regulations [9].  

At first, organizations should start by separating the operational part of information 
security from the compliance and enforcing part [30] in order to execute effective 
internal audits (indicator 51). Next, “no-compliance” severe sanctions should be 
applied to disobey departments within the organization (indicator 52). If so, they 
would not have a choice but to obey the information security practices implemented. 
Higher degrees of enforcement as well as no-compliance severe sanctions increase 
deterrence mechanisms that in the long run prevent incidents from happening [23]. 

Table 8. Law Enforcement and Compliance 

  Indicator Formula Unit 
51 % of fulfilled regulations

 11
 (  of regulations fulfilled*100)/(  of regulations 

enforced by authorities)  
[%] 

52 % of penalties imposed to 

users
12

 

(  of penalties imposed*100)/(  of infosec bad 
practices detected)  

[%] 

3.2.7    Budget 
Defined as the percentage of IT economical resources dedicated to information 
security.  

Organizations do not routinely require return of investment calculations on security 
investments since so far, information security activities have being treated as 
expenses [31]. Operational expenses (patch a breach) are usually easy to justify 
budget-wise but information security capital investments are not straightforward. As 
information security gets more expensive, infosec leaders are asked to show infosec 
budget allocations as well as cost-benefits analysis (indicators 53,54). 

                                                           
10 Ley Orgánica  de Protección de Datos www.belt.es/legislacion/ 
11 Confidential data only for organization internal purposes . 
12 Confidential data only for organization internal purposes. 
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The lack of information security measurements and analysis makes the IT vs. 
security investments grow at disproportional rates. If the IT budget grows in isolation, 
then the budget needed to keep the system in a reliable state becomes highly 
expensive. Therefore, organizations need to track the evolution of both budgets 
(indicator 55). They should also perceive security expenses as an opportunity to 
improve upon IS availability, reputation and ability to accomplish business mission 
and ability to adapt to changing risk environments [9]. 

Table 9. Budget 

  Indicator Formula Unit 
53 Security budget segregation

13
 (Budget spent on the analyzed 

area*100)/(Security budget) 
[%] 

54  of cost-benefit analysis (NPV, 

IRR, ROSI, ALE, GLEIS)
14

 

 (  of cost-benefit analysis) [analysis/year] 

55 Security budget evolution  (Budget spent on IS security*100)/(IT budget 
every year) 

[%] 

3.3   Informal Components 

3.3.1    Information Security Awareness 
Defined as the appreciation, at all levels within the organization, about the needs and 
benefits of information security. 

Organizations have misplaced information security resources in the IT department 
and failed to identify people’s operational weaknesses as the root causes of the 
majority of information security breaches [9]. Information security must be much 
more than legislators, policies, and procedures [32]. It is a business problem and a 
people’s problem that requires active, involve, and aware users [8].  

Information security awareness will receive more attention this year that any other 
because current insider threat are called to be the biggest information security threat 
during 2006. This upcoming year, attackers will not spend time looking for system’s 
vulnerabilities. Instead, they will focus on convincing employees to execute cyber 
attacks [33]. Therefore, developing information security awareness among the 
organization is no longer a choice but a necessity [34]. 

Security awareness is one of the few countermeasures capable to stop security 
incidents motivated by greed, economic and other personal problems [13]. By 
improving end-user behavior, organizations can minimize insider threat probability as 
well as approach security more as a business problem instead of a merely technical 
issue (indicators 56,57,58).  

In the near future, role model organizations are going to be characterized by 
promoting ongoing users’ training and education programs in information security as 
well as effective communication of information security goals (indicator 59). They 
will also achieve robust SMIS (indicators 60,61) and fast incident responses 
(indicators 62,63).  

                                                           
13 Critical assets and critical areas first. 
14 To compare the operational cost of security vs. the investment cost. 
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Table 10. Information Security Awareness 

  Indicator Formula Unit 
56 Incidents reported per employee  (  of incidents reported)/(Average employees 

during 1 year) 
[incidents/user-year] 

57 Average training hours received 
per year 

(Hours dedicated to infosec training)/(Average 
staff during 1 year) 

[hours/user-year] 

58 Degree of awareness (by type of 
user: management, IT staff, end 

users, etc)
15

 

(Survey score*100)/(Optimal survey score) [%] 

59  of infosec-related reports, 
newsletters, memorandums sent 

(  of  memorandums sent per year) [memorandum/year] 

60 % of incidents investigated (  of incidents investigated*100)/(  of detected 
incidents per year) 

[%] 

61 Certification status
16

 (  of hours needed to achieve certification) [hours] 

62 Business critical data recovery 

time
17

 

 of hours needed to recover lost critical data or 
system functioning 

[hours] 

63 Average critical data recording 

date
18

 

(Time between consecutive recordings) [days or hours] 

3.3.2    Information Security Awareness 
Defined as the degree of understanding and support from top management about the 
impact of information security on the business future and stakeholders. 

Organizations’ dependency on IS, information security legal regulations and 
business competition are triggering top management commitment. Their support and 
understanding are critical because business decisions usually drive technical and 
operational decisions (indicators 64,65,66). 

