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Preface 

This volume contains the outstanding collection of invited papers and refereed papers 
selected for the Second International Congress on Mathematical Software, ICMS 
2006, held in Castro Urdiales, Spain, September 1-3, 2006.  We cordially invite you 
to visit the ICMS 2006 website http://www.icms2006.unican.es where you can find 
all relevant information about this interesting event. 

ICMS 2006 was the second edition of this congress, which follows up the 
successful ICMS 2002 held in Beijing, China. Since its inception, this congress has 
been a satellite event of the International Congress of Mathematicians - ICM, the 
world’s largest conference on mathematics, celebrated every four years since the 
edition of 1900 in Paris, where David Hilbert presented his 23 famous problems. For 
the first time, this 2006 edition of ICM is held in Spain (see: http://www.icm2006.org 
for details), and so is ICMS 2006.  

This congress was devoted to all aspects of mathematical software, whose 
appearance is — in our opinion — one of the most important events in mathematics. 
Mathematical software systems are used to construct examples, to prove theorems, 
and to find new mathematical phenomena. Conversely, mathematical research often 
motivates developments of new algorithms and new systems. Beyond mathematics, 
mathematical software systems are becoming indispensable tools in many branches of 
science and technology.  

The development of mathematical software systems relies on the cooperation of 
mathematicians, algorithm designers, programmers, and the feedback from users. The 
main audiences of this conference are mathematical software developers and 
programming mathematicians, but we also intend to provide an opportunity to discuss 
these topics with mathematicians and users from applied areas. The congress focused 
on the following major themes:  

1. Software engineering problems for mathematical software 
2. Mathematics and media (including user interfaces and integration of documents 

and software systems) 
3. Mathematics related to mathematical software (experiments, algorithms) as 

well as scientific computing 
4. High-performance computing 
5. Applications of mathematical software.  

ICMS 2006 comprised ten sessions — devoted to different mathematical software 
issues — some plenary talks and a general track. We would like to thank all session 
organizers for their diligent work, which further enhanced the congress standing and 
to all reviewers for their expertise and generous effort which led to a very high-quality 
event with excellent papers and presentations. We specially recognize the contribution 
of the Program Committee and Advisory Program Committee members for their 
tremendous support and for making this congress a very sucessful event.  

To keep all congress activities within the planned three days we scheduled three 
parallel sessions, with the remarkable exception of the plenary talks. We are thankful 
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to the plenary and invited speakers for their kind acceptance to attend to this congress 
and deliver a talk. 

All presentations were given at the congress venue, La Residencia, a recently 
rebuilt palace intended to become the new “Centro Internacional de Encuentros 
Matemáticos - CIEM” (International Center for Mathematical Meetings), an ambi-
tious initiative of the Spanish mathematical community oriented towards the creation 
of an international center for mathematics in Spain. La Residencia offers advanced 
audio-visual equipment for conferences and presentations as well as a unique 
indoors–outdoors environment for both fruitful discussions and relaxing enjoyment. 
In addition, it is placed in Castro Urdiales, one of the most beautiful places of the 
north coast of Spain. Castro Urdiales — in the region of Cantabria — is an old 
fishermen's town with magnificient buildings, beautiful promenades, a very rich 
history and a lovely combination between the antique and the modern. We thank the 
Director of CIEM, Laureano González-Vega, for his support before and during the 
congress, and the Castro Urdiales Town Council for the facilities to organize 
the congress in this beautiful place.  

ICMS 2006 was jointly organized by the Department of Mathematics, Statistics 
and Computation and the Department of Applied Mathematics and Computational 
Sciences of the University of Cantabria, Spain. We thank both departments for their 
encouranging support to this congress from the very beginning. We would like to 
express our gratitude to the Local Organizing Committee — and especially to the 
local Organizing Chair, Jaime Gutierrez — for their persistent and enthusiastic work 
towards the success of ICMS 2006. The smoothness of the organization was ensured 
by the cooperation of the Ph.D. students Alvar Ibeas and Akemi Gálvez, who took 
care of a number of tasks, including the congress website and the posters.  

We owe special thanks to our sponsors: AddLink Software Científico, the 
University of Cantabria, the International Congress of Mathematicians, the Spanish 
Ministry of Education and Science, the Fundación Leonardo Torres Quevedo and the 
Centro Internacional de Encuentros Matemáticos, for their continuous support without 
which this congress would not be possible. We also thank our publisher, Springer — 
and especially LNCS editor Alfred Hofmann and his team — for their acceptance to 
publish the proceedings and for their kind assistance and cooperation during the 
editing process. 

Finally, we thank all authors for their submissions and all congress attendants for 
making ICMS 2006 truly an excellent forum on mathematical software, facilitating 
exchange of ideas, fostering new collaborations and shaping the future of 
mathematical software. Last, but certainly not least, we wish to thank our readers for 
their interest in this volume. We really hope you find in these pages interesting 
material and fruitful ideas for your future work.  

September 2006  Nobuki Takayama 
      Andrés Iglesias 



 Preface VII 

Note 

The picture below shows the famous “Mappa Mundi” the world’s oldest representation 
of the New World, dating back to 1500 AD. It was made by Juan de La Cosa, a 
Spanish sea captain who sailed with Columbus to the new world on his first three 
voyages. Juan de la Cosa was born in Santoña — a small town on the north coast of 
Spain — near Castro Urdiales (ICMS 2006 congress venue). After several trips to the 
coast of Africa, he became a proficient navigator and map maker and when 
Christopher Columbus was planning his 1492 first voyage to the “New World,” he 
joined the expedition with his own vessel: Santa Maria. 

Of special interest in this map is the outline of Cuba, which Christopher Columbus 
never believed to be an island. In fact, on Columbus’s third trip, Juan de la Cosa 
traveled alongside Columbus on the “La Niña” ship and a difference of opinion arose 
concerning the lands newly discovered. Juan de la Cosa was one of the signers to the 
Perez-Luna agreement, which stated that Cuba was a continent. He signed this under 
the orders of Columbus, although he was sure that the island now known as Cuba was 
not forming part of the continent. Amazingly, Columbus remarked: "Juan de la Cosa 
thinks he knows more than I do in the art of navigating". 

The map is currently in the Naval Museum of Madrid (ICM 2006 congress venue) 
and it is a good example of the application of mathematical techniques to cartography. 

 



Organization 

ICMS 2006 was organized by the Department of Mathematics, Statistics and 
Computation and the Department of Applied Mathematics and Computational 
Sciences of the University of Cantabria, Spain.  

Conference Chairs 

Nobuki Takayama (Kobe University, Japan) 
Andrés Iglesias (University of Cantabria, Spain) 

Program Committee 

Henk Barendregt  (Nijmegen University, The Netherlands) 
Komei Fukuda (ETH Zentrum, Zurich, Switzerland) 
Xiaoshan Gao (Academia Sinica, Beijing, China) 
Gert-Martin Greuel (University of Kaiserslautern, Germany) 
Jaime Gutiérrez (University of Cantabria, Spain) 
Steve Linton (University of St. Andrews, UK) 
Tetsuo Ida (University of Tsukuba, Japan) 
Andres Iglesias (University of Cantabria, Spain) 
Michael Joswig (Technische Universität Darmstadt, Germany) 
Ken Nakamula (Tokyo Metropolitan University, Japan) 
Michael Pohst (Technische Universität Berlin, Germany) 
Konrad Polthier (Konrad Zuse Zentrum, Berlin, Germany) 
Rafael Sendra (University of Alcalá de Henares, Spain) 
David Sevilla (Concordia University, Canada) 
Nobuki Takayama (Kobe University, Japan) 
Jan Verschelde (University of Illinois at Chicago, USA) 
Freek Wiedijk  (Nijmegen University, The Netherlands) 
Joris Van der Hoeven (Université Paris-Sud, France) 

Advisory Program Committee 

Arjeh Cohen  (Eindhoven University of Technology, The Netherlands) 
Jack Dongarra (University of Tennessee,USA) 
Jose M. Gutiérrez (University of Cantabria, Spain) 
Bernd Sturmfels (University of California Berkeley, USA) 
Dongming Wang (Université Pierre et Marie Curie and CNRS, France) 



 Organization 

 

X 

Local Organizing Committee 

Jaime Gutiérrez (Chair) (University of Cantabria, Spain) 
Andrés Iglesias (University of Cantabria, Spain) 
Alvar Ibeas (University of Cantabria, Spain) 
Akemi Gálvez (University of Cantabria, Spain) 

Session Organizers 

New Developments on Computer Algebra Packages 
Andrés Iglesias (University of Cantabria, Spain) 
Tetsuo Ida (University of Tsukuba, Japan) 

Interfacing Computer Algebra and Mathematical Visualization 
Konrad Polthier (Konrad Zuse Zentrum, Berlin, Germany) 

Computer Mathematics 
Freek Wiedijk  (Nijmegen University, The Netherlands) 
Henk Banrendregt (Advisory Organizer) (Nijmegen University, The Netherlands) 

Software for Algebraic Geometry and Related Topics 
Nobuki Takayama (Kobe University, Japan) 
Gert-Martin Greuel (Advisory Organizer) (University of Kaiserslautern, Germany) 

Number Theoretical Software 
Ken Nakamula (Tokyo Metropolitan University, Japan) 
Michael Pohst (Technische Universität Berlin, Germany) 

Methods in Computational Number Theory 
David Sevilla (Concordia University, Canada) 
Jaime Gutiérrez (University of Cantabria, Spain) 

Free Software for Computer Algebra 
Joris Van der Hoeven (Université Paris-Sud, France) 

Software for Optimization and Geometric Computation 
Komei Fukuda (ETH Zentrum, Zurich, Switzerland) 
Michael Joswig (Technische Universität Darmstadt, Germany) 

Methods and Software for Computing Mathematical Functions 
Amparo Gil (University of Cantabria, Spain) 
Javier Segura (University of Cantabria, Spain) 

Access to Mathematics on the Web 
Paul Libbrecht (German Research Center for Artificial Intelligence, Germany) 



 Oraganization XI 

 

Sponsoring Organizations 

AddLink Scientific software 

 
The University of Cantabria 

 
The International Congress of Mathematicians, ICM 2006 

 
Spanish Ministry of Education and Science 

 
Fundación Leonardo Torres Quevedo 

 
CIEM: International Center of Mathematical Meetings 

 



Table of Contents

New Developments on Computer Algebra Packages
(Andrés Iglesias, Tetsuo Ida)

A General Computational Scheme for Testing Admissibility of Nilpotent
Orbits of Real Lie Groups of Inner Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Alfred G. Noël
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jReality, jtem, and Oorange — A Way to Do Math
with Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Tim Hoffmann, Markus Schmies

MuPAD’s Graphics System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Christopher Creutzig



XIV Table of Contents

Software for Algebraic Geometry and Related Topics
(Nobuki Takayama, Gert-Martin Greuel)

An Efficient Implementation for Computing Gröbner Bases over
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A General Computational Scheme for Testing
Admissibility of Nilpotent Orbits of Real Lie

Groups of Inner Type

Alfred G. Noël

Department of Mathematics University of Massachusetts
Boston, MA 02125-3393, USA

anoel@math.umb.edu

Abstract. One of the most fundamental problems in the field of Repre-
sentation Theory is the description of all the unitary representations of a
given group. For non-compact real reductive Lie groups, there is evidence
that new unitary representations can be obtained from data provided by
their admissible nilpotent orbits. In this paper, we describe a general
scheme for determining the admissibility of a given real nilpotent orbit.
We implement some parts of the scheme using the software system LiE.
We give a detailed example and study the complexity of the algorithms.

1 Introduction

For real reductive Lie groups there is substantial evidence linking admissible
orbits and unitary representations. Standard methods such as parabolic induc-
tion can be used to associate unitary representations to admissible semisimple
orbits. However the theory is not well developed for nilpotent orbits. For ex-
ample we do not have a clear strategy to attach a representation to a general
admissible orbit. In many cases Vogan and Barbash have proven that the set of
irreducible representations obtained from the admissible nilpotent orbits or the
unipotent representations are the building blocks for all unitary representations
of the group. In the case of real semisimple Lie groups the admissible nilpotent
orbits seem to be very good candidates for which a general technique may be
developed [10].

Unless otherwise specified, g will be a real semisimple Lie algebra of inner
type with adjoint group G and Cartan decomposition g = k ⊕ p relative to a
Cartan involution θ. The term inner type means that rank(g) = rank(k). Some
authors use the term equal rank to refer to such algebras. We will denote by
g

C
the complexification of g. Let σ be the conjugation of g

C
with respect to g.

Then g
C

= k
C
⊕ p

C
where k

C
and p

C
are obtained by complexifying k and p

respectively. K will be a maximal compact Lie subgroup of G with Lie algebra
k and K

C
will be the connected subgroup of the adjoint group G

C
of g

C
, with

Lie algebra k
C
. It is well known that K

C
acts on p

C
and the number of nilpotent

orbits of K
C

in p
C

is finite. Furthermore, for a nilpotent e ∈ p
C
, K

C
.e is a

connected component of G
C
.e ∩ p

C
.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 1–11, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 The Kostant-Sekiguchi Correspondence

A triple (x, e, f) in g
C

is called a standard triple if [x, e] = 2e, [x, f ] = −2f and
[e, f ] = x. If x ∈ k

C
and e and f ∈ p

C
then (x, e, f) is a normal triple. It is a

result of Kostant and Rallis [2] that any nilpotent e of p
C

can be embedded in
a standard normal triple (x, e, f). Moreover e is K

C
-conjugate to a nilpotent e′

inside of a normal triple (x′, e′, f ′) with σ(e′) = f ′ [7]. The triple (x′, e′, f ′) will
be called a Kostant− Sekiguchi or KS-triple.

Every nilpotent E′ in g is G-conjugate to a nilpotent E embedded in a triple
(H, E, F ) in g with the property that θ(H) = −H and θ(E) = −F [7]. Such a
triple will be called a KS-triple also.

Define a map c from the set of KS-triples of g to the set of normal triples of
g

C
as follows:

x = c(H) = i(E − F )

e = c(E) =
1
2
(H + i(E + F ))

f = c(F ) =
1
2
(H − i(E + F ))

The triple (x, e, f) is called the Cayley transform of (H, E, F ). It is easy to
verify that the triple (x, e, f) is a KS-triple and that x ∈ ik. The Kostant-
Sekiguchi correspondence [7] gives a one to one map between the set of G-
conjugacy classes of nilpotents in g and the K

C
-conjugacy classes of nilpotents

in p
C
. This correspondence sends the zero orbit to the zero orbit and the orbit

through the nilpositive element of a KS-triple to the one through the nilpositive
element of its Cayley transform. Michèle Vergne [8] has proved that there is in
fact a diffeomorphism between a G-conjugacy class and the k

C
-conjugacy class

asssociated to it by the Kostant-Sekiguchi correspondence.

3 Admissible Orbits

The coadjoint representation of G on g∗, the dual space of g, is defined as follows:

Ad∗g(f)(E) = f(Adg−1 (E)) g ∈ G and E ∈ g.

The differential of the above representation on g is:

ad∗X(f)(E) = −f([X, E]) X ∈ g.

Let g = k + p be a Cartan decomposition of g. It is known that there exists a
G-invariant non-degenerate bilinear form 〈, 〉 on g which is negative definite on k
and positive definite on p. We will make use of such a form to identify coadjoint
orbits in g∗ with adjoint orbits in g. Therefore we shall determine admissible
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nilpotent orbits of G in g. We will consider the cases where G is adjoint or
simply connected.

For λ ∈ g∗ define Gλ = {g ∈ G : g(λ) = λ} and gλ = {X ∈ g : λ([X, g]) = 0}.
Then there is a non-degenerate symplectic form ωλ on g/gλ given by ωλ(X +
gλ, Y + gλ) = λ([X, Y ]). Moreover Gλ preserves ωλ. Denote by Sp(ωλ) the
symplectic group defined by ωλ. Define the group :

G̃λ = {(g, m) ∈ Gλ ×M(ωλ) : ψ(g) = π(m)}

where M(ωλ) is the metaplectic group associated with Sp(ωλ), ψ is a natural
homomorphism from Gλ to Sp(ωλ) and π is defined as follows:

1 −→ {1, ξ} −→M(ωλ) −→ Sp(ωλ) −→ 1

M(ωλ) is a two-fold covering of Sp(ωλ) which can be pulled back to give G̃λ as
a double cover of Gλ.

Definition 1. A representation (ρ, V ) of G̃λ is called admissible if ρ(ξ) = −1V

and dρ(E) =
√
−1λ(E)1V for all E ∈ gλ. The linear functional λ is said to be

admissible if G̃λ has at least one admissible representation.

An element E of g is admissible if and only if its image λE under 〈, 〉 is admissible
in g∗.

We note that in the case of the trivial nilpotent orbit G̃λ is trivial. Hence the
trivial nilpotent orbit is always admissible. This is the orbit to which one would
want to attach the trivial representation in the Orbit Method scheme. From now
on we will concern ourselves with non-zero nilpotent orbits.

J. Schwartz [6] translated the admissibility of real nilpotent orbits into the
admissiblity of nilpotent elements in complex symmetric spaces via the so-called
Kostant-Sekiguchi [7] correspondence. T. Ohta [5] used this technique to deter-
mine admissibility of nilpotent orbits in the classical Lie algebras. We should
also point out that Schwartz has classified nilpotent admissible orbits of several
classical Lie groups.

Let e be non zero nilpotent in p
C
. Then Ke

C
acts k

C
/ ke

C
and (k

C
/ke

C
)∗. Define

the character δe of Ke

C
as follows:

δe(g) = (det(g|k
C

/ke

C
))−1 g ∈ Ke

C

Using δe and the homomorphism s : C× → C×, with s(z) = z2 we obtain the
following double cover of Ke

C
:

K̃e

C
= {(g, z) ∈ Ke

C
× C× : δe(g) = z2}

It turns out that this covering is precisely the one induced on KE , when E =
c(e) and λ identified with E, by the metaplectic covering M(ωλ). Schwartz used
such a covering to show that admissibility of real nilpotent orbits is equivalent
to admissibility of nilpotent orbits in complex symmetric spaces.
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Definition 2. A representation χ of Ke

C
is said to be admissible if its differential

is half the differential of δe. The nilpotent e is admissible if Ke

C
has at least one

admissible representation.

The following theorem is due to J. Schwartz [6].

Theorem 1. There is a natural bijection between the equivalence classes of
nilpotent admissible G-orbits and the equivalence classes of nilpotent admissi-
ble K

C
-orbits.

See [11] Lemma 7.8, Theorem 7.11, Theorem 7.14. for a proof.
In fact the question of admissibility of nilpotent orbits can be translated into

a question on the representation of the identity component (Ke

C
)◦ of the group

Ke
C
. See [10], [11].

The character δe is difficult to compute explicitly from the above description.
However Takuya Ohta [O] has found an explicit description of δe which we shall
discuss below. We will need some notations. Let (x, e, f) to be a KS-triple with
x ∈ ik. From the representation theory of sl2, g

C
has the following eigenspace

decomposition:

g
C

=
⊕

j∈ZZ

g(j)
C

where g(j)
C

= {z ∈ g
C
|[x, z] = jz}.

Similarly we have:

k
C

=
⊕

j∈ZZ

k(j)
C

where k(j)
C

= {z ∈ k
C
|[x, z] = jz}

and
p

C
=

⊕
j∈ZZ

p(j)
C

where p(j)
C

= {z ∈ p
C
|[x, z] = jz}.

Moreover the centralizers of e in k
C

and p
C

decompose as:

ke

C
=

⊕
j∈ZZ

(ke

C
∩ kj

C
) =

⊕
j≥0

(ke

C
∩ kj

C
)

and
pe

C
=

⊕
j∈ZZ

(pe

C
∩ pj

C
) =

⊕
j≥0

(pe

C
∩ pj

C
)

It is a known fact that ke

C
= k(x,e,f)

C
⊕ ue, where k(x,e,f)

C
= ke

C
∩ k0

C
is a reductive

subalgebra of ke

C
and ue =

⊕
j>0

(ke

C
∩ kj

C
) consists of nilpotent elements. Denote

by dδe the differential of δe then we have the next two lemmas from [5]:
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Lemma 1. The differential of δe is trivial on ue. Suppose that t
C

is a toral sub-
algebra of k

C
containing x. Then the centralizer te

C
of e in t

C
is a toral subalgebra

of t(x,e,f)
C

and dδe on te
C

is given by

dδe(t) =
∑
i≥1

tr(ad(t)|ki

C
)−

∑
i≥2

tr(ad(t)|pi

C
) = −

∑
i≥1

tr(ad(t)|pi

C
)+

∑
i≥2

tr(ad(t)|ki

C
)

The preceding lemma suggests that admissibility is a question on tori of k(x,e,f)
C

.
This is indeed the case as described in the next two results of Ohta [5].

Lemma 2. Let t1 be a Cartan subalgebra of k(x,e,f)
C

and T1 the corresponding
connected subgroup of (K(x,e,f)

C
)◦ the identity component of K(x,e,f)

C
. Then e is

admissible if and only if there exists a character, χ, of T1 such that δe(g) =
(χ(g))2 for all g ∈ T1.

Corollary 1. Suppose that T1 	 (C×)r. Then dδe|t1 is a linear map : Cr −→ C.
From the previous lemma e is admissible if and only if each coefficient of zi in
the linear combination of (z1, z2, . . . zr) is an even integer.

4 Algorithms

From the previous section we see that in order to develop a computational scheme
for classifying admissible nilpotent orbits in a real Lie algebra we need to :

1. implement algorithms for computing representatives of K
C
-conjugacy

classes of maximal tori in the reductive centralizer k(x,e,f)
C

.
2. implement an algorithm for computing Otha’s character δe.
3. Evaluate δe on a basis of a torus t1 computed in (1) and use the above

corollary to decide whether or not the given orbit is admissible.

Step 1 requires implementing an algorithm given in [3] for computing maximal
tori in k(x,e,f)

C
. Next, we develop an algorithm written in pidgin LiE to compute

δe. Readers who are not familiar with the software system LiE should consult
[9].

4.1 Algorithm I

# This function computes the Ohta’s character associated to
# a real nilpotent element via the Kostant-Sekiguchi
# correspondence.
# This function assumes that the real form of the
# algebra g is of inner-type. We also assume that the Vogan
# system of simple roots contains exactly one non-compact root.
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#Author: Alfred G. Noel
#Purpose: Classification of admissible nilpotent orbits.

# Date : January 10, 2006.

Ohta_character(int ncptindex; vec neutral; mat kroots; grp g)=
{
# ncpt_index: indicate which roots are non compact.
# neutral: semisimple element in a normal SL2-triple associated
# with the orbit.
# It should be expressed in the root system of the algebra g.
# kroots: a system of simple roots for K.
# g: the type of the simple group

setdefault(g); n = n_pos_roots; l = Lie_rank;
alpha = pos_roots; roots = alpha^-alpha;

k_index =0;
p_index =0;
k_sum = null(l);
p_sum = null(l);

#Compute degree positive roots

for k = 1 to 2*n do
degree = 0;

for i = 1 to l do
for j = 1 to l do
degree = degree + neutral[j]*roots[k][i]*
Cartan(alpha[i],alpha[j]);
od; od;
if (roots[k][ncptindex] == 1 || roots[k][ncptindex] == -1)
then if degree > 0 then p_index = p_index +1;

p_sum = p_sum + roots[k]; fi;
else

if degree > 1 then k_index = k_index +1;
k_sum = k_sum + roots[k]; fi;

fi; od;

# Compute delta
delta = k_sum - p_sum;
return(delta);
}

Once we have determined the Ohta’s character of the given orbit we evaluate it
on the torus t1 obtained in step 1. We need a few more notations. We use the
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Bourbaki simple root system Δ = {α1, . . . αl} for g
C
. Hence t1 =

⊕
μ

Hμ where

Hμ =
l∑

i=1
μiHαi with μi ∈ ZZ.

4.2 Algorithm II

# This function evaluates the Ohta’s character of a
# nilpotent element on a maximal torus of the reductive
# centralizer associated with it.
# Author: Alfred G. Noel
# Purpose: Classification of admissible nilpotent orbits.

# Date : January 12, 2006.

Check_admissibility(vec delta; mat torus; int dim_torus; grp g)=
{
# delta: one dimensional array describing the Ohta’s character
# torus : a two dimensional array whose rows are basis element of
# the maximal torus described above and computed in step 1.
# dim_torus: dimension of the torus
# g: the type of the simple group

setdefault(g);
l = Lie_rank;
coeff= null(dim_torus);
for k = 1 to dim_torus do
print (" ");
for i = 1 to l do

for j = 1 to l do
incr = delta[i]*torus[k][j];
prod = Cartan(alpha[i], alpha[j]);

coeff[k] = coeff[k] + incr*prod;
od;

od;
od;
for i = 1 to dim_torus do
if coeff[i] % 2 !=0 then
print( "This orbit not admissible under the Adjoint group");
break;
fi;
od;
return(coeff);
}
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4.3 Example

Here is a LiE program for the Lie group E8. This group is the largest exceptional
group and serves as a benchmark case for computational schemes inRepresentation
theory.

# EVIII a real form of E8 orbit 7
# Djokovic label: 11000001
# This program is designed and implemented
# by Alfred G. Noel
# Purpose: Investigation of admissible representations

setdefault E8;
n = n_pos_roots;
l = Lie_rank;
alpha = pos_roots;
g = E8
# K_C simple root system #
beta = [[2,2,3,4,3,2,1,0], [0,0,0,0,0,0,0,1],
[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],
[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],
[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0]];

# The triple (x,e,f) : computed from a previous alogrithm
# in LNCS. See reference

x=[3, 6, 7, 11, 9, 7, 5, 3];
e = [[1,2,2,3,2,1,1,1], [1,2,2,3,3,3,2,1], [1,2,3,5,4,3,2,1]];
f = -e;

#Compute delta:

delta =Ohta_character(1, x ,beta, g);

print(delta);

#Check admissibility:

# Compute the torus from a previous alogrithm in LNCS.
# See reference
torus =[[0,0,1,0, 0, 0, 0, 0], [ 0,0, 0, 0,1, 0, 0,0],
[ 0,0, 0, 0, 0, 0,1,0],[ 0,1, 0, 1, 0,0, 0,-1],
[ 1, 0, 0, 1, 0,1, 0,1]];

coeff = null(5);
coeff = Check_admissibility(delta,torus,5,g);
print ( "FINISH");
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Here is the corresponding LiE session:

LiE version 2.2 created on Nov 22 1997 at 16:50:29
Authors: Arjeh M. Cohen, Marc van Leeuwen, Bert Lisser.
Mac port by S. Grimm
Public distribution version

type ’?help’ for help information
type ’?’ for a list of help entries.
> read kdd
> read admis
> read mytest1

[-17,-33,-39,-61,-50,-39,-28,-17]
This orbit not admissible under the Adjoint group

FINISH
> coeff

[0,0,0,1,-1]
>

The functions are in the files “kdd” and “admis”. The example is in the file
“mytest1”. As the reader can see this orbit is not admissible under the adjoint
group since δe(z1, z2, z3, z4, z5) = z4 − z5.

We use two software systems LiE version 2.2 and Mathematica version 4.0 to
implement the algorithms. The fact that Mathematica offers an environment for
symbolic computation makes it possible to solve certain systems of equations in
a nice way. We could have used Maple for that purpose also. We have tried to
use some Mathematica packages for Coxeter groups but we were not satisfied
with the results. Mathematica [12] is a well known software system. LiE is
used mostly by mathematicians and physicists who perform computations of a
Lie group theoretic nature. LiE does not provide an environment for symbolic
computation. However using vectors and matrices with integer entries as basic
computational objects it does allow the programmer to access and test many
non trivial results and conjectures about complex reductive Lie groups, their
representations and their Weyl groups. Moreover, it only works with integer
numbers and does not have a polynomial system of equations solver. LiE is
written in C and run mostly on Unix systems. There are also some executables
for the classic Macintosh system. More information on LiE can be found in [9].
The computations were carried out on an iMac 1 GHz PowerPc G4 running Mac
OS 10.3.9 with 1GB DDR SDRAM.

Both algorithms used the function Cartan as their main evaluator. In LiE this
function is well implemented, very fast and quite stable. Let r be number of roots
of g and l, the semisimple rank of g. Then, in the worst case Ohta character()
is O(rl2(O(Cartan()))) while Check admissibility is O(l3(O(Cartan()))) since
the dimension of the torus is bounded by l.
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5 Conclusion and New Directions

Mathematica is a proprietary multi-purpose software system and the source
code is not available to the public. This is not the case for LiE which is designed
specifically for computations in complex Lie groups and their representations.
The mathematical algorithms are well conceived and their implementations seem
to work well on average. In some cases where the Weyl group had to be pro-
cessed, we observed some scalability problems. We are currently investigating
the possibility of adding more functions which deal with real Lie groups and
their representations. The scope and feasibility of such a project are being eval-
uated. An other approach is to realize LiE as a Mathematica package. We have
not looked at this alternative. However we believed that such package may not
work as well as the stand alone version. It is also desirable to design a good
graphic user interface for LiE. LiE is maintained by M. A. A. van Leeuwen at
l’Université de Poitiers in France. More information on LiE can be obtained at
http://wwwmathlabo.univ-poitiers.fr/˜maavl/LiE/.

We should point out that John Stembridge from the University of Michigan
USA has created a Maple software package called Coxeter/Weyl for manipulating
weights and characters of irreducible representations of semisimple Lie algebras,
including functions for computing weight multiplicities, tensor product decom-
positions, and branching. However, we found LiE to be faster and easier to use
for the type of algorithms we sought to implement. Information on Coxeter/Weyl
can be obtained at http://www.math.lsa.umich.edu/˜jrs/maple.html#coxeter.

Recently, the author has joined The Atlas of Lie Groups and Representations.
This is a project to make available information about representations of semisim-
ple Lie groups over real and p-adic fields. Of particular importance is the problem
of the unitary dual: classifying all of the irreducible unitary representations of
a given Lie group. It might be possible to implement the previous algorithms in
this new and potentially very large C++ system. For more information on the
atlas the reader should visit: http://atlas.math.umd.edu/.

Finally we need to add to the package the capability to study admissibility
under the simply connected cover of the adjoint group. Let us consider the
following data obtained for orbit 6 of E8(8) in [1] or [4]:

6. 10001000 k(x,e,f)
C

	 A3 + T1

x = 4Hα1 + 7Hα2 + 9Hα3 + 14Hα4 + 12Hα5 + 9Hα6 + 6Hα7 + 3Hα8

e = Xα1+α2+2α3+3α4+3α5+2α6+α7 + Xα1+2α2+2α3+3α4+3α5+2α6+α7+α8

+Xα1+2α2+2α3+4α4+3α5+2α6+2α7+α8 + Xα1+2α2+3α3+4α4+3α5+3α6+2α7+α8

t1
C

= C(Hα2 −Hα8)⊕ C(Hα4 −Hα7)⊕ C(Hα3 −Hα6)

⊕C(Hα1 + Hα2 + 2Hα3 + 2Hα4 + Hα5)

dδe(z) = −z4
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Because the coefficient of −z4 is −1 we know that the orbit labeled 10001000 is
not admissible under the adjoint groupG. Now we would like to determine whether
or not it is admissible under the simply connected Lie group with Lie algebraE8(8).
To answer this questionweneed to carry our computationwithin theweight spaces.

In this case Let g = E8(8), a real form of g
C

= E8, and Δ = {α1, α2, . . . , α8}
the Bourbaki simple roots of g

C
then Δk = {β1, . . . , β8}, where β1 = 2α1+2α2+

3α3 + 4α4 + 3α5 + 2α6 + α7, β2 = α8, β3 = α7, β4 = α6, β5 = α5, β6 = α4,
β7 = α2 and β8 = α3, is a set of simple roots for k

C
= s016(C).

The fundamental weights of k
C

are λ1 = (β1+β2+β3+β4+β5+β6+1/2(β7+
β8), λ2 = β1 +2β2 +2β3 +2β4 +2β5 +2β6 +β7 +β8, λ3 = (β1 +2β2+3β3 +3β4 +
3β5 + 3β6 + 3/2(β7 + β8), λ4 = β1 + 2β2 + 3β3 + 4β4 + 4β5 + 4β6 + 2(β7 + β8),
λ5 = β1 +2β2+3β3 +4β4+5β5 +5β6+5/2(β7+β8), λ6 = β1 +2β2+3β3 +4β4+
4β5 + 6β6 + 3(β7 + β8), λ7 = 1/2(β1 + 2β2 + 3β3 + 4β4 + 5β5 + 6β6 + 4β7 + 3β8)
and λ8 = 1/2(β1 + 2β2 + 3β3 + 4β4 + 5β5 + 6β6 + 3β7 + 4β8).

A computation by hand shows that the character χ = −λ1 is actually equal
to
√

δe. Hence, according to the above lemma from Ohta, the preceding orbit is
admissible under the simply-connected cover but fails to be admissible under the
adjoint group. We shall automate the process so that the functions work with
the weight space instead of the root space as they currently do. At the moment,
we are trying to find the best way to deal with this problem and shall report on
our progress in the near future.
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on Reductive Groups Birkhäuser, Boston-Basel-Berlin (199)1 315-388

12. Wolfram S., The Mathematica Book Wolfram media, Cambridge University Press
(1998)
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Arithmetic in a Multiple-Level Programming

Environment
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Abstract. The purpose of this study is to investigate implementation
techniques for polynomial arithmetic in a multiple-level programming
environment. Indeed, certain polynomial data types and algorithms can
further take advantage of the features of lower level languages, such as
their specialized data structures or direct access to machine arithmetic.
Whereas, other polynomial operations, like Gröbner basis over an arbi-
trary field, are suitable for generic programming in a high-level language.

We are interested in the integration of polynomial data type imple-
mentations realized at different language levels, such as Lisp, C and
Assembly. In particular, we consider situations for which code from dif-
ferent levels can be combined together within the same application in
order to achieve high-performance.

We have developed implementation techniques in the multiple-level
programming environment provided by the computer algebra system
AXIOM. For a given algorithm realizing a polynomial operation, avail-
able at the user level, we combine the strengths of each language level
and the features of a specific machine architecture. Our experimentations
show that this allows us to improve performances of this operation in a
significant manner.

1 Introduction

In a general purpose computer algebra system, generic code implementing uni-
variate and multivariate polynomial over an arbitrary ring or field is a central
feature. This is the case, for instance, in the computer algebra systems AX-
IOM [13], Aldor [2], MAGMA [3] and Singular [11]. On the other hand,
the quest for high-performance in critical areas, such as modular algorithms for
polynomial GCDs, leads naturally to develop low-level specialized code for uni-
variate and multivariate polynomials over finite fields. Such code is available in
the software systems mentioned above and others.

The works of [14,7,8] present efficient implementations of asymptotically fast
algorithms for polynomial arithmetic in a high-level programming environment.
In the reported experiments, for FFT-based univariate polynomial multiplication
and the Half-GCD algorithm, the speed-up ratio between the pure low-level spe-
cialized code and the pure high-level generic code is in the range 2 · · · 4. (We refer
to [10] and [16] respectively for these algorithms.) Therefore, high-performance
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in polynomial arithmetic can be achieved in a high-level programming environ-
ment, such as AXIOM and Aldor.

However, linkage to specialized code is a substantial bonus when low-level
implementation can take advantage of special software or hardware features. The
purpose of this study is to investigate implementation techniques for polynomial
arithmetic in a multiple-level programming environment. We are interested in
the integration of polynomial data type implementations realized at the different
code levels. In particular, we consider situations for which code from different
levels can be combined together within the same application in order to achieve
high-performance.

As a driving example, we use the modular algorithm of van Hoeij and Mon-
agan [12]. We recall its specifications. Let K = Q(a1, a2, . . . , ae) be an algebraic
number field over the field Q of the rational numbers. Let f1, f2 ∈ K[y] be uni-
variate polynomials over K. The algorithm of van Hoeij and Monagan computes
gcd(f1, f2). To do so, for several prime numbers p, a tower of simple algebraic
extensions Kp of the prime field Z/pZ is used. Arithmetic operations in Kp

are performed by means of operations on multivariate polynomials over Z/pZ,
whereas the operations on the images of f1, f2 modulo p are performed in the
univariate polynomial ring Kp[y]. Therefore, several types of polynomials are
used simultaneously in this algorithm. This is why it is a good candidate for our
study.

We chose AXIOM as our implementation environment based on the following
observations. AXIOM has a high-level programming language, called SPAD,
which possesses all the essential features of object-oriented languages. Libraries
written in SPAD implement a hierarchy of algebraic structures (groups, rings,
fields, . . . ) and a hierarchy of algebraic domains (Q, A[x] for a given ring A, . . . ).

The SPAD compiler translates SPAD code into Common Lisp, then invokes
the underlying Lisp compiler to generate machine code. Today, GCL [17] (GNU
Common Lisp) is the underlying Lisp of AXIOM [1]. The design of GCL makes
use of the native C compiler for compiling to native machine code. In addition,
GCL employs the GNU Multi-Precision library (GMP) [9] for its arbitrary pre-
cision number arithmetic. Therefore, AXIOM is an efficient multiple language
level system. Moreover, the complete AXIOM system is open-source. Hence, we
can implement our packages at any language level and even modify the AXIOM
kernel. This allows us to take advantage of each language level’s strength and
access machine arithmetic directly when necessary. Therefore, we believe that
AXIOM, with its different implementation levels, all in open source, provides
an exceptional development environment among all computer algebra systems,
for the purpose of our study.

In Sections 2, 3 and 4 and 5 we discuss the strength (in view of our objectives)
of the SPAD, Lisp, C and Assembly level, respectively, together with our
implementation techniques. In Section 6, we report on our experimentation.

Our results suggest that choosing adequate and optimized data structures
is essential for polynomial arithmetic with high-performance. At the same time,
implementing them at a suitable language level or levels may impact the running
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time of an algorithm implementation in AXIOM by a factor in the range 2 · · · 4
for large input data.

2 The SPAD Level

The AXIOM computer algebra system possesses an interactive mode for user
interactions and the SPAD language for building library modules. The SPAD
language has a two-level object model of categories and domains that is similar
to interfaces and classes in Java. For instance, Ring is the AXIOM category for
all rings (in the algebraic sense, see for instance [5]) with units and Integer is
the AXIOM domain for the ring of integer numbers (see [13] for more details
about the AXIOM hierarchies of categories and domains).

The user can define a new category and domain, which, then, can be added to
the library modules. To do so, this new SPAD code must implement an AXIOM
type constructor (or a package), to be compiled with the SPAD compiler. An
AXIOM type constructor is simply a function which returns an AXIOM type,
that is a category or a domain. For instance, SparseUnivariatePolynomial,
abbreviated to SUP, is a type constructor, which takes an argument R of type
Ring and returns an implementation of the ring of univariate polynomials over
R, with a sparse representation (see below). Actually, SUP(R) implements Ring
and other operations specific to polynomials (evaluation, differentiation, . . . ).
The whole interface of SUP(R) is UnivariatePolynomialCategory(R) where
UnivariatePolynomialCategory is a category constructor.

The SPAD language supports conditional exports. This permits to imple-
ment the following statement: if R has type Field then SUP(R) implements
EuclideanDomain. SPAD supports also conditional implementation. For in-
stance, if R has type FiniteFieldCategory, one can use formulas such Little
Fermat Theorem to speed up some operations of SUP(R), such as exponentia-
tion. These features of the SPAD language are important for combining different
data types and achieving high-performance.

Implementing a new domain constructor requires the programmer choosing a
data structure for representing the objects defined by this domain. After a newly
defined domain or category is compiled, it becomes an AXIOM data type which
can be used just like any system provided data type.

In the light of these properties of the SPAD language, we describe briefly the
polynomial type constructors that we use in this study. Please, see [13] and [14]
for more details. Let R be an AXIOM Ring and V be an AXIOM OrderedSet.

SUP or UP. As mentioned above, the domain SUP(R) implements the ring of
univariate polynomials with coefficients in R. More precisely, it satisfies the
AXIOM category UnivariatePolynomialCategory(R). The representation
of these polynomials is sparse, that is, only non-zero terms are encoded.

DUP. The domain DUP(R) implements UnivariatePolynomialCategory(R) as
well. The representation is dense: all terms, null or not, are encoded.

NSMP. The domain NSMP(R,V) implements the ring of multivariate polynomials
with coefficients in R and variables in V. (To be precise, it implements the
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AXIOM category RecursivePolynomialCategory(R, V).) A non-constant
polynomial f of NSMP(R), with greatest variable v, is regarded as a univariate
polynomial in v implemented as an element of SUP(NSMP(R)). Therefore, the
representation is recursive and sparse.

DRMP. The domain DRMP(R,V) implements the same category as NSMP(R,V). The
representation is also recursive. However, it is based on DUP rather than SUP.

The constructors SUP and NSMP are provided by the AXIOM standard dis-
tribution, whereas DUP and DRMP were implemented by us at SPAD level. Our
motivation is the implementation of modular methods based on the Euclidean
Algorithm (or its variants) which tend to “densify” the computations, even if the
input polynomials are sparse. This is the case, for instance with the algorithm
of van Hoeij and Monagan, that we have implemented for this study.

3 The Lisp Level

The domain constructors SUP, DUP, NSMP and DRMP allow the user to construct
polynomials over any AXIOM Ring. So we say that their code is generic. Observe
that R has no influences on the representation scheme of the objects of SUP(R)
or DUP(R).

Ideally, one would like to use also conditional data representations. For in-
stance, one could think of a domain U(R) implementing univariate polynomials
over R, an AXIOM Ring, such that sparse polynomials (polynomials with fre-
quent null terms) have a sparse representation and dense polynomials (polynomi-
als with few null terms) have a dense representation. In addition, if R implements
a prime field Z/pZ for a machine word size prime p, one could require encode
each dense polynomial of U(R) by an array of machine words (such that the
slot of index i contains the coefficient in the term of degree i). But the code
of this ideal type constructor U would be quite complicated and harder to opti-
mize from the compilation point of view. Indeed, many tests would be needed
for selecting the appropriate representation. Instead, we believe that specialized
domain constructors (say, dense univariate polynomials over a prime field) to be
called by a package (implementing, for instance, the algorithm of van Hoeij and
Monagan) are a better choice. Moreover, polynomials over prime fields are such
an importance case, for modular methods, that they deserve an independent
treatment.

For these reasons, we have defined at the SPAD level a polynomial type con-
structor MultivariateModularArithmetic, abbreviated to MMA, taking a prime
integer p and V, an OrderedSet, as arguments, such that MMA(p,V) implements
the same operations as DRMP(PF(p),V). (The domain PF(p) implements the
prime field of characteristic p.) In fact, MMA(p,V) is just a wrapper for an im-
plementation in Lisp. At this inner level of AXIOM, we have realized two im-
plementations of MMA(p,V): one for the case where p fits in a machine word and
one for the case where it does not.

In these implementations, we used the vector-based recursive dense representa-
tion proposed by Richard J. Fateman [6]: a multivariate polynomial f is encoded
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by a number (to be precise, an integer modulo p) if f is constant and, otherwise,
by a Lisp vector storing the coefficients of f w.r.t its leading variable. At the
SPAD level, such disjunction would be implemented by a union type bringing an
extra indirection. This can be avoided at the Lisp level, thanks to the so-called
predicate functions which can judge the type of an object.

In addition, we can tell the Lisp compiler to use machine integer arithmetic,
if p fits in a machine word and, otherwise, to use the functions for big integer
arithmetic from the GMP library [9].

Similarly for univariate polynomials, we have defined at the SPAD level a uni-
variate type constructor UnivariateModularArithmetic, abbreviated to UMA,
taking a prime integer p as argument and implementing the same operations as
DUP(PF(p)). It is also a wrapper for two Lisp implementations: one for Small p’s
and for one big p’s. Each of these univariate polynomials is implemented using
fixnum-array (a C-like array) in GCL. It is possible direct using C arrays to
encode univariate polynomials over Z/pZ, but we prefer the Lisp level garbage
collection system which is more efficient and convenient.

All these specialized implementations at the Lisp level yield significant speed
up, as reported in Section 6.

4 The C Level

GCL is implemented in C language and uses the native optimizing C compiler
to generate native machine code. This allows us to extend the functionalities
of the Lisp level of AXIOM with a given C function by either integrating this
function into the GCL kernel, or by integrating it into a GCL library.

This interoperability between Lisp and C has at least two benefits for achiev-
ing high-performance in the AXIOM environment. First, Assembly code (writ-
ten for some efficiency critical operation, see Section 5) can be into the Lisp level
via C. Second, we can use existing C libraries providing efficient implementations
of polynomial and integer arithmetic, such as GMP library [9] or NTL [15]. We
illustrate these two benefits by an important example: the implementation of
dense univariate polynomials over the prime field Z/pZ.

Recall that we have two implementations for these polynomials at the Lisp
level: one for small primes p (that fit in a machine word) and one for big primes p.
They are both available at the SPAD level via the wrapper domain constructor
UMA. For both the small and big prime case, we have integrated in the GCL
kernel:

– classical multiplication, addition and Chinese remaindering algorithm writ-
ten in Assembly,

– FFT-based multiplication written in C with Assembly sub-routines.

Moreover, in the big prime case, we distinguish between the double precision
case and the multiple precision case. In the former one, we have developed our
Assembly routines which improve the performance of the GMP multiple preci-
sion functions. (See [14] for details.) In the latter one, we rely on the Assembly
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routines of GMP. This distinction is motivated by the importance of the double
precision case. For instance, most prime numbers used in the modular method
of [4] are of that size.

5 The Assembly Code Level

As mentioned in Section 4, we make use of the Assembly functions of the GMP
library in order to accomplish low-level operations with univariate polynomial
over Z/pZ[x]. There are two other reasons for taking advantage of Assembly
code in our AXIOM environment. We discussed them below.

5.1 Controlling Register Allocation

In a modern computer architecture, CPU registers seat at the top level of the
memory hierarchy. Although optimizing compilers devote special efforts to make
good use of the target machine’s register set, this effort can be constrained by
numerous factors, such as:

– difficulty to estimate the execution frequencies of each part of the program,
– difficulty to allocate or evict ambiguous values,
– difficulty to take advantage of some new hardware features on specific plat-

forms.

Therefore, a high-performance oriented application requires programmers to bet-
ter exploit the power of registers on a target machine. In fact, we have spent a
great effort in this direction in our implementation.

First, we directly program the efficiency-critical parts in Assembly language
in order to explicitly manipulate data in registers. For example, for dense uni-
variate polynomials over Z/pZ, we write the classical multiplication algorithm
in both C and Assembly language. The Assembly version is faster than the C
version since we always try to keep frequently used variables in registers instead
of a memory location. Although in C we can declare a variable to be of “regis-
ter” type, this does not guarantee that the register is reserved for this variable.
According to our benchmark results, our explicit register allocation method is
always faster than the C compiler’s optimization.

Beside the general purpose registers, we also can use MMX, XMM registers
when they are available. Keeping the working set in registers will yield significant
performance improvement comparing to keeping them in main memory.

5.2 Using Architecture Specific Features

Polynomial arithmetic in Z/pZ[x] makes an intensive use of integer division. This
integer operation has a dominant cost in crucial polynomial operations like the
FFT-based multiplication in Z/pZ[x]. Therefore, improving the performance of
integer division is one of the key issues in our implementation.
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In the NTL library [15], the single precision modular reduction is implemented
by means of floating point arithmetic, based on the following formula

a ≡ a�a 1/p� p

This formula can be implemented directly in C in two or three lines of code.
However, one can further improve the performance by writing assembly code.

We have also implemented this trick in Assembly language for the Pentium
IA-32 with SSE2 support. The SSE/SSE2 instruction sets use XMM registers.
Each of these registers is of 128-bit and can be used to pack 2 double precision
floating point numbers. In fact, SSE/SSE2 instructions can compute on multiple
data packed in one register, in parallel.

Our implementation of the FFT-based polynomial multiplication over Z/pZ

uses this technique. It is faster than using FPU unit, as reported in Section 6.

6 Experimentation

6.1 Benchmarks for the Lisp Level Implementation

The goal of these benchmarks is to measure the performance improvements
obtained by our specialized multivariate polynomial domain constructor MMA
implemented at the Lisp level and described in Section 3. We are also curious
about measuring the practical benefit of dense recursive polynomial domains in
a situation (polynomial GCD computations over algebraic number fields) where
AXIOM libraries traditionally use sparse recursive polynomials.

As announced in the introduction, our test algorithm is that of van Hoeij and
Monagan [12]. Recall that, given an algebraic number field K = Q(a1, a2, . . . , ae),
this algorithm computes GCDs in K[y] by means of a small prime modular
algorithm, leading to computations over a tower of simple algebraic extensions
Kp of Z/pZ. Recall also that the algorithm involves two polynomial data types:

– a multivariate one for the elements of K and Kp,
– a univariate one for the polynomials in K[y] and Kp[y].

Figure 1 shows the different combinations that we have used.

Q(a1, a2, . . . , ae) K[y]
NSMP in SPAD SUP in SPAD
DMPR in SPAD DUP in SPAD
MMA in Lisp SUP in SPAD
MMA in Lisp DUP in SPAD

Note that:

– the first two combinations, that is NSMP + SUP (sparse polynomial domains)
and DMPR + DUP (dense polynomial domains), involve only SPAD code,
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– the other two combinations use MMA - our dense multivariate polynomi-
als implemented at the Lisp level and SUP/DUP - univariate polynomials
written at the SPAD level.

We would like to stress the following facts:

– the algorithms for addition, multiplication, division of DRMP and MMA are
identical,

– none of the above polynomial types uses fast arithmetic, such as FFT-based
or Karatsuba multiplication.

Remember also that:

– the SPAD constructors NSMP, DMPR, UP, and DUP are generic constructors,
i.e. they work over any AXIOM ring,

– however, our dense multivariate polynomials implemented at the Lisp level
(provided by the MMA constructor) only work over a prime field.

Therefore, we are comparing here is the performances of

– specialized code at the Lisp level versus generic code at the SPAD level,
– sparse representation versus dense representation.

We have run the algorithm of van Hoeij and Monagan for different degrees of
the extension Q → K, different degrees of the input polynomials and different
sizes for their coefficients. Figure 1 p. 20 shows our benchmark results. First, we
fix the coefficient size bound to 5 and increase the total degree (degree of the
extension plus maximum degree of an input polynomial). The charts (a), (b) and
(c) correspond to towers of 3, 4 and 5 simple extensions respectively. Second, we
fix the total degree to 2000 and increase the coefficient bound. The charts (d),
(e) and (f) correspond to towers of 3, 4 and 5 simple extensions respectively. We
observe the following facts.

Charts (a), (b), (c). For univariate polynomial data types, DUP outper-
forms SUP and, for the multivariate polynomial data types, MMA outperforms
DRMP, which outperforms NSMP. For the largest degrees, the timing ratio be-
tween the best combination, DUP + MMA, and the worst one, SUP + NSMP is
in the range 2 · · · 3.

Charts (d), (e), (f). The best and the worst combinations are the same
as above, however the timing ratio is in the range 3 · · · 4. Interestingly, the
second best combination is SUP + MMA for small coefficients and DUP + DRMP
for larger ones. This fact has probably the following double explanation.
First, the SUP constructor relies on some fast routines which allows it to
compete with the DUP constructor for small input data. Second, garbage
collection of polynomials built with DUP + DRMP appears to be more efficient
than for SUP + MMA polynomials, for large data.
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Fig. 1. In (a), (b) and (c) fixing the coefficient size bound, and increase the total degree
of input polynomials. Conversely In (d), (d), and (f) fixing the total degree and increase
the coefficient size bound.
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6.2 Benchmark for the C and Assembly Level Implementation

The goal of these benchmarks is to measure the benefit provided by the C and
Assembly levels to the SPAD level. Figure 2 shows benchmarks for addition
and classical multiplication in Z/pZ[x] for a 64-bit prime p, between

– the code of the SUP constructor (from the SPAD level), and
– the UMA constructor (written in Lisp with C and Assembly sub-routines).

This clearly illustrates the benefits of our implementation at Assembly level
comparing to its SPAD level counterpart.
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Fig. 2.

Figure 3 illustrates the performance difference between

– the generic Assembly code using integer arithmetic and,
– the SSE2 Assembly code using floating point arithmetic.

The benchmark data of Figure 3 are obtained with our implementation of FFT-
based univariate polynomial multiplication over Z/pZ[x] for a 27-bit Fourier
prime p. This benchmark shows that our SSE2-based implementation is signifi-
cantly faster than our generic Assembly version.

6.3 Benchmark of the Multi-level Implementation

The goal of this benchmark is to compare an AXIOM function, involving code
at all levels, SPAD, Lisp, C and Assembly, versus its counterpart in a similar
computer algebra system, namely MAGMA. We choose multivariate polynomial
multiplication based on Kronecker substitution (which for us is implemented
at SPAD and Lisp levels, since it is independent from machine arithmetic)
and FFT-based univariate multiplication (which for us is implemented at C
and Assembly level, as shown in previous benchmark). Our implementation
outperforms MAGMA’s counterpart as shown in Figures 4.
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7 Conclusion

We have investigated implementation techniques for polynomial arithmetic in
the multiple-level programming environment of the AXIOM computer algebra
system. Our benchmark results show that careful integration of data structures
and code from different levels can improve the performances in a significant
manner (a ratio of 2. . . 4 speed up reported in 6). The integration process requires
deep understanding of polynomial arithmetic, machine arithmetic and compiler
optimization techniques. However, we believe that it should be implemented in
a transparent way for the end-user.
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Abstract. The authors have developed a Maple macro package: KETpic
which generates LATEX source codes for clear drawings. KETpic enables
us to draw every kind of complicated figure easily. Users are simply re-
quired to command Maple, with KETpic loaded, to plot graphs, to create
LATEX source codes by KETpic commands, and to embed them into LATEX
source files. Desired figures are obtained by the usual LATEX compilation.
Two versions of KETpic for Macintosh and Windows are provided, both
of which are available for Linux users. Figures finally obtained, either
on a PC display or on printed matter, are clear and possess the highest
accuracy. KETpic does not require an expensive printer. Carefully pre-
pared figures are significantly advantageous for mathematical education
because they facilitate students’ understanding of difficult mathemati-
cal notions. In this paper, we describe the advantages of KETpic with
typical examples.

1 Problems We Have Encountered

In 2002, a mathematical textbook series revision committee[9,10,11,12,13,14],
including one of the authors (T) as the chairman, had decided to employ LATEX2ε
equipped with emath[6] and WinTpic[4] for preparing their manuscripts.

To reduce various costs, LATEX2ε was chosen. WinTpic is a popular software
in Japan, which generates Tpic special codes. It supports GUI and is easy to
handle, but has the following defects:

1. it runs only on Windows (95 and later),
2. it cannot uniformly distribute gaps in a dashed curve,
3. it cannot draw natural looking free closed curves,
4. it does not permit users to input a complicated function such as defined by

a truncated series or integral calculus.

A LATEX macro package, emath, can support the picture environment and is
well-designed for preparing materials for mathematics classes, and its use has
spread among teachers and publishers in Japan. Although emath is based on
epic.sty, eepic.sty and Tpic specials, it has a problem:

5. Hatching fails to fill non-convex areas, or overflows its boundaries.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 24–34, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Accordingly, WinTpic and emath are inadequate for editing textbooks. The com-
mittee needed to find an alternative.

In addition, it is necessary for us to prepare graphical materials for classes be-
cause mathematically accurate pictures help students effectively follow various
discussions in every course topic. Preparing such materials requires effort, time
and money. Therefore, we usually search for easier and cheaper ways of personal
DTP. Fortunately, Maple and LATEX provide us a suitable way, especially if they
are combined. Maple can calculate values of any complicated function and write
them in a file. LATEX supports the picture environment where users can draw line
segments, circles, and points with mathematical expressions or symbols. Although
plain Maple creates LATEX files, it does not optimize its output so as to be suitable
for drawing graphs. Optimization of Maple outputs remained as a problem.

2 Solution: KETpic

Tpic is a graphic extension of TEX which uses a simpler set of embedded com-
mands. Currently, Tpic is popular world-wide and only requires some special
dvi drivers. When Tpic special codes are generated by some computer algebra
software, they can be expected to produce very accurate graphs of any function.

A famous computer algebra system: Maple enables us to manipulate raw data
of plots and strings. This feature is sufficient to generate Tpic special codes. Thus,
we have developed a macro package of Maple (version V and later): KETpic (ab-
breviation of Kisarazu Educational Tpic). KETpic as well as Maple covers the
major platforms. We have already released two versions of KETpic for Mac and
Windows which generate codes with different end-of-line characters according to
each platform. They are both available for Linux users(Redhat 2.4.5 and later)[8].

Table 1. Tpic special commands generated by KETpic

command functions
pn sets line width
pa adds x, y to the path
fp (or ip) draws a line on the current path
ar (or ia) draws a circle or arc
sh shades a closed object

2.1 Design Concept and Advantages of KETpic

Pursuing operability and economy for KETpic, we designed KETpic so as to
carry out calculations on Maple as much as possible, and not to depend on the
PC and the peripherals (such as a PostScript printer etc). KETpic generates
only the primitive commands of Tpic specials listed in Table 1, except for the
other commands in Table 2.

The commands in Table 2 assume the heavier processing ability of PostScript.
Therefore, Tpic special codes containing such commands require a PostScript
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printer for clear printing. WinTpic, mentioned above, depends largely on the
performance of printers because it generates all kinds of Tpic special commands.
If no PostScript printer is available, then dvi-outputs can be directly printed
by an inkjet printer which is the most popular method. Fig. 1 displays such a
result, a graph of y = sin(1/x) printed by a non-PostScript printer. We can see
that the gaps are not uniformly distributed over the curve. However, if printed
by a PostScript printer, no such problem would result.

Table 2. Tpic special commands which KETpic does not generate

command functions
da similar to fp but with a dashed line
dt similar to fp but with a dotted line
sp draws a spline curve on the current path

Fig. 1. A non-PostScript plotting of y = sin(1/x) of a LATEX picture generated by
WinTpic

Dashed/dotted lines/curves or spline curves can be created by Maple without
da, dt and sp. Hereafter, we illustrate how KETpic draws dashed curves, and
omit a description of how to draw dotted curves and spline curves. KETpic draws
a dashed curve using the following procedures.

1. Calculate the length of curves,
2. Pick up points from the curve periodically,
3. Connect them alternately.

Plot data are written in a file as Tpic special codes. The codes generated by
KETpic only plot points, line segments, and arcs. Dashed curves are drawn in
this way. We present a picture of the same function by KETpic in Fig. 2. Even
if we print it on an ordinary printer, we can see that the gaps are uniformly
distributed over the curve. Accordingly, producing a clear picture by KETpic
does not need expensive hardware.
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x

y

Fig. 2. Example for dashline. Gaps are uniformly distributed over the curve.

Although KETpic does not support GUI and permits only line inputting, it is
superior in accuracy because it can treat correct (or approximate to as high an
order as required) functions and numerals. The very fine figures, whether printed
on printed matter or displayed on a monitor, possess the highest accuracy of any
software package as far as we know.

2.2 Flow of Preparing Figures by KETpic

It is very easy for anyone to prepare LATEX pictures by KETpic. The command
reference, as well as KETpic packages, is currently downloadable from the web
site[8]. Here, we briefly describe the flow of producing the picture displayed in
Fig. 2: a graph of the function y = sin(1/x) in a dashed curve. We assume that
readers have already installed Maple (version V or later) and LATEX in their PCs.

1. First Step (Differences among platforms exist in symbols indicating folders
or directories)
Load some library packages and KETpic.

> with(plots):
> with(plottools): # optional

In the case of Macintosh,

> folder:=`Macintosh_HD:work:`:
> read cat(folder,`ketpic.m`): # Load KETpic For Mac

In the case of Windows,

> folder:=`C:\\My Documents/`:
> read cat(folder,`ketpicw.m`): # Load KETpic For Windows
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In the case of Linux,

> folder:=`/home/USERSNAME/`:

Linux users can utilize both ketpic.m and ketpicw.m. After loading KET-
pic, all commands can be used just as usual Maple commands.

2. Second Step (There are no differences among platforms after this step)
Define a drawing window and axes, and command Maple to calculate the
values of the function sin(1/x).

> setwindow(-2..2,-1.1..1.1): # window sizes are declared
> setax("","","","",""," ",""): # names of axes etc as default
> g1:=plot(sin(1/x),x=XMIN..XMAX,numpoints=200):
> frmdisp(g1); # optional: for check of data

3. Third Step
Open an appropriate LATEX file and write data into it.
> openfile(cat(folder,`f1.tex`)):# Open a file at a folder
> openpicture("1cm"): # Define a unit length
> dashline(g1,0.5,0.5): # last two parameters control
> closepicture(): # the distribution of gaps
> closefile(): # Close the file

Finally, insert the LATEX file (here in the example above, f1.tex) into the user’s
source file as follows. This template LATEX source is provided at the same site.

\documentclass[a4]{article}
\newlength{\Width} % Define length commands of KETpic
\newlength{\Height} %
\newlength{\Depth} %
\begin{document}
\input{f1} % Insert a LaTeX file
\end{document}

After the usual compilation of the LATEX file, we can obtain Fig. 2.

3 Other Examples

In this section, we present other examples showing various advantages of KETpic.

3.1 Dashed Curves

Two drawing commands for dashed lines: dashline and invdashline are defined
in KETpic. As shown in Fig. 3, using invdashline, users can draw dashed
lines/curves which stop short of reaching other lines or curves. Usual dashed
lines/curves which do reach other lines/curves are drawn by using dashline.
The following codes generate Fig. 3.
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> setwindow(-0.5..5.5,-0.5..2.5):
> pA:=[2,2]: pB:=[5,2]: pC:=[0,2]: pH:=[2,0]: pL:=[5,0]:
> g1:=plot([pA,pB]): g2:=plot([pA,pH]):
> g3:=plot([pB,pL]): g4:=plot([pA,pC]):
> openfile(‘f3.tex‘): openpicture("1cm"):
> invdashline(g2,g4): dashline(g3): drwline(g1):
> letter([4.5,1.5],"w","{\\tt dasheline}"):
> letter([2.6,2.5],"e","{\\tt invdasheline}"):
> arrowline([2.5,2.5],[1,2]):
> arrowline([2.6,2.5],[2,1]):
> arrowline([4.5,1.5],[5,1]):
> closepicture(): closefile():

invdashline

dashline

x

y

O

Fig. 3. An example illustrating the differences between dashline and invdashline.
With dashline, the dash connects to the original line whereas with invdashline, a
gap is created between the original line and the dashed line.

3.2 The Dirac Delta Function

The Dirac delta function δ(t) can be thought as a limit of a function ϕε(t) as
ε→ 0, where

ϕε(t) =

⎧⎨⎩
1
ε

(0 < t ≤ ε),

0 (t > ε).

Laplace transform of the sequence of functions ϕε(t)

L[ϕε(t)] =

⎧⎨⎩
1− e−εs

εs
(s �= 0),

1 (s = 0)

also converges to L[δ(t)]: Laplace transform of δ(t). Using this fact, we try to
make an intuitive introduction of the Dirac delta function as an inverse Laplace
transform of 1. We expect it to be effective for beginners in this course topic.

3.3 Polar Coordinate System

Many readers are familiar with the parallel projection of a hemisphere describing
polar coordinates (see Fig. 5). However, this is not easy to draw because of the
need for hidden line elimination. This picture has been inserted in a textbook[12].
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Fig. 4. A way of teaching the Dirac delta function as an inverse Laplace transform of
unity
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⎧⎪⎨⎪⎩
x = r sin θ cosϕ

y = r sin θ sin ϕ

z = r cos θ

Fig. 5. Clear description of the polar coordinate system

3.4 Nonlinear Differential Equation

The Lotka-Volterra equation, an ecological model, is one typical nonlinear dif-
ferential equation, which is defined by⎧⎪⎨⎪⎩

dx

dt
= x− xy,

dy

dt
= −y + xy.
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O

Fig. 6. Solution curves of the Lotka-Volterra equation and its vector field

Fig. 6 is a common picture to visualize the vector field, but is not easy to pro-
duce. For this picture, we used Maple commands dsolve/numeric which solves
differential equations numerically and dfieldplot which plots the vector field.

3.5 Hatching Non-convex Regions

When we indicate a region where a function is defined, or a region satisfy-
ing inequalities, we hatch that region. KETpic command hatch realizes area-
hatching. Fig. 7 shows the union of the asteroid x2/3 + y2/3 = 1 and its rota-
tion by π/4.

x

y

O

Fig. 7. Hatching inside a non-convex area
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We will show how to hatch asteroids. First, define a boundary,

> g1:=plot([2*cos(t)^3,2*sin(t)^3,t=0..2*Pi]):

Second, hatch inside the boundary,

> gs1:=hatchdata([0,0],[g1],45):

KETpic successfully fills the non-convex region g1∪gs1. Rotation of the asteroid:
g2 is easily obtained by the following commands.

> g2:=rotate(g1,Pi/4):
> gs2:=hatchdata([0,0],[g2],-45):

3.6 Cycloid

For the introduction of a cycloid, we wish to illustrate how to draw a cycloid. Ex-
planation using animation through a video projector will be appealing to students.
However, we think that the alternative way shown in Fig. 8 is also appealing.

First, we put a circle with its radius 1 and a point at the origin. We define z3
as the union of the circle and the point. Next, we rotate it by dt and translate
it by dt. Repeating this process, we obtain the picture of Fig. 8.

> z1:=point([0,0]):
> z2:=circle([0,1],1):
> z3:=frmdisp(z1,z2): # z3 is the union of z1 and z2
> z4:={}: N:=20: dt:=2*Pi/N:
> for i from 1 to N do
> tmp := rotate(z3,-i*dt,[0,1]):
> tmp2:= translate(tmp,i*dt,0):
> z4 := z4 union {tmp2}
> od:
> openfile(`f8.tex`): openpicture("1cm"):
> dottedline(z3,op(z4)):
> closepicture(): closefile():

x

y

O

Fig. 8. How to draw a cycloid
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3.7 Perspective Projection

Perspective projection is currently available with Maple. However, we cannot
change slightly the view line and the distance between the object and our eyes.
In order to realize a fine-tuning of output, we developed the command projpers
by which we can change the parameters. Two results by projpers are shown
in Fig. 9. These form a stereogram of the intersection of two cylinders. This
stereogram realizes a 3D image in our brain by a cross-eyed view, that is, to see
the left picture with the right eye and the right picture with the left eye.

The final example implies further possibilities of KETpic as an editing tool of
academic papers as well as a good material for understanding strange attractors.

Fig. 9. A stereogram of the intersection of two cylinders realizes a 3D image by a
cross-eyed view

Fig. 10. A stereogram of the Lorentz Attractor realizes a 3D image by a cross-eyed
view
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Displayed in Fig. 10, the Lorentz Attractor, is a solution curve of

dx

dt
= 10(y − x),

dy

dt
= 28x− y − xz,

dz

dt
= −8

3
z + xy.

In order to obtain this picture, we used one of Maple commands, DEplot3d,
which solves three-dimensional differential equations and plots them.

4 Summary

We have developed a Maple macro package: KETpic. KETpic takes full ad-
vantage of Maple, generates Tpic special codes, and enables us to draw clear
figures with the highest accuracy. Other advantages of KETpic are operability,
runability on major platforms, and portability.

KETpic and several examples are downloadable from the web site[8] where
the manual is also available.

Not only book editors but also teachers of mathematics (sometimes physics as
well) can utilize KETpic whenever they need an easy way to make supplementary
materials to explain mathematical notions in their classes. Therefore, KETpic
is one of the best choices for drawing graphs in every kind of mathematical
material.
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Abstract. In this paper a new problem-solving environment (PSE) for
geometric processing of surfaces is introduced. The PSE has been de-
signed to be responsive to the needs of our collaboration with an indus-
trial partner, the Spanish company CANDEMAT S.A., devoted to build
moulds and dies for the automotive industry. The PSE has been imple-
mented in Matlab and is aimed to support the full range of activities
carried out by our partner in the field of geometric processing of surfaces
for the automotive industry. Firstly, the paper describes the architecture
of the system and some implementation details. Then, some examples
of its application to critical problems in the automotive industry - such
as the computation of the intersection curves of surfaces, the generation
of tool-path trajectories for NC machining and the visualization of ge-
ometric entities stored in industrial files of several formats - are briefly
described. The PSE has shown to provide our partner with accurate,
reliable solutions to these and other problems and to serve as a commu-
nication channel for exchange of geometrical data as well as a platform
for trial and research support.

1 Introduction

The work of this paper has been motivated by a collaboration agreement between
our research group at the University of Cantabria and an industrial partner, the
Spanish company CANDEMAT S.A., devoted to the automotive and aerospace
industries. CANDEMAT is primarily focused on building moulds and dies of
mechanical parts of car bodies, a domain that requires typically a number of
advanced geometric processing techniques - and very often novel approaches
to the bulk of problems arising in this field. Automotive industry is a sector in
which the growing competition asks for continuous reduction of development and
innovation cycles while the demands on quality, safety and comfort are increasing
rapidly. Although the extraordinary advances in areas such as CAD/CAM and
many others have contributed to comply with those requirements so far, recent
moves in global markets and rising competition have evidenced the need for a
change in way cars are built. A major issue is the dissemination of efforts among
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the great variety of suppliers and external engineering partners, each having its
own methods, hardware, software, data formats, communication protocols and
so on. This makes integration of all this technology much harder and eventually
causes a mismatch in comparison to what the industry would expect if a smooth
integration of the underlying data and processes would have been achieved [10].

On the other hand, the current tendency in carmakers’ world is the integra-
tion of a crowd of many small manufacturers into a few large corporations. This
ongoing transition also requires the integration of technical staff and computer
hardware and software at full extent. One way to overcome these challenges -
arguably the best one - is the intensive use of complex problem-solving envi-
ronments. In fact, it has recently been reported that the use of problem-solving
environments (PSE) is currently a common practice for product development in
automotive and aerospace industries [8].

In our case, this means to create a scientific environment supporting the full
range of computational tasks - from problem formulation and algorithm selection
to numerical simulation and solution visualization - and being able to provide
our industrial partner with reliable solutions to its problems. The ultimate goal
of this process is to establish a strategic position in the market for our partner
based on some kind of technological advantage and its ability to yield deliverables
suitable for short and medium-term production. The PSE described in this paper
is the computer tool created to meet these goals.

Tradicionally, scientific computation has been performed by using standard
programming languages, such as Pascal or C. More recently, the use of inter-
active, user-friendly interfaces has become a standard requirement as well. Pro-
gramming languages for graphical user interfaces (GUIs) and/or object-oriented
programming, such as Delphi, Visual Basic, Visual C/C++, Python, Perl and
others, have been intensively used for these purposes. Although these languages
interact quite well with the numerical layer provided by standard programming
languages, they cannot be embedded easily into a common programming envi-
ronment. In addition, their versions differ depending on the platform and op-
erating system considered. Fortunately, the last generation of computer algebra
systems (CAS) overcomes these limitations. In particular, Matlab [14] is one of
the first preferences because of its appealing features for numerical, graphical and
user interface tasks. This assessment has been supported by several announce-
ments about the use of Matlab by automotive corporations (like, for instance,
by Daimler-Chrysler and Motor Ford Company in [18]). Matlab is a numerical-
oriented package that also includes a number of symbolic computation features.
In fact, its most recent versions incorporate a subset of the Maple kernel totally
integrated into the numerical layer. Even although its symbolic capabilities are
not as powerful as their counterpart in Maple, they are faster and very suitable
for many purposes. In addition, the graphical Matlab capabilities (based on Open
GL graphical routines) exceeds those commonly available in many other CAS.

In this paper we focus on problems related to the geometric processing of
surfaces. Geometric processing is defined as the calculation of geometric proper-
ties of curves, surfaces and solids [2]. In its most comprehensive meaning, this



Matlab-Based PSE for Geometric Processing of Surfaces 37

term includes all algorithms that are applied to already constructed geometric
entities [5]. Geometric processing is a key tool in the automotive industry, since
many processes and operations in manufacturing rely heavily on the geometric
properties of curves and surfaces. This work introduces a new problem-solving
environment (PSE) for geometric processing of surfaces. The PSE has been im-
plemented in Matlab and designed to be responsive to the needs of our collabo-
ration with the company CANDEMAT. The next sections will describe its most
interesting features and some examples of its application.

The structure of this paper is as follows: in Section 2 we describe the archi-
tecture of the system and some implementation details. Then, some examples
of its application to critical problems in the automotive industry - such as the
computation of the intersection curves of surfaces, the generation of tool-path
trajectories for NC machining and the visualization of geometric entities stored
in industrial files of several formats - are briefly described in Section 3. Conclu-
sions and further remarks in Section 4 close the paper.

2 Our Matlab-Based Problem-Solving Environment

This section analyzes the architecture of the Matlab-based Problem-Solving En-
vironment introduced in this paper. In addition, some implementation details are
briefly described in this section. Lastly, we discuss the possibility of compiling
and linking the resulting files for standalone applications.

2.1 System Architecture

Matlab’s development environment consists of a command line displayed in one
or several windows. The main window - the Desktop - has pulldown menus from
an overhead menu bar and is subdivided into several resizable windows. These
windows contain a command line, a command stack, and a directory tree. Pro-
gramming code is written as either an M-file, consisting of Matlab commands,
or a compiled version of an M-file created for a platform-specific target. Creat-
ing and testing most computational codes thus involve two separate operations:
creating M-file text, and then executing it to test and debug.

An important factor to choose Matlab concerns the efficiency. Since Matlab
is based on C/Java, it runs faster than other analyzed symbolic and numer-
ical programs. Moreover, its basic element is an array that does not require
dimensioning, so it takes less time to be computed. Although the symbolic op-
erations are not suitable for these based-on-array advanced features, numerical
and graphical operations (which are the key ingredient of many commands for
scientific visualization) are greatly improved by using those features. Matlab also
provides many connectivity tools for interfacing to external routines written in
other languages, including Java, C, and Fortran, as well as to a variety of data
objects and servers. Using most of the above-mentioned features, we have created
a PSE comprised of the following components:
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1. a graphical user interface (GUI): Matlab provides a development environ-
ment for creating specialized GUIs (GUIDE), incorporating menus, push
and radio buttons, text boxes and many other interface devices. In our sys-
tem, the GUI consists of a set of several windows associated with different
tasks. Some windows are for geometric processing of surfaces and include
dialogue boxes to allow users to input the symbolic equations of the geomet-
ric entities. Other windows (such as those for visualizing industrial files of
different formats: IGES, STEP, CATIA) are mostly intended for graphical
output and include different commands for visualization. Several examples
of those windows will be shown in Section 3.

2. a library of commands (toolbox): to deal with the most popular geometric
entities, more than 200 functions and commands have been implemented in
our PSE. The resulting libraries are continuously updated and extended, so
the system must be flexible enough to allow the programmer to improve
the algorithms and codes in an efficient, quick and easy way. Users can deal
with geometric entities in either numerical or symbolic way via the Symbolic
Math Toolbox, which contains a subset of the Maple’s kernel. At their turn,
the numerical functions invoke low-level functions from the numerical kernel,
which can be given as Matlab functions, M-files, C/C++ MEX files, API files
or built-in files (see [14] for details).

3. a Matlab graphics library: this module includes the graphical commands
needed for our setup. For instance, in the case of PC platforms, it is a
set of DLLs (Dynamic Link Libraries). In general, they are not included in
the Matlab standard version and should be purchased separately. They al-
low users to export the graphical interfaces and simultaneously preserve the
good interplay with the numerical commands.

2.2 Implementation Issues

Regarding the implementation, the PSE has been developed by the authors
in Matlab v6.0 by using a Pentium III processor at 2.4 GHz. with 512 MB
of RAM. However, the program (whose minimum requirements are listed in
Table 1) supports many different platforms, such as PCs (with Windows 9x,
2000, NT, Me and XP) and UNIX workstations from Sun, Hewlett-Packard,
IBM, Silicon Graphics and Digital. Figures in this paper correspond to the PC
platform version.

The graphical tasks are performed by using the Matlab GUI for the higher-
level functions (windowing, menus, or input) while the graphics library Open
GL is used for rendering purposes. The numerical kernel has been implemented
in the native Matlab programming language, and the symbolic kernel has been
created by using the commands of the Symbolic Math Toolbox.

Another interesting feature of our PSE is the possibility of compiling and
linking its different modules and windows along with their associated libraries
and underlying code to generate standalone applications. Roughly, this process
can be summarized as follows: firstly, the chosen module is compiled by using the
Matlab compiler. The result is a set of multiple C or C++ source code modules
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Table 1. Minimum hardware configuration to install the PSE

Hardware Requirement
Operating System Windows (9x, 2000, NT, Me, XP), UNIX

RAM 128 MB
Disk storage 25 MB (60 MB recommended)

Monitor Super VGA monitor
Screen resolution minimum of 640 × 480

that are actually versions in C/C++ of the initial M-files implemented in Matlab.
These files are subsequently compiled in a C/C++ environment to generate
the object files. Then, those files are linked with the C++ graphics library, M-
file library, Built-In library, API library and ANSI C/C++ library files. The
final result is an executable program running on our computer. This feature
provides our industrial partner with the facilities for input/output operations in
collaborative frameworks involving third parties - even though those parties use
different software - via these standalone applications.

We should remark here the excellent integration of all these tools to gener-
ate optimized code that can easily be invoked from C/C++ via Dynamic Link
Libraries (DLLs), providing both great portability and optimal communication
between all modules. Complementary, we can construct an installer for the PSE
by using either Visual C++ or Visual Basic environments. The authors have
accomplished all tasks mentioned above during the process of creating the PSE.

3 Examples of Application

In this section some simple yet illustrative examples of application of our PSE
aimed to show the good performance of the program are briefly discussed. The
chosen examples concern the issues of surface intersection, generation of tool-
path trajectories for NC machining and the visualization of geometric entities
stored in industrial files of several formats.

3.1 Surface Intersection

The intersection of surfaces is one of the most outstanding problems in many
fields, such as computational geometry, solid modeling, geometric processing,
visualization and manufacturing of 3D entities. It appears in the countouring of
surfaces [9], in numerical-controlled machining [4] (for instance, the intersection
of offset surfaces with series of parallel planes), in the boundary (B-rep) represen-
tation for Constructive Solid Geometry models of the objects, in manufacturing
[2] (slicing operations for rapid prototyping, determination of collisions), etc.

During the last decades, a number of different methods to compute the inter-
section of surfaces have been described in the literature (see, for example, the
excellent reviews on this topic in [11] (Chapter 12) or [16] (Chapter 5) and the
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Fig. 1. Screenshot of the surface intersection window: example of the implicit-
parametric case

references therein). Basically, they can be classified into analytical and numeri-
cal methods. Analytical methods seek exact solutions by finding some function
describing the intersection curves. Although unaffected by robustness and effi-
ciency limitations, they require many different algorithms designed ad hoc for
each kind of surface involved. Furthermore, they cannot deal with non-algebraic
surfaces, are quite slow and have huge requirements in terms of computation
power and resources. Therefore, numerical methods are usually applied for in-
dustrial purposes, including combinations of algebraic and analytical methods
[6], hybrid algorithms combining subdivision (based on the divide-and-conquer
methodologies), tracing and numerical methods (mainly Newton’s method) [13],
etc. Unfortunately, they exhibit a substantial loss of accuracy making them un-
suitable for practical applications. Finally, there is a family of methods known
as marching methods based on generating a sequence of points of an intersection
curve branch by stepping from a point on such a curve in a direction determined
by some local differential geometry analysis.

Our PSE has a special module devoted to compute the intersection curves of two
surfaces. To this aim, we introduced a new algebraic-differential method based on
formulating the problem in terms of an initial value problem of first-order ordinary
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differential equations (ODEs). The resulting system of ODEs is then numerically
integrated through an adaptive 4-5-orderRunge-Kuttamethod.This approachhas
shown to work properly for the cases of parametric and implicit surfaces [7,20].
The method requires a starting point on the intersection curve for each branch
of the solution. To determine such a point we trace a path on those surfaces by
following the direction indicated by either the gradient of the distance between
both surfaces (for the parametric-parametriccase) or the vector field of the implicit
surface (for the parametric-implicit and the implicit-implicit cases) computed by
following [22]. This procedure yields a starting point on the nearest branch of the
intersection curve.

Figure 1 shows the surface intersection window of our system along with an
example for the implicit-parametric case. The parametric surface is a NURBS,
described by its control points, weights and knot vectors, while the implicit
surface is described by its symbolic equation (as shown in the input box of surface
1). Our surface intersection algorithm is applied and the resulting intersection
curves as well as the initial surfaces are displayed. The figure shows the 3D
picture and its projections onto the three coordinate planes. The system allows
the user to set up the threshold for the absolute and relative tolerance errors
(10−8 and 10−6 respectively in this example). The computation time for those
values is 1.3× 10−4 seconds in this example.

3.2 Generation of Tool-Path Trajectories for NC-Machining

A major problem in manufacturing is the determination of the best trajectory
for the cutting tools in NC (numerical controlled) machining. For example, it
has been shown that there is no simple way to describe the guiding surface for
the cutter of a five-axis machining tool [11]. On the contrary, there are many
different possibilities, depending on the tool topology, surface shape, etc. (see
[16] for details).

Figure 2 shows an example of the tool-path generation module of our PSE.
As shown in this figure, the user can input a NURBS surface by specifying: (1)
the order of the parametric variables, (2) the kind of knot vectors (periodic, non-
periodic and non-uniform, according to the classification in [1]), (3) the control
points and (4) their weights. Then, the type of tool-path trajectory (serial, radial,
strip or contour, according to the classification in [4]) must be chosen. At its turn,
the trajectory can be connected by either one-way or by zig-zag, while the milling
mode and vertical move can be in-outwards and up-downwards, respectively.
Other parameters such as the distance between back-to-back paths (path-gap)
and the path thickness can also be given. The example in Fig. 2 displays a
zig-zag serial XY-parallel trajectory on a bicubic NURBS surface (top) and the
trajectory itself (bottom). Additional calculations for the given surface - such as
the derivatives, fundamental forms, curvatures (Gauss, Median, principal), etc.
- can also be performed. The most usual algorithms for NURBS surfaces - such
as subdivision, degree raising, knot insertion and refinement,etc.- can also be
applied at will.
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Fig. 2. Screenshot of the tool-path generation window: example of a zig-zag serial
XY-parallel trajectory on a bicubic NURBS surface

Another reasonable approach is to consider the so-called characteristic curves
on a surface. They are curves reflecting either the visual or the geometric prop-
erties of the surface. For the visual properties we can use the reflection lines
[12] and the isophotes [17], which help to evaluate the behavior and aesthetics
of the surface under illumination models, while the geometric properties can be
accurately analyzed through the contour lines [3,23], the lines of curvature [3],
geodesic paths [3,15], asymptotic lines [24], etc.

In our PSE we consider four kind of characteristic curves on surfaces (see
Figure 3): gradient, section, geodesic and helical curves. For each kind of curves,
novel especialized methods have been developed and implemented [19,21,22], so
that users can apply them even with a minimal knowledge about the method
and the PSE. These new methods yield efficient trajectories for cutting tools
that have interesting mathematical properties and a geometrical meaning: for
instance, the geodesic curves are used to minimize the distance on the surface
between two end points and, hence, the time required for machining; the sec-
tion curves are planar curves, so the vertical component of the main axis of
the cutter tool does not oscillate; the helical topology is also highly used in
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Fig. 3. Screenshot of the characteristic curves window: example of a helical curve on
an implicit surface

high-speed machining, and so on. The methods can be applied to either implicit
or parametric surfaces provided that they are differentiable.

Figure 3 shows an example of the generation of a helical curve on an implicit
surface for five-axis NC machining. A helical curve is a curve whose tangent
maintains a constant angle or slope with respect to a given direction (85 degrees
with respect to the vertical axis in this example). This kind of problems appears
quite often in three-axis, five-axis and high-speed NC machining [4,16].

3.3 Visualization of Industrial Files

Figure 4 shows an example of the application of the powerful Matlab graphical
capabilities to display large files storing geometric entities in the most popu-
lar industrial formats. In particular, a mechanical part of a car body (the right
front door) stored in an IGES-format industrial file is visualized. To this pur-
pose, the geometrical information of the different entities for curves (Bspline
curves, spline curves, arcs, lines) and surfaces (NURBS, trimmed NURBS) is read
and computed. Then, suitable commands for computer graphics, including sur-
face algorithms (wireframe, hidden-line removal or z-buffer), shaders (constant,
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Fig. 4. Screenshot of the industrial files visualization window: example of the visual-
ization of a mechanical part of a car body stored in IGES format

faceted, Gouraud, Phong, etc.), lighting techniques (ambient, diffuse, specular,
etc.), texture mapping, light sources of different colors and positions, interactive
manipulation (coloring, zooming, rotation), etc. are applied. These illumination
effects allow us to simulate the mechanical part with a high level of quality. In
addition to their aesthetic effect, the illumination models are important to detect
irregularities on surfaces, for example, by using some illumination lines called
isophotes [10]. This procedure does reproduce the real situation of looking for
the different reflection lines on the surface of a car body.

4 Conclusions and Further Remarks

In this paper a new problem-solving environment for geometric processing of
surfaces has been described. The PSE is aimed to support the full range of ac-
tivities carried out by our partner in the field of geometric processing for the
automotive industry. The PSE is comprised of several modules, each devoted to
a specific task: surface intersection, tool-path generation, measurement of dis-
tances on surfaces, surface interrogation, illumination models, etc. This modular
structure allows the programmer to introduce his/her own methods - even new
modules - and perform trials at will. Usually, each module is associated with
one or several windows on which the user can input data (symbolic equations,
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numerical parameters and values, industrial files), perform symbolic and numer-
ical calculations and display the solution in either text-like or graphical way.
Additionally, the user can compile the modules to generate standalone applica-
tions that can run independiently. This procedure can be applied to any extent,
from individual functions to single modules (even the whole system). In these
later cases, the procedure requires to link the modules with numerical and/or
graphical libraries. Powerful communication and connectivity tools for a variety
of programming languages and programs enhance the applicability of this PSE.

The PSE has shown to provide our partner with reliable solutions to its prob-
lems and to serve as a communication channel for exchange of geometrical data.
The system can deal with implicit and parametric surfaces, including the case
of NURBS surfaces (by far, the most common surfaces in industry). In fact, the
most popular industrial formats for the geometrical description of mechanical
parts of car bodies are properly handled and displayed (currently only IGES for-
mat is fully supported; STEP and CATIA formats are in progress). Finally, the
excellent Open GL library can be applied for visualization purposes. This feature
improves dramatically the quality of pictures and provide users with a power-
ful tool for surface interrogation and quality of shape analysis via illumination
models.

The present work is still in progress and can be improved in many different
ways. Additional modules as well as the improvement of the existing ones are
the next goals for future work. Our experience with this system and the feedback
from our partner have been very positive and encouranging and convinced us
about the feasibility and usefulness of this work. Although this paper has been
affected by strong limitations of space, we still hope we have provided enough
details to make the manuscript helpful to those interested to follow a similar
approach.
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Abstract. Let G be a group which admits the structure of an iterated
product of central extensions and semidirect products of abelian groups
Gi (both finite and infinite). We describe a Mathematica 4.0 notebook
for computing the homology of G, in terms of some homological models
for the factor groups Gi and the products involved. Computational re-
sults provided by our program have allowed the simplification of some
of the formulae involved in the calculation of Hn(G). Consequently the
efficiency of the method has been improved as well. We include some
executions and examples.

1 Introduction

The calculation of the homology of a given group is in general a difficult task.
From a theoretical point of view, spectral sequences and resolutions have been
traditionally used to solve the question. But calculations could not be carried out
in practice, due to the complexity of the processes involved in the computations.

In the past decade, the interest in explicitly compute both the (co)homology
and the correspondent representative (co)cycles of a group, has increased sur-
prisingly, accordingly to their applications to very different fields, such as coding
theory and cryptography.

This situation has motivated that most of Computer Algebra Systems (CAS)
are now concerned about the design of functions for achieving homological
calculations.

For instance, Gap (Group, algorithms, programming [9]) includes a homology
package [7], which is concerned with the calculation of the homology of simplicial
complexes and the Smith’s normal forms of (preferably sparse) integer matri-
ces. Magma [18] includes a routine for computing the homology of p-groups [5].
The Kenzo system [6] provides an environment for achieving calculations in the
framework of effective homology [21]. More recently, Ellis is developing a homo-
logical algebra library for use with the Gap computer algebra system (termed
Hap [11], homological algebra programming), which intends to be a complete tool
to make basic calculations in the cohomology of finite and infinite groups.
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Though the Kenzo system has incorporated some routines for the calculation
of the homology of central extensions (in light of the work in [20]), as far as we
know, none of these packages handles the class of groups that we are concerned
with. We intend to cover this gap with the Mathematica notebook [1] which
is presented here, for computing the homology of iterated products of central
extensions and semidirect products of abelian groups.

The main reason for which we have decided to work on Mathematica in-
stead of other CAS is that all the systems cited above work in terms of reso-
lutions. We prefer to work in terms of “contractions”, that is, at the level of
reduced complexes of resolutions, following the philosophy in [8,21]. In most
cases, both ways turn out to be equivalent [4]. Our preferences come from the
fact that we want to elude the recursive formulae provided by the compari-
son theorem for resolutions. We prefer to work with explicit formulae from the
first moment. For instance, the formulae in [19] for the maps involved in the
Eilenberg-Zilber theorem, will allow us to perform explicit formulae for the maps
describing a homological model for the iterated products that we are concerned
with.

Furthermore, our method may be extended to cover iterated products of
other groups for which homological models are known, such as finitely generated
torsion-free nilpotent groups [17,15], finite p-groups [16,10], finitely generated
two-step nilpotent groups [12] and metacyclic groups [13].

We have programmed the formulae of [3] for constructing a homological model
for a semidirect product of abelian groups, and the formulae implicitly described
in [20] for constructing a homological model for a central extension of abelian
groups.

The term homological model refers to a contraction φ:B̄(ZZ[G])
f
⇀↽
g

hG from the

reduced bar construction of the group G (i.e. the reduced complex associated to
the standard bar resolution) to a differential graded module of finite type hG,
so that

H∗(G) = H∗(B̄(ZZ[G])) = H∗(hG)

and the homology of hG may be effectively computed by means of Veblen’s

algorithm [22] (involving the Smith’s normal forms of the matrices representing
the differential operator).

Here φ:B̄(ZZ[G])
f
⇀↽
g

hG denotes a contraction, a special type of homotopy equiv-

alence, where apart from the usual relations fg = 1, 1 − gf = dφ + φd, the
annihilation properties fφ = 0, φg = 0, φφ = 0 are satisfied.

We must note that a routine in Mathematica which calculates the Smith’s
normal form of a matrix over the integers was provided a decade ago by David
Jabon [14].

Using this package and the formulae above, the notebook finally computes
the homology of the input group.

We organize the paper as follows. Section 2 is devoted to describe the for-
mulae concerning the homological models for central extensions and semidirect
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products of abelian groups described in [20] and [3], respectively. The note-
book itself is described in Section 3. In Section 4 we prove some results about
simplifications on the formulae, which had been previously conjectured, attend-
ing to some output data provided by our program. Section 5 is devoted to show
some executions and examples.

2 Describing Homological Models for the Factors

Let G be an iterated product of central extensions and semidirect products of
abelian groups Gi, 1 ≤ i ≤ n. In this section, we describe a homological model
for G in terms of some homological models for each of the factor groups Gi.

2.1 A Homological Model for ZZ

Let E(u) denote the free DGA-algebra endowed with trivial differential and
generators 1 (at degree 0) and u (at degree 1), so that u · u = 0.

The comparison theorem for resolutions provides a homological model for ZZ

(see [4] for details), φZ:B̄(ZZ[ZZ])
fZ
⇀↽
gZ

E(u), which is a subtle modification of that

in [8] (they differ just in the homotopy operator φZ).

Here gZ(u) = [1], fZ([n1| · · · |nq]) =
{

n1 u, if q = 1
0, if q > 1 and

φZ[n1| . . . |nk] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(−1)k

nk−1∑
i=1

[n1| . . . |nk−1|i|1], if nk > 1

0, if nk = −1, 0, 1

(−1)k
−nk−1∑

i=1

[n1| . . . |nk−1| − i|1], if nk < 1

(1)

2.2 A Homological Model for ZZn

Let Γ (v) denote the free DGA-algebra endowed with trivial differential and
generators γk(v) (at degree 2k, k ≥ 0, γ0(v) = 1), such that

γk(v)γh(v) =
(k + h)!

k!h!
γk+h(v)

In [8] a homological model φZn :B̄(ZZ[ZZn])
fZn⇀↽
gZn

(E(u) ⊗ Γ (v), d) for ZZn is also

described, such that d(u) = 0, d(u⊗ v) = n · u and gZn(u) = [1],

gZn(γk(v)) =
∑

xi∈Zn

[1|x1| · · · |1|xk], gZn(uγk(v)) =
∑

xi∈Zn

[1|x1| · · · |1|xk|1]
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fZn [x1|y1| · · · |xm|ym] = [
m∏

i=1

δxi,yi ]γm(v),

fZn [x1|y1| · · · |xm|ym|z] = [z
m∏

i=1

δxi,yi ]uγm(v),

for δxi,yi =
{

0, xi + yi < n
1, xi + yi ≥ n

and φZn([x1| · · · |xk]) = −ϕZn([x1| · · · |xk]), for ϕZn [ ] = 0, ϕZn [x] =
x−1∑
i=1

[1|i],

ϕZn [x|y|σ] =
x−1∑
i=1

[1|i|σ] + δx,y

n−1∑
k=1

[1|k|ϕZnσ] (2)

2.3 A Homological Model for a Central Extension

Here A×αG denotes the central extension of A and G by means of the 2-cocycle
α : G×G→ A, such that (a, g)(a′, g′) = (a + a′ + α(g, g′), g + g′). In case that
α is a 2-coboundary, then A×αG is isomorphic to the direct product A×G.

A homological model φAG:B̄(ZZ[A×αG])
fAG
⇀↽

gAG

(hAG, dAG) for a central extension

A×fG, for A being an abelian group, is described in [20], in terms of homological

models φA:B̄(ZZ[A])
fA
⇀↽
gA

(hA, dA) and φG:B̄(ZZ[G])
fG
⇀↽
gG

(hG, dG) of the factor groups

A and G. Explicitly,

fAG = (fA ⊗ fG)t∩AWδψϕ
gAG = ϕψEMLδ(gA ⊗ gG)t∩
φAG = ϕ−1ψ−1(SHIδ + EMLδ(1⊗ φG + φA ⊗ gGfG)t ∩AWδ)ψϕ

dAG = dA ⊗ 1 + 1⊗ dG + (fA ⊗ fG)t ∩
∑
i≥0

(−1)i[(1⊗ φG + φA ⊗ gGfG)t∩]i(gA ⊗ gG)

(fA ⊗ fG)t∩ = (fA ⊗ fG)(1− t ∩
∑
i≥0

(−1)i[(1⊗ φG + φA ⊗ gGfG)t∩]i)(1⊗ φG + φA ⊗ gGfG)

(gA ⊗ gG)t∩ =
∑
i≥0

(−1)i[(1⊗ φG + φA ⊗ gGfG)t∩]i(gA ⊗ gG)

(1⊗ φG + φA ⊗ gGfG)t∩ =
∑
i≥0

(−1)i[(1⊗ φG + φA ⊗ gGfG)t∩]i(1⊗ φG + φA ⊗ gGfG)

t∩ = AWδ
∑
i≥0

(−1)i(SHIδ)iEML

AWδ = AW (1− δ
∑
i≥0

(−1)i(SHIδ)iSHI)

EMLδ =
∑
i≥0

(−1)i(SHIδ)iEML

SHIδ =
∑
i≥0

(−1)i(SHIδ)iSHI

δ((an−1, . . . , a0), (gn−1, . . . , g0)) = −((an−2, . . . , a0), (gn−2, . . . , g0))+
(−α(gn−2, gn−1) + an−2,−α(gn−3, gn−2 + gn−1) + α(gn−3, gn−2) + an−3, . . . ,

. . . ,−α(g0, g1 + . . . + gn−1) + α(g0, g1 + . . . + gn−2) + a0), (gn−2, . . . , g0))
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ϕ([(a0, g0), . . . , (an, gn)]) =
{

((a0, g0), . . . , (an, gn)), if A×αG is abelian
(−1)	

n
2 
+1((an, gn), . . . , (a0, g0)), otherwise

ψ[(an−1, gn−1), . . . , (a0, g0)] =
([an−1, an−2 + α(gn−2, gn−1), . . . , a0 + α(g0, g1 + . . . gn−2 + gn−1)], [gn−1, . . . , g0])

ψ−1([an−1, . . . , a0], [gn−1, . . . , g0]) = [(an−1, gn−1), (an−2 − α(gn−2, gn−1), gn−2), . . . ,
. . . , (an−i − α(gn−i, gn−i+1 + . . . + gn−2 + gn−1), gn−i),

. . . , (a0 − α(g0, g1 + . . . + gn−2 + gn−1), g0)]

AW ((an−1, . . . , a0), (gn−1, . . . , g0)) =
n∑

i=0

(an−1, . . . , an−i)⊗ (gn−i−1, . . . , g0)

EML((ap−1, . . . , a0)⊗ (gq−1, . . . g0)) = (ap−1, . . . , a0) � (gq−1, . . . g0)
SHI((an−1, . . . , a0), (gn−1, . . . , g0)) =

n−1∑
q=0

n−p−q∑
p=0

((an−1, . . . , ap+q+1, 0), (gn−1, . . . , gp+q+1, gp+q + . . . + gq))||

(ap+q, . . . , aq) � (qq−1, . . . , g0)

The symbol � refers to the shuffle product, so that the output of

(ap−1, . . . , a0) � (gq−1, . . . , g0)

consists in the sum of all the different shuffles of the tuples, such that the inner
order in the lists is preserved. The sign correspondent to a particular shuffle
depends on the number of positions that elements ai have got ahead of elements
gj.

2.4 A Homological Model for a Semidirect Product

Here A× αG denotes the semidirect product of A and G by means of the homo-
morphism α : G→ Aut(A), such that (a, g) · (a′, g′) = (a + α(g)(a′), g + g′). In
case that α is the zero map, then A× αG consists in the direct product A×G.

A homological model φAG:B̄(ZZ[A× αG])
fAG
⇀↽

gAG

(hAG, dAG) for a semidirect prod-

uct A× αG, for G being an abelian group, is described in [3], in terms of homo-

logical models φA:B̄(ZZ[A])
fA
⇀↽
gA

(hA, dA) and φG:B̄(ZZ[G])
fG
⇀↽
gG

(hG, dG) of the factor

groups A and G.
The formulae for central extensions given before also apply for a semidirect

product, with the following exceptions,

δ((an−1, . . . , a0), (gn−1, . . . , g0)) = −((an−2, . . . , a0), (gn−2, . . . , g0))+
+((α(gn−1)(an−2), . . . , α(gn−1)(a0)), (gn−2, . . . , g0))

ψ[(an−1, gn−1), . . . , (a0, g0)] =
((α(g−1

n−1)(an−1), . . . , α(g−1
n−1 + . . . + g−1

0 )(a0)), (gn−1, . . . , g0))
ψ−1((an−1, . . . , a0), (gn−1, . . . , g0)) =

((α(gn−1)(an−1), gn−1), . . . , (α(g0 + . . . gn−1)(a0), g0))
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2.5 A Homological Model for an Iterated Product

Let G be an iterated product of central extensions and semidirect products of
abelian groups, which admits the form A×

α
G, for A and G also being possibly

iterated products. Here A×
α
G denotes a single central extension or a single

semidirec product, as it is the case. This way, a homological model for G has
been already described in the subsections above, provided some homological
models for A and G are known. In fact, we do know these homological models
for A and G. It suffices to iterate this scheme, until we arrive to homological
models for ZZ or ZZn.

3 The Notebook

3.1 Codifying the Group

An iterated product G of central extensions and semidirect products of abelian
groups Gi, 1 ≤ i ≤ n, is codified as a rooted binary tree, such that every inner
vertex represents a product, their sons being the correspondent factor groups.
As usual, a inner vertex contributes two sons in the level immediately below.
This way, the number of leaf vertices coincides with the number of factor groups
Gi. In order to obtain the group G, the inner vertices (i.e. single products) of
the tree must be chosen from bottom to the top level (root vertex), from left to
the right while staying at the same level.

For instance, the binary tree of Figure 1 represents an iterated product.

G3

G4

G1

2

3

1

G2

Fig. 1. A binary tree representing the product (G1 × (G2 × G3)) × G4

We use a list for representing this binary tree, which we term tree-list. In
fact, Mathematica is one of the most appropriate systems for handling with lists.
Proceeding level by level, from top to the bottom, from left to the right, every
vertex (but those placed on the last level) will be codified as an integer, attending
to the correspondences in the table below.



A Mathematica Notebook for Computing the Homology 53

Label Meaning
0 leaf vertex
1 direct product
2 semidirect product A× αG
3 semidirect product Gα×A
4 central extension A×αG
5 central extension Gα×A

Example 1. Consider the dihedral group D4t =ZZ2t× αZZ2, for α : ZZ2→Aut(ZZ2t)
such that α(0)(x) = x and α(1)(x) = −x. The list codifying this group consists
in {{2}}. There is no need to add the list {0, 0} corresponding to the last level.

Example 2. Consider the central extension ZZ2t×αZZ2, for α : ZZ2 × ZZ2 → ZZ2t

being the 2-cocycle

α(gi, gj) =
{
� t

2�+ 1 if gi = gj = 1
0 otherwise

The list codifying this group consists in {{4}}. Once again, we do not take into
account the list {0, 0} corresponding to the last level.

Example 3. Consider the iterated product (ZZt×α2ZZ2)× α1ZZ2, for α2 being the
2-cocycle α2 : ZZ2 × ZZ2 → ZZt defined as

α2(gi, gj) =
{
� t

2�+ 1 if gi = gj = 1
0 otherwise

and α1 being the dihedral action

α1(a, b) =
{
−b if a = 1

b if a = 0

The list codifying this group consists in {{2}, {4, 0}}.

3.2 Codifying the Homological Models

The homological models described in the precedent section involve several struc-
tures, such as:

– Linear combinations.
– Products of exterior and divided power algebras.
– Elements in a cartesian simplicial product X × Y , linear combinations of

tuples ((x1, y1), . . . , (xn, yn)).
– Elements in a tensor product X⊗Y , linear combinations of tuples (x1,. . .,xp)
⊗ (y1,. . ., yq).

– Formal series.
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We now describe the way in which these structures are codified.

– The elimination of the attribute Listable on the addition and product func-
tions provided by Mathematica supplies at once the possibility of making
linear combinations with lists.

– Each of the groups Gi = ZZni gives rise to a product Pi = E(ui) ⊗ Γ (wi),
whereas each group Gj = ZZ gives rise to a single Pj = E(uj). The elements

in hG =
n∏

i=1

Pi are codified as linear combinations of tuples of length n, such

that if m is the jth entry of a tuple, it refers to the generator um (mod 2) ⊗
γ�m

2 �(w) (notice that only 0 and 1 entries are permitted in case of Pj = E(uj)
factors coming from Gj = ZZ). These tuples are ordered as numbers of n
digits. For instance, if G = ZZ2×ZZ×ZZ2, a basis for hG on degree 3 is given
by {(0, 0, 3), (0, 1, 2), (1, 0, 2), (1, 1, 1), (2, 0, 1), (2, 1, 0), (3, 0, 0)}.

– Tuples are codified as lists, in a natural way.
– Formal series, which are always finite when applied on a concrete element,

are codified in terms of the command NestList.

3.3 Calculating the Homology

As Veblen’s algorithm indicates [22], in order to compute the homology Hi(G) it
is necessary to calculate the Smith’s normal forms of the matrices Mi and Mi+1
representing the differential operators di and di+1.

Our program firstly computes the matrices Mi and Mi+1. Afterwards, we use
the SmithNormalForm.na package [14] and finally compute Hi(G). Though the
actual version of the notebook does not provide representative i-cycles, it could
be straightforwardly adapted to this end. In fact, such an option was available
in an earlier (not published) version of the notebook, which ran only over finite
groups.

3.4 Input and Output Data

In these circumstances, we may now determine exactly what the input and out-
put data are.

Input Data:

– The correspondent tree-list for the group G.
– The cardinalities of each elementary factor group ZZ or ZZn. The notation is

0 for ZZ and n > 1 for ZZn. Notice that k factor groups correspond to k − 1
products, and vice versa.

– The maps αi involved in the ith product, Ji ×
αi

Ki. The user should attend to

the tree-list for the group G, in order to identify the index i corresponding
to each product, as well as the syntax to use for codifying the elements in
Ji and Ki, since they could be in turn iterated groups themselves.

– Finally, the desired degree k, in order to compute Hk.
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Output data:

– The homology Hk(G).

As soon as the computation has finished, the user is asked for going on com-
puting Hk+1, since half of the computations (those corresponding to dk+1) may
be reused.

4 Simplifications on the Formulae

Calculations achieved with our program have provided some evidences of annihi-
lation properties on some summands on the maps characterizing the homological
models of the precedent sections. We include here the results that we have finally
proved.

