
An Efficient Implementation for Computing
Gröbner Bases over Algebraic Number Fields

Masayuki Noro

Kobe University, Rokko, Kobe 657-8501, Japan
noro@math.kobe-u.ac.jp

Abstract. In this paper we discuss Gröbner basis computation over al-
gebraic number fields. Buchberger algorithm can be executed over any
computable field, but the computation is often inefficient if the field op-
erations for algebraic numbers are directly used. Instead we can execute
the algorithm over the rationals by adding the defining polynomials to
the input ideal and by setting an elimination order. In this paper we pro-
pose another method, which is a combination of the two methods above.
We implement it in a computer algebra system Risa/Asir and examine
its efficiency.

1 Introduction

From the theoretical point of view, Gröbner basis computation can be done over
any field by using Buchberger algorithm. In practice, however, the computational
efficiency depends on the ground field. The difficulty of Gröbner basis computa-
tion over a finite field mainly comes from its combinatorial property because no
coefficient swell occurs. But over the rationals, we often suffer from coefficient
swell and various methods to avoid it have been investigated. The trace algo-
rithm [4] and F4 algorithm with modular computation [6] are successful ones. In
this article we consider Gröbner basis computation over algebraic number fields.
If the operations over an algebraic number field are provided, we can apply usual
Buchberger algorithm over the field. Instead, an algebraic number field K can be
represented as a residue class ring Q[x1, . . . , xl]/J , where J is a zero-dimensional
maximal ideal and a Gröbner basis computation over K can be reduced to that
over Q by joining J to the ideal to be considered. However these method are
not satisfactory in view of efficiency. Here we give a simple but efficient method
which is a combination of the two methods above.

Notation 1
HT(f) : the highest term of f with respect to a term order
HC(f) : the coefficient of HT(f)
GF(p) : the finite prime field of order p
NFG(f) : a remainder of f with respect to a polynomial set G

By fixing the method for choosing a reducer, the remainder is
uniquely determined even if G is not a Gröbner basis.

S(f, g) : the S-polynomial of a pair {f, g}.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 99–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

100 M. Noro

Z〈p〉 : {a/b | a ∈ Z; b ∈ Z \ pZ} ⊂ Q
φp : the canonical projection from Z〈p〉[X] to GF(p)[X]

2 The Algorithm

Suppose that an algebraic number field K = Kl is represented as a tower of
simple extensions:

K0 = Q, Ki = Ki−1(αi) (i = 1, 2, . . . , l),

where αi is a root of a monic irreducible polynomial over Ki−1:

mi(α1, . . . , αi−1, ti) ∈ Ki−1[ti] (mi(t1, . . . , ti) ∈ Ri = Q[t1, . . . , ti])

and
Ki = Q[t1, . . . , ti]/Ji, Ji = 〈m1, . . . , mi〉.

Each Ji is a zero-dimensional maximal ideal of Ri. Set S = K[x1, . . . , xn], T =
Q[x1, . . . , xn, t1, . . . , tl], D = {m1, . . . , ml}, J = 〈D〉, x = (x1, . . . , xn), t =
(t1, . . . , tl) and α = (α1, . . . , αl). Let ≺ be a term order in S and ≺K a product
term order of ≺ and the lexicographic order in Rl such that t1 ≺ t2 ≺ · · · ≺ tl
and ta ≺K xb.

Definition 1. HCR(f) ∈ R denotes the head coefficient of f as an element of
R[x1, . . . , xn] with respect to ≺. We call f monic if HCR(f) = 1.

Let B̃ = {g1(x, t), . . . , gd(x, t)} be a subset of T and I ⊂ S an ideal generated
by B = {g1(x, α), . . . , gd(x, α)}. The following theorem is well known.

Theorem 1. Let G̃ be the reduced Gröbner basis of Ĩ = 〈B̃ ∪D〉 with respect to
≺K. Then (G̃ \ D)|t=α is the reduced Gröbner basis of I with respect to ≺.

