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Abstract. Estimation of probability density functions (pdf) is one ma-
jor topic in pattern recognition. Parametric techniques rely on an
arbitrary assumption on the form of the underlying, unknown distri-
bution. Nonparametric techniques remove this assumption In particular,
the Parzen Window (PW) relies on a combination of local window func-
tions centered in the patterns of a training sample. Although effective,
PW suffers from several limitations. Artificial neural networks (ANN)
are, in principle, an alternative family of nonparametric models. ANNs
are intensively used to estimate probabilities (e.g., class-posterior prob-
abilities), but they have not been exploited so far to estimate pdfs. This
paper introduces a simple neural-based algorithm for unsupervised, non-
parametric estimation of pdfs, relying on PW. The approach overcomes
the limitations of PW, possibly leading to improved pdf models. An ex-
perimental demonstration of the behavior of the algorithm w.r.t. PW
is presented, using random samples drawn from a standard exponen-
tial pdf.

1 Introduction

One major topic in pattern recognition is the problem of estimating proba-
bility density functions (pdf) [5]. Albeit popular, parametric techniques (e.g.
maximum-likelihood for Gaussian mixtures) rely on an arbitrary assumption
on the form of the underlying, unknown distribution [8]. Nonparametric tech-
niques (e.g. kn-nearest neighbors [4]) remove this assumption and attempt a
direct estimation of the pdf from a data sample. The Parzen Window (PW)
is one of the most popular nonparametric approaches to pdf estimation, re-
lying on a combination of local window functions centered in the patterns of
the training sample [5]. Although effective, PW suffers from several limitations,
including:

(i) the estimate is not expressed in a compact functional form (i.e., a prob-
ability law), but it is a sum of as many local windows as the size of the
sample;

(ii) the local nature of the window functions tend to yield a fragmented
model, which is basically “memory based” and (by definition) is prone
to overfitting;
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(iii) the whole training sample has to be kept always in memory in order to
compute the estimate of the pdf over any new (test) patterns, resulting in
a high complexity of the technique in space and time;

(iv) the form of the window function chosen has a deep influence on the even-
tual form of the estimated model, unless an asymptotic case (i.e., infinite
sample) is considered;

(v) the PW model heavily depends on the choice of an initial width of the
local region of the feature space where the windows are centered.

Artificial neural networks (ANN) are, in principle, an alternative family of
nonparametric models [6]. Given the “universal approximation” property [2]
of certain ANN families (multilayer perceptrons [10] and radial basis function
networks [9]), they might be a suitable model for any given (continuous) form
of data distributions. While ANNs are intensively used for estimating proba-
bilities [7] (e.g., posterior probabilities in classification tasks [2]), they have not
been exploited so far for estimating pdfs. For instance, Bourlard and Morgan ap-
ply ANNs in order to estimate probabilistic quantities within a hidden Markov
model (HMM) framework [3], but they use the ANN as a sate-posterior probabil-
ity model, instead of modeling the emission-likelihoods that are required in the
formal definition of standard HMMs. One of the main rationales behind this fact
is that connectionist modeling of probabilities is easily (and somewhat heuris-
tically) achieved by standard supervised backpropagation [10], once 0/1 target
outputs are defined for the training data [2] (along the line of the Widrow-Hoff
algorithm for linear discriminants [4]). Moreover, it is also simple to introduce
constraints within the model that ensure the ANN may be interpreted in prob-
abilistic terms, e.g. using sigmoid output activations (that range in the (0, 1)
interval), along with a softmax-like mechanism [1] which ensures that all the
outputs sum to 1. Learning a pdf, on the contrary, is an unsupervised and far
less obvious task.

This paper introduces a neural-based algorithm for unsupervised, nonpara-
metric density estimation. The algorithm is presented in detail in Section 2,
along with a concise review of the PW technique which is used within the ANN
training scheme. The approach overcomes the limitations of PW, and it may
lead to better pdf models than the PW itself. An experimental demonstration of
the behavior of the algorithm w.r.t. PW is presented in Section 3, using random
samples drawn from a standard exponential pdf.

2 The Proposed Estimation Algorithm

The algorithm is introduced by reviewing the basic concepts of PW estima-
tion (refer to [4]). Let us consider a pdf p(x), defined over a real-valued, d-
dimensional feature space. The probability that a pattern x′ ∈ Rd, drawn from
p(x), falls in a certain region R of the feature space is P =

∫
R

p(x)dx. Let then
T = {x1, . . . ,xn} be an unsupervised sample of n patterns, identically and in-
dependently distributed (i.i.d.) according to p(x). If kn patterns in T fall within
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R, an empirical estimate of P can be obtained as P � kn/n. If p(x) is contin-
uous and R is small enough to prevent p(x) from varying its value over R in
a significant manner, we are also allowed to write

∫
R p(x)dx � p(x′)V , where

x′ ∈ R, and V is the volume of region R. As a consequence of the discussion, we
can obtain an estimated value of the pdf p(x) over pattern x′ as:

p(x′) � kn/n

Vn
(1)

where Vn denotes the volume of region Rn (i.e., the choice of the region width is
explicitly written as a function of n), assuming that smaller regions around x′ are
considered as the sample size n increases. This is expected to allow Equation (1)
to yield improved estimates of p(x), i.e. to converge to the exact value of p(x′)
as n (hence, also kn) tends to infinity (a discussion of the asymptotic behavior
of nonparametric models of this kind can be found in [4]).