Proposition 1. In the case of a homological model for a semidirect product, the
morphism SHIδ reduces to SHI, as well as EMLδ reduces to EML, and AWδ

reduces to AW −AWδSHI.

Proposition 2. In the case of a homological model for a semidirect product, the
morphism t∩ reduces to t ∩ ([am−1, . . . , a0]⊗ [gn−1, . . . , g0]) =
(−1)m([α(gn−1)(am−1), . . . , α(gn−1)(a0)]− [am−1, . . . , a0])⊗ [gn−2, . . . , g0]

5 Executions and Examples

We compute here the matrices M2 and M3 corresponding to d2 and d3, as well as
the homology groups H1 and H2 of some finite groups. These and other examples
have provided essential information in order to calculate the total number of
cocyclic Hadamard matrices on the correspondent groups, some of which seems
to be new [2].

Example 4. Consider the family of groups ZZ2t×αZZ2, for t ∈ IN and α being the

2-cocycle f(1, 1) = � t
2
�+ 1.

t 1 2 3 4 5

M2

⎛⎝2 0
0 0
0 2

⎞⎠ ⎛⎝2 2
0 0
0 4

⎞⎠ ⎛⎝2 3
0 0
0 6

⎞⎠ ⎛⎝2 5
0 0
0 8

⎞⎠ ⎛⎝2 6
0 0
0 10

⎞⎠
M3

⎛⎜⎜⎝
0 0 0
0 −2 0
0 2 0
0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 2 0
0 −2 0
0 4 0
0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 3 0
0 −2 0
0 6 0
0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 5 0
0 −2 0
0 8 0
0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 6 0
0 −2 0
0 10 0
0 0 0

⎞⎟⎟⎠
H1 ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ4 ZZ12 ZZ16 ZZ2 ⊕ ZZ10
H2 ZZ2 ZZ2 0 0 ZZ2
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Example 5. Consider the dihedral groups D4t = ZZ2t× χZZ2, for 1 ≤ t ≤ 5.

t 1 2 3 4 5

M2

⎛⎝2 0
0 0
0 2

⎞⎠ ⎛⎝2 0
0 −2
0 4

⎞⎠ ⎛⎝2 0
0 −4
0 6

⎞⎠ ⎛⎝2 0
0 −6
0 8

⎞⎠ ⎛⎝2 0
0 −8
0 10

⎞⎠
M3

⎛⎜⎜⎝
0 0 0
0 −2 0
0 2 0
0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 0 0
0 −4 −2
0 4 2
0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 0 0
0 −6 −4
0 6 4
0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 0 0
0 −8 −6
0 8 6
0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 0 0
0 −10 −8
0 10 8
0 0 0

⎞⎟⎟⎠
H1 ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ2
H2 ZZ2 ZZ2 ZZ2 ZZ2 ZZ2

Example 6. Consider the family of iterated products (ZZt×fZZ2)× χZZ2, for 2 ≤
t ≤ 5, f being the 2-cocycle f(1, 1) = � t

2
� + 1 and χ being the dihedral action

χ(1, b) = −b.

t 2 3 4 5

M2

⎛⎜⎜⎜⎜⎜⎜⎝
2 0 0
0 0 0
0 2 0
0 0 0
0 0 0
0 0 2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
2 0 0
0 0 0
0 2 0
0 0 −1
0 0 0
0 0 3

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
2 0 0
0 0 −1
0 2 1
0 0 −2
0 0 0
0 0 4

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
2 0 0
0 0 −1
0 2 1
0 0 −3
0 0 0
0 0 5

⎞⎟⎟⎟⎟⎟⎟⎠

M3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 −2 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 0 −2 0 0
0 0 0 0 0 0
0 0 0 0 −2 0
0 0 0 0 0 0
0 0 0 0 2 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 −2 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 0 −3 0 −1
0 0 0 0 1 0
0 0 0 0 −2 0
0 0 0 3 0 1
0 0 0 0 3 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 −2 0 −1 0 −1
0 2 0 1 1 1
0 0 0 0 1 0
0 0 0 −4 0 −2
0 0 0 0 2 0
0 0 0 0 −2 0
0 0 0 4 0 2
0 0 0 0 4 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 −2 0 −1 0 −1
0 2 0 1 1 1
0 0 0 0 1 0
0 0 0 −5 0 −3
0 0 0 0 3 0
0 0 0 0 −2 0
0 0 0 5 0 3
0 0 0 0 5 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
H1 ZZ2 ⊕ ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ2
H2 ZZ2 ⊕ ZZ2 ⊕ ZZ2 ZZ2 ZZ2 ZZ2
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1. V. Álvarez. http://mathworld.wolfram.com/HomologyIteratedGroups.html
(2006). To appear.
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Abstract. We present gclc /Wingclc— a tool for visualizing ge-
ometrical (and not only geometrical) objects and notions, for teach-
ing/studying mathematics, and for producing mathematical illustrations
of high quality. gclc uses a language gc for declarative representation of
figures and for storing mathematical contents of visual nature in textual
form. In gclc, there is a build-in geometrical theorem prover which di-
rectly links visual and semantical geometrical information with deductive
properties and machine–generated proofs.

1 Introduction

gclc is a tool for visualizing objects and notions of geometry and other fields of
mathematics (by generating figures and animations). It can be used for produc-
ing digital mathematical illustrations, for teaching and studying geometry (and
not only geometry), and for storing visual mathematical contents in textual form
— as figure descriptions in the gc language. gclc provides easy-to-use support
for many geometrical constructions, isometric transformations, and conics. The
basic idea behind gclc is that constructions are formal procedures, rather than
drawings. Thus, in gclc, producing mathematical illustrations is based on “de-
scribing figures” rather than of “drawing figures”.1 This approach stresses the
fact that geometrical constructions are abstract, formal procedures and not fig-
ures. A figure can be generated on the basis of abstract description, in Cartesian
model of a plane. A similar approach is used for illustrations for other supported
fields. Figures can be displayed and exported as LATEX files or bitmaps.

Although gclc was initially built as a tool for converting formal descriptions
of geometric constructions into LATEX form (hence its name “Geometry Con-
structions → LATEX Converter”), now it is much more than that. For instance,
there is support for symbolic expressions, for drawing parametric curves, for
program loops, etc; Wingclc, a version with a Windows graphical interface,
makes gclc a dynamic geometry tool with a range of additional functionalities;
a built-in geometry theorem prover can automatically prove a range of complex
1 In a sense, this system is in spirit close to the TEX/LATEX system [14,16], or is parallel

to it. Within the TEX/LATEX system, the author (explicitly) describes the layout of
his/her text.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 58–73, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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theorems, etc. gclc now links semantic information about a construction with
its visual representation and with its deductive properties. Thus, it provides
mathematical contents directly linked to visual information and supported by
machine–generated proofs.

gclc is under constant development from 1996. Some features of graphical
interface of Wingclc are presented in [13], some educational aspects of gclc
are presented in [7], the built-in theorem prover is described in [23,11], and the
mathematical contents management issues are discussed in [24]. This paper is
the first general overview of the system.

Overview of the Paper: The rest of the paper is organized as follows: in Section 2
we focus on formal geometrical constructions and illustrate the need for describ-
ing mathematical illustrations rather then drawing them; in Section 3 we give
a brief overview of the language of the gclc system; in Section 4 we describe
basic features of the graphical interface; in Section 5 we describe the built-in
geometry theorem prover; in Section 6 we present several examples, illustrating
different features of gclc; in Section 7 we briefly discuss applications of gclc
in producing mathematical illustrations, in storing mathematical contents of vi-
sual nature, and in teaching mathematics; in Section 8 we discuss some technical
issues and give availability information; in Section 9 we give a short overview
of the systems related to gclc; in Section 10 we discuss potential directions for
further work and in Section 11 we draw final conclusions. In Section A we give
some additional examples.

2 Describing Formal Constructions

Geometrical constructions are the main area of gclc. This type of mathematical
problems is very relevant for the need to describe, and not draw images.

A geometrical construction is a sequence of specific, primitive construction
steps. These primitive construction steps are also called elementary constructions
and they are:

– construction (by ruler) of a line such that two given points belong to it;
– construction of a point such that it is the intersection of two lines (if such a

point exist);
– construction (by compass) of a circle such that its center is one given point

and such that the second given point belongs to it;
– construction (by compass) of a segment connecting two points;
– construction of intersections between a given line and a given circle (if such

points exist).

By using the set of primitive constructions, one can define more involved,
compound constructions (e.g., construction of right angle, construction of the
segment midpoint, construction of the segment bisector etc.). In describing geo-
metrical constructions, it is usual to use higher level constructions as well as the
primitive ones.
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gclc follows the idea of formal constructions. It provides easy-to-use support
for all primitive constructions, but also for a range of higher-level constructions.
(Although motivated by the formal geometrical constructions, gclc provides a
support for some non-constructible objects too — for instance, in gclc it is
possible to determine/use a point obtained by rotation for 1◦, although it is not
possible to construct that point by ruler and compass).

There is a need of distinguishing abstract (i.e., formal, axiomatic) nature of
geometrical objects and their semantics and usual models. A geometrical con-
struction is a mere procedure of abstract steps and not a picture. However, for
each (Euclidean) construction, there is its counterpart in the standard Cartesian
model. While a construction is an abstract procedure, in order to make its usual
representation in Cartesian plane (or, more precisely, in Cartesian model of Eu-
clidean plane), one still has to make a link between these two. For instance, given
three vertices of a triangle, one can construct a center of its circumcircle, but
in order to visualize and represent this construction in Cartesian plane, he/she
has to take three particular Cartesian points as vertices of the triangle (see the
example given in Fig. 1). Thus, figure descriptions in gclc are usually made by
a list of definitions of several (usually very few) fixed points (defined in terms
of Cartesian plane, i.e., by pairs of coordinates) and a list of construction steps
based on these points.

3 gc Language

In gclc, figures are described in the gc language. gc syntax is very simple,
but, at the same time, it enables describing very complex figures in very few
lines. Describing images in the gc language does not require programming
skills. Descriptions via gc commands directly reflect mathematical objects to
be visualized and are easily understandable to mathematicians. Therefore, gc
is a higher-level language (with support for a number of advanced geometri-
cal concepts) designed for mathematicians, and not a machine-oriented script
language.

gc language consists of the following groups of commands (examples for dif-
ferent groups of commands are given in Section 6):

Basic definitions: these commands include commands for defining fixed points,
for defining a line on the basis of two selected points, defining a circle, a numer-
ical constant etc.

Basic constructions: these constructions include constructions of intersection
points for two lines, and for a line and a circle, construction of the mid-
point of a given segment, the bisector of an angle, the segment bisectors,
perpendicular lines, parallel lines, etc.

Transformations: these commands include commands for translation, rota-
tion, line-symmetry, half-turn, but also some non-isometric transformations
like scaling, circle inversion etc.
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Commands for calculations, expressions, and loops: therearecommands
for calculating angles determinedby triples of points, distances betweenpoints,
for generating random numbers, for calculating symbolic expressions and sup-
port for while-loops.

Drawing commands: there are commands for drawing lines, segments, circles,
arcs, and ellipses in several modes.

Labelling and printing commands: points can be labelled, marked in a
number of ways. In addition, a text can be attached to a particular point.

Cartesian commands: this group of commands provides support for direct
access to a user–defined Cartesian system. A user can define a system, its
unit, and, within it, he/she can define points, lines, conics, tangents etc. and
can also draw curves given in parametric form.

Low level commands: there is support for changing line thickness, color, clip-
ping area, figure dimensions etc.

Commands for describing animations: this group of commands provides
support for making animations within Wingclc. Some points can be de-
fined to move from one position to another; points can also be traced.

Commands for the geometry theorem prover: using support for the built-
in geometry theorem prover, the user can provide the conjecture, can control
a proof level and can limit a maximal number of proof steps.

4 Graphical Interface

Wingclc provides a range of interactive functionalities. In addition to tools
for processing picture descriptions and locating errors, tools (watch window)
for monitoring values of selected objects in a construction (so Wingclc can
work as a geometrical calculator), there are also tools for easy and interactive
moving of fixed points, updating pictures and making animations. (Animations
and traced points can be defined both interactively and via gclc commands.)
These interactive features can be very useful in teaching geometry, but can also
help studying geometry or even help some research (with Wingclc serving as a
machine assistant). Figure 5 illustrates some of the mentioned tools and devices
(traces, animations, watch windows, etc.)

5 Theorem Prover

Automated theorem proving in geometry has two major lines of research:
synthetic proof style and algebraic proof style (see, for instance, [18] for a sur-
vey). Algebraic proof style methods are based on reducing geometric proper-
ties to algebraic properties expressed in terms of Cartesian coordinates. These
methods are usually very efficient, but the proofs they produce do not re-
flect the geometric nature of the problem and they give only a yes or no con-
clusion. Synthetic methods attempt to automate traditional geometry proof
methods.
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The geometry theorem prover built into gclc is based on the area method
[3,4,23].2 This method belongs to the group of synthetic methods. It produces
traditional, human-readable proofs, with a clear justification for each proof step.
The main idea of the method is to express hypotheses of a theorem using a set of
constructive statements, each of them introducing a new point, and to express
a conclusion by an equality of expressions in geometric quantities (e.g., signed
area of a triangle), without referring to Cartesian coordinates. The proof is then
based on eliminating (in reverse order) the points introduced before, using for
that purpose a set of appropriate lemmas. After eliminating all introduced points,
the current goal becomes a trivial equality that can be simply tested for validity.
In all stages, different expression simplifications are applied to the current goal.
The method does not have any branching, which makes it very efficient. A wide
range of geometric conjectures can be simply stated within gclc and proved by
the prover.

The prover is tightly integrated in gclc. This means that one can use the
prover to reason about a gclc construction (i.e., about objects introduced in
it), without changing and adapting it for the deduction process — the user only
needs to add the conclusion he/she wants to prove. The proofs are generated in
LATEX form. For more details about the prover, see [23,11].

6 Examples

Geometrical Constructions. The example given in Fig. 1 illustrates one sim-
ple geometrical construction. Groups of commands are explained by comments
(marked by the symbol %) within the description itself. As many other simi-
lar descriptions, this one has basically three parts (not necessarily separated):
one with defining fixed points (with coordinates in Cartesian plane), one with
construction steps, and one with labelling and drawing commands. By changing
one of the three fixed points, the whole of the illustration is updated. In this
example, three side bisectors of the triangle ABC are constructed. It is a simple
fact that these three lines intersect at one point (at the center of the circum-
circle). This can be also stated in the following form: pairwise intersections of
the side bisectors, the points O_1 and O_2, are identical. This property (as well
as much more complex properties or hypotheses) can be, in a sense, explored
within gclc. Namely, d is defined to be the distance between O_1 and O_2, and
one can monitor the value of d to ensure that it is equal to zero (for these and
for any other three particular vertices).

Cartesian Commands. Example given in Fig. 2 illustrates the support for a direct
access to a user-defined Cartesian system. In this example, there is a description
of one conic (parabola), via its canonical parameters, and one its tangent. This
example also illustrates how a rather complex figure can be described in only a
few lines.
2 The theorem prover is developed in collaboration with prof. Pedro Quaresma from

University of Coimbra.
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% fixed points
point A 10 10
point B 50 10
point C 40 50

% side bisectors
med a B C
med b A C
med c B A

% intersections of bisectors
intersec O 1 a b
intersec O 2 a c
distance d O 1 O 2

% marking points
cmark b A
cmark b B
cmark t C
cmark lt O 1
cmark rt O 2

% drawing the sides of the triangle ABC
drawsegment A B
drawsegment A C
drawsegment B C

% drawing the circumcircle of a triangle
drawcircle O 1 A

A B

C

O1 O2

Fig. 1. Example of a gc description of a geometrical construction (left) and the corre-
sponding (LATEX) output (right)

Parametric Curves. Example given in Fig. 3 illustrates the support for para-
metric curves. The first curve, is drawn for parameter x ranging from -3 to 4,
increased by the step 0.05.

While-loops. Example given in Fig. 4 illustrates while-loops. The construction
described within this example shows that, for any line segment AB, the locus
of all points L such that the angle ALB is right angle, is the circle with the
perimeter AB. The point B is rotated (giving the point B′) around the point
A for the angle phi ranging from 0◦ to 70◦, and the point L is determined as a
foot of the perpendicular from B to AB′. Points L for different values of phi are
connected by line segments.

Animations. An animation in Wingclc is defined as a formal construction
with a set of fixed points that linearly move from an initial to a destination
position. All positions of one selected point make trace (similar to locus), drawn
in a selected color. The watch window is used for monitoring values of objects



64 P. Janičić

% define and draw Cartesian axis
ang picture 5 5 55 55
ang origin 20 20
ang drawsystem

% define a conic
ang conic h 0 0 1 -1 0 -3

% construct a point P on the conic
% and the tangent in P
ang point A1 2 2
ang point A2 3 2
line l A1 A2
ang intersec2 P P2 h l
ang tangent p P h

% draw the conic and the tangent
cmark t P
ang drawline p
ang drawconic h

0 1 2 3−1

1

2

3

−1

P

Fig. 2. Illustration for Cartesian commands

ang picture 2 2 58 58
ang origin 25 25
ang unit 7
ang drawsystem a

ang draw parametric curve x
{-3; x<4; x+0.05}
{ x; sin(pow(x,2))*cos(x) }

% polar coordinates
number rho 2
ang draw parametric curve phi

{ 0 ; phi<6; phi+0.1}
{ phi*rho*sin(phi)/5 ;

rho*cos(phi) }

0 1 2 3 4−1−2−3

1
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4

−1

−2

−3

x

y

Fig. 3. Illustration for parametric curves

used in the construction. The screenshot shown in Fig. 5 illustrates some of the
features and devices of Wingclc (traces, animations, watch windows, etc.)

Theorem Prover. For the example shown in Figure 1, it can be checked that
for any particular three points A, B, and C, the points O_1 and O_2 (pairwise
intersections of the side bisectors) are identical. Using the prover, one can ensure
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point A 5 5
point B 50 5

cmark b A
cmark b B

drawsegment A B
translate L old B B B

number phi 0
while { phi<=70 }
{

rotate B’ A phi B
line a B’ A
foot L B a

drawsegment L L old
translate L old L L L

expression phi { phi+1 }
}

cmark lt B’
drawdashsegment A B’
drawdashsegment B L

A B

B′

Fig. 4. Illustration for while-loops

that this is valid statement, i.e., the distance between points O_1 and O_2 is
always equal to zero. This statement can be given to the prover by simply adding
the following line:

prove { equal { pythagoras difference3 O 1 O 2 O 1 } 0 }
to the code given in Figure 1. The conjecture is stated within the command
prove and via the geometric quantity Pythagoras difference (P3). By definition,
P3(A, B, C) = AB2 + CB2 −AC2, hence, the value P3(O_1,O_2,O_1) is equal to
0 if and only if the points O_1 and O_2 are identical (for more details, see [23]).
The proof is exported to a LATEX file, with explanations for each proof step.
Figure 6 shows last steps of the proof made by the prover (the proof consists
of 119 steps and it took 0.035 seconds of CPU time). This example illustrates
how gclc provides geometrical contents directly linked to visual information
and supported by machine–generated proofs.

7 Applications

In this section we briefly discuss three main fields of application for gclc: in
producing mathematical illustrations, for storing mathematical contents, and in
teaching mathematics.
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Fig. 5. Trace and watch windows with cycloid described in WinGCLC
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Fig. 6. Last steps of the proof of the Circumcircle theorem

7.1 Producing Digital Illustrations

gclc can serve as a tool for making digital illustrations of high quality. Descrip-
tions made in gc language can be (internally) visualized or can be converted
into some other format — LATEX or bitmap format. Figures in LATEX format
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produced by gclc can be included directly in LATEX documents, hence they use
LATEX fonts and formulae which is essential for good looking figures in LATEX
documents (while this is a problem for many other formats and tools). Pictures
in bitmap format are suitable for different conversions and processing. Although
these two picture formats (LATEX and bitmap) have their advantages, gclc fig-
ures are normally stored in their original, source form. This form is not only
precise and sufficient for producing pictures, but also very concise: for instance,
all figures from a university book with 120 illustrated geometrical problems [12]
have together (in uncompressed, gclc form) less than 130Kb. gclc has been
used for producing illustrations for a number of other books and articles.

7.2 Storing Mathematical Contents

We advocate for describing (rather than drawing) mathematical illustrations.
Descriptions of images should be given in formal, but human-readable, easily
understandable language, close to the intended mathematical meaning. Mathe-
matical illustrations should be stored in such form (rather than in the form of
images).

A lot of mathematical contents, both in education and in research, is of visual
nature. In many (or most) lecture notes, books, and research articles there are
mathematical illustrations. They carry mathematical information, some mathe-
matical message that is represented visually rather than in textual or numerical
form. Usually, such message is better understandable to a reader when repre-
sented visually. On the other hand, this visual information is usually not math-
ematically rigorous; it is usually approximation and/or interpretation of some
mathematical objects, notions, concepts, numerical data, proofs, ideas etc. A
reader interprets the visual information and in his/her mind creates a formal
mathematical information. It is often assumed that the reader (with a support
from the given textual explanations, earlier experience with illustrations, stan-
dard mathematical background, intuition, etc) can understand, “read” the right
mathematical message from the illustration. Although a mathematical message
is carried by an illustration, that message cannot always be reproduced from
the illustration itself. In addition, a mathematician, the author or a reader of a
mathematical text, may need to alter an image, to modify some of its characteris-
tics (not only characteristics such as dimensions, but rather some characteristics
implying the mathematical contents), to make it more general or more specific,
and also to store it in a way that enables these sorts of transformations.

Let us consider geometrical illustrations: a complex geometrical construction
may be illustrated by an image and can indeed make the understanding of the
text easier. However, without a given context, without provided textual expla-
nations of the problem, it is unlikely that one could guess the right nature and
description of the construction. In addition, the Cartesian interpretation of Eu-
clidean geometry is just one of possible interpretations and, hence, potentially
misses some of the abstract geometrical meaning. The main point is: an im-
age itself does not provide precise geometrical message. It is better to have a
figure description that is formal and can be used for producing the required
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image, required mathematical illustration. Such information should be stored
instead of images. Mathematical content stored in this way (via formal de-
scriptions) is easy to understand, maintain, modify and process in different
ways.

The program gclc is developed along the lines of the given motivation. It
is based on using the gc language, in which one can describe a number of ge-
ometrical constructions, but also other mathematical objects. Figure descrip-
tions are declarative, precise and brief descriptions of mathematical content and
from them corresponding illustrations can be generated. This way, gclc can
be seen as a tool for storing mathematical contents of visual natura in textual
form.

7.3 Using GCLC in Teaching Mathematics

In teaching and studying geometry, students can interactively use gclc to make
different attempts in making constructions and/or exploring some mathemati-
cal (especially geometrical) objects, notions, ideas, problems, proofs, properties
etc [7]. Formally describing mathematical objects is similar to programming,
so this helps computer science students to better understand geometry no-
tions and mathematics students to get familiar with programming. Interactive
work makes this sort of studying more interesting and more fruitful. The built-
in theorem prover can help students link semantic and deductive aspects of
geometry.

Producing mathematical images and teaching/studying mathematics are not
far from each other. For instance, within the geometry courses at the Faculty of
Mathematics, University of Belgrade, prof. Zoran Lučić with his students made
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Fig. 7. Illustration for Euclid’s construction of dodecahedron
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an electronic version of Euclid’s masterpiece of the classical mathematics — The
Elements [17]. All figures in the book are described in the gc language and
directly reflect the accompanying geometrical text. This is probably the first
edition of The Elements that includes formal, rigorous description of all images,
descriptions that directly reflect the accompanying mathematical text. Figure
7 shows Lučić’s detailed illustration for Euclid’s construction of dodecahedron.
This figure is made by using the means of descriptive geometry and shows that
three-dimensional objects can be also formally describe in gc language, despite
the fact that it is basically designed for plane geometry.

8 Technical Issues, Versions and Availability

gclc /Wingclc programs are implemented in C++ programming language.
The basic, command line version has around 18000 lines of code. gclc programs
are very small in size: the command line version of gclc has around 350Kb,
Wingclc has around 700Kb.

There are command-line versions of gclc for Windows and for Linux. Win-
gclc is the version of gclc for Windows, with a graphical user-friendly interface.
As yet, there is no version with a graphical user interface for Linux.

gclc package (with a manual file and sample files) is freely available from
www.matf.bg.ac.yu/~janicic/gclc/ and from emis (The European Mathe-
matical Information Service) servers (www.emis.de/misc/index.html).

Figures in LATEX format generated by gclc are included in a LATEX documents
by the \input command. They use a simple package gclc.sty, with definitions
that can be changed (so, for instance, can use some particular LATEX drawing
package).

9 Related Work

gclc /Wingclc is related to a family of similar, dynamic geometry tools such
as Cinderella, [25,6], Geometer’s Sketchpad, [10,8] Eukleides [20], Cabri, [2,15],
JavaView [22,21]. gclc share a number of features with these tools, but also
have some specific features. The main features in which gclc /Wingclc differs
from similar tools are:

– the deduction module (that directly links visual and semantical geometrical
information with deductive properties and machine–generated proofs);

– features that go beyond Euclidean geometry; for instance, gclc can be used
for easily producing figures in Cartesian plane, including graphs of func-
tions (see Figure 8); therefore, gclc can substitute a wide range of tools for
producing mathematical (not only geometrical) illustrations.

Some of the advantages of gclc /Wingclc (comparing to other tools) are
also its free availability, its simplicity, small size of the program, its output
files natively supported by LATEX, interactive features such as animations and
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Fig. 8. Function of arity two drawn by gclc

traces, etc. In contrast to some dynamic geometry tools, gclc /Wingclc fo-
cuses on explicitly and formally describing figures (instead of drawing figures)
and thus, focusing on meaning rather than only on layout of figures. These ex-
plicit descriptions are easy to write and understand, and they directly reflect the
mathematical meaning illustrated by figures.

There are links between gclc and other tools: there are converters from
JavaView .jvx code and from Eukleides code to gclc code. This brings ad-
ditional power to gclc (by making available models created in other tools).

Concerning geometrical theorem proving, there are also some systems related
to gclc /Wingclc. Geometry Expert [9] is a dynamic geometry system with
algebraic based theorem prover. There are geometrical theorem provers based
on the area method also within the systems Coq [19] and Theorema [1].

10 Further Work

The next version of gclc /Wingclc will have support for 3D Cartesian sys-
tem, for plotting graphs, for exporting figures to eps and svg format, and for
exporting figures descriptions and proofs to xml format. For future work, we
also are planning to:

– implement additional geometrical theorem provers and build them into gclc;
one of the candidates is a prover based on Wu’s algorithm [5];

– develop new additional modules to gclc (for hyperbolical geometry, descrip-
tive geometry, projective geometry etc.), so gclc could work as a native
platform for a range of geometries;
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– develop new tools for linking gclc with other mathematical software tools;
– make xml version of gc format, and link gclc with some popular markup

languages for mathematical contents.

11 Conclusions

In this paper we presented the software package gclc /Wingclc for visualizing
mathematical objects and notions, for teaching/studying mathematics, and for
producing mathematical illustrations of high quality. gclc uses the gc language
for declarative representation of figures, suitable for storing mathematical con-
tents of visual nature. With such representation of information, the intended
mathematical message and meaning of mathematical illustrations is possible to
preserve and reconstruct.

After first ten years of development, gclc is much more than a geometrical
tool. There is support for symbolic expressions, for drawing parametric curves,
for program loops, and Wingclc makes gclc an interactive, dynamic math-
ematical tool with a range of functionalities. The built-in geometry theorem
prover can automatically prove a range of complex theorems. It links seman-
tic information about a construction with its deductive properties. It provides
mathematical contents directly linked to visual information and supported by
machine–generated proofs.

The system is publicly available and is already being used by a number of
mathematicians. We are planning to further improve it and extend it.
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7. Mirjana Djorić and Predrag Janičić. Constructions, instructions, interactions .

Teaching Mathematics and its Applications, 23(2):69–88, 2004.
8. Geometer’s Sketchpad site. http://www.keypress.com/sketchpad/.
9. GEX site. http://woody.cs.wichita.edu/gex/7-10/gex.html.

10. Nicholas Jackiw. The Geometer’s Sketchpad v4.0. Emeryville: Key Curriculum
Press, 2001.
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Abstract. This paper presents our approach to the question of how to
code mathematics (mostly experimantal and motivated from geometry)
in Java. We are especially interested in the question how the development
of mathematical software and the mathematics itself influence each other
and how the design of programming tools and code can support this
interrelationship.

1 Introduction

There are many ways computers are utilized to do mathematics. The area spreads
from computer algebra and computer proofs to numerical analysis and scientific
computing. For all of these applications there are powerfull tools available.

The software tools and design paradigms we want to present here can not be
sorted easily into these categories:

Computer Algebra Systems (CAS) like MATHEMATICA [28], Maple [14],
MuPad [20] or Gap, singular, and magma to name a few are all capable of
powerfull symbolic manipulation and algebraic calculations. While there is a
well working expression parser in the jtem project symbolic calculations are not
the main focus of our system. Our components are designed to support a special
way of software/application development which is not present in CAS systems,
although they (usually) have powerfull programing languages built in. On the
other hand one can not say that our development environment oorange is an
integrated development environment (IDE) in the classical sense (like e.g. eclipse
[6] or JBuilder for Java): It has for example no debugger but allows changes to
a running program and it uses a graphical interface for the control flow (see
section 4). Here GRAPE [9] shows the object oriented approach while AVS [3]
has a similar graphical interface.

There is some similarity to dynamic geometry software like Cinderella [24,25],
Cabri [5], or geometer’s sketchpad [7] (again the list is not complete) in the sense
that both types of systems can be used in a similar way: to investigate geomet-
ric facts, examples, and hypotheses by interactively changing configurations or
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“parameters”. But even if there is a 2d viewer in jtem we are more concerned
with 3d graphics than 2d which is the classical domain of the dynamic geometry
(there is a 3d version of Cabri though) and do not relay on projective geometry
and we do no automated prooving (like e.g. Cinderella).

This is again a complete field on its own (see for example the theorema project
[13] which is build on top of MATHEMATICA).

Of course there are many well established systems and viewers for 3d graphics
available (vtk [27], open scene graph [21], open inventor [22], aviatrix3d [2] and
many more), and some of them are readily tailored for mathematical applications
(like geomview [8] or javaview [10] and in some sense the 3DXplorMath [1]) but
all of them missed at least one of the requirements we had for a viewer suited
for our workflow ansatz (lacking e.g. thread saveness or hardware independence
or hardware acceleration – see section 3).

The projects done in the spirit of our approach include numerically demanding
ones (like [26] where workstation clusters were used for the search for heliciods
with handles) but again while providing a set of standard algorithms for basic
tasks we do not claim to be as effective or complete as many of the well estab-
lished libraries and tools for numerical analysis or scientific computing [29,30].
This is traditionally an area where FORTRAN language shows its strength.

Our software and workflow arose from the needs and experiences our group
has made in the last twenty years and the problems or tasks adressed by them
origin mainly in discrete and differential geometry. Still they have a wide variety
reaching from theory of discrete curves and surfaces, numerics on Riemann sur-
faces, and surface theory and their visualization. In these areas “mathematical
computer experiments” became a common research tool early on, due to the
visual character of the field (see e. g. [16]).

Mathematical computer experiments and programming mathematical con-
cepts often do not follow the classical software engineering paradigms of
modelling, specification, coding, and testing, but follow rather some concepts
of extreme programming [4]. In particular setting up a mathematical experi-
ment usually involves trying various approaches while inspecting the data and
data flow closely. In short: these experiments often don’t converge to a stable
application that is ready for release. Instead the first results most likely give rise
to new ideas of needs for modifications which hopefully will give new insight and
so on. In these cases one can not any longer distinguish between the phases of
development and usage of the software.

Another crucial factor is the ease of maintenance and deployment. Our expe-
rience is that in the long run it is not feasible to maintain and deploy software
experiments with complicated library dependencies (after all math departments
are no software development companies and do not have the manpower to sup-
port such developments). In addition it becomes more difficult for other people
to run or verify the experiments. Whether an experiment is set up for teach-
ing or for research purposes only, it seems most desirable to have the option of
publishing it on the web. These general considerations already give rise to the
following design paradigms:
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1. maintainability
2. easy deployment and interoperability
3. adaption to mathematical work flow

The following sections feature our approach to a framework for the devel-
opment of mathematical software which tries to address several of the above
mentioned needs. In section 2 we discuss our observations of how experiments
and applications grow and evolve and what is needed to support this life-cycle.
After a short overview of the tools and packages we developed in section 3, sec-
tion 4 presents an example that shows how our tools can be used to build fully
functional applications.

2 Our Design Decisions

The design decisions presented here are driven by the experiences we gained
from previous work. From 1994 to 1997 our group developed a prototyping en-
vironment for experimental mathematics: Oorange (Object ORiented Analysis
Numerics and Graphics Environment) [15]. The Oorange project had a hybrid
language scheme: numerics and graphics were implemented in Objective-C; the
graphical programming environment used Tcl for scripting purposes. This deci-
sion was one of the reasons why the project finally came to the edge of main-
tainability. However in this process our design paradigms and a particular work
flow emerged.

The first observation to make is that mathematical programming is neither
data nor algorithm centered. This has several consequences: Firstly in an adapted
programming environment both algorithms and (potentially rather complex)
mathematical data objects need to be easily inspected and modified. Coding well
defined tasks (like writing a library for a well understood piece of mathematics)
is usually best done in a modern IDE like eclipse. But when doing an experiment
we often come to a point where the current state might not be easily reproducible
but one needs or wants to change the things one can do next in the program
(this can be either changing or adding algorithms or equally important doing
some visualization of the state). The paradigm for a design honoring this is:
“Changing the code while keeping the data (or state) alive”.

Secondly one can divide the algorithms in experiments roughly into two types:
something one might call “fundamental” or “library” algorithms that are usually
well understood and best placed in their own class or framework and “control
flow” or “experimental” algorithms that one wants to change modify and adapt
repeatedly. Of course there is no easy distinction between the two types. As
an example for the first kind one might take minimizers: If you are not in the
stage of developing a particular implementation, you usually use them as a black
box: you will either change some parameters of the minimizer or replace it with
another already tested algorithm. An example for the second kind could be the
following scenario: To find the fix-points of a generic Möbius transformation
one can pick an algorithm from a numerics package to find the Eigenvectors.
This might be unstable. But since the fix-points are generically either attractive
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or repelling one can replace finding the Eigenvectors with iterating the Möbius
transformation a couple of times. This is not something one wants to create a
separate package for but rather just do it “on the spot”. Thus a design should
separate library and experimental code.

Thirdly the (mathematical) objects should be prepared to work in a large
variety of algorithm frameworks (maybe from different origin) without modifi-
cation. Usually adapting the objects to as many frameworks as possible is not
feasible as it makes the classes less maintainable, more difficult to understand,
and adds a lot of mutual dependencies to the packages. So the “gluing code”
should be placed outside the objects and if possible the creation of the glueing
code should be deferred to the moment a particular interface is needed.

When writing code, reusability and maintainability are prominent goals, since
the publication of code can be viewed as a scientific goal. Using only one language
greatly simplifies maintainability. However, writing experimental code stands
against maintainability. Thus keeping the development of experimental code and
application out of the library is essential for keeping the code of the libraries
stable, clean, and orthogonal [18].

Finally one should mention that we learned that ideally library development
and scripting style programming should be done in the same language.

2.1 Software Life Cycle

As said above there is no strict border between library and experimental code.
In our work flow code for problems that are well understood usually circulate in
the group and become eventually (if general purpose enough) library code. But
apart form that transition our experiments usually have the following life cycle.

1. create or gather classes or packages for “fundamental algorithms” and math-
ematical objects. Here “mathematical objects” can vary from complex num-
bers or quaternions to “ a surface” and “fundamental algorithms” from say
an ode solver to a special transformation of a surface.

2. connect the algorithms and objects in an experimental algorithm and make
it a running application with gui components.

3. inspect the result and modify the experimental algorithms repeatedly.

This is a kind of extreme or micro extreme programming, since the turnaround
times are within hours not weeks.

2.2 Implications for the Environment

Modern CAS like MATHEMATICA, Maple or MuPad can in principle follow our
work flow paradigms, but neither the interface of the IDE (notebook) nor the
design of the languages are specifically adapted for this use: Notebook interfaces
do not clearly show the dependencies of different parts of the code and for
example rule based programming does not separate code and data at all. Some
classical IDEs have code replacing features but this usually not intuitively usable
to archive say a particular visualization.
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Most modern scripting languages (including CAS systems) can interface ex-
ternal libraries but we learned that ideally library development and scripting
style programming should be done in the same language. While IDEs support
reusability and component based programming if the language does, giving ac-
cess to all relevant data using the IDE should not give the feeling/speed of using
a debugger.

Ideally the IDE should be free (or even better open source).
Our approach to address at least some of the shortcomings is oorange (see

next section).

2.3 Implications for the Programming Language

The projects presented here are developed using only pure Java as program-
ming language (with the exception of jReality that has optional support for
OpenGL to have hardware accelerated 3d graphics if needed or wanted). Java
offers mainstream solutions for all major technical problems we had to deal with
in the original Oorange project. This enables us to focus on design, which we
broke up into three separated projects: Java Oorange, jReality, and jtem. We
will discuss them in greater detail in the next section.

Besides of the modern design of the language Java has the advantage that the
questions of easy deployment is virtually non existent anymore. The techniques
of Java Webstart and Java applets allow to publish the finished experiments
online.

Although the available code base is still one of the largest, FORTRAN never
was an option for us since it is clearly not the first choice for graphics.

Using a CAS like MATHEMATICA or Maple as a language was no option
either. There is virtually no easy way to do GUIs and although they have become
quite performant already these languages have not the speed of Java or C++.
Moreover there is only minimal graphical interactivity without add ons and many
of them are not free making deployment over the net unfeasible.

Said that, many of the presented design concepts are not really language
dependent.

3 A Tour Through the Packages

This section is not intended to be a tutorial or in depth description for any of
the described packages but rather a short overview of some of the key concepts
on which the packages are build.

jReality. A scene graph library for 3d graphics [11]. While being focused purely
on rendering and displaying 3d graphics, the library provides support for all
stages and tasks in the visualization of experimental mathematics. It can do
OpenGL accelerated rendering on workstations with suitable graphics cards,
software only rendering for use in web presentations and applets, multi wall
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stereoscopic display on CAVE like environments with head tracking for immer-
sive virtual reality, and output to renderman RIB or SVG or Postscript for high
quality images for videos or publications.

It should be stressed that jReality is not able and not intended to do complex
manipulations on the data or combinatorics of its input. Instead it provides
convenient methods to set or update the data it displays and which is provided
from somewhere else.

jReality strictly separates the scene graph it maintains from the displaying
“back-end”. This has some useful consequences. As an example, the tool system
(the part responsible for rotating geometry, picking a point or in general user
interaction with the scene) can not make any assumptions on the available input
devices: While virtually every desktop computer has a mouse (which provides
2-3 (relative) degrees of freedom plus some buttons) there is no such thing in
a CAVE like virtual environment here the user usually has a “wand” with 6
(absolute) degrees of freedom (3 for the position and 3 for the orientation of the
device in space) plus some buttons. jReality abstracts from the actual device and
instead maps the available freedoms to different transformation matrices which
then will be used by the tools. Thus the same tool (like a rotate tool) will work
in both setups without any changes.

jReality does not depend on jtem or oorange. For readers familiar with Java
here is a code fragment that shows everything needed to open a frame that
displays Enneper’s minimal surface:

sf = new ParametricSurfaceFactory();
sf.setGenerateVertexNormals( true );
sf.setImmersion(
new ParametricSurfaceFactory.DefaultImmersion() {

public void evaluate( double v, double u ) {
x = u -u*u*u/3 + u*v*v;
y = -v-u*u*v +v*v*v/3;
z = u*u -v*v;

}} );
sf.update();
ViewerApp.display(sf.getIndexedFaceSet());

jReality will see its release summer 06 [12].

jtem (Java Tools for Experimental Mathematics). The core of the jtem
project [17,26] consists of a collection of scientific, mostly mathematical, libraries
implemented in pure standard Java2.

The project currently offers almost a dozen different subprojects, but its origin
are three numerical libraries: numericalMethods, mfc, and riemann.

On a core level jtem provides numerical methods like minimizers and root
finders, matrix factorization or algorithms for mesh generation. On a higher level
there are classes that model complex numbers, quaternions or special matrix
groups and basic linear algebra (blas).

Here as well the idea of strict orthogonality is present since the dependencies
are strictly one way: The high level classes will use the numerical methods, but
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the numerical methods can be used without any dependencies to the higher
constructs. There is a package that provides elliptic functions and the library
even has some gui components like a Möbius viewer (a 2d viewer that has Möbius
transformations a fundamental transformation group) or java2d (a Swing based
2d viewer).

Oorange. The third component is more difficult to categorize: Oorange is a
tool for rapid application development, that is especially designed for building
applications (or experiments) while they run. The idea is that one can design the
classes so that they model the mathematical objects they represent as closely as
possible without the need to take care of interfaces or programming paradigms
imposed by any other class or package that might be needed in a particular
experiment. This interfacing (writing the glue) is done in – and partially by –
oorange.

Again oorange does not depend on any of the previous packages but will work
with any Java code available.

In oorange the dependencies of the objects are represented as a directed graph
with the objects sitting in the nodes. Objects are created by dragging them
from a tree view of the Java classpath on a canvas. Changes in the state are
propagated along the edges of the graph. The actions to be performed when a
change is signaled is specified in the node’s “brain”.

The brain of a node provides methods that manage the interaction of the
object with other objects. For each incoming edge the brain of a node has an
(initially empty) method that is called whenever the source of that edge changes
its state. One can fill these methods with any Java code needed to perform the
appropriate action like setting some values on the object with data read from
the object of the source node. The source code for these methods can be written
and changed directly in oorange. It gets compiled and loaded on the fly.

Once a node is adapted to a special purpose it can be saved for later reuse.
There is a large library of pre-made nodes for both math and gui building.

3.1 Other Packages We Use

Our goal of interoperability would be void if we were not able (or would not
profit) from external packages. Among the ones we frequently use are: ant, antlr,
xstream, batik, jogl, jinput, javaview, javahelp, beanshell, xpp, mtj, and many
more. And of course we use IDEs like eclipse and the jdk from Sun.

4 An Example: Geodesics on Tori of Revolution

We want to illustrate the work flow by sketching the creation process of an
application, which shows geodesics on tori of revolution. Markus has build,
tested, and deployed it within a couple of hours on the occasion of a regular
math course in 2003. It can be found in the virtual math labs at TU Berlin
(www.math.tu-berlin.de/geometrie/labs).
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Even though the example is taken from an educational background it makes
similar demands for an experimental environment than any of our typical re-
search applications, e.g. complex user interface, visualization and graphical user
interaction with two and three dimensional objects, computational intensive
operations.

For such a setup it seems that major technical difficulties are inevitable, but
we will show that in our environment these can be reduced to a minimum. This
allows also the less experienced user to focus during the creation process of the
application on the mathematics and still produces high performance code.

The path for creating the application is roughly as follows:

1. make an editable profile curve and display it.
One needs an periodic graphically editable profile curve. It should be C2

since the geodesic equation is second order. Cubic b-splines fulfill all the
requirements and are available in jtem. For editing we will use a java2d
viewer component.

2. make a torus of revolution from the curve and display it.
We make the torus via parametric surface factory in jReality (we need to
modify a node for that) and use an existing oorange node for the jReality
viewer.

3. generate and draw geodesics on the torus.
Adapt a node that utilize a numericalMethods ode solver to the geodesics
equation, lift the result to the surface, and show it. It needs some more code
and nodes, e.g. to edit the initial values and some parameters.

4. Finally make the application pretty.

The fundamental numerical and visualization tasks of this example can be
considered as typical for our group and are therefore covered by the libraries.

Fig. 1. oorange-network (left) and gui (right) of the application after Step 1
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Planar curves appear in many of our applications: To get a graphical editable
cubic b-spline curve one just needs to drag three existing oorange nodes into
the oorange network editor and cable them. The top node is the actual b-spline.
This node wraps the b-spline class available in jtem. The node in the middle
is a viewer2d component that can display the spline. It gets the spline as an
ingredient. Finally the 2d viewer must be placed in a frame to show it. This is
done by cabling it as an ingredient for a node that holds a Java frame [19]. After
a couple of seconds without writing a single line of code we finished the first
task (Figure 1). Already at this stage we have fully functional application with
mathematical content and gui components, which allows us to check right away.

Fig. 2. oorange-network (left) and gui (right) of the application after Step 2

Also for a parametric surface there is a pre-made oorange node, which we have
to adapt in order to get a surface of revolution. Therefore we cable the b-spline
node with the parametric surface node; now we can adapt the formulas for the
immersion referring to the b-spline. The lines to be adapted in the nodes brain
are very similar to those presented as example jReality code on page 79:

self = new ParametricSurfaceFactory();
self.setClosedInUDirection( true );
self.setClosedInVDirection( true );
self.setGenerateVertexNormals( true );
self.setImmersion(
new ParametricSurfaceFactory.DefaultImmersion() {

public void evaluate( double v, double u ) {
Complex Z = spline.valueAt(v);
x = Z.re * Math.cos(2*Math.PI*u);
y = Z.re * Math.sin(2*Math.PI*u);
z = Z.im;

} } );
self.update();
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Now that the parametric surface is indeed a surface of revolution we rename
the associated node. To visualize the surface we plug it into a 3d viewer node,
which we could pack above the 2d viewer, showing the contour curve, by plugging
it also into the frame. But the layout is nicer if we use a split pane [19]. The
stage of the application is shown in Figure 2.

Again we can check that everything works as intended. We have already a
nice application just the geodesic is missing.

Fig. 3. oorange-network (left) and gui (right) of the application after Step 3

In the third step we adapt a general ode solver node that is based on a jtem
solver to our needs. The numericalMethods solver needs an implementation of
the interface “ODE” and the oorange node provides an empty implementation
that needs to be filled. This is the implementation of the geodesic equation.

self = new de.jtem.numericalMethods.calculus.odeSolving.ODE() {
public int getNumberOfEquations() { return 4; }
final Real3 ddFTT = new Real3();
public void eval( double t, double [] x, double [] y ) {

double u = x[0];
double v = x[1];
double du = x[2];
double dv = x[3];
Real3 duF = du.valueAt(u,v);
Real3 dvF = dv.valueAt(u,v);
Real3 dduuF = dduu.valueAt(u,v);
Real3 dduvF = dduv.valueAt(u,v);
Real3 ddvvF = ddvv.valueAt(u,v);
double E = duF.dotProduct( duF );
double F = dvF.dotProduct( duF );
double G = dvF.dotProduct( dvF );
double g = E*G - F*F;
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ddFTT.assignLinearCombination( du*du, dduuF, dv*dv, ddvvF );
ddFTT.assignLinearCombination( 1, ddFTT, 2*dv*du, dduvF );
double U = Real3.dotProduct( ddFTT, duF );
double V = Real3.dotProduct( ddFTT, dvF );
y[0] = du;
y[1] = dv;
y[2] = ( F * V - G * U ) / g;
y[3] = ( F * U - E * V ) / g;

}};

Entering the actual formulas that give the geodesic equation is obviously in-
evitable and the above code is just typical numerics code fragment in java which
would look similar if it was written in say FORTRAN or C. But the important
fact is here that this is by far the longest and the most complicated code which
is needed for the whole application.

In the oorange network the component for the geodesic does a few more
things. Besides the numerical part there is code that lifts the solution from the
parameter domain to the surface, and there are gui components that allow the
user to edit the initial values as well as to inspect the solution in the parameter
domain. This component is visible in the above figure in the upper right. Figure 3
shows the final state of the network and the application as it was deployed (Java
Webstart) for the math course.

The authors would like to thank Nadja Kutz for helpful discussions.
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MuPAD’s Graphics System
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Abstract. Starting with MuPAD Pro 3.0, we introduced a new frame-
work for 2D and 3D graphics including animations in computer algebra.
Based around the concept of graphical objects that are fully manipula-
ble from the programming level as well as interactively, the framework
has proven to be well-designed and flexible. We will present both the
users’ and the developers’ perspective, including how to implement new
graphical primitives and a discussion of current limitations.

1 Introduction

Among other applications, computer algebra systems are widely used for research
and teaching. For both of these applications, visualization is an important oper-
ation and most modern CAS support a variety of plotting functions in two and
three dimensions. What follows is a description of one such system, the plot
library of MuPAD.

MuPAD is a general purpose computer algebra system (CAS) developed by
SciFace Software and available for Microsoft Windows, Linux, and Mac OS X.
See [1,2] for details.

2 The Users’ Perspective

2.1 Primitives

Whatever object-oriented may mean to you, it certainly includes objects which
have a type, some form of data, maybe state, and properties. Our graphical
objects have type such as 2D function plot, 3D ODE plot, Waterman polyhedron;
they obviously have data such as the function to plot, the ode to trace (and
from where) or the radius of the sphere defining the polyhedron; they also have
properties such as color or line width. Attributes are mostly orthogonal to object
types; an attribute such as Mesh is used by function and surface plots (including
surfaces of revolution, spherical plots etc.), curves, conformal plots, vector fields,
implicit plots etc. To make the roughly 400 attributes manageable, each object
type can define its own defaults: A density plot by default has a finer mesh than
a vector field. These defaults can be changed by the user, either globally or for
the current plot or a specific part of it.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 86–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2.2 Trees

MuPAD’s graphical system represents each plot as a tree of objects. Each such
tree is rooted in a Canvas object which contains one or more Scene2d or Scene3d
objects, which in turn contain coordinate systems, which contain primitives,
groups of primitives, and transformations. Most of the time, the user does not
need to care about these trees and can simply give the primitives to plot:1

plot(plot::Sphere(1),
plot::Sphere(2, Color=RGB::Green.[0.5]))

Still, the tree is useful on occasion. For example, linear transformations are nodes
in this tree and can thus be applied to arbitrary subtrees:

sq := plot::Rectangle(0..1, 0..1, Filled, FillPattern=Solid):
for i from 1 to 3 do

sq := plot::Scale2d([1/3, 1/3], sq);
sq := plot::Translate2d([x,y], sq)

$ x = 0..2/3 step 1/3
$ y = 0..2/3 step 1/3;

delete sq[5]; // remove center
end_for:
plot(sq, Axes=None, Scaling=Constrained)

1 All images have been scaled down to meet the size limit for this paper.
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Many object property defaults, such as line colors or point sizes, are inherited
through this tree structure. This is especially useful because all parameters can
be changed in the graphic viewer:

Apart from inheriting attributes, objects can also set hints, attribute values
they suggest to objects further up in the tree. For example, a circle suggests that
the whole scene should be displayed with constrained scaling, i.e., such that the
line x = y is at an angle of 45, functions hint at proper axis titles and a number
of objects change the axis style to what is commonly and reasonably used with
the type of plot in question.

Together, inheritance and hints allow for a very natural and rather free-form
input, where users can in most cases supply values that feel global in almost any
place.

2.3 Animation

If visualization of static objects helps mathematical work, animation brings an-
other major step forwards. In MuPAD, animating almost any plot is simple (and
done in a completely consistent way): At any place after all the required ranges
(such as x=0..10), add an animation parameter and the range over which it
should vary:

plot(plot::Curve2d([x, sin(x)], x=0..xmax, xmax=0..2*PI),
plot::Point2d([x, sin(x)], x=0..2*PI, PointSize=2.5))
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The animation parameter can be used in almost any formula, including func-
tion terms, color functions, parameter ranges, text definitions, or number of
histogram cells, to name just a few. It cannot be used in inherited attributes
and some objects, such as the Canvas container, cannot be animated at all.

Each object can have its own time range, which is the range (in seconds, with
an arbitrary origin) over which the animation parameter should vary. Whether
the object is visible (as a static object) before and after this range is configurable.
This way, animations such as graphical proofs can be constructed without un-
due hassle. To keep the example input short, we use a rather random example
here; more elaborate examples can be found in the gallery at the MuPAD web
site.

plot(plot::Point2d([x, sin(x)], VisibleAfter = x)
$ x = 0..2*PI step 0.2)

Prior to display, each animated object is rendered as a still object for a finite
number of parameter values, just like cinema movies are recorded as a rapid
succession of photographs. However, each object has its own setting for the
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number of frames to render. (The default is to render 50 frames for all object
types, unless there is no animation parameter used, in which case only one frame
is rendered.) The benefit is that slowly changing objects can be rendered more
cheaply even in the presence of objects requiring a very fine time resolution.

2.4 Export Formats

Currently, MuPAD can export graphics in various bitmap formats (png, gif, jpeg,
bmp), PostScript, svg, and JavaView. Animations can be exported in different
avi formats, animated gif, or as a sequence of still images.

3 Technical Point of View

In this chapter, we will look at the technical side of MuPAD’s plotting
capabilities.

3.1 Programs Involved

As with many CAS, in MuPAD the computational engine (the kernel) and
the user interface run in separate processes, with the UI sending commands
to the kernel and the kernel sending responses and other data to the UI. Thus,
the plot data is computed by one program (written in the MuPAD language)
and interpreted by another program (written in C++, using OpenGL and the
VRS system of the University of Potsdam ([3]) for 3D and custom routines for
2D), which is integrated in the user interface and also available as a standalone
tool for OEM customers.

The viewer is capable of reading and writing the internal data format and
performs all the export functionality (see below on limitations this causes) and
can generate a MuPAD command which creates the plot as currently seen. The
latter is required to allow interactive changing of all aspects of a primitive,
including those that can only be interpreted by the kernel.

3.2 Data Format

Plot data is sent from the kernel to the UI in a custom xml format named xvc.
The basic structure of these files looks as follows:

<Canvas Layout="Tabular" Spacing="1" ...>
<Scene2dStyle BackgroundColor ="#ffffff" .../ > ...
<ObjStyle Type="Default" AntiAliased ="1" .../ >
<ObjStyle LegendColor ="PointColor " Type="Point2d"/> ...
<Scene2d Left ="0" Bottom="0">

<CoordinateSystem2d >
<AxesOriginX Val="0">0</AxesOriginX >
...
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<Obj2d Type="Curve2d" Visible="1">
<Expr Opt="UName">x</Expr >
<ParameterEnd Val="6.28319">2*PI</ParameterEnd >
...
<Img2d Param="0">

<Poly2d Filled="0" Closed="0"><P2>0 0</P2></Poly2d>
</Img2d>
<Img2d Param="0.128228 ">

<Poly2d Filled="0" Closed="0">
<P2>0 0</P2>
<P2>0.00106857 0.00106857 </P2>
<P2>0.00213714 0.00213714 </P2>
...

As we can see, most objects are written as Obj2d (or Obj3d) with a Type
attribute. The reason for this is that new primitives can be defined at any time,
without recompiling or even restarting the viewer. In fact, most of the primitives
supplied with MuPAD have been implemented exactly this way. (The snippet
above does not show how such types are communicated, because Curve2d and
Point2d are known to the viewer.)

Inside each Obj2d element, we find one or more Img2d elements holding the
rendering of the object for a specific parameter value. (The corresponding time
value is calculated by the viewer and not included in the xvc file.) Inside each
Img2d element, a static image is built from so-called low-level primitives. These
cannot be extended without recompilation of the user interface. These low-level
primitives are usually not visible to the user, unless they start peeking directly
into xvc files.

Low-level primitives include Poly2d, Arc2d, Pt2d, Pts2d, Line2d, Arrow2d,
VerticalAsymptote, Text2d, ColorArray2d, DensityArray2d, Field2d,
Mesh3d, Surf3d, Poly3d, Pts3d, Line3d, Lines3d, Arrow3d, Field3d, Box,
Circle3d, Cone, Sphere, Ellipsoid, Text3d, and special types like Camera,
different types of light, and ClippingBox. It is not uncommon for a single Img2d
to contain multiple different low-level primitives.

3.3 Rendering

While parsing, the viewer builds a tree representation of the xml file in memory.
This representation follows the xml file rather closely, but with attribute defaults
propagated to the relevant low-level primitives and the time values for the frames
calculated. For plots with visible axes, the viewer then decides where to place
the axes, their titles, and their tick marks, unless these have been set explicitly
by the user.

Static objects are rendered by translating the low-level primitives into the
primitives of the underlying rendering engine: VRS primitives for 3D graphics,
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primitives of the custom system in 2D. This translation is a very thin layer for
most low-level primitives, but some primitives such as Field3d must be broken
into a larger number of rendering objects.

For animations, the in-memory tree is queried for the next time value with
a change and when that time is reached, a snapshot of the tree at this time
position is rendered as a still image. (When exporting animations, equidistant
time values are used instead, because most animation formats are built around
the assumption of a constant frames per second rate.)

3.4 Recalculations

Some interactive changes, such as line color, take effect immediately. Others,
such as changing the calculation mesh, must be sent to the kernel first. To avoid
inconsistent states when editing multiple related attributes, this is done only
when the user explicitly requests a recalculation. (By default, the user is alerted
of this requirement upon the first non-immediate change.) This recalculation is
performed by sending a complete plot command to the kernel and replacing the
current image by the result of the command.

If the object plotted still exists at the library level (i.e., it has been assigned to
some variable or stored in some other way), then after a recalculation the changes
made interactively will be reflected at the library level. This means, among
other applications, that the changes will carry over to subsequent plots involving
the same object. (There are utility functions plot::copy and plot::modify to
break this link for when it is not desired.)

4 Programmer’s Point of View

As stated above, it is possible to introduce new graphical types by writing Mu-
PAD code. In this chapter, we will write code for the strange attractor of the
Hnon map, i.e., we are going to trace the behaviour of the discrete dynamical
system given by the iteration xn+1 = 1− ax2

n + yn, yn+1 = bxn.

4.1 Using the Framework

First of all, we have to tell the plot framework that we want to create a new
object type, let’s call it Henon. Our objects will be 2D and use the obvious
attributes, such as PointSize, PointColor, Iterations, but also a new ones
for a and b, which we will call HenonA and HenonB and for which we will need
to tell the system a few things: They are supposed to be numerical values (we’ll
see later why we call them ”Expr”), are mandatory (we could provide defaults,
but not having any values is rather pointless) and belong to the attributes in
the Definition section of the inspector. Additionally, we copy the definition of
the Iterations attribute from plot::Iteration.
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Henon := plot::createPlotDomain("Henon",
// short description for status bar:
"strange attractor of the Henon map",
2, // dimension
[PointSize, PointColor, PointStyle, Color,
[HenonA, ["Mandatory", NIL], ["Definition", "Expr", FAIL,
"First coefficient of the Henon iteration.", TRUE]],

[HenonB, ["Mandatory", NIL], ["Definition", "Expr", FAIL,
"Second coefficient of the Henon iteration.", TRUE]],

[Iterations, ["Optional", 10], ["Definition", "Expr", FAIL,
"Number of iteration steps.", TRUE]]]):

plot::setDefault(Henon::PointSize = 0.1,
Henon::PointStyle = FilledCircles,
Henon::Iterations = 3000):

As we have seen in the examples above, object creation and plotting are sepa-
rated, and this is of course reflected in the code. The routine for object creation
always uses dom::checkArgs for the argument parsing (to ensure a consistent
interface), gets all the arguments the generic interface could not handle, plugs
them into the right attributes, and finally declares the object as finished by
calling dom::checkObject:

Henon::new :=
proc()

local object, other;
begin

object := dom::checkArgs([], args());

other := object::other;

case nops(other)
of 2 do
object::HenonA := other[1];
object::HenonB := other[2];
break;

of 0 do break; // for recalc
otherwise
error("expecting two arguments");

end_case;

dom::checkObject(object);
end_proc:
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The other half of the equation is the actual plotting. Following the discussion
above, we will create a Pts2d low-level primitive and fill it with points. Note
that we do not create any Obj2d or Img2d object: At the time our code is called,
these have already started.

Henon::MuPlotML :=
proc(object, attributes, inheritedAttributes)
local x, y, i, a, b, iter, xmin, xmax, ymin, ymax;

begin
// extract all we need to use from attributes:
a := float(attributes[HenonA]);
b := float(attributes[HenonB]);
n := attributes[Iterations];

iter := (x, y) -> [1 - a*x^2 + y, b*x];

// start the iteration without plotting first:
[x, y] := [0.0, 0.0];
for i from 1 to 100 do [x, y] := iter(x, y); end;

// now, plot the next points,
// remembering the min and max values:
xmin := xmax := x;
ymin := ymax := y;
plot::MuPlotML::beginElem("Pts2d", "PointsVisible"=TRUE);
for i from 1 to n do

[x, y] := iter(x, y);
xmin := min(xmin, x); xmax := max(xmax, x);
ymin := min(ymin, y); ymax := max(ymax, y);
plot::MuPlotML::prP2(x, y);

end;
plot::MuPlotML::endElem("Pts2d");
// return the extent of our plot
return([xmin..xmax, ymin..ymax]);

end_proc:

And we are done with our first new object, all properties interactively editable
in the inspector and everything:

plot(Henon(1.4, 0.3))
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Well, almost. A real-world implementation would need to detect iterations
going off to infinity and stop there:

plot(Henon(1.5,0.5))

Error: Overflow/underflow in arithmetical operation;
during evaluation of ’iter’

If you start thinking about all the other forms of input validation that never
show up in the code above: That’s because the general framework takes care of
them.

Henon(1.2, 0.2, FillColor=Blue, Color=Rot)

Warning: ’FillColor’ makes no sense in plot::Henon,
ignored [Henon::new]

Error: expecting an RGB or an RGBa color for attribute
’Color’ in Henon object [plot::checkOptions]

Henon(a, b)

Error: unbound identifier(s) ’b, a’ found [Henon::new]

4.2 Animation
With all our calculations stored safely away in the MuPlotML routine, animation
do not need any extra work, since it is already provided by the framework:

plot(Henon(0.2, a, a=0.995..0.999))
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5 Loose Ends

There are a number of things graphics in a CAS should provide which MuPAD
currently does not offer.

5.1 Formula Typesetting

Currently, MuPAD graphics do not include typeset formulas. Since this is merely
a matter of not done yet, not a principal problem (formulas to be typeset are
stored as xml in other parts of the program already), there is little to discuss
here.

5.2 More Degrees of Freedom

The current model permits a single degree of freedom for interactive parameter
change, usually used as an animation parameter. In some applications, it would
be helpful to have multiple degrees of freedom, such as changing two angles of a
triangle or two or more parameters of a function. This is more difficult to achieve,
since the design requires all numerical data to be computed at the time the dis-
play opens and our implementation separates the computation engine from the
front-end. There are potential ways around this limitation, such as sending xml
fragments or xml descriptions of the plot corresponding to the current parameter
settings, potentially even exploring the surroundings of the current values in the
background, for a faster response time. This is a research area.

5.3 On-Line Changes

It is currently not possible in MuPAD to let a long-running computation such as
a simulation update an existing plot. The model obviously allows this, either by
completely replacing an active plot (or individual objects in the plot identified
by their xml ids) or by appending animation data.
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5.4 User Feedback

In some cases, it would be helpful to just click on some part of the graphics
and have something happen. MuPAD never aimed to be an interactive geometry
package nor a fractal explorer, therefore this kind of feedback did never receive
high priority. Since the graphical viewer is already able to make callbacks to
the computing engine (e.g., when changing the term of a function plot), this is
obviously not fundamentally impossible.

5.5 Export Formats

At least X3D (the successor to VRML, [4]) and the popular 3D model exchange
format obj should be supported and for creating beautiful plots it would some-
times be helpful to export POVRay code ([5]) and/or to support the RenderMan
standard ([6]).

There is currently no API to define new export formats. Such an API would
work on the low-level trees of the xvc format.

In some cases (especially when exporting to POVRay), the internal xml format
(xvc) contains less information than the exported code should ideally contain;
as an example, triangulated parameterized surfaces in an xvc file do not contain
parameter values, only triangles and their color information. For subsequent
editing, this is insufficient. Also, the animation model at the user’s side is much
better suited to POVRay animations than the one used in the xvc files. There
are two possible ways around this:

– Extend the xvc format
– Write POVRay code not from the xvc file, but directly from the library

objects

The second way certainly gives more flexibility in the output and makes intro-
ducing new export formats easier for the user (assuming she is comfortable with
writing MuPAD code), but would not automatically extend to new primitives.
No complete solution has been drafted at the time of this writing.

6 Conclusion

We have presented one of many possible ways to implement easy-to-use, power-
ful, and readily extensible graphics capabilities in a general purpose computer
algebra system. By restricting the programmers of such extensions, the frame-
work has, since its conception in 2002, provided a stable and intuitive interface
to the users.

Some areas which such a system should cover have not been implemented
yet, but so far, the only wish that could not be fulfilled without major design
changes was interactivity comparable to interactive geometry systems, which buy
this flexibility by strictly limiting the type of objects that can be manipulated.
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Abstract. In this paper we discuss Gröbner basis computation over al-
gebraic number fields. Buchberger algorithm can be executed over any
computable field, but the computation is often inefficient if the field op-
erations for algebraic numbers are directly used. Instead we can execute
the algorithm over the rationals by adding the defining polynomials to
the input ideal and by setting an elimination order. In this paper we pro-
pose another method, which is a combination of the two methods above.
We implement it in a computer algebra system Risa/Asir and examine
its efficiency.

1 Introduction

From the theoretical point of view, Gröbner basis computation can be done over
any field by using Buchberger algorithm. In practice, however, the computational
efficiency depends on the ground field. The difficulty of Gröbner basis computa-
tion over a finite field mainly comes from its combinatorial property because no
coefficient swell occurs. But over the rationals, we often suffer from coefficient
swell and various methods to avoid it have been investigated. The trace algo-
rithm [4] and F4 algorithm with modular computation [6] are successful ones. In
this article we consider Gröbner basis computation over algebraic number fields.
If the operations over an algebraic number field are provided, we can apply usual
Buchberger algorithm over the field. Instead, an algebraic number field K can be
represented as a residue class ring Q[x1, . . . ,xl]/J , where J is a zero-dimensional
maximal ideal and a Gröbner basis computation over K can be reduced to that
over Q by joining J to the ideal to be considered. However these method are
not satisfactory in view of efficiency. Here we give a simple but efficient method
which is a combination of the two methods above.

Notation 1
HT(f) : the highest term of f with respect to a term order
HC(f) : the coefficient of HT(f)
GF(p) : the finite prime field of order p
NFG(f) : a remainder of f with respect to a polynomial set G

By fixing the method for choosing a reducer, the remainder is
uniquely determined even if G is not a Gröbner basis.

S(f, g) : the S-polynomial of a pair {f, g}.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 99–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Z〈p〉 : {a/b | a ∈ Z; b ∈ Z \ pZ} ⊂ Q
φp : the canonical projection from Z〈p〉[X ] to GF(p)[X ]

2 The Algorithm

Suppose that an algebraic number field K = Kl is represented as a tower of
simple extensions:

K0 = Q,Ki = Ki−1(αi) (i = 1, 2, . . . , l),

where αi is a root of a monic irreducible polynomial over Ki−1:

mi(α1, . . . , αi−1, ti) ∈ Ki−1[ti] (mi(t1, . . . , ti) ∈ Ri = Q[t1, . . . , ti])

and
Ki = Q[t1, . . . , ti]/Ji, Ji = 〈m1, . . . ,mi〉.

Each Ji is a zero-dimensional maximal ideal of Ri. Set S = K[x1, . . . ,xn], T =
Q[x1, . . . ,xn, t1, . . . , tl], D = {m1, . . . ,ml}, J = 〈D〉, x = (x1, . . . ,xn), t =
(t1, . . . , tl) and α = (α1, . . . , αl). Let ≺ be a term order in S and ≺K a product
term order of ≺ and the lexicographic order in Rl such that t1 ≺ t2 ≺ · · · ≺ tl
and ta ≺K xb.

Definition 1. HCR(f) ∈ R denotes the head coefficient of f as an element of
R[x1, . . . ,xn] with respect to ≺. We call f monic if HCR(f) = 1.

Let B̃ = {g1(x, t), . . . , gd(x, t)} be a subset of T and I ⊂ S an ideal generated
by B = {g1(x, α), . . . , gd(x, α)}. The following theorem is well known.

Theorem 1. Let G̃ be the reduced Gröbner basis of Ĩ = 〈B̃ ∪D〉 with respect to
≺K. Then (G̃ \D)|t=α is the reduced Gröbner basis of I with respect to ≺.

By this theorem, we can apply Buchberger algorithm over Q to compute the
Gröbner basis of I over K. However, if we observe the execution of Buchberger
algorithm, we notice that many intermediate basis elements of the form tbxa +
lower are generated before a monic element xa+lower is generated. Once we have
such a monic element, the intermediate basis elements become all redundant.
This phenomenon is explained as follows. Suppose that h(x, t) = tbxa+lower ∈ Ĩ
is reduced with respect to D. We set ha(t) = HCR(h). Then ha(α) is non-
zero because ha(t) is reduced with respect to D. Then ha(α) is invertible in
K, which means that there exists u(t) ∈ R such that u(t)ha(t) ≡ 1 mod J .
Then we have a monic element u(t)h(x, t) = xa + lower ∈ Ĩ. That is, the
intermediate elements are those which have intermediate polynomials generated
during the computation of the inverse of ha(α) as their head terms. This affects
the process of computation in various ways. For example, each generated basis
element produces new S-pairs. It is well known that the efficiency of Buchberger
algorithm is sensitive to the order of S-pairs to be processed, and the new S-pairs
may make the subsequent computation inefficient. Or, the inverse computation



An Efficient Implementation for Computing Gröbner Bases 101

implicitly appeared in our case is nothing but Euclid algorithm, and it is well
known that computing the inverse of an algebraic number by Euclid algorithm
tends to cause coefficient swell. Our remedy for this difficulty is very simple. We
modify Buchberger algorithm as follows. We omit the selection strategy and the
criteria for useless pair detection in the algorithm description.

Algorithm 1 (Buchberger algorithm over an algebraic number field)
L← {{f, g} | f, g ∈ B̃, f �= g}
G← B̃
while L �= ∅ do

{f, g} ← an element of L; L← L \ {{f, g}}
r̃(x, t)← NFD∪G(S(f, g))
if r̃ �= 0 then

u(t)← the inverse of HCR(r̃) mod J
r← NFD(ur̃)
L← L ∪ {{f, r} | f ∈ G}
G← G ∪ {r}

end if
end while
return G

In Algorithm 1, G consists of monic polynomials because each normal form is
made monic before added to G, therefore r̃(x, α) is a normal form with respect
to G|x=α. So Algorithm 1 executes Buchberger algorithm over K and it returns
a Gröbner basis of 〈B〉. Algorithm 1 avoids generating redundant basis elements.
Furthermore the trace algorithm[4] and the efficient content reduction [5] can be
applied because the computation itself is done over Q.

3 The Implementation

We implemented Algorithm 1 in Risa/Asir [1]. We already have an implementa-
tion of Buchberger algorithm over Q with various optimization (the trace algo-
rithm, the homogenized trace algorithm and the efficient content reduction) and
the only function to be newly implemented is an efficient inverse computation
of algebraic numbers. In addition, the normal form computation with respect to
D, the set of defining polynomials greatly affects the whole efficiency.

3.1 Simplification of Algebraic Numbers

The normal form computation with respect to D is equivalent to the simplifi-
cation of algebraic numbers by the defining polynomials. As D is the reduced
Gröbner basis with respect to the lexicographic order, the result of simplification
does not depend on the order of monomial reductions. However its cost depends
on the order.
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Example 1. Set

m1(t1) = t201 + t191 + 2,
m2(t1, t2) = t302 + (t191 + t181 + 1)t292 + 1.

m1(t1) is irreducible over Q. Let α1 be a root of m1(t). Then m2(α1, t) is ir-
reducible over Q(α1) and let α2 be a root of m2(α1, t). Let us consider the
simplification of α58

2 . If we always choose the reducer mk with the smallest pos-
sible k during a simplification, it takes only 0.02 sec. But if we always choose
mk with the largest possible k, it takes 2 sec. In the latter strategy, the cost for
simplification by m2 is dominant. After simplifying all the occurrences of αn

2 for
n ≥ 20, the intermediate remainder contains 4674 monomials and its α1 degree
is 551 = 19× 29, which is a kind of intermediate expression swell.

In our current implementation, the simplification is done by the following
algorithm. Let f ∈ R be a polynomial to be simplified.

Algorithm 2
r ← 0
while f �= 0 do

if HT(f) is reduced with respect to D then
r← r + HT(f)
f ← f −HT(f)

else
k ← the smallest k such that HT(mk)|HT(f)

(∗) f ← f −HC(f) · HT(f)
HT(mk)mk

endif
end while
return r

This is based on the following proposition.

Proposition 1. Let f1 be the right hand side of (∗) in Algorithm 2. Then we
have

degti
(f1) ≤

{
MAX(2(degti

(mi)− 1), degti
(f)) (i ≤ k − 1)

degti
(f) (i ≥ k)

Proof. By the property of k, degti
(HT(f)) ≤ degti

(mi) − 1 for i = 1, . . . , k − 1
holds and we have

degti
(

HT(f)
HT(mk)

(mk)) ≤
{

2(degti
(mi)− 1) (i ≤ k − 1)

degti
(HT(f)) (i ≥ k)

because mk is reduced with respect to mi for i ≤ k− 1 and mk does not contain
ti for i ≥ k + 1. This proves the assertion. ��

In particular, if f(t) and g(t) is reduced with respect to D, then each ti-degree of
the intermediate reminders does not exceed 2(degti

(mi)−1) during the execution
of Algorithm 2 and the remainder computation is expected to be efficient.
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3.2 Computation of the Inverse of an Algebraic Number

Even if the ground field K is a simple extension, the computation of the in-
verse of an algebraic number is not an easy task. Non-modular extended Euclid
algorithms often cause coefficient swell and it seems better to apply modular
methods. We can apply Hensel lifting or Chinese remainder theorem (CRT) to
compute the inverse of f(α) for f(t) ∈ R. Let M = {s1, . . . , sd} be the set of
monomials which spans R/〈D〉 over Q, where d = dimQ R/〈D〉. Then we can
compute g(t) ∈ R such that g(α)f(α) = 1 as follows.

Algorithm 3
Convert

∑
i ciNFG(fsi) = 1 into a system of linear equations Ac = b

with respect to c = (c1, . . . , cd)T .
a = (a1, . . . , ad)T ← the solution of Ac = b

(Apply a modular method such as Hensel lifting or CRT.)
return

∑
i aisi

A more detailed explanation can be found in [7].

3.3 The Homogenized Trace Algorithm

Homogenization is very useful for avoiding intermediate coefficient swell over
Q, but it also increases the number of S-polynomials reduced to zero. By com-
bining homogenization and the trace algorithm, we can cut the additional cost
introduced by homogenization. Let B be a set of polynomials and p a prime.
Algorithm 4 is a general algorithm to compute a Gröbner basis candidate.

Algorithm 4 (Candidate(B, p))
L← {{f, g} | f, g ∈ B, f �= g}
G← B; Gp ← φp(B)
while L �= ∅ do

{f, g} ← an element of L
L← L \ {{f, g}}
if NFGp(φp(f), φp(g)) �= 0 then

r← NFG(S(f, g))
if φp(HC(r)) = 0 then return failure
L← L ∪ {{f, r} | f ∈ G}
G← G ∪ {r}; Gp ← Gp ∪ {φp(r)}

end if
end while
return G

Let Sd be the set of S-polynomials whose total degrees are equal to d in an
execution of Buchberger algorithm. For a homogeneous input, we process Sd in
the increasing order with respect to d. Then, after processing all Si (i < d), Sd

produces all the Gröbner basis elements of the total degree d. We observe that
the total efficiency is improved if we execute an inter-reduction after processing
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Sd. Furthermore, we also observe that inter-reductions during processing Sd

often improves the efficiency. Note that such inter-reductions are allowed because
what we are doing on Sd is nothing but the computation of a linear basis of the
homogeneous component Id of the total degree d of the input ideal I. In the
current implementation, an inter-reduction is executed every after k new basis
elements are generated, where k can be set by users and the default value is 6.

Algorithm 5 (Homogenized trace algorithm)
Bh ← the homogenization of B
loop

p← a new prime
Gh ← Candidate(Bh, p)
if Gh �= failure then

G← the dehomogenization of Gh

G← {g ∈ G | HT(h) � |HT(g) for all h ∈ G \ {g}}
if G is a Gröbner basis of 〈G〉 and NFG(f) = 0 for all f ∈ B then return G

endif
end loop

In Algorithm 5, a candidate of a Gröbner basis of 〈Bh〉 is computed, but the
final check is done for the dehomogenized candidate. If B is not homogeneous,
we usually have many redundant elements by dehomogenizing Gh. Except for
finitely many p, Gh is a Gröbner basis of 〈Bh〉, in that case G is a Gröbner basis
of 〈B〉. Then G is still a Gröbner basis after removing the redundant elements
and the final checks are expected to be easy by the removal of redundancy 1.

Now we go back to our Gröbner basis computation over algebraic number
fields. The normal forms in Algorithm 1 are computed over Q, so we can apply
Algorithm 5 by modifying Algorithm 4 as in Algorithm 1. We mention here the
homogenization of elements in Q[x, t]. We use the same notation as in Theorem
1. Algorithm 1 is essentially an algorithm over an algebraic number field K
and it is natural to regard t-variables as parts of the coefficient field. Therefore,
when we homogenize B̃ before entering Algorithm 4, the weights of t-variables,
which are used to compute sugar in Algorithm 4, are set to 0. This setting seems
natural, but it is not always optimal from the viewpoint of practical efficiency.
This will be discussed later.

4 Experiments

4.1 Related Functions

We briefly explain Risa/Asir functions for Gröbner basis computation over al-
gebraic number fields.

1 In some cases, the check is hard because of the large coefficients of the final basis
elements.
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– newalg(DefPoly) generates a root of DefPoly, where DefPoly is a monic
univariate polynomial whose coefficients are polynomials of already defined
roots. That is, Risa/Asir can deal with multiple extension fields. Note that
the system does not check whether DefPoly is irreducible over the field
generated over Q by the roots contained in the polynomial. The irreducibility
can be checked by af.

– af(Poly,AlgList) factorizes a univariate polynomial Poly over an algebraic
number field generated by roots listed in AlgList.

– nd gr trace(PolyList, V arList,Homo,Trace, Order)computes thereduced
Gröbner basis of 〈PolyList〉 ⊂ K[V arList] with respect to a term order speci-
fied byOrder, whereK is an algebraic number field generated overQ by all the
roots appeared in PolyList. Order = 0 and Order = 2 mean the graded re-
verse lexicographic order (grlex) and the lexicographic order (lex) respectively.
If Trace = Homo = 1, Algorithm 5 is executed.This function implements var-
ious improvements such as vectorized length exponent vector [9] and geobucket
addition [8].

Remark 1. For comparison we also implemented a function which computes
Gröbner bases over algebraic number fields by using addition, subtraction and
multiplication over algebraic number fields. In this implementation, each normal
form is appended to the intermediate basis without being made monic. Then
we have to multiply the polynomial to be reduced by an algebraic number in
each reduction step, which makes the coefficients larger. Furthermore, the trace
algorithms cannot be applied because the ground field is an algebraic number
field. Thus all the computations have to be done over the algebraic number
field. We applied this function to several examples which are easily computed
by nd gr trace and we found this function is useless for our purpose.

Example 2. Univariate polynomial GCD can be computed by Gröbner basis
computation. In the following Risa/Asir session, A1 is a root of M1. Then M2
is defined over Q(A1) and af tells that it is irreducible over Q(A1). A2 is a root
of M2. F1 and F2 are polynomials over Q(A1, A2) and GCD(F1, F2) is computed
by nd gr trace.

[0] load("sp")$
[101] M1=t1^6+6*t1^4+2*t1^3+9*t1^2+6*t1-4$
[102] A1=newalg(M1);
(#0)
[103] M2=t^3+3*t+A1^3+3*A1+2$
[104] af(M2,[A1]);
[[t^3+3*t+(#0^3+3*#0+2),1]]
[105] A2=newalg(M2);
(#1)
[106] F1 = x^6+(-6*A2+3*A1)*x^5+(15*A2^2-15*A1*A2+6*A1^2+27)*x^4
+(-20*A2^3+30*A1*A2^2+(-24*A1^2-108)*A2+7*A1^3+54*A1)*x^3+(15*A2^4
-30*A1*A2^3+(36*A1^2+162)*A2^2+(-21*A1^3-162*A1)*A2-27*A1^5+6*A1^4
-135*A1^3-216*A1)*x^2+(-6*A2^5+15*A1*A2^4+(-24*A1^2-108)*A2^3
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+(21*A1^3+162*A1)*A2^2+(54*A1^5-12*A1^4+270*A1^3+432*A1)*A2+3*A1^5
+27*A1^4+27*A1^3+27*A1^2+162*A1-108)*x+(A2^6-3*A1*A2^5+(6*A1^2+27)
*A2^4+(-7*A1^3-54*A1)*A2^3+(-27*A1^5+6*A1^4-135*A1^3-216*A1)*A2^2
+(-3*A1^5-27*A1^4-27*A1^3-27*A1^2-162*A1+108)*A2-54*A1^5-6*A1^4
-218*A1^3-90*A1^2-276*A1+220)$
[107] F2 = x^4+(2*A2+2*A1)*x^3+(3*A2^2+3*A1*A2+3*A1^2+12)*x^2
+(3*A1*A2^2+(3*A1^2+6)*A2+6*A1-4)*x+(-2*A2-2*A1)$
[108] G=nd_gr_trace([F1,F2],[x],1,1,0);
[20*x^2+(20*#1+20*#0)*x+((-6*#0^5+3*#0^4-30*#0^3+3*#0^2-48*#0+8)
*#1^2+(3*#0^5+6*#0^4+15*#0^3+36*#0^2+34*#0+36)*#1-12*#0^5+6*#0^4
-60*#0^3+26*#0^2-96*#0+96)]

4.2 Timings

In the following examples, Algorithm 5 is applied over an algebraic number field
or Q. Timings were measured on a PC with Intel Xeon 3.4GHz. In the tables,
“total”, “#basis”, “check”, “monic” mean the total time, the number of the
intermediate basis elements, the time for checking the Gröbner basis candidate
and the time for making the normal forms monic. The last two are included in
the total time. Timings are shown in seconds.

Example 3. Let C7 be Cyclic-7 system with variables c1, . . . , c7. We compute
the reduced Gröbner basis of C7,ω = C7|c7=ω with respect to grlex order for
c1 � · · · � c6, where ω is a root of an irreducible factor m(c7) of the minimal
polynomial of c7 in Q[c1, . . . , c7]/〈C7〉.

1. m(c7) = c67 + c57 + c47 + c37 + c27 + c7 + 1
2. m(c7) = c27 + 5c7 + 1

The Gröbner basis is very simple:

〈c2 − 1, c3 − 1, c4 − 1, c5 − 1, c1 + c6 + ω + 4, c26 + (ω + 4)c6 − ω − 5〉,

but the computation is hard.
3. m(c7) = c127 − 5c117 + 24c107 − 115c97 + 551c87 − 2640c77 + 12649c67 − 2640c57 +

551c47 − 115c37 + 24c27 − 5c7 + 1

Table 1. Gröbner computations of C7,ω

total #basis check monic
1 over Q(ω) 9.3 268 0.2 1.4

1 over Q 74 588 – –
2 over Q(ω) 198 306 0 83

2 over Q 119 675 – –
3 over Q(ω) 256 306 0 128

3 over Q 840 857 – –
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Example 4.

m1(t1) = t71 − 7t1 + 3,
m2(t1, t2) = t62 + t1t

5
2 + t21t

4
2 + t31t

3
2 + t41t

2
2 + t51t2 + t61 − 7.

m1(t1) is irreducible over Q. Let α1 be a root of m1(t). m2(α1, t) is an irreducible
factor of m1(t) over Q(α1) and let α2 be a root of m2(α1, t).

Cap = {f1, f2, f3, f4}
f1 = (2ty − 2)x− (α1 + α2)zy2 − z

f2 = 2α2α
4
1zx3 + (4ty + α2)x2 + (4zy2 + 4z)x + 2ty3 − 10y2 − 10ty + 2α2

1 + α2
2

f3 = (t2 − 1)x + (α2α
4
1 + α3

2α
3
1)tzy − 2z

f4 = (−z2 + 4t2 + α2α1 + 2α3
2)zx + (4tz2 + 2t3 − 10t)y + 4z2 − 10t2 + α2α

3
1

Cap is constructed from Caprasse [2] by replacing its several coefficients by al-
gebraic numbers in Q(α1, α2). In the computation over Q(α1, α2), almost all the

Table 2. Gröbner computations of Cap

total #basis check monic
over Q(α1, α2) 306 45 242 20

over Q > 1hour — – –

time is spent on the check of the Gröbner basis candidate because the result con-
tains many algebraic numbers with large integer coefficients. The computation
over Q does not terminate within one hour.

4.3 Discussion and Future Works

The results of our experiments show not only an advantage of our new method,
but also show that further improvements are required. In Example 3-2, the com-
putation via Theorem 1 is more efficient than the new method. We apply ho-
mogenization in both computations, but the results of homogenization differ
according to the different settings of the weights, which affects the selection
strategy and eventually the behaviors of the computations. The inefficiency of
the new method in this example comes from large intermediate integer coeffi-
cients. They are still large even if we execute inter-reductions frequently, but
they become small by the last inter-reduction executed after all S-pairs having
the same total degree have been processed. Therefore it is possible to improve
the new method if we have an efficient F4-like implementation.

The current implementation requires that the each root is defined as a root of
an irreducible polynomial and it is often hard to check the irreducibility. If we ap-
ply Dynamic Evaluation [3] we can weaken the requirement: the ideal generated
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by the defining polynomials is required to be only zero-dimensional and radical.
Then the leading coefficient HCR(r̃) in Algorithm 1 is not necessarily invertible.
If it is not invertible, we can split the ground ring by using the non-invertible
element and the execution of Buchberger algorithm itself is split. Suppose that
the ground ring R is represented as Q[t1, . . . , tl]/J with a zero-dimensional rad-
ical ideal J . The following algorithm computes a set of pairs (Ji, ri) such that
R = ⊕iRi, Ri = Q[t1, . . . , tl]/Ji, ri ∈ Ri[x1, . . . ,xn] and ri = cir̃ where ci is the
inverse of HCRi(r̃) in Ri, thus ri is monic.

Algorithm 6 (split ground ring(J, r̃))

loop
h← HCR(r̃)
if h mod J is invertible then

u(t)← the inverse of h mod J
r ← NFD(ur̃)
return {(J, r)}

else
J1 ← J : h
J ′ ← J + 〈h〉
u1(t)← the inverse of h mod J1 (h mod J1 is invertible in J1)
r1 ← NFD(u1r̃)
r′ ← r̃ mod J ′

S′ ←split ground ring(J ′, r′)
return {(J1, r1)} ∪ S′

end if
end loop

By applying a new modular method proposed in [7], we can quickly check the in-
vertibility of h mod J and compute J : h and J+〈h〉 if h mod J is not invertible.
We plan to implement this method in near future.
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Abstract. We detail here the sparse variant of the algorithm sketched
in [2] for checking if a simplicial complex is a tree. A full worst case
complexity analysis is given and several optimizations are discussed. The
practical complexity is discussed for some examples.

1 Introduction

The main goal of this paper is to give a detailed description and worst time
complexity for a sparse variant of the tree-checking algorithm introduced in the
paper [2]. For all the proofs in Sects. 2-3 we refer to [2].

Facet ideals were introduced in [4] as a method to study square-free monomial
ideals, generalizing results in [9] and [8] on edge ideals of graphs. The idea is
to associate a simplicial complex to a square-free monomial ideal, where each
facet (maximal face) of the complex is the collection of variables that appear in a
monomial in the minimal generating set of the ideal. The definition of a simplicial
tree is a generalization of the concept of a graph-tree. Monomial ideals associated
to trees have many properties that make them useful from an algebraic point of
view [4,7].

In Sect. 2 we briefly recall the notation and results of [2]. In Sect. 3 we
borrow from [2] a first version of the tree checking algorithm and we discuss its
complexity. In Sect. 4 we present the main result of this paper, the full description
of a variant of the tree checking algorithm optimized for sparse complexes and
its worst case complexity. This variant has been briefly sketched in [2]. A brief
subsection proposing further developments ends the paper.

Implementations. The algorithms described in this paper have first been coded in
CoCoAL, the CoCoA system programming language (http://cocoa.dima.unige.it/).
These prototypical implementations can be downloaded from [1]. Much more ef-
ficient (but less user friendly) C++ implementations have been developed for sev-
eral versions of Algorithm 3.1 using the CoCoALib framework (http://cocoa.dima.
unige.it/cocoalib/). The C++ code is also available at the website [1]. The code will
be available in the CoCoA system from version 4.6 onwards. The code for the sparse
variant is still a rough prototype, but already useful to test some example.
� Research supported by NSERC.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 110–121, 2006.
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2 Simplicial Complexes and Trees

We define the basic notions related to facet ideals. More details and examples
can be found in [4,5].

Definition 2.1 (Simplicial complex, facet). A simplicial complex Δ over a
finite set of vertices V is a collection of subsets of V , with the property that if
F ∈ Δ then all subsets of F are also in Δ. An element of Δ is called a face of
Δ, and the maximal faces are called facets of Δ.

Since we are usually only interested in the facets, rather than all faces, of a
simplicial complex, it will be convenient to work with the following definition:

Definition 2.2 (Facet complex). A facet complex over a finite set of vertices
V is a set Δ of subsets of V , such that for all F,G ∈ Δ, F ⊆ G implies F = G.
Each F ∈ Δ is called a facet of Δ.

The set of facets of a simplicial complex forms a facet complex. Conversely, the
set of subsets of the facets of a facet complex is a simplicial complex. This defines
a one-to-one correspondence between simplicial complexes and facet complexes.
In this paper, we will work primarily with facet complexes.

Let k be a field. To a facet complex over a vertex set {v1, . . . , vn}, one can
uniquely associate an ideal F(Δ) in the polynomial ring k[x1, . . . ,xn], where
F(Δ) is generated by all the square-free monomials xi1 . . .xis , with {vi1 , . . . , vis}
a facet of Δ. This ideal is called the facet ideal of Δ.

From now on, we will often ease the notation by denoting facets of a com-
plex by their corresponding monomials; for example, we write xyz for the facet
{x, y, z}.

We now generalize some notions from graph theory to facet complexes. Note
that a graph can be regarded as a special kind of facet complex, namely one in
which each facet has cardinality 2.

Definition 2.3 (Path, connected facet complex). Let Δ be a facet com-
plex. A sequence of facets F1, . . . , Fn is called a path if for all i = 1, . . . , n− 1,
Fi∩Fi+1 �= ∅. We say that two facets F and G are connected in Δ if there exists
a path F1, . . . , Fn with F1 = F and Fn = G. Finally, we say that Δ is connected
if every pair of facets is connected.

Notation 2.1. If F , G and H are facets of Δ, H �F G means that H ∩ F ⊆
G ∩ F . The relation �F defines a preorder (reflexive and transitive relation) on
the facet set of Δ.

Definition 2.4 (Leaf, joint). Let F be a facet of a facet complex Δ. Then F
is called a leaf of Δ if either F is the only facet of Δ, or else there exists some
G ∈ Δ \ {F} such that for all H ∈ Δ \ {F}, we have H �F G.

It follows immediately from the definition that every leaf F contains at least one
free vertex, i.e., a vertex that belongs to no other facet.
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Example 2.1. In the facet complex Δ = {xyz, yzu, uv}, xyz and uv are leaves,
but yzu is not a leaf. Similarly, in Δ′ = {xyu,xyz,xzv}, the only leaves are xyu
and xzv.

Δ = x

y

z
v

u

Δ′ =
u

y z

vx

Definition 2.5 (Forest, tree). A facet complex Δ is a forest if every nonempty
subset of Δ has a leaf. A connected forest is called a tree (or sometimes a
simplicial tree to distinguish it from a tree in the graph-theoretic sense).

It is clear that any facet complex of cardinality one or two is a forest. When Δ is
a graph, the notion of a simplicial tree coincides with that of a graph-theoretic
tree.

Example 2.2. The facet complexes in Example 2.1 are trees. The facet complex
Δ′′ pictured below has three leaves F1, F2 and F3; however, it is not a tree,
because if one removes the facet F4, the remaining facet complex has no leaf.

Δ′′ =
F3

F1 F2F4

Alternatively, one could define a cycle and define a tree to be a connected com-
plex that contains no cycles.

Definition 2.6 (Cycle). A cycle is a nonempty facet complex that has no leaf,
but every proper subset of it has a leaf.

For example, the subcomplex {F1, F2, F3} is a cycle in Example 2.2, but the
whole complex is not.

It follows immediately that a facet complex is a forest if and only if it contains
no cycles.

2.1 Characterization of Trees

We now consider the problem of deciding whether or not a given facet complex
is a tree.

Note that the näıve algorithm (namely, checking whether every non-empty
subset has a leaf) is extremely inefficient: for a facet complex of n facets, there
are 2n−1 subsets to check. Also note that the definition of a tree is not inductive
in any obvious way: for instance, attaching a single leaf to a tree need not yield a
tree, as Example 2.2 shows. This seems to rule out an easy recursive algorithm.
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Nevertheless, we demonstrate that the decision problem for simplicial trees
can be solved efficiently. This is done via a characterization of trees given in this
section.

Definition 2.7 (Paths and connectedness outside V ). Let Δ be a facet
complex, and let V be a set of vertices. We say that a sequence of facets
H1, . . . ,Hn ∈ Δ is a path outside V in Δ if for all i = 1, . . . , n − 1, (Hi ∩
Hi+1) \ V �= ∅. We say that two facets F,G ∈ Δ are connected outside V in Δ if
there exists a path H1, . . . ,Hn outside V in Δ such that H1 = F and Hn = G.

Note that in case V = ∅, this coincides with the definition of connectedness from
Definition 2.3.

Notation 2.2. If F,G1, G2 are three distinct facets of Δ, then we define ΔG1,G2
F

to be the following subset of Δ:

ΔG1,G2
F = {H ∈ Δ | H ∩ F = G1 ∩G2} ∪ {G1, G2}.

Definition 2.8 (Triple condition). Let Δ be a facet complex. We say a triple
of facets 〈F,G1, G2〉 satisfies the triple condition if G1 ��F G2 and G2 ��F G1,
and if G1 and G2 are connected outside F in the facet complex ΔG1,G2

F .

Example 2.3. Consider the facet complex

Δ = F1 F3

F2

F4

G

The triple 〈F1, F2, F4〉 satisfies the triple condition. This is because F4 ��F1 F2

and F2 ��F1 F4. Moreover ΔF2,F4
F1

= {F2, F3, F4, G}, and a path connecting F2
and F4 outside F1 is F2, F3, F4.

However, 〈G,F2, F3〉 does not satisfy the triple condition, since ΔF2,F3
G =

{F2, F3}, and F2 and F3 are not connected outside G.

Let Δ be a connected facet complex. Then the triple condition determines
whether or not a triple of facets belongs to a cycle contained in Δ ([2] Propo-
sition 4.5). In particular we have the following ([2] Theorem 4.6) criterion that
determines if a given facet complex is a tree.

Theorem 2.3 (Main Theorem). A connected facet complex Δ is a tree if and
only if no triple of facets in Δ satisfies the triple condition.

3 A Polynomial-Time Tree Decision Algorithm

By Theorem 2.3, to check if a facet complex Δ = {G1, . . . , Gl} is a tree, we only
need to check the triple condition for all triples of elements of Δ. The checks
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themselves are straightforward. Since the triple condition for 〈F,G,G′〉 is clearly
unchanged if one switches G and G′, we can limit triple checking to the elements
of the set {〈F,Gi, Gj〉 ∈ Δ3 | Gi �= F �= Gj , i < j}. The procedures for the basic
steps follow immediately from the earlier definitions.

Algorithm 3.1 (Standard algorithm)
Input: a connected facet complex Δ = {G1, . . . , Gl} with n vertices.
Output: True if Δ is a tree, False otherwise.

1. For each triple 〈F,G,G′〉 ∈ {〈F,Gi, Gj〉 ∈ Δ3 | Gi �= F �= Gj , i < j}
(a) If G �F G′ or G′ �F G, continue with the next triple.
(b) Build ΔG,G′

F .
(c) If G and G′ are connected outside F in ΔG,G′

F , return False.
2. Return True.

The correctness of this algorithm is an immediate consequence of Theorem 2.3.
The algorithm uses very little memory; the input Δ requires nl bits, and ΔG,G′

F ⊆
Δ requires l bits. The memory required to perform the connectedness check and
to store the various counters is negligible. Thus, memory locality is good, and
the computations can generally take place in the cache.

Remark 3.1. In the process of checking the triple condition for a triple 〈F,G,G′〉
that is part of a cycle, we build a connection path outside F . Clearly, any such
path can be reduced to a minimal connected path {H1, . . . ,Hn} outside F for
G,G′, and {F,H1, . . . ,Hn} forms a cycle. Therefore, an easy modification of
Algorithm 3.1 allow us to produce the set of all the facets F ∈ Δ that are part
of some cycle, and a cycle Δ′

F ⊇ {F} for each of them.

3.1 Complexity

For each triple it is trivial to see that steps (a) and (b) can be performed with
cost O(n) and O(nl) respectively. For step (c), the following holds.

Lemma 3.1 (Relation algorithm). Let Δ be a facet complex with l facets
over n variables such that F,G,G′ are distinct facets of Δ. The connectedness
outside F of G,G′ ∈ Δ can be determined with time cost O(nl).

Proof. First of all we substitute Δ with the set {H−F | H ∈ Δ}. We then define
n + 1 equivalence relations P0, . . . , Pn on the set {1, . . . , l}. P0 is the identity
relation, i.e., each equivalence class is a singleton. For each j = 1, . . . , n, consider
the vertex vj and the set Xj = {i | vj ∈ Fi}. Let Pj be the smallest equivalence
relation such that Pj−1 ⊆ Pj and such that for all i, i′ ∈ Xj , (i, i′) ∈ Pj . Then
facets Fi and Fi′ are connected if and only if (i, i′) ∈ Pn. With a suitable data
structure for representing equivalence relations (e.g., the relation associated to
the partition {1}, {2, 3},{4, 5, 6} of {1, . . . , 6} can be represented by the array of
integers [1, 2, 2, 4, 4, 4]), the complexity of the procedure above is O(nl).
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Consequently, step (c) of the tree decision algorithm can be performed at cost
O(nl). Thus, the total complexity of the tree decision algorithm is as follows:
in the worst case we have to check 3 ·

(
l
3

)
= l(l−1)(l−2)

2 = O
(
l3
)

triples. The
complexity of the steps (a)–(c) is O(nl) and hence the total complexity of the
algorithm is O

(
nl4

)
.

Example 3.1. Consider the facet complex Δ = {xy,xz, yz, yu, zt}. We have to
check 3 ·

(5
3

)
= 30 triples. We start with the triple 〈xy,xz, yz〉.

– xz ��xy yz since xy ∩ xz = x �⊆ y = xy ∩ yz. Similarly yz ��xy xz.
– xz and yz are connected outside xy in the complex Δxz,yz

xy = {zt,xz, yz}.

We have hence discovered that Δ is not a tree. An unlucky choice of facets could
have brought about the checking of 27 useless triples before this discovery, the
other two useful triples being 〈yz,xy,xz〉 and 〈xz,xy, yz〉.

Remark 3.2. The relation algorithm for checking connectedness has very good
worst case complexity. It is not so efficient in the average case, as shown below,
see Table 2. Let us detail another algorithm for checking the connectedness of
F,G ∈ Δ′ = {H1, . . . ,Hl}: we examine H1,H2, . . . the elements of Δ − {F,G}
and pose F ′ = F ; if Hi ∩ F ′ �= ∅ we substitute F ′ with F ′ ∪ Hi and delete
Hi from Δ. We repeat the previous procedure until F ′ ∩ G �= ∅ (F and G are
connected) or Δ = ∅ (F and G are not connected). Worst case complexity of
this list algorithm is O

(
nl2

)
, but we will see that it seems to be quite efficient

in the average case.

3.2 Some Statistics

The facet complex {xixi+1xi+2 · · ·xi+n | i = 1, . . . ,m} is trivially a tree. We call
it the line n/m complex. The facet complex

{yx11x12x13, . . . , yx1n−2x1n−1x1n, . . . , yxm1xm2xm3, . . . , yxmn−2xmn−1xmn}

is also trivially a tree, and we call it star line m/n. A random facet complex over
m + 10 vertices, with m facets, each of which contains from n to k vertices, will
be called random m/n/k complex. It is extremely unlikely for such a complex
to be a tree if m > 30 and n, k > 5.

Let us examine the connectedness check (Conn. Chk.) timings for the list and
relation algorithms, compared to total timings, for some examples:

The list algorithm looks better in the average (sparse or almost sparse) case
than the relation algorithm with respect to practical complexity. In the following
examples, we will check connectedness with the list algorithm.

The following table gives the statistics for the checking of every triple for
some random n/k examples. The Conn. Chk. and Triple. Cond. columns give
the percentage of triples (against the total number of triples in both cases) that
need a connectedness check or satisfy the triple condition respectively. The Tot.
Time and Conn. Chk. Time columns give the total time spent and the time spent
checking connectedness.
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Table 1. List and Relation algorithms - Conn. Chk. Timings

Example List algorithm Relation algorithm
Time Time

Total/Conn. Chk. Total/Conn. Chk.

Rand.100/5/10 2.9s/0.5s 26.0s/23.6s
Rand. 200/5/10 21.2s/4.4s 467s/448s
Line 400/3 14.2s/1.1s 30.0s/16.3s
Line 400/40 115.1s/31.2s 2,418s/2,332s

Table 2. Random Examples

Example Conn. Chk. Triple. Cond. Tot. Time Conn. Chk. Time

Rand. 100/5/10 14% 14% 2.9s 0.6s
Rand. 100/20/40 100% 98% 9.4s 1.3s
Rand. 200/5/10 6% 6% 21.0s 4.4s
Rand. 200/20/40 94% 93% 132s 9.7s
Rand. 200/120/120 100% 100% 138s 10.2s
Rand. 400/5/20 7% 7% 625s 106s
Rand. 400/40/80 99% 99% 2,637s 90s

The more “dense” a random complex is, the higher the percentage of triples
for which connectedness has to be checked and that satisfy the triple condition.
It is exceedingly difficult for a random complex to be a tree, and the detection
of a triple satisfying the triple condition is usually quite easy.

Tree examples are the hard cases, since every triple has to be checked.

Table 3. Tree Examples

Example Conn. Chk. Time

line 400/3 0.005% 14.2s
line 400/40 2% 115s
star line 4/100 0.01% 12.7s
star line 10/100 0.0003% 300s

3.3 Optimization

The runtime of Algorithm 3.1 can be improved by introducing some optimiza-
tions. First, note that if F is a facet such that no triple 〈F,G,G′〉 satisfies the
triple condition, then F cannot be part of any cycle of Δ. Therefore, F can be
removed from Δ, reducing the number of subsequent triple checks. We refer to
this optimization as the removal of useless facets.
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Remark 3.3. The facet order in a complex can be crucial when using the useless
facet optimization, as shown in Table 4 below.

An important special case of a “useless facet” is a reducible leaf, as captured in
the following definition:

Definition 3.1 (Reducible leaf). A facet F of a facet complex Δ is called a
reducible leaf if for all G,G′ ∈ Δ, either G �F G′ or G′ �F G.

A reducible leaf is called a “good leaf” by Zheng [10].

Remark 3.4. The facet F is a reducible leaf of Δ if and only if F is a leaf of
every Δ′ ⊆ Δ with F ∈ Δ′.

The remark immediately implies that a reducible leaf cannot be part of a cycle.
Thus, it can be removed from Δ, and the algorithm can then be recursively
applied to Δ\{F}. We were not able to find a tree without a reducible leaf; in fact,
Zheng [10] conjectured that this is always the case. Checking whether a given
facet F is a reducible leaf requires ordering all facets with respect to �F , which
takes O(nl log l) steps. A reducible leaf can thus be found in time O

(
nl2 log l

)
.

Therefore, if Zheng’s conjecture is true, the tree problem can be decided in time
O
(
nl3 log l

)
. But even if the conjecture is not true, removing all reducible leaves

at the beginning of Algorithm 3.1 is still a worthwhile optimization.

4 Optimization for Sparse Complexes

Let Δ be a facet complex with l facets. If every F ∈ Δ intersects a substantial
(≈ l) number of facets, then the number of triples that satisfy the triple condition
is probably high and our algorithm is usually able to detect one of them easily.
If this does not happen, we can exploit the facet complex “sparseness” in our
algorithm. For the remainder of this subsection, Δ will be a facet complex with
l facets over n vertices.

4.1 Sparse Algorithm

Precomputing the incidence matrix for the graph describing the connectedness
relation for the complex Δ allows us to use very efficient versions of all the sub
procedures. The implementation of the sparse variant of the algorithm is still
not complete, but we give here a full description, a complexity analysis and a
prototype implementation, plus some examples.

