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Abstract. In this paper, we conduct a thorough study among various
notions of security of undeniable signature schemes and establish some
relationships among them. We focus on two adversarial goals which are
unforgeability and invisibility and two attacks which are chosen message
attack and full attack. In particular,we show that unforgeability against
chosen message attack is equivalent to unforgeability against full attack,
and invisibility against chosen message attack is equivalent to invisibil-
ity against full attack. We also present an undeniable signature scheme
whose unforgeability is based on the factoring assumption and whose in-
visibility is based on the composite decision Diffie-Hellman assumption.

Keywords: Undeniable signature, security notions, factoring assump-
tion, composite decision Diffie-Hellman assumption.

1 Introduction

The concept of undeniable signatures was introduced by Chaum and van Antwer-
pen in 1989 [I0]. As opposed to the ordinary digital signatures which are uni-
versally verifiable, the validity and invalidity of undeniable signatures can be
verified only by executing with the signer or the designated confirmer through
a confirmation protocol and a disavowal protocol respectively. Various vari-
ants of undeniable signature schemes which possess variable degrees of security
and additional features have emerged in the literature over the past 16 years.
While it is impossible to list them all, we note some important papers such as
[OSITTIOIR20/T2ITE6ITHITA23242526121). Most of these schemes are discrete
logarithm based, with the exception of a few RSA-based schemes [TO/I5I4], a
pairing-based (identity-based) scheme [23] and some other schemes [2425].
Meanwhile, Bellare et al. showed relations among security notions for public-
key encryption schemes [2]. Due to the importance of the above studies, recently
we can see an increasing effort in the studying of relations among various security
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notions of cryptographic schemes [BII/I3]. Indeed, by knowing the relationships
between the various security notions, one can save much effort to prove the indi-
vidual security notion since it is sufficient to prove the simpler security notion if
it also implies that the scheme fulfills other more complicated notions of security.

In this paper, we conduct a thorough study among various notions of unde-
niable signature schemes and show some relationships among them. We focus
on the notions of unforgeability and invisibility. The first security notion is sim-
ilar to the one for ordinary digital signatures, which is the notion of existential
unforgeability against adaptive chosen message attack [I9]. However, for unde-
niable signatures, the approach to adapt the previous security by allowing the
confirmation/disavowal oracle access has been first considered in [12]. The second
security notion is essentially the inability to determine whether a given message-
signature pair is valid or not. This notion was first introduced by Chaum, van
Heijst and Pfitzmann [I1] and further enhanced in [6] and [I4].

For each of unforgeability (UF) and invisibility (IV), we consider two different
attacks, chosen message attack (CMA) and full attack (FULL). By chosen mes-
sage attack, we mean that the adversary is only allowed to access to the signing
oracle, which is similar to the basic chosen message attack considered in [19]. By
full attack, we mean that besides the signing oracle access, the adversary is also
allowed to access to the confirmation/disavowal oracle. No effort has been put
in previously to study the above notions of security and we note that the results
we obtain are somewhat surprising.

By combining the above two adversarial goals and two attacks, we can classify
them under four notions of security, namely UF-CMA, UF-FULL, IV-CMA and
IV-FULL. The rigorous definitions of the respective notions will be provided in
Section Bl In particular, we establish an equivalent result between UF-CMA and
UF-FULL, and an equivalence between IV-CMA and IV-FULL if the underlying
signature scheme is UF-CMA. We also show that IV-CMA implies UF-CMA if
the signing algorithm is deterministic. (We assume that the confirmation proto-
col and the disavowal protocol are perfect auxiliary-input zero-knowledge.)

More precisely, the relationships among various notions of security that we
obtain can be shown as follows:

UF-CMA <= UF-FULL

T
IV-CMA < IV-FULL

We remark that the related study on the relationships between two notions of
unforgeability of message authentication has been recently conducted by Bellare,
Goldreich and Mityagin [3], i.e. they explored the unforgeability of message au-
thentication by considering a single verification attempt and multiple verification
attempts respectively by the adversary. They also commented that the multi-
ple verification version of the definition of ordinary digital signatures is clearly
equivalent to the standard definition in [T9] since verification takes place under
a key that is public and which is available to the adversary. However, obviously
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this is not the case for undeniable signatures since without the consent of the
signer or designated confirmer, it is impossible that the adversary can verify the
validity or invalidity of a message-signature pair.

