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Abstract. HMAC is a widely used message authentication code and a
pseudorandom function generator based on cryptographic hash functions
such as MD5 and SHA-1. It has been standardized by ANSI, IETF, ISO
and NIST. HMAC is proved to be secure as long as the compression
function of the underlying hash function is a pseudorandom function. In
this paper we devise two new distinguishers of the structure of HMAC,
called differential and rectangle distinguishers, and use them to discuss
the security of HMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-
1. We show how to distinguish HMAC with reduced or full versions
of these cryptographic hash functions from a random function or from
HMAC with a random function. We also show how to use our differential
distinguisher to devise a forgery attack on HMAC. Our distinguishing
and forgery attacks can also be mounted on NMAC based on HAVAL,
MD4, MD5, SHA-0 and SHA-1.

1 Introduction

HMAC, which was designed by Bellare, Canetti and Krawczyk, is a standard-
ized hash-based MAC algorithm that is widely used as a MAC algorithm and as
a pseudorandom function generator [2]. HMAC takes a message of an arbitrary
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bit-length and hashes it with one secret key. For the same length of the message it
calls the compression function of the underlying hash function additionally three
more times than the iterated hash construction, i.e., the MD construction. For
long messages, its efficiency is thus almost the same as the MD construction. Fur-
thermore, cryptographic hash functions such as MD5 and SHA-1 can be used in
HMAC, which are more efficient in software than block ciphers, and thus HMAC
is typically faster than block cipher based MACs. HMAC is proved to be a pseudo-
random function under the assumption that the compression function of the un-
derlying hash function is a pseudorandom function [1] (note that the security proof
of pseudorandomness provides the MAC security [3]). However, this does not guar-
antee the security of HMAC if it is instantiated with a specific cryptographic hash
function such as MD5 or SHA-1. The recent attacks of Wang et al. [14,15,16,17,18]
and Biham et al. [5,6] have undermined the confidence in the most popular col-
lision resistant hash functions such as MD5 and SHA-1. However, it is widely as-
sumed that these attacks have no impact on the security of MAC algorithms based
on these hash functions such as HMAC since they use a keyed initial value.

This paper is the first work which presents a detailed analysis of distinguish-
ing and forgery attacks on HMAC based on MD5, SHA-1 and other MDx-type
hash functions. Our results allow to quantify to which extent the vulnerabilities
of these hash functions carry over to the HMAC construction. This is achieved by
the introduction of two novel distinguishers of the general structure of HMAC. We
use a message pair which induces a collision in its corresponding MAC pair for de-
signing a differential distinguisher of HMAC and also use a message quartet which
induces two collisions in its corresponding MAC quartet for designing a rectangle
distinguisher of HMAC. With these two distinguishers we discuss the security of
HMAC based on HAVAL [19], MD4 [12], MD5 [13], SHA-0 [20] and SHA-1 [21].

First, we construct new differentials of the full 3-pass HAVAL and reduced MD5
to form rectangle distinguishers of HMAC, and we use them to distinguish HMAC
with the full 3-pass HAVAL and reduced MD5 from HMAC with a random func-
tion. Second, we investigate how effectively the differentials of MD4, SHA-0 and
SHA-1 found by Wang et al. [14,15,16,17,18] and Biham et al. [5,6] are applied to
our differential and rectangle distinguishers in HMAC. After converting their dif-
ferentials into our differential and rectangle distinguishers, we devise distinguish-
ing and forgery attacks on HMAC based on reduced or full versions of MD4, SHA-0
and SHA-1. In particular, we show how to distinguish HMAC with the full SHA-0
and MD4 from HMAC with a random function and present a forgery attack on
HMAC with the full MD4. See for details of the results Table 2 in Sect. 6 (the
function h2 and the probabilities p̂ and q in Table 2 will be defined in the follow-
ing sections). Our distinguishing and forgery attacks can be mounted on NMAC
based on HAVAL, MD4, MD5, SHA-0 and SHA-1 with the same complexity.