Notation 4.1. Let Δ be a facet complex and F ∈ Δ. We denote by dF the
cardinality of the set {H ∈ Δ | H ∩ F �= ∅}. We denote by vF the number of
vertices in F .

Note that for F ∈ Δ we always have dF � l and vF � n. Note also that the
with a suitable implementation, costs for the intersection and equality/inequality
operations for F,G are O(min{vF , vG}).
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Definition 4.1 (Connection block). Let Δ = {F1, . . . , Fl} be a facet com-
plex. The connection block of Δ, (CBΔ), is the list of pairs 〈i, {j1, . . . , jdFi

}〉,
1 � i � l where {Fj1 , . . . , FjdFi

} is the list of the facets connected to Fi. We call
{j1, . . . , jdFi

} in 〈i, {j1, . . . , jdFi
}〉 the i-th row of CBΔ.

Note that CBΔ is the incidence matrix for the graph describing the connectedness
relation for the complex Δ. We denote the sum of the cardinality of the i-th rows
of CBΔ by E. Note that E =

∑l
i=1 dFi = 2 ·#(edges in the graph). The space

required to store CBΔ is O(E).

Notation 4.2. Let Δ be a facet complex and F ∈ Δ. We denote by CBF
Δ the

connection block of the facet complex Δ when the connectedness relation is
replaced by the connectedness outside F relation.

The space required to store CBF
Δ is less or equal than the space necessary to

store CBΔ.
If we have Δ,CBΔ,and Δ′ ⊂ Δ and we want to build CBΔ′ we can do that

efficiently by marking in Δ all the elements in Δ−Δ′. When using CBΔ′ to check
connectedness, we work in CBΔ but we only consider indices whose associated
facet in Δ is not marked. Marking, mark erasing and mark checking for a facet
Fi in Δ can be done in constant time if we know the index i.

Example 4.1. Let Δ be the facet complex

{F1 = xz, F2 = yz, F3 = ztu, F4 = twa, F5 = uva, F6 = ab}

Δ =
u

t

w
b

a

v z

x
y

Then
CBΔ ={〈1, {2, 3}〉, 〈2, {1, 3}〉, 〈3, {1, 2, 4, 5}〉, 〈4, {3, 5, 6}〉, 〈5, {3, 4, 6}〉, 〈6, {4, 5}〉}
CBF3

Δ = {〈1, ∅〉, 〈2, ∅〉, 〈3, ∅〉, 〈4, {5, 6}〉, 〈5, {4, 6}〉, 〈6, {4, 5}〉}
ΔF4,F5

F3
= {F4, F5} and CB

Δ
F4,F5
F3

= {〈4, {5}〉, 〈5, {4}〉}.

We have F6 /∈ ΔF4,F5
F3

= {F4, F5}. Equivalently, we can mark F6 in Δ and avoid
to consider 6 in CBF3

Δ , the relation described by the incidence matrices is the
same.

Algorithm 4.3 (Tree decision sparse algorithm)
Input: a connected facet complex Δ = {F1, . . . , Fl} with n vertices.
Output: True if Δ is a tree, False otherwise.

1. Build CBΔ.
2. For each i s.t. Fi ∈ Δ

(a) Build CBFi

Δ .
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(b) For each 〈G,G′〉 ∈ {〈Gj , Gk〉 | Gj , Gk ∈ i-th row in CBΔ s.t. j < k}
i. If G �Fi G′ or G′ �Fi G, continue with the next couple.
ii. Build CB

ΔG,G′
Fi

from CBFi

Δ by marking Δ.

iii. If G and G′ are connected outside Fi in ΔG,G′
Fi

return False.
iv. Erase all marks in Δ.

3. Return True.

Note that we build CB
ΔG,G′

Fi

without building ΔG,G′
Fi

by using the previously

computed incidence matrices.
Let us describe the algorithms for the sub procedures and their costs when

not trivial.

1. Building CBΔ: for every element Fi ∈ Δ we check if any other element
G ∈ (Δ− F ) is connected to Fi. Cost is O

(
l2vFi

)
.

2. Building CBFi

Δ having CBΔ: for every s-row of CBΔ and every element in
the row (H1, . . . ,HdFs

) we check if the intersection holds outside Fi. This
check can be done for every H with time cost vH , and the total cost is hence
l
∑dFs

j=1 vHj .
3. The cost of step 2(b).i is trivially O(vFi)
4. Building CB

ΔG,G′
Fi

having CBΔ and CBFi

Δ : we don’t actually build CB
ΔG,G′

Fi

but we use CBΔFi
marking the facets in Δ that does not appear in CB

ΔG,G′
Fi

.

Instead of looking for a connected path in CB
ΔG,G′

Fi

outside Fi, we look

equivalently for a connected path in CBΔFi
outside Fi whose links are not

marked in Δ.
There are two cases, G ∩G′ = ∅ and G ∩G′ �= ∅.
G ∩G′ = ∅: we have to mark the facets H ∈ Δ for which H ∩ Fi �= ∅. These
are the dFi elements in i-th row of CBΔ. Cost is dFi .
G ∩ G′ �= ∅: we have to mark the facets H ∈ Δ for which H ∩ Fi �= G ∩G′.
These are the elements outside i-th row of CBΔ (E− dFi markings) and the
elements in the i-th row for which H ∩ Fi �= G ∩G′. (dFi checks at cost vFi

and at most dFi markings) The cost is hence O(dFivFi + E).
Total cost for step 2(b).ii is thus O(dFivFi + E).

5. To check if G and G′ are connected in ΔG,G′
Fi

outside Fi: having CB
ΔG,G′

Fi

the problem reduces to check connectedness in a graph with O(E) edges,
and that can be done with the well known Breadth First Search technique
at cost O(E).
Alternative: connection check using CB

ΔG,G′
Fi

: We start from the elements in

the G row of CB
ΔG,G′

Fi

in a dequeue list L. For every unmarked H there, we

check if it is G′, in which case we return true, we mark H in the complex
and add to L the elements in the H row of CB

ΔG,G′
Fi

. At most l merging

at unitary cost, at most E elements in L and E marking setting/checking.
Total cost is hence O(E).
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This algorithm is a straightforward application of Theorem 2.3. Its complexity
is as follows:

We build CBΔ once (cost O(lE)), then for every i ∈ {1, . . . , l} we build CBFi

Δ

at cost vFiE and we perform steps 2(b).i-iv
(dFi

2

)
times, at cost O(dFivFi + E)

for every iteration. The dominant cost is this last step. Total complexity is hence

O

(
l∑

i=1

(d3
Fi

vFi + d2
Fi

E)

)
= O

(
l∑

i=1

(
d3

Fi
vFi + d2

Fi

l∑
s=1

dFs

))

– If the complex is not sparse (vFi ≈ n, dFi ≈ l for every i ∈ {1, . . . , l}) then
Sparse Algorithm complexity is equal to Standard Algorithm complexity,
O
(
nl4

)
.

– If dFi , vFi <
√

l, a possible definition of sparseness for a complex, then Sparse
Algorithm complexity is O

(
l3
√

l
)
.

4.2 Some Statistics

The line 400/3 example is a sparse tree, and the line 400/40 example is an almost
sparse tree. The star line examples are trees but they are not sparse. Permuted
means that the facet are fed to the algorithm not in the “natural” order but after
a random reshuffle. The R stands for the removal of useless facets optimization.

Table 4. Standard Alg./Sparse Alg. Comparison

Example Standard Standard+R Sparse Sparse+R

line 400-3 14.2s 4.3s 1.53s 0.01s
line 400-3 Permuted 12.8s 12.8s 0.86s 0.85s
line 400-40 115s 3.2s 100s 0.2s
line 400-40 Permuted 97s 89s 80s 80s
star-line 4/100 12.7s 3.7s 14.2s 4.5s
star-line 4/100 Permuted 12.4s 12.7s 14.1s 13.3s
star-line 10/100 300s 89s 318s 99s
star-line 10/100 Permuted 290s 279s 309s 296s

For sparse examples the sparse algorithm is clearly better than the standard
algorithm; as expected, this is not the case when the sparseness is lacking. The
useless facet removal optimization is very sensitive to facet ordering, but is very
useful when the conditions are suitable.

5 Conclusions and Further Work

Large sparse trees are the hardest cases for our tree checking algorithm. The
sparse algorithm looks very promising for these cases, especially from the point
of view of its practical complexity.
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We are working on the further optimization of the sparse algorithm. Using
this algorithm for checking examples, we will work on Zheng’s conjecture. We
will then compare the sparse algorithm and the algorithm based on Zheng’s
conjecture performance for sparse complexes.
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Abstract. In this paper we present SARAG, which is a software library
for real algebraic geometry written in the free computer algebra system
Maxima. SARAG stands for “Some Algorithms in Real Algebraic Ge-
ometry” and has two main applications: extending the capabilities of
Maxima in the field of real algebraic geometry and being part of the in-
teractive version of the book “Algorithms in Real Algebraic Geometry”
by S. Basu, R. Pollack, M.-F. Roy, which can be now freely downloaded.

The routines of the library deal with: theory of signed sub-resultants,
linear algebra, gcd computation, real roots counting, real roots isolation,
sign determination, Thom encodings, study of the topology of curves. At
the moment SARAG is being used as a tool to develop, implement and
tune algorithms coming from new research results, e.g. an algorithm for
faster gcd computation, an algorithm for the study of the topology of
curves over non-Archimedian real closed fields.

Introduction

In this paper we present the SARAG software library, which stands for “Some
Algorithms in Real Algebraic Geometry”. Initially SARAG was developed as an
add-on library for real algebraic geometry for the free and open source computer
algebra system Maxima [13]. Now it is included in Maxima as a standard package.

The main goals of the package at the moment are

– extending Maxima with new routines in the field of real algebraic geometry,
– being used in the interactive version of the book “Algorithms in Real Alge-

braic Geometry” by S.Basu, R.Pollack, M.-F.Roy [2].

Therefore there are two ways to use it: either within Maxima or within
the book [2]. Both the book and the library can be freely downloaded from
http://name.math.univ-rennes1.fr/marie-francoise.roy/bpr-posted1.html.

The book uses TeXmacs [6] both as a viewer and as a front-end for Maxima
[13] and SARAG. There have been somewhat similar books in the past. For ex-
ample [11], which is a book on symbolic summation that in its electronic format
(pdf) is freely downloadable but it is not interactive; and [4], which is a com-
mercial interactive book with an algorithmic flavor on algebra for undergraduate
students, where html, Java and the GAP [8] computer algebra system are used.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 122–131, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The main routines of SARAG deal with problems related to computations
with polynomials whose coefficients are in a real closed field (for a definition we
refer to Sect. 2.1 of [2]), in particular: Gaussian elimination, characteristic poly-
nomial, signed sub-resultants and signed remainder sequences, univariate gcd,
Cauchy index and real roots counting, real roots isolation, sign determination,
Thom encodings, topology of plane curves.

The library contains some linear algebra routines that perform better than
standard Maxima (see Sect. 2.6).

At the moment SARAG is being used as a tool to develop, implement and
tune algorithms coming from new research results, e.g. an algorithm for faster
gcd computation, an algorithm for the study of the topology of curves over
non-Archimedian real closed fields.

1 Some Problems and Algorithms

In this section we describe very briefly some of the problems and the algorithms
implemented in the library. In particular we will consider the problems related to
the topics of real roots counting, real roots isolation, sign determination, study
of the topology of a curve.

1.1 Real Roots Counting

The problem of real roots counting is the problem of counting the real roots of
a univariate polynomial disregarding the multiplicity.

A similar and closely related problem treated in the library is the problem of
computing the Tarski query.

Definition 1. Given the polynomials p, q and an open interval (a, b), the Tarski
query for q with respect to p in (a, b) is

TaQ(q, p, a, b) :=|{x ∈ (a, b)|p(x) = 0, q(x) > 0}|−
|{x ∈ (a, b)|p(x) = 0, q(x) < 0}|.

(1)

In the library the following three methods for counting the real roots of a poly-
nomial have been implemented:

1. signed remainder sequence,
2. signed sub-resultant sequence,
3. counting by isolation.

Signed Remainder Sequence. The first approach boils down to computing
the Sturm’s sequence, (i. e., a signed remainder sequence for the polynomial and
its derivative) and counting the number of sign variations of the polynomials in
the sequence evaluated at the ends of the considered interval. (see Theorem 2.50
in Sect. 2.2.2 of [2]).
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Signed Sub-resultant Sequence. A more efficient approach is based on the
principal signed sub-resultant coefficient sequence (see Sect. 4.2.2 in [2]). The
number of roots is obtained by a generalized difference of the sign permanences
and sign variations where the zero signs of the sequence are counted in a special
way (for more details we refer to Chap. 8 and Chap. 9 of [2]).

Counting by Isolation. Counting can be done clearly also by first isolating
the real roots with points and open intervals and then by counting the number of
such points and intervals (see next section for a brief description of an algorithm
for isolating the real roots).

1.2 Real Roots Isolation

The problem of real roots isolation is the problem of finding points and open
intervals that describe all the real roots of a given univariate polynomial in an
Archimedian real closed field.

The algorithm implemented in the package uses a conversion to the Bernstein
basis for univariate polynomials with respect to a given interval and the de
Casteljau algorithm for quickly producing polynomials in the Bernstein bases
for sub-intervals.

Definition 2. The Bernstein polynomials of degree p for the interval (l, r) are

Bernp,i(l, r) :=
(
p

i

)
(x− l)i(r − x)p−i

(r − l)p
, i = 0, . . . , p. (2)

The criterion used to determine when an open interval contains exactly one real
root is based on the following result:

Theorem 1. Given a square free polynomial P in R[x], where R is an Archi-
median real closed field, we have:

– If P has no root in C(l, r) then

V ar(P, (l, r)) = 0,

– if P has exactly one root in C1(l, r) ∪ C2(l, r) then

V ar(P, (l, r)) = 1.

where

– V ar(P, (l, r)) is the number of sign variations in the list of coefficients in the
Bernstein basis for P in the interval (l, r),

– C(l, r) is the circle with diameter (l, r) and C1(l, r), C2(l, r) are the circles
circumscribing the equilateral triangles based on (l, r) in which we identified
R2 with C = R[i].

For more details we refer to Sect. 10.1 and 10.2 of [2]. Similar problems and
various applications of the Bernstein basis are treated extensively by [7].
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1.3 Sign Determination

The problem of sign determination is the problem of studying the possible sign
configurations of a set of polynomials at the roots of a given polynomial. The
algorithm used in the library works for a general, possibly non-Archimedian real
closed field.

The algorithm involves solving a linear system and the computation of Tarski
queries (see Definition 1). For a description of this algorithm we refer to Sect. 10.3
of [2]. The basic idea of the algorithm appears in [1].

Thom Encodings. An application of sign determination is the computation
of the Thom encodings for the roots of a polynomial in a general, possibly non-
Archimedian real closed field, namely the sign determination applied to the study
of the signs of all the derivatives of a polynomial at the roots of the polynomial.
Thom encodings are important because they can be used to characterize and
order the roots of a polynomial over a non-Archimedian real closed field (this
idea appears in [5]).

1.4 Topology of a Curve

Given a bivariate polynomial P [x, y] over an Archimedian real closed field, we
want to compute a plane graph homeomorphic to the variety described by P [x, y].

In particular we want to find

– the number of intersections that the curve has with vertical projections,
– if the curve has a critical point, i. e., a point (x̄, ȳ) such that ȳ is a multiple

root of P [x̄, y], then we also want to find its relative position with respect
to the other intersections with the vertical projection at x̄.

We notice that the x-coordinates of the critical points are the roots of the
discriminant (for a definition of discriminant see Sect. 4.1 in [2]).

The algorithm implemented in the library involves

– isolation of the roots of the discriminant Discr(x) of P [x, y] with respect
to y by conversion into the Bernstein basis (see Definition 2) and by the de
Casteljau algorithm (see Theorem 1),

– counting the number of intersections with vertical projections between roots
of Discr(x) and counting of the number of intersections with vertical pro-
jection above and below critical points, which is achieved by Tarski query
computations (see Definition 1).

For some pictorial examples see Sect. 2.4. For a detailed description of this
algorithm we refer to Sect. 11.6 of [2].

2 SARAG as Part of Maxima

SARAG as a software library can be used within Maxima. The first versions
of the library were a separate Maxima package that the user had to download.
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The latest versions are now included in standard Maxima (experimentally since
version 5.9.3).

Here we give a few details on how to load, on the naming conventions, on
the most important routines and on the plotting of topological graphs. For an
extensive manual we refer to [3].

2.1 Loading the Library

The latest version of Maxima come with SARAG included as a standard package.
In this case the library is loaded by simply starting Maxima and giving the
command: load("sarag/sarag");. For previous versions of Maxima or to use
the latest version of SARAG downloaded separately follow the instructions in
[3].

2.2 The Commands

The names of the SARAG routines take into account: the algorithm or method
used (method), what is to be computed (problem) and if a variation is to be
used (attribute). This is achieved by composing the names of routines with the
following structure: method+problem+attribute. For a detailed description
of the commands we refer to [3].

2.3 Some Examples

Here we give a list of some commands of the library also used in [2]:

– gaussDet(M)
computes the determinant of a matrix by Gaussian elimination

– sSubResNumberOfRoots(pol,var)
counts the roots of pol by using the signed sub-resultant sequence

– deCasteljauIsolateRoots(pol,var)
isolates the roots of pol by the de Casteljau method

– smartSignDetermination(pol sequence,pol,taQ,var)
it computes the sign configurations at the roots of pol by an optimized al-
gorithm (see Sect. 10.3 of [2]) using taQ as subroutine for the computation
of the Tarski query

– archimedianTopology(pol,isol algorithm,x var,y var)
it computes the topology of pol along the x-axis, using isol algorithm as a
subroutine for isolating roots

– drawTopology(top out)
draws the topological graph for top out using GnuPlot [9], (where top out is
the second element in the output of archimedianTopology)

2.4 Pictures of Topological Graphs

The command drawTopology draws the topological graph from the output of
archimedianTopology using Gnuplot [9].
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For f := (x− y)(y2 + x2 − 1) the SARAG commands
t : archimedianTopology(f,deCasteljauIsolateRoots,x,y);
drawTopology(t[2]);
produce:

for f := y5 + (−x− 1)y4 + (1− 2x)y3 + (2x + 1)y2 + (2x− 1)y − x− 1
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2.5 The Structure of the Library

The structure of the library can be summarized by the following directed graph,
whose sources (in oblique script) are the lowest level functions (Gaussian
elimination, signed sub-resultants, signed remainder sequences, de Casteljau’s
algorithm), and where the circled nodes represent the applications:

Sign Determination

Topology

Characteristic Polynomial

sRem

sSubTarskiQuery

babyGiantCharPol gaussCharPol bareissCharPol

sRemTarskiQuery

gaussElim bareissElim

smartSignDetermination

sSub

gcdFreePart

deCasteljauIsolation

Roots Counting

Roots IsolationGCD Computation

2.6 Performance of Linear Algebra

In the library we implement some routines for linear algebra that perform better
than standard Maxima. For example SARAG performs the matrix triangulation1

better for medium and large size matrices:

Problem SARAG standard built-in
Hilbert(130) 384.81s 359.01s
Hilbert(140) 481.88s 587.67s
Hilbert(150) 593.59s 934.76s
Hilbert(160) 717.16s 1407.36s

1 The problem considered is the computation of the lower triangular form of Hilbert
matrices. We used the command triangularized for SARAG and the command
gaussElim for standard Maxima. The computer used was a Pentium IV, 2.5 Ghz,
1 Gb RAM running Maxima 5.9.2 under Linux.
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3 SARAG as Part of a Book

An alternative way of using the package is through the interactive book “Algo-
rithms in Real Algebraic Geometry” [2]. See the excerpt below:

Implementation:

• Syntax
Name: sSubResTarskiQuery(q,p,x)
Input: p,q are polynomials in x
Output: the Tarski query of q for p

• Example

(%i3) load("./sarag/loadSARAG.mc");

(%o3) ./sarag/loadSARAG.mc

(%i4) ex2:9*x^13-18*x^11-33*x^10+102*x^8+7*x^7-
36*x^6-122*x^5+49*x^4+93*x^3-42*x^2-18*x+9;

(%o27) 9x13− 18x11− 33x10 + 102x8 + 7x7− 36x6− 122x5 +
49x4 + 93x3− 42x2− 18x + 9

(%i28) sSubResTarskiQuery(1,ex2,x);

(%o28) 6

(%i29) sSubResTarskiQuery(x,ex2,x);

(%o30) 2

(%i31) ex1:x^11-x^10+1;

(%o53) x11− x10 + 1

(%i54) sSubResTarskiQuery(1,ex1,x);

(%o54) 1

(%i55) sSubResTarskiQuery(x,ex1,x);

(%o55) − 1

◦ Code

◦ Use it yourself �

6 9 Cauchy Index and Applications

SARAG contains nearly all the algorithms contained in Chap. 8,9,10,11 of [2]. The
book uses TeXmacs [6] as a viewer and as a front-end for Maxima[13] and SARAG.
Therefore, in order to use the book it is necessary to install TeXmacs and Maxima.
The TeXmacs file contains the text of the book as in the printed version and for
each algorithm for which an implementation exists in the library an openable click-
able window with the following fields: instruction on how to use the correspond-
ing SARAG function, an example, a link to the code and a Maxima session with
preloaded SARAG ready for the user/reader to try his/her own examples.

4 The Future

The future of this library is threefold:
1. include more algorithms contained in the interactive book,
2. provide Maxima with more functions in the field of real algebraic geometry,
3. use the library as a base for new algorithms.
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4.1 More Algorithms from “Algorithms in Real Algebraic
Geometry”

The library does not still contain all the algorithms in the book [2] covered by
Chap. 8,9,10,11 like cylindrical algebraic decomposition. The library could also
include algorithms from the remaining chapters.

4.2 Further Extend Maxima

The library could be further extended including algorithms which are not pre-
sented in [2] like

– alternative algorithms for real roots isolation, e. g., using the monomial basis
(see [14] and [12]),

– semi-numerical computation of the topology for curves (see [10]),
– better linear algebra (optimized pivoting, improved Bareiss’ algorithm).

Moreover SARAG could be better integrated in Maxima, e. g., including a
test file and an in line manual in Maxima, substituting those parts of standard
Maxima that are slower than SARAG, etc.

4.3 Support for New Algorithms

SARAG is now being used to investigate, benchmark and tune new algorithms
in the areas of real algebraic geometry and computational algebra. In particular
it is being used to develop and test new algorithms for fast univariate gcd com-
putation and the study of the topology of plane curves over non-Archimedian
real closed fields.
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Abstract. Let D ⊂ Cn be a locally quasi-homogeneous free divisor (e.g.
a free hyperplane arrangement), E an integrable logarithmic connection
with respect to D and L the local system of horizontal sections of E
on X − D. Let ICX(E) be the holonomic regular DX -module whose de
Rham complex is the intersection complex ICX(L) of Deligne-Goresky-
MacPherson. In this paper we show how to use our previous results on the
algebraic description of ICX(E) in order to obtain explicit presentations
of it. Concrete examples for n = 2 are included.

Introduction

Intersection complexes can be constructed by an important operation: the in-
termediate direct image. Its description in terms of Verdier duality and usual
derived direct images can be algebraically interpreted in the category of holo-
nomic regular D-modules by using the deep properties of the de Rham functor.
We need to compute localizations and D-duals.

This can be effectively done, in principle, by using the general available algo-
rithms in [19,21,20], but in the case of integrable logarithmic connections along a
locally quasi-homogeneous free divisor, we exploit the logarithmic point of view
[2,4,5,7,8,23,24] and we use a general algebraic description of their associated
intersection D-modules, from which we can easily derive effective computations.

The main ingredients we use are our previous results in [5] and [6].
The algorithmic treatment of the computations in this paper will be developed

elsewhere.
Let us now comment on the content of this paper.
In section 1 we remind the reader of the basic notions and notations and

we review our previous results on logarithmic D-modules with respect to free
divisors. We recall the logarithmic comparison theorem for arbitrary integrable
logarithmic connections from [6], and we give the theorem describing the inter-
section D-module associated with an integrable logarithmic connection along a
locally quasi-homogeneous free divisor.

In section 2, given a locally quasi-homogeneous free divisor D with a reduced
local equation f = 0 and a cyclic integrable logarithmic connection E with re-
spect to D, we explicitly describe a presentation of D[s] ·(Efs) over D[s] in terms
� The authors are partially supported by MTM2004-07203-C02-01 and FEDER.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 132–143, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of a presentation of E over the ring of logarithmic differential operators. This
description will be useful in order to compute the Bernstein-Sato polynomials
associated with E .

In section 3, the general results of the previous section are explicitly written
down in the case of a family of integrable logarithmic connections with respect
to a quasi-homogeneous plane curves.

In section 4 we perform some explicit computations with respect to a cusp.
We wish to thank Hélène Esnault who, because of a question about our pa-

per [5], drew our attention to computing intersection D-modules. We also thank
Tristan Torrelli for helpful information about the Bernstein-Sato functional equa-
tions and for some comments on a previous version of this paper.

This paper is a condensed version of the preprint math.AG/0604287 with the
same title.

1 Logarithmic Connections with Respect to a Free
Divisor: Theoretical Set-Up

Let X be a n-dimensional complex analytic manifold and D ⊂ X a hypersurface,
and let us denote by j : U = X −D ↪→ X the corresponding open inclusion.

We say that D is a free divisor [22] if the OX -module Der(logD) of logarithmic
vector fields with respect to D is locally free (of rank n), or equivalently if the
OX -module Ω1

X(logD) of logarithmic 1-forms with respect to D is locally free
(of rank n).

Normal crossing divisors, plane curves, free hyperplane arrangements (e.g. the
union of reflecting hyperplanes of a complex reflection group), discriminant of
stable mappings or bifurcation sets are examples of free divisors.

We say that D is quasi-homogeneous at p ∈ D if there is a system of local
coordinates x centered at p such that the germ (D, p) has a reduced weighted
homogeneous defining equation (with strictly positive weights) with respect to
x. We say that D is locally quasi-homogeneous if it is so at each point p ∈ D.

Let us denote by DX(logD) the 0-term of the Malgrange-Kashiwara filtra-
tion with respect to D on the sheaf DX of linear differential operators on X .
When D is a free divisor, the first author has proved in [2] that DX(logD) is
the universal enveloping algebra of the Lie algebroid Der(logD), and then it is
coherent and has noetherian stalks of finite global homological dimension. Lo-
cally, if {δ1, . . . , δn} is a local basis of the logarithmic vector fields on an open
set V , any differential operator in Γ (V,DX(logD)) can be written in a unique
way as a finite sum ∑

α∈Nn,|α|≤d

aαδα1
1 · · · δαn

n ,

where the aα are holomorphic functions on V .
From now on, let us assume that D is a free divisor.
We say that D is a Koszul free divisor [2] at a point p ∈ D if the symbols

of any (some) local basis {δ1, . . . , δn} of Der(logD)p form a regular sequence in
GrDX,p. We say that D is a Koszul free divisor if it is so at any point p ∈ D.
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Plane curves and locally quasi-homogeneous free divisors (e.g. free hyperplane
arrangements or discriminant of stable mappings in Mather’s “nice dimensions”)
are example of Koszul free divisors [3].

(1.1) An integrable logarithmic connection (ILC for short) with respect to D
is a left DX(logD)-modules which is locally free of finite rank over OX .

Let us denote by OX(�D) the sheaf of meromorphic functions with poles
along D.

The first examples of integrable logarithmic connections are the invertible OX -
modules OX(mD) ⊂ OX(�D), m ∈ Z, formed by the meromorphic functions h
such that divi(h) + mD ≥ 0.

For any ILC E and any integer m, the locally free OX -modules E(mD) :=
E ⊗OX OX(mD) and E∗ := HomOX (E ,OX) are ILC again. (See [5], §2 and [6],
§2 for more details about ILC).

If E is an ILC, then E(�D) = OX(�D) ⊗OX E is a meromorphic connection
(locally free of finite rank over OX(�D)) and then it is a holonomic DX -module
(cf. [15], th. 4.1.3). Actually, E(�D) has regular singularities on the smooth part
of D (it has logarithmic poles! [9]) and then it is regular everywhere [14], cor.
4.3-14, which means that if L is the local system of horizontal sections of E on
U = X −D, the canonical morphism

Ω•
X(E(�D))→ Rj∗L

is an isomorphism in the derived category.
For any ILC E , one can define its logarithmic de Rham complex Ω•

X(logD)(E)
in the classical way (cf. [9, def. I.2.15]), which is a subcomplex of Ω•

X(E(�D)).
It is clear that both complexes coincide on U .

For any ILC E and any integer m, E(mD) is a sub-DX(logD)-module of the
regular holonomic DX -module E(�D), and then we have a canonical morphism
in the derived category of left DX -modules

ρE,m : DX

L
⊗DX(log D) E(mD)→ E(�D),

given by ρE,m(P ⊗ e′) = P e′.
We have the following theorem (see [5, th. 4.1] and [6, th. (2.1.1)]):

Theorem 1. Let E be an ILC (with respect to the divisor D) and let L be the
local system of its horizontal sections on U = X −D. The following properties
are equivalent:

1) The canonical morphism Ω•
X(logD)(E) → Rj∗L is an isomorphism in the

derived category of complexes of sheaves of complex vector spaces.

3) The morphism ρE,1 : DX

L
⊗DX(log D) E(D) → E(�D) is an isomorphism in

the derived category of left DX-modules.

(1.2) Let E be an ILC (with respect to D) and p a point in D. Let f ∈
O = OX,p be a reduced local equation of D and let us write D = DX,p, V0 =
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DX(logD)p and E = Ep. We know from [6, lemma (3.2.1)] that the ideal of
polynomials b(s) ∈ C[s] such that

b(s)Efs ⊂ D[s] ·
(
Efs+1) (⊂ E[f−1, s]fs

)
is generated by a non constant polynomial bE,p(s). By the coherence of the
involved objects we deduce that bE,q(s) | bE,p(s) for q ∈ D close to p.

If bE,p(s) has some integer root, let us call κ(E , p) the minimum of those roots.
If not, let us write κ(E , p) = +∞.

Let us call
κ(E) = inf{κ(E , p) | p ∈ D} ∈ Z ∪ {±∞}.

From now on let us suppose that D is a locally quasi-homogeneous free divisor.

Theorem 2. Under the above hypothesis, if κ(E) > −∞, then the morphism

ρE,k : DX

L
⊗DX(log D) E(kD)→ E(�D) (1)

is an isomorphism in the derived category of left DX-modules, for all k ≥ −κ(E).

Proof. It is a straightforward consequence of [3], [4, th. 5.6] and theorem (3.2.6)
of [6] and its proof.

Let us note that the hypothesis κ(E) > −∞ in theorem 2 holds locally on X .

In the situation of theorem 2, if L is the local system of the horizontal sections
of E on U = X−D, and ICX(L) is the intersection complex of Deligne-Goresky-
MacPherson associated with L, which is described as the intermediate direct
image j!∗L, i.e. the image of j!L → Rj∗L in the category of perverse sheaves (cf.
[1], def. 1.4.22), we can apply the results of [6] §4, specially theorem (4.1), that
we can rewrite as follows:

Theorem 3. Under the above hypothesis, we have a canonical isomorphism in
the category of perverse sheaves on X,

ICX(L) 	 DR (Im�E,k,k′ ) ,

for k ≥ −κ(E), k′ ≥ −κ(E∗) and 1− k′ ≤ k, with

�E,k,k′ : DX ⊗DX(log D) E((1 − k′)D)→ DX ⊗DX(log D) E(kD) (2)

the DX-morphism induced by the inclusion E((1 − k′)D) ⊂ E(kD).

2 Bernstein-Sato Polynomials for Cyclic Integrable
Logarithmic connections

In the situation of (1.2), let us assume that E is a cyclic V0-module generated
by an element e ∈ E. The following result is proved in [6, prop. (3.2.3)].
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Proposition 1. Under the above conditions, the polynomial bE,p(s) coincides
with the Bernstein-Sato polynomial be(s) of e with respect to f , where e is con-
sidered to be an element of the holonomic D-module E[f−1] (cf. [11]).

Let Θf,s ⊂ D[s] be the set of operators in annD[s]f
s of total order (in s and in the

derivatives) ≤ 1. The elements of Θf,s are of the form δ−αs with δ ∈ DerC(O),
α ∈ O and δ(f) = αf . In particular Θf,s ⊂ V0[s].

The O-linear map δ ∈ Der(logD)p !→ δ − δ(f)
f s ∈ Θf,s is an isomorphism

of Lie-Rinehart algebras over (C,O) and extends to a unique ring isomorphism
Φ : V0[s] → V0[s] with Φ(s) = s and Φ(a) = a for all a ∈ O. Let us note that
Φ−1(δ) = δ + δ(f)

f s for each δ ∈ Der(logD)p.

It is clear that E[s]fs is a sub-V0[s]-module of E[s, f−1]fs and that for any
P ∈ V0[s] and any e′ ∈ E[s], the following relation holds

(P e′)fs = Φ(P )(e′fs). (3)

Proposition 2. Under the above conditions, if D is a locally quasi-homogeneous
free divisor, then annD[s](efs) = D[s] · Φ (annV0e).

Proof. From (3) we know that E[s]fs = V0[s] · (efs), and from [6, cor. (3.1.2)]
we know that the morphism

ρE,s : P ⊗ (e′fs) ∈ D[s]⊗V0[s] E[s]fs !→ P (e′fs) ∈ D[s] · (E[s]fs) = D[s] · (efs)

is an isomorphism of left D[s]-modules. Therefore

annD[s](efs) = D[s] · annV0[s](ef
s).

The inclusion annV0[s] (ef
s) ⊃ Φ (annV0e) comes from (3). For the other inclu-

sion, let Q ∈ annV0[s] (ef
s) and let us write Φ−1(Q) =

∑d
i=1 Pis

i with Pi ∈ V0.

We have 0 = Q (efs) =
(
Φ−1(Q)e

)
fs =

(∑d
i=1(Pie)si

)
fs and Pi ∈ annV0e. So,

Q = Φ
(∑d

i=1 Pis
i
)

=
∑d

i=1 Φ(Pi)si ∈ V0[s] · Φ (annV0e) .

Remark 1. Theorems 2 and 3 and proposition 2 remain true if we only assume
that our divisor D is of commutative linear type, i.e. its jacobian ideal is of linear
type (see [6, §3]).

Remark 2. As we shall see in sections 3 and 4, theorem 3, proposition 1 and
proposition 2 provide an effective method of computing the intersection DX -
module corresponding to ICX(L) in terms of the ILC E , at least if D is a locally
quasi-homogeneous free divisor, or more generally, if D is of commutative linear
type (see remark 1).
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3 Integrable Logarithmic Connections Along
Quasi-homogeneous Plane Curves

Let D ⊂ X = C2 be a divisor defined by a reduced polynomial equation
h(x1,x2), which is quasi-homogeneous with respect to the strictly positive in-
teger weights ω1, ω2 of the variables x1,x2. We denote by ω(f) the weight of a
quasi-homogeneous polynomial f(x1,x2). The divisor D is free, a global basis of
Der(logD) is {δ1, δ2}, where(

δ1
δ2

)
=

(
ω1x1 ω2x2
−hx2 hx1

)( ∂
∂x1
∂

∂x2

)
.

We have:
-) δ1(h) = ω(h)h, δ2(h) = 0,
-) the determinant of the coefficient matrix is equal to ω(h)h,
-) [δ1, δ2] = cδ2, with c = ω(h)− ω1 − ω2.

We consider a logarithmic connection E = ⊕n
i=1OXei given by actions:

δ1 ·

⎛⎜⎝ e1
...

en

⎞⎟⎠ = A1

⎛⎜⎝ e1
...

en

⎞⎟⎠ , δ2 ·

⎛⎜⎝ e1
...

en

⎞⎟⎠ = A2

⎛⎜⎝ e1
...

en

⎞⎟⎠ .

For E to be integrable, the following integrability condition

δ1(A2)− δ2(A1) + [A2,A1] = cA2 (4)

must hold.

(3.1) We shall focus on the case where A1,A2 are n×n matrices satisfying (4)
and of the form:

A1 =

−a 0 0 · · · 0 0
−δ2(a) −a+c 0 · · · 0 0
−δ2

2(a) −2δ2(a) −a+2c · · · 0 0
...

...
...

. . .
...

...

−δn−2
2 (a) − n−2

1 δn−3
2 (a) − n−2

2 δn−4
2 (a) · · · −a+(n−2)c 0

−δn−1
2 (a) − n−1

1 δn−2
2 (a) − n−1

2 δn−3
2 (a) · · · − n−1

n−2 δ2(a) −a+(n−1)c

,

A2 =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 0 0 · · · 1
−b0 −b1 −b2 · · · −bn−1

⎞⎟⎟⎟⎟⎟⎠ .

with a, b0, . . . , bn−1 polynomials. Let us call Ea,b the corresponding ILC.
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Lemma 1. The DX(logD)-module Ea,b is generated by e1 (so it is cyclic) and
the DX(logD)-annihilator of e1 is the left ideal Ja,b generated by δ1 + a and
δn
2 + bn−1δ

n−1
2 + · · ·+ b1δ2 + b0. So, the DX(logD)-module Ea,b is isomorphic to

DX(logD)/Ja,b.

Proof. The first part is clear since δ2 ·ei = ei+1 for i = 1, . . . , n−1. For the second
part, the inclusion Ja,b ⊂ annDX(log D)(e1) is also clear. To prove the opposite
inclusion, we use the fact that any germ of logarithmic differential operator P
has a unique expression as a sum P =

∑
i,j ai,jδ

i
1δ

j
2, where the ai,j are germs of

holomorphic functions ([2], th. 2.1.4) and a division argument.

Remark 3. Theorem 2.1.4 in [2] says that DX(logD) = OX [δ1, δ2] with relations:

[δ1, f ] = δ1(f), [δ2, f ] = δ2(f), [δ1, δ2] = cδ2, f ∈ OX .

In particular,we can define the support and the exponent of any germof logarithmic
differential operator P (or of any polynomial logarithmic differential operator in
the Weyl algebra) by using the (unique) expression P =

∑
ijkl aijklx

k
1xl

2δ
i
1δ

j
2, and

we obtain a division theorem and a notion of Gröbner basis for ideals. Under this
scope, the integrability condition (4) reads out as the fact that the generators

g1 = δ1 + a, g2 = δn
2 + bn−1δ

n−1
2 + · · ·+ b0

of Ja,b satisfy Buchberger’s criterion, i.e. that δn
2 g1 − δ1g2 has a vanishing re-

mainder with respect to the division by g1, g2, and then they form a Gröbner
basis of Ja,b.

In this way we can perform effective computations on the ring W2(logD) =
C[x1,x2, δ1, δ2] of polynomial logarithmic differential operators. For instance, we
can treat the case of arbitrary ILC (not necessarily cyclic over DX(logD) –or
over W2(logD)–) in the sense that for arbitrary (polynomial) matrices A1 and
A2 satisfying (4), we can effectively compute the annihilator over W2(logD) of
any of the generators ei. We plan to develop these ideas elsewhere.

Corollary 1. The DX-module DX ⊗DX(log D) Ea,b is isomorphic to DX/Ia,b,
where Ia,b = DX(δ1 + a, δn

2 + bn−1δ
n−1
2 + · · ·+ b0).

For any integer k, we can consider the logarithmic connections Ea,b(kD) and E∗a,b

(see section (1.1)).

Lemma 2. With the above notations, the ILC Ea,b(kD) and Ea+ω(h)k,b are iso-
morphic.

Proof. AnOX -basis of Ea,b(kD) is {ek
i =ei⊗h−k}ni=1 and the action of Der(logD)

over this basis is given by

δ1 · ek
i = (δ1 · ei)⊗ h−k + ei ⊗ (−ω(h)kh−k), δ2 · ek

i = (δ2 · ei)⊗ h−k.

Then, the isomorphism
∑n

i=1 biei !→
∑n

i=1 bie
k
i is DX(logD)-linear.
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The proof of the following proposition is clear.

Proposition 3. The morphism

�Ea,b,k,k′ : DX ⊗DX(log D) Ea,b((1 − k′)D)→ DX ⊗DX(log D) Ea,b(kD),

defined in (2), corresponds, through the isomorphisms in corollary 1 and lemma
2, to the morphism

�′Ea,b,k,k′ : P ∈ DX/Ia+ω(h)(1−k′),b !→ Phk+k′−1 ∈ DX/Ia+ω(h)k.

For the dual connection E∗a,b, in order to simplify, let us concentrate on case
n = 2, where the integrability condition (4) reduces to:

(δ1 − c)(b1) = 2δ2(a), (δ1 − 2c)(b0) = δ2
2(a) + b1δ2(a). (5)

Lemma 3. With the above notations, the ILC E∗a,b and Ec−a,b∗ , with b = (b1, b0)
and b∗ = (−b1, b0 − δ2(b1)), are isomorphic.

Proof. The action of Der(logD) over the dual basis {e∗1, e∗2} in E∗a,b is given by:

(δi · e∗j )(ek) = δi(e∗j (ek))− e∗j (δiek) = −e∗j (δiek),

for i = 1, 2 and j, k = 1, 2. Then

δ1

(
e∗1
e∗2

)
= −At

1

(
e∗1
e∗2

)
, δ2

(
e∗1
e∗2

)
= −At

2

(
e∗1
e∗2

)
.

Choosing the new basis {w1 = e∗2, w2 = −e∗1 + b1e
∗
2} of E∗a,b, we obtain

δ1

(
w1
w2

)
= · · · =

(
a− c 0
δ2(a) a

)(
w1
w2

)
, δ2

(
w1
w2

)
= · · · =

(
0 1

δ2(b1)− b0 b1

)(
w1
w2

)
and the isomorphism

∑2
i=1 biwi !→

∑2
i=1 biei is DX(logD)-linear.

4 Some Explicit Examples

In this section we consider the case where D ⊂ X = C2 is defined by the reduced
equation h = x2

1− x3
2, and then ω(x1) = 3, ω(x2) = 2, ω(h) = 6 and the basis of

Der(logD) is {δ1, δ2}, with(
δ1
δ2

)
=

(
3x1 2x2
3x2

2 2x1

)( ∂
∂x1
∂

∂x2

)
,

-) δ1(h) = 6h, δ2(h) = 0,
-) the determinant of the coefficient matrix is equal to 6h,
-) [δ1, δ2] = δ2 (c = 1).
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(4.1) Since the ILC Ea,b and the ideals Ia,b in corollary 1 are defined globally by
differential operators with polynomial coefficients and D has a global polynomial
equation, the study of morphism

ρEa,b,k : DX

L
⊗DX(log D) Ea,b(kD)→ Ea,b(�D)

can be done globally at the level of the Weyl algebra W2 = C[x1,x2,
∂

∂x1
, ∂

∂x2
].

The integrability conditions in (5) (for n = 2) become in our case

(δ1 − 1)(b1) = 2δ2(a), (δ1 − 2)(b0) = δ2
2(a) + b1δ2(a). (6)

Once a is fixed, it allows us to determine, uniquely, b1 (the operator δ1 − 1 is
injective), and to also determine b0 up to a term ex2, e ∈ C (the kernel of the
operator δ1 − 2 is generated by x2). In order to simplify, let us take

a = λ + mx1 + nx2, b1 = 2mx2
2 + 2nx1,

b0 = ex2 + 3nx2
2 + 4mx1x2 + n2x2

1 + 2mnx1x
2
2 + m2x4

2,

where λ,m, n, e are complex parameters. For convenience (see the rational fac-
torization of B(s) below), let us consider another complex parameter ν and make
e = ν − ν2.

Let us define, for μ = (λ,m, n), the family of ILC of rank two, Fν,μ :=
Ea,b (see (3.1)), with a, b0, b1 as above. We have Fν,μ = DX(logD) · e1 and
annDX(log D)e1 = DX(logD)(g1, g2), with g1 = δ1 + a and g2 = δ2

2 + b1δ2 + b0
(see lemma 1). It is clear that Fν,μ = F1−ν,μ.

The conclusion of proposition 2 can be globalized and we obtain

annDX [s](e1h
s) = DX [s](Φ(g1), Φ(g2)) = DX [s](δ1 + a− 6s, g2)

annW2[s](e1h
s) = W2[s](δ1 + a− 6s, g2).

Let us consider the left ideal I in the Weyl algebra with parameters

I = (h, δ1 + a− 6s, δ2
2 + b1δ2 + b0) ⊂W′ = C

[
λ,m, n, ν,x1,x2,

∂
∂x1

, ∂
∂x2

]
[s].

By a Gröbner basis computation with an elimination order, for example, with the
help of [12], we compute the generator B(s) of the ideal I ∩C[s] and operators
P (s), C(s), D(s) ∈W′ such that

B(s) = P (s)h + C(s)(δ1 + a− 6s) + D(s)(δ2
2 + b1δ2 + b0).

We find

B(s) =
(
s− λ− 5

6

)(
s− λ− 8

6

)(
s− λ− ν − 6

6

)(
s− λ + ν − 7

6

)
.
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For λ, ν ∈ C, let us call Bλ,ν(s) ∈ C[s] the polynomial obtained from B(s) in
the obvious way. We obtain then for each ν, λ,m, n ∈ C the global Bernstein-
Sato functional equation

Bλ,ν(s)e1h
s = P (s)

(
e1h

s+1) (7)

in Fν,μ[h−1, s]hs. Therefore, bFν,μ,p(s) | Bλ,ν(s) (see prop. 1) for any p ∈ D1 and

κ(Fν,μ) ≥ τ(λ, ν) := min{integer roots of Bλ,ν(s)} ∈ Z ∪ {+∞}.

We can apply theorem 2 to deduce that morphism

ρFν,μ,k : DX ⊗DX(log D) Fν,μ(kD)→ Fν,μ(�D)

is an isomorphism for all k ≥ −τ(λ, ν). On the other hand, from lemma 3 we
know that (Fν,λ,m,n)∗ = Fν,1−λ,−m,−n and then morphism

ρF∗
ν,μ,k′ : DX ⊗DX(log D) F∗

ν,μ(k′D)→ F∗
ν,μ(�D)

is an isomorphism for all k′ ≥ −τ(1 − λ, ν).

The above results can be rephrased in the following way:

1) Morphism ρFν,μ,k is an isomorphism if the four following conditions hold:

λ + 6k �= −1,−7,−13,−19, . . . λ + 6k �= 2,−4,−10,−16, . . .
λ + 6k − ν �= 0,−6,−12,−18, . . . λ + 6k + ν �= 1,−5,−11,−17, . . .

2) Morphism ρF∗
ν,μ,k′ is an isomorphism if the four following conditions hold:

λ− 6k′ �= 2, 8, 14, 20, . . . λ− 6k′ �= −1, 5, 11, 17, . . .
λ + ν − 6k′ �= 1, 7, 13, 19, . . . λ− ν − 6k′ �= 1,−5,−11,−17, . . .

In particular, if the four following conditions:

(i) λ �≡ 2 (mod6) or λ = 2
(ii) λ �≡ 5 (mod6) or λ = −1
(iii) λ + ν �≡ 1 (mod6) or λ + ν = 1
(iv) λ− ν �≡ 0 (mod6) or λ− ν = 0

hold, both morphisms ρFν,μ,1 ρF∗
ν,μ,1 are isomorphisms.

Let us denote by Lν,μ the local system over X −D of the horizontal sections
of Fν,μ. By theorem 3, provided that conditions (i)-(iv) are satisfied, we have

ICX(Lν,μ) 	 DR(Im�Fν,μ,1,1).

Proposition 3 and (4.1) reduce the computation of Im�Fν,μ,1,1 to the compu-
tation of the image of the map

θν,μ : L ∈W2/W2(g1, g2) !→ Lh ∈W2/W2(g1 + 6, g2),

1 In fact it is possible to show that bFν,μ,0(s) = Bλ,ν(s).
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but Imθν,μ = W2/Kν,μ where Kν,μ = {R ∈W2 | Rh ∈W2(g1 + 6, g2)}.
Now, in order to compute generators of Kν,μ, we proceed as follows. Since

[g1, g2] = 2g2 (for any ν, μ) and the symbols σ(g1) = σ(δ1), σ(g2) = σ(δ2)2 form
a regular sequence (D is Koszul free!), we deduce that

σ
(
W2(g1 + 6, g2)

)
=

(
σ(δ1), σ(δ2)2

)
and consequently σ

(
Kν,μ

)
⊂ (σ(δ1), σ(δ2)2) : h. A straightforward (commuta-

tive) computation shows that

(σ(δ1), σ(δ2)2) : h = (σ(δ1), σ(Q0))

with Q0 = 9x2
∂2

∂x2
1
− 4 ∂2

∂x2
2
, and

σ(Q0)h = x2σ(δ1)2 − σ(δ2)2 = x2σ(δ1)σ(g1 + 6)− σ(g2). (8)

Searching to lift the relation (8) to W2, we find

Qh = x2(δ1 + mx1 + nx2 + 7− λ)(g1 + 6)− g2 + (λ2 − λ + ν − ν2)x2,

with Q = Q0 + 6mx2
∂

∂x1
− 4n ∂

∂x2
+ m2x2 − n2. In particular, if condition

λ2 − λ + ν − ν2 = 0 (⇔ λ− ν = 0 or λ + ν = 1) (9)

holds, then Q ∈ Kν,μ.
Actually, by using the equality [Q, g1] = 4Q and the fact that σ(Q) = σ(Q0)

and σ(g1) = σ(δ1) also form a regular sequence in GrW2, condition (9) implies
that

Kν,μ = W2(g1, Q), σ
(
Kν,μ

)
= (σ(δ1), σ(Q0)).

On the other hand, since σ(Q0) is not contained in the ideal (x1,x2), we finally
deduce the following result:

If parameters ν, μ = (λ,m, n) satisfy conditons (i)-(iv) and (9), then the
conormal of the origin T ∗

0 (X) does not appear as an irreducible component of
the characteristic variety of Imθν,μ = W2/Kν,μ, and consequently

Ch(ICX(Lν,μ)) = Ch
(
W2/Kν,μ

)
= {σ(δ1) = σ(Q0) = 0} = T ∗

X(X) ∪ T ∗
D(X).

The existence of such an example has been suggested by [16], example (3.4), but
the question on the values of the parameters ν, μ for which the local system Lν,μ

is irreducible will be treated elsewhere.
If condition (9) does not hold, it is not clear that there exists a general ex-

pression for a system of generators of Kν,μ as before.

Remark 4. The relationship between the preceding results and examples and the
hypergeometric local systems (cf. [17,18]) is interesting and possibly deserves
further work.
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Abstract. We describe the non–commutative extension of the computer
algebra system Singular, called Plural. In the system, we provide
rich functionality for symbolic computation within a wide class of non–
commutative algebras. We discuss the computational objects of Plural,
the implementation of main algorithms, various aspects of software en-
gineering and numerous applications.

Singular:Plural or, shortly, Plural [19] is a subsystem of a computer algebra
system Singular [20]. It provides the framework for symbolic computations
with one– and two–sided ideals and modules over non–commutative GR–algebras
(Def. 2). Most of Gröbner basics (Sect. 2.5) are available in the kernel of the
implementation, ranging from the elimination of variables to the free resolutions.
Additional functions and libraries provide advanced algorithms and tools for
non–commutative algebra. The powerful implementation and rich functionality
make Plural a very helpful system for supporting the research in many fields
of mathematics and its applications.

1 Past

In 1997, Gert–Martin Greuel and Yuriy Drozd proposed to modify the experi-
mental branch of Singular, called SingularD, which contained implementa-
tions of Gröbner bases and syzygies for modules over Weyl and exterior algebras.
One needed to extend the class of available algebras, and implement Gröbner
bases and of related algorithms for these algebras as efficient as possible.

In the year 2000, the author defended his Master Thesis and presented the first
version of Plural. The class of implemented algebras was bigger, than it was
originally planned. Indeed, it constituted the class, studied by J. Apel under the
name of G–algebras [1], and by A. Kandri–Rody and V. Weispfenning under the
name algebras of solvable type [23]. T. Mora investigated these algebras among
other in his works [34,35] without giving them a special name. It is important,
that many quantum groups and different flavors of quantizations, applied to
various algebras [5,26,32], are G–algebras (Def. 1) or their factor algebras, GR–
algebras (Def. 2).

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 144–157, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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As a name, Plural originates from a wordplay. In the funny informal discus-
sion on the 1st of April 1999 (the fool’s day), among other jokes around maths,
it appeared suddenly as the contrary to the word ”Singular” in the meaning of a
grammar category. Therefore, the question ”how to call the new–born Singular
extension” has got a quick answer.

Until the 2005, Plural was separated from Singular de jure, but de facto
Plural was included in the development structure of Singular, although it was
built in a different way, it kept its own separate documentation and so on. During
2001–2005 a standalone Singular:Plural was released several times and used
by the community. Many new algorithms were developed and implemented. A
Gröbner basis algorithm was enhanced and profited from all the novelties in the
kernel of Singular like different kinds of geobuckets, fast internal maps etc.
The development of the kernel of Plural was done by the author together with
Hans Schönemann, and we have reported on some aspects of our work in [30].

Finally, in mid 2005 Singular version 3-0-0 was released, with Plural as an
integral part of it. Almost at the same time the Ph.D. Thesis [26] was defended
by the author, where most of the theoretical and algorithmic research, connected
to Plural, together with applications were described in detail.

2 Present

2.1 GR–Algebras and Their Properties

Let K be a field, and T = Tn = K〈x1, . . . ,xn〉 a free associative K–algebra,
generated by {x1, . . . ,xn} over K. Among the monomials xi1xi2 . . .xis , 1 ≤
i1, i2, . . . , is ≤ n, spanning T as vector space over K, we distinguish the stan-
dard monomials xα1

i1
xα2

i2
. . .xαm

im
, where 1 ≤ i1 < i2 < . . . < im ≤ n and

αk ∈ N. Via the correspondence xα := xα1
1 xα2

2 . . .xαn
n !→ (α1, α2, . . . , αn) =: α

the set of standard monomials is in bijection with the monoid Nn.
Recall, that any finitely generated associative K–algebra is isomorphic to

Tn/I, for some n and some proper two–sided ideal I ⊂ Tn. If the set of stan-
dard monomials forms a K–basis of an algebra A = T/I, we say that A has
a Poincaré–Birkhoff–Witt (shortly, PBW) basis in the variables x1, . . . ,xn. As
one can immediately see, the commutative polynomial ring K[x1, . . . ,xn] does
have a PBW basis, while the free associative algebra K〈x1, . . . ,xn〉 does not.
The existence of a PBW basis is an important property of an algebra.

A total ordering ≺ on Nn is called a monomial ordering on the algebra A with
the PBW basis {xα | α ∈ Nn}, if ∀ α, β, γ ∈ Nn, α ≺ β ⇒ xα ≺ xβ ⇒ xα+γ ≺
xβ+γ . By lm(f) we denote the leading monomial of f ∈ T .

Definition 1. Let K be a field, T = K〈x1, . . . ,xn〉 and I be a two–sided ideal of
T , generated by the set of elements {xjxi − cij · xixj − dij , 1 ≤ i < j ≤ n},
where cij ∈ K \ {0} and every dij ∈ T is a polynomial, involving only standard1

monomials of T . A K–algebra A = T/I is called a G–algebra, if the following
conditions hold:
1 We assume this only for simplicity of presentation.
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– Ordering condition: there exists a monomial well–ordering ≺ on Nn, such
that ∀ 1 ≤ i < j ≤ n lm(dij) ≺ xixj .

– Non–degeneracy condition: ∀ 1 ≤ i < j < k ≤ n , to the sets {cij} and
{dij} we associate a polynomial NDCijk = cikcjk ·dijxk−xkdij +cjk ·xjdik−
cij · dikxj + djkxi − cijcik · xidjk. A condition is satisfied, if each NDCijk

reduces to zero with respect to the generators of I.

The PBW Theorem (from e.g. [28]) generalizes the classical Poincaré–Birkhoff–
Witt Theorem from the case of universal enveloping algebras of finite dimensional
Lie algebras to the case of general G–algebras. Hence, a G–algebra in variables
x1, . . . ,xn has a canonical PBW basis {xα1

1 xα2
2 . . .xαn

n | αk ∈ N}.
Definition 2. Let B be a G–algebra and I ⊂ B be a proper nonzero two–sided
ideal. Then, a factor algebra B/I is called a GR–algebra.

Remark 1 (Setup for G–algebras). There are several ways to input a G–algebra
in Plural. The Singular type ring is extended to the non–commutativity.
1) A generic way for setting up a G–algebra follows the definition above. First,
one defines a commutative ring K[x1, . . . ,xn] with the monomial ordering. Then,
one inputs two n×n matrices C=(cij) and D=(dij), and types ncalgebra(C,D).
The command ncalgebra accepts shortcuts for C or D, i.e. if one passes an
argument of type number or poly, it is interpreted by ncalgebra as a matrix
with entries of the upper triangle equal to the given argument.
2) Many families of algebras are predefined in Plural libraries like ncalg.lib,
nctools.lib, and qmatrix.lib. Moreover, we add new algebras regularly.
3) We also provide the possibility to build tensor products of two GR–algebras
over the field K and the construction of the opposite and the enveloping algebra
(Sect. 2.3) from the given GR–algebra.

Remark 2 (Setup for GR–algebras). When the G–algebra has been set up, one
can define a factor algebra modulo a two–sided ideal, that is a GR–algebra, which
will be of the type qring. It is required, that a two–sided ideal must be given in
its two–sided Gröbner basis, which can be achieved with the command twostd.
The simplest syntax for defining a GR–algebra reads as qring Q = twostd(I);.

Theorem 1. Let A be a G–algebra in n variables. Then

1) A is left and right Noetherian,
2) A is an integral domain,
3) A is Auslander–regular and Cohen–Macaulay,
4) the Gel’fand–Kirillov dimension GKdim(A) = n + GKdim(K),
5) the global homological dimension gl. dim(A) ≤ n,
6) the Krull dimension Kr.dim(A) ≤ n.

We refer to [14], [26], [33] for corresponding definitions and proofs. There are
examples, where the inequalities 5) and 6) are strict. In particular, 1) and 2)
imply that every G–algebra satisfies a left and a right Ore conditions, hence
there exist a total Ore localization, producing a left and a right quotient ring.
It is known since [1], that one can use Gröbner bases on a G–algebra A for the
arithmetic operations with fractions of its left or right quotient ring.
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Remark 3. As for computation of dimensions, one can count only on the
algorithm for the calculation of Gel’fand–Kirillov dimension [5], which is im-
plemented in gkdim.lib (Lobillo and Rabelo, 2004). The generalized Krull di-
mension is known for its difficulty and, to the best of our knowledge, there is no
algorithm for its computation for a general GR–algebra. We have proved in [26],
that the global homological dimension gl. dim(A) = n provided there exist finite
dimensional representations of A over K. It is still an open question, whether
the opposite direction is true. Another open problem is the exact computation
of gl. dim of a given algebra in the case, when gl. dim(A) < n. The phenomenon,
demonstrated by n–th Weyl algebras Wn over a field of characteristic 0, is quite
interesting. In this case gl. dim(Wn) = n, while Wn is generated by 2n variables
and is of Gel’fand–Kirillov dimension 2n. This behavior is extremal in the sense
that the global dimension of a G–algebra in 2n variables seems to be at least n.

The class of G–algebras unifies many very important and quite different al-
gebras under one roof, among them quasi–commutative polynomial rings like
multiparameter quantum affine spaces, universal enveloping algebras of finite
dimensional Lie algebras, some iterated Ore extensions, many quantum groups
and quantum deformations, many algebras associated to the classical operators.

One of the reasons for such unification lies in the common structural properties
of these algebras. And the second reason is the Gröbner bases theory.

2.2 Gröbner Bases in GR–Algebras

We stress the similarities between G–algebras and commutative polynomial rings
and use the similarities, when possible. We follow the approach to Gröbner bases,
presented in [18]. Let A be a G–algebra in n variables. We say that a monomial
of a free module Ar (involving component i) is an element of the form xαei, where
α ∈ Nn and ei is the canonical i–th basis vector. We say, that m1 = xαej divides
m2 = xβek and denote it by m1|m2, if j = k and αi ≤ βi ∀i = 1 . . . n. Actually
it is rather a pseudo–division on A, since if m1|m2, then there exist c ∈ K \ {0},
a monomial p ∈ A and q ∈ Ar such that lm(q) ≺ m1 and m2 = c · p ·m1 + q,
where q �= 0 in general.

From the properties of G–algebras it follows, that any f ∈ Ar � {0} can be
written uniquely as f = cαxαei + g, with cα ∈ K∗, and xβej ≺ xαei for any
nonzero term cβxβej of g. Then we define in the usual fashion lm(f) = xαei,
the leading monomial of f , and lc(f) = cα, the leading coefficient of f . Note,
that ∀ α, β ∈ Nn, lm(xαxβ) = lm(xα+β) = lm(xβxα).

Definition 3. Let ≺ be a monomial ordering on the free module Ar, I ⊂ Ar a
left submodule, and G ⊂ I a finite subset. G is called a left Gröbner basis of
I if and only if for any f ∈ I �{0} there exists g ∈ G, satisfying lm(g) | lm(f).

In order to come up with the more constructive definition, one has to use the
notion of a monoideal of leading exponents [5] or a span of leading monomials [26]
instead of the leading ideal. The latter works well in the commutative and even
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in the free associative algebras, but fails in general G–algebras for the reasons,
which we discussed in detail in [26].

The normal form, the s–polynomial and the Buchberger’s algorithm can be
generalized for the left or right ideals in almost the same form as they appear in
the literature for the commutative case. However, the proofs of main theorems in
the Gröbner bases theory are different in spite of similarity. One has to develop
a specific intuition, working with G–algebras, even though they are in many
senses close to commutative algebras. As the simplest indication of the intrinsic
difference we can take the Product Criterion: if the leading monomials of two
polynomials f and g do not divide each other, we have spoly(f, g) →{f,g} 0.
Hence, this is the easiest situation in the set of pairs, built in the Buchberger’s
algorithm: discard the pair (f, g) if the condition holds.

In G–algebras with some extra assumptions, we can show [30], that
spoly(f, g) →{f,g} g · f − f · g =: [g, f ]. Of course, it allows to discard the pair
(f, g) from the pair set if f commutes with g. However, this happens rather rarely
in general. Otherwise, the number of multiplications and reductions shows that
we are perhaps in the worst situation, which might occur in the set of pairs.

On the contrary, the Chain Criterion and its variations generalize to G–
algebras in its full generality [5,24,26,32]. The Chain Criterion is actually the
most important criterion, used in Plural.

2.3 Left, Right and Two–Sided Structures

The three kinds of ideals and modules (left, right and two–sided) might make the
life of a developer quite complicated. The two–sided ideals and, more generally,
bimodules are very special structures. The notion of a two–sided Gröbner basis
is different from the one of a one–sided Gröbner basis [1,23,30]. The two–sided
Gröbner basis is computed with a special algorithm and is in general harder
to compute, then the one–sided. A recent algorithm [12] shows superior perfor-
mance, compared to the variations of the classical approach and will be used in
the future. This algorithm utilizes the opposite algebras.

Let A be an associative algebra over K. The opposite algebra Aopp is defined
by taking the same vector space as of A, and by introducing a new ”opposite”
multiplication ∗ on it, defined by f ∗ g := g ·f . Then, Aopp is an associative K–
algebra, and (Aopp)opp = A holds. Moreover, A⊗KAopp is called the enveloping
algebra of A.

Lemma 1. Let B = A/I be a GR–algebra. Then Bopp is a GR–algebra, and
Bopp = Aopp/Iopp.

For right–sided computations with a module like a Gröbner basis, a syzygy
module etc., it suffices to implement a left–sided functionality together with
procedures for the effective treatment of opposite algebras and transfer of objects
between an algebra and its opposite. In Plural, we provide the commands
opposite and envelope for constructing the algebras and oppose for the objects
transfer. There are several methods for representing the opposite algebra of a
given algebra constructively, see [26] for their description.
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2.4 Gröbner Trinity and Gröbner Engine

We can compute Gröbner basis of an ideal, Gröbner basis of its first syzygy
module, and the transformation matrix between the original set of generators
and the Gröbner basis (sometimes called a lifting matrix ) basically with the
same algorithm. We call these three powerful algorithms a Gröbner trinity.
The same applies for one–sided Gröbner trinity for ideals over GR–algebras and
is inherited by Plural from Singular. The Gröbner trinity is extremely im-
portant for further applications of Gröbner bases. For example, a free resolution
can be computed as the sequence of syzygies, while a lifting matrix allows to
control the critical constellations of parameters, or, in other words, to observe
the genericity of Gröbner basis computation [31] and so on.

The algorithm, which is able to compute all of the Gröbner trinity, is essen-
tially the general version of Gröbner basis algorithm. It must be able to compute
with free modules, hence it must accept monomial module orderings as input.
Moreover, it is important to have the switch for dividing the set of module com-
ponents into two disjoint groups. Having such a switch, one can compute Gröbner
basis only of those vectors, which lie inside of one group and do not compute
it for the other group, since the latter will be ignored at the end. Among other
cases, this idea is used for computing both the syzygy module and the lifting
matrix more easily. The same algorithm must be able to perform computations
in a factor algebra, to use extra weights for the ordering or for the generators of
a module, to interpret and to use on demand the supplemented information on
Hilbert polynomial et cetera.

We call an implementation of the algorithm, which computes a (left) Gröbner
basis and which complies with the requirements above, a Gröbner engine. The
examples of Gröbner engines in Singular are: Gröbner bases (non–negatively
graded orderings), standard bases (local and mixed orderings), and Plural
(left Gröbner bases for non–negatively graded orderings over G–algebras). All
of these are called with the same command, namely std. Yet more methods
for computing Gröbner bases are on their way to become someday Gröbner
engines.

If the internal implementation of a variant of Gröbner basis algorithm is done
in the form of Gröbner engine, one gets all the Gröbner basics (Sect. 2.5) available
in a much shorter time, compared with the adjustment of every single application
to the new Gröbner basis routine. Moreover, if the internal structure of the
implementation of e.g. Gröbner basics is tuned for the use of generic Gröbner
engine, one can use different engines for different applications.

The importance of having not only a fast Gröbner basis algorithm, but also
fast Gröbner basics (for working with practice–relevant applications) is clear.
The concept of Gröbner engine has been used implicitly in Singular. Hans
Schönemann and the author are working of the formalization and further devel-
opment of this concept, providing an interface between Gröbner bases, Gröbner
trinity and Gröbner basics. Our experience can be illustrated with two algo-
rithms, available in Singular, namely janet and slimgb.
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janet. The possibility to compute Gröbner basis via involutive basis was pro-
posed independently by Apel and Gerdt et. al. [13]. The corresponding al-
gorithm has been implemented and enhanced by the group of V. P. Gerdt
(http://invo.jinr.ru) for ideals of commutative rings, and demonstrated
quite a good performance. With the help of the principal developer of the project
JB (”Janet involutive bases”), Denis Yanovich, in 2003 we have incorporated
their routines, written in C, into Singular. We have learned a lot during that
process; the amount of re-engineering we needed to do, together with several
other factors, led us to the idea of Gröbner engine.

The Singular command janet computes a Gröbner basis of an ideal through
the computation of Janet basis and interreduction of the output. The same
command, run in the G–algebra, returns a left Gröbner basis of a two–sided
ideal. The cooperation with the group of Gerdt continues, and perhaps some
day janet routines will evolve to the Gröbner engine.

slimgb. Slim Gröbner basis is the algorithm of M. Brickenstein [3,4]. It uses
many interesting ideas and techniques, which have been proved to provide an
impressive performance, especially over transcendental field extensions and also
for elimination orderings. One of particular aims was to minimize, if possible,
the intermediate coefficient swell. The methods, used in slimgb, were general
enough to be applied for the non–commutative case. slimgb can compute a left
Gröbner basis of a left module. Its performance has been successfully tested on
many problems; using slimgb we obtained solutions for several long–standing
computational challenges. Due to very good timings on examples, where elimina-
tion orderings were used, slimgb is the primary engine for the dmod.lib (Sect.
3.5). The development of slimgb goes further intensively and, as it seems, will
lead to the Gröbner engine in the nearest future.

2.5 Gröbner Basics

Bernd Sturmfels called ”Gröbner basics” the most important, yet basic appli-
cations of Gröbner bases. We adopt this notion to the non–commutative GR–
algebras and remove from this list ”too commutative” applications (such as
Zariski closure of the image of a map, solving polynomial equations and radical
membership). All the algorithms below have been generalized to the context of
GR–algebras and implemented in Plural.

• Ideal (resp. module) membership problem
• Intersection with subrings (elimination of variables)
• Intersection of ideals (resp. submodules)
• Quotient and saturation of two–sided ideals
• Kernel of a module homomorphism
• Kernel of a ring homomorphism
• Algebraic relations between pairwise commuting polynomials
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Definition 4. Let A be a K–algebra and F ⊆ A a set. The subalgebra CA(F ) =
{a ∈ A | [f, a] = 0 ∀f ∈ F} is called the centralizer of F in A. Moreover,
Z(A) = CA(A) = {z ∈ A | za = az ∀a ∈ A} is called the center of A.

In addition to the classical Gröbner basics, there are typically non–commutative
Gröbner basics (all of them are implemented in Plural):

• Two–sided Gröbner basis of a bimodule
• Gel’fand–Kirillov dimension of a module
• Annihilator of finite dimensional module
• Central quotient resp. saturation of ideals (if the center is non–trivial)
• Preimage of a left ideal under the morphism of algebras
• Graded Betti numbers (for graded modules over graded algebras)
• Left and right kernel of the presentation of a module
• Central Character Decomposition of the Module

It is interesting, whether it is possible to give an algorithm, which computes
N–dimensional irreducible representations of a GR–algebra for a positive N . We
have proposed an algorithm, which computes all the one–dimensional represen-
tations [27].

For a modern computer algebra system, specializing on the non–commutative
algebras, it is quite important to have also non–Gröbner functionality, like the
operations with opposite and enveloping algebras (described above), computa-
tions with centralizers and even more. Many applications (of e.g. representation
theory) require an explicit knowledge of the generators of the center of a GR–
algebra as well as the generators of centralizers of finite sets. These algorithms
have been implemented in the library center.lib by O. Motsak. The imple-
mentation demonstrated quite a good performance.

While studying algebraic dependence of pairwise commuting polynomials, the
method of Perron polynomial was widely used. It has been implemented in the
library perron.lib. With this library we have been able to compute several hard
examples, which contributed to the progress in studying algebraic dependence
in the situation, described in the Sect. 3.2.

3 Work in Progress and Future Development

3.1 Preimage of a Left Ideal

ncpreimage.lib is dedicated to the computation of the preimage of a left ideal
under a morphism of GR–algebras, as it is described in [29]. The implementation
of the main algorithm of the article requires, among other, the procedure for the
computation of a tuple of strictly positive weights (w1, . . . , wm), such that the
elimination ordering with the extra weight vector (w1, . . . , wm, 0, . . . , 0) satisfies
the ordering condition of the Def. 1. If one works with a positively weighted
degree ordering, a similar computation of weights can be achieved with the help
of the method, described in e.g. [5]. It is implemented as the procedure Gweights
in the library nctools.lib.
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3.2 Algebraic Dependence of Pairwise Commuting Polynomials

Consider the universal enveloping algebra A of a finite dimensional simple Lie
algebra over a field K. If char K > 0, it is known from the dimension argument
assures, that the generators of the center are algebraically dependent. There
are several open questions on the ideal of dependence polynomials which we
investigate by using computer algebraic methods. We were able to compute the
dependence polynomials explicitly for many prime p over the algebras U(sl2) (see
[26]) and U(so3). Up to now, the case of U(sl3) remains unsolved and constitutes
an important challenge.

There are more situations, when these methods can be applied. For instance,
the algebraic dependence of the generators of the center appears also in quantum
algebras, when one considers a quantum parameter q (usually assumed to be
transcendental over K) to be some primitive root of unity.

3.3 Homological Algebra in GR–Algebras

For two left A–modules M, N , Exti
A(M, N) for i ≥ 0 carries no A–module struc-

ture in general. However, it turns out [5], that in the case, when either M or N
is a centralizing bimodule, ExtiA(M, N) is an A–module and its presentation can
be computed algorithmically. In many applications, one of the modules M, N is
often appears to be a centralizing bimodule.

Together with G. Pfister we are working on the implementation of the methods
above in the library nchomolog.lib. It is planned to have procedures for the
computation of Ext and Tor modules in the setup as above, accompanied by other
useful tools for homological algebra. We will use these also for the algorithmic
computation of Hochschild cohomology of bimodules. We need to compute left
and right Gröbner bases, and two–sided bases for bimodules; the need for them
motivated, among other, the deeper study and the enhanced implementation of
opposite and enveloping algebras.

With the help of the library, we are going to check the long–standing conjec-
ture, starting with algebras of rank 2 and 3:

for any simple weight module M over a complex finite–dimensional sim-
ple Lie algebra g, dimC Hi(g,M) <∞ holds for all i.

All the computations, related to this conjecture can be done in the universal
enveloping algebra U(g), which is a G–algebra. Among other, the library will be
applied to the problems, arising in the systems and control theory.

3.4 Systems and Control Theory

The algorithmic methods of algebraic analysis can be applied to systems of equa-
tions involving linear operators like the (partial) differentiation, shift, difference
and so on [8,9]. The algorithms for the case, when a system of equations involves
only constant coefficients (hence, the system algebra is commutative), have been
implemented in the library control.lib (Becker, L., and Yena, 2004).
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When treating systems with variable polynomial coefficients, the system al-
gebra becomes a GR–algebra. Together with E. Zerz we are working on the
library ncontrol.lib. This library will provide the procedures for the algebraic
analysis of systems over not only G–algebras (like it is done in the package Ore-
Modules, [9]), but also in GR–algebras. The latter requires more efforts and a
thorough inspection of the theory and its implementation.

In order to treat systems with rational coefficients, we have to provide Gröbner
bases, Gröbner basics, and algorithmic homological algebra for modules over
Ore–localized G–algebras (see Sect. 3.7).

3.5 D–Modules

The library dmod.lib (V. L. and J. Morales, 2006) contains procedures for com-
putations with D–modules. Let char K=0. Given a polynomial F ∈K[x1, . . . ,xn],
one is interested in computing the D–module structure of the localization
K[x1, . . . ,xn, F

s] for negative integer s. That is, one looks for the left ideal I
in the Weyl algebra D := An in 2n variables {x1, . . . ,xn, ∂1, . . . , ∂n}, such that
K[x1, . . . ,xn, F

s] ∼= A/I as D–modules. The algorithm for the computation of
such I is often called AnnF s.

We have implemented two variants of this algorithm, namely the algorithm
of Oaku and Takayama [6,36] in the procedure annfsOT, and the algorithm of
Briançon and Maisonobe (e.g. [6]) in the procedure annfsBM. One can use both
std and slimgb as underlying Gröbner engine for these complicated algorithms.
With the current implementation of dmod.lib and slimgb, we were recently
able to compute several hard examples, e.g. proposed by Castro and Ucha in
[6]. In particular, the cases of F being a cusp xp − yq (for coprime p, q ∈ N),
a Reiffen curve xp + yq + xyq−1, q ≥ p + 1 ≥ 5, or a hyperplane arrangement
are studied. We plan to extend the functionality of the library in the direction,
described in [36] and [38]. We are going to use the families of examples above as
benchmarks and compare the performance of computer algebra systems such as
kan/sm1, Macaulay2 and Singular:Plural.

3.6 Applications to Algebraic Geometry

W. Decker, C. Lossen and G. Pfister created the library sheafcoh.lib, de-
voted to the computation of the cohomology of coherent sheaves. The procedure
sheafCohBGG utilizes the Bernstein–Gel’fand–Gel’fand (BGG) correspondence
and the Tate resolution [11]. This algorithm, which uses computation of free
resolutions over non–commutative exterior algebra (which is a GR–algebra), is
sometimes much faster, than the commutative one, implemented in the proce-
dure sheafCoh, which is based on local duality, following the ideas of Eisenbud.

D. Eisenbud and F.-O. Schreyer presented an algorithm for the computation
on higher direct image complex of a coherent sheaf under a projective morphism.
The implementation of this algorithm in Singular will appear soon. Like in
the sheafcoh.lib, the BGG correspondence and hence, the computations over
exterior algebras are used.
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3.7 Directions of Future Work

Context–Based Multiplication. In [30] we have described our approaches to
the multiplication of polynomials in general G–algebra. The next enhancement in
this field is the implementation of formula–based multiplication for the simplest
contexts. Namely, for an affine G–algebra with the relation yx = q·xy+ax+by+r,
q, a, b, r ∈ K, q �= 0, it seems possible to derive a symbolic formula in a closed
form for the multiplication ys ·xt =

∑
cijx

iyj . To the best of our knowledge, no
general closed–form formula is known yet. Using a formula instead of the updated
tables will clearly require less memory, but eventually will consume more time.
Subalgebras of affine type as above occur very often in big G–algebras, and the
impact of the formula–based multiplication in such subalgebras on the overall
performance of Gröbner basis algorithms is very interesting to investigate.

Combined Computations. Singular is one of the few systems, being able to
perform combined computations, that is both commutative and non–commutative
computations in one system. It is important to develop this ability further by im-
plementing context–based operations, that is computations, which will derive the
subalgebra, where the concrete input resides (e.g. a commutative subalgebra of a
G–algebra), and provide the set of most optimized and relevant routines for the
concrete computation. A similar method is implemented in Singular as so–called
p-Procs for polynomial operations over different ground fields.

Ore Localizations. We are working on extending Plural to a bigger class of
non–commutative algebras, connected with G–algebras by means of localization.
Since from every G–algebra we can built left and right quotient rings, one can
extend the machinery we have developed to partial localization of G–algebras.
Let B ⊂ A be two G–algebras, then we can perform the localization of A with
respect to e.g. B\{0}, by means of Ore. If B happens to be commutative, we can
apply different localization, e.g. the localization with respect to a maximal ideal.
Note, that variables, not belonging to B, remain polynomial. Such algebras are
needed in many algebraic constructions and used in various applications.

For example, let R be a ring, containing K[x1, . . . ,xn] as a subring. Then
the Weyl algebra with coefficients in R is defined to be R〈∂1, . . . , ∂n | [∂i,xi] =
1, [∂j,xk] = 0〉. Very important examples are rational Weyl algebras, where R =
K(x1, . . . ,xn) or local polynomial Weyl algebras, with R = K[x1, . . . ,xn]〈x1,...,xn〉.
The standard basis algorithm for the latter has been recently discussed in [15].

PBW rings [5,24] constitute a general framework, describing such algebras and
Gröbner bases for modules over them. Under some assumptions, which reflect the
common setup for many applications, such an algebra is called an Ore algebra [8],
which has nice properties and is much easier to implement, than a general PBW
ring. However, Ore algebras do not cover various important cases of algebras.
Therefore, we concentrate ourself on investigating the algorithmic aspects of
computations in partial Ore localizations of G–algebras.

The computations in PBW rings are more complicated, than in G–algebras.
Even basic arithmetics with one–sided fractions requires the computation of
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syzygies and hence Gröbner bases [1]. Therefore, the implementation of Gröbner
bases in such algebras must be done quite carefully. On the other hand, the
powerful implementation opens new perspectives for applications of symbolic
computation in this segment of non–commutative algebra.

Non–commutative Computer Algebra Systems

We have reviewed in detail the modern Computer Algebra Systems with the
non–commutative abilities in [26]. The following systems are designed for the
computations in free associative algebras and path algebras:

◦ Bergman by J. Backelin et.al. [22] is a powerful and flexible tool to calculate
Gröbner bases, Hilbert and Poincaré–Betti series, Anick resolution, and Betti
numbers in non–commutative algebras and in modules over them,
◦ NCGB by J. W. Helton et.al. [21] is a Mathematica package, being a part

of the NCAlgebra suite,
◦ Opal by B. Keller et.al. [17] is the specialized standalone system for Gröbner

bases in free and path algebras,
◦ GBNP (Grobner) by A. Cohen and D. Gijsbers [10] is a package for Gap

4 with the implementation of non–commutative Gröbner bases for free and
path algebras, following the algorithmic approach of Mora [34,35].

The systems below are mostly restricted to some classes of non–commutative
associative algebras, but the computations with them are usually more efficient.

◦ Felix by J. Apel and U. Klaus [2] provides generalizations of Buchberger’s
algorithm to free K–algebras, polynomial rings and G–algebras. Also, the
syzygy computations and basic ideal operations are implemented.
◦ MAS by H. Kredel and M. Pesch [25] contains a large library of Gröbner

basis algorithms for computing in non–commutative polynomial rings,
◦ Groebner by F. Chyzak [7] is a Maple package, providing Gröbner basis

algorithms (including elimination) for Ore algebras,
◦ a Maple package by R. Pearce [37] contains an implementation of Faugère’s

F4 algorithm for Ore algebras,
◦ Kan/sm1 by N. Takayama [39], distributed as a part of the system OpenXM,

provides Gröbner basis computations in polynomial rings, rings of differential
operators, rings of difference and q-difference operators.
◦ Macaulay2 by D. Grayson and M. Stillman [16] includes Gröbner basis al-

gorithms for exterior and Weyl algebras and a package for D–module theory.

Acknowledgments

I am grateful to Gert–Martin Greuel, Hans Schönemann and Gerhard Pfister for
long and fruitful cooperation, and for their role in the development of Plural.
I wish to thank Michael Brickenstein, Denis Yanovich, Javier Lobillo, and all
other colleagues for their cooperation and contributions to Singular:Plural.



156 V. Levandovskyy

References
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Abstract. NZMATH is a system oriented to calculations of number
theory, based on Python. Currently, it has several basic data types and
several modules for number theoretic computations. NZMATH has two
key visions 1) user / developer fusion and 2) speed of development, and
the system has been growing along the lines. The development is of open
source by nature, and we are making effort to be as agile as possible.
There are many areas to be developed, especially a module for algebraic
numbers is awaited. Some experimental user interface construction is also
discussed.

1 Introduction

There are several systems for number theory already. PARI formerly lead by
H. Cohen and taken over by K. Belabas [19] and KANT lead by M. Pohst [6]
are the most popular ones. Some more general systems such as MAGMA [9] also
provide number theoretic functionality. SIMATH was another system founded
by H. G. Zimmer, and had been taken over by Nakamula K. The author had
experienced a few years of maintenance of SIMATH and ported it to 64 bit
environment within Nakamula’s group [10]. After the experience, we decided to
make a new system with new concepts in 2003.

1.1 Visions of NZMATH

NZMATH is a system oriented to calculations of number theory, based on the
scripting language Python [17]. It is the world’s first system for number theory
written in a so-called scripting language. The primary goal of the development
is to implement various number theoretic algorithms.

The key visions of the NZMATH development are [13,12]:

1. user / developer fusion,
2. speed of development.

The first vision means that ideally there is no distinction between users and
developers. From the user’s view point, users should be able to be developers
easily. Their programs should be merged into the system without difficulties.
From the developer’s view point, developers should be able to concentrate on
implementing mathematical concepts, especially algorithms for number theory,
on the system.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 158–169, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The second vision means that we put emphasis on the development speed
of system rather than the execution speed of resulting programs. It is a para-
phrasing of a commonly accepted principle “too early optimization should be
avoided.” Later in section 3, there will be more detailed discussion about the
visions.

In order to realize such visions, a scripting language is suitable. We chose the
Python language as the implementation language. A brief introduction to the
language is in the next subsection.

For your information, we would like to mention about the other project for
mathematics employed Python. SAGE is the project gathering already existing
systems into one system [23]. It uses Python as a glue language, and the concept
is completely different to that of NZMATH.

1.2 Python

Python is a so-called scripting language. There is no clear definition about what
is a scripting language, and even a Unix shell can be counted in with the most
broad sense. We, however, restrict ourselves to mean by the word the languages
with the following characteristics:

– executed on interpreter via intermediate language,
– without variable declarations,
– dynamically typed, and
– with garbage collection.

Recently, there are a few scripting languages comparative to Python; Perl is the
most popular one, and Ruby is becoming more popular.

The development of Python began in 1989 by a Dutch programmer Guido van
Rossum [20]. The language is well known with its clear syntax, object-oriented
features and rich standard libraries. There are also a lot of third party libraries
including mathematical libraries such as Numeric1, SciPy [21], etc.

The reasons why we chose Python, described in [11], are as follows.
Python has clear syntax; i.e. a program source code looks regular and easy to

understand. It is a better point compared to Perl.
Especially for our purpose, i.e. constructing a calculation system for number

theory, the existence of a built-in multiprecision integer type is helpful. Python
and Ruby have it, but Perl does not.

Object-oriented paradigm is familiar to mathematics. If there is a definition of
a mathematical structure, there will be a class definition in a program. Moreover,
when mathematician says that a field is a ring, the class inheritance relation will
correspond to it. Besides such correspondences, allowing operator overloadings to
provide infix notation of binary operations, such as ‘+’ for addition, in programs
is useful. Ruby is designed to be an object-oriented language. Python offers a

1 There are three very similar libraries for numerical computations: Numeric, Numar-
ray [15] and NumPy [16].
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mechanism for object-oriented programming. And Perl also offers it but it does
not fit well with other part of the language.

There is little difference between Python and Ruby in what they can provide.
The choice was made because of the world wide popularity of Python.

1.3 Outline of the Paper

We will summarize the current status of NZMATH in the next section. Then,
we will discuss in section 3 about our method of the development and how the
visions are realized. Finally in section 4, we will present the future works.

2 Current Status

NZMATH has been developed for over two years. It is provided as a library
package of Python. In the Python terminology, a file consists of classes or func-
tions definitions is called “module”, and a directory containing modules is called
“package”.

Currently, NZMATH has several basic data types and several modules for
number theoretic computations. It runs with Python 2.3 or higher2. Here are the
entire module descriptions of the latest release at the time of writing, version
0.5.0. Each heading of the paragraphs in the next few subsections are the names
of the modules in NZMATH.

2.1 Basic Data Types

There is a multiprecision integer data type in Python by default, but there must
be more data types for number theory.

rational provides rational numbers and rational integers. Although a multipreci-
sion integer type is provided by Python, its result of division is either an integer,
i.e. Euclidean quotient, or a floating point number. Our rational integer returns
a rational number as a result of division. The module also provides the rational
number field Q and the rational integer ring ZZ.

integerResidueClass 3 provides integer residue classes. The class for rings of in-
teger residue classes or ZZ/nZZ and the class for their elements are defined.

finitefield provides finite fields and their elements. There are six classes, three
for fields and other three for their elements. The correspondence reflects the
class hierarchy explained with the ring module below. The finite fields with
prime cardinality are provided as FinitePrimeField and their elements are
FinitePrimeFieldElement. The extended fields and their elements are provided
as FiniteExtendedField and FiniteExtendedFieldElement, respectively. The
remaining two classes are the abstract base classes for the classes above.
2 The latest release at the time of writing is 2.4.3.
3 The module names integerResidueClass and rationalFunction are slightly vio-

lating the naming convention and can be renamed in the future.
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polynomial provides univariate or multivariate polynomials. The basic polyno-
mial class can be used with any commutative rings as the coefficient ring. There
are specialized ones for special coefficient rings; such as integers or rational num-
bers. Polynomial rings are also provided.

matrix, vector provides matrices, vectors and related functions such as determi-
nant, trace, LU decomposition, etc.

rationalFunction 3 provides a class RationalFunction for rational functions. It
is only for the result of a division of polynomials.

2.2 Number Theoretic Modules

The main part of the system for number theory. There are only a few modules
now, but the development directed to enrich this category in the future.

multiplicative provides multiplicative number theoretic functions such as the
Euler totient function ϕ, the Möbius function μ, and the sum of kth powers of
all divisors σk.

gcd provides some functions related to compute the greatest common divisors
of integers.

prime provides primality testing functions from the trial division to the Jacobi
sum method [4, section 9.1], and some functions related to prime generation.

factor provides integer factorization functions4. There are methods from the
trial division to the multiple polynomial quadratic sieve method [8].

elliptic provides elliptic curves and related functions. Elliptic curves are defined
over a finite prime field with any characteristic but 2 or 3, and their order
and structure of the Mordell-Weil groups can be computed [7,1]. The structure
computation is carried out via the Weil pairing.

quad provides class number computation of imaginary quadratic fields. The
method used in the module is to count reduced quadratic forms [7,1]. Other
methods will be implemented.

2.3 Miscellaneous Modules

The rests are auxiliary modules.

arith1 provides variety of functions: floorsqrt to compute the integer part of
the square root of an integer, log to compute the integer part of the logarithm
of an integer with specified integer base, etc.
4 Actually, factor is not a plain module like others, but a sub-package consists of a

few modules.
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bigrandom provides random number generator for big numbers. It is based on
the Python’s default random number generator, which only provides random
numbers in 32 bit.

combinatorial provides combinatorial functions including factorial, binomial co-
efficients, the Bernoulli number and the Catalan number.

ring provides abstract declaration of rings. There are two hierarchical trees of
classes: one for rings and the other for their elements.

For example, Ring is the root class of ring classes. It declares that all descen-
dants must have attributes zero and one, in other words, we call with ‘ring’ a
ring with unity. Then, CommutativeRing inherits Ring. and so on.

The counter part of the Ring class in the other tree is RingElement. The
definition of an element of a ring is too abstract to write down concrete code in
the class, there is almost nothing in the body of the class definition. However,
there is a commonly used method name to know a ring to which the element
belongs: the getRing method.

There are also classes for fields, since field is a kind of commutative rings. We
do not much care about skew fields and do not provide them.

lattice provides the LLL algorithm of lattice [4, section 2.6].

zassenhaus provides factorization of integer coefficient polynomials. The algo-
rithms to do it are the Berlekamp-Zassenhaus method and van Hoeij’s algo-
rithm [5].

equation provides functions to solve algebraic equations f(x) = 0.

group provides finite abelian groups and methods to compute their group orders.

permute provides permutation groups.

real provides functions for real numbers. The module corresponds to the math
standard module of Python. There are no definitions for real numbers or arbi-
trary precision floating point number. The results are in rational numbers and
very slow.

imaginary provides functions for complex numbers, but since the name complex
is already used by Python for the type name of complex numbers, it is named
imaginary. Similar to the real module, the imaginary module corresponds to
the cmath standard module of Python.

2.4 Manual

The manual is provided as HTML files included in the distribution. It is also
available on the web5. With the Python interpreter, help function can extract
5 NZMATH manual: http://tnt.math.metro-u.ac.jp/nzmath/manual/
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documentation strings embedded in the source files. This functionality is a part
of Python, and the extracted document is also viewable from shell command
pydoc. However, documentation strings are not always written for all functions.
Some programmers sometimes forget to write them, and some feel hard to write
them in English. The help on the interpreter is, thus, not always helpful.

Instead of the documentation strings in the source code, HTML manual is
maintained with a wiki6 system to keep up to date. Someone who feel less hard
to write English can help to write the wiki manual pages, if the programmer
feels it is hard. Then, on the time of releases, the pages are converted to plain
HTML files.

In addition to the process, the wiki approach has an advantage that trans-
lations of the manual into other languages than English are possible. It is rec-
ommended by many people that documentation should be in the code, but it is
reasonable only for a domestic project. Having manuals in more than one lan-
guages in the code seems ridiculous. NZMATH must be an international project,
and there are needs for translated manuals. Though English is the lingua franca
in the academic world for the last half of a century, neglecting other languages
is not justified.

2.5 Applications

There is a research using NZMATH; related to a quantum public key cryp-
tosystem (QPKC), some computations have been carried out with NZMATH by
Nishimoto and Nakamula [14]. The computations are about norms of quadratic
or cubic field elements. Since there is no module for such elements, they write
their own modules with the help of some NZMATH functions.

We are now implementing algebraic numbers on NZMATH, as we will discuss
in section 4.1. Integration with their implementation is hoped.

3 Development

We have been developing NZMATH for over two years. The visions explained in
section 1 remain unchanged through the development. We now have two more
development concepts: “open source” and “agile development”.

3.1 User / Developer Fusion

One of the NZMATH’s visions is to get rid of the distinction between users and
developers.

From the developer side, since we have chosen Python as the implementation
language, developers do not have to think about memory management nor porta-
bility of code; such features are the subjects for the development of the language
itself. In other words, developers can concentrate on mathematical problems. It
is a direct benefit of choosing Python toward user / developer fusion.
6 NZMATH Wiki: http://hanaya.math.metro-u.ac.jp/nzmath/
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From the user side, the fact that the language they use and developers use
is the same language makes contributions easy. The already existing systems
have different languages for users: GP for PARI, KASH for KANT, simcalc for
SIMATH. The language gap hardens for users to feed back their experience to
the system development. In addition to it, since the Python language is widely
used and general purpose, the knowledge is useful even apart from NZMATH.

It is true that user base is still too small to say anything. When the number
of users increases, our claim shall be proven.

3.2 Speed of Development

Another one of the NZMATH’s visions is to put emphasis on speed of develop-
ment. The choice of Python as the implementation language helps to achieve
the vision. Since the NZMATH project have started later, catching up faster to
already existing systems is necessary to be accepted by a broader audience.

Python has been chosen partly because of reducing educational cost of stu-
dents. The way of developing the software is influenced by resources. Our dom-
inant resource is a human resource. There is no full-time staff; main developers
are master course or undergraduate students. They leave from the development
in a year or two on time of their graduations. It is, thus, desirable to choose a
language easy to learn.

Almost all other systems are implemented in C or C++, because the re-
sulting programs run fast, but it is “too early optimization.” We would like to
devote to implement algorithms for number theory. Writing in C like language,
however, requires other knowledge such as memory management or hardware
variations. Modern programming languages including Python offer automatic
memory management and hide the hardware layer from programmers. Another
feature of Python is that it is dynamically typed language. Statically typed lan-
guages can detect more inconsistency of types of objects at the compilation time.
There are two strategies of static typing: variable declaration and type inference.
C uses former strategy, in other words, programmers are forced to declare types
for every variable. The latter strategy is mainly used for functional languages
and we do not argue about it here. Spreading dynamically typed languages in-
dicates that costs of such declarations are not worth to pay. Both features of
Python enable the developers to concentrate on mathematics, as desired. If it is
realized later that a part of the system needs more speed, then it is possible to
reimplement the part by C with the experience of implementation in Python.

We achieved writing the modules explained in section 2 in less than 3 years.
It shows that our choice of language was right.

3.3 Open Source

We distribute NZMATH with the BSD license. The license basically permits
users to do anything. The program distributed under the license can be freely
available, freely redistributed, and freely used. Since we have chosen a scripting
language as the implementation language, users can always read the source code
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to be interpreted. It is, therefore, natural to make our source programs avail-
able freely. It means our system can be distributed as an open source software.
Moreover, we believe that there is no need to restrict usages of the system; even
including it to a closed source software. For such purpose, the GNU general
public license, which is used by PARI for example, is too restrictive, because the
license does not allow derived works without source code accessibility. Therefore,
our choice of license is the BSD license.

3.4 Agile Development

Because the author is personally influenced by the ideas of agile paradigm [3] or,
more precisely, extreme programming methodology [2], we shall discuss about
the development here from such a point of view. It is clear that our way of
development is not of “water fall” model, but rather incremental one. Therefore,
there should be some hints for improvements from agile models.

The first point is about tests. In the context of a professional software devel-
opment, the code coverage may have importance, but we do not require such a
level of test for all developers. It is true that writing merely a test to see that
the usual cases run correctly is effective to prevent most of ridiculous bugs. I do
not know whether the other projects have explicit test codes or not, but it is
worth writing.

The second point is about code reviews. By reviewing the code the other mem-
ber have written, the members can learn about the module reviewed, acquire the
sense of goodness of code, or detect minute bugs. There might be possibility to
practice pair programming instead, since pair programming is a sort of contin-
ual reviewing. However, the development group has master course students as
its main members, and they need their own result for their degrees, the activity
that makes personal contributions ambiguous is not acceptable.

The third point is to release small. Our release schedules have not been so
punctual, but the releases were, at least, the results of shortly scheduled plans.
The plans include a module to be added or to be modified. If there is no such
module because the development of it will take more than the usual release
period, we plan a bug fix release. Such continual releases may stimulate the
potential users, result some feed backs, and keep the motivations of the members.

The last point is about incremental design. Design should evolve day by day,
not because demands for number theory system change, but because developers’
understandings of the area progress. Regretfully, on this point, the activities such
as discussing the design or writing the design explicitly on a paper before coding
are rarely done. Moreover, refactorings after implementations are occasional. It
is necessary to improve these practices.

4 Future of NZMATH

The development of NZMATH will continue further. We will discuss about
some short term perspectives in the next subsections, then about longer term
perspectives.
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4.1 Algebraic Number Field

The algebraic number field is the next big subject for NZMATH development.
The only thing NZMATH has had toward the area is the quad module, which
computes the class numbers of imaginary quadratic fields.

Since algebraic number fields offer a fundamental tool to study number theory,
NZMATH should handle them to be more “number theory oriented” system.

Wehave startedwriting programs for it after the release of 0.5.0 inFebruary.The
very first step is to define classes to represent algebraic numbers with arithmetic
operations. The methods to compute norm or trace are also provided. The next
step will be to define algebraic number fields and their integer rings. Then, invari-
ants of the fields, such as discriminants, class numbers, unit groups, etc. will follow.
Handling ideals and computing prime decompositions, will also be provided.

There will be specialized classes or modules for small degree fields similar to
the quad module: real quadratic and/or cyclic cubic fields. Other kinds of fields
may also have specialized modules, depending on the easiness of implementation.

4.2 Web UI

There has been no special interface for NZMATH other than the default Python
interpreter. Though we think the interpreter remains as the primary interface,
a possibility of another interface has been sought occasionally.

We are planning to make a web user interface. By “web” we mean that users
will use their web browsers to start calculations. The most simple implementation
looks like the Online MATH Calculator by Stein [22]. There can be, on the other
hand, several choices how to construct the server side: a good old CGI, a plug-in
module for web server or a dedicated web application server. Fortunately, there
are plenty of choices with Python web servers.

The heavy calculations are allowed to be carried out only on users’ desktop
with or without the web interface. If users will be able to run the server on their
own desktop easily, the web user interface will still be useful. Such installation
of server / client pair on user’s desktop is called “desktop server”7.

The merits of constructing a user interface with the web technology comparing
to with an independent client are: (1) the required knowledge for developer is
smaller and (2) it is platform independent. It can be the first step towards using
NZMATH for potential users, if the pages contain more introductory materials
or integrated with manual pages.

The weakness of the web interface is lack of programmability. The Python
interpreter, therefore, remains as the interface for programming, and we expect
that almost all users will program anyway.

4.3 Speed of Execution

It has been and will be always the problem how to respond to the request of
speed. We have chosen to put higher priority on easiness of programming and
7 The author does not know who invented the word, but have learned the concept

from PyDS blog system.
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speed of development rather than on speed of execution. The formerly planned
schedule about speed of execution is that at some point when the pace of addi-
tions of new modules will slow down, running time improvement will be a main
topic of the development.

The strategy is endangered if execution is too slow to make the total time of
programming and execution is slower with NZMATH than with other systems.
We should, then, make some optimizations for speed of execution. There are
requests of speeding up polynomial computation, for example. It is in fact the
bottleneck of a certain kind of computations. Our polynomial implementation is
designed for general purpose, i.e. choosing the variable and specifying coefficient
ring are always required even if one only deals with polynomials in a specific
ring; ZZ[X ] for example. They are obviously eliminatable overheads if there is a
specialized polynomial type. Use cases show that there are a few very commonly
used types of polynomials. It is, thus, possible to make such special types to
resolve the bottleneck of polynomial computations.

4.4 Outsourcing

The project uses a mailing list, a CVS repository, web pages and a wiki. The
nzmath-user mailing list8 is for user to user communications. The CVS reposi-
tory is for version control of the source code. The web pages are for releases of
NZMATH to the public, and for the user manual. And the wiki6 is mainly for
communications among developers, including maintenance of the user manual
and bug tracking. Currently, all services are served on the machines in our labo-
ratory. They, however, need not be served by ourselves. The Internet has grown
rapidly during the last decade. Universities are not the only places to host such
servers. Nowadays, there are several sites hosting free / open source softwares
with version control softwares like CVS, mailing lists and web pages. We are
planning to use one of such sites.

There are several merits and a few demerits. The first merit is that the project
will be recognized widely as an open source project. Secondly, participation to
the development will be easier. People may hesitate to edit wiki pages if the host
is in a university domain. The last point has only a small importance, but it will
reduce our daily routines as a side effect. One of the demerits is that we loose
control of server softwares, but it is negligible compared to the merits.

4.5 Long Term Plans

Finally, we will discuss about long term future plans.
Of course, the implementation and improvement of wider range of algorithms

will continue. Especially, construction of modules for invariant computations of
algebraic number fields and elliptic curves continues to be in the main stream of
the development. Elliptic curves over the rational field and hopefully algebraic

8 nzmath-user mailing list: nzmath-user@tnt.math.metro-u.ac.jp
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number fields should be a target. We hope to provide also some tools for analytic
number theory.

Speeding up execution may be one of the main topics, when the development
will be saturated with variety of modules or when we find a bottleneck of the
speed of computations. The former seems very far from now, but the latter may
start earlier.

Connecting to other systems is another future issue. Implementing some pro-
tocol stack will be in consideration. OpenXM [18] used in Risa/Asir is one of
the candidates.

5 Conclusions

We have been developing the calculation system for number theory called NZ-
MATH for over two years. The system is implemented in Python, a scripting
language, in order to achieve the visions 1) user / developer fusion and 2) speed
of development. The development has successfully been providing the wide va-
riety of modules and the manuals of them, in the short period. It shows the
correctness of the concepts.

There will be more topics to be covered by the system, including algebraic
number fields. Web user interface is considered as a probable option to be im-
plemented. Speed of execution is not ignorable factor of the development. Such
problems arose in the development are discussed.

We hope the system be accepted by wider range of people, from number
theorists to students of other areas.
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Abstract. In recent years the computer algebra system KASH/KANT
for number theory has evolved considerably. We present its new features
and introduce the related components, QaoS (Querying Algebraic Ob-
jects System) and GiANT (Graphical Algebraic Number Theory).

1 Introduction

KASH/KANT is a computer algebra system specialized for algebraic number
theory and its applications. KANT stands for “Computational Algebraic Number
Theory” with a slight hint of its German origin. It contains the following system
components:

– The KANT C library with highly specialized algorithms for number theory
– KASH, the KANT shell, and its programming language
– The graphical user interface GiANT
– The QaoS databases for algebraic objects with access via the worldwide web,

or from computer algebra systems

The KANT library for number theory has been in development since 1987 under
the leadership of Michael Pohst. Development began in Düsseldorf, and since
1993, continues at Technische Universität Berlin. The following describes the
evolution of the components of KASH/KANT.

1987 KANT V1 (Fortran library)
1992 KANT V2 (C library) built on the Cayley platform
1994 KANT V4 (C library) built on the Magma platform
1995 KASH 1.0 (KANT shell) based on GAP 3
1996 KASH 1.6, Database for number fields
1999 KASH 2.1
2004 KASH 2.4, WWW Database
2005 KASH 3, GiANT (GUI for KASH 2.x), QaoS Databases

The KANT V4 C library, built on the Magma [BCP97] platform, provides the
core functionality of KASH. (KANT V4 functionality is also available in Magma.)

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 170–181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The current version uses the GNU multi-precision library [GMP] for long integer
arithmetic, and [MPFR] for arbitrary precision real numbers. KASH consists of
a modified version of GAP 3, which is linked to the KANT V4 library, a variety
of utility functions to provide an interface to GAP 3, and numerous functions
written directly in the native KASH shell language, that make up the KASH
library. Some of the GAP 3 library functions are also available in KASH. An
overview of KASH functionality is found in section 2.

In recent years we have redesigned key components of KASH. Our main pur-
pose was to create a system that was easier to maintain and extend. To this
end, we added a number of object-oriented features to KASH 3, although we
were limited since a ground-up rewrite was not feasible. With these new fea-
tures, users can now write generic functions which can be used, for example,
with global fields and number fields alike. To support generic functions we have
introduced identifier overloading for function names (see section 5) and a new
type system, which also allows for user-defined types (section 3).

In KASH 3, documentation (section 4) is written directly into the source code
making documenting new functions simpler, and general maintenance easier.
Similarly, the online help system and downloadable manuals are automatically
generated from in-line comments in the source code.

In section 6 we introduce the redesigned and expanded KANT database for
number fields (now called QaoS – Querying Algebraic Objects System).

While most algebra is done by writing text and formulas, diagrams have al-
ways been used to present structural information clearly and concisely. Text
shells are the de facto interface for computational algebraic number theory, but
they are incapable of presenting structural information graphically. In section
7 we present GiANT, a newly developed graphical interface for working with
number fields. GiANT offers interactive diagrams, drag-and-drop functionality,
and typeset formulas.

KASH and Other Computer Algebra Systems. As already mentioned,
KASH/KANT shares parts of its C library with Magma. KASH also integrates
easily with other computer algebra systems. The package Alnuth [AED05] allows
access to the functionality of KASH 2.x from GAP 4. KASH 3 can be accessed
through the Python based computer algebra system SAGE [St06].