By this theorem, we can apply Buchberger algorithm over Q to compute the
Gröbner basis of I over K. However, if we observe the execution of Buchberger
algorithm, we notice that many intermediate basis elements of the form tbxa +
lower are generated before a monic element xa+lower is generated. Once we have
such a monic element, the intermediate basis elements become all redundant.
This phenomenon is explained as follows. Suppose that h(x, t) = tbxa+lower ∈ Ĩ
is reduced with respect to D. We set ha(t) = HCR(h). Then ha(α) is non-
zero because ha(t) is reduced with respect to D. Then ha(α) is invertible in
K, which means that there exists u(t) ∈ R such that u(t)ha(t) ≡ 1 mod J .
Then we have a monic element u(t)h(x, t) = xa + lower ∈ Ĩ. That is, the
intermediate elements are those which have intermediate polynomials generated
during the computation of the inverse of ha(α) as their head terms. This affects
the process of computation in various ways. For example, each generated basis
element produces new S-pairs. It is well known that the efficiency of Buchberger
algorithm is sensitive to the order of S-pairs to be processed, and the new S-pairs
may make the subsequent computation inefficient. Or, the inverse computation

An Efficient Implementation for Computing Gröbner Bases 101

implicitly appeared in our case is nothing but Euclid algorithm, and it is well
known that computing the inverse of an algebraic number by Euclid algorithm
tends to cause coefficient swell. Our remedy for this difficulty is very simple. We
modify Buchberger algorithm as follows. We omit the selection strategy and the
criteria for useless pair detection in the algorithm description.

Algorithm 1 (Buchberger algorithm over an algebraic number field)
L ← {{f, g} | f, g ∈ B̃, f
= g}
G ← B̃
while L
= ∅ do

{f, g} ← an element of L; L ← L \ {{f, g}}
r̃(x, t) ← NFD∪G(S(f, g))
if r̃
= 0 then

u(t) ← the inverse of HCR(r̃) mod J
r ← NFD(ur̃)
L ← L ∪ {{f, r} | f ∈ G}
G ← G ∪ {r}

end if
end while
return G

In Algorithm 1, G consists of monic polynomials because each normal form is
made monic before added to G, therefore r̃(x, α) is a normal form with respect
to G|x=α. So Algorithm 1 executes Buchberger algorithm over K and it returns
a Gröbner basis of 〈B〉. Algorithm 1 avoids generating redundant basis elements.
Furthermore the trace algorithm[4] and the efficient content reduction [5] can be
applied because the computation itself is done over Q.

3 The Implementation

We implemented Algorithm 1 in Risa/Asir [1]. We already have an implementa-
tion of Buchberger algorithm over Q with various optimization (the trace algo-
rithm, the homogenized trace algorithm and the efficient content reduction) and
the only function to be newly implemented is an efficient inverse computation
of algebraic numbers. In addition, the normal form computation with respect to
D, the set of defining polynomials greatly affects the whole efficiency.

3.1 Simplification of Algebraic Numbers

The normal form computation with respect to D is equivalent to the simplifi-
cation of algebraic numbers by the defining polynomials. As D is the reduced
Gröbner basis with respect to the lexicographic order, the result of simplification
does not depend on the order of monomial reductions. However its cost depends
on the order.

102 M. Noro

Example 1. Set

m1(t1) = t201 + t191 + 2,

m2(t1, t2) = t302 + (t191 + t181 + 1)t292 + 1.

m1(t1) is irreducible over Q. Let α1 be a root of m1(t). Then m2(α1, t) is ir-
reducible over Q(α1) and let α2 be a root of m2(α1, t). Let us consider the
simplification of α58

2 . If we always choose the reducer mk with the smallest pos-
sible k during a simplification, it takes only 0.02 sec. But if we always choose
mk with the largest possible k, it takes 2 sec. In the latter strategy, the cost for
simplification by m2 is dominant. After simplifying all the occurrences of αn

2 for
n ≥ 20, the intermediate remainder contains 4674 monomials and its α1 degree
is 551 = 19 × 29, which is a kind of intermediate expression swell.

In our current implementation, the simplification is done by the following
algorithm. Let f ∈ R be a polynomial to be simplified.

Algorithm 2
r ← 0
while f
= 0 do

if HT(f) is reduced with respect to D then
r ← r + HT(f)
f ← f − HT(f)

else
k ← the smallest k such that HT(mk)|HT(f)

(∗) f ← f − HC(f) · HT(f)
HT(mk)mk

endif
end while
return r

This is based on the following proposition.