2 Description of HMAC

HMAC [2] applies in both its inner and outer parts the iterated MD con-
struction of a hash function H given a compression function h, H(IV, M) =
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h(· · · h(h(IV, M1), M2) · · · , Mn), where IV is a l-bit fixed initial value and M is
an arbitrary-length message which is padded to a multiple of b-bit and divided
into n b-bit blocks M1||M2|| · · · ||Mn (note that the outputs of functions h and
H are l-bit strings).

HMAC(K, M) = H(IV, (K ⊕ opad)||H(IV, (K ⊕ ipad)||M))
= h(h(IV, (K ⊕ opad)), H(h(IV, (K ⊕ ipad)), M)) , (1)

where K is the secret key, opad, ipad are constants and |K⊕opad| = |K⊕ipad| =
b. If HMAC takes a one-block message M , it can be expressed as

HMAC(K, M) = h(h(IV, (K ⊕ opad)), h(h(IV, (K ⊕ ipad)), M)) . (2)

In order to facilitate the description of our analysis of HMAC we denote the four
compression functions h in (2) by h1, h2, h3 and h4, and the four functions in
(1) by h1, H2, h3 and h4. See Fig. 1 for a schematic description of HMAC with
this notation. Note that the outputs of H2 and h2 are padded to a b-bit string
to be inserted into h4.

Fig. 1. A schematic description of HMAC

In practice the function h can be replaced by the compression function of
cryptographic hash functions such as HAVAL [19], MD4 [12], MD5 [13], SHA-0
[20], SHA-1 [21] and so on.

3 Some General Attacks on HMAC

Using the birthday paradox we can induce a general distinguishing attack on
HMAC as follows [11]:

1. Collect 2l/2 randomly chosen messages with a b-bit length, denoted Mi, and
ask for their MAC values, denoted Ci.
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2. Find message pairs Mj and Mk such that Cj = Ck.
3. For each of (Mj , Mk) pairs such that Cj = Ck, ask for a MAC pair of Mj ||P

and Mk||P , where P is some non-empty string. If there is at least one MAC
pair that collides in this step, output the MAC algorithm = HMAC.

This attack requires about 2l/2 messages and works with a probability of 0.63
by the birthday paradox when the MAC algorithm is HMAC (this is due to the
fact that if there exists at least one message pair (Mj , Mk) such that their outputs
of h2 or H2 are same, this attack always works). This attack can also easily be
converted into a general forgery attack on HMAC. Once we get a MAC pair
that collides in Step 3, we again ask for the corresponding MAC of Mj||P ||P ′,
denoted C, where P ′ is some non-empty string. We can then construct a forgery,
i.e., a new message Mk||P ||P ′ with a valid MAC, i.e., C with the same success
rate.

These general attacks make distinguishing and forgery attacks on HMAC
which require more than 2l/2 message queries have not much advantage. We
thus consider attacks of distinguishing HMAC from a random function, and
forgery attacks on HMAC which work with a data complexity of less than 2l/2

messages. In addition to these two kinds of attacks, we also consider attacks
of distinguishing instantiated HMAC (by existing hash functions) from HMAC
with a random function. In these attacks it does not matter whether or not
they require more than 2l/2 message queries, since there does not exist a gen-
eral attack based on the birthday paradox which can distinguish HMAC with
existing hash functions from HMAC with a random function. For the clarifica-
tion we denote the first and second distinguishing attacks by distinguishing-R
and distinguishing-H attacks, respectively. The distinguishing-R attack is useful
when the cryptanalyst wants to check whether output strings are produced from
HMAC (in this case, the cryptanalyst does not know whether the output pro-
ducing algorithm is HMAC), while the distinguishing-H attack is useful when
the cryptanalyst wants to check which cryptographic hash function is embedded
in HMAC (in this case, the cryptanalyst somehow already knew that the output
producing algorithm is HMAC, for instance, by the distinguishing-R attack, but
does not know the underlying hash function in HMAC).

4 Distinguishers of HMAC

In this section we present two distinguishers of the general structure of HMAC,
which can lead to distinguishing or forgery attacks if HMAC is instantiated
with some cryptographic hash function with a low difference propagation. These
two distinguishers, called differential and rectangle distinguishers, are both built
based on internal collisions. We focus on HMAC with one-block messages, which
is the main target in our attacks.