The first RSA-based undeniable signature scheme was proposed by Gennaro,
Krawczyk and Rabin [I6] where they employed the RSA moduli which is a
product of safe primes. An extension of the above scheme to allow the use of
general RSA moduli was made possible by Galbraith, Mao and Paterson [15].
However, both the above schemes do not have invisibility. Galbraith and Mao
[14] showed an improved version which possesses the property of unforgeability
and invisibility in the case of RSA moduli which is a product of safe primes.

In this paper, we also present an undeniable signature scheme such that its
unforgeability is based on the factoring assumption and its invisibility is based
on the composite decision Diffie-Hellman (CDDH) assumption. In the proposed
scheme, the size of the signatures is much shorter than the scheme by Galbraith
and Mao [I4]. Its security can be easily proven by using the relationships we
described earlier.

1.1 Organization

The remainder of this paper is organized as follows. In Section 2l we recall
the definition of undeniable signatures. In Section [3 we provide the rigorous
definitions for the four notions of security: UF-CMA, UF-FULL, IV-CMA and
IV-FULL. In Section Bl we conduct a thorough study on the various notions
of security of undeniable signatures and establish some important relationships
among them. All the related security analyses are given accordingly. In Section
Bl we present a new undeniable signature scheme whose unforgeability is based
on the factoring assumption and whose invisibility is based on the composite
decision Diffie-Hellman assumption. Finally, we conclude this paper in Section [6l

2 Undeniable Signatures

Throughout this paper, k denotes the security parameter and a PPT algorithm
denotes a probabilistic polynomial-time algorithm.

An undeniable signature scheme consists of a key generation algorithm Gg;gpn,
a signing algorithm Sign , a confirmation protocol and a disavowal protocol. We
consider undeniable signature schemes such that the confirmation protocol and
the disavowal protocol are perfect zero-knowledge in the auxiliary-input model.
Hence, we denote an undeniable signature scheme by X = (Gg;gn, Sign). Gsign
is a PPT algorithm which generates (vk, sk), where vk is a verification key and
sk is the signing key. Sign is a PPT algorithm which generates a signature o on
input a message m and the signing key sk. We say that (m, o) is valid if o is an
output of Sign(sk,m).

An undeniable signature scheme must satisfy unforgeability and invisibility.
Invisibility means that for a message m, the receiver cannot tell if o is a valid
signature or a random string. This implies that the receiver cannot verify the
validity of (m, o) by himself. Instead, the cooperation of the signer is needed to
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prove the validity and invalidity of (m, o) by running a confirmation protocol
and a disavowal protocol with the receiver respectively.

Zero-knowledgeness means that the verifier can generate the communication
transcript of the protocol by himself. Hence he cannot prove to the third party
that (m, o) is valid by showing the transcript of the ZK confirmation protocol.
This is the central requirement for undeniable signature schemes.

We describe the formal definition of perfect auxiliary-input zero-knowledge
below:

Definition 1. [I8[77] A proof system (P,V) is perfect auziliary-input zero-
knowledge on a language L if, for every PPT wverifier V* and every polynomial
p, there exists a PPT algorithm M* such that

{(PVEW)(@) }aer yeqonyri=n ={M(@,Y) rer,yeqo,13r0=D

where the first distribution ensemble denotes the output of V* when having
auziliary-input y and interacting with prover P on common input x € L; and
the second distribution ensemble denotes the output of M* on inputs x € L and
y € {0, 1}»(=D),

An alternative definition is to require M™* to simulate the history of V*’s inter-
action with P [I7, Remark 3.2].

As shown in [I7], auxiliary-input zero-knowledge is preserved under sequential
composition. Almost all known zero-knowledge proofs are in fact auxiliary-input
zero-knowledge.

3 Definitions of Security

For each of unforgeability (UF) and invisibility (IV), we consider two different
attacks, chosen message attack (CMA) and full attack (FULL). By combining
two adversarial goals and two attacks, we have the following four notions of
security, namely, UF-CMA, UF-FULL, IV-CMA and IV-FULL.

In each attack game, we say that a message-signature pair (m, o) is unfresh
if the adversary A has already queried m to the signing oracle and received o.
Otherwise, we say that (m, o) is fresh.

3.1 Unforgeability

The unforgeability against CMA (UF-CMA) is defined as follows. Consider the
following game between a challenger and an adversary A.

1. The challenger generates a key pair (vk, sk) randomly, and gives the verifi-
cation key vk to A.

2. Fori=1,...,q, A queries a message m; to the signing oracle adaptively and
receives a signature o;.

3. Eventually, A outputs a forgery (m*,c*).

A wins the game if (m*,o*) is valid and fresh.
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Definition 2. We say that X is unforgeable against CMA (UF-CMA) if
Pr(A wins) is negligible for any PPT adversary A in the above game.