Proposition 1. Let f1 be the right hand side of (∗) in Algorithm 2. Then we
have

degti
(f1) ≤

{
MAX(2(degti

(mi) − 1), degti
(f)) (i ≤ k − 1)

degti
(f) (i ≥ k)

Proof. By the property of k, degti
(HT(f)) ≤ degti

(mi) − 1 for i = 1, . . . , k − 1
holds and we have

degti
(

HT(f)
HT(mk)

(mk)) ≤
{

2(degti
(mi) − 1) (i ≤ k − 1)

degti
(HT(f)) (i ≥ k)

because mk is reduced with respect to mi for i ≤ k − 1 and mk does not contain
ti for i ≥ k + 1. This proves the assertion. ��

In particular, if f(t) and g(t) is reduced with respect to D, then each ti-degree of
the intermediate reminders does not exceed 2(degti

(mi)−1) during the execution
of Algorithm 2 and the remainder computation is expected to be efficient.

An Efficient Implementation for Computing Gröbner Bases 103

3.2 Computation of the Inverse of an Algebraic Number

Even if the ground field K is a simple extension, the computation of the in-
verse of an algebraic number is not an easy task. Non-modular extended Euclid
algorithms often cause coefficient swell and it seems better to apply modular
methods. We can apply Hensel lifting or Chinese remainder theorem (CRT) to
compute the inverse of f(α) for f(t) ∈ R. Let M = {s1, . . . , sd} be the set of
monomials which spans R/〈D〉 over Q, where d = dimQ R/〈D〉. Then we can
compute g(t) ∈ R such that g(α)f(α) = 1 as follows.

Algorithm 3
Convert

∑
i ciNFG(fsi) = 1 into a system of linear equations Ac = b

with respect to c = (c1, . . . , cd)T .
a = (a1, . . . , ad)T ← the solution of Ac = b

(Apply a modular method such as Hensel lifting or CRT.)
return

∑
i aisi

A more detailed explanation can be found in [7].

3.3 The Homogenized Trace Algorithm

Homogenization is very useful for avoiding intermediate coefficient swell over
Q, but it also increases the number of S-polynomials reduced to zero. By com-
bining homogenization and the trace algorithm, we can cut the additional cost
introduced by homogenization. Let B be a set of polynomials and p a prime.
Algorithm 4 is a general algorithm to compute a Gröbner basis candidate.

Algorithm 4 (Candidate(B, p))
L ← {{f, g} | f, g ∈ B, f
= g}
G ← B; Gp ← φp(B)
while L
= ∅ do

{f, g} ← an element of L
L ← L \ {{f, g}}
if NFGp(φp(f), φp(g))
= 0 then

r ← NFG(S(f, g))
if φp(HC(r)) = 0 then return failure
L ← L ∪ {{f, r} | f ∈ G}
G ← G ∪ {r}; Gp ← Gp ∪ {φp(r)}

end if
end while
return G

Let Sd be the set of S-polynomials whose total degrees are equal to d in an
execution of Buchberger algorithm. For a homogeneous input, we process Sd in
the increasing order with respect to d. Then, after processing all Si (i < d), Sd

produces all the Gröbner basis elements of the total degree d. We observe that
the total efficiency is improved if we execute an inter-reduction after processing

104 M. Noro

Sd. Furthermore, we also observe that inter-reductions during processing Sd

often improves the efficiency. Note that such inter-reductions are allowed because
what we are doing on Sd is nothing but the computation of a linear basis of the
homogeneous component Id of the total degree d of the input ideal I. In the
current implementation, an inter-reduction is executed every after k new basis
elements are generated, where k can be set by users and the default value is 6.

Algorithm 5 (Homogenized trace algorithm)
Bh ← the homogenization of B
loop

p ← a new prime
Gh ← Candidate(Bh, p)
if Gh
= failure then

G ← the dehomogenization of Gh

G ← {g ∈ G | HT(h)
 |HT(g) for all h ∈ G \ {g}}
if G is a Gröbner basis of 〈G〉 and NFG(f) = 0 for all f ∈ B then return G

endif
end loop

In Algorithm 5, a candidate of a Gröbner basis of 〈Bh〉 is computed, but the
final check is done for the dehomogenized candidate. If B is not homogeneous,
we usually have many redundant elements by dehomogenizing Gh. Except for
finitely many p, Gh is a Gröbner basis of 〈Bh〉, in that case G is a Gröbner basis
of 〈B〉. Then G is still a Gröbner basis after removing the redundant elements
and the final checks are expected to be easy by the removal of redundancy 1.

