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Abstract. Several algorithms have been proposed to analysis the structure of 
high-dimensional data based on the notion of manifold learning. They have been 
used to extract the intrinsic characteristic of different type of high-dimensional 
data by performing nonlinear dimensionality reduction. Most of them operate in 
a “batch” mode and cannot be efficiently applied when data are collected 
sequentially. In this paper, we proposed an incremental version (ILTSA) of 
LTSA (Local Tangent Space Alignment), which is one of the key manifold 
learning algorithms. Besides, a landmark version of LTSA (LLTSA) is proposed, 
where landmarks are selected based on LASSO regression, which is well known 
to favor sparse approximations because it uses regularization with l1 norm. 
Furthermore, an incremental version (ILLTSA) of LLTSA is also proposed. 
Experimental results on synthetic data and real word data sets demonstrate the 
effectivity of our algorithms. 

Keywords: manifold learning, LTSA, incremental learning, LASSO. 

1   Introduction 

The purpose of dimensionality reduction is to transform a high-dimensional data set 
into a low-dimensional space, while retaining most of the underlying structure in the 
data. Dimensionality reduction has long been an important problem in the field of 
pattern classification, data mining and machine learning. It is important for several 
reasons, with the most important being to circumvent the curse of dimensionality: 
many classifiers perform poorly in a high-dimensional space given a small number of 
training samples. Dimensionality reduction can also be used to visualize the data by 
transforming the data into two or three dimensions. 

Many dimension reduction algorithms have been proposed, and can be classified 
into two classes roughly: linear methods and nonlinear methods. PCA (Principal 
Component Analysis) and LDA (Linear Discriminant Analysis) are the most popular 
linear dimensionality reduction methods. While they are easy understandable, simple to 
implemented and can catch the linear structures of data, they can not discover the 
nonlinear structures of the data. In reality, many high dimension data is embedded in a 
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low nonlinear manifold, and there are some cues that the low-dimensional embedding 
is consistent with human perception [1]. To address the shortcomings of the linear 
methods, kernel PCA method and kernel LDA method have been proposed by many 
researchers. Recently, there has been considerable interest in developing efficient 
algorithms, the so called manifold learning methods, to construct nonlinear 
low-dimensional manifolds from sample data points in high-dimensional spaces, and 
these methods have been regarded as effective approaches for nonlinear dimension 
reduction. In ISOMAP algorithm [2], pairwise geodesic distances of the data points 
instead of the Euclid distance are used with MDS (multidimensional scaling). The LLE 
(locally linear embedding) method [3] constructs a local geometric structure that is 
invariant to translations and orthogonal transformations in a neighborhood of each data 
point, and seeks to project the data points into a low-dimensional space that best 
preserves those local geometries. (A related method using Hessian matrices is 
presented in [4]). LTSA (local tangent space alignment) [5] methods constructs a local 
tangent space for each data point, and obtains the global low-dimensional embedding 
through affine transformation of the local tangent spaces. 

Most of above nonlinear algorithms operate in a batch mode, meaning that all the 
data points need to be available during training. In applications like surveillance, where 
image data are collected sequentially, batch methods is computationally demanding: 
Repeating running the “batch” version whenever new data points become available is 
time consuming. Data accumulation is particularly beneficial to manifold learning 
algorithms due to their nonparametric nature. Another benefit for developing 
incremental methods is that the gradual changes in the data manifold can be detected. 
An incremental algorithm can be easily modified to be adaptive by incorporating 
“forgetting” effect. Another situation where incremental learning is useful is when 
there is an unbounded stream of possible data to learn from. 

There have been some tries to create incremental manifold algorithms from their 
batch mode. In [6] Martin and Anil proposed two incremental algorithms considering 
the original ISOMAP and landmarked ISOMAP. An incremental LLE algorithm is 
proposed by Olga etc in [7]. In this paper, we have modified the LTSA algorithm so that 
it can update the low-dimensional representation of data points. Inspired by the 
landmarks using with the ISOMAP, we proposed an landmarked LTSA algorithm to 
reduce time complexity and memory requirement. Two incremental algorithms are 
proposed corresponding to the algorithms. 

The main contribution of this study includes: 

1. An landmark version of LTSA algorithm, where the landmark selection is based on 
LASSO [9]. This contrasts with previous work like [11], where random points are 
selected as landmark points. 

