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Abstract. Using peer-to-peer overlay network to provide video-on-demand ser-
vice has been a promising solution due to its potential high scalability and low 
deployment cost. However, it remains a great challenge to construct an efficient 
overlay network for peer-to-peer video-on-demand systems owing to their in-
herent dynamicity caused by frequent VCR operations or joining/leaving opera-
tions. In this paper, we propose a ring based overlay network to handle this 
problem, called RINDY, in which each peer maintains a gossip-ring to explore 
appropriate data suppliers and several skip-rings with power law radius to assist 
the quick relocation of VCR operations. Our simulation results show that 
RINDY achieves better load balance in the control overhead than tree based 
overlay. As compared with the traditional client/server model, it saves more 
server bandwidth and achieves lower start-up latency when lots of users watch a 
same video simultaneously. 

1   Introduction 

With the exponential expansion of Internet resource and users, Video-on-Demand has 
become one of the most attractive services over Internet [15]. In order to provide large 
scale on-demand streaming services, most of existing systems deploy content distribu-
tion networks (CDNs) [5][16] and distributed proxies [6][11] to extent their capaci-
ties. Unfortunately, the bandwidth and I/O capacity of servers inevitably become their 
performance bottleneck as the number of online user increases constantly. 

Peer-to-peer multimedia streaming systems [1][2] have become popular both in 
academic and industry. Compared with the traditional client/server model, they can 
sufficiently utilize the capacity of end nodes to improve their scalability. There have 
been a number of successful research projects on peer-to-peer live streaming, such as 
CoolStreaming [21], ESM [4], SplitStream [3], AnySee [18]. But there are few peer-
to-peer on-demand systems due to the following difficulties. First, for peer-to-peer 
on-demand streaming systems, peer nodes have more obvious dynamicity. Beyond 
joining or leaving, users can perform all kinds of VCR operations at will, such as 
PAUSE, REWIND and FORWARD, which lead to frequent changing of topology. 
Second, each peer has heterogeneous capacities, such as different inbound/outbound 
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bandwidth, memory size. In this case, it still is a problem to determine where and 
when to fetch an expected data segment from multiple suppliers with non-uniform 
bandwidth and data availability, under the limitation of the playback deadline. Third, 
it is also very difficult to achieve high reliability and guarantee the quality of stream-
ing under the condition that peer nodes join, leave or seek frequently. 

In order to solve these problems, we propose a novel ring based overlay network 
for peer-to-peer on-demand streaming service, called RINDY, in which each peer 
keeps a set of concentric rings to implement efficient membership management and 
fast relocation of VCR operations under a low control overhead. It maintains a gossip-
ring to explore appropriate data suppliers and several skip-rings with power law ra-
dius to assist quick relocation of VCR operations. Compared with tree-based overlay, 
it is more reliable because it only needs to maintain a loosely consistent ring overlay 
and can tolerate the failure of many peer nodes. 

The rest of this paper is organized as follows. An overview of RINDY system ar-
chitecture is presented in section 2. In section 3, we give an insight of ring based 
overlay, including membership management and overlay maintenance. The perform-
ance of RINDY is evaluated by simulation in section 4. Related work is discussed in 
section 5. Finally, we end this paper with some conclusions and future work. 

2   Overview of RINDY 

As shown in Figure 1, the infrastructure of RINDY is consisted of four components: 
tracker server, source server, peer, and web portal. For the tracker server, it is a well-
known Rendezvous Point (RP) to help each newly joining peer bootstrap. We deploy 
a backup tracker server. There are many source servers distributed in different ISP 
networks and organized in a logical ring. When an incoming peer logins our overlay 
network, the tracker server will allocate a near source server for it. Peer is the most 
 

 

Fig. 1. Architecture of RINDY System, including Tracker Server, Source Server, Peer and Web 
Portal 
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complicated component in our peer-to-peer on-demand streaming system. For any 
peer, it can not only request data packets from its source server, but also exchange 
data packets with other peers. Each peer caches the recent watched media data and 
announces its buffer map to all neighbors periodically. At the same time, it schedules 
data requests to fetch its required media data packets to support playback continu-
ously. The web portal is the entry of the system, providing the latest channel list to 
show the number of online peers and the rank of all movies. 