To define the unforgeability against the full attack (UF-FULL), we modify the
game against CMA as follows. We allow the adversary A to query (m, o) to the
confirmation/disavowal oracle adaptively at step 2. The confirmation/disavowal
oracle responds as follows.

— If (m, o) is a valid pair, then the oracle returns a bit 4 = 1 and proceeds
with the execution of the confirmation protocol with A.

— Otherwise, the oracle returns a bit 4 = 0 and executes the disavowal protocol
with A accordingly.

A wins the game if A outputs a valid and fresh pair (m*,c*) or it queries a
valid and fresh pair (m*, o*) to the confirmation/disavowal oracle.

Definition 3. We say that X is unforgeable against the full attack (UF-FULL)
if Pr[A wins| is negligible for any PPT adversary A in the above game.

Remark 1. If the signing algorithm is probabilistic, there are many signatures
o for a fixed message m. In this case, we can consider weak forgery and strong
forgery. In the weak forgery, an adversary wins if she can forge (m*,c*) such
that m* has never been queried to the signing oracle by the adversary. In the
strong forgery, an adversary wins if she can forge (m*, 0*) such that ¢* has never
been returned by the signing oracle for a query m*.

In the above definitions, we consider strong forgery. Note that strongly un-
forgeable undeniable signature schemes are more secure than weakly unforgeable
ones.

If the signing algorithm is deterministic, the two types of forgery coincide.

3.2 Invisibility

The invisibility against CMA (IV-CMA) is defined by using the following game
between a challenger and an adversary A.

1. The challenger generates a key pair (vk, sk) randomly, and gives the verifi-
cation key vk to A.

2. A is permitted to issue a series of signing queries to the signing oracle adap-
tively and receives a signature o;.

3. At some point, A chooses a message m* and sends it to the challenger.

4. The challenger chooses a random bit b. If b = 1, then he computes a signature
o* on m*. Otherwise, he chooses ¢* randomly from the signature space S.
He then returns o* to A.

5. A performs some signing queries agai.

6. At the end of this attack game, A outputs a guess b'.

L If the signing algorithm is deterministic, then A is not allowed to query m* to the
signing oracle.
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Definition 4. We say that X is invisible against CMA (IV-CMA) if | Pr[b =
b'] — 1/2| is negligible for any PPT adversary A in the above game.

Finally, to define the invisibility against full attack (IV-FULL), we modify the
previous game (IV-CMA) as follows. We allow the adversary A to query (m, o)
to the confirmation/disavowal oracle adaptively at step 2 and at step 5, where
A is not allowed to query the challenge (m*,c*) to the confirmation/disavowal
oracle at step 5. The confirmation/disavowal oracle responds as follows.

— If (m, o) is a valid pair, then the oracle returns a bit 4 = 1 and proceeds
with the execution of the confirmation protocol with A.

— Otherwise, the oracle returns a bit ;4 = 0 and executes the disavowal protocol
with A accordingly.

Definition 5. We say that X is invisible against the full attack (IV-FULL) if
| Pr[b = b'] — 1/2]| is negligible for any PPT adversary A in the above game.

We now say that

— X is CMA-secure if it is unforgeable against CMA attack (UF-CMA) and
invisible against CMA attack (IV-CMA).

— X is fully secure if it is unforgeable against the full attack (UF-FULL) and
invisible against the full attack (IV-FULL).

4 Relations Among Security Notions

We use the following notation.

— X = Y Any undeniable signature scheme X' meets the security notion of
Y if it meets the security notion of X. In this case, we say that X implies
Y.

— X < Y Any undeniable signature scheme X~ meets the security notion of
Y if and only if it meets the security notion of X. In this case, we say that
X and Y are equivalent.

We first show that UF-CMA and UF-FULL are equivalent. That is,
UF-CMA < UF-FULL.

Theorem 1. UF-CMA and UF-FULL are equivalent if the confirmation proto-
col and the disavowal protocol are perfect auziliary-input zero—lmowledge

Proof. 1t is clear that UF-FULL =— UF-CMA. Therefore, we will show that
UF-CMA = UF-FULL. Suppose that there exists an adversary A which breaks
UF-FULL. We will construct an adversary A’ which breaks UF-CMA by using
A as a subroutine.

