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Abstract. k-times anonymous authentication (k-TAA) schemes allow
members of a group to be authenticated anonymously by application
providers for a bounded number of times. Dynamic k-TAA allows appli-
cation providers to independently grant or revoke users from their own
access group so as to provide better control over their clients. In terms of
time and space complexity, existing dynamic k-TAA schemes are of com-
plexities O(k), where k is the allowed number of authentication. In this
paper, we construct a dynamic k-TAA scheme with space and time com-
plexities of O(log(k)). We also outline how to construct dynamic k-TAA
scheme with a constant proving effort. Public key size of this variant,
however, is O(k).

We then construct an ordinary k-TAA scheme from the dynamic
scheme. We also describe a trade-off between efficiency and setup freeness
of AP, in which AP does not need to hold any secret while maintaining
control over their clients.

To build our system, we modify the short group signature scheme into
a signature scheme and provide efficient protocols that allow one to prove
in zero-knowledge the knowledge of a signature and to obtain a signature
on a committed block of messages. We prove that the signature scheme
is secure in the standard model under the q-SDH assumption.

Finally, we show that our dynamic k-TAA scheme, constructed from
bilinear pairing, is secure in the random oracle model.

Keywords: k-TAA, dynamic k-TAA.

1 Introduction

Teranisi et al. [18] proposed k-times anonymous authentication (k-TAA) so
that users of a group can access applications anonymously while application
providers (AP) can decide the number of times users can access their applica-
tions. In k-TAA, there are three entities, namely, group manager (GM), applica-
tion providers (AP) and users. Users first register to GM and each AP announce
independently the allowable number of access to its application. A registered
user can then authenticate himself to the AP’s anonymously, up to the allowed
number of times. Anyone can trace a dishonest user who tries to access an ap-
plication for more than the allowable number of times.
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In k-TAA, AP’s have no control over the group of users accessing their appli-
cations. In actual scenarios, AP’s may wish to select their own group of users.
Dynamic k-TAA, proposed by Nguyen et al. [15], has added this flexibility over
ordinary k-TAA systems. In a dynamic k-TAA, the role of AP’s is more active
and they can select their user groups, granting and revoking access of registered
users independently.

Many existing k-TAA schemes (and dynamic k-TAA schemes) [18,15] are quite
efficient, with time and space complexities independent of the total number of
users. However, size of the public key of AP’s, together with the communication
cost between users and AP’s, are both of order O(k). The computational cost
of the user for an authentication protocol is also of order O(k). In this paper,
we construct k-TAA and dynamic k-TAA scheme with complexity of O(log(k)).
We also outline how to reduce the proving cost to O(1) at the cost of public key
size of AP.

In constructing our scheme, we modify the short group signature from Boneh
et al. [2] into a signature scheme, which we shall referred to as BBS+ signature,
with two protocols, similar to [8,10] (referred to as CL, CL+ respectively here-
after). We do not claim originality of this modification as it has been outlined in
[10]. However, we supply the details of the modification, together with the pro-
tocols and analyze its security. In particular, the protocol of showing possession
of a signature is different from [2] in which the modified protocol achieve per-
fect zero-knowledge while the original protocol is computational. We prove that
BBS+ signature is secure in the standard model under the q-SDH assumption.
This BBS+ signature could be used as building blocks for other cryptographic
systems. It has similar properties to CL (based on Strong RSA) and CL+ sig-
natures (based on LRSW). To sign a block of messages, the signature scheme
outperforms the existings schemes in the literature (signature size of CL+ is
linear to number of messages in the block to be signed, CL is 1346 bits while
BBS+ is only 511 bits).

The recently proposed group signature from [5] can also be modified into
signature scheme with efficient protocol secured in the stand model. However,
the signing of a message have to be done in a bit-by-bit manner.

1.1 Related Works

Very recently, Teranishi and Sako [19] proposed an ordinary k-TAA scheme with
constant proving cost. We shall refer to it as TS06 hereafter. Our ordinary k-
TAA scheme, constructed from the dynamic one following the outline of [15],
is very similar to TS06. Our construction can be thought of as an extension
of TS06 to dynamic k-TAA to give AP more control over their clients. This
is achieved by the use of dynamic accumulator and the idea of using dynamic
accumulator for access control was introduced in [9]. Finally, as pointed out in
[19], k-TAA shares certain similarities with compact e-cash schemes, introduced
in [7]. The main difference being in k-TAA schemes, each provider may chooses
its only k and a user could authenticated himself k1 times to provider-1, k2
times to provider-2, etc., while in a compact e-cash scheme, the user can only
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spend his wallet a total of k times to all the shops combined. Nevertheless, the
techniques used in our scheme is very similar to the compact e-cash scheme
[7]. The main difference being we show how to incorporate the provider’s name
into the pseudo-random function such that authentication to different providers
cannot be linked together.