4.1 Differential Distinguisher of HMAC

By using MAC collisions we construct a differential distinguisher of HMAC. It
works as follows:
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– Choose a message Mi at random and compute another message M ′
i = Mi⊕α,

where Mi has the same length as α (�= 0).
– With a chosen message attack, obtain the MAC values Ci = HMAC(K, Mi)

and C′
i = HMAC(K, M ′

i).
– Check if Ci ⊕ C′

i = 0.

Assuming that the values h1(IV, K⊕ipad) are uniformly distributed for a given
key K, the last test holds with a probability1 of approximately q, where q =
PrX,I [h2(I, X)⊕ h2(I, X ⊕ α) = 0]. On the other hand, for a random function or
HMAC with a random function2, the last test holds with a probability of approx-
imately 2−l. Hence, we have the following differential distinguisher of HMAC.

Proposition 1. [A Differential Distinguisher of HMAC] Assume that the out-
put values of the function h1 are distributed uniformly at random. Then HMAC
can be distinguished from a random function and from HMAC with a random
function if q > 2−l, where q = PrX,I [h2(I, X) ⊕ h2(I, X ⊕ α) = 0].

In order for this differential distinguisher to be used in distinguishing-R and
forgery attacks, the probability q should be larger than 2−l/2, which makes pos-
sible for those attacks to work with less than 2l/2 message queries (details are
described in Sect. 6).

4.2 Rectangle Distinguisher of HMAC

The rectangle distinguisher of HMAC can be built by the rectangle attack which
is widely used in analyzing block ciphers [4]. In block ciphers the rectangle attack
can be mounted based on their bijectivity. However, in MACs it can exploit
the non-bijectivity, i.e., two different messages may correspond to a same MAC
value or a same intermediate value (an internal collision). We use this non-
bijective property to devise our rectangle distinguisher of HMAC. Our rectangle
distinguisher of HMAC works as follows (refer to Fig. 2):

– Choose two messages Mi and Mj at random and compute two other messages
M ′

i = Mi ⊕ α and M ′
j = Mj ⊕ α, where Mi and Mj both have the same

length as α (�= 0).
– With a chosen message attack, obtain the MAC values Ci = HMAC(K, Mi),

C′
i = HMAC(K, M ′

i), Cj = HMAC(K, Mj) and C′
j = HMAC(K, M ′

j).
– Check if Ci ⊕ Cj = C′

i ⊕ C′
j = 0 or Ci ⊕ C′

j = C′
i ⊕ Cj = 0.

We denote by Xi, X ′
i, Xj and X ′

j the outputs of h2 ◦ h1 for the messages
Mi, M ′

i , Mj and M ′
j, respectively (see Fig. 2). Note that in Fig. 2 K ⊕ ipad

and K ⊕ opad are inserted into the message parts of the functions h1 and h3,
1 In fact, the last test holds with a probability of approximately q + (1 − q) · 2−l.

Because even if the Mi and M ′
i do not cause a collision after the function h2, their

MAC values can still have a same value. However, in the computation of a probability
for our differential distinguisher we do not consider this case.

2 From [1] we know that HMAC with a random function behaves like a random func-
tion.
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Fig. 2. A Rectangle Distinguisher of HMAC (Mi ⊕ M ′
i = Mj ⊕ M ′

j = α)

respectively. In order to compute the probability to satisfy the last test we should
consider the following probabilities: p = PrX,I [h2(I, X)⊕h2(I, X ⊕α) = β] and

p̂ =
√∑

β(p2).