2. Two incremental LTSA algorithms corresponding to original LTSA and landmark 
LTSA. 

3. An incremental eigen-decomposition problem with increasing matrix size is solved 
by subspace iteration with Ritz acceleration. This is much efficient than solving a 
SVD problem from scratch. 
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2   LTSA 

Given a set of data points x1,…,xN in a m-dimensional space Rm, LTSA assumes that 

the data lie on a (Reimannian) manifold and maps xi to its d-dimensional representation 

iτ  in such a way that the local geometry information of xi is reserved as much as 

possible. The local geometry information of xi is defined as the local coordinates of the 

data points xjs in the neighborhood with respect to the tangent space of xi. The power of 

LTSA can be demonstrated by the three-dimensional “Swiss-roll” data set in Fig.1, 

where points are colored according to their location on the manifold. When PCA is 

used to reduce the dimension to two (Figure 1b), points with different colors are mixed 

together, so disconnected regions on the manifold are mapped to similar locations. In 

LTSA (Figure 1c), the color of the points change gradually, indicating that the 

representation discover by LTSA faithfully corresponds to the structure of the curved 

manifold. 

   
(a) (b) (c) 

Fig. 1.  LTSA on “Swiss roll” with 2,000 points, using knn neighborhood with k=8. (a) Points are 
colored according to their positions on the manifold. (b) Points with different colors are mixed 
together when they are plotted by the two PCA coordinates. (c) LTSA coordinates, a clear trend 
of the color is observed, indicating the structure of the manifold is recovered. 

The LTSA algorithm has three stages. First, local information are extracted. LTSA 

requires the user to specify a parameter k, which is the number of neighborhoods used 

to construct local tangent spaces. For each xi, let Xi=[xi1,…,xik] be a matrix consists of 

its k-nearest neighbors including xi, say in terms of the Euclidean distance and ix  be 

the mean of Xi. LTSA determines Xi for each xi firstly, then  extracts local geometry 

information around xi. Let ( )F f= Ω  is a parameterized manifold with 

: d mf R RΩ ⊂ → , while the Jacobi matrix of f at τ  cannot be explicitly computed 
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without knowing the function f, the local tangent space Tτ  at a fixed τ  can be 

approximated using points in a neighbor set in the high-dimensional input space. Let Qt 

be an orthonomal basis matrix of Tτ  and * ( )tθ τ  the local coordinate of τ  

corresponding to Tτ . Then, Qt and * ( )tθ τ  can be calculated with SVD, so the local 

reconstruction error Ei can also be estimated. 

LTSA proceeds to construct the alignment matrix. At the end of the first stage, a data 

point xij near xi can be represented as ( ) ( )i i
ij i i j jx x Qθ ε= + + , where 

( ) ( )( )i T
j i i ij iI Q Q x xε = − −  denotes the reconstruction error. The global coordinates iτ , 

i=1,…,N in the low-dimensional space are constructed based on the local coordinates 
( )i
jθ  which represents the local geometry. The local geometry information embedding 

by the ( )i
jθ  are preserved as much as possible in the global coordinates. 

The final step of LTSA recovers embedding coordinates iτ . To uniquely determine 

T, the constraint T
dTT I=  is imposed. The optimal T is given by the d eigenvectors of 

alignment matrix corresponding to the 2nd to d+1st small eigenvalues. 

3   Incremental Version of LTSA (ILTSA) 

The major computation cost of LTSA involves the computation of the smallest 

eigenvectors of the symmetric positive semidefined alignment matrix B. As new data 

arrive, these quantities usually do not change much: a new data point often changes the 
neighbors among only a subset of vertices, and the simple eigenvectors and eigenvalues 

of a slightly perturbed real symmetric matrix stay close to their original values. This 

justifies the reuse of the current transform matrix and coordinates for update. Compared 
to the incremental version of ISOMAP [6], the incremental LTSA is more suitable 

since it does not need the time consuming graph reconstruction problem, which is 

needed to calculate the geodesic distance between data points. More specificly, the 
structure of alignment matrix B in LTSA is highly local, and the influence of a new data 

is more local, which makes the updating of matrix very simple. 

The problem of incremental LTSA can be described as follows. Assume that the 
low-dimensional coordinates ti of xi for the first n points are given. As a new sample 

xn+1 is observed, how should we update the existing set of ti and find tn+1? Our solution 

consists of three stages. The local geometry information are first updated in view of the 
new coming data xn+1. The local coordinates of xn+1 with respect to subset of the 
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existing points are then used to estimate tn+1. Finally, all ti are updated in view of the 

coming data xn+1. 