The SCIEnce (Symbolic Computation Infrastructure for Europe) project,
funded by the European Union, aims to link the computer algebra systems GAP
4 [GAP], KASH/KANT, MuPad [Mu05], and Maple [Ma05] in the context of
Web and Grid services. In this scheme, each of these systems will run as a server
or a client. The project will answer many questions about access/transport for
complex objects. In particular the project team will develop an OpenMath [OM]
XML format for the algebraic objects used by these systems.

Availability. KASH 3 is freely available. Binaries for Linux/x86, Mac OS X,
and MS Windows can be downloaded from

http://www.math.tu-berlin.de/~kant/kash.html.
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In addition KASH 2.x was ported to various UNIX versions (AIX, IRIX, OSF/1,
Solaris).

2 Functionality

In the 1970s, Hans Zassenhaus postulated four principal tasks for computational
algebraic number theory. Namely, the development of efficient algorithms for the
computation of the maximal order, the unit group, the class group, and Galois
group of algebraic number fields. We now have these algorithms, not only for
number fields but also for global functions fields, and they are fast enough to
make the computation of more complex objects possible, such as class fields.

KASH offers powerful functions for working with number fields, function fields,
and local fields and for solving Diophantine equations. The only comparable
systems in this regard are Magma [BCP97], which shares parts of its code with
KASH, Pari-GP [BB+05], and SAGE [St06], which contains Pari.

Number Fields

KASH allows base arithmetic and integral basis computation for extensions of
the rationals and for relative extensions of number fields. Efficient algorithms
for class groups and unit groups are applied in the computation of ray class
groups [HPP03], which in turn enable the computation of class fields [Fi02]. As
a further generalization of class groups, Picard groups of arbitrary orders can be
computed. The computation of Galois groups is now possible for number fields
of degree up to 23 [Ge05].

Example. We determine a ray class field over a number field.

kash% K := NumberField(X^3+6*X+3);
Number Field with defining polynomial X^3+6*X+3 over Q
kash% O := MaximalOrder(K);
Maximal Equation Order with defining polynomial X^3+6*X+3 over Z

Next we pick the index 3 subgroup of the ray class group with conductor (3).
The composed types such as grp^abl are explained in section 3.

kash% r := RayClassGroup(3*O);
Abelian Group isomorphic to Z/6, extended by:
ext1 := Mapping from: grp^abl: r to ids/ord^num: _AF

kash% q := Quotient(r,3*r.1);
Abelian Group isomorphic to Z/3, extended by:
ext1 := Mapping from: grp^abl: r to grp^abl: q

The corresponding ray class field is given as an abstract extension. A represen-
tation is computed if and only if the user requests it.
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kash% L := RayClassField(Inverse(q.ext1)*r.ext1);
Abelian Field, defined by (<[3, 0, 0]>, []) of structure: Z/3
kash% EquationOrder(L);
Equation Order with defining polynomial X^3-3*X-1 over o

Function Fields

Numerous algorithms for number fields have been generalized to global fields.
For example, maximal order algorithms have been generalized to algorithms for
the computation of finite and infinite maximal orders. Many tasks in the theory
of function fields rely on the computation of Riemann-Roch spaces, which are
applied to the computation of divisor class groups [He02]. Galois groups for
function fields up to degree 23 can also be determined [Ge05].

Future work will provide increased support for elliptic curves, automorphism
groups of function fields or curves, and isogeny and isomorphy computations.
Functions for computing endomorphism rings of hyper elliptic curves and Deur-
ing correspondences are also planned, as well as support for function fields over
the complex numbers.

Example. We generate a function field L whose constant field is a function field
K, and compute its finite maximal order.

kash% k := GF(7);; kx := FunctionField(k);;
kash% kxy := PolynomialAlgebra(kx);
Polynomial Ring over rational function field over GF(7)
kash% K := FunctionField(kxy.1^2+6*kx.1^7+2*kx.1^4+6*kx.1+3);
Algebraic function field defined over Univariate rational function
field over GF(7) by kxy.1^2 + 6*kx.1^7 + 2*kx.1^4 + 6*kx.1 + 3
kash% L :=ConstantFieldExtension(K,K);;O := MaximalOrderFinite(L);
Maximal Equation Order of L over Polynomial Ring over K

We generate a non-trivial Deuring correspondence of the function field K repre-
sented by the ideal V. We determine its Riemann-Roch space, which then could
be applied to show that the correspondence is not trivial.

kash% BindNames_(CoefficientRing(O),["X"]);
kash% V := Ideal(O, [L.1-K.1,X^2+kx.1^2-2*kx.1*X-2*X-2*kx.1+1]);
Ideal of O, Basis:[X^2 +(5*kx.1+5)*X+kx.1^2+5*kx.1+1 0][6*K.1 1]
kash% M := RiemannRochSpace(2*Divisor(V));
KModule M of dimension 2 over K, extended by:
ext1 := Mapping from: mdl/fld: M to fld^fun: L

Local Fields

KASH supports p-adic fields and their extensions as well as fields of Laurent
series. Polynomials over local fields can also be factored; [Pa01]. Applications
include the computation of integral bases, ideal decomposition over global fields,
and completions of global fields. Support for computing unit groups and class
fields over p-adic fields is scheduled for the next KASH release.
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Example. We use an Eisenstein polynomial to generate a ramified extension
over Q3. It is the completion of the number field K, from the number field example
above, with respect to the ideal over 3.

kash% Q3 := pAdicField(3,10);
3-adic field mod 3^10
kash% V := TotallyRamifiedExtension(Q3,X^3+6*X+3);
Totally ramified extension defined by X^3+6*X+3 over Q3

We factor the generating polynomial of the class field L/K from the number field
example over the field V.

kash% S := PolynomialRing(V);
Univariate Polynomial Ring over V
kash% Factorization(S.1^3-3*S.1-1,rec(Certificates:=TRUE));
[<S.1^3+((4*V.1^2-2*V.1 + 25)*V.1^3+O(V.1^30))*S.1-1+O(V.1^30),1>]
extended by certificates := [rec(F := 1, Rho := 1, E := 3,
Pi := (V.1^-1+O(F.1^29))*S.1+(V.1+2)*V.1^-1+O(F.1^29))]

Note that V.1 denotes the uniformizer of the field V and that S.1 is the indeter-
minate of the polynomial ring S. The polynomial S.13− 3 · S.1− 1 is irreducible,
as expected. The certificates tell us that it generates a totally ramified exten-
sion of degree E=3 over V. Thus the ideal over 3 is totally ramified in L with
ramification index 9.

Diophantine Equations

KASH contains efficient functions for solving absolute and relative norm equa-
tions [Fi97], Thue equations [BH96], and unit and index form equations [Wi00].

Example. We solve the Thue equation X3 + X2Y − 2XY 2 − Y 3 = 7.

kash% T := Thue(X^3+X^2-2*X-1);
Thue object with form: X^3 + X^2 Y - 2 X Y^2 - Y^3
kash% Solutions(T,7);
[ [ -3, 2 ], [ 1, -3 ], [ 2, 1 ] ]

3 Type System

The type system of KASH 2.x was simple. When asked for the type of an object,
KASH returned a string containing a description of the type. Most functions
contained type information for their main argument and return value. Type
checking was typically done using predicates, like IsOrder(). For KASH 3 we
wanted to create a type system that met the following criteria:

– Represent mathematical categories in an intuitive way
– Allow efficient comparison of types (to facilitate overloading, inheritance)
– Allow the creation of user-defined types
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That said, we needed to maintain backwards compatibility with the type system
provided by the underlying KANT C libraries. We also needed to address the
existence of data structures unique to the GAP language, such as lists. In creating
the KASH 3 type system we studied the GAP and MAGMA type systems.

In the transition from GAP 3 [Sc+93] to GAP 4 [GAP], the overloading of
functions based on the predicate-driven type system was introduced. A function
is installed as a method with a list of predicates that are required for the function
to be called. This generalization of the predicate driven approach would have
been difficult to combine with the types in the KANT C library.

Magma [BCP97] has a categorical type system. Types are internally organized
in a category inclusion graph. A type is said to be related to another type if there
is a path of inclusions from the one type to the other. Types in function signatures
are matched using this relation. Recently, extended types have been introduced
that make it possible, for instance, to distinguish the types of polynomial algebras
over various rings. Magma does not support user-defined types.

Taking all this into consideration, we designed a new type system for KASH 3.
Three kinds of types exist: simple types, typed aggregates, and composed types.

Simple Types include basic types like char and type, or more specialized
types such as thue for Thue equations. Simple types also include data structures
(aggregates) such as list, dry (lists with no duplicate entries), set (sorted lists
with no duplicate entries), record , and alist (associative lists).

Typed Aggregates extend aggregates to include one or more additional type
specifications. They are similar to parameterized types found in modern pro-
gramming languages. The syntax for typed aggregates is aggtype([,type]). Typed
aggregates can be created from aggregates: sequences (seq()), maps (map()),
tuples (tup()), and nof(). The latter stands for “n of”. It can be used in defin-
ing functions with a variable number of arguments. For example, a function
that takes an arbitrary number of string arguments would have argument type
nof(string).

Composed Types represent complex mathematical objects. Composed types
are composed of atoms. The first atom is either elt- or str-, which stand for
element and structure respectively (elements are contained in structures). The
first atom is followed by a structure atom, a caret (^), and a specifier atom. To
take an example, elt-fld^num is the type of elements of number fields. The
structure atoms describe the general algebraic structure, such as fld (field), alg
(algebra), grp (group), etc. The specifier atoms give a more detailed description
fin (finite), pol (polynomial), abl (abelian), etc.

Still more complex types can be constructed by appending a slash (/) fol-
lowed by further structure ŝpecifier pairs. The atom str can be left out un-
less it stands alone. In summary, the syntax for composed types is as follows:
[elt-]structure ŝpecifier [/. . .]. For examples grp^abl denotes the type of abelian
groups, fld^fun the type of function fields, ord^num the type of orders of
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number fields, elt-ord^num the type of algebraic integers, andalg^pol/fld^num
is the type of polynomial algebras over number fields.

Given the type of an element within a mathematical structure, we obtain the
type of the parent structure by prepending str-, and vice versa by prepending
elt- to the structure’s type. Users can create new composed types by combining
existing atoms, or by defining new atoms and combining those.

User-Defined Types Objects of user-defined types are represented as records
whose .type field contains the type of the object. If a record r contains a .base
component then r inherits most of the functionality of r.base. The functionality
can be overwritten by methods installed for the type assigned in the .type field
or by the .operations field which, as in GAP, can be used for overloading the
function Print and the infix operations +, -, *, /, ^, in, and mod.

Further special record fields are .n (where n is a positive integer) which
contains the n-th generator of a structure and .parent for the parent structure
of an object.

4 Documentation and Help

We designed the new documentation system for KASH with the following goals
in mind.

– All documentation should be prepared from a single source. (This provides
ease of maintenance, consistency, and up-to-date accuracy.)

– Documentation for new functions should be available to the user as soon as
new functions are loaded into the system.

– The help system should support complex search patterns, including full text
search (similar to Internet search engines).

– Function documentation should, whenever possible, be accompanied by ex-
amples written in working code.

– Output formats should be as follows: ASCII for help within the shell envi-
ronment (we call this online help), XML/HTML for worldwide web docu-
mentation, and LATEX/PDF for printed documentation.

Experience with previous releases of KASH, as well as other computer algebra
systems, has taught us that users benefit tremendously from illustrative exam-
ples. We have therefore made an effort to provide an example for every standard
KASH function. The system also includes special features to credit the authors
of each example, and to provide cross-references to other parts of the system
and the mathematical literature at large.

Implementation

We decided to represent entries in the documentation system as KASH records.
As a result, KASH itself can be used to automatically process and generate
documentation. All functions for converting the documentation to any of the
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desired formats are written in KASH. In this way future developers will not
have to find their way through scripts written in other languages. A further
advantage is that the documentation system can be easily extended.

The following is a list of the key fields present in a documentation record.

kind defines what is being documented.
name contains the name of the documented object.
sin is the input signature of a function as a list of the input-types.
sou is a list of the output-types of a function or constant.
short is a text describing the documented object.
author contains a list of authors.
ex contains examples illustrating how to use a function or generate an object of

the given type.
see contains a list of references to related documentation records.

Each help entry is identified by a unique hash value computed from the name
entry and, where applicable, the sin entry. The function DocHash returns this
hash value. The hash values are used in the cross references in the see entry for
example.

Passing a documentation record to the function InstallDocumentation au-
tomatically enters it in the online help system and notes the source of the doc-
umentation, which can be a file or the interactive shell session.

Online help is accessed by typing ? into a KASH shell. The ? may be followed
by a variety of modifiers in order to generate more specific results for example
?* for a full text search, ?(type) for finding functions with type in the input
signature, or ?->type for functions returning objects of type type. If more than
one result is found, a list is displayed with each item labeled with a four-digit
integer, n. Their documentation is accessed with ?n.

While online and worldwide web help are accessed in a random order, printed
documentation is comprehensive in scope. Printed documentation is assembled
from the documentation records described above. The hierarchical structure of
the document is determined by a recursive structure of records and lists, where
documentation records are referenced by their hash values. The result is trans-
lated into LATEX by a KASH function.

5 Overloading and Type Matching

Like many modern programming languages, KASH 3 supports overloading of
functions. Overloading allows users to define multiple functions with the same
name but different parameter types. We call such overloaded functions methods.
Overloading is made possible by KASH 3’s strongly typed object system (see
section 3) that replaces the predicate driven object system of prior releases.

Calling a method is syntactically equivalent to a function call. Precisely which
method to execute is determined at run-time by the method’s input signature
(i.e. the type and order of the method’s parameters).
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Closely related is the concept of type matching. Type matching is the process
by which individual function or method calls are matched against known signa-
tures. As with other object-oriented languages, KASH 3 types form a transitive
hierarchy. KASH 3 includes a handful of wild card atoms which can be used as
simple types, or as parts of composed types. The wild card any matches any
type or atom, loc (local) matches ser (power series) or pad (p-adic), and rng
(ring) matches ord (order) or fld (field). As an example, to write a function
that takes an algebraic integer or an algebraic number, we would use the type
elt-any^num in its input signature.

The overloading mechanism is connected with the documentation system.
The name entry of a documentation record specifies the method name which the
signature sin should be added to. The installation of new methods resembles
the installion of documentation with a function as a second parameter.

6 The QaoS Databases

Databases facilitate the discovery of constructive examples and broad, heuris-
tic observations. The KANT database is one of the world’s largest databases
for algebraic number fields. In KASH 3, we wanted to generalise the database
design and to improve accessibility. The result is QaoS (Querying Algebraic
Objects System), an easily integrated, stand-alone solution for access to the
KANT databases. QaoS is more versatile and extensible than its predecessors.
An improved representation for elements and polynomials makes it possible to
represent (relative) algebraic and transcendental extensions.

QaoS incorporates data from the KANT database [DW96] for number fields,
and tables of transitive groups from [Hul05]. The latter are linked to the Ga-
lois group entries in the tables of field extensions. Currently QaoS provides the
following information

– Algebraic Extensions of Q up to degree 9 (over 1.3 million number fields)
– All 40226 Transitive Groups up to degree 30
– Extensions of Fp(t) and Q(t) (experimental)

The number field records contain generating polynomials, signatures, discrimi-
nants, regulators, structure of class groups, and Galois groups.

Accessing the QaoS Databases. Designed as a client-server application,
QaoS transfers information via the hypertext transport protocol (HTTP). Query
formats are identical across clients. On the server side, a script translates the
client query into SQL (structured query language) for use by the PostgreSQL
[PSQL] database. Another script translates the result back into the format
requested by the client. A web browser, for example, would select hypertext
markup language (HTML); whereas a computer algebra system, would choose a
format easily read by the system. In computer algebra systems the client func-
tions are written in the system’s native shell language. They call a non-interactive
HTTP client for communicating with the server. The results are read using shell
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or string pipes, or a temporary file. If a new client can evaluate strings, porting
the database interface is straightforward. Currently, client functions are avail-
able for GAP 4, KASH 2.56, KASH 3, Maple, and SAGE (contributed by Steven
Simek).

Representation of Field Extensions. An algebraic extension L/K can be
represented by a generating polynomial f(x) ∈ K[x] such that L ∼= K[x]/(f(x)).
As, in general, databases do not support robust polynomial records, the polyno-
mial f is represented as a list of coefficients. This works well if the coefficients
of f are of a type that is supported by the database - integers, for example. In
general however, this is not the case. If we consider the extension Fp(t)[y]/(g(y))
with g(y) ∈ Fp(t)[y] of the rational function field Fp(t) over Fp, we see that the
polynomial g(y) would have to be represented as a two-dimensional array of inte-
gers, but PostgreSQL does not easily support lists of lists of varying dimensions.
We solve this problem by storing all elements needed to represent the generating
polynomials as lists that contain either references to lists or references to inte-
gers. This approach can be used for towers of extensions containing arbitrarily
many algebraic and transcendental steps.

Future Developments. We will allow registered users bidirectional access to
the database. This will empower users to add data to the databases from within
their client computer algebra systems. We also plan to provide QaoS clients for
more computer algebra systems and support the OpenMath [OM] XML format
for representing the algebraic objects developed in the SCIEnce project. Fur-
thermore the tables of number fields will be extended and rechecked, and new
tables of function fields and extensions of local fields will be created.

7 Graphical User Interface

Several general computer algebra systems, such as Maple [Ma05] and MuPad
[Mu05], provide graphical interfaces. They offer typesetting and plotting, but
they do not allow graphical manipulation of algebraic objects. For group the-
ory the XGAP [CN04] package for GAP 4 [GAP] offers a tool for viewing and
manipulating subgroup lattices and other structural information on UNIX sys-
tems running X Windows. It allows bidirectional communication between the
interface and GAP. Working with elements of groups is not supported.

We introduce a graphical user interface for KASH called GiANT. GiANT
differs from the preceding systems in that it offers direct, intuitive manipula-
tion of algebraic structures, and it is specialized for working with number fields.
In GiANT, number fields created by the user are incorporated into a tower
of fields diagram that is updated in real time. The diagram is interactive and
allows users to work with the elements, polynomials, and ideals of a number
field simply by clicking on the number field’s icon in the diagram. A special-
ized window containing the elements, polynomials, and ideals of the number
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field appears. All mathematical information is typeset using the same symbols
and special characters that appear in modern math texts. The result is output
which is easier to interpret than raw shell output.

Field elements, polynomials, and ideals can be manipulated by drag-and-drop
operations, which may, for instance, reveal the minimal polynomial of an element,
create the ideal generated by an element, or even move it to an extension field. In
a similar way, the user can create relative field extensions by dropping irreducible
polynomials from the ground field onto the field diagram.

GiANT is written in Java, but uses KASH to perform its computations. Gi-
ANT users may choose to work directly with KASH via a console. Any variables
created with the graphical interface are also available in the console. The user
may use the console to access features of KASH which are not graphically avail-
able. Alternatively, GiANT can be used as a KASH script generator, since all
graphically-driven activities generate KASH code.

In the next step, we will provide a more flexible graphical user interface that,
for example, displays lattices of subgroups using the same methods as for lattices
of subfields. Furthermore, a bidirectional integration of graphical manipulation
and a classic text based shell is needed, such that objects and structural infor-
mation about the objects are displayed graphically as they are created in the
shell.

For a more detailed description of GiANT see [KP06]. GiANT is released
under the GNU General Public License (GPL) and available from

http://giantsystem.sourceforge.net.

This site also contains screen shots and videos of GiANT.
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tow (1989–1993), Bettina Arenz (1989–1992), Nicole Schröter (1990–1992), Max
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Fi97. C. Fieker, Über relative Normgleichungen in algebraischen Zahlkörpern, Dis-
sertation, TU Berlin, 1997,

Fi02. C. Fieker, Computing class fields via the Artin map, Math. Comp. 70 (2001),
no. 235, 1293–1303

GAP. GAP: Groups, Algorithms, Programming, http://www.gap-system.org.
GMP. GMP: GNU Multiple Precision Arithmetic Library, http://www.swox.com/

gmp.
Ge05. K. Geissler, Berechnung von Galoisgruppen über Zahl- und Funktio-

nenkörpern, Dissertation, TU Berlin, 2003.
He02. F. Hess, Computing Riemann-Roch spaces in algebraic function fields and re-

lated topics, J. Symbolic Comput. 33 (2002), no. 4, 425–445
HPP03. F. Hess, S. Pauli, and M.E. Pohst, Computing the Multiplicative Group of

Residue Class Rings, Mathematics of Computation 72 (2003)
Hul05. A. Hulpke, Constructing Transitive Permutation Groups, J. Symb. Comp. 39

(2005), 1-30.
KP06. A. Karve and S. Pauli, GiANT: Graphical Algebraic Number Theory, preprint,

2006, http://giantsystem.sourceforge.net.
Ma05. Maplesoft, Maple, 2005, http://www.maplesoft.com.
Mu05. MuPad: Multi Processing Algebra Data Tool, http://www.mupad.de.
MPFR. MPFR library for multiple precision floating point computation,

http://www.mpfr.org.
OM. OpenMath: an extensible standard for representing the semantics of mathe-

matical objects, http://www.openmath.org.
Pa01. S. Pauli, Factoring polynomials over local fields, J. Symb. Comp. 32 (2001).
PSQL. PostgreSQL, http://www.postgresql.org.
Sc+93. M. Schönert et. al. GAP: Groups, Algorithms, Programming – version 3.27,

Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule,
Aachen, Germany, 1993, http://www-gap.mcs.st-and.ac.uk/Gap3.

St06. W. Stein et al, SAGE: Software for Algebra and Geometry Experimentation,
2006, http://sage.scipy.org/sage.
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Abstract. We will discuss knapsack problems that arise in certain com-
putational number theory settings. A common theme is that the search
space for the standard real relaxation is large; in a sense this translates
to a poor choice of variables. Lattice reduction methods have been de-
veloped in the past few years to improve handling of such problems. We
show explicitly how they may be applied to computation of Frobenius
instances, Keith numbers (also called “repfigits”), and as a first step in
computation of Frobenius numbers.

Keywords: Frobenius instance solving, lattice reduction, integer linear
programming, change-making problem, Frobenius numbers, Keith num-
bers, repfigits.

1 Introduction

Various problems in the realm of computational number theory have as key
steps the solving of a linear equation or system over the integers, subject to some
linear inequality constraints. The Frobenius instance problem (also known as the
change-making problem) is a well-known example. The problem of finding what
are called repfigits, to be described below, is another. These may be regarded as
a class of knapsack problems wherein one is allowed to take only certain integer
multiples of various items in forming a “valid” combination.. As such these fall
into the category of integer linear programming (ILP).

Classical methods for solving such problems include branch-and-bound and
cutting plane methods [8,16]. These approaches alone are often inadequate for
certain classes of problems due to a phenomenon roughly described as “unbal-
anced bases”. A method for dealing with this deficiency was developed in [1,2]. In
essence it involves working with a basis that is reduced (in the sense of [11]) and
ordered by size, in conjunction with standard branch-and-bound. We will de-
scribe and illustrate this for the types of problem mentioned above . We remark
that the handling of Frobenius instances is by no means new, having been dis-
cussed in the aforementioned references. We also show how the method is applied
in a new algorithm for finding Frobenius numbers, a task that is substantially
harder than solving Frobenius instances.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 182–193, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The algorithms described in this paper have been implemented in Mathemat-
ica [18]. Code is available from the author on request.

2 Frobenius Instances

Suppose we have a set of positive integers A = (a1, . . . , an) and a target M , a
positive integer. We seek nonnegative integer multipliers X = (x1, . . . ,xn) such
that X · A = M . This is a standard problem in integer linear programming.
A classical method [16] for solving this would be to solve the relaxed problem
wherein we enforce all inequality constraints but all variables to be real rather
than integer valued. If in the solution we encounter a variable a with value s
that is not an integer then we spawn two subproblems where we enforce respec-
tively that a ≤ �s� and a ≥ �s�. We continue this process of solving relaxed
subproblems, splitting when a variable has a noninteger value. It can be shown
that eventually either we exhaust all possibilities or we obtain an integer valued
solution [16]; in either case clearly the algorithm terminates.

A drawback to this approach is that the search space for the relaxed subprob-
lems might appear to be “large”, in the sense of having many points with not
all coordinates integer valued. In particular it may be the case that a standard
LP solver will find real valued solutions to the restricted subproblems without
making rapid progress to an (entirely) integer valued solution, because it might
be possible to subdivide the (real valued) solution polytope in such a way that
integer points do not readily appear at corners.

The method of [1,2] was developed as a way to improve on this situation.
Roughly it proceeds as follows. First we find a description of a solution set
to our equations that is a priori integer valued but possibly does not satisfy
the required inequalities. We arrange that this solution set has “good” basis
vectors, such that when we solve relaxed problems with these we more rapidly
walk through our (real valued) solution polytope. More correctly, the polytope
is likely to intersect fewer hyperplanes orthogonal to larger direction vectors and
spaced by integral multiples of those vectors.

With respect to the Frobenius instance problem it goes as follows. First we
find a solution vector X over Zn and a basis V for the integer null space (that is,
n−1 independent vectors Vj ∈ Zn with Vj ·A = 0; for this we use a method based
on the Hermite normal form [5]. We use multiples of the basis vectors to find a
“small” solution which we still call X . The tactic utilized to do this is sometimes
called the embedding method. It apparently has been independently discovered
several times; variants appear in [1,12,13,14]. In starting with a solution over Zn

rather than the nonnegatives Nn we are working with what is called an integer
relaxation of the nonnegativity constraint. We will later enforce nonnegativity
via the more common LP relaxations wherein integrality is not enforced.

We define variables t = (t1, . . . , tn−1) so that solution vectors are given by
X + tV . For purposes of finding a valid solution to the problem at hand we need
to impose two requirements. The first is that all components are nonnegative
and the second is that all are integers. The first can be met by standard linear
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programming. For the second, as in the classical approach, we will use branching
on subproblems. Specifically we find solutions to relaxed LP problems wherein we
now work over nonnegative reals. We then branch on noninteger values in those
solutions. For example, if a solution has, say, tj = 5/4, we create two subproblems
identical to the one we just solved, but with the new constraints tj ≤ �5/4� =
1 and tj ≥ �5/4� = 2, respectively (though note that if other variables also
had noninteger solutions then we need not have chosen this particular one). As
observed above, this branching process will terminate eventually, with either a
valid solution or the information that no such solution exists.

We explain again, in slightly different terms, why it is important to work with a
small integer solution to the integer relaxation (that is, allowing negative values)
and a lattice reduced basis for the null vectors. As our methodology is to take
combinations of these null vectors, effectively they define directions in a solution
polytope for the transformed problem. By working with a reduced basis we in
effect change our coordinate system to one where the various search directions
are roughly orthogonal. This helps us to avoid the possibility of taking many
steps in similar directions in searching the polytope of nonnegative solutions for
one that is integer valued. Thus we explore it far more efficiently. Moreover,
in starting with a small solution we begin closer to the nonnegative orthant.
Heuristically this seems to make the sought-for multipliers of the null vectors
relatively small, and this is good for computational speed. This is discussed in
section 2 of [1], with further explanation and illustrations found in [3].

A further efficiency, from [2], is to choose carefully the variable on which to
branch. We order by increasing size the reduced lattice of null vectors. Branching
will be done on the noninteger multiplier variable corresponding to the largest
of these basis vectors. This has the effect of exploring the solution polytope in
directions in which it is relatively thin, thus more quickly finding integer lattice
points therein or exhausting the space. This refinement is important for handling
pathological examples of the sort presented in [1] and [2].

As we have a constraint satisfaction problem we are also free to impose any
linear integer objective function of our choosing. Thus an optimization is to
obtain extremal values for linear forms with integer coefficients and use these
results as simple cutting planes [16]. For example we can minimize or maxi-
mize the various coordinate values tj , selecting one either in some specific or-
der or at random for each subproblem. This process amounts to finding the
width of the polytope along the directions of our lattice basis vectors, and en-
forcing integrality of the optimized variable helps to further restrict the search
space.

As reported in [2] this method is very effective in solving Frobenius instances.
We illustrate with an example from [17]

A = (10000000000, 10451674296, 18543816066, 27129592681, 27275963647,
29754323979, 31437595145, 34219677075, 36727009883, 43226644830,
47122613303, 57481379652, 73514433751, 74355454078, 78522678316,
86905143028, 89114826334, 91314621669, 92498011383, 93095723941)
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We let the target be 862323776. In several seconds the instance solver returns
the empty set. This has implications for bounding the Frobenius number of A;
we will discuss that in a later section.

3 Keith Numbers

Keith numbers, also known as repfigits, were introduced in 1987 by Michael Keith
[10] as a sort of computational novelty that relates a Fibonacci-like sequence to
a linear equation involving its seed. They are defined as follows. Suppose we
are given a number s of n digits (we work in base 10, but these can be defined
with respect to arbitrary bases). We may form a sequence in Fibonacci style as
follows. The first n elements are the digits themselves. The (n + 1)th element is
the sum of the first n digits. Subsequent elements are the sums of the preceding
n elements. Then s is called a Keith number provided it appears in this sequence.
As an example, the sequence for 197 is {1, 9, 7, 17, 33, 57, 107, 197, . . .} and so 197
is a Keith number. Keith originally referred to these as repfigits, for “replicating
Fibonacci digits”.

Keith numbers tend to be quite rare (there are only 71 of them below 1019).
Prior methods for finding them involved clever segmentation of an enumeration.
While flawless (in the sense that they find all of them), these are limited in
range due to algorithmic complexity and memory requirements. At the time the
present work was begun the state of the art, from [10], was that all such numbers
up to 19 digits had been found but no larger ones were known. We will take this
substantially further.

To begin we must find equations to describe these things. If the digits are
{d0, d1, . . . , dn−1} then the number in question is

∑n−1
j=0 dj10n−1−j. We form the

appropriate sequence using a Fibonacci matrix of dimension n. This is simply a
matrix that, when operating on a vector, replaces each element up to the last
by its successor, and replaces the last by the sum of the elements. For example,

for n = 3 it is

⎛⎝0 1 0
0 0 1
1 1 1

⎞⎠.

If we multiply this matrix by itself k − 1 times then the dot product of the
bottom row with the digit sequence will give the (n+ k)th term in the sequence.
Some simple inequality considerations will give fairly tight bounds on how many
such multiples can possibly work for a given number of digits n. We will use each
possibility to form a homogeneous linear diophantine equation.

We demonstrate with a short example. We start by obtaining the set of can-
didate equation vectors for 5 digit examples. One of them is (−8207, 1705, 3069,
3395, 3524). That is, we will seek a solution to the system

−8207x1 + 1705x2 + 3069x3 + 3395x4 + 3524x5 = 0

with each xj ∈ 0, 1, . . . , 9 and x1 ≥ 1.
As in the last section, the first step in the process of [1] and [2] is to find

a full set of integer solutions to such a system. Since these are homogeneous
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equations we require only the integer null space. This can be obtained readily
from the Hermite normal form for the matrix comprised of the vector for the ho-
mogeneous equation, augmented by an identity matrix. Again we want to work
with vectors that are small and close to orthogonal so we apply lattice reduc-
tion to get a “good” set of vectors spanning the same solution set. We obtain
(−3,−1,−3,−3,−1), (−2,−4,−3, 3,−3), (1, 6,−5, 6,−2), and(7,−3,−15, 5, 26).

Notice that for any solution vector, its negative is also a solution vector.
Looking at the first vector in our solution basis we thus see that 31331 is a
Keith number of five digits. That was too easy; there is no guarantee we will
have a solution vector with all components in the desired range. We look at a
slightly larger example to see this. For six digits one candidate equation-defining
vector is (−96160,−4224, 5752, 7144, 7482, 7616). This time we get the following
small null vectors: (0, 3,−3, 0, 4, 0), (−1, 1,−3,−2,−4,−4), (0,−6,−3, 1, 0,−2),
(0,−1, 1, 5, 0,−6), and (0, 4,−12, 15,−12, 9). So we have a generating set of small
null vectors none of which have entirely nonnegative or entirely nonpositive
values (with the first being nonzero, in order that they give a legitimate six digit
number). We now need a way to recombine these so that the first component is
positive and the rest are nonnegative.

Again we have something we can tackle with standard branch-and-bound
iterations [8,16]. Let {v1, . . . , vn} be our null space basis (here n is one less than
the number of digits). We seek an integer vector of the form a1v1 + . . . + anvn

such that all components lie in the range {0, 1, . . . , 9} with the first component
strictly positive. For this we create variables {a1, . . . , an} which will ultimately
be required to take on integer values. In order to effect this we will solve relaxed
linear programming problems with appropriate inequality constraints. As noted
earlier, these are simply constraint satisfaction problems, so we can use arbitrary
linear objective functions as a means of obtaining integer cuts cheaply. When
some variables do not take on integer values in the solution we choose one such
on which to branch and spawn a pair of subproblems. Our choice again is from
[2]; we branch on that variable of noninteger solution value whose corresponding
basis vector is largest.

To summarize, we first find the appropriate sets of integer equations. For
each we find spanning sets of solutions that do not in general satisfy the digit
inequality constraints. We lattice reduce these. We use ILP methods to find all
possible solutions subject to the usual inequality constraints on digits.

We used this method to find all Keith numbers up through 29 digits. We show
all repfigits between 20 and 29 digits below.
{1, 2, 7, 6, 3, 3, 1, 4, 4, 7, 9, 4, 6, 1, 3, 8, 4, 2, 7, 9}
{2, 7, 8, 4, 7, 6, 5, 2, 5, 7, 7, 9, 0, 5, 7, 9, 3, 4, 1, 3}
{4, 5, 4, 1, 9, 2, 6, 6, 4, 1, 4, 4, 9, 5, 6, 0, 1, 9, 0, 3}
{8, 5, 5, 1, 9, 1, 3, 2, 4, 3, 3, 0, 8, 0, 2, 3, 9, 7, 9, 8, 9}
{7, 6, 5, 7, 2, 3, 0, 8, 8, 2, 2, 5, 9, 5, 4, 8, 7, 2, 3, 5, 9, 3}
{2, 6, 8, 4, 2, 9, 9, 4, 4, 2, 2, 6, 3, 7, 1, 1, 2, 5, 2, 3, 3, 3, 7}
{3, 6, 8, 9, 9, 2, 7, 7, 5, 9, 3, 8, 5, 2, 6, 0, 9, 9, 9, 7, 4, 0, 3}
{6, 1, 3, 3, 3, 8, 5, 3, 6, 0, 2, 1, 2, 9, 8, 1, 9, 1, 8, 9, 6, 6, 8}
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{2, 2, 9, 1, 4, 6, 4, 1, 3, 1, 3, 6, 5, 8, 5, 5, 5, 8, 4, 6, 1, 2, 2, 7}
{9, 8, 3, 8, 6, 7, 8, 6, 8, 7, 9, 1, 5, 1, 9, 8, 5, 9, 9, 2, 0, 0, 6, 0, 4}
{1, 8, 3, 5, 4, 9, 7, 2, 5, 8, 5, 2, 2, 5, 3, 5, 8, 0, 6, 7, 7, 1, 8, 2, 6, 6}
{1, 9, 8, 7, 6, 2, 3, 4, 9, 2, 6, 4, 5, 7, 2, 8, 8, 5, 1, 1, 9, 4, 7, 9, 4, 5}
{9, 8, 9, 3, 8, 1, 9, 1, 2, 1, 4, 2, 2, 0, 7, 1, 8, 0, 5, 0, 3, 0, 1, 3, 1, 2}
{1, 5, 3, 6, 6, 9, 3, 5, 4, 4, 5, 5, 4, 8, 2, 5, 6, 0, 9, 8, 7, 1, 7, 8, 3, 4, 2}
{1, 5, 4, 6, 7, 7, 8, 8, 1, 4, 0, 1, 0, 0, 7, 7, 9, 9, 9, 7, 4, 5, 6, 4, 3, 3, 6}
{1, 3, 3, 1, 1, 8, 4, 1, 1, 1, 7, 4, 0, 5, 9, 6, 8, 8, 3, 9, 1, 0, 4, 5, 9, 5, 5}
{1, 5, 4, 1, 4, 0, 2, 7, 5, 4, 2, 8, 3, 3, 9, 9, 4, 9, 8, 9, 9, 9, 2, 2, 6, 5, 0}
{2, 9, 5, 7, 6, 8, 2, 3, 7, 3, 6, 1, 2, 9, 1, 7, 0, 8, 6, 4, 5, 2, 2, 7, 4, 7, 4}
{9, 5, 6, 6, 3, 3, 7, 2, 0, 4, 6, 4, 1, 1, 4, 5, 1, 5, 8, 9, 0, 3, 1, 8, 4, 1, 0}
{9, 8, 8, 2, 4, 2, 3, 1, 0, 3, 9, 3, 8, 6, 0, 3, 9, 0, 0, 6, 6, 9, 1, 1, 4, 1, 4}
{9, 4, 9, 3, 9, 7, 6, 8, 4, 0, 3, 9, 0, 2, 6, 5, 8, 6, 8, 5, 2, 2, 0, 6, 7, 2, 0, 0}
{4, 1, 7, 9, 6, 2, 0, 5, 7, 6, 5, 1, 4, 7, 4, 2, 6, 9, 7, 4, 7, 0, 4, 7, 9, 1, 5, 2, 8}
{7, 0, 2, 6, 7, 3, 7, 5, 5, 1, 0, 2, 0, 7, 8, 8, 5, 2, 4, 2, 2, 1, 8, 8, 3, 7, 4, 0, 4}

We remark that lattice methods alone can find sporadic large Keith numbers.
One approach, from [15], improves the chances of getting a valid result from the
lattice reduction step. The idea is to augment each null vector with a zero, and
augment the lattice with a row consisting of some nonzero value (typically one) in
the new column of zeros, and 9

2 everywhere else. Thus if there is a valid solution
then this augmented lattice contains the vector consisting of that nonzero value
(or its negative) and the remaining entries in the range {− 9

2 ,
9
2}. As this would

be a fairly "small" vector, one can hope that it will appear in the reduced basis
(this is essentially the idea used by Schnorr and Euchner, in a binary setting,
to raise the density at which one can typically solve subset sum problems). In
practice we get a few Keith numbers this way as well as several more near misses.

It might be effective to combine this different lattice formulation with the
branch-and-bound regimen described above. This is not entirely trivial as that
required that the vectors span a solution space for a homogeneous equation,
whereas the vectors in this modified lattice need not satisfy that equation.

Observe that the Keith numbers beginning at 24 digits but smaller than 29
digits all have leading digit in the set {1, 2, 9}. One might well wonder if there
is a deep reason for this, and whether the trend returns after 29 digits. Also all
known Keith numbers from 25 digits onward have a final digit that is either even
or 5, and hence they cannot be prime. Again, one might wonder whether this
trend continues, and, if so, whether there is an interesting reason behind it.

We will say a bit about the practical complexity of the method we have
described for solving ILPs. While in principle branching can have very bad per-
formance, in practice we find that the complexity scales reasonably well with
problem size. Although we cannot claim that the methods described in this pa-
per are polynomial time even in fixed dimension, in practice they do seem to
scale that way. The behavior with respect to dimension is of course not so nice.
For Keith number computations we find that, on average, the time spent for
handling n + 1 digits is roughly twice the time needed for n digits. Considering
that each additional digit multiplies the search space by a factor of 10 this is still
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not so bad. To give an indication of computational speed, our implementation
was able to handle 29 digits in around three days on a 3.0 GHz machine. We
emphasize that this is but a crude measure both of complexity and actual perfor-
mance, as various sorts of optimizations could have a significant impact on each.
For example, preliminary experiments with the software in [6] indicate room for
improvement in the handling of the ILP solving after the lattice reduction phase.

4 Frobenius Numbers

We are given a set A = (a1, . . . , an) of positive integers with gcd(A) = 1. For
later purposes we assume that the set is in ascending order. It can be shown
that there are at most finitely many numbers not representable as a nonnegative
integer combination of elements in A. The largest such nonrepresentable is called
the Frobenius number of the set. The “Frobenius number problem” is to find it.
Generally speaking this tends to be a different and usually harder problem than
the Frobenius instance solving discussed earlier. We will give a much abbreviated
discussion here in order to indicate how the sort of knapsack solving under
discussion plays a role in computation of these numbers. References may be
found in [4] and [17].

It turns out that this is trivial for n = 2 (this was shown by Sylvester in the
late 1800’s, even before the problem was popularized by Frobenius early in the
twentieth century). Moreover in the 1980’s some very good methods appeared
for the case n = 3. For larger n, if one orders the elements by increasing size and
restricts a1 to be less than around 107 then there are effective algorithms to find
the Frobenius number for A. This is roughly independent of the size of n; they
can handle n = 100, for example. Our interest is in handling the case where a1,
the smallest element in A, is large (say, up to 10100). As the problem is known
to be intrinsically difficult we cannot hope to have both a1 and n large. Hence
we limit the latter to 10 or so.

In [17] one finds a definition of a “fundamental domain” which is a gener-
alization that subsumes both lattice diagrams in earlier literature and a graph
description from [4]. Similar ideas, expressed in the terminology of Minimal Dis-
tance Diagrams, appear in [9]. The Frobenius number will be determined by the
furthest corner from the origin, in a suitably weighted l1 norm. As we will see,
an important domain feature is what we term “elbows”. We give a quick idea of
what is this fundamental domain for our set A = (a1, . . . , an).

We start with the lattice of integer combinations of {a2, . . . , an} that are zero
modulo a1. This is a full dimensional lattice in Zn−1. The set of residues of Zn−1

modulo this lattice gives rise to the fundamental domain, which lives in a space
of dimension one less than the size of our set. It is not hard to see that there are
a1 distinct residue classes, so we know the cardinality of this domain. We now
define the “weight” of a vector v ∈ Zn−1 as v · (a2, . . . , an). It can be shown that
every residue class has at least one element with all nonnegative entries. From
those we choose one of minimal weight. In case of a tie we choose the one that
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is lexicographically last. This uniquely defines the set of residues that we take
to comprise the fundamental domain.

This domain has several interesting properties. (1) It is a staircase: if it con-
tains a lattice element then it contains all nonnegative vectors with any coordi-
nate strictly smaller. (2) It tiles Zn−1. (3) It is a cyclic group Z/a1Z. (4) It can
be given a circulant graph structure. It is this structure that was utilized in var-
ious shortest-path graph methods. Old and new approaches using such methods
are discussed at length in [4]. In contrast, the method put forth in [17] primarily
makes use of the staircase structure.

From the staircase property the fundamental domain has turning points we
refer to as elbows. It has extremal points called corners. Specifically, a corner
is a point c in the domain, such that c + ej is not in the domain, where ej is
the jth coordinate vector. An elbow is a point x that is not in the domain, but
is such that, for each j, either xj = 0 or x − ej is in the domain. An elbow
with all but one coordinate zero is called an “axial” elbow. It indicates how far
one can go along a given axis and still remain inside the domain. There are two
other definitions that play a role in the algorithm. We will not descibe them too
carefully but, roughly, there are as follows.

(1) Protoelbows. These have both positive and negative coordinates and cor-
respond to certain “minimal” equivalences (that is, reducing relations) in the
lattice.

(2) Preelbows. These are the positive parts of the protoelbows. Elbows are
minimal elements in the partially ordered (ascending by inclusion) set of
preelbows.

With respect to these domains the Frobenius number corresponds to the far-
thest corner from the origin where distance is an l1 metric weighted by element
sizes. In brief one sees this as follows. Recall that each element in the domain cor-
responds to a residue modulo a1 that satisfies a minimal nonnegativity property.
Thus values in the same residue class but of smaller weight cannot be attained
using nonnegative combinations of elements of A, whereas values of equal or
larger weight are attained as such combinations. We conclude that the largest
nonattainable value for the residue class of the element X = (x2, . . . ,xn) is
a2x2 + . . .+ anxn− a1. From this and the staircase property of the fundamental
domain it is clear that the largest nonattainable value overall is a1 less than the
largest weight of a corner element.

Below are pictures (provided courtesy of Stan Wagon) of fundamental domains
corresponding to n = 3 and n = 4 respectively (recall that the fundamental
domain lives in a space of dimension one less than n). In the planar diagram the
elbows are the lattice points on the axes that bound the diagram, and the lattice
point in the interior just outside the “ell”. The corners are the two extremal
points reached by intersecting vertical and horizontal lines through the elbows.
This picture tells the entire story as regards the n = 3 case because it can be
shown that there is at most one interior elbow and two corners, and finding them
is easy. The three elbows (two axial, one internal) are denoted by circles.
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In the three dimensional diagram the elbows are again the axial bounding
lattice points as well as bounding points where the staircase goes up in the
coordinate planes and in the interior. They are demarcated by tetrahedra.

With this brief background we now say a bit about how knapsack solving can
play a role in the computation of Frobenius numbers. First, it turns out that
axial elbows are defined by an integer programming problem (see [17]) which,
in complexity if not details of definition, is similar to the Frobenius instance
problem. From the axial elbows we immediately get good lower and upper bounds
on the Frobenius number (each elbow less one is in the domain, and the farthest
corner is bounded by the vector with all components given by corresponding
axial elbows less one). More importantly for our purposes is that they give a
search space from which to find all elbows. They are particular integer points in
a polyhedron that satisfy certain inequality conditions. Full details, including a
method for finding them, are provided in [17]. From the elbows one can find all
corners and in particular the one that gives the Frobenius number of the set.

Another tactic presented in [17] makes direct use of Frobenius instance solving
to find axial elbows. One uses a bisection approach, working down from an a
priori bound on the axial elbow values. The goal is to find the smallest value for
which a certain set of Frobenius instances have no solution.

Still another point of overlap between Frobenius instances and numbers is
the obvious fact that whenever a Frobenius instance solver returns an empty
solution we automatically have a lower bound on the Frobenius number. One
can test random values that are, say, an order of magnitude below the heuristic
approximation for the Frobenius number presented in [4]. If any such test gives
no solution we thereby establish a lower bound that is often better than a priori
bounds to be found in the literature.

There is also a heuristic method in [17] for more efficiently “guessing” the
likely Frobenius number from a restricted set of elbows. It gives an a priori upper
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bound, and a single Frobenius instance invocation can then verify whether it is
in fact the actual value. In random examples this appears always to be the case.

We sketched above how efficient ILP knapsack solving, of the sort used for
Frobenius instances, also may be applied to the (generally much harder) prob-
lem of finding Frobenius numbers. From the fundamental domain pictures one
realizes a possible alternative approach. Working an axis at a time, a branch-and-
bound strategy might be directly applied to get to extremal vertices (corners) in
the domain. Thus we could have a bilevel branching algorithm, with the outer
level iterating over these extrema, and the inner one using relaxed LPs to solve
the ILPs needed to move to new vertices. This might become an alternative to
the algorithm described in [17].

We remark that there is a connection between another knapsack solving tech-
nique and the problem of computing Frobenius numbers. It is well known that
integer programming e.g. for knapsack problems can be done with toric Gröbner
bases [7]. What is not so obvious is that they may also be used to deduce the
stairway structure of the fundamental domain. An algorithm for this purpose
is presented in [17]. The basic idea is to formulate a term ordering so that the
staircase structure of the fundamental domain is captured by the staircase of the
Gröbner basis lead monomials. This has the added virtue of finding all elbows
at once, so no elaborate method is needed to search a bounding box defined by
axial elbows. An implementation by the author has handled Frobenius number
problems involving as many as 7 numbers of 40 digits. While it is not competitive
with the main approach in [17] (which has handled sets of up to 11 numbers),
Frobenius number problems of this size are apparently larger than what can be
handled by other methods from the published literature.

Another link between Frobenius numbers and methods from ideal theory ap-
pears implicitly in [9] as well as other literature concerning what are called
“multiple-loop networks”. There, as in [4], one works with a circulant directed
graph based on residues modulo a positive integer. Now, however, the modulus is
the largest rather than smallest element of the given set. While the authors did
not explicitly consider the connection to Frobenius numbers, some of the ideas
are quite similar. In particular the maximum diameter of this graph, which is
similar to the Frobenius number (though using an unweighted metric), plays an
important role in their work. They discuss several aspects of the related domain
(actually family of domains, as they do not impose uniqueness conditions) in
terms of monomial ideals. They define a generalized ell shape and prove their
domains are always of such a shape; this corresponds to the uniqueness of the
interior elbow as shown in [17]. It would be interesting to understand better how
their ideas, in particular regarding use of monomial ideals, relate to the toric
ideal construction of the fundamental domain given in [17].

5 Summary

We have investigated several examples of integer linear programs with the com-
mon feature that a straightforward branch-and-bound approach, working with
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real relaxations, will tend to bog down in searching a large polytope. We uti-
lize a method based on solving of an integer relaxation to the set of equality
constraints. We reformulate the problem as one of adding combinations of null
vectors to a specific solution. The vectors in question tend to be well suited to
the problem at hand because we use lattice reduction to make them close to or-
thogonal. We then enforce inequality constraints via branch-and-bound on real
relaxations of the new problem. We use a branching choice that tends to make
the polytope thin in the search direction and thus helps to exhaust it efficiently.

We reviewed this approach as it was applied to the change-making problem
[1,2]. We then used it to find all Keith numbers through 29 digits; previous
methods had gone only through 19 digits. This brought us to a range where
we could observe curious patterns in leading and trailing digits, something not
present in the smaller Keith numbers. We also gave a brief idea of how this
method is used in a new algorithm to compute Frobenius numbers.

A further direction would be to incorporate effective cutting planes. The code
we used only attempts a very naive sort of cut (by using random coordinate vari-
ables as objective function). Preliminary experiments with an external library
[6] indicate that more serious cutting plane efforts can give substantial speed im-
provement; we have seen ILP examples that improve by an order of magnitude.
We emphasize that this still requires preprocessing with lattice reduction in the
manner described in this paper.

Acknowledgments. I thank Stan Wagon for providing the diagrams of funda-
mental domains and for his careful reading and many suggestions that improved
the exposition. I thank Victor Moll for inviting me to attend the 2005 Clifford
Lectures conference at Tulane, where I presented an earlier version of this work.
I thank the two anonymous referees for their several suggestions which improved
readability, and the second referee in particular for pointing out the relevance of
[9] and related literature on multiple-loop networks.

References

1. K. Aardal, C. A. J. Hurkens, and A. K. Lenstra. Solving a system of linear dio-
phantine equations with lower and upper bounds on the variables. Mathematics of
Operations Research, 25(3):427–442, 2000.

2. K. Aardal and A. K. Lenstra. Hard equality constrained integer knapsacks. In
Proceedings of the 9th Conference on Integer Programming and Combinatorial Op-
timization (IPCO 2002), volume 2337 of Lecture Notes in Computer Science, pages
350–366. Springer-Verlag, 2002.

3. K. Aardal, R. Weismantel, and L. A. Wolsey. Non-standard approaches to integer
programming. Discrete Appl. Math., 123(1-3):5–74, 2002.

4. D. Beihoffer, J. Hendry, A. Nijenhuis, and S. Wagon. Faster algorithms for frobe-
nius numbers. Elec. J. Combinatorics, 12, 2005.

5. W. Blankenship. Algorithm 288: Solution of simultaneous linear diophantine equa-
tions. Communications of the ACM, 9(7):514, 1966.



Making Change and Finding Repfigits: Balancing a Knapsack 193

6. COmputational INfrastructure for Operations Research (COIN-OR).
http://www.coin-or.org/documentation.html.

7. P. Conti and C. Traverso. Buchberger algorithm and integer programming. In
AAECC-9: Proceedings of the 9th International Symposium on Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, volume 539 of Lecture Notes in
Computer Science, pages 130–139. Springer-Verlag, 1991.

8. G. B. Dantzig. Linear Programming - 1: Introduction. Princeton Landmarks in
Mathematics and Physics. Princeton University Press, Princeton, NJ, USA, 1963.
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Abstract. Subquadratic divide-and-conquer algorithms for computing
the greatest common divisor have been studied for a couple of decades.
The integer case has been notoriously difficult, with the need for “backup
steps” in various forms. This paper explains why backup steps are neces-
sary for algorithms based directly on the quotient sequence, and proposes
a robustness criterion that can be used to construct a “half-gcd” algo-
rithm without any backup steps.

1 Introduction

Euclid’s algorithm for computation of the greatest common divisor is one of the
oldest algorithms known. For inputs of size n, this algorithm runs in time O(n2),
and since the total size of the remainders is O(n2), no algorithm which computes
all the remainders can run asymptotically faster than this.

Lehmer’s algorithm from 1938 cuts the running time of Euclid’s algorithm by
a constant factor [1]. A key to the first subquadratic algorithms by Knuth [2]
and Schönhage [3], discovered in 1971, is that unlike the remainder sequence,
the quotient sequence is of linear size, and it can be computed in subquadratic
time. These algorithms are intimately tied to the quotient sequence and to the
continued fractions expansion of a corresponding rational number.

Schönhage’s 1971 algorithm is straightforward to apply to polynomial gcd,
but, to quote [4]: “The integer hgcd algorithm turns out to be rather intricate”.
One of the main problems with the quotient-based gcd algorithms is that the
recursive calls sometimes compute one or a few quotients too much, and the
algorithm must check for this case and undo the corresponding divisions. I refer
to these corrections as “backup steps”. Both analysis and actual implementation
is quite difficult and error prone. For the same reasons, the algorithm is seldom
spelled out in detail in textbooks, and when it is, it has been plagued by errors.
One variant of the algorithm, for both integers and polynomials, is described
in [4], another one is tersely described in [5], while the author’s implementation
is described in [6].

The focus of the present paper is on the integer gcd, and on algorithms that
work from the most significant end of the input. There is also a family of “binary”
algorithms that work from the least significant end, from the classic binary gcd
algorithm first published by Stein [7] in 1961, via improved quadratic algorithms
by Sorenson [8] and Weber [9], to the subquadratic “binary recursive” algorithm

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 194–204, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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by Stehlé and Zimmermann [10]. There are also subquadratic gcd algorithms
for other algebraic contexts, such as Weilert’s algorithm for gcd computations
on Gaussian integers [11], and algorithms for computing the continued fraction
expansion of algebraic numbers [12].

By formulating the stop and correctness conditions for the hgcd-function
(which is the main work horse for subquadratic gcd) in terms that are not based
on the quotient sequence, it is possible to construct gcd algorithms without
backup steps, which yields a major improvement to algorithm complexity. The
first publication of such a method (which however does not use the familiar
hgcd form) that the author is aware of is in Weilert’s diplomarbeit [13], where
it is credited to an unpublished manuscript by Schönhage. Essentially the same
algorithm has been rediscovered by Lucier Bradley [14], with inspiration from
Schönhage’s algorithm for reduction of binary quadratic forms [15], which uses
similar ideas. See [6] for a comparison of the running time and implementation
complexity of several subquadratic gcd algorithms.

The main contribution of this paper is to explain the need for “backup steps”
as a lack of robustness in the quotient sequence, and the definition of a new
robustness criterion, which aids the design of gcd algorithms without backup
steps.

The rest of this paper is organized as follows. Sec. 2 explains the notation
used, and describes the bounds that relate the sizes of the quantities in the
algorithm. Sec. 3 describes the general structure of the hgcd algorithms. Sec. 4
and 5 examine the robustness, and lack thereof, of the quotient sequence, and
Sec. 6 formulates a new criterion for robustness of a reduction matrix. Sec. 7
describes two hgcd algorithms which are based on the robustness criterion, and
which don’t need any backup steps.

2 Background and Notation

We work with vectors and matrices with elements that are integers, and usually
non-negative. For compactness, column vectors are sometimes written as (x1; x2)
and 2× 2-matrices as (a11, a12; a21, a22).

Sizes of numbers will be important, so we introduce the notation #x for the
bit size of x. Define #x = �log2(1 + |x|)�; then for x �= 0, #x = s means
that 2s−1 ≤ |x| < 2s. When # is applied to a vector or matrix, it denotes the
maximum bit size of the elements. Occasionally, we also need the minimum bit
size, for which we use the notation #(x, y) = min(#x,#y).

The hgcd algorithms work with reductions of the form(
a
b

)
= M

(
α
β

)
(1)

where a, b, α, and β are positive integers, and M = (u, u′; v, v′) is a matrix of
non-negative integer elements, such that det M = 1. Then gcd(a, b) = gcd(α, β).

The non-negativity of all involved numbers imply the following bounds

|M |∞ min(α, β) ≤ max(a, b) ≤ |M |∞ max(α, β) (2)
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hgcd(A, B)
1 n ← #(A, B)
2 Select p1 ≈ n/2
3 (α, β, M1) ← hgcd( 2−p1A , 2−p1B )
4 (A,B) ← M−1

1 (A; B) = 2p1(α; β) + M−1
1 [(A; B) mod 2p1 ]

5 Perform a small number of divisions or backup steps.
� A, B are now of size ≈ 3n/4

6 Select p2 ≈ n/4
7 (α, β, M2) ← hgcd( 2−p2A , 2−p2B )
8 (A,B) ← M−1

2 (A; B) = 2p2(α; β) + M−1
2 [(A; B) mod 2p2 ]

9 Perform a small number of divisions or backup steps.
� A, B are now of size ≈ n/2

10 M ← M1 · M2

11 Return A, B, M

Fig. 1. General structure of subquadratic hgcd

where |M |∞ = max(u + u′, v + v′). Translated into bit sizes, we get

#M ≥ #|M |∞ − 1 ≥ #(a, b)−#(α, β)− 1 (3)
#M ≤ #(a, b)−#(α, β) + 1 (4)

3 General hgcd

Qualitatively speaking, the “half gcd” function, hgcd, takes a pair of integers
(a; b) as input, and produces a reduction matrix M and corresponding reduced
numbers (α;β) which are all of roughly half the size of the inputs. Given an
efficient hgcd function, gcd can be implemented efficiently by calling hgcd
O(log n) times until the numbers are reduced to a comfortable size, after which
a simpler quadratic gcd algorithm is used.

The key idea of subquadratic hgcd is that examining half of the input is
sufficient for roughly half of the work. This leads naturally to a divide-and-
conquer structure, illustrated in Fig. 1. All gcd alorithms using this structure
have a running time of O(n (log n)2 log logn), i.e., a factor logn slower than
multiplication.

A less obvious benefit of an algorithm without backup steps, is that one gets
the option of letting the algorithm return only M , and not compute or return
the corresponding reduced numbers. Then Steps 8 and 9 above can be omitted.

At first look, it seems that the additional work that is required in Step 4
makes this a useless optimization; but careful study reveals that the availability
of α and β in Step 4 does not save much work, at least not in the range where
fft-multiplication is used [16]. Omitting Step 9 also means that the returned
reduction matrix will be slightly smaller, but the effect on the running time
should be very small.
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4 Quotient Sequence and Jebelean’s Criterion

The first subquadratic gcd algorithms [2,3] actually compute the continued
fractions expansion of a rational number. Hence, they work with the quotient
sequence defined by Euclid’s algorithm. It is then natural to formulate the re-
quirements on the hgcd function as follows:

The input are two integers a > b > 0. The outputs are two remainders rk and
rk+1 and a matrix

M =
(
q1 1
1 0

)(
q2 1
1 0

)
· · ·

(
qk 1
1 0

)
(5)

built up from the first k quotients in the quotient sequence for (a; b). Then the
remainders satisfy (

a
b

)
= M

(
rk

rk+1

)
(6)

and rk > rk+1 ≥ 0. Furthermore, we require that q1, . . . , qk are the initial quo-
tients not only for (a; b), but also for any two numbers with most significant
parts a and b, i.e., (A;B) = 2p(a; b) + (A′;B′) where p is an arbitrary positive
integer, and 0 ≤ A′, B′ < 2p. Jebelean’s criterion [17] gives a simple and precise
condition for when this is the case. Here, we state the criterion only for the case
of even k, and hence detM = 1; the case of odd k is similar.

Theorem 1. Let a > b > 0, with the kth remainders rk and rk+1 and a corre-
sponding matrix M = (u, u′; v, v′), with(

a
b

)
= M

(
rk

rk+1

)
(7)

Let p > 0 be an arbitrary positive integer, 0 ≤ A′, B′ < 2p, and define(
A
B

)
= 2p

(
a
b

)
+

(
A′

B′

)
(8)(

Rk

Rk+1

)
= M−1

(
A
B

)
= 2p

(
rk

rk+1

)
+ M−1

(
A′

B′

)
(9)

For even k, the following two statements are equivalent:

i. rk+1 ≥ v and rk − rk+1 ≥ u + u′

ii. For any p and any A′, B′, the kth remainders of A and B are Rk and Rk+1.

5 Quotient Sequence Is Not Robust

It is tempting to define hgcd based on quotient sequences and Jebelean’s cri-
terion. We then require that hgcd produces a reduction that corresponds to
a prefix of the quotient sequence of the input, and which satisfies Jebelean’s
criterion. Preferably, the quotient sequence should also be as long as possible.
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This approach leads to a hgcd where backup steps are essential for correctness.
Consider the following example.

Assume that the input to the hgcd algorithm is a = 858824 and b = 528747,
and that after Step 5 they have been reduced as(

a
b

)
= M1

(
C
D

)
(10)

with C = 64144, D = 3119 and M1 = (13, 8; 8, 5), corresponding to quotients
q1 = q2 = · · · q6 = 1. Now, these numbers are split as(

C
D

)
= 16

(
4009
194

)
+

(
0
15

)
(11)

where the most significant halves are c = 4009 and d = 194. Now, the second
recursive call, hgcd(c, d), produces the reduction(

c
d

)
=

(
21 20
1 1

)(
129
65

)
(12)

This reduction of (c; d) satisfies Jebelean’s criterion. It corresponds to the two
additional quotients q7 = 20 and q8 = 1, and these are also valid for (C,D).
Form the full matrix

M = M1M2 =
(

281 268
173 165

)
(13)

If we return this matrix as the value of hgcd(a, b), that corresponds to the
reduction (

a
b

)
=

(
281 268
173 165

)(
1764
1355

)
(14)

and the quotient sequence 1, 1, 1, 1, 1, 1, 1, 20, 1. However, this reduction does not
satisfy Jebelean’s criterion, since rk − rk+1 = 409 < 549 = u + u′.

If we form larger numbers with most significant bits a and b, we can find
numbers such as (

A
B

)
= 8

(
a
b

)
+

(
1
7

)
=

(
6870599
4229977

)
(15)

whose quotient sequence starts with 1, 1, 1, 1, 1, 1, 1, 20, 2. To ensure correctness,
the algorithm must check for this case, and sometimes discard the final quotient
before returning.

In this example, the correct values for hgcd(a, b) to return are α = 3119,
β = 1764, and M = (268, 13; 165, 8).

6 A Robustness Condition

As illustrated in the previous section, it is crucial that hgcd produces a reduction
that is valid also when the input is disturbed. To make this requirement more
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precise, consider two input numbers a and b and a candidate matrix M of non-
negative elements with detM = 1. We then require that

M−1
{(

a
b

)
+

(
x
y

)}
> 0 (16)

for all “small” disturbances x and y. It seems natural to consider disturbances
in the interval −1/2 ≤ x, y < 1/2 (for rounded inputs) or 0 ≤ x, y < 1 (for
truncated inputs), but this is not sufficient and leads to similar problems as with
Jebelean’s criterion. But it is sufficient to widen these intervals by a factor two.
In order to handle both truncated and rounded inputs, we allow the following
set of disturbances:

S = {(x; y) ∈ R2, |x| < 2, |y| < 2, |x− y| < 2} (17)

Note that (x; y) ∈ S if and only if there exists an open interval of length 2 which
contains the three points {0,x, y}, and in particular, S contains the open square
defined by −1/2 < x, y < 3/2.

Theorem 2. Assume that a, b, α and β are positive integers, such that(
a
b

)
= M

(
α
β

)
(18)

for some matrix M with non-negative integer elements and unit determinant.
Then the following two statements are equivalent:

i. M−1{(a; b) + (x; y)} > 0 for all (x; y) ∈ S.
ii. α ≥ 2 max(u′, v′) and β ≥ 2 max(u, v).

Proof. First assume that (i) holds. Then

α > −v′x + u′y (19)

for all (x; y) ∈ S. The point (−2, 0) lies on the boundary of S, hence by continuity
α ≥ 2v′. Similarly, α ≥ 2u′, β ≥ 2u and β ≥ 2v, which shows that (ii) holds.

Conversely, assume that (ii) holds, and let (x; y) ∈ S be arbitrary. By the
definition of S, we can find a c such that |c| < 1 and c− 1 < x, y < c + 1. Then

α + xv′ − yu′ > α + (−1 + c)v′ − (1 + c)u′ = α− [(1− c)v′ + (1 + c)u′]
≥ α− 2 max(u′, v′) ≥ 0

Similarly, β − vx + uy ≥ 0, which concludes the proof by showing that (ii)
implies (i). ��

We can also derive two simpler sufficient conditions. It is clear that

min(α, β) ≥ 2 maxM (20)
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implies robustness, as defined above. It is useful, in particular for the base case,
to have a sufficient condition based on bit sizes of the original and the reduced
numbers. Put n = #(a, b). What is the smallest s such that #(α, β) > s is
sufficient for robustness?

Combining the bound #(α, β) > s and (4), we see that the right hand side
of (20) is of bit size at most n−s+1. Then #(α, β) > s is a sufficient condition,
provided that n − s + 1 ≤ s, for which the smallest possible solution is s =
�n/2�+ 1. This gives one more, even stricter, sufficient condition,

#(α, β) >
⌊n

2

⌋
+ 1 (21)

7 Robust HGCD Algorithms

This section describes two hgcd algorithm based on the robustness condition.
We adopt the convention that hgcd returns only the matrix M , and not the
corresponding reduced numbers. The objective is to return a reduction matrix
M = hgcd(A, B) which satisfies the robustness condition, and such that the
reduced numbers, (α;β) = M−1(A;B), have |α − β| small. For the inputs, we
require that #(A, B) > �n/2�+ 1.

In principle, such an M can be computed by repeated subtraction, with the
following algorithm.

hgcd-simple(A, B)
1 n← #(A, B)
2 s← �n/2�+ 1
3 M = I
4 while |A−B| ≥ 2s

do
5 if A > B

then
6 A← A−B
7 M ←M · (1, 1; 0, 1)

else
8 B ← B −A
9 M ←M · (1, 0; 1, 1)

10 return M

Inpractice, thebase case,whichhandles all inputs belowsome threshold, shoulduse
anoptimization similarLehmer’s algorithmtoprocess oneor twowords at a time.

7.1 Strict Robustness

Enforcing the strictest of the robustness criteria, #(α, β) > s, leads to the recur-
sive algorithm in Fig. 2. Unlike the base case algorithm, it does not guarantee
that |α− β| < 2s, but as we will see below, this difference will be at most a few
bits larger.
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hgcd(A, B)
1 n ← #(A, B)
2 s ← �n/2� + 1
3 p1 ← �n/2�
4 if #(A, B) > �(n + p1)/2� + 1
5 then
6 M1 ← hgcd( 2−p1A , 2−p1B )
7 else M1 ← I
8 (C; D) ← M−1

1 (A; B)
9 Try a subtraction and division step on (C; D).

If that would result in #(C, D) ≤ s, return M1.
Otherwise, update M1 and (C; D).

10 p2 ← 2s − #(C, D) + 1
11 if #(C, D) > �(#(C; D) + p2)/2� + 1
12 then
13 M2 ← hgcd( 2−p2C , 2−p2D )
14 else
15 M2 ← I
16 M ← M1M2

17 return M

Fig. 2. Robust hgcd, without backup steps

If the algorithm returns with #(α − β) ≤ s, then the reduction is maximal.
We assume that #(α − β) ≤ s + ε for both recursive calls, i.e., the recursive
calls are ε bits off from being maximal. The following lemma, which is a slight
generalization of Lemma 6 in [6], explains how the algorithm works.

Lemma 1. Let A and B be two given numbers of size N = #(A, B), and let
0 < p < N . Partition A and B into the least significant p bits A′ and B′ and the
n = N −p most significant bits a and b, so that A = 2pa+A′ and B = 2pb+B′.
Put s = �n/2�+ 1. and assume that #(a, b) > s. Let(

a
b

)
= M

(
c
d

)
(22)

with #(c, d) > s and #(c− d) ≤ s + ε. Form(
C
D

)
= M−1

(
A
B

)
= 2p

(
a
b

)
+ M−1

(
A′

B′

)
(23)

Then #(C,D) > p + s− 1 and #(C −D) ≤ p + s + ε + 1.

Proof. We have #M ≤ n − s. Note that s > n/2 > n − s. Let M−1 =
(v′,−u′;−v, u). Then

C = 2pc + v′A′ − u′B′

> 2p2s − 2n−s2p ≥ 2p2s−1 = 2p+s−1
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which shows that #C > p + s− 1 as claimed, and the same holds for D. Next,

|C −D| = |2p(c− d) + (v + v′)A′ − (u + u′)B′)|
< 2p2s+ε + 2n−s2p ≤ 2p+s+ε+1

��

With this lemma, we can derive the following facts about the algorithm.

– The input size for the first recursive calls is �n/2�.
– Before the second recursive call, #(C,D) ≤ �3n/4�+ ε + 1.
– The input size for the second recursive call is bounded by �n/2�+ 2ε + 2.
– The final matrix corresponds to a reduction with #(α− β) ≤ s + ε + 2.

If so desired, it is easy to modify the algorithm to always return with #(α−
β) ≤ s, by computing α and β and performing a small number of extra reduc-
tions. See [6] for details on this variant of the algorithm.

This algorithm shares important features with the “controlled Euclidean de-
scent” described in [13], although the organization as a “half-gcd” function is
quite different.

7.2 Direct Robustness

The condition (21) is sufficient for robustness, but not necessary. It is a simple
and convenient condition to use for the base case, but for the recursive recursive
hgcd algorithm, this requirement can be dropped, and replaced by the condi-
tions of Theorem 2 which are both sufficient and necessary. This corresponds to
a slight change in the algorithm of Fig.2: Replace line 10 by

p2 = #M1 + 2 (24)

What can one gain by this change? The idea is that by allowing a larger set
of reductions, and occasionally violating (21), we can produce better reduc-
tions. Maybe we can mitigate the two bits per recursive call build up of “non-
maximality”, without paying anything?

To prove that the resulting algorithm returns a matrix that satisfies the ro-
bustness condition defined in Theorem 2, assume that the recursive calls return
matrices that are robust, and let (x; y) ∈ S be arbitrary.

For the robustness of the final matrix M , put c = �2−p2C�, c̃ = 2−p2C − c
and similarly for d and d̃, and form

M−1
{(

A
B

)
+

(
x
y

)}
= M−1

2 M−1
1

{(
A
B

)
+

(
x
y

)}
= M−1

2

{(
C
D

)
+ M−1

1

(
x
y

)}
(25)

= 2p2M−1
2

{(
c
d

)
+

(
c̃

d̃

)
+ 2−p2M−1

1

(
x
y

)
︸ ︷︷ ︸

disturbance

}
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Since M2 is robust with respect to (c; d), all that remains to show is that the
disturbance is in S. We have 0 ≤ c̃, d̃ < 1 and by the choice of p2, the ele-
ments of 2−p2M−1

1 (x; y) lie in the open interval (−1/2, 1/2). It follows that the
disturbance has elements in the open interval (−1/2, 3/2), and hence (c̃; d̃) +
2−p2M−1

1 (x; y) ∈ S.
In this argument, there are two terms to the disturbance: The truncation error

(c̃; d̃), and the input disturbance (x; y), amplified by M−1
1 . In order to handle

this, it is essential to allow a disturbance set S which is larger than a unit square.

8 Conclusions

hgcd algorithms based on the quotient sequence, and hence indirectly on Je-
belean’s criterion, are complex and require occasional backup steps to ensure
correctness. These problems are exhibited as a lack of robustness of the quotient
sequence.

A new robustness criterion is defined, which allows the design of hgcd algo-
rithms without the need for backup steps. The strictest variant of the criterion
leads to an algorithm (Fig. 2) of the same spirit as the work of Weilert and
Schönhage, and which appears to be superior both in terms of running time and
implementation complexity [6].

A more direct application of the same criterion leads to a novel hgcd algo-
rithm. Further studies are needed to evaluate the properties and merits of these
two variants.

There are also a number of optimizations that can be applied to all or most
hgcd-like algorithms of the general structure of Fig. 1, including the binary
recursive algorithm.

– The choice p1 ≈ n/2 makes sense if the recursive hgcd calls dominate the
running time. But when the multiplications of Steps 4 and 10 are taken into
account, it seems unlikely that p1 ≈ n/2 is optimal.

– In Step 4, bounds on the reduced numbers can be found a priori, and hence
the calculations can be performed (mod 2�) or (mod 2� + 1), where the
latter alternative is particularly attractive in the range of fft multiplication.
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The Design of CoCoALib

J. Abbott
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There are two ways of constructing a software design.
One way is to make it so simple

that there are obviously no deficiencies.
And the other way is to make it so complicated

that there are no obvious deficiencies.
The first method is far more difficult.

C.A.R. Hoare

Abstract. We describe some of the more important aspects of the de-
sign of CoCoALib, a new C++ library for effecting Computations in
Commutative Algebra. Special effort has been invested in making the
code clean and portable while not neglecting run-time performance; one
of the primary goals is to offer freely available reference implementations
of the most important algorithms in the field.

1 Introduction

This document describes some of the more important design features of Co-
CoALib, a C++ library for computations in commutative algebra with particu-
lar focus on Gröbner bases. Theoretically the issue of computing Gröbner bases
is resolved by Buchberger’s algorithm, published about forty years ago. But,
as commonly happens, there is a huge gulf between the simple elegance of a
published algorithm, and the complex engineering hidden within a refined im-
plementation. In the case of Buchberger’s algorithm this gulf is even wider than
usual: as witness we cite the numerous research papers published in the interim,
and the fact that studies are still being actively pursued.

For almost 20 years the CoCoA project has been conducting research into
computational commutative algebra, developing new algorithms and offering
implementations in the interactive program “CoCoA”. Recently we took the
decision to rebuild the software from scratch with the specific aim of making
excellent implementations available to all researchers. The implementations will
be accessible in three distinct ways:

◦ as a standalone interactive system
◦ as a networked service (via an OpenMath-like communications channel)
◦ as a C++ library, called CoCoALib

CoCoALib, being the core of the project, is also its most evolved part, and is
the part that we shall look at most closely. In keeping with the theme of ready
accessibility the software is to be free and open in the sense of the GPL [6].

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 205–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Philosophy

Our aim is for CoCoALib to offer reference implementations of the principal
algorithms in computational commutative algebra. The development of the li-
brary and the other components requires an enormous investment of time and
resources. So that this investment is worthwhile we want to ensure that the soft-
ware is widely available and will live for a long period of time. To attain these
goals our implementations have to satisfy various design criteria:

◦ the code must be robust and reliable
◦ the code must exhibit good run-time performance
◦ the source code must be clear and well designed
◦ the source code must be well documented (both for users and maintainers)
◦ the source code must be clean and portable (excluding Microsoft quirkiness)
◦ the code must be easy and natural to use (whenever possible)

One implication of these criteria is that we regard clear and comprehensible
code as being more desirable than arcanely convoluted code striving to achieve
the utmost in run-time performance: clear code is more obviously correct and
is easier to maintain, and so should live longer. Another implication is that the
design should reflect the underlying mathematical structure since this will ensure
that the library is natural to use.

Unfortunately, despite our best efforts in designing and building our software
for reliability and longevity, there are potentially grave risks beyond our control:
e.g. the threat of patents on algorithms casts an ominous shadow of doubt over
the future of the CoCoA project (and many other similar open source projects).

2.1 Mathematical Underpinnings

The design of CoCoALib has been inspired and directed by the underlying math-
ematical structure: indeed, the development of the software design progressed
symbiotically with that of the two-volume book of Robbiano and Kreuzer [2].
This inherent respect for the mathematical foundations makes CoCoALib nat-
ural and easy to use, while also making it clear that there are “obviously no
deficiencies.

One of the main challenges of the design was to reconcile two traditionally con-
flicting goals: (mathematical) abstraction and efficiency. The inheritance mech-
anism of C++ plays a crucial role here. Our use of inheritance is exemplified
by the way in which rings and their elements are implemented. An early design
decision was to allow arbitrary (commutative) rings wherever possible: here “ar-
bitrary” means that the precise nature of the ring can be known only at run time.
Our design allows some knowledge of the ring to be expressed in the source code:
for instance, we can specify that a routine is valid only for polynomial rings. The
C++ inheritance mechanism is used to express the mathematical relationships
between these various sorts of ring.

In contrast to the rich type structure used for rings, we use just a single C++
class to represent elements of rings. This is a compromise: it makes the library
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easier to create and to use, but also limits the amount of help the compiler can
give us (since we are depriving it of information). We believe our choice offers
the best combination of natural usability and future maintainability.

The implementation scheme chosen for rings works well, and analogous design
patterns have also been employed elsewhere in the library: for instance in the
code for modules and power product monoids.

Finally, to meet our run-time performance targets, in a few places in the
very foundations of CoCoALib, we do use a little “quick and dirty hackery”.
Here credit is due to the design of C++ which allows such desperate code to
be written where necessary, and which also permits it to fit seamlessly into a
well-structured program.

3 What Is CoCoALib?

CoCoA is one of the main academic projects which produce free software spe-
cialized in computations in commutative algebra; two other similar systems are
Singular [5] and Macaulay [4]. While there is much in common, the three groups
do have differing and complementary emphases. Although a number of general
purpose symbolic computation systems (e.g. REDUCE and Maple) do offer the
possibility to compute Gröbner bases, typically their non-specialist nature im-
plies a number of severe compromises which make them far less suitable to serve
as a laboratory for researchers — most notably: relatively poor execution speed
and limited control over the algorithm parameters.

Great care has been taken with the design of CoCoALib to make it easy
and mathematically natural to use (within the constraints of C++); this in turn
helps users to develop comprehensible programs whose correctness is self-evident.
One notable problematic aspect is the use of “invisible homomorphisms”, more
commonly thought of as “natural identifications”. After due consideration we
opted to require that these be written out explicitly as this offers less scope for
unexpected behaviour.

In deference to our human habit of erring, CoCoALib includes many checks
for misuse, e.g. for erroneous or nonsensical input. If one of these checks reveals
a problem, an indicative error is signalled (usually resulting in a helpful error
message being printed). Of course, all these checks do incur potentially significant
run-time overheads, so most basic operations can also be effected via a “fast and
ugly” interface which avoids all the checks. Thus, in time critical subroutines,
the programmer can choose to sacrifice safety (and readability) for more speed.

The usefulness of software is critically dependent on its documentation. So
extensive documentation for the library has been prepared. Our documentation
is divided into two major parts: one to aid and guide users of the library, and the
other to help maintainers and contributors to the library (and perhaps to satisfy
the more curious library users). Since it is often rather tedious to wade through
volumes of precise technical description, there is also a good selection of example
programs to illustrate the uses we anticipate for the various library components.
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With some luck the CoCoALib user may find that much of the program writing
can be achieved just by cutting-and-pasting from the examples.

3.1 CoCoALib in Comparison

CoCoALib has a number of features which distinguish it from other software
able to compute Gröbner bases. The most obvious difference is that its principal
component is a library, so the capabilities of CoCoALib are readily available to
any other C++ program; this is not the case for programs which are standalone
interactive systems. The library source code is GPLed (i.e. free and open, see
[6]) and well-documented; we believe that the clarity of our code and the quality
of our documentation exceed that of “our rivals”.

Regarding the issue of execution speed, it is difficult to make a precise state-
ment. An implementation of Buchberger’s algorithm must specify two strategies:
one for selecting pairs, and one for selecting reducers. The algorithm was proved
correct for any choice of strategy. But the practical truth is that actual execution
times (and memory requirements) depend enormously on the choice of strate-
gies. So far no universally best strategies have been discovered; nevertheless, we
believe the strategies employed in CoCoALib are generally pretty good. Bearing
this in mind, we present a brief comparison between CoCoALib (version 0.96)
and Singular (version 3.0.2-beta, see [5]).

In summary: a number of benchmarks suggest that CoCoALib is roughly com-
parable in speed to the std operation of Singular for computing Gröbner bases
over small finite fields, while CoCoALib appears to be a bit faster than Singular
when computing Gröbner bases over the rationals. Here are a few timings ob-
tained on an Opteron 248 running GNU/Linux; unless otherwise indicated the
coefficient ring was F32003.

Example CoCoALib Singular
Cyclic-7, drl 1 1
Cyclic-7, lex 53 55
Cyclic-7, drl, Q 6 10
Cyclic-8, drl 100 67
Cyclic-8, lex 14000 14000
Cyclic-8, drl, Q 920 14000

We have chosen Singular for the benchmark comparison because it was al-
ready installed on the computer. We would not expect qualitatively different
results from a comparison with, say, Macaulay 2. A comprehensive, thorough
and meaningful test of all programs capable of computing Gröbner bases would
be a lengthy and arduous project. Indeed, several of the commercial algebra
systems are so expensive that we question the sense in comparing free software
against them.
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4 Exploiting the Facilities of C++

In this section we look in some detail at the implementation of rings and their
elements. The overall message is that use of inheritance and virtual member
functions permits us to achieve both flexibility and efficiency.

4.1 Ring Types, Inheritance and Virtual Functions

It is quite clear that CoCoALib must offer ways of representing integers, ratio-
nals, and polynomials — all of these are elements of rings. An important early
design decision was that it must also offer ways of representing the rings to which
these values belong (e.g. Z,Q,Q[x, y, z]). The representation of the ring elements
seems not to pose any great problem as they are typically very “concrete” values.

In contrast, a mathematical ring is a “more abstract” concept, not the sort
of value we expect a computer to manipulate. Yet for CoCoALib to be a useful
mathematical research tool, it must have a means of representing certain sorts
of commutative ring (with unit element). We also want CoCoALib to “know”
about various special properties the rings may have (e.g. an integral domain)
or to know how the ring was constructed (e.g. a ring of polynomials), so such
information must be available. Thus the best way of representing a concrete ring
in C++ is not entirely obvious. For instance, we need a way to tell in C++
which properties are possessed by that ring: one way would simply be to use
some flags.

However, a well-known software design principle states that it is better to
express as much “type information” as possible in the programming language,
so that the compiler can help the programmer as much as possible (e.g. check
that the types make sense even in rarely executed code). This maxim thus advises
against encoding “type information” inside run-time flag values.

In CoCoALib we adopt a combined “compromise” approach: some properties
are encoded as flags while others are expressed as C++ type information. Where
possible the characteristics are expressed as C++ type information. Nevertheless
one important characteristic has to be represented by a flag: whether the ring is in
fact a field. This uncomfortable decision was dictated by the rules of C++: when
creating a quotient ring the result might be a field or it might not (depending on
the maximality of the ideal, a condition which can be tested only at run time)
but the function which creates the quotient ring must produce a C++ object of
type known precisely at compile time.

The approach taken in CoCoALib is as follows. There is a tree structure of
abstract base classes related by (simple) inheritance, each base class represents
a ring (commutative with unit) with certain properties:

RingBase ← a commutative ring without special properties
PolyRingBase ← a polynomial ring
SparsePolyRingBase← a ring of sparse multivariate polynomials

QuotientRingBase ← a ring formed as a quotient
FractionFieldBase ← a ring formed as a fraction field
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Each concrete class, whose objects will represent concrete rings, is derived
simply from the most specific base class that characterises it. For example, a class
which represents small prime finite fields is derived from QuotientRingBase,
whereas the class which represents the ring of integers is derived directly from
RingBase.

Those ring properties which are not expressed as C++ types are instead
expressed as virtual member functions: for instance IamField returns false by
default, but can be overridden in a concrete ring class to return true. Thus there
is no visible flag indicating the presence or absence of this property; instead it
is implicit in the virtual function mechanism. Here is the implementation of
IamField for the class implementing quotient rings:

bool GeneralQuotientRingImpl::IamField() const
{ return IsMaximal(myReducingIdeal); }

Note that the truth value can only be determined at run time, and that the
implementation is directly inspired by the mathematical definition.

As the C++ virtual function mechanism works via pointers (here we ignore
the subtle distinction between a reference and a pointer) the inheritance tree
structure is mirrored in a second tree of concrete “smart pointer” classes: for each
abstract ring class there is a corresponding “smart pointer” class which points
to an object derived from that abstract class. These smart pointers disguise the
fact that pointers are being used (thus avoiding an epidemic of asterisks in the
code); they also implement a reference counting mechanism so that the concrete
ring class is destroyed automatically at the right time.

Ring Elements. Previously the issue of representing values belonging to a ring
was dismissed as seemingly trivial. While there are indeed no great technical
difficulties, some care is required. Consider a simple case: the representation
of the value 1 in the rings Z,Q,Q[x]. In Z one would expect the value to be
held as an arbitrary precision integer; in Q one would expect the value to held
as as arbitrary precision rational; and in Q[x] the value would presumably be
some representation of 1× x0. The main point is that the precise details of the
representation depend on the ring; and these details should be kept hidden inside
each ring (in C++ parlance the information is private).

Having recognised the “privateness” of the precise details of the representa-
tion of the value of a ring element, we defined the data structure RingElem for
containing elements of rings. The data structure comprises two components: the
identity of the ring to which the value belongs, and an opaque pointer to the
value — the pointer must be opaque (i.e. void*) since the type of value pointed
at depends on the ring.

Another consequence of the “privateness” of ring elements’ representations
is that in CoCoALib a concrete ring class does more than merely represent an
abstract mathematical entity. The class also manages all values which belong
to it. Indeed, the ring class defines (implicitly) the manner in which its values
are codified in the computer; so only that ring is able to interpret properly
the bit pattern in memory corresponding to the stored value. Thus when we do
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arithmetic with ring elements, the actual computation is conducted by a member
function of the ring class. Fortunately, the virtual function mechanism in C++
lets most of this housekeeping happen invisibly — see below.

Given that all operations on ring elements have to be effected by the ring, it
will come as no surprise that in the definition of the most basic abstract ring
class, RingBase, there are many pure virtual member functions for creating,
destroying, and performing arithmetic on ring elements. These functions are
necessarily pure virtual since their implementation depends on how each concrete
ring codifies its own values. An exception is myPower, the member function for
computing powers, which has a default definition in terms of multiplication;
nonetheless myPower is virtual so that it can be overridden in those rings where
more efficient powering techniques exist (e.g. Fp).

Let’s see how rings and their elements interoperate. Almost every operation
on ring elements is implemented as a C++ function or operator with a natural
syntax which checks suitability of the arguments (e.g. belonging to the same
ring, non-zero divisor), and if the checks pass then just the opaque pointers are
passed to the relevant ring member functions. The ring member functions accept
opaque pointers partly for “minimalism”, and partly to emphasise that they do
not check compatibility or suitability of their arguments. It is also possible to
call directly the member function, but this is rarely worthwhile.

Let R denote a C++ variable of type ring, and let x, a, b all be C++ vari-
ables of type RingElem containing values belonging to R. Now consider the two
following lines, which are essentially equivalent:

x = a + b;
R->myAdd(raw(x), raw(a), raw(b));

The first line checks that x, a and b do all belong to the same ring whereas the
second line makes no such check; the second line just calls the function raw which
extracts the opaque pointer and discards the information about the owning ring,
then passes the pointers to the member function. If x, a and b do not all belong
to R then the second line will result in “undefined behaviour” (i.e. probably
a program crash). The first line will create a temporary value for the sum, the
second line might not. Essentially the same choice exists for the other arithmetic
operators.

Here is a similar situation which illustrates slightly more complicated be-
haviour:

x = gcd(a, b);
R->myGcd(raw(x), raw(a), raw(b));

Besides checking the compatibility of x, a and b, the first line also checks that
the ring supports a gcd operation (since not all rings do); if not, an appropriate
exception is signalled, viz. (CoCoA::ERR::NotGCDDomain). In contrast, if the ring
R does not support a gcd operation then the second call will provoke a less helpful
and more severe error by throwing CoCoA::ERR::SERIOUS because a direct call
to a member function of RingBase should be made only when we know that the
call is valid.
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Small Finite Fields. At this point we note that elements of small prime fi-
nite fields are implemented exactly as described above despite the potential for
accusations of scandalous inefficiency. Indeed, there is no doubt that significant
gains in efficiency could be achieved by using inline operations rather than vir-
tual function calls, and by storing the values in local variables rather than on
the heap. CoCoALib offers the possibility of such an efficient implementation
but at the cost of unnatural syntax and incompatibility with the fully generic
ring element mechanism. This efficient but unnatural implementation is used in
a few places in CoCoALib such as the special implementation of polynomials
with coefficients in a small prime finite field — a normal user need know nothing
about this special implementation as the library will automatically use the fast
implementation if it can. Much the same idea can be used more widely, such as
for matrices over small finite fields.

4.2 Templates and Inline Functions

The curious programmer might well be surprised to find that there are very
few template functions or inline functions in CoCoALib. The lack of template
functions is primarily due to the extensive use of inheritance to handle “poly-
morphism”. Though using inheritance and virtual functions is not as fast as
well-crafted template code, the difference in run-time efficiency proved to be re-
markably small in our trials (here credit is due to the compiler writers), and the
comprehensibility and maintainability of non-template code proved to be vastly
superior.

One of the great attractions of C++ is the possibility of writing inline func-
tions. Indeed CoCoALib contains a large number of very simple functions, yet
only a small proportion of these are inline. Initially we defined almost all simple
functions as inline, only to discover later that often this led to no measurable
run-time gain compared to a normal “out of line” definition (while sometimes
forcing public exposure in header files of private implementation details). The
only functions worth making inline are those which are called an exceedingly
large number of times, e.g. certain data member accessor functions, and the
subset test for “div-masks” (see section 5).

There are several advantages of not making functions inline: the header files
become simpler and so compilation gets faster, encapsulation can improve be-
cause private implementation details can be kept hidden, and fewer files need
recompilation when the implementation is changed (i.e. debugged). We conduct
regular profiling checks to make sure the choice of functions defined inline is wise.

5 Case Study: Divisibility Masks

The reason for giving this example particular prominence is that it demonstrates
a way of combining inline operations with C++ inheritance to produce an im-
plementation offering both speed and flexibility.

We start with a description of the problem we need to solve. One apparently
trivial step in Buchberger’s algorithm, which often turns out to be rather costly,
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is the search for a suitable reducer. In abstract, we start with a power product
t (the LPP of the polynomial to be reduced) and a collection of further power
products t1, t2, . . . , tr (the LPPs of the reducers) and must find whether some
tk divides t. Now, a power product is just a product of powers of indetermi-
nates

∏
xei

i which we can think of as being represented by the exponent vector
(e1, e2, . . . , en). Naturally, divisibility of power products boils down to simply
comparing components of the two exponent vectors. Unfortunately this proves
to be too slow.

A simple idea, which turns out to be rather effective in many cases, is to use
bit masks as well as exponent vectors. If we set the j-th bit of the mask when-
ever the indeterminate xj has non-zero exponent then we can quickly determine
non-divisibility just by comparing bit masks: if a candidate factor contains an in-
determinate not present in the power product t, we can immediately exclude the
candidate. We call these bit-masks div masks since they are used for divisibility
testing.

The idea described above is only a start, and needs to be refined; e.g. it works
poorly when there are few indeterminates and high degrees. A little meditation
rapidly leads us to realise that there are many different “div-mask rules” for
setting bits in such a way that the div masks of every factor of a power product,
t, are (non-strict) subsets of the div mask of t. Moreover, no single rule stands
out as being obviously superior to all others; so we must allow the user to choose
the rule to use.

In CoCoALib we use C++ inheritance to implement several sorts of div-mask
rule. An essential observation is that the most common operation on div-masks is
that of subset testing; filling of div-masks is second most common, but typically
occurs far less often than subset testing. So it is vital to have a fast subset
test, and no so important that filling be quick. We achieve this aim by using a
compile-time fixed data structure for the div-mask values (a C++ bit_set of
fixed size) which allows subset testing to be implemented as inline bit-twiddling
operations. The filling of the div-mask is achieved through an out-of-line virtual
function call to the appropriate div-mask rule class. Here we have achieved run-
time selection of the div-mask rule at the same time as allowing inlined subset
testing.

6 Twin Float Arithmetic

One feature apparently unique to CoCoALib is the possibility to compute with
twin floats: these are limited precision floating point values employing probabilis-
tic verification of computed values based on an idea of Traverso [1]. The idea
was originally developed to compute quickly a good, probabilistically guaranteed
approximation to a Gröbner basis. In CoCoALib the idea has been developed
into a type of ring, and so can be easily used for any computation. In particular,
it is possible to test two twin-float values for equality to obtain a result that is
“probably correct”.
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Twin-float arithmetic is suitable for computations where the input data are
known exactly, and where an approximate answer is acceptable. It cannot be
applied directly to problems where the input is known only approximately. It
works well when exact computation with rational numbers becomes excessively
slow due to uncontrolled growth of the numerators and denominators of the
rationals (e.g. during Gröbner basis computation).

Twin-float arithmetic is presented as a ring in CoCoALib, but this is not en-
tirely honest. For instance, for any given twin-float “ring” it is possible to find a
value ε > 0 in the ring such that 1+ε = 1. Another quirk of twin-float arithmetic
is that almost any arithmetic operation can fail due to “insufficient precision”
(the most obvious case is when subtracting two close values). Even the equality
test has three possible outcomes: true, false or “insufficient precision” (thus vio-
lating the Law of the Excluded Middle). The C++ exception mechanism is used
to signal problems of insufficient precision, and some example programs show
how to exploit this mechanism to retry computations at ever higher precisions
until a sufficiently accurate result is obtained.

7 Other Features

CoCoALib offers more facilities than we can describe in this article. Here are a
few comments on some of the more noteworthy features.

An essential operation for many algorithms in computational algebra is the
ability to apply a homomorphism. CoCoALib allows ring homomorphisms to be
used as “normal values” (i.e. stored in variables, passed as arguments, etc.). Once
again the inheritance mechanism of C++ enables us to model cleanly the mathe-
matical abstraction and to achieve good run-time performance at the same time.

A current collaboration between the CoCoA group and Shell International is
studying applications of commutative algebra to problems with approximate co-
efficients. Consequently, CoCoALib will soon contain implementations of certain
algorithms from this area.

Acknowledgment. CoCoALib relies on the GMP arbitrary precision arithmetic
library (see http://www.swox.com/).

8 Availability of the Software

The website for the CoCoA project may be found at:

http://cocoa.dima.unige.it/ ← note that there is no www

CoCoALib is rapidly approaching the junction between “alpha testing” and
“beta testing”: we expect a full public release of version 1.0 later this year. The
principal designer is John Abbott; further important contributions have been
made by Anna Bigatti and Massimo Caboara.
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A prototype server based on CoCoALib is supplied as part of the “old” system
CoCoA 4.6. This offers access to several features of CoCoALib to those not
wishing to use the C++ language. Eventually CoCoA 4.6 will be supplanted by
a completely new interactive front end.
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Oriented matroids are a combinatorial abstraction of finite sets of points in IRn.
They have been used to study various problems in discrete and computational
geometry (for more material on oriented matroids, see [1,2]). A number of meth-
ods to generate oriented matroids have been proposed (for instance in [4, 8–10])
as these methods can be used as a building block for the algorithmic treatment of
some hard problems: Algorithms to generate oriented matroids have for instance
been used to decide whether certain 4-polytopes exist [6,10,14]. For these ques-
tions it is important to have effective algorithms for the generation of oriented
matroids. We propose to use satisfiability solvers to generate oriented matroids.
We have adapted this approach to generate oriented matroids that satisfy certain
geometric constraints. Even though one can use the generated oriented matroids
as a first step to find realizations (see for instance [2, 6]), we will only focus on
non-realizability results.

We applied our method to the following problem: Given an abstract simpli-
cial complex Δ on a finite set E, we ask whether we can find, for given n, a
polyhedral embedding of Δ in IRn. A notorious special case of this question was
described by Grünbaum: He asked, whether all triangulated orientable surfaces
(that means that Δ is a closed, connected, orientable 2-manifold) admit a poly-
hedral embedding in IR3. The first counter-example was found by Bokowski and
Guedes de Oliveira [4]. Their idea was to show that the triangulation in question
does not admit an oriented matroid. For this they used an algorithm that gener-
ates all admissible oriented matroids. In the case they investigated the algorithm
yielded the result that no admissible oriented matroid exists. However, this ap-
proach needed a lot of CPU time; to apply this approach to more examples, one
needs a better method to generate oriented matroids.

Following the approach of Bokowski and Guedes de Oliveira with our new
generation method we obtained the following new results:

1. No triangulation of a surface of genus 6 using only 12 vertices admits a
polyhedral embedding in IR3.

2. There exist at least three triangulations of a surface of genus 5 using only
12 vertices that do not admit a polyhedral embedding.

3. For every g ≥ 5 we can construct an infinite family of triangulations of a
surface of genus g such that none of these admit a polyhedral embedding in
IR3.

� The author was supported by a scholarship of the Deutsche Telekom Foundation.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 216–218, 2006.
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We also used the same method to decide whether certain point-line-configura-
tions exist [3, 5].

The method we propose can be outlined as follows: we generate all necessary
constraints and delegate the backtracking to a satisfiability solver. We transform
the problem of generating oriented matroids (subject to additional constraints)
into an instance of the satisfiability problem. If we find a solution, we add a
constraint excluding the solution just found and resolve. Thus, we can gener-
ate all admissible oriented matroids. This is similar to an approach proposed
by Bremner – he modeled the problem as an integer programming feasibility
problem.

We can translate the so called chirotope axioms for oriented matroids into an
instance of the satisfiability problem. For an rank r oriented matroid on an n
element set the number of variables is proportional to

(
n
r

)
. In the general case

we need two variables for each r-element subset. If we restrict our attention
to uniform oriented matroids – they correspond to the case where points are
in general position – we need only one variable; the encoding of the oriented
matroid axioms is also much simpler.

This set of constraints can be extended to generate oriented matroids subject
to certain conditions. For instance, if we want to embed a simplicial complex Δ
we get the additional constraint that the simplices of Δ may not intersect. We
can express this by adding new clauses to our satisfiability instance. The clauses
forbid certain circuits of the oriented matroid.

We rely on the additional feature of modern satisfiability solvers to add clauses
to a problem instance later on. This allows us to generate all admissible oriented
matroids. If we found a solution, we add a clause that forbids the solution just
found and resolve. As the solver keeps its state, we do not lose the information
of the previous run, which keeps the method effective.

We think one advantage of our method is that we can use ‘off-the-shelf’ soft-
ware to solve the satisfiability problem. So far, we have sucessfully used the
solvers MiniSat [11] and ZChaff [13]. With our approach any progress in solving
satisifiablity problems will give us better methods to generate oriented matroids.

The solver ZChaff allows also to generate a ‘proof log’. If an instance is un-
satisfiable, the solver generates a proof of that fact. This gives us in principle a
possibility to use a proof checker such as Coq [7] to give a formal proof for our
results. The main problem is, however, that the proof generated by the solver is
huge.

So far, the best method to show that no polyhedral embedding of a given
simplicial exists was the method by Bokowski and Guedes de Oliveira. In 2000
it took them four month (using various computers in parallel) to decide that one
triangulation with 12 vertices of the surface of genus 6 did not admit a polyhe-
dral embedding. With our method the instance of the satisfiability problem has
495 variables and 226513 clauses. We can solve this on a a machine with two
Pentium III processors (1 GHz) and 2 GB RAM in under 2 hours (the process
used only one processor and only 47 MB RAM).
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We have implemented the outlined method using a Haskell program to gener-
ate the constraints and solved the resulting instances using MiniSat and ZChaff.
In both cases we wrote thin wrappers to directly call them from the Haskell
program.

Right now, we try to implement this method as a topaz-client in the polymake-
framework [12].
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Grünbaum birthday issue.

[5] Jürgen Bokowski and Lars Schewe, There are no realizable 154- and 164-
configurations, Rev. Roumaine Math. Pures Appl. 50 (2005), no. 5–6, 483–493.

[6] Jürgen Bokowski and Bernd Sturmfels, Computational Synthetic Geometry, Lec-
ture Notes in Mathematics, vol. 1355, Springer-Verlag, Berlin, 1989.

[7] The Coq development team, The Coq proof assistant reference manual, LogiCal
Project, 2004. Version 8.0.

[8] Lukas Finschi and Komei Fukuda, Generation of oriented matroids—a graph the-
oretical approach, Discrete Comput. Geom. 27 (2002), no. 1, 117–136. Geometric
combinatorics (San Francisco, CA/Davis, CA, 2000).

[9] Ralf Gugisch, Konstruktion von Isomorphieklassen orientierter Matroide, Disser-
tation, Universität Bayreuth, 2005 (German).

[10] David Bremner, MPC – Matroid Polytope Completion, June 2004. available at
http://www.cs.unb.ca/profs/bremner/mpc/ .
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1 Introduction

Initially polymake [1,2,3] was conceived as a collection of tools for studying
convex polyhedra only. The early versions of polymake had a very primitive
data management, built around a single data type for polyhedra. However, as
the time passed, more and more different discrete mathematical structures like
graphs and simplicial complexes came along. This gave rise to a properly typed
object hierarchy, which was strict enough to support established object-oriented
(OO) software techniques, but, on the other side, flexible enough to allow for
continuous extensions without breaking the compatibility.

These considerations have lead to a very abstract object model which will be
sketched here. Most of the features were introduced in the release 2.1 published
in 2005. A polymake object type is defined as a named collection of properties.
The properties have to be declared, at least, with a name and data type. The
declaration language is (a slight extension of) Perl; the object types are eventu-
ally translated into usual Perl classes. Unlike in the popular OO programming
languages (e.g., C++, Java), the property declarations belonging to an object
type do not have to be concentrated at one place. Instead, they can be spread
over several sources. This key feature allows the user to extend the semantics
of an object type by inventing new properties (and methods to compute them)
without introducing a new, derived object type. Furthermore, one can easily
merge several extensions coming from different sources. This technique is not
generally supported in classical OO languages, as the merging of two derived
types would lead to common base class ambiguity.

polymake object types do support derivation, though. The derived object type
inherits all properties from its parent(s), there are no “private” properties. The
conflicts which may arise by multiple inheritance (i.e., properties with identical
names defined in two or more parent types) are, theoretically, allowed, since Perl
resolves them via the depth-first search in the inheritance tree. Such conflicts
should be avoided, however: They are a sure sign of a bad design of the type
hierarchy.
� partially supported by Deutsche Forschungsgemeinschaft, DFG Research Group
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2 Categorizing Object Properties

Throughout the following we will use polytopes in order to illustrate the concepts
that we report on. A (convex) polytope is the convex hull of finitely many points
in Euclidean space. As a general reference the reader is referred to Ziegler [4].
Let’s look at a tiny polytope: a bipyramid over a triangle. Here you see a picture
produced by JavaView [5] and the data file describing the polytope.

_application polytope
_version 2.2
_type RationalPolytope

VERTICES
1 0 0 0
1 1 0 0
1 0 1 0
1 1/3 1/3 2/3
1 1/3 1/3 -2/3

VERTEX_LABELS
0 1 2 Apex Apex’

FACETS
0 2 0 1
0 2 0 -1
2 -2 -2 -1
2 -2 -2 1
0 0 2 -1
0 0 2 1

VERTICES_IN_FACETS
{0 2 4}
{0 2 3}
{1 2 3}
{1 2 4}
{0 1 3}
{0 1 4}

DIM
3

BOUNDED
true

VIF_CYCLIC_NORMAL
{0 2 4}
{3 2 0}
{1 2 3}
{4 2 1}
{0 1 3}
{0 4 1}

TRIANGULATION.FACES
{0 1 2 3}
{0 1 2 4}

LP.OBJECTIVE
0 0 0 1

LP.MAXIMAL_FACE
{3}

LP.MAXIMAL_VALUE
1

The object properties can be classified according to various criteria. The clas-
sification is part of the property declaration.

Hierarchy. There are atomic properties and sub-object properties. Most of
the properties shown above are atomic ones (VERTICES, BOUNDED, etc.) They
are stored as native Perl scalars, arrays, or C++ objects with Perl interface,
whichever is appropriate. TRIANGULATION is a sub-object of a different type
SimplicialComplex, which comes with its own set of properties and methods.
This is an interesting (mathematical) object of its own, and its properties (e.g.,
its f -vector) are not directly related to the polytope which is triangulated.
Multiplicity. A property can be unique or multiple. Atomic properties are al-
ways unique. A sub-object property may be declared multiple, if several instances
of interest may differ in a non-trivial way. For example, there is more than one
way to triangulate a given polytope. It is an important feature that a unique
property, like the volume, may depend on a multiple one.
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Variability. Most of the properties are immutable, they are assigned to the
object in the course of its creation or computed later from its other properties.
Some properties are, however, inessential (from the mathematical point of view),
like VERTEX LABELS, which is used solely for visualization. Such properties are
declared mutable and are allowed to be changed during the whole object’s lifes-
pan. Other example of a mutable (and multiple) property is the sub-object LP
(linear program) with the objective function specified in LP.OBJECTIVE (here:
z →max). It should be stressed, that despite the entire LP sub-object is muta-
ble with respect to the containing polytope, the LP’s own properties OBJECTIVE,
MAXIMAL FACE, etc. are immutable, as they define the LP or are computed from
other LP’s and polytope’s properties.
Storage. The properties usually are costly to obtain. Hence objects with their
persistent properties are stored in files. Once computed, polymake can retrieve
them on a user’s request directly from the file. Properties serving special purposes
(e.g. visualization), which are cheap enough to be recomputed, can be declared
temporary. Their lifespan is much shorter than that of the object. For example,
VIF CYCLIC NORMAL repeats the incidence information, but with vertices being
rearranged clockwise.