Finally, the BBS+ signature we analyzed can be regarded as an extension of
a digital signature scheme very recently proposed by [16] to support signing of
block of committed messages.

Our Contributions

– we construct efficient dynamic k-TAA, k-TAA scheme.
– we reduce the security of our scheme to well-known intractable assumptions

in the random oracle model.
– we analyze an modification of the BBS group signature, provide efficient

protocols, and show its security in the standard model.

Organization. The rest of the paper is as follows. Preliminaries are presented
in Section 2. We then briefly review the security notions in section 3. Our con-
struction is shown in Section 4, followed by its variants in Section 5. Complexity
and security analysis are given in Section 6. Finally, we conclude in Section 7.

2 Preliminaries

2.1 Notations

Let e be a bilinear map such that e : G1 × G2 → GT .

– G1 and G2 are cyclic multiplicative groups of prime order p.
– each element of G1, G2 and GT has unique binary representation.
– g0, h0 are generators of G1 and G2 respectively.
– ψ : G2 → G1 is a computable isomorphism from G2 to G1, with ψ(h0) = g0.
– (Bilinear) ∀x ∈ G1, y ∈ G2 and a, b ∈ Zp, e(xa, yb) = e(x, y)ab.
– (Non-degenerate)e(g0, h0) �= 1.

G1 and G2 can be same or different groups. We say that two groups (G1, G2)
are a bilinear group pair if the group action in G1, G2, the isomorphism ψ and
the bilinear mapping e are all efficiently computable.

2.2 Mathematical Assumptions

Definition 1 (Decisional Diffie-Hellman). The Decisional Diffie-Hellman
(DDH) problem in G is defined as follow: On input a quadruple (g, ga, gb, gc) ∈
G

4, output 1 if c = ab and 0 otherwise. We say that the (t, ε)-DDH assumption
holds in G if no t-time algorithm has advantage at least ε over random guessing
in solving the DDH problem in G.
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Definition 2 (q-Strong Diffie-Hellman). The q-Strong Diffie-Hellman (q-
SDH) problem in (G1, G2) is defined as follow: On input a (q + 2)-tuple (g0, h0,

hx
0 , hx2

0 , · · · , hxq

0 ) ∈ G1 × G
q+1
2 , output a pair (A, c) such that A(x+c) = g0 where

c ∈ Z∗
p. We say that the (q, t, ε)-SDH assumption holds in (G1, G2) if no t-time

algorithm has advantage at least ε in solving the q-SDH problem in (G1, G2).

The q-SDH assumption is shown to be true in the generic group model [1].

Definition 3 (y-Decisional Diffie-Hellman Inversion Assumption). The
y-Decisional Diffie-Hellman Inversion problem (y-DDHI) in prime order group
G is defined as follow: On input a (y + 2)-tuple g, gx, gx2

, · · · , gxy

, gc ∈ Gy+2,
output 1 if c = 1/x and 0 otherwise. We say that the (y, t, ε)-DDHI assumption
holds in G if no t-time algorithm has advantage at least ε over random guessing
in solving the y-DDHI problem in G.

2.3 Building Blocks

Verifiable Random Function. Our constant-size dynamic k-TAA make use
of verifiable random function (VRF), introduced in [13]. Informally speaking, a
VRF is a pseudo-random function with non-interactive proof of correctness of its
output. The VRF used in our paper is due to Dodis et al. [11] and is described as
follows. The pseudo-random function f is defined by a tuple (Gp, p, g, s), where
GT is a cyclic group of prime order p, g a generator of Gp and s is a seed in Zp. On
input x, fGp,p,g,s(x) = g

1
s+x+1 . Efficient proof such that the output is correctly

formed (with respect to s and x in some commitment scheme such as Pedersen
Commitment [17]) exists and the output of f is indistinguishable from random
elements in Gp if the y-DDHI assumption in Gp holds. The verifiable random
function in [11] uses a stronger bilinear version of the y-DDHI assumption, see
[7] for details.

Accumulator. Our construction is built based on the accumulator with one-
way domain due to [14]. Rougly speaking, an accumulator is an algorithm to
combine a large set of values ({xi}) into a short value v. For each value xj ∈ {xi},
a witness wj exists and with wj , it can be proved that x is indeed accumulated
into v. An accumulator is dynamic if it allows values to be added or deleted
dynamically.