The basic instance of the PW technique assumes that Rn is a hypercube
having edge hn, such that Vn = hd

n. The edge hn is usually defined as a function
of n as hn = h1/

√
n, in order to ensure a correct asymptotic behavior. The value

h1 has to be chosen empirically, and it heavily affects the resulting model. The
formalization of the idea requires to define a unit-hypercube window function in
the form

ϕ(y) =
{

1 if | yj |≤ 1/2, j = 1, . . . , d
0 otherwise (2)

such that ϕ(x′−x
hn

) has value 1 iff x′ falls within the d-dimensional hypercubic re-

gion Rn centered in x and having edge hn. This implies that kn =
∑n

i=1 ϕ(x′−xi

hn
).

Using this expression, from Equation (1) we can write

p(x′) � 1
n

n∑

i=1

1
Vn

ϕ(
x′ − xi

hn
) (3)

which is the PW estimate of p(x′) from the sample T . The model is usually
refined by considering smoother window functions ϕ(.), instead of hypercubes,
e.g. standard Gaussian kernels with zero mean and unit covariance matrix.

Let us now consider a feedforward ANN that we wish to train in order to learn
a model of the probability law p(x) from the unsupervised dataset T . The idea
is to use the PW model as a target output for the ANN, and to apply standard
backpropagation to learn the ANN connection weights. A unbiased variant of this
idea is proposed, according to the following unsupervised algorithm (expressed
in pseudo-code):

Input: T = {x1, . . . ,xn}, h1.
Output: p̃(.) /*the connectionist estimate of p(.) */

1. Let hn = h1/
√

n
2. Let Vn = hd

n

3. For i=1 to n do /* loop over T */
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3.1 Let Ti = T \ {xi}
3.2 Let yi = 1

n

∑
x∈Ti

1
Vn

ϕ(xi−x
hn

) /* target output */
4. Let S = {(xi, yi) | i = 1, . . . , n} /* supervised training set */
5. Train the ANN via backpropagation over S
6. Let p̃(.) be equal to the ANN
7. Return p̃(.)

We call the ANN trained this way the Parzen Neural Network (PNN). Since the
PNN output is assumed to be an estimate of a pdf, it must be non-negative.
This is granted once standard sigmoids (in the form y = 1

1+e−x ) are used in the
output layer. Standard sigmoids range in the (0, 1) interval, while pdfs may take
any positive value. For this reason, sigmoids with adaptive amplitude λ (i.e., in
the form y = λ

1+e−x ), as described in [11], should be taken into consideration.
A direct alternative is using linear output activation functions, forcing negative
outputs to zero once training is completed. Nevertheless, as in the kn-nearest
neighbor technique [4], the PNN is not necessarily a pdf (in general, the integral
of p̃(.) over the feature space is not 1).

There are two major aspects of the algorithm that shall be clearly pointed out.
First, the PW generation of target outputs (steps 3-3.2) is unbiased. Computa-
tion of the target for i-th input pattern xi does not involve xi in the underlying
PW model. This is crucial in smoothing the local nature of PW. In practice, the
target (estimated pdf value) over xi is determined by the concentration of pat-
terns in the sample (different from xi) that occurs in the surroundings of xi. In
particular, if an isolated pattern (i.e., an outlier) is considered, its exclusion from
the PW model turns out to yield a close-to-zero target value. This phenomenon
is evident along the possible tails of certain distributions, and it is observed in
the experiments described in Section 3.

A second relevant aspect of the algorithm is that it trains the ANN only
over the locations (in the feature space) of the patterns belonging to the original
sample. At first glance, a different approach could look more promising: once the
PW model has been estimated from T , generate a huge supervised training set
by covering the input interval in a “uniform” manner, and by evaluating target
outputs via the PW model. A more homogeneous and exhaustive coverage of the
feature space would be expected, as well as a more precise ANN approximation of
the PW. As a matter of fact, training the ANN this way reduces its generalization
capabilities, resulting in a more “nervous” surface of the estimated pdf, since the
PW model has a natural tendency to yield unreliable estimates over regions of
the feature space that are not covered by the training sample (again, refer to
the experimental demonstration in Section 3).

It is immediately seen that, in spite of the simplicity of its training algorithm,
the PNN is expected to overcome most of the PW limitations listed1 in Section 1.
The following Section highlights that, in addition, the PNN may turn out to be
more accurate than the PW estimate.

1 Response of the PNN w.r.t. point (i) in that list depends on the complexity of the
ANN architecture that is used.
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Fig. 1. Nonparametric estimates of the pdf from a random sample of 100 points drawn
from the standard exponential distribution. Parzen-Window and PNN are estimated
using an initial edge h1 = 0.8.