The modification of the original LTSA for incremental updates will be described in 
section 3.1. In section 3.2, we proposed a new variant of LTSA (LLTSA) that utilizes 

the LASSO and LARS algorithms to select landmark points, because of LTSA is 

nonparametric, the data points themselves need to be stored, which limit the LTSA 
usage in huge data set. Compared to [6], where an incremental version of ISOMAP is 

proposed, the big difference is the landmarks are selected somewhat randomly, while in 

our method, the landmarks are selected following a more principal approach, as in [12]. 
An incremental version of LLTSA is also proposed in section 3.2. 

3.1   Incremental LTSA (ILTSA) 

When the new data xn+1 is observed, it only affects directly the coordinates of points 

which includes xn+1 in their k nearest neighborhoods, using XA denotes this set of points. 

However, as the local tangent space of a point xi∈XA is modified by the new point xn+1, 

all the local coordinates of its neighbors need update. For each xi∈XA, let Xi=[xi1,…,xik] 

be a neighborhood matrix consisting of its k-nearest neighbors including xi. The 

d-dimensional affine subspace approximation for data point in Xi is computed as 

22

2 2
, , , ,1

( ) ( )min min
k

T
ij j i

x Q x Qj

x x Q X xe Q
θ θ

θ
=

− + = − + Θ∑
 

(1) 

where Q is of d columns and is orthonormal and 1[ , , ]kθ θΘ = … . Similar to PCA 

analysis, the optimal x is given by ix , the mean of all the xij’s and the optimal Q is 

given by Qi, the matrix of d left singular vectors of ( / )T
iX I ee k−  corresponding to its 

d largest singular values, and Θ  is given by iΘ  defined as 

( ) ( ) ( )
1( / ) [ , , ],  ( )T T i i i T

i i i k j i ij iQ X I ee k Q x xθ θ θΘ = − = = −…
, (2) 

and ( )i
jθ  incorporates local geometry information near xi. 

What we need is to construct the global coordinate 1nτ +  in the low-dimensional 

space based on the given global coordinates iτ , i=1,…,n, and the local coordinates 
( )i
jθ . In the same spirit of original LTSA, the principal of locating 1nτ +  is to minimize 

the reconstruction errors ( )i
jε , which is defined as 

( ) ( )[ ]i i
j ij i i jLε τ τ θ= − + ,j=1,…,k, i Ax X∈  (3) 
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where iτ  is the mean of ijτ ’s, Li is a local affine transformation matrix that need to be 

determined and ( )i
jε  the local reconstruction error. Denoting 1[ ,..., ]i i ikτ τΤ =  and 

( ) ( )
1[ ,..., ]i i

i kE ε ε= , then we have 
1 T

i i i i iT T ee L E
k

= + Θ + , and the local reconstruction 

error matrix Ei then has the form 

( / )T
i i i iE T I ee k L= − − Θ . (4) 

To best preserve the local geometry information in the low-dimensional space, iτ  

and Li are sought to minimize the reconstruction errors ( )
1

i
nε + , i.e., 

2 2( ) ( )
1 1 12 2

( / ) min
i A i A

i T i
n n i n

x X x X

I ee k Lε τ θ+ + +
∈ ∈

= − − =∑ ∑
. 

(5) 

The optimal alignment matrix Li that minimize the local reconstruction error || ||i FE  

for a fixed iτ  is given by ( / )T
i i iL T I ee k += − Θ , and there for 

1
( )( )T

i i i iE T I ee I
k

+= − − Θ Θ . 

To get the coordinates of 1nτ +  given n known coordinates of xi, i=1,…,n. We seek to 

minimize the local reconstruction error of xn+1 for each point i Ax X∈ , which is written as 

( ) 2 ( ) ( ) 2 ( ) ( ) 2
1 2 1 1 2 1 1 2|| || || [ ] || || [ ] ||i i i i i

n n i i n n i i i nL Tε τ τ θ τ τ θ+
+ + + + += − + = − + Θ . (6) 

As in LTSA, in the global low-dimensional coordinates, we want to minimize the 

reconstruction error: 

1 1

( ) 2 ( ) 2
1 2 1 1 2|| || || [ ] || ,  minmin

n n

i i
n n i i i n i AT for x X

τ τ
ε τ τ θ

+ +

+
+ + += − + Θ ∈ , (7) 

1nτ +  is obtained by solving the above equations in the least square sense. 