2 We consider strong unforgeability as mentioned in Remark [I] of Section 311
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On input a verification key vk, A’ starts running A by feeding A with vk. If
A makes a signing query for a message m;, then A’ queries m; to her signing
oracle. A’ receives a signature o; from the signing oracle, and returns o; to A.

Next, we consider the case when A makes a confirmation/disavowal query. Let
¢v be the number of queries that A issues to the confirmation/disavowal oracle.
For convenience, we consider that the final output of A is the (g, + 1)-th query.
We say that (m;, o) is special if it is a valid and fresh message-signature pair
queried by A to the confirmation/disavowal oracle. A’ guesses the first special
query. More precisely, A’ guesses the first ¢ such that the i-th query (m;,o}) is
special. So, at the beginning, A’ chooses Guess € {1,2,---, ¢, + 1} randomly.
There are two cases to be considered here, namely, i < Guess and i = Guess.
First suppose that i < Guess.

— If A has never made a signing query for m;, then A’ returns p = 0 and runs
the disavowal protocol with A.

— Otherwise, A has already made a signing query for m;, and A’ answered
with a valid signature o;. If 0; = o] then A’ returns g = 1 and runs the
confirmation protocol with A. Otherwise, A’ returns ¢ = 0 and runs the
disavowal protocol with A.

Notice that since the confirmation protocol and the disavowal protocol are per-
fect auxiliary-input zero-knowledge from our assumption, A’ can simulate the
confirmation/disavowal oracle perfectly (by using the proof technique of [17,
Theorem 3.3]).

Now suppose that i = Guess. Let (m*,0*) be the i-th query. If A has queried
m™* to the signing oracle, then A’ aborts. Otherwise, A outputs (m*,c*) as a
forgery.

A’ guesses the first special query with probability 1/(q, + 1). Therefore, if
A wins the game of UF-FULL with non-negligible probability, then A’ wins the
game of UF-CMA with non-negligible probability too because g, is polynomially
bounded. This completes our proof. a

We next show that IV-CMA and IV-FULL are equivalent if 3’ is UF-CMA. That
is,
IV-CMA < IV-FULL

as long as Y is UF-CMA.

Theorem 2. Suppose that an undeniable signature scheme X' is UF-CMA. Then
IV-CMA and IV-FULL are equivalent if the confirmation protocol and the dis-
avowal protocol are perfect auziliary-input zero-knowledge.

Proof. 1t is clear that IV-FULL = IV-CMA. Therefore, we will show that IV-
CMA — IV-FULL. Suppose that there exists an adversary A which breaks
IV-FULL. We will construct an adversary A’ which breaks IV-CMA by using A
as a subroutine.

On input a verification key vk, A’ starts running A by feeding A with the vk.
If A makes a signing query for a message m;, then A’ queries m; to her signing
oracle. A’ receives a signature o; from the signing oracle, and returns o; to A.
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Next, we consider the case when A makes a confirmation/disavowal query
(my, 0}). We say that (m;, o)) is special if it is a valid and fresh message-signature
pair queried by A to the confirmation/disavowal oracle.

Suppose that A makes a special confirmation/disavowal query (m;,o}). with
non-negligible probability. Then A wins the game of UF-FULL. However, this
is against our assumption because UF-FULL and UF-CMA are equivalent from
Theorem [I1

Therefore, A makes a special confirmation/disavowal query (m;, o}) only with
negligible probability. Hence A’ behaves as follows.

— If A has never made a signing query for m;, then A’ returns ¢ = 0 and runs
the disavowal protocol with A.

— Otherwise, A has already made a signing query for m;, and A’ answered
with a valid signature o;. If 0; = o] then A’ returns p = 1 and runs the
confirmation protocol with A. Otherwise, A’ returns ¢ = 0 and runs the
disavowal protocol with A.

Notice that since the confirmation protocol and the disavowal protocol are perfect
auxiliary-input zero-knowledge from our assumption, A’ can simulate the confir-
mation/disavowal oracle (by using the proof technique of [I7, Theorem 3.3]).

At some point, A chooses a message m* which has never been queried, and
sends it to A’. A’ queries m* to its challenger, and receives o* from the challenger.
A’ then returns o* to A.

At the end of the attack game, A outputs a guess b’. Then A’ outputs b’ =0'.
Now it is clear that | Pr[b = b'] — Pr[b = b”']| is negligible, where b is the hidden
bit chosen by the challenger. Hence M can break IV-CMA. ad

We finally show that IV-CMA implies UF-CMA if the signing algorithm is de-
terministic. Note that UF-CMA does not imply IV-CMA: A digital signature
scheme which is UF-CMA is not IV-CMA. Hence we cannot prove more than
the following figure.