Signature Scheme with Efficient Protocols. In this paper, a signature
scheme with efficient protocols refers to signature scheme with two protocols:
(1) a protocol between a user and a signer with keys (pk, sk). Both user and
signer agreed on a commitment scheme such as Pedersen commitment. The user
input is a block of messages (m1, · · · , mL) and a random value r such that
C=PedersenCommit(m1, · · · , mL, r). After executing the protocol, user obtains
a signature on (m1, · · · , mL) from the signer while the signer learns nothing
about the block of messages. (2) a protocol to proof the knowledge of a signa-
ture. This allows the user to prove to a verifier that he is in possession of a
signature. Examples include CL signature, CL+ signature [8,10]. In this paper,
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we analyze another signature scheme with efficient protocols which is a modifi-
cation of the short group signature from Boneh et al.[2], that we referred to as
BBS+ signature.

3 Security Model

3.1 Syntax

We follow the model of dynamic k-TAA in [15] and briefly review them. A dy-
namic k-times anonymous authentication is a tuple (GMSetup, Join, APSetup,
GrantingAccess, RevokeingAccess, Authentication, PublicTracing) of six polynomial
time algorithms between three entities GM, APs, users. The following enumer-
ates the syntax.

– GMSetup. On input a unary string 1λ, where λ is a security parameter,
the algorithm outputs GM secret key gsk and group public key gpk. All
algorithms below have implicitly gpk as one of their inputs.

– Join Protocol. This protocol allows a user to join the group and obtain a
member public/secret key pair (mpk, msk) from GM. The GM also add the
user’s identification and member public key to an identification list.

– APSetup. An AP publishes its identity ID and announces the number of
times k a group member can access its application. It may also generate
certain public and private key for the AP.

– GrantingAccess. Each AP manages its own access group AG which is initially
empty. This procedure allows the AP to give selected group members the
permission to access his application.

– RevokingAccess. It allows the AP to remove a member from his access group
and stop a member from accessing his application.

– Authentication Protocol. The user authenticated himself to an AP under this
protocol. The user is authenticated only if it is in the access group of the
AP and the number of accesses have not exceeded the allowed number k.
AP records the transcripts of authentication in an authentication log.

– PublicTracing. Anyone can execute this procedure using public information
and the authentication log. The outputs are user i’s identity, GM or NO-ONE
which indicates “user i tries to access more than k times”, “the GM cheated”
and “there is no malicious entity in this authentication log” respectively.

A dynamic k-times anonymous authentication must possess Correctness which
means that an honest member who is in the access group of an honest AP, and
has not authenticate himself for more than the allowed number of times, must
be authenticated by the AP.

3.2 Security Notions

We briefly recall security requirements, for formal definition please refer to
[15,18].



116 M.H. Au, W. Susilo, and Y. Mu

– D-Detectability. Roughly speaking, it means that a subset of colluded users
cannot perform the authentication procedure with the same honest AP for
more than the allowed number of times, or they must be detected by the
PublicTracing algorithm.

– D-Anonymity. It is required that no collusion of AP, users and GM can
distinguish between authentication executions of two honest group members
who are in the access group of the AP.

– D-Exculpability. It is required that an honest user cannot be accused of hav-
ing performed the authentication procedure with the same honest AP for
more than the allowed number of time. It is also required that the Public-
Tracing algorithm shall not output GM if the GM is honest even though the
AP and the users colludes.

4 Our Construction

Our dynamic k-TAA is built from the q-SDH based accumulator due to Nguyen
[14] and a modification of the BBS group signature [2], that we call BBS+
signature, which is a signature scheme with efficient protocols. BBS+ signature
is unforgeable against adaptive chosen message attack in the standard model
under the q-SDH assumption and we also propose two protocols:(1) for issuing
a signature on a committed value (so the signer has no information about the
signed value), and (2) for proving knowledge of a signature on a committed
value. We first describe the global common parameters, followed by descriptions
of BBS+ signature and finally our dynamic k-TAA scheme.

4.1 Global Common Parameters

Let λ be the security parameter. Let (G1, G2) be a bilinear group pair with
computable isomorphism ψ as discussed such that |G1| = |G2| = p for some
prime p of λ bits. Assume Gp be a group of order p where DDH is intractable.
Let H : {0, 1}∗ → Zp, Hevt{0, 1}∗ → Gp be cryptographic hash functions. Let
g0, g1, g2, g3 be generators of G1, h0, h1, h2, h3 be generators of group G2 such
that ψ(hi) = gi and u0, u1, u2, u3 be generators of Gp such that relative discrete
logarithm of the generators are unknown. One possible way is to make use of
some hash functions f : {0, 1}∗ → G1, g : {0, 1}∗ → Gp and set hi = f(seed, i),
gi = ψ(hi), ui = g(seed, i) for some publicly known seed.

