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Preface

The second IAPR TC3 Workshop on Artificial Neural Networks in Pattern
Recognition, ANNPR 2006, was held at the University of Ulm (Germany), Au-
gust 31 - September 2, 2006. The Neural Networks and Computational Intelli-
gence (TC3) group is one of the 20 Technical Committees of the International
Association for Pattern Regognition (IAPR). The scope of TC3 includes Compu-
tational Intelligence approaches, such as fuzzy systems, evolutionary computing
and artificial neural networks in various pattern recognition applications. AN-
NPR 2006 succeeded the outstanding first ANNPR workshop held at the Uni-
versity of Florence in September 2003 and focused on artificial neural networks
inspired from pattern recognition tasks.

In recent years, the field of neural networks has matured considerably in
both methodology and real-world applications. As reflected in this book, artifi-
cial neural networks in pattern recognition combine many ideas from machine
learning, advanced statistics, signal and image processing, and statistical pattern
recognition for solving complex real-world pattern recognition problems.

High quality across such a diverse field of research can only be achieved
through a rigorous and selective review process. For this workshop, 49 papers
were submitted out of which 26 were selected for inclusion in the proceedings.
ANNPR 2006 featured research work in the areas of neural network learning –
unsupervised, semi-supervised and supervised – support vector machines, multi-
ple classifier systems, pattern recognition in image processing, and data mining
in bioinformatics.

We would like to thank all authors for the effort they put into their submis-
sions, and the Scientific Committee for taking the time to provide high-quality
reviews and selecting the best contributions for the final workshop program.

A number of organizations supported ANNPR 2006 including the IAPR,
in particular the TC3 of IAPR, the University of Ulm and the University of
Florence. Last, but not least, we are grateful to Springer for publishing the
ANNPR 2006 proceedings in their LNCS/LNAI series.

June 2006 Friedhelm Schwenker and Simone Marinai
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Hervé Bourlard
Monica Bianchini
Horst Bunke
Patrick Gallinari
Neamat El Gayar
Marco Gori
Barbara Hammer

Tom Heskes
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Simple and Effective Connectionist

Nonparametric Estimation of Probability
Density Functions

Edmondo Trentin

Dipartimento di Ingegneria dell’Informazione
Università di Siena, V. Roma, 56 - Siena (Italy)

Abstract. Estimation of probability density functions (pdf) is one ma-
jor topic in pattern recognition. Parametric techniques rely on an
arbitrary assumption on the form of the underlying, unknown distri-
bution. Nonparametric techniques remove this assumption In particular,
the Parzen Window (PW) relies on a combination of local window func-
tions centered in the patterns of a training sample. Although effective,
PW suffers from several limitations. Artificial neural networks (ANN)
are, in principle, an alternative family of nonparametric models. ANNs
are intensively used to estimate probabilities (e.g., class-posterior prob-
abilities), but they have not been exploited so far to estimate pdfs. This
paper introduces a simple neural-based algorithm for unsupervised, non-
parametric estimation of pdfs, relying on PW. The approach overcomes
the limitations of PW, possibly leading to improved pdf models. An ex-
perimental demonstration of the behavior of the algorithm w.r.t. PW
is presented, using random samples drawn from a standard exponen-
tial pdf.

1 Introduction

One major topic in pattern recognition is the problem of estimating proba-
bility density functions (pdf) [5]. Albeit popular, parametric techniques (e.g.
maximum-likelihood for Gaussian mixtures) rely on an arbitrary assumption
on the form of the underlying, unknown distribution [8]. Nonparametric tech-
niques (e.g. kn-nearest neighbors [4]) remove this assumption and attempt a
direct estimation of the pdf from a data sample. The Parzen Window (PW)
is one of the most popular nonparametric approaches to pdf estimation, re-
lying on a combination of local window functions centered in the patterns of
the training sample [5]. Although effective, PW suffers from several limitations,
including:

(i) the estimate is not expressed in a compact functional form (i.e., a prob-
ability law), but it is a sum of as many local windows as the size of the
sample;

(ii) the local nature of the window functions tend to yield a fragmented
model, which is basically “memory based” and (by definition) is prone
to overfitting;

F. Schwenker and S. Marinai (Eds.): ANNPR 2006, LNAI 4087, pp. 1–10, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 E. Trentin

(iii) the whole training sample has to be kept always in memory in order to
compute the estimate of the pdf over any new (test) patterns, resulting in
a high complexity of the technique in space and time;

(iv) the form of the window function chosen has a deep influence on the even-
tual form of the estimated model, unless an asymptotic case (i.e., infinite
sample) is considered;

(v) the PW model heavily depends on the choice of an initial width of the
local region of the feature space where the windows are centered.

Artificial neural networks (ANN) are, in principle, an alternative family of
nonparametric models [6]. Given the “universal approximation” property [2]
of certain ANN families (multilayer perceptrons [10] and radial basis function
networks [9]), they might be a suitable model for any given (continuous) form
of data distributions. While ANNs are intensively used for estimating proba-
bilities [7] (e.g., posterior probabilities in classification tasks [2]), they have not
been exploited so far for estimating pdfs. For instance, Bourlard and Morgan ap-
ply ANNs in order to estimate probabilistic quantities within a hidden Markov
model (HMM) framework [3], but they use the ANN as a sate-posterior probabil-
ity model, instead of modeling the emission-likelihoods that are required in the
formal definition of standard HMMs. One of the main rationales behind this fact
is that connectionist modeling of probabilities is easily (and somewhat heuris-
tically) achieved by standard supervised backpropagation [10], once 0/1 target
outputs are defined for the training data [2] (along the line of the Widrow-Hoff
algorithm for linear discriminants [4]). Moreover, it is also simple to introduce
constraints within the model that ensure the ANN may be interpreted in prob-
abilistic terms, e.g. using sigmoid output activations (that range in the (0, 1)
interval), along with a softmax-like mechanism [1] which ensures that all the
outputs sum to 1. Learning a pdf, on the contrary, is an unsupervised and far
less obvious task.

This paper introduces a neural-based algorithm for unsupervised, nonpara-
metric density estimation. The algorithm is presented in detail in Section 2,
along with a concise review of the PW technique which is used within the ANN
training scheme. The approach overcomes the limitations of PW, and it may
lead to better pdf models than the PW itself. An experimental demonstration of
the behavior of the algorithm w.r.t. PW is presented in Section 3, using random
samples drawn from a standard exponential pdf.

2 The Proposed Estimation Algorithm

The algorithm is introduced by reviewing the basic concepts of PW estima-
tion (refer to [4]). Let us consider a pdf p(x), defined over a real-valued, d-
dimensional feature space. The probability that a pattern x′ ∈ Rd, drawn from
p(x), falls in a certain region R of the feature space is P =

∫
R

p(x)dx. Let then
T = {x1, . . . ,xn} be an unsupervised sample of n patterns, identically and in-
dependently distributed (i.i.d.) according to p(x). If kn patterns in T fall within
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R, an empirical estimate of P can be obtained as P � kn/n. If p(x) is contin-
uous and R is small enough to prevent p(x) from varying its value over R in
a significant manner, we are also allowed to write

∫
R p(x)dx � p(x′)V , where

x′ ∈ R, and V is the volume of region R. As a consequence of the discussion, we
can obtain an estimated value of the pdf p(x) over pattern x′ as:

p(x′) � kn/n

Vn
(1)

where Vn denotes the volume of region Rn (i.e., the choice of the region width is
explicitly written as a function of n), assuming that smaller regions around x′ are
considered as the sample size n increases. This is expected to allow Equation (1)
to yield improved estimates of p(x), i.e. to converge to the exact value of p(x′)
as n (hence, also kn) tends to infinity (a discussion of the asymptotic behavior
of nonparametric models of this kind can be found in [4]).

The basic instance of the PW technique assumes that Rn is a hypercube
having edge hn, such that Vn = hd

n. The edge hn is usually defined as a function
of n as hn = h1/

√
n, in order to ensure a correct asymptotic behavior. The value

h1 has to be chosen empirically, and it heavily affects the resulting model. The
formalization of the idea requires to define a unit-hypercube window function in
the form

ϕ(y) =
{

1 if | yj |≤ 1/2, j = 1, . . . , d
0 otherwise (2)

such that ϕ(x′−x
hn

) has value 1 iff x′ falls within the d-dimensional hypercubic re-

gion Rn centered in x and having edge hn. This implies that kn =
∑n

i=1 ϕ(x′−xi

hn
).

Using this expression, from Equation (1) we can write

p(x′) � 1
n

n∑
i=1

1
Vn

ϕ(
x′ − xi

hn
) (3)

which is the PW estimate of p(x′) from the sample T . The model is usually
refined by considering smoother window functions ϕ(.), instead of hypercubes,
e.g. standard Gaussian kernels with zero mean and unit covariance matrix.

Let us now consider a feedforward ANN that we wish to train in order to learn
a model of the probability law p(x) from the unsupervised dataset T . The idea
is to use the PW model as a target output for the ANN, and to apply standard
backpropagation to learn the ANN connection weights. A unbiased variant of this
idea is proposed, according to the following unsupervised algorithm (expressed
in pseudo-code):

Input: T = {x1, . . . ,xn}, h1.
Output: p̃(.) /*the connectionist estimate of p(.) */

1. Let hn = h1/
√

n
2. Let Vn = hd

n

3. For i=1 to n do /* loop over T */
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3.1 Let Ti = T \ {xi}
3.2 Let yi = 1

n

∑
x∈Ti

1
Vn

ϕ(xi−x
hn

) /* target output */
4. Let S = {(xi, yi) | i = 1, . . . , n} /* supervised training set */
5. Train the ANN via backpropagation over S
6. Let p̃(.) be equal to the ANN
7. Return p̃(.)

We call the ANN trained this way the Parzen Neural Network (PNN). Since the
PNN output is assumed to be an estimate of a pdf, it must be non-negative.
This is granted once standard sigmoids (in the form y = 1

1+e−x ) are used in the
output layer. Standard sigmoids range in the (0, 1) interval, while pdfs may take
any positive value. For this reason, sigmoids with adaptive amplitude λ (i.e., in
the form y = λ

1+e−x ), as described in [11], should be taken into consideration.
A direct alternative is using linear output activation functions, forcing negative
outputs to zero once training is completed. Nevertheless, as in the kn-nearest
neighbor technique [4], the PNN is not necessarily a pdf (in general, the integral
of p̃(.) over the feature space is not 1).

There are two major aspects of the algorithm that shall be clearly pointed out.
First, the PW generation of target outputs (steps 3-3.2) is unbiased. Computa-
tion of the target for i-th input pattern xi does not involve xi in the underlying
PW model. This is crucial in smoothing the local nature of PW. In practice, the
target (estimated pdf value) over xi is determined by the concentration of pat-
terns in the sample (different from xi) that occurs in the surroundings of xi. In
particular, if an isolated pattern (i.e., an outlier) is considered, its exclusion from
the PW model turns out to yield a close-to-zero target value. This phenomenon
is evident along the possible tails of certain distributions, and it is observed in
the experiments described in Section 3.

A second relevant aspect of the algorithm is that it trains the ANN only
over the locations (in the feature space) of the patterns belonging to the original
sample. At first glance, a different approach could look more promising: once the
PW model has been estimated from T , generate a huge supervised training set
by covering the input interval in a “uniform” manner, and by evaluating target
outputs via the PW model. A more homogeneous and exhaustive coverage of the
feature space would be expected, as well as a more precise ANN approximation of
the PW. As a matter of fact, training the ANN this way reduces its generalization
capabilities, resulting in a more “nervous” surface of the estimated pdf, since the
PW model has a natural tendency to yield unreliable estimates over regions of
the feature space that are not covered by the training sample (again, refer to
the experimental demonstration in Section 3).

It is immediately seen that, in spite of the simplicity of its training algorithm,
the PNN is expected to overcome most of the PW limitations listed1 in Section 1.
The following Section highlights that, in addition, the PNN may turn out to be
more accurate than the PW estimate.

1 Response of the PNN w.r.t. point (i) in that list depends on the complexity of the
ANN architecture that is used.
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"PNN (n=100, h=0.8)"
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exp(-x)

Fig. 1. Nonparametric estimates of the pdf from a random sample of 100 points drawn
from the standard exponential distribution. Parzen-Window and PNN are estimated
using an initial edge h1 = 0.8.

3 Experimental Demonstration

A simple, illustrative estimation task is considered. Samples in this Section are
randomly drawn from the popular exponential pdf, defined as

p(x) =
1
β

e−(x−α)/β with x ≥ α, β > 0 (4)

where α is the location and β is the scale. This distribution is unlikely to be mod-
eled under a parametric assumption (e.g., via maximum-likelihood with a mix-
ture of Gaussian densities), unless the form of Equation (4) is known in advance.
The application of nonparametric techniques is sought. In the following experi-
ments, a standard exponential distribution is used, having α = 0 and β = 1.0.

In the first instance, a random sample of n = 100 points was generated ac-
cording to p(x). Figures 1–4 show the resulting PW and PNN models, estimated
from the sample and plotted against the original pdf, for decreasing values of h1.
The latter ranged from 0.8 to 0.1. As expected, the PW estimates are heavily
affected by the choice for h1, and the shape of the corresponding estimated pdf
is unnaturally peaked around the individual points in the training dataset. The
overall trend of the original distribution is better fit for small values of h1, but
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Fig. 2. Nonparametric estimates of the pdf from a random sample of 100 points drawn
from the standard exponential distribution. Parzen-Window and PNN are estimated
using an initial edge h1 = 0.4.
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Fig. 3. Nonparametric estimates of the pdf from a random sample of 100 points drawn
from the standard exponential distribution. Parzen-Window and PNN are estimated
using an initial edge h1 = 0.2.
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Fig. 4. Nonparametric estimates of the pdf from a random sample of 100 points drawn
from the standard exponential distribution. Parzen-Window and PNN are estimated
using an initial edge h1 = 0.1.

the function obtained turns out to be very sensitive to local sampling irregular-
ities. Moreover, the PW model includes peaks along the tail of the pdf, due to
the presence of isolated points (within the sample) belonging to low-probability
regions. The presence of local peaks basically violates the natural shape of the
underlying pdf. Finally, as far as concerns complexity, the PW model requires
the combination of n = 100 window functions, i.e. a total of 100 free parameters
that had to be determined from the data.

The PNN is trained on the same values of h1 as the corresponding PW. A
compact ANN topology was used, namely 6 sigmoids in the hidden layer and a
linear output unit. The latter is forced to non-negative values at test time, by
converting negative outputs to zero. It is seen from the graphics that the PNN
estimate is smoother, much closer to the reference exponential pdf than the PW
is. Sensitivity to the choice of h1 is significantly decreased w.r.t. PW. It is worth
noticing the difference between the PNN curve and the form of the PW model
that, roughly speaking, constitutes the target output for PNN during training.
The unbiased nature of the training algorithm (steps 3-3.2) is further exploited
in the avoidance of individual peaks, especially along the tail of the distribution.
Complexity of the model is reduced in a substantial manner, as well, namely
18 free parameters to be learned from the data: 6 input-to-hidden weights, 6
hidden-to-output weights, and 6 individual bias (i.e. diagonalization) values for
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Fig. 5. Estimates of the pdf for an increasing sample size: n = 10 (top), n = 100 (mid),
n = 1000 (bottom). Initial edge h1 = 0.3.
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the sigmoids. Experiments with an increased number of hidden units did not
lead to significant improvement in the modeling capabilities of the PNN, and
the contour of the estimated pdf remained basically the same.

Figure 5 plots the results obtained for an increasing number n of training
data. An intermediate value of h1 = 0.3 was applied. The same PNN architec-
ture described above was used. As expected, both PW and PNN models improve
as the size of the sample increases. For n = 1000 the PNN (18 free parameters,
6 nonlinear functions to be evaluated and combined at test time) is close to
the reference exponential pdf, PW (1000 free parameters, 1000 nonlinear func-
tions to be evaluated and combined at test time), is still sensitive to individual
training points and outliers (see, again, the tail of the distribution). In real-world
applications, e.g. speech processing, the sample size (e.g., n >> 1000) may make
the PW approach computationally infeasible at test time (too complex in space
and time requirements), while the PNN (once the resource-demanding training
process is completed) remains compact and efficient.

4 Conclusion

This paper presented a simple and effective neural-based nonparametric tech-
nique for the estimation of probability density functions. The estimation method
can be seen as an unsupervised learning algorithm for neural networks, since
it takes an unlabelled training sample and learns the proper ANN connection
weights using the gradient method. A reference, unbiased PW estimate is used to
drive the learning process. In this respect, it is worth underlining the strong dif-
ference in shape between the PW estimate and the corresponding PNN, i.e. the
latter is not limited to approximate the PW closely. The PNN overcomes most
of the limitations of classic nonparametric techniques, e.g. PW and kn-nearest
neighbor. As in the kn-nearest neighbor case, the PNN is not in general a pdf,
but the resulting model is expected to be close to the actual pdf and, eventu-
ally, useful. Standard regularization techniques [2] can be used to increase the
generalization capabilities of the PNN, yielding even smoother pdf representa-
tions. We are currently carrying out experiments on real-world data for pattern
classification problems.
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Abstract. In this paper, we compare two models biologically inspired and gath-
ering spatio-temporal data coding, representation and processing. These models 
are based on Self-Organizing Map (SOM) yielding to a Spatio-Temporel Or-
ganization Map (STOM). More precisely, the map is trained using two different 
spatio-temporal algorithms taking their roots in biological researches: The ST-
Kohonen and the Time-Organized Map (TOM). These algorithms use two kinds 
of spatio-temporal data coding. The first one is based on the domain of complex 
numbers, while the second is based on the ISI (Inter Spike Interval). STOM is 
experimented in the field of speech recognition in order to evaluate its perform-
ance for such time variable application and to prove that biological models are 
capable of giving good results as stochastic and hybrid ones. 

1   Introduction 

Spatio-temporal classical connectionist networks comprise an important class of neu-
ral networks that can deal with patterns distributed both in time and space. In the case 
of Automatic Speech Recognition (ASR), this class of models have been shown to 
yield good performance (sometimes better than Hidden Markov Models) on short 
isolated speech units. By their recurrent aspect and their implicit or explicit temporal 
memory they can perform some kind of integration over time. Yet till now spatio-
temporal biologically inspired models are the most less used for ASR. This class of 
models is very relevant to be exanimate because the advance realized in neurophysi-
ologic researches have yield to the emergence of neuromimetic models especially for 
explicitly processing of temporal information and we know that in ASR, there is a 
time dimension or a sequential dimension which is highly variable and difficult to 
handle directly in ANNs. These models present an alternative approach to ASR which 
might in the long term help to overcome restrictions of current speech recognition 
technology with regard to noise tolerance or speaker independence. Some of these 
biological models have demonstrated good performance for ASR, we can cite the 
work of Béroule [20 ] concerning dynamic propagation or Durand [19 ] for super 
units map. In this paper we present STOM map extending the SOM map from the 
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processing of purely spatial signals to the processing of spatio-temporal signals using 
biologically inspired approaches and algorithms. Moreover, STOM represents the 
time dimension, depending on the parameters used, either as the level of weight or the 
map. The use of SOM in this paper is coming from the conviction of universal auto-
organization concept covering the major part of human brain [11]. This concept could 
be able to explain all experimental findings concerning the plasticity of cortical to-
pographies. A possible candidate for universal self-organization is the SOM map. 
STOM map will be trained using two different spatio-temporal algorithms. The first 
one is the ST-Kohonen algorithm proposed by Mozayyani [13]. It is an algorithm 
using spatio-temporal inputs which are represented by a spatio-temporal coding ap-
proach proposed by Vaucher [12]. The latter uses the domain of complex numbers to 
encode inputs. The choice of this domain derives from the fact that it is the only do-
main supplying two degree of freedom allowing to represent the two correlated data. 
The second algorithm is TOM (Time Organized Map) [11]. Its main additional idea 
comparing to SOM is the functionally reasonable transfer of temporal signal distances 
into spatial signals distances in topographic neural representations. This is achieved 
by neural dynamics of propagating waves. The inputs processed by this algorithm are 
encoded using an approach based on the ISI (Inter Spike Interval)[2],[16]. Each input 
is presented as a pair containing the spatial information of the stimuli, and the tempo-
ral distance that separate it from its successor.  

STOM is experimented in the domain of speech recognition of isolated digits. Sec-
tion two of this paper presents the encoding approach used for STOM inputs, while 
section three is devoted to describe ST-Kohonen training model and propose also an 
extension of TOM for two dimensions. In section four, we show the application of the 
two encoding approaches to the analysis of acoustic signal and we compare experi-
mental results between the two models obtained in the domain of speech recognition. 
Section five concludes the paper and presents some perspectives for the model. 

2   The Spatio-Temporal Encoding Approaches  

2.1   The Complex Approach   

The spatio-temporal technique takes its roots from the work undertaken by neurobi-
ologists to model passive electric properties of the dendrites trees [15], in particular 
Rall’s work [17]. It is based on a particular modeling of the Post-Synaptic Potentials 
(PSP) and of their mix. According to the formalization made by Agmon-Snir [1], 
which characterizes one PSP(t) by its moments of order k, only the first two moment 
are kept, each one of them being respectively associated to the norm and phase of a 
complex number. The use of complex domain is justified by the fact that it is the only 
domain offering numbers having two degree of freedom. This property allows encod-
ing the two correlated data at the same time. The Spatio-Temporal coding technique 
(Fig. 1.) is introduced for the aim to provide the classical artificial neurons the capac-
ity of processing sequences in asynchronous manner, leading to the emergence of 
STANN [12] (Spatio-Temporal Artificial Neural Network). It consists on adding the 
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delay; at the level of input; to introduce temporal information. It improves the work of 
'Integrate and Fire' neuron [9], [7] using the field of complex numbers. The 
spatio-temporal coding is done as following: Each input produces a train of impulses, 
for each impulse or spike I characterized by its amplitude Iμ and the temporal delay 

Id  which separates the current instant of time from the time at which the impulse has 

been occurred, a complex number Iz  is assigned. Iz Contains I  as its module and 

Iϕ  as its phase as following: 
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tμ is a constant inverse to time. To incorporate the attenuation of amplitude through 

time, the amplitude of the input could be calculated using the following formula: 
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According to Baig [14], the couple ( sμ , tμ ) must satisfy the following condition in 

order to obtain a good complex encoding. 
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WT represents the temporal window used to encode all the coming inputs.  
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Fig. 1. The Spatio-Temporal Complex coding approach 

2.2   The Temporal Coding Approach  

Recent neurobiological findings experimented by Spengler et al [3] have demon-
strated the importance of temporal interval between stimuli. In these experiments, 
tactile stimuli with different relations in space and time were applied to monkey. 
After months of training, the primary somatosensory cortex was mapped, showing 
that temporally separated stimuli (with an ISI of about 300ms) were segregated within 
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cortical topography, while stimuli having an ISI under 100ms are integrated. Thus the 
dynamic of incoming stimuli reflects the stimuli’s relatedness with regard to their 
functional meaning. Stimulus dynamic is therefore important for the learning of to-
pography. Accordingly, many researchers think that the design of incoming flux of n 
stimuli iS could be represented as sequence of couple containing the stimulus and 

iISI interval expressing the temporal proximity of consecutive stimuli. 

ni

ISIS ii

,..,1

),(

=
 (4) 

3   Spatio-Temporal Training  

3.1   The ST-Kohonen 

ST-Kohonen map [14] is a SOM having complex neurons. These latter have input and 
weighting vectors defined in the complex domain as described in the above section. 
The ST-Kohonen algorithm works in the same manner as classical Kohonen one, 
however, the winner is chosen according to the hermitienne distance instead of the 
Euclidian one: 

( ) ( )( )ii
t

ii WXWXWXWX −−=−=,δ  (5) 

X  designes the map input and iW is the weighting vector of  the neuron i. Both the 

input and the weight vectors are defined in the complex domain Cp .The adaptation 
rule for ST-Kohonen is the same as the one presented in Kohonen, yet we manage 
complex vectors instead of real. With ST-Kohonen we made a spatio-temporal classi-
fication which is very relevant in ASR because it allows classifying speech according 
to its feature extractors and their temporal occurrence or sequences. However, topol-
ogy obtained by the map is spatial because weights are updated according to the dis-
tance of neurons in the map and not in the input space. 

3.2   The Time Organized Map Algorithm (TOM) 

The TOM algorithm was presented by Wiemer [11] for a better understanding of the 
self-organization and the geometric structure of cortical signal representations. TOM 
was proposed for one dimension SOM map, reader can refer to [11] for more details 
about the algorithm. In the present section, we present an extension of TOM for two 
dimensions. 

High-dimensionally coded stimuli are applied to TOM two dimensions (Fig. 2.) at 
discrete times. They are described by a sequence ),( nn ISIS .The layer is composed of 

cc NN 21 .  neurons (‘c’ for cortical). At time nt , a stimulus )( nAn tss = is presented to 

the map resulting in a feedforward activation obtained by multiplying the connection 
matrix with the stimulus:  The activity )( nA tc builds up from the current feedforward 
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Fig. 2. Wave propagation and interaction in a two dimension TOM  map 

activation )( n
ff tc , and the activity state of the map, that has evolved out of the ear-

lier activity )( 1−ntc  from time 1−nt  to nt . The evolution of map activity between two 

stimulations is of wave-like type; excitation propagates into its surround. This dy-
namic may result from local interactions [5],[6],[8] e.g. between excitatory and inhibi-
tory neurons. The dynamic is fundamental in the sense of a general principal of 
locality. In other words, ‘effects propagate from point to neighboring point. In case of 
a monomodal and rotation symmetric of map activity, an ‘elementary wave’ propa-
gates as is shown by Fig. 2. Assuming linear superposition, the dynamic correspond-
ing to general activity patterns can be reduced to the superposition of elementary 
waves. As an analogue, one may think of water waves that a raindrop generates when 
it falls down. During the nisi , and assuming a constant propagation speed, the wave 

has propagated along a certain distance reaching neurons having position that verify 
the following formula: 

nffA ISIvnknc .)()( ±=′  (6) 

Where )(nk ff is the neuron activated by the stimulus )( nA ts . The stimulus 

)( nnB isits + (applied at that time), generates also a feedforwrad activation resulting 

in the activity Bc′ . This activity will propagates in the map yielding to an interaction 

zone between the two waves.  Considering this interaction, the activity of the map 
must be shifted to towards this zone because it consists of neurons that are excitated 
by the two stimuli. In a neural field model, and also in biological model [4] the length 
of the shift depends on the distances between the wave front of the stimulus )( nA ts , 

which is )(ncA′ , and )( nff isink + , the neuron activated by )( nnB isits + . This distance 

could be determined using the shortest path linking the two neurons 
)(nk ff and )( nff isink + . Thus the two dimensional interaction could be reduced to 

one-dimensional interaction along this shortest path. This reduction allows us to apply 
one dimensional TOM algorithm along this path. The neurons that constitute this 
shortest path must have a coordinate ),( kk ji verifying the following formula: 
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).( biAroundj kk += and 
[ )()( nffff isinkknk iii +<< or )()( nkkisink ffnff
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),( nn ji and ),(
nn isinisin ji ++ are the coordinates of the neuron )(nk ff

and )( nff isink + . 

Once the path is determined, the different steps proposed for TOM one dimension 
algorithm could be applied. These steps are as follows: 

Determination of the Shift Toward the Interaction Zone Due to the Propagation 
of Waves 
The interaction shift is calculated according to the distance that separates the current 
winner from the border of the propagation waves introduced by the earlier stimulus  

))()(()(int nkncfn ffA −′=Δ  (9) 

The interaction function f expresses the distance dependency of the shift. Wiermer 
proposed the following function 
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K represents the strength of the interaction. The form of the interaction function is 
shown by (Fig. 3.) for different values of K and Kσ . 
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Fig. 3. The non linear interaction function for ),( kK σ  = (5,10) et (2,10) 
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Shift Due to Noise 
Noise in the network is expressed by a noise term that is randomly drawn from a 
normal distribution with zero mean and standard deviation 

))(,0( nN noisenoise σ→Δ  (11) 

The standard deviation decrease monotonically in time from its initial value 0σ to its 

final value fσ . 

f
n

n
f

noise nnn f ′≤= ′
 si )()(

0
0 σ

σ
σσ  (12) 

And remains constant to its final value for the remaining of the steps learning. 

New Winner Position 
The winner klearn (n) is determined as the integer closest to the position of the maximal 
feedforward activation shifted by interaction and noise. 

)()( int noisefflearn kroundnk Δ+Δ+=  (13) 

New Winner Adaptation Weights 
Only winner weights are adapted by learning step. They are shifted toward the pre-
sented stimulus. 