UF-CMA < UF-FULL

T
IV-CMA < IV-FULL

Theorem 3. IV-CMA implies UF-CMA if the signing algorithm is deterministic.

Proof. Suppose that there exists an adversary A which breaks UF-CMA. We will
construct an adversary A’ which breaks IV-CMA by using A as a subroutine.

On input a verification key vk, A’ starts running A by feeding A with vk. If
A makes a signing query for a message m;, then A queries m; to her signing
oracle. A’ receives a signature o; from the signing oracle, and returns o; to A.

Eventually, A outputs a forgery (m*,c*). Then A’ sends m* to her challenger.
The challenger chooses a random bit b. If b = 1, then he computes a signature
o’ on m*. Otherwise, he chooses ¢’ randomly from the signature space S. The
challenger returns o’.
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Finally, if ¢/ = o*, then A’ outputs b’ = 1. Otherwise, A’ outputs a random
bit &’. Suppose that (m*,o*) is valid with probability €. Then

Pro=0b] =€+ (1/2)(1 —€) = (1/2) +¢/2

because the signing algorithm is deterministic. Hence if A outputs a valid forgery
with non-negligible probability, then A’ wins the game of IV-CMA with non-
negligible probability too. a

Remark 2. The above proof shows that weak IV-CMA implies UF-CMA, where
weak TV-CMA is exactly the IV-CMA except the step 5 in Section 3.2. Now we
have IV-CMA — weak IV-CMA — IV-FULL.

5 Application to Factoring-Based Undeniable Signatures

Galbraith and Mao showed a factoring-based undeniable signature scheme [14]
and proved its security for non-interactive, designated verifier version of confir-
mation/disavowal protocols [14], page 89, line -7].

Now by using our results, we can prove its security for the 4-move version of
confirmation/disavowal protocols due to Chaum [7]. In this section, we present
a better factoring-based undeniable signature scheme and prove its security by
using our results.

5.1 Proposed Scheme

Galbraith and Mao used PSS-Rabin signature scheme [4]. Instead, we use a
Rabin-type signature scheme presented in [22] which has much shorter signature
size. Hence the size of our undeniable signatures is much shorter than that of [14].

The details of this new undeniable signature scheme are described as follows.

Definition 6. Let N = pq, where p and q are primes. For x € Z};, let

=().-()

Define
0 if u=v=1
AT ifu=1v=-1
tpe() 24 5 =T 1)
3 if u=v=-1

It is easy to see that zy € QRy if and only if type(z) = type(y).

Key Generation. On input 1%, the system is set up by the signer as follows.
Choose two k-bit safe primes p and ¢ such that p’ = (p — 1)/2 and ¢’ =
(g —1)/2 are also primes. Then set N = pq and select an element e € Z, ,
such that e > 1.
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Choose g € Z} to be a generator of Z; and Z;, and compute 8 = g% mod N
and w = 3¢ mod N.
Next, choose a1 and asg such that type(a;) = 1 and type(as) = 2. Also, let

g 21 and a3 2 arag mod N. Note that type(a;) =i for i =0,1,2,3.

Let H : {0,1}* — Z% be a hash function.

Finally, set the verification key as (N, 8, w, H, ag, a1, ag, a3) and the signing
key as (p, q).

Notice that § is a generator of QRy because ord, () = (p —1)/2 = p' and
ordy(B) = (¢ —1)/2 = ¢, thus ordy (8) = lem(p',¢') = p'q = |QRN|.

Signing. On input the verification key (N, 5, w, H, ag, a1, ag, as), the signing
key (p,q) and a message m , the signer executes the following steps.
Step 1: Compute 7 such that type(H(m)) = i.
Step 2: For this ¢, compute o such that 0 < ¢ < N/2 and

a;H(m) = 0®® mod N (2)
The signature is o.

We say that (m, o) is valid if 0 < o < N/2 and equation (2)) is satisfied.

Definition 7. We say that (3,3%,3Y,8%) € (QRy)?* is a composite Diffie-
Hellman (CDH) tuple, where (z,y) € Z2,,,.

In each of the confirmation/disavowal protocols, given a message-signature pair
(m, o), the verifier checks if 0 < o < N/2. If not, he rejects immediately. if so,
he runs the following protocols with the signer.

Confirmation Protocol. The signer first sends ¢ such that type(H(m)) = i.
The signer next proves that (3,w,o?,a;H(m)) is a CDH-tuple in zero-
knowledge.