Remarks: the generation of this common parameters can be done by GM or some
trusted third parties.

4.2 BBS+ Signature

The idea of modifying the BBS group signature into a signature with efficient
protocols is stated in [10]. We supply the details, provide efficient protocols and
prove its security.

KenGen. Randomly choose γ ∈R Z∗
p and compute w = h0

γ . The secret key is γ
and the public key is w.
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Signing block of messages. On input (m1, · · · , mL) ∈ ZL
p , choose e and a random

number s, compute A = [g0g
s
1g

m1
2 gm2

3 · · · gmL

L+1]
1

e+γ . Signature on (m1, · · · , mL)
is (A, e, s).

Signature Verification. To verify a signature (A, e, s) on (m1, · · · , mL) , check if
e(A, whe

0) = e(g0g
s
1g

m1
2 gm2

3 · · · gmL

L+1, h0).
Regarding security of BBS+ signature whose proof shall appear in the full

version of the paper.

Theorem 1. BBS+ signature is unforgeable against adaptively chosen message
attack under the q-SDH assumption.

Protocol for Signing Committed Block of Messages. The user computes a Pedersen
Commitment on the block of messages to be signed by Cm = gs′

1 gm1
2 gm2

3 · · · gmL

L+1.
The user also needs to prove to the signer that Cm is correctly formed by the
following PK: PK{(s′, m1, · · · , mL) : Cm = gs′

1 gm1
2 gm2

3 · · · gmL

L+1}. The signer
then chooses s′′, e, computes A = [g0g

s′′

1 Cm]
1

e+γ and sends back (A, e, s′′) back
to the user. The user computes s = s′ + s′′ and the signature on the block of
messages is (A, e, s). For whatever block of messages (m1, · · · , mL), there exists
an s′ such that Cm = gs′

1 gm1
2 gm2

3 · · · gmL

L+1 and s′ completely hides the information
about the block of messages. Thus, the signer learns nothing about the block of
messages to be signed.

Proof of Knowledge of A Signature. We give a zero-knowledge proof of knowl-
edge protocol for showing possession of a signature. Using any protocol for
proving relations among components of a discrete-logarithm representations of
a group element [6], it can be used to demonstrate relations among compo-
nents of a signed block of messages. A user possessing a signature (A, e, s) on
the block of message (m1, · · · , mL) can compute SPK{(A, e, s, m1, · · · , mL) :
Ae+γ = g0g

s
1g

m1
2 gm2

3 · · · gmL

L+1}(M) by first computing the following quantities:
A1 = gr1

1 gr2
2 , A2 = Agr1

2 for some randomly generated r1, r2 ∈R Z∗
p. Then it

computes the following SPK Π5.

Π5 : SPK

{
(r1, r2, e, δ1, δ2, e, s, m1, · · · , mL) :

A1 = gr1
1 gr2

2 ∧ Ae
1 = gδ1

1 gδ2
2 ∧ e(A2,w)

e(g0,h0)
=

e(A2, h0)−ee(g2, w)r1e(g2, h0)δ1e(g1, h0)se(g2, h0)m1 · · · e(gL+1, h0)mL

}
(M)

where δ1 = r1e and δ2 = r2e.

Regarding SPK Π5, we have the following theorem which is straight forward
and the proof is thus omitted.

Theorem 2. Π5 is an non-interactive honest-verifier zero-knowledge proof-of-
knowledge protocol with special soundness.

Remarks: this protocol is a different from the protocol in [2], where the HVZK is
computational (under the DLDH assumption) while Π5 is perfect. One possible
reason is that the SDH protocol in [2] is used for group signature scheme where
certain user information in ‘verifiably encrypted’ within the protocol for GM to
revoke identity of the signer.
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4.3 Overview of Our Construction

Join. The GM is in possession of the public/secret key pair of BBS+ signature.
User randomly generates x ∈ Z∗

p and ux
0 is the identity of the user. A membership

certificate of a user is a BBS+ signature (of the form (A, e) ) on the set of values
(s, t, x), where s and t are also random elements in Zp∗. Finally, (ux

0 , e) are placed
on an identification list.