))(.()( )()( nWSnW nknnk learnlearn
−=  (14) 

α is the learning rate, it is constant during all the training. 

4   Experimentation 

4.1   The Data Coding and Model  

The map is trained and tested with isolated words of TI-Digit database. The number 
of speakers contributing to the application is 110 distributed as 55 men and 55 women 
pronouncing the eleven vocal digits (0, 1, ..,9 and ‘oh’). Each speaker pronounces one 
digit twice: one occurrence is used for the training and the other for the test. We use 
the Mel Frequency Cesptral Coefficients (MFCC) vectors [18] as feature extractor; it 
is composed of 12 coefficients. The speech signal were collected in quiet environment 
and digitized at 16 KHz. The window size for calculating each MFCC contains 512 
points. Windows are overlapping and are separated with 10ms (160 points) between 
two consecutive MFCC. To permit the spatio-temporal coding with complex num-
bers, we suppose that all coefficients for one MFCC vector have the same time of 
occurrence. Thus, complex MFCC vectors will have the following form: 
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The phase is calculated using the following formula: 

))1(01.01arctan( −−= iiρ   (16) 

The temporal encoding approach is straight forward. In fact each input is couple of 
the following form: 

( ) = ms

c

c

isiS nn 10,...,
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1
 (17) 

4.2   Experimental Results  

STOM is tested by either ST-Kohonen algorithm or TOM in speech recognition. For 
the TOM algorithm, we have used the same parameters proposed by Wiemer which 

are as follows: 9
0 10.1.0,01.0,1.0,15,5,1 =′====== ffk nKv ασσσ . 

These parameters are determined empirically and have demonstrated good results 
comparing to other values.  

Table 1. Three protocols for digit recognition using ST-Kohonen and TOM models 

Recognition rate ST-Kohonen TOM 
Monolocutor 98,56% 99,34% 
Speaker independent  97,5% 98,32% 
Unknown locutor 96,9% 98,45% 

In order to evaluate the learning and robustness capacities of the two models, we 
have tested them for digit recognition using three distinct protocols: the monolocutor 
recognition, the speaker independent recognition and the unknown locator recogni-
tion. For the monolocutor, we take the first occurrence of digits as learning base and 
the second occurrence as test base. In the Speaker independent protocol, all first oc-
currences of each digit form the learning base and all second occurrences of digits 
form the test base. For unknown locator, 28 of women and men first occurrences are 
taken for learning base and the 27 others for the test base. The results are reported in 
the above table (Table 1.). For the three protocols TOM model performs better than 
the spatio-temporal classification made by ST-Kohonen. Indeed, the spatio-temporal 
interaction between inputs can capture more the fine spatio-temporal structure inher-
ent to speech signal. However, the main drawback of TOM is the time of conver-
gence. In fact, the algorithm has needed 109 loops to converge. This slowness could 
be interpreted by the fact that TOM update only the winner by each loop yielding to 
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an increasing of time for the map to be organized. ST-Kohonen presents better result 
compared to other time-based neural networks [10]; this fact is explained by the use 
of coding approach gathering spatio-temporal data as inputs allowing a spatio-
temporal classification.  

5   Conclusion 

The Spatio-temporal Organization Maps presented in this paper are an extension of 
SOM map to spatio-temporal domain. This extension is based on biologically inspired 
approaches related to coding or processing data. STOM is trained using two spatio-
temporal processing algorithms. The results obtained by applying STOM in speech 
recognition are good and both algorithms are qualified for processing the fine spatio-
temporal structure of speech signal. This might provide an insight into speech recog-
nition using biologically models and could in the long run overcome the limitation of 
HMM-based speech technology or hybrid models regarding for example noise. Fur-
ther research could be focused on testing the presented models using corpus collected 
in real world. It could be also possible to combine biologically model for speech per-
ception, a model of human cochlea for example,  with STOM because we think that it 
can be a fruitful area that needs to be explored.  
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Abstract. Neural network models for unsupervised pattern recognition learning
are challenged when the difference between the patterns of the training set is
small. The standard neural network architecture for pattern recognition learning
consists of adaptive forward connections and lateral inhibition, which
provides competition between output neurons. We propose an additional adap-
tive inhibitory feedback mechanism, to emphasize the difference between train-
ing patterns and improve learning. We present an implementation of adaptive
feedback inhibition for spiking neural network models, based on spike timing
dependent plasticity (STDP). When the inhibitory feedback connections are ad-
justed using an anti-Hebbian learning rule, feedback inhibition suppresses the
redundant activity of input units which code the overlap between similar stimuli.
We show, that learning speed and pattern discriminatability can be increased by
adding this mechanism to the standard architecture.

1 Introduction

1.1 Standard Architecture

Standard neural networks for unsupervised pattern recognition learning typically con-
sist of adaptive forward connections and lateral inhibition (e.g. Fukushima 1975;
Földiák 1990). Usually, the forward connections are modified using Hebbian learn-
ing rules: if pre- and postsynaptic activity is highly correlated, excitatory synapses are
strengthened while inhibitory synapses are weakened. For excitatory synapses, Heb-
bian learning increases the correlation between pre- and postsynaptic activity and the
connections grow infinitely. Connection strengths can be limited e.g. by using normal-
ization mechanisms.

Lateral inhibitory connections introduce a winner-take-all (WTA) dynamics: if an
output neuron is strongly activated, other output neurons receive strong inhibition and
generate little or no output activity. WTA prevents the output neurons from being active
all at the same time. When the lateral inhibitory connections are learned with an anti-
Hebbian learning rule, as proposed by Földiák (1990), connections are strengthened
if correlation between pre- and postsynaptic activity is high. Thus, strongly correlated
output neurons will have strong inhibitory connections, which will reduce their correla-
tion. This decorrelation can lead to a sparse representation of the input stimuli (Földiák,
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1990). After self-organization, the neurons in the output layer of such networks should
respond selectively to a single stimulus pattern or a subset of the training set, depending
on the relation between the size of the stimulus set and the number of output neurons.

1.2 Improving Discrimination Performance with Feedback Inhibition

Consider a two layer network with an input and an output layer, and lateral inhibi-
tion between output neurons. What happens when the network is trained with a set of
very similar stimuli? Typically the forward connections from the uninformative input
neurons coding the overlap between stimuli will become much stronger compared to
the connections coding features unique to certain stimuli (Fukushima, 1975; Földiák,
1990). Beyond a certain degree of stimulus similarity the output neurons only respond to
the overlap, and thus fail to discriminate between the stimuli. Miyake and Fukushima
(1984) proposed a mechanism to improve pattern selectivity fur such situations: they
introduced a simple version of modifiable inhibitory feedback connections from the
output units to the input units. These connections were paired with modifiable excita-
tory feedforward connections. When a feedforward connection was strengthened, the
corresponding feedback connection was strengthened as well.

In this paper we show that this adaptive feedback inhibition can be generalized and
adapted to a biologically more realistic network model with spiking neurons and spike
timing dependent plasticity (STDP) based learning rule (Bi and Poo, 1998). We sys-
tematically varied the overlap between the patterns of the stimulus set and show how
learning speed and selectivity increases after introducing modifiable inhibitory feed-
back connections.

Using spiking neural network models aims towards an understanding of how pat-
tern recognition problems could be solved in the brain. If a mechanism can not be
implemented with biologically realistic spiking neurons, then it is unlikely that this
mechanism is used in the brain. Furthermore spiking neurons provide for high tem-
poral precision, which is relevant for real-world applications. This is the case e.g. for
spatio-temporal pattern recognition or for audio patterns.

2 Model

2.1 Network Architecture

The network is organized in two layers of spiking neurons: the input layer U0 and the
representation layer U1 (Fig. 1). There are excitatory forward connections from U0

to U1 and lateral inhibitory connections between all U1 neurons. These connections
are adapted due to the correlation between presynaptic and postsynaptic spikes with a
Hebbian and anti-Hebbian learning rule, respectively (Section 2.3). So far this is the
standard architecture for competitive learning. Additionally, we introduce modifiable
inhibitory feedback connections from U1 to U0. These inhibitory connections are also
adapted using an anti-Hebbian learning rule.

2.2 Model Neurons

As a spiking model neuron we use the two dimensional system of differential equations
proposed by Izhikevich (2003):
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Input patterns

spiking model

neuron

output

excitatory

synapse
inhibitory

synapse

layer U
0

layer U
1

Fig. 1. Model architecture. The neurons of the input layer U0 are activated when they are part of
the current input pattern. U0 neurons have modifiable excitatory connections to the representation
layer U1. U1 neurons mutually inhibit each other. Additionally there are modifiable inhibitory
feedback connections from U1 to U0. To better illustrate the network structure, connections from
and to one of the neurons are plotted with black color while the other connections are plotted
gray.

dV (t)
dt

= 0.04V 2(t) + fV (t) + e − U(t) + I(t), (1)

dU(t)
dt

= a(bV (t) − U(t)) (2)

with the auxiliary after-spike reseting:

if V (t) ≥ 30mV, then

{
V (t) ← c,
U(t) ← U(t) + d.

(3)

V (t) and U(t) are dimensionless variables. V (t) represents the membrane potentials in
mV . I(t) is the synaptic input current. a, b, c, d, e and f are dimensionless parame-
ters which determine the properties of the model neuron. In the simulations presented
here we use a set of parameters which correspond to regular spiking cortical pyramidal
neurons (example "L" in Izhikevich, 2004, a=0.02, b=-0.1, c=-55, d=6, e=108, f=4.1).
The excitatory synaptic input Ie is modelled as a current injection with additional noise
σ(t). The inhibitory input Ii is modelled as a conductance based current. The excitatory
synaptic input saturates at Ie,max. The inhibitory conductance saturates at Gi,max:

I = Se(Ie) − Si(Gi)(V − Ei), (4)

Se(Ie) = Ie,max
Ie

Ie + 1
, (5)

Si(Gi) = Gi,max
Gi

Gi + 1
, (6)

d

dt
Ie = − 1

τe
Ie +

M−1∑
m=0

we,mδm(t) + σ(t), (7)
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d

dt
Gi = − 1

τi
Gi +

M−1∑
m=0

wi,mδm(t). (8)

The saturation constants were set to Ie,max = 200 and Gi,max = 4.5 to restrict excita-
tory and inhibitory input to a range where the numerical integration of the differential
equations still works properly for dt = 0.25ms. The excitatory and inhibitory synaptic
currents decrease exponentially with time constant τe and τi respectively, which were
arbitrarily set to 5ms. The biologically realistic range for the decay time constants of
excitatory AMPA- and inhibitory GABAA-currents is from 5 up to 50 ms. we,m is
the excitatory weight from the presynaptic neuron number m. δm(t) is 1 when a spike
arrives at the presynaptic site, otherwise it is 0. Ei is the reverse potential for the in-
hibitory current which was chosen to be 10 mV lower then the resting potential.

2.3 Learning Rules

The synaptic weight wm,n of the connection from presynaptic U0 neuron m to postsy-
naptic U1 neuron n is adapted according to a Hebbian learning rule:

d

dt
wm,n = δn(t)RLpre,mLpost,n, (9)

Lpre,m =
∑
tsm

e
− t−tsm

τpre , (10)

Lpost,n =
∑
tsn

e
− t−tsn

τpost . (11)

δn(t) is 1 when a spike occurs in the postsynaptic neuron n. tsm and tsn denote the
times of the past pre- and postsynaptic spikes. When a spike occurs, the pre- or post-
synaptic learning potentials Lpre,m or Lpost,n are increased by 1. They exponentially
decrease with time constant τpre = 20ms and τpost = 10ms. R is a constant corre-
sponding to the learning rate and was tuned to allow for a weight change between 5 and
20 % after 10 stimulus presentations. For the excitatory connections from layer U0 to
U1, we use a quadratic normalization rule:

wm,n(t) = W
wm,n(t − dt)√∑M−1
m=0 w2

m,n(t − dt)
, (12)

where W is a constant value to adjust the quadratic weight sum. This prevents infi-
nite growing of weights and introduces competition between the input synapses of a
postsynaptic neuron. Physiological evidence for the existence of such heterosynaptic
interactions were found, e.g., by Royer and Paré (2003). W was set to a value which
ensured a medium response activity at the beginning of the learning phase.

For the inhibitory connections we use the following anti-Hebbian learning rule:

d

dt
wm,n = R

(
δn(t)Lpre,m − Cδm(t)wm,nLpost,n

)
, (13)

Lpre,m = e
− t−tsm

τpre , (14)

Lpost,n = e
− t−tsn

τpost . (15)
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Fig. 2. Network without feedback inhibition, response before learning. a: Spikes of input layer
U0. b: Spikes of representation layer U1. c: Membrane potential V (t) of neuron #0 of U1 (gray
line in b).

The equations are very similar to the Hebbian learning rule (equation 9) but with an
additional depression term. The decay time constants of the learning potentials were
set to τpre = 30ms and τpost = 100ms. C is a constant to adjust the ratio between
potentiation and depression which determines the amount of inhibition. With lower
C the inhibitory connections will be stronger. C was set to 0.005 for the feedback
inhibition and 0.001 for the lateral inhibition. tsm and tsn denote the time of the last
pre- and post- synaptic spike event respectively.

2.4 Stimuli

The input stimuli are binary spatial patterns that lead to additive modulation of excita-
tory synaptic current Ie (equation 4) of layer U0 neurons:

Ie(t) =
∑
i∈N

pki
n I0rect

(
t − iτ1

τ2

)
, (16)

rect(t) =
{

1 : |t| < 0.5
0 : otherwise .

(17)

pn
ki

is 1 if the neuron n is active for stimulus ki, and 0 otherwise. I0 is the input strength.
τ1 is the time difference between stimulus onsets, τ2 is the duration of a single stimulus
presentation (see Fig. 2 for an example). k1, k2, ..., ki is a random sequence of stimulus
numbers.

For a systematic variation of the similarity between the input patterns, we constructed
sets of stimuli as follows: each stimulus is a binary pattern Pk of NU0 elements where
NU0 is the number of neurons in the input layer.

Pk = (pk
1 , pk

2 , pk
3 , ..., p

k
NU0

), (18)
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Fig. 3. Network without feedback inhibition, response after learning. a: Spikes of input layer U0.
b: Spikes of representation layer U1. c: Membrane potential V (t) of neuron #0 of U1 (gray line
in b).

pk
m =

⎧⎨
⎩

1 , m ≤ no

1 , no + nu(m − 1) < m ≤ no + num
0 , otherwise .

(19)

na = faNU0 is the number and fa the fraction of active neurons in each pattern. no =
fona is the number of neurons which are active in each pattern (overlap) and nu =
na − no is the number of neurons which are unique for each pattern.

2.5 Performance Measure

In order to quantify the ability of the network to discriminate between the stimuli, we
simulated a test phase after every learning phase. In the test phases the network was
stimulated with the same input patterns as in the learning phases. We calculated the
preferred stimulus κn and a selectivity index ηn for every U1 neuron:

κn =
{
k : Rn,k = max({Rn,1, ..., R1,K})

}
, (20)

ηn =
Rn,κn∑K
k=0 Rn,k

− 1
K

. (21)

K is the number of stimuli. κn is the number of the stimulus which evokes the maximal
response in U1 neuron n. The selectivity index ηn is 0 if all stimuli evoke the same
response Rn,k, which means that this neuron bears no information about the identity
of the stimulus. The maximum selectivity is K−1

K when only one stimulus evokes a
response but the others do not. From the following test phase we calculated how the
activity of the U1 neurons predict the identity of the input patterns: for each stimulus
onset we derived the response rn,i for every U1 neuron (number of spikes in a specified
interval after stimulus onset), where j is the number of the current stimulus. Combining
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Fig. 4. Network with feedback inhibition, response after learning. a: Spikes of input layer U0. b:
Spikes of representation layer U1. c: Membrane potential V (t) of neuron #0 of U1 (gray line in
b). The feedback inhibition circuit causes rhythmic spike patterns in both layers.

these responses with the preference and the selectivity of the neurons, we calculated the
stimulus νj predicted by this network activity:

νj =
{
k : ξk = max({ξ1, ..., ξK})

}
, (22)

ξk =
∑

nε{i:κi=k}
ηnrn,k . (23)

If νj = j then the prediction is correct, otherwise it is false. The performance ρ is then
ρ = nhit

nhit+nfail
where nhit is the number of correct predictions and nfail the number

of mistakes. The chance level is 1
K .

3 Results

First we demonstrate the properties of the network without feedback inhibition for a
stimulus set with little overlap (50%). The number of stimuli was K = 4. The numbers
of neurons were: NU0 = 40 and NU1 = 16. Before learning, the network responds
unselectively to the input stimuli (Fig. 2). The network quickly converges to a selective
state: for each stimulus there is at least one U1 neuron that selectively responds to it
(Fig. 3).

When we systematically increased the overlap between the elements of the stimulus
set the network needed longer to reach a selective state. When the overlap was very
high it completely failed to discriminate between the stimuli (Fig. 5).

When we added the modifiable inhibitory feedback connections, the network took
less time steps to reach a selective state. Even for high overlap, where it had failed
without feedback inhibition, the network learned a selective representations (Fig. 6).
Furthermore, the feedback inhibition causes rhythmic spike patterns in both layers and
synchronizes the activated neurons (Fig. 4).
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Fig. 5. Learning curves without feedback inhibition. A trial consisted of 40 stimulus presenta-
tions. For overlap up to 75% the network quickly learned a selective representation. For higher
overlap it took longer training time to reach a selective state. For overlap higher than 88% the
network stayed in an unselective state. Input strength: I0 = 0.008.

Because the feedback inhibition reduces the spiking activity in U0, we compensated
this effect by increasing excitatory input strength I0 (see equation 16) when turning
on the feedback inhibition. To make sure that the differences in learning speed and
learning performance were not caused by these parameter changes, we systematically
tested the effect of different input strengths. We calculated a performance index for
each I0 value by averaging the performance values for the second half of learning trials
over all overlap levels. Without feedback inhibition the maximum performance of the
network (at I0 ≈ 0.008) was still lower than the maximum performance of the network
with feedback inhibition (Fig. 7).

4 Discussion

Our simulations show that in a network of spiking neurons adaptive feedback inhibition
can speed up learning of selective responses and enable discrimination of very similar
input stimuli. The mechanism works as follows: While the network is in an unselective
state, the correlation between the output units and these input units which code the
overlap (pk

1 ...p
k
no

in Eq. 18) is higher than the correlation between the output units
and the input units which are unique for different patterns. Therefore, the inhibitory
connections to the input neurons representing the overlap will grow stronger and the
redundant activity will be reduced. In contrast, the input neurons coding the difference
between the stimuli receive less inhibition. Thus, the network can use the discriminative
information carried by these neurons to learn a selective representation.

The network parameters were chosen in a biologically realistic range. The input
strength I0 and the feed forward weight sum W were set to obtain reasonable firing
rates. The learning parameters that control the inhibitory connections (C, τpre, τpost)
must be guanrantee a substantial amount of inhibition. Overall the mechanism doesn’t
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Fig. 6. Learning curves with feedback inhibition ; a trial consisted of 40 stimulus presentations.
For the low overlap stimulus sets (50% - 81%) the network converged to a selective state faster
than without feedback inhibition. Even for very high overlap (94%) the network still learned
some selectivity. Input strength: I0 = 0.016.

depend on the precise values of the parameters. Small or medium parameter changes do
not qualitatively alter the properties of the network.

4.1 Comparison to Other Models

Miyake and Fukushima (1984) had already proposed a inhibitory feedback mechanism
and showed how it could be included in their Cognitron model. They demonstrated
the increased selectivity using stimulus pairs with up to 50% spatial overlap. As our
simulations show, such an amount of overlap can still be separated using a network
without feedback inhibition (Fig. 5).

Spratling (1999) had proposed a pre-integration lateral inhibition model. In this
model for example an output neuron Oi which has strong excitatory connection from in-
put neuron Ij will have strong inhibitory influence on the excitatory connections from
Ij to the other output neurons Ok �=i. Spratling and Johnson (2002) showed that pre-
integration lateral inhibition can enhance unsupervised learning. Spratling (1999) ar-
gues against the feedback inhibition model, that an output neuron cannot entirely inhibit
the input to all other neurons without entirely inhibiting its own input.
van Ooyen and Nienhuis (1993) point out a similar argument: With feedback inhibition
the Cognitron model fails to elicit sustained responses for familiar patterns, because the
corresponding input activity is deleted. But these drawbacks do not hold in our dynamic
model: After strong activation of an output neuron Oi, the feedback inhibition will sup-
press the input and thus prevent all output neurons from firing including Oi. Inhibition
is reduced, and excitatory input can grow again. Thus, for sustained input, the inhibitory
feedback generates rhythmic chopping of both input and output layer neurons (Fig. 4).
The strongest activated output neurons are able to fire output spikes before inhibition
grows, while weakly activated output neurons are kept subthreshold. Furthermore, the
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Fig. 7. Performance depends on input strength I0. The data points show mean performance val-
ues, averaged over all overlap values and the second half of the learning trials. Black: Performance
with feedback inhibition. Green (gray): Performance without feedback inhibition. Note that with
feedback inhibition the network reaches higher performance values (90% compared to 75%).

common feedback inhibition tends to synchronize the activity of these input neurons
which are part of the recognized pattern. Such a synchronization has been proposed
to support object recognition through dynamic grouping of visual features (see e.g.
Eckhorn, 1999; Eckhorn et al., 2004). In the model presented here, synchronization oc-
curs as a consequence of successful pattern recognition.

The adaptive feedback inhibition model is in line with predictive coding models
(Rao and Ballard, 1997). These models are based on the working principle of extended
Kalman filters, where a prediction signal is subtracted from the input. Thus, in these
models the predicted (expected) information is suppressed. This approach is the op-
posite to the Adaptive-Resonance-Theorie (ART), which is based on enhancement of
predicted information (Grossberg, 2001).

4.2 Physiological Equivalent

What could be a physiological basis for the proposed feedback inhibition mechanism?
The main input to a cortical area arrives in layer 4 (Callaway, 1998). For example,
layer 4 of the primary visual cortex receives input from the thalamic relay neurons of
the lateral geniculate nucleus (LGN). Neurons in layer 2/3 have more complex recep-
tive fields. They represent the main output of a cortical module to other cortical areas
(Callaway, 1998). Thus, layer U0 of our model corresponds to cortical layer 4 and layer
U1 to cortical layer 2/3.

Among direct input from thalamic relay neurons, layer 6 neurons receive feedback
connections from layer 2/3. In visual area V1 they project back to the LGN but also have
collaterals which project to layer 4, where they mainly target inhibitory interneurons
(Beierlein et al., 2003). Thus, the anatomy of the neocortex provides the necessary con-
nections for adaptive feedback inhibition: layer 4 → layer 2/3 → layer 6 → inhibitory
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inhibitory synapse
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Fig. 8. Possible microcircuit underlying selective feedback inhibition: information enters the
cortical module via layer 4, layer 2/3 learns selective representation of input patterns and projects
back to layer 6, layer 6 neurons have projections to inhibitory interneurons in layer 4

interneurons of layer 4. This microcircuit could provide the basis for the suppression of
uninformative input activity (Fig. 8).

We have shown, that adaptive feedback inhibition can increase learning speed and
improve discrimination of highly similar patterns. For simplicity, we used a small set
of simple stimulus patterns. The proposed mechanism can also be used for recognition
of more complex patterns (e.g. 3d visual objects), if it is incorporated in a hierarchical
multi-layer network architecture with feedback inhibition from higher to lower layers.
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Abstract. Recently, two extensions of neural gas have been proposed: a
fast batch version of neural gas for data given in advance, and extensions
of neural gas to learn a (possibly fuzzy) supervised classification. Here we
propose a batch version for supervised neural gas training which allows to
efficiently learn a prototype-based classification, provided training data
are given beforehand. The method relies on a simpler cost function than
online supervised neural gas and leads to simpler update formulas. We
prove convergence of the algorithm in a general framework, which also
incorporates supervised k-means and supervised batch-SOM, and which
opens the way towards metric adaptation as well as application to prox-
imity data not embedded in a real-vector space.

1 Introduction

Prototype-based classification constitutes an intuitive machine learning tech-
nique which represents classes by typical prototype locations and assigns labels
to new data points by means of a winner-takes-all rule. Unlike feedforward net-
works or support vector machines (SVM), the method provides insight into the
classification behavior by an inspection of the prototypes. Interestingly, the gen-
eralization behavior of prototype-based techniques is quite robust, since gener-
alization bounds which only depend on the hypothesis margin but not on the
number of parameters of the model (in particular the input dimensionality) can
be derived similar to SVMs [4].

One of the most popular learning techniques for prototype-based methods
is Kohonen’s learning vector quantization (LVQ) and variants and extensions
thereof [7,10]. Thereby, LVQ is based on heuristics and applies Hebbian learning
to the respective winning prototype. Several extensions of the basic algorithm
substitute this heuristic by adaptation rules which are derived from a cost func-
tion [7]. However, these methods rely on local adaptations. Therefore they easily
get stuck in local optima if dealing with multimodal data. Modifications using
neighborhood cooperation avoid this problem, such as the proposal presented in
[6], which integrates the dynamics of unsupervised neural gas (NG) [12] into the
adaptation.

Another problem of LVQ type classifiers is given by the fact that class labels
are necessarily crisp in these learning algorithms. Fuzzy-labeled data cannot be
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c© Springer-Verlag Berlin Heidelberg 2006



34 B. Hammer et al.

learned and it is not possible to indicate ambiguous regions of the data space by
a fuzzy labeling of the prototypes. Recently, an extension of unsupervised neural
gas clustering to a supervised fuzzy classifier, namely fuzzy labeled neural gas
(FLNG), has been proposed [16]. Obviously, NG can trivially be expanded to
a classifier by posterior labeling of the prototypes. However, in this case the
prototype locations are not adapted according to the labels, but according to
the data statistics only. The basic idea of FLNG consists in an extension of the
NG cost function by a term measuring the deviation of the class labels from
the data points and prototypes, whereby the latter are automatically adapted
during training. Adaptation takes place by means of a stochastic gradient descent
on the resulting cost function, whereas the class labels influence the prototype
locations.

This general idea faces the problem that the extension of the NG cost func-
tion by the quantization error of the labels as proposed in [16] for discrete data
is not differentiable at the borders of the receptive fields. Therefore, modifica-
tions are necessary. For continuous data the article [16] proposes approximations
which are differentiable and which lead to quite complicated update terms for
the prototypes and class labels. Here, we consider a different extension of the
cost function and a different optimization scheme, batch learning, which allows
a direct optimization of the quantization error and which yields very simple
and intuitive update rules. In addition, it shares the fast convergence of (unsu-
pervised) batch NG as introduced in [3]. We test the method on several data
sets.

Similar to supervised batch NG, it is possible to extend other popular batch
clustering algorithms such as k-means and the batch self-organizing map (SOM)
[10] to supervised classification. We integrate these approaches into a common
framework by means of the cost function, and we show convergence of general
batch optimization. Thereby, the possibility to adapt metric parameters as has
been used in recent LVQ versions [6] is also included. In addition, the application
to general proximity data which is not embedded in a euclidian vector space
becomes possible by median versions of the optimization scheme as introduced
in [11]. We shortly discuss these possibilities covered by the general framework.

2 Unsupervised Clustering

Assume data vectors v ∈ R
d are given as stimuli, distributed according to an

underlying probability distribution P (v). The aim of prototype-based unsuper-
vised clustering is to find a number of prototypes or weight vectors wi ∈ R

d,
i = 1, . . . , n representing the data points faithfully, e.g. measured in terms of the
average deviation of a data point from its respective closest prototype. There
exist different possibilities to achieve this goal: The objective of neural gas [12]
is a minimization of the cost function

ENG(W ) =
1

2C(λ)

n∑
i=1

∫
hλ(ki(v,W )) · (v − wi)2P (v)dv
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where ki(v,W ) = |{wj | (v−wj)2 < (v−wi)2}| is the rank of prototype i, hλ(t)
is a Gaussian shaped curve such as hλ(t) = exp(−t/λ) with neighborhood range
λ > 0, and C(λ) is a normalization constant. Typically, online adaptation takes
place by means of a stochastic gradient descent method. The resulting learning
rule adapts all prototypes after the presentation of each stimulus by a small step,
whereby the rank determines the adaptation strength. Recently, an alternative
batch adaptation scheme for this cost function has been proposed which, for
a given finite training set, in turn, determines the rank ki(v,W ) according to
fixed prototype locations and the prototype locations as average of all training
points weighted according to their rank, until convergence. Batch adaptation
can be interpreted as Newton optimization of the cost function, and often a fast
convergence can be observed compared to online adaptation.