Now we go back to our Gröbner basis computation over algebraic number
fields. The normal forms in Algorithm 1 are computed over Q, so we can apply
Algorithm 5 by modifying Algorithm 4 as in Algorithm 1. We mention here the
homogenization of elements in Q[x, t]. We use the same notation as in Theorem
1. Algorithm 1 is essentially an algorithm over an algebraic number field K
and it is natural to regard t-variables as parts of the coefficient field. Therefore,
when we homogenize B̃ before entering Algorithm 4, the weights of t-variables,
which are used to compute sugar in Algorithm 4, are set to 0. This setting seems
natural, but it is not always optimal from the viewpoint of practical efficiency.
This will be discussed later.

4 Experiments

4.1 Related Functions

We briefly explain Risa/Asir functions for Gröbner basis computation over al-
gebraic number fields.

1 In some cases, the check is hard because of the large coefficients of the final basis
elements.

An Efficient Implementation for Computing Gröbner Bases 105

– newalg(DefPoly) generates a root of DefPoly, where DefPoly is a monic
univariate polynomial whose coefficients are polynomials of already defined
roots. That is, Risa/Asir can deal with multiple extension fields. Note that
the system does not check whether DefPoly is irreducible over the field
generated over Q by the roots contained in the polynomial. The irreducibility
can be checked by af.

– af(Poly, AlgList) factorizes a univariate polynomial Poly over an algebraic
number field generated by roots listed in AlgList.

– nd gr trace(PolyList, V arList, Homo, T race, Order)computes thereduced
Gröbner basis of 〈PolyList〉 ⊂ K[V arList] with respect to a term order speci-
fied by Order, where K is an algebraic number field generated overQ by all the
roots appeared in PolyList. Order = 0 and Order = 2 mean the graded re-
verse lexicographic order (grlex) and the lexicographic order (lex) respectively.
If Trace = Homo = 1, Algorithm 5 is executed.This function implements var-
ious improvements such as vectorized length exponent vector [9] and geobucket
addition [8].

Remark 1. For comparison we also implemented a function which computes
Gröbner bases over algebraic number fields by using addition, subtraction and
multiplication over algebraic number fields. In this implementation, each normal
form is appended to the intermediate basis without being made monic. Then
we have to multiply the polynomial to be reduced by an algebraic number in
each reduction step, which makes the coefficients larger. Furthermore, the trace
algorithms cannot be applied because the ground field is an algebraic number
field. Thus all the computations have to be done over the algebraic number
field. We applied this function to several examples which are easily computed
by nd gr trace and we found this function is useless for our purpose.

Example 2. Univariate polynomial GCD can be computed by Gröbner basis
computation. In the following Risa/Asir session, A1 is a root of M1. Then M2
is defined over Q(A1) and af tells that it is irreducible over Q(A1). A2 is a root
of M2. F1 and F2 are polynomials over Q(A1, A2) and GCD(F1, F2) is computed
by nd gr trace.

[0] load("sp")$
[101] M1=t1^6+6*t1^4+2*t1^3+9*t1^2+6*t1-4$
[102] A1=newalg(M1);
(#0)
[103] M2=t^3+3*t+A1^3+3*A1+2$
[104] af(M2,[A1]);
[[t^3+3*t+(#0^3+3*#0+2),1]]
[105] A2=newalg(M2);
(#1)
[106] F1 = x^6+(-6*A2+3*A1)*x^5+(15*A2^2-15*A1*A2+6*A1^2+27)*x^4
+(-20*A2^3+30*A1*A2^2+(-24*A1^2-108)*A2+7*A1^3+54*A1)*x^3+(15*A2^4
-30*A1*A2^3+(36*A1^2+162)*A2^2+(-21*A1^3-162*A1)*A2-27*A1^5+6*A1^4
-135*A1^3-216*A1)*x^2+(-6*A2^5+15*A1*A2^4+(-24*A1^2-108)*A2^3