It may be worth mentioning that the object hierarchy is allowed to be cyclic.
E.g., a linear program may be stored as a polytope object with a linear objective
function as its sub-object or, vice versa, as a linear objective function with a
polytope sub-object. This becomes useful with multiplicity taken into account:
There may be one polytope with a number of linear objective functions or one
linear objective function to be evaluated on several polytopes.

A final remark about the immutable nature of the objects. polymake treats
objects much like one defines them in mathematics: “Let P be a polytope with
...”. Once introduced, a polymake object should keep its semantics. The rule-
driven computation of properties heavily relies on the consistency of all essential
properties, and therefore polymake does not allow to modify them.
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Gfan [8] is a software package for computing Gröbner fans and tropical vari-
eties of polynomial ideals. The Gröbner fan of an ideal I ⊂ Q[x1, . . . ,xn] is a
polyhedral complex defined in [9]. For a homogeneous ideal the Gröbner fan is
a complete fan and the normal fan of a polytope. Its cones are in bijection with
the various initial ideals of I. In particular, the full dimensional cones are in
bijection with the monomial initial ideals and thereby also in bijection with the
reduced Gröbner bases of I. In [3] the local basis change of Gröbner bases was
introduced. This method allows us to go from one Gröbner basis in the fan to a
neighboring one, giving an effective algorithm for computing the Gröbner fan by
traversing its maximal cones. The method can be refined by applying the reverse
search technique [1]. This works even in the non-homogeneous case [5].

A computation of the Gröbner fan of I is useful when searching for an initial
ideal with a particular property. The computer program TiGERS [7] is an earlier
implementation of the Gröbner fan traversal for toric ideals. Gfan is more general
as it can compute the Gröbner fan of any polynomial ideal I ⊂ Q[x1, . . . ,xn].
Gfan even allows an interactive investigation of the fan.

Recently the field of tropical mathematics has received much attention. In
tropical mathematics the semi-ring (IR,max,+) is considered. Here maximum
takes the role of addition and plus the role of multiplication. Many combinatorial
optimization problems are easily expressed in tropical notation. In tropical math-
ematics classical objects have tropical analogs. For example the tropical variety
T (I) of a polynomial ideal I ⊂ Q[x1, . . . ,xn] is the analog of the usual variety
of the ideal. There are many equivalent ways of defining the tropical variety of
I. We prefer to state the definition in terms of initial ideals:

T (I) := {ω ∈ IRn : inω(I) contains no monomials}

where inω(I) denotes the initial ideal of I with respect to the vector ω. The fact
that the tropical variety is a union of Gröbner cones ensures that the tropical
variety can be given the structure of a polyhedral complex making it a subfan
of the Gröbner fan. A breadth first traversal algorithm for computing tropical
varieties of prime ideals was developed in [2]. The algorithm relies on the relation
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Fig. 1. The Gröbner fan of the ideal 〈x5
1 +x3

2 +x2
3 −1, x2

1 +x2
2 +x3 −1, x6

1 +x5
2 +x3

3 −1〉
intersected with the standard 2-simplex in IR3

to Gröbner fans, a connectivity result, constructions of tropical bases, polyhedral
computations and lifting results. Gfan contains the only existing implementation
of this algorithm.

The Gfan package consists of several command line programs which may be
combined to produce the desired result. For example:

gfan <input.txt | gfan_render > picture1.fig

will produce the drawing of the Gröbner fan of the ideal written in the file
input.txt, see Fig. 1. Usually a list of the reduced Gröbner bases is a satisfactory
output of a Gröbner fan computation while the actual combinatorics of a tropical
variety often are of interest. Sometimes symmetry can be exploited and the
output may be organized in symmetry classes making it more readable.

While Gröbner basis computations are doubly exponential in the worst case
the Buchberger step of the local Gröbner basis change procedure is relatively
easy in practice due to the homogeneity and other properties of the ideals in
question. However, sometimes the Gröbner fan is simply too big to be computed
or the conversion steps do take too much time. Here is a few examples of what
can be computed. In Fig. 1 the 360 maximal cones were computed in 58 seconds
using 5 megabytes of memory. It is easy to find four variable ideals where the
Gröbner fan is too big to be traversed or the local steps are too time consuming.
For some classes of ideals the program can handle much larger examples. The
ideal in 16 variables generated by the 3 by 3 minors of a 4 by 4 matrix of variables
has 163032 reduced Gröbner bases which, up to symmetry, can be computed in
7 minutes using 9 megabytes of memory. There are only 289 orbits to consider.
Without exploiting symmetry the computation takes 14 hours.

Gfan [8] can be compiled with any newer version of gcc on a Linux or Mac
OS X system with gmp [6] and cddlib [4] installed. These libraries are used for
exact arithmetic and polyhedral computations, respectively.

In the talk we will give a brief overview of the implemented algorithms and
show how to compute some interesting Gröbner fans and tropical varieties using
the software.
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Symb. Comput. 24(3/4) (1997) 465–469

4. Fukuda, K.: cddlib reference manual, cddlib Version 094b. Swiss Federal Institute
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Abstract. Homotopy continuation methods to compute numerical ap-
proximations to all isolated solutions of a polynomial system are known
as “embarrassingly parallel”, i.e.: because of their low communication
overhead, these methods scale very well for a large number of proces-
sors. Because so many important problems remain unsolved mainly due
to their intrinsic computational complexity, it would be embarrassing
not to develop parallel implementations of polynomial homotopy con-
tinuation methods. This paper concerns the development of “parallel
PHCpack”, a project which started a couple of years ago in collaboration
with Yusong Wang, and which currently continues with Anton Leykin
(parallel irreducible decomposition) and Yan Zhuang (parallel polyhe-
dral homotopies). We report on our efforts to make PHCpack ready to
solve large polynomial systems which arise in applications.

2000 Mathematics Subject Classification. Primary 65H10. Sec-
ondary 14Q99, 68W30.

Keywords and phrases: Continuation methods, high performance
continuation, jumpstarting homotopies, linear-product systems, parallel
computation, path following, polynomial systems, polyhedral homotopies,
simplex system.

1 Motivation: We Want to Solve Large Systems

To solve a polynomial system f(x) = 0, a homotopy h(x, t) = 0 connects f to a
start system g(x) = 0 (g stands for generic, i.e.: all start solutions are regular),
for example of the following form
� This material is based upon work supported by the National Science Foundation
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h(x, t) = γ(1− t)g(x) + tf(x) = 0, γ ∈ C, (1)

where the random complex constant γ ensures with probability one that all
solution of h(x, t) = 0 are regular for all t ∈ [0, 1). Thanks to this regularity,
predictor-corrector methods can track all solution paths defined by h(x(t), t) = 0,
as t moves from 0 to 1, starting at t = 0 at the solution of g(x) = 0 and ending
at t = 1, at approximate isolated solutions of f(x) = 0.

We say that the system f is large if the homotopy we use to solve it requires
more than 100,000 solutions to track. Although large does not always automati-
cally imply “difficult”, numerical problems are more likely to occur. This paper
is concerned with three issues:

– For efficiency, it is undesirable to keep all solutions in main memory.
– Numerical stabilities may occur as dimensions and degrees grow.
– Quality control on the computed solutions must be done fast.

Recent work produced two different software systems: PHoMpara [7] (a paral-
lel version of PHoM [8]) and POLSYS GLP [30] (based upon HOMPACK [39]).
The first software system uses polyhedral homotopies, while the second one
applies linear-product start systems to solve polynomial systems. Independent
of the performance of these programs relative to PHCpack, it matters that
PHCpack [33] offers both types of homotopies.

The parallel implementation of the path trackers in PHCpack started in a
joint work with Yusong Wang [36] and yielded a parallel version of the Pieri
homotopies [10] (refined in [12], see also [18]). Parallel path tracking is discussed
in [1], [4], [5], [9], [20], and [21]. Our computational experiments showed that
distributing all path tracking jobs at the start performs well when all paths
require the same amount of work. Otherwise, dynamic load balancing is needed
to achieve an optimal performance.

The parallel PHCpack project is currently continued in collaboration with
Anton Leykin [16] (see also [14]) and Yan Zhuang [37]. The work in [14] reports
on the parallel implementation of methods to decompose a positive dimensional
solution set, using monodromy [24] and traces [25], as needed in a numerical
irreducible decomposition [23]. The techniques presented in this paper provide
efficient homotopies to create witness sets of these positive dimensional solution
sets, see [26] and [27] for introductions to numerical algebraic geometry. The
development of parallel polyhedral homotopies (described in [37]) will increase
the capabilities of PHCpack to deal with solution sets of larger degrees.

The parallel software was developed using personal cluster computers from
RocketCalc and ported to similar Beowulf clusters like UIC’s supercomputer
argo. Most recently, the parallel path tracking facilities of PHCpack were in-
stalled on NCSA’s IBM pSeries 690 system running AIX 5.3. The use of MPI
and a description of other interfaces to PHCpack can be found in [15].

In this paper we resolve the three issues raised above. To avoid the storage
of all start solutions in the main memory, we propose to jumpstart homotopies,
either by computing the roots whenever and wherever they are needed, or by
reading the start solutions from file. For the sparsest class of polynomial systems,
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we discovered a numerically stable solver which computes the magnitudes of the
roots separately, avoiding numerical overflow or underflow. Thirdly, for efficient
quality control of the results, the programs are allowed only one linear sweep
through the file which contain the solutions.

As noted before, what we call “large” does not automatically imply “difficult”.
The homotopies we consider in this paper are optimal (a notion introduced
in [10]): no solution path diverges to infinity, so the overall cost of the solver is
polynomial in the output size.

2 Jumpstarting Homotopies

Homotopy continuation methods compute one solution at a time. Keeping all
start solutions in main memory may decrease the overall performance, or even be
impossible. Assuming a manager/worker protocol, our solution is the following:

1. The manager reads a start solution from file “just in time”
whenever a worker needs another path tracking job.

2. For total degree and linear-product start systems,
it is simple to compute the solutions whenever needed.

3. As soon as a worker reports the end of a solution path
back to the manager, the solution is written to a file.

Solutions to total degree start systems can be computed very fast, faster than
they can be retrieved from file. A lexicographical indexing scheme allows the
manager to dictate only which node has to track which path. As all nodes know
how to solve total degree start systems, they only need a number, reducing the
communication overhead.

For example, a typical total degree start system may look like

g(x1,x2,x3) =

⎧⎪⎪⎨⎪⎪⎩
x4

1 − 1 = 0

x5
2 − 1 = 0

x3
3 − 1 = 0.

(2)

It has 4× 5× 3 = 60 solutions.
We can get the 25th solution via a decomposition of 24 (start counting from 0):

24 = 1(5× 3) + 3(3) + 0. Let us verify this via lexicographic enumeration:

000→001→002→010→011→012→020→021→022→030→031→032→040→041→042

100→101→102→110→111→112→120→121→122→ 130 →131→132→140→141→142

200→201→202→210→211→212→220→221→222→230→231→232→240→241→242

300→301→302→310→311→312→320→321→322→330→331→332→340→341→342

(3)

Although examples for which the total degree homotopy is optimal are fairly
rare, one interesting application appears in magnetism, posed by Shigetoshi Kat-
sura [13], see also [3]. This applications leads to a family of systems, which scales
for up to any number of equations and variables. All equations in the systems are
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of degree two, except for one linear equation. The largest polynomial system in
this family we considered has 21 equations and a total degree of 220 = 1, 048, 576.
Recently, the mpi2track function in PHCpack tracked all 1,048,576 paths using
a personal cluster of fourteen CPUs all running at a clockspeed of 2.4Ghz, in a
traditional manager/worker dynamic load distribution model. It took 32 hours
and 44 minutes to complete the tracking, leading to an output file of 1.3Gb.

While homotopies based on the total degree are rarely efficient, the simple
principle of lexicographic enumeration of the start solutions applies to linear-
product start systems. These start systems first occurred in [38], using multi-
homogeneous homotopies [19] and were generalized in [34]. Compared to the
total degree, homotopies using linear-product start systems typically follow far
fewer solution paths than the total degree.

All equations in a linear-product start system are products of linear equa-
tions, of the form of the system in (4). Every · · · in (4) corresponds to a linear
polynomial with randomly chosen coefficients.

g(x) =

⎧⎨⎩
(· · ·) · (· · ·) · (· · ·) · (· · ·) = 0

(· · ·) · (· · ·) · (· · ·) · (· · ·) · (· · ·) = 0
(· · ·) · (· · ·) · (· · ·) = 0

(4)

The random choice of the coefficients of the linear factors of the products in
the linear-product start systems implies that the maximal number of isolated
solutions is attained. Moreover, if every monomial in the target system f(x) = 0
also occurs in the corresponding equation of the start system g(x) = 0, then
all isolated solutions of f(x) = 0 lie at the end of some solution path defined
by a homotopy using a linear-product start system g(x) = 0, see [34]. Efficient
implementations of this type of homotopies are described in [40] and [30].

Just like (2), the solution of the start system in (4) can be enumerated lexi-
cographically. As the linear-product start system is stored on file in its product
form, one does not need storing the start solutions on file. Moreover, any node in
a parallel computer can solve for one particular solution. While the main moti-
vation is to avoid to store the complete list of start solutions in main memory, an
additional advantage is a reduced communication overhead: instead of passing
the start solution vector from manager to path tracking worker, the manager
simply has to pass out the label (or group of labels) to the nodes.

While there are as many candidates as the total degree, the number of start
solutions (and the corresponding generalized Bézout number) is typically much
less than the total degree. For efficiency – as the sequential root counting proce-
dures in PHCpack already do – an incremental LU factorization of the coefficient
matrices for each linear system leading to a start solution is an effective technique
to prune the tree of all possible combinations of factors in the products of g.

3 A Numerically Stable Solver for “Simplex” Systems

Homotopies implementing Bernshtěın’s theorem [2] are described in [35]. What
we now call polyhedral homotopies follows from the more general treatment
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in [11]. In [17] these methods are explained in greater detail. Bernshtěın showed
in [2] that the mixed volume of the Newton polytopes of the polynomial system
bound the number of solutions (with all variables different from zero). For sys-
tems with randomly chosen coefficients, this bound is sharp. The first stage of a
polyhedral homotopy method consists in the calculation of this mixed volume,
see [8] and [6] for efficient programs to perform this task.

Polyhedral homotopies require in their second stage the solution of a polyno-
mial system with random coefficients. Choosing all complex coefficients on the
unit circle in the complex plane naturally leads to a well-conditioned polyno-
mial system. Despite this good choice of the coefficients, previous versions of our
software failed for some large examples used for testing the parallel polyhedral
homotopies [37].

Consider for example the 12-dimensional polynomial system below in (5). It
occurs as just one of the one of the 11,417 start systems generated by polyhedral
homotopies to create a random coefficient start system occuring in the design of
a robot (see [28], [29], [31], [32]):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1x5x8 + b2x6x9 = 0

b3x
2
2 + b4 = 0

b5x1x4 + b6x2x5 = 0

c
(k)
1 x1x4x7x12 + c

(k)
2 x1x6x

2
10 + c

(k)
3 x2x4x8x10 + c

(k)
4 x2x4x

2
11

+ c
(k)
5 x2x6x8x11 + c

(k)
6 x3x4x9x10 + c

(k)
7 x2

4x
2
12 + c

(k)
8 x3x6

+ c
(k)
9 x2

4 + c
(k)
10 x9 = 0, k = 1, 2, . . . , 9.

(5)

The coefficients bi, i = 1, 2, . . . , 6, and c
(k)
j , j = 1, 2, . . . , 9, k = 1, 2, . . . , 9 are

randomly chosen complex numbers, chosen so that |bi| = 1 and |c(k)
j | = 1.

Because of this good choice of coefficients, all solutions are well conditioned.
Despite the high degrees, there are only one hundred isolated solutions in (C∗)12,
C∗ = C \ {0}, because of the sparsity of the system: only 13 distinct monomials
(after appropriate division).

We call such system a simplex system1 and we can solve it fast, reducing it to
binomial system using LU factorization on the coefficient matrix of the system.
Every equation in a binomial system has exactly two monomials with nonzero
coefficients. In compact form, we denote a binomial system by xA = b and
solve if via the Hermite normal form of A, computing a unimodular matrix M
(det(M) = ±1), so that MA = U , with U is an upper triangular matrix and
| det(U)| = | det(A)|. Let x = zM , then xA = zMA = zU , so we have reduced
xA = b to zU = b.

1 Because its support corresponds to a simplex. We thank the referee for suggesting
this catchy term.
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For example, for two variables we write

[z1 z2]

u11 u12
0 u22 = [b1 b2] for the system

{
zu11
1 = b1

zu12
1 zu22

2 = b2
. (6)

Forward substitution on the triangular system shows that there are exactly
| det(A)| distinct isolated solutions, and |bk| = 1 implies |zk| = 1, for every
solution component, k = 1, 2, . . . , n. So our binomial systems are numerically
very well conditioned.

A simplex system is denoted by CxA = b, where C is some coefficient matrix.
The natural approach to reduce this simplex system to a binomial system is via
a LU-factorization on C. Assuming det(C) �= 0, we compute a lower and an
upper triangular matrix L and U so that C = LU and solve two systems:

(1) LUy = b, a linear system;
(2) xA = y, a binomial system.

(7)

However, this algorithm is numerically unstable! Even if all coefficients for C
and b are chosen to lie on the complex unit circle, varying magnitudes in the
intermediate values for y do occur. High powers, in the range of 50 and over
occur in the Hermite normal form for larger systems and magnify the imbalance
between the magnitudes in y up to the point where numerical underflow or
overflow crashes the solver.

Our new solver separates the magnitudes of the solutions from their phases.
Using the following notations z = |z|ez, ez = exp(iθz), y = |y|ey, ey = exp(iθy),
i =
√
−1, we rewrite the binomial system and solve

zU = y : |z|UeU
z = |y|ey ⇔

{
eU
z = ey

|z|U = |y| (8)

The first binomial system eU
z = ey is well conditioned because all components

of the right hand side vector have modulus one. To find the magnitudes |z| we
solve |z|U = |y|, using a logarithmic scale, i.e.: U log(|z|) = log(|y|). Even as the
magnitude of the values y may be extreme, log(|y|) will be modest in size.

Our new numerically stable solver to solve a simplex system CxA = b executes
the following steps:

1. The LU factorization of C yields xA = y, where Cy = b.
2. Use the Hermite normal form of A, MA = U , det(M) = ±1,

to solve the binomial system eU
z = ey, z = |z|ez, y = |y|ey.

3. Solve the upper triangular linear system U log(|z|) = log(|y|).
4. Compute the magnitude of x = zM via log(|x|) = M log(|z|).
5. As |ez| = 1, let ex = eM

z .

Even as z may be extreme, causing floating point overflow or underflow, we
deal with |z| at a logarithmic scale and never raise small or large numbers to
high powers. Only at the very end do we calculate |x| = 10log(|x|) and x = |x|ex.

For more on the parallel implementation of polyhedral homotopy methods in
PHCpack, we refer to [37].
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4 Scanning Solution Files into Frequency Tables

During runtime, we often want to monitor the progress of a large path tracking
job, and get an impression about the “quality” of the solutions which have
been already computed, but again, we do not want store all solutions in main
memory. For each solution at the end of path, Newton’s method reports three
floating point numbers:

1. the magnitude of the last update to the solution vector;
2. an estimate for the inverse condition number of the Jacobian matrix

at the solution;
3. the magnitude of the residual.

These three numbers determine the quality of a solution.
To determine the overall quality of the list of solutions, The program builds

frequency tables, e.g.: counting #solutions with condition number between 10k−1

and 10k, for some range of k. These frequency tables used to judge the quality
of solution lists are a first step to employ so-called endgames, eventually with
some reruns of the paths at tighter tolerances.

Recall the application posed by Shigetoshi Katsura [13] we mentioned in Sec-
tion 2, which led to a homotopy of 220 paths, leaving a file of 1.3Gb to process.
Reading all solutions from file into main memory takes about 4 minutes and
occupies more than 400Mb. While most modern workstations are well equipped
with a large internal memory, to determine whether all solutions are distinct (no
path crossing has happened) we do not need to occupy that much memory. The
data compression of 400Mb into about 42Mb is by randomly projecting the solu-
tion vectors (of length 21) to the plane. The creation of a quadtree [22] (using as
many levels till each leaf holds no more than 1,024 points) takes about 7 seconds
and occupies about 58Mb. Sorting the leaves of the quadtree to determine path
crossings takes less than a second.

Notice that the time to read all solutions from disk (4 minutes) dominates
the time to create the quadtree (7 seconds).

As the quality analysis of solution lists can already be done while the lists are
still incomplete, remedial action or more computationally demanding endgames
(we refer to [27, Chapter 10] for an overview) will lead to extra jobs to be
distributed among the worker nodes.

5 Towards High Performance Continuation ...

The polynomial systems we typically consider have a number n of variables which
is relatively modest, averaging around 8 or 10. The nonlinearity results in a large
number of solution paths, which we denote by R for the root count used in the
homotopy. In this paper we considered R in the range of 100,000 and higher.
Because R ' n, several issues must be addressed to improve the performance
of parallel homotopies. In particular, we avoid storing all start solutions in main
memory by jumpstarting the homotopies. We discovered a numerical instability
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in the polyhedral homotopies which was not treated before and emphasized the
need for fast quality control of large solution lists.

The “parallel PHCpack” effort has led to good speedups of running times
on existing benchmark systems, essentially leaving the basic path tracking fa-
cilities and homotopy constructors intact, calling the routines in PHCpack in
conjunction with message passing primitives. To solve large polynomial systems,
an internal reorganization of PHCpack is needed, in an effort to turn Polynomial
Homotopy Continuation into High Performance Continuation.

Acknowledgements. A first draft of this paper corresponds to a talk given by
the second author at the AMS special session on Numerical Solution of Polyno-
mial Systems held at the University of Notre Dame, 8-9 April 2006. We thank
the organizers of this session, Chris Peterson and Andrew Sommese, for the op-
portunity to present this work. We thank the referee for valuable comments on
the first draft.
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Abstract. This paper describes the software DEpthLAUNAY. The
main goal of the application is to compute Delaunay depth layers and lev-
els of a planar point set [ACH]. Some other geometric structures can be
computed as well (convex hull, convex layers and levels, Voronoi diagram
and Voronoi levels, Delaunay triangulation, Delaunay empty circles, etc.)
The application has been developed using CGAL [CGAL].

1 Introduction

In bivariate data analysis several notions of depth are used in order to classify
and measure the centrality of data. Most of them are closely related to geometric
structures and there are Computational Geometry algorithms to compute them
efficiently. Convex hulls and convex layers are well known tools used for peeling
outliers and for computing central elements of a set. Let CH(S) be the convex
hull of the set S. The convex depth of p ∈ S with respect to the set S, is defined
recursively as follows: if p ∈ CH(S), dC

S (p) = 1, else dC
S (p) = dC

S\CH(S)(p) + 1.
The Delaunay triangulation is a structure that has been recently used for

computing central elements and measuring the depth of points in a given set of
points [ACH], [HRSS]. The Delaunay depth of p, dD

S (p), is defined to be d+1 when
the graph theoretical distance from p to CH(S) in the Delaunay triangulation
DT (S ∪ {p}) of S ∪ {p} is d.

The Delaunay layers of a set S are the subgraphs of the Delaunay triangulation
of S induced by the subsets of S formed by points with the same Delaunay depth.

The Delaunay levels determined by a set S are the regions of the plane formed
by points with the same depth with respect to S.

The softwarewearepresentingherehasbeendevelopedwith three objectives:As
a teaching tool, as a help in the research of combinatorial aspects ofDelaunaydepth
and as an efficient tool for computing Delaunay depth layers and levels in practice.

DEpthLAUNAY has been developed using CGAL library. Several ways of
input and output data have been implemented as well as the possibility of mod-
ifying data on line. The graphic output is one of the most valuable aspects of
the application, allowing the user to interact and visualize the results. DEpth-
LAUNAY is freely available [Dpth].
� Partially supported by grants TIC2003-08933-C02-01 and CAM S0505/DPI/023.
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Fig. 1. View of application

2 Description of the Application

The aim of this application is to compute the Delaunay depth of a point with
respect to a set of points, and some structures derived from Delaunay Depth as
Delaunay Layers and Levels. Other well-known geometrical structures, like the
Delaunay Triangulation, Voronoi Diagram, Convex Hull and Convex Hull Layers
and levels can also be computed.

The program is developed using CGAL (Computational Geometry Algorithms
Library) [CGAL]. In particular it uses its functions and objects to construct the
Delaunay Triangulation of a point set in the plane. From the point of view of
the programmer, the software has three layers of code:

– The inner is CGAL, a robust library that triangulates the points.
– The intermediate layer is an object named CNube, whose aim is to create a

set of functions such that a programmer could use CGAL without knowing
that library, using only CNube. As CGAL, CNube is independent of the
operating system.

– The external layer is the part that shows the information in the screen. This
layer depends on the operating system. At the moment it uses Microsoft
Windows.

The program has been developed in C++ with OOP, using Microsoft Visual
Studio .NET and Microsoft Windows XP as platforms.

From the user’s point of view, the software can be divided into three parts:
the input of the data (points), the interaction and the output of the computed
structures. Probably the most interesting part is the interaction, because com-
putation and rendering of the triangulation, the Voronoi diagram, etc. are done
in real time.
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Inserting points with absolute values Result

Fig. 2. Points inserted from keyboard

2.1 Entering Data

The easiest way to input points in the application is by using the mouse to point-
and-click with the left button anywhere in the canvas. This way, the application
introduces a point where the user desires. Points can be moved with the mouse
while the left button is pressed. The right button will delete the point clicked.
Points can also be added by typesetting their coordinates. These coordinates
can be inserted in two ways (see figure 2 left):

– With approximate coordinates, for cases in which the user only want to test
some properties of the points.

– With exact coordinates, for the cases in which the user needs to obtain an
exact result.

Another input option is the automatic generation of points, both random
and regular distributions. The random generated points can be constrained to
a circle, a square or over a text. These random points can also be generated all
along the canvas. The user can select the number of points to be generated. The
regular distributions of points can be generated over a circumference, a spiral, a
square, inside a text or conforming a mesh with the points arranged as squares,
triangles or circles.

Another interesting method for adding points, connected to real world ap-
plications, is using a digital picture. A digital image can be loaded and, after
selecting a color and a size for points, the application will look for groups of pix-
els with that color, and will convert them into coordinates of points, depending
on the selected size. Figures 4, 5 and 6 show the selection of color and size of
points; the generated set over the image; and the point set without the image.
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Fig. 3. Some points generated with DEpthLAUNAY

Fig. 4. Window to select color and size of points

2.2 Manipulating the Data

Once the data has been entered, the user can manipulate these points, basically
inserting points, moving points or deleting points. All these operations are done
in real time, allowing the user to see the result of the operation in real time.

The user can also manipulate groups of points using the clipboard and se-
lections. Selections are made by capturing the points inside a rectangle . Once
selected, the user can delete, cut or copy them to the clipboard. Once in the clip-
board (like simple text), these points can be inserted to the program, and the
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Fig. 5. Points extracted from the image, with the image in the background

Fig. 6. Points extracted from the image

user can resize the pasting rectangle. Figure 7 shows a selection and a pasting
of that selection from the clipboard.

2.3 Computing Structures

This software is mainly created to compute the Delaunay depth, but it is also
capable of computing different diagrams and structures of the input set of points.
These structures are (some of them can be used together):
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Selected group of points Pasting the selection from the clipboard

Fig. 7. Select and paste a group of points

– Vertices (See fig. 8)
– Delaunay triangulation (See fig. 8)
– Voronoi diagram (See fig. 8)
– Delaunay empty circles (See fig. 9)
– Convex hull (See fig. 8)
– Depth of every point (See fig. 8)
– Convex depth (See fig. 10)
– Convex layers (See fig. 10)
– Delaunay levels (See fig. 11)
– Delaunay layers (See fig. 12)
– Delaunay triangles colored depending on the depth of its vertices (See

fig. 13)
– Voronoi diagram colored depending on the depth of its sites (See fig. 14)

Fig. 8. Showing points, DT, VD, CH and depths
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Fig. 9. Delaunay circles

Fig. 10. Showing convex depth and levels

Fig. 11. Showing Delaunay layers
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Fig. 12. Showing Delaunay levels

Fig. 13. Delaunay triangles colored depending on the depth of its vertices

The software can also zoom and unzoom part of the image, center the point
set in the screen, and increase or decrease the size of the canvas, showing scroll
bars when needed.

2.4 Exporting Data

The input points as well as some of the computed structures can be exported
to files in several formats. This allows the user to process the data with other
programs. The output formats are:

PNT: A simple list of points, with no triangulation information.
VTC: The format used by CGAL. Any program using CGAL can read it.
NIV: This format includes all the information about triangulation, depth levels

and Voronoi diagram.
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Fig. 14. Voronoi regions colored depending on the depth of sites

OFF: A 3D representation of depth, in which the height of a point corresponds
to its depth in Geomview’s format.

If the user prefers a graphical output, the software provides a snapshot of
viewed data in several graphic formats.

3 Conclusions

DEpthLAUNAY was originally intended as a tool for statistical analysis of bivari-
ate data, looking for a way to classify the points with respect to their Delaunay
depth. This study can be seen in [ACH].

While the project was growing, its scope also grew, turning it into a valuable
tool to investigate the properties of Delaunay triangulations, Delaunay depths
and Voronoi diagrams. Non expert users have found it very easy to insert, move
and delete points, and the online response of the program, even with a big
number of points (a current PC can handle over 1000 points easily).

Due to the possibility to handle graphics as a way of obtaining input points,
this program connects with real world. It can be used by non mathematicians as
a helping tool in decision making. It is well known the relations between Voronoi
diagrams and Delaunay triangulations and facility location problems.

This is an ongoing work and more options are going to be added to the
application.
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Given a polytope P , the classical linear programming (LP) problem asks us
to find a point in P which attains maximal inner product with a given real
objective vector c. When the objective is a vector of unknown parameters, the
LP problem amounts to computing certain information about the polytope P ,
such as its vertices and normal fan.

In the sciences there are well-known problems which can be viewed as special-
ized instances of LP. One example is the pairwise sequence alignment problem
in molecular biology. Often these specialized instances of classical LP admit
specialized algorithms (such as the Needleman–Wunsch algorithm for sequence
alignment [6]), under the assumption that the objective vector c is a given real
vector. However, in such real-world applications, often the exact value of the ob-
jective vector is not known, and so an estimate is used instead. This raises some
serious questions: If the value of the objective vector is changed slightly, will the
optimal solution of the LP instance change drastically? Will that, in turn, also
change a qualitative inferrence made from the obtained optimal solution? We
might also want to know the set of all optimal solutions.

We could answer such questions if we knew the vertices and normal fan of the
polytope for the LP instance. This leads us to ask: Given a black box subroutine,
which solves an LP instance for a given value of the objective vector c, can we
compute the vertices and normal fan of the entire polytope for the LP instance?

The answer is yes, and the algoirthm we use is essentially the Beneath/Beyond
(BB) method [1, §3.4.2]. The algorithm builds the polytope incrementally, by
systematically finding new vertices and facets. It does this by repeatedly choosing
an objective vector c, and calling the black box subroutine to find a vertex of the
polytope which solves the LP instance with objective c. The objective vectors
are chosen so that after each iteration, either a new vertex of the polytope is
found, or a new facet; hence the alogirthm requires no more than O(V +F ) calls
to the black box LP solver, if the polytope has V vertices and F facets.

Our main contribution is the C++ library iB4e, which implements this Be-
neath/Beyond algorithm as part of an abstract base class BBPolytope with
virtual member function blackboxOptimize(c). For sequence alignment, black-
boxOptimize(c) would be written to perform the standard Needleman–Wunsch
algorithm with alignment scoring parameters given by c. For computing the
Minkowski sum of V -polytopes (a problem studied in [2, ]), blackboxOptimize(c)
would return the sum of each V -polytope’s vertex that attains maximal inner
product with c.
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Once the blackboxOptimize(c) function is written by the user, the derived
BBPolytope class is ready to use. Polytopes are outputted in polymake format [7],
so that iB4e can be interfaced with polymake for further polyhedral computations.

In addition to computing the polytope for an LP instance, iB4e can also give
detailed information about particular vertices of interest. For instance, users can
perform sensitivity analysis by asking which other vertices can be obtained by
perturbing an objective vector within some specified confidence interval. Also,
users can specify the “correct” vertices of a collection of computed polytopes,
and iB4e will report the cone of all objective vectors which simultaneously yield
the correct vertex of each polytope. Thus, the iB4e library can be used to infer
all possible parameter values from a trusted collection of solved examples of a
specialized LP problem. (In the case of pairwise sequence alignment, this gives
the complete solution to the inverse alignment problem.)

The iB4e library supports both native arithmetic and arbitrary precision
arithmetic (using the NTL/GMP libraries). The software computes polytopes
of arbitrary dimension, but also has various optimized subroutines for low di-
mensions (d ≤ 5). Thus iB4e is general and robust, but can also be suitable for
intensive high-throughput computations such as those reported in [4]. We have
observed that the software is particularly well-suited for computing vertices and
facets in low dimensions and in general when (V + F ) is of reasonable size.
However, when d and F are large and only computing vertices is desired, other
methods are more appropriate (such as in [2] for the case of Minkowski sums).

We report on recent advances in whole genome parametric alignment [4] which
used a pre-release version of iB4e, and we compare our software’s performance
to a polytope propagation implementation of the Needleman–Wunsch algorithm
[5]. We also report on recent advances in computing Newton polytopes of binary
hidden Markov models, which used the iB4e software to compute Minkowski
sums. We give a hands-on example of how to use the library, from coding to
execution. We finish by outlining future improvements of the software, such as
reducing memory overhead via localized computation and secondary storage data
structures.

All iB4e source and binaries are freely available under the GNU General
Public License, and can be downloaded at the author’s web address

http://math.berkeley.edu/~phuggins/software/.
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Abstract. Optimal control problems for constrained linear systems
with a linear cost can be posed as multiparametric linear programs
(pLPs) and solved explicitly offline. Several algorithms have recently
been proposed in the literature that solve these pLPs in a fairly effi-
cient manner, all of which have as a base operation the computation and
removal of redundant constraints. For many problems, it is this redun-
dancy elimination that requires the vast majority of the computation
time. This paper introduces a new solution technique for multiparamet-
ric linear programs based on the primal–dual paradigm. The proposed
approach reposes the problem as the vertex enumeration of a linearly
transformed polytope and then simultaneously computes both its ver-
tex and halfspace representations. Exploitation of the halfspace repre-
sentation allows, for smaller problems, a very significant reduction in
the number of redundancy elimination operations required, resulting in
many cases in a much faster algorithm.

1 Introduction

It is standard practice to implement a model predictive controller (MPC) by
solving an optimisation problem on–line. For example, when the system is linear,
the constraints are polyhedral and the cost is linear (e.g. 1− or ∞−norm), this
amounts to computing a single linear program (LP) at each sampling instant. In
recent years, it has become well-known that for this class of systems the optimal
input is a piecewise affine function (PWA) defined over a polyhedral partition
of the feasible states. By pre–computing this PWA function off–line, the on–
line calculation of the control input then becomes one of evaluating the PWA
function at the current measured state, which allows for significant improvements
in sampling speed [1].

The computation of the optimal PWA function, mapping the measured state
to the control input, can be posed as the following (multi)parametric linear
program (pLP) [1]:

min
u

{
cTu | (x, u) ∈ P

}
, (1)
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where x ∈ Rd is the parameter, or state, u ∈ Rm is the optimiser, or control
input and slack variables and P is a polyhedron, which incorporates the system
constraints and is assumed bounded.

Several methods of computing the solution to pLP (1) can be found in the lit-
erature (e.g., [1,2,3]). All of these approaches enumerate the affine regions of the
optimal PWA function one at a time. For each of the affine pieces of the function,
the main computational burden is the determination of a minimal description of
the polytope in which it is optimal. Computing this minimal representation is
a so–called redundancy elimination operation, which requires the solution of a
number of linear programs equal to the size of the input (the number of inequal-
ities describing the polytope P ). In most cases, these redundancy elimination
LPs take the vast majority total computation time.

In this paper we present a new method of computing the optimiser of pLP (1)
based on a primal-dual approach [4]. We first show that parametric linear pro-
gramming can be posed as a vertex enumeration problem of an affine transform
of the dual constraints in (1). The primal-dual algorithm then computes the
convex hull of this transformed polytope as it is enumerating the vertices. The
availability of these two descriptions of the same polytope then allow a signif-
icant reduction in the amount of work that the algorithm is required to do by
removing the need to compute a large number of the redundancy elimination
LPs.

The remainder of this paper is organised as follows. Section 2 provides required
background on parametric linear programming. Section 3 introduces a polytope
such that there is a one-to-one mapping from its vertices to the affine pieces of the
solution. The primal-dual approach described in [4] is then adapted such that it
can be applied to this polytope, and hence to the associated pLP in Section 3.2.
Finally, examples and conclusions are given in Sections 4 and 5 respectively.

Notation

If A ∈ Rm×n and I ⊆ {1, . . . , n}, then A∗,I ∈ Rm×|I| is the matrix formed
by the columns of A indexed by I. If c ∈ Rn is a vector then cI is the vector
formed by the elements of c in I. If R ⊆ {1, . . . ,m} then we will use the notation
AR,∗ ∈ R|R|×n to denote the matrix formed by the rows of A indexed by R.

A polyhedron is the intersection of a finite number of halfspaces and a poly-
tope is a bounded polyhedron. If P = {x |Ax ≤ b} is a polyhedron and H ={
x

∣∣ aT x ≤ d
}

is a halfspace such that P ⊆ H , then P ∩
{
x

∣∣ aT x = d
}

is a face
of P . One– and zero–dimensional faces are called edges and vertices respectively.
Faces of dimension dim(P )− 1 are called facets and dim(P )− 2, ridges.

A vector r ∈ Rd defines a ray as R = {rα | α > 0}. A set C is called a cone if
for every x ∈ C and scalar α > 0, we have αx ∈ C. The columns of a matrix F ∈
Rm×n are called the generators of the cone C = cone(F ) � {Fα | α ≥ 0}. The
generator F∗,i is called redundant if F∗,i ∈ cone(F∗,{1,...,n}\{i}) and irredundant,
or extreme otherwise.

The Minkowski sum of two sets, denoted A ⊕ B is defined as A ⊕ B �
{x + y | x ∈ A, y ∈ B }.
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2 Preliminaries

2.1 Linear Programming

Consider the following linear program:

max
λ

{
cTλ | λ ∈ D

}
, (2)

where λ ∈ Rn is the optimiser, c ∈ Rn is a vector and the constraint polytope
D is defined by the matrix A ∈ Rm×n and the vector b ∈ Rm as

D � {λ | Aλ = b, λ ≥ 0} . (3)

Any set B ⊂ {1, . . . , n} such that |B| = m and rankA∗,B = m is called
a basis and we write N = {1, . . . , n} \B for its complement and call λB and
λN the basic and non-basic variables respectively. Every basis B defines a basic
solution1 λB to the linear equations in (3), which is given by restricting the
non-basic constraints to zero λB

B = A−1
∗,Bb, λB

N = 0 . A basis is called primal
feasible if the resulting solution also satisfies the inequality constraints in (3):
A−1

∗,Bb ≥ 0. Note that all solutions represented by bases occur at a vertex of the
constraint polyhedron D.

2.2 Optimality Conditions

Definition 1 (Tangent cone [5]). Let λ be an element of the polyhedron D ⊆
Rn. A vector γ ∈ Rn is said to be a feasible direction at λ if there exists a strictly
positive scalar α for which λ + αγ ∈ D. The set of all feasible directions at λ
is called the tangent cone and is written TD(λ). The support cone SD(λ) is the
translation of TD(λ) by the vector λ, SD(λ) � TD(λ) ⊕ {λ}. Note that strictly
speaking, the support cone is not a cone as it has a vertex at λ rather than zero.

Given a basis B, the extreme feasible directions at the solution λB are given by
increasing each non-basic variable in a feasible (positive) direction:

λB = λB −A−1
∗,BA∗,iλi, λi ≥ 0, λN\{i} = 0, ∀i ∈ N .

The set of all convex combinations of the extreme rays give the tangent cone:

TD(λB) = cone(F ) , (4)

where FB,∗ � −A−1
∗,BA∗,N , FN,∗ � I.

Theorem 1 (Optimality Condition). Let λ be an element of the polyhedron
D. A necessary and sufficient condition for λ to be a global minimum of the
linear program (2) is cTγ ≥ 0 for all feasible directions γ at λ.

1 Where clear from the context, we will refer to the basic solution as simply the
solution.
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Definition 2. The normal cone to D at λ is the orthogonal complement of the
tangent cone:

ND(λ) �
{
v
∣∣ vT γ ≤ 0, ∀γ ∈ TD(λ)

}
.

From the above definition and (4), the normal cone to the basic feasible solu-
tion λB is:

ND(λB) =
{
v
∣∣ FT v ≤ 0

}
, (5)

where F is as defined in (4). A direct result of Theorem 1 and (5) is that the
basic solution λB , and hence the basis B, is optimal if and only if2

−c ∈ ND(λB) . (6)

2.3 Parametric Linear Programming

The problem we will consider in this paper is the following parametric linear
program:

max
λ

{
xT Eλ | λ ∈ D

}
, x ∈ X (7)

where x ∈ X is the parameter, X ⊆ Rd and ET ∈ Rd×n is a matrix of rank d,
d < n. It is assumed throughout this paper that the set of feasible parameters X
is full–dimensional, which is common to most pLP algorithms [1,2, 3]. This as-
sumption can be easily guaranteed through a pre-processing operation [1]. The
standard assumption is also made that pLP (7) has an optimal bounded solution
for every x ∈ X .3

Definition 3 (Critical Region). If B is a basis of pLP (7), then the critical
region RB is defined as the set of all parameters x◦ ∈ X such that B is optimal
for x = x◦.

From (6) and (7) that the critical region RB is the polyhedral set RB ={
x

∣∣ FTET x ≥ 0
}
∩ X .

Our goal is to enumerate all full–dimensional critical regions. In [6] it was
shown that by lexicographically perturbing the problem (7), the following prop-
erties hold:

1. Every full–dimensional critical region is uniquely defined by a single basis
2. The interiors of the full–dimensional critical regions do not overlap
3. The union of all full–dimensional critical regions is the set of feasible param-

eters X .
2 The vector −F T c is often referred to as the reduced cost c̄ and condition (6) then

becomes c̄ ≥ 0.
3 Note that this also implies that the dual solution is feasible and bounded.
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In the remainder of this paper we will assume that the problem has been lexico-
graphically perturbed and will therefore not discuss possible degeneracy of the
solution.4

Remark 1. The standard parametric linear program resulting from model pre-
dictive control problems has a cost of the form (xT E+c)λ [1], which differs from
that used here by the constant c. The procedure developed in this paper can be
applied to such problems with no added complexity by first homogenizing the
cost as detailed in [6].

3 pLP as Vertex Enumeration

The following theorem demonstrates that the goal of enumerating all bases that
define full–dimensional critical regions can be re–posed as a vertex enumeration
problem of an affine transform of the constraint polytope D.

Theorem 2. If B is a feasible basis of pLP (7) and λB is the basic solution,
then B defines a full–dimensional critical region if and only if EλB is a vertex
of the polytope ED � {Eλ | Aλ = b, λ ≥ 0}.

Proof. pLP (7) can be re-written as maxz

{
xT z | z ∈ ED

}
through the change

of variable z � Eλ. It follows from (6) and Definition 3 that x is in the critical
region RB if and only if−x is in the normal coneNED(EλB). Finally, the normal
cone of a point EλB in a polytope ED is full–dimensional if and only if EλB is
a vertex of ED [7, Sec. 3.2].

Two vertices of a polytope are called neighbours, or adjacent, if they are con-
tained in the same edge, or one–dimensional face of the polytope. The proposed
algorithm begins at a single vertex of ED and then recursively computes neigh-
bours until all vertices have been found. In the following section we see that the
adjacent vertices of a vertex v ∈ ED are given by the intersection of ED and
the extreme rays of the support cone SED(v). The proposed method is outlined
as Algorithm 1 below.

Remark 2. Note that the extreme rays of the tangent cone (and hence the sup-
port cone) are given directly by the normals of the irredundant inequalities
describing the normal cone. The negative normal cone of ED at a vertex EλB

is exactly the critical region of the basis B, RB = −NED(EλB) and therefore
determining the extreme rays of the support cone is an operation that is entirely
equivalent to the redundancy elimination operations that are done to compute
the facets of the critical regions in other methods, e.g. [1,2, 3].

Algorithm 1 below is similar to others presented in the literature [1, 2, 3],
although the formulation is in the dual. The main contribution of this paper is
4 Note that our definition of a critical region differs from that generally found in the

literature. However, under the assumption that the problem is non–degenerate, or
equivalently, lexicographically perturbed, the two definitions are equivalent.
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in Step 4, where one must determine the extreme rays of the support cone of ED
at the point EλB. In current algorithms, this requires a redundancy elimination
operation in order to determine which rays are extreme. For problems that are
of interest to control and are yet small enough to be computed, this redundancy
elimination requires the majority of the computation time, as is illustrated in
Section 4. Section 3.2 presents a new primal–dual approach that can significantly
reduce the computation time for these smaller problems.

Remark 3. Algorithm 1 can be seen as a form of gift-wrapping algorithm in a
polar dual context (also called pivoting algorithms) in which the vertices are not
known apriori but are provided by an oracle.

Algorithm 1. Parametric Linear Programming
Require: Basis B0 of pLP (7) such that dimRB = d

Ensure: All bases B such that dimRB = d
1: Lunexplored ←− {B} , Ldiscovered ←− {B}
2: while Lunexplored is not empty do
3: Select any basis B from Lunexplored

4: for all extreme rays r of ESD(λB) do Section 3.2
5: B′ ←− neighbour(r, B) Section 3.1
6: Lunexplored ←− Lunexplored ∪ ({B′} \Ldiscovered)
7: Ldiscovered ←− Ldiscovered ∪ {B′}
8: end for
9: end while
10: Return list Ldiscovered

3.1 Neighbour Function

This section outlines the function neighbour(·, ·), which is used in Step 5 of
Algorithm 1. The edges of a polytope P that intersect at a vertex v ∈ P are
given by the intersection of P with the extreme rays of the support cone at v [5].
The following lemma describes the tangent cone of a basic solution of ED, where
we recall that the support cone is equal to the tangent cone shifted by v.

Lemma 1. If λ is an element in the polytope D, then TED(Eλ) = ETD(λ).

Proof. From Definition 1, γ ∈ Rd is in ETD(λ) if and only if there exists a scalar
α > 0 and a vector g such that

γ = Eg, λ + αg ∈ D . (8)

By assumption, E is rank d and therefore such a g always exists for each γ ∈
ETD(λ). Under the mapping E, (8) becomes Eλ + αγ ∈ ED, which is true if
and only if γ ∈ TED(Eλ).
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Lemma 1 and (4) give a description of the tangent cone to a vertex EλB

of ED defined by the basis B:

TED(EλB) = cone(EF ) , (9)

where FB,∗ � −A−1
∗,BA∗,N , FN,∗ � I. Note however, that not every column EF∗,i

defines an extreme ray of TED(EλB), as some of them may well be redundant.
Determining if a ray is redundant or not requires the majority of effort during
the computation of a pLP and is the main topic of this paper. A new approach
to determining redundancy will be introduced in Section 3.2.

We can now define the function B′ = neighbour(r, B), where
r =

{
E(F∗,iα + λB) | α ≥ 0

}
is an extreme ray of the support cone SED(EλB).

The neighbour function returns the basis B′ such that EλB′
is the vertex of

r ∩ ED, which is different from EλB . Note that there are exactly two vertices
on each edge.

The following new theorem provides an efficient method of computing the
basis that represents the adjacent vertex given an irredundant ray of the tan-
gent/support cone.

Theorem 3. If B is a feasible basis of D, EλB is a vertex of ED and r ={
E(F∗,iα + λB) | α ≥ 0

}
is an extreme ray of the support cone SED(EλB), then

the adjacent vertex of EλB in the direction r is the optimal basis of the LP:

max
λ

{
(EF∗,i)T Eλ | λ ∈ D, λj = 0, ∀j /∈ Q

}
, (10)

where Q � {j | ∃ρ ≥ 0, EF∗,i = ρEF∗,j } and FB,∗ � −A−1
∗,BA∗,N , FN,∗ � I.

Proof. The adjacent vertex is reached by moving along the edge r ∩ ED away
from EλB. Every point λ ∈ D can be written as λ = λB + Fγ, for some γ ≥ 0,
where F is as defined in the statement of the theorem, because every tangent
cone is a superset of the polytope [7]. Consider the column F∗,j and the resulting
ray λ = λB + F∗,jγj , γj ≥ 0. Clearly, Eλ ∈ r if and only if there exists a ρ ≥ 0
such that EF∗,j = ρEF∗,i. Therefore, the face P of D such that EP = r ∩ ED
is given by P = {λ | λi = 0, ∀i /∈ Q} ∩D.

The LP given in the statement of the theorem then maximises in the direction
of the ray r, while restricting λ to be in the face P .

Remark 4. Note that if the set Q in Theorem 3 contains only one element more
than the basis B, then LP (10) will compute the adjacent basis in a single
simplex pivot. This is a significant improvement over current methods [1, 2, 3],
which always require the calculation of an LP of dimension equal to that of D.

3.2 Primal-Dual Enumeration

The standard method for redundancy elimination, or determining which rays are
extreme in Step 3 of Algorithm 1 requires a single linear program of dimension d
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per ray [8]. Testing if the ith ray of the support cone SED(EλB) for some vertex
EλB of ED is redundant can be done using the following linear program [8]:

J(i) = minimise (−EF∗,i)
T
x

subject to
(
EF∗,{1:i−1,i+1,n}

)T
x ≥ 0

(EF∗,i)
T
x ≥ −1

(11)

where the ray ri is extreme if J(i) < 0. Current pLP methods reported in the
literature [1,2, 3] require the solution of LP (11) for each column of F at every
vertex, resulting in the computation of a very large number of linear programs.
This paper seeks to reduce this requirement through a heuristic based on [4],
which can significantly reduce the work required to compute the extreme rays.

The approach presented in this section is called ‘primal-dual’ because both the
primal (vertex) and dual (halfspace) representations of ED are computed. At the
qth step of the algorithm, q vertices of ED will have been found. At this point,
the algorithm has a list of these q vertices

{
v1, . . . , vq

}
; it also stores a halfspace

representation of their convex hull Hq � {z |Gqz ≤ gq } = conv
{
v1, . . . , vq

}
.

When a new vertex vq+1 is found, the existing description of the convex hull is
first extended to include it: a new matrix Gq+1 and vector gq+1 are computed
such that Hq+1 =

{
z
∣∣Gq+1z ≤ gq+1

}
= Hq ∪

{
vq+1

}
.

We are now able to use this information to improve the efficiency of redun-
dancy elimination. Given a basis B, we begin by writing down the known de-
scription SED(EλB) =

{
E(λB + Fγ) | γ ≥ 0

}
of the support cone at the vertex

EλB from (9). The goal is now to test each ray ri �
{
E
(
λB + F∗,iγi

)
| γi ≥ 0

}
to determine if it is an extreme ray of SED(EλB).

We note that the polytope Hq+1 is an inner approximation of the set ED. It
follows that if the ray ri intersects the interior of Hq+1, then it also intersects
the interior of ED and is therefore not an extreme ray of SED(ED). This notion
is formalised in the following theorem.

Theorem 4. Let Hq = conv
{
v1, . . . , vq

}
= {z |Gqz ≤ gq }, where vi are q

vertices of ED and dim(Hq) = dim(ED). If EλB is a vertex of ED and of
Hq, then ri �

{
E
(
λB + F∗,iγi

)
| γi ≥ 0

}
is a redundant ray of the support cone

SED(EλB) if for each j such that Gj,∗v = gj the condition Gj,∗EF∗,i < 0 holds,
where F is defined as in (4).

Proof. The test is simply to check if a point on the ray ri is internal to Hq for
a strictly positive γi:

GE
(
λB + F∗,iγi

)
≤ g

GEF∗,iγi ≤ g −GEλB . (12)

Recall that EλB is a vertex of Hq and therefore g − GEλB ≥ 0. For those
constraints that are strictly greater than zero, (12) will clearly be satisfied for
some γi > 0 and therefore we have only to test those constraints that are equal
to zero. Clearly, there exists a strictly positive α such that (12) is satisfied if and
only if Gj,∗EF∗,i < 0 for all j such that Gj,∗EλB = gj.
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Theorem 4 can now be used during Step 3 of Algorithm 1 to determine which,
if any, of the rays of SED(EλB) are redundant. As this test can only prove
redundancy and not irredundancy, if the conditions of the theorem are not met,
then the linear program (11) must still be solved.

Convex Hull Computation. The use of Theorem 4 requires the computation
of the convex hull Hq of the first q discovered vertices

{
v1, . . . , vq

}
of ED.

While any convex hull algorithm could be used, ideally the algorithm should be
incremental, or able to add one vertex at a time, and have the ability to quickly
identify which inequalities are active at the most recently added vertex.

An incremental approach takes as input a full–dimensional polytope Hq−1 ={
z
∣∣Gq−1z ≤ gq−1

}
and computes the convex hull Hq = Hq−1∪{vq} for a point

vq. The facetHq−1∩
{

z
∣∣∣Gq−1

i,∗ z = gq−1
i

}
is called visible from vq if its supporting

hyperplane separates Hq−1 and vq (i.e. Gq−1
i,∗ vq > gq−1

i ), otherwise the facet is
obscured. The set of facets of Hq then consists of the obscured facets of Hq−1 as
well as a new set of facets to replace the visible ones, which include the point vq.
Updating Hq−1 to Hq therefore consists of two subproblems: finding all visible
facets of Hq−1 and computing new facets to replace them. The inequalities that
must be tested in Theorem 4 is then exactly the set of new facets that are
computed to replace the visible ones and are therefore computed as a side effect
of the convex hull algorithm.

There are two approaches available for determining the set of visible facets
that can be applied in the context of this paper, where the list of points vi

for i larger than q is not available while computing Hq. The first is to simply
check each facet of Hq−1 to determine if vq is on its positive (obscured) or
negative (visible) side. This is the approach used in Kallay’s beneath–beyond [9]
and Motzkin’s double description [10] methods and requires time linear in the
number of facets of Hq−1. An improvement on this is to store a so–called facet
graph, whose nodes are facets and arcs connect facets if they share a common
ridge. The set of visible facets then forms a subgraph of the facet graph and can
be efficiently enumerated in time proportional to the number of visible facets [11].

Once the visible facets are computed and removed, the supporting hyper-
planes of the new facets containing the point vq can be efficiently computed by
noting that they must contain the point vq as well as the ridges formed by the
intersection of the removed facets and the obscured facets.

The reader is referred to [12] for a more complete handling of incremental
convex hull algorithms.

Complexity. Current methods of computing pLPs are in a sense output sen-
sitive, in that they require a fixed number of redundancy elimination LPs (11)
to be computed per critical region of the solution (one for each column of the
matrix F ). The approach introduced in this paper aims to reduce the number
of redundancy elimination LPs through the use of Theorem 4. However, since
Theorem 4 is a sufficient condition for redundancy and not a necessary one,
no guarantee can be made that any of the rays will satisfy the conditions of
the theorem, and as a result it may be the case that LP (11) must still be
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computed for each ray, which would therefore result in no improvement over
current methods in the worst–case.

The additional cost of using the primal-dual test is the calculation and storage
of the halfspace description of ED. While this convex hull can be computed
efficiently in an incremental fashion as outlined above, the relationship between
the number of vertices in ED and the number of inequalities can be exponential.
As a result the applicability of this algorithm is limited to those polyhedra ED
that can be described with both relatively few inequalities and few vertices. In
Section 4 it will be seen that there are problems that are of a size and structure
that are interesting in a control context and which satisfy these requirements.

4 Examples

The primary motivation for pLPs in control is the calculation of so–called closed–
form or explicit Model Predictive Control (MPC) laws. In standard MPC an
optimisation problem, which is a function of the current state, is solved at each
sampling instant, whereas in closed-form MPC the problem is posed in multi-
parametric form, with the state as a parameter, and solved offline.

The goal is to regulate the linear time invariant (LTI) system x+ = Ax + Bu
to the origin, where x ∈ Rn is the state, x+ is the successor state and u ∈ Rm

is the input. A standard Model Predictive Controller (MPC) can be written as
the solution to the following optimisation problem, in which the optimiser u1 is
the input that is applied to the system, given the measured state x:

J(x) = minimise
u1,...,uN−1,x1,...,xN

∑N−1
i=1 ‖Rui‖p +

∑N−1
i=1 ‖Qxi‖p + ‖QF xN‖p

subject to x0 = x
xi+1 = Axi + Bui, i = 0, . . . , N − 1
xi+1 ∈ X , ui ∈ U i = 0, . . . , N − 1

(13)

where xi and ui are future predicted states and inputs respectively, which are
constrained to be in the polytopes X and U . If the norm p is taken to be either
the 1− or ∞−norm, then a linear program results, which is the case of interest
in this paper. Conversion of this problem to the form of pLP (1) is discussed
in [1] and requires the introduction of several slack variables.

4.1 Closed-Form MPC for a 4D System

Consider the problem (13) with the following randomly generated system, which
is given as an example in the MPT toolbox [13]:

x+ =

⎡⎢⎢⎣
0.7 −0.1 0.0 0.0
0.2 −0.5 0.1 0.0
0.0 0.1 0.1 0.0
0.5 0.0 0.5 0.5

⎤⎥⎥⎦x +

⎡⎢⎢⎣
0.0 0.1
0.1 1.0
0.1 0.0
0.0 0.0

⎤⎥⎥⎦u

with a prediction horizon N = 5 and the constraints ‖ui‖∞ ≤ 1, ‖xi‖∞ ≤ 5 on
the input and state respectively. The cost is the minimisation of the ∞−norm
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of the states and inputs at each point in time and the matrices Q, QF and R
are taken as the identity.

When the problem is written in the form of pLP (2), (3) the matrix A is in
R20×120 and E is in R4×120 and the solution contains 12, 128 critical regions.
While this problem may seem fairly small, there are many interesting and useful
control problems of this size and there are only a very small number of applica-
tions reported in the literature in which the parameter size is larger.

The proposed approach was compared against the two main methods for com-
puting pLPs reported in the literature. The method used in the Multiparametric
Toolbox (MPT [13]) is based on a similar exploration strategy as the proposed
method and solves an LP of the form (11) for every possible redundant ray.
The computation of adjacent critical regions is done using a linear program of
dimension equal to that of D, and is therefore less efficient than that given in
Theorem 3. The second method is that implemented in the Hybrid Toolbox [14]
and is based on an entirely different exploration strategy. The reader is referred
to [1] for details of this method.

From Table 1 one can see that the primal–dual algorithm offers a significant
reduction in the number of pivots required to compute the solution. The com-
putation of the convex hull for this example required 71.1 seconds to compute
using qhull [15]. To give an idea of speed, a 3GHz Pentium IV machine using
the Stanford Systems Optimization Laboratory (SOL) toolbox [16] can execute
the required pivots for the primal–dual approach in 36.6 seconds, which when
added to the time to compute the convex hull totals 107.7 seconds compared to
a total of 280.1 seconds for the MPT [13] approach.

Table 1. Comparison of pLP Methods for Example 4.1

Method Simplex Pivots
R4 R20

Primal–Dual 761, 487 76, 488
MPT [13] 6, 409, 503 670, 940
Hybrid Toolbox [14] > 2GB RAM

5 Conclusions

This paper has introduced a new method of enumerating the solution to a para-
metric linear program based on a primal–dual paradigm. It was shown that the
proposed algorithm can significantly reduce the number of linear programs that
need to be solved in order to determine irredundant descriptions of the critical
regions. The code used in the paper is available as part of the Multiparametric
Toolbox [13].
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Derivative-free optimization algorithms are needed to solve real-world engineer-
ing problems that have computationally expensive and noisy objective function
and constraint evaluations. In particular, we are focused on problems that in-
volve running cumbersome simulation codes with run times measured in hours.
In such cases, attempts to compute derivatives can prove futile because analytical
derivatives are typically unavailable and noise limits the accuracy of numerical
approximations. Furthermore, the objective and constraint functions may be
inherently nonsmooth, i.e., because the underlying model is nonsmooth.

Generating Set Search (GSS) methods [7] are particularly well-suited to such
unwieldy optimization problems. GSS methods are a generalization of pattern
search that derives its search directions from the generators of the ε-tangent
cone of the linear constraints, i.e., a generating set. GSS methods offer several
advantages:
• Because search direction are based upon the local geometry of the feasible

region defined by the linear constraints, and not the objective or nonlinear
constraint functions, they are well-suited for problems with noise.
• The function evaluations can be performed asynchronously in parallel [5, 10, 6].
• If the underlying objective function and constraints are smooth, GSS methods

can bound the first-order optimality conditions in terms of step size.
• They can easily accommodate undefined points within the feasible region, i.e,

points where the simulation unexpectedly fails.
The focus of this talk will be on the addition of constraint-handling abilities

to APPSPACK, which is a C++ implementation of an asynchronous parallel
GSS algorithm [4]. APPSPACK is a publicly available derivative-free software
package whose handling of both linear and nonlinear constraints is based upon
rigorous convergence theory. Specifically, we have added the ability to handle
linear constraints using conforming search directions and nonlinear constraints
using an augmented Lagrangian algorithm.

We are interested in solving a nonlinear program of the form

minimize
x∈Rn

f(x)

subject to c(x) = d (1)
 ≤ Ax ≤ u.

Here f : Rn → R is the objective function, c : Rn → Rp denotes the nonlinear
equality constraints, and A denotes an n×m linear constraint matrix. We allow

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 260–262, 2006.
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for both linear equality and inequality constraints. We assume that evaluating
f(x) and c(x) is expensive and derivatives are unavailable.

Consider first the problem of linear constraints. APPSPACK’s linear con-
straint support is based on [11, 8]. We generate a core set of search directions,
as outlined in [11], from generators of tangent cones corresponding to nearby
constraints. The solid lines in 1 show the “conforming” search directions to the
nearby boundary (as defined by the ε-ball that is drawn). The dashed lines in-
dicate additional directions that we might choose to add to further accelerate
the search. This choice of search directions guarantees that we have at least one
feasible descent direction, if one exists. If the nearby constraints are nondegen-
erate, finding the search directions is a straightforward linear algebra problem;
otherwise, more sophisticated machinery is required and we use cddlib [3] to
find the appropriate generators.

Fig. 1. At each iteration an ε-ball is formed about the current point to determine nearby
constraints and corresponding search directions added. Extra directions (denoted by
dashes) are generally added to facilitate movement toward and away from the boundary.

APPSPACK handles nonlinear equality constraints using an augmented La-
grangian method proposed in [2, 1] and extended to the directive-free case in
[12, 9]. Remarkably, the derivative-free variant retains the same theoretical
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convergence properties as the original derivative-based augmented Lagrangian
approach. This algorithm can be divided into inner and outer iterations; in-
ner iterations being devoted to approximately solving the linearly-constrained
subproblem

minimize
x∈Rn

φk(x) ≡ f(x)− λT
k c(x) +

1
2μk
‖c(x)‖2

subject to  ≤ Ax ≤ u
(2)

for fixed λk and μk, while outer iteration are used to assess optimality and
update the subproblem specific parameters.

This talk will begin with a brief background of GSS methods and follow with a
description of how linear and nonlinear constraints are handled in APPSPACK.
Theory and numerical results will be provided.
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Abstract. We consider a polynomial programming problem P on a
compact basic semi-algebraic set K ⊂ Rn, described by m polynomial
inequalities gj(X) ≥ 0, and with criterion f ∈ R[X]. We propose a hier-
archy of semidefinite relaxations that take sparsity of the original data
into account, in the spirit of those of Waki et al. [7]. The novelty with
respect to [7] is that we prove convergence to the global optimum of
P when the sparsity pattern satisfies a condition often encountered in
large size problems of practical applications, and known as the running
intersection property in graph theory.

1 Introduction

In this paper we consider the polynomial programming problem:

P : inf
x∈Rn

{ f(x) | x ∈ K}, (1)

where f ∈ R[X ], and K ⊂ Rn is the basic closed semi-algebraic set defined by

K := {x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m }, (2)

for some polynomials {gj}mj=1 ⊂ R[X ].
The hierarchy of semidefinite programming (SDP) relaxations introduced in

Lasserre [8] provides a sequence of SDPs of increasing size, whose associated
sequence of optimal values converges to the global minimum of P. Moreover, as
proved in Schweighofer [13], convergence to a global minimizer of P (if unique)
also holds. For more details, the reader is referred to [3,8,13] and the many
references therein. In addition, practice reveals that convergence is usually fast,
and often finite (up to machine precision); see e.g. Henrion and Lasserre [3].

However, despite these nice features, the size of the SDP-relaxations grows
rapidly with the size of the original problem. Typically, the kth SDP-relaxation
has to handle at least one LMI of size

(
n+k

n

)
and

(
n+2k

n

)
variables, which clearly

limits the applicability of the methodology to problems with small to medium
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size only. Therefore, validation of the above methodology for larger size prob-
lems (and even more, for large scale problems) is a real challenge of practical
importance.

One way to extend the applicability of the methodology to problems of larger
size, is to take into account sparsity in the original data, frequently encountered
in practical cases. Indeed, as typical in many applications of interest, f as well
as the polynomials {gj} that describe K, are sparse, i.e., each monomial of f
and each polynomial gj are only concerned with a small subset of variables. This
is the approach taken in Waki et al. [7] (extending Kim et al. [5] and Kojima et
al. [6]), where the authors have built up a hierarchy of SDP-relaxations in the
spirit of those in [8], but where sparsity is taken into account. In [7], the authors
have proposed a systematic procedure to detect and structure sparsity in P,
via the so-called chordal extension of the correlation sparsity pattern graph (csp
graph); the csp graph has as many nodes as variables, and a link beween two
nodes (i.e., variables) means that these two variables both appear in a monomial
of the objective function or in some inequality constraint gj ≥ 0 of P. Once a
sparsity pattern has been detected, they define a simplified ”sparse” version of
the SDP-relaxations of [8]; briefly, in the dual, the sum of squares (s.o.s.) mul-
tiplier associated with a constraint is now a polynomial in only those variables
appearing in that constraint. In doing so, they have obtained impressive gains in
the size of the resulting SDP-relaxations, as well as in the computational time
needed for obtaining an optimal solution. However, and despite good approxima-
tions are obtained in most problems in their sample of experiments, convergence
to the global minimum is not guaranteed.

Contribution. We propose a hierarchy of SDP-relaxations {Qr} in the spirit of
the original SDP-relaxations [8] and close to those defined in [7]. They are valid
for arbitrary polynomial programming problems, and have the following three
appealing features:

(a) In the SDP-relaxation Qr of order r, the number of variables is O(κ2r)
where κ = max[κ1, κ2] witth κ1 (resp. κ2) being the maximum number of vari-
ables appearing in f (resp. in a single constraint gj(X) ≥ 0).

(b) The largest size of the LMI’s (Linear Matrix Inequalities) is O(κr).
This is to compare with the respective number of variables O(n2r) and LMI

size O(nr) in the original SDP-relaxations defined in [8].
(c) Under a certain condition on the sparsity pattern, the resulting sequence

of their optimal value converges to the global minimum of P.
So in view of (a) and (b), and when κ is small (κ* n), i.e., when sparsity is

present, dramatic computational savings can be expected. In other words, these
new SDP-relaxations are inherently exploiting sparsity in the data {f, gj} when
present. Moreover, the size of the SDP-relaxation Qr is in a sense minimal,
at least when considering such types of SDP-relaxations, because one should
at least handle moments involving κ variables, whenever some monomial of κ
variables appears in the data {f, gj}.

The condition under which such SDP-relaxations converge to the global
minimum of P is easy to describe, and reflects a sparsity pattern frequently
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encountered in large scale problems. Namely, let {1, . . . , n} be the union
⋃p

k=1 Ik

of subsets Ik ⊂ {1, . . . , n}. Every polynomial gj in the definition (2) of K, is only
concerned with variables {Xi | i ∈ Ik} for some k. Next, f ∈ R[X ] can be written
f = f1 + · · ·+ fp where each fk uses only variables {Xi | i ∈ Ik}. In cases where
the subsets {Ik} are not so easy to detect, one may use the procedure of Waki
et al. [7] via the chordal extension of the csp graph.

Finally, the collection {I1, . . . , Ip} should obey the following condition: For
every k = 1, . . . , p− 1,

Ik+1 ∩
k⋃

j=1

Ij ⊆ Is for some s ≤ k. (3)

Notice that (3) is always satisfied when p = 2. Property (3) depends on the
ordering and so, can be satisfied possibly after some relabelling of the Ik’s.
Moreover, if not satisfied, one may enforce (3) but at the price of enlarging some
of the sets Ik. If I1, . . . , Ip are the maximal cliques of a chordal graph then (3)
is satisfied possibly after some reordering of the cliques, and is known as the
running intersection property; for more details on chordal graphs, the reader is
referred to Fukuda et al. [2] and Nakata et al. [11].

Link with related literature. As already mentioned, our work is closely re-
lated to the recent work of Kojima et al. [6] and Waki et al. [7], in which they
were the first to exploit sparsity of data and modify (or simplify) in an appro-
priate way the original SDP-relaxations defined in [8]. Our SDP-relaxations are
very close to those defined in [7], but handle p additional quadratic constraints.
These p additional constraints together with condition (3), are crucial to prove
our convergence result. To summarize, our result implies that by a slight mod-
ification of the SDP-relaxations defined in [7], convergence is now guaranteed
when the sparsity pattern satisfies (3).

2 Notation and Definitions

As common in algebra, variables of polynomials are denoted with capitals (e.g.
X) whereas points in Rn are denoted with small letters (e.g. x). For a real
symmetric matrix A ∈ Rn×n, the notation A + 0 (resp. A � 0) stands for
A is positive definite (resp. semidefinite), and for a vector x, let x′ denote its
transpose.

Let R[X ] denote the ring of real polynomials in the variables X1, . . . ,Xn. In
the usual canonical basis v∞(X) = {Xα |α ∈ Nn} of monomials, a polynomial
g ∈ R[X ] is written

g(X) =
∑

α∈Nn

gαXα, (4)

for some real vector g = {gα} with finitely many non zero coefficients.
With α ∈ Nn, let |α| :=

∑
i αi, and let Rr[X ] ⊂ R[X ] be the R-vector space

of polynomials of degree at most r, with usual canonical basis of monomials
vr(X) = {Xα |α ∈ Nn; |α| ≤ r}.
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Let I0 := {1, . . . , n} be the union ∪p
k=1Ik of p subsets Ik, k = 1, . . . , p, with

cardinal denoted nk. Let R[X(Ik)] denote the ring of polynomials in the nk

variables X(Ik) = {Xi | i ∈ Ik}, and so R[X(I0)] = R[X ].
For each k = 0, 1, . . . , p, let Ik be the set of all subsets of Ik. Next, for every

α ∈ Nn, let supp (α) ∈ I0 be the support of α, i.e.,

supp (α) := { i ∈ {1, . . . , n} : αi �= 0 }, α ∈ Nn.

For instance, with n = 6 and α := (004020), supp (α) = {3, 5}. Next, define

Sk := { α ∈ Nn : supp (α) ∈ Ik }, k = 1, . . . , p. (5)

A polynomial h ∈ R[X(Ik)] can be viewed as a member of R[X ], and is written

h(X) = h(X(Ik)) =
∑

α∈Sk

hα Xα (6)

for some real vector h = {hα} with finitely many non zero coefficients.

2.1 Moment Matrix

Let y = (yα)α∈Nn (i.e. a sequence indexed in the canonical basis v∞(X)), and
define the linear functional Ly : R[X ]→ R to be:

g !→ Ly(g) :=
∑

α∈Nn

gα yα, (7)

whenever g is as in (4).
As already presented in [8], given a sequence y = (yα)α∈Nn , the moment

matrix Mr(y) associated with y, is the matrix with rows and columns indexed
in vr(X), and such that

Mr(y)(α, β) := Ly(XαXβ) = yα+β, ∀α, β ∈ Nn with |α|, |β| ≤ r.

A sequence y is said to have a representing measure μ on Rn if

yα =
∫

Rn

Xα μ(dX), ∀α ∈ Nn.

Let s(r) :=
(
n+r

r

)
be the dimension of vector space Rr[X ]. For a vector u ∈ Rs(r),

let u ∈ R[X ] be the polynomial u(X) = 〈u, vr(X)〉. Then, one has

〈u,Mr(y)u〉 = Ly(u2), ∀u ∈ Rs(r).

Therefore, if y has a representing measure μ, then

〈u,Mr(y)u〉 = Ly(u2) =
∫

Rn

u(X)2 μ(dX) ≥ 0,

which implies Mr(y) + 0 (as u ∈ Rs(r) was arbitrary).
Of course, in general, not every sequence y such that Mr(y) + 0 for all r ∈ N,

has a representing measure. The K-moment problem is precisely concerned with
finding conditions on the sequence y, to ensure it is the moment sequence of
some measure μ, with support contained in K ⊂ Rn.
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2.2 Localizing Matrix

Let h ∈ R[X ] be a given polynomial

h(X) =
∑

γ∈Nn

hγ Xγ ,

and let y = (yα)α∈Nn be given. The localizing matrix Mr(h y) associated with
h and y, is the matrix with rows and columns indexed in vr(X), obtained from
the moment matrix Mr(y) by:

Mr(h y)(α, β) := Ly(h(X)XαXβ) =
∑

γ∈Nn

hγ yγ+α+β,

for all α, β ∈ Nn, with |α|, |β| ≤ r.
As before, let u ∈ Rs(r), and let u := 〈u, vr(X)〉 ∈ Rr[X ]. Then

〈u,Mr(h y)u〉 = Ly(hu2), ∀u ∈ Rs(r),

and if y has a representing measure μ with support contained in the set {x ∈
Rn : h(x) ≥ 0}, then

〈u,Mr(h y)u〉 = Ly(hu2) =
∫

Rn

h(X)u(X)2 μ(dX) ≥ 0,

which implies Mr(h y) + 0 (as u ∈ Rs(r) was arbitrary).

Next, with k ∈ {1, . . . , p} fixed, and h ∈ R[X(Ik)], let Mr(y, Ik) (resp.
Mr(h y, Ik)) be the moment (resp. localizing) submatrix obtained from Mr(y)
(resp. Mr(h y)) by retaining only those rows (and columns) α ∈ Nn of Mr(y)
(resp. Mr(h y)) with supp (α) ∈ Ik.

In doing so, Mr(y, Ik) and Mr(h y, Ik) can be viewed as moment and localizing
matrices with rows and columns indexed in the canonical basis vr(X(Ik)) of
Rr[X(Ik)]. Indeed, Mr(y, Ik) contain only variables yα with supp (α) ∈ Ik, and so
does Mr(h y, Ik) because h ∈ R[X(Ik)]. And for every polynomial u ∈ Rr[X(Ik)],
with coefficient vector u in the basis vr(X(Ik)), we also have

〈u,Mr(y, Ik)u〉 = Ly(u2), ∀u ∈ Rr[X(Ik)]
〈u,Mr(h y, Ik)u〉 = Ly(hu2), ∀u ∈ Rr[X(Ik)],

and therefore,

Mr(y, Ik) + 0⇔ Ly(u2) ≥ 0, ∀u ∈ Rr[X(Ik)] (8)
Mr(h y, Ik) + 0⇔ Ly(hu2) ≥ 0, ∀u ∈ Rr[X(Ik)]. (9)

3 Main Result

Consider problem P as defined in (1), and recall that I0 = {1, . . . , n} =
⋃p

k=1 Ik

for some subsets Ik ⊂ {1, . . . , n}, k = 1, . . . , p. The subsets {Ik} may be read
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directly from the data or may have been obtained by some procedure, e.g. the
one described in Waki et al. [7].

With ‖x‖∞ (resp. ‖x‖) denoting the usual sup-norm (resp. euclidean norm)
of a vector x ∈ Rn, we make the following assumption.

Assumption 1. Let K ⊂ Rn be as in (2). Then, there is M > 0 such that
‖x‖∞ < M for all x ∈ K.

In view of Assumption 1, one has ‖X(Ik)‖2 ≤ nkM2, k = 1, . . . , p, and therefore,
in the definition (2) of K, we add the p redundant quadratic constraints

gm+k(X) := nkM2 − ‖X(Ik)‖2 ≥ 0, k = 1, . . . , p, (10)

and set m′ = m + p, so that K is now defined by:

K := {x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m′ }. (11)

Notice that gm+k ∈ R[X(Ik)], for every all k = 1, . . . , p.

Assumption 2. Let K ⊂ Rn be as in (11). The index set J = {1, . . . ,m′} is
partitioned into p disjoint sets Jk, k = 1, . . . , p, and the collections {Ik} and
{Jk} satisfy:

(i) For every j ∈ Jk, gj ∈ R[X(Ik)], that is, for every j ∈ Jk, the constraint
gj(X) ≥ 0 is only concerned with the variables X(Ik) = {Xi | i ∈ Ik}. Equiva-
lently, viewing gj as a polynomial in R[X ], gjα �= 0⇒ supp (α) ∈ Ik.

(ii) The objective function f ∈ R[X ] can be written

f =
p∑

k=1

fk, with fk ∈ R[X(Ik)], k = 1, . . . , p. (12)

Equivalently, fα �= 0⇒ supp (α) ∈ ∪p
k=1Ik.

(iii) (3) holds.

As already mentioned, (3) always holds when p ≤ 2.

Example 1. With n = 6, and m = 6, let

g1(X) = X1X2 − 1; g2(X) = X2
1 + X2X3 − 1; g3(X) = X2 + X2

3X4,

and
g4(X) = X3 + X5; g5(X) = X3X6; g6(X) = X2X3,

Then one may choose p = 4 with

I1 = {1, 2, 3}; I2 = {2, 3, 4}; I3 = {3, 5}; I4 = {3, 6},

and J1 = {1, 2, 6}, J2 = {3}, J3 = {4}, J4 = {4}.
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So in Example 1, the objective function f ∈ R[X ] should be a sum of polynomials
in R[X1,X2,X3], R[X2,X3,X4], R[X3,X5] and R[X3,X6] (also considered as
polynomials in R[X1, . . . ,X6]).

Remark 1. For every k = 1, . . . , p, let

Kk := {x ∈ Rnk : gj(x) ≥ 0, ∀ j ∈ Jk}. (13)

For every k = 1, . . . , p, the set Kk ⊂ Rnk satisfies Putinar’s condition, that is,
there exists u ∈ R[X(Ik)] which can be written u = u0 +

∑
l∈Jk

ul gl for some
s.o.s. polynomials {u0, ul} ⊂ R[X(Ik)], and such that the level set {x ∈ Rnk :
u ≥ 0} is compact. (Take u = gm+k.) This property is crucial in the proof of
Theorem 1.

3.1 Convergent SDP-Relaxations

For each j = 1, . . . ,m′, and depending on its parity, write deg gj = 2rj−1 or 2rj .
Next, with 2r ≥ 2r0 := max[deg f,maxj 2rj], consider the following semidefinite
program:

Qr :

⎧⎪⎪⎨⎪⎪⎩
inf
y

Ly(f)

s.t. Mr(y, Ik) + 0, k = 1, . . . , p
Mr−rj(gj y, Ik) + 0, j ∈ Jk; k = 1, . . . , p

y0 = 1

, (14)

where the moment and localizing matrices Mr(y, Ik), Mr(gj y, Ik) have been
defined at the end of §2.2. Denote the optimal value of Qr by inf Qr, and minQr

if the infimum is attained.
Notice that Qr is well-defined under Assumption 2(i)-(ii). Assumption 2(iii)

is only useful to show convergence in Theorem 1 below.

The semidefinite program Qr is a relaxation of P. Indeed, with x ∈ Rn being a
feasible solution of P, the moment vector y = {yα} of the Dirac measure μ = δx

at x, is feasible for Qr, with value Ly(f) =
∫

fdμ = f(x).
Under Assumption 2, and from the definition of Mr(y, k) and Mr(gj y, k) in

§2.2, the SDP-relaxation Qr contains only variables yα with α in the set

Γr := { α ∈ Nn : supp (α) ∈
p⋃

k=1

Ik ; |α| ≤ 2r }. (15)

Remark 2. Comparing with the SDP-relaxations of Waki et al. [7]. When the
sets {Ik} are just the cliques {Ck} obtained from the chordal extension of the
csp graph as defined in [7], then the SDP-relaxations (14) are basically the same
as those defined in (32) in [7]. The only difference is in the definition of the
feasible set K of P, where we have now included the p redundant quadratic
constraints (10). In this case, the SDP-relaxations (14) are thus stronger than
(32) in [7], because they are more constrained.
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In view of the definition of the moment matrix Mr(y, Ik), write

Mr(y, Ik) =
∑

α∈Nn

yαB
k
α, k = 1, . . . , p,

for appropriate symmetric matrices {Bk
α}, and notice that for every k = 1, . . . , p,

one has Bk
α = 0 whenever supp (α) �∈ Ik. Similarly, for every k = 1, . . . , p, and

j ∈ Jk, write
Mr−rj(gj y, Ik) =

∑
α∈Nn

yαC
jk
α ,

for appropriate symmetric matrices {Cjk
α }, and notice that Cjk

α = 0 whenever
supp (α) �∈ Ik.

The dual SDP Q∗
r of Qr, reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
Ωk,Zjk,λ

λ

s.t.
∑

k: supp (α)∈Ik

[ 〈Ωk, B
k
α〉+

∑
j∈Jk

〈Zjk, C
jk
α 〉 ] + λ δα0 = fα

for all α ∈ Γr

Ωk, Zjk + 0, j ∈ Jk, k = 1, . . . , p

, (16)

where Γr is defined in (15) and δα0 is the usual Kronecker symbol. Proceding as
in Lasserre [8], and using the spectral decomposition of matrices Ωk, Zjk + 0,
the dual Q∗

r also reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
qk,qjk,λ

λ

s.t. f − λ =
p∑

k=1

(qk +
∑
j∈Jk

qjk gj )

qk, qjk ∈ R[X(Ik)] and s.o.s., j ∈ Jk, k = 1, . . . , p

deg qk, deg qjkgj ≤ 2r, j ∈ Jk, k = 1, . . . , p,

(17)

Theorem 1. Let P be as defined in (1), with global minimum denoted minP,
and let Assumption 1 and 2 hold. Let {Qr} be the hierarchy of SDP-relaxations
defined in (14). Then:

(a) inf Qr ↑ minP as r →∞.

(b) If K has a nonempty interior, then there is no duality gap between Qr

and its dual Q∗
r, and Q∗

r is solvable for sufficiently large r, i.e., inf Qr = maxQ∗
r.
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(c) Let yr be a nearly optimal solution of Qr, with e.g.

Lyr(f) ≤ inf Qr +
1
r
, ∀ r ≥ r0,

and let ŷr := {yr
α : |α| = 1}. If P has a unique global minimizer x∗ ∈ K, then

ŷr → x∗ as r→∞. (18)

For a proof see [10]. Theorem 1 establishes convergence of the hierarchy of SDP-
relaxations to the global minimum minP, as well as convergence to a global
minimizer x∗ ∈ K (if unique).

3.2 Computational Complexity

The number of variables for the SDP-relaxation Qr defined in (14) is bounded by∑p
k=1

(
nk+2r

2r

)
, and so, if all nk’s are close to each other, say nk ≈ n/p for all k,

then one has one has at most O(p(n
p )2r) variables, a big saving when compared

with O(n2r) in the original SDP-relaxations defined in [8] and implemented in
[3].

In addition, one also has p LMI constraints of size O((n
p )r) and m + p LMI

constraints of size O((n
p )r−r′

) (where 2r′ is the largest degree of the polynomials
gj’s), to be compared with a single LMI constraint of size O(nr) and m LMI
constraints of size O(nr−r′

) in [3,8]. So for instance, when using an interior point
method, it is definitely better to handle p LMIs, each of size (n/p)r, rather than
a single LMI of size nr.

4 Conclusion

We have provided a hierarchy of SDP-relaxations when the polynomial opti-
mization problem P has some structured sparsity (which can be detected as in
Waki et al. [7]). This hierarchy is of the same flavor (in fact a minor modifica-
tion) as that in Waki et al. [7], for which excellent numerical results have been
reported. Our contribution was to prove convergence of the optimal values to
the global minimum of P when the sparsity pattern satisfies the condition (3),
called the running intersection property in graph theory, and frequently encoun-
tered in practice. Therefore, this result together with [7], opens the door for the
applicability of the general approach of SDP-relaxations to medium (and even
large) scale polynomial optimization problems, at least when a certain sparsity
pattern is present.

Acknowledgements. The author is indebted to Prof. M. Kojima for very in-
teresting and helpful discussions on the topic of sparse SDP-relaxations. He
also wishes to thank T. Netzer and M. Schweighofer from Konstanz University
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author.
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Abstract. We present a new efficient algorithm for numerical integration
over a convex polyhedron in multi-dimensional Euclidian space defined by
a system of linear inequalities. The software routines which implement this
algorithm are described. A numerical example of calculating an integral
using these routines is given.

1 Introduction and Description of the Algorithm

This article describes a new step in the development of algorithms and software
for multiple integration.

Available standard numerical routines for multiple integration enable one to
integrate over cubes of the form

[
a
(0)
1 ; a(1)

1

]
×

[
a
(0)
2 ; a(1)

2

]
× ...×

[
a
(0)
n−1; a

(1)
n−1

]
×[

a
(0)
n ; a(1)

n

]
in the n-dimensional Euclidean space En, where n is small, as well

as over the sets in En defined by
[
f

(0)
1 ; f (1)

1

]
×

[
f

(0)
2 ; f (1)

2

]
× ...× [f (0)

n−1; f
(1)
n−1]×[

a
(0)
n ; a(1)

n

]
, where f

(0)
k , f

(1)
k

(
k = 1, n− 1

)
are functions, the only possible ar-

guments of which are variables xk−1,xk−2, ...,x1 .
If the area of integration is more complicated, there are no available algorithms

and software. There are only two universal methods that enable one to integrate
over an arbitrary convex set (CS) in En, the boundary of which is defined by
the equation F (x1 ,x2 , ...,xn) = 0. The first is the Monte-Carlo method [4]. The
second is based on integration over a minimum n-dimensional cube C such that
CS ⊂ C, and instead of the integral

∫
cs

f(x1 ,x2 , ...,xn)dx1...dxn the equivalent

integral
∫
c

f1(x1 ,x2 , ...,xn)dx1 ...dxn is calculated, where

f1(x1 ,x2 , ...,xn) =
{

f(x1 ,x2 , ...,xn), if (x1 ,x2 , ...,xn) ∈ CS
0, otherwise .
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Obviously, both methods are inefficient from the perspective of computation,
and the second method requires a great number of ”check on condition” op-
erations which take a relatively long time. In the case where the domain of
integration is a convex polyhedron much more efficient numerical methods can
be developed.

Assuming that a convex polyhedron (CP) in En is defined by the system of
linear inequalities over the variables x1 ,x2 , ...,xn, integration over the CP can
be reduced to integration over a set of non-intersecting domains of the form[
f

(0)
1 ; f (1)

1

]
×

[
f

(0)
2 ; f (1)

2

]
× ...× [f (0)

n−1; f
(1)
n−1]×

[
a
(0)
n ; a(1)

n

]
, where the functions

f
(0)
k , f

(1)
k

(
k = 1, n− 1

)
are linear combinations of variables xk−2,xk−1, ...,x1 .

Integration over such domains can be carried out utilizing available multiple
integration routines (such routines are considered in [5] and [6]).

Integration over a convex polyhedron (and in the simplest case, calculating
the volume of a convex polyhedron) has many applications. For example, it is
required in solving certain probabilistic problems. Let’s formulate one of them.
For an n-th order random polynomial

a0(ω) + a1(ω)x + a2(ω)x2 + ... + a
n
(ω)xn = 0,

where a0(ω), ..., an(ω) are independent random variables uniformly distributed
in the intervals

[
a
(0)
1 ; a(1)

1

]
,
[
a
(0)
2 ; a(1)

2

]
, ...,

[
a
(0)
n ; a(1)

n

]
, respectively, find the

distribution of the number of real zeros of the polynomial belonging to a certain
real interval [a; b] (see [2]).

This problem can be easily reduced to the calculation of the volumes of a
finite number of convex polyhedrons, defined by systems of linear inequalities.

An example of solving a problem of this kind with the help of the presented
algorithm for multiple numerical integration is given in section 3 of the article.

In order to describe the presented method we need the following notations.

Notation 1. Double inequality.
Double inequality (DI) of j-th order is an ordered pair of j-th order vectors LP =
(LP0, ...,LPj−1), RP = (RP0, ..., RPj−1) which correspond to the inequality

LP0 +LP1×x1 + ...+LPj−1×xj−1 < xj < RP0 +RP1×x1 + ...+RPj−1×xj−1.

Remark 1. From here on all the inequalities mentioned in the text are double
inequalities. Assume that possible values of the variables xi

(
i = 1, n

)
are re-

stricted to bounded intervals [LConsti;RConsti]
(
i = 1, n

)
, respectively, this

enables one to rewrite each linear inequality as a DI which is a necessary pre-
liminary step for the algorithm.

Notation 2. System of r-type.
We say the system of inequalities belongs to r-type (2 ≤ r ≤ n) if it contains
exactly one inequality of order i for each i such that r < i ≤ n and more than
one r-th order inequalities. The system of inequalities belongs to a one-type if it
has exactly one inequality of order i for each i such that 1 ≤ i ≤ n.



Algorithm and Software for Integration over a Convex Polyhedron 275

Notation 3. Transformation of an ordered pair (LV,RV ) of vectors of i-th or-
der into DI of order k (k ≤ i− 1) .

The inequality corresponding to the pair (LV,RV ) is of the form

LV0 +LV1×x1 + ...+ LVi−1× xi−1 < RV0 +RV1× x1 + ...+RVi−1× xi−1 (1)

If LVi−1 < RVi−1, we rewrite (1) in the form

RConsti−1 > xi−1 >
LV0 −RV0

RVi−1 − LVi−1
+

LV1 −RV1

RVi−1 − LVi−1
× x1 +

+
LV2 −RV2

RVi−1 − LVi−1
× x2 + ...

LVi−2 −RVi−2

RVi−1 − LVi−1
× xi−2. (2)

DI corresponding to (2) is then the result of the transformation.
If LVi−1 > RVi−1, we rewrite (1) in the form

LConst < xi−1 <
RV0 − LV0

RVi−1 − LVi−1
+

RV1 − LV1

RVi−1 − LVi−1
× x1 +

+
RV2 − LV2

RVi−1 − LVi−1
× x2 + ... +

RV i−2 −LVi−2

RVi−1 − LVi−1
× xi−2. (3)

If LVi−k = RVi−k , k = 1, ..., k1 , LVi−k1−1 �= RVi−k1−1 ,we transform the pair
of vectors (LV0,LV1, ...,LVi−k1−1) of order i− k1 into DI of order i− k1− 1 via
formulae (2) or (3), where instead of i we substitute i− k1.

Notation 4. Decomposition.
Assume that the initial system of inequalities (IS) belongs to r-type. The system
has at least two inequalities of r-th order. These inequalities have ndlp distinct
left parts and ndrp distinct right parts. So we have a pair of vectors (LP,RP ),
which consist of distinct left parts and distinct right parts, respectively, of r-th
order inequalities belonging to the system.

The IS is decomposed into ndlp× ndrp systems Sij , i = 1, ndlp, j = 1, ndrp.
Each of the systems Sij is formed in the following way:

(a) All inequalities (LPi, RPj) of orders different from r which belong to IS
are included in Sij ;

(b) Only one inequality (LPi, RPj) of order r is included in Sij;
(c) All the inequalities obtained via transformations of all pairs of vectors

(LPi, RPj), s �= i, s = 1, ndlp
(RPj , RPp), p �= j, p = 1, ndrp

are included in Sij;
(d) The inequality obtained via the transformation of the pair of vectors

(LPi, RPj) is included in Sij.
The systems Sij which have no solutions (we call them invalid) are ignored.
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It can be easily shown that:

– The system {Sij}
i=ndlp

j=ndrp

is equivalent to IS.

– The system {Sij}
i=ndlp

j=ndrp

consists of nonintersecting systems of inequalities.

– The types of systems Sij are less than or equal to r − 1.

Algorithm 1. Algorithm for Integration over a Convex Polyhedron
Step 1. Set Sum = 0 (initialization of the calculated integral).
Step 2. Check what is the type of IS. If the IS belongs to a one-type, go to step

3, otherwise go to step 4.
Step 3. Integrate over the set defined by the IS, add the calculated integral to

Sum and terminate.
Step 4. Decompose the IS into nonintersecting systems and for each of them

go to step 2 viewing it as IS.

Any available routine for numerical integration can be applied in step 3 of this
algorithm.

2 Software Routines for the Algorithm Realization

The algorithm has been programmed in C++ language.
We define three basic structures named Inequality, SOKOI (system of k-

th order inequalities), and SOI (system of inequalities). Their description is
presented in Listing 1.

Structure Inequality implements an inequality of order k. Structure SOKOI
realizes a system of m inequalities, each one of order k. Structure SOI includes
n SOKOI structures, each of which presents a group of mj inequalities of order
j, j = 1, 2, . . . , n. Thus, SOI forms a general system of inequalities.

Listing 1. Basic Structures

/* Implementation of inequality of order k */
struct Inequality
{

int coefficients num; // order of inequality
// (number of coefficients)

double *left, *right; // pointers to left and right vectors

Inequality (int k=0) // constructor
: left (NULL),

right (NULL)
{

coefficients num = k; // set number of coefficients
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if (coefficients num > 0)
{

// dynamic allocation of a left vector
left = new double[coefficients num];
// dynamic allocation of a right vector
right = new double[coefficients num];

}
} // constructor Inequality

}; // struct Inequality

/* Implementation of a system of m inequalities,
each one of order k */

struct SOKOI // SOKOI - system of k-th order inequalities
{

int inequalities num, // number of inequalities in a system
coefficients num; // order of inequality

// (number of coefficients in inequality)
Inequality *inequalities vector; // pointer to array

// of inequalities

SOKOI (int m=0, int k=0) // constructor
: inequalities vector (NULL)

{
inequalities num = m; // set number of inequalities
coefficients num = k; // set number of coefficients

// in inequality
if (inequalities num > 0)
{ // dynamic allocation of array of inequalities

inequalities vector = new Inequality[inequalities num];
// initialization of array of inequalities
for (int i=0; i < inequalities num; i++)

inequalities vector[i] =
Inequality (coefficients num);

}
} // constructor SOKOI

}; // struct SOKOI

/* Implementation of n-th order system of inequalities */
struct SOI // SOI - system of inequalities
{

int levels num, // order of system (number of levels)
*inequalities num in level; // pointer to array of

// numbers of inequalities
// in each level

SOKOI *systems vector; // pointer to array of SOKOIs;
// each SOKOI implements a subsystem consisting
// of inequalities of equal orders
// (inequalities which are in the same level)

SOI (int n=0, int m[] = NULL) // constructor
: systems vector (NULL)

{
levels num = n; // set number of levels
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inequalities num in level = m; // set pointer to array of
// numbers of inequalities
// in each level

if (levels num > 0)
{ // dynamic allocation of array of SOKOIs

systems vector = new SOKOI[levels num + 1];
// initialization of array of SOKOIs
for (int j=1; j <= levels num; j++)

systems vector[j] =
SOKOI (inequalities num in level[j], j);

}
} // constructor SOI

}; // struct SOI

The following basic functions are used:

– double SKoAl (SOI system)
– double Recursion (SOI *father system, int level)
– bool VectorsEqual (double vect1[], double vect2[], int size)
– bool Transform (int level, int left num, int right num, SOI old system, SOI

&new system)
– void DeleteSoi (SOI *ptr SOI)
– double Integration (SOI system)

In addition, the following auxiliary functions are utilized:

– void Auxiliary (double in left[], double in right[], int in level, Inequality
&new inequality, int &out level)

– void CopyIneq (Inequality in inequality, Inequality &out inequality)
– void DeleteIneq (Inequality inequality)
– bool FirstLevel (double old left 0, double old right 0, double old left 1,

double old right 1, SOI &new system)

SKoAl is the basic function which realizes the algorithm. Its input is a system
of inequalities (type SOI) and its output is a numeric value of the integral.

As follows from Algorithm 1, the algorithm is an iterative process accompanied
by the decreasing of parameter r (r determines the type of the system). This
iterative process is provided by function Recursion (see Listing 2) which is a
basis for function SKoAl.

Listing 2. double Recursion (SOI *father system, int level)
{

double sum = 0; // initialization of the calculated integral
if (level > 1) // system is not one-type
{

/* Scanning all left and right parts */
for (int j = 0; // scanning right parts

j < (*father system).inequalities num in level
[level];

j++)
{
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// scanning all previous right parts
for (int kj = 0; kj < j; kj++)

// comparison of a right part with previous one
if (VectorsEqual ( (*father system).

systems vector[level].
inequalities vector[kj].

right,
(*father system).

systems vector[level].
inequalities vector[j].
right,

level ) )
break; // from "for kj"

// loop "for kj" wasn’t completed because of
// finding identical right parts
if ( kj < j)

continue; // "for j"
for (int i = 0; // scanning left parts

i < (*father system).inequalities num in level
[level];

i++)
{

// scanning all previous left parts
for (int ki = 0; ki < i; ki++)
// comparison of a left part with previous one

if (VectorsEqual ( (*father system).
systems vector[level].
inequalities vector[ki].

left,
(*father system).
systems vector[level].

inequalities vector[i].
left,

level ) )
break; // from "for ki"

// loop "for ki" wasn’t completed because of
// finding identical left parts
if (ki < i)

continue; // "for i"
SOI *child system = new SOI; // memory allocation

// for a new system
// generating a new system that is
// nearer to one-type
if ( Transform (level, i, j,*father system,

*child system) )
// recursive call on new system and adding
// calculated integral to sum
sum += Recursion (child system, level - 1);

DeleteSoi (child system); // free a space
// of the new system
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} // "for i"
} // "for j"
return sum;

} // if (level > 1)
else // level == 1 (system is one-type)

// integration over set defined by one-type system
return Integration (*father system);

}
Function Recursion constructs a tree in such a way that each node of this

tree is an IS. The root of the tree is an original system of inequalities which
enters function SKoAl. The tree leaves are systems of inequalities which belong
to a one-type. Input parameters of Recursion are a pointer to SOI named
father system and an integer variable level that is equal to r.

In order to avoid generating duplicates of systems due to identical vectors,
we use a boolean function, VectorsEqual in the course of the execution of
Recursion. Input parameters of VectorsEqual are two numeric vectors and
their size. This function compares the left/right part of an inequality currently
under consideration with the left/right parts (respectively) of previously consid-
ered inequalities of the same system (as noted in Notation 4, we consider only
distinct left parts and only distinct right parts.). If the corresponding parts are
identical, then the next left/right part is compared with previously considered
ones. If the corresponding parts are not identical, then the memory for a child of
a node which is currently under consideration is allocated dynamically by means
of a pointer to SOI named child system.

The child node is intended for one of the new nonintersecting systems gener-
ated in step 4 of Algorithm 1. This system is constructed by means of a boolean
function, Transform. The parameters of this function are (a) level; (b) integer
variables left num and right num (which are substituted by the current num-
bers of the left and right parts, respectively, of the r-th order inequalities (see
Notation 4)); and (c) two systems of inequalities (type SOI) named old system
and new system. Function Transform is invoked by substituting structures
pointed by pointers father system and child system instead of parameters
old system and new system, respectively.

If a new system which is constructed by Transform is invalid, then the func-
tion returns false. Otherwise, Transform returns true, and the next recursion
step of the algorithm is performed by the call of function Recursion with pa-
rameters child system and level− 1. After return from this recursive call, the
returned value is added to the local variable, sum (according to step 3 of Algo-
rithm 1). Then (or immediately after the call of Transform if it returns false)
function DeleteSoi frees a space allocated for a child of a currently considered
node, and the value accumulated in sum is returned.

Recursive calls terminate when the value of level is equal to one, i.e., for the
system belonging to a one-type. In this case, step 3 of Algorithm 1 is performed.
Function Integration integrates over the set which is defined by the correspond-
ing system and returns the calculated value to Recursion. Then, Recursion
returns this value to its previous copy, into which this value is added to sum.
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The final value of sum is returned by Recursion to function SKoAl, and is
returned by SKoAl as a result.

Other functions are used in function Transform.
Function Auxiliary realizes transformation of an ordered pair of vectors

into the double inequality (this procedure is described in Notation 3). Its in-
put parameters named in left, in right, and in level, correspond to the pair
of vectors and to its order, respectively. The output parameters are structure
new inequality of type Inequality and integer variable out level. They cor-
respond to the constructed double inequality and to its order, respectively.

Function CopyIneq copies content of an input structure in inequality (type
Inequality) into a new structure out inequality. This function is used for
copying inequalities into new system of function Transform.

Function DeleteIneq frees a space allocated for temporary objects of type
Inequality in function Transform. This function is applied in function Delete-
Soi as well.

A boolean function, FirstLevel constructs an inequality of the first order in a
system which is generated by function Transform. If this inequality has no so-
lutions, then FirstLevel returns false into Transform, and the corresponding
system is declared invalid.

The iterative process provided by function Recursion can be visualized as
a recursion tree the nodes of which are recursive calls. And in this particular
case, each recursion step includes a dynamic allocation. That is, as stated above,
function Recursion also constructs a real tree the nodes of which are systems of
inequalities implemented by structures of type SOI. But we need not keep all the
nodes of this tree in the memory simultaneously. Before generating a new system
of r-type, the previous r-type system is erased from memory. Thus, at most n
nodes (a path from the the root to a leaf) are kept in memory simultaneously.

In fact, our algorithm is based on depth-first search (DFS) (see [1], [3]). How-
ever, in this particular case, a node is created directly before it is visited. The
call of Transform corresponds to the visit. After all children of a node have
been visited, the node is deleted by DeleteSoi.

Let’s estimate the maximum number of nodes in our tree. Consider the n-th
order system that has m inequalities. Suppose all m inequalities are of order n,
i.e., the root of the tree has the maximum size which is possible. Also, suppose
that a system of r-type generates only systems of r − 1-type in every recursion
step. The last supposition is that function VectorsEqual always returns false,
i.e., ndlp is equal to ndrp all the time. In such a case, the number of nodes is

1 +
n∑

i=2

i∏
j=2

(
2j−2m− 2j−2 + 1

)2
>

n∑
i=1

m2(i−1) =
m2n − 1
m2 − 1

.

However, the actual number of nodes which are kept in memory simultane-
ously is determined by the height of the tree and does not exceed n. It is clear
that the sizes of these nodes are different. Corresponding computations show
that in this case, the amount of required memory is O (m2n).
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3 The Illustrative Example

In order to utilize the software described in section 2 for calculating volumes
of convex polyhedrons in E4, the simplified version of function Integration
(mentioned in the previous section) which calculates the integral

a2∫
a1

a5+a6x1∫
a3+a4x1

a10+a11x1+a12x2∫
a7+a8x1+a9x2

a17+a18x1+a19x2+a20x3∫
a13+a14x1+a15x2+a16x3

1 dx4dx3dx2dx1

can be applied. This integral is the volume of the convex set corresponding to
the following one-type system of inequalities:⎧⎪⎪⎨⎪⎪⎩

([a13, a14, a15, a16] , [a17, a18, a19, a20])
([a7, a8, a9] , [a10, a11, a12])

([a3, a4] , [a5, a6])
([a1] , [a2])

.

With the help of these tools, we solve the following simple probabilistic prob-
lem.

Problem 1. Calculate the probability that the polynomial equation with random
coefficients

c1 (ω) + c2 (ω)x + c3 (ω)x2 + c4 (ω)x3 = 0,

where c1 (ω), c2 (ω), c3 (ω), c4 (ω) are independent random variables uniformly
distributed in the interval [−1; 1], has one or three real roots belonging to the
interval [0; 1].

Obviously, the problem can be reduced to calculating the volumes of two
convex sets in E4 (the volumes are equal). The first set is defined by the system
of inequalities ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c1 + c2 + c3 + c4 > 0
c1 < 0
−1 < c1 < 1
−1 < c2 < 1
−1 < c3 < 1
−1 < c4 < 1

.