K-means directly minimizes the quantization error

Ek−means(W ) =
1
2

n∑
i=1

∫
χi(v,W ) · (v − wi)2P (v)dv

where W denotes the set of prototypes and χi(v,W ) indicates the receptive
field of prototype wi; i.e. it is one iff the data point v is closest to wi and it is
zero, otherwise. Typically, the function is optimized by a batch update scheme
for a given finite set of training points v1, . . . , vp drawn according to P (v).
The algorithm iteratively assigns the given training points to their respective
closest prototypes and sets the prototype locations wi to the centers of gravity
of the current receptive fields as indicated by the assignment, until convergence.
This scheme can be interpreted as Newton optimization of Ek−means [1]. Unlike
NG, k-means relies on the initialization of prototypes and typically fails to find a
global or even good local optimum of Ek−means if the cost function is multimodal.
Neural gas offers a very robust alternative that is insensitive to initialization due
to neighborhood cooperation.

A third popular unsupervised learning scheme is given by the self-organizing
map which includes neighborhood cooperation according to a priorly fixed lattice
structure of the neurons. SOM is less flexible than NG, since the lattice topology
need not fit the data topology. However, a fixed lattice offers the possibility of
easy visualization e.g. using a two-dimensional regular lattice. The original SOM
does not possess a cost function. A slight variation of SOM proposed by Heskes
[8] has the cost function

ESOM(W ) =
1

2C(λ)

n∑
i=1

∫
χ∗

i (v,W ) ·
n∑

l=1

hλ(nd(i, l)) · (v − wl)2P (v)dv

where C(λ) is again a constant, nd(i, j) denotes the neighborhood range of neu-
ron i and j on the priorly fixed lattice, and χ∗

i (v,W ) is one for neuron i iff the
average

∑n
l=1 hλ(nd(i, l)) · (v−wi)2 is minimum, otherwise it is zero. For SOM,

batch as well as online adaptation schemes are used in practice. SOM constitutes
a very popular method for data mining and data visualization [10].

For all formulations, batch adaptation schemes provide an interface towards
clustering general proximity data for which only pairwise distances of the data
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points are given but in general no embedding within a real-vector space is avail-
able. The euclidian distance is substituted by the given proximities, and opti-
mization of prototypes takes place within the discrete space given by the data
points, as proposed in [3,11].

3 Supervised Batch NG

Often, additional information in the form of class labels is available. That means,
additional class labels yi are given for every data point vi. We assume that
yi ∈ R

d, d being the number of classes. This notion subsumes crisp classifica-
tion with unary encoded class information as well as fuzzy assignments to d
classes. The general aim of clustering provided additional label information can
be twofold: either unsupervised clustering, mining, or visualization of the given
data whereby the additional cluster information should be taken into account
as much as possible to achieve a meaningful result; or direct supervised classi-
fication according to the given class labels. Both aims can be incorporated into
prototype-based clustering by an extension of the overall cost function such that
the information given by the class labels is taken into account. First promising
steps into this direction can be found in the aproach [16] for online NG. Each
prototype wi is equipped with an additional vector Yi ∈ R

d which should repre-
sent the class labels of data points in the receptive field as accurately as possible.
The cost function of NG is extended to

α · ENG(W ) + (1 − α) · ENG−Y(W,Y )

whereby ENG(W ), as beforehand, measures the quantization error of prototypes,
ENG−Y(W,Y ) measures the error introduced by the difference of class labels of
data points and prototypes, and α ∈ [0, 1] constitutes a weighting of the two
objectives. A natural choice of the latter term is

ENG−Y(W,Y ) =
1

2C(λ)

n∑
i=1

∫
hλ(ki(v,W )) · (y − Yi)2P (v)dv

However, as pointed out in [16], this cost function is not differentiable at the
borders of the receptive fields. The approach presented in [16] proposes to sub-
stitute the term hλ(ki(v,W )) by an analytic approximation, which yields update
rules for W and Y .

Here, we consider a simpler solution. The cost function of supervised NG
becomes

EBSNG(W,Y ) = α · 1
2C(λ)

n∑
i=1

∫
hλ(ki(v, y,W, Y )) · (v − wi)2P (v)dv

+ (1 − α) · 1
2C(λ)

n∑
i=1

∫
hλ(ki(v, y,W, Y )) · (y − Yi)2P (v)dv
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where ki(v, y,W, Y ) = |{wj | α(v − wj)2 + (1 − α)(y − Yj)2 < α(v − wi)2 +
(1 − α)(y − Yi)2}| denotes the rank of prototype i measured according to the
closeness of the current data point and the prototype weight and labeling. Thus,
it constitutes an average over the quantization error of the prototypes and labels,
weighted according to the rank taken over both, prototype and label closeness.
This cost function corresponds to original (unsupervised) NG applied to the
embedded data points (

√
α · v,

√
1 − α · y), thus it is differentiable at borders of

receptive fields.
Batch adaptation schemes suppose that a finite set of training data (v1, y1),

. . . , (vp, yp) is given in advance. The cost function becomes

ÊBSNG(W,Y ) =
1

2C(λ)

n∑
i=1

p∑
j=1

hλ(ki(vj , yj ,W, Y ))

(
α · (vj − wi)2 + (1 − α) · (yj − Yi)2

)
Batch optimization determines in turn the hidden variables kij :=ki(vj , yj ,W, Y )
and the weights and labels W and Y until convergence. This yields the following
update rules of supervised-batch-NG (BSNG):

(1) For given W , Y , set kij = |{wl | α · (vj − wl)2 + (1 − α) · (yj − Yl)2 ≤
α · (vj − wi)2 + (1 − α) · (yj − Yi)2}| as the rank of prototype i given vj .

(2) For fixed kij , set wi =
∑

j hλ(kij) · vj/
∑

j hλ(kij), and Yi =
∑

j hλ(kij) ·
yj/
∑

j hλ(kij).

Note that the assignments of the receptive fields and the rank depend on the
closeness of the prototype as well as the correctness of its class label. The new
prototypes are determined as center of gravity of all data points weighted ac-
cording to this rank, the same holds for the class labels.

One can consider this scheme as Newton optimization of the cost term
ÊBSNG(W,Y ): the updates within a Newton scheme are Δ(W,Y ) = −J · H−1

where J is the Jacobian of Ê and H is the Hessian. Since kij is locally constant,
we get up to sets of measure zero ∂ÊBSNG/∂wi = (α/C(λ)) ·

∑
j hλ(kij)(wi−vj)

and ∂ÊBSNG/∂Yi = (α/C(λ))·
∑

j hλ(kij)(Yi−yj). The Hessian equals a diagonal
matrix with entries ∂2ÊBSNG/∂w2

i = (α/C(λ)) ·
∑

j hλ(kij) and ∂ÊBSNG/∂Y 2
i =

(α/C(λ)) ·
∑

j hλ(kij). Obviously, this corresponds to the batch updates of W
and Y .

Before proving convergence of supervised batch NG in a general framework,
which also incorporates supervised batch SOM and supervised k-means, we test
the algorithm on several datasets. So far, the experiments are preliminary, and
further studies, in particular in combination with more powerful approaches as
will be discussed in section 5, are the subject of future work.

3.1 Artificial Data

The main difference of NG with posterior labeling and BSNG consists in the
fact that the rank assignments also take the fact into account whether the labels
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Fig. 1. Receptive fields obtained by batch NG (top) and BSNG (bottom) on an artificial
two-dimensional data set. Obviously, the incorporation of the label information for
BSNG yields a better separation of the two classes; the prototype locations follow the
classification boundary
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fit. This has the effect that the prototypes of BSNG better account for cluster
borders of labeled data points, whereas NG only follows the overall statistics. The
parameter α controls the strength of the label contribution, α = 1 corresponds
to standard NG. This effect can be clearly observed in the following example.
We consider two Gaussian clusters labeled by 0 resp. 1, whereby points with
x-component at least 0 are dropped for class 0, and points with x-component at
most 0 are dropped for class 1. Hence, the classes are well separated, whereby a
couple of data points lies close to the decision boundary. Fig. 1 shows a typical
result of the receptive fields of the prototypes obtained by batch NG and BSNG
with mixing parameter α = 0.1, respectively. Thereby, prototypes of NG are
labeled by a majority vote within the receptive field. Fuzzy labels for BSNG
arise automatically during training, these are turned into crisp classes based on
the largest component of the label vector. Obviously, BSNG well approximates
the decision border, whereas NG yields a couple of errors at this region. This
corresponds to the classification accuracy of 99.1% for BSNG and 97.8% for NG.

3.2 Iris Data

We train batch NG and BSNG using 9 prototypes on the well-known iris dataset
[13], which consists in the task to classify 150 points characterized by 4 real-
valued attributes into 3 classes of equal size. Class 1 is well separated from class
2 and 3, but classes 2 and 3 slightly overlap. For each run, the set is randomly
divided into a training and test set of equal size, and averages over 50 runs are
reported. The neighborhood range λ is multiplicatively annealed starting from
4.5 over 100 training epochs. Different values of the mixing parameter α are

0.1 0.3 0.5 0.7 0.9
0.88

0.9

0.92

0.94

0.96

0.98

 

 
SNG Train
SNG Test
BSNG Train
BSNG Test

Fig. 2. Accuracy on the training and test set achieved by supervised batch NG (BSNG)
and batch NG (BNG) on the iris dataset for different mixing parameters α
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Fig. 3. Accuracy on the training and test set achieved by supervised batch NG (BSNG)
and batch NG (BNG) on the Wisconsin breast cancer dataset for different mixing
parameters α

reported. The classification accuracy on the training and test set for BSNG and,
in comparison, for NG with posterior labeling can be observed in Fig.2. Obvi-
ously, the classification accuracy becomes better for smaller α, i.e. more emphasis
of the given data labels. Thereby α must not become 0 which corresponds to a
pure label adaptation without adaptation of the prototypes. α = 1 corresponds
to standard NG. Obviously, the classification accuracy of simple NG is inferior
compared to the supervised version due to the overlap of classes 2 and 3 which
is not accounted for by the overall statistics of the input vectors. The algorithm
reported in [16] (Gaussian approximation) achieves (in a single run with param-
eter α = 0.5) a training set accuracy of 0.85 and test set accuracy of 0.91 using
9 prototypes, thus it is better than post labeled NG, but worse compared to
supervised batch NG for this parameter choice.

3.3 Wisconsin Breast Cancer

The Wisconsin breast cancer data consists of nearly 600 data points described
by 30 real-valued input features which are to be separated into 2 classes. Train-
ing uses 20 prototypes and the same parameters as beforehand, starting with
an initial neighborhood range 10. The results are presented in Fig.3. As before,
a larger emphasis on the correctness of the labels yields a better classification
accuracy which is superior to neural gas. Interestingly, the approach presented
in [16] which relies on a different supervised extension of NG (Gaussian approx-
imation of the rank) achieves an accuracy of 0.92 for the training set and 0.91
on the test set for a mixing parameter 0.5, which is in this case worse than the
result obtained by NG with posterior labeling.
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4 Perspectives – General Supervised Batch Clustering

Now, we introduce a general cost function and a batch adaptation scheme for
supervised prototype-based clustering which extends SOM, NG, and k-means by
two aspects: the integration and adaptation of a (possibly fuzzy) labeling and
potential adaptation of metric parameters according to the overall objective.
The proposal includes BSNG introduced above as a special case.

Note that, for a finite set of training data v1, . . . ,vp, the cost function of
SOM, NG, and k-means can be written as

Ê(W ) =
n∑

i=1

p∑
j=1

f1(kij(W )) · f ij
2 (W )

where (neglecting constants) f1(kij(W )) is given by χi(vj ,W ), hλ(ki(vj ,W )), or
χ∗

i (vj ,W ), respectively, and f ij
2 (W ) constitutes the squared distance (vj −wi)2

or the average
∑n

l=1 hλ(nd(i, l)) · (vj − wl)2, respectively. We extend this cost
function in two respects: we assume that each training vector vj is accompanied
by a priorly given label yj and each prototype wi is equipped by a label Yi. The
labels Y are adapted according to the data labels y during training such that Yi

represents the class information of the data points in the receptive field of wi,
as introduced for batch NG in the previous section. In addition, we extend the
metric by possibly adaptive metric parameters Λ which allow a better shaping
of the classifier according to the given task. Adaptive metric parameters are
quite common in supervised as well as unsupervised clustering [5,9,14,6,7], since
the choice of the metric severely influences the final classification ability of the
models. Therefore, this possibility should be included in a general framework.

The general cost function of supervised clustering becomes

Ê(W,Λ, Y ) =
n∑

i=1

p∑
j=1

f1(kij(W,Λ, Y )) ·
(
α · f ij

2 (W,Λ) + (1 − α) · d(Yi, yj)
)

where d measures the distance of the two labels (e.g. the squared euclidian
distance) and α ∈ [0, 1] controls the weighting of the two parts of this cost func-
tion, unsupervised vector quantization and correct labeling of the prototypes.
Thereby, the parameters might be subject to constraints, i.e. λ ∈ XΛ, W ∈ XW ,
and Y ∈ XY .

We introduce a general batch optimization scheme of Ê(W,Λ, Y ) and we show
its convergence. We assume that kij(W,Λ, Y ) constitutes a function which maps
given parameter values to unique assignments (possibly after introducing some
order) within a finite set XK such that it optimizes Ê for fixed parameters W , Λ,
and Y . Thereby, constraints might apply: for SOM and k-means, the assignments
kij constitute unary vectors for fixed j; for NG, they constitute a permutation
of {0, . . . , n − 1}. This assumption allows us to optimize the cost function Ê
consecutively for the parameters of Ê and hidden variables kij connected to the
function kij(W,Λ, Y ). General batch optimization of Ê proceeds in two steps;



42 B. Hammer et al.

after an initialization of the parameters, the following two optimization steps are
performed until convergence

(1) for given W , Λ, Y , find kij in XK (possibly subject to constraints) such that
n∑

i=1

p∑
j=1

f1(kij) ·
(
α · f ij

2 (W,Λ) + (1 − α) · d(Yi, yj)
)

is minimum;
(2) for given kij , find W ∈ XW , Λ ∈ XΛ, and Y ∈ XY such that

n∑
i=1

p∑
j=1

f1(kij) ·
(
α · f ij

2 (W,Λ) + (1 − α) · d(Yi, yj)
)

is minimum.

To show convergence, consider the function

Q(W,Λ, Y,W ′, Λ′, Y ′) :=∑n
i=1

∑p
j=1 f1(kij(W,Λ, Y )) ·

(
α · f ij

2 (W ′, Λ′) + (1 − α) · d(Y ′
i , yj)

)
.

Note that Ê(W,Λ, Y ) = Q(W,Λ, Y,W,Λ, Y ). Assume batch optimization starts
with W , Λ, Y and computes optimum kij and W ′, Y ′, λ′ based thereon. We find

Ê(W ′, Λ′, Y ′) = Q(W ′, Λ′, Y ′,W ′, Λ′, Y ′) ≤ Q(W,Λ, Y,W ′, Λ′, Y ′)

because kij(W ′, Λ′, Y ′) are optimum assignments given W ′, Y ′, λ′. Further,

Ê(W,Λ, Y ) = Q(W,Λ, Y,W,Λ, Y ) ≥ Q(W,Λ, Y,W ′, Λ′, Y ′)

since W ′, Y ′, λ′ are optimum assignments for given kij . Thus,

Ê(W,Λ, Y ) − Ê(W ′, Λ′, Y ′) =
Q(W,Λ, Y,W,Λ, Y ) − Q(W,Λ, Y,W ′, Λ′, Y ′)
+ Q(W,Λ, Y,W ′, Λ′, Y ′) − Q(W ′, Λ′, Y ′,W ′, Λ′, Y ′) ≥ 0 ,

i.e. the cost function does not increase in batch optimization. Since the assign-
ments kij are unique and they stem from a finite set, the algorithm must converge
in a finite number of steps. This shows the convergence of the algorithm in a
finite number of optimization steps for all optimization schemes of this form, in
particular supervised batch NG.

Often, the values W and Λ stem from a real-vector space. In this case, it is
possible to show that the algorithm, in general, converges to a local optimum of
the cost function Ê. For discrete W and Λ, this is not possible since the term
‘local optimum’ is not defined without specifying an additional neighborhood
relation in the discrete sets XW and XΛ. Assume continuous XW and XΛ and
assume, that for the final solution W , Λ, Y of batch optimization an open neigh-
borhood exists such that kij(W,Λ, Y ) is constant in this neighborhood (this is
usually the case for any given finite data set). In this case Ê(·) and Q(W,Λ, Y, ·)
coincide in a vicinity of the solution, i.e. a local optimum of the latter is also a
local optimum of the first one. Thus, a local optimum of Ê has been found in
this case.
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5 Future Approaches

This general formulation opens the way towards a couple of concrete algorithms
for different application areas. We shortly mention a few possibilities which seem
particularly promising and which experimental investigation will be the subject
of future research.

5.1 Supervised Batch SOM

As already mentioned, the general formulation of batch optimization includes the
possibility to extend SOM by a supervised component. Since SOM is subject to
a fixed lattice structure which need not fit the data topology, it can be expected
that the classification accuracy is usually worse compared to supervised batch
NG. However, supervised SOM offers the possibility of data visualization if a
low dimensional regular lattice is used. In this case, supervised components can
be naturally integrated into the visualization. This is beneficial in particular
for high-dimensional data where accumulated noise might blur the information
hidden in the data. Additional label information allows to focus on the relevant
parts of the data and visualize these aspects. The principle of integration of
additional information in unsupervised learning has been introduced in [9,14], for
example. Unlike this proposal, supervised batch SOM offers a simple alternative
for the special case of additional label information.

5.2 Relevance Learning

Clustering crucially depends on the choice of the underlying metrics which deter-
mines the winner for a given data point. If the chosen metric is not appropriate
for the task at hand, the classification fails. This is particularly pronounced for
high-dimensional data where noise can accumulate and disrupt the information
available in the data. Because of this fact, the principle of relevance learning as
introduced in [7] has proven beneficial for prototype based clustering. The basic
idea is to substitute the standard euclidian metric by a weighted version

(vj − wi)2Λ =
k∑

l=1

Λ2
l ((vj)l − (wi)l)2

where Λl are relevance parameters with
∑

l Λl = 1 which scale the dimensions ac-
cording to their significance for the given task. The general formulation of batch
optimization as introduced above allows us to adapt the relevance parameters
automatically during training such that they are optimum adapted according to
the given cost function. For the diagonal metric, the optimization task in (2)
can be solved analytically for Λ and yields

Λl =

(∑
ij hλ(kij) · ((vj)l − (wi)l)2

)−1

∑
l′

(∑
ij hλ(kij) · ((vj)l′ − (wi)l′)2

)−1
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for NG, i.e. weight vectors similar to the diagonal Mahalanobis distance arise,
whereby the rank of the prototypes weighted according to the appropriateness
of the weight and label is taken into account.

5.3 Median Clustering

Often, data are not embedded in a euclidian vector space, rather, pairwise prox-
imities dij which describe the distance of vi and vj are available. A variety of
clustering algorithms for proximity data has been proposed [3,11,15,17], however,
only few possibilities to train prototype-based methods for supervised classifi-
cation of proximity data are available. The general framework as introduced
above opens the way towards a very simple and intuitive method: supervised
median clustering. Thereby, optimization of W is restricted to the discrete set
XW = {v1, . . . ,vp} given by the training patterns. In the optimization step (2),
the generalized median, i.e. the data point vi which minimizes the considered
sum is taken as wj . This principle has been introduced in [11] for SOM and,
including a proof of convergence, in [3] for NG. The transfer to supervised NG
or SOM is immediate, whereby optimization can take place either by extensive
search, or incorporating (exact or approximate) acceleration as discussed in [2].
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Abstract. We extend the self-organizing map (SOM) in the form as
proposed by Heskes to a supervised fuzzy classification method. On the
one hand, this leads to a robust classifier where efficient learning with
fuzzy labeled or partially contradictory data is possible. On the other
hand, the integration of labeling into the location of prototypes in a
SOM leads to a visualization of those parts of the data relevant for the
classification.

1 Introduction

The self-organizing map (SOM) constitutes one of the most popular data min-
ing and visualization methods, mapping a given possibly high-dimensional data
set nonlinearly onto a low-dimensional regular lattice in a topology-preserving
fashion [10]. It can be taken as an adaptive unsupervised learning scheme for
prototype based vector quantization with the additional feature of topographic
mapping. Several methods exist to extend the SOM model for supervised classifi-
cation tasks. These approaches range from simple post-labeling to the well-known
counterpropagation network [10],[7],[8]. However, all these methods have in com-
mon that the locations of the prototypes in the data space remain unchanged
by the subsequent determination of the prototype labels.

In the following we will propose an extension of the SOM such that it can
be used as a prototype based classification approach. Thereby, the position of
the prototypes is explicitly influenced by the classification task. In this way a
combination of statistical and class properties triggers the prototype and the
related label learning. The learning rules for prototypes as well as prototype
labels are obtained from a cost function which is a combination of a classifi-
cation error and the energy function of the SOM according to the formulation
introduced by Heskes [9]. Thereby, the class information of the data may be
fuzzy. The resulting map allows a visualization of the classification process by
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means of the properties of topology preserving mapping of SOMs, which leads to
a better understanding of the classification scheme. Further, metric adaptation,
as known from learning vector quantization [4],[3], can be easily incorporated
into this approach to improve its flexibility.

2 The Self-Organizing Map

As mentioned above, SOMs can be taken as unsupervised learning of topographic
vector quantization with a topological structure (grid) within the set of pro-
totypes (codebook vectors). Thereby, roughly speaking, topology preservation
means that similar data points are mapped onto identical or neighbored grid lo-
cations (prototypes), see Fig 1. An exact mathematical definition is given in [12].
Successful tools for assessing this map property are the topographic function and
the topographic product [12],[1].

There exists a wide range of applications in pattern recognition ranging from
spectral image processing to bioinformatics. The mathematics behind the orig-
inal model as proposed by Kohonen is rather complicated, particularly due to
the lack of an underlying cost function for continuous data distributions. How-
ever, Heskes proposed a minor variant of the original algorithm which usually
leads to the same results as the original SOM but for which a cost function can
be established [9]. We will base our model on this formulation.

Fig. 1. Illustration of tropographic mapping by SOMs. A continuous change in the
input space V leads to a representation by weight vectors, the neurons of which are
neighbored in the grid space A.
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Assume data v ∈ V are given distributed according to an underlying distribu-
tion P (V). A SOM is determined by a set A of neurons/prototypes r equipped
with weight vectors wr ∈ R

d and arranged on a lattice structure which deter-
mines the neighborhood relation N(r, r′) of neuron r and r′. Denote the set of
neurons by W = {wr}r∈A. The mapping description of a trained SOM defines
a function

ΨV→A : v 
→ s (v) = argmin
r∈A

∑
r′∈A

hσ(r, r′)ξ (v,wr′) . (1)

where

hσ(r, r′) = exp
(

N(r, r′)
σ

)
(2)

determines the neighborhood cooperation with range σ > 0. ξ (v,w) is an ap-
propriate distance measure, usually the standard Euclidean norm

ξ (v,wr) = ‖v − wr‖ = (v − wr)
2
. (3)

However, here we chose ξ (v,w) to be arbitrary supposing that it is a differen-
tiable and symmetric function which measures some similarity. In this formula-
tion, an input stimulus is mapped onto that position r of the SOM, where the
distance ξ (v,wr) is minimum, whereby the average over all neurons according
to the neighborhood is taken. We refer to this neuron s(v) as the winner.

During the adaptation process a sequence of data points v ∈ V is presented to
the map representative for the data distribution P (V). Each time the currently
most proximate neuron s(v) according to (1) is determined. All weights within
the neighborhood of this neuron are adapted by

�wr = −εhσ (r, s(v))
∂ξ (v,wr)

∂wr
(4)

with learning rate ε > 0. This adaptation follows a stochastic gradient descent
of the cost function introduced by Heskes [9]:

ESOM =
1

2C(σ)

∫
P (v)

∑
r

δs(v)
r

∑
r′

hσ(r, r′)ξ( v,wr′)dv (5)

were C (σ) is a constant which we will drop in the following, and δr′
r is the usual

Kronecker symbol checking the identity of r and r′.
One main aspect of SOMs is the visualization ability of the resulting map due

to its topological structure. Under certain conditions the resulting non-linear
projection ΨV→A generates a continuous mapping from the data space V onto
the grid structure A. This mapping can mathematically be interpreted as an
approximation of the principal curve or its higher-dimensional equivalents [6].
Thus,as pointed out above, similar data points are projected on prototypes which
are neighbored in the grid space A. Further, prototypes neighbored in the lattice
space should code similar data properties, i.e. their weight vectors shoud be close
together in the data space according to the metric ξ. This property of SOMs is
called topology preserving (or topographic) mapping realizing the mathematical
concept of continuity. For a detailed consideration of this topic we refer to [12].
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3 Fuzzy Labeled SOM (FLSOM)

SOM is a well-established model for nonlinear data visualization which, due to
its above mentioned topology preserving properties, can also serve as an ade-
quate preprocessing step for data completion, classification or interpolation. For
high-dimensional data sets, however, the result is often suboptimal if no further
information about the data is present. In such cases, a default model and metric
such as the Euclidean metric often accounts for the fact that only general prop-
erties, but not necessarily the parts relevant for the task at hand are represented.
Often, auxiliary data in the form of (possibly partial or contradictory) labels are
available. In this case, SOM can be used for a preprocessing step in classification
by means of posterior labeling. Here, we seek for an integration of the label in-
formation such that the prototype locations are determined with respect to the
auxiliary data. On the one hand, this improves the classification result if we are
interested in supervised classification. On the other hand, information relevant
for the classification can be visualized by means of the underlying SOM topology
adapted towards the labeling.

Assume training point v is equipped with a label vector x ∈ [0, 1]N(c) whereby
the component xi of x determines the assignment of v to class i for i = 1, . . . ,
N(c). Hence, we can interprete the label vector as probabilistic or possibilistic
fuzzy class memberships. Accordingly, we enlarge each prototype vector wr of
the map by a label vector yr ∈ [0, 1]N(c) which determines the portion of neuron
r assigned to the respective classes. During training, prototype locations wr and
label vectors xi are adapted according to the given labeled training data. For
this purpose, we extend the cost function of the SOM as defined in (5) to a cost
function for fuzzy-labeled SOM (FLSOM) by

EFLSOM = (1 − β) ESOM + βEFL (6)

where the factor β ∈ [0, 1] is a balance factor to determine the influence of the
goal of clustering the data set and the goal of achieving a correct labeling. One
can simply choose β = 0.5, for example. As above, ESOM measures the quanti-
zation of the map taking topological constraints into account. EFL measures the
error of the classification. We choose

EFL =
1
2

∫
P (v)

∑
r

gγ (v,wr) (x − yr)
2
dv (7)

where gγ (v,wr) is a Gaussian kernel describing a neighborhood range in the
data space:

gγ (v,wr) = exp
(
−ξ (v,wr)

2γ2

)
. (8)

This choice is based on the assumption that data points close to the prototype
determine the corresponding label if the underlying classification is sufficiently
smooth. Note that gγ (v,wr) depends on the prototype locations, such that EFL

is influenced by both wr and yr, and an adaptation yields to a different location
of prototypes which is also influenced by the labels.
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We obtain the update rules by taking the derivatives: Labels are only influ-
enced by the second part EFL, which yields

∂EFL

∂yr
= −

∫
P (v) gγ (v,wr) (x − yr) dv (9)

and the corresponding learning rule

�yr = εlβ · gγ (v,wr) (x − yr) (10)

with learning rate εl > 0. This yields to a weighted average of the data fuzzy
labels of those data close to the associated prototypes. However, in comparison
to the usual SOM the receptive fields are different because the prototype update
is determined by the gradient of (6) which yields ∂ESOM

∂wr
+ ∂EFL

∂wr
where

∂EFL

∂wr
= − 1

4γ2

∫
P (v) gγ (v,wr)

∂ξ (v,wr)
∂wr

(x − yr)
2
dv (11)

which takes the accuracy of fuzzy labeling into account for the weight update.
The update rule for the weights thus becomes

� wr = −ε(1 − β) · hσ (r, s(v))
∂ξ (v,wr)

∂wr
(12)

+εβ
1

4γ2
· gγ (v,wr)

∂ξ (v,wr)
∂wr

(x − yr)
2
.

As mentioned above, unsupervised SOMs generate a topographic mapping
from the data space onto the prototype grid under specific conditions. If the
classes are consistently determined with respect to the varying data, one can ex-
pect for supervised topographic FLSOMs that the labels become ordered within
the grid structure of the prototype lattice. In this case the topological order of
the prototypes should be transferred to the topological order of prototype labels
such that we have a smooth change of the fuzzy probabilistic class labels between
neighbored grid positions.