106 M. Noro

+(21*A1^3+162*A1)*A2^2+(54*A1^5-12*A1^4+270*A1^3+432*A1)*A2+3*A1^5
+27*A1^4+27*A1^3+27*A1^2+162*A1-108)*x+(A2^6-3*A1*A2^5+(6*A1^2+27)
*A2^4+(-7*A1^3-54*A1)*A2^3+(-27*A1^5+6*A1^4-135*A1^3-216*A1)*A2^2
+(-3*A1^5-27*A1^4-27*A1^3-27*A1^2-162*A1+108)*A2-54*A1^5-6*A1^4
-218*A1^3-90*A1^2-276*A1+220)$
[107] F2 = x^4+(2*A2+2*A1)*x^3+(3*A2^2+3*A1*A2+3*A1^2+12)*x^2
+(3*A1*A2^2+(3*A1^2+6)*A2+6*A1-4)*x+(-2*A2-2*A1)$
[108] G=nd_gr_trace([F1,F2],[x],1,1,0);
[20*x^2+(20*#1+20*#0)*x+((-6*#0^5+3*#0^4-30*#0^3+3*#0^2-48*#0+8)
#1^2+(3#0^5+6*#0^4+15*#0^3+36*#0^2+34*#0+36)*#1-12*#0^5+6*#0^4
-60*#0^3+26*#0^2-96*#0+96)]

4.2 Timings

In the following examples, Algorithm 5 is applied over an algebraic number field
or Q. Timings were measured on a PC with Intel Xeon 3.4GHz. In the tables,
“total”, “#basis”, “check”, “monic” mean the total time, the number of the
intermediate basis elements, the time for checking the Gröbner basis candidate
and the time for making the normal forms monic. The last two are included in
the total time. Timings are shown in seconds.

Example 3. Let C7 be Cyclic-7 system with variables c1, . . . , c7. We compute
the reduced Gröbner basis of C7,ω = C7|c7=ω with respect to grlex order for
c1 � · · · � c6, where ω is a root of an irreducible factor m(c7) of the minimal
polynomial of c7 in Q[c1, . . . , c7]/〈C7〉.

1. m(c7) = c6
7 + c5

7 + c4
7 + c3

7 + c2
7 + c7 + 1

2. m(c7) = c2
7 + 5c7 + 1

The Gröbner basis is very simple:

〈c2 − 1, c3 − 1, c4 − 1, c5 − 1, c1 + c6 + ω + 4, c2
6 + (ω + 4)c6 − ω − 5〉,

but the computation is hard.
3. m(c7) = c12

7 − 5c11
7 + 24c10

7 − 115c9
7 + 551c8

7 − 2640c7
7 + 12649c6

7 − 2640c5
7 +

551c4
7 − 115c3

7 + 24c2
7 − 5c7 + 1

Table 1. Gröbner computations of C7,ω

total #basis check monic
1 over Q(ω) 9.3 268 0.2 1.4

1 over Q 74 588 – –
2 over Q(ω) 198 306 0 83

2 over Q 119 675 – –
3 over Q(ω) 256 306 0 128

3 over Q 840 857 – –

An Efficient Implementation for Computing Gröbner Bases 107

Example 4.

m1(t1) = t71 − 7t1 + 3,

m2(t1, t2) = t62 + t1t
5
2 + t21t

4
2 + t31t

3
2 + t41t

2
2 + t51t2 + t61 − 7.

m1(t1) is irreducible over Q. Let α1 be a root of m1(t). m2(α1, t) is an irreducible
factor of m1(t) over Q(α1) and let α2 be a root of m2(α1, t).

Cap = {f1, f2, f3, f4}
f1 = (2ty − 2)x − (α1 + α2)zy2 − z

f2 = 2α2α
4
1zx3 + (4ty + α2)x2 + (4zy2 + 4z)x + 2ty3 − 10y2 − 10ty + 2α2

1 + α2
2

f3 = (t2 − 1)x + (α2α
4
1 + α3

2α
3
1)tzy − 2z

f4 = (−z2 + 4t2 + α2α1 + 2α3
2)zx + (4tz2 + 2t3 − 10t)y + 4z2 − 10t2 + α2α

3
1

Cap is constructed from Caprasse [2] by replacing its several coefficients by al-
gebraic numbers in Q(α1, α2). In the computation over Q(α1, α2), almost all the

Table 2. Gröbner computations of Cap

total #basis check monic
over Q(α1, α2) 306 45 242 20

over Q > 1hour — – –

time is spent on the check of the Gröbner basis candidate because the result con-
tains many algebraic numbers with large integer coefficients. The computation
over Q does not terminate within one hour.