Assuming that the values h1(IV, K ⊕ ipad) are uniformly distributed for a
given key K, we get Xi ⊕ X ′

i = Xj ⊕ X ′
j = β with probability p2. Since the

function h2 is not a permutation (here, the domain of h2 is the message space
and its co-domain is the space of hash values), we expect Xi ⊕ Xj = 0 with
probability 2−l under the assumption that the output values of h2 are distributed
uniformly at random. Once we get Xi ⊕ X ′

i = Xj ⊕ X ′
j = β and Xi ⊕ Xj = 0,

we have the following equation:

X ′
i ⊕ X ′

j = (Xi ⊕ β) ⊕ (Xj ⊕ β) = Xi ⊕ Xj = 0

These equations allow us to get Ci ⊕Cj = C′
i ⊕C′

j = 0 and thus the probability3

of satisfying Ci ⊕ Cj = C′
i ⊕ C′

j = 0 is approximately

3 Note that the probability of satisfying Ci ⊕ Cj = C′
i ⊕ C′

j = 0 is slightly larger
than p̂2 · 2−l. Because even if the Xi and Xj (or the X ′

i and X ′
j) are not the same,

still there is a chance to have Ci ⊕ Cj = C′
i ⊕ C′

j = 0. However, we believe that
a simplified analysis is sufficient for the computation of the probability for our
rectangle distinguisher.
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∑
β

p2 · 2−l = p̂2 · 2−l .

Similarly, we get Xi ⊕ X ′
j = 0 with a probability of 2−l and thus Ci ⊕ C′

j =
C′

i ⊕ Cj = 0 holds with the same probability p̂2 · 2−l.
On the other hand, for a random function or HMAC with a random function,

Ci ⊕ Cj = C′
i ⊕ C′

j = 0 and Ci ⊕ C′
j = C′

i ⊕ Cj = 0 hold with a probability
of approximately 2−2l, respectively, since each requires a 2l-bit restriction to be
satisfied. Hence, we have the following rectangle distinguisher of HMAC.

Proposition 2. [A Rectangle Distinguisher of HMAC] Assume that the output
values of the functions h1 and H2 are distributed uniformly at random. Then
HMAC can be distinguished from a random function and from HMAC with a
random function if p̂2 · 2−l > 2−2l, i.e., p̂ > 2−l/2, where p̂ =

√∑
β(p2) and

p = PrX,I [h2(I, X) ⊕ h2(I, X ⊕ α) = β].

Our rectangle distinguisher cannot be used in distinguishing-R and forgery at-
tacks, since its required data complexity is always larger than 2l/2 messages
(details are described in Sect. 6). This is due to the fact that the rectangle
probability is always less than or equal to 2−l.

Unlike the differential distinguisher of HMAC, the rectangle distinguisher uses
a number of differentials without any restriction for output differences, while its
requirement to work is more expensive than that of the differential distinguisher,
i.e., it uses probability 2−l/2 instead of 2−l for its comparison. If it is easy to get
some nonzero output difference from the compression function of the underlying
hash function, but it is difficult to get a zero output difference, i.e., a collision,
then this rectangle distinguisher would be useful.

The success of our two distinguishers for HMAC depends significantly on the
strength of h2, which means the distinguishers do not depend strongly on the
properties of h1, h3 and h4. Even if h1, h3 and h4 employs cryptographically
strong compression functions (even iterated hash functions), our distinguishers
can still work if h2 has a low difference propagation.

5 Differentials on HAVAL, MD4, MD5, SHA-0, SHA-1

First, we check how many rounds of the compression functions of HAVAL, MD4,
MD5, SHA-0 and SHA-1 can be used for h2 in our rectangle distinguisher, i.e.,
we investigate for how many rounds of each compression function p̂ > 2−l/2

holds. Second, we present differential distinguishers of MD4, SHA-0 and SHA-1
with probabilities q such that q > 2−l or q > 2−l/2. Here, we do not take into
account multi-block differentials, for they are inferior to one-block differentials
in HMAC. See the full version of this paper [9] for more details of multi-block
differentials.
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5.1 Differentials for Rectangle Distinguishers

In order to compute the number of rounds for each compression function such
that p̂ > 2−l/2, we investigate a differential with probability p from which the
probability p̂ can be estimated. We first consider the compression function of
3-pass HAVAL.