4 Relevance Learning

As mentioned above, ξ (v,wr) is often chosen as squared Euclidean metric such
that the term ∂ξ(v,wr)

∂wr
becomes −2(v−wr). However, the integration of adaptive

relevance factors (metric parameters) seems particularly interesting because of
an increased flexibility and interpretability of the model with almost the same
cost as for the standard metric [5]. Generally, we consider a parametrized dis-
tance measure ξλ(v,w) with a parameter vector λ = (λ1, . . . , λM ) with λi ≥ 0
and normalization

∑
i λi = 1. The idea of relevance learning is to optimize the

relevance factors λ of the distance measure with respect to the classification task
[4],[3], i.e. we consider ∂EFLSOM

∂λl
. Formal derivation yields

∂EFLSOM

∂λl
= (1 − β)

∂ESOM

∂λl
+ β

∂EFL

∂λl
(13)
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with
∂ESOM

∂λl
=

1
2

∫
P (v)

∑
r

δs(v)
r

∑
r′

hσ(r, r′) · ∂ξλ(v,wr)
∂λl

dv (14)

and
∂EFL

∂λl
= − 1

4γ2

∫
P (v)

∑
r

gγ(v,wr)
∂ξλ(v,wr)

∂λl
(x − yr)2dv (15)

for the respective parameter adaptation.
In case of ξλ(v,w) being the scaled Euclidean metric

ξλ(v,w) =
∑

i

λi(vi − wi)2 (16)

(with λi ≥ 0 and
∑

i λi = 1), relevance learning ranks the input dimensions i

according to their relevance for the classification task at hand. Thus, ∂ξ(v,wi)
∂wi

becomes
∂ξ (v,wi)

∂wi
= −2 · Λ · (v − wi) (17)

with diagonal matrix Λ with i-th diagonal entry λi. The corresponding learning
rule for the relevance parameters becomes

� λl = −ελ
1 − β

2

∑
r

hσ(s(v), r) · (vl − (wr)l)2 (18)

+ελ
β

4γ2

∑
r

gγ(v,wr)(vl − (wr)l)2(x − yr)2 (19)

(subscript l denoting the component l of a vector) with learning rate ελ > 0.
This update is followed by normalization to ensure λi ≥ 0 and

∑
i λi = 1.

5 Experiments

5.1 Data Set

In order to demonstrate the practical properties of the proposed algorithm, a
quite challenging application in the field of biological image segmentation has
been chosen. Against the background of spatiotemporal 3-D modelling of cereal
seeds based on up to 2.000 high-resolution images of histological cross-sections
a processing transition from crisp to fuzzy segmentation is desirable.

For this purpose all image pixels are characterized by an extensive feature vec-
tor containing information on color, geometry and symmetry (such as Cartesian
and polar coordinates, distance to centroid, absolute angle to symmetry axis)
and particularly texture according to varying neighborhoods (such as Gaussian
filters, histogram based features) and subsequently sorted into classes by a suit-
able classifier. A number of training pixels are used to set up a classification
system. These training pixels commonly have a unique class label indicating
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that tissue which has previously been assigned by an expert. Since this assign-
ment is often not univocal, due to slight transitions from one biological tissue
to an adjacent one, some fuzzy image segmentation would retain much more bi-
ological knowledge. Further details about the biological background along with
fuzzy segmentation using Fuzzy Labelled Neural Gas (FLNG) can be found in [2].
Tab. 1 summarizes those details of the data set relevant to this paper.

Table 1. Details of the utilized demonstration data set. The classes are non-uniformly
distributed and usually multimodal.

Number of Number of SOM-grid Number of Number of
inputs classes size training examples test examples

170 5 7 × 7 ca. 10.000 > 10.000.000

Fig. 2. Corresponding cutouts of images of the same cross-section illustrating the re-
sults of an automatic fuzzy classification: a) original colour image, b) manually crisply
segmented image, c) manually fuzzily segmented image (see [2]), d) automatic classifi-
cation using FLSOM.
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5.2 Results

Since different areas of the images require more or less fuzzy segmentation, Fig. 2
shows a typical cutout from one complete microscope image containing several
transitions of different tissues. In comparison to the crisp segmented image it can
clearly be seen, that there are areas with predominantly crisp segmentation as
well as areas with mainly fuzzy segmentation. Insofar, the classification system
has to reach two partly contradictory goals, the mapping of structural image
data onto the classes in a fuzzy manner and the observance of the statistical
information about the data distribution. We used the scaled Euclidean distance
(16) and a 7 × 7 SOM grid in the applications, which is chosen according to
an optimal topology preserving mapping (the topographic product is approxi-
mately zero, indicating good topographic mapping [1]). The learning rate was
ε = 0.01, ελ = 0.1ε and the balancing parameter β = 0.6 based on experimen-
tal experiences [2],[13]. Relevance learning was incorporated for optimal metric
adaptation using the scaled Euclidean metric (16).

The resulted segmentation image based on FLSOM classification is depicted
in Fig. 2d. The result shows that the obtained image mixes the original class
information overlaid by the structural information (geometry, symmetries ...)
contained in the original color image Fig. 2a. This impression is emphasized if
the original color image is manually overlaid by the fuzzy classification target
(fuzzy labeled) image Fig. 2c and after this compared to the FLSOM classi-
fication result. This comparison is shown in Fig. 3, which demonstrates a nice
agreement. The segmentation result is comparable to a segmentation obtained by
fuzzy labeled neural gas algoritm (FLNG), which also is a neural map based fuzzy
classification scheme similar to FLSOM [2],[13]. Favored features of SOMs are the
visualization abilities which are also available for FLSOM in advance compared
to FLNG. Here, this property is used for investigation of the class structures. For

Fig. 3. Comparison of manually overlaid color image Fig. 2a and Fig. 2c (left) with
FLSOM resulted classification Fig. 2d (right)
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Fig. 4. Distribution of the fuzzy labels of the prototypes according to the grid locations.
The topological order of labels performing label clusters can easily be detected.

this purpose, the fuzzy labels of prototypes are plotted according to the underly-
ing topological structure of the 7× 7-SOM-grid, Fig. 4. Obviously clear clusters
of labels can be locally detected and separated with a smooth change between
them. Because of the topology preservation of the SOM-mapping (proven by
the topographic product) we can conclude here that a continuos change in the
data space leads to a continuos change in the label space and hence classification
decision.

Additionally, the adapted relevance profile of the scale parameters λi of the
scaled Euclidean metric (16) may offer new insights for further investigations, see
Fig. 5.This particularly concerns the optimization of the feature vector currently
used for the segmentation and the network training, respectively. From the rel-
evance profile it can be concluded that a rather long feature vector is necessary
to keep all the information required to distinguish between the different tissues
(classes). Nevertheless, the used feature vector is subject to a further optimiza-
tion based on the obtained relevance profiles at different runs. However, this
is not trivial, since several runs at similar classification performance may yield
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Fig. 5. Relevance profile of the values λi for the scaled Euclidean metric used in the
application

different relevance profiles. Generally though, this way FLSOM additionally of-
fers a native and self-contained way to keep itself slim.

6 Conclusions

We presented an extension of the SOM for supervised classification tasks, which
explicitly adapts the prototypes according to the classification task. It is derived
as a gradient descent of a cost function obtained from the SOM formulation
according to the Heskes-approach extended by an additional (balanced) term
assessing the classification ability. In this way the statistical as well as label
properties of the data influence prototype positions and fuzzy label learning.
The visualization abilities of SOMs based on the topology preservation property
of unsupervised SOMs then can be used for visual inspection of the class labels
of the prototypes which may allow a better understanding of the underlying
classification decision scheme.

In future work the connections to the unsupervised clustering in SOMs with
auxiliary data information should be considered [11]. For this purpose one could
interprete the fuzzy class labels as the auxiliary data space.
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Abstract. We explore the use of constraints with divisive hierarchical
clustering. We mention some considerations on the effects of the inclusion
of constraints into the hierarchical clustering process. Furthermore, we
introduce an implementation of a semi-supervised divisive hierarchical
clustering algorithm and show the influence of including constraints into
the divisive hierarchical clustering process. In this task our main interest
lies in building stable dendrograms when clustering with different subsets
of data.

1 Background

The aim of cluster analysis is to explore a collection of data items and to group
similar objects together. Similarity can be measured in many different ways, for
example by the Euclidean distance. Every information used in an unsupervised
learning technique comes from the data themselve, which means no external
teaching signal guides the algorithm. During the past years several modifications
were proposed to incorporate additional background knowledge into clustering
algorithms [1–9]. The main idea is that in some tasks prior information about a
small amount of data is known and should support the clustering process. This
background information is usually provided as a set of constraints between pairs
of data items [2]. Real class labels seem not feasible in clustering because of
the inherent discrepancy between labels and clusters. Pairwise constraints are
typically encoded as must-links and cannot-links [2] either indicating two points
belong to the same cluster or to different clusters.

Up to now different clustering algorithms were adapted to make use of semi-
supervised clustering. Constraint-based approaches modify the cluster search,
either by including constraints into the objective function [1] or by initalizing and
constraining during the clustering process [10, 3, 9]. Metric-based approaches first
train the cluster metric to satisfy the constraints using shortest-path algorithm
[4], expectation maximization [5], gradient descent [6], convex optimization [7, 8]
or combinations of constraint-based and metric-based methods [11].
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Many real-world unsupervised learning tasks may profit from an inclusion of
background knowledge, e.g. image processing, text mining or even lane finding
using GPS data. Another important field for data mining using semi-supervised
clustering is the functional grouping of genes. For this problem we are not only
interested in one particular clustering as built by partitioning clustering algo-
rithms, such as K-means or SOM, but in getting a hierarchy of partitions (den-
drogram).

Our main emphasis lies on building robust hierarchical clusterings for DNA
microarray data. Here we are interested in the resulting dendrogram and focus on
the question of creating stable dendrograms. In this setting one of the problems
that frequently arise is the change of the branching structure when computing
several runs with different data subsets. Since the inclusion of background knowl-
edge seems to enhance the accuracy of clustering algorithms, we studied its effect
on the dendrogram stability. In Section 2 we explain some basic annotations on
the effects of constraints in semi-supervised hierarchical clustering. In Section 3
we introduce our new algorithm for divisive hierarchical clustering with a-priori
information and section 4 shows our results from semi-supervised clustering in
hierarchical algorithms.

2 Background Knowledge in Hierarchical Clustering

2.1 Constraints

Background knowledge may be available in different forms, e.g. as labels or
constraints. Following Wagstaff & Cardie [2] we use cannot-link and must-link
constraints to insert a-priori information into our clustering algorithm. We don’t
use labels, because they indicate class memberships and a class can consist of
different and distant clusters. As mentioned above, must-links indicate two data
items being arranged in one cluster and cannot-links allude not to assign two
data items to the same group.

2.2 Effects from Constraints in Hierarchical Clustering

Constraints indicate a relationship between two data items. When a partition
of a data set into k cluster is computed, we may profit from including this form
of background knowledge, because constraints seem to support the clustering
algorithm to define the clusters of this partition more accurate. Computing a
hierarchy of partitions is a different task. Here we are confronted with a se-
quence of refinements of clusters. A hierarchy of partitions is either computed
by a subsequent assembly of two clusters or by a subsequent division of one clus-
ter. Whereas each partition is formed by a different number of clusters there is a
different set of relations between the data items in these clusters, i.e. every parti-
tion provides its own set of constraints, see Figure 1. In the following we present
two scenarios which should point up the effects of constraints in hierarchical
clustering.
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Fig. 1. Basic example for a data set with two clusters (Subfigure a, clusters �, o) and
its refinement into three clusters (Subfigure b, clusters �, + , o). Additionally each
partitioning provides its own set of constraints (lines = cannot-links, dashed lines =
must-links).

Effects from Cannot-Links: In our first scenario we want to show the effects
of cannot-links in hierarchical clustering. Imagine we want to compute a dendro-
gram for a data set using a divisive hierarchical clustering algorithm. To simplify
matters we only look on the first two levels of the computed dendrogram. These
two levels propose two partitions of the data set. On the first level we see a
partition into two clusters and on the second level one of these clusters is split
again. Additionally we can provide two different sets of cannot-link constraints.

Fig. 2. Different branching structures when providing a few cannot-links between clus-
ters on a lower level. Subfigure (a) shows a clustering into two (dashed circles) and three
clusters (�, + , o) and the corresponding dendrogram. Adding cannot-links (dashed
lines) between some elements from cluster + and cluster o results in a different clus-
tering on the second level, see Subfigure (b).
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The first set indicates relationships between data items from the partitioning
into two clusters and the second set contains cannot-links from the partitioning
into three clusters.

When incorporating the first set of constraints we may get a more accurate
clustering into two clusters, because cannot-links for data items on the bound-
aries of the clusters could guide the algorithm to improve the shape of the clus-
ters. Since all of these cannot-links could be resolved in the first clustering step,
we don’t use them in the further steps any more.

On the other hand we probably want to make use of the second set of con-
straints. The possible effect of the inclusion of this set of constraints could be
seen in Figure 2. In this example we see two initial clusters, one of them builds a
supercluster that could be refined again. After providing some cannot-links indi-
cating this refinement in the first step of the clustering procedure the algorithm
tries to resolve even these cannot-links. As a result either the constrained items
could not be assigned to the correct supercluster or actually a complete different
supercluster is built.

Effects from Must-Links: In this scenario we want to describe the effect of
adding must-links. Again we only look at the first two levels of the dendrogram,
but this time we only have one set of constraints containing must-links deduced
from the first level. Similar to the inclusion of cannot-links we can distinguish
between two effects. When we use must-links from clusters on the second level,
the dendrogram on the first level may profit from a finer definition of the shapes
of these two clusters.

Contrary to the above, in the next refinement steps these constraints hinder
the clustering algorithm. Figure 3 shows the results from adding must-links to
the divisive clustering algorithm. In this example two must-links could not be
correctly split.

Fig. 3. Partitioning into three clusters (�, +, o) after including must-links (dashed
lines) between elements from a partitioning into two clusters (dashed circles). When
splitting the lower cluster the two must-links hinder a correct refinement.
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3 Semi-supervised Divisive Hierarchical Clustering

In microarray data mining studies we are usually confronted with low-cardinality
data. Computing dendrograms after removing or adding some samples could
easily contradict a previous constructed hierarchy.

Figure 4 shows a simple two-dimensional example for this behaviour. Three
clusters were formed using Gaussian distribution. Randomly removing three
items results in different subsets of the data. Subfigures (a) and (b) show two
possible subsets. A hierarchical clustering of these two subsets results in two
contradictory dendrograms, where either cluster a and cluster b or cluster a
and cluster c are proposed to be similar. Applied to the task of gene functional
grouping, no unique branching structure can be predicted when working on in-
complete data sets, even though a correct clustering is found. In this section
we introduce our attempts to enhance the dendrogram stability by including
background knowledge into the clustering process.

3.1 Constraints

According to the considerations described in Section 2 we decided to restrict
the use of constraints. To avoid mixing constraints from different levels of the
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Fig. 4. Subfigures (a) and (b) show two different subsets of a simple two-dimensional
data set containing clusters a, b and c. The subsets are built by holding out three items,
for clarity marked by X. Clustering both subsets results in two different dendrograms.
In Subfigure (c) cluster a and c, in Subfigure (d) cluster a and b are deduced from one
combined cluster.
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dendrogram we only add constraints for one particular partition of the data set.
Furthermore, we use our set of constraints only for the clustering on this prede-
fined level. This means for example providing a set of constraints that include
cannot-links for a partition of three clusters, we only use these constraints on
the second level of the dendrogram. In the task of building more stable dendro-
grams, we are mainly interested in the dendrogram stability on the first level.
Therefore, we additionally decided to use only constraints from the first level.
Nevertheless, our algorithm could easily be expanded to make use of constraints
from different levels of the dendrogram. Furthermore, we build the combined
transitive closure [10] over all constraints to get the most from our background
knowledge and to avoid presenting contradictory constraints.

3.2 Algorithm: Constrained-Divisive

Divisive hierarchical clustering starts the clustering procedure with the complete
data set in one cluster. The largest available cluster is then at each subsequent
step divided into two clusters until finally all clusters contain only one single data
item. To identify the largest available cluster, usually the diameters of all clusters
are compared. To find out where to split the chosen cluster, its element with the
largest average distance to all other elements can be used as the initial item
of the new cluster. According to a user-defined distance measure all remaining
points are assigned to their most similar cluster.

Our implementation of CONSTRAINED-DIVISIVE modifies this basic divi-
sive algorithm. Only on the first partitioning, i.e. the clustering into two clusters,
we have to include the constraints, on all other steps the constraints are not used

Algorithm 1. Constrained-Divisive
CONSTRAINED-DIVISIVE(data set D = {d1, . . . , dn}, must-links Con= ⊆ D × D,
cannot-links Con�= ⊆ D × D)

1. Let C be the initial cluster group: C = {D}.
2. Select the cluster Cm ∈ C with the largest dissimilarity between any two of its

objects. Divide Cm following (3) to (7).
3. Select the element sz with the highest average dissimilarity to all other elements

and, if clustering the first level, with an unresolved cannot-link. sz initiates the
splinter group S. If clustering the first level:
∀d ∈ Cm, s ∈ S : If (di, sj) ∈ Con=, move di to S.

4. ∀d still ∈ Cm, s ∈ S : Compute the difference of distances:
Diff(i) = [averagedistance(di, dj)] − [averagedistance(di, sj)].
Select the element dh with the greatest difference Diff(h).
If clustering the first level: If ∃sj ∈ S : (dh, sj) ∈ Con�=, set Diff(h) = 0.
If Diff(h) > 0, move dh to the splinter group S.

5. Repeat (4) and (5) until all differences Diff(h) are negative.
6. Now the original cluster ist split into two clusters. One is the splinter group S, the

other is formed by the remaining elements in Cm.
7. Iterate between (2) and (7) until all clusters {C1 . . . Ck} contain only a single

element.
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any more and we compute the dendrogram according to the basic algorithm. In
the following we comment the clustering process from the first step more precisely.
We include cannot-links into two decisions. When looking for the first element to
split we could use an element with a cannot-link and a large average distance to
all other elements. Secondly we avoid violating cannot-links when assigning ele-
ments to a chosen cluster. In addition we use must-links when assigning elements
to a new cluster by moving all linked elements at once. This proceeding guaranties
not not violate any constraints during the clustering into two clusters.

Our clustering algorithm could easily be expanded to make use of constraints
from different levels. Therefore, one set of constraints for each level and an
indicator for the context (the level) of this set must be included. Every set of
constraints then should only be used in its context.

4 Experiments and Results

4.1 Data Sets

The first data set we analyzed is an artificial example of a two-dimensional
problem containing three different clusters. We built each cluster by the use of a
Gaussian distribution as seen in Figure 4. A partition into three clusters is easy
to compute, because the clusters are obviously separable. Nevertheless, when
removing some data items the partition into two clusters is not stable.

Our second data set comes from gene expression profiles from the pancreas
(see Buchholz et al. [12]). This data set provides two classes (pancreas cancer vs.
pancreatitis/normal) for 62 samples. Each sample is characterized by 169 gene
expression values.

4.2 Evaluation Method

There is no gold standard for evaluating clustering results and therefore it is
necessary to define the basic problem. In our study we want to compare the
results from different clusterings. Jain & Dubes [13] suggest to use a relative
criterion to measure the agreement between two clusterings. We do not measure
the totally agreement of two dendrograms, but the agreement on a selected
partition. As we have the a-priori information about the cluster membership of
all samples on the first levels, we can measure the stability of the clustering
algorithm by comparing the cluster results with this external clustering. On the
other hand we can measure the stability on the lower levels by comparing all
clusterings from the different subsets with each other.

We make use of the Rand Index [14]. Given a set of n items and two partitions
P and Q there are four ways to compare clusters in these different partitions.
Let a be the number of all pairs of items in the same cluster in P and in the
same cluster in Q, b be the number of all pairs of items in the same cluster in
P but not in the same cluster in Q, c be the number of all pairs of items not in
the same cluster in P but in the same cluster in Q and d the number of all pairs
of items in different clusters in both partitions. The scores a and d therefore
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represent agreements, the scores b and c disagreements in the partitions. The
Rand Index is the sum of the correct decisions compared to all decisions:

a + d

a + b + c + d
(1)

The value for perfect agreement of two partitions is 1. One advantage of comput-
ing the Rand Index is the possibility to include the constraints into the evaluation
result. As we count pairwise clustering decisions, we omit the constrained pairs
from the computation of the Rand Index. This Corrected Rand Index is a better
indicator for the improvement of the clustering algorithm, because it only counts
real decisions.

4.3 Results

For our artificial data set we only measure the stability on the first level. Here we
want to get a more stable partition into two clusters. We compare all results from
CONSTRAINED-DIVISIVE to the external label. Table 1 shows the results for
this test. After removing randomly 10% of the data items ten times and adding
3% and 5% random constraints we computed the Corrected Rand Index for each
run. By adding constraints we could improve the stability of the dendrogram on
the first level.

Table 2 shows the results for the microarray data set. Here we not only mea-
sured the stability on the first level of the dendrograms but also analyzed the
effect from the constraints on the stability on the lower levels of the dendro-
grams. We computed the Rand Index for the results on each level over all runs.

Table 1. Stability results for CONSTRAINED-DIVISIVE on the first data set. After
removing 10% of the data items and adding 3% and 5% randomly constrained pairs
from partitioning into two clusters the stability on the first level increases. The value
of the Corrected Rand Index is the median from 50 runs. The second value counts the
number of correct partitionings into two clusters according to the external label.

Constraints Corrected Rand Index Correct decisions

without 0.89 23

3% 1 28

5% 1 33

Table 2. Stability results for CONSTRAINED-DIVISIVE on the pankreas data set.
After removing 10% of the data items and adding 5% and 10% constrained pairs from
partitioning into two clusters the stability on the first level increases. The value of the
Rand Index is the median from 50 runs. The further rows show the median for the
Rand Index from comparing the different partitionings on the lower levels.

Constraints Rand Index Level 5 Level 10

without 0.96 0.96 0.94

5% 1 0.98 0.93

10% 1 0.98 0.94
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The median from these values indicates that the constraints improve the stability
even for some lower levels.

5 Discussion and Conclusion

Clustering of gene expression profiles is an important task in DNA microar-
ray analysis. As hierarchical clustering algorithms can predict a basic branching
structure they are often used in this context [15]. Nevertheless, clustering dif-
ferent subsets of DNA data or adding some new samples to the data set may
result in getting contradictory dendrograms. Since we are interested in getting
stable dendrograms to provide a prediction of the branching structure, we tried
to improve the dendrogram stability by including background knowledge.

Davidson & Ravi [9] presented an agglomerative hierarchical clustering
algorithm using constraints and demonstrated the enhancement in the clus-
ter accuracy. Their algorithm stops if no more agglomerations according to the
cannot-links can be performed. This results in root-less dendrograms. Addition-
ally they provided constraints from one particular partitioning and then used
these constraints during the complete clustering process. In Section 2 we pointed
out that this kind of constraining holds the risk of inducting wrong constraints.
As a result their approach is not able to provide a rough estimation of the
branching stucture on the top levels in the dendrogram and may lead to variable
dendrograms.

In microarray data analysis a rough estimation of the subgrouping is best seen
at the top of the dendrogram, whereas the detailed hierarchy in the lower lev-
els is often not as important. We implemented a divisive hierarchical clustering
algorithm and included background knowledge in the form of constraints. On
the basis of our considerations about the effects of constraints in the hierarchi-
cal clustering process we decided to restrict the use of constraints on the first
level of the dendrogram and did not to use constraints from the lower levels. By
comparing the results from unconstrained and constrained divisive hierarchical
clusterings we could show that this inclusion of constraints in the divisive hier-
archical clustering algorithm results in more stable dendrograms. Furthermore,
the positive effect of the constraints from the first level of the dendrogram even
seem to improve the stability of the lower levels.
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Bommer, M., Scarpa, A., Schilling, M., Adler, G., Hoheisel, J., Gress, T.: Spe-
cialized dna arrays for the differentiation of pancreatic tumors: A solution for a
common diagnostic dilemma. Clin Cancer Res 11 (2005) 8048–8054

13. A.K.Jain, Dubes, R.: Algorithms for Clustering Data. Prentice Hall, New Jersey
(1988)

14. Rand, W.: Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical Association 66 (1971) 846–850

15. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of
genome-wide expression patterns genetics cluster analysis and display of genome-
wide expression patterns. PNAS 95 (1998) 14863–14868



A Study of the Robustness of KNN Classifiers

Trained Using Soft Labels

Neamat El Gayar1, Friedhelm Schwenker2, and Günther Palm2

1 Cairo University
Faculty of Computers and Information

12613 Giza, Egypt
n.elgayar@fci-cu.edu.eg

2 University of Ulm
Department of Neural Information Processing

D-89069 Ulm, Germany
{friedhelm.schwenker, guenther.palm}@uni-ulm.de

Abstract. Supervised learning models most commonly use crisp labels
for classifier training. Crisp labels fail to capture the data characteris-
tics when overlapping classes exist. In this work we attempt to compare
between learning using soft and hard labels to train K-nearest neighbor
classifiers. We propose a new technique to generate soft labels based on
fuzzy-clustering of the data and fuzzy relabelling of cluster prototypes.
Experiments were conducted on five data sets to compare between clas-
sifiers that learn using different types of soft labels and classifiers that
learn with crisp labels. Results reveal that learning with soft labels is
more robust against label errors opposed to learning with crisp labels.
The proposed technique to find soft labels from the data, was also found
to lead to a more robust training in most data sets investigated.

1 Introduction

Dealing with vagueness is a common problem in many pattern recognition prob-
lems. This vagueness is sometimes due to the existence of overlapping classes.
In supervised learning models (classifier design) crisp labels are mainly used for
training. Crisp labels indicate the membership of a training pattern to a single
class. Such labels can be hard to obtain in real applications and fail to reflect
the natural grouping or uncertainty that is available among classes.

Few attempts have been made in the machine learning community to discuss
the necessities, approaches and virtues of using soft labels for classifier train-
ing [1,2]. Soft labels allow a pattern to belong to multiple classes with different
degrees. A soft label can be considered fuzzy, probabilistic or possibilistic ac-
cording to what its entries indicate. A review of hard, fuzzy and probabilistic
and possibilistic labels can be found in [3].

Using soft labels can be very useful in cases where the feature space has over-
lapping or ill-defined classes, to accommodate the uncertainty of an external
teacher about certain patterns, to model the opinions of several experts, and to
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deal with linguistic features [1]. In some real world applications like in medicine,
a clear (crisp) classification of training data may be difficult or impossible: As-
signments of a patient to a certain disorder frequently can be done only in a
probabilistic (fuzzy) manner [4].

In most cases however, data sets are most commonly labeled with crisp labels.
Nevertheless, soft labels can be generated to provide more realistic memberships
of the training patterns to ensure robust training [5]. In [2] Kuncheva reviews
various schemes for generating soft labels and discusses whether using soft la-
bels for learning can improve the classifier performance. Results of a detailed
experimental investigation for the K-nearest neighbor classifier (KNN) indicates
that although there is no clear winner amongst the K-nearest neighbor classi-
fier and the Fuzzy-K-nearest neighbor classifier (FKNN) using fuzzy labels; the
FKNN can be a useful choice for some applications because it provides addi-
tional information about the certainty of the classification decision. Keller et al
[6] claim that the improvement on the error rate might not be the main benefit
from using the FKNN model. More importantly, the model offers a degree of
certainty which can be used with a ”refuse-to-decide” option. Thus objects with
overlapping classes can be detected and processed separately.

Few work has been devoted to study learning under noisy test instances [7,8,9]
and was mainly restricted to studying noise imposed on hard labels. In this study
we attempt to compare between the robustness of classifiers trained using soft
labels opposed to classifiers trained with hard labels against errors in the labels.
In our problem we mainly are interested to study cases where the classes are not
mutually exclusive and therefore each training sample is allowed several class
labels. This is different for the multiple-label problem; where multiple candidate
class labels are associated with each training instance and it is assumed that
only one of the candidates is the correct label [10]. Our work also introduces
a new labeling technique based on the Generalized Nearest prototype Classifier
(GNPC) proposed in [11]. The GNPC has be shown to unify disparate classifi-
cation techniques like clustering and relabeling, Parzen’s classifier, radial basis
function networks (RBF), Learning vector quantization (LVQ) type classifiers;
and nearest neighbor rules. In this study we focus on one family of the GNPC to
use it for generating soft labels which is based on clustering and relabeling. In
particular our approach uses fuzzy clustering of data points and fuzzy relabeling
of prototypes to assign soft labels to data vectors.