3   Ring-Based Overlay 

In this section, we focus on the discussion on the construction and maintenance of 
ring based overlay, including neighbor distribution, ring based gossip protocol, and 
relocation algorithm for new neighbors. 

3.1   Overlay Construction 

A.  Ring 
In RINDY, each peer node keeps track of a small and partial view of the total overlay 
and organizes all neighbors into concentric, non-overlapping logical rings according 
to their relative distance. The radius of each ring is represented with a2i, where a 
represents the length of buffer window (a = w) and i is the layer number (0< i <= B, B 
is the maximum layer number). The ith ring denotes the zone between the inner radius 
(ri-1 = a2i-1) and the outer radius (ri = a2i), where i >= 1. The distance between any 
two peers can be calculated with their playing positions, i.e., given any two peers i 
and j and their playing positions curi and curj , respectively, the distance from peer j to 
peer i (dj) equals curj – curi. If dj is negative, the playing position of peer j is behind 
that of peer i and we call peer j a back-neighbor of peer i. Otherwise if dj is positive, 
peer j is a front-neighbor of peer i. The distance remains unchanged until some VCR 
operations occur. For all neighbors of peer i, their locations are up to the distances 
from them to peer i. If the distance of neighbor j meets the inequation a2k-1< |dj| <= 
a2k, peer i will place neighbor j in the kth ring. 
 
B. Neighbor Distribution over Ring 
For any peer, a large q will help it get larger member list, increasing its knowledge 
about the total overlay network and the locality of lookup operations. But at the same 
time, a large q also entails more memory and more bandwidth and causes worse net-
work traffic. A reasonable neighbor distribution always brings more efficient perform-
ance for VCR relocation and member discovery. For peer-to-peer video-on-demand 
systems, nodes that are temporal diversity instead of clustered together can forward a 
query to a wider region. 

In RINDY, we define two kinds of rings, gossip-ring and skip-ring, and provide dif-
ferent neighbors distribution rules for them respectively. For the innermost ring (i = 1), 
it collects some peer nodes with close playing positions and overlapped buffer win-
dows with peer i. We call this ring gossip-ring. For all outer rings (i>= 2), they sam-
ple some remote peer nodes to help peer i look up new neighbors after seeking. These 
rings are mainly used to improve the locality of lookup operations and decrease the 
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load of tracker server. We call these rings skip-rings. In the gossip-ring, each peer 
node keeps m ring members by the received gossip message, called near-neighbors. In 
each skip-ring, a peer node keeps track of the k primary ring members and l secondary 
ring members which serve as backup candidates for primary ring members. All of 
these primary remote members are called far-neighbors. When any far-neighbor 
leaves, a new far-neighbor will be selected from l back candidates quickly. 

Figure 2 illustrates the member distribution of peer i. Node A is a near-neighbor in 
the gossip-ring and node B, D, E, G and H are far-neighbors in the skip-rings. Node C 
is the backup candidate of far-neighbor B. Peer i can propagate gossip messages 
through its near-neighbors and explore new members by receiving gossip messages. 
For any peer, to find good neighbors as its partners is critical to continuous playback. 
The join and departure messages need to announce to other peers in the gossip-ring. 
So we try to maintain as many near-neighbors as possible at the permission of over-
head. According to the analysis in [9][10][19], log(n) is enough to make most of near 
peers receive join and departure events. The ring based overlay only requires loose 
consistent. For skip-rings, they function as the bridge to look up new proper neighbors 
and good partners. It is enough to ensure that there is one connection in each skip-
ring. Considering users may seek back or forward, we remain two primary far-
neighbors pointing to the front and back of current position respectively. Here we 
configure k = l =2. 