In the compression function of HAVAL we insert a one-bit difference to two
message words to produce a collision after the first pass with a high probability.
This enables us to get probability-one differentials through many rounds in the
first and second passes. In more detail, if we denote by r1, r2, r3, r4, r5 and
r6 the round numbers involved in two such message words in the three passes
where r1 < r2 < · · · < r6, we can construct a 96-round differential with the
following probability: for the rounds 0 ∼ r1 probability 1, for each of the rounds
(r1 + 1) ∼ r2 probability 2−1, for the rounds (r2 + 1) ∼ (r3 − 1) probabil-
ity 1, for each of the rounds r3 ∼ r4 probability 2−1, for each of the rounds
(r4 + 1) ∼ (r5 − 1) probability 2−2, for each of the rounds r5 ∼ r6 probability
2−3 and for each of the rounds (r6 +1) ∼ 95 probability 2−4 (this can be done by
the computation of differential probabilities derived from the differential distri-
butions of Boolean functions and the use of both XOR and modular additions).
These probabilities may be slightly different according to in which message word
between the two a difference 0x80000000 is given. But the total probability is
the same: 2−(r2−r1+r4−r3+1+2(r5−r4−1)+3(r6−r5+1)+4(95−r6)).

As a result of an exhaustive search4, inserting a one-bit difference to the
third and eleventh message words provides the best probability p = 2−102. See
Table 1 for more details. In Table 1 ei represents a 32-bit word that has 0′s in
all bit positions except for bit i and ei1,···,ik

represents ei1 ⊕ · · · ⊕ eik
(in our

notation the leftmost bit is referred to as the 31-th bit, i.e., the most significant
bit). Note that we use the XOR difference as the measure of difference and in
the computation of the probability p in Table 1 the modular additions of the
unknown initial value and the last output value are considered. In our analysis
we take into account the probability that the last output difference is preserved
through the final modular additions.

In order to calculate p̂ we should sum the square of the probability of all
differentials with message difference α. However, it is computationally infeasible
and thus we have carried out experiments on the last three rounds (rounds 93 ∼
95) to estimate a lower bound for p̂ (our simulation is based on the assumption
that chosen message pairs follow the first 93-round differential in Table 1). For
this work, we have randomly chosen a number of IV s with 228 message pairs
Mi, M∗

i and 228 input pairs of round 93 Ii, I∗i each and computed M
′

i = Mi⊕α,
M∗′

i = M∗
i ⊕α and I

′

i = Ii⊕δ and I∗
′

i = I∗i ⊕δ, where α is the message difference
and δ is the input difference of round 93 in Table 1. We have then encrypted
through rounds 93 ∼ 95 Ii, I

′

i , I∗i and I∗
′

i with Mi, M
′

i , M∗
i and M∗′

i to obtain
outputs Oi, O

′

i, O∗
i and O∗′

i . Finally, we have checked if (Oi +IV )⊕(O
′

i +IV ) =

4 The exhaustive search has experimentally been done by considering all possible
r1, r2, r3, r4, r5 and r6 which can produce a collision after the first pass.
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Table 1. A Differential of HAVAL



On the Security of HMAC and NMAC 251

(O∗
i + IV ) ⊕ (O∗′

i + IV ). In our experiments we have observed that the number
of such quartets was ranging 320 ∼ 2130 for each IV . This simulation result
suggests that the square of the probability p̂ for rounds 93 ∼ 95 is approximately
2−18.2 and thus we can estimate the probability p̂ ≈ 2−9.1 · 2−90 = 2−99.1 since
the differential probability for rounds 0 ∼ 92 in Table 1 is 2−90. Furthermore, we
can extend this differential up to 101 rounds such that p̂ > 2−128. See Table 1
for this extension. We have also performed a series of simulations on the last two
rounds and from the simulation result we can estimate p̂ ≈ 2−124.4 for rounds
0 ∼ 101.

Similarly, we have investigated differentials on the compression function of
MD5 with high probabilities by inserting a one-bit difference in two or three
message words to produce a collision after the first pass. As a result, we can
construct a 33-round differential on MD5 with probability 2−69, which can be
used to construct differentials with probability p̂. See [9] for details of our reduced
MD5 differential. Our investigations on HAVAL and MD5 have started from the
assumption that low-weight differentials work out best when we can not use
neutral bits and message modifications. However, still there is a possibility that
HAVAL and MD5 have stronger differentials which can be derived by other
methods.