Experiments were conducted on five data sets to compare the classifier per-
formances that learn using crisp labels and different types of soft labels. Exper-
iments were conducted at different noise levels imposed on the data labels. The
classifiers used in this study to learn using crisp/soft labels are KNNs. KNN
models are simple, wide applicable models and are usually recognized as good
competitors to many neural network models and other classification paradigms
[11]. The KNN variations that learn using soft labels (i.e FKNN) have been in-
vestigated in detail [2] while, most neural model and other known classification
techniques were mainly devised to work with crisp labels. Our study will be ex-
tended in future work to other classification paradigms working with soft labels
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including MLP and RBF learning with fuzzy labels [5,1] and recently the work
of LVQ models learning with soft labels [12].

The paper is organized as follows; Section 2 reviews two methods to generate
soft labels based on a KNN classification. Section 3 proposes a new technique
based on GNPC using fuzzy clustering and fuzzy relabelling. Section 4, describes
the used data sets, and outlines details of the experiments conducted. In Sec-
tion 5, results are illustrated, summarized and discussed. Finally, the paper is
concluded in Section 6.

2 Soft Labels

A crisp label y(x) of a pattern vector x ∈ R
d denotes the class to which this

pattern belongs. On the other hand, if l(x) is a soft label of x, then l(x) is a
M -dimensional vector with entries in [0, 1] ⊂ R indicating the degree with which
pattern x is a member of each class. Here M is the number of classes in the appli-
cation at hand. The problem of determining a soft label can hence be stated as
follows: Given a labeled data set Z of N samples Z = {x1, . . . , xi, . . . , xN} ⊂ R

d,
where each xi is associated with a crisp label y(xi) ∈ {C1, C2, . . . , CM}, where
Ci, i = 1, . . . , M are the available class labels. Calculate for each xi a soft label,
l(xi) ∈ (li1, li2, . . . , liM ) ∈ [0, 1]M representing the degrees of class memberships
to the classes {C1, C2, . . . , CM} respectively, i.e. lij = l(xi)j denotes the degree
with which pattern xi belongs to class Cj . As follows, two schemes to assign soft
labels using a KNN classifier are briefly described. In the next section we intro-
duce a soft labeling technique based on Generalized nearest prototype classifier
(GNPC).

2.1 K-Nearest Neighbor Soft Labels

The KNN soft labels for any xi ∈ Z are calculated as follows: First the k points
in Z closest to xi are determined, and then the membership of pattern xi to
class Cj is calculated through the relative frequencies:

l(xi)j =
kj

k
(1)

Here kj is the number of elements x ∈ Z amongst the k closest neighbors to xi

which are labeled with classes y(x) = Cj .

2.2 Keller Soft Labels

The Keller et al. soft labeling scheme [6] is similar to the KNN labeling scheme
but guarantees that all objects retain their true class labels if the soft labels
are ”hardened” by the maximum membership rule. This scheme will affect only
those objects which are close to classification boundaries by diminishing the
”certainty” for their own class at the expense of increasing the certainty for the
bordering class (or classes). The soft labels are computed as follows:
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l(xi)j =

{
0.51 + 0.49kj

k : if Cj is the crisp class label of xi

0.49kj

k : otherwise
(2)

Again, kj is the number of elements amongst the k closest neighbors x ∈ Z to
xi which are labeled with class Cj .

3 Generating Soft Labels by GNPC

Prototype based classification is perhaps the simplest and most intuitively mo-
tivated pattern recognition paradigm. There are many classification techniques
that are based implicitly or explicitly on similarity to point prototypes, for ex-
ample RBF networks, LVQ and some recent extensions of the LVQ with soft
assignments to data vectors to prototypes [12,13,14,15]. Like the K-nearest neigh-
bor method Nearest Prototype Classifier (NPC) is a local classification method
in the sense that classification boundaries are approximated locally. Instead of
making use of all the data points of a training set, however, NPC relies on a
set of appropriately chosen prototype vectors. This makes the method computa-
tionally more efficient, because the number of items which must be stored and
to which a new data point must be compared for classification is considerably
less. In [10] an integrated framework for a generalized nearest prototype classifier
(GNPC) is proposed. Five large families of classifiers are shown to fit within the
GNPC framework. The five families differ most importantly in the way proto-
types are obtained and not in their formal GNPC representation. The definition
of a GNPC is listed below.

Definition 1 [10]: The generalized Nearest Prototype Classifier (GNPC) is the
5-tuple (V, LV , s, T, S) where:

a) V = {v1, . . . , vp}, vi ∈ R
d is the set of p prototypes;

b) LV is the M × p label matrix of the p prototypes for M classes ;
c) s(·, ·) is a similarity measure defined on R

d that calculates the similarity
between data point x and prototypes vk.

d) T is any t-norm defined over fuzzy sets, and S is an aggregation operator.

Given an unlabeled vector x ∈ R
d, the similarity of x to all p prototypes is cal-

culated to produce the similarity vector s = (s(x, v1), . . . , s(x, vp)) = (s1, . . . , sp)
The label of a vector x to class Cj is assigned as follows

l(x)j = Sp
k=1LV (j, k)Tsk

According to the GNPC, x is then assigned to the class which corresponds to the
maximum entry in the label vector. The GNPC framework can be categorized
into 5 families of different classifiers according to the determination V, LV , s(x, v)
and the operators T and S in the Definition above. It is shown that for the five
families of the classifiers studied in [10] the type of operations used for T is the
product ; while the S is either defined as the maximum or the average operation.

As follows we introduce an approach to generate soft labels based on General-
ized nearest prototype classifier (GNPC). In particular our proposed method is
linked to the first family of classifiers which is based on clustering and re-labeling.
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3.1 Soft Labels with GNPC Using Fuzzy Clustering and Fuzzy
Re-labeling

Our proposed method to assign soft labels to a previously labeled data set is
summarized in Table 1.

Table 1. The GNPC Algorithm

Input

• Z a set of N crisp labeled training examples x
• M classes C1, C2, . . . , CM .
• Each x is associated with a crisp label y(xi) ∈ {C1, C2, . . . , CM}

1. Fuzzy Clustering FCM step

1. Initialize p, the number of clusters of Z
2. Cluster analysis of Z using the FCM algorithm
3. For each xi ∈ Z, obtain its cluster membership μ(xi)

2. Calculating soft labels for the p clusters

1. Initialize the M × p matrix L = 0
2. For each point xi ∈ Z and it’s label y(xi) = Cq: Lq = Lq + μ(xi)

here Lq is the q-th row of L.
3. Normalize the columns of L to sum to 1
4. Normalize the rows of L to sum to 1

3. Infer a soft label of a pattern from the soft labels of the clusters
For data point xi, calculate its fuzzy label as follows:
1. Find μ(xi) from FCM in previous step
2. Calculate soft label using fuzzy composition: l(xi) = L ◦ μ(xi).

As follows we describe the algorithm in details linking it to the GNPC de-
scribed above. In Step 1 of the algorithm, the prototypes are defined in the data
using clustering. Each cluster is represented by a single prototype. Data vectors
in the same cluster are supposed to possess much more similarity to each other
than to the patterns in other groups. Data vectors are clustered disregarding
their labels. Here we choose to employs fuzzy C-means clustering (FCM) [16]
which is probably the most popular fuzzy clustering method that attempts to
cluster feature vectors by iteratively minimizing an objective function. The fuzzy
c-means generates for each element xi in the data a membership vector

μ(xi) = (μi1, . . . , μip)

that describes how strong it belongs to each cluster. Here μik denotes the
similarity of pattern xi to the cluster prototype vk and is calculated using the
FCM as follows:

μik =
1∑p

q=1(
dik

diq
)

1
β−1

β > 1 is the fuzzifier, diq can be calculated by any distance measure; here we
use the Euclidean distance.
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The membership values of the patterns generated using the FCM method are
distributed over the clusters in a normalized fashion The number of clusters for
a given dataset is computed using cluster validity measures [17]; where different
numbers of clusters are experimented with and the clustering with the maximum
cluster validity is selected [18].

Step 2, of the algorithm corresponds to finding soft labels for cluster proto-
types denoted by the M × p prototype label matrix LV . This is often referred to
in the literature as relabelling. Crisp relabelling schemes minimizes overall num-
ber of resubstituition misclassifications to label each cluster prototype with the
class held by the majority of the vectors within that cluster [10]. An advantage
can be gained making soft relabeling [10,19]; thereby providing soft connections
between prototypes and classes; value LV (j, k) can hence be regarded as the
strength of the association of vk with class Cj .

In step 2.2 of Table1 the fuzzy labeling procedure for the prototypes is de-
scribed which uses the membership functions of the patterns generated from the
FCM step and the crisp labels information to derive soft labels for the cluster
prototypes. Here restrict the sum of label vector for the prototypes vk to one and
therefore we add the normalization step in 2.3-4. The resulting label matrix LV

can be regarded as a ”fuzzy relation” on C × V [20] expressing the association
between the classes and the prototypes.

Finally, in step 3 for a given data point its soft label can be inferred from the
prototype label matrix LV and the similarity of x to the given prototypes denoted
by the FCM membership function vector μ(x) using a ”composition” operation
◦ used for fuzzy-logic inference mechanism [20] The soft label of the vector x
is hence calculated as follows: l(x) = L ◦ μ(x) or l(x)j = Sp

k=1LV (j, k)Tμk.
Typically T is an intersection operation (a t-norm) and S is either a union or a
mean n-place operation. In our implementation we use T as product and the S
as maximum operation.

4 Data and Experiments

Experiments were performed on five different data sets. All data sets share the
characteristics that there exist some classes overlapping to some extent. The first
data set is the Iris data set containing 4 features and 3 classes. We also used two
benchmark synthetic data sets [2] which are two dimensional. The first syntactic
data set, the Normal-mixtures data, consists of two classes and is generated from
a mixture of two normal distributions with the same covariance matrices. The
class distribution has been chosen to allow a best possible error rate of 8%. The
second syntactic data set, the Cone-torus data set consist of 3 classes and is
generated from three differently shaped distributions; where patterns from each
class is not equal but are rather distributed with a frequency of 0.25, 0.25 and
0.5. We also use a set of object images, COIL data, obtained from Columbia
Object Image Library [21]. The dataset contains 8 features of the images of 20
different objects, for each object 72 training samples are available.
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Table 2 summarizes the characteristics of the data sets used. In addition, we
use the Satimage data from the ELENA database [22]; which represents Landsat
Multi-Spectral Scanner image data, consisting 6435 patterns each of 36 attributes
representing 6 different classes (red soil, cotton crop, grey soil , damp grey soil,
soil with vegetation stubble and very damp grey soil). Table 2 summarizes some
of the characteristics of the data sets used.

Table 2. Summary of data sets used in the numerical experiments

Data set No of features No of classes No of data points pattern/class

Iris 4 3 150 equal

Normal-mixtures 2 2 1000 equal

Cone-torus 2 3 400 different

COIL 8 20 1440 equal

Satimage 36 6 1000 different

We mainly use the K-nearest neighbor classifier (KNN) in the numerical ex-
periments. The KNN classifier is popular for its simplicity to use and implemen-
tation, robustness to noisy data and its wide applicability in a lot of appealing
applications [23]. We used a simple version of the FKNN [2] that is trained us-
ing soft labels. The KNN trained with crisp labels was compared to the FKNN
trained with the different soft labels described in Section 2. Experiments were
repeated for the five data sets described above. To evaluate the robustness of the
different labels we forced errors on the training sets with different percentages
and examined the performance of the classifiers trained with crisp labels and the
three variations of the soft labels. The errors were introduced to the crisp train-
ing data set and then mapped by the corresponding labeling scheme into soft
labels. The accuracy of the compared techniques was calculated using a 10-fold
cross validation [24]. Note the K-nearest neighbor value, k used in equations 1
and 2 to generate the KNN soft labels and the Keller soft labels, respectively are
not necessary the same as the K-nearest neighbor value, used for the KNN and
the FKNN classifiers used for the final classification; we will therefore refer to
the latter value as K to avoid confusion. We investigated the affect of the choice
of k (for soft label generation) and K (for final classifiers) in our experimen-
tation. In particular we generate the soft labels using KNN soft labels and the
Keller soft labels for k = 3, 5, 7, 9, 11, 13, 15. For the KNN and FKNN classifiers
we repeat the experiments for K = 3, 5, 7, 9 for all data sets. In the following
section experimental results are presented and discussed.

5 Results and Discussion

Figures 1, 2, 3, 4 and 5 illustrate the results on the Isis data set, the Normal
mixtures data set, the Cone Torus data set, the Coil data set and the Satimage
data set, respectively. The figures compare the accuracy of the KNN classifier
trained with crisp labels and the accuracy of the FKNN classifier trained with the
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Iris data, K=3
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Iris data, K=7
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Iris data, K=9
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Fig. 1. Results of the IRIS data

KNN soft labels, Keller et al. soft labels and the proposed GNPC soft labels. The
accuracies for the different techniques are calculated when noise was introduced
to the class labels. In the experiments, from 5-95% of the class labels have been
flipped at random using the uniform distribution. Results for KNN and FKNN
classifier at K = 3 are presented for all data sets as the results on other values
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Normal Mixtures, K=3
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Fig. 2. Results of the Mixtures data set

Cone Torus, K=3
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Fig. 3. Results of the Cone-torus data set

of K resulted in a more or less similar relative behavior for all techniques when
different labeling techniques are compared. Figure 1 outlines the results for the
Iris data set for K = 3, 7, 9. The performance of the classifiers trained with
Keller soft labels and KNN soft labels showed sensitivity for the choice of k ;
where the results of the classifiers trained with KNN soft labels were generally
more sensitive to the choice of k. Different data sets behaved differently under the
choice of k (and the choice of the K for the classifiers) but generally experiments
have shown that a reasonable choice of k would be 7 or 9 for all data and
classifier models under investigation. In figures 1-5 we fix k to 7. Figures 6 and 7
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Coil data, K=3
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Fig. 4. Results of the COIL data set

Satimage data, K=3
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Fig. 5. Results of the Satimage data set

investigate the performance of the classifiers trained with Keller soft labels and
KNN soft labels with k = 3, 5, 7, 9, 11, 13, 15 for the Iris and the Satimage data
sets, respectively. For the GNPC soft labels we used an adaptive technique to
find the optimal number of clusters ”p” for each data set as mentioned before.
For the Iris data set we used 10 clusters, the Normal Mixtures data with 20
clusters, the Cone torus data with 45 clusters, the Coil data with 300 clusters
and the Satimage data with 120 clusters.

The performance the classifiers trained with the FCM soft labels were affected
by the number of clusters ”p” chosen and there is a relation between the number
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Keller soft Labels, Iris data, K=3
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KNN soft labels, Iris data, K=3
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Fig. 6. Effect of the parameter k for the Iris data when using Keller soft labels and
KNN soft labels

of classes available in the data and the number of adequate clusters. We recom-
mend starting with number of clusters that are a multiple of 10 of the number of
classes. For the GNPC soft labels we also used for the FCM algorithm a fuzzi-
fication constant of 2, except for the Coil and the Satimage data sets where we
reduced the fuzzification constant to 1.1 to prevent soft labels produced by the
FCM clustering to be to diffuse among multiple classes. To infer the soft labels
of a given data point we used a max-product [20] composition operator.

Examining the results illustrated in figures 1 through 5, it is obvious that
the accuracy of the KNN classifier trained with crisp labels is generally less
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Keller soft labels, Satimage, K=3
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Fig. 7. Effect of the parameter k for the Satimage data when using Keller soft labels
and KNN soft labels

robust to errors on the labels compared to the FKNN classifier trained with
different soft labels. The FKNN trained with soft labels seems to be able to
sustain a robust performance up to 65% error rate for the Iris data, 45 % error
rate for the Normal Mixtures data, 75% error for the Cone torus data and finally
until 95% for both the Coil data and the Satimage data; compared to the KNN
trained with crisp labels. In the same time, the FKNN classifier trained with
the GNPC soft label is able in most cases to maintain a more stable accuracy
compared to the other KNN and the Keller soft label for most data sets under
investigation.
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6 Conclusion and Future Work

In this work we propose a new technique to obtain soft labels from available
crisp labels that is based on fuzzy clustering of the data and fuzzy relabeling
of the cluster prototypes. Fuzzy labels are obtained through fuzzy logic based
inference. The proposed method is extended from a GNPC family which unifies
many disparate classification techniques.

The robustness of the classifiers trained with crisp and soft labels is tested.
Experiments were conducted on five data sets to compare the behavior of the
classifiers when errors are available in the data labels. Results reveal the robust-
ness of the KNN classifier trained with soft labels opposed to classifiers trained
with crisp labels. The proposed soft labeling scheme based of fuzzy clustering
and fuzzy relabelling was found in general be most robust to error on labels and
less sensitive to the choice of parameters (like the k parameter in the KNN and
Keller soft labeling techniques) and the KNN classifier model. In our future work
we intend to examine more alternatives to generate soft labels by exploring and
extending other families of the GNPC framework and to study the effectiveness
of other classifier models (MLP, RBF, LVQ and SVM) that learn with soft labels.

We particularly also intend to investigate other alternatives for soft labels
in cases where the data set is incompletely labeled or is labeled using different
sources of information. We also aim towards using soft labels in the framework
of multiple classifier systems and similarly test their usefulness in the context of
accuracy and robustness.
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Abstract. In this paper, we present experiments comparing different training
algorithms for Radial Basis Functions (RBF) neural networks. In particular we
compare the classical training which consist of an unsupervised training of cen-
ters followed by a supervised training of the weights at the output, with the full
supervised training by gradient descent proposed recently in same papers. We
conclude that a fully supervised training performs generally better. We also com-
pare Batch training with Online training and we conclude that Online training
suppose a reduction in the number of iterations.

1 Introduction

A RBF has two layer of neurons. The first one, in its usual form, is composed of neurons
with Gaussian transfer functions (GF) and the second has neurons with linear transfer
functions.

The output of a RBF can be calculated with equations (1) and (2).

ŷi,k = wT
i · hk =

c∑
j=1

wij · hj,k (1)

hj,k = exp

(
−‖xk − vj‖2

σ2

)
(2)

Where vj are the center of the Gaussian transfer functions, σ control the width of the
Gaussian transfer functions and wi are the weights among the Gaussian units (GU) and
the output units.

As (1) and (2) show, there are three elements to design in the neural network: the
centers and the widths of the Gaussian units and the linear weights among the Gaussian
units and output units.

There are two procedures to design the network. One is to train the networks in two
steps. First we find the centers and widths by using some unsupervised clustering algo-
rithm and after that we train the weights among hidden and output units by a supervised
algorithm. This process is usually fast [1-4].

The second procedure is to train the centers and weights in a full supervised fash-
ion, similar to the algorithm Backpropagation (BP) for Multilayer Feedforward. This
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procedure has the same drawbacks of Backpropagation, long training time and high
computational cost. However, it has received quite attention recently [5-6].

In [5-6] it is used a sensitivity analysis to show that the traditional Gaussian unit
(called “exponential generator function”) of the RBF network has low sensitivity for
gradient descent training for a wide range of values of the widths. As an alternative two
different transfer functions are proposed. They are called in the papers “lineal generator
function” and “cosine generator function”. Unfortunately, the experiments shown in the
papers are performed with only two databases and the RBF networks are compared with
equal number of Gaussian unit.

In contrast, in this paper we present more complete experiments with nine databases
from the UCI Repository, and include in the experiments four traditional unsupervised
training algorithms and a fully gradient descent training with the three transfer functions
analysed in papers [5-6].

Furthermore, we also presents experiments with Batch and Online learning, in the
original references the training was performed in Batch mode and we show that Online
Traning is the best alternative under the point of view of training speed.

2 Theory

2.1 Training by Gradient Descent

”Exponential (EXP) Generator” Function. This RBF has the usual Gaussian transfer
function described in (1) and (2). The equation for adapting the weights by gradient
descent is in (3).

Δwp = η ·
M∑

k=1

ε0
p,k · hk (3)

Where η is the learning rate, M the number of training patterns and ε0
p,k is the output

error, the difference between target and output as in equation (4).

εo
p,k = tp,k − op,k (4)

The equation for adapting the centers by gradient descent is the following:

Δvq = η ·
M∑

k=1

εh
p,k · (xk − vq) (5)

Where η is the learning rate and εh
p,k is the hidden error given by equation (6) and (7).

εh
p,k = αq,k ·

no∑
i=1

ε0
i,k · wiq (6)

αq,k =
2
σ2

· exp

(
−‖xk − vq‖2

σ2

)
(7)
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In the above equations no is the number of outputs and these equation are for Batch
training, i.e., we adapt the variables of the network after the presentation of all the
patterns of the training set.

The equations for Online training are basically the same, we only have to omit the
sum for k=1, to M in the expressions.

For example, equation (5) in the Online training would be the following:

Δvq = η · εh
p,k · (xk − vq) (8)

And we would have to adapt vq after each presentation of a training pattern to the
network.

“Linear (LIN) Generator” Function. In this case the transfer function of the hidden
units is the following:

hj,k =

(
1

‖xk − vj‖2 + γ2

) 1
m−1

(9)

Where we have used m = 3 in our experiments and γ is a parameter that should be
determined by trial and error and cross-validation.

The above equations (3), (4), (5) and (6) are the same, but in this case αq,k is different
and is given in (10).

αq,k =
2

m − 1
·
(
‖xk − vq‖2 + γ2

)
m

1−m (10)

“Cosine (COS) Generator” Function. In this case the transfer function is the
following:

hj,k =
aj(

‖xk − vj‖2 + a2
j

) 1/2
(11)

Equations (3), (4) and (5) are the same, but in this case the hidden error is different
as in equation (12).

εh
p,k =

(
h3

j,k

a2
j

)
·

no∑
i=1

ε0
i,k · wiq (12)

The parameter aj is also adapted during training, the equation is (13).

Δaj =
(

η

aj

)
·

no∑
i=1

hj,k · (1 − h2
j,k) · εh

p,k (13)

2.2 Training by Unsupervised Clustering

Algorithm 1. This training algorithm is the simplest one. It was proposed in [1]. It
uses adaptive k-means clustering to find the centers of the gaussian units. The process is
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iterative, we successively present an input pattern and after each presentation we find the
closest center and adapt this center toward the input pattern, according to equation (14).

c(n + 1) = c(n) + η · (x − c(n)) (14)

Where x is the input pattern, c is the closest center and η the adaptation step.
After finding the centers, we should calculate the widths of the Gaussian units. For

that, it is used a simple heuristic; we calculate the mean distance between one center
and one of the closest neighbors, P , for example, the first closest neighbor (P = 1), the
second (P = 2), the third (P = 3) or the fourth (P = 4).

We need a quite important trial and error procedure to design the network because
the number of centers of k-means clustering should be fixed a priori and also the value
P for the heuristic of the widths. In our experiments we have tried all the combinations
of the followings number of centers and widths. For the centers the values 10, 20, 30,
40, 50, 60, 70, 80, 90, 100 and 110 and for the widths we have used P = 1, 2, 3, 4.

Algorithm 2. This algorithm is proposed in reference [2]. However, we have slightly
modified the algorithm. In the original reference it is used a truncation for the Gaussian
functions and non-RBF functions in the hidden layer. We have applied the algorithm
without truncation in the Gaussian functions and with only RBF units in the hidden layer.

Basically the algorithm is the following. The Gaussian units are generated incremen-
tally, in stages k, by random clustering. Let k = 1, 2, 3, · · · denote a stage of this process.
A stage is characterized by a parameter δk that specifies the maximum radius for the hy-
persphere that includes the random cluster of points that is to define the Gaussian unit;
this parameter is successively reduced in every stage k ( δk = α · δk−1, with α in the
range 0.5-0.8). The Gaussian units at any stage k are randomly selected in the following
way. Randomly select an input vector xi from the training set I and search for all other
training vectors within the δk neighborhood of xi. The training vector are used to define
the Gaussian unit Q (the mean CQ is the center, and the standard deviation wQ the width)
and then removed from the training set, forming what is called the remaining training set
R. To define the next Gaussian unit Q + 1 another input vector xi is randomly selected
from R and the process repeated. This process of randomly picking an input vector xi

is repeated until the remaining training set R is empty. Furthermore, when the number
of points in the cluster Nj is less than a certain parameter β no Gaussian unit is created.
The stages are repeated until the cross-validation error increases.

The algorithm is described in procedure 1. Where, ρ is the standard deviation of the
distances of the training points from their centroid, γ is a lower limit for the length of
the neighborhood δk (a parameter), TREk is the training set error at stage k and TSEk

is the cross-validation set error.

Algorithm 3. It is proposed in reference [3]. They use a one pass algorithm called APC-
III, clustering the patterns class by class instead of the entire patterns at the same time.
The APC-III algorithms uses a constant radius to create the clusters. In the reference this
radius is calculated as the mean minimum distance between training patterns multiplied
by a constant α , see equation (15).

R0 = α · 1
P

·
P∑

i=1

min
i�=j

(‖xi − xj‖) (15)
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Procedure 1. Algorithm 2
1. Initialize counters and constants: k = 0, Q = 0, δ1 = ρ, α = some fraction between 0.5

and 0.8.
2. Increment stage counter k = k + 1. Reduce neighborhood radius: if k > 1, deltak =

α · deltak−1. If k < γ stop.
3. Select Gaussian units for the k-th stage: j = 0, R = I .

(a) Set j = j + 1.
(b) Select an input vector xi at random from R, the remaining training set.
(c) Search for all vectors in R within the δk neighborhood of xi. Let this set of vectors be

Vj .
(d) Remove the set Vj from R : R = R − Vj . If Nj < β , go to (f).
(e) Increment Gaussian counter: Q = Q + 1. Compute the center CQ and width wQ of the

Q-th Gaussian unit: CQ = centroid of the set Vj , and wQ = standard deviation of the
points in the random cluster Vj .

(f) If R is not empty, go to (a), else go to (4).
4. Calculate the RBF neural network output weights with Q number of Gaussian units.
5. Compute TSEk and TREk.

(a) If TSEk < TSEk−1, go to 2).
(b) If TSEk > TSEk−1 and TREk > TREk−1, go to 2).
(c) Otherwise, stop. Overfitting has occurred. Use the net generated in the previous stage.

The algorithm is described in procedure 2. The widths are calculated with the fol-
lowing heuristic: find the distance to the center of the nearest cluster which belongs to
a different class and assign this value multiplied by β to the width.

Procedure 2. Algortihm 3
1. Select one input pattern and construct the first cluster with center equal to this pattern.
2. Repeat steps 3 to 5 for each pattern.
3. Repeat step 4 for each cluster.
4. If the distance between the pattern and the clusters is less than R0 include the pattern in the

cluster and recalculate the new center of the cluster. Exit the loop.
5. If the pattern is not included in any cluster then create a new cluster with center in this

pattern.

Algorithm 4. This algorithm is proposed in reference [4]. However, we have slightly
modified the algorithm, in the original reference it is used a truncation for the Gaussian
units and a hard limiting function for the output layer. We have applied the algorithm
without these modifications of the normal RBF network.

The description of the algorithm is as follows. The Gaussian units are generated class
by class k, so the process is repeated for each class. In a similar way to algorithm 2 the
Gaussian units are generated in stages h. A stage is characterized by its majority crite-
rion ρh, a majority criterion of 60% implies that the cluster of the Gaussian unit must
have at least 60% of the patterns belonging to its class, this percentage of patterns is
called PCr

j (k). The method will have a maximum of six stages; we begin with a ma-
jority criterion h of 50% and end with 100%, by increasing 10% in each stage Δρ. The
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Procedure 3. Algorithm 4
0. Initialize constants:

(a) deltamax = 10ρ ,
(b) Δθ = some constant (10% in the reference)
(c) δ0 = some constant (0 or 0.1 · ρ ),
(d) Δδ = (δmax − δ0)/s, (s = 25 in the reference).

1. Initialize class counter: k = 0.
2. Increment class counter: k = k + 1. If k > K, stop. Else, initialize cumulative Gaussian

counters: Sk = 0 (empty set), q = 0.
3. Initialize stage counter: h = 0.
4. Increment stage counter: h = h+1. Increase majority criterion: If h > 1, φh = φh−1+Δφ,

otherwise φh = 50%. If φh > 100%, go to (2) to mask the next class.
5. Select Gaussian units for the hth stage: j = 0, R = I .