The second one is ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c1 + c2 + c3 + c4 < 0
c1 > 0
−1 < c1 < 1
−1 < c2 < 1
−1 < c3 < 1
−1 < c4 < 1

.
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The first system can be rewritten in the following form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 < c4 < 1
−c1 − c2 − c3 < c4 < 1
−1 < c3 < 1
−1 < c2 < 1
−1 < c1 < 0

.

This system has been expressed as a system of double inequalities. The volume
calculated by means of our software is equal to 2.79167. This result has been
checked by the Monte-Carlo method and appears to be correct.

4 Conclusion and Future Work

We have presented a new algorithm for numerical integration over a convex
polyhedron in the n-dimensional Euclidean space defined by a system of linear
inequalities. We have described the software routines implementing the algo-
rithm and estimated the memory costs required for their realization. We intend
to estimate the running time of the algorithm as well. We also intend to deter-
mine maximum values of both n and the number of inequalities for which our
algorithm is practically realizable. In addition, we plan to compare our algorithm
with alternative methods based on various criteria.
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A Matlab Implementation of an Algorithm for
Computing Integrals of Products of Bessel Functions
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Abstract. We present a Matlab program that computes infinite range integrals of
an arbitrary product of Bessel functions of the first kind. The algorithm uses an
integral representation of the upper incomplete Gamma function to integrate the
tail of the integrand. This paper describes the algorithm and then focuses on some
implementation aspects of the Matlab program. Finally we mention a generalisa-
tion that incorporates the Laplace transform of a product of Bessel functions.

1 Introduction

Integrals of products of Bessel functions arise in a wide variety of problems from
physics and engineering. Many of the integrals that occur in the literature contain only
one or two Bessel functions, e.g. in computing the filter loss coefficient in optical fibre
technology [11], surface displacement in dynamic pavement testing [16], antenna the-
ory [17], gravitational fields of astrophysical discs [5], crack problems in elasticity [22],
particle motion in an unbounded rotating fluid [6,21], theoretical electromagnetics [8]
or distortions of nearly circular lipid domains [20]. Techniques to compute this type of
integrals are discussed in [2,14,22]. Analytic expressions for some special cases can be
found in [19,26].

The more general case of a product of an arbitrary number of Bessel functions is
far more difficult to handle and there are less analytic results known. For three or four
factors we refer to [15,19,26]. The last reference also contains examples of integrals
with an arbitrary number of factors. The numerical computation of these integrals has
not gained much attention, even though they occur in several applications, ranging from
Feynman diagrams in nuclear physics [10] to quantum field theory [7], speech enhance-
ment [13] and scattering theory [9].

In [25] we presented an algorithm to compute integrals of the form

I(a,ν,m) =
∫ ∞

0
xm

k∏
i=1

Jνi(aix)dx (1)

where the coefficients ai ∈ R+
0 (we use a to denote the vector which contains these

coefficients), the orders νi ∈ R, the power m ∈ R and
∑k

i=1 νi + m > −1. This last
condition assures that a possible singularity in zero is integrable. However, if some of
the νi are negative integers, this condition may not be satisfied, even though the integral
exists. This follows from formula 9.1.5 in [1] which reads as follows,

J−n(x) = (−1)nJn(x).

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 284–295, 2006.
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This case is detected by the program and the formula is used to transform negative
integer orders to positive integer orders.

The case of negative coefficients ai can always be reduced to the case of positive
coefficients using [1, p. 360]

Jν(−z) = eνπiJν(z),

where i is the imaginary unit, i2 = −1. We leave it to the user to do this transformation,
so that the output of our program is always a real number.

Our algorithm has been implemented in the Matlab program besselint, which
also works under Octave. For more information about the different versions of Mat-
lab and Octave we tested, we refer to the section about backward compatibility. We
also mention that our program solves one of the additional problems arising from Tre-
fethen’s 100-Digit Challenge [23]. Problem 8 in Appendix D of the book [4] concerns
the evaluation of the integral∫ ∞

0
xJ0(x

√
2)J0(x

√
3)J0(x

√
5)J0(x

√
7)J0(x

√
11)dx, (2)

which is just a special case of the more general formula (1).
In the next section we describe how the algorithm works. In the rest of the paper

we then discuss some implementation issues particularly related to the fact that the
program is meant to be used under Matlab or Octave and we mention some possible
improvements and generalisations.

2 Description of the Algorithm

We provide a brief overview of the algorithm. For more details we refer the reader to
[25].

The main difficulties in computing (1) come from the irregular oscillatory behaviour
and possible slow decay of the integrand. We cannot just truncate the integral at a finite
value and assume that the remaining contribution is negligible; the infinite part needs
special treatment. This is illustrated in Figures 1 and 2, which show the integrand of
formula (2).

The approach we take is to split the integral at a breakpoint x0 and approximate the
finite and infinite part separately. The determination of this breakpoint will be discussed
below.

For the finite part, the interval [0,x0] is divided into a number of subintervals roughly
proportional to the number of zeros in the integrand. Each subinterval is then integrated
numerically using a Gauss-Legendre quadrature rule. The weights and nodes have been
hard-coded into the program to speed up performance. In most cases we need a 15–point
rule to reach full precision, followed by a 19–point rule to obtain the error estimate.
From formula 9.1.7 in [1] it follows that the integrand f(x) satisfies

f(x) = xp
∞∑

i=0

αix
i, x→ 0,
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Fig. 1. Plot of the integrand of formula (2) near x = 0

(the exact values of αi are not relevant), where p =
∑k

i=1 νi + m. If p is not a positive
integer, there is an algebraic singularity in 0 which we can remove by extrapolating in
the sense of Richardson. This has also been incorporated in the program.

For the infinite part we use the asymptotic expansion of Jν(x) as given in [26, p.
199]. Taking n + 1 terms in each expansion leads to an approximation of the form

xm
k∏

i=1

Jνi(aix) ∼ 2-

⎧⎨⎩xm
∑

j

eiηjxFn,j(ν,ax)

⎫⎬⎭
where - denotes the real part, ηj = a1 ± a2 ± · · · ± ak and the sum is over all possible
combinations. The functions Fn,j consist of polynomials of degree k(2n + 1) in 1/x
times x−k/2. Integrating this approximation, we have to compute∫ ∞

x0

eiηixxm−k/2−jdx, i = 1, 2, . . . , 2k−1, j = 0, 1, . . . , k(2n + 1). (3)

which we can do analytically, using the upper incomplete Gamma function. This func-
tion is defined as [1, p. 260]

Γ (a,x) =
∫ ∞

x

ta−1e−tdt,

and can be extended to arbitrary complex a and x by analytic continuation. This way
we may write∫ ∞

x0

eiηixxm−k/2−jdx =
(

i
ηi

)m−k/2−j+1

Γ (m− k/2− j + 1,−iηix0). (4)

The accuracy of the approximation for the infinite part depends on the breakpoint x0
and on the order of the asymptotic expansion n, and we can estimate this accuracy
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Fig. 2. Plot of the tail of the integrand of formula (2)

(as a function of x0 and n) based on a first order error analysis. It then turns out that
for a fixed accuracy there are always infinitely many (x0, n)-pairs we can choose from.
We therefore introduced a cost function χ(x0, n) which describes the computational
effort of the algorithm in terms of the number of function evaluations of the Bessel and
incomplete Gamma functions,

χ(x0, n) = 2kntGJ +
x0

π

N

2

k∑
j=1

aj .

The parameter N is the average length of the vector argument in a call to the Bessel
function. This will be explained in the next section. The (machine-dependent) constant
tGJ is the relative efficiency of computing the incomplete Gamma function compared
to computing the Bessel function. We look at this constant in more detail in the next
section. The parameters x0 and n are now chosen such that they minimise χ(x0, n)
under the constraint that the (estimated) error does not exceed a required threshold. It
is up to the user to specify the absolute or relative error tolerance.

3 Determining the Parameter tGJ

When introducing the cost function χ(x0, n), we assumed that the computational ef-
fort is dominated by the evaluations of the Bessel and incomplete Gamma function. In
our program, we use Matlab’s besselj function, based on Amos’ original Fortran
code [3], to compute the Bessel functions. For the incomplete Gamma function we use
igamma, a Fortran-to-Matlab conversion of the program from [12], which computes a
continued fraction approximation by forward recurrence. To test the assumption that the
cost is dominated by these two functions, we run besselint on a set of 21 examples
which are thought to be representative (in the sense that they do not use extremely large
values for the parameters or the number of factors in the integrand). The values of a,
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Table 1. Values of a, ν , m and I(a, ν, m) for the examples from the test set. If more than 10
digits are shown, then the least significant one is properly rounded; otherwise the given value is
exact

a ν m I(a, ν, m)

1 1 1
3 0 1

2 1 − 1
4

1
3 0.4699242939646020

3 1 0 2 −1

4 1 0 4 9

5 [1, 5] [0, 1] 0 0.2

6 [5, 1] [0, 1] 0 0

7 [1, 3] [− 1
2

1
3 ] 1

6 0.4875332490256343

8 [3, 1] [− 1
2

1
3 ] 1

6 0

9 [
√

2,
√

3,
√

5] 0 1 0.1299494668722794

10 [
√

2,
√

3,
√

11] 0 1 0

11 [
√

2,
√

3,
√

5] 1 0 0.1423525086834354

12 [
√

2,
√

3,
√

5] [1, 2, −3] 1 −0.1150621628914800

13 [
√

2,
√

3,
√

11] [1, 2, −3] 1 0

14 [
√

2,
√

3,
√

5,
√

7] 0 1 0.1104110282210471

15 [1, 1, 1, 1] 5
4 − 3

2 0.05133002738452328

16 [
√

2,
√

3,
√

5,
√

7,
√

11] 0 1 0.06106434990872167

17 [
√

2,
√

3,
√

5,
√

7,
√

11] 0 2 0.017024879933914

18 [8, 2.5, 2, 1.5, 1] 1 −2 0

19 [8, 2.5, 2, 1.5, 1, 0.5] [ 13 − 1
4 − 1

4 − 1
4 − 1

4 − 1
4 ] 7

12 0.5219234259420822

20 [1, 2, 3] 0 0 0.4752701735935373

21 [
√

2,
√

3,
√

2 +
√

3] 0 0 0.4437109037960439

ν and m for each of the examples, together with the value of the integral, are given in
Table 1. For tGJ we take the value 16, for reasons explained below. We used Matlab’s
profiler tool to analyse the distribution of CPU time among the various subfunctions in
besselint (the main program which contains the 21 calls to besselint is called
experiment, which is the first line in the profiler report). Table 2 reproduces the
output report provided by the profiler. Computations were done in Matlab 7.0 on an
Intel processor running at 2.80 GHz. Note that besselj and igamma together take
up 3.45s of the total 4.53s of execution time, which is more than 76%. It seems our
assumption is justified.

As we mentioned in the previous section, the parameter tGJ is the relative efficiency
of computing the incomplete Gamma function compared to computing the Bessel func-
tion. It is defined as the ratio tΓ /tJ where tΓ and tJ are the average execution times for
a call to the incomplete Gamma function and Bessel function respectively. The deter-
mination of this parameter, however, presents some problems which we discuss next.



A Matlab Implementation of an Algorithm 289

Table 2. Matlab’s profiler output after calling besselint with the test set

Profile Summary
Generated 21-Oct-2005 13:10:04 using CPU time.

Function Name Calls Total Time Self Time
experiment 1 4.530 s 0.040 s
besselint 21 4.490 s 0.060 s
besselint>fri 21 2.710 s 0.040 s
besselint>nqf 66 2.670 s 0.310 s
besselint>fun 1343 2.360 s 0.180 s
besselj 5470 2.180 s 0.770 s
besselint>ira 21 1.570 s 0.280 s
igamma 2027 1.270 s 0.080 s
igamma>cdh 2027 1.190 s 0.060 s
igamma>cdhs 2027 1.130 s 1.130 s
besselmx (MEX-function) 5470 0.820 s 0.820 s
besschk 5470 0.590 s 0.590 s
besselint>gop 21 0.150 s 0.050 s
besselint>optimfun 84 0.100 s 0.000 s
besselint>auxfun 84 0.100 s 0.050 s
conv 464 0.010 s 0.010 s
gammaln 252 0.050 s 0.050 s
repmat 21 0.010 s 0.010 s
datenummx (MEX-function) 2 0 s 0.000 s
profile>ParseInputs 1 0 s 0.000 s

Self time is the time spent in a function excluding the time spent
in its child functions. Self time also includes overhead resulting
from the process of profiling.

The first problem in determining tGJ comes from the fact that Matlab and Octave
support vector operations. This means that we can call the function besselj with a
vector argument to evaluate the Bessel function in N points at the same time. This will
generally be faster than N separate calls. Obviously, we exploited this in our program.
This has to be taken into account when trying to determine tJ . To determine tGJ we
timed 2040 calls to igamma and 120 calls with a vector argument of length 17 =
2040/120 to besselj (for most representative examples, an average call to besselj
in the numerical quadrature formula would contain a vector of this size). Averaging over
22 runs gives a ratio of more or less tGJ ≈ 16 in Matlab 7.0 and tGJ ≈ 1357 in Octave
2.1.69.

Another problem comes from the fact that our cost function is not exact. Even though
it is clear that the dominant contribution to the computational effort comes from evalu-
ating the incomplete Gamma function and the Bessel function, the other operations are
not negligible. Apart from all this, it needs pointing out that the Matlab compiler and JIT
(Just In Time) accelerator have become so sophisticated that it becomes nearly impos-
sible to minimise execution times based on operation count. To illustrate this discussion
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Fig. 3. Average execution time (s) for a call to besselint vs. tGJ (Matlab)

we run besselint on the previous set of 21 examples, but this time for different
values of tGJ . Averaging over 10 runs gives the results from Figures 3 and 4. These
figures give the average execution time for one (representative) call to besselint as
a function of the parameter tGJ . It can be seen that the predicted ‘theoretical’ values of
tGJ differ from the experimentally determined ‘optimal’ values. For the Matlab case,
the difference in execution time is small, but if speed is a real concern, the user might
want to repeat this test on his own machine to obtain the optimal tGJ . Note that our
code runs much faster under Matlab than under Octave. It is not clear what causes this
difference.

4 Backward Compatibility

Our program was written to work in Matlab 7.0 and Octave 2.1.69. However, we specif-
ically implemented it to be backward compatible with earlier versions of Matlab. Es-
pecially for a large commercial software package such as Matlab, one cannot simply
assume that every user has access to the latest available version. We extensively tested
our code under

– Matlab 7.0.1.24074 (R14) Service Pack 1 for Linux,
– Matlab 6.5.0.180913a (R13) for Linux and Windows,
– Matlab 6.1.0.450 (R12.1) for Windows, and
– Octave 2.1.69.

However, improving backward compatibility usually means losing some efficiency.
This is particularly true when it comes to logical operations in Matlab, as we illustrate
in this section.
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Fig. 4. Average execution time (s) for a call to besselint vs. tGJ (Octave)

Logical expressions such as x ∨ y (where x and y are booleans and ∨ is the logical
‘or’) are very common in numerical software and they very often appear in conditional
statements to control the flow of a program. For both the logical ‘or’ and ‘and’ there
are situations where only one of the operands needs to be evaluated to determine the
result. For example, in the expression x ∨ y, if x is ‘true’, the result will be ‘true’
regardless of the value of y. In Matlab terminology, this is called ‘short-circuit’ logical
evaluation. When there are many logical expressions in a program, this can be much
more efficient than evaluating the entire expression (called ‘element-wise’ evaluation
in Matlab). Unfortunately, there is a difference in syntax between earlier and recent
versions of Matlab. From version 6.5 on, Matlab explicitly provides two different sets
of logical operators, i.e. element-wise operators denoted by & and |, and short-circuit
operators, && and || (which is also the convention used by Octave from the beginning).
However, in earlier versions of Matlab, the explicit short-circuit operators were not
available and short-circuit evaluation was done automatically in certain situations (e.g.
in the condition following an if-statement). Because of backward compatibility, we
have to use the operators & and |, which dramatically reduces efficiency when working
in more recent versions.

Table 3 was obtained in exactly the same way as Table 2, but with the only differ-
ence that all logical operators were replaced by their short-circuit versions. The total
execution time for the test examples has changed from 4.69s to 3.93s, a reduction of
over 13%, but if we compare the timings for igamma, then we note a reduction from
1.27s to 0.6s, more than 50%! The number of incomplete Gamma function evaluations
increases exponentially with k (the number of Bessel functions in the integrand), so
especially for integrals which contain many Bessel functions, we are sacrificing a lot
of efficiency to the cause of backward compatibility. We do not know why Mathworks
decided to introduce this syntactic anomaly for logical operators.
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Table 3. Same as Table 2, but using short-circuit logical evaluation

Profile Summary
Generated 21-Oct-2005 13:53:21 using CPU time.

Function Name Calls Total Time Self Time
experiment 1 3.930 s 0.070 s
besselint 21 3.860 s 0.070 s
besselint>fri 21 2.620 s 0.030 s
besselint>nqf 66 2.590 s 0.360 s
besselint>fun 1343 2.230 s 0.180 s
besselj 5470 2.050 s 0.540 s
besselint>ira 21 0.980 s 0.340 s
besselmx (MEX-function) 5470 0.820 s 0.820 s
besschk 5470 0.690 s 0.690 s
igamma 2027 0.600 s 0.100 s
igamma>cdh 2027 0.500 s 0.090 s
igamma>cdhs 2027 0.410 s 0.410 s
besselint>gop 21 0.190 s 0.020 s
besselint>optimfun 84 0.170 s 0.010 s
besselint>auxfun 84 0.160 s 0.080 s
gammaln 252 0.080 s 0.080 s
conv 464 0.030 s 0.030 s
repmat 21 0.010 s 0.010 s
datenummx (MEX-function) 2 0 s 0.000 s
profile>ParseInputs 1 0 s 0.000 s

Self time is the time spent in a function excluding the time spent
in its child functions. Self time also includes overhead resulting
from the process of profiling.

5 Further Improvements and Generalisations

The function besselj essentially consists of two function calls, one to besschk,
which checks the input arguments, and then a call to besselmx, which is a MEX
file containing the actual Amos algorithm to compute Jν(x). According to the profiler
report, both calls take up approximately 40% of the total time for this function. Since the
arguments to the Bessel functions are computed inside besselint and are not given
by the user, this means we could speed up performance by calling besselmx directly
instead of besselj, thereby skipping the call to besschk. This effectively reduces
the computation time for besselj from 2.18s to 0.78s for besselmx (backward
compatible version). Also the overhead associated with function calls is reduced. The
problem with this approach, however, is that it only works in Matlab and not in Octave,
which uses a different implementation. Since we want to provide a program that works
both under Matlab and Octave, we have not performed this optimisation.

For the other bottleneck, igamma, there are two things we can do to speed up the
computations. The most obvious improvement is to compute the continued fraction
approximation by backward recurrence instead of forward, which is usually faster and
also more stable. However, then we need a good estimate of the tail to be able to predict
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at what point to start the recurrence. The formulas from [27] are useless in our case,
because they give asymptotic estimates which only become valid when extremely high
precisions (working in multiprecision) are needed. In a Matlab environment, which uses
IEEE double precision, they give unreliable results.
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Fig. 5. Error in recurrence for Γ (x − j, iy) for x = −1, j = 0, . . . , 60 and y = 25. The solid
line shows the relative error when the recurrence is computed starting from the value at the left
and going to the right, the dashed line corresponds to going from right to left.

The second improvement to igamma comes from the recurrence relation satisfied by
this function itself. Looking at equations (3) and (4), we see that a range of incomplete
Gamma function evaluations are needed of the form

Γ (x− j, iy), j = 0, 1, . . . , s

for certain values of x, y and s. But it follows from [1], formulas 6.5.2, 6.5.3 and 6.5.21
that we have

Γ (x− j + 1, iy) = (x− j)Γ (x− j, iy) + (iy)x−je−iy.

So instead of evaluating the incomplete Gamma function 2k−1(k(2n + 1) + 1) times
using the continued fraction expansion, we could suffice with 2k−1 evaluations and
compute the remaining values recursively. However, it turns out that for several values
of x and y, this recurrence can become unstable in either direction. This means we can
loose (too many) digits both using forward or backward recurrence (of course, it will be
asymptotically stable in one direction, but that is of little use when we want all values
to have maximum precision). This is illustrated in Figure 5, which shows the relative
error as a function of j for x = −1, y = 25 and s = 60. The correct approach here is
to find the value of j for which the error reaches its maximum value (in our example
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j ≈ 24) and then use the recurrence relation in both directions, starting from that point.
This is explained in more detail in [24].

Instead of using the continued fraction expansion to compute the incomplete gamma
function, another possibility would be to use asymptotic expansions (at least when one
or both of the parameters are large). Since no such implementation is available and since
the computation of the incomplete gamma function was not our main concern, we have
not yet considered this.

The present algorithm can be generalised to compute integrals of the form∫ ∞

0
e−cx xm

1 + dx2

k∏
i=1

Jνi(aix)dx

where c is a positive real number and d is an arbitrary real number. The case d = 0
corresponds to the Laplace transform of a product of Bessel functions. Integrals of this
type occur in several applications, e.g. in [18]. This generalisation, however, is not so
straightforward (especially when d �= 0) and the details will be presented elsewhere.

6 Conclusion

In the development of numerical software there is often a tradeoff to be made between
speed and efficiency on the one hand, and compatibility on the other hand. We wanted to
provide an implementation of our algorithm that works for older versions of Matlab and
for Octave as well, but the experiments in this article clearly indicate that we can gain a
lot of speed with a program that only runs under recent versions of Matlab. Based on our
timings, we expect that it is possible to obtain an implementation which is (on average)
roughly twice as fast as the current one. However, more research needs to be done
regarding the recursive computation of the incomplete Gamma function. Theoretically,
the approach presented in [24] should work fine, but a robust implementation has not
yet been undertaken.
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Abstract. An algorithm for computing the real zeros of the Kummer
function M(a; c; x) is presented. The computation of ratios of functions
of the type M(a + 1; c + 1; x)/M(a; c; x), M(a + 1; c; x)/M(a; c; x) plays
a key role in the algorithm, which is based on global fixed-point itera-
tions. We analyse the accuracy and efficiency of three continued fraction
representations converging to these ratios as a function of the parameter
values. The condition of the change of variables appearing in the fixed
point method is also studied. Comparison with implicit Maple functions
is provided, including the Laguerre polynomial case.

1 Introduction

Our algorithm is based on global fixed point iterations which apply to fam-
ilies of functions satisfying first order linear difference differential equations
with continuous coefficients. The methods were described in [1,2]. The start-
ing point of the methods is the construction of a first order system of differential
equations:

y′(x) = α(x)y(x) + δ(x)w(x)
w′(x) = β(x)w(x) + γ(x)y(x), (1)

with continuous coefficients α(x), β(x), γ(x) and δ(x) in the interval of interest
I, relating our problem function y(x) with a contrast function w(x), whose ze-
ros are interlaced with those of y(x). The coefficients δ(x) and γ(x) satisfy the
condition δ(x)γ(x) < 0, which has to be met when y(x) or w(x) have at least
two zeros in the interval I.

With these restrictions, we introduce new functions and a new variable as
follows. First, we consider a change of the dependent functions:

y(x) = λy(x)ȳ(x) , w(x) = λw(x)w̄(x), (2)

with λy(x) �= 0, λw(x) �= 0 ∀x ∈ I in such a way that ȳ and w̄ satisfy:

ȳ′ = ᾱ ȳ + δ̄ w̄
w̄′ = β̄ w̄ + γ̄ ȳ

(3)

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 296–307, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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with δ̄ > 0 and δ̄ = −γ̄. This is accomplished by choosing:

λy = sign(δ)λw

√
−δ/γ (4)

It is obvious that the new functions ȳ(x) and w̄(x) have the same zeros as
y(x) and w(x). Considering now a change of variables:

z(x) =
∫

δ̄(x)dx, (5)

the system reads: (
˙̄y
˙̄w

)
=

(
ā 1
−1 b̄

)(
ȳ
w̄

)
, (6)

where ā = ᾱ/δ̄, b̄ = β̄/δ̄ and dots mean derivative with respect to z. Then, the
ratio H(z) = ȳ/w̄ satisfies the first order non-linear ODE:

Ḣ = 1 + H2 − 2ηH, (7)

where η = (b̄− ā)/2.

From Eq.(7) it is possible to build a fixed point iteration [1]:

T (z) = z − arctan (H(z)) , (8)

which converges globally to the zeros of H(z) in intervals where the function η
does not change sign [1]. These zeros are the same as those of the function ȳ(z),
and undoing the change of variable we obtain the zeros of y(x) in the original
variable x.

2 The Confluent Hypergeometric Function M(a; c; x)

We consider the Kummer differential equation:

xy′′(x) + (c− x)y′(x) − ay(x) = 0. (9)

This equation has a regular singular point at the origin and an irregular singu-
larity at infinity. The regular solution around the origin reads

M(a; c; x) =
∞∑

n=0

(a)n

(c)n

xn

n!
, (10)

where (a)n = a(a + 1)(a + 2) . . . (a + n − 1) is the usual Pochhammer symbol.
This power series has radius of convergence equal to infinity, and defines for all
complex values of a, c,x (except if c = 0,−1,−2, . . .) a function which is a hy-
pergeometric function of type 1F1 and it is known as confluent hypergeometric
function of the first kind or Kummer function.
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In this paper we will focus on real values of a, c and x. Moreover, we can
restrict ourselves to x > 0, because by Kummer transformations [3]:

M(a; c; x) = exM(c− a; c;−x). (11)

The positive real zeros of the function M(a; c; x) are bounded, a property
that can be proved by writing (9) in normal form. Indeed, the functions w(x) =
xc/2e−x/2y(x) with y(x) solution of (9), satisfy

w′′(x) +
(
− 1

4
+

c− 2a
2x

+
c(2− c)

4x2

)
w(x) = 0. (12)

It is straightforward to check that the turning points are:

x± = c− 2a±
√

(c− 2a)2 + c(2 − c). (13)

When x > x+ and when x < x− the independent term in (12) is negative,
and as a consequence of Sturm theorems [10] the function M(a; c; x) can only
have at most one zero in that region. More precisely, in [4] it is shown that if
M(a; c; x) has at least two positive real zeros then the parameters verify the so
called oscillatory conditions:

a < 0, c− a > 1 (14)

It is worth noticing that if a = −n is a negative integer we obtain the classical
Laguerre polynomials L

(α)
n (x), where c = α + 1.

2.1 Systems of DDEs for M(a; c; x)

Let us illustrate the construction of a system of DDEs for the functions M(a; c; x).
These functions satisfy the following relation (Eq. 13.4.11 of [3]):

xM ′(a; c; x) = (a + x− c)M(a; c; x) + (c− a)M(a− 1; c; x) (15)

and the following three-term recurrence relation (TTRR) (Eq.13.4.1 of [3]):

aM(a + 1; c; x) = (2a− c + x)M(a; c; x) + (c− a)M(a− 1; c; x) (16)

Now, using the notation yn ≡M(a+n; c; x), we can write the following system
of difference-differential equations (1), as stated in [7]:

y′n =
a + n + x− c

x
yn +

c− a− n

x
yn−1

y′n−1 = −a + n− 1
x

yn−1 +
a + n− 1

x
yn,

(17)

where the second DDE can be obtained from the first DDE (15) by replacing
n → n − 1 and using the TTRR (16) for expressing yn−2 in terms of yn and
yn−1.

In this example the dependence on n is located in the first parameter of
the hypergeometric function, but it is clear that other choices are available. By
denoting an ≡ a+k n, cn ≡ c+mn and yn ≡M(an; cn; x) we will have different
sets of DDEs for different selections of (k,m). As explained in the introduction,
these DDEs are the starting point for building the fixed point iterations.
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3 Ratios of Hypergeometric Functions and Continued
Fractions

In order to apply the fixed point method for the real zeros of the function
M(a; c; x) we will need to compute the following ratios:

R1,1(x) :=
M(a + 1; c + 1; x)

M(a; c; x)
, (18)

when x < c− a, and

R1,0(x) :=
M(a + 1; c; x)

M(a; c; x)
, (19)

when x > c − a. The selection of the x-range is based on the efficiency of the
associated fixed point methods, as explained in [7].

As it is well known, confluent hypergeometric functions satisfy three-term
recurrence relations in any direction of increasing (decreasing) parameters (with
integer values), and the associated continued fractions converge to the ratio of
minimal solutions of the recurrence by Pincherle’s theorem [8,10] and when the
recurrence has a minimal solution. However, great care is needed in order to
avoid situations of pseudoconvergence of the continued fractions, as explained
in [5], that may result in a loss of precision in the computation or even in the
computation of a wrong ratio of functions.

When x < c− a we have to use the iteration (1, 1) (increasing both parame-
ters), and the function M(a; c; x) is minimal in that direction. No pseudoconver-
gence is expected, since this phenomenon is present when x is larger than c, as
can be seen in [5]. Therefore we can use the continued fraction that stems from
the recursion:

H(1)(x) :=
c

c− x+
(a + 1)x

c + 1− x+
(a + 2)x

c + 2− x+
. . . , (20)

This continued fraction converges to the ratio R1,1 for x ∈ R. We note that if
the parameter a is a negative integer then the confluent hypergeometric function
reduces to a polynomial of Laguerre type, and therefore the continued fraction
is finite.

When x > c−a we have to use the ratio corresponding to the (1, 0) iteration. In
this case the CF from the (1, 0) recursion can not be used for computing zeros
of M(a; c; x), because the function M(a + n; c; x) is dominant when n → ∞.
However, we can use the QD algorithm [8] to construct the following C-fraction
from the power series expansion of (19):

H(2)(x) := a0 +
a1x

1+
a2x

1+
a3x

1+
. . . , (21)

where a0 = 1, a1 = 1/c, and:

a2m =
a + 1− c−m

(c + 2m− 2)(c + 2m− 1)
, m ≥ 1 (22)
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a2m+1 =
a + m

(c + 2m− 1)(c + 2m)
, m ≥ 1 (23)

This CF converges to the ratio M(a + 1; c; x)/M(a; c; x) on compact subsets
of R except for the zeros of M(a; c; x). We refer the reader to [8, pg. 313] for
a similar result for the ratio in the (1, 1) direction. However, it is important to
note that this continued fraction exhibits pseudoconvergence [5] for large x, and
therefore should not be used to compute the largest zeros. For moderate values
of x, on the other hand, is a useful expression, as we show in Section 4.

When the variable x is large it is possible to use the fact that the function
M(a; c; x) is minimal in the (0, 1) direction, that is, when we increase the pa-
rameter c. This leads to the following continued fraction:

c

c + x+
−(c + 1− a)x
c + 1 + x+

−(c + 2− a)x
c + 2 + x+

. . . , (24)

This continued fraction converges to the ratio M(a; c + 1; x)/M(a; c; x), and it
does not present pseudoconvergence if the oscillatory conditions are fulfilled.
Once computed, we can obtain the ratio in the (1, 0) direction by means of a
three-term recurrence relation [3]:

M(a + 1; c; x)
M(a; c; x)

=
c

c− x
M(a + 1; c + 1; x)

M(a + 1; c; x)

(25)

This gives the following continued fraction for the ratio R1,0(x):

H(3)(x) :=
1

1+
−x

c + x+
−(c− a)x
c + 1 + x+

−(c + 1− a)x
c + 2 + x+

−(c + 2− a)x
c + 3 + x+

. . . , (26)

4 Computational Aspects of Continued Fractions

The algorithm uses the modified Lentz-Thompson method [9] to compute the
continued fractions (20), (21) and (26). The first one is used when x < c − a,
and the other two when x > c− a.

First, we perform an analysis of the accuracy of the continued fractions used in
the algorithm, comparing with the internal Maple subroutine KummerM(a,c,x).
In the following plots we have fixed several values of the parameter a and we
have used a random sweep in the plane (c,x). The threshold of accuracy has been
set to five digits less than the working precision (40 digits). Dark dots denote
points where the relative error between the continued fraction used and Maple is
smaller than this quantity, and grey dots when it is larger. We have also plotted
the line x = c− a in the case of the first continued fraction, and both x = c− a
and x = c− 2a in the other two cases.
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Fig. 1. Plots for a = −50.1, with a sweep of 5000 random points. Left: accuracy test
for the CF (20) when x < c − a. Center: accuracy test for the CF (21) when x > c − a.
We observe a loss of accura cy of the CF when x becomes large. Right: accuracy test
for the CF (24) when x > c−a. We include the lines x = c−a (left) and both x = c−a
and x = c − 2a (center and right).
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Fig. 2. Plots for a = −100.1, with a sweep of 5000 random points. Left: accuracy test
for the (20) when x < c − a. Center: accuracy test for the CF (21) when x > c − a. We
observe a loss of accuracy of the CF when x becomes large. Right: accuracy test for
the CF (24) when x > c − a. We include the lines x = c − a (left) and both x = c − a
and x = c − 2a (center and right).

The graphics suggest that the first continued fraction (20) can be used when
x < c− a. When x > c− a and x is not too large the second one is correct, but
the attainable accuracy deteriorates when x becomes large. This loss of accuracy
corresponds to the continued fraction (21), because the third continued fraction
(24) agrees with Maple subroutine in the whole region, as can be seen in the
graphics on the right.

In the general algorithm we will change from (21) to (24) when x = c − 2a.
This choice seems to be safe according to numerical experiments, and it can be
justified by performing a canonical contraction of (21), as explained in [8, pg.83].
In the resulting continued fraction both the numerators and the denominators
change of sign (from negative to positive), taking into account (14). When x <
c−2a+1 the change in the denominator occurs when the numerators are still neg-
ative, and therefore there is no risk of pseudoconvergence (see [5] for the criterion
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Fig. 3. Plots for a = −500.1, with a sweep of 5000 random points. Left: accuracy test
for the CF (20) when x < c − a. Center: accuarcy test of the CF (21) when x > c − a.
We observe a loss of accuracy of the CF when x becomes large. Right: accuracy test
for the CF (24) when x > c−a. We include the lines x = c−a (left) and both x = c−a
and x = c − 2a (center and right).

of signs). On the other hand, when x > c − 2a + 1 the denominator changes
from negative to positive when the numerators are already positive. This is a
disctintive sign of pseudoconvergence and causes the loss of accuracy observed
in the plots.

4.1 Timings

From the point of view of accuracy, numerical tests indicate that it is possible
to use the third continued fraction (24) when x > c− a. However, the continued
fraction (21) seems to be more efficient for moderate values of x in terms of CPU
time, so we have kept the three continued fractions in the program to test CPU
time. If we compare both continued fractions in the zone c− a < x < c− 2a we
obtain that (21) is generally faster, as shown in Figure 4.

Once accuracy is tested we have to compare CPU times for continued fraction
evaluation and Maple, in order to establish which is the most efficient method
depending on the parameters.

Timing tests have been performed again fixing different values of a, carrying
out random sweeps in c and x and comparing the result from the continued
fraction method with the intrinsic Maple procedure (Figure 5). In order to ensure
a significant number of calls to both algorithms repeating loops are included,
which use slightly different values of the parameters in each call, in such a way
that the values are actually recomputed, and not stored in memory. Black dots
represent points where the continued fraction is faster, whereas grey dots indicate
that Maple is more efficient.

After several tests for fixed values of a the continued fraction method seems
to be superior when x and/or a are large, whereas Maple is faster for large values
of c. A final least squares fit is calculated to obtain a condition in terms of the
parameters of the function that will enable us to choose the best method in the
general algorithm.
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Fig. 4. Timings of continued fractions (21) and (24) in the region c − a < x < c − 2a.
We include both lines. Left, a = −50.1. Right: a = −100.1. 1000 random points have
been used in the region c − a < x < c − 2a, and points indicate where (21) is faster.
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Fig. 5. Comparison between continued fractions (20), (21), (24) and Maple in the final
scheme. Left: a = −50.1. Center: a = −100.1. Right: a = −500.1. 2000 random points
have been used in each case. Black points indicate where continued fraction is faster,
grey points where Maple is more efficient.

Apart from the numerical results shown before in the plots, similar graphics
have been generated in the cases a = −75.1, −125.1, −150.1, −200.1, −250.1,
− 300.1, −325.1, −350.1, −400.1, −425.1, −450.1 , using random sweeps in the
plane (c,x), in order to obtain a finer fit.

For each value of a, a straight line in the plane (c,x) divides approximately the
zones where Maple or the continued fraction are superior. These lines have the
form x = mc + l, where m, l are positive and decreasing when |a| increases (see
Figure 5). We have used a least squares fit to adjust the values of m and l, for
values of |a| between 50 and 500, and we have obtained the following function:

f(a, c,x) = −x +
A1

(−a)A2
c +

A3

(−a)A4
, (27)

where the constants A1, A2, A3 and A4 are:

A1 = 2408.3405, A2 = 1.5448166, A3 = 5182.0407, A4 = 1.0234031 .

Given a, c and x, the continued fraction method should be used if f(a, c,x) <
0. Several tests have been carried out to check if this fit is correct: we have
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computed random values of a, c and x in the intervals (−500,−50), (0, 200) and
(0, 1000) respectively, and we have checked again the timings of the continued
fraction method and Maple whenever f(a, c,x) < 0. If the fit is correct, this
test should be favourable to the continued fraction method. In all cases, the
proportion of points in the regions considered where the continued fraction is
actually faster than Maple is larger than 90%.

5 Building the Full Algorithm

The main ingredients of the algorithm for computing the real zeros of hyperge-
ometric functions were discussed in [7]. The resulting algorithm for computing
the real zeros of the Kummer function M(a; c; x), in a given interval I = (xa,xb)
reads as follows:

◦ Consider the following functions:

z1(x) = 2 (1 − a)x ,

H1(x) =
(1 − a)x

(c − 1)2
M(a; c; x)

M(a − 1; c − 1; x)
,

η1(x) = − 2x + 3 − 2c

4 (1 − a)x
,

and

z2(x) = (c − a)(1 − a) log x ,

H2(x) =
1 − a

c − a

M(a; c; x)

M(a − 1; c; x)
,

η2(x) = − 2a + c + x

2 (c − a)(1 − a)
.

◦ Let xtran = c − a.

If xb < xtran, consider z(x) = z1(x), H(x) = H1(x), η(x) = η1(x).
If xb > xtran, let I1 = (xa, xtran), I2 = (xtran, xb). Then consider

z(x) = z1(x), H(x) = H1(x), η(x) = η1(x) in I1 and z(x) = z2(x), H(x) =
H2(x), η(x) = η2(x) in I2.

◦ Divide the interval I (or the corresponding subintervals I1, I2) in subintervals where
η(x) does not change sign.

◦ Apply the following routine (SWEEP) in those subintervals where η(x) does not
change sign, but replacing the variable x by z(x) and H(x) by H(z) = H(x(z)).
The zeros are computed in the z variable. Let [z1, z2] be an interval where η does
not change sign:
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SUBROUTINE SWEEP(j,z1,z2,ε,i,z(i))
Algorithm: forward and backward sweeps.
Input: j = −sign(η) (+1 forward sweep; -1 backward); z1;z2;ε ≡ relative preci-

sion
Output: i (number of zeros);z(1), ..., z(i): zeros in the interval
NOTERM=1
z̄1 =

z1 + z2

2 + j(
z1 − z2

2 )
z = z̄1

z̄2 =
z1 + z2

2 − j(
z1 − z2

2 )
IF (jH(z) > 0) THEN z = z + jπ/2
i = 0
DO WHILE (j(z − z̄2) < 0)

CALL FIXEDPOINT(z,z̄2,ε,zn,NOTERM)
IF(NOTERM=1) THEN

z(j i) = zn

i = i + 1
z = zn + jπ/2

ELSE
z = z̄2 + j

ENDIF
END WHILE
END

SUBROUTINE FIXEDPOINT(z,z̄2,ε,zn,NOTERM)
Err=1 + ε
DO WHILE (NOTERM=1) AND (Err> ε)

zp = z
z = z − arctan(H(z))
Err= |1 − z/zp|
IF (j(z − z̄2) > 0) THEN NOTERM=0

END WHILE
zn = z
END

and the zeros generated in a forward sweep are stored in the positive positions of
the array z(i) (z(1), z(2),...) while those generated in a backward sweep are stored
in the negative positions (z(−1), z(−2),...).

◦ Invert the change of variable z(x) to obtain the zeros in the original variable.

A relevant issue for the stability of the full algorithm, which was not analysed
in previous references [1,2,4], is the condition of the change of variables associated
to the recurrences used in the algorithm. We discuss this point briefly in the
following section.

5.1 Condition of the Change of Variables

An important issue in the accuracy of the computed zeros is the condition of the
change of variable z = z(x) explained in section 1. Indeed, once the zeros are
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computed in the variable z by means of the fixed point iteration, it is necessary to
undo the change of variable in order to obtain the zeros in the original variable
x and evaluate x = x(z) at those points. In this section we examine the two
changes used for Kummer function.

As explained in [7], the changes of variable associated with the iterations (1, 1)
and (1, 0) are, respectively:

z1(x) = 2
√

(1− a)x, z2(x) =
√

(c− a)(1− a) log(x). (28)

The second change maps the interval (0,+∞) onto (−∞,+∞), and the first
one onto itself. When transforming from z to x the relative condition number is:

κrel =
∣∣∣∣z ẋ(z)

x(z)

∣∣∣∣ . (29)

In the first case:
κrel = 2, (30)

so the problem is well conditioned. In the second case:

κrel =

∣∣∣∣∣ z√
(c− a)(1− a)

∣∣∣∣∣ . (31)

Hence the condition number grows linearly with the variable z. In terms of
the variable x we have that κrel = |log(x)|. Taking into account (Eq.13), when
the parameter −a is large the largest zero is x ∼ −4a, and we can estimate
κrel ∼ log(−4a).

For instance, for Laguerre polynomials L
(α)
n (x) the condition number can be

estimated as κrel ∼ log(4n) when the degree of the polynomial is large, and the
loss of significant digits is mild for the large zeros. Because the corresponding
fixed point iteration is only used for x > c− a = n + α + 1 > 1, there is no bad
condition due to x close to zero and κrel ∼ log(4n) in the worst case.

5.2 Timings

The algorithm has been coded in Maple. In Table 1 we show examples of typical
CPU-times spent by the algorithm on a standard configuration PC (Intel Pen-
tium M processor at 1.5GHz and RAM memory of 512MB) under Windows XP.
We consider non polynomial and polynomial cases. In the polynomial case, we
show the relative CPU-times in comparison with the computation of the zeros
using the Maple functions KummerM and fsolve. The interval for computing
the zeros has been fixed to I = [0.001, 50].
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Table 1. Typical CPU-times spent by the algorithm for computing the real zeros of
the Kummer function M(a; c; x). (∗) The number of digits for the computation with the
function fsolve has been set to 35 in order to obtain at least 14 digits correct for the
largest zero. (∗∗) The number of digits for the computation with the function fsolve
has been set to 50 in order to obtain at least 14 digits correct for the largest zero.

a c Nzeros CPU-time RelCPU
−50.1 0.1 31 1.6 s

−100.1 0.1 44 2.3 s

−500.1 0.1 99 8.6 s

−50 0.1 31 1.3 s 13.6(∗)

−100 0.1 44 2.2 s 55.7(∗∗)
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Abstract. Special functions are pervasive in all fields of science. The
most well-known application areas are in physics, engineering, chem-
istry, computer science and statistics. Because of their importance, sev-
eral books and a large collection of papers have been devoted to the
numerical computation of these functions. But up to this date, even en-
vironments such as Maple, Mathematica, MATLAB and libraries such
as IMSL, CERN and NAG offer no routines for the reliable evaluation of
special functions. Here the notion reliable indicates that, together with
the function evaluation a guaranteed upper bound on the total error or,
equivalently, an enclosure for the exact result, is computed.

We point out how limit-periodic continued fraction representations of
these functions can be helpful in this respect. The newly developed (and
implemented) scalable precision technique is mainly based on the use of
sharpened a priori truncation error and round-off error upper bounds
for real continued fraction representations of special functions of a real
variable. The implementation is reliable in the sense that it returns a
sharp interval enclosure for the requested function evaluation, at the
same cost as the evaluation.

1 Basic Continued Fraction Material

Let us consider a continued fraction representation of the form

f =
a1

1 +
a2

1 + . . .

=
a1

1
+

a2

1
+ . . . =

∞∑
n=1

an

1
, an := an(x), f := f(x). (1)

Here an is called the n-th partial numerator. We use the notation f and f(x)
interchangeably. The latter is preferred when the dependence on x needs to
be emphasized. We respectively denote by the N -th approximant fN (wN ) or
fN(x;wN ), and N -th tail tN or tN (x) of (1), the values

fN(wN ) = fN (x;wN ) =
N−1∑
n=1

an

1
+

aN

1 + wN
, (2)

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 308–319, 2006.
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tN = tN (x) =
∞∑

n=N+1

an

1
, t0 = f. (3)

We also need approximants of continued fraction tails and therefore introduce
the notation f

(k)
N (wN+k) or f

(k)
N (x;wN+k) for

f
(k)
N (wN+k) = f

(k)
N (x;wN+k) =

k+N−1∑
n=k+1

an

1
+

aN+k

1 + wN+k
.

Sometimes the notation f (k) is used for the tail tk. A continued fraction is said
to converge if limN→∞ fN (0) exists. Note that convergence to ∞ is allowed. In
the present paper we assume the continued fractions (1) to converge. Moreover,
we restrict ourselves to the case where some wN �= 0 can be chosen such that

lim
N→∞

fN(wN ) = lim
N→∞

fN (0).

The N -th approximant of a continued fraction can also be written as

fN (wN ) = (s1 ◦ . . . ◦ sN )(wN ), sn(w) =
an

1 + w
, n = N, . . . , 1.

Using the linear fractional transformations sn, one can define a sequence
{Vn}n∈IN of value sets for f by:

sn(Vn) =
an

1 + Vn
⊆ Vn−1, n ≥ 1. (4)

The importance of such a sequence of sets lies in the fact that these sets keep
track of where certain values lie. For instance, if wN ∈ VN then fN(wN ) ∈ V0 and
f

(k)
N−k(wN ) ∈ Vk. Also tN ∈ V N and f ∈ V 0. An equally important role is played

by a sequence of convergence sets {En}n∈IN, of which the elements guarantee
convergence of the continued fraction (1) as long as each partial numerator an

belongs to the respective set En:

∀n ≥ 1 : an ∈ En ⇒
∞∑

n=1

an

1
converges.

A sequence {Vn}n∈IN is called a sequence of value sets for a sequence {En}n∈IN
of convergence sets if (4) holds for all an ∈ En. Value sets can also be defined for
non-convergent continued fractions (then the En are called element sets), but in
the current context this form of generality does not interest us.

It is well-known that the tail or rest term of a convergent Taylor series ex-
pansion converges to zero. It is less well-known that the tail of a convergent
continued fraction representation does not need to converge to zero; it does not
even need to converge at all. We give an example for each of the cases. Take for
instance the continued fraction expansion

√
1 + 4x− 1

2
=

∞∑
n=1

x

1
, x ≥ −1

4
.
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Each tail tN converges to 1/2(
√

1 + 4x− 1) as well. More remarkable is that the
even-numbered tails of the convergent continued fraction

√
2− 1 =

∞∑
n=1

(
(3 + (−1)n)/2

1

)
=

1
1

+
2
1

+
1
1

+
2
1

+ . . .

converge to
√

2 − 1 while the odd-numbered tails converge to
√

2 (hence the
sequence of tails does not converge), and that the sequence of tails {tN}N≥1 =
{N + 1}N≥1 of

1 =
∞∑

n=1

n(n + 2)
1

converges to +∞. Very accurate approximants fN (wN ) for f can be computed
by making an appropriate choice for the tail estimate wN ≈ tN .

We call a continued fraction of the form (1) limit-periodic with period k, if

lim
p→∞ apk+q = ãq, q = 1, . . . , k.

More can be said about tails of limit-periodic continued fractions with period
one, also called limit-periodic continued fractions. Let (1) converge and be limit-
periodic with an ≥ −1/4 and limn→∞ an = ã <∞. If w̃ is the in modulus smaller
fixpoint of the linear fractional transformation s(w) = ã/(1 + w), then

w̃ = −1
2

+

√
ã +

1
4

= lim
N→∞

tN

and, according to [8],

lim
N→∞

∣∣∣∣f(x)− fN (x; w̃)
f(x)− fN (x; 0)

∣∣∣∣ = 0.

Hence a suitable choice of w in (2) may result in more rapid convergence of the
approximants (w = 0 is usually used as a reference).

In this paper we further restrict the condition that (1) converges, in the case
of limit-periodic continued fractions, to the condition an ≥ −1/4 and {an}n∈IN
bounded [7, pp. 150–159]. This condition automatically implies that ã ≥ −1/4
and w̃ is real.

2 Truncation Error

Most truncation error upper bounds for |f(x) − fN (x;wN )| are given for the
classical choice wN = 0. For continued fractions with partial numerators of the
form an(x) = αnx with αn > 0 we refer among others to the a priori Gragg-
Warner bound

|f(x) − fN (x; 0)| ≤ 2
|a1|
cos φ

N

k=2

1 + 4|ak|/ cos2(φ) − 1

1 + 4|ak|/ cos2(φ) + 1
, −π < 2φ = arg(x) < π.
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which holds for N ≥ 2 and the a posteriori Henrici-Pfluger bound

|f(x)− fN (x; 0)| ≤

⎧⎨⎩|fN (x; 0)− fN−1(x; 0)|, | arg(x)| ≤ π/2,
|fN (x; 0)− fN−1(x; 0)|

| sin (arg(x)) | , π/2 < | arg(x)| < π.

In [4] we prove a practical and sharp truncation error bound for the case
wN �= 0, which is valid for all continued fractions with real partial numerators
an(x). This result departs from the Oval Sequence Theorem [7, pp. 145–147],
which holds in the complex plane, from which a priori truncation error estimates
can be obtained in case wN �= 0. In the real case the involved value sets Vn

and convergence sets En are intervals and the theorem can be simplified and
sharpened to the real Interval Sequence Theorem [4], here Theorem 1.

Theorem 1. Let for all n the values Ln and Rn satisfy −1/2 ≤ Ln ≤ Rn < ∞
and let

bn := (1 + sign(Ln)max(|Ln|, |Rn|)) Ln−1,

cn := (1 + sign(Ln)min(|Ln|, |Rn|))Rn−1,

satisfy bn ≤ cn and 0 ≤ bncn. Then the sequence {Vn}n∈IN with Vn = [Ln, Rn] is
a sequence of value sets for the sequence {En}n∈IN of convergence sets given by

En = [bn, cn] =

{
[(1 + Rn)Ln−1, (1 + Ln)Rn−1], bn ≥ 0,
[(1 + Ln)Ln−1, (1 + Rn)Rn−1], bn ≤ 0.

For wN ∈ VN the relative truncation error |f(x)− fN (x;wN )|/|f(x)| is bounded
by ∣∣∣∣f(x)− fN(x;wN )

f(x)

∣∣∣∣ ≤ RN − LN

1 + LN

N−1∏
k=1

Mk (5)

where Mk = max{|u/(1 + u)| : u ∈ Vk} = max{|Lk/(1 + Lk)|, |Rk/(1 + Rk)|}.
In Theorem 1 the sets En are deduced from the intervals Vn = [Ln, Rn] and the
bounds of En are formulated in terms of Ln and Rn. In the following Lemma 1 [4]
we formulate Ln and Rn in terms of the bounds on an in En and associate
intervals Vn with given intervals En, instead of the other way around. Let En =
[bn, cn] with −1/4 ≤ bn ≤ cn and bncn ≥ 0. The condition that bn and cn have
the same sign means nothing more than that at least sign(an) is kept fixed in
En.

Lemma 1. If the sequence of convergence sets {En}n∈IN is given by En =
[bn, cn] with bn ≥ −1/4 and 0 ≤ bncn, then the corresponding sequence of value
sets {Vn}n∈IN is given by Vn = [Ln, Rn] where Ln and Rn are particular tails of
the continued fractions

D̂ =
b1

1
+

c2
1

+
b3

1
+

c4
1

+ . . . ,

Û =
c1
1

+
b2

1
+

c3
1

+
b4

1
+ . . . ,
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and

Ď =
b1

1
+

b2

1
+

b3

1
+

b4

1
+ . . . ,

Ǔ =
c1
1

+
c2
1

+
c3
1

+
c4
1

+ . . . ,

More precisely, denoting the tails of D̂, Ď and Û , Ǔ respectively by D̂(n), Ď(n)

and Û (n), Ǔ (n) we have when all bn ≥ 0:

L2j = D̂(2j),

R2j = Û (2j),

L2j−1 = Û (2j−1),

R2j−1 = D̂(2j−1),
(6)

and when all bn ≤ 0:
Ln = Ď(n), Rn = Ǔ (n). (7)

3 Round-Off Error

Several algorithms exist for the computation of fN(w), the most stable [5] being
the backward recurrence algorithm

F
(N)
N+1 = wN

F (N)
n =

an

1 + F
(N)
n+1

, n = N,N − 1, . . . , 1

fN(w) = F
(N)
1

For the backward recurrence algorithm to be useful in a scalable precision con-
text, it must be possible to determine N rather easily a priori, in other words
which approximant to compute.

When actually implementing fN(wN ), we need to take into account that each
basic operation ∗ ∈ {+,−,×,÷} is being replaced by an (IEEE compliant)
floating-point operation � ∈ {⊕,/,⊗,0}. Such a floating-point implementation
is characterized by four parameters, being the base β used for the internal num-
ber representation, the precision or amount p of β-digits, and the exponent range
[emin, emax] allowed in the floating-point notation. Usually the rounding mode
in use is round-to-nearest (with the proper tie break). Each basic floating-point
operation x � y is then subject to a relative error of at most 1/2 ulp [3] where
one ulp or unit-in-the-last-place equals β−p+1. Also each partial numerator an

needs to be converted to a floating-point number ăn, hence entailing a relative
rounding error εn given by

ăn = an(1 + εn).

Here |εn| is usually no more than a few ulp. Without loss of generality, we assume
that wN ∈ VN is a floating-point number estimating tN . When executing the
backward recurrence, each computed F̆

(N)
n then differs from the true F

(N)
n by a



Towards Reliable Software for the Evaluation of a Class of Special Functions 313

rounding error ε
(N)
n , and this for n = N, . . . , 1, in other words

F̆
(N)
N+1 = wN , ε

(N)
N+1 = 0,

F̆ (N)
n = ăn 0

(
1⊕ F̆

(N)
n+1

)
, n = N, . . . , 1

=
ăn

1 + F̆
(N)
n+1

(1 + δn)

= F (N)
n (1 + ε(N)

n )

F̆
(N)
1 = F

(N)
1 (1 + ε

(N)
1 )

Here δn is the relative rounding error introduced in step n of the algorithm. The
question how large |ε(N)

1 | is, is answered in Lemma 2 [6] and Theorem 2, the
latter being a slight generalization of a result proved in [6]. Let us introduce the
notation

γ(N)
n = F

(N)
n+1/(1 + F

(N)
n+1), n = 1, . . . , N.

Lemma 2. Let {Vn}∞n=1 be a sequence of value sets for (1). If F
(N)
N+1 = wN ∈

VN , then for 1 ≤ n ≤ N ,

|γ(N)
n | =

∣∣∣∣∣ F
(N)
n+1

1 + F
(N)
n+1

∣∣∣∣∣ ≤M = max
n=1,...,N

Mn.

Theorem 2. Let F
(N)
N+1 = wN be a floating-point number and let for n =

1, . . . , N ,

|εn| ≤ ε ulp,

|δn| ≤ δ ulp,

|γ(N)
n | ≤M.

Let the base β and precision p of the IEEE arithmetic in use satisfy(
1 + M(1 + 2ε + 2δ)

MN−1 − 1
M − 1

)
ulp < 1.

Then |ε(N)
1 | is bounded by

|ε(N)
1 | ≤ 1

2
(1 + 2ε + 2δ)

MN − 1
M − 1

ulp.

From Theorem 2 we obtain for the relative round-off error:

|fN (x;wN )− F̆
(N)
1 |

|f(x)| =
∣∣∣ε(N)

1

∣∣∣ |F (N)
1 |
|f(x)| ≤

1 + 2ε + 2δ

2
MN − 1
M − 1

|F (N)
1 |
|f(x)| β

−p+1. (8)
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4 Towards a Reliable Implementation

Let us denote the right hand side of (5) by εT and the right hand side of (8) by
εR. Clearly

εT = εT (N, b1, . . . , bN , c1, . . . , cN )

and
εR = εR(N, β, p,M1, . . . ,MN).

In order to guarantee that F̆
(N)
1 has s significant β-digits, meaning that∣∣∣f − F̆
(N)
1

∣∣∣
|f | ≤ εT + εR ≤ σ =

β

2
β−s

we proceed as follows:

– we determine N (and wN ∈ VN ) from the condition

εT (N, b1, . . . , bN , c1, . . . , cN) ≤ τ < σ (9)

– we determine a suitable precision p (for chosen β) from the condition

εR(N, β, p,M1, . . . ,MN) ≤ ρ < σ (10)

with τ ≥ 0, ρ ≥ 0, τ + ρ = σ. The former condition directly involves the inaccu-
racy |cn − bn| that we allow for the partial numerators an. The latter condition
depends on the sequence of values Mn, hence on the Ln and Rn which can be
obtained from the bn and cn.

Obtaining a useful value wN is the remaining crucial step. To this end we
need to establish a few new results. We further distinguish between

– limit-periodic continued fractions where an → ã from one side, say {an}n∈IN
is a decreasing (or increasing) sequence with limn→∞ an = ã,

– and limit-periodic fractions where an → ã in an alternating fashion, say
the sequences {a2n+1}n∈IN and {a2n}n∈IN respectively decrease and increase
towards their mutual limit ã.

Let us denote the j-th approximants of Rk and Lk as given by (6) and (7) in
Lemma 1, by Rk,j(ωj) and Lk,j(ωj) respectively. For the tail estimates in (6)
and (7) we switch to the notation ωj instead of the traditional wj used in (2) in
order to avoid confusion between the different tails. Detailed proofs of the new
results will be given in future work [2]. For the time being we focus on the role of
these results in a procedure for the reliable evaluation of special functions that
allow a limit-periodic continued fraction representation (in a certain region of
the real variable x).

For the accurate computation of a suitable N from (9) we need to know
|Rk − Lk| for k = 1, . . . , N , in other words an upper bound for Rk and a lower
bound for Lk. In order to obtain a suitable wN , meaning a value wN ∈ VN , we
need to know the interior of [LN , RN ] or an upper bound for LN and a lower
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bound for RN . Both can be realized by computing enclosures for the values
Lk and Rk. These upper and lower bounds for Lk and Rk are given in the
Lemmas 3, 4 and 5. Some additional care needs to be taken, but for the moment
we restrict ourselves to the headlines of the technique. More details will be given
in [2].

4.1 Case an Positive

When (1) has positive partial numerators an, then the values Mk in Theorem 1
equal

Mk =
Rk

1 + Rk
, k = 1, . . . , N − 1.

In Lemma 3 we explicit the bounds on Lk and Rk in case the partial numerators
an show an oscillatory behaviour towards the limit ã. In Lemma 4 we treat the
case where the an decrease monotonically to ã.

Lemma 3. Let the sequences {a2n+1}n∈IN, {b2n+1}n∈IN, {c2n+1}n∈IN and the se-
quences {a2n}n∈IN, {b2n}n∈IN, {c2n}n∈IN respectively decrease and increase to
their mutual limit ã. With

2ω = −1 +
√

4ã + 1,

2ω(�)
k,2j−1 = ck+2j − bk+2j+1 − 1 +

√
4ck+2j + (ck+2j − bk+2j+1 − 1)2,

2ω(�)
k,2j = bk+2j+1 − ck+2j+2 − 1 +

√
4bk+2j+1 + (bk+2j+1 − ck+2j+2 − 1)2,

2ω(r)
k,2j = ck+2j+1 − bk+2j+2 − 1 +

√
4ck+2j+1 + (ck+2j+1 − bk+2j+2 − 1)2,

2ω(r)
k,2j−1 = bk+2j − ck+2j+1 − 1 +

√
4bk+2j + (bk+2j − ck+2j+1 − 1)2,

the following bounds can be given for Lk and Rk where  ≥ 1 and j ≥ 0:

L2�−1,2j(ω
(�)
2�−1,2j) ≤ L2�−1 ≤ L2�−1,2j(ω),

L2�−1,2j+1(ω
(�)
2�−1,2j+1) ≤ L2�−1 ≤ L2�−1,2j+1(ω),

L2�,2j(ω) ≤ L2� ≤ L2�,2j(ω
(�)
2�,2j),

L2�,2j+1(ω) ≤ L2� ≤ L2�,2j+1(ω
(�)
2�,2j+1),

and

R2�−1,2j(ω
(r)
2�−1,2j) ≤ R2�−1 ≤ R2�−1,2j(ω),

R2�−1,2j+1(ω
(r)
2�−1,2j+1) ≤ R2�−1 ≤ R2�−1,2j+1(ω),

R2�,2j(ω) ≤ R2� ≤ R2�,2j(ω
(r)
2�,2j),

R2�,2j+1(ω) ≤ R2� ≤ R2�,2j+1(ω
(r)
2�,2j+1).
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Lemma 4. Let the sequences {an}n∈IN, {bn}n∈IN, {cn}n∈IN all decrease to ã ≥ 0.
With

2ω(01)
k,j = ã− ck+j+2 − 1 +

√
4ã + (ã− ck+j+2 − 1)2,

2ω(10)
k,j = bk+j+1 − ã− 1 +

√
4bk+j+1 + (bk+j+1 − ã− 1)2,

2ω(20)
k,j = ck+j+1 − ã− 1 +

√
4ck+j+1 + (ck+j+1 − ã− 1)2,

2ω(02)
k,j = ã− bk+j+2 − 1 +

√
4ã + (ã− bk+j+2 − 1)2,

the following bounds can be given for Lk and Rk where k ≥ 1 and j ≥ 0:

Lk,2j(ω
(02)
k,2j) ≤ Lk ≤ Lk,2j(ω

(10)
k,2j),

Lk,2j+1(ω
(20)
k,2j+1) ≤ Lk ≤ Lk,2j+1(ω

(01)
k,2j+1),

and

Rk,2j(ω
(01)
k,2j) ≤ Rk ≤ Rk,2j(ω

(20)
k,2j),

Rk,2j+1(ω
(10)
k,2j+1) ≤ Rk ≤ Rk,2j+1(ω

(02)
k,2j+1),

4.2 Case an Negative

When (1) has negative partial numerators an, then the values Mk in Theorem 1
equal

Mk =
|Lk|

1 + Lk
, k = 1, . . . , N − 1.

In Lemma 5 we explicit the bounds on Lk and Rk in case the partial numer-
ators an form a monotonic sequence towards the limit ã, either decreasing or
increasing.

Lemma 5. Let k ≥ 1, j ≥ 0 and

2ω = −1 +
√

4ã + 1,

2ω(�)
k,j = −1 +

√
4bk+j+1 + 1,

2ω(r)
k,j = −1 +

√
4ck+j+1 + 1.

If the sequences {an}n∈IN, {bn}n∈IN, {cn}n∈IN are decreasing with limn→∞ an =
limn→∞ bn = limn→∞ cn = ã, then

Lk,j(ω) ≤ Lk ≤ Lk,j(ω
(�)
k,j),

Rk,j(ω) ≤ Rk ≤ Rk,j(ω
(r)
k,j).

If the sequences {an}n∈IN, {bn}n∈IN, {cn}n∈IN are increasing with limn→∞ an =
limn→∞ bn = limn→∞ cn = ã, then

Lk,j(ω
(�)
k,j) ≤ Lk ≤ Lk,j(ω),

Rk,j(ω
(r)
k,j) ≤ Rk ≤ Rk,j(ω).
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4.3 Mixed Case

The condition that (1) has either only positive or only negative partial numera-
tors an can be relaxed, as long as it is satisfied from a certain n on. If the number
of terms with mixed behaviour is small, we can proceed as in [4]. If it is larger,
then an alternative technique based on a combination of a small number of pre-
dictions and corrections, can be used [1]. The latter uses the same estimates as
given in the Lemmas 3, 4 and 5.

5 Numerical Illustration

The collection of functions that can be evaluated reliably using this technique is
impressive. It essentially includes all functions that have a known limit-periodic
continued fraction representation. If the behaviour of the partial numerators an

(increasing, decreasing, oscillating) is known then the current technique can be
applied. If the behaviour varies as n grows, like in some hypergeometric functions,
the related technique explained in [1] can be applied.

Without the ambition of being exhaustive, we are currently working at im-
plementations for:

– the (lower and upper) incomplete gamma functions γ(a,x) and Γ (a,x),
– the error and complementary error function, Dawson’s integral, the expo-

nential integrals and several probability distributions that can be expressed
in terms of these functions,

– the hypergeometric and confluent hypergeometric functions 2F1(a, 1; c; x)
and 1F1(1; b; x), and several ratios of hypergeometric and confluent hyper-
geometric functions,

– particular ratios of Bessel, spherical Bessel, modified Bessel, modified spher-
ical Bessel, Whittaker and parabolic cylinder functions.

Here we give two numerical examples, one where the continued fraction rep-
resentation (1) has positive an and one where the partial numerators an are
negative.

5.1 Positive an

We consider

f(a,x) =
aγ(a,x)ex

xa
=

a
a−x

1 +

∞∑
n=2

(n−1)x
(a+n−1−x)(a+n−2−x)

1
(11)

where γ(a,x) is the (lower) incomplete gamma function. The sequence {an}n∈IN
is decreasing with ã = 0. Then Lk and Rk simplify to Lk = 0 and Rk = ak+1 for
[bn, cn] = [0, an]. We take x = 1 and a = 9/2 and require f(a,x) to be evaluated
with

εT + εR ≤ 10−d+1, d = 73, 74, . . . , 80.
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where τ and ρ in (9) and (10) are both taken equal to 5 × 10−d. The results
can be found in Table 1. Let us zoom in on the first line of output. For d = 73,
the bound εT given by (5) is less than 2.0 × 10−73 if N ≥ 49. Subsequently we
choose our working precision p in (8) so as to keep εR below 5.0 × 10−73. Here
we take β = 10 because we are going to compare our evaluation with that given
by the multiprecision implementation of Maple. From Theorem 1 we learn that
all wN satisfying

LN = 0 ≤ wN ≤ 1.812× 10−2 < RN = aN+1

are valid choices as a tail estimate, the easiest being wN = 0.
In Table 2 we have set Digits in Maple to d and printed the result for the

evaluation of f(a,x) delivered by this computer algebra system. Clearly the
evaluation in Maple is subject to a much larger error (2 or 3 trailing decimal
digits are inaccurate in this case).

Table 1. Continued fraction library output

73 1.214009591773512617777498734645198390079596056622283491877162409691879700
74 1.2140095917735126177774987346451983900795960566222834918771624096918797000
75 1.21400959177351261777749873464519839007959605662228349187716240969187969998
76 1.214009591773512617777498734645198390079596056622283491877162409691879699983
77 1.2140095917735126177774987346451983900795960566222834918771624096918796999829
78 1.21400959177351261777749873464519839007959605662228349187716240969187969998292
79 1.214009591773512617777498734645198390079596056622283491877162409691879699982919
80 1.2140095917735126177774987346451983900795960566222834918771624096918796999829190

Table 2. Maple output

73 1.214009591773512617777498734645198390079596056622283491877162409691879774
74 1.2140095917735126177774987346451983900795960566222834918771624096918797015
75 1.21400959177351261777749873464519839007959605662228349187716240969187969966
76 1.214009591773512617777498734645198390079596056622283491877162409691879700001
77 1.2140095917735126177774987346451983900795960566222834918771624096918796999764
78 1.21400959177351261777749873464519839007959605662228349187716240969187969998223
79 1.214009591773512617777498734645198390079596056622283491877162409691879699982930
80 1.2140095917735126177774987346451983900795960566222834918771624096918796999829239

5.2 Negative an

Let us consider the function

f(x) =
exp(−x2)

2
√
πx(2x2 + 1)erfc(x)

− 1 =
∞∑

n=1

−(2n+1)(2n+2)
(2x2+5+4n)(2x2+1+4n)

1

and x = 2. The partial numerators are negative and decrease to ã = −1/4. We
target εT ≤ 2−79 ≈ 1.65 × 10−24 and use exact arithmetic for a change (hence
εR = 0).
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The bound (5) is less than 2−79 for N ≥ 59. For j = 12 we obtain in addition
that

tN+1 = LN < LN,j

(
−1 +

√
4aN+2 + 1
2

)
< RN,j(−1/2) < RN = tN

and hence that all wN satisfying

LN,j

(
−1 +

√
4aN+2 + 1
2

)
< −0.37621 ≤ wN ≤ −0.37527 < RN,j(−1/2)

are valid choices for the approximation of f(x) by fN(x;wN ), since they belong
to VN guaranteed.
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Abstract. In response to the current globalization in the educational arena, and 
to the new policy of change in the medium of instruction for teaching 
mathematics and science in English as implemented by the Malaysian 
Government in 2003, we introduce the e-learning Bilingual Model which has 
been designed and used at the university. The multimedia prototype of the 
model consists of text-based content for first-year mathematics subjects with 
exact forms available in both the English language and the native language. 
Content is identified to provide descriptions of core concepts dynamically 
using, audio, video and graphics, and also constructed to provide bilingual 
glossaries. The combination of Information Communication Technologies 
(ICT) such as  Short Messaging Service (SMS), MOODLE e-learning, and 
Freeware Online-portals for Group-websites (FrOG) become the setting for an 
integrated framework for Technology Based Learning Environment, and work 
as instructional delivery tools in addition to the traditional method of teaching 
mathematics.  

Keywords: bilingual model, multimedia prototype, and technology based 
learning environment. 

1   Introduction 

The government agenda in achieving excellence in education as announced in 
Belanjawan 2003 (Budget 2003) where the policy to change the medium of 
instruction in teaching mathematics and science from Bahasa Melayu to English 
presents an important innovation affecting instructions in mathematics and science 
not only in school, but in institutions of higher-learning as well.  As the 
implementation for changing the medium of instruction from Bahasa Melayu to 
English is taking place immediately at the university level, students who are exposed 
to learning mathematics in the Malay medium all this while will definitely face 
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several language learning difficulties as indicated by several studies when two kinds 
of language conventions, that is the social language and the academic language, are 
now taking place in the classroom. 

Researchers have found that students who are non-native English speakers attempt 
to read and write mathematics sentences the same way that they read and write 
standard narrative text.  Usually they try to translate word-for word between a 
mathematical concept expressed in words and the concept expressed in symbols.  
However they do not realize that mathematical concept expressed in words often 
differs in its order from the way the concept is expressed in symbols. Dale and 
Cuevas (1992) offer as example the phrase eight divided by two which might be 
incorrectly translated to   

28  rather than 82 ,  

or the algebraic phrase, the number a is five less than the number b, which might be 
mistakenly restated as 

a = 5 – b, when it should be a = b – 5.   

Other difficulties that students may encounter are in the understanding of the 
specialized vocabulary and discourse features in the language of mathematics, and 
also in interpreting the meaning of logical connectors in mathematics discourse 
(Jarret, 1999). 

Also, researchers believed that English as a second language (ESL) is best taught 
in natural situations, with the second language used in meaningful contexts rather than 
in repetitious drill of grammar and vocabulary.  One variant of ESL, known as 
“sheltered subject-matter instruction”, adapts lessons according to students’ level of 
English proficiency.  This approach is common in bilingual education programs, in 
which lessons are coordinated in students’ native language (Crawford, 1998). 

In order to decide on the most appropriate approach to learning, some 
circumstances surrounding the learning was taken into account. For example, the 
bilingual, text-based mathematics prototype has an organization of instruction in 
which concepts are structured in increasing order of complexity. The learner can be 
introduced to the main concepts of a course and then move on to more of a self 
directed study that is meaningful to them and their particular context. 

The prototype is actually a complementary tool for students to acquire 
mathematical understanding; meant for the use of the first year Diploma of 
Engineering students in University Teknologi Malaysia, since they are required to 
take mathematics subjects such as Algebra, Calculus, Geometry and Trigonometry, as 
prerequisites to their Engineering subjects. When students have been previously 
exposed to learning all these subjects in the medium of the native language, the 
prototype becomes the transitional device for them to derive mathematical meaning, 
assist comprehension and understanding faster by using the English language.  This 
enables them to experience more reading, increased comprehension, achieve higher 
literacy and academic development within the mathematics courses. 
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2   Designing the Bilingual Model  

The construction of the prototype is based on several aspects including: the syllabus, 
the content experts’ opinion, the result of the Questionnaires and the Learning Style 
Inventory, as well as the learning theories and instructional design theories.  Needs 
analysis was carried out in order to identify students’ learning characteristics, 
language preference, perceived helpfulness of e-learning, and preferred language of 
instruction as well.  These will determine their preferences on the major features of 
the courseware (Dahlan, Mohd. Mahzir, 2004). 

To ensure that the teaching and learning of mathematics in English will be 
implemented effectively, the learning system using multimedia tools and applications 
on the internet is developed to have features such as 

• Presentation of mathematics problem and statement using simple and declarative 
sentence in English 

• Having the Bahasa Melayu that is the native language version available for the 
same notes and example in English 

• Video clips of selected lesson  
• Narration for concept expressed in words and concept expressed in symbols 
• Link of specialized vocabulary of mathematics in the notes with the corresponding 

social and mathematical meaning  

The web-based learning system fully uses Macromedia Flash and Authorware as 
the foundation for the construction of online notes which is composed in the English 
version and the Bahasa Melayu version.  For the glossary, PHP programming 
language and MySQL database are two components used in the search engine in order 
to display user’s search query.  In addition, at the administrator’s site, PHP is also 
used to insert text and graphics in the glossary database; and similar components are 
used for constructing and managing quizzes. These multimedia tools together with the 
Apache web server are then linked in an existing university MOODLE e-learning 
system.  

3   Multimedia Prototype 

The multimedia web page for the subject is divided into three main pages. The first 
page contains the introduction and links to the second and third page.  Website view 
of the first page is shown in Figure 1. 

The second page contains subtopic of the access from the first page.  Access of 
notes in both languages is available (as shown in Fig. 2 and Fig. 3); the contents are 
structured in order to comply to the learning of any individual being exposed to the 
topic for the first time. Video clips of selected lessons taught in English and also 
Bahasa Melayu are added for further understanding of any topics. 

In addition to the notes given, are example of questions together with the solutions 
and also collection of previous years examination questions.  Furthermore, students 
are required to take interactive quizzes ranging from basic, intermediate to advance 
for building foundations of their mathematics skill and ability. 
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Fig. 1. Website view 
 

 

Fig. 2. Interface of content in English     

 

Fig. 3. Interface of content in Bahasa Melayu 

In Fig. 4, selected sentence is highlighted and added with the display of an audio 
icon to indicate that narration is provided.  This is to help user to identify and to 
pronounce the words and mathematics symbols correctly.  The demonstration on how 
to recite the mathematics sentence and symbols by narration is quite helpful for 
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Fig. 4. Audio sample for selected sentence 

learners to realize that mathematical concept when expressed in words often differs in 
its order from the way when the concept is expressed in symbols. 

The third page as shown in Fig.5 contains the search for words or mathematical 
terms which is hypertext from the notes or accessed directly, from the database of the 
second page.  The explanation of the mathematical term is given in both English and 
Bahasa Melayu.  In obliging learners to understand the meaning of a word without 
any difficulty, short and simple descriptive phrase and presentation that is more 
acceptable to the general Malaysian scholar at the diploma level was prepared.  The 
glossary section is most important in assimilating students with the use and the 
recognition of keywords.  In reading sentence for mathematics subject in English, 
keyword recognition is one of the method that will help them to rapidly comprehend 
the context that is being discussed. 

 

Fig. 5. Site for glossary search 
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4   Implementation 

The Mathematics Learning Framework includes the Short Messaging Service (SMS), 
MOODLE e-learning and Freeware Online-portals for Group-websites (FrOG), are 
examples of Information Communication Technologies (ICT) used as instructional 
delivery tools within the technology based instructional learning, in addition to the 
traditional method of teaching mathematics.  The multimedia prototype, as a part of 
the e-learning package, is used as a supplementary learning tool after each lecture, in 
helping students to review mathematics easily and systematically.  It is also enhanced 
with the combination of active and cooperative learning among learners. 

Now that various forms of computer/mobile-mediated communication is available, 
learners have access to large amount of current information, which is constantly being 
added with a high rate of new information.  The state of having excess of information 
and unable to make a decision or remain informed about a topic is often referred to 
information overload or “technostress” (Wikipedia, 2006). In order to avoid users 
from being controlled by ICT rather than being empowered by it, they need to be 
guided, coached, motivated, and trained to use the system effectively. 

Hussin and Dahlan in 2005 selected the SMS/FrOG as additional instructional 
delivery tools since it deals directly with both learner and instructor as individuals and 
it penetrates or breaks all barriers between learner and instructor. It defies 
conventional definition of task execution and allows learning to occur in a multitude 
of on-job situations, thus the need to monitor learners and to get feedback from 
learners, or to give encouragement and motivation becomes simple and more 
efficient.  It even challenges and redefines the roles or “learner” and “instructor”, by 
offering empowerment to anyone who masters the science (and art) of its application. 

5   Finding and Discussions 

All mature speakers of a language have knowledge about their language that is highly 
abstract, in other words they are able to distinguish between grammatical and 
ungrammatical sentences that differ only along this abstract dimension.  This ability 
could not have been induced from simple exposure to the surface patterns of language 
but could have been acquired through a critical a prori  knowledge about a language.  
For second language acquisition, the extension is that if learners successfully make 
similar distinctions, they must be able to follow their innate knowledge (Hakuta, 
McLaughlin, 1996).  

From the linguistic perspectives, the rules of any grammar are highly abstract and 
do not reflect the surface properties of the language.  Universal Grammar involves a 
set of principles with certain parameters which remain “open” until they are set by 
experience with the environment.  Language acquisition is a process where the learner 
discovers how the principles operate in the target language and what parameter value 
apply.  Furthermore, the grammar of a language is the set of values it assigns to 
various parameters (Hakuta, McLaughlin, 1996).  

Given in the next paragraph is the sample of content for the chapter: Complex 
Number from Figure 2 and Figure 3. In this example, the statement in English is 
constructed using simple and declarative sentence which is actually almost an exact 
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translation from the original statement in Bahasa Melayu.  The reasoning behind this 
is when reading in English, the first year diploma students have the inclination 
towards translating word (in English) for word (into Bahasa Melayu), such that when 
they are reading mathematics reference text from an English publication the meaning 
of a sentence is lost in “their” translation.   

 
Complex Number 
 
Definition: 

Number of the form   a + b 1−  or a + ib, with the imaginary number  i  = 1−  
and a,b ℜ∈  , is called a complex number. 
 
Examples of complex numbers are:    
3 - 2i, 1 + i, π  + 3i, and also 2 + 0i = 2  or  0 + 5i = 5i . 
 
Complex number of form a + ib is also known as complex number in rectangular 
form. 
 
The set of complex number is C.  This number consists of real and imaginary part. 
If z = a + ib that is Cz ∈ , then the real part is Re(z) = Re(a + ib) = a, and the 
imaginary part is Im(z) = Im(a +ib) = b. 
 
The translation given below addressed the issue on how the parameters that have 

been set in the first language need to be reset or readjusted for the second language.  
Natural translation which refers to the cognitive skills involves, is applied here in 
order to enhance the contextual meaning and the link between the comprehension and 
meaning of the translation.  The corresponding content in Bahasa Melayu statement 
is: 

 
Nombor Kompleks 
 
Takrif: 

Nombor dalam bentuk a + b 1−  atau a + ib, dengan nombor khayal  i  = 1−  
dan a,b ℜ∈  dipanggil nombor kompleks. 
 
Contoh-contoh nombor kompleks ialah: 
3 - 2i, 1 + i, π + 3i , 2 + 0i = 2 , atau  0 + 5i = 5i . 
 
Nombor kompleks dalam bentuk a + ib juga dikenali sebagai nombor kompleks 
dalam bentuk segiempat. 
 
Set nombor kompleks ialah C.  Nombor ini terdiri dari bahagian nyata dan 
bahagian khayal.  
Jika z = a + ib iaitu z ∈  C, maka bahagian nyata ialah Ny(z) = Ny(a + ib) = a, 
dan bahagian khayal ialah Kh(z) = Kh(a + ib) = b. 
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In this section, where the introduction to the imaginary number and the set of 
complex number is given, the learners have prior knowledge on the imaginary 
number.  It was obtained when they were being taught the formula in finding roots of 
the quadratic equation.  Once the learners have understood the construct of the 
imaginary number, they are able to apply the knowledge to other area that they have 
learned such as in the algebraic operations and exponential rule pertaining to the 
complex numbers without any difficulty. 

Malakoff and Hakuta (1991) stated that bilingual has linguistic experience that is 
spread over two languages that are used in alternation.  Experience is encoded in 
either one of the two languages and can be expressed in both languages.  Similarly 
information representation can be switched between the languages.  Most learning 
that is carried out in the first language readily transfers to English not only in content 
areas like mathematics, science and social studies, but also in skills, in speaking, 
reading and writing. 

For type of content which involves concept or abstraction, such as in the definition 
of limit in calculus, the explanation on the concept in both languages is very 
extensive.  The learner found it difficult to comprehend the meaning or understand the 
concept which is given in either the English or the native language at the first 
introduction.  In this case, visual explanation is more appropriate and efficient in 
illustrating the idea. 

When more complex challenges are given in mathematics, the Malaysian learners 
usually switch to the more dominant language that they have in order to understand or 
meet the challenges.  Peal and Lambert in 1962 introduced the concept of “balanced” 
bilingual for those with equal proficiency in both languages in order to distinguish 
“pseudo-bilingual” from the truly bilingual.  In this case, the majority of learners who 
are pseudo-bilingual/multilingual usually select the native language Bahasa Melayu as 
their domain.  Further studies in determining the correlation between the preference or 
selection of language and the item difficulty of the mathematics content is being done 
and will be discussed later. 

Mathematical notations need to have exactly one to one stringent translation in 
both languages with respect to their meaning and order.   As an example, in the 
Binomial equation: 

rrn
r

n

0r

nn baC)ba( −

=
=+  (1) 

we have the symbol  that denotes “summation” in English or “hasiltambah” in 

Bahasa Melayu, and also the notations r
n C  that is read as “n choose r”  in English or  

“n pilih r” in Bahasa Melayu. 
When “reading” the formula in both languages according in the meaning or order 

of the mathematical notations, significant change does not appear since the translation 
of mathematical notations is exact and does not involve any grammatical or 
parametric differences discussed earlier.  However, when the algebraic phrase is 
stated differently from the arrangement of the mathematical notations or when some 



328 Z. Dahlan, N. Shafie, and R.A. Rashid 

discourse feature in mathematics is encountered, then mistakes in the interpretation 
and comprehension may occur. 

It was also observed that learners are able to comprehend mentally the visual 
interpretation of the more complex mathematical notations or the symbolic language 
of mathematics, but most of them do not have the same ability and quickness at 
demonstrating their oral presentation or communication in either languages (both 
Bahasa Melayu and English).  In other words, they are able to show their work on 
mathematics, but they have difficulties in explaining the solution of their work to 
others.  This disadvantage is more obvious when learners are required to construct 
mathematical conjectures, develop and evaluate some mathematical arguments, and 
also to select various types of representations of a certain mathematical problem.  
Action that has been taken to resolve this disadvantage is to practice the method of 
active and cooperative learning to cultivate the mathematics communication skill  and 
to enhance their understanding on mathematics discourse during class.  

6   Conclusion and Future Works 

The introduction of the mathematics learning framework with the combination of 
MOODLE e-learning, SMS technology and free online group concept enable the 
instructors to monitor learners’ progress and performance better.   It is hoped that this 
can  react as a catalyst in the process of generating higher order thinking and 
cultivating multi-tasking skills among learners.  

The existence of multilingual communities in Malaysia enrich the culture and 
lifestyle, nevertheless the selection of English as a medium of instruction in the 
education system conforms the people of every descendent in the country to a 
minority in the global world.  Therefore, condition that is conducive to learning which 
promotes additive bilingualism, where the native language and the English language 
support both academically and emotionally by the community and society, is most 
important to ensure positive effect on cognitive development. 

Mathematics is a universal symbolic language that stands alone in any medium of 
communication. Traditional studies in mathematics usually involve the course 
syllabus, which is content oriented, and exercise on the oral and written interpretation. 
The visual interpretation of mathematics, such as using images to stimulate thinking, 
need to be explored since instant messages can be conveyed in visual form.  As the 
saying goes “a picture speaks a thousand words”.   

The shift into the new paradigm of teaching mathematics, due to the changing 
world especially in ICT contributes to the high demand of new and innovative ideas 
in mathematics education for the future. Hence, there is an urgent need to train 
students to use the available technology effectively, and for the instructor to come up 
with quicker and more sophisticated tools and method for teaching and learning.  In 
consequence, that learners are able to gather, sort, select, and experience benefit from 
the vast amount of information and overflow of knowledge that exist in the virtual 
atmosphere.  
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Methods to Access and Retrieve
Mathematical Content in ActiveMath

Paul Libbrecht and Erica Melis

German Research Center for Artificial Intelligence, Saarbrücken, Germany

Abstract. This article describes how mathematical content items and
formulæ are processed, retrieved, and accessed in ActiveMath. Central
to the retrieval and access is a search tool which allows for searching text,
attributes, relations and formulæ, and presenting items. The search tool
has been evaluated according to the standard measures of precision and
recall as well as for usability. We report results of these evaluations.

1 Introduction

Increasingly, (mathematical) content is enriched with semantic information in
order to make it interoperable and better accessible for men and machines.
To employ the semantics, new retrieval techniques have to be developed. Since
our learning environment, ActiveMath, works with semantically represented
maths content, we developed new techniques to make the semantics of items
and of mathematical formulæ accessible with common information retrieval (IR)
technologies. The developed techniques convert formulæ to indices and allow
sub-expressions to be matched (with wild cards) while relying on the semantic
representation of OpenMath [BCC+04]. Moreover, we contribute the implemen-
tation of a search tool that does not only retrieve maths content items but also
provides access to related items, ranks them, and presents them in an advanced
human-readable rendering.

1.1 ActiveMath

ActiveMath [MAB+01] is an integrated learning environment on the Web.
Its content uses an extension of the OMDoc language [Koh00], which itself is an
extension for mathematical documents of the OpenMath [BCC+04] mathemat-
ical objects encoding. OMDoc’s item granularity is that of definitions, examples,
exercises etc., and it is the level which is mostly used for management, refer-
encing, and search in ActiveMath. Each content item can contain text with
links and semantically encoded formulæ and is annotated with mathematical
and pedagogical attributes and relations [MAF+03].

ActiveMath supports learners in many ways including:

– generation of courses/books adapted to the user’s learning goals, scenarios
and knowledge

– interactive exercises with mathematical input, evaluation, and feedback

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 331–342, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– various learning support tools
– an open learner model.

The presentation of courses in the form of books provides an intuitive nav-
igation paradigm. This and the search facility are two methods to access the
content items on an ActiveMath server, allowing a learner to see the content
item, reference it in communication, and find it.

A new ActiveMath facility for multi-dimensional search is presented in this
paper. It searches through large OMDoc content repositories for text, formulæ,
and items’ characteristics.

The paper first recapitulates the learning and authoring situations in which
content items are presented, searched for. This is followed by a description of
the search tool’s components and evaluation results. Finally related research and
future works are presented.

2 Access to Content Items

This section reviews common practices for mathematical knowledge management
and indicates what ActiveMath is doing in this direction. We use the term
access very broadly for the ability of a user to reach a given item, symbol, or
formula. Accessing an item means to have it presented in a browser, to be able
to reference it or to let other programmes download it. Access can be granted
through linking or through search.

The search for mathematical texts or formulæ has the same purposes as gen-
eral search and can be included into general search engines with additional com-
ponents or via preprocessing. In ActiveMath, search can serve the system, e.g.
adaptive course generation, or it can serve the learner to retrieve information for
learning, to learn about the relationship among knowledge items, mathematical
symbols, etc., to communicate search results, or to enquire about communicated
information and mathematical expressions. Search can also serve authors and
tutors which will search content with textual, formal, and attribute queries in
many situations. For example, when authors are writing new content, are review-
ing it, or are assembling new new courses from existing materials they search for
items by their content, pedagogical attributes, or relations.

In ActiveMath, access to mathematical content may start when opening
a “book” that contains items previously assembled by an author. An example
page of a book is in Figure 1. While the learner is reading she may be wondering
about a concept or symbol that is present on the page. Content items for this
concept or symbol, e.g. a definition of it, may be directly linked by the author in
which case the learner could simply click on it and the item would be displayed.
The concept behind a mathematical symbol is presented via a link. The concept
can also be searched by its name.

Situations in which a learner may wish to use links or search include the
process of active learning exercising in which, e.g., a rule, definition, or theorem
has to be recalled and applied. Such links can be offered in feedback of an
exercise step. With her own initiative, the learner could use a search tool for
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Fig. 1. A book presentation in ActiveMath

textual search or formulæ search in order to recall and/or copy semantics to a
particular application, e.g. a concept mapping tool.

3 Ingredients of a Search Tool

In the sketch of the ingredients needed for a search tool we follow [You05] but
our focus is on the mathematical content items and formulæ as opposed to the
mere function orientation of [You05]. We present additional ingredients that are
required for a system that does not only search but also presents the content.
Identifiers and References Content items need to be addressable in order to be
extracted and referenced. References to items should be exchangeable in e-mail
communications. Therefore, they need to be context independent and short.
Storage, Extraction, and Presentation Mathematical content items are embed-
ded within larger documents. The documents need to be stored in repositories
and ways for their extraction are needed, so that they can be queried and pre-
sented.
Query Input Queries for textual fragments are well known, being the focus of
Information Retrieval. Queries for item attributes can be input using form-based
interfaces or using a dedicated syntax. Queries for mathematical expressions is
less developed. A usage of a facility to input the formulæ is important.
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Indexing, Analysis, and Back-End Query Information Retrieval as in [vR79]
provides powerful methods to convert rows of tokens to an index for which
search results can be computed efficiently. This relies on a tokenization process
called analysis which, among others, stems words (e.g. remove plural), removes
too frequent words, etc.

We developed a special treatment for the highly structured nature of mathe-
matical formulæ in the indexing process as well as in the analysis process trans-
forming (queries for) mathematical expressions into (back-end queries for) rows
of tokens.
Results Presentation The way a search tool displays a result is very important.
For users who often only visit the first few matches, information retrieval has
introduced the notion of relevance of a match, a score that is assigned to a
document matching a query; results with highest relevance should be presented
first. The results’ list should provide visual hints about the type of mathematical
item presented, its title, its ranking.

4 The ActiveMath Search Tool

The search tool of ActiveMath searches (an index produced from) the OMDoc
sources. It provides a friendly user-interface that combines plain-text search with
item-attributes and formulæ search. It presents the results of the queries as well
as individual items and their relations.

A coarse architecture of the tool is depicted in Figure 2 which presents the
flow of information at indexing time (on the left), at query time (right bottom),
and at item presentation time (right top).

The description of the ActiveMath search tool follows the structure of §3.

Fig. 2. Architecture of the ActiveMath search tool

Identifiers and References Each content item is marked by a content identifier.
References to content items are presented as links within the browser presenta-
tions which makes them exchangeable by most desktop applications. Since these
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Fig. 3. The advanced search user interface

URIs are also downloadable, they provide an entry point to Web-robots. Among
others, we used this in a comparison between the Google and ActiveMath
search engines described in §5.
Storage and Extraction The OMDoc files are loaded in a content storage which
splits the items and prepares them to be served individually. The search and pre-
sentation engines request the content of items, their metadata and the relations
between them.
Query Input The user interface of the ActiveMath search tool allows for a
set of queries which are expanded to low-level queries referring to the index.
ActiveMath offers several kinds of queries: text queries, attribute queries, and
formulæ queries. Simple queries allows the input of a conjunction of text and
attribute queries.

In the advanced search mode users edit a Boolean combination of text, at-
tribute, and formulæ queries: simple text fields are used for text queries, item at-
tributes’ queries are input using pop-up-menus, while formulæ queries are input
with the Wiris input-editor.1 A screenshot of the advanced search user-interface
is in Figure 3.
Indexing, Analysis, and Back-end Queries The indexing process follows the In-
formation Retrieval approach: the content is read from the OMDoc sources and
decomposed by the analysis process in parallel streams of tokens. These streams
are indexed by the Lucene library.2 Each token is stored on the disk along with
1 See http://wiris.com/ for more information about the OpenMath input-editor

that is provided in ActiveMath.
2 Lucene is a Java library for high-performance retrieval at the Apache Software Foun-

dation, http://lucene.apache.org/.
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its position in the stream in a way that allows queries for (rows of) tokens to be
efficiently matched.

We have developed an analysis process which converts the title, annotations
metadata, formal and textual content (including formulæ) to tokens as follows:

– Annotations’ attributes are stored as key-value pair tokens in their own fields.
– Word analysis applies the classical stemming and stop-words filtering follow-

ing Martin Porter’s algorithm [Por05].
– Words are also converted into a row of phonetic tokens which converts two

phonetically equivalent words in the target language to the same phonetic
tokens. This is a language-dependent process.

– Mathematical formulæ are converted from OpenMath to a row of tokens
following the depth-first walk of the expression tree. This enables sub-terms
to be matched.

4.1 Example Tokenization and Queries

Consider the following content item:
Trigonometric exercise
Let us assume a + b = k.

Our analysis process decomposes its content in named fields each populated
with a sequence of tokens passed to the Lucene library for indexing. For the
content item above, the following tokens are provided to the index:

id: trigExo
attr: type:exercise
title-en: trigonometr exercis
text-en: let us assum _(_1 _OMS_relation1/eq

_(_2 _OMS_arith1/plus _OMV_a _OMV_b _)
_2 _OMV_k _)_1

text-phonetic-en : LT US ASMN

With these token-streams in the index, queries for exact text, fuzzy text, item
attributes, simple formulæ and formulæ with wild cards can be performed. They
match the item each with a particular relevance score computed on the basis of
the field and type of match (e.g., matches in titles are boosted by a factor of 10
as we expect them to be more relevant than matches in text):

– If the user enters “trigonometry” while working in English, the analysis con-
verts this word to a query for token trigonometr, which is exactly matched
to the field title-en of our item yielding score 10.0. If the user enters the
word “assume”, the analysis converts it the token “assum” which is exactly
matched to the field text-en yielding a score of 1.0.

– If the user enters “asuming”, the tokenization converts it to a query for the
token “ASMN” in the text-phonetic-en field which is matched to the content
of the phonetic english field (with score 0.8).
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– A query for the type exercise would be reformulated as an index-query for
the token type:exercise in the field attr which is matched to our item
with score 1.0.

– If the user inputs the formula a + b as formula query, it is translated to a
query for the row of tokens

_(_i _OMS_arith1/plus _OMV_a _OMV_b _)_i
where i ranges from 1 to the maximum-depth in the index. This is exactly
matched, with i = 2, to the tokens of our OpenMath representation of a+b
and thus yields a score of 1.0.

– the formula ? = k can be input as query by assigning the wild card role to
the ? sign. It is translated to a query for the token sequence

_(_i _OMS_relation1/eq _? _OMV_k _)_i
where i ranges from 1 to the maximum-depth in the index and where _? is a
wild card match of any row of tokens with the exception of the token _(_i.
This can be exactly matched, with i = 1 to the OpenMath representation
of our formula. The score of such a match is 1/6 which is computed on the
length of the matched wild card.

Results Presentation The ActiveMath search tool returns the first page of
results. Each result is displayed with bullets indicating the score, an icon of its
type, and its title. The user can click it to obtain a display of the item.

The plain-text search, by default, returns conceptual content items of the
current book with a sufficient relevance; a click can generalize this query. For a
mathematical symbol only its definitions is presented. The tool is complemented
by links that trigger an equivalent query to external sources of mathematical
content on the Web.

Clicking on an item in the result list presents the item view. The ActiveMath
presentation architecture converts the semantic OMDoc source into a format that
is highly readable and is linked to other functionalities of ActiveMath; for ex-
ample references to other items in the OMDoc source are transformed to HtML
anchors linked to its item view. The system uses XSLT, caches, and a templat-
ing language to provide these presentations. It can render in HtML, xHtML
+MathML, and pdf. To support the rendering of mathematical symbols, au-
thorable notations are provided, see [MLUM06]. The item view that presents
single items is accessible in each presentation of the item.

The description we have provided above shows that the ActiveMath search
tool can be used to search for text with reasonable tolerance, for item attributes,
as well as for formulæ with wild cards, that is, placeholders that are matched
with any term.

5 Evaluation of the Search Tool

The search tool of ActiveMath has been evaluated along two methodologies.
The first is a formative user testing. The second is a typical search evaluation
with measures for precision and recall which is additionally complemented by a
comparison to the Google search engine.
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The tests were preformed with the LeActiveMath calculus content [LG06]
a corpus equivalent to a typeset book of about 500 pages in English with full
translations to German and Spanish. The index contains 2761 documents made
of 560’259 tokens: 182765 words and 377’494 mathematical tokens spread in
36’389 formulæ, and 13’681 attribute tokens. On disk, this index takes about
10% of the size of its OMDoc sources.
Performance The simple text queries for learners are the slowest, ranging from
500 to 1500 milliseconds which is due mostly to the time taken to verify types
of each result and replace symbols by their definitions. The advanced queries for
mathematical terms, attributes, and words (both fuzzy and not) take between
50 and 150 milliseconds.
Formative evaluations At the University of Edinburgh 12 mathematics students
were invited to discover and use the ActiveMath learning environment un-
der the supervision of an expert. The Think-aloud protocols were taken. The
evaluation indicated the learners found ActiveMath search tool quite useful
and enjoyed an acceptable ease of use. It suggested the importance of labelling
content items by types and indicated that learners start grasping the structure
of content items, when using the search tool. The evaluation revealed a few us-
ability glitches, most importantly the incomprehensibility of the word metadata
to qualify queries for items’ attributes.

Three German high school classes have used the same tools and content for
several weeks. First observations from log files indicate that 95% of the sponta-
neous usage of the search tool are simple text queries.
Precision and Recall Evaluation This sample of the queries enriched with ex-
pected matches was tested as it is commonly done for a precision-and-recall
evaluation [Mah06]. Some queries with their precision and recall measures are
displayed in Table 1.

Table 1. A few example queries, their precision and recall

type query evaluation precision recall
plain-text durchschnittliche 14 matches, 4 correct, no miss 0.286 1.0
plain-text tangant two results correct no miss 1.0 1.0
plain-text sin more than 20 matches, all wrong 0.0 0.0
formula x2 1 result correct, no miss 1.0 1.0
plain-text theorem about quotient 1 correct match, no misses 1.0 1.0

The mean recall value is 0.93 (very high). The mean precision is 0.63, which is
low since the fuzzy matching uses both the phonetic and edit-distance3 matching
approaches.

3 The Lucene library offers a form of fuzzy queries which applies elementary modifica-
tions to the query words and recompute the matches. They are returned with a lower
score based on the edit-distance, the amount of elementary modifications applied.
Fuzzy textual matches in the ActiveMath search tool also use these queries.
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Table 2. A few example queries with the number of matches in ActiveMath and
Google search tools

ActiveMath Google
query amount matches amount matches
whenever function differential quotient 1 1
tangent convex concave 15 8
parabola maximum 6 17
water maxmimum 39 0
tangant maximum 31 0
sin maximum 48 0
inflection point 243 27
inflection point (no fuzzy) 20 27
sketch 69 1
cauchy sequence 20 65

Since it requires a priori knowledge of the expected matches this sample of 40
queries in a book of 30 pages is small. However, for mathematical material, there
seems to be no classical sample collection available such as the ones gathered for
the TREC competitions.4

Google Comparison Another approach to evaluate a search engine is to compare
the engine with another one which can also retrieve the content. Since Active-
Math is on the Web, it can be visited by Web-robots. We used the ability of
the Google search engine to restrict its search on a given Web-server to compare
Google results to ours.

A Web-server needs to be linked online in order to be accessible to Web-
robots. It also requires to respond appropriately to robots’ requests, that is, avoid
HtML-frames and cookies which are both basic ingredients of rich browser-based
Web-applications. In the versions of ActiveMath that was evaluated a special
access was arranged for Web-robots, listing the content items. As a result, the
Google search engine could retrieve the presentation of individual content items.

We gathered another set of queries, expected to be matched in the complete
content of the collection realized in LeActiveMath [LG06] and compared the
number of matches. Selected results can be found in Table 2. The Student-T-test
comparison between the two columns indicated a t-score of 5.41 which indicates a
significant difference. Distribution graphs of the number of matches are depicted
in Figure 4 which indicate a broader variation of the ActiveMath search tool.
One of the main differences of ActiveMath search tool compared to Google is
the matches (good and bad) introduced by the fuzzy matches which the Google
search engine does not provide. Two other factors led to the differences: the dates
of the index construction differ; and the fact that Google searches the text of

4 The TREC competition is a yearly competition organized along the TREC confer-
ences by NIST where large collections of texts are given to participants, followed by
queries. The result is evaluated, among others for precision and recall, by NIST. See
http://trec.nist.gov/ and the description in [Mah06].
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Fig. 4. The distribution graph of both ActiveMath and Google matches

the HtML item views which means, for example, that the text of the relations
from the items, which are shown along the presented item, are considered to be
part of the item or that the words of a presented formula, such as the word sin
in sinx, are matched as well.

6 Related Work

A few search tools allow for the query of mathematical terms, e.g. [AGC+04] or
[Urb04]. Because of the lack of a formal library, the ActiveMath search tool
cannot manipulate the formulæ applying formal knowledge, for example term-
ordering normalizations or symbol generalization. This results in a relatively low
tolerance in formulæ search.

The search tool of the Digital Library of Mathematical Functions explained
in [You05] is dedicated to functions. As a result it makes several normaliza-
tions of mathematical terms such as the conversion of ab−1cd−1 in ac

bd . Such
normalizations introduce tolerance within the search tool. The usage of a simple
type system for OpenMath objects could enable ActiveMath search tool to
perform normalizations which would, otherwise, be abusive with mathematical
objects such as group elements or matrices. The ActiveMath search tool also
differentiates itself from the DLMF search tool by the user interface: while the
DLMF search tool defines a plain-text input syntax, queries in the ActiveMath
search tool are realized by input of concrete words, attribute-value, or formulæ.

Another avenue has been explored by Paul Cairns in [Cai04] where Latent
Semantic Analysis can be used to provide a semantic distance between token-
vectors, including mathematical terms. We started to explore LSA usage.

MathWebSearch [KS06] is a Web-crawler for documents with MathML con-
tent. This tool uses the term indexing techniques of [Gra96] to index formulæ
collected on the Web. Compared to this search engine, the ActiveMath search
tool is more learner-oriented but still lacks the ability to perform queries for
formulæ with variables that occur several times. Since it uses the Lucene li-
brary, the ActiveMath search tool appears better scalable compared to the
term indexing technique which needs an in-memory representation.

From the overall access point-of-view, the ActiveMath learning environment
seems to be one of the rare mathematical content items presentation servers which
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manages items with a fine granularity. A few similar projects are the Thesaurus
at http://thesaurus.maths.org/, whose goal is an international dictionary of
mathematical concepts, or the encyclopedia projects. ActiveMath is the only
one among them which offers search by attributes and formulæ and a few other
features which are consequences of the semantic nature of the content encoding.

7 Conclusion

In this article, we described the access to mathematical content items in Ac-
tiveMath in particular, through its search tool and presented evaluations of
this search tool. The main contribution of this research is the development of an
analysis process for mathematical formulæ which converts them to streams of to-
kens on which information retrieval techniques can be applied. Using the Lucene
library for the indexing matching makes the search tool efficient We also devel-
oped a dedicated ranking scheme for search results which allowed us to order
most fuzzy matches below exact matches. The search interface has been designed
for learners and it has been evaluated for usability. Two main conclusions can
be drawn from the evaluations:

Not surprisingly, fuzziness introduces noise into the search results. Conversely,
the fuzziness introduces tolerance to the queries.

Future Work The comparison with other search engines will be refined, on the
one hand by enlarging the size of the sample and on the other hand, by using
automated methods to construct the sample, perform the test, and to invoke
queries on the Web-robot.

We are investigating the benefits of alternative indexing and matching mech-
anisms [Gra96] that may be more suitable for mathematical expressions.

We started working on access by Web-robots that can understand the math-
ematical semantic documents. They will be crawling OMDoc documents, or se-
mantically rich xHtML documents in which mathematical formulæ are given in
MathML whose semantic is given in parallel markup.
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Abstract. Logiweb is a system for electronic publication and archival
of machine checked mathematics of high typographic quality. It can ver-
ify the formal correctness of pages, i.e. mathematical papers expressed
suitably. The present paper is an example of such a Logiweb page and
the present paper is formally correct in the sense that it has been verified
by Logiweb. The paper may of course contain informal errors like any
other paper. Logiweb is neutral with respect to choice of logic and choice
of notation and can support any kind of formal reasoning.