For MD4, SHA-0 and SHA-1, we have used the previous differentials in our
distinguishers, i.e., a 48-round differential on MD4 with probability 2−56 in [18],
a 65-round differential on SHA-0 with probability 2−78 in [5,6] and a 43-round
differential on SHA-1 with probability 2−80 in [6]. The 43-round differential on
SHA-1 is an extended one for the 34-round differential described in [6], and the
computations of differential probabilities on SHA-0 and SHA-1 are recomputed5.
See [9] for the recomputed differentials of SHA-0 and SHA-1. We have also carried
out the same experiments on the last few rounds to estimate each p̂ and from
our simulations we can estimate p̂ ≈ 2−56, 2−60.6, 2−78 and 2−73.4 for 48-round
MD4, 33-round MD5, 65-round SHA-0 and 43-round SHA-1, respectively.

5.2 Differentials for Differential Distinguishers

As stated above, our differential distinguisher works based on a differential which
causes a zero difference, i.e., a collision, after the function h2. We use the forego-
ing differentials or the previously known differentials on MD4, SHA-0 and SHA-1
in our distinguishing and forgery attacks:

– For SHA-0, the 65-round differential with probability 2−78 of Table 5 in [9]
can be extended into a 82-round differential with probability 2−98 (≈ q),
which causes a collision (this extended differential has appeared in [5], but
the differential probability is lower than that in [5] since we cannot use
neutral bits.)

5 The main difference of the computations of differential probabilities between [5,6]
and this paper is the use of neutral bits. In the SHA-0 and SHA-1 initial values are
known, which enables us to use neutral bits on message pairs to improve differential
probabilities. However, in our analysis of HMAC initial values are determined by a
secret key K, which implies they are unknown.
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– For SHA-1, the first 34-round differential with probability 2−52 of Table 6
in [9] can be used as our differential distinguisher.

– For the full MD4, there exists a differential with probability 2−56 (≈ q),
which causes a zero output difference from an unknown initial value [18].

– For the full SHA-0, there exists a differential with probability 2−107 (≈ q),
which causes a zero output difference from an unknown initial value [15,17].

6 Distinguishing and Forgery Attacks on HMAC

We use the probabilities p̂ and q to show two distinguishing and a forgery attacks
on the HMAC construction, and apply these attacks to HMAC based on HAVAL,
MD4, MD5, SHA-0 and SHA-1.

Our first distinguishing attack on HMAC using p̂ and a rectangle distinguisher
is described as follows:

1. Collect 2(l+1)/2 · p̂−1 message pairs (Mi, M
′
i) with difference α, where all the

Mi and M ′
i have the same bit-length t.

2. With a chosen message attack scenario, ask for MAC pairs of all the (Mi, M
′
i).

We denote the corresponding MAC pairs by (Ci, C
′
i). (We assume that the

MAC algorithm is either an instantiated HMAC or a random function (or
HMAC with a random function) which maps from t bits to l bits.)

3. Check if Ci ⊕Cj = C′
i ⊕C′

j = 0 or Ci⊕C′
j = C′

i ⊕Cj = 0 for all i, j such that
1 ≤ i < j ≤ 2(l+1)/2 · p̂−1. If there is at least one MAC quartet that satisfies
this test, output the MAC algorithm = HMAC, otherwise, output the MAC
algorithm = a random function (or HMAC with a random function).

The data complexity of this attack is 21+((l+1)/2) · p̂−1 chosen messages and
this attack requires a memory of 21+(l+1)/2 · p̂−1 l-bit blocks for storing all the
MAC values. The time complexity of this attack is dominated by Step 1 (the
data collection time) and Step 3, which seeks colliding MAC quartets. Since it
can be done efficiently by sorting the MAC pairs (Ci, C

′
i)’s by Ci’s, the time

complexity of this attack is thus a fraction of the time required to compute the
MAC values for the chosen messages (Step 1).