(a) Set j = j + 1, r = 1, r = 0.
(b) Select an input pattern vector xi of class k at random from R, the remaining training

set.
(c) Search for all pattern vectors in R within a δr radius of xi. Let this set of vectors be V r

j .
i. If PCr

j (k) < φh and r > 1, set r = r − 1, go to (e).
ii. If PCr

j (k) > φh and r > 1, go to (d) to expand the neighborhood.
iii. If PCr

j (k) < φh and r = 1, go to (h).
iv. If PCr

j (k) > φh and r = 1, go to (d) to expand the neighborhood.
(d) Set r = r +1, δr = δr−1 + Δδ . If δr > δmax, set r = r− 1, go to (e). Else, go to (c).
(e) Remove class k patterns of V r

j from R. If Nr
j < β , go to (g).

(f) Set q = q + 1. Compute the center Ck
q and width wk

q of the q-th Gaussian for class k.
Add qth Gaussian to the set Sk. Ck

q = centroid of class k patterns in the set V r
j wk

q =
standard deviation of the distances from the centroid Ck

q of the class k patterns in V r
j .

(g) If R is not empty of class k patterns, go to (a), else go to (6).
(h) Remove class k patterns of the V r

j from R. If R is not empty of class k patterns, go to
(a), else go to (6).

6. From the set Sk, eliminate similar Gaussian units (those with very close centers and widths).
Let Qk be the number of Gaussian units after this elimination.

7. Calculate the output weights of the net for class k.
8. Compute TSEh and TREh for class k. If h = 1, go to (4). Else:

(a) If TSEh < TSEh−1, go to (4).
(b) If TSEh > TSEh−1 and TREh > TREh−1, go to (4).
(c) Otherwise, overfitting has occurred. Use the mask generated in the previous stage as

class k mask. Go to (2) to mask next class.

Gaussian units for a given class k at any stage h are randomly selected in the following
way. Randomly pick a pattern vector xi of class k from the training set I and expand
the radius of the cluster δr until the percentage of patterns belonging to the class k,
PCr

j (k), falls below the majority criterion, then the patterns of class k are used to de-
fine the Gaussian unit (the mean Ck

q is the center and the standard deviation wk
q is the

width) and are removed from the training set, forming what it is called the remaining
training set R. When the number of patterns in the cluster Nr

j is below than a parameter,
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β, no Gaussian unit is created. To define the next gaussian another pattern xi of class
k is randomly picked from the remaining training set R and the process repeated. The
successive stage process is repeated until the cross-validation error increases.

The algorithm can be summarized in the steps described in procedure 3. Where, φ
is the maximum of the class standard deviations that are the standard deviations of the
distances from the centroid of the patterns of each class, K is the number of classes,
TREh is the training set error at stage h and TSEh is the cross-validation set error.

3 Experimental Results

We have applied the training algorithms to nine different classification problems from
the UCI repository of machine learning databases.

They are Balance Scale, Cylinders Bands, Liver Disorders, Credit Approval, Glass
Identification, Heart Disease, The Monk’s Problems and Voting Congresional Records.
The complete data and a full description can be found in the repository http://www.ics.
uci.edu/∼ mlearn/MLRepository.html) [7].

3.1 Results

The first step was to determine the appropriate parameters of the algorithms by trial and
error and cross-validation. We have used an extensive trial procedure and the final value
of the parameters we have used in the experiments is in Table 1.

After that, with the final parameters we trained ten networks with different partition
of data in training, cross-validation and test set, also with different random initialization
of parameters. With this procedure we can obtain a mean performance in the database
(the mean of the ten networks) and an error by standard error theory.

These results are in Table 2, 3, 4, 5 and 6. We have included for each database and
training algorithm the mean percentage of correct classification with its error (column
Perc.) and the number of gaussian transfer units under the column Nunit. In the case of
unsupervised training algorithms number 2, 3 and 4 (Tables 5 and 6) the number in the
column Nunit is a value and an error. The reason is that the final number of Gaussian
transfer units changes from one trial to another and we have included the mean value of
the number of Gaussian units and the standard desviation as the error.

3.2 Interpretation of Results

Comparing the results of the same algorithm trained by gradient descent in the case of
Batch training and Online training, we can see that the differences in performance are
not significant. The fundamental difference between both training procedures is in the
number of iterations and the value of the learning step. For example, 8000 iterations,
η=0.001 in EXP Batch for Bala and 6000 iterations, η=0.005 in EXP Online. The final
conclusion is that online training is more appropriate that Batch training for gradient
descent of RBF.

Comparing EXP, LIN and COS generator functions, we can see that the general per-
formance is quite similar except in the case mok1 where the performance of EXP is
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Table 1. Optimal parameters of the different algorithms determined by trial and error

Database
Method Params. bala band bupa cred glas

EXP Batch
Clusters 45 110 35 40 125

σ 0.6 1.2 0.6 1.8 0.4

EXP Online
Clusters 60 40 40 30 110

σ 0.6 1 0.4 2 0.4

LIN Batch
Clusters 45 30 10 10 35

γ 0.4 0.1 0.4 0.9 0.1

LIN Online
Clusters 50 35 15 10 30

γ 0.6 0.3 0.8 0.1 0.2

COS Batch
Clusters 25 120 15 10 105
aj ini 0.5 1.1 0.5 0.2 0.8

COS Online
Clusters 40 125 40 25 15
aj ini 0.5 0.5 1.1 1.1 0.8

UC Alg.1
Clusters 30 60 10 20 100

P 4 2 3 2 1

UC Alg.2
β 5 3 5 3 5
α 0.8 0.65 0.8 0.8 0.8

UC Alg.3
β 5 7 5 6 5
α 1.7 1.3 1.3 1.7 1.2

UC Alg.4 β 5 3 3 3 3

Database
Method Params. hear mok1 mok2 vote

EXP Batch
Clusters 155 60 80 35

σ 1.8 0.8 0.6 2

EXP Online
Clusters 20 30 45 5

σ 2 0.8 0.6 1.8

LIN Batch
Clusters 15 15 25 25

γ 0.3 0.2 0.5 0.1

LIN Online
Clusters 10 15 50 10

γ 0.1 0.1 0.2 0.3

COS Batch
Clusters 25 100 125 20
aj ini 0.2 0.2 0.2 0.5

COS Online
Clusters 15 145 45 10
aj ini 0.5 1.1 0.2 0.2

UC Alg.1
Clusters 100 90 90 40

P 1 2 2 4

UC Alg.2
β 3 3 8 3
α 0.8 0.8 0.8 0.65

UC Alg.3
β 5 5 5 5
α 1.7 1.7 1.4 1.7

UC Alg.4 β 3 3 3 5

clearly better. In other aspect, EXP and LIN functions need a higher number of trials
for the process of trial and error to design the network, because cosine generator func-
tions adapt all parameters. But in contrast, the number of iterations needed to converge
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Table 2. Performance of Gradient Descent with Exponential Generator Functions

Training Algorithm
Exp Batch Exp Online

Database Percentage Nunit Percentage Nunit

bala 90.2±0.5 45 90.2±0.5 60
band 74.1±1.1 110 74.0±1.1 40
bupa 69.8±1.1 35 70.1±1.1 40
cred 86.1±0.7 40 86.0±0.8 30
glas 92.9±0.7 125 93.0±0.6 110
hear 82.0±1.0 155 82.0±1.0 20
mok1 94.7±1.0 60 98.5±0.5 30
mok2 92.1±0.7 80 91.3±0.7 45
vote 95.6±0.4 35 95.4±0.5 5

Table 3. Performance of Gradient Descent with Linear Generator Functions

Training Algorithm
Lineal Batch Lineal Online

Database Percentage Nunit Percentage Nunit

bala 90.1±0.5 45 90.6±0.5 50
band 74.5±1.1 30 73.4±1.0 35
bupa 71.2±0.9 10 69.7±1.3 15
cred 86.2±0.7 10 85.8±0.8 10
glas 91.4±0.8 35 92.4±0.7 30
hear 82.1±1.1 15 81.8±1.1 10
mok1 93.2±0.7 15 94.5±0.7 15
mok2 82.8±1.2 25 89.6±1.2 50
vote 95.6±0.4 25 95.6±0.4 10

Table 4. Performance of Gradient Descent with Cosine Generator Functions

Training Algorithm
Cosine Batch Cosine Online

Database Percentage Nunit Percentage Nunit

bala 89.9±0.5 25 90.0±0.7 40
band 75.0±1.1 120 74.9±1.1 125
bupa 69.9±1.1 15 70.2±1.1 40
cred 86.1±0.8 10 86.1±0.8 25
glas 93.5±0.8 105 92.6±0.9 15
hear 82.1±1.0 25 81.9±1.1 15
mok1 89.8±0.8 100 90.2±1.0 145
mok2 87.9±0.8 125 86.6±1.1 45
vote 95.6±0.4 20 95.4±0.4 10

by COS functions is usually larger (for example: EXP, band= 10000 iterations; LIN,
band= 15000; COS, band= 75000), so globally speaking the computational cost can be
considered similar.
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Table 5. Performance of Unsupervised Algorithms 1 and 2

Training Algorithm
UC Alg. 1 UC Alg. 2

Database Percentage Nunit Percentage Nunit

bala 88.5±0.8 30 87.6±0.9 88.5±1.6
band 74.0±1.5 60 67±2 18.7±1.0
bupa 59.1±1.7 10 57.6±1.9 10.3±1.5
cred 87.3±0.7 20 87.5±0.6 95±14
glas 89.6±1.9 100 79±2 30±2
hear 80.8±1.5 100 80.2±1.5 26±4
mok1 76.9±1.3 90 72±2 93±8
mok2 71.0±1.5 90 66.4±1.7 26±4
vote 95.1±0.6 40 93.6±0.9 53±5

Table 6. Performance of Unsupervised Algorithms 3 and 4

Training Algorithm
UC Alg. 3 UC Alg. 4

Database Percentage Nunit Percentage Nunit

bala 88.0±0.9 94.7±0.5 87.4±0.9 45±7
band 67±4 97.2±0.3 65.8±1.4 4.5±1.3
bupa 60±4 106.2±0.3 47±3 11±5
cred 87.9±0.6 161.10±0.17 86.4±0.9 32±4
glas 82.8±1.5 59.9±0.7 81.2±1.8 22±2
hear 72±4 71.8±0.6 78±3 10±2
mok1 68±3 97.4±0.6 64±2 23±6
mok2 66.5±0.8 143±0 71.6±1.5 20±2
vote 94.1±0.8 120.30±0.15 76±5 5.0±1.1

Table 7. Performance of Multilayer Feedforward with Backpropagation

Database N. Hidden Percentage
bala 20 87.6±0.6
Bands 23 72.4±1.0
bupa 11 58.3±0.6
cred 15 85.6±0.5
glas 3 78.5±0.9
hear 2 82.0±0.9
mok1 6 74.3±1.1
mok2 20 65.9±0.5
vote 1 95.0±0.4

In the original reference LIN and COS transfer functions were propossed as an im-
provement to the traditional EXP transfer function. We have not observed any improve-
ment in our results.
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Comparing unsupervised training algorithms among them, it seems clear that the
classical algorithm 1, k-means clustering shows the better performance.

Finally, comparing unsupervised training with gradient descent we can see that the
best alternative (under the performance point of view) is supervised training by gradient
descent, it achieves a better performance in 6 of 9 databases.

In order to perform a further comparison, we have included the results of Multilayer
Feedforward with Backpropagaion in Table 7. We can see that the results of RBF are
better. This is the case in all databases except cred, hear and vote where the performance
of both networks is similar.

4 Conclusions

In this paper we have presented a comparison of unsupervised and fully supervised
training algorithms for RBF networks. The algorithms are compared using nine
databases. Our results show that the fully supervised training by gradient descent may
be the best alternative under the point of view of performance. The results of RBF are
also compared with Multilayer Feedforward with Backpropagation.

In the case of fully supervised training algorithms we have performed experiments
with three different transfer functions in the hidden units and the performance is similar.
We have not observed an improvement in performance with LIN and COS functions as
pointed out in the bibliography.

Furthermore under the point of view of training speed the alternative of Online Train-
ing is better than Batch Training.

Finally, we have included the performance on the same datasets of the network Mul-
tilayer Feedforward with Backpropagation and it seems that the performance of RBF
trained by Gradient Descent is in general better.
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Abstract. LTSA (local tangent space alignment) is a recently proposed method 
for manifold learning, which can efficiently learn nonlinear embedding 
low-dimensional coordinates of high-dimensional data, and can also reconstruct 
high dimensional coordinates from embedding coordinates. But it ignores the 
label information conveyed by data samples, and can not be used for 
classification directly. In this paper, a transductive manifold classification 
method, called QLAT (LDA/QR and LTSA based Transductive classifier) is 
presented, which is based on LTSA and TCM-KNN (transduction confidence 
machine-k nearest neighbor). In the algorithm, local low-dimensional 
coordinates is constructed using 2-stage LDA/QR method, which not only utilize 
the label information of sample data, but also conquer the singularity problem of 
traditional LDA, then the global low-dimensional embedding manifold is 
obtained by local affine transforms, finally TCM-KNN method is used for 
classification on the low-dimensional manifold. Experiments on labeled and 
unlabeled mixed data set illustrate the effectiveness of the method. 

Keywords: manifold learning; local tangent space alignment; transductive 
inference; LDA/QR. 

1   Introduction 

Dimension reduction has long been an important problem in the fields of pattern 
classification, data mining and machine learning. With the development of information 
technology, especially the development of internet, more and more high-dimensional 
data, such as gene data, images and video emerges, the requirement of dimension 
reduction becomes more urgent. 

Many high-dimensional data in real-world applications can be modeled as sets of 
points or vectors lying close to a low-dimensional nonlinear manifold. Discovering the 
structure of the manifold from such a sample of data points is a very challenging 
problem. Many dimension reduction algorithms have been proposed, and can be 
classified to two classes roughly: linear methods and nonlinear methods. PCA 
(principal component analysis) and LDA (linear discriminant analysis) are the most 
popular linear dimension reduction methods. While they have the advantages of easy 
understandable, simple to implement and can catch the linear structure of data, they can 
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not discover the nonlinear structure of data. In reality, many higher dimension data is 
embedded in a low nonlinear manifold, and there have some cues to show the 
low-dimensional embedding is consistent with human perception[1]. To address the 
shortcomings of the linear methods, kernel PCA method and kernel LDA method have 
been proposed by many researchers. Recently, there has been considerable interest in 
developing efficient algorithms, the so called manifold learning methods, to construct 
nonlinear low-dimensional manifolds from sample data points in high-dimensional 
spaces, and these methods have been regarded as effective approaches for nonlinear 
dimension reduction. In Isomap algorithm [2], pairwise geodesic distances of the data 
points instead of the Euclid distance are used with MDS (multidimensional scaling). 
The LLE (locally linear embedding) method [3] constructs a local geometric structure 
that is invariant to translations and orthogonal transformations in a neighborhood of 
each data point, and seeks to project the data points into a low-dimensional space that 
best preserves those local geometries. (A related method using Hessian matrices is 
presented in [4]). LTSA (local tangent space alignment) [5] methods constructs a local 
tangent space for each data point, and obtains the global low-dimensional embedding 
through affine transformation of the local tangent spaces. 

While the LTSA algorithm can learn the low-dimensional nonlinear embedding 
coordinates of the higher-dimensional data, and can reconstruct the higher-dimensional 
coordinates from the low-dimensional coordinates. But as pointed out in [6], the best 
representative features are not always the best discriminant features for general 
classification task. In LTSA, class label information of data is ignored and so it can not 
be applied for classification directly. In the paper, we try to use the class label 
information and extend the LTSA algorithm from dimension reduction to classification 
problem. Traditional classification algorithms try to make the trained classifier optimal 
for all possible future data samples, but in practical, it is not needed and the classifier is 
usually only required to be optimal for specific unseen data sets. Transductive 
inference[7,8] learns the classification for unseen data directly from known data, and is 
more economic than traditional algorithms. Integrating LTSA and the idea of 
transductive inference, we proposed a TCM-KNN (transduction confidence machine-k 
nearest neighbor) [7,8 ] based manifold classification algorithm, called QLAT 
(LDA/QR and LTSA based Transductive classifier). The algorithm uses improved 
2-stage LDA/QR algorithm [9] to construct local low-dimensional coordinate, then use 
LTSA method to retrieve the global embedding map for dimension reduction, finally, 
uses TCM-KNN on the low-dimensional embedding space for classification. 

The rest of the paper is organized as follows: in Section 2, preliminary backgrounds 
are introduced, including LDA/QR, LTSA and TCM-KNN. In section 3, we describe in 
detail our proposed QLAT algorithm. Experiments result on synthetic and real data sets 
are presented in section 4. In section 5, we conclude and predict future work. 

2   Preliminaries 

QLAT algorithm is based on LTSA and TCM-KNN, which use the idea of LTSA to 
construct global embedding coordinates through affine transformation of the local 
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space. TCM-KNN is the transductive version of KNN algorithm, LTSA and 
TCM-KNN are introduced in 2.2 and 2.3 sections respectively. In the first stage of the 
original LTSA, PCA is used to construct the local coordinate, LDA is required to utilize 
the class label information. An intrinsic limitation of classical LDA is the so-called 
singularity problem, to deal with the singularity problem and improve the performance 
of the algorithm, we use 2-stage LDA/QR algorithm instead of classical LDA to 
construct the local embedding space. In section 2.1, LDA/QR algorithm is introduced 
briefly. 

2.1   LDA/QR Algorithm 

LDA/QR is a 2-stage dimension reduction algorithm proposed by Ye etc [9]. In the first 
stage of the algorithm, the separation of different classes is maximized via QR 
decomposition on the small matrix composed of class centers. This stage can be used 
independently as a dimension reduction, and the distinct property of this stage is the 
low time/space complexity. The second stage of LDA/QR refines the first stage by 
addressing the issue of within-class distance, and can be solved using the similar 
method for classical LDA, that is, by applying eigen-decomposition method. 

2.2   LTSA Algorithm 

LTSA is a nonlinear dimension reduction algorithm operated on tangent space. Data are 
assumed to lie on noised nonlinear low-dimensional manifold in the algorithm. Local 
tangent spaces are constructed for every data point with their k nearest neighborhoods. 
The final global coordinates are obtained through transfer, scaling, rotation and 
alignment of the local tangent spaces. During the alignment process, the local 
coordinates of a data point in the neighborhood with respect to the tangent space are to 
be preserved by all means. Min etc in [10] have proved that the local tangent space can 
be constructed with the eigen-vectors of the local covariance matrix, so the local 
tangent space projection problem can be converted into local PCA problem. Finally, the 
problem of obtaining global embedding coordinates can be converted into eigen-value 
problem of matrix. 

2.3   TCM-KNN 

TCM-KNN is a transductive algorithm. Transductive inference is a type of local 
inference that moves from particular to particular. In contrast to inductive inference 
where one uses given empirical data to find the approximation of a functional 
dependency and then uses the obtained approximation to evaluate the values of a 
function at the points of interest, one estimates the values of a function only at the 
points of interest in one step. The transductive inference approach uses the whole 
training set to infer a rule for each new exemplar. Transductive inference has a strong 
connection with Kolmogorov complexity, and is related with the notion of randomness 
deficiency, which is a measure of randomness. TCM-KNN is a transductive version of 
KNN method. 
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3   LDA/QR and LTSA Based Transductive Classifier (QLAT) 

QLAT is based on LTSA and TCM-KNN. Firstly, local tangent space is constructed for 
each sample data using its nearest neighborhoods, discriminant analysis is performed 
on local tangent space, and low-dimensional local coordinates are obtained for nearest 
neighborhoods. Then, global low-dimensional coordinates are achieved through affine 
transforming of local spaces. Finally, TCM-KNN algorithm is performed on the 
low-dimensional manifold space. The procedure of construct low-dimensional 
manifold is similar with the LTSA, but the mathematic induce process have some 
differences for class label information is ignored in LTSA. In the following, we give the 
detail induce process. 

Notation. We use I to denote the identity matrix, e to denote the column vector with all 

the element 1, ||*||2 denotes the 2-norm of a vector or matrix, ||*||F denotes the Frobenius 

norm, AT denotes the transpose of A, and A+ denotes the Moore-Penrose generalized 

inversion. 

Sample data set X, containing L labeled data and U unlabeled data, are assumed to 

evenly sampled from a noised low-dimensional manifold. That is, L UX X X= ∪ , 

where 1 1{( , ),...,( , )}L L LX x y x y= , 1{ ,..., }U L L UX x x+ += , 1 | |{ ,..., }i Cy C c c∈ = , C is the class 

label set, let N=L+U, then ( )i i ix f τ ε= + , d
i Rτ ∈ , D

ix R∈  , i=1,…,N, and D d≥ . 

The classification problem is : given the labeled data set XL and unlabeled data set XU, 

label the sample data xj in XU with yj,  jy C∈ , 1,...,j L N= + . 

To obtain the local coordinate of a data point p, LTSA uses the k nearest 

neighborhoods of p, and the local coordinates can be obtained with local PCA. As 

mentioned above, this local coordinate is not optimal for the problem of classification. 

Discriminant analysis is needed to utilize the class label information of data points, 

furthermore, data samples of each class are required to perform discriminant analysis 

on the local tangent space. However, in practice, labeled data is usually small and most 

data are unlabeled, so the direct applying of LDA is not appropriate. So, we use the 

method of PCA+LDA to obtain the local coordinates using nearest neighborhoods, and 

obtain the global embedding coordinate through affine transformations of the local 

coordinates. For a data point p, k nearest neighborhoods are used in LTSA, but the k 

nearest neighborhood can not guarantee the needed sample number of each class, that 

is, LDA may not be applicable, CK-NN construction method is proposed in paper [11] 



 A Local Tangent Space Alignment Based Transductive Classification Algorithm 97 

to deal this problem for Isomap algorithm, and we apply a simple extension of KNN 

local space construction here. For each point p, find kl the nearest neighborhoods i
jp  

for each class Ci, i=1,…|C|, j=1,…,kl, and i
j Lp X∈ , then, LDA is performed with these 

data points, while PCA is performed with the k’l unlabeled nearest neighborhoods pj 

(j=1,…,k’l) of p, j Up X∈ , usually k’l=kl. The calculation of optimal d dimensional 

approximation of data point p in the affine space is equal to the optimizing problem: 

         
'

2 ' 2
2

, , , ,1

| | | |
|| ( ) || || ( ) ||

| | | |min min
l T p T pk

p TW W
j j FT p T p

x Q x Qj B B

Q S Q Q S Q
p x Q X xe Q

Q S Q Q S Qθ
θ λ λ

Θ=

− + + = − + Θ +                (1) 

where Q is a D×d dimensional orthogonal matrix, 1 '[ ,..., ]kθ θΘ = , 'pX  is the k’l 

unlabeled nearest neighborhoods of p, p
WS  is the within-class scatter matrix of p and 

p
BS  is the between-class scatter matrix. The definitions of p

WS  and p
BS  are: 

| |

1

1
( )( )
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C
p p p T

W i ip
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N = ∈

= − − ,  
| |

1

1
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C
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i

S N m m m m
N =

= − − , where 

Np is the labeled data number near to p, Np=|C|×kl, 
p

iN  is the sample number near to p 

and belonging to class Ci, 
p
im  is the mean of p

iX , mp is the overall mean of labeled 

data near to p. 

The direct solving of above optimizing problem is difficult, and the problem can not 

be solved when SB is singular, so we change the target function. There are many 

improvement of classical LDA, for example Pseudoinverse LDA, PCA+LDA, 

LDA/GSVD, LDA/QR. Among them, LDA/QR is a recently proposed 2-stage LDA 

algorithm by Ye etc, between-class distance is maximized during the first stage, and the 

optimization problem is ( )arg max
T

d

T
B

G G I

G trace G S G
=

= , which can be solved using QR 

decomposition. Within-class distance is minimized during the second stage, and the 
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target optimization problem is 1trace(( ) ( ))argmin
T T

B W
W

W W S W W S W−= , where BS  and WS  

are the reduced between-class and within-class scatter matrices respectively, and can be 

solved using eigen-decomposition of 1
b wS S− . During the first stage of the original 

LDA/QR algorithm, only information of labeled data is utilized, that is, SB is only 

related with labeled samples and information of large unlabeled sample is not utilized. 

We utilize the information of unlabeled data with LDA/QR algorithm, that is, change 

the optimization problem into  

     ( )arg max
T

d

T T
B T

G G I

G trace G S G G S Gλ
=

= +           (2) 

Where ST is the total scatter matrix of unlabeled data set near to p, 

'

( )( )
p p
j

p p p p T
T j j

x X

S x m x m
∈

= − − ,  is a parameter used to adjust the weight of labeled 

samples and unlabeled samples in the construction of local coordinates, which in fact, 

is also the adjust of weight between LDA and PCA. The second stage of LDA/QR is the 

same. When the LDA/QR finished, the low-dimensional representation of xi is 

( ) ( )T T T T
i i i iz G x G x x x G x G x x= = − + = + − , where G is a D×d matrix. Comparing it with 

LTSA, the local coordinates in the low-dimensional space of i
jx  near to xi is 

( ) ( )i T i i
j jG x xθ = − , so i i i

j i j jx x Gθ ζ= + + , where ( )( )i T i i
j jI GG x xζ = − −  is the 

reconstruction error, and ( )i
jθ  is the local coordinates of i

jx  in the low-dimensional 

space near xi. 

Now consider constructing the global coordinates iτ , i=1,…,N, in the 

low-dimensional embedding space based on the local coordinates ( )i
jθ  which 

represents the local geometry. Assuming the global coordinates can be obtained with 

affine transform of the local coordinates. Let ijτ  is the global embedding coordinate of 

xij, then ( ) ( )i i
ij i i j jLτ τ θ ε= + + , j=1,…,Ni, i=1,…,N, Ni is the number of nearest 
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neighborhoods used during constructing the local coordinates of xi, Ni is not related 

with data point xi, and Ni=|C|*kl+k’l=(|C|+1)*kl if k’l=kl, denote M=Ni, iτ  is the mean 

of ijτ , j=1,…,M, iL d dR ×∈  is a local affine transformation matrix that needs to be 

determined, ( )i d
j Rε ∈  is the local reconstruction error. Denoting 1[ ,..., ] d M

i i iMT Rτ τ ×= ∈ , 

( ) ( )
1[ ,..., ]i i d M

i ME Rε ε ×= ∈  and ( ) ( )
1[ ,..., ]i i d M

i M Rθ θ ×Θ = ∈ , we have 
1 T

i i i i iT Tee L E
M

= + Θ + , and 

the local reconstruction error matrix Ei has the form: 

     
1

( )T d M
i i M i iE T I ee L R

M
×= − − Θ ∈            (3) 

To preserve as much as possible the local geometry in the global low-dimensional 

space, we seek to find ijτ  and Li to minimize the reconstruction errors ( )i
jε , i.e., 
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2

2
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1
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i i i i
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M

− − Θ =           (4) 

Obviously, the optimal alignment matrix Li that minimizes the local reconstruction 

error || ||i FE  for a fixed Ti, is given by 
1

( )T
i i iL T I ee

M
+= − Θ , and therefore, 

1
( )( )T

i i i iE T I ee I
M

+= − −Θ Θ .  

Let 1[ ,..., ] d N
N Rτ τ ×Τ = ∈  and N N

iS R ×∈  be the 0-1 selection matrix such that TSi=Ti, 

where iτ  is the global low-dimensional embedding coordinates of xi, i=1,…,N. We 

then need to find T to minimize the overall reconstruction error 
2 2

1

N

i Fi F
E TSW

=
= , 

where 
2

1[ , , ] N N
NS S S R ×= ∈ , and 

2 2

1( , , ) N N
NW diagW W R ×= ∈  with  

     
1

( )( )T N N
i N N i i

N
W I ee I R+ ×= − − Θ Θ ∈           (5) 

To uniquely determine T, we will impose the constraints TTT=Id. It turns out that the 

vector e of all ones is an eigen-vector of  

       T TB SWW S              (6) 
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corresponding to the zero eigen-value. Therefore the optimal T is given by the d 

eigenvectors of B corresponding to the 2nd to d+1st smallest eigen-values, i.e., 

1 2 1[ ,..., ] [ ,..., ]T T T
N du uτ τ +Τ = = , where iτ  is a d-dimensional column vector and uj is the 

corresponding eigenvector of the jth smallest eigen-value of matrix B. There, the 

low-dimensional embedding coordinate of xi is iτ , i=1,…,N. 

After obtaining the global embedding coordinates, classification can be applied on 

the low-dimensional manifold space. We adopt the TCM-KNN[7,8] for the 

classification task. As mentioned before, TCM-KNN is a transductive inference 

method, and it seeks to find, from all possible labelings L(W) on the working set W, the 

one that yields the largest randomness deficiency, i.e., the most probable labeling. 