Logiweb uses the World Wide Web to publish Logiweb pages and
Logiweb pages can be viewed by ordinary Web browsers. Logiweb pages
can reference definitions, lemmas, and proofs on previously referenced
Logiweb pages across the Internet. When Logiweb verifies a Logiweb
page, it takes all transitively referenced pages into account.

1 Introduction

Logiweb is a web-like system that allows mathematicians and computer scientists
to web-publish pages with high typographic quality and high human readability
which are also machine verifiable. Among other, Logiweb allows pages to contain
definitions of formal theories, definitions of new constructs, programs, lemmas,
conjectures, and proofs. Furthermore, Logiweb allows pages to refer to each other
across the Internet, and allows proof checking of proofs that span several pages
that reside different places in the world. As an example, a lemma on one page
may refer to a construct which is defined on another page situated elsewhere, in
which case the proof checker must access both pages to establish the correctness
of the proof.

Logiweb is accumulative and provides a medium for archived mathematics, c.f.
Section 2.2. In contrast, the World Wide Web is a medium suited for information
in flux, i.e. information which may be updated at any time without notice.
There are many formats like MathML and OMDoc [1,2] which are suited for
mathematics on the web. After many experiments and investigations, html, pdf,
and TEX have been chosen as interface formats of Logiweb until further, but
Logiweb is an open system for which individual users may add support for further
formats. Logiweb also has its own, internal format and referencing system which
is particularly suited for archived mathematic.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 343–353, 2006.
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Like the Internet and the WWW, Logiweb is a robust, ‘anarchistic’ system
that runs without any central authority.

Logiweb gives complete notational freedom to its users as well as complete
freedom to choose any axiomatic theory (e.g. ZFC) as basis for their work.
Logiweb also allows different notational systems and theories to co-exist and
interact smoothly.

Logiweb may be used as it is but also has the potential to support other
systems like Mizar [3,4]. Logiweb was originally designed to support Map Theory
[5,6,7,8] which has the same power as ZFC but relies on very different foundations
in that, e.g., it relies on λ-calculus instead of first order predicate calculus.
However, Logiweb has been designed such that it supports all axiomatic theories
equally well so the ability to support Map Theory should be seen as a widening
rather than a narrowing of the scope.

Logiweb supports classical as well as intuitionistic logic, it supports theo-
ries built on first order predicate calculus as well as other brands of theories,
and it supports theories (such as Map Theory) which admits general recursive
definitions.

The absence of restrictions on the choice of logic of course makes it impossible
to supply a general code-from-theorems extraction facility like term of of Nuprl
[9], but functions for manipulation of theorems and proofs of individual theories
are expressible in the programming language of Logiweb.

One goal of Logiweb was to design a simple proof system which allows to cope
with the complexity of mathematical textbooks. To ensure that the system can
cope with the complexity of a full, mathematical textbook in a human readable
style, two books [10,11] have been developed 1992-2002 to test the system.

Reference [10] is a discrete math book for first year university students and is
of interest here because it has been possible to test the human readability of the
book in practice. The associated course has been given ten times with a total
of more than a thousand students. The course has been a success and runs as
the first course on the computer science curriculum at DIKU in parallel with a
course on ML.

Reference [11] is a treatise on Map Theory and is of interest here because
it contains a substantial proof (a proof of the consistency of ZFC expressed
in Map Theory) that can stress test Logiweb. To allow comparison with other
proof systems and to ensure correctness, [11] has been ported by hand to Isabelle
[12,13,7].

During 2005 and 2006, Logiweb has been used on two graduate courses in logic
(c.f. ‘Student reports’ at http://logiweb.eu/) and Logiweb is being adapted
according to user requests. After that, it is the intension to run first [11] and
then [10] through the system. Running those two books through Logiweb re-
quires adaption of the books to the current syntax of the Logiweb compiler plus
programming of a number of proof tactics that are described but not formally
defined in the books. Running [11] through Logiweb will also allow a comparison
with Isabelle.
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Logiweb includes a programming language, macro expansion facilities, proof
checking facilities, means for expressing proof tactics, a protocol for exchanging
information about pages, a format for storing and transmitting pages, machinery
for rendering, machinery for compiling programs, machinery for referencing, and
many other facilities. Each facility is simple, but the sum of features makes it im-
possible to cover everything here. For a comprehensive introduction to Logiweb,
consult Logiweb itself at http://logiweb.eu/ and read the ‘base’ page.

Section 3 gives examples of theories, lemmas and proofs expressed using Logi-
web. Section 2 gives some background information about the structure of Logi-
web and Section 4 gives a short description of how Logiweb has been used in
teaching mathematics. Section 5 gives an overview of the implementation of the
system.

2 Description of Logiweb

2.1 Vectors and References

Logiweb stores and transmits Logiweb pages in its own, internal format named
the Logiweb interchange format and interacts with other systems using stan-
dardized formats like html, PDF, Lisp S-expressions, and many other formats.
We shall refer to pages expressed in the Logiweb interchange format as vectors.
Vectors are sequences of bytes.

Each Logiweb page has a unique Logiweb reference. A reference is a sequence
of about thirty bytes. When expressed base 64 [14], the reference of the present
paper is BokG7o6Za5JH5cFpE6nduncQ-rtRhuYtj-e iigBB. The reference
contains a protocol version number (always one, reserved for future extensions),
a RIPEMD-160 [15] hash key, and a time stamp.

One may look up the present page on Logiweb following the link http://logi
web.eu:8080/logiweb/server/relay/64/BokG7o6Za5JH5cFpE6nduncQ-rtRhuYt
j-e iigBB/2/index.html. When clicking that link, a CGI-program at http://logi
web.eu:8080/logiweb/server/relay/ relays the reference BokG7o6Za5JH5cFpE6
nduncQ-rtRhuYtj-e iigBB to a Logiweb server, which resolves the reference
and directs the users browser to the page.

Once a Logiweb page is submitted to Logiweb, its Logiweb reference remains
fixed whereas its location may change. At any time there may exist many copies
of each page on Logiweb and all the copies may be moved around, but all Logiweb
servers cooperate on keeping track of all Logiweb pages at any time.

2.2 Immutability

Logiweb pages are immutable in the sense that if a user looks up the same
Logiweb reference twice, even with years in between, and if Logiweb still has a
copy of the page somewhere in the world, then the user can be sure to receive
exactly the same Logiweb page the two times. If there are no copies left, then
the user can be sure to get a message that the page does not exist anymore. Any
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user of Logiweb can mirror any Logiweb page and thereby ensure its continued
existence. In this way, Logiweb pages are as stable as papers published in paper
journals: If all copies of a paper journal burn, the contents is lost, but as long
as at least one copy remains, the contents is still available.

An important feature of paper journals is that one cannot change a paper
after publication. That makes it safe to refer e.g. to a definition in a published
paper since the definition is fixed after publication. Logiweb mimics this feature
through immutability.

2.3 Rendering

Given a Logiweb vector, i.e. a Logiweb page expressed in the Logiweb interchange
format, Logiweb is able to render and verify the page.

Logiweb may render pages in arbitrary formats. The present page is rendered
as one html and two PDF files, located the following places:

– http://logiweb.eu:8080/logiweb/server/relay/64/BokG7o6Za5JH5cFpE6nd
uncQ-rtRhuYtj-e iigBB/2/body/tex/page.pdf

– http://logiweb.eu:8080/logiweb/server/relay/64/BokG7o6Za5JH5cFpE6nd
uncQ-rtRhuYtj-e iigBB/2/body/tex/appendix.pdf [16]

– http://logiweb.eu:8080/logiweb/server/relay/64/BokG7o6Za5JH5cFpE6nd
uncQ-rtRhuYtj-e iigBB/2/body/tex/page.html

The first link points to the present paper. The second link points to an elec-
tronic appendix with definitions that would bore most readers (such as defini-
tions of how each construct should be rendered). The second link is included in
the BibTEX bibliography [16] for easy reference. The third link points to a table
of contents.

2.4 Verification

When verifying a page, Logiweb collects all definitions and verifies all claims
found on the page. As an example, one may define

[n! =̇ if n = 0 then 1 else n · (n− 1)!]

and one may claim
[3! = 6]·

which makes Logiweb verify that 3! equals 6 according to the given definition of
the factorial function.

The claim above is a rendering of the bytes in the vector whose correctness is
established by the verifier. This ensures that a human reader and the machine
verifier see the same claims.

Verification ignores all text that has no formal meaning. The .= and [· · ·].
constructs have formal meaning in that they introduce definitions and claims,
respectively. Verification ignores running text such as the present sentence and
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also ignores formulas like 3! which neither form a definition nor a claim. Section 3
gives examples of more advanced definitions like definitions of axiomatic systems
and more advanced claims like mathematical proofs (where the claim to be
verified is that the proof is correct).

2.5 Bibliographies

Each Logiweb page contains a Logiweb bibliography i.e. a list of references to
other Logiweb pages. The Logiweb bibliography of the present paper (not to be
confused with the BibTEX bibliography at the end of the paper) references two
other Logiweb pages:

– http://logiweb.eu:8080/logiweb/server/relay/64/BAGTyrgl5Qmkb-DUmG
qAWUda0vx9aHftYSe iigBB/2/ [17]

– http://logiweb.eu:8080/logiweb/server/relay/64/BsPa2QtKsY6 LULMdLl-
THnDv58AVac-Mbe iigBB/2/ [18]

The references above have been included in the BibTEX bibliography for easy
reference but there is in general no link between the Logiweb and the BibTEX
bibliographies.

The definition

[n! =̇ if n = 0 then 1 else n · (n− 1)!]

of the factorial function refers, among other, to multiplication x · y. [17] both
defines how to evaluate and how to render multiplication, and multiplication is
available on the present page because [17] is included in the Logiweb bibliog-
raphy of the present page. The immutability of [17] ensures that x · y denotes
multiplication every time [3! = 6]· is verified.

3 Example Proofs

3.1 Theories

We now give a very simple example of a theory, a lemma, and a proof. The
theory is classical propositional calculus L as defined in [19]:

– [Theory L]
– [L rule MP: ΠA: ΠB:A 1 A ⇒ B 1 B]
– [L rule A1: ΠA: ΠB:A ⇒ B ⇒ A]
– [L rule A2: ΠA: ΠB: ΠC: (A ⇒ B ⇒ C)⇒ (A ⇒ B)⇒ A⇒ C]
– [L rule A3: ΠA: ΠB: (¬B ⇒ ¬A)⇒ (¬B ⇒ A)⇒ B]

Logiweb macro expands [Theory L] into a definition of L. That definition
defines L as the meta-conjunction of all rules attributed to L.

Axiom A1 above says that A ⇒ B ⇒ A holds for all terms A and B. The
meta-quantifier ΠA:B states that B holds for all terms A as opposed to the
object quantifier ∀x:B which states that B holds for all values x.
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The electronic appendix [16] defines priority and associativity such that
ΠA: ΠB:A ⇒ B ⇒ A means ΠA: ΠB: (A ⇒ (B ⇒ A)).

Inference rule L above expresses the rule of modus ponens. ΠA: ΠB:A 1 A ⇒
B 1 B means ΠA: ΠB: (A 1 ((A ⇒ B) 1 B)).

The rules of a theory may be stated together as above or may be scattered
throughout one Logiweb page. Presentations of mathematical logic often scatters
the axioms of a theory over several chapters (c.f. the definition of set theory in
[19]). Support for scattering is not included in Logiweb itself; it is implemented
in [17] and is available to all users of Logiweb who reference that page. Users who
want another style of presentation may replace [17] by their own alternative.

3.2 Lemmas and Proofs

The first formal proof in [19] proves the following lemma:

[L lemma I: ΠA:A ⇒ A]

The lemma says that A ⇒ A holds for all terms A in propositional calculus.
The classical proof of that reads:

L proof of I:
L01: Arbitrary' A ;
L02: A1' A⇒ (A ⇒ A)⇒ A ;
L03: A2' (A ⇒ (A ⇒ A)⇒ A)⇒

(A ⇒ A⇒ A)⇒ (A ⇒ A) ;
L04: MP � L02 � L03' (A ⇒ A⇒ A)⇒ (A ⇒ A) ;
L05: A1' A⇒ A ⇒ A ;
L06: MP � L05 � L04' A⇒ A �

The proof above is rendered in a formalistic, tabular style close to that of [19].
Other styles, such as rendering as running text is also possible.

3.3 A Proof by Induction

Reference [18] defines Peano arithmetic S as follows:

– [Theory S]
– [S rule S1: ΠA,B, C:A = B 1 A = C 1 B = C]
– [S rule S2: ΠA,B:A = B 1 A′ = B′]
– [S rule S3: ΠA:¬0 = A′]
– [S rule S4: ΠA,B:A′ = B′ 1 A = B]
– [S rule S5: ΠA:A+ 0 = A]
– [S rule S6: ΠA,B:A+ B′ = (A+ B)′]
– [S rule S7: ΠA:A · 0 = 0]
– [S rule S8: ΠA,B:A · (B′) = (A · B) +A]
– [S rule S9: ΠX ,A,B, C: 〈B≡A|X :=0〉 11 〈C≡A|X :=X ′〉 11 B 1 A ⇒ C 1 A]1

1 〈A≡B|X :=C〉 says ‘A is identical (except for naming of bound variables) to B where
X is replaced by C in B, c.f. [16].
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– [S rule MP: ΠA,B:A⇒ B 1 A 1 B]
– [S rule Gen: ΠX ,A:A 1 ∀X :A]
– [S rule Ded: ΠA,B: Ded(A,B) 11 A 1 B]
– [S rule Neg: ΠA: ΠB:¬B ⇒ ¬A 1 ¬B ⇒ A 1 B]

Furthermore, [18] proves the following lemma taken from [19]:

[S lemma Prop 3.2c: ΠA,B, C:A = B 1 B = C 1 A = C]

Since the Logiweb bibliography of the present page points to [18], system S and
the lemma above are available in the present paper. We may use that to prove
∀x : 0 · x = 0 by induction in x . The induction step reads:

[S lemma Prop 3.2l′: ΠA: 0 · A = 0⇒ 0 · A′ = 0]
S proof of Prop 3.2l′:
L01: Arbitrary' A ;
L02: Block' Begin ;
L03: Arbitrary' A ;
L04: Premise' 0 · A = 0 ;
L05: S8' 0 · A′ = 0 · A+ 0 ;
L06: S5' 0 · A+ 0 = 0 · A ;
L07: Prop 3.2c � L05 � L06' 0 · A′ = 0 · A ;
L08: Prop 3.2c � L07 � L04' 0 · A′ = 0 ;
L09: Block' End ;
L10: Ded � L09' 0 · A = 0⇒ 0 · A′ = 0 �

In the proof above, the begin-end-block in Line L02-L09 proves 0 · A′ = 0 under
the assumption 0 · A = 0. The assumption in L04 involves the meta-variable A,
which has an arbitrary, fixed value according to line L03. Line L10 then uses
deduction to conclude 0 · A = 0⇒ 0 · A′ = 0 where A is arbitrary according to
L01 (L03 has no effect outside the block).

The premise in L04 has to be expressed using a meta-variable A. A statement
with a free object variable x is understood to hold for all values of the object
variable so that e.g. 0 · x = 0 implicitly means ∀x : 0 · x = 0 which is not suitable
in line L04 above. Ordinary text books on mathematics typically leave it to the
reader to guess the scope and kind of each variable, but we have to be more
pedantic here to make the proofs machine verifiable.

We may now prove [S lemma Prop 3.2l: ∀x : 0 · x = 0]: S proof of Prop 3.2l:

L01: S7' 0 · 0 = 0 ;
L02: Prop 3.2l′ ' 0 · x = 0⇒ 0 · x ′ = 0 ;
L03: S9 @ x � L01 � L02' 0 · x = 0 ;
L04: Gen � L03' ∀x : 0 · x = 0 �

The proofs given so far are rather trivial but still illustrate what the Logiweb
system can do. For more complex examples, consult http://logiweb.eu/ and
[10,11].
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4 Uses of Logiweb

Until further, Logiweb has been used in a course on mathematical logic for
graduate students. The course was given in the spring of 2005 and again in the
spring of 2006. Predecessors of the course, using predecessors of Logiweb, have
been given a number of times since 1986.

During the above mentioned course on mathematical logic, the students form
groups and choose a theorem they want to prove. After that each group writes
a report which formally proves the theorem, verifies and publishes the report
using Logiweb, and hands in the Logiweb reference of the report by e-mail.

Immutability (as guaranteed by RIPEMD-160 [15]) ensures that the report is
not changed after it is handed in. Students will typically publish many attempts
before they produce a version they want to hand in and, if they want, they may
continue publishing new versions after handing in the report, but the students
get a mark based on the version that matches the reference they send by e-mail.

Students typically base their reports on other Logiweb pages such as [17]
and [18] which define elementary notions. The students typically locate the
pages they want to reference by ordinary html browsing e.g. starting at http:
//logiweb.eu/ or the home page http://www.diku.dk/undervisning/2006s/
202/ of the course.

It is the intension to use Logiweb also for teaching of mathematics for com-
puter science based on [10]. In particular, it is planned to let the students answer
exam questions using Logiweb during a four hour written exam. This scenario
has been tested with success on a small group of first year students in 2004 using
an old version of Logiweb.

5 Implementation Overview

A user may use the World Wide Web as shown in Figure 1. In the figure, the
user may use the text editor to construct an html page and store it in the file
system within reach of the http server. Then the user (or another user) may use
the html browser to request the html page from the http server which in turn
retrieves the html page from the file system.

Figure 2 shows how a user may use Logiweb. To write a Logiweb page, the user
prepares a source text and invokes the Logiweb compiler on it. This is similar to
running TEX on a TEX source [20]. Actually, much of a Logiweb source consists
of TEX source code.

If the compiler succeeds in interpreting the source, then the compiler translates
the source to a Logiweb vector, checks the correctness of the vector, and stores
the vector back in the file system within reach of the http server. The compiler
also renders the page in PDF so that users without a genuine Logiweb browser
can view it. After that, any user that knows the url of the page can retrieve it
using an html browser.

When the compiler succeeds in translating a Logiweb page, it also computes
the Logiweb reference of the page and notifies the Logiweb server (c.f. Figure 2).
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Fig. 1. World Wide Web

The Logiweb server keeps track of the relationship between http urls and Logi-
web references and makes the relationship available via the Internet using the
Logiweb protocol. The Logiweb protocol allows Logiweb servers to cooperate on
indexing pages such that each server merely has to keep track of local pages plus
some information about which other Logiweb servers to refer non-local requests
to.

When the compiler translates a Logiweb page that references other Logiweb
pages (which is the normal case), it uses the Logiweb server to locate the refer-
ences and then transitively loads the referenced pages so that all definitions on
transitively referenced pages are available.

A Logiweb relay (c.f. Figure 2) is a CGI-program which, given a reference,
contacts the nearest Logiweb server, translates the reference to an ordinary url,
and returns an html indirection to that url. This instructs the html browser of
the user to fetch the associated page. The net experience for the user is that
clicking a Logiweb reference in an html page makes the html browser navigate
to the referenced Logiweb page. One may construct a reference by appending
the following:

– an url like http://logiweb.eu:8080/logiweb/server/relay/ of a relay,
– a Logiweb reference like 64/BokG7o6Za5JH5cFpE6nduncQ-rtRhuYtj-e iig

BBin base 16, 32, or 64,
– a number of levels like /2/ to go upwards in the directory structure (/2/

corresponds to /../../), and
– a relative reference like index.html
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Fig. 2. Logiweb

Referencing from Logiweb pages to html pages is trivial but not necessarily
advisable since the immutability of Logiweb pages makes it impossible to repair
broken links.

For more details on Logiweb see http://logiweb.eu/ or [21].

6 Status

Logiweb allows users to author, render, publish, verify, retrieve, and read pages
that contain formal mathematics. At the time of writing, more than 600 kilobyte
of Logiweb source text has been verified by Logiweb. In addition, in 2005, ten
graduate students have written eight reports that have been formally verified by
a test version of Logiweb (c.f. http://logiweb.eu/), and the present version is
being used in the spring of 2006 for another group of students. 800 kilobyte of
formal proofs [11] await verification.
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Abstract. PHCpack implements numerical algorithms for solving poly-
nomial systems using homotopy continuation methods. In this paper we
describe two types of interfaces to PHCpack. The first interface
PHCmaple originally follows OpenXM, in the sense that the program (in
our case Maple) that uses PHCpack needs only the executable version
phc built by the package PHCpack. Following the recent development of
PHCpack, PHCmaple has been extended with functions that deal with
singular polynomial systems, in particular, the deflation procedures that
guarantee the ability to refine approximations to an isolated solution
even if it is multiple. The second interface to PHCpack was developed
in conjunction with MPI (Message Passing Interface), needed to run the
path trackers on parallel machines. This interface gives access to the
functionality of PHCpack as a conventional software library.

1 Introduction

In various fields of science and engineering one must solve polynomial systems,
see for example [14], or the case studies in [22, Chapter 9], or [24]. Computer
algebra packages like Maple have a convenient worksheet interface which allows
to document very precisely the derivation of the polynomial systems using the
language of the application area. We designed PHCmaple [5] (based on a small
Maple procedure in [20], applying our experience with OpenXM [11]) to give a
Maple user access to the functionality of a numerical polynomial system solver
phc (polynomial homotopy continuation), a program built by PHCpack [25].

Besides a carefully documented problem formulation, the user will need to
analyze and interpret the results returned by the solver. The visualization ca-
pabilities of a computer algebra system, combined with high level facilities to
manipulate and export data in various formats, extend the usefulness of the
solver. So the interaction with computer algebra is not only seen as a natural,
but as a vital part of the solving process.
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The interaction between computer algebra systems and numerical solvers is
one practical side of symbolic-numeric computation, concerned with the imple-
mentation of hybrid methods [3]. Examples of hybrid methods are the algorithms
developed in the fields of numerical polynomial algebra [23] and numerical al-
gebraic geometry [21] [22]. The algorithms at the heart of numerical algebraic
geometry are homotopy continuation methods (see e.g. [1], [10], or [14]), which
can be seen as the combination of two methods. Homotopy methods embed the
system to be solved in a suitable family of systems, connecting the given prob-
lem with a system which is trivial or at least easier to solve. Once this family
(called the homotopy) is created, numerical path following methods (also known
as continuation methods) track solution paths starting at solutions of the easier
problem leading to the solutions of the given problem. As the number crunch-
ing is usually all done in hardware floating point arithmetic, the performance of
the numerical solver depends critically on the ability of the symbolic homotopy
method to capture the structure of the given problem.

Originally designed [25] to offer a wide variety of homotopy algorithms, PHC-
pack has grown into a platform for numerical algebraic geometry, most notably
extended with features [20] to deal with positive dimensional solution sets of
polynomial systems, implementing a so-called numerical irreducible decomposi-
tion [19]. While the pack in its name suggests PHCpack to be in the glorious
tradition of highly successful software like LAPACK [2], its main target is the
standalone executable program phc which currently is available on a wide range
of platforms: PCs running Linux and Windows, computers running MacOS X,
SUN workstations running Solaris and IBM machines running AIX. The recent
“parallel PHCpack” project is described in [7].

The Maple interface PHCmaple was used in [13]. In [16], Maple and PHCpack
were combined to develop a prototype implementation of new algorithms in
numerical jet geometry. In addition to problem formulation and result analysis,
this algorithm prototyping is our third motivation for interfaces like PHCmaple.

In this paper we present an overview of PHCmaple, we refer to [5] for details
on its original design and to [9] for the added interface to the new deflation al-
gorithms [8] to recondition multiple isolated roots of polynomial systems. While
PHCmaple is a user oriented interface, in this paper we document an alterna-
tive interface, developed for programming purposes, in particular for use with
MPI [17], for tracking solution paths on parallel machines.

The programmer interface to PHCpack is characterized by two important fea-
tures inspired by the PHCmaple user interface. Like PHCmaple relies only on
the executable phc, the programmer interface is concentrated in one single rou-
tine. Moreover, as the user of PHCmaple enjoys the existing data manipulation
facilities of Maple, the internal data structures of PHCpack for representing poly-
nomials and solutions to systems, are available to the user of the programmer
interface so the programmer calling on PHCpack should not define similar data
structures. In this sense, the programmer interface to PHCpack resembles very
much a conventional software library.
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2 The Evolution of the Interfaces to PHCpack

In this section we briefly describe the chronological evolution of the interfaces
to the capabilities in PHCpack.

1. OpenXM calls the blackbox solver. The first interface is still available
via OpenXM (Open message eXchange protocol for Mathematics [11], see
also [12] and [15]) and only needs an executable file of the program. Just as
one calls the blackbox solver of PHCpack as phc -b input output, a simple
system call achieves the same effect.

2. A simple Maple procedure calls the blackbox solver. On [20, page 114],
a simple Maple 7 procedure (less than 20 lines long) applies the experience of
the first interface, calling phc -b.

3. A functional C interface to the Ada routines in PHCpack. To process
the output of the Pieri homotopies in PHCpack to compute feedback laws to
control a linear system, a dedicated C interface was written, used in [26] and
described in an online appendix (available at the second author’sweb site).The
main C program calls the Ada routines in PHCpack which then call another C
function to process the output.

4. PHCmaple gives access to the tools of phc. The main executable pro-
gram of PHCpack can be used as a blackbox or as a toolbox, calling the
program with the appropriate options and selecting the desired actions from
the menu. Via input redirections, it also just takes the executable version to
gain access to the tools offered by PHCpack. In [5], we presented PHCmaple,
a Maple interface to PHCpack.

5. Using PHCpack as a state machine. The dedicated C interface was not
adequate for the parallel implementation of the path tracking routines in
PHCpack. Therefore, a new interface was developed for use in [27], [4] [6]
and [28], which describe the progress by parallel PHCpack [7].
The Ada function use c2phc

function use_c2phc ( job : integer;
a : C_intarrs.Pointer;
b : C_intarrs.Pointer;
c : C_dblarrs.Pointer ) return integer;

is available to the C programmer as

extern void adainit( void );
extern int _ada_use_c2phc (int job, int *a, int *b, double *c);
extern void adafinal( void );

The first parameter job specifies the action requested from phc. The meaning
of the other parameters a, b, and c depends on the job. We will describe
this interface in greater detail below.

The chronological evolution pictures two distinct trends in interfacing with
PHCpack: (1) using the executable originated with OpenXM [11]; and (2) calling
the compiled code, motivated by the use of MPI [17].
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3 Overview of PHCmaple

PHCmaple is available for download at www.math.uic.edu/~leykin/PHCmaple/
and works with Maple version 8 or higher. At the moment the software is devel-
oped and tested only on the Windows distribution of Maple.

The goal of PHCmaple is to provide computer algebra users with a convenient
interface to the

– blackbox solver of phc;
– homotopy path tracking facilities;
– deflation procedure;
– routines that create and manipulate witness sets for positive-dimensional

components;
– factorization/decomposition capabilities of phc.

Using the following procedures one can deal with isolated solutions of square
systems (with a finite number of solutions): to run the black-box solver execute
solve, which returns approximations to all complex isolated roots of a square
system; refines the solutions to any specified precision with refine, which also
provides a way to set certain parameters in order to fine-tune the solver; track
a subset of the solutions set of the start system to the corresponding solutions of
the target system and visualize the results with drawPaths; for singular isolated
solutions one might consider applying deflationStep, the implementation of
the first-order deflation procedure [8], which given a polynomial system and an
approximation to one of its multiple isolated solutions produces a new system
of equations that has the same solution, but with lower multiplicity. See [9] for
more details about the implementation of the deflation algorithm and examples
for its use by PHCmaple.

The positive-dimensional solution sets of general polynomial systems can be
represented by means of witness sets, computing which reduces the problem to
the isolated solution case.

The following functions of PHCmaple serve this purpose: construct an em-
bedded system with embed in assumption that the dimension of its solution set
is known; cascade runs the so-called cascade of homotopies for an embedded
system, it computes the list of witness sets for the components of the solu-
tion set in every dimension; after producing the witness sets filter the points
in lower-dimensional witness sets belonging to higher-dimensional components;
to produce a numeric irreducible decomposition of a pure-dimensional solution
component decompose its witness set; absolute factorization capability for mul-
tivariate polynomial is given by factor.

The new, recently added eqnbyeqn routine launches the equation-by-equation
solver [18], which produces the witness sets similarly to cascade, though using a
different method. These witness sets are returned already filtered.

4 Using PHCpack in C Programs

The function use c2phc serves as a gateway to the full functionality of PHCpack,
concentrated in one single routine. When designing this interface, we viewed
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PHCpack as a state machine. Like we input coins into a vending machine, make a
selection pushing a button to then collect our selected beverage, the programmer
calls use c2phcwith the appropriate job number to read in a polynomial system,
select the type of homotopy and various other options to then finally activate
the path trackers which will compute the solutions and write to the output.

The use c2phc was written to get access to the path tracking routines (writ-
ten in Ada) by a main program in C, which calls the communication primitives
of MPI. It was used in a series of papers, starting with [27] (parallel Pieri ho-
motopies), continuing with [6] and [4] (parallel factorization), and most recently
used in [28] (parallel polyhedral homotopies). As use c2phc called on various
homotopy algorithms in PHCpack, the number of different job numbers grew
and the direct use of the gateway by the main parallel program became too
tedious. So we developed an additional layer between the main parallel program
and the use c2phc function.

This additional layer forms the programmer interface to PHCpack. It consists
of a collection of header files (suffix .h) offering the programmer meaningful
names for the various jobs performed by use c2phc, hiding the precise job num-
ber in the definition of the function listed in the header files. Details about this
evolving interface can be found in the source code distribution of PHCpack.

5 Future Developments

In this paper we described a user and a programmer interface to PHCpack.
While currently PHCmaple still operates by making system calls to the stan-

dalone program phc, a more efficient interface will apply the use c2phc in a
dynamic link library.

Besides adding more functionality to use c2phc, a very useful extension of its
argument list will be the addition of two functions to allow the user to define so-
called straight line programs to evaluate and differentiate the polynomial systems
generated by the homotopy.

The interfaces we described will serve as a model to use PHCpack in other
computer algebra systems like Axiom or Macaulay 2 for example, as well as in
scientific computing systems like Octave or Scilab. As C seems to be the least
common denominator language for computer programming, the programmer in-
terface could lead to bindings to other languages or used to build other dedicated
interfaces.
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Abstract. We present an origami construction of a maximum equilat-
eral triangle inscribed in an origami, and an automated proof of the cor-
rectness of the construction. The construction and the correctness proof
are achieved by a computational origami system called Eos (E-origami
system). In the construction we apply the techniques of geometrical con-
straint solving, and in the automated proof we apply Gröbner bases the-
ory and the cylindrical algebraic decomposition method. The cylindrical
algebraic decomposition is indispensable to the automated proof of the
maximality since the specification of this property involves the notion of
inequalities. The interplay of construction and proof by Gröbner bases
method and the cylindrical algebraic decomposition supported by Eos is
the feature of our work.

1 Introduction

Origami is a traditional Japanese art of paper folding, which is now enjoyed by
many people all over the world. Computational origami is a scientific discipline to
study computational aspects of origami, and aims to complement and even goes
beyond traditional paper folding by hands [4]. We are aiming at overcoming the
limitations of traditional origami construction, and, with the use of computers,
at providing capabilities that support geometrical reasoning about origami.

We study the problem of computational origami construction of an equilateral
triangle that is maximally inscribed in an origami square. Although the problem
is easy, we use it as an example to appeal the importance of computational
origami and of the effectiveness of our approach, since it reveals the essence
of computational origami construction and of the automated correctness proof
of the construction thereafter. In the construction we apply the techniques of
geometrical constraint solving, and in the automated proof we apply Gröbner
bases theory [2] and the cylindrical algebraic decomposition method [1].

We reported earlier someexamples of computational origami constructions [9,8],
such as the construction of Morley’s triangle by origami with correctness proof.
What is new in this paper is the application of cylindrical algebraic decomposition
(cad) to prove the correctness of our construction. The use of cad has lead to further
improvement of our computational origami system called Eos.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 361–372, 2006.
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The paper is organized as follows. In section 2, we briefly explain our computa-
tional origami environment as we will use it for the study of origami construction
of a maximum equilateral triangle. In section 3, we will present a method for
the construction using Eos. In section 4, we will give the proof of the correctness
of the construction. We will show two methods of proving the correctness. In
section 5, we draw some conclusion and point out future research.

2 E-Origami System Eos

Before we describe the construction of the equilateral triangle, we briefly explain
the main features of Eos. Eos is a collection of Mathematica programs, special-
ized in origami processing, that have capabilities of basic geometrical computing
tailored to origami, of constraint solving both by numeric and symbolic meth-
ods, of theorem proving, of visualizations of origami and of web interfaces. It
performs origami construction that a human would do by hand with a piece of
paper. Moreover, it performs automated proving of geometrical properties of the
constructed origami, which would require much geometric intuition in addition
to complicated and tedious algebraic manipulation.

2.1 Origami Construction by Eos

Eos implements Huzita’s origami axioms [7], which describe the basic folding op-
erations. Huzita’s axiom set is more powerful than the straight-edge and compass
method in Euclidean plane geometry [5,6]. Using Huzita’s axiom set, by origami
we can construct a trisector of an angle, whereas by the straight-edge and com-
pass we can not. Huzita’s axiom set is described by the following statements
about the fundamental origami folding operations.

(O1) Given two points, we can make a fold along the fold line that passes
through them.

(O2) Given two points, we can make a fold to bring one of the points onto the
other.

(O3) Given two lines, we can make a fold to superpose the two lines.
(O4) Given a point P and a line m, we can make a fold along the fold line that

is perpendicular to m and passes through P.
(O5) Given two points P and Q and a line m, we can make a fold to superpose

P and m along the fold line that passes through Q.
(O6) Given two points P and Q and two lines m and n, we can make a fold to

superpose P and m, and Q and n, simultaneously.

These axioms are formalized in a properly chosen sub-language of first-order
logic, with function symbols for the geometric constructs and predicate symbols
for the geometric properties mentioned there. For example, axiom (O5) is formal-
ized as follows: ∃{k ∈ Line} OnLine[Q, k] ∧ OnLine[SymmetricPoint[P, k],m].
The atomic formula OnLine[Q, k] specifies that point Q is on line k, and the
term SymmetricPoint[P, k] denotes the symmetric point of P with respect to
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line k. The algebraic meaning of each predicate is specified by a set of equations.
For example, the meaning of OnLine[Q, k] is given by a x1 + b y1 + c = 0, where
Q is positioned at (x1, y1) and k is defined by the equation a x + b y + c = 0.

Origami constructions proceed stepwise, where each step indicates a fold op-
eration that satisfies one of axioms (O1)–(O6). Eos provides a function Fold
to realize the fold steps. In addition, every call of Fold has two effects: (1) to
visualize the result of the fold step by computing the fold line and performing
the fold, and (2) to record the geometric constraints that characterize the fold
step. In this way, Eos provides interactive access to (1) a view of the origami
constructed so far, and (2) the collection of geometric constraints that describe
the origami constructed so far.

2.2 Theorem Proving of Origami Construction

After origami construction with Eos, we can proceed to prove geometrical prop-
erties of the construction in the following steps.

Premise generation: Extract the geometrical properties of the construction
and transform them into polynomial equalities and inequalities which form
the premise of the theorem to be proved.

Conclusion formulation: Represent the conclusion in polynomial equalities
and/or inequalities.

Proof generation: Give the polynomial equalities and inequalities to a theo-
rem prover such as Theorema when the theorem is described in polynomial
equalities, or to cylindrical algebraic decomposition programs when the the-
orem is described partly in inequalities, and obtain the proof result.

The most important step is the formalization of the geometrical properties to
be proved. Note that although the conclusion formulation step is in the third
computation step, we have to think about the conclusion at first. Also note that
the steps except for the conclusion formulation step are automated.

3 Construction of an Equilateral Triangle

In this section we illustrate origami construction of an equilateral triangle by Eos.
A straightforward method to construct an equilateral triangle is to use one of the
sides of the origami as a side of an equilateral triangle. The following snapshot
of the origami construction using the Eos website illustrates the construction.

http://weborigami.score.cs.tsukuba.ac.jp

However, we immediately recognize that this is not a maximum triangle in-
scribed in the origami. In the following, we will show another origami construc-
tion that creates a maximum equilateral triangle. Since we want to make the
side of a triangle as long as possible, it is natural to take one of the corners of
the triangle to be also a corner of the origami. We expect that the other two
vertices are also on the sides of the origami.



364 T. Ida et al.

Fig. 1. A webpage of WebOrigami

We will illustrate a step-wise construction of a maximum equilateral triangle
via a Mathematica notebook interface rather than Eos web interface, since in
the notebook we can use all the capabilities of Eos and Mathematica.

3.1 Construction

We start our origami construction by declaring the origami to be used. In the
following example, we will use a unit square paper with four vertices marked as
A, B, C and D.

BeginOrigami[{1, MarkPoints→ {”A”,”B”,”C”,”D”},
FigureCaption→”Step ”}]

D C

BA

Step 1

The calls of function Fold and others with various parameters will be self-
explanatory.
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We make a fold to bring point A onto D (application of (O2)), and then
make a fold to bring point A onto B (application of (O2)). Function UnfoldAll
completely unfolds the folded origami into the original origami. These steps are
illustrated below.

Fold[A,D]; Fold[A,B];UnfoldAll[];

F E

BA

Step 2

H

G F

D

Step 3

I

H

GF E

D C

BA

Step 4

After these preparatory steps, we make a fold to superpose B and line HI
along the fold line that passes through C (application of (O5))1. In this case we
have two possible folds. It can be shown that to find the fold line in the use of
axiom (O5) is a constraint solving problem formulated with a set of algebraic
equalities of the second order. Hence, we have at most two choices. Eos will
interact with the user to ask for the choice, as seen below.

Fold[B, HI, Through→ C, MarkCrease→ {AB}];

I

H

GF E

D C

BA

Step 5

1

2

There are two ways to proceed. One is to specify the line number shown in
the origami, and the other is to give the constraint that uniquely determines the
choice. In the above case, both responses will do. However, there is a difference
when it comes to proving later. By specifying the constraint, Eos not only selects
one of the numeric solutions using the constraint but also saves the constraint
symbolically, which can be used to prove geometrical properties later. Since we
are interested in geometric theorem proving we specify the constraint as follows.

Fold[B, HI, Through→C,MarkCrease→{AB}, Constraint→ OnSegment[B,HI]];

1 XY denotes a segment between point X and point Y and XY denotes the line that
extends segment XY, i.e the line that pass through X and Y.
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I

H

GF

D

A K

E

C

B

Step 6

In the above we specify the constraint that point B is on the segment HI. This
constraint determines the choice of the fold line 1.

Similarly we will construct point L and , finally, apply (O1) to fold the origami
along line KL.

Fold[D,FG, Through→ C, Constraint→ OnSegment[D,FG]];
Fold[A, Along→ KL];

I

GF

A K

E

B

L H

D

C

Step 8

G
E

H

C

D

B

L

K

I

F A

Step 9

The triangle ΔCLK appears to be equilateral, and at this point we conjecture
that this is the case. The following complete development of the origami, which
is obtained by the call of UnfoldAll, will be helpful for further study of the
geometrical properties.

L

KI

H

GF E

D C

BA

Step 10

Fig. 2. Complete development of the folded origami

The figure is called ori-zu2. It shows the creases made by both valley folds and
mountain folds, and the points, created in the whole construction.
2 ori means ”fold” and zu means ”figure”.
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4 Proof of the Correctness of the Construction

We will now prove the following theorem:

Theorem 1 (Maximum Equilateral Triangle Origami Theorem). Given
an origami �ABCD, the origami construction in subsection 3.1 has the following
properties:

(a) ΔCLK is equilateral, and furthermore
(b) ΔCLK is a maximum equilateral triangle inscribed in the origami.

The automated proof of this theorem is given in the following two subsections.
We will follow the proof procedure as outlined in subsection 2.2, interacting with
Eos.

4.1 Proof that ΔCLK Is Equilateral

Automated Proof by Eos Interacting with Theorema. For proving, we
switch the context from construction to proof by calling function BeginProof.

BeginProof[ ];

The ori-zu shown below contains more information than the complete develop-
ment of the folded origami of Fig. 2. In the figure, Xn indicates that point X is
on the origami whose id is n. Origami id is not shown in the figures, but can be
displayed by setting the switch on.

L7

K6I5

H3

G3F2 E2

D1
C1

B1
A1

We first consider part (a) of the theorem. The proof is based on the Gröbner
bases method [2].

Premise Generation. For theorem proving, we transform the symbolic con-
straints accumulated during the construction of origami into algebraic form. This
is achieved by deciding the coordinate system and then translating the symbolic
representation of the geometrical properties into polynomials.

The generated premise sometimes needs to be strengthened in order to elim-
inate degenerate cases and other unwanted geometrical configurations. In our
case, we need the condition that K6, C1 and L7 are not collinear. This is related
to the fact that at steps 6 and 8 we have two folding possibilities. Axiom (O5)
describes a geometric constraint that is expressed in second degree polynomials.
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This gives rise to 2 sets of solutions. Although at steps 6 and 8, we have chosen
one of the two possibilities, in this premise generation phase we do not spec-
ify these committed choices in order to allow possibly more general statements
about the intended geometrical properties. In our case, we would expect that in
four possible cases we could construct equilateral triangles. However, this is not
the case as shown in the following figure.

Fig. 3. Possible cases of the construction

As seen in the figure, only the first and third cases make the equilateral
triangles. The second and the fourth cases can be eliminated by specifying that
¬ Collinear[K6, C1, L7].

We can translate the constraints related to points K6, C1 and L7 from symbolic
to algebraic form as follows.

premisePoly = ToAlgebraic[{K6, C1, L7}, InitialShape→ {Point[0, 0], 1},
Constraints→ {¬ Collinear[K6, C1, L7]}]

−1+a22 +b22, c2+a2x2+b2y2,−1+a32 +b32, a3+b3+c3,−1+a42 +b42, a4+
b4 + c4,−1 + a12 + b12, c1 + a1x3 + b1y3, y4, c3 + a3x4 + b3y4, x5, c4 + a4x5 +
b4y5, a1, b1

2 +c1, b1(−1+x1)+(−1)a1y1, c1+ 1
2a1(1+x1)+ b1y1

2 , b3(−1+x2)+
(−1)a3y2, c3 + 1

2a3(1 + x2) + b3y2
2 ,−b2x1 + a2(−1 + y1), c2 + a2x1

2 + 1
2b2(1 +

y1), b4x3+a4(1+(−1)y3), c4+ a4x3
2 + 1

2b4(1+y3),−1+(x5+(−1)y5+x4(−1+
y5) + (1 + (−1)x5)y4)ξ1

In our representation of a line a x + b y + c = 0, we need to make sure that
both a and b are not equal to zero simultaneously, namely a2 + b2 �= 0. And
without loss of generality, we can add the constraint that a2 + b2 = 1.

Note also that ¬ Collinear[K6, C1L7] is translated to equalities using Ra-
binowich trick. This can be further transformed to the equivalent logic form
(output not shown).

premise = ToLogic[premisePoly];

Conclusion Formation. The next step is to transform the conclusion that
ΔCLK is an equilateral triangle into algebraic form. An equilateral triangle is
characterized by the property that all the three sides are equal in length. Hence
we have the following specification.
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conclusion = ToLogic[{Distance [K6,L7]
2 − Distance [C1,L7]

2
,

Distance [K6,L7]
2 − Distance [C1,K6]

2}]
−(1− x4)2 + (x4− x5)2 − (1 − y4)2 + (y4− y5)2 == 0 ∧
(x4− x5)2 + (y4− y5)2 − (1− x5)2 − (1 − y5)2 == 0

Note that we use two kinds of equality symbols; == as the output of Mathe-
matica, and = as in the ordinary mathematics.

Proof Generation. Eos can prove geometric properties of origamis by ac-
cessing to the theorem prover Theorema [3]. Since both Eos and Theorema are
implemented in Mathematica, accessing to Theorema is straightforward. First we
call
TheoremaFormula["Equilateral Triangle Th",

Variables[premisePoly], premise⇒ conclusion, "(1)"];

This method call encodes the proposition premise ⇒ conclusion into a The-
orema formula, labeled "Equilateral Triangle Th". The variables occurring
in the formula are universally quantified. Next, we invoke Theorema to prove it:

Prove[Formula["Equilateral Triangle Th"], using→ {},
by→ GroebnerBasesProver]//Timing

{3.032 Second, −ProofObject−}
This call will yield a human-readable proof with proof text structured as nested
cells of Mathematica.

Proof by Eos Using the Cylindrical Algebraic Decomposition. The
success of our proof by Gröbner bases method relies on the crucial observation
that we must add the condition ¬ Collenear[K6,C1,L7]. In the following we
will show an alternative proof based on the cylindrical algebraic decomposition.
We recall that in order to specify one of the two choices of the fold lines we
specified the constraint that OnSegment[B,HI] at step 6 and OnSegment[D,FG]
at step 8. These additional constraints are not included in the previous proof
since they give rise to inequalities, which are not handled by Gröbner bases
method.

We now add these constraints by setting the option AddConstraint to True
in the call of function ToAlgebraic.

premise = ToLogic[ToAlgebraic[{K6, C1, L7},
InitialSahpe→ {Point[0, 0], 1}, AddConstraint→ True ]];

The outcome is that premise contains the following additional inequalities:

(−x3 + x4)(−x3 + x5) ≤ 0 ∧ (y4 + (−1)y3)(y5 + (−1)y3) ≤ 0 ∧
(x6 + (−1)x2)(x7 + (−1)x2) ≤ 0 ∧ (y6 + (−1)y2)(y7 + (−1)y2) ≤ 0

We next perform the cylindrical algebraic decomposition [1] of the above for-
mula by calling the Mathematica function CylindricalDecomposition. This
will transform the above formula to a fully solved form.
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sPremise = CylindricalDecomposition[premise,Variables[premise]];

Now it is very easy to prove the conclusion by substituting those values in the
conclusion formula. We can also use the previous code and call Theorema to
prove the theorem as follows.

proposition = sPremise⇒ conclusion

TheoremaFormula["Maximum Equilateral Triangle Th",
vars, proposition, "(2)"]; 3

Prove[Formula["Equilateral Triangle Th"], using→ {},
by→ GroebnerBasesProver]//Timing

{3.094 Second, −ProofObject−}
We should note in passing the following properties. Let |AB| = |BC| = |CD| =

|AD|= 1. Let h = |BH| and x = |AK| at step 7. Then we have the set of equations
eqns =

{
1
4 + h2 == 1, (1− h)2 +

(
x− 1

2

)2 == (1− x)2
}

, whose solutions are

given by
{{

x→ −1−
√

3, h→ −
√

3
2

}
,
{
x→ −1 +

√
3, h→

√
3

2

}}
.

The first solution is irrelevant because x = |AK| has to be non-negative. From
the second solution we learn that point K is at (

√
3 - 1, 0). Therefore, the area

of the triangle is −3 + 2
√

3. This property is used to establish the proof of the
part (b) of Theorem 1.

4.2 Proof That ΔCLK Is the Maximum Equilateral Triangle
Inscribed in the Origami

To prove part (b) of Theorem 1, we proceed as follows. We consider an equilateral
triangle ΔXYZ as depicted below, where we have A(0,0), C(1,1), X(x, y), Y(0, b),
Z(c, 0) with b, c ∈ (0, 1).

Z

Y

X

D C

BA

ΔXYZ is equilateral, and therefore |YZ|2 = |YX|2 = |XZ|2. This geometric
constraint is expressed algebraically as: (y − b)2 + x2 = b2 + c2 = (x− c)2 + y2.
We can solve these algebraic constraints by calling

Solve
[{(

(y − b)2 + x2
)
==b2 + c2 == (x− c)2 + y2

}
, {x, y}

]{{
y → b−√

3c
2 ,x→ −√

3b+c
2

}
,
{
y → b+

√
3c

2 ,x→
√

3b+c
2

}}
3 vars is the set of variables occurring in proposition.
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This call computes x and y as functions of b and c. We know that the area of an
equilateral triangle with edge of length l is

√
3l2/4. Since |YZ| =

√
a2 + b2, we

learn that the area of ΔXYZ is S =
√

3(b2 + c2)/4. Our problem is to compute
the values of b and c for which S is maximal.

Let S0 be the area of the equilateral triangle ΔCLK constructed with Eos.
Since S0 = −3 + 2

√
3, we know that the maximum value of S is greater than or

equal to S0. We can compute the values of b, c for which S ≥ S0 by using CAD:
1. If y = (b +

√
3c)/2 and x = (

√
3b + c)/2 then the call

CylindricalDecomposition[{S ≥ S0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 < b < 1,
0 < c < 1, y==1

2

(
b +
√

3c
)
,x==1

2

(√
3b + c

)}
, {x, y, b, c}

]
yields the cylindrical decomposition

y = 1 ∧ x = 1 ∧ c = −1 +
√

3 ∧ b = −1 +
√

3.
2. If y = (b −

√
3c)/2 and x = (−

√
3b + c)/2 then the call

CylindricalDecomposition[{S ≥ S0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 < b < 1,
0 < c < 1, y==1

2

(
b−
√

3c
)
,x==1

2

(
−
√

3b + c
)}

, {x, y, b, c}
]

yields False.

We conclude that the maximum area of ΔXYZ is reached only when x = 1,
c = −1 +

√
3 and b = −1 +

√
3. In this case, we have X=C, Y=L and Z=K.

Therefore, we can conclude that Theorem 1.(b) holds.

5 Conclusion

We have shown the origami construction of an equilateral triangle and the au-
tomated proof of the property that the constructed triangle is equilateral, max-
imally inscribed in the origami by the computational origami environment Eos.
It not only simulates origami folds, but also computes and proves geometric
properties of the construction. Eos keeps track of the geometrical properties of
all points and lines during the construction. From those properties, polynomial
algebraic constraints are generated, which then are supplied to theorem provers.

Recently, we added several improvements in the proof part. By specifying ad-
ditional constraints using equalities and inequalities during the construction, the
system can perform more automated deduction. Inequality constraints require
more powerful solving methods such as cylindrical algebraic decomposition.

Our experience with Eos shows that the number of polynomials grows very
rapidly as the number of origami construction steps grows. Even a small number
of fold steps (for example, 30 steps) may generate over 100 polynomials. Handling
constraints of this size is a challenging task for most of the geometric solvers and
provers. We can easily generate sets of constraints which make a Gröbner bases
prover run out of computing resources. These limitations can be overcome by
adopting a computational framework with access to networked resources.
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8. T. Ida, D. Ţepeneu, B. Buchberger, and J. Robu. Proving and Constraint Solv-
ing in Computational Origami. In Proceeding of the 7th International Symposium
on Artificial Intelligence and Symbolic Computation (AISC 2004), volume 3249 of
Lecture Notes in Artificial Intelligence, pages 132 – 142, 2004.
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Abstract. MATLAB is commonly considered to be an attractive, high-
productivity programming environment bymany computational scientists
and engineers. So-calledMEX-files are dynamically linked subroutines pro-
duced from, say, C or Fortran source code that, when compiled, can be
run directly from within MATLAB as if they were MATLAB built-in func-
tions. When applying automatic differentiation to a MATLAB program
that calls external software via MEX-files, code is mechanically generated
for the MATLAB part and for the external part in two separate phases.
These resulting code fragments need to be put together via new MEX-files.
This work introduces a novel software tool called automatic differentiation
mexfunction generator that automatically generates MEX interface func-
tions for gluing these automatically generated code fragments.

1 Introduction

The field of computational science and engineering is rapidly increasing, bring-
ing together applied mathematics and computer science with a large number of
different scientific and engineering disciplines. The goal is to better understand
phenomena arising from real-world problems by using advanced simulation tech-
niques. The role of mathematical software is to implement these techniques in
a reliable, robust, and portable way. MATrix LABoratory (MATLAB)1 [1] is
an extremely successful interactive environment for scientific and technical com-
puting. Its high-level programming language is heavily based on concepts from
linear algebra with vectors and matrices constituting the most fundamental data
structures. This language design as well as the rich set of powerful functions pro-
vided by so-called MATLAB toolboxes facilitate rapid prototyping for tackling
complex computational problems with modest human effort.

Rather than excessively concentrating on the efficiency of the interpreted pro-
grams, the focus of MATLAB has been on the accuracy and stability of the un-
derlying numerical methods. That is, rather than getting a fast answer, the focus
is on getting a correct answer. Accuracy is also a crucial factor when derivatives
1 MATLAB is a registered trademark of The Mathworks, Inc.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 373–384, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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are to be evaluated in areas such as design optimization, data assimilation, or
inverse problems. Since numerical differentiation by divided differencing involves
truncation error, a set of truncation error-free techniques known as automatic
differentiation (AD) [2,3] is of particular interest in this context. Using the AD
technology, a given program for evaluating some function is transformed into
a new program capable of evaluating the derivatives of a subset of the input
variables of the original program with respect to some of its output variables.
Here, the subsets of input and output variables are chosen by the user, and this
specification enters the AD transformation process as input. Software tools im-
plementing AD are available for various languages. In this work, the AD tools
ADIC [4] for C programs, ADIFOR [5,6] for Fortran programs, and ADiMat [7]
for programs written in MATLAB are used; see www.autodiff.org for a list of
current AD tools.

In MATLAB, it is not uncommon to call some external software, for instance,
C or Fortran source code that, when compiled, can be run directly from within
MATLAB as if it were a MATLAB built-in function. This mechanism is imple-
mented using so-called MEX-files. In this note, we assume that AD is applied to a
MATLAB program that calls an external software written in, say, C. Then, cur-
rently, two different AD tools need to be applied in two separate phases to each
of the two parts, written in MATLAB and C. The resulting AD-generated codes
written in MATLAB and C are required to be put together using MEX-files. The
purpose of this note is to introduce a new software tool called Automatic differ-
entiation Mexfunction Generator (AMG) that automatically generates the MEX
interface functions for AD-generated code. To the best of our knowledge, there is
currently no other software tool aiming at gluing AD-generated MATLAB code
with AD-generated Fortran or C code.

The structure of this note is as follows. In Sect. 2, a short introduction to
MEX-files is given. The program transformation of automatic differentiation is
sketched in Sect. 3. The AMG tool and its application to a problem in multi-
sensorics are reported in Sect. 4 and Sect. 5, respectively.

2 Calling C or Fortran from Within MATLAB

A MATLAB program usually consists of a collection of functions and scripts
written in the MATLAB language itself, which is sufficient for a wide range
of computational problems. More complicated tasks like database queries, in-
terprocess communication, device drivers, or the use of library routines can be
accomplished by calling functions, that are written in languages different from
MATLAB. MATLAB provides a way to call external functions, that may be
written in C/C++, Fortran, or any other language which is able to produce a
compatible object file. As a simple example, consider the function foo() im-
plemented in C which is presented in Fig. 1. The function accepts two scalar
inputs x and y and maps them to u and v. Because C passes arguments via “call
by value,” the memory addresses storing the results have to be supplied to the
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function. This implies the (unreadable) dereferencing of the pointers of u and v
whenever their content is accessed.

#include <math.h>
void foo(double x, double y, double *u, double *v){

*u = 2 * y;
*v = *u * sin(x);

}

Fig. 1. A simple function computing u and v from given values of x and y

The interface for calling a non-MATLAB function like foo() is called MEX
which stands for Matlab EXternal interface [8]. The performance overhead
present in MATLAB is significantly reduced using C or Fortran via MEX-files.
However, a drawback is that a MEX-file is no longer platform-independent as
are pure MATLAB scripts.

A function using the MEX interface is called a mexFunction which is, at the
same time, the symbol that the object file has to export for MATLAB to call the
implemented routine. A mexFunction is called using two arrays. One of them
is used for the input arguments passed to the function. Within the other array,
the mexFunction has to store references to its results. MATLAB distinguishes
different mexFunctions by the filename given to the function. This filename is
the mexFunction’s name used by MATLAB to call the function.

Besides the definition of the interface to call an external function, several
application programmer’s interface (API) functions are provided. These allow
the manipulation of matrices, creation and manipulation of structures, memory
management, and some more sophisticated functionality.

Figure 2 shows an example of a mexFunction to call the function foo() as
defined in Fig. 1. The mexFunction expects at least two inputs in prhs and
returns two results in plhs. The checks, that these requirements are true and
that both inputs have the same size, are omitted in this code for simplicity. The
number of rows and columns of the first input is extracted by mxGetM(prhs[0])
and mxGetN(prhs[0]), respectively. Next, the start addresses of the input data
are fetched by mxGetPr() and stored in x and y. After that, two matrices whose
size is identical to the size of the input matrices are allocated and are stored in
the first and second entry of the output array plhs. The following two statements
get the references to the memory, where the data of the results has to be stored.
The for-loop at the end of the function body calls the function foo() computing
two scalar outputs for two given scalar inputs. The input and output matrices
are traversed in a column first order.

A MEX-file called foo with a platform-dependent extension is generated from
the code given in Fig. 2. This process involving compiling and linking is carried
out by a script called mex which is distributed with MATLAB. From within
MATLAB, the function foo() may now be called with scalars, vectors or ma-
trices. Given two scalar input variables a=1.0 and b=2.0, a simple call

[r,s]=foo(a,b);
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#include <mex.h>
void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[]) {
double *x, *y, *u, *v;
int c;
/* Get input arguments */
int m = mxGetM(prhs[0]);
int n = mxGetN(prhs[0]);
x = mxGetPr(prhs[0]);
y = mxGetPr(prhs[1]);
/* Allocate storage for output arguments */
plhs[0] = mxCreateDoubleMatrix(m, n, mxREAL);
plhs[1] = mxCreateDoubleMatrix(m, n, mxREAL);
u = mxGetPr(plhs[0]);
v = mxGetPr(plhs[1]);
for(c=0; c< m*n; ++c)

foo(x[c], y[c], &u[c], &v[c]);
}

Fig. 2. The MEX interface to call the function foo() given in Fig. 1 supporting arbi-
trary matrices as inputs. Consistency checks of the inputs are omitted for simplicity.

returns r=4.0 and s=3.3659. If matrices rather than scalars are used as inputs
for a and b, then these matrices have to be of the same size.

3 Automatic Differentiation by Source Transformation

Automatic differentiation refers to a set of techniques for transforming a given
computer program P into a new program P ′ capable of computing derivatives in
addition to the original output. More precisely, if P implements some function

f : Rn → Rm,

mapping an input x to an output y = f(x), the transformed program P ′ com-
putes not only the function value y but also the m× n Jacobian matrix

J =
∂y

∂x

at the same point x. The AD-generated program P ′ is called the differentiated
program.

The basic idea behind AD is the fact that the execution of P is nothing but
a—potentially very long—sequence of elementary arithmetic operations such as
binary addition, multiplication, or intrinsic functions like sin(·) or cos(·). The
partial derivatives of all these elementary functions are known and, following
the chain rule of differential calculus, can be combined in a step-wise manner to
yield the overall derivative of the entire program. The user of an AD tool specifies
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(i) the input variables with respect to which derivatives are to be computed and
(ii) the output variables whose derivatives are sought. These variables are called
independent and dependent variables, respectively.

To illustrate AD, consider the simple code fragment given in Fig. 1 and keep
in mind that the technique is also applicable to larger codes. For the sake of
simplicity, we sketch a straightforward AD strategy called the forward mode by
studying the transformation of the sample code fragment. In the forward mode,
a gradient object ∇w is associated to every variable w appearing in the original
code. In the differentiated code, this gradient object ∇w is used to store the
partial derivatives of the variable w with respect to the independent variables,
and additional statements for updating ∇w are executed whenever the value of
w changes. Suppose that we would like to obtain derivatives of u and v with
respect to x and y. Note that the forward mode follows the control flow of the
original program, i.e., the differentiated code computes u and v together with∇u
and ∇v from given values of x, y, ∇x, and ∇y. Thus, in mathematical notation
the above code segment would be augmented to

∇u = 2 · ∇y ; u = 2 · y (1)
∇v = sin(x) · ∇u + u · cos(x) · ∇x ; v = u · sin(x) . (2)

The corresponding code implementing these equations is depicted in Fig. 3
as generated by the AD tool ADIC [4]. Here, all double-precision variables and

#include "ad_deriv.h"
#include <math.h>
#include "adintrinsics.h"
void ad_foo(DERIV_TYPE x, DERIV_TYPE y, DERIV_TYPE *u, DERIV_TYPE *v) {

DERIV_TYPE ad_var_0;
double ad_adji_0;
double ad_loc_0;

ad_loc_0 = 2 * DERIV_val(y);
ad_grad_axpy_1(&(*u), 2, &(y));
DERIV_val(*u) = ad_loc_0;

DERIV_val(ad_var_0) = sin( DERIV_val(x)); /*sin*/
ad_adji_0 = cos( DERIV_val(x));
ad_grad_axpy_1(&(ad_var_0), ad_adji_0, &(x));

ad_loc_0 = DERIV_val(*u) * DERIV_val(ad_var_0);
ad_grad_axpy_2(&(*v), DERIV_val(ad_var_0), &(*u),

DERIV_val(*u), &(ad_var_0));
DERIV_val(*v) = ad_loc_0;

}

Fig. 3. Result of transforming the function foo() given in Fig. 1 by the forward mode
of AD using ADIC [4]
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type declarations that were present in Fig. 1 have been redeclared to be of type
DERIV_TYPE. The original double value for each variable of type DERIV_TYPE
is denoted by DERIV_val. The vector of derivatives with respect to the inde-
pendent variables associated with an original double variable is represented by
DERIV_grad. The functions ad_grad_axpy_1() and ad_grad_axpy_2() imple-
ment the updates of the gradients represented by the DERIV_grad objects ac-
cording to (1) and (2).

Finally, we stress that AD is different from symbolic differentiation. In sym-
bolic differentiation as implemented by computer algebra systems, derivative
computations are based on formulae given in the form of expressions. AD, in
contrast, does not generate formulae but code to evaluate the derivatives at
certain points of interests. An example illustrating the differences between sym-
bolic differentiation and AD is given in [9]. Though today’s AD tools are quite
remarkable in transforming large programs [10], there are still several challenges
and difficulties with current implementations of AD as illustrated in [11]. The
reader is referred to [2,3] and the proceedings [12,13,14,15] for more details on
theory, implementations, and applications of AD.

4 Automatic Differentiation Mexfunction Generator

The Automatic differentiation Mexfunction Generator (AMG) takes up the idea
of supporting the generation of MEX-files like the tools genmex [16,17] and
H2MEX [18] do. Both tools support the generation of MEX interface functions
either by using macro expansion or by giving various command line arguments
to specify the desired interface. Both tools do not support the integration into
a sequence of codes written in different languages to handle automatic differen-
tiation.

Figure 4 shows a sample high-level specification called AMG-file, which gener-
ates the C implementation of a mexFunction to call the function foo(). The first
line defines the mexFunction to be generated. AMG will generate a file foo.c
which, when compiled and linked by mex, makes the function foo() available to
MATLAB. The function takes exactly two input arguments denoted by x and
y and returns two outputs u and v. The sizes of the outputs are identical to
the sizes of the inputs. This is indicated by the three lines starting with -size.
The first two -size-lines set the sizes of the output matrices to be identical
to the size of x. They allocate a sufficient amount of memory for the output
matrices. The third -size-line inserts a code fragment which checks that the
sizes of x and y are identical. Finally, the kernel segment is given. The kernel
segment may contain arbitrary C code. The C code generated by AMG which is
similar to the one sketched in Fig. 2 will check for the correct number of actual
arguments and results when the mexFunction is called. If these numbers are not
as expected, then a MATLAB error message is issued.

The tool AMG is a macro processor, which supports not only generation of
MEX interfaces, but has also support for converting ADiMat’s [7] derivative
objects to derivative formats used in ADIC [4] and ADIFOR [5,6]. The three
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[u, v] = foo(x, y)
-size(u)=x
-size(v)=x
-size(y)=x
-kernel {

int c;
for(c=0;c<numel(x);++c)

foo(x[c], y[c], &u[c], &v[c]);
}

Fig. 4. AMG-file to generate a MEX interface for foo() given in Fig. 1

AD-tools ADIC, ADIFOR and ADiMat have different formats for storing deriva-
tives. They differ in the way derivative information is associated with its original
object and in the order the derivative information is stored. An association can
be done by name or by reference. An association by name is done by prefixing
the original variable’s name by, for example, g_ to denote a gradient. An as-
sociation by reference is done by changing the original variable’s data type to
DERIV_TYPE containing fields to hold the original data and the derivative data.
ADIFOR and ADiMat use association by name, while ADIC uses association
by reference. In Fig. 5 the storage schemes are illustrated. The figure presents a
vector v in the original code and how derivative information is associated with
it in the differentiated code. The derivative information is colored gray.

v

g_v

v

v

v

g_v

ADiMat

ADIC

ADIFOR

Fig. 5. Association and storage schemes of the three AD-tools ADIC, ADIFOR and
ADiMat

Besides dissimilar association schemes, the storage schemes are different in
the three AD-tools. ADIFOR and ADIC associate a vector of derivative infor-
mation with each scalar entry of the original object, which is depicted in Fig. 5.
With an m×n matrix in the original code, ADiMat associates a vector of m×n
matrices storing the derivative information. Note, that the difference between
the ADIFOR derivative and the ADiMat derivative is subtle. In ADiMat the
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derivative of the vector is a horizontal concatenation of row vectors, while in
ADIFOR it is a horizontal concatenation of column vectors. Furthermore, ADI-
FOR and ADiMat use a column order storage scheme for matrices, i.e., entries
in the same column are stored successively in the memory. ADIC uses a row
order storage scheme, where entries in the same row are stored successively.
The storage scheme does not depend on the AD-tool, but is motivated by the
programming languages Fortran, C and MATLAB. Fortran’s and MATLAB’s
storage schemes are identical, because MATLAB was originally implemented in
Fortran.

The AMG tool offers switches to generate conversion code to interface from
ADiMat-generated MATLAB code to differentiated code produced by either
ADIC or ADIFOR.

The example in Fig. 6 shows the AMG-file to generate an interface for calling
the ADIC differentiated code shown in Fig. 3. The first line has changed in com-
parison to Fig. 4. Additional variables g_ are present for transferring derivative
data from and to MATLAB. The switches -adic and -active(x,y,u,v) have
been added. The first one defines, that ADIC was used to differentiate the func-
tion in the kernel. The second one declares the variables x,y,u,v to be active,
that is, derivatives objects are associated with these variables. AMG generates
code which associates the input derivative data g_x with the variable x and
creates an object needed by ADIC. The variables x and g_x are not selected
by their name, but by their order in the variable list. That is, the variable g_x
occurring directly in front of the variable x is used as its derivative data. The
ADIC derivative object produced by combining the two variables g_x and x can
be referenced by specifying adic(x). This returns the DERIV_TYPE object which
is needed by the ADIC differentiated code.

[g_u, u, g_v, v] = g_foo(g_x, x, g_y, y)
-size(u)=x
-size(v)=x
-size(y)=x
-adic
-active(x,y,u,v)
-kernel {

int c;
for(c=0;c<numel(x);++c)

ad_foo(adic(x)[c], adic(y)[c], &(adic(u)[c]), &(adic(v)[c]));
}

Fig. 6. AMG-file to generate a MEX interface for the ADIC-generated function
ad foo() given in Fig. 3.

The specification given in Fig. 6 is processed by AMG to produce a MEX
interface which is then compiled and linked by mex. In MATLAB one can now
use the initialization

g_a = [1.0;0.0] and g_b = [0.0;1.0]
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to indicate that the first and second entries of a derivative object are used to
store the derivatives with respect to a and b, respectively. Calling

[g_r,r,g_s,s]= g_foo(g_a,a,g_b,b);

at a=1.0 and b=2.0 then gives the results

g_r=[0.0;2.0], r=4.0, g_s=[2.1612;1.6829], and s=3.3659 .

The values of g_r, for instance, show that r does not depend on a and that the
derivative of r with respect to b is 2 which is easily verified from inspection of
the code given in Fig. 1. The AMG tool generates 138 lines of code from the 11
lines of the specification given in Fig. 6. The benefits of this automatic interface
generation are ease of use, automatic insertion of code checking for correct sizes,
and reduced probability of errors or omissions that may often occur in manually
written code.

5 An Application in Multisensorics

In this section, we report on the use of AMG in an application arising from
multisensorics. At the University of Siegen, one is interested in the simulation of
satellite constellations requiring a high accuracy of the underlying flight trajec-
tory model [19]. Therefore, various different effects have to be considered in the
mathematical model including relativity, earth tides, solar radiation pressure as
well as gravitation of earth, sun and, moon. Atmospheric effects are taken into
account by relying on a thermospheric model called MSIS–86 [20,21] developed
at NASA’s Goddard Space Flight Center. The overall simulation is formulated
in MATLAB while MSIS–86 is written in Fortran77.

In a Kalman-filter for data fusion of simulated trajectory and GPS-data,
derivatives are needed that are computed by means of automatic differentiation.
More precisely, ADiMat is applied to the overall MATLAB code and ADIFOR
is used to obtain the differentiated code for the MSIS–86 code. These two differ-
entiated codes, written in MATLAB and Fortran77, are put together by a MEX
interface generated by AMG. In Fig. 7, the AMG specification to produce the
interface between the ADIFOR-generated code g msis and MATLAB is given.
Note that the AMG code is written in C and that no switch is needed to tell
AMG that it is interfacing to ADIFOR-generated code. The latter is not nec-
essary because all inputs of MSIS–86 are scalars and only vectors are returned.
The resulting vectors and derivative objects do not need any modification be-
cause the storage schemes of ADIFOR and MATLAB are identical for this data
structure.

AMG generated a total of 130 lines of codes from the 19 lines of specification
shown in Fig. 7. The ratio of lines of the generated C code and the lines of the
AMG specification is 130/19 ≈ 6.8 for the g_msis_f() interface and 138/11 ≈
12.5 for the g_foo() interface. The reason that more coded is produced for the
simple g_foo() interface than for the more complicated g_msis_f() interface
is as follows. More code is needed to handle the more complicated DERIV_TYPE
objects of ADIC than the simple data structures used by ADIFOR.
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[g_D,D,g_T,T] = g_msis_f(iday, ut, g_alt, alt, g_xlat, xlat,
g_xlong, xlong, xlst, f107a, f107, ap, mass)

-size(D)={1,8}
-size(g_D)={numel(g_alt),8}
-size(T)={1,2}
-size(g_T)={numel(g_alt),2}
--header{
extern void g_msis_(int*, int*, double*, double*, double*, int*,

double*, double*, int*, double*, double*, int*,
double*, double*, double*, double*, int*,
double*, double*, int*, double*, double*, int*);

}
-kernel {

int tmass = (int) mass[0];
int tiday = (int) iday[0];
int g_p = numel(g_alt);
g_msis_(&g_p, &tiday, ut, alt, g_alt, xlat, g_xlat, xlong, g_xlong,

xlst, f107a, f107, ap, &tmass, D, g_D, T, g_T);
}

Fig. 7. AMG-file to generate a MEX interface for the ADIFOR-generated subroutine
g msis .

6 Concluding Remarks

When automatic differentiation is applied to some MATLAB function that calls
an external code foo() written in, say, C or Fortran via a MEX-file, the differ-
entiated code consists of the corresponding differentiated MATLAB function in
which the differentiated code ad_foo() is called via another MEX-file. The man-
ual generation of this MEX-file is time-consuming and error-prone. To this end,
a new software tool called AMG is introduced that, given a suitable high-level
specification of the differentiated code ad_foo(), generates the corresponding
MEX-file automatically. AMG is primarily designed to be used together with
the AD tool ADiMat for transforming code written in MATLAB and either the
AD tool ADIC for C or the AD tool ADIFOR for Fortran. The feasibility of this
approach is demonstrated by a nontrivial application arising from multisensorics
in which code produced by the AD tools ADiMat and ADIFOR is put together
via an AMG-generated MEX-file.
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Abstract. We propose a new computer environment for mathemati-
cians that can be set up easily and quickly.

1 Introduction

In the 1960s, using computers was synonymous with writing programs. When the
first generation of microcomputers appeared in the 1970s, computer users shared
their source code and programs. During the 1980s, desktop personal computers
were becoming common, and software packages were commercialized. During
the 1990s, the power of personal computers increased remarkably, and hard disk
storage began to be used for operating systems and software applications.

Typically, before using a software package, a user had to install it onto the hard
disk. Increasingly, however, ordinary computer users have become accustomed to
using pre-installed systems and applications, and laptop computers have become
ubiquitous. Recently, the form and function of computers has changed radically.

A particular set of computer users, mathematicians, require special mathemat-
ical software such as the TEX system for writing papers, as well as calculating and
visualizing mathematical objects. These systems are not typically pre-installed
on computers; therefore, the user must configure the desktop environment.

In order to carry out investigations and get new ideas, it is a prerequisite
for mathematicians to communicate each other. An important part of this com-
munication is in the form of participation in seminars and workshops, which
are often held in foreign countries. Laptop computers are a ubiquitous piece of
equipment for such events. Of course, universities and research facilities always
have several computers that can be rented or borrowed, and the user may not
be accustomed to the desktop environment of available systems. Another disad-
vantage of this system is that the borrowed system may not provide support for
reading and writing e-mail messages in the user’s native language. As a result,
before traveling to international conferences, one has to set up and configure
the desktop environment on the laptop, such that they may be carried along:
however, this is not a pleasant task, and hence, there is a need for a portable
desktop environment that can be set up easily and quickly.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 385–390, 2006.
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2 Desktop Teleportation

We propose a new computer environment that would eliminate the need to carry
laptop computers on business trips or to set up a computer for travel.

We call the proposed computer environment, “Desktop Teleportation.” This
system allows users to work from their native desktop environment irrespective
of their location. This is a next-generation computer environment that does not
require installation, and satisfies the needs of not only for mathematicians, but
also of any computer user.

3 CD Bootable System

Recently, computer operating systems that are bootable from a single CD, such
as KNOPPIX, are gaining popularity. KNOPPIX is a bootable CD that contains
a collection of GNU/Linux software. This project was started in Germany by
Klaus Knopper. KNOPPIX can be used for Linux demos, educational presen-
tations, and system recovery. It does not require prior installation on the hard
disk, offers automatic hardware detection, and provides support for a variety
of graphics cards, sound cards, SCSI and USB devices, and other peripherals.
Owing to on-the-fly decompression, an optical disc can hold up to 2 GB of exe-
cutable software.

Starting in the autumn of 2002, AIST created a Japanese version of KNOP-
PIX, as a part of the network-transferable computer project (cf. [1]). The KNOP-
PIX/Math project began in February 2003. This project resulted in a program
that can be stored on a single KNOPPIX/Math CD. Using the CD and a USB
flash memory device, and a rented computer, the user can set up his or her
desktop environment on any computer.

4 KNOPPIX/Math Project

KNOPPIX/Math is the first implementation of the system that supports mathe-
matical software and documents. The 2nd OpenXM committers meeting (Febru-
ary 12–14, 2003), saw the introduction of the beta version of the system, which
contained OpenXM, Maxima, Gnuplot, Geomview, surf, and TEX.

The first downloadable version of the package was KNOPPIX/Math/2003.
For licensing reasons, this version was distributed without the OpenXM pack-
age. Over 400 CDs were distributed at the MSJ1 meeting (March 23–26,2003) at
the University of Tokyo. At this meeting, a growing need for mathematical soft-
ware suitable for mathematical research activities was felt. After discussions at
this meeting, we found some core members for the “KNOPPIX/Math Project”
among mathematicians who are interested in mathematical software that could
be used in their research and for teaching.

1 Mathematical Society of Japan, http://wwwsoc.nii.ac.jp/msj6/math/
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The next version KNOPPIX/Math/2004 was released at the MSJ (March
27–30, 2004) at the University of Tsukuba. During that time over twenty math-
ematical software applications were installed on the CD. Starting from the release
of this version, the OpenXM package has been network-installable. In addition,
we released the first English version of KNOPPIX/Math.

KNOPPIX/Math/2005 was distributed at the 67th National Convention of
IPSJ2 (March 2–4, 2005) at the University of Electro Communications, and at
the MSJ meeting (March 27–30, 2005) at Nihon University, and at other meet-
ings. Japanese documents regarding mathematical software were also included
during the distribution. On realizing the importance of lightweight languages, a
few Ruby libraries for algebraic computations and NZMATH, a Python-based
number-theory oriented calculation system, were also included. The first Korean
version of KNOPPIX/Math was released at ASCM2005 (December 8–11, 2005)
at KIAS in Korea. It supports both Korean input methods and a Hangul LATEX
package.

The current version, KNOPPIX/Math/2006, was presented at the 68th Na-
tional Convention of IPSJ (March 8–10, 2006) at the Kogakuin University, and
at the MSJ meeting (March 26–30, 2006) at Chuo University.

We changed the development system, KNOPPIX/Math/2006 is the first re-
sult of this new research project: KNOPPIX/Math Project. The members of
this project include many mathematicians, mathematical software designers, and
writers of free documents.

In this CD, we provide new and more versatile environments for TEX edit-
ing. For example, we included Kile, a KDE based GUI TEX editor, WhizzyTEX
and Active-DVI, a pair of WYSIWYG utilities for TEX documents, and GNU
TEXmacs, an office suite for TEX writing. The CD includes many additional
mathematical software programs, such as BLAS, Dynagraph, EGGX/ProCALL,
GAP, Geomview, Gnuplot, Hyplane, Kali, Kan, KSEG, LAPACK, Macaulay2,
Maxima, NZMATH, Octave, OpenXM, PARI/GP, Qhull, R, Singular, SnapPea,
surf, Surface Evolver, Teruaki, XaoS, and Yorick. For licensing reasons, there
were some desirable applications that have not been included in the CD, but we
have developed network installers and menus for the same, and since the user
can connect to the Internet, he or she can easily use Knot, KnotPlot, Knotscape,
LiE, and Risa/Asir.

We have distributed over five thousand CDs during this development pe-
riod. There are many people interested in our project and have downloaded
CD images from our web site (http://www.knoppix-math.org/). Further, some
professors are currently using KNOPPIX/Math to teach mathematics at their
universities. This was expected as KNOPPIX/Math provides a very conve-
nient and economical computer environment for teaching mathematics as well as
performing numerical calculations and programming. Moreover, some educa-
tors are using the program in campus information sessions for preparatory stu-
dents, where the suite of programs helps generate fun and excitement related to
mathematics.

2 Information Processing Society of Japan, http://www.ipsj.or.jp/english/
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Fig. 1. KNOPPIX/Math/2006 Desktop

5 The Project Policy

We initially developed KNOPPIX/Math as a desktop environment for Japanese
mathematicians, and the current selection of software assumes that mathemati-
cians are the primary users. The distribution policy of KNOPPIX/Math is that
only free software and free documents are included. Because this is an experi-
mental project, and several thousand CDs have to be distributed, the KNOP-
PIX/Math package had to be economical for production and easy to copy and
redistribute. We are pleased to distribute this software without any license fee.
Anyone is allowed to copy and distribute KNOPPIX/Math. If KNOPPIX/Math
included anything besides free software, redistribution would have been difficult.
But by including only free software and free documents, we are able to simulta-
neously distribute both software and documents. Because it is not necessary to
install the program onto the hard disk, we expect to maintain low-cost distri-
bution and high-level portability. This means that users can compare different
mathematical systems from various places, and further, we have developed a
method of introducing better mathematical software into Japan.

KNOPPIX/Math has succeeded in attracting the interest of many Japanese
mathematicians. During the first three days of the MSJ Spring meeting we dis-
tributed 1,000 KNOPPIX/Math packages. Approximately 1,500 people are be-
lieved to have participated in the programs at this meeting.

However, most of the mathematicians who received the KNOPPIX/Math soft-
ware package at the MSJ meeting are likely not use it for desktop teleportation
but more as a means of trying out the intriguing mathematical software it pro-
vides – programs that are otherwise difficult to install, because our package
provides a “Desktop Cloning” of diverse computer expertise. The popularity
of KNOPPIX/Math lies in the facility with which it allows a user to access
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the suite of specialized mathematical software. Previously, even professional
mathematicians have had difficulty in using unfamiliar mathematical software.
Therefore, it is important to understand the mathematical basis for such soft-
ware. The KNOPPIX/Math project helps introduce a variety of mathematical
software and writing free documents, and provides a guide book for KNOP-
PIX/Math.

6 Other Remastered Versions of KNOPPIX

We consider other remastered versions of KNOPPIX, such as Quantian3 and
Freeduc4. Quantian is a scientific computing environment for numerical and
quantitative analysis that supports openMosix, a Linux kernel extension for
single-system image clustering. This kernel extension converts a network of com-
puters into a supercomputer for Linux applications. Freeduc is intended for use in
primary schools. There are many educational software and free documents. These
projects are being pursued actively and support many mathematical software
programs; however their main targets are not mathematics, whereas KNOP-
PIX/Math only supports teaching, research activities, and facilitates mathe-
matical presentations.

Two of the authors of this paper are investigating network boot systems,
such as SFS-KNOPPIX (cf. [2]) and HTTP-FUSE KNOPPIX, which enable
one to select the root file system from the server. In particular, HTTP-FUSE
KNOPPIX may become the next generation system of thin clients. Despite its
economical design, this program is used for general office work in some mu-
nicipalities. T. Kosuge’s team at Japan Electronic College is investigating the
CF-KNOPPIX and USB-KNOPPIX projects. They have produced systems that
boot from compact flash memory and USB flash memory. The team has also
fabricated computer education rooms using CF-KNOPPIX, thereby developing
economical and maintenance-free educational environments. Another author of
this paper is working on the ongoing KNOPPIX Edu project (cf. [3])(supported
by AIST and Alpha Systems Inc).

The desktop teleportation system is an effective tool in education. If stu-
dents have personal computers, they can study at home using the same desk-
top environment that they use at school. Last year, we began a collaborative
project, in which we distributed both KNOPPIX/Math/2005 and KNOPPIX
Edu4 in a single package. Now, we are continuing our collaboration, and our
projects are spreading to various educational and research areas. Recently, Al-
pha Systems Inc. has released the Live CD Acceleration Toolkit (LCAT) and
Accelerated-KNOPPIX5. Accelerated-KNOPPIX is a fast boot KNOPPIX that
by optimizes the start-up part of the live CD. We have applied this toolkit to
KNOPPIX/Math/2006 and KNOPPIX Edu5 as well.

3 http://dirk.eddelbuettel.com/quantian/
4 http://www.ofset.org/freeduc-cd/
5 http://www.alpha.co.jp/ac-knoppix/index en.html
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Finally, we would like to introduce a new version of the computer environ-
ment that uses a virtual machine. N. Takayama and M. Noro have
released VMware/knoppix/math, which is the virtual machine image of KNOP-
PIX/Math. The VMware Player6 is a freely downloadable application devel-
oped by VMware Inc; it enables users to easily run any virtual machine on a
Windows or Linux operating system. Using this product renders KNOPPIX/
Math user friendly even on a PC even without a CD-ROM drive.
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Abstract. We deal with ideals generated by polynomials with paramet-
ric coefficients, and introduce “stabilities on ideal structures” based on
stability of forms of Gröbner bases. Then, we extend those stabilities
to radicals and irreducible decompositions and show the computational
tractability on those computations by integrating existing techniques.

1 Introduction

Computations of Gröbner bases and triangular systems play very important roles
in analyzing the structure of polynomial ideals and their varieties. Lots of efforts
have been devoted to developing efficient such computations, and these developed
efficient methods contribute to solving engineering problems. However, ideal gen-
erators derived from engineering or pure mathematics often contain parameters
in coefficients or exponents, and depending on the values of these parameters,
the structures of ideals/varieties change. For a systematic study of these ideals,
analyzing conditions on parameters for desired zeros and analyzing conditions
on parameters for a “stable” ideal/variety structure are very important. Several
works were done in this direction; as to “uniformity” of the shape of Gröbner
basis, analyzing specialization for such uniformity [1,5], computing methods for
comprehensive Gröbner basis [13,7,10,14,11], and computing methods based on
computation of triangular systems [3,12]. Recently, ideals generated by polyno-
mials with parametric exponents are dealt with in [15,16,17].

Here we introduce the term “parametric ideal”, as a general term, which rep-
resents polynomial ideals generated by a number of polynomials with parameters
in coefficients or exponents. Our first target is to analyze/classify the values of
parameters for “stable structures” of ideals/varieties. After classification of pa-
rameters on such stabilities, we can go further to consider how decomposition,
like radical computation, prime/primary decomposition, of such ideals can be
described uniformly and how one can analyze/classify the values of parameters
for having such uniformity. We may call this “parametric decomposition”.

In this paper, concentrating on parametric coefficient case, we give a system-
atic approach for computation of “parametric decomposition” of a parametric
ideal, and we show that one can realize radical computation and irreducible
decomposition by integrating existing algorithms. Making these computational
realizations efficient and practical is not dealt with here, but it is very challenging
for Computer Algebra not only in theory, but also in application. It will certainly
help to develop the abilities of Computer Algebra and widen its application.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 391–402, 2006.
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2 Stability of Parametric Ideals

Here, for ideals generated by polynomials with parametric coefficients, we explain
“stabilities” of structures of ideals and give brief discussion on tractability of
classification of the values of parameters for such “stable structures”.

We consider polynomial rings K[A,X ] and K̄[A,X ] in two kind of variable
set A = {a1, . . . , am} and X = {x1, . . . ,xn} over a computable field K of char-
acteristic 0 and its algebraic closure K̄, where A represents the set of parameters
and X the set of (ordinary) variables. For each value α = (α1, . . . , αm) of A in
K̄m, we denote by ϕA the ring homomorphism from K̄[A,X ] to K̄[X ] obtained
by substitution of A with α:

ϕα : K̄[A,X ] 4 f(a1, . . . , am,x1, . . . ,xn)→ f(α1, . . . , αm,x1, . . . ,xn) ∈ K̄[X ].

For a finite subset F of K[A,X ], we call the family {〈ϕα(F )〉 | α ∈ K̄m}
of ideals of K̄[X ] the parametric ideal generated by F . Letting I = 〈F 〉 (the
ideal generated by F ) in K̄[A,X ], we have 〈ϕα(F )〉 = ϕα(I) for any α ∈ K̄m.
Thus, we also call I the parametric ideal generated by F . (If we restrict all
parameter values in Km, we consider ideals of K[A,X ] and the restriction of ϕα

on K[A,X ]. ) Let T (X),T (A),T (X,A) denote the set of all terms of X , A, and
X ∪A, respectively.

Definition 1 (Stability of Parametric Ideal)

1. Forms of Generators: A subset G of K[A,X ] is called a stable Gröbner basis
of a parametric ideal I in a region C of K̄m with respect to an order ≺ on
T (X), if ϕα(G) is a Gröbner basis of the ideal ϕα(I) in K̄[X ] with respect to
≺ and ϕα(HC≺(g)) �= 0 for all g ∈ G for any α in C, where HC≺(g) denotes
the head coefficient of g considered as a polynomial in X over K(A).

2. Other Structural Invariants: We can deal with non-triviality, dimension, and
also linear-dimension for 0-dimensional case. For example, the dimension
of I is said to be stable in a region C of K̄m, if the dimension of ϕα(I)
coincides for any α ∈ C. Related to dimension, we can also deal with a
maximal strongly independent set (MSIS) with maximal cardinality modulo
a parametric ideal. That is, a subset Y is called a stable MSIS with maximal
cardinality modulo I in a region C, if Y is a MSIS with maximal cardinality
modulo ϕα(I) for any α in C. (For details on MSIS, see [2].)

Here each region C is supposed to be algebraically constructible, that is, two
finite subsets P1 and P2 of K[A] are explicitly given and C is defined as C =
V (P1) \ V (P2), where V (Pi) denotes the set of all zero of Pi in K̄m. We may
assume that V (P2) ⊂ V (P1) by replacing P2 with P2 ∪ P1 if necessary.

What we want to do is to classify parameter values, that is, for a specified
structural invariant, say Q, and a given subset S of K̄m, we compute a finite
number of algebraically constructible subsets C called cells such that

S ⊂ ∪ C,

and in each cell C, the target Q is stable for any value α ∈ C.
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Definition 2 (Cell Decomposition). We call the above decomposition a cell
decomposition of I among S for the target structural invariant Q. For simplicity,
by saying that we compute a stable Q of I among S, we mean that we compute
this cell decomposition for Q. (So, computing a stable Gröbner basis means com-
puting a cell decomposition for a stable Gröbner basis.) When S = K̄m, we
simply say that we compute a stable Q of I.

By several existing studies [7,11], one can compute stable Gröbner bases with
respect to any term oder ≺ on T (X). (For computation of examples in the paper,
the author utilized an implementation of [11] by Akira Suzuki.) Main tool for
this computation is Gröbner basis with respect to a block order ≺X,A on T (X,A)
with A ≺≺ X such that its restriction ≺X on T (X) coincides with the given ≺.

Lemma 1. [5,11] Let F,G0 be subsets of K[A,X ], and assume that G0 ⊂
K[A,X ] is a Gröbner basis of the ideal I = 〈F 〉 of K̄[A,X ] with respect to
≺X,A. If ϕα(HC≺(g)) �= 0 for each g ∈ G0 \ (G0 ∩ K[A]), where HC≺(g) de-
notes the head coefficient of g considered as a polynomial in X over K(A),
then ϕα(G0 \ (G0∩K[A])) is a Gröbner basis of ϕα(I) with respect to ≺ for any
α ∈ V (G0∩K[A]). In other word, G = G0\(G0∩K[A]) is a stable Gröbner basis
of I with respect to ≺ in C = V (G0∩K[A])\V ({

∏
g∈G HC≺(g)}∪(G0∩K[A])).

Of course, if G0∩K[A] �= ∅, {1} is a stable Gröbner basis in K̄m\V (G0∩K[A]).

By Lemma 1, the region C′ = V ({
∏

g∈G HC≺(g)}∪(G0∩K[A])) remains. Then,
we compute a Gröbner basis of 〈F ∪ {HC≺(g)}〉 for each g in G, and applying
Lemma 1, we have a stable Gröbner basis in new region C′′ ⊂ C′. Repeating
this process, we finally obtain a stable Gröbner basis {GC}. We note that GC ⊂
K[A,X ] for all C. The termination of the above procedures in finitely many step
can be shown by the noetherian property of a polynomial ring, because at each
step, newly generated ideal becomes strictly larger. See the detail in [11], where
stable Gröbner basis is called Comprehensive Gröbner system.

Remark 1. In the process of cell decomposition for ideal structure, each cell will
be decomposed into new smaller cells repeatedly. Also, sometimes the inter-
section of two different cells becomes necessary. For this case, the intersection
of C1 = V (P1,1) \ V (P1,2) and C2 = V (P2,1) \ V (P2,2) can be computed by
V (P1,1 ∪ P2,1) \ V (P ′ ∪ P1,1 ∪ P2.1), where 〈P ′〉 = 〈P1,2〉 ∩ 〈P2,2〉. Also we
can compute “exclusion” C1 \ C2 as follows: Letting 〈P ′′〉 = 〈P1,2〉 ∩ 〈P2,1〉,
C1 \ C2 = V (P1,1) \ V (P ′′ ∪ P1,1), if V (P2,2) ∩ V (P1,1) ⊂ V (P1,2), and C1 \ C2 =
(V (P1,1) \ V (P ′′ ∪ P1,1)) ∪ (V (P2,2 ∪ P1,1) \ V (P1,2 ∪ P2,2)), otherwise.

Once we have such a stable Gröbner basis, its stable dimension, and stable linear-
dimension can be efficiently computed, because those are computed from only
head terms of the computed Gröbner basis. In more details, for each pair of a
stable Gröbner basis GC with respect to a total degree order and a region C, we
can compute a stable MSIS Y with maximal cardinality, by seeing all head terms
of GC which are considered as terms in X . Then the size of Y is the dimension
and it is stable in C. (See [2].)
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Lemma 2. For a parametric ideal, one can compute its stable Gröbner basis
and its stable MSIS with maximal cardinality, which gives its stable dimension.
Moreover, when a parametric ideal has a stable dimension 0 in a region C, one
can compute a stable linear dimension among C.

Also, one can compute the followings as those can be reduced to a stable Gröbner
basis of some modified ideal with respect to an elimination order.

Lemma 3. For a parametric ideal I and a polynomial h in K[A,X ], one can
compute a stable saturation I : h∞. Also for parametric ideals I1, . . . , Is, one
can compute their stable intersection ∩s

i=1Ii.

3 Stability of Parametric Decomposition

The main target is parametric decomposition, which means to classify the values
of parameters for “stable” structural invariants related to “ideal decomposition”.
Here we deal with two decompositions, radical computation and absolutely irre-
ducible decomposition, and give the computational tractability of those.

From now on, we assume that for a parametric ideal I = 〈F 〉, where F ⊂
K[A,X ], its stable Gröbner basis and its stable dimension (with stable MSIS)
are already computed, that is, we already know K̄m = ∪ C, and for each C, its
stable Gröbner basis GC is computed. And for simplicity, the phrase “computing
a parametric ideal” always means “computing its stable Gröbner basis”. For
parametric decompositions, corresponding decomposition of I in K̄[A,X ] is very
useful. Here, for an ideal J ,

√
J denotes its radical.

Lemma 4 (Correspondence of Decomposition). [17]

1. Assume that I = ∩u
i=1Ii holds for ideals I, Ii in K[A,X ]. If Ii’s are co-

maximal, then ϕα(I) = ∩u
i=1ϕα(Ii) for any α.

2. Assume that
√
I = ∩v

i=1
√
Ji for ideals I,Ji in K[A,X ]. Then

√
ϕα(
√
I) =

∩v
i=1

√
ϕα(
√
Ji) for any α.

Lemma 4 can be shown by the property ∩u
i=1Iu =

∏u
i=1 Iu for co-maximal ideals

Ii and ∩v
i=1
√
Ju =

√∏v
i=1 Ju for ideals Ji.

3.1 Stability of Radical

First we consider the stability of the radical of I. As
√

ϕα(I) =
√

ϕα(
√
I), we

may assume that I is already radical in K[A,X ]. Naturally we can introduce
the notion of stability of radicals.

Definition 3 (Stable Radical)
A parametric ideal H = 〈H〉 of K̄[A,X ], where H ⊂ K[A,X ], is a stable radical
of I in a region C, if ϕα(H) is the radical of ϕα(I) for any α ∈ C.
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Now we outline the tractability of stable radical computation. We begin with
0-dimensional case.

0-dimensional case:
We assume that a given parametric ideal I is 0-dimensional in a give region C0.

Definition 4 (Minimal Polynomial and its Square-free Part)

1. Minimal polynomial: For a polynomial f in K[A,X ], a univariate polynomial
m(y) in new variable y over K[A] is a stable minimal polynomial of f with
respect to I in a region C ⊂ C0, if ϕα(mf (y)) is a minimal polynomial (not
necessarily monic) of ϕα(f) with respect to ϕα(I) for any α ∈ C.

2. Square-free part of a polynomial: For a univariate polynomial g(y) in y over
K[A], h(y) is a stable square-free part of g(y) in a region C, if ϕα(h(y)) is
the square-free part of ϕα(g(y)) for any α ∈ C.

As to minimal polynomial, it can be computed by using linear algebra over
K[A,X ] with parameter classification. Or it may be considered as computa-
tion of a stable Gröbner basis of 〈G ∪ y − f〉 in K[A,X, y] with respect to an
elimination order y ≺≺ X . As to square-free part of a polynomial h(y), it can
be computed by computing a parametric ideal generated by h(y) and dh

dy in
K[A,X, y], or parametric Sturm-Habich sequence computation. Then “stable”
radical can be computed by simply adding all “stable” square-free parts of stable
minimal polynomials of variables xi to I.

In the whole procedure, we add new structure for testing its stability succes-
sively; minimal polynomials, those square-free parts and ideals generated by I
and those stable square-free parts. So, at each step of adding new stable struc-
ture, we execute an additional cell decomposition for each already computed
cell, which can be terminated in finitely many steps and produces finitely many
newly computed cells. Thus, finally we obtain the following cell decomposition
within finitely many steps: C0 = ∪i≥1 Ci with finitely many cells Ci such that,
in each Ci, I has a stable linear dimension, stable minimal polynomials mj(xj)
(1 ≤ j ≤ n) and those stable square-free parts, and Gi ⊂ K[A,X ] is a stable
Gröbner basis of a stable radical of I.

Lemma 5 For a parametric ideal I and a region C0, where I has stable di-
mension 0, one can compute its stable radical, that is, one can compute a cell
decomposition C0 = ∪ Ci with a set of stable Gröbner bases Gi ⊂ K[A,X ] such
that ϕα(Gi) is a Gröbner basis of

√
ϕα(I) for any α in Ci.

Example 1 Consider F = {x3+ax, yx+ay−1}, where x, y are variables and a is
a parameter. Then, G0 = {x3 +ax, (a3 +a2)y−x2 +ax−a2−a, y(x+a)−1} is a
Gröbner basis of 〈F 〉 and it has a stable dimension 0 in a region C = C2\{0,−1}.
In C, the minimal polynomial mx(x) of x is x3 + a and that my(y) of y is
(−a3−a2)y3 +(3a2 +a)y2−3ay+1. Then, mx(x) is square-free in C and my(y)
is also square-free in C. Because 〈mx(x), dmx(x)/dx〉 = 〈a2, ax, 3x2 + a〉 and
〈my(y), dmy(y)/dy〉 is trivial as ideals of C[x, y, a]. Thus, I is a stable radical of
itself in C. For a = 0, ϕ0(F ) = {x3, yx − 1} and the ideal becomes trivial. For
a = −1, 〈ϕ−1(F )〉 = 〈x2 + x,x + 2y + 2〉 is radical.
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Non 0-dimensional case:
Next we consider a parametric ideal I which has a stable Gröbner basis G0 ⊂
K[A,X ] with stable dimension greater than 0 in a region C0. In this case, there
might be prime divisors of various dimensions. So, tracing “radical computation”
of ordinary polynomial ideals, we may modify the stability as follows:

Definition 5 (Set Representation of Stable Radical)
A set of parametric ideals {H1 = 〈H1〉, . . . ,Hs = 〈Hs〉}, where Hi ⊂ K[A,X ], of
K̄[A,X ] is a set representation of stable radical of I in a region C, if ∩s

i=1ϕα(Hi)
is the radical of ϕα(I) for any α ∈ C.

To obtain a set representation of stable radical, we trace all steps of radical com-
putation for ordinary polynomial ideals. As to ideal extension and contraction,
we can show the following (see [4,2] for its details on ordinary computation).

Lemma 6 For a parametric ideal I and a region C, assume that I has a stable
MSIS Y with respect to a total degree order. Let J be a parametric ideal of
K̄(Y )[A,X \Y ]. Then, with respect to Y , one can compute a stable extension Ie

among C, a stable contraction of J among C and a stable extension-contraction
Iec among C.

Computation of a stable extension of I can be done by computation of a stable
Gröbner basis of I with respect to a block order Y ≺≺ X \ Y . Also, for a
stable contraction of J can be done by computation of the saturation J : h∞,
where G ⊂ K[A,X ] is a stable Gröbner basis of J and h =

∏
g∈G HC(g). Here

HC(g) ∈ K[A, Y ] denotes the leading coefficient of g considered as a polynomial
in X \ Y over K[A, Y ].

Applying Lemma 2, we have a cell decomposition C0 = ∪i≥1 Ci of finitely
many cells Ci with a set of stable Gröbner basis Gi ⊂ K[A,X ] such that ϕα(Gi)
is a Gröbner basis of the extension ϕα(I)e generated by ϕα(I) in K̄(Y )[X \ Y ]
for any α in Ci. Moreover, we have Iec = Ie ∩ K̄[A,X ] = I : h∞ and ϕα(I)ec =
ϕα(I)e∩K̄[X ] = ϕα(I) : ϕα(h)∞. Now we give the notion of minimal polynomial
for non-zero dimensional case:

Definition 6 (Minimal Polynomial modulo Extension). Let Y be a stable
MSIS with maximal cardinality modulo I in a region C. For a polynomial f in
K[A,X ], a univariate polynomial m(z) in new variable z over K[A, Y ] is a stable
minimal polynomial of f with respect to the extension Ie ⊂ K̄(Y )[A,X \ Y ] in
a region C, if ϕα(mf (z)) is a minimal polynomial of ϕα(f) with respect to the
extension ϕα(I)e ⊂ K̄(Y )[X \ Y ] for any α ∈ C.

As the extension ideal ϕα(I)e is 0-dimensional in K̄(Y )[A,X\Y ], we compute its
stable radical by using all stable square-free parts of stable minimal polynomials
of variables X \ Y , all of which can be computed by the same manner as in 0-
dimensional case. (We omit the details here.) Thus, we have a cell decomposition
Ci = ∪j C∗j of finitely many cells C∗j with a set of stable Gröbner bases G∗

j ⊂
K[A,X ] such that ϕα(G∗

j ) is a Gröbner basis of
√

ϕα(I)e for any α in C∗j .
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Then, by computing stable contractions, we obtain a further cell decomposition
Ci = ∪j Ci,j of finitely many cells Ci,j with a set of stable Gröbner bases Gi,j ⊂
K[A,X ] such that ϕα(Gi,j) is a Gröbner basis of

√
ϕα(I)e ∩ K̄[X ] for any α in

Ci,j . Since ϕα(I) = (ϕα(Ie)∩ K̄ [X ])∩ (ϕα(I)+ 〈ϕα(h)t〉), we have the following
by Lemma 4.

Lemma 7. For any α in Ci,j,√
ϕα(I) = ϕα(〈Gi,j〉) ∩

√
ϕα(〈Gi,j ∪ {h}〉)

By Lemma 7, we can repeat the whole computation described above for the
parametric ideal 〈Gi,j ∪ {h}〉, and so on. By the noetherian property, we finally
obtain a set representation of stable radical of I in finitely many repetition. As
each cell decomposition for {Gi.j} can be executed in a finitely many steps, the
whole computation is terminated in a finitely many steps. Also by Lemma 3, the
intersection of parametric ideals can be computable. Thus, we have

Theorem 1. For a parametric ideal, one can compute a set representation of
its stable radical, and thus one can also compute its stable radical.

Using Lemma 4, we may use any decomposition I = ∩Ji. For each Ji, we
compute its stable radical and then, combining those stable radicals, we obtain
a set representation of stable radical of I. This might improve the computational
efficiency.

Example 2. We consider the spectral decomposition of an even polynomial which
is very important operation in control theory [6]. Let f1(x) = x6+s2x4−t2, where
x, s, t are variables. Then, we want to computer a polynomial g1(x) = x3+b2x

2+
b1x + b0 such that f1(x) = −g1(x)g1(−x). Considering b0, b1, b2 as variables, we
have an ideal I1 = 〈b2

0 − t2, b2
1 − 2b0b2, b

2
2 − 2b1 + s2〉 of C[b0, b1, b2, s, t]. Now

we consider b0, b1, b2, s as variables and t as a parameter, and compute a stable
radical of I. Here, the ring-homomorphism ϕa is set as ϕa : C[b0, b1, b2, s, t] 4
f(b0, b1, b2, s, t)→ f(b0, b1, b2, s, a) ∈ C[b0, b1, b2, s].

With respect to the reverse lexicographic order, the generators form a Gröbner
basis for any parameter value, and {s} is a stable MSIS. Computing the primary
decomposition of I1 ∩Q[b0, b1, b2, s, t], we have I1 = J1 ∩ J2, where J1 = 〈b0 −
t, b2

1 − 2tb2, b
2
2 − 2b1 + s2〉 and J2 = 〈b0 + t, b2

1 + 2tb2, b
2
2 − 2b1 + s2〉. Then, for

J1, we compute its stable radical.
For any value of t, b2 has its stable minimal polynomial m2(x) = x4 +2s2x2−

8tx+s4 with respect to J e
1 and its stable square-free part is described as follows:

If t �= 0, m2(x) is square-free and if t = 0, its square-free part is x2+s2. Similarly,
b1 has its stable minimal polynomial m1(x) = x4−8t2x+4t2s2 for any parameter
value, and its stable square-free part is described as follows: If t �= 0, m1(x) is
square-free and if t = 0, its square-free part is x. And x− t is the stable minimal
polynomial b0 for any parameter values and it is also the stable square-free part.
As a result, for any a �= 0, ϕa(J1) is radical, and

√
ϕ0(J1) = 〈b0, b1, b

2
2 + s2〉.

By the same manner, it follows that for any a �= 0, ϕa(J2) is radical, and√
ϕ0(J2) = 〈b0, b1, b

2
2 + s2〉, which coincides with

√
ϕ0(J1).
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3.2 Stability of Irreducible Decomposition

Next we consider the stability of absolutely irreducible decomposition. For sim-
plicity, we omit the word “absolutely”. Different from radical computation, where
all coefficients of stable Gröbner bases are still belonging to the original co-
efficient field K, irreducible decomposition requires some algebraic extensions
depending on the value α. Thus, we modify the stability as follows:

Definition 7 (Stable Irreducible Decomposition)
A set of parametric ideals {P1 = 〈P1〉, . . . ,Pt = 〈Pt〉}, where Pi ⊂ L[X ] for each
i and L is some residue class ring K[A, Z]/J factored by an ideal J of K[A, Z],
gives a stable irreducible decomposition of I in a region C, if ∩t

i=1ϕα,β(Pi) gives
the irreducible decomposition

√
ϕα(I) for any α ∈ C and any zero β of ϕα(J ).