Disavowal Protocol. The signer first sends ¢ such that type(H (m)) = i. Next
the signer proves that (8,w,o?,a;H(m)) is not a CDH-tuple in zero-
knowledge.

For the confirmation and disavowal protocols, we can use the 4-move protocol
due to Chaum [7]. Alternatively, we can use designated verifier proofs which
are non-interactive zero-knowledge [20]. They are perfect zero-knowledge in the
auxiliary-input model.

Remark 3. 1. Tt is not necessarily the case that H(m) € QRy. Therefore, we
use the technique of [22]. That is, we have to include (ag, a1, a2, @3) in the
verification key so that «; H(m) in QRy for some i.

2. Since the order of 3 is p'q’, Chaum’s ZKIP protocols works well on the
CDH-tuples and the non CDH-tuples in the group QRy.
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5.2 Security Analysis

Theorem 4. The above undeniable signature scheme satisfies UF-CMA under
the factoring assumption in the random oracle model.

Proof. Let A be an adversary which breaks UF-CMA with non-negligible proba-
bility €. Then we will construct the factoring algorithm M which factors N with
non-negligible probability ¢’ by running A as a subroutine. The input of M is
N (= pq), where p = 2p’ + 1 and q = 2¢' + 1 are safe primes.

M constructs the verification key for A as follows. M chooses a random integer
e€{2,---,|N/4|}. Next, M chooses a random g € Z} and defines 8 = g* mod
N and w = 3* mod N. It is easy to see that e is co-prime to p’q’ and 3 is a
generator of Q Ry with overwhelming probability because N is a product of two
safe primes. M also chooses a1, as randomly in such a way that

ary _ (2 _ 4
(N) N (N) -
With probability 1/4, it holds that type(a;) = 1 and type(as) = 2. M sets
ag =1 and a3 = s mod N

M then feeds A with the verification key (N, 8, w, H, ag, a1, aa, a3) where H
is a random oracle that will be simulated by M. We assume that when A requests
a signature on a message m;, it has already made the corresponding H-query
on m;.

The factoring algorithm M must answer all the queries by itself. When A
makes a H-query for a message m;, A chooses r; € Z% and i € {0,1,2,3}
randomly, and returns H(m;) = r;%¢/a; mod N. M will maintain a H-query
list (mj,7;,1).

Suppose that A makes a signing query for a message m;. Since we have as-
sumed that A has already made the corresponding H-query on mj;, then the
H-query list includes (mj,r;,1) for some (r;,4). M then returns o; = r; mod N
as the corresponding signature. Notice that o; is a valid signature since

o, H(mj) = r?e mod N.
Now suppose that A forges (m*,o*). Then

a;H(m*) = (6*)* mod N. (3)
Since we assumed that A has made the H-query on m*, so m* = m; for some j
in the H-query list. Therefore, M can find the triple (m*,r*,¢) from the H-query
list where

a;H(m*) = (r*)%* mod N. (4)
From equation (@) and equation (@),

((7)2)° = ((0%)?)° mod N.
Since ged(e, p'q’)) = 1 with overwhelming probability, it holds that

(r*)* = (¢*)* mod N

with overwhelming probability.
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Case 1. Suppose that m* has never been queried to the signing oracle. In this
case, ged(r* — o*, N) = p or ¢ with probability 1/2 because r* is randomly
chosen. Hence M can factor N with probability almost 1/2 x 1/4 = 1/8.

Case 2. Suppose that m* has been queried to the signing oracle which returned
&. In this case, we can see that gcd(c*—6,N) = p or ¢ because 0 < 0 < N/2.
Hence M can factor N with probability almost 1/4.

In any case, M can factor N with significant probability. O

Corollary 1. The above undeniable signature scheme satisfies UF-FULL under
the factoring assumption in the random oracle model.

Proof. From Theorem [ and Theorem [I1 O

Next we prove the invisibility. It relies on the composite decision Diffie-Hellman
(CDDH) assumption which is defined as follows.

We denote (g1, ..., gm) for the subgroup generated by g1, ..., gm. Let N be a
product of two safe primes p and ¢ such that p’ = (p —1)/2 and ¢’ = (¢ — 1)/2
are also primes. Consider the two sets

T ={(N,g,w,u,v,a1,az) : type(a1) = 1, type(az) = 2,

ordy(g) = ordy (u) = 2p'q, (g,u) = Z}, (w,v) € (QRN)*}

and
Toppr = {(N,g,w,u,v,a1,00) €T : w = ¢** mod N,

v =u** mod N for some e € Zy}

with the uniform distribution on each. The CDDH problem is to distinguish
these two distributions.