Fig. 2. Neighbor distribution of peer node i, node A in the gossip-ring and node B, C, D, E, F, 
G, H in the skip-ring 

3.2   Overlay Maintenance 

A. Discovery of New Members 
In RINDY, each peer can leave the overlay network or seek new positions so that 
some peers may lose lots of neighbors due to the departure of neighbors, which results 
in the damage of the normal ring structure. In previous work, there are many projects 
importing a gossip protocol to discover new members, such as CoolStreaming [21], 
AnySee [18]. The principle of traditional gossip protocol is simple, that is, a node 
sends a newly generated message to a set of randomly selected nodes and these nodes 
do similarly in the next round. Thus contents will spread throughout the network in an 
epidemic fashion. The random choice of gossip targets achieves resilience to random 
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failures and enables decentralized operations. However, a great trouble for gossiping 
based streaming is how to minimize delay and avoid the date outage of messages. It is 
difficult for peer-to-peer on-demand streaming to handle this problem because the 
playing position of each peer is moving constantly and even changing unexpectedly. 
In order to address this problem, we design a temporal and spatial restraint gossip 
protocol based on ring structure to explore new members and maintain stable distribu-
tion of neighbors in all rings. 

In RINDY, each peer sends a gossip message to announce its existence and its 
buffer windows status periodically. At the same time, it updates its member table 
according to the member information carried in the received gossip messages. The 
gossip message format is shown in Figure 3, where GUID, Peer Address, near-
neighbor and Cur represent the global identifier, the network address, neighbor num-
ber and the playback offset of source peer, respectively. TTL is the remaining hop 
number of this message. Max, Min, Want and Avail denote the snapshot of moving 
buffer together. All gossip messages are divided into two kinds, ANNOUNCE and 
FORWARD. The difference between them is that ANNOUNCE messages carry the 
buffer snapshot while FORWARD messages not. Because the main purpose of gossip 
is to help online peers to discover more data suppliers with close playback offset, we 
restrict all gossip messages spreading in the range of gossip-ring to decrease the over-
head of gossip propagation. For a peer, it sends a ANNOUNCE message to all of its 
near-neighbors in each gossip round, notifying its position and buffer map. After its 
near-neighbors receiving this message, they update their mCache and randomly 
choose one near-neighbor with the playback offset tforward from their near-neighbors, 
where tforward meets the relation tforward – m <= tsource <= tforward + m and tsource is the 
current playing position of source peer of this gossip message. 

Fig. 3. Format of gossip message 

B. Lookup of New Position 
The lookup operations based on skip-rings mainly occur in the following two cases. 
First, when users perform VCR operations lookup operations will be triggered to find 
some new neighbors close to the destination. Second, when a peer finds that there are 
not enough neighbors in a ring with the simultaneous leave of all primary far-neighbors, 
it also executes a lookup procedure to find more backup candidates for this ring. As 
Figure 4 illustrates, when peer i with the playing position p wants to seek to the desti-
nation d it first judges whether the destination d is located on its gossip-ring or not. If 
|d - p| is less than or equal to a, that means the destination d is in its gossip-ring, it will 
execute a local search to find out enough near-neighbors and far-neighbors for peer i. If 



 RINDY: A Ring Based Overlay Network for Peer-to-Peer On-Demand Streaming 1053 

|d - p| is more than a, it will find out a neighbor as its next hop from its rings closest to 
the destination d and then forward this query to the next hop neighbor. When the next 
hop neighbor receives this query it will execute the same procedure and the procedure 
will be iterated until this request is forwarded to a peer that is in the same gossip-ring 
with the new peer i. As Figure 4 shows, if d is in the 3rd ring of peer i and P1 is the 
neighbor closest to d, the query q will forward to the neighbor P1 at first. Then P1 will 
forward this query to its neighbor P2 in its 2nd ring closest to d. Finally, when P2 finds 
out that the destination d is in its gossip ring it will add all neighbors in its gossip ring 
into the result set and return it to the source peer i, following the forwarding path. 