GrantingAccess/RevokeAccess. Each AP generates its own accumulator due to
Nguyen [14]. It accumulates the value e into the accumulator and gives the
witness wAP to the user. To revoke access, the AP removes the value e from the
accumulator.

In the variant of our scheme (to be shown in the next section), AP only
publishes the access group and let the users work with the accumulator itself.
This makes it possible to remove the interactive granting access/revoke access
protocol. The cost is that user has to perform O(|AccessGroup|) operations to
obtain his own witness.

Authentication. The idea is to have the users prove to the AP that it is in pos-
session of a BBS+ signature (A, e, s) from the GM on the values (t, x), and that
e is inside the accumulator of the AP. To restrict the user from authenticating
himself for more than k times, pseudo-random function(PRF) due to Dodis and
Yampolskiy [11] is used as follow. Let uAP be a random element in a cyclic

group equal to hash of identity of the AP. The user computes S = u
1

s+JAP +1

AP and
proves that S is correctly formed with respect to the BBS+ signature component
s. Also, user needs to prove that 1 ≤ JAP ≤ k. In this way, for a particular AP ,
the user can only generate k valid S, which we called serial number. If he at-
tempts to authenticate himself for more than k times, duplicated serial number
has to be used and can thus be detected.

Finally, to allow revocation of identity of user attempting to authenticate him-

self for more than k times, another component T = ux
0u

R
t+JAP +1

AP is added, where
R is a random nonce chosen by the AP during each authentication attempt. User
needs to prove that T is correctly formed. In case the user attempts to use the same
serial number to authenticate twice, due to R being different, the two T ’s shall be
different. With different T ’s, identity of the cheater, ux

0 , can be computed.

Remarks: it is obvious that other signature schemes with efficient protocol such
as CL, CL+ could also be used for our scheme. However, in our case, BBS+
is most suitable for two reasons: (1) it is most efficient in our context and (2)
the accumulator we used is based on the q-SDH assumption for which security
of BBS+ signature also relies on.

4.4 Details of Our Construction

GMSetup. The GM randomly selects γ ∈R Z∗
p and computes w = h0

γ . The GM
also manages an identification list which is a tuple (i, Ui, ei) where i refers to
user i and Ui is an entry for identification of user and ei is called the membership
public key of user i. See Join for a more detailed description of this item.
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APSetup. Each AP publishes his identity ID and a number k, much smaller than
2λ. In addition, each AP selects hAP ∈ G2, qAP ∈ Z∗

p. The public and secret
keys for the AP are hAP , pAP = hqAP

AP and qAP respectively. The AP maintains
an authentication log, an accumulated value, which is published and updated af-
ter granting or revoking access of a member, and a public archive ARC which is
describe as follows. The ARC is a 3-tuple (arc1, arc2, arc3) where arc1 is a com-
ponent of the membership public key of a user, arc2 is a single bit 0/1 indicating if
the member was granted (1) or revoked (0). Finally, arc3 is the accumulated value
after granting or revoking the member. Initially, the authentication log and ARC
are empty while the accumulated value is set to hAP .

Join. User i obtains his membership secret key from GM through the following
interactive protocol.

1. User i randomly selects s′, t, x ∈R Z∗
p and sends C′ = gs′

1 gt
2g

x
3 , along with

the proof Π0 = PK{(s′, t, x) : C′ = gs′

1 gt
2g

x
3} to GM.

2. GM verifies that Π0 is valid and randomly selects s′′ ∈R Z∗
p. It sends s′′ to

the user.
3. User computes s = s′ + s′′ and add an entry (i, Ui) = (i, ux

0) to the identifi-
cation list and send a proof Π1 = PK{(s, t, x) : Ui = ux

0 ∧C = gs
1g

t
2g

x
3 ∧C =

C′gs′′

1 }.
4. GM computes C = C′gs′′

1 , check that Π1 is valid , and selects e ∈R Z∗
p.

It then computes A = (g0C)
1

e+γ and sends (A, e, s′′) to the user. GM also
appends e to the entry (i, Ui) to make it (i, Ui, e)

5. User checks if e(A, whe
0) = e(g0g

s
1g

t
2g

x
3 , h0). It then stores (A, e, s, t, x). User’s

membership public key is e and membership secret key is (A, s, t, x).