4.3 Discussion and Future Works

The results of our experiments show not only an advantage of our new method,
but also show that further improvements are required. In Example 3-2, the com-
putation via Theorem 1 is more efficient than the new method. We apply ho-
mogenization in both computations, but the results of homogenization differ
according to the different settings of the weights, which affects the selection
strategy and eventually the behaviors of the computations. The inefficiency of
the new method in this example comes from large intermediate integer coeffi-
cients. They are still large even if we execute inter-reductions frequently, but
they become small by the last inter-reduction executed after all S-pairs having
the same total degree have been processed. Therefore it is possible to improve
the new method if we have an efficient F4-like implementation.

The current implementation requires that the each root is defined as a root of
an irreducible polynomial and it is often hard to check the irreducibility. If we ap-
ply Dynamic Evaluation [3] we can weaken the requirement: the ideal generated

108 M. Noro

by the defining polynomials is required to be only zero-dimensional and radical.
Then the leading coefficient HCR(r̃) in Algorithm 1 is not necessarily invertible.
If it is not invertible, we can split the ground ring by using the non-invertible
element and the execution of Buchberger algorithm itself is split. Suppose that
the ground ring R is represented as Q[t1, . . . , tl]/J with a zero-dimensional rad-
ical ideal J . The following algorithm computes a set of pairs (Ji, ri) such that
R = ⊕iRi, Ri = Q[t1, . . . , tl]/Ji, ri ∈ Ri[x1, . . . , xn] and ri = cir̃ where ci is the
inverse of HCRi(r̃) in Ri, thus ri is monic.

Algorithm 6 (split ground ring(J, r̃))

loop
h ← HCR(r̃)
if h mod J is invertible then

u(t) ← the inverse of h mod J
r ← NFD(ur̃)
return {(J, r)}

else
J1 ← J : h
J ′ ← J + 〈h〉
u1(t) ← the inverse of h mod J1 (h mod J1 is invertible in J1)
r1 ← NFD(u1r̃)
r′ ← r̃ mod J ′

S′ ←split ground ring(J ′, r′)
return {(J1, r1)} ∪ S′

end if
end loop

By applying a new modular method proposed in [7], we can quickly check the in-
vertibility of h mod J and compute J : h and J +〈h〉 if h mod J is not invertible.
We plan to implement this method in near future.

References

1. Risa/Asir : A computer algebra system.
http://www.math.kobe-u.ac.jp/Asir/asir.html.

2. SymbolicData. http://www.SymbolicData.org.
3. J. Della Dora, C. Discrescenso, D. Duval. About a new method for computing in

algebraic number fields, In Proc. Eurocal’85 (LNCS 204), Springer-Verlag, 289-290,
1985.

4. C. Traverso. Gröbner trace algorithms. In Proc. ISSAC’88, LNCS 358, Springer-
Verlag 125-138, 1988.

5. M. Noro and J. McKay. Computation of replicable functions on Risa/Asir. In
Proceedings of the Second International Symposium on Symbolic Computation
PASCO’97, ACM Press, 130-138, 1997.

6. J. C. Faugère. A new efficient algorithm for computing Groebner bases (F4). Jour-
nal of Pure and Applied Algebra (139) 1-3, 61-88, 1999.

An Efficient Implementation for Computing Gröbner Bases 109

7. M. Noro. Modular Dynamic Evaluation. To appear in Proc. ISSAC 2006, 2006.
8. T. Yan. The Geobucket Data Structure for Polynomials. J. Symb. Comp. 25,3,

285-294, 1998.
9. H. Schönemann. SINGULAR in a Framework for Polynomial Computations.

M. Joswig and N. Takayama (eds.), Algebra, Geometry, and Software Systems,
Springer, 163-176, 2003.

	Introduction
	The Algorithm
	The Implementation
	Simplification of Algebraic Numbers
	Computation of the Inverse of an Algebraic Number
	The Homogenized Trace Algorithm

	Experiments
	Related Functions
	Timings
	Discussion and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