We now analyze the success rate of this attack. In Step 1 the 2(l+1)/2 · p̂−1

message pairs form 2l · p̂−2 message quartets ((Mi, M
′
i),(Mj , M

′
j)) corresponding

to MAC quartets ((Ci, C
′
i),(Cj , C

′
j)) for 1 ≤ i < j ≤ 2(l+1)/2 · p̂−1. Since for

HMAC Ci ⊕Cj = C′
i ⊕C′

j = 0 holds with a probability of 2−l · p̂2, and Ci ⊕C′
j =

C′
i ⊕ Cj = 0 also holds with the same probability (this probability has been

computed in Sect. 4), the expected number of MAC quartets satisfying the last
test is 2 (= (2l · p̂−2) · (2−l · p̂2) + (2l · p̂−2) · (2−l · p̂2)). On the other hand, for
a random function (or HMAC with a random function), Ci ⊕ Cj = C′

i ⊕ C′
j = 0

holds with a probability of 2−2l, and Ci ⊕ C′
j = C′

i ⊕ Cj = 0 also holds with the
same probability and thus the expectation of satisfying the test is 2−l+1 ·(p̂−2)(=
2−2l · (2l · p̂−2) + 2−2l · (2l · p̂−2)). Hence, the success rate of this attack is

1 − (1 − 2−l · p̂2)2
l+1·p̂−2

2
+

(1 − 2−2l)2
l+1·p̂−2

2
≈ 1 − e−2

2
+

e−2−l+1·p̂−2

2
.
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Table 2. Distinguishing and forgery attacks on HMAC with HAVAL, MD4, MD5,
SHA-0 and SHA-1

Hash Type of Type of h2 Probability of Data Success
Function Distinguisher Attack #R Distinguisher Complexity Rate

3-pass HAVAL R† Distinguishing 96 p̂ = 2−99.1 2228.6 0.93
(96 rounds)

4-pass HAVAL R Distinguishing 102 p̂ = 2−124.4 2253.9 0.93
(128 rounds)

MD4 R† Distinguishing 48 p̂ = 2−56 2121.5 0.93
(48 rounds) D† Forgery 48 q = 2−56 258 0.93

MD5 R Distinguishing 33 p̂ = 2−60.6 2126.1 0.92
(64 rounds)

SHA-0 R Distinguishing 65 p̂ = 2−78 2159.5 0.87
D† Distinguishing 82 q = 2−98 2100 0.93
D† Distinguishing 80 q = 2−107 2109 0.93
D Forgery 54 q = 2−61 263 0.93

(80 rounds) D Forgery 65 q = 2−78 280 0.93

SHA-1 R Distinguishing 43 p̂ = 2−73.4 2154.9 0.93
(80 rounds) D Forgery 34 q = 2−51 253 0.93

†: the attacks can work on HMAC based on full-round (or extended-round) hash functions.
R: Rectangle, D: Differential, #R: the number of rounds
Data complexity is the amount of chosen messages
In the rectangle attacks, memory complexity is the same as data complexity
Distinguishing attack is to distinguish instantiated HMAC from HMAC with a random function

Here, the first term is approximately 0.43. Our second distinguishing attack
on HMAC using q and a differential distinguisher is described as follows:

1. Collect 2 · q−1 message pairs (Mi, M
′
i) with difference α, where all the Mi

and M ′
i have the same bit-length t.

2. With a chosen message attack scenario, ask for MAC pairs of all the (Mi, M
′
i).

We denote the corresponding MAC pairs by (Ci, C
′
i). We assume that the

MAC algorithm is either an instantiated HMAC or a random function (or
HMAC with a random function) which maps t bits to l bits.

3. Check if Ci ⊕C′
i = 0. If there is at least one MAC pair that satisfies this test,

output the MAC algorithm = HMAC, otherwise, output the MAC algorithm
= a random function (or HMAC with a random function).

The data complexity of this attack is 22 · q−1 chosen messages and this attack
does not require any storage, and the time complexity of this attack itself is a
fraction of the time required to compute the MAC values for the chosen messages.
Similarly, the success rate of this attack is computed as follows:

1 − (1 − q)2·q
−1

2
+

(1 − 2−l)2·q
−1

2
≈ 1 − e−2

2
+

e−2−l+1·q−1

2
.