GrantingAccess. An AP grants access to user i with membership public key e and
secret key (A, s, t, x) as follows. Suppose there are j tuples in the AP’s ARC and
the current accumulated value is vj . The AP computes a new accumulated value
vj+1 = ve+qAP

j . Then the AP adds (e, 1, vj+1) to the ARC. The user keeps w = vj

as his witness that his public key has been accumulated in the accumulated
value. Existing members in the access group update their own witness by the
information of ARC as follows. User with membership key ek and witness we

such that wek+qAP
e = vj computes wnew = vjw

e−ek
e . In this case wek+qAP

new = vj+1
and wnew serves as a new witness for user ek.

RevokingAccess. An AP revokes access from user i with membership public
key e, such that (e, 1, v) is a tuple in the ARC, as follows. Suppose there are
j tuples in the AP’s ARC and the current accumulated value is vj . The AP

computes vj+1 = v
1

e+qAP

j . It then adds (e, 0, vj+1) to ARC. Similar to the case of
GrantingAccess, existing members in the access group update their own witness
by the information of ARC, which is shown as follows. Suppose user ek possesses
witness such that wek+qAP

e = vj , it computes wnew = (we/vj+1)
1

e−ek such that

wek+qAP
new = [ vj

v
qAP +ek
j+1

]
1

e−ek = [
v

qAP +e

j+1

v
qAP +ek
j+1

]
1

e−ek = vj+1.
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Authentication. The user manages a set of counters, one for each AP , JAP ,
such that it did not attempt to sign more than k times for each AP. User with
membership public key e and secret key (A, s, t, x), having granted access from
the AP and thus possesses a witness wAP such that we+qAP

AP = vAP where vAP is
the current accumulated value of the AP authenticates himself by the following
interactive protocol. For simplicity we drop the subscript AP for qAP and vAP .

– AP sends a random seed ∈ {0, 1}∗ to user. In practice, seed can be some ran-
dom number or information about the current session. Both parties compute
R = H(seed) locally.

– User computes uAP = Hevt(IDAP ) where IDAD is the identity of the AP.

User then computes S = u
1

JAP +s+1

AP , T = ux
0u

R
JAP +t+1

AP and proves in zero-
knowledge manner (1) - (5):
1. Ae+γ = g0g

s
1g

t
2g

x
3 .

2. we+q
AP = v.

3. S = u
1

JAP +s+1

AP .

4. T = ux
0u

R
JAP +t+1

AP .
5. 1 ≤ JAP ≤ k

– The above can be abstracted as

Π2 : SPK

{
(A, e, s, t, x, w, JAP ) :

Ae+γ = g0g
s
1g

t
2g

x
3 ∧ we+q = v ∧ S = u

1
JAP +s+1

AP ∧
T = ux

0u
R

JAP +t+1

AP ∧ 1 ≤ JAP ≤ k

}
(M)

– AP then verifies that the SPK is correct. If yes, then accept and saves S, T ,
R into database.

– User then increases its counter, JAP , by one.

Instantiation of Π2. Upon receiving seed, the user computes the following
quantities: A1 = gr1

1 gr2
2 gr3

3 , A2 = Agr1
2 , A3 = wAP gr2

3 , A4 = gJAP
1 gt

2g
r4
3 , S =

u
1

JAP +s+1

AP ,T = ux
0u

R
JAP +t+1

AP , R = H(seed) and computes the following SPK Π3.

Π3 : SPK

{
(r1, r2, r3, r4, δ1, δ2, δ3, δ4, δJ , δt, e, s, t, x, JAP ) :

A1 = gr1
1 gr2

2 gr3
3 ∧ Ae

1 = gδ1
1 gδ2

2 gδ3
3 ∧

e(A3,PAP )
e(v,hAP ) = e(g3, hAP )δ2e(g3, pAP )r2e(A3, hAP )−e ∧

e(A2,w)
e(g0,h0)

= e(g1, h0)se(g2, h0)te(g3, h0)xe(g3, h0)δ1e(g3, w)r1e(A2, h0)−e ∧
uAP

S = SJAP Ss ∧ A4 = gJAP
1 gt

2g
r4
3 ∧ Ax

4 = gδJ
1 gδt

2 gδ4
3 ∧

uR
AP

T = T JAP T tu−δJ
0 u−δt

0 ux
0 ∧ 1 ≤ JAP ≤ k

}
(M)

where δ1 = r1e, δ2 = r2e, δ3 = r3e, δJ = JAP x, δt = tx, δ4 = r4x.

For a more detail protocol for the range check of JAP , please refer to the
appendix A.
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PublicTracing. For two entries (SPK, S, T, R) and (SPK ′, S′, T ′, R′), if S �= S′,
then the underlying user of both authentications has not exceeded its prescribed
usage k or they are from different user.