Theorem 5. The above undeniable signature scheme satisfies IV-CMA under
the CDDH assumption in the random oracle model.

Proof. Let A be an adversary which breaks IV-CMA with non-negligible prob-
ability €. Then we will construct a composite decision Diffie-Hellman algorithm
M with non-negligible probability ¢’ by running A as a subroutine.

Let (N, g, w,u, v, a1, as2) be the challenge CDDH problem input to M. M first
computes 8 = g2 mod N.Let ag = 1 and a3 = a1 mod N. M runs A by feeding
A with the verification key (N, 8, w, H, o, a1, 2, ) where H is a random oracle
that will be simulated by M. We assume that when A requests a signature on a
message m, it has already made the corresponding H-query on m;.

When A makes a H-query for a message m;, M chooses z;,y; € {1,2,---,
|N/2|} randomly and i € {0,1,2,3} randomly, and returns H(m;) =
(w®v¥1)?/o; mod N. M will maintain a H-query list (mj, z;,v;,1).

When A makes a signing query for a message m;, since we have assumed
that A has already made the corresponding H-query on mj, then H(m;) =
(w*u¥i)?/a; mod N. M then computes o; = g% u¥% mod N and returns o; as
the corresponding signature.
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Eventually, A outputs a message m*. M then chooses a hidden bit b. If b = 1,
M generates o* using the above signing process and returns ¢* as the signature.
If b= 0, M chooses 0* € Z} randomly and returns o* as the signature.

Next, A performs some H queries and signing queries again with the restric-
tion that no signing queries on m* is allowed. Finally, A outputs a bit ' which
it thinks is equal to the hidden bit b. If &' = b then M outputs 1 as the answer
and if b’ # b then M outputs 0 as the answer.

Notice that if (N, g,w,u,v,a1,a2) € Teppw, then the signing oracle behaves
perfectly and the simulation is identical to a real attack. Thus we have

, 1
Pr[M outputs 1] = Pr[b’ = b] = o TE
where € is the advantage of algorithm A.

On the other hand, when the input is a random tuple of 7, the signatures gen-
erated by the signing oracle are with high probability invalid. The simulation is
therefore not indistinguishable from a real attack. However, we can show as in [I4]
Appendix B] that the hidden bit b is independent of the simulation. That is,

1
Pr[M outputs 1] = Pr[b' = b] = 5
It follows that the advantage of algorithm M
, 1 n 1
€ = € — =€
2 2
which is non-negligible. a

Corollary 2. The above undeniable signature scheme satisfies IV-FULL.
Proof. From Theorem [B] Theorem Ml and Theorem O

6 Conclusion

We have studied on the relationships among various notions of security of unde-
niable signature schemes, namely, UF-CMA, UF-FULL, IV-CMA and IV-FULL
and shown some important relationships among them. We also proposed an
undeniable signature scheme where its unforgeability is based on the factoring
assumption and its invisibility is based on the CDDH assumption.

References

1. N. Attrapadung,Y. Cui, G. Hanaoka, H. Imai, K. Matsuura, P. Yang and R. Zhang.
Relations among notions of security for identity based encryption schemes. Cryp-
tology ePrint Archive Report 2005/258. Available from
http://eprint.iacr.org/2005/258.

2. M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among notions of
security for public-key encryption schemes. Advances in Cryptology — CRYPTO
’98, LNCS 1462, pp. 26-45, Springer-Verlag, 1998.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Relations Among Security Notions for Undeniable Signature Schemes 47

M. Bellare, O. Goldreich and A. Mityagin. The power of verification queries in
message authentication and authenticated encryption. Cryptology ePrint Archive
Report 2004/309. Available from http://eprint.iacr.org/2004/309.

M. Bellare and P. Rogaway. The exact security of digital signatures — how to sign
with RSA and Rabin. Advances in Cryptology — EUROCRYPT ’96, LNCS 1070,
pp- 399-416, Springer-Verlag, 1996.

J. Boyar, D. Chaum, I. Damgard and T. Pedersen. Convertible undeniable signa-
tures. Advances in Cryptology — CRYPTO ’90, LNCS 537, pp. 189-208, Springer-
Verlag, 1990.

J. Camenisch and M. Michels. Confirmer signature schemes secure against adaptive
adversaries. Advances in Cryptology — FUROCRYPT ’00, LNCS 1870, pp. 243—
258, Springer-Verlag, 2000.