A related procedure is applied in [7] for LLE to calculate the coordinates of new data 

point. The eigenvalues of new data distance matrix are assumed the same as old data 

set. However, the assumption does not always hold in practice. In reality, if xn+1 is very 

near to a point xi, the local geometry information of xi will change enormously and so 

the eigenvalues. Our method does not assume the assumption, so it can overcome this 

situation. 
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After get the low-dimensional coordinates of new data point xn+1, we need update the 

coordinates iτ  in view of the modified alignment matrix. This can be viewed as an 

incremental eigenvalue problem, since iτ  is obtained by eigen-decomposition. 

However, since the size of alignment matrix is increasing, traditional updating methods 

with same matrix size cannot be applied directly. An iterative scheme is used to update 

T by finding the eigenvales and eigenvectors of alignment matrix Bnew. A good initial 

guess for the subspace of dominant eigenvectors of Bnew is the column space of TT. A 

better eigen-space is found by subspace iteration together with Rayleigh-Ritz 

acceleration [13]: 

1. Compute Z=BnewTT and perform QR decomposition on Z, i.e., Z=QR and let V=Q. 

2. Form Z*=VTBnewV and perform eigen-decomposition of the d by d matrix Z*, let iλ  

and ui be the ith eigenvalue and the corresponding eigenvector. 

3. Vnew=V[u2…ud+1] is the improved set of eigenvectors of Bnew. 

3.2   LTSA with Landmark Points 

One drawback of the original LTSA is the quadratic memory requirement: the distance 

matrix is of size O(n2), making LTSA infeasible for large data sets. The same problem 

occurs in ISOMAP algorithm. In [11] landmark ISOMAP was proposed to reduce the 

memory requirement while lowering the computation cost and an incremental version 

of L-ISOMAP was proposed in [6]. In landmark ISOMAP, instead of finds all the 

pairwise geodesic distances, the methods finds a mapping that preserves the geodesic 

distances originating from a small set of landmark points. In the original L-ISOMAP, 

random points are used as landmark points. In the [6], the vectors corresponding to the 

largest d singular value of centered geodesic distance matrix are used as landmark 

points. Least Absolute value Subset Selection Operator(LASSO) [9] is a shrinkage and 

selection method for linear regression. It minimizes the usual sum of squared errors 

with a bound on the sum of the absolute values of the coefficients. Finding the LASSO 

solutions used to require solving a quadratic programming problem, until the 

development of the Least Angle Regression(LARS) procedure [10], which is much 

faster and not only gives the LASSO solutions but also provides an estimator of the risk 

as a function of the regularization tuning parameter. LASSO with the LARS are used in 

[12] to select landmarks for ISOMAP algorithm. We follows the similar procedures to 

select landmarks for LTSA algorithm. 
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3.2.1   Landmark Selection Based on LASSO and LARS 

Let X be the n data points set in Rm, i.e., 1[ ... ]nX x x= , and T be the corresponding n 

d-dimensional point set in low-dimensional space. The sacristy of LTSA in achieved by 

finding an estimate lβ  that minimizes the function 

l l2|| || || ||qqE Kθ β γ β= − +  (8) 

where K={kij}, 2
2

|| ||
exp( )

2
i j

ij
k

x x
k

σ
−

= −  is a Gaussian kernel, nRθ ∈  and ˆ nRβ ∈ , γ  is 

a tunning parameter that controls the amount of regularization. β̂  is the parameter 

column vector, and ˆ|| ||qβ  denotes the lq norm of β̂ , i.e., 
1

ˆ| |
n q

ii
β

=∑ . For the most 

sparseness, the ideal value of q would be zero. However, minimizing E with the l0 norm 

is prohibitive in computational terms. A sub-optimal strategy is to use q=1 instead. This 

is the usual formulation of a LASSO regressive problems, which is traditionally solved 

using quadratic programming. The recent development of the LARS method has made 

this unnecessary. 

An important factor of the method is the choose of θ , which influences the process 

of landmark points selecting. In [12], the θ  is chosen as 1[ ... ]T
nθ θ θ= , where jθ  

equals to the maximum principal angle between ( )XuT M  and ( )XjT M , xj is the jth 

column of X and xu is the mean of X, ( )XuT M  and ( )XjT M  are the tangent subspace at 

xu and xj respectively. The principal angles and efficient algorithms to compute them 

can be found in [14]. The local tangent subspace can be found by local SVD, which is 

calculated during the original LTSA, so there would be litter extra computational 

burden. A big difference between our method compared with the method in [12], is that 

the jθ  in our method is more local, here jθ  is defined as the maximum principal angle 

between 
X ju

T  and xjT , where jux  is the mean of Xj, which is the neighbor set of xj. The 

choice is in the same spirit as LTSA, which in principal is more local compared with 
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ISOMAP, and also note the geometry information near a point xi embedding in LTSA is 

determined by its near neighbors. 