3 Experimental Demonstration

A simple, illustrative estimation task is considered. Samples in this Section are
randomly drawn from the popular exponential pdf, defined as

p(x) =
1
β

e−(x−α)/β with x ≥ α, β > 0 (4)

where α is the location and β is the scale. This distribution is unlikely to be mod-
eled under a parametric assumption (e.g., via maximum-likelihood with a mix-
ture of Gaussian densities), unless the form of Equation (4) is known in advance.
The application of nonparametric techniques is sought. In the following experi-
ments, a standard exponential distribution is used, having α = 0 and β = 1.0.

In the first instance, a random sample of n = 100 points was generated ac-
cording to p(x). Figures 1–4 show the resulting PW and PNN models, estimated
from the sample and plotted against the original pdf, for decreasing values of h1.
The latter ranged from 0.8 to 0.1. As expected, the PW estimates are heavily
affected by the choice for h1, and the shape of the corresponding estimated pdf
is unnaturally peaked around the individual points in the training dataset. The
overall trend of the original distribution is better fit for small values of h1, but
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Fig. 2. Nonparametric estimates of the pdf from a random sample of 100 points drawn
from the standard exponential distribution. Parzen-Window and PNN are estimated
using an initial edge h1 = 0.4.
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Fig. 3. Nonparametric estimates of the pdf from a random sample of 100 points drawn
from the standard exponential distribution. Parzen-Window and PNN are estimated
using an initial edge h1 = 0.2.
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Fig. 4. Nonparametric estimates of the pdf from a random sample of 100 points drawn
from the standard exponential distribution. Parzen-Window and PNN are estimated
using an initial edge h1 = 0.1.

the function obtained turns out to be very sensitive to local sampling irregular-
ities. Moreover, the PW model includes peaks along the tail of the pdf, due to
the presence of isolated points (within the sample) belonging to low-probability
regions. The presence of local peaks basically violates the natural shape of the
underlying pdf. Finally, as far as concerns complexity, the PW model requires
the combination of n = 100 window functions, i.e. a total of 100 free parameters
that had to be determined from the data.

The PNN is trained on the same values of h1 as the corresponding PW. A
compact ANN topology was used, namely 6 sigmoids in the hidden layer and a
linear output unit. The latter is forced to non-negative values at test time, by
converting negative outputs to zero. It is seen from the graphics that the PNN
estimate is smoother, much closer to the reference exponential pdf than the PW
is. Sensitivity to the choice of h1 is significantly decreased w.r.t. PW. It is worth
noticing the difference between the PNN curve and the form of the PW model
that, roughly speaking, constitutes the target output for PNN during training.
The unbiased nature of the training algorithm (steps 3-3.2) is further exploited
in the avoidance of individual peaks, especially along the tail of the distribution.
Complexity of the model is reduced in a substantial manner, as well, namely
18 free parameters to be learned from the data: 6 input-to-hidden weights, 6
hidden-to-output weights, and 6 individual bias (i.e. diagonalization) values for
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Fig. 5. Estimates of the pdf for an increasing sample size: n = 10 (top), n = 100 (mid),
n = 1000 (bottom). Initial edge h1 = 0.3.
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the sigmoids. Experiments with an increased number of hidden units did not
lead to significant improvement in the modeling capabilities of the PNN, and
the contour of the estimated pdf remained basically the same.

Figure 5 plots the results obtained for an increasing number n of training
data. An intermediate value of h1 = 0.3 was applied. The same PNN architec-
ture described above was used. As expected, both PW and PNN models improve
as the size of the sample increases. For n = 1000 the PNN (18 free parameters,
6 nonlinear functions to be evaluated and combined at test time) is close to
the reference exponential pdf, PW (1000 free parameters, 1000 nonlinear func-
tions to be evaluated and combined at test time), is still sensitive to individual
training points and outliers (see, again, the tail of the distribution). In real-world
applications, e.g. speech processing, the sample size (e.g., n >> 1000) may make
the PW approach computationally infeasible at test time (too complex in space
and time requirements), while the PNN (once the resource-demanding training
process is completed) remains compact and efficient.

4 Conclusion

This paper presented a simple and effective neural-based nonparametric tech-
nique for the estimation of probability density functions. The estimation method
can be seen as an unsupervised learning algorithm for neural networks, since
it takes an unlabelled training sample and learns the proper ANN connection
weights using the gradient method. A reference, unbiased PW estimate is used to
drive the learning process. In this respect, it is worth underlining the strong dif-
ference in shape between the PW estimate and the corresponding PNN, i.e. the
latter is not limited to approximate the PW closely. The PNN overcomes most
of the limitations of classic nonparametric techniques, e.g. PW and kn-nearest
neighbor. As in the kn-nearest neighbor case, the PNN is not in general a pdf,
but the resulting model is expected to be close to the actual pdf and, eventu-
ally, useful. Standard regularization techniques [2] can be used to increase the
generalization capabilities of the PNN, yielding even smoother pdf representa-
tions. We are currently carrying out experiments on real-world data for pattern
classification problems.
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