 

Fig. 4. Procedure of lookup operation for peer i 

4   Performance Evaluation 

In this section, we investigate the performance of RINDY in server bandwidth, con-
trol overhead and start-up latency by simulation. At the same time, we also give some 
comparisons between RINDY and other on-demand systems. 

4.1   Simulation Setup 

We use GT-ITM topology generator [20] to create a topology of 1000 peer nodes based 
on transit-stub model. The network consists of 3 transit domains, each with 5 transit 
nodes and a transit node is connected to 6 stub domains, each with 12 stub nodes. In this 
set of experiment, peers can be located on any stub nodes in the topology. We randomly 
choose 1000 stub nodes as peer clients and place the source server on a transit node. The 
bandwidth between two transit nodes, a transit node and a stub node, two stub nodes are 
100Mbps, 10Mbps, and 4Mbps, respectively. In addition, we choose a movie with 60 
KB/s streaming rate and 60 minutes content as our testing stream. We modify the source 
code of NICE simulator (http://www.cs.umd.edu/~ suman/research/myns) to implement 
a simulator of RINDY, in which each peer remains a ring structure instead of a layer 
structure. Some important parameters for our ring based overlay network are presented 
as Table 1. 
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Table 1. Some configuration parameters 

Parameters Value and Meaning 
w 300 seconds, buffer window size 
B 5, maximal layer number 
R 60KB/s, average streaming rate 
α 300, radius coefficient of rings 
t 30 seconds, gossip period 
m 12, near-neighbor number in each gossip-ring 
k 2, far-neighbor number in each skip-ring 
l 3, back candidates in each skip-ring 
L 60 Minutes, length of a sample movie 

4.2   Simulation Result 

A. Control Overhead 
We first evaluate the control overhead for overlay construction and maintenance in 
our ring based overlay network. Here the control overhead is represented by the num-
ber of processed messages. In order to investigate the overhead of ring based gossip, 
we record the average message number of each peer in a gossip period when there are 
no any peer failed and any VCR operation occurred, then we calculate the average 
message number of all peers with different scales. The result is illustrated in Figure 5. 
We can see that the average messages number increases very slowly after the total 
peer number of the same channel reaches 400. When the total peer number exceeds 
1000, the average message number basically remains about 100, in a restricted con-
stant range. Since the gossip period t is 30 seconds, each peer just processes about 
three or four messages in a second. Compared to the streaming overhead, the control 
overhead is very low and can be ignored. 

Figure 6 shows the average message number of each peer when 10 percent peers 
join, leave RINDY network or perform VCR operations randomly. When the total 
peer number reach a specified scale, about 300 nodes, the average control overhead to 
accommodate the overlay changing effected by peer joining, leaving or seeking basi-
cally keeps a constant. That illustrates that the control overhead induced by peer join-
ing, leaving or seeking does not increase with the scale of peer nodes. 

Figure 7 shows the distribution of lookup request message processed by each 
peers in ring based overlay and tree based overlay when the total peer number is 
600 and 10 percent peers perform VCR operations randomly. We can see that, in 
the ring based overlay, most peer nodes process 0~8 messages and a few peer nodes 
reach 12 messages but none of them exceeds 20 messages. However, in the tree 
based overlay, most peer nodes process 0~3 messages but the lookup message num-
ber of some peer nodes reaches 30 or 40 and the root node processes 60 messages. 
Compared with the tree based overlay, our ring based overlay gets better load bal-
ance among peers during the relocation of VCR operations. To the best of our 
knowledge, there are two main reasons for this result. First, in our ring based over-
lay network, each peer has an individual neighbor distribution and its lookup opera-
tions begin with its local rings. However, for the tree based overlay network, all of 
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lookup operations travel from the root node firstly. The root node and the peer node 
of upper layer always process more lookup request messages, which results the 
unbalance of control overhead among peer nodes. Second, for each peer, its skip 
rings construct a quick index based relative playback offset, just like a binary index, 
which decreases the length of lookup path. 
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Fig. 7. Lookup message distribution when 10% peers randomly seek 