Briefly, LARS starts with ˆ 0β =  and adds covariates (the column of K) to the model 

according to their correlation with the prediction error vector, ˆKθ β− , setting the 

corresponding ˆ
jβ  to a value such that another covariate becomes equally correlated 

with the error and is, itself, add to the model. LARS then proceeds in a direction 

equiangular to all the active ˆ
jβ  and the process is repeated until all covariates have 

been added. There are a total of m steps, each of which adds a new ˆ
jβ , making it 

non-zero. With slight modification, these steps correspond to a sampling of the tuning 

parameter γ  in (8) under LASSO. Furthermore, the risk is shown can be estimated as 

2 2ˆ ˆ( ) || || / 2p pR K m pβ θ β σ= − − + , where p is the number of non-zero of ˆ
jβ , and 2σ  

can be found from the unconstrained least square solution. 

The landmarks are the columns xj of X with the same index j as non-zero element of 

ˆ
jβ , where arg min ( )p

p
p R β= . There are 'n p=  landmarks, as there are p non-zero 

elements in pβ .  

3.2.2   Incremental Landmark LTSA (ILLTSA) 

Without the generality, let the first u points, i.e., x1,…,xu be the landmark points, denote 

the point set with XL. For a data point xi, instead of finding the k minimal distance 

among all the data point X, the landmark LTSA(LLTSA) finds the k minimal distance 

neighbors among the small set landmark points XL, and use this information to 

construct local tangent space. In the LLTSA, the size of distance matrix D ={dij} is u*n, 

where dij is the distance between xi(a landmark point) and xj. The local tangent space of 

xn+1 is constructed with the local geometry information with XL. The coordinate of the 

new point xn+1 is determined by solving a Least-Square problem similar to that in 

section 3.1. The difference is that the columns among XL instead of X, are used. Finally, 
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subspace iteration together with Ritz acceleration is used to improve singular vector 

estimates. The steps are the following: 

1. Perform SVD on the matrix BT, 1 1 1
TU S V BX= . 

2. Perform SVD on the matrix 1
TB U , 2 2 2 1

T TU S V B U= . 

3. Set 1/ 2
2 2( )newT U S=  and 1/ 2

1 2( )newQ U S= . 

Similarly, the updated coordinates are the eigenvectors corresponding to 2~d+1 

smallest eigenvalues. 

4   Experiments 

In order to evaluate the methods proposed, we have conducted several experiments on 
synthetic data sets and real datasets. The main algorithm is implemented in Matlab. The 
running time is measured on a 2.1 GHz PC with 1G memory running Windows XP. 

4.1   Incremental LTSA(ILTSA) 

The accuracy and the efficiency of the basic incremental algorithm is evaluated by 
comparing it with the batch version on several data sets. The first experiment is on the 3 
dimensional Swiss roll data set, the data set is also used in the original LTSA. 
Initialization is done by finding the coordinate estimate xi for 100 randomly selected 
points using the original “batch” LTSA, with the neighborhood size k=8. Random 
points from the S-curve data set are then added one by one, until 2,000 points are 
accumulated. The incremental algorithm described in Section 3.1 is used to update 
the coordinates. Figure 2 shows several snapshots of the algorithm. In the first column, 
the circles and cross in the figures represent the coordinates estimated by the batch 
and the incremental version ILTSA respectively. The second column contains scatter 
plots, where the color of the points correspond to the coordinates of the first column. 
The third column illustrates the neighborhood structure graphs. Snapshots with 100, 
500, 1,000 points are shown. The cross and the circles match very well, indicating that 
the coordinates updates by the incremental LTSA follow closely with the coordinates 
estimated by the batch version for different number of points. 

To quantify the accuracy of the coordinate update of the incremental algorithm 

ILTSA, we adopt an error measure[6] defined as the square root of the mean square 

error between ( )ˆ n
iτ  and ( )n

iτ , normalized by the total sample variance:  
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(a) (b)
(c)

(d) (e) (f) 

(g) (h)  (i)  

Fig. 2. Snapshots of “Swiss roll” for incremental LTSA. Incremental LTSA was initialized by 
running the “batch” LTSA with 100 points((a) to (c)). Snapshots with 500 and 1,000 are 
shown in (d) to (f) and (g) to (i) respectively. 