Here ϕα,β is a homomorphism from K̄[A, Z,X ] to K̄[X ], which is a natural
extension of ϕα and defined as follows: For an element h(A, Z) in K̄[A, Z],
ϕα,β(h(A, Z)) = h(α, β).

Now we outline the theoretical tractability of irreducible decomposition. For sta-
ble irreducible decomposition, we first compute a set representation of stable
radical. So, we consider the pair of a set {H1, . . . ,Hs} and a region C0 such that
{H1, . . . ,Hs} is a set representation of stable radical of I in C0. Then, computa-
tion of stable irreducible decomposition of I can be reduced to those ofHi, where
ϕα(Hi) consists of the same dimensional prime divisors. Thus, we only consider
a parametric ideal H which has stable MSIS Y with maximal cardinality (stable
dimension) in a region C and ϕα(H)ec = ϕα(H) for any α in C.

Samely as stable radical computation, once one can compute a stable irre-
ducible decomposition for 0-dimensional parametric ideal He in K(Y )[A,X \Y ],
one can compute a stable irreducible decomposition by using stable extension-
contraction like Lemma 6 and Lemma 7.

Definition 8 (Generic Element and Decomposition of Polynomial)

1. Generic Element (Element in Generic Position): A polynomial h in K[A,X ]
is a stable generic element with respect to H and its stable MSIS Y in a
region C, if ϕα(h) is a generic element with respect to ϕα(I)e for any α ∈ C.
We note that ϕα(h) is a generic element with respect to ϕα(H)e if and only
if the degree of its minimal polynomial coincides with the linear dimension
of ϕα(H)e.

2. Decomposition of a polynomial: For a univariate polynomial h(z) over
K[A, Y ], {h1(y), . . . , hs(y)} ⊂ L[Y, z], where L is some residue class ring
K[A, Z]/J factored by an ideal J of K[A, Z], gives a stable irreducible de-
composition of h(y) in a region C, if ϕα,β(h1(z)), . . . , ϕα,β(hs(z)) are all dis-
tinct absolutely irreducible factors of ϕα(h(z)) for any α ∈ C and any zero β
of the ideal ϕα(J ) of K̄[Z]. Here ϕα,β is a homomorphism from K̄[A, Z,X ]
to K̄[X ], which is a natural extension of ϕα and defined as follows: For an
element h(A, Z) in K̄[A, Z], ϕα,β(h(A, Z)) = h(α, β).

We note that for any ϕα(H), there exists a generic element in a set E consisting
of fixed linear sums of variables xi ∈ X \ Y whose cardinality is bounded by
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a function on n and the linear dimension (see [18]). Using this finite set E for
finding generic elements gives the termination of our irreducible decomposition
within finitely many steps.

Since a stable minimal polynomial of a polynomial h can be computed, we can
compute a stable generic element h with respect to Ie by examining whether its
stable minimal polynomial has the same degree as its stable linear dimension.
Here, beforehand, we assume that a stable linear dimension of Ie is already
computed. Also, as H is a stable radical of itself, ϕα(h) is always square-free.
Thus, we have a cell decomposition C = ∪i Ci of finitely many cells Ci with a set of
stable generic elements gi such that ϕα(gi) is a generic element of ϕα(H). Then,
for each stable generic element gi, we consider its stable minimal polynomial mi

which was already computed for the test of gi.
Once we have a stable irreducible decomposition of mi among each Ci, that

is, a cell decomposition Ci = ∪j Ci,j of finitely many cells Ci,j with a set of
{h(i,j)

1 (y), . . . , h(i,j)
s(i,j)(y)} ⊂ (K[A, Z]/Ji,j)[y], then we have the following irre-

ducible decomposition of ϕα(H) for each α in Ci,j and each zero β of Ji,j ,
corresponding to ordinary prime decomposition (see [2]).

ϕα(H) = ϕα(H)ec = ∩s(i,j)
k=1 (ϕα,β(H+ 〈h(i,j)

k (gi)〉))ec.

Thus, by additional stable extension-contraction computation which can be also
executed in finitely many steps, we finally obtain a stable irreducible decomposi-
tion. For stable Gröbner bases of (H+〈h(i,j)

k (gi)〉)ec, where eachH+〈h(i,j)
k (gi)〉 is

an ideal of K̄[A, Z,X ], we can consider an idealH+〈h(i,j)
k (gi)〉+J of K[A, Z,X ].

We show the tractability of irreducible decomposition of a parametric polynomial
mi(y) in the next section.

Theorem 2 One can compute a stable irreducible decomposition.

3.3 Decomposition of Parametric Polynomial

We show, in brief, that irreducible decomposition of a “parametric polynomial”
can be done by successive construction of parametric ideals. (This is based on
an idea in [8].) Here we call a polynomial in K[A,X ] a parametric polynomial.

To simplify our arguments, we assume that a parametric polynomial f(z)
is monic. We can show non-monic case by the same arguments, but we have
a cell decomposition for “stable degree” of f(z) beforehand. (For the minimal
polynomial of a generic element, its cell decomposition is already done.)

Univariate case:
Consider a polynomial f(z) over K[A] and assume that ϕα(f(z)) is square-free
and its degree is n for any α in a given region C. Then, for any α, ϕα(f(z)) should
be decomposed into n linear factors. Thus, we consider its decomposition f(z) =
g1(z) · · · gn(z) by introducing new variables B for coefficients of g1(z), . . . , gn(z),
where deg(gi) = 1. In more detail, let f(z) = zn + fn−1(A)zn−1 + · · · + f0(A).
We consider the following decomposition:

f = (z + b1)(z + b2) · · · (z + bn),
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where b1, . . . , bn are newly introduced variables. Then, we have a system of
algebraic equations {b1 + · · · + bn = fn−1(A), . . . , b1 · · · bn = f0(A)} which
gives new ideal J of K[A, B], where B = {b1, . . . , bn}. Then, h1(z) = z +
b1, . . . , hn(z) = z + bn gives a stable irreducible decomposition of f(z).

General case:
Consider a polynomial f(z) over K[A, Y ] for some Y ⊂ X . We also assume
that ϕα(f(z)) is square-free and its degree is n for any α in a given region C.
Let f(z) = zn + fn−1(A)zn−1 + · · · + f0(A, Y ). Then, we consider all possible
decomposition patterns:

f(z) = g1(z) · · · gs(z), (1)

by introducing new variables B = {b1,e1,1 , . . . , b1,0, . . . , bs,es,1 , . . . , bs,0} deter-
mined from the shape of f such that

g1(z) = zd1 + b1,e1,1y
e1,1zd1−1 + · · ·+ b1,0,

g2(z) = zd2 + b2,e2,1y
e2,1zd2−1 + · · ·+ b2,0,

...
gs(z) = zds + bs,es,1y

es,1zds−1 + · · ·+ bs,0,

where deg(g1) = d1, . . . ,deg(gs) = ds and d1 + · · · + ds = n. We note that ye

denotes ye1
1 · · · yet

t for Y = {y1, . . . , yt} and e = (e1, . . . , es). Then, we have a
system of algebraic equations derived from Equation (1), which gives new ideal
Jd1,...,ds of K[A, B]. The possibility of the above decomposition can be reduced
the non-triviality of Jd1,...,ds , and the solution for B can be expressed over some
extension L = K[A]/Jd1,...,ds of K[A].

As each factorization pattern corresponds to a partition (d1, . . . , ds) of n, we
introduce a complete order on the set of all partitions of n as follows: For two
partition D = (d1, d2, . . . , ds), E = (e1, e2, . . . , et), D ≺ E if s > t. For the case
s = t, any order is feasible. (For example, we may apply a lexicographic order.)

Beginning from the partition of the smallest order, that is, (1, 1, . . . , 1), and
increasing its order, we search a region Cd1,...,ds where Jd1,...,ds has stable non-
triviality. In this repetition, we have to exclude all regions already computed at
each step. By this operation, for any α in a newly computed region C, each zero β
of ϕα(Jd1,...,ds) gives irreducible factors. When the union of all computed regions
covers C, we can stop our search. As the number of partitions is bounded and
stable non-triviality can be executed within finitely many steps, the termination
of stable irreducible decomposition of f is guaranteed.

Theorem 3 One can compute a stable irreducible decomposition of a parametric
polynomial.

Example 3 For F (z, y) = z2 − y2 − ay − a, where z, y are variables and a is a
parameter. Adding new parameters b1,1, b1,0, b2,1, b2,0, we consider the factoriza-
tion F (z, y) = (z + b1,1y + b1,0)(z + b2,1y + b2,0), by which we derived a new
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parametric ideal J1,1 generated by {b1,1 + b2,1, b1,0 + b2,0, b1,1b2,1 + 1, b1,1b2,0 +
b1,0b2,1 + a, b1,0b2,0 + a}. Using an elimination order a ≺≺ {b1,1, b1,0, b2,1, b2,0},
we compute a Gröbner basis G of J1,1. Then we have {a2− 4a} = G∩ K̄[a] and
conclude that ϕα(F (z, y)) is decomposed to linear factors if and only if α = 0 or
α = 4 by Lemma 1. Otherwise, ϕα(F (z, y)) is absolutely irreducible.

Example 4 We consider another parametric ideal I2 derived from the spectral
decomposition of f2(x) = x6 + sx2 + t. (See Example 2.) Then, I2 = 〈b2

0 +
t, b2

1−2b0b2− s, b2
2−2b1〉 is radical in C[b0, b1, b2, s, t] and has a stable MSIS {s}

for any t �= 0. With respect to its extension Ie
2 , b0, b1, b2 have stable minimal

polynomials for any t �= 0. Seeing stable square-free parts, it follows that for
any a �= 0, ϕa(I2) is radical and

√
ϕ0(I2) = 〈b0, b

2
1 − s, b4

2 − 4s〉. Also, with
respect to Ie

2 , b2 is a stable generic element for any t �= 0 and its stable minimal
polynomial is m2(x) = x8−8sx4+64tx2+16s2. As m2 is a quadratic polynomial
in s, we can compute its stable irreducible decomposition by similar manner as
in Example 3: For any a �= 0, ϕa(m2(x)) = (x4−8x

√
−a−4s)(x4 +8x

√
−a−4s)

gives the irreducible decomposition. In this case, considering a residue class ring
L = Q[t, z]/〈z2 + 64t〉, we can compute the parametric decomposition of m2(x).

Finally, we obtain a stable irreducible decomposition of I2 as follows: For any
a �= 0, ϕa(I2) = 〈b0−

√
−a, 2b1−b2

2, b
4
2−8
√
−ab2−4s〉∩〈b0 +

√
−a, 2b1−b2

2, b
4
2 +

8
√
−ab2 − 4s〉 gives the irreducible decomposition, and for a = 0,

√
ϕ0(I2) =

〈b0, 2b1 − b2
2, b

4
2 − 4s〉 gives the irreducible decomposition.

Remark 2 Although we show certain theoretical tractability of stable irreducible
decomposition over K̄, “stable” primary/prime decomposition over K seems
much harder even in theory. When K is the rational number field, this cor-
responds to finding rational points over algebraic surfaces or curves. Thus, it
seems impossible to give a general method for this subject. However, when J
or Jd1,...,ds is 0-dimensional like as F in Example 3, all rational zero can be
computed exactly. In this case, we have a chance to compute a stable prime
decomposition over Q.

4 Concluding Remarks

In this paper, we show that a stable radical and a stable irreducible decompo-
sition are computationally tractable by repeating stable Gröbner bases compu-
tations for various ideals. However, as such repetition of stable Gröbner bases
computations shall make huge computational trees of cell decompositions and
combinatorial explosion may occur, it seems very hard for its actual computation
without practical improvements. Thus, in the next step, we will give more precise
and efficient procedures on these parametric decompositions and examine those
efficiency/ability by complexity analysis and experiments on real computer. For
controlling growing trees of cell decompositions, we may refer to studies [7,11].
Also for practical implementation of decomposition of parametric polynomials,
much works shall be done to find efficient strategies on factorization patterns
and careful choices of B.
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Moreover, as to mulitiplicies of isolated prime divisors, we may apply “effective
localization” [9]. However, stable primary/prime decomposition over K[X ] is still
hard problem in general settings. For this problem, a promising approach may
be to find wider classes where certain stabilities over K can be assumed.
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Abstract. This is a brief description of the GAP package sgpviz, a pack-
age designed to visualize finite semigroups through their D-classes or
Cayley graphs, as well as to make friendlier the usage of GAP when
dealing with finite semigroups.

1 Introduction

GAP [4] is a system for computation in discrete abstract algebra. The name
stands for Groups, Algorithms and Programming and was chosen to reflect the
original aim of the system. Presently the system has grown in several other di-
rections, in part due to the possibility of integrating additional packages. GAP
provides a programming language, thousands of functions implementing algo-
rithms written in GAP and also large data libraries of algebraic objects. It is
used in research as well as in teaching. The GAP system is free of charge and it
is open, that is, one may examine the code. A user can write his own programs
in GAP, and use them in just the same way as the functions which form part
of the system. In this sense, the system is extensible. The GAP packages are
self-contained extensions having, in particular, its own documentation.

The aim of this note is to illustrate the usage of the GAP package sgpviz [3].
The interested reader is encouraged to consult also the manual, which con-
tains much more information and is part of the package. Besides being part
of the package, its html version can also be consulted directly on the web:
http://www.gap-system.org/Manuals/pkg/sgpviz/doc/manual.html.

Since interaction with GAP is made through a text terminal, in order to ease
some of this interaction when one works with finite semigroups and with finite
automata, the GAP package sgpviz provides a Tcl/Tk (http://www.tcl.tk/)
graphical interface to specify finite semigroups and automata. The next example
of a GAP session illustrates how to launch the graphical interfaces.
� �
gap> XAutomaton ( ) ;
gap> XSemigroup ( ) ;

�� �

� Both authors gratefully acknowledge support of FCT and the POCTI program
through CMUP.
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New windows like those in the next picture are then opened.
p p

These windows may then be used to specify the objects and, by using the “Func-
tions” button, some functions can be applied:

In the GAP session, after specifying the semigroup b21 above, one gets the
following, by pressing the button “Done”:

� �
<f r e e monoid on the gene ra to r s [ a , b ]> gap>
a:=GeneratorsOfMonoid( fxsgp ) [ 1 ] ; ; a gap>
b:=GeneratorsOfMonoid( fxsgp ) [ 2 ] ; ; b gap>
rxsgp := [ [ a∗a∗a , a∗a ] , [ a∗a∗a , a∗a ] , [ a∗a∗b , a∗a ] , [ b∗a∗a , a∗a ] , [ a∗b∗a , a ] ,
[ b∗b∗a , b∗b ] , [ a∗b∗b , b∗b ] , [ b∗b∗b , b∗b ] , [ b∗b∗b , b∗b ] , [ b∗a∗b , b ] ] ; ; [ [
a ˆ3 , aˆ2 ] , [ a ˆ3 , aˆ2 ] , [ aˆ2∗b , aˆ2 ] , [ b∗aˆ2 , aˆ2 ] , [ a∗b∗a , a
] ,

[ bˆ2∗a , bˆ2 ] , [ a∗bˆ2 , bˆ2 ] , [ bˆ3 , bˆ2 ] , [ bˆ3 , bˆ2 ] , [ b∗a∗b , b
] ]

gap> b21:= fxsgp / rxsgp ;
<fp monoid on the gene ra to r s [ a , b ]>

�� �
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As should already be clear, the package under consideration in this note al-
lows to draw Cayley graphs of finite semigroups. But the D-Classes of finite
semigroups, as well as Schützenberger graphs of finite inverse semigroups may
also be drawn. For these drawings it is used Graphviz, a Graph Visualization
Software (http://www.graphviz.org/). It should be remarked here that the
sgpviz package needs the GAP package automata [2]: Cayley graphs are treated
as automata, without distinguished states. The drawings can be achieved by
choosing the appropriate function from the Tcl/Tk window used to specify the
object, as happened in the above picture, or by using the GAP command line.
Continuing our GAP session:

� �
gap> b21 ;
<fp monoid on the gene ra to r s [ a , b ]>
gap> DrawDClasses ( b21 ) ;
I w i l l work with an isomorph ic trans format ion semigroup in s t e ad
Disp lay ing f i l e : /tmp/tmp . KsAcFt/ semigroup . dot . ps
gap> DrawSchutzenbergerGraphs( b21 ) ;
I w i l l work with an isomorph ic trans format ion semigroup in s t e ad
Disp lay ing f i l e : /tmp/tmp . F4E1N2/ schutzenbergergraphs . dot . ps

�� �

The following windows are popped up:

Although it does not become evident from the pictures shown, we have to
remark that the package contains implementations of some useful algorithms.
For instance, an algorithm due to Graham [1] to normalize the structure matrix
of a Rees matrix semigroup is used and as a consequence the idempotents in the
D-Classes can be displayed in Graham blocks.
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Abstract. We report on the 2005 AIM workshop “Generalized Kostka
Polynomials“, which gathered 20 researchers in the active area of q, t-
analogues of symmetric functions. Our goal is to present a typical use-
case of the open source package MuPAD-Combinat in a research
environment.

1 Introduction

The project MuPAD-Combinat (see http://mupad-combinat.sf.net/ and [4]),
born in spring 2001 under the leadership of F. Hivert and N. Thiéry, is an open
source package for making algebraic combinatorics using the computer algebra
system MuPAD (see www.mupad.de and [3] for more details). The main goal of
this package is to bring an open source flexible and easily extensible toolbox for
checking conjectures in a short programming time. This package contains a large
collection of tools as implementations of classical combinatorial objects (parti-
tions, Young tableaux, trees, . . .), computations in combinatorial Hopf algebras
(in particular symmetric functions), manipulations of graphs, automata, . . .

The study of symmetric functions is a major historical field in algebraic combi-
natorics ([8]) and some people are mainly interested in generalizations of Kostka
polynomials. In section 2, we give briefly mathematical definitions about dif-
ferent objects we work on. We illustrate how a computer algebra system which
contains classical combinatorial objects, evolutive implementation of symmetric
functions and easy way to incorporate program written in C++ can be used for
our research.

In section 3, we explain the design of our implementation of symmetric func-
tions and some of our technical choices. We also give some examples of compu-
tations and show some advanced functionalities as adding new bases on the fly
(using different characterizations) or implementing new operators on symmetric
functions. Finally, in section 4 we describe how we incorporate programs into a
coherent design using MAPITL library. The technical concepts used in section
3 and 4 are essentially classical, but we want to stress on their integration into
the package in order to have a powerfull tool for making efficient. The difficulty
is to find the appropriate combination that yields an intuitive yet flexible and
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powerful research tool. We show that our choices are promising in a real situation
of collaboration at a workshop on generalized Kostka polynomials in Palo Alto,
California organized by the American Institute of Mathematics in July 2005 (see
http://www.aimath.org/WWN/kostka/ for more informations on this event).

2 Symmetric Functions and Kostka Polynomials

Basic Definitions. A symmetric polynomial in variables X = {x1, . . . ,xn} is a
polynomial in X invariant under permutations of variables. When is infinite, we
call symmetric function such a polynomial. The set of symmetric functions with
coefficients in C(t), denoted Λt, is a graded algebra with respect to the degree
of polynomials, i.e

Λt = ⊕n≥0Λ
n
t .

For all n ≥ 0, the dimension of Λn
t is the number of partitions of n (a partition of a

positive integer n, written λ 1 n, is a decreasing sequence of positive integers with
sum n). One main basis of this algebra is constituted with monomial functions
defined for all partitions by λ = (λ1, . . . , λn), by

mλ =
∑

v∈O(λ)

xv1
1 . . .xvn

n ,

where O(λ) represents the set of all the permutations of λ. Another interesting
basis consists of the symmetric powersums, defined for all partitions λ by

pλ(X) = pλ1 . . . pλn where pλi =
n∑

j=1

xλi

j .

A scalar product on Λt can be uniquely defined by

(pλ, pμ) = δλ,μ

∏
i≥1

(mi)! imi(λ),

where mi(λ) represents the multiplicity of part i in partition λ. Applying Gram-
Schmidt process of orthonormalization on the monomial basis with respect to
this scalar product yields us the basis of Schur functions (sλ)λ. These functions
are intensively studied (from an algebraic and combinatorial point of view) and
one of the beautiful results is the Littlewood-Richardson rule, a combinatorial
interpretation of the product of two Schur functions.

Kostka Polynomials. One can introduce a t-deformation of the previous scalar
product by

(pλ, pμ)t = δλ,μ

∏
i≥1

(mi)! imi(λ)
l(λ)∏
i=1

1
1− tλi

.

The orthogonalization of the monomial basis with respect to this scalar product
defines the Hall-Littlewood functions Pλ(X ; t). There exist two other families
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of Hall-Littlewood functions: on the one hand, the Qλ(X ; t) which are the dual
elements of Pλ(X ; t) with respect to the scalar product ( , )t and on the other
hand Q

′
λ(X ; t) which are the dual elements of Pλ(X ; t) with respect to ( , ). The

expansion of the Q
′
λ on Schur functions is an algebraic way to define the Kostka

polynomials Kλ,μ(t)
Q

′
λ(X ; t) =

∑
μ�|λ|

Kλ,μ(t)sμ.

These polynomials have also a combinatorial interpretation, using the charge on
semi-standard Young tableaux in [7], or the rigged configurations introduced by
Kerov, Kirillov and Reshetikhin in [5].

Generalizations of Kostka Polynomials. Using k-ribbon tableaux intro-
duced by Lascoux, Leclerc and Thibon in [6], we define for each positive integer
k and each partition a particular symmetric functions H

(k)
λ (X ; t). Their expan-

sion on Schur functions gives us a way to define an increasing filtration of Kostka
polynomials K

(k)
λ,μ(t)

H
(k)
λ (X ; t) =

∑
μ�|λ|

K
(k)
λ,μ(t)sμ.

The expansion of K
(k)
λ,μ(t) on the monomial basis is a way to define unrestricted

generalized Kostka polynomials. In order to generalize Kostka polynomials, there
exist other combinatorial ways (with unrestricted rigged configurations recently
introduced by L. Deka and A. Schilling in [1]) and algebraic ways (using the
theory of crystal bases for quantum groups of type An) to generalize Kostka
polynomials. Other generalizations are given by M. Zabrocki using creation op-
erators in [16] and by L. Lapointe and J. Morse introducing a t-deformation of
k-Schur functions in [9]. An interesting problem, explained in [10], is to show
that these generalizations coincide in some particular cases.

3 Implementation of Symmetric Functions

3.1 Design Goals

Symmetric functions can be represented in many different ways, and in partic-
ular in different basis (powersum,elementary, Schur, monomials,. . .). As usual
in computer science, it is essential at each point to use the appropriate rep-
resentation, both for efficiency and interpretation of the results. What make
the situation specific is the number of those representations. In particular, it
is neither practical nor sometimes possible to implement explicitely all conver-
sions. Instead we want to be able to only implement a few and deduce the oth-
ers by compositions or linear tranformations such as inversion or transposition.
Furthermore to thratend, the user and also programmers should not need to
know which conversion are implemented because this information is too volatile.
For example, the addition of symmetric function not given in the same basis is
possible
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>> S::s([2,1]) + S::QP([2,1]) + S::p([2,1]);

(t + 4) m[1, 1, 1] + (t + 1) m[3] + (t + 3) m[2, 1]

The monomial basis has been choosen by the system because it minimizes the
number conversions (the cost of the conversion is not taken into account). The
same process accurs for making conversion between two bases as the expansion
of the Hall-Littlewood function Q

′
311 on the monomial basis

>> S::m(S::QP([2,1]));

(t + 2) m[1, 1, 1] + (t + 1) m[2, 1] + t m[3]

We also consider operators on symmetric functions. In most cases, they are
easier to define (and consequently to implement) on one of the bases but not on
all of them. Consequently, the system uses implicit conversions between bases
in order to apply operators on any given basis. The main technologies used are
linear algebra and overloading mechanisms which are not essentially new, but a
great effort is made in order to make manipulation intuitive.

3.2 General Overview of the Implementation

In our design, for each basis of symmetric functions there is a domain (in the
category Cat::GradedHopfAlgebraWithBasis) which represents the space of
symmetric functions expanded on this basis. For example, here is the example
of implementation of the complete basis

domain SymT::complete(R: DOM_DOMAIN)
inherits SymT::common(R);
category Cat::GradedHopfAlgebraWithBasis(R), Cat::CommutativeRing;
info_str := "Domain for symmetric functions expanded on complete basis";

basisName := hold(h);

// Implementation of multiplication (complete basis is a multiplicative basis)
mult2Basis := dom::term@revert@sort@_concat;
...

end_domain:

The domain Sym of symmetric functions, representing symmetric functions in
whatever representation, is in category Cat::HopfAlgebraWith SeveralBases.
This category helps us in defining implicit conversions between bases

domain Sym(R=Dom::ExpressionField())
inherits Dom::BaseDomain;
category Cat::HopfAlgebraWithSeveralBases(R), Cat::CommutativeRing;
...

// Each domain corresponding to a basis is declared
h := SymT::complete(dom::coeffRing, Options);

// Implementation of different conversions between bases (stored in a table)

basisChangesBasis :=
table(

...
// Explicit combinatorial conversions
(dom::QP, dom::s)= (part ->(_plus(combinat::tableaux::kostkaPol(mu, part, dom::vHL)
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* dom::s(mu) $ mu in
combinat::partitions::list(_plus(op(part)))))),

...
(dom::McdP, dom::m) = (part ->((dom::GramSchmidt(dom::m, _plus(op(part)),

dom::scalartq))[op(part)])),
...
// Dual conversions and inverse conversions
(dom::s, dom::QP) = dom::invertBasisChange(dom::QP, dom::s),
(dom::s, dom::m) = dom::transposeBasisChange(dom::h, dom::s, dom::s, dom::m),

)

Note that only some conversions are implemented in this table; the overloading
mechanism is in charge of finding the shortest number of intermediate conver-
sions needed (it doesn’t take into account the cost of each conversion). In order
to use (q, t)-deformation of symmetric function, we can declare

>> S:=examples::SymmetricFunctions(Dom::ExpressionFieldWithDegreeOneElements([t,q]),
vHL=t, vMcd=q);

Adding new bases on the fly. In order to add new basis on the fly, we define
a generic domain.

domain SymT::NewBasis(R: DOM_DOMAIN, DomName: DOM_STRING)
inherits SymT::common(R);
category Cat::GradedHopfAlgebraWithBasis(R), Cat::CommutativeRing;
info_str := "Domain for symmetric functions expanded on a new added basis";

basisName := text2expr(DomName);

end_domain:

In order to add a new basis named E for example, we can use

>> B := S::newBasis(S::coeffRing, ‘‘E’’);

and we define the change of bases we want. Let suppose that the change of basis
between B and monomial basis corresponds to the function testChange

>> S::declareBasisChangeBasis((B, dom::m, testChange);

>> S::declareBasisChangeBasis(dom::m, B, dom::invertBasisChange(B, dom::m));

Adding New Operators. If we want to define new operators on symmetric
functions, we only have to define their action on a particular basis, of course for
efficiency. First, we declare our operators as an overloaded operator

>> newOp := operators::overloaded(
(x,y)->error("Don’t know how to compute the newOp on ".expr2text(domtype(x))),

Name="newOp");

and by assuming that the action on the Schur basis is given by a function f, we
declare

>> operators::overloaded::declareSignature(
S::newOp, [S::s, DOM_INT],
S::s::moduleMorphism(f, dom::s));

and you can apply this operator on any basis due to the overloading mechanism.
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4 Integration of Others Programs Written in C++

In July 2005, the American Institute of Mathematics organized in Palo Alto, Cal-
ifornia, a workshop on the generalized Kostka polynomials under the leadership
of A. Schilling and M. Vazirani. During problem sessions, MuPAD-Combinat
was put to use for testing conjectures. As usual in algebraic combinatorics, com-
putations required the combination of preexisting combinatorial and algebraic
functionnalities (as provided by MuPAD-Combinat) with new combinatorial fea-
tures (namely a highly technical bijection between k-tuples of Young Tableaux
and unrestricted rigged configurations). Thanks to a dynamic module we could
reuse a pre-existing robust C++ implementation of this bijection written by L.
Deka; this allowed us to start manipulating large examples quickly. In general,
dynamic modules permit us to reuse C++ code with two goals in mind: to avoid
reimplementing nontrivial and tested code, and to get quicker computations than
in pure MuPAD language. In section 4.1, we describe the implementation of com-
binatorial objects in MuPAD, and in section 4.2 we present our technical choices
for a seamless integration of a combinatorial bijection implemented in C++.

4.1 Implementation of Combinatorial Objects in MuPAD-Combinat

We implement each combinatorial class as a domain in the MuPAD category
Cat::CombinatorialClassWith2DBoxedRepresentation.

This category provides, among other things, a pretty printing method us-
ing ASCII characters. Let us illustrate this design in the case of skew riggings
implemented in the domain combinat::skewRiggings.

domain combinat::skewRiggings
inherits Dom::BaseDomain;
category Cat::CombinatorialClassWith2DBoxedRepresentation;
axiom Ax::canonicalRep;

info_str := "Combinatorial class for rigged skew partitions";
...
end_domain:

We implement the constructor combinat::skewRiggings::newwhich builds an
object from the list of its operands:

>> a:=combinat::skewRiggings([[], [[[0], [0, 1]], [[""], [0, 1]]]]);

+---+
| 0 | 0 1
+---+
| | 0 1
+---+

The first element of the internal representation is the type

>> a[0];

combinat::skewRiggings

Ribbon rigged configurations are particular sequences of skew riggings, imple-
mented as plain lists of typed MuPAD objects. We implement them in the fol-
lowing domain
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domain combinat::riggedConfigurations::RcRibbonsTableaux
inherits Dom::BaseDomain;
category Cat::CombinatorialClassWith2DBoxedRepresentation,
// Elements of this domain are represented using a plain MuPAD data structure

Cat::FacadeDomain(DOM_LIST);

info_str := "Combinatorial class for rigged configurations";
...
end_domain:

Here is an example of the bijection applied on the set of all 3-ribbon tableaux
of shape (432) and evaluation (111)

>> rc := map(combinat::ribbonsTableaux::list([4,3,2],[1,1,1],3),
combinat::riggedConfigurations::RcRibbonsTableaux::fromRibbonTableau);

-- -- +---+ --
| | | | |
| | +---+ +---+---+ +---+---+ |
| | | 1 | 0 1 , | 0 | 0 | 0 0 , | | | |,
| -- +---+ +---+---+ +---+---+ --
--

-- +---+ --
| | | |
| +---+ +---+---+ +---+---+ |
| | 0 | 0 1 , | 0 | 0 | 0 0 , | | | |,
-- +---+ +---+---+ +---+---+ --

-- +---+ -- --
| +---+ | | | |
| +---+ | 0 | 0 0 +---+---+ | |
| | 0 | 0 0 , +---+ , | | | | |
| +---+ | | 0 1 +---+---+ | |
-- +---+ -- --

>> a:= rc[1];

-- +---+ --
| | | |
| +---+ +---+---+ +---+---+ |
| | 1 | 0 1 , | 0 | 0 | 0 0 , | | | |
-- +---+ +---+---+ +---+---+ --

>> op(a)[2][0];

combinat::skewRiggings

L. Deka and A. Schilling introduced in [1] a new kind of rigged configurations,
namely the unrestricted ones. They were implemented as an independent C++
program (file: FromOneCrystalPath.cc, headers: FromOneCrystalPath.h). On
each rigged configurations (ribbons one and unrestricted one) we can compute
a statistic. The interesting question is to find, in a special case, a bijection
which preserves the statistic between these two kinds of rigged configurations.
In order to manipulate these two objects in a single program, we decided in
collaboration with A. Schilling and L. Deka, to also integrate this C++ program
into MuPAD-Combinat. In order to make the integration of this version of rigged
configurations in a transparent way for the user, we kept the same design we used
for ribbon rigged configurations.
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4.2 Implementation of Combinatorial Objects in a Dynamic Module
Using the MAPITL Library

We describe now the integration of the previous C++ program using MAPITL li-
brary (MuPAD Application Programming Interface Template Library (included
in MuPAD-Combinat). This library provides

– Wrappers to use MuPAD lists as standard containers
– Easy C++←→ MuPAD conversions with one single overloaded template for

each directions:
• C++ object −→ MuPAD object: CtoM(c)
• MuPAD object −→ C++ object: MtoC(c)

This includes conversions to/from containers and recursive containers.
The C++ program computes the rigged configurations corresponding to a list

of Young tableaux also called path which is denoted by the class path class . We
want to call from MuPAD void path class::build rigged for path using the
procedure combinat::RiggedConfigurations::newRiggedConfigurations.
The building of the interaction is divided into three steps which are realized in
the file RiggedConfigurationsPaths.mcc

– convert a list of Young Tableaux in MuPAD to a C++ object of the class
path class

– call the function void path class::build rigged for path
– convert the result into a MuPAD object of type DOM LIST

Original files are FromOneCrystalPath.cc containing declarations of different
classes. We now explain some parts of the file RiggedConfigurationsPaths.mcc
which is entirely given in appendix. The beginning of the file is the inclusion of
the header file of the independent program and MAPITL

#include<vector>
#include "FromOneCrystalPath.h"
#include "MAPITL.h"
#include "MAPITL_tmpl.h"

Conversion MuPAD to C++

MFUNC( newRiggedConfigurations, MCnop )
{
MFnargsCheck(3);
MFargCheck(1, DOM_INT);
MFargCheck(2, DOM_INT);
MFargCheck(3, DOM_LIST);

n = MtoC<int>(MFarg(1));
int path_len = MtoC<int>(MFarg(2));
Cell input(MFarg(3));
...
Cell *toto = input.toArray<Cell>();
...

}

MFargCheck is the type checking of MuPAD arguments and MtoC permits to
convert MuPAD objects into C++ ones. After we initialize an object of class
path class with values contained in toto
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path_class* input_path = new path_class(path_len)
for(long a=0; a < input.size(); a++)
{

...
}

Using the original function in C++. We can call now the original function
in order to compute the bijection

input_path->build_rigged_for_path()

Conversion C++ to MuPAD. Next we create a C++ vector which contained
operands of the corresponding into MuPAD object

for(i=0; i<n; i++)
{

vector<int> yyy;
j = 0;
while(input_path->rigged[i][0][j] != UNUSED)
{

yyy.push_back(input_path->rigged[i][0][j]);
yyy.push_back(input_path->rigged[i][2][j]);
yyy.push_back(input_path->rigged[i][1][j]);
j++;

}
res[i] = yyy;

}

and we return the MuPAD list
MFreturn(Cell(res));

4.3 Compilation of the Dynamic Module

The next step is the compilation of the mcc file giving us the dynamic module
RiggedConfigurationsPaths.mdm. We have to load this module from MuPAD
using the function

combinat::RiggedConfigurationsPaths :=
proc()
save RiggedConfigurationsPaths;

begin
if module::which("RiggedConfigurationsPaths") = FAIL then

userinfo(1, "Dynamic module RiggedConfigurationsPaths not available"):
RiggedConfigurationsPaths := FAIL;

else
if traperror(module("RiggedConfigurationsPaths")) <> 0 then

warning("Error loading the dynamic module RiggedConfigurationsPaths:");
lasterror();

end_if;
end_if;
RiggedConfigurationsPaths;

end_proc():

We create the domain combinat::riggedConfigurations::RcPathsEnergy
and procedure combinat::riggedConfigurations::RcPathsEnergy::fromOne
Path computes the bijection by calling the function implemented in the dynamic
module combinat::RiggedConfigurations::newRiggedConfigurations

>> a:=[combinat::tableaux([[3,3]]),combinat::tableaux([[2,2]]),combinat::tableaux([[1,1]])];

-- +---+---+ +---+---+ +---+---+ --
| | 3 | 3 |, | 2 | 2 |, | 1 | 1 | |
-- +---+---+ +---+---+ +---+---+ --
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We compute the bijection

>> rc := combinat::riggedConfigurations::RcPathsEnergy::fromOnePath(a);

-- +---+---+ --
| | | 0 | 0 +---+---+ |
| +---+---+ , | | 0 | 0 |
| | | 0 | 0 +---+---+ |
-- +---+---+ --

>> op(rc[1])[0]

combinat::skewRiggings

The object computed using the C++ program is interfacing in a transparent way
for the user who can use other MuPAD functionalities on the previous result.

Acknowledgment. The author wants to thank A. Schilling and L. Deka for
their collaboration on rigged configurations, M. Zabroki for its code on creating
operators, and F. Hivert and N. Thiery for their support in the project MuPAD-
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4. F. Hivert and N. Thiéry, MuPAD-Combinat, an open-source package for research
in algebraic combinatorics, Sém. Lothar. Combin. 51 (2004), 70p. (electronic).
http://mupad-combinat.sourceforge.net/

5. S. Kerov, A. Kirillov and N. Yu. Reshetikhin, Combinatorics, the Bethe
ansatz and representations of Symmetric group, J. Soviet Math 41 (1988) no.2,
916-924.

6. A. Lascoux, B. Leclerc and J.-Y. Thibon, Ribbon tableaux, Hall-Littlewood
functions, quantum affine algebras and unipotent varieties, Journal of Mathemati-
cal Physics 38 (1997), 1041-1068.

7. A. Lascoux and M.P. Schützenberger, Sur une conjecture de H.O. Foulkes,
C.R Acad. Sci. Paris 288(1979), 95-98.

8. I.G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford
University Press, 1995.

9. L. Lapointe and J. Morse, Schur function identities, their t-analogs, and k-Schur
irreducibility, Advances in Math (2003).

10. A. Schilling, X=M Theorem: Fermionic formulas and rigged configurations under
review preprint (math.QA/0512161).

11. A. Schilling, Crystal structure on rigged configurations IMRN, to appear
(math.QA/0508107).



Making Research on Symmetric Functions with MuPAD-Combinat 417

12. A. Schilling, q-Supernomial coefficients: From riggings to ribbons, MathPhys
Odyssey 2001, M. Kashiwara and T. Miwa (eds.), Birkhaeuser Boston, Cambridge,
MA, 2002, pp. 437-454 (math.CO/0107214).

13. J. Stembridge, Package SF, Posets, Coxeter/Weyl,
http://www.math.lsa.umich.edu/∼jrs/maple.html.

14. Symmetrica , http://www.mathe2.uni-bayreuth.de/axel/symneu engl.html.
15. S. Veigneau, ACE, an Algebraic Combinatorics Environment for the computer

algebra system MAPLE: User’s Reference Manual, Version 3.0, Report 98-11, IGM,
1998. http://www-igm.univ-mlv.fr/∼ace/ACE/3.0/ACE.html

16. M. Zabrocki, Vertex operators for standard bases of the symmetric functions,
Journal of Algebraic Combinatorics, 13, No. 1 (2000), pp. 83-101.

Appendix: RiggedConfigurationsPaths.mcc

#include<vector>
#include "FromOneCrystalPath.h"
#include "MAPITL.h"
#include "MAPITL_tmpl.h"
using MAPITL::MtoC;
using MAPITL::CtoM;
using MAPITL::Container;
using MAPITL::SimpleCell;
using MAPITL::Cell;
using MAPITL::ObjectInCell;
using MAPITL::ArrayInCell;

using namespace std;

MFUNC( newRiggedConfigurations, MCnop )
{

MFnargsCheck(3);
MFargCheck(1, DOM_INT);
MFargCheck(2, DOM_INT);
MFargCheck(3, DOM_LIST);
n = MtoC<int>(MFarg(1));
int path_len = MtoC<int>(MFarg(2));
Cell input(MFarg(3));
int i, j, k, tmp, path_index, tblu_index, col;

tmp = UNUSED;
path_index = 0;
tblu_index = 0;
i = 0; j = 0; k = 0; col = 0; l = 0;
initialize_lambda();
path_class* input_path = new path_class(path_len);
reset_tableau();
Cell *toto = input.toArray<Cell>();
vector< vector<int> > res(n+1);

for(long a=0; a < input.size(); a++)
{

Cell* alpha=(toto[a]).toArray<Cell>();
int s = (alpha[0]).size();
tblu_class *my_tblu = new tblu_class((toto[a]).size() ,s);
my_tblu->tblu_id = tblu_index;
tblu_index += 1;

for(long d=0; d<toto[a].size(); d++)
{

int* beta=(alpha[d]).toArray<int>();
for(long b=0; b < s ;b++)
{
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my_tblu->tb[d][b] = beta[b];
my_tblu->tab_lambda[beta[b]-1] =

my_tblu->tab_lambda[beta[b]-1] + 1;
}

}
input_path->path[path_index] = my_tblu;
reset_tableau ();
path_index += 1;

}
input_path->build_rigged_for_path();
for(i=0; i<n; i++)
{

vector<int> yyy;
j = 0;
while(input_path->rigged[i][0][j] != UNUSED)
{

yyy.push_back(input_path->rigged[i][0][j]);
yyy.push_back(input_path->rigged[i][2][j]);
yyy.push_back(input_path->rigged[i][1][j]);
j++;

}
res[i] = yyy;

}
input_path->calculate_cocharge();
vector<int> stat;
stat.push_back(input_path->cocharge);
res[n] = stat;

MFreturn(Cell(res));
} MFEND
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Abstract. We describe a notebook in Mathematica which, taking as in-
put data a homological model for a finite group G of order |G| = 4t,
performs an exhaustive search for constructing the whole set of cocyclic
Hadamard matrices over G. Since such an exhaustive search is not practi-
cal for orders 4t ≥ 28, the program also provides an alternate method, in
which an heuristic search (in terms of a genetic algorithm) is performed.
We include some executions and examples.

Nowadays, most of Computer Algebra Systems (CAS) begin to be concerned
with the computation of homological information. This is the case of Gap [13],
MAGMA [17]. In a parallel way, some specific softwares for achieving calcula-
tions in homological algebra are being developed, as it is the case of Kenzo [7]
and Hap [15]. However none of them are concerned with the explicit calculation
of Hadamard cocyclic matrices. In spite of that, some researchers have developed
their own computations, working on different systems [6,11,12,14,2].

In this paper we present a notebook [1] in Mathematica 4.0, which implements
the homological reduction method described in [4]. When exhaustive search is
not feasible, the notebook provides a second routine for performing an heuristic
search, which corresponds to the implementation of the genetic algorithm in [3].
The interested reader is referred to these papers for the theoretical background.
Another non exhaustive method for finding out Hadamard cocyclic matrices is
described in [5], in terms of image restorations.

The notebook takes as input data a homological model φ:B̄(ZZ[G])
f
⇀↽
g

(hG, d)

for a finite group G of order |G| = 4t. The term homological model refers to a

contraction φ:B̄(ZZ[G])
f
⇀↽
g

hG from the reduced bar construction of the group G

(i.e. the reduced complex associated to the standard bar resolution [18]) to a
differential graded module of finite type hG, so that H∗(G) = H∗(hG) and the
homology of hG may be effectively computed by means of Veblen’s algorithm [19]
(involving the Smith’s normal forms of the matrices representing the differential
operator).

� All authors are partially supported by the PAICYT research project FQM–296 from
Junta de Andalućıa (Spain).
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In order to construct a basis for 2-coboundaries, the program needs to know
the group law on G. To this end, the user must fix an ordering on the elements
of G, say G = {g1 = 1, . . . , g4t}. Now, a matrix P representing the group law in
G may be constructed at once, so that P (i, j) = k if and only if gigj = gk.

The only additional information which is needed is that of the diagrams

B̄1(ZZ[G])
f−→ B1
↓ Q

B̄1

B̄2(ZZ[G])
f−→ B2
↓ Q

B̄2

That is, the matrices M2 and M3 representing the differentials operators d2
and d3 of hG, as well as the matrices F1 and F2 representing the maps f1 :
B̄1(ZZ[G])→ B1 and f2 : B̄2(ZZ[G])→ B2.

In these circumstances, we may now determine exactly what the input and
output data are.

Input data

– The matrices P , Mi+1, Fi representing the group law, di+1 and fi, 1 ≤ i ≤ 2.
– The searching method to use: introduce 1 for an exhaustive search, anything

else for a heuristic search.

Output data

– A full basis for normalized 2-cocycles over G.
– In case that an exhaustive search was chosen, the whole set of Hadamard

cocyclic matrices over G. Otherwise, a few Hadamard cocyclic matrices,
obtained from the heuristic search.

All the executions and examples included below have been worked out with
aid of the Mathematica 4.0 notebook which we have described here, running
on a Pentium IV 2.400 Mhz DIMM DDR266 512 MB. Since some calculations
obtained from the heuristic search are provided in [3], we focus on calculations
obtained from an exhaustive search.

In the sequel, the elements of a product A × B are ordered as the rows of a
matrix indexed in |A| × |B|. For instance, if |A| = r and |B| = c, the ordering is

< a1b1, a1b2, . . . , a1, bc, a2b1, a2b2, . . . , a2bc, . . . , arb1, . . . , arbc >

We assume ZZk = {0, 1, . . . , k − 1} with additive law. Next we include a table
with the number of cocyclic Hadamard matrices that we have found in each case.

t ZZ4t ZZ2 × ZZ2t ZZ4 × ZZt ZZ2
2 × ZZt D4t ZZ2t×fZZ2 (ZZt×fZZ2)× χZZ2

1 2 6 2 6 6 6 6
2 0 16 16 168 32 16 168
3 0 24 0 24 72 0 72
4 0 96 192 1984 768 0 272
5 0 120 0 120 2200 120 2200



Calculating Cocyclic Hadamard Matrices in Mathematica 421

Here f denotes the 2-cocycle f(gi, gj) =
{
� t

2�+ 1 if gi = gj = 1
0 otherwise and χ denotes

the dihedral action χ(a, b) =
{
−b if a = 1

b if a = 0
The computing time required in all cases was practically of the same order:

less than 3 seconds for 1 ≤ t ≤ 3, a couple of minutes for t = 4 and about 30
minutes for t = 5. The black entries correspond to new results, as far as we know
(the case of G5

5 = D4·5 is included, since the computation of Flannery in [16],
2380, differs from ours, 2200).

References
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3. V. Álvarez, J.A. Armario, M.D. Frau and P. Real. A genetic algorithm for cocyclic
Hadamard matrices. AAECC-16 Proceedings, LNCS 3857, 144–153, (2006).
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1 Introduction

Our objectives of building the interactive user interface are as follows:

(1) To select reducers in division algorithms and S-pairs in the Buchberger al-
gorithm interactively.

(2) To visualize division algorithms and the Buchberger algorithm and to un-
derstand the algorithms intuitively.

(3) To create a user interface of division algorithms and the Buchberger algo-
rithm without using computer algebra system languages.

Objective (1) has a mathematical background. We have studied and implemented
division algorithms and the Buchberger algorithm in the ring of differential op-
erators with rational function coefficients whose denominators do not vanish at
the origin, Dalg ([5], [3]). In the ring of polynomials and the local ring of that,
methods of efficiently computing a remainder and a Gröbner basis have been
studied in detail ([1], [2], [4]). However, in the ring Dalg, methods of those have
not been studied in detail. As far as we have known, no system has satisfied our
objectives. Therefore, we have designed an interactive user interface as a tool to
understand and improve these algorithms. This system is a tool for us to study
algorithms, however it may be useful for educational purposes.

2 System Architecture

kan/sm1
httpd-anom-asir.sm1

cgi-asir.sm1

ox.sm1

Java program
(interactive user interface)

ox_asir server

ox_control server

OpenXM serverhttp
OpenXM 
RFC 100
protcol

The proposed system consists of two parts: polynomial computation and user in-
terface. The Polynomial computation part is performed by Risa/Asir. Risa/Asir
is an open source computer algebra system, and it is efficient at factorization,
Gröbner basis computation ([8]). The user interface part is written in Java. These
two parts are connected by OpenXM over HTTP ([7]). We can concentrate on
the user interface with this architecture.

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 423–425, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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3 Interactive User Interface for Division Algorithms

As shown in the screenshot (Fig.1, Fig.2), each ball stands for a monomial. Each
row stands for a polynomial. The first row is a divident. The rest are divisors.
In this case, x10 + 1 is divided by x2 + xy,xy + y2 with respect to the lex order
such that x > y. The Monomial balls are sorted by the lex order. The possible
reducers are emphasized in blue. In the manual mode, when we click a blue ball,
the system executes a reduction by the selected reducer. In the automatic mode,
the system automatically executes reductions with the current strategy on the
clicking of the start button. We can easily switch between these two modes.

reducer

reducer

divident

Fig. 1. Initial state

remainder

Fig. 2. Result

4 Interactive User Interface for the Buchberger
Algorithm

As shown in the screenshots (Fig.3, Fig.4), each ball stands for an S-pair. A red
ball has not yet been divided. A sky blue ball has been divided. The polynomials
in the bottom window are intermidiate Gröbner basis, and will finally become a
Gröbner basis.

When we click a ball, the system executes the division of the ball by the
intermidiate Gröbner basis. If the remainder is 0, then the ball is eliminated.
Else, then the set of S-pairs and the intermidiate Gröbner basis are updated.
When we click the start button, the system switches to the automatic mode and
an S-pair is automatically chosen with the current strategy, either the normal
strategy or the sugar strategy. The pairs eliminated by the Buchberger criterion
or the Gebauer-Möller criterion are visualized. These pairs are colored white or
gray.

5 Application and Conclusion

We show an example of computing a Gröbner basis in the ring Dalg[s]. We con-
sider the computation of the Gröbner basis of the left ideal in Dalg[s] generated
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S-pair

eliminated S-pair

intermidiate groebner basis

Fig. 3. Initial state

Groebner basis

Fig. 4. Result

by xy+x3 +y3,x∂x−y∂y +3y2∂x−3x2∂y, sx+3sy2−xy∂y−x3∂y−y3∂y,−3s+
2x∂x + y∂y + 27sxy − 3x2∂y − 9x2y∂x − 9xy2∂y, 3sy + 9sx2 − 2xy∂x − y2∂y −
3x3∂x−3x2y∂y. This example appears in the computation of the local b function
of x3 +xy + y3. We cannot compute the Gröbner basis with the normal strategy
or the sugar strategy.

Using the interactive user interface, we can easily try all orders of S-pair
selections. However, in any case, the computation stops in the Mora division of
an S-pair. We conclude that S-pair selection strategies do not solve the problem,
and the implementation of the Mora division algorithm in Dalg[s] should be
improved.

This negative discovery was made with our interactive user interface. Never-
theless, our interface can be a useful tool to test new methods of computation
such as for playing video games.
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Abstract. This paper describes the current status of a project for mul-
tithreading algebraic computations, which aims at the utilization of to-
day’s high-spec PCs with hyperthreading or dual-core technologies. Our
effort is done by applying OpenXM with minimal cost of development,
and includes memory management in multithreaded environment. Our
empirical results show that the performance gain can be attained in nu-
meric cases and in some cases of purely symbolic computations.

1 Introduction

This paper is the first report of our on-going project for construction of multi-
threads environment for computer algebra on a small PC. Needless to say, the
project is motivated by the availability, in daily-use computers, of processors with
hyperthreading or dual-core technologies, and by the desire for their full utiliza-
tion in algebraic computations. Concerning to software technology supporting
multi-threading, there is a simple programming paradigm, called OpenMP[1]. It
is supported by many commercial compilers and has become a de facto standard
for multi-threading. Because the project is in the initial stage, major emphasis
is laid upon the ease of programming rather than attaining higher performance.
We shall develop a new application area of OpenMP. Through our experiments,
we study the description ability of OpenMP, and investigate the efficiency.

With respect to mathematical software, we treat such simple and basic mathe-
matical objects as arithmetics of polynomials, vectors and matrices over Zp, and
the key software technologies we use include multithreading, OpenMP, dynamic
memory management with garbage collection and its concurrent extension. Key-
words and topics treated in this paper are listed below.

Mathematical subjects: efficient methods of arithmetics in Zp, multiplica-
tion of vectors and matrices with elements of Zp, the Berlekamp algorithm,
polynomial factorization, polynomial multiplication.

Software technology: multithreads, OpenMP, shared-memory, data-parall-
elism, work-queue, dynamic memory management, garbage collection, con-
current GC, mutual exclusion, critical section, a computer algebra system
Risa/Asir[2].

� Supported in part by Japan Society for the Promotion of Science, Grant-in-Aid for
Scientific Research (C), 17500005, 2005–2008.
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OpenMP is an industry-standarad for shared-memory parallel programming
in C/C++ and Fortran. The specification of OpenMP API defines a small set of
compiler directives, library routines, and environment variables. As described in
Section 2, parallel execution of program blocks is specified only by direcitives,
which are usually recognized as comment by the underlying programming lan-
guage. This means that with OpenMP, we can parallelize existing programs quite
easily without changing the algorithm structure or the organizations of programs.
In order to investigate the efficacy of data-parallelism in algebraic computations,
we develop independent programs. Besides this, we extend the existing computer
algebra system Risa/Asir, to test more practical computations of applications.
For this purpose, we need a multi-threaded memory allocator and garbage col-
lector. Risa/Asir uses the well-known GC by Boehm et al.[3], and we must adapt
it to an OpneMP execution environment. Section 4 describes a simple method to
realize. We simply add some restricting conditions so that multiple threads do
not manage a single memory portion simultaneously, which can be implemented
by the critical section mechanism of OpenMP.

We describe the details of the algebraic computations used in our experiments
in Section 3, and some of the empirical results are reported in Section 5. Final
section gives a summary of our experiments.

2 OpenMP

OpenMP defines a specification consisting of compiler directives, library routines,
and environment variables for parallel processing. Parallelization can be specified
so easily as simply adding a directive “#pragma omp ...” to the place where we
want to execute the codes in parallel.

– An occurrence of the directive “#pragma omp parallel” initiates multi-
threads execution, and the block following the directive will be executed
by all the initiated threads.

�

�

	

�

#pragma omp parallel
{

parallel block: program statements to be executed by all threads
(We call this block omp-parallel block.)

}

There are two ways to make threads execute different codes inside a block.

– The directive “#pragma omp for” directs a compiler to automatically divide
the for-loop that follows the directive into multiple portions of the itera-
tion steps and to assign each portion to a single running thread. The whole
work of the iteration steps is shared by multiple threads, and its portions
are executed in parallel. This implements a work-sharing model. The work
assignment can be either static or dynamic.
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�

�



#pragma omp parallel
{

#pragma omp for
for (i = ...; i...; i+=...) {

...
}
}

⇒

�

�

	

�

#pragma omp parallel for
for (i = ...; i...; i+=...) {

...
}

The directive “#pragma omp parallel for ...” can be used as a synonym
for the directive “#pragma omp for ...” which solely exists in a omp-parallel
block. The nested combination of the two directives with parallel and for
can be replaced by a single directive with parallel for.

– The directive “#pragma omp section” inside
a block following the directive “#pragma
omp sections” provides a mechanism to de-
scribe a program code to be executed by an
independent thread. Each program portion
codei that follows “#pragmaomp section” is
executed by a single thread.

– Variables are shared by all threads unless
they are declared as private in the directive.

– The directive “#pragma omp critical” used
inside an omp-parallel block provides a
mechanism to specify a program portion
to be executed exclusively only by a single
thread at any one time. The program por-
tion, statement or a { }-block, cannot be ex-
ecuted by multiple threads simultaneously.

�

�

	

�

#pragma omp sections
{

#pragma omp section
{

code1
}
#pragma omp section
{

code2
}
...

}�

�

�

�
#pragma omp critical
statement or { }-block

– Some library functions are defined. The function omp num threads() returns
the number of running threads, and omp thread num() does an identification
number (ID) of the current thread. An ID 0 is reserved for master thread.

For more directives and so on, or for more detailed specifications, refer to [1].

3 Typical Algebraic Computations and Parallelization

3.1 Algebraic Computation and Representation of Data

The most efficient way of computation is the direct use of hardware for data
representation and calculation, and for higher efficiency in parallel processing,
data-parallelism will be most promising. Algebraic computation is done using
flexible data in general; symbolic formulas are usually represented by linked
list, and even numeric data retaining arbitrary precisions are represented by
some structure. Generally speaking, work sharing can hardly be a proper model
for parallel algebraic computation. However, there are various semi-numerical
algorithms[4] used in computer algebra, which treat uniform numeric data and
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are suited for data parallelism. Their common strategy is the calculation over a
prime finite field Zp for some prime p represented by a machine word. In this
paper, we treat the following three types of algebraic calculations.

(1) Repeated dot-product calculations,
(2) the Berlekamp algorithm[5] with Gaussian elimination, applied to

multiple matrices, and
(3) polynomial multiplications.

With (1) and (2), we treat vectors and matrices with Zp elements, and par-
allelize multiple vector operations such as dot-product and elimination, which
enjoy data-parallelism. The Berlekamp algorithm is usually used for polynomial
factorization over the integers, and applied several times with different primes.
The calculations with different primes are independent and can be executed in
parallel. We also investigate this task-parallelism. Each vector of the matrix
treated in the Berlekamp algorithm stands for a certain polynomial over Zp,
however, in general-purpose computer algebra systems, polynomials are usually
represented by linked list. Multiplication of polynomials in this general form will
be also investigated, as an example of work-queueing model.

Calculation in Zp : Let p be a prime. Representing Zp as { 0, ..., p− 1 }, we use
unsigned integers for its elements. We employ some simple techniques in order
to eliminate division from mod-p reduction, as in [6, 7]. For additive operations,
subtraction or addition of p from the integer sum or difference serves as mod p
operation. Computing the product of two elements requires double the precision
of p. While for p ≤ 216, 32-bit int suffices to hold the products, we use unsigned
long long in the case of 216 < p < 232. The reduction A mod p is done using the
precomputed value R of 1/p in double, as A mod p = A−�AR�p. If A ≥ p× 232

in the case of big p, this reduction must be preceded by the high-bit reduction;
A = A − (�(A>>16)R�p)<<16. Notice that the mod-p reduction is almost as
costly as integer arithmetics, and that in the context of data-parallelism, the
granularity can be bigger compared with the usual numerical processing.

3.2 Dot-Product over Prime Fields and Its Parallelized Repetition

Let ai and bj ∈ Zp (0 ≤ ai, bj < p), and their (partial) dot-product by Sk
def=∑k

i=0 aibi mod p. The dot-product Sn can be computed by repeating the mul-
tiplication and addition sequence as Sk = akbk + Sk−1 mod p. To reduce the
number of mod-p reduction, we accumulate the products without performing
the reduction as long as possible. Actually, we have only to perform the reduc-
tion only once for the final Sn if Sn > p. An overflow caused by the addition is
guaranteed to be only one bit, and can be treated as a value exactly. We call the
datatype used for product as dprod -type.

– Let X̄ be the value of (the maximum value represented by dprod -type modulo
p) plus 1; i.e., in the 32-bit case, X̄ = ((232−1) mod p)+1 and in the 64-bit
case, X̄ = ((264 − 1) mod p) + 1. These constant values can be computed by
repeating the additions modp.
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– Let t = akbk computed in the intermediate stage, and let Sk+1 = t + Sk. If
an overflow when the addition for Sk+1 is detected by t > Sk+1 or Sk > Sk+1
as unsigned integers, we simply add the above X̄ to Sk+1.

In order to examine how much efficacy we can attain by parallelization, we exper-
iment with two kinds of highly compute-intensive calculations of dot-products.

Matrix Exponentiation. Our first example is exponentiation. A simple exam-
ple of repeated dot-product calculation is matrix multiplication. We experiment
further with exponentiation, which is a sequence of multiplications. Matrix mul-
tiplication itself consists of independent calculations, and is easily parallelized.

#pragma omp parallel for private(j,w, k,t)
for (i=0; i < l; i++)

for (j=0; j < m; j++) {
M[i][j] =

∑n
k A[i][k]*B[k][j] modp;

Let A be an n × n matrix ∈ Zp
n×n, and consider the exponentiation Ae for

e ≥ 2. Let e = 2s +
∑s−1

i=0 2ibi where bi ∈ {0, 1}, and we let Bi = A2i

. Then,
Ae = B0

b0 · · ·Bs−1
bs−1Bs can be calculated by the repetition of the squaring

Bi = Bi−1
2 and the multiplication Mi = Mi−1Bi

bi for bi �= 0, where Mi =
B0

b0 · · ·Bi
bi . We apply the conversion of software-pipelining to combine the two

multiplications (when bi �= 0) in the repetition for higher efficiency.



�

�



B = f ;
for (i = 0; bi == 0; i++)

B = B ∗B;
M = B;
if (i ≥ s) return M;
B = B ∗B;

for ( ; (i = i + 1) < s; B = X)
if (bi == 1) {

X = B ∗B, M = B ∗M;
} else X = B ∗B;

M = B ∗M;
return M;

Notice that the above method requires extra memory space for three n×n matrix
products other than the one for the result.

Vector Sequence of Ab, A2b, ..., Aeb. A more practical example of dot-
product calculation will be in Wiedemann’s algorithm[8], a version of Krylov
subspace method for solving linear systems over Zp. Given a matrix A ∈ Zp

n×n

and a vector b ∈ Zp
n, the algorithm computes a minimal polynomial of the se-

quence Akb, k = 0, ..., 2n− 1, and gives the solution to Ax = b as a linear com-
bination of the sequence. Let bd denote Adb. While the elements of bd+1 = Abd

can be computed in parallel, the calculation of the sequence must be sequential.
�

�

	

�

for (d = 0; d < e; d++) /* <-- must be sequential */
#pragma omp parallel for private(k,w)
for (i=0; i < n; i++) /* <-- may better be unrolled */

bd+1[i] =
∑n−1

k=0A[i][k]*bd[k] mod p; /* dot-product */
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In the above program, if the number of operations performed in the loop of i is
quite limited, loop unrolling will be effective.

3.3 Berlekamp Algorithm for Polynomial Factorization

Let f(x) be a polynomial ∈ Zp[x] of degree n to be factored. The algorithm con-
structs a matrix Q=

(
qj,k

)
from the coefficients of xkp mod (f, p) =

∑n−1
j=0 qj,kxj

for 0 ≤ k < n, and performs elimination on the matrix (Q− In), where In is an
n× n identity matrix, to determine the number of factors of f(x) via the rank.

We experiment the following two methods of parallelization.

(B-1) work-sharing of multiple (αx + y) vector operations in each elimination
(B-2) multiple invocation and simultaneous execution of the algorithm with

different primes from work-queue

The former method (B-1) can be implemented as follows.
�

�

�

�

for (k = 0; k < n; k++) { /* eliminate the k-th column, Q[*][k] */
/* pivoting */
#pragma omp parallel for private(a,i)
for (j = k+1; j < n; j++)

if ((a = Q[j][k]) != 0)
Q[j][i] = (p-a)*Q[k][i]+Q[j][i]modp, i = k + 1, ..., n− 1;

}

When used for factorization over the integers, the algorithm is applied with
different primes until the same value of the rank is obtained for sufficiently
many primes. With the method (B2), we prepare a queue for primes and employ
work-queueing model for parallelization.
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j = 0, Nfacs = deg(f)+1, i = 1;
#pragma omp parallel private(p)
for ( ; j < Count && Nfacs > 1; ) {

#pragma omp critical
{ p = i-th candidate for a modulo; i++; }
if (p divides lc(f) || deg gcd(f, f ′) > 0) continue;
Q = generate the Q-matrix for p and f;
r = rank( Q-I );
#pragma omp critical
if ( r < Nfacs ) {

remember p and the related information;
Nfacs = r, j++;

}
}

One prime is supplied to each thread on request. Each thread first checks if the
supplied p is appropriate to the polynomial. The prime p cannot be used if p
divides the leading coefficient of f(x) or if (f mod p) is not square-free (checked
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by the non-zero degree of gcd(f, f ′)). If the check is successful, the algorithm
will initiates. Thus, the grain size varies in three ways depending on the choice
of p. The above code will choose such valid p that makes the number of factors
mod p smallest.

3.4 Polynomial Multiplication

Let P1 and P2 be polynomials, and we consider the multiplication P1 ∗ P2. The
product can be computed in S, initially equal to zero, by performing S ← S +
t ∗ P2 for each term t in P1. Usually, polynomials are represented by a list of
terms. In the above iteration for S, the list P1 can be regarded as a queue of
terms. The work for each entry t of the queue is the multiplication with P2 and
the addition of the result to S.

We apply the working-queueing model for parallelization. The following de-
picts the structure actually used for our implementation in Risa/Asir. DCP is a
typedef-ed struct of a cell of linked-list containing one polynomial term. NEXT()
gives a pointer to the next cell, and a NULL-pointer terminates lists.
�

�

	

�

/* dequeue function */
DCP GetNextTerm(DCP *pdcp)
{

DCP a;
#pragma omp critical
if ((a = *pdcp) != NULL)

*pdcp = NEXT(a);
return a;

}

S ← 0, P ← P1;
#pragma omp parallel private(s,t)
{

s← 0;
while ((t = GetNextTerm(&P))

!= NULL)
s← s + t*P2;

#pragma omp critical
S ← S + s

}

In our experiment, we use recursive representation of polynomials, and the
above parallelization will be done with respect to the toplevel variable. As a
queue polynomial, we shall use the polynomial with less terms of P1 or P2, to
reduce the overhead for critical control. Furthermore, if we assign the terms in P1
to each thread before performing multiplication, we don’t need the critical treat-
ment when dequeueing a term. We might be able to employ the load-balancing
by counting the sizes of the coefficients. We call this method as balanced method.

Notice that in this implementation, the product of P2 and a term in P1 is
collected in a thread-local variable s, and the results in the local variables are
gathered in S after completing all the term-wise multiplications. Also notice
that, although the polynomial addition here is performed destructively to prevent
memory consumption as far as possible, the multiplications generate new data
structures of the product and therefore, dynamic memory allocation is required.

4 Memory Management

One of the most important mechanisms in symbolic computation is run-time
memory management. Usually, data of symbolic formula is represented by linked
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list of small memory portions, and those memory portions are dynamically al-
located, sometimes deallocated, and discarded as garbage without being explic-
itly deallocated. Garbage collector collects and reclaims such discarded mem-
ory portions, and is indispensable to general-purpose computer algebra systems.
Risa/Asir [2], a computer algebra system which we use for our experiment, makes
use of the wide-spread garbage collector by Boehm et al. [3]. This memory alloca-
tor and garbage collector supports threads implementations on some platforms,
as well as thread-local memory management on a limited kinds of platforms,
and there has been an experimental parallel extension [9]. However, there is no
OpenMP support, neither we cannot use threads implementation with OpenMP
because the relation between OpenMP and the thread library is not clear. We
concentrate on adapting the existing GC program to multi-threads processing
environment by OpenMP.

As to the parallel execution of GC, there can be many ways of the adaptation,
as is having been studied and published extensively. The following summarizes
the principles and decisions we made in our effort for parallelization.

– Minimum effort is our basic principle; use the existing code unchanged as
far as possible. For multi-threads control, we use only OpenMP.

– No parallelization in any step in GC itself. Rather, GC is executed concur-
rently with main computation, so long as the main computation does not
call to memory allocator or deallocator (or explicitly to GC).

– One heap area maintained for all running threads, and no thread-local mem-
ory management.

– Make allocator and deallocator critical, in order to resolve such conflicts as
simultaneous multiple requests for memory allocation and request of memory
allocation during the execution of GC. All the related critical sections are
named as risa gc, and executed mutually exclusively.

– Only master thread can execute
GC, and subthreads are allowed
only to expand heap area, to pre-
vent tracing from the stack areas
with no known bounds.

– In order to suppress the swelling
of heap area by excessive expan-
sion of the heap, relax the condi-
tion to initiate GC. GC may be
initiated in allocation time even
if there are free memory space to
allocate.

�

�

	

�

void *Risa_GC_malloc(size_t d)
{
void *ret;
#pragma omp critical (risa_gc)
{

/* call the original */
ret = (void *) GC_malloc(d);
/* register the memory portion

if in subthread */
}
return ret;

}

– Prepare a global table per thread to register every allocated memory portion
in each subthread, which enables tracing from the portions alive in some sub-
threads without knowing the bounds of the stack areas used by subthreads.
Registration is done by the allocator wrapper, and the mutator (user pro-
gram) removes the table entries pointed by any live memory portions in
order to prevent table overflow.
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– Prepare wrapper functions for allocators and deallocators, as Risa GC
malloc(). They replace the original functions via macro definitions, as
follows:

#define GC_malloc(d) Risa_GC_malloc(d)

One may worry that restricting GC to master thread leads to swelling of the heap
area due to repeated expansions by subthreads, compared with the usual of a
single thread. The situation will vary depending on the average lifetime length of
allocated memory portions. Basically, the frequency of GC will decrease, while
that of heap area expansion will increase, almost by the ratio of the number of
running threads. Therefore, the memory portions with original lifetime shorter
than the extended length will be affected, and their collection as garbage will
have to be deferred in our multi-threads computation. We could retain the fre-
quency simply by relaxing the GC-invocation condition so that the amount of
free memory owned by the memory allocator gets less than the expected amount
required for the GC interval. The lifetime of memory portion depends on the
type of computation and implementation. In summary, we can expect that the
excessive swelling of heap area will not happen for usual computations. Thread-
local memory management might improve the behavior of memory consumption,
but it is out of our scope because of our basic principle.

5 Empirical Studies

All of the computational examples in Section 3 are implemented, and tested on
the following two types of platforms.

(HT) Pentium 4@3.0GHz with 1MB L2-cache, 512MB memory and hyper-
threading turned on. OS: Fedora Core 4 with kernel 2.6.13 for SMP

(X2) Athlon 64 X2 4800+ (2.4GHz, 2× 1MB L2-cache) with 2×1GB memory.
OS: Fedora Core 5 with stock kernel for SMP

On these platforms, the IA-32 and EM64T versions of Intel C++ compiler for
Linux 9.0 are used.1 The compiler option -O3 is used for dot-products, and
-O2 for Risa/Asir including the Berlekamp algorithm and polynomial multipli-
cation. While the dual-core processor (X2) consists of two independent proces-
sors which uses an external memory in common, (HT) is actually a uniproces-
sor and behaves like two processors by using the components of a processor,
all of which are not fully utilized, in two phases. Timings in the tables are in
msec except when noted otherwise, and represent the wall-clock time taken by
gettimeofday().

Matrix Exponentiation. Ae, where A ∈ Zp
n×n. With a matrix A randomly

generated, various combinations of the following values for p, n, and e are tested.

1 The current version of GCC does not support OpenMP, although its development
is declared to be in progress.
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Table 1. Timings of matrix exponentiation

e 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535
(HT)-(1) 134.4 169.9 201.8 233.5 267.0 299.3 333.2 365.9 398.9 432.0 468.0 497.7
(HT)-(2) 90.9 115.3 134.8 159.5 188.0 205.8 231.4 251.5 275.9 297.2 320.6 347.3

ratio 1.48 1.47 1.50 1.46 1.42 1.45 1.44 1.45 1.45 1.45 1.46 1.43
(X2)-(1) 76.3 96.1 114.7 138.1 157.7 176.9 197.2 216.2 236.6 255.4 277.3 294.7
(X2)-(2) 38.6 48.6 58.2 69.6 79.6 89.5 99.4 109.2 119.3 129.3 139.7 148.7

ratio 1.97 1.98 1.97 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98
Timings of exponentiation of A ∈ Zp

128×128 to the power of e with p = 65533.

Table 2. Time of a dot-product

p = 65533 p = 911
n 128 256 512 1024 2048 128 256 512 1024 2048

(HT)-(1) 0.897 1.788 3.738 7.262 14.49 0.303 0.575 1.281 2.677 5.061
(HT)-(2) 0.704 1.197 2.416 4.709 9.456 0.393 0.573 1.126 2.098 4.152
ratio 1.27 1.49 1.55 1.54 1.53 0.77 1.00 1.14 1.28 1.22
(X2)-(1) 0.705 1.442 2.930 5.927 11.83 0.445 0.876 1.798 3.634 7.236
(X2)-(2) 0.378 0.770 1.463 2.994 5.996 0.306 0.482 0.892 1.844 3.693
ratio 1.82 1.87 2.00 1.98 1.97 1.45 1.82 2.02 1.97 1.96

Average times(μsec) for a dot-product over Zp in the calculation of a vector sequence.

– n = 128, 256, 512.
– p = 911 or 65533. Notice that with p = 911, no mod-p reduction is required

in the intermediate stage of the dot-product because 9112 × 512 < 232.
– e = 100, 200, 400, 800, 1000, 1200, 1600, 2000, 4000; and 2d−1 for d = 5, ..., 16.

Table 1 summarizes the typical timing data, actually taken for exponentia-
tion with p = 65533 and n = 128. In the table, the row numbers (1) and (2)
correspond to the number of threads, and the speed-up ratios are given. No-
tice that the ratio is almost constant for all e and that the difference between
the neighboring columns, which are the times for two matrix multiplications,
are also almost constant. These constant values reflect the characteristics of the
processors. We observed similar results in other combinations. We simply give
their summary without indicating actual timings.

– Complicated timings in the case that the working set of memory exceeds the
capacity of cache memory (n ≥ 256 with (HT) and n ≥ 512 with (X2)).

– With (HT), if p = 911 or n = 512, the speed-up ratio decreases to around
1.2, even though CPU’s are almost fully utilized.

– With (HT), no such degrade by the magnitude of p.

Vector Sequence. Akb for k = 1, ..., e, where A ∈ Zp
n×n and b ∈ Zp

n. Again,
various combinations of the values for n, e and p are tested. Table 2 lists the
average computing times (μsec) for a single dot-product of vectors of length
n. Our experiments showed that loop unrolling is effective for p = 911, and
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Table 3. Timings of multiple invocations of the Berlekamp algorithm

(HT) (X2)
n 100 200 400 800 100 200 400 800

original:sequential 1.751 4.815 28.48 408.7 1.879 6.539 28.04 338.8
(2)-(B-1) 1.851 4.927 28.60 431.6 4.434 14.18 40.00 347.9
(2)-(B-2) 1.875 5.643 102.0 495.6 1.391 4.450 29.72 286.9

Table 4. Timings of polynomial multiplication

(x + 1)n × (x + 1)m (x + y + 1)n × (x + y + 1)n

n 100 200 400 800 400 800 1600 40 50 60 70 80
m ↑ ↑ ↑ ↑ 1600 1600 1600

(HT)-(1) 23.97 104.30 500.1 3279 3427 9854 30400 1664 3749 7576 14050 24170
(HT)-(1i) 17.58 84.44 422.6 3025 3157 9173 30010 1299 2958 5951 11160 19260
(HT)-(2) 19.50 89.07 462.3 2872 2850 8087 25220 1413 3400 6903 12590 22000
(X2)-(1) 18.51 64.57 314.3 1982 2239 6106 16840 1149 2382 4135 10110 16150
(X2)-(1i) 11.82 46.46 242.1 1739 1865 5508 15870 822 1799 5459 7866 12230
(X2)-(2) 24.20 88.95 422.5 1747 1876 4257 10810 1664 3798 7845 14640 24280
(X2)-(2b) 16.92 86.59 400.2 1708 1823 4156 10540 1652 3736 7739 14670 24200

the computing time decreases by about 10%. Summing up the above results,
multi-threading turned out very effective for numeric algebraic calculations.

Multiple invocation of the Berlekamp algorithm. Factorization of (xn −
1024) mod p for multiple p’s. Primes actually used in the (B-1) case are 13, 17,
19, 23, 29, and in the (B-2) case, one thread used 13, 19, 29 and another did
17, 23, 31. Table 3 shows the actual timings. The method (B-1) contains data-
parallel processing for matrix elimination, but seems almost useless. Currently,
the reason of the performance degrade of (B-1) is not known, and will require
much more empirical studies. Note the performance improvement by the task-
parallel method (B-2) in the X2 case, from which we may expect the performance
improvement in non-numeric computations.

Polynomial Multiplication. The final example employs task-parallelism. Ta-
ble 4 gives timings of multiplications of univariate and bivariate polynomials,
where (1) uses the original sequential algorithm, (1i) does the improved sequen-
tial algorithm which uses the inplace operation implemented for parallelization,
and (2) does the parallel algorithm with dynamic work-queueing executed by
two threads. We observe that the parallelization is effective when the term-wise
multiplication with a polynomial is sufficiently costly and the queue is sufficiently
long, especially if multi-core processor is used. We tested the balanced-method
which employs static load-balancing before the actual multiplication on (X2),
and (2b) in the table gives the timings. In our experiment, there was slight dif-
ferences in the actual numbers of distributed terms between the two methods,
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however we observe no significant difference in the timings. In the bivariate cases,
we cannot observe any merit of parallelization so far as the simple example is
concerned.

6 Concluding Remarks

We described our effort for multi-threads parallelization by using OpenMP. Al-
though the experiments described in this paper is the first step of our project,
our attempts seem very successful, attaining the performance improvement in
some cases. The success is due to the ease of programming with OpenMP. Es-
pecially, memory management and garbage collection is always a difficult but
important problem in parallel programming. Our simple method for adaptation,
implemented with minimal modifications to the existing code, works almost fine,
and is sufficient for casual use. If we can obtain the address of the thread-local
stack area, the array for registration of allocated memory is not required and
the collector can be made almost complete.

With respect to performance, there exist some kinds of algebraic computa-
tions which indicate clear performance gain by multithreading, and among them,
numerical computation, performed efficiently by data-parallel processing, turned
out to be most effective, as was imagined. Task-parallelism is difficult to make
efficient, but our experimental results may give some prospect. Besides such re-
search subjects, development of well-tuned library programs for basic operations
in algebraic computation with vectors, matrices and polynomials will be neces-
sary to making full use of the high-spec processors. In order to realize, we need
to clarify the required functionalities in computer algebra, and design a good
interface of subroutines with memory management facility taken into account.
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Links to Projects. Mathematical Software,
icms2006—Developer’s Meeting

Abstract. This document is a collection of links and descriptions of
projects related to icms2006—developer’s meeting.

1. ActiveMath, http://www.activemath.org
License: Free and open-source for public educational institution
ActiveMath is a learning environment for mathematics. It is a web-server
based on java servlets which presents semantic OMDoc content to contem-
porary web-browsers with good quality.
ActiveMath supports the learning experience by modelling the learners’ com-
petencies in a learner-model that is fed by tracking the reading and the in-
teractive exercises. The interactive exercises can be rich and multiple-steps
exercises and use computer-algebra-systems to evaluate a learner’s input.
The content items of ActiveMath are annotated with pedagogical and math-
ematical knowledge which allows the learner to obtain courses prepared on
demand on given learning goals.
Finally, the semantic OMDoc representation allows copy-and-paste of for-
mulae and search for content items by text, annotations, or formulae.

2. Aldor, http://www.aldor.org
License: Other (BSD like)
Aldor is a computer programming language, like Scheme, Java or C$.

3. Algorithms in real algebraic geometry (interactive book)
http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-
posted1.html
License: GPL, others
Algorithms in real algebraic geometry, by S. Basu, R. Pollack and M.-F. Roy,
is a preliminary test version of an extension of the first edition published
by Springer in 2003. This interactive book is based on texmacs, and live
examples can be computed within the book through the SARAG maxima
library by F. Caruso. The final version is due to be published by Springer.

4. Arageli, http://www.unn.ru/cs/arageli
License: Free for academic and noncommercial use
Arageli is a C++ library for doing symbolic computations. It contains arbi-
trary precision integer and rational numbers, vectors, matrices, polynomials,
modular arithmetic, algorithms for number factorization, linear and integer
programming etc. Creating new mathematical structures from existing ones
(also in other libraries) is easy. Arageli is used in Skeleton, Integizer, Prelinea
projects.

5. The Atlas of Lie Groups and Representations
http://atlas.math.umd.edu/
License:

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 438–450, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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This is a project to make available information about representations of
semi-simple Lie groups over real and p-adic fields. The software is in an
early stage of development. Given a general connected complex group G,
the software will compute among other things: parameters for the irreducible
representations of G with regular integral infinitesimal character, Kazhdan-
Lusztig polynomials for representations with regular integral infinitesimal
character, .... etc. ( Alfred G. Noel, University of Massachusetts Boston)

6. BESSELINT
http://www.cs.kuleuven.be/˜nines/software/BESSELINT/
License:
BESSELINT is a Matlab program to compute integrals of the form

∫ ∞

0
xm

k∏
i=1

Jνi(aix)dx

with Jνi(x) the Bessel function of the first kind and (real) order νi. The
parameter m is a real number such that

∑
i νi +m > −1 and the coefficients

ai are strictly positive real numbers. In the near future this will be extended
to compute the Laplace transform of a product of Bessel functions with
possibly an additional factor of 1+dx2 in the denominator (where d is a real
number). (Joris Van Deun and Ronald Cools, K.U.Leuven)

7. CoCoA4, http://cocoa.dima.unige.it/
License: The executables are free
The interactive system CoCoA-4.6 offers facilities for COmputations in
COmmutative Algebra: Gröbner bases and related operations on ideals and
modules, Hilbert functions, factorization of polynomials, and some exact lin-
ear algebra. CoCoA-4.6 is well-suited to teaching with its simple and math-
ematically natural command language, and an extensive online help facility.
It is free and runs on most common platforms.

8. CoCoALib, http://cocoa.dima.unige.it/
License: GPL, others
The C++ library CoCoALib offers data structures and operations for COm-
putations in COmmuative Algebra, most particularly Gröbner bases. Ease
of use through a clean design is paramount (with some concessions to guar-
antee good performance). The library comes with full documentation and
numerous example programs. A “beta” release is anticipated in late 2006. A
server and interactive system are planned.

9. Computer Algebra Animation
http://www.math.kobe-u.ac.jp/caa
License: GPL
An experimental project for algorithm animations and graphical or interac-
tive user interface in computer algebra with Java and OpenXM.

10. Coq, http://coq.inria.fr
License: LGPL
Coq is a proof assistant.
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11. DEpthLAUNAY
http://www.dma.fi.upm.es/mabellanas/delonedepth/
License: QPL
DEpthLAUNAY is a C++ software developed with CGAL
(http://www.CGAL.org) that computes the following geometric structures
given a finite set of points in the plane: convex hull, convex layers, convex lev-
els, Delaunay triangulation, Delaunay layers, Delaunay levels, and Voronoi
diagram. Input points can be randomly generated, introduced interactively
or simply aquired from image files. ( Manuel Abellanas, Universidad Politec-
nica de Madrid)

12. Epsilon, http://www-calfor.lip6.fr/˜wang/epsilon
License: Free for academic and noncommercial use
Epsilon is a library of functions implemented in Maple and Java for polyno-
mial elimination and triangular decomposition with (geometric) applications.
It has 8 modules and contains more than 70 functions, with documentation,
examples, and Maple worksheets. (Dongming Wang, Beihang University,
China and UPMC-CNRS, France)

13. GAP, http://www.gap-system.org
License: GPL
GAP is a system for computational discrete algebra, with particular em-
phasis on Computational Group Theory. GAP provides a programming lan-
guage, a library of thousands of functions implementing algebraic algorithms
written in the GAP language as well as large data libraries of algebraic ob-
jects.

14. GAP package Alnuth
http://www.gap-system.org/Packages/alnuth.html
License: GPL
The Alnuth package provides various methods to compute with number fields
which are given by a defining polynomial or by generators. Some of the
methods provided in this package are written in GAP code. The other part
of the methods is imported from the Computer Algebra System KANT.

15. GCLC/WinGCLC
http://www.matf.bg.ac.yu/˜janicic/gclc/
License: Free for academic and noncommercial use
GCLC/WinGCLC is a tool for visualizing and teaching geometry (and not
only geometry), and for producing mathematical illustrations. It has support
for a range of geometrical constructions and transformations, for symbolic
expressions, parametric curves, program loops, for automated proving of
geometrical conjectures, for exporting figures into LaTeX and bitmap format
etc.

16. GEX, http://www.mmrc.iss.ac.cn/gex/
License:
Geometry Expert (GEX) is a software for dynamic geometric diagram draw-
ing and automated geometry theorem proving and discovering. As a dynamic
geometry software, GEX can be used to build dynamic visual models to assist
manipulating and teaching various mathematical concepts. As an automated



Links to Projects. Mathematical Software, icms2006—Developer’s Meeting 441

reasoning software, GEX can be used to prove and discover hundreds of
non-trivial geometry theorems automatically Geometry Expert (GEX) is a
software for dynamic geometric diagram drawing and automated geometry
theorem proving and discovering. As a dynamic geometry software, GEX can
be used to build dynamic visual models to assist manipulating and teaching
various mathematical concepts. As an automated reasoning software, GEX
can be used to prove and discover hundreds of non-trivial geometry theorems
automatically.

17. Gfan, http://home.imf.au.dk/ajensen/software/gfan/gfan.html
License:
Gfan is a command line tool for enumerating the reduced Gröbner bases of
a polynomial ideal in n variables. Hereby the Gröbner fan, an n-dimensional
polyhedral complex, is computed. The tropical variety is a certain subcom-
plex which can also be computed by the software. Gfan uses Gmp and Cddlib
for exact arithmetic and polyhedral computations, respectively.

18. GiNaC, http://www.ginac.de/
License: GPL
GiNaC looks like a computer algebra system and a library, but the name
GiNac is an iterated and recurseive abbreviation for GiNaC is Not a Com-
puter Algebra System.

19. GloptiPoly, http://www.laas.fr/˜henrion/software/gloptipoly
License: GPL, requires Matlab
Matlab/SeDuMi add-on to build and solve convex LMI relaxations of the
(generally non-convex) global optimization problem of minimizing a multi-
variable polynomial function subject to polynomial inequality, equality or in-
teger constraints. (Didier Henrion and Jean-Bernard Lasserre, LAAS-CNRS,
Toulouse, France)

20. GiANT: Graphical Algebraic Number Theory
http://giantsystem.sourceforge.net
License: GPL
GiANT is a graphical interface for working with number fields. GiANT of-
fers interactive diagrams, drag-and-drop functionality, and typeset formulas.
GiANT is written in Java, but uses KASH to perform its computations.

21. GMP: GNU Multiple Precision Arithmetic Library
http://www.swox.com/gmp
License: LGPL
GMP is a free library for arbitrary precision arithmetic, operating on signed
integers, rational numbers, and floating point numbers. There is no practical
limit to the precision except the ones implied by the available memory in the
machine GMP runs on. GMP has a rich set of functions, and the functions
have a regular interface.

22. HOL Light
http://www.cl.cam.ac.uk/users/jrh13/hol-light/index.html
License: Custom BSD-like
HOL Light is a theorem prover for classical higher-order logic. It is a ratio-
nalized re-implementation in Objective CAML (OCaml) of Mike Gordon’s
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original HOL system. HOL Light generates proofs using very low-level prim-
itive inference steps, but has numerous higher-level automated rules and a
good library of pre-proved mathematics. ( John Harrison.)

23. jReality, http://www.jreality.de
License:
jReality is a library that allows for interactive manipulation of scientific data
on a wide variety of platforms. It is written in Java. The output media include
software only Java rendering, hardware accelerated OpenGL rendering stereo
viewing, immersive virtual reality applications like in the PORTAL as well
as file formats like PIXAR’s renderman and SVG.

24. jtem - Java Tools for Experimental Mathematics
http://www.jtem.de
License: GPL
jtem is a collection of mostly mathematical tools and algorithms imple-
mented in Java. The libraries include a wide range from complex numbers
to theta-functions, basic linear algebra and adaptive ODE solvers.

25. KASH/KANT, http://www.math.tu-berlin.de/˜kant/kash.html
License: Other
KASH/KANT is a computer algebra system specialized for algebraic number
theory and its applications. It offers powerful functions for working with
number fields, function fields, and local fields, as well as functions for solving
Diophantine equations. The KANT shell KASH provides a programming
language and an interactive help system.

26. KENZO, http://www-fourier.ujf-grenoble.fr/˜sergeraert/Kenzo
License:
KENZO program is a Common Lisp Object System (CLOS) whose purpose
is to compute various invariants in Algebraic Topology Framework (mainly
homology groups). It implements and uses numerous algebraic structures as
dg-algebras, simplicial groups, morphisms, reductions, chain complexes, etc.
It allows to compute homology groups of sophisticated spaces.

27. KENZO package for A-infinity structures: ARAIA and CRAIC
http://www.ehu.es/aba/investigation.htm
License:
The package component we add to KENZO allows us to compute A-infinity-
(co)algebra structures induced on the small module of a reduction if the big
dg-module is a (co)algebra. (Ainhoa Berciano Alcaraz)

28. KETpic, http://www.kisarazu.ac.jp/˜masa/math/E.html
License: Free for academic and noncomercial use
KETpic is a macro package for Maple, which generates TEXsource codes for
clear drawings. This supports users to draw every kind of complicated figure
easily with the highest accuracy. The current version as well as the latest
Maple runs on major OS: Windows, Mac and Linux. One can download
the package, various samples, the command reference and a template of
TEXsource from the indicated web site. (Masayoshi SEKIGUCHI)

29. KNOPPIX/math, http://www.knoppix-math.org
License:
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KNOPPIX/Math is a project to archive free mathematical software and free
mathematical documents and provide them on KNOPPIX.

30. libMpIeee, http://www.mpieee.ua.ac.be
License:
libMpIeee is a C++ software library for radix 2n or 10m mixed precision
floating-point arithmetic, that is fully compliant with the IEEE 754/854
standards for floating-point arithmetic.

This implies, among others, that the basic operations as well as the re-
mainder and square root operations are exactly rounded, involving a relative
error of at most 0.5 units in the last place (ULP) for round to nearest and
1 ULP for directed roundings. As required by the IEEE 754/854 standards,
libMpIeee also provides denormal numbers, signed zeroes, signed infinities
and NaN (Not-a-Number).

Moreover, the conversions between decimal and binary are implemented
to satisfy the same error bound as the basic operations. The elementary
functions are computed with a relative error of at most 1 ULP for round to
nearest and 2 ULP for directed roundings. More information on the imple-
mentation of these elementary functions can be found in the contribution
”Towards reliable software for the evaluation of a class of special functions”
by Annie Cuyt and Stefan Becuwe.

31. Linbox, http://www.linalg.org
License: LGPL
LinBox is a C++ template library for exact, high-performance linear algebra
computation.

32. LiveTeXmacs, ftp://math.cgu.edu.tw/pub/KNOPPIX
License: GPL
LiveTeXmacs is a knoppix-based live distribution for mathematical educa-
tion. Many mathematical software systems (Axiom, Gnuplot, Maxima, Oc-
tave, R etc) are integrated in this distribution. In addition to this, it also
includes free documentations for calculus, mathematical (2D/3D) visualiza-
tion and stochastic processes etc, which are made by TeXmacs.

Web applications, such as PHP, Python, Apache, SQL and Zope etc, are
also supported. Especially, the Web Mathematics Interactive is pre-installed
as the web application for Maxima, Gnuplot and more. Pre-installed devel-
opment environment gives a scalability of the distribution even with very
few knowledge about linux.

33. Logiweb, http://logiweb.eu/
License: GPL
Logiweb is an infrastructure for publication and archival of machine verified
mathematics. It allows users to publish definitions, theories, lemmas, proofs,
and computer programs. The system allows proofs to reference previously
published material across the Internet so that users in different sites may
build on top of the work of each other. (Klaus Grue, University of Copen-
hagen)

34. Macaulay2, http://www.math.uiuc.edu/Macaulay2
License: GPL
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Macaulay2 is a software system to support researches in algebraic geometry
and commutative algebra.

35. Magma, http://magma.maths.usyd.edu.au
License: Commercial
Magma is a large, well-supported software package designed to solve com-
putationally hard problems in algebra, number theory, geometry and combi-
natorics. It provides a mathematically rigorous environment for computing
with algebraic, number-theoretic, combinatoric and geometric objects.

36. Maple, http://www.maplesoft.com
License: Commercial
Maple is a tool for solving mathematical problems and creating interactive
technical applications.

37. Mathematica, http://www.wolfram.com
License: Commercial
Mathematica is a system for doing mathematics. The cite also provides
http://functions.wolfram.com (a data base for special functions) and
http://library.wolfram.com (a collection of notebooks).

38. math-polyglot, http://www.math.kobe-u.ac.jp/math-polyglot
License: GFL, BSD
This project is started for editing icms2006 — developer’s meeting
DVD’s. It provides sample codes for mathematical software systems in our
DVD’s. Samples are grouped with mathematical problems. This project also
provides inputs for testing and checking if the installation is properly done
to the knoppix-math. The project will be moved to a MediaWiki of knoppix-
math after the icms2006. (Nobuki Takayama, Kobe University)

39. MATLAB, http://www.mathworks.com
License: Commercial
Matlab is a language for technical computing and an interactive environment.

40. Mizar, http://www.mizar.org
License:
Mizar project provides a database for mathematics (7000 definitions, 40000
theorems) as well as the mizar system.

41. MPFR library for multiple precision floating point computation
http://www.mpfr.org
License: LGPL
The MPFR library is a C library for multiple-precision floating-point com-
putations with exact rounding (also called correct rounding). It is based on
the GMP multiple-precision library. The main goal of MPFR is to provide
a library for multiple-precision floating-point computation which is both ef-
ficient and has a well-defined semantics.

42. Multi Parametric Toolbox, http://control.ee.ethz.ch/˜mpt/
License: GPL
The Multi-Parametric Toolbox (MPT) is a free Matlab toolbox for design,
analysis and deployment of optimal controllers for constrained linear, nonlin-
ear and hybrid systems. Efficiency of the code is guaranteed by the extensive
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library of algorithms from the field of computational geometry and multi-
parametric optimization.

The toolbox offers a broad spectrum of algorithms compiled in a user
friendly and accessible format: starting from different performance objectives
(linear, quadratic, minimum time) to the handling of systems with persistent
additive and polytopic uncertainties. Users can add custom constraints, such
as polytopic, contraction, or collision avoidance constraints, or create custom
objective functions. Resulting optimal control laws can either be embedded
into your applications in a form of a C code, or deployed to target platforms
using Real Time Workshop.

43. MuPad, http://www.mupad.de
License: Commercial
MuPad is a mathematical expert system mainly symbolic/algebraic compu-
tation and numerical calculations with arbitrary accuracy.

44. MuPAD-Combinat , http://mupad-combinat.sourceforge.net
License:
MuPAD-Combinat is an open-source algebraic combinatorics package for
the computer algebra system MuPAD http://www.mupad.de. Its main pur-
pose is to provide an extensible toolbox for computer exploration, and foster
code sharing between researchers in this area. The core of the package is
integrated in the official library of MuPAD since version 2.5.0.

45. NZMATH, http://tnt.math.metro-u.ac.jp/nzmath/
License: BSD
NZMATH is a number theory oriented calculation system based on the
scripting language Python. It is currently providing the Python library pack-
age named nzmath, which contains modules for primality testings, factor-
ization, polynomial, matrix, elliptic curves, etc. ( MATSUI Tetsushi, Tokyo
Metropolitan University)

46. Oorange, http://www.oorange.de
License: GPL
Oorange is a development environment that was initially designed for exper-
imental mathematics but has become a general Java programming tool. It’s
main feature is its interactive programming, also known as rapid prototyp-
ing. It also fits into component oriented development.

47. OpenMath, http://www.openmath.org
License:
OpenMath is an emerging standard for representing mathematical objects
with their semantics, allowing them to be exchanged between computer pro-
grams, stored in databases, or published on the worldwide web.

48. OpenXM, http://www.openxm.org
License: BSD, GPL, FFL
OpenXM is an infrastructure for communications among mathematical soft-
ware systems. The project has proposed protocols OpenXM RFC 100, 101,
102, 103, 104. The OpenXM package is a collection of software systems
supporting OpenXM protocols. The current distribution contains asir, sm1,
Macaulay 2, PHCpack, gnuplot, polymake, cdd, ntl, pari, supports for Maple,
Mathematica, OpenMath, and some small sized systems.
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49. webOrigami
http://weborigami.score.cs.tsukuba.ac.jp/webOrigami/jsp/
License:
Origami assistant on a web.

50. ORMS, http://orms.mfo.de
License:
The Oberwolfach References on Mathematical Software (ORMS) project is a
web-interfaced collection of information and links on mathematical software,
see http://orms.mfo.de.
It presents carefully selected software, including general purpose software
systems, teaching software, and more specialized packages up to specific im-
plementations on particular mathematical research problems. Each software
package is presented by a short description of its mathematical features, in-
formation on basic properties like license type and distribution media are pro-
vided, and links to syntax examples, possible demo versions and manuals are
given. The ORMS offers a choice of retrieval functions, for example, searching
via browsing through a mathematical classification scheme, a structured key
word search, and a full text search in the description of the software systems.
The success of this project will rely on the co-operation of experienced
users from different areas of mathematical software. We therefore encour-
age discussion (at orms@mfo.de) and we will be grateful to contributions (at
contrib-orms@mfo.de).

51. Pari-GP, http://pari.math.u-bordeaux.fr
License: GPL
The PARI system is a package which is capable of doing formal computations
on recursive types at high speed. It is primarily aimed at number theorists,
but is useful to anyone whose primary need is speed. The functionality of
PARI is available through a sophisticated programmable calculator, named
GP, which also implements many features of high level languages.

52. PHCpack, http://www.math.uic.edu/˜jan/download.html
License: GPL, free software
PHCpack is a package for Polynomial Homotopy Continuation. Version 1
was archived by ACM TOMS as Algorithm 795. Currently it is a platform
for “numerical algebraic geometry” providing algorithms developed jointly
with Andrew Sommese and Charles Wampler. Contributions made by Anton
Leykin, Yusong Wang, Ailing Zhao, and Yan Zhuang. ( Jan Verschelde, UIC.)

53. PHCmaple, http://www.math.uic.edu/˜leykin/PHCmaple
License: GPL
This Maple package provides a convenient interface to the functions of PHC-
pack, a collection of numerical algorithms for solving polynomial systems
using polynomial homotopy continuation.

54. polymake, http://www.math.tu-berlin.de/polymake/
License: GPL
polymake is a modular, object-oriented tool for experimental discrete ge-
ometry. The main applications are dealing with polytopes and polyhedra,
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polyhedral surfaces, and finite simplicial complexes. It offers an unified in-
terface to a wide variety of free software packages from the field, especially
for visualisation. It can be used interactively as well as driven by perl scripts
or C++ programs. (Ewgenij Gawrilow, Technische Universität Berlin, and
Michael Joswig, Technische Universität Darmstadt)

55. ProofPower
http://www.lemma-one.com/ProofPower/index/index.html
License: GPL
ProofPower is a tool for specification and proof in Higher-Order Logic (HOL)
and in the Z Notation, based on a re-engineering of Mike Gordon’s original
HOL system. Like other systems in the LCF tradition, it uses a powerful
strongly-typed functional programming language (Standard ML) to ensure
logical correctness by reducing all proof steps to primitive inferences rules
and to provide a rich and extensible repertoire of automated derived inference
rules and decision procedures. Its is used commercially for the verification
of safety-critical avionics control systems. Libraries of discrete and continu-
ous mathematics have been and continue to be developed to support these
applications and for their intrinsic interest.

56. QaoS - Querying Algebraic Objects System
http://www.math.tu-berlin.de/˜kant/database.html
License: BSD like
QaoS (Querying Algebraic Objects System) is a stand-alone solution for ac-
cess to the KANT databases of algebraic and transcendental field extensions.
QaoS transfers information via the hypertext transport protocol (HTTP).
It can be accessed through a web interface and various computer algebra
systems (GAP 4, KASH 2.56, KASH 3, Maple, and SAGE).

57. Risa/Asir, http://www.math.kobe-u.ac.jp/Asir
License: Other(FFL, BSD)
Risa/Asir is a computer algebra system. Here is a list of some commands:
fctr (factorization), gr, nd gr main (Grobner basis), primadec (primary ideal
decomposition), af (factorization over algebraic numbers), ifplot (plot of im-
plicit functions), ox * (OpenXM communication functions), generic bfct (b-
function).

58. SAGE: Software for Algebra and Geometry Experimentation
http://sage.scipy.org/sage
License: GPL
The Python-based computer algebra system SAGE comes with the systems
GAP, PARI, Singular. and provides interfaces KASH/KANT, Gnuplot, Oc-
tave, Magma, Mathematica, and Maple. It includes functions for basic al-
gebraic geometry, elliptic curves over the rational numbers, modular forms,
linear algebra and Z-modules, and noncommutative algebra.

59. SARAG
http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-
posted1.html
License: GPL
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SARAG(Some Algorithms in Real Algebraic Geometry) is a software library
that implements some algorithms in real algebraic geometry written in the
free computer algebra system Maxima. SARAG has two main applications:
extending the capabilities of Maxima and being part of the interactive ver-
sion of the book “Algorithms in Real Algebraic Geometry” by S. Basu, R.
Pollack, M.-F. Roy, which can be now freely downloaded.

60. sgpviz, http://www.gap-system.org/Packages/sgpviz.html
License:
The GAP package sgpviz is a package designed to visualize finite semigroups
through their D-classes or Cayley graphs, as well as to make friendlier the
usage of GAP when dealing with finite semigroups.

61. Singular, http://www.singular.uni-kl.de
License: GPL, others
Singular is a Computer Algebra System for polynomial computations with
emphasis on the special needs of commutative algebra, algebraic geometry,
and singularity theory. Singular’s main computational objects are ideals
and modules over a large variety of rings, including local rings and non-
commutative G-algebras (in the subsystem Plural). Large variety of algo-
rithms, including those based on Gröbner and standard bases, have powerful
implementations in Singular.

62. Strong Noether Position
http://www-calfor.lip6.fr/˜hashemi/Noether
License:
We introduce the notion of a homogeneous ideal in Strong Noether Posi-
tion (SNP); a new definition for the notion of generic coordinates for some
problems. This definition is simple to check, because one can test it for the
initial ideal of the ideal with respect to the degree reverse lexicographic or-
dering. It is explicit, because we can provide an algorithm to decide whether
a monomial ideal is in SNP or not. We propose some methods to compute
the Castelnuovo-Mumford regularity of an ideal which one of them is more
efficient than that of [Bermejo-Gimenez, 2005]. ( Amir Hashemi)

63. Surface Evolver
http://www.susqu.edu/facstaff/b/brakke/evolver/
License:
The Surface Evolver is an interactive program for the study of surfaces
shaped by surface tension and other energies, and subject to various con-
straints. A surface is implemented as a simplicial complex (a union of trian-
gles) and is evolved toward minimal energy by a gradient descent method.
The Evolver can handle arbitrary topology. Graphical output is available in
several file formats.

64. surfex, http://www.surfex.algebraicsurface.net
License: Freeware
surfex is a tool for interactive high quality real algebraic surface visualization.
It is mainly an intuitive interface which combines the strenghts of several
visualization tools; at the moment, these include surf, javaview, and convert.
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One of the main features of surfex is the interactive visualization of families
of algebraic varieties: The user can introduce parameters into some implicit
equations and then play with these parameters via sliders. E.g., this allows
one to visualize deformations of surface singularities.

All the pictures can easily be exported, either as an animation which
shows the whole deformation process, or as a snapshot of a single variety.
The user can specify the quality of the output which can range from very
high quality for printed publications to lower quality for websites.

We also implemented a library for the computer algebra system Singular,
called surfex.lib, which enhances the quality of the visualization of surfex
using pre-computation of the singular locus etc.

65. SYNAPS, http://www-sop.inria.fr/galaad/logiciels/synaps
License: GPL
SYNAPS (SYmbolic Numeric APplications) is a C++ library devoted to
symbolic and numeric computations. It provides data-structures for the ma-
nipulation of basic algebraic objects, such as vectors, matrices (dense, sparse,
structured), univariate and multivariate polynomials. It contains solvers for
univariate and multivariate polynomials, including generalized normal form
or subdivision solvers, tools for the manipulatiion of algebraic numbers, for
the construction of resultants, ...

66. TC, ftp://tnt.math.metro-u.ac.jp/pub/math-packs/tc/
License: GPL
TC (Tiny C) is an interpreter of multi-precision C language suitable for
floating-point calculations of several thousands digits which often appear
in computational algebraic number theory. Furthermore TC ver.4, which is
equipped with PARI library and turned TCP ver.1, provides frequently used
PARI library functions by C-like functions which are easy to call from TC.
(Takashi Fukuda)

67. TeXmacs, http://www.texmacs.org
License: GPL
GNU TeXmacs is a free wysiwyw editing platform for scientists.

68. Virtual Math Laboratories, http://www.jreality.de
License: GPL
Virtual Math Labs is a collection of educational and scientific java web start
applications. The library of mathematical experiments shows topics from
varies areas, e.g. dynamical systems, polyhedral surfaces, calculus, and curves
and surfaces.

About this document

This document, edited by Masayuki Noro and Nobuki Takayama, is dis-
tributed under the GNU Free Documentation License Version 1.2. June
27, 2006.
List of contributors of this document: Ainhoa Berciano Alcaraz, Al-
fred Gerard Noel, Amir Hashemi, Anders Nedergaard Jensen, Anton
Leykin, Bernard Mourrain, Chu-ching Huang, Colin Jones, Dongming
Wang, Ewgenij Gawrilow, Fabrizio Caruso, Francois Descouens, Fukuda
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Narváez Macarro, Luis 132
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