If S = S′, then everyone can compute ux
0 = (T R′

T ′R )((R
′−R)−1). From ux

0 and
the identification list, output i as the cheating user. Now if ux

0 does exist, it can
be concluded that GM has deleted some data from the identification list and
output GM.

5 Variants of Our Scheme

5.1 Trading Computation Efficiency for Setup-Freeness

We propose a variant of our scheme where the AP enjoys a high degree of setup-
freeness. That is, the AP only needs to publish its access group, identity ID and
bound k. In this new scheme, interactive GrantingAccess and RevokingAccess
are no longer needed and there is no need for the AP to keep the ARC, too. The
price is that user will have to compute the witness for the AP by himself with a
procedure of O(n) steps, where n is the size of the access group. Moreover, each
time the access group changes, user need to perform this O(n) steps to compute
a new witness again.

We highlight the changes as follow. In the init phase, a common accumulator
is initialized for all AP’s by randomly selecting q ∈R Z∗

p and computing qi = h0
qi

for i = 1, · · · , tmax, where tmax is the maximum number of users in an access
group. This procedure can be done by the GM or a trusted third party.

In APSetup, the AP only needs to publish is identity and bound k. It also
needs to maintain a list of users allowed to access its application. Interactive
grating access and revoking access are removed. The AP simply needs to change
the content of the list of users in its access group.

Finally, users in the access group have to compute their own witness as follow.
Retrieve the list of membership public key {ej} of the AP’s access group. User
with membership public key ei ∈ {ej} first accumulates the set {ej} into a value

v by computing v = h
�k=|{ej}|

k=1 (ek+q)
0 . This quantity could be computed without

knowledge of q using the qi. Note that both user and AP can compute v locally.

The user also computes the witness w by h
�k=|{ej}|

k=1,k �=i (ek+q)
0 such that v

(q+ei)
w = v.

The rest of the protocol follows the original scheme, and same SPK Π3 is
used.

5.2 Trading Key-Size for Constant Proving Effort

Motivated by [19], we outline how to a construct dynamic k-TAA with constant
proving effort. Each AP has to publish k signatures Sig(1), · · · , Sig(k). In the
proof, instead of proving 1 ≤ JAP ≤ k (which has complexity O(log(k))), the
user proves possession of signature on JAP (which has complexity O(1)). This
indirectly proves that JAP is within the range. The price to pay is that, the
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public key size of the AP is now linear in k, and user colluding with AP can
be untraceable (since the malicious AP can issue several Sig(JAP ) for the user.
BBS+ signature is a natural candidate for the signature scheme used by the AP.

5.3 A New k-TAA Scheme

Our scheme can be further modified into an ordinary k-TAA scheme following
the outline in [15]. It should be noted that the scheme constructed this way is
very similar to the TS06 scheme. The modification is shown in appendix B.

6 Security and Efficiency Analysis

6.1 Efficiency Analysis

Following the parameters suggested by Boneh et al.[3,2], we can take p = 170
bits and each group element in G1, G2 can be represented by 171 bits. The
authentication protocol will then consists of AP sending a 160-bit seed to the
prover, while SPK Π3 consists of 16 elements in Z∗

p, 4 elements in G1 and 2
elements in Gp. Assume elements in Gp is represented by 171 bits (using another
elliptic curve group where pairing is not available[12]). Range proof of JAP could
be efficiently done if we set k = 2κ for some integer κ, using the protocol in
appendix A, bits transmitted is ((5 + 3κ) ∗ 170 + 171κ).

Then Π3 consists of 574.5 + 85 log(k) bytes. On the other hand, if we im-
plement the tradeoff described in Section 5, the range proof is replaced by the
possession of a BBS+ signature, which is of size 213 bytes. The following ta-
ble summarizes the communication cost of most (dynamic) k-TAA schemes in
the literature. Security parameters of all schemes are set such that they have
comparable security with standard 1024-bit RSA signature (though it should be
noted that, the parameters are in slight favor towards NS05 [15], since they use
group of orders of a 160-bit prime which result in a slightly weaker security than
the 1024-bit RSA signature). The first 3 entries of the table are taken from [15].
Note that k is the allowable number of authentication.