 

( ) ( ) 2 ( ) 2

1 1

1
ˆ| | | | / | | | |

n n
n n n

n i i i
i in

ε τ τ τ
= =

= −∑ ∑ . nε  against the number of data point n for 

Swiss roll data set is presented in Figure 3a. From the figure, we can see that the 

proposed updating method is fairly accurate with an average error of 0.08 percent. The 

computation time is show in Table 1. Our incremental approach has significant saving 

in main aspects of LTSA: the global coordinates update. Note that both the batch and 

incremental versions need the same number of distance computations. 

Similar experimental procedure is applied to other data sets. The “S-curve” data set 

contains points in a 3D space with an effective dimensionality of two, which is a 

standard benchmark for manifold learning. The “rendered face” data set contains 698 

face images with size 64*64 rendered at different illumination and pose conditions.  
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Fig. 3. Approximation error ( nε ) between the coordinates estimated by the basic incremental 

LTSA and the basic batch LTSA for different numbers of data points (n). (a) Swiss roll, (b) 

S-curve, (c) Rendered Faces. (d) MNIST digit 2. 

Table 1. Runtime (Seconds) for Batch and incremental LTSA 

Swiss roll S-curve Rendered face MNIST 2  
Batch Incr. Batch Incr. Batch Incr. Batch Incr. 

Computing 
tn+1 

0.43 0.56 0.07 0.52 

Updating ti 
31.76 

5.12 
28.96 

5.53 
3.47 

0.86 
32.85 

4.38 

 

(a)

(b) 

 

Fig. 4. Example images of data sets. (a) rendered face. (b) MNIST digit 2. 
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“MNIST digit 2” is a 576-dimensional data set derived from the digit images “2” from 
MNIST and contains 28 by 28 digit images. Some examples for “rendered face” and 
“MNIST digit 2” are shown in Figure 4. All the above data set are also used in [6]. The 
neighborhood size for MNIST digit 2 and “rendered face” is set to 10 to demonstrate 
that the proposed approach is efficient and accurate irrespective of the neighborhood 
used. The approximation error and the computation time for these data set are shown in 
Figure 3 and Table 1. We can see that the incremental LTSA is accurate and efficient 
for updating the coordinates in all these data sets. 

4.2   Experiments on Landmark LTSA 

A similar experimental procedure is applied to the incremental landmark LTSA 
described in Section 3.2 for Swiss roll, S-curve, rendered face, MNIST digit2 data sets. 
300 randomly points from the data set are selected at start, points are then added one by 
one randomly until 5,000 points are accumulated. For the data set less than 5000, the 
procedure stops when all the data point are used. 100 points from the initial 300 points 
are selected to be the landmark points following the LASSO procedure in section 3.2.1. 
The snapshots for incremental LLTSA are fairly similar to those for incremental LTSA 
in Fig.2 and are omitted here. The approximation error and the computation time for the 
batch and incremental version of landmark LTSA are shown in Fig. 5 and Table 2 
respectively. Once again, the coordinates estimated by the incremental version are 
accurate with respect to the batch version, and the computation time is much less. 

 

  

  

Fig. 5. Approximation error ( nε ) between the coordinates estimated by the incremental 

landmark LTSA and the batch landmark LTSA for different numbers of data points (n). (a) 

Swiss roll. (b) S-curve. (c) Rendered Faces. (d) MNIST digit 2. 
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Table 2. Runtime (Seconds) for Batch and incremental Landmark LTSA 

Swiss roll S-curve Rendered 
face 

MNIST 2  

Batch Incr. Batch Incr. Batch Incr. Batch Incr. 
Computing 
tn+1 

0.35 0.72 0.09 0.42 

Updating ti 

11.72 

3.21 

12.06 

3.54 

2.13 

0.87 

10.58 

2.76 

5   Conclusion 

Nonlinear dimensionality reduction is an important problem with applications in 
pattern recognition, computer vision and data mining. We have proposed an algorithm 
(ILTSA) for incremental nonlinear mapping problem by modifying the LTSA 
algorithm. The core idea is to efficiently reestimate the eigenvectors using the previous 
computation results. A landmark version of LTSA (LLTSA) is also proposed, where 
the landmark points are selected based on LASSO and LARS regression. The proposed 
algorithm finds geometrically meaningful landmarks and avoids expensive quadratic 
programming computations. Furthermore, an incremental LLTSA (ILLTSA) algorithm 
is also proposed for the landmark version of LTSA. The proposed methods have been 
validated on synthetic and real datasets. 
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