B. Server Bandwidth Consumption 
Since the main purpose to deploy peer-to-peer on-demand streaming is to alleviate 
the bandwidth bottleneck, we compare the server bandwidth consumption between 
traditional C/S model and our RINDY. Figure 8 reports their bandwidth cost with 
the increasing of peer client number. When the peer client number arrives at 200, 
the traditional solution nearly consumes all bandwidth of the central server, about 
89Mbps. But for our RINDY, the increase of peer client number has no obvious 
effect to the server bandwidth consumption. The main reason is that peers can ex-
change their data packets efficiently. In our testing case, the server bandwidth has 
been the bottleneck when the peer client number reaches about 200, while RINDY 
just uses 6~8Mbps, 10 percent of C/S model. RINDY has great potential for band-
width saving. 
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Fig. 8. Comparison of server bandwidth between C/S model and RINDY 

C. Start-up Latency 
The start-up latency is the time that users must wait before playback since users start a 
channel. Users always expect shorter waiting time, however, it is not easy for most 
peer-to-peer systems to find initial corresponding data supplier quickly, which always 
take longer time than expected. In addition, it must try to avoid fetch data from the 
central server. Otherwise, the central server becomes the bottleneck easily. In 
RINDY, we use a scheme to solve this problem. We make each peer buffer the initial 
one minute stream packets and the SDP packet need by RTSP protocol. For a newly 
incoming peer, it retrieves the initial data from any neighbors. Figure 9 gives a com-
parison of start-up latency between C/S model and RINDY. The start-up latency of 
RINDY has little change with the increasing of peer client number, keeping about 30 
seconds. But the start-up latency of C/S model increases quickly with the system scale. 
When the server is overloaded, the start-up latency will make users unacceptable. 
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Fig. 9. Comparison of start-up latency between C/S model and RINDY 

5   Related Work 

There are mainly following three methods to provide peer-to-peer on-demand stream-
ing systems. The first method is to construct tree based overlay network, such as 
P2Cast [12], P2VoD [8], oStream [7], DirectStream [13]. In these systems, peers on 
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the upper layer always play an important role in the whole overlay network. Their 
departure will lead to the lower layer network fluctuation. Moreover, each peer has 
only one data supplier, which will cause inefficient utilization of available bandwidth 
in a heterogeneous and highly dynamic network environment. 

Another method is to deploy mesh based overlay to organize all joined peers, such 
as PROMISE [14]. Although they can fetch packets from many data suppliers [17], 
they meet another problem, that is, how to relocate the destination efficiently to sup-
port random VCR operations. Because of the shortage of structure, mesh based over-
lay always consume longer time to find appropriate close partners, therefore they 
hardly meet the real-time requirements of VoD services and always induce an unac-
ceptable waiting time after seeking. Combing the advantages of tree based overlay 
and mesh based overlay, TAG [22] presents a hybrid overlay, called Tree Assistant 
Gossip. It uses a balance binary tree to index all joined peer nodes and search many 
partners from the tree when a peer joins. It integrates the advantages of tree overlay 
and mesh overlay to avoid the problems above. However, the maintenance algorithm 
of the distributed AVL tree is complicated. In addition, there is only one tree structure 
in the global overlay and each lookup operation begins from the root node, so the 
control overhead among peer clients is unbalanced seriously. 

6   Conclusions and Future Work 

In this paper, we present a novel ring based overlay network for peer-to-peer on-
demand streaming, called RINDY, which maintains a gossip-ring to explore appropri-
ate data suppliers and several skip-rings with power law radius to assist quick reloca-
tion of VCR operations. We investigate the control overhead of RINDY by simulation 
experiments. The results illustrate that RINDY achieves better load balance and faster 
relocation of VCR operations compared with tree based overlay. We also compare the 
bandwidth consumption and start-up latency between the traditional C/S model and 
RINDY. The results are so exciting that we believe that RINDY has great potential in 
bandwidth saving and QoS guarantee. In future we plan to study a distributed cache 
scheme to improve the performance of peer-to-peer on-demand streaming further. 
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