Finally, our forgery attack on HMAC using q and a differential distinguisher
is described as follows:
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1. Run Step 1 in the second distinguishing attack.
2. Run Step 2 in the second distinguishing attack, but we assume that the

MAC algorithm is an instantiated HMAC.
3. Check if Ci ⊕ C′

i = 0 and ask for the MAC pair of Mi||P and M ′
i ||P , where

Mi and M ′
i have a same MAC value and P is some non-empty string. If

the obtained MAC pair collides, again ask for the MAC value of Mi||P ||P ′,
where P ′ is some non-empty string. We denote this obtained MAC value by
C. Output C as the MAC value of M ′

i ||P ||P ′. Otherwise, restart this step
until we check all MAC pairs (Ci, C

′
i).

It is easy to see that this forgery attack works with (almost) the same data
complexity and the same success rate as our second distinguishing attack.

We can easily apply these three attacks to HMAC based on HAVAL, MD4,
MD5, SHA-0 and SHA-1 by using their probabilities p̂ and q. Table 2 shows the
results of distinguishing and forgery attacks on those instantiations of HMAC6.
In Table 2 forgery attacks also imply distinguishing-R and distinguishing-H
attacks.

Note: Our distinguishing and forgery attacks are also applicable to HMAC
in which the four components h1, h2, h3, h4 are instantiated with different
compression functions (see for example the pseudorandom functions of SSL 3.0).
For example, if HMAC employs full-round MD-5, full-round MD-4, full-round
MD5 and full-round MD5 for h1, h2, h3 and h4, respectively, it can be forged
with a data complexity of 258 chosen messages. This is due to the fact that our
distinguishing and forgery attacks depend only on the function h2. Furthermore,
the distinguishing and forgery attacks in Table 2 also work on NMAC based on
HAVAL, MD4, MD5, SHA-0 and SHA-1.

7 Conclusions

We have presented differential and rectangle distinguishers on HMAC, which are
derived from its structural property. They allow to present distinguishing and
forgery attacks on HMAC that can be mounted when HMAC employs hash func-
tions with slow difference propagations. With these distinguishing and forgery at-
tacks we have shown that HMAC with the full versions of 3-pass HAVAL and SHA-
0 can be distinguished from HMAC with a random function, and HMAC with the
full version of MD4 can be forged. These distinguishing and forgery attacks have
also been applied to HMAC based on reduced versions of MD5 and SHA-1. We
have also shown that our distinguishing and forgery attacks can be mounted on
NMAC (which is a generalized version of HMAC) with the same complexity. Fur-
thermore, we have shown that our differential and rectangle distinguishers can
lead to second-preimage attacks on HMAC and NMAC. All these attacks do not
6 These attacks are mounted under the assumption that the output values of the

functions h1 and h2 distribute uniformly over all possible values when K and Mi

are chosen uniformly at random (differential distinguishers are independent of the
distributions of the output values of the functions h2 and H2).
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contradict the security proof of HMAC, but they improve our understanding of
the security of HMAC based on existing cryptographic hash functions.

Our differential distinguisher on HMAC works only if the underlying hash
function has a differential with a zero output difference with probability larger
than 2−|hash value|. Our rectangle distinguisher on HMAC works only if the
underlying hash function has differentials such that the sum of the square of their
probabilities is larger than 2−|hash value|. Unlike the previous attacks on hash
functions, our analysis on the hash function embedded in HMAC should be done
under an unknown fixed initial value (which is determined by a secret key). This
fact makes difficult to use the recently proposed message modification technique
(Wang et al.’s attacks) and neutral-bit technique (Biham et al.’s attacks) in
analyzing HMAC based on specific cryptographic hash functions. However, it is
interesting to investigate if their methods can be applied to HMAC with some
new other techniques when HMAC is instantiated with a specific cryptographic
hash function. We expect that the method developed in this paper would be
useful for the further analysis of HMAC.
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