Bytes sent by AP Bytes sent by User Dynamic
TFS04 scheme 40 60k + 1617 No
NS05 ordinary 20 60k + 224 No
NS05 dynamic 20 60k + 304 Yes

Our dynamic scheme 20 700 or 574 + 85 log(k) Yes
TS06 scheme 20 500 or 300 + 85 log(k) No

In TS06[19], full details of the proof of knowledge protocol is not given and
thus the figure is just an estimation. We assume same proof of knowledge on
range is used. TS06 makes use of a group signature scheme [12](referred to as FI
scheme hereafter) as we use the BBS+ signature scheme for the join protocol.
Assume TS06 uses the signature protocol of the FI scheme for proving knowledge
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of a membership certificate, which is 1711 bits(very similar to BBS+). A point to
note is that if used this way, the zero-knowledge of the protocol is computational
(under the DDH assumption).

6.2 Security Analysis

Regarding the security of our dynamic k-TAA, we have the following theorem
whose proof shall appear in the full version of the paper.

Theorem 3. Our scheme possesses D-Detectability, D-Anonymity and D-Ex-
culpability under the y-DDHI assumptions in the random oracle model.

7 Conclusion

We constructed a constant-size dynamic k-TAA scheme, modified it to an ordi-
nary k-TAA scheme, and proved its security. We also analyzed the efficiency of
our system and compare it with existing (dynamic) k-TAA schemes. Our scheme
outperforms any existing dynamic k-TAA schemes in the literature. Finally, the
BBS+ signature we analyze could be useful for other cryptographic systems.
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A Range Proof for JAP

Secure and efficient exact proof of range is possible in groups of unknown order
under factorization assumption [4]. Here, we make use of the fact that if we set
k = 2t for some integer t, efficient range check for JAP could be achieved as
follows.

Let g, h be two generators of a cyclic group G of order p whose relative discrete
logarithm is unknown. To prove knowledge of a number J such that 0 < J ≤ k
in a commitment CJ = gJhr, let Ji be the i-th bit of J for i = 1, · · · t. Compute
Ci = gJihri for some ri ∈R Z∗

p for i = 1, · · · , t. Compute the following SPK.

Πrange : SPK

{
(J, a, b, r, ri) :

CJ = gJhr ∧ CJ/g = gahr ∧
∏t

j=1 (Cj)2
j

= gJhb ∧

[Ci = hri ∨ Ci/g = hri ]i=t
i=1

}
(M)

where a = J − 1, b =
∏t

j=1 rj2j .

The total protocol consists of 4+ t elements in Zp, 2t+1 challenges also in Zp

and t Ci’s in G. In our protocol, total size of the range proof is (5 + 3t) ∗ 170 +
t ∗ 171 bits.

B A New k-TAA Scheme

We show how to modify our dynamic k-TAA scheme to an ordinary k-TAA
scheme. It turns out to be very similar to TS06. As mentioned in [15], a user in
dynamic k-TAA needs to prove to an AP three conditions:

1. he has been registered as a group member;
2. he is in the access group of the AP;
3. he has not accessed the AP for more than the allowable number of times.
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For ordinary k-TAA, a user just need to prove condition (1) and (3). The modi-
fication is outline as follow. The setup of the accumulator is removed and there
are no GrantingAccess and RevokingAccess. In the authentication procedure,
the following SPK is carried out.

SPK

{
(A, e, s, t, x, JAP ) :

Ae+γ = g0g
s
1g

t
2g

x
3 ∧ S = u

1
JAP +s+1

AP ∧

T = us
0u

R
JAP +t+1

AP ∧ 1 ≤ JAP ≤ k

}
(M)

The above can be instantiated as the following SPK Π4. Upon receiving seed,
the user compute the following quantities: A1 = gr1

1 gr2
2 , A2 = Agr1

2 , A3 =

gJAP
1 gt

2g
r3
3 , S = u

1
JAP +s+1

AP ,T = ux
0u

R
JAP +t+1

AP , R = H(seed) and compute the
following SPK.

Π4 : SPK

{
(r1, r2, r3, δ1, δ2, δ3, δJ , δt, e, s, t, x, JAP ) :

A1 = gr1
1 gr2

2 ∧ Ae
1 = gδ1

1 gδ2
2 ∧

e(A2,w)
e(g0,h0)

= e(g1, h0)se(g2, h0)te(g3, h0)xe(g2, h0)δ1e(g2, w)r1e(A2, h0)−e ∧
uAP

S = SJAP Ss ∧ A3 = gJAP
1 gt

2g
r3
3 ∧ Ax

3 = gδJ
1 gδt

2 gδ3
3 ∧

uR
AP

T = T JAP T tu−δJ
0 u−δt

0 ux
0 ∧ 0 ≤ JAP ≤ k

}
(M)

where δ1 = r1e, δ2 = r2e, δJ = JAP x, δt = tx, δ3 = r3x.
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