Table 11. Information Security Awareness 

  Indicator Formula Unit 
64 % of SMIS policies approved (  of policies approved*100)/(  of policies 

suggested per year) 
[%] 

65 % of SMIS procedures approved (  of procedures approved*100)/(  of procedures 
suggested per year) 

[%] 

66 % of security budget spent on 
training 

(Budget spent on training*100)/(Security budget) [%] 

67 Downstream infosec 
communication 

(  of meeting between infosec leaders&top 
management*100)/(  of meetings between 

department leaders&top management per year) 

[%] 

68 Average training hours received 
per year 

(Hours dedicated to training)/(Average staff 
during 1 year) 

[hours/user-year] 

69 % of satisfactory accomplishment 
per training activity  

(Average of satisfaction*100)/(  of training 
activities per year) 

[%] 

70 % of infosec reports asked  (  of infosec reports asked*100)/(  of business 
reports asked per year) 

[%] 

 

                                                           
15 Done through an internal information security survey.  
16 The accuracy of this indicator is no the final aim but to situate the business with respect to 

others. Measured in hours or also in requirements needed to achieve certification. 
17 The higher the IS dependency, the shorter the time. 
18 The higher the IS dependency, the shorter the time. 
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Underestimating information security is not the only critical factor. The degree of 
information security top-management commitment varies across organizations’ size. 
Top management from large corporations has been practically forced to commit to 
information security due to companies’ fusions, external regulations and international 
business relations. However, in small and medium size enterprises (SMEs), 
management’s involvement tends to be much lower since they do not seen themselves 
as potential targets for cyber attackers [27]. 

In order to raise top-management commitment, regardless of enterprise size, 
information security must be directly related to business success. If the responsible for 
SMIS in the organization makes top-management understand that information 
security is the discipline which mitigates business risks, then effective security 
decisions will be made (indicators 67,68,69,70). 

3.3.3   Administrators and End Users Competence 
Defined as IT knowledge and skills that can be used to properly utilize and secure IS 
but also used toward exploiting dishonest advantages through the use of IS.  

Computing practices of system administrators and users continue to be one of the 
greatest information security challenges. People who administer IT systems sometimes 
practice insecure practices “shortcuts” claiming IS efficiency’s improvements or simply 
being helping certain end users. For example, a system administrator who changes a 
firewall rule, despite security rules and management approval, in order to help a remote 
user who has trouble sending email [35]. 

Between 80 and 90 % of organizational problems are due to human errors or bad 
practices [17]. Therefore, having honest, competent, smart and skillful systems 
administrators is a CSF for ensuring SMIS (indicators 71,72,73,74). It does not matter 
how IS are protected or the safety devices that have been settled, what is really 
important is who is using and defending the system [36]. 

End-users competence though, has the exact opposite effect on information 
security. Recent end user sophistication studies have demonstrated the strong 
 

Table 12. Administrators and End Users Competence 

  Indicator Formula Unit 
71 Staff responsible for infosec 

training hours received per 

year
19

 

(Hours dedicated to training)/(Average infosec 
staff during 1 year) 

[hours/team 
member-year] 

72 % of qualified IS staff
20

 (Qualified staff*100)/(Average IS staff during 1 
year)  

[%] 

73 % of satisfactory accomplishment 
per training activity  

(Average of satisfaction*100)/(  of training 
activities per year) 

[%] 

74 Upstream infosec communication (  of meetings or reports with executive 
management per year) 

[meetings/year] 

75 % of reported incidents in users' 
PCs 

(  of reported incidents in users’ PCs*100)/(  of 
total reported incidents per year) 

[%] 

76 Degree of organizational climate 

satisfaction
21

 

(Survey score*100)/(Optimal survey score) [%] 

                                                           
19 Due to threat sophistication and technology dynamism. 
20 Person with one or more information security certificate. 
21 Paying close attention to users’ behavior or attitude can be a powerful insider threat indicator. 
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relationship between end user sophistication and the potential of misusing IT systems  
[37]. These studies can be corroborated by the fact that, the majority of computer 
abuse comes from current employees who have managed to modify or swerve 
existing security controls [14]. Therefore, segregation of duties, enhancing incident 
reporting and monitoring users’ behaviors are effective countermeasures to protect 
business critical assets and areas (indicator 75,76). 

4   Conclusions 

The presented SMIS critical success factors and indicators are the result of a 
combination of current information security literature, security experts’ perspectives 
and an ongoing project which is trying to identify and simulate the security structure 
that generates current organizational security behaviors. The current standing 
information security situation indicates how the actual focus of information security 
research is not coinciding with the most critical factors and even worse there are not 
well-defined methods to measure information security. 

Identifying information security CSFs and measuring the countermeasures’ 
effectiveness is a common goal for almost all organizations today. These two critical 
activities are, to a great extent, an internal activity for organizations. Therefore, as 
information systems become more complex and indispensables, getting feedback and 
measuring the level of information systems performance represents more than ever a 
business priority [6]. 

This work has allowed us to corroborate that current organizations struggle with 
the most basic but still unknown information security interrogates. How much 
security does my organization need? How much do we currently have? What to 
measure? And probably the most important question: How should we measure it? 
These questions must be properly answered in order to successfully implement, 
maintain and manage the security of information systems. 

We predict that the future of information security will be based on the dynamic 
balance between technology (technical), processes (formal) and people (informal). 
The majority of the reviewed authors coincide in the fact that these 12 CSFs  
are going to be crucial to improve the overall organization’s critical assets 
protection. However, it is important to highlight that organizations should only 
choose the CSFs that better fit their security needs and implement the associated 
indicators. Although, these 12 CSFs are the most demanded by current information 
security practitioners, it is not strictly necessary to manage and implement all of 
them. 

Achieving bulletproof information security is simply impossible or just too 
expensive. However, by implementing and analyzing these simple but helpful set of 
indicators, organizations will be able to easily witness their SMIS project’ evolution 
as well as measure its effectiveness. Only after that, security resources will be 
allocated and used more efficiently and accurate assets and economic evaluations will 
be achieved. 
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