D. Chaum. Zero-knowledge undeniable signatures. Advances in Cryptology —
EUROCRYPT 90, LNCS 473, pp. 458-464, Springer-Verlag, 1990.

D. Chaum. Designated confirmer signatures. Advances in Cryptology — EURO-
CRYPT ’94, LNCS 950, pp. 86-91, Springer-Verlag, 1995.

T. Chaum and T. P. Pedersen. Wallet databases with observers. Advances in
Cryptology — CRYPTO 92, LNCS 740, pp. 89-105, Springer-Verlag, 1993.

D. Chaum and H. van Antwerpen. Undeniable signatures. Advances in Cryptology
— CRYPTO ’89, LNCS 435, pp. 212-216, Springer-Verlag, 1989.

D. Chaum, E. van Heijst and B. Pfitzmann. Cryptographically strong undeni-
able signatures, unconditionally secure for the signer. Advances in Cryptology —
CRYPTO 91, LNCS 576, pp. 470-484, Springer-Verlag, 1991.

I. Damgard and T. Pedersen. New convertible undeniable signature schemes. Ad-
vances in Cryptology — EUROCRYPT ’96, LNCS 1070, pp. 372-386, Springer-
Verlag, 1996.

A. Datta, R. Kisters, J.C. Mitchell and A. Ramanathan. On the relationships
between notions of simulation-based security. Theory of Cryptography Conference
— TCC ’05, LNCS 3378, pp. 476494, Springer-Verlag, 2005.

S. Galbraith and W. Mao. Invisibility and anonymity of undeniable and confirmer
signatures. Topics in Cryptology — CT-RSA 03, LNCS 2612, pp. 80-97, Springer
Verlag, 2003.

S. Galbraith, W. Mao and K. G. Paterson. RSA-based undeniable signatures for
general moduli. Topics in Cryptology — CT-RSA ’02, LNCS 2271, pp. 200-217,
Springer Verlag, 2002.

R. Gennaro, H. Krawczyk and T. Rabin. RSA-based undeniable signatures. Ad-
vances in Cryptology — CRYPTO ’97, LNCS 1294, pp. 132-149, Springer-Verlag,
1997.

O. Goldreich and Y. Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, vol. 7, no. 1, pp. 1-32, Springer-Verlag, 1994.

S. Goldwasser, S. Micali and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, vol. 18, pp. 186-208, 1989 (Prelimi-
nary version in 17th STOC, 1985).

S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against
adaptative chosen-message attacks. SIAM Journal on Computing, vol. 17, no. 2,
pp. 281-308, 1988.

M. Jakobsson, K. Sako and R. Impagliazzo. Designated verifier proofs and their
applications. Advances in Cryptology — EUROCRYPT 96, LNCS 1070, pp. 143~
154, Springer-Verlag, 1996.

K. Kurosawa and S.-H. Heng. 3-Move undeniable signature scheme. Advances in
Cryptology — EUROCRYPT ’05, LNCS 3494, pp. 181-197, Springer-Verlag, 2005.



48

22

23.

24.

25.

26.

K. Kurosawa and S.-H. Heng

K. Kurosawa and W. Ogata. Efficient Rabin-type digital signature scheme. Design,
Codes and Cryptography, vol. 16, no. 1, pp. 53-64, 1999.

B. Libert and J.-J Quisquater. Identity based undeniable signatures. Topics in
Cryptology — CT-RSA 04, LNCS 2964, pp. 112-125, Springer-Verlag, 2004.

J. Monnerat and S. Vaudenay. Undeniable signatures based on characters: how to
sign with one bit. Public Key Cryptography — PKC ’04, LNCS 2947, pp. 361-396,
Springer-Verlag, 2004.

J. Monnerat and S. Vaudenay. Generic homomorphic undeniable signatures. Ad-
vances in Cryptology — Asiacrypt 04, LNCS 3329, pp. 354-371, Springer-Verlag,
2004.

W. Ogata, K. Kurosawa and S.-H. Heng. The security of the FDH variant of
Chaum’s undeniable scheme. Public Key Cryptography — PKC ’05, LNCS 3386,
pp- 328-345, Springer-Verlag, 2005.



	Introduction
	Organization

	Undeniable Signatures
	Definitions of Security
	Unforgeability
	Invisibility

	Relations Among Security Notions
	Application to Factoring-Based Undeniable Signatures
	Proposed Scheme
	Security Analysis

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