Randomness deficiency is, however, not computable. One has to approximate it 

instead, using a slightly modified Martin-Lof test for randomness and the values taken 

by such randomness tests are called p-values. Given a sequence of distances from 

exemplar i to other exemplars, the strangeness of i with putative label y is defined as: 

     1

1 1

( ) ( )( )
k k

y y
y ij ij

j j

i d dα − −

= =

=             (7) 

The strangeness measure ( )y iα  is the ratio of the sum of the k nearest distance d 

from the same class (y) divided by the sum of the k nearest distances from all the other 

classes (-y). The strangeness of an exemplar increases when the distance from the 

exemplars of the same class becomes larger and when the distance from the other 

classes becomes smaller. The smaller the strangeness, the larger its randomness 

deficiency is. The p-value for a working exemplar j (with putative label y) can be 

computed as: 

     1( ) ( ) ( )
( )

( 1) ( )

y
l new

y y
new

f f f
p j

l f

α α α
α

+ + +
=

+
          (8) 

where l is the cardinality of the training set T, y
newα  is the strangeness measure of 

classifying a new sample into putative class y, f is monotonic nondecreasing function 

with f(0)=0, which can be defined as f( )= . TCM-KNN classify a sample j into 

 class y, if  

      ( ) ( ( ))arg maxy y
y

p j p j=             (9) 
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With the above explanation, the procedure of QLAT can be presented as follows: 

Table 1. QLAT Algorithm 

Input: Data set X (including labeled data set XL and unlabeled data set XU), target 
embedding low-dimension d, number of nearest neighborhoods kl and k’l (usually 
equals to kl) of LDA/QR, weight parameter , and k in TCM-KNN. 

Output: class label y’i of data in XU, low embedding coordinates T of samples 
in X. 

1. dimension reduction with QR decomposition for each data point i in 
high-dimensional data space, maximizing the local between-class distances; 

2. processing with the second stage of LDA/QR for each data point, minimizing 
the within-class distance; 

3. affine transforming the local coordinates, the global embedding coordinate iτ  

of data point i is given by the eigenvectors corresponding to 2~d+1 minimal 
eigenvalues of matrix B; 

4. with the global low embedding coordinates, calculating the ( )y ip x  of samples 

in XU with TCM-KNN algorithm, and classifying it with the class label 
arg max ( )i y i

y
y p x= . 

During the first stage of LDA/QR, QLAT utilize the information of labeled data set 

and unlabeled data set simultaneously, not only maximizing the betweem-class 

distances, but also utilizing the geometry information of data distribution. Compared 

with original LDA/QR algorithm, it utilizes the geometry information of sample data 

more effectively, and compared with original LTSA algorithm, it utilizes the class label 

information of sample data more effectively. 

4   Experimental Setup and Results 

In order to evaluate QLAT method, we have conducted several experiments on 
synthetic data sets and real datasets. Experiment results on Swiss-roll 3D data set, 2D 
synthetic data set, MNIST data set, ORL data set and Yale B data set are presented in 
this section. 

4.1   Synthetic Data 

Swiss-roll data set [3] was sampled evenly from noiseless 3D Swiss-roll surface, the 
data set does not have class label information, we use the data set to test the 
low-dimensional embedding capability of QLAT. The generating function is as 
follows: 
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(3* / 2)*(1 2* (1, ))t pi rand N= + ; 
21* (1, )s rand N= ; 

[ .*cos( ); ; .*sin( )]X t t s t t= ; 

LDA/QR+LTSA is used, TCM-KNN is not used, and only the first stage of 
LDA/QR is used, i.e., LDA is not used. Experiment results with different kl values are 
shown in Fig.1, N=4000, d=2 in the experiments. Similar results of LTSA with 
N=2000, d=2 and different k values are presented in paper [5]. From the result, it can be 
seen that QLAT algorithm can effectively discover the low-dimensional embedding 
structure of high-dimensional data. 

 
  

   

Fig. 1. 3D swiss roll data. Generating coordinates and computed coordinates by QLAT with 
different kl values, kl=8,10,12,15,20,25,30 respectively. 

The 2D synthetic data set [9] contains 200 data points from two classes (each has 

100 points) in the 2D space. Data in the first class is generated from a Gaussian whose 

mean is [0,0], and data in the second class is generated from a mixture of two 

Gaussians: The first one has 30 points with the mean 2 2,
2 2

[2,2] [ ]μ−− , and the 

second one has 70 points with the mean 2 2,
2 2

[2,2] [ ]μ−+  (for some ). All these 

Gaussians have covariance 0.5I2. The low-dimensional embedding results with 

different  are presented in Fig.2, TCM-KNN is not used, and kl=k’l=5. It can be seen 

that QLAT can reduce the dimension of the data, meanwhile, keeping the separability 

of data of different classes.  
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(a) (b) (c) 

Fig. 2. Visualization of 2D synthetic data with different  and their projections via QLAT, =0, 
2, 5 corresponding to (a),(b) and (c) 

4.2   MNIST Data Set, ORL Data Set and Yale B Data Set 

The MNIST database of handwritten digits has a training set of 60,00 examples, and a 
test set of 10,000 examples. The sample numbers of each class in training set varies 
from 5842 to 6742, and the sample number of each class in test set is 1,000. It is a 
subset of a large set available from NIST. The digits have been size-normalized and 
centered in a fixed-size image. The ORL face data set contains 400 face images of 40 
individuals. The image size is 92×112. The face images are perfectly centralized. The 
major challenge on this data set is the variation of the face post. There is no lighting 
variation with minimal facial expression variations and no occlusion. We use the whole 
image as an instance, that is, the dimension of an instance is 92×112=10,304. The Yale 
B data set contains 5760 single light source images of 10 subjects each seen under 576 
viewing conditions (9 poses × 64 illumination conditions). The difference of viewing 
conditions dramatically increases the within-class variations of the data set. In this 
study, we use a subset of Yale B data set, which contains 1,280 face images, that is, 
each person with 4 poses and 32 illumination conditions. Its image size is 640 × 480. 
We crop the image from the row 80 to 480 and the column 150 to 450, and then 
subsample the cropped images with sample step 4×4. The dimension of each instance is 
101×76=7,676. 

In these experiments, we explore the performance of QLAT and compare it with other 
methods, including PCA-KNN, PCA+LDA-KNN, TCM-KNN, LDA/QR-TCM. Some 
parameters in the experiments are set as follows: the component number in PCA and the 
PCA stage in PCA+LDA are set as p=100, the output dimension for LDA is k-1, where k 
is the number of class labels here. Furthermore, in QLAT method, the kl and  need to be 
decided, the performance of QLAT with different kl and  on MNIST are presented in 
Tab.2, k is set to be 1 during the TCM-KNN step. To explore the utilizing of unlabeled 
samples in QLAT, label information of half labeled training samples are discarded, i.e., 
half of the training samples have class labels and the other half do not have. It can be seen 
that the classification performance is best when kl is between 8 and 12, and  is about 1.0. 
If the kl is too small, the estimation error of between-class scatter matrix will become 
large when analyzing the local structure. While if the kl is too big, the influence of remote 
data points is improperly enlarged, which can not represent the locality of the analysis, 



104 J. Yin et al. 

besides, which increases the amount of computation. As to , which balance PCA and 
LDA during the local analysis. If  is taken too small, QLAT is similar to LDA/QR and 
can not utilize the information of unlabeled samples. While if  is taken too large, which 
can not take advantage of labeled samples. Of course, the most optimal values of kl and  
are related with the specific data set to be classified. In the next experiment, we take kl=10 
and =1.0. 

Table 2. Classification error of QLAT on MNIST with different kl and  (K=1) 

 0 0.2 0.6 1.0 3.0 5.0 10.0 

5 3.28 3.24 2.89 2.74 3.15 3.84 4.78 
8 3.18 3.41 2.38 2.24 2.93 4.12 4.32 
10 3.82 3.17 2.53 2.32 3.18 5.02 4.22 
12 3.46 3.25 3.51 2.23 2.84 5.41 6.74 
20 9.25 7.54 4.83 2.34 3.52 8.64 10.32 
30 10.36 8.44 5.81 4.32 6.23 10.21 12.4 

Figure 3 shows the classification error results of different methods on MNIST, ORL 
and Yale B data sets. For the MNIST and Yale B data sets, class label information of 1/3 
training sample is discarded, while for the ORL data set, all the class label information of 
training data set is used. The most interesting result lies in the classification accuracy 
results on Yale B data set. We observe that PCA+LDA-KNN, PCA+LDA-TCM, 
LDA/QR-TCM and QLAT distinctly outperform the PCA-KNN method. Recall that the 
images in the Yale B data set contains large variations of poses and illumination 
conditions, whose direct consequence is the large within-class variation of each 
individual. The effort of minimizing the within-class variation achieves distinct success 
in this situation. While PCA does not have the effort in minimizing the within-class 
variation, which predicts its poor performance in this situation. 

Besides the major observation mentioned above, it can also be seen that TCM-KNN 
outperforms traditional KNN. In all the methods above, QLAT can achieve the best 
 

   
(a) (b) (c) 

Fig. 3. Performance comparison of different methods on 3 data sets, (a) for MNIST, (b) for ORL 
and (c) for Yale B 

 
k 
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performances on all the three data sets, especially on the Yale B data set. As to the ORL 
data set, the performance improvement of QLAT compared to LDA/QR-TCM is not 
significant. On ORL data set, the performances of most methods can achieve above 
90%. This is mainly due to the relatively small within-class variations in these data. 
Recall that ORL face images contains small pose variations and have no obstruction. 
Finally, it can be seen that KNN with k=1 usually performs the best by all algorithms on 
all three image data sets. 

5   Conclusions and Future Work 

We have described QLAT, a classification algorithm based on LTSA and TCM-KNN, 
which extends the usage field of LTSA algorithm from dimension reduction to 
classification problem. Compared with LTSA, it not only utilize the geometry 
information of unlabeled data set, also utilize the class label information of labeled 
data, and utilizes 2-stage LDA/QR instead of traditional LDA during constructing the 
local embedding coordinates. Compared with traditional KNN, QLAT uses TCM-KNN 
algorithm for classification on low-dimensional manifold and can effectively utilize the 
distribution information of testing samples. Experiment results show that QLAT is an 
effective manifold classification method. 

In future, we plan to investigate improvement in QLAT algorithm. Such as the 
parameter values of kl and  during constructing local embedding coordinates need to 
be decided in QLAT, how to obtain the optimal values for a specific data set need 
further investigation. Furthermore, the integration of LTSA and other transductive 
inference algorithms also needs investigation. 
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Abstract. Several algorithms have been proposed to analysis the structure of 
high-dimensional data based on the notion of manifold learning. They have been 
used to extract the intrinsic characteristic of different type of high-dimensional 
data by performing nonlinear dimensionality reduction. Most of them operate in 
a “batch” mode and cannot be efficiently applied when data are collected 
sequentially. In this paper, we proposed an incremental version (ILTSA) of 
LTSA (Local Tangent Space Alignment), which is one of the key manifold 
learning algorithms. Besides, a landmark version of LTSA (LLTSA) is proposed, 
where landmarks are selected based on LASSO regression, which is well known 
to favor sparse approximations because it uses regularization with l1 norm. 
Furthermore, an incremental version (ILLTSA) of LLTSA is also proposed. 
Experimental results on synthetic data and real word data sets demonstrate the 
effectivity of our algorithms. 

Keywords: manifold learning, LTSA, incremental learning, LASSO. 

1   Introduction 

The purpose of dimensionality reduction is to transform a high-dimensional data set 
into a low-dimensional space, while retaining most of the underlying structure in the 
data. Dimensionality reduction has long been an important problem in the field of 
pattern classification, data mining and machine learning. It is important for several 
reasons, with the most important being to circumvent the curse of dimensionality: 
many classifiers perform poorly in a high-dimensional space given a small number of 
training samples. Dimensionality reduction can also be used to visualize the data by 
transforming the data into two or three dimensions. 

Many dimension reduction algorithms have been proposed, and can be classified 
into two classes roughly: linear methods and nonlinear methods. PCA (Principal 
Component Analysis) and LDA (Linear Discriminant Analysis) are the most popular 
linear dimensionality reduction methods. While they are easy understandable, simple to 
implemented and can catch the linear structures of data, they can not discover the 
nonlinear structures of the data. In reality, many high dimension data is embedded in a 
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low nonlinear manifold, and there are some cues that the low-dimensional embedding 
is consistent with human perception [1]. To address the shortcomings of the linear 
methods, kernel PCA method and kernel LDA method have been proposed by many 
researchers. Recently, there has been considerable interest in developing efficient 
algorithms, the so called manifold learning methods, to construct nonlinear 
low-dimensional manifolds from sample data points in high-dimensional spaces, and 
these methods have been regarded as effective approaches for nonlinear dimension 
reduction. In ISOMAP algorithm [2], pairwise geodesic distances of the data points 
instead of the Euclid distance are used with MDS (multidimensional scaling). The LLE 
(locally linear embedding) method [3] constructs a local geometric structure that is 
invariant to translations and orthogonal transformations in a neighborhood of each data 
point, and seeks to project the data points into a low-dimensional space that best 
preserves those local geometries. (A related method using Hessian matrices is 
presented in [4]). LTSA (local tangent space alignment) [5] methods constructs a local 
tangent space for each data point, and obtains the global low-dimensional embedding 
through affine transformation of the local tangent spaces. 

Most of above nonlinear algorithms operate in a batch mode, meaning that all the 
data points need to be available during training. In applications like surveillance, where 
image data are collected sequentially, batch methods is computationally demanding: 
Repeating running the “batch” version whenever new data points become available is 
time consuming. Data accumulation is particularly beneficial to manifold learning 
algorithms due to their nonparametric nature. Another benefit for developing 
incremental methods is that the gradual changes in the data manifold can be detected. 
An incremental algorithm can be easily modified to be adaptive by incorporating 
“forgetting” effect. Another situation where incremental learning is useful is when 
there is an unbounded stream of possible data to learn from. 

There have been some tries to create incremental manifold algorithms from their 
batch mode. In [6] Martin and Anil proposed two incremental algorithms considering 
the original ISOMAP and landmarked ISOMAP. An incremental LLE algorithm is 
proposed by Olga etc in [7]. In this paper, we have modified the LTSA algorithm so that 
it can update the low-dimensional representation of data points. Inspired by the 
landmarks using with the ISOMAP, we proposed an landmarked LTSA algorithm to 
reduce time complexity and memory requirement. Two incremental algorithms are 
proposed corresponding to the algorithms. 

The main contribution of this study includes: 

1. An landmark version of LTSA algorithm, where the landmark selection is based on 
LASSO [9]. This contrasts with previous work like [11], where random points are 
selected as landmark points. 

2. Two incremental LTSA algorithms corresponding to original LTSA and landmark 
LTSA. 

3. An incremental eigen-decomposition problem with increasing matrix size is solved 
by subspace iteration with Ritz acceleration. This is much efficient than solving a 
SVD problem from scratch. 
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2   LTSA 

Given a set of data points x1,…,xN in a m-dimensional space Rm, LTSA assumes that 

the data lie on a (Reimannian) manifold and maps xi to its d-dimensional representation 

iτ  in such a way that the local geometry information of xi is reserved as much as 

possible. The local geometry information of xi is defined as the local coordinates of the 

data points xjs in the neighborhood with respect to the tangent space of xi. The power of 

LTSA can be demonstrated by the three-dimensional “Swiss-roll” data set in Fig.1, 

where points are colored according to their location on the manifold. When PCA is 

used to reduce the dimension to two (Figure 1b), points with different colors are mixed 

together, so disconnected regions on the manifold are mapped to similar locations. In 

LTSA (Figure 1c), the color of the points change gradually, indicating that the 

representation discover by LTSA faithfully corresponds to the structure of the curved 

manifold. 

   
(a) (b) (c) 

Fig. 1.  LTSA on “Swiss roll” with 2,000 points, using knn neighborhood with k=8. (a) Points are 
colored according to their positions on the manifold. (b) Points with different colors are mixed 
together when they are plotted by the two PCA coordinates. (c) LTSA coordinates, a clear trend 
of the color is observed, indicating the structure of the manifold is recovered. 

The LTSA algorithm has three stages. First, local information are extracted. LTSA 

requires the user to specify a parameter k, which is the number of neighborhoods used 

to construct local tangent spaces. For each xi, let Xi=[xi1, ,xik] be a matrix consists of 

its k-nearest neighbors including xi, say in terms of the Euclidean distance and ix  be 

the mean of Xi. LTSA determines Xi for each xi firstly, then  extracts local geometry 

information around xi. Let ( )F f= Ω  is a parameterized manifold with 

: d mf R RΩ ⊂ → , while the Jacobi matrix of f at τ  cannot be explicitly computed 
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without knowing the function f, the local tangent space Tτ  at a fixed τ  can be 

approximated using points in a neighbor set in the high-dimensional input space. Let Qt 

be an orthonomal basis matrix of Tτ  and * ( )tθ τ  the local coordinate of τ  

corresponding to Tτ . Then, Qt and * ( )tθ τ  can be calculated with SVD, so the local 

reconstruction error Ei can also be estimated. 

LTSA proceeds to construct the alignment matrix. At the end of the first stage, a data 

point xij near xi can be represented as ( ) ( )i i
ij i i j jx x Qθ ε= + + , where 

( ) ( )( )i T
j i i ij iI Q Q x xε = − −  denotes the reconstruction error. The global coordinates iτ , 

i=1,…,N in the low-dimensional space are constructed based on the local coordinates 
( )i
jθ  which represents the local geometry. The local geometry information embedding 

by the ( )i
jθ  are preserved as much as possible in the global coordinates. 

The final step of LTSA recovers embedding coordinates iτ . To uniquely determine 

T, the constraint T
dTT I=  is imposed. The optimal T is given by the d eigenvectors of 

alignment matrix corresponding to the 2nd to d+1st small eigenvalues. 

3   Incremental Version of LTSA (ILTSA) 

The major computation cost of LTSA involves the computation of the smallest 

eigenvectors of the symmetric positive semidefined alignment matrix B. As new data 

arrive, these quantities usually do not change much: a new data point often changes the 
neighbors among only a subset of vertices, and the simple eigenvectors and eigenvalues 

of a slightly perturbed real symmetric matrix stay close to their original values. This 

justifies the reuse of the current transform matrix and coordinates for update. Compared 
to the incremental version of ISOMAP [6], the incremental LTSA is more suitable 

since it does not need the time consuming graph reconstruction problem, which is 

needed to calculate the geodesic distance between data points. More specificly, the 
structure of alignment matrix B in LTSA is highly local, and the influence of a new data 

is more local, which makes the updating of matrix very simple. 

The problem of incremental LTSA can be described as follows. Assume that the 
low-dimensional coordinates ti of xi for the first n points are given. As a new sample 

xn+1 is observed, how should we update the existing set of ti and find tn+1? Our solution 

consists of three stages. The local geometry information are first updated in view of the 
new coming data xn+1. The local coordinates of xn+1 with respect to subset of the 
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existing points are then used to estimate tn+1. Finally, all ti are updated in view of the 

coming data xn+1. 

The modification of the original LTSA for incremental updates will be described in 
section 3.1. In section 3.2, we proposed a new variant of LTSA (LLTSA) that utilizes 

the LASSO and LARS algorithms to select landmark points, because of LTSA is 

nonparametric, the data points themselves need to be stored, which limit the LTSA 
usage in huge data set. Compared to [6], where an incremental version of ISOMAP is 

proposed, the big difference is the landmarks are selected somewhat randomly, while in 

our method, the landmarks are selected following a more principal approach, as in [12]. 
An incremental version of LLTSA is also proposed in section 3.2. 

3.1   Incremental LTSA (ILTSA) 

When the new data xn+1 is observed, it only affects directly the coordinates of points 

which includes xn+1 in their k nearest neighborhoods, using XA denotes this set of points. 

However, as the local tangent space of a point xi XA is modified by the new point xn+1, 

all the local coordinates of its neighbors need update. For each xi XA, let Xi=[xi1,…,xik] 

be a neighborhood matrix consisting of its k-nearest neighbors including xi. The 

d-dimensional affine subspace approximation for data point in Xi is computed as 

22

2 2
, , , ,1

( ) ( )min min
k

T
ij j i

x Q x Qj

x x Q X xe Q
θ θ

θ
=

− + = − + Θ
 

(1) 

where Q is of d columns and is orthonormal and 1[ , , ]kθ θΘ = . Similar to PCA 

analysis, the optimal x is given by ix , the mean of all the xij’s and the optimal Q is 

given by Qi, the matrix of d left singular vectors of ( / )T
iX I ee k−  corresponding to its 

d largest singular values, and Θ  is given by iΘ  defined as 

( ) ( ) ( )
1( / ) [ , , ],  ( )T T i i i T

i i i k j i ij iQ X I ee k Q x xθ θ θΘ = − = = −
, (2) 

and ( )i
jθ  incorporates local geometry information near xi. 

What we need is to construct the global coordinate 1nτ +  in the low-dimensional 

space based on the given global coordinates iτ , i=1,…,n, and the local coordinates 
( )i
jθ . In the same spirit of original LTSA, the principal of locating 1nτ +  is to minimize 

the reconstruction errors ( )i
jε , which is defined as 

( ) ( )[ ]i i
j ij i i jLε τ τ θ= − + ,j=1,…,k, i Ax X∈  (3) 
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where iτ  is the mean of ijτ ’s, Li is a local affine transformation matrix that need to be 

determined and ( )i
jε  the local reconstruction error. Denoting 1[ ,..., ]i i ikτ τΤ =  and 

( ) ( )
1[ ,..., ]i i

i kE ε ε= , then we have 
1 T

i i i i iT T ee L E
k

= + Θ + , and the local reconstruction 

error matrix Ei then has the form 

( / )T
i i i iE T I ee k L= − − Θ . (4) 

To best preserve the local geometry information in the low-dimensional space, iτ  

and Li are sought to minimize the reconstruction errors ( )
1

i
nε + , i.e., 

2 2( ) ( )
1 1 12 2

( / ) min
i A i A

i T i
n n i n

x X x X

I ee k Lε τ θ+ + +
∈ ∈

= − − =
. 

(5) 

The optimal alignment matrix Li that minimize the local reconstruction error || ||i FE  

for a fixed iτ  is given by ( / )T
i i iL T I ee k += − Θ , and there for 

1
( )( )T

i i i iE T I ee I
k

+= − − Θ Θ . 

To get the coordinates of 1nτ +  given n known coordinates of xi, i=1,…,n. We seek to 

minimize the local reconstruction error of xn+1 for each point i Ax X∈ , which is written as 

( ) 2 ( ) ( ) 2 ( ) ( ) 2
1 2 1 1 2 1 1 2|| || || [ ] || || [ ] ||i i i i i

n n i i n n i i i nL Tε τ τ θ τ τ θ+
+ + + + += − + = − + Θ . (6) 

As in LTSA, in the global low-dimensional coordinates, we want to minimize the 

reconstruction error: 

1 1

( ) 2 ( ) 2
1 2 1 1 2|| || || [ ] || ,  minmin

n n

i i
n n i i i n i AT for x X

τ τ
ε τ τ θ

+ +

+
+ + += − + Θ ∈ , (7) 

1nτ +  is obtained by solving the above equations in the least square sense. 

A related procedure is applied in [7] for LLE to calculate the coordinates of new data 

point. The eigenvalues of new data distance matrix are assumed the same as old data 

set. However, the assumption does not always hold in practice. In reality, if xn+1 is very 

near to a point xi, the local geometry information of xi will change enormously and so 

the eigenvalues. Our method does not assume the assumption, so it can overcome this 

situation. 
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After get the low-dimensional coordinates of new data point xn+1, we need update the 

coordinates iτ  in view of the modified alignment matrix. This can be viewed as an 

incremental eigenvalue problem, since iτ  is obtained by eigen-decomposition. 

However, since the size of alignment matrix is increasing, traditional updating methods 

with same matrix size cannot be applied directly. An iterative scheme is used to update 

T by finding the eigenvales and eigenvectors of alignment matrix Bnew. A good initial 

guess for the subspace of dominant eigenvectors of Bnew is the column space of TT. A 

better eigen-space is found by subspace iteration together with Rayleigh-Ritz 

acceleration [13]: 

1. Compute Z=BnewTT and perform QR decomposition on Z, i.e., Z=QR and let V=Q. 

2. Form Z*=VTBnewV and perform eigen-decomposition of the d by d matrix Z*, let iλ  

and ui be the ith eigenvalue and the corresponding eigenvector. 

3. Vnew=V[u2…ud+1] is the improved set of eigenvectors of Bnew. 

3.2   LTSA with Landmark Points 

One drawback of the original LTSA is the quadratic memory requirement: the distance 

matrix is of size O(n2), making LTSA infeasible for large data sets. The same problem 

occurs in ISOMAP algorithm. In [11] landmark ISOMAP was proposed to reduce the 

memory requirement while lowering the computation cost and an incremental version 

of L-ISOMAP was proposed in [6]. In landmark ISOMAP, instead of finds all the 

pairwise geodesic distances, the methods finds a mapping that preserves the geodesic 

distances originating from a small set of landmark points. In the original L-ISOMAP, 

random points are used as landmark points. In the [6], the vectors corresponding to the 

largest d singular value of centered geodesic distance matrix are used as landmark 

points. Least Absolute value Subset Selection Operator(LASSO) [9] is a shrinkage and 

selection method for linear regression. It minimizes the usual sum of squared errors 

with a bound on the sum of the absolute values of the coefficients. Finding the LASSO 

solutions used to require solving a quadratic programming problem, until the 

development of the Least Angle Regression(LARS) procedure [10], which is much 

faster and not only gives the LASSO solutions but also provides an estimator of the risk 

as a function of the regularization tuning parameter. LASSO with the LARS are used in 

[12] to select landmarks for ISOMAP algorithm. We follows the similar procedures to 

select landmarks for LTSA algorithm. 
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3.2.1   Landmark Selection Based on LASSO and LARS 

Let X be the n data points set in Rm, i.e., 1[ ... ]nX x x= , and T be the corresponding n 

d-dimensional point set in low-dimensional space. The sacristy of LTSA in achieved by 

finding an estimate β  that minimizes the function 

2|| || || ||qqE Kθ β γ β= − +  (8) 

where K={kij}, 2
2

|| ||
exp( )

2
i j

ij
k

x x
k

σ
−

= −  is a Gaussian kernel, nRθ ∈  and ˆ nRβ ∈ , γ  is 

a tunning parameter that controls the amount of regularization. β̂  is the parameter 

column vector, and ˆ|| ||qβ  denotes the lq norm of β̂ , i.e., 
1

ˆ| |
n q

ii
β

=
. For the most 

sparseness, the ideal value of q would be zero. However, minimizing E with the l0 norm 

is prohibitive in computational terms. A sub-optimal strategy is to use q=1 instead. This 

is the usual formulation of a LASSO regressive problems, which is traditionally solved 

using quadratic programming. The recent development of the LARS method has made 

this unnecessary. 

An important factor of the method is the choose of θ , which influences the process 

of landmark points selecting. In [12], the θ  is chosen as 1[ ... ]T
nθ θ θ= , where jθ  

equals to the maximum principal angle between ( )XuT M  and ( )XjT M , xj is the jth 

column of X and xu is the mean of X, ( )XuT M  and ( )XjT M  are the tangent subspace at 

xu and xj respectively. The principal angles and efficient algorithms to compute them 

can be found in [14]. The local tangent subspace can be found by local SVD, which is 

calculated during the original LTSA, so there would be litter extra computational 

burden. A big difference between our method compared with the method in [12], is that 

the jθ  in our method is more local, here jθ  is defined as the maximum principal angle 

between 
X ju

T  and xjT , where jux  is the mean of Xj, which is the neighbor set of xj. The 

choice is in the same spirit as LTSA, which in principal is more local compared with 
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ISOMAP, and also note the geometry information near a point xi embedding in LTSA is 

determined by its near neighbors. 

Briefly, LARS starts with ˆ 0β =  and adds covariates (the column of K) to the model 

according to their correlation with the prediction error vector, ˆKθ β− , setting the 

corresponding ˆ
jβ  to a value such that another covariate becomes equally correlated 

with the error and is, itself, add to the model. LARS then proceeds in a direction 

equiangular to all the active ˆ
jβ  and the process is repeated until all covariates have 

been added. There are a total of m steps, each of which adds a new ˆ
jβ , making it 

non-zero. With slight modification, these steps correspond to a sampling of the tuning 

parameter γ  in (8) under LASSO. Furthermore, the risk is shown can be estimated as 

2 2ˆ ˆ( ) || || / 2p pR K m pβ θ β σ= − − + , where p is the number of non-zero of ˆ
jβ , and 2σ  

can be found from the unconstrained least square solution. 

The landmarks are the columns xj of X with the same index j as non-zero element of 

ˆ
jβ , where arg min ( )p

p
p R β= . There are 'n p=  landmarks, as there are p non-zero 

elements in pβ .  

3.2.2   Incremental Landmark LTSA (ILLTSA) 

Without the generality, let the first u points, i.e., x1,…,xu be the landmark points, denote 

the point set with XL. For a data point xi, instead of finding the k minimal distance 

among all the data point X, the landmark LTSA(LLTSA) finds the k minimal distance 

neighbors among the small set landmark points XL, and use this information to 

construct local tangent space. In the LLTSA, the size of distance matrix D ={dij} is u*n, 

where dij is the distance between xi(a landmark point) and xj. The local tangent space of 

xn+1 is constructed with the local geometry information with XL. The coordinate of the 

new point xn+1 is determined by solving a Least-Square problem similar to that in 

section 3.1. The difference is that the columns among XL instead of X, are used. Finally, 
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subspace iteration together with Ritz acceleration is used to improve singular vector 

estimates. The steps are the following: 

1. Perform SVD on the matrix BT, 1 1 1
TU S V BX= . 

2. Perform SVD on the matrix 1
TB U , 2 2 2 1

T TU S V B U= . 

3. Set 1/ 2
2 2( )newT U S=  and 1/ 2

1 2( )newQ U S= . 

Similarly, the updated coordinates are the eigenvectors corresponding to 2~d+1 

smallest eigenvalues. 

4   Experiments 

In order to evaluate the methods proposed, we have conducted several experiments on 
synthetic data sets and real datasets. The main algorithm is implemented in Matlab. The 
running time is measured on a 2.1 GHz PC with 1G memory running Windows XP. 

4.1   Incremental LTSA(ILTSA) 

The accuracy and the efficiency of the basic incremental algorithm is evaluated by 
comparing it with the batch version on several data sets. The first experiment is on the 3 
dimensional Swiss roll data set, the data set is also used in the original LTSA. 
Initialization is done by finding the coordinate estimate xi for 100 randomly selected 
points using the original “batch” LTSA, with the neighborhood size k=8. Random 
points from the S-curve data set are then added one by one, until 2,000 points are 
accumulated. The incremental algorithm described in Section 3.1 is used to update 
the coordinates. Figure 2 shows several snapshots of the algorithm. In the first column, 
the circles and cross in the figures represent the coordinates estimated by the batch 
and the incremental version ILTSA respectively. The second column contains scatter 
plots, where the color of the points correspond to the coordinates of the first column. 
The third column illustrates the neighborhood structure graphs. Snapshots with 100, 
500, 1,000 points are shown. The cross and the circles match very well, indicating that 
the coordinates updates by the incremental LTSA follow closely with the coordinates 
estimated by the batch version for different number of points. 

To quantify the accuracy of the coordinate update of the incremental algorithm 

ILTSA, we adopt an error measure[6] defined as the square root of the mean square 

error between ( )ˆ n
iτ  and ( )n

iτ , normalized by the total sample variance:  
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(a) (b)
(c)

(d) (e) (f) 

(g) (h)  (i)  

Fig. 2. Snapshots of “Swiss roll” for incremental LTSA. Incremental LTSA was initialized by 
running the “batch” LTSA with 100 points((a) to (c)). Snapshots with 500 and 1,000 are 
shown in (d) to (f) and (g) to (i) respectively. 

 

( ) ( ) 2 ( ) 2

1 1

1
ˆ| | | | / | | | |

n n
n n n

n i i i
i in

ε τ τ τ
= =

= − . nε  against the number of data point n for 

Swiss roll data set is presented in Figure 3a. From the figure, we can see that the 

proposed updating method is fairly accurate with an average error of 0.08 percent. The 

computation time is show in Table 1. Our incremental approach has significant saving 

in main aspects of LTSA: the global coordinates update. Note that both the batch and 

incremental versions need the same number of distance computations. 

Similar experimental procedure is applied to other data sets. The “S-curve” data set 

contains points in a 3D space with an effective dimensionality of two, which is a 

standard benchmark for manifold learning. The “rendered face” data set contains 698 

face images with size 64*64 rendered at different illumination and pose conditions.  
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Fig. 3. Approximation error ( nε ) between the coordinates estimated by the basic incremental 

LTSA and the basic batch LTSA for different numbers of data points (n). (a) Swiss roll, (b) 

S-curve, (c) Rendered Faces. (d) MNIST digit 2. 

Table 1. Runtime (Seconds) for Batch and incremental LTSA 

Swiss roll S-curve Rendered face MNIST 2  
Batch Incr. Batch Incr. Batch Incr. Batch Incr. 

Computing 
tn+1 

0.43 0.56 0.07 0.52 

Updating ti 
31.76 

5.12 
28.96 

5.53 
3.47 

0.86 
32.85 

4.38 

 

(a)

(b) 

 

Fig. 4. Example images of data sets. (a) rendered face. (b) MNIST digit 2. 
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“MNIST digit 2” is a 576-dimensional data set derived from the digit images “2” from 
MNIST and contains 28 by 28 digit images. Some examples for “rendered face” and 
“MNIST digit 2” are shown in Figure 4. All the above data set are also used in [6]. The 
neighborhood size for MNIST digit 2 and “rendered face” is set to 10 to demonstrate 
that the proposed approach is efficient and accurate irrespective of the neighborhood 
used. The approximation error and the computation time for these data set are shown in 
Figure 3 and Table 1. We can see that the incremental LTSA is accurate and efficient 
for updating the coordinates in all these data sets. 

4.2   Experiments on Landmark LTSA 

A similar experimental procedure is applied to the incremental landmark LTSA 
described in Section 3.2 for Swiss roll, S-curve, rendered face, MNIST digit2 data sets. 
300 randomly points from the data set are selected at start, points are then added one by 
one randomly until 5,000 points are accumulated. For the data set less than 5000, the 
procedure stops when all the data point are used. 100 points from the initial 300 points 
are selected to be the landmark points following the LASSO procedure in section 3.2.1. 
The snapshots for incremental LLTSA are fairly similar to those for incremental LTSA 
in Fig.2 and are omitted here. The approximation error and the computation time for the 
batch and incremental version of landmark LTSA are shown in Fig. 5 and Table 2 
respectively. Once again, the coordinates estimated by the incremental version are 
accurate with respect to the batch version, and the computation time is much less. 

 

  

  

Fig. 5. Approximation error ( nε ) between the coordinates estimated by the incremental 

landmark LTSA and the batch landmark LTSA for different numbers of data points (n). (a) 

Swiss roll. (b) S-curve. (c) Rendered Faces. (d) MNIST digit 2. 
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Table 2. Runtime (Seconds) for Batch and incremental Landmark LTSA 

Swiss roll S-curve Rendered 
face 

MNIST 2  

Batch Incr. Batch Incr. Batch Incr. Batch Incr. 
Computing 
tn+1 

0.35 0.72 0.09 0.42 

Updating ti 

11.72 

3.21 

12.06 

3.54 

2.13 

0.87 

10.58 

2.76 

5   Conclusion 

Nonlinear dimensionality reduction is an important problem with applications in 
pattern recognition, computer vision and data mining. We have proposed an algorithm 
(ILTSA) for incremental nonlinear mapping problem by modifying the LTSA 
algorithm. The core idea is to efficiently reestimate the eigenvectors using the previous 
computation results. A landmark version of LTSA (LLTSA) is also proposed, where 
the landmark points are selected based on LASSO and LARS regression. The proposed 
algorithm finds geometrically meaningful landmarks and avoids expensive quadratic 
programming computations. Furthermore, an incremental LLTSA (ILLTSA) algorithm 
is also proposed for the landmark version of LTSA. The proposed methods have been 
validated on synthetic and real datasets. 
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Abstract. Recently, the authors described a training method for a con-
volutional neural network of threshold neurons. Hidden layers are trained
by by clustering, in a feed-forward manner, while the output layer is
trained using the supervised Perceptron rule. The system is designed for
implementation on an existing low-power analog hardware architecture,
exhibiting inherent error sources affecting the computation accuracy in
unspecified ways. One key technique is to train the network on-chip, tak-
ing possible errors into account without any need to quantify them. For
the hidden layers, an on-chip approach has been applied previously. In the
present work, a chip-in-the-loop version of the iterative Perceptron rule
is introduced for training the output layer. Influences of various types of
errors are thoroughly investigated (noisy, deleted, and clamped weights)
for all network layers, using the MNIST database of hand-written digits
as a benchmark.

1 Introduction

Many models of the human visual system assume a hierarchical set of feature
detectors to play a fundamental role in invariant object recognition [13,17,12,18].
The idea is that a visual representation of a natural object is composed of a
number of smaller shapes which, each taken by themselves, appear more invariant
under transformations than the entire object as a whole. Using a hierarchical
system, where complex features are inferred from the presence or absence of
many simpler features, recognition can be performed more robustly and with
less computational effort compared to learning each single visual representation
of the whole object.

Inspired by biology, convolutional neural networks apply this idea in the en-
gineering field: The first layer usually detects simple features, e.g., oriented line
segments. By successive feature extraction through the layer hierarchy, more and
more complex shapes, and finally entire objects can be recognized in higher lay-
ers. Such networks have been shown to be robust image classifiers, provided the
details of the network topology are correctly chosen and an appropriate training
strategy is applied [3,8,16,6,11].

While convolutional neural networks usually possess a huge absolute num-
ber of computable connections, they make heavy use of a concept called weight

F. Schwenker and S. Marinai (Eds.): ANNPR 2006, LNAI 4087, pp. 122–132, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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sharing, reducing the actual amount of adjustable parameters: Large groups of
neurons have identical weights. Thus, the same operation (“compute the dot-
product with a given weight vector”) must be applied over and over again to
different data. Moreover, the tree-like connection topology (see Fig. 1) makes
parallel evaluation straight-forward. These facts lead naturally to the idea to
employ a dedicated, possibly parallely working, hardware device optimized for
this simple type of operation. A custom hardware solution was applied success-
fully for speeding up a convolutionary network several years ago [7]. Nowadays,
where almost arbitrary amounts of computing speed can be bought off-the-shelf,
e.g., in form of Linux clusters, the development of non-standard computing de-
vices is motivated more by the desire for small, low-power solutions, as needed for
example in mobile applications, or when economic mass production justifies the
development effort (e.g., in automotive industry). In the long run, custom analog
solutions could be an alternative to standard processors in terms of production
yield, especially in the field of “soft” computing techniques: While inevitable de-
fects occurring on microchips constitute a serious issue in large digital designs,
one can envisage trainable systems working as well on imperfect, or even partly
damaged, substrates.

A mixed-signal analog/digital Very-Large-Scale Integration neural network
architecture has been developed by some of the authors [15]. A prototype chip
is available and has been applied successfully to real-world tasks [4]. Connecting
multiple chips by digital links allows smooth scalability[1]. The authors proposed
a convolutional network implementation for this hardware architecture [2]. The
threshold neurons provided by the hardware render gradient based methods inap-
plicable. Instead, a mixture of self-organized clustering and Perceptron learning
is employed. The present paper focuses on techniques for assuring robustness of
the algorithm against variations of the hardware substrate.

2 General Setup and Training

Input Layer. In order to be processed by the hard-threshold network, the grey-
level input images are transformed into a binary representation by applying a
threshold at half the maximum pixel value.

Hidden Layers. Network layers consist of a stack of feature planes, each of which
is a rectangular grid of neurons (see Fig. 1). A group of neurons from adjacent
planes within the same layer, located at the same grid position, will be referred
to as a hyper column. The neurons in a given hyper column receive input con-
nections from the same local neighborhood of neurons in the preceding layer
(which will be called their input region), but are each tuned to detect a different
feature. All hyper-columns within a given layer are identical with respect to their
neurons’ synaptic weights (weight sharing), while receiving inputs from shifted
input regions, depending on their own grid position.

Four layers of this kind are present, where—alternatingly—the odd-numbered
are S-type (or recognition) layers, and the even-numbered are C-type (or
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5x5

45

3x3
7x7

150x7x7

Input                           1 (S)                           2 (C)                     3 (S)                   4 (C)                    Output

30x28x28
30x14x14 150x14x14

1x28x28

7x7

Hyper Column

Fig. 1. Network topology Layers are organized in feature planes, which are regular
grids of neurons. Neurons receive input connections from a local neighborhood in the
previous layer.

blurring) layers. The S/C notation is adopted from [3].1 The S-layer weights
are adjusted during training, whereas the C-layer neurons have all their weights
fixed to 1. Another particularity of C-layers is that neurons receive input only
from the corresponding plane in the preceding S-layer. This way, a C-layer spa-
tially blurs the S-layer’s activation pattern. The blurring operation results in
local shift invariance [3] and thus in higher-order invariances in higher network
layers. In the C-layers, layer dimensions are sub-sampled by a factor of 2. To-
gether with the connection topology, this leads to growing receptive fields in
higher-layer neurons. The receptive field of a neuron denotes the area in the
input layer from which this neuron eventually receives input. For computing
border cells, the previous layer is padded with the background value (-1).

All neurons compute their output according to

O = β (w · I − t) , (1)

where w = [w1, . . . , wN ] and t are the neuron’s weights resp. threshold, I =
[I1, . . . , IN ] are the current input values Ii ∈ {−1, 1}, and β(x) is the bipolar
step function (1 for x > 0, −1 otherwise).2 The threshold t is not incorporated
in the training process (see below), but is set explicitely afterwards. For the
S-layers, t is set to a fraction of the respective neuron’s maximally achievable
activation t = TS

∑
i |wi|. For C-layers, t = TC . The constants TS and TC are

optimized for each layer.
Training of the S-layers proceeds bottom-up. Assume that layer n, consisting

of K feature planes, is to be trained. Only the weights of one prototype hy-
per column are identified, which is then duplicated to the full layer dimensions
1 Fukushima named the layer types after the Simple and Complex cells found in the

mammalian visual cortex by Hubel and Wiesel (1968).
2 The hardware [15] uses 0/1 neurons. Before transferring the weights to the hardware,

they are converted accordingly which is possible by a simple transformation.
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(a) (b)

Fig. 2. Schematic visualization of the clustering process. Dots represent the input vec-
tors I, located on a hyper sphere, crosses represent the weight vectors wk. Input vectors
are clustered around typical shape features. (a) Before training, wk are initialized with
random members from I. (b) After training, wk have settled in cluster centers.

(weight sharing). For each training image (index j) and for each grid position
in layer n (indices x, y), there is one input vector Ij

xy to the hyper column at
that position. Let I := {Ij

xy/||Ij
xy||} be the set of all those (normalized) input

vectors. These vectors lie on a unit hyper-sphere in the input space, and, since
the training images contain the objects to be recognized, the vectors are likely
to be clustered around shape features which are typical for the objects in ques-
tion and which can be recognized in layer n. Consequently, K clusters in I are
identified and the cluster centers are set as the weight vectors of the K neurons
in the prototype hyper column (see Figure 2 for an illustration). This consider-
ation does not depend on certain shape features to appear always at the same
positions on the input layer, since I includes data from all grid positions.

For clustering, the K-Means algorithm is used (see e.g. [5]), where the angle
between two vectors is taken as the distance measure. This training scheme is
equivalent to competitive Hebbian learning [14]. The algorithm stops if either
only a small fraction (0.5%) of patterns switched their cluster assignments in the
previous epoch or a maximum of 100 epochs has elapsed. The exact definition
of the termination criterion does not seem critical. Only a subset of the training
images (200 per class) is considered for clustering. Taking 400 per class instead
does not improve results.

Output Layer. The output layer is a pairwise linear classifier, fully connected to
the last intermediate layer. Each output cell is trained to discriminate only two
classes. For 10 pattern classes, and considering every possible combination of
two classes, there are 45 output units. When evaluating an unseen pattern, each
unit votes for one of the two classes it was trained with. The class receiving the
most overall votes wins. Training is done using standard Perceptron learning,
where after each pattern presentation, a neuron’s weights and threshold v =
[w1, . . . , wN , t] are updated according to:

v ←
{

v − OJ, if O is incorrect
v, if O is correct , (2)
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where J = [I1, . . . , IN ,−1] is the current input vector plus an additional con-
stant component to account for the bias t in v, and O is the neuron’s current
output. Patterns are presented in random order and the training is terminated
if the output is correct for a pre-defined number of consecutive pattern presen-
tations, The required number of consecutive correct patterns is 10,000 in all of
the experiments, resulting almost always in termination after about 1-2 million
pattern presentations.

Meta-Parameters. For a concrete network implementation, various details re-
garding the network topology, as well as the threshold constants TS and TC ,
must be fixed. The meta-parameters needed for one adjacent S/C layer pair are
defined now: K denotes the number of feature planes per layer. For the S-layers,
the input region is a square of hyper-columns of size DS × DS . C-neurons have
a circular input region with diameter DC with all their weights fixed to 1. The
threshold parameters TS and TC have already been discussed above.

3 On-Chip Training

Before operating the hardware, the neural weight values are loaded onto the
network chip. Due to substrate imperfections and inherent device variations of
the analog computing units, network results generally differ from the ones ex-
pected from exact computation. Here, it is assumed that variations in the weight
values constitute the dominating effect in the considered hardware architecture.
More specifically, we assume that the actual effective weights on the chip differ
from the explicitely programmed weights, according to some distortion model. In
order to account for these weight perturbations, on-chip training techniques are
employed. On-chip training approaches are able to compensate only for fixed-
pattern errors (i.e., perturbations which do not vary over time), which however,
according to experiences with the prototype chip, seem to play the major role.

Hidden Layers. As detailed in section 2, network layers are trained sequentially,
bottom-up. Weight training (clustering) happens in software, based on the out-
put of the previous layer. If, after training a given layer, the trained weights
are loaded onto the chip, the chip’s result can be used as training input for
consecutive layers. Since this way succeeding layers “learn” to live with the im-
perfections of the previous one, more robust behavior is expected compared to
loading a completely software-trained network onto the chip.

Output Layer. The straight-forward method just described does not work for the
output layer because no further layer exists which could compensate for possible
errors. Thus, the output layer must be configured such that the effective weights
on the hardware (in contrast to the programmed weights) are optimal. For this
aim, the Perceptron learning algorithm is applied in a “chip-in-the-loop” fashion:
Let v̂ be the effective weight vector after the hardware has been configured
with the programmed weights v. Then, the update rule (2) is applied, with the
difference that the actual output O is now computed on the hardware:
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O = O(v̂(v)). (3)

If the algorithm converges, v̂ will be optimal. Note that no explicit knowledge
about v̂ is necessary, i.e., there is no need for quantitative error analysis.

Certainly, the crucial part is “if the algorithm converges”, which is not guar-
anteed any more even if the data are linearly separable. For example, a mal-
functioning synapse could cause the corresponding weight to grow infinitely
if one or more patterns keep being classified uncorrectly due to this synapse
failure. However, heuristically, no ill behavior is observed in the presented
experiments.

Although all 32,000 synapses of the network chip can be reconfigured in about
a tenth of a millisecond, updating the weights after each single pattern is not
very effective, due to the necessary data transfer to and from the hardware, and
other overhead associated with one network run. Minimal training speed can
be achieved by evaluating a few thousand patterns at once and then updating
the weights with the accumulated modification. Nevertheless, in the experiments
presented here, the cingle-pattern update rule is used.

4 Results

Performance with Ideal Synapses. The MNIST data set [9] is used as a bench-
mark recognition problem. It consists of 28x28 pixel grey-value images of the
hand-written digits “0” through “9”. Samples are shown in Fig. 3. 60,000 im-
ages are provided for training, 10,000 for testing. For finding the optimal meta-
parameters, the training images are split further into a training set (50,000)
and a validation set (10,000), each with equal distribution of digit classes. With
the parameters found to perform best on the validation set (Table 1), 100 net-
works are trained with the patterns of the training and validation set combined,
and tested on the test set. The average error rate obtained on the test set is
1.74%±0.10% (best network: 1.49%, worst network: 1.97%). Here, the error is
given as the standard deviation within the ensemble of the 100 networks.

Performance with Faulty Synapses. The network’s robustness is tested by ar-
tificially applying three different kinds of synaptic errors to the programmed
weights.
“Noise”: All effective synaptic weights are subject to perturbations by adding
random normally distributed offsets to the programmed weights.

Table 1. Topology and training
meta-parameters

K DS TS DC TC

Layers 1-2 30 5 0.5 7 1
Layers 3-4 150 3 0.4 7 0

Fig. 3. Sample digits from the MNIST data
base (binarized version)
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Fig. 4. Different types of synaptic errors in the hidden layers (top), the output layer
(middle), and all layers (bottom). Left: Errors are applied to completely trained net-
work. Right: Errors are incorporated in the training (on-chip approach). The x-axis
denotes the width of weight perturbation for the “noise” error type, resp. the fraction
of affected synapses for the “delete” and “clamp” error types. Logarithmic scale for
convenience. The shaded line corresponds to network performance with ideal synapses
(1.74% ± 0.01%). Here, errors are given as errors of the average value of an ensemble
(stdev/

√
#trials). * Marked curves appear also in [2].
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Fig. 5. Distribution of synaptic weights typically observed in the hidden layers and the
output layer. Weights are forced to the interval [-1,1] by scaling each neuron’s weight
vector to unit maximum norm after training. Histrograms are over all weights in one
trained network.

“Delete”: A given fraction of all weights is set to 0, corresponding to disabled
synapses.
“Clamp”: A given fraction of all weights is set to the extreme positive or
negative value (-1,1, each 50% chance), corresponding to clamped synapses, e.g.,
as caused by electric shortcuts.

All presented results are obtained using a software implementation of the de-
scribed network model. This is mostly due to the fact that the parallelly on-
going development of the hardware system has not quite kept pace with the
requirements of the presented application. In particular, the prototype chip is
too small for large networks as used here (see also section 5). Looking at it pos-
itively, this way the properties of the network model and training method are
evaluated isolated from the particularities of a concrete hardware substrate, and
reproducibility is ensured.

All three error types are applied separately to the hidden layers and the out-
put layer, and, in a third setting, to the entire network. All settings are first
evaluated when applying the synapse errors to a fully trained network (Fig. 4,
left diagrams), and then with employing the on-chip training (Fig. 4, right di-
agrams). Each data point represents the average test error rate from a series
of 10 independently trained and distorted networks. Clearly, the on-chip train-
ing approach is to a large extent able to compensate for the tested synaptic
errors.

It is interesting to observe that the hidden layers show relatively high sensi-
tivity to the deletion of synapses, but can cope quite well with large amounts of
noise, while the output layer behaves the opposite way. This fact can be under-
stood from the different training strategies applied: The hidden layers are trained
by correlation-based learning, which is known to tend to produce extreme synap-
tic weights, c.f., [10]. Fig. 5, left hand side, shows a typical weight distribution
in the hidden layers. In such a bi-modal weight distribution, adding noise will
not easily destroy the overall behavior of a neuron, but setting synapses to zero
(i.e., deleting), is very likely to strongly affect a neuron’s behavior. On the other
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hand, a typical weight distribution in the output layer is depicted in Fig. 5, right
side. Here, most weights are close to zero, so deleting synapses will with a high
probability do not much harm to a neuron, while adding noise with an absolute
width will likely alter a synapse’s stength by a large relative factor.

It should be noted that the low sensitivity of the output layer to synapse
deletion might also be promoted by the large number of synapses present per
neuron: Each output neuron receives more than 7,000 inputs which are highly
inter-correlated, because of the blurring C-layers, neighboring pixels on a feature
plane tend to be in an equal state. When working with pruned networks in the
future (see Outlook), this effect can be better quantified.

5 Conclusion and Outlook

A neural network consisting of binary threshold neurons, trained using a com-
bination of self-organization and supervised learning, is applied to hand-written
digits classification. With regard to the envisaged analog hardware implementa-
tion, robustness to computation errors is required. Therefore, the influences of
various modes of synaptic malfunction are thoroughly evaluated. Two on-chip
approaches are described for coping with fixed-pattern errors. Although initially
not obvious, a simple chip-in-the-loop version of the Perceptron learning rule
produces satisfying results. With the on-chip learning, the network shows to
be remarkably resistant to unknown, but temporally invariable, synaptic errors.
However, it should be noted that even with spontaneous synaptic errors which
were not seen during training, the performance degrades gracefully (Fig. 4, plots
to the left). For example, even with 10% randomly deleted synapses in all layers,
still over 90% of all digits are correctly classified.

The error rates achieved on the MNIST data set do not quite reach the best
rates reported for convolutional networks trained by back-propagation, see [9] for
a “high score”. But taking into account the simplicity of the training methods,
the low complexity of evaluating the network (threshold neurons), and the focus
on robustness, the presented method can certainly be said to be competitive.
Moreover, it has been shown previously that by adding a preprocessing stage
(expanding the training data set by elastic distortions), the test error can be
further decreased [2].

The final aim is to implement the system on a mixed-signal hardware archi-
tecture. Setups for recognizing simple geometric shapes have been already run
successfully on the prototype chip. This chip however features a maximum num-
ber of 128 inputs per neuron, which limits the number of feature planes in the
first convolutional layer to 14 (corresponding to 3 x 3 x 14 = 125 inputs to the
3rd layer), and restricts also the number of possible inputs to the output layer.
The evaluation of a network as shown in this paper has to be postponed for a
larger implementation of the hardware architecture. However, in order to allow
the most realistic evaluation of the hardware system using the prototype chip,
methods are being developed for pruning the network size with comparably little
drawback in performance.
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Hilario López Garćıa and Iván Machón González
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Abstract. Mathematical models are normally used to calculate the
component concentrations in biological wastewater treatment. However,
this work deals with the wastewater from a coke plant and it implies in-
hibition effects between components which do not permit the use of said
mathematical models. Due to this, feed-forward neural networks were
used to estimate the ammonium concentration in the effluent stream of
the biological plant. The architecture of the neural network is based on
previous works in this topic. The methodology consists in performing a
group of different sizes of the hidden layer and different subsets of input
variables.

1 Introduction

The main objective of this paper is the application of a feed-forward neural net-
work to estimate the effluent ammonium concentration in a biological wastewater
treatment plant which is composed of two serial reactors. There is a sedimenta-
tor or clarifier after each reactor. In the first reactor, there is a removal of COD,
thiocyanate and phenol. On the other hand, there is an elimination of COD,
ammonium and thiocyanate in the second reactor.

Although mathematical models are usually used to estimate the substrate
concentrations in this type of treatment, inhibition effects between substrates
can appear in certain types of wastewater. In this case, the wastewater from a
coke plant of the steel industry must be treated biologically and the associated
inhibition effects do not permit the use of classical mathematical models. For
this reason, universal approximators such as feed-forward neural networks were
used to model the biological treatment.

This work is part of the KNOWATER II project ”Implementation of a Knowl-
edge Based System for Control of Steelworks Waste Water Treatment Plant”,
which is sponsored by ECSC and their agreement number is 7210-PR-234. The
contractors are Centro Sviluppo Materiali S.p.A., Corus RT&D, Betrieb
Forschung Institut (BFI) and Universidad de Oviedo. The main objective of
the KNOWATER II project is the development of plant supervision techniques
for implementation in wastewater treatment plants.
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2 Work Undertaken

2.1 Process Understanding and Comprehension of the Data

The first step is the acquisition of all the process knowledge. Technical reports,
scientific articles related to the topic and expert advice must be taken into
account.

The final objective is the development of an estimation of the ammonia con-
centration in the effluent stream of a wastewater biological treatment plant which
is composed of two serial biological reactors. Taking this objective into account
a feed-forward neural network was considered to estimate this concentration.

Fig. 1 to 5 represent the values of the available process variables. The mea-
surement units are not relevant provided that the measurement has always been
taken using the same unit since the data will be normalized later.
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Fig. 1. Influent flow

2.2 Selection of Variables

One of the key tasks is the selection of the process variables to model the system.
Applying the knowledge acquired during the first task mentioned above is nec-
essary in order to obtain this selection. The physical process has to be carefully
studied and the most significant process variables must be chosen. Moreover,
the analysis of several combinations of process variables, which are suspected to
form the training data set, will be necessary. Feeding the neural network with
the significant process variables is very important.

Beforehand, the influent flow is a key variable. The higher the influent flow the
lower the hydraulic residence time in a continuous reactor. Therefore the organ-
isms might not have had enough time to reduce the concentrations of the toxic
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Fig. 2. Chemical oxygen demand (COD)
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Fig. 3. Phenol concentration

substances. Thus, the influent flow and the hydraulic residence time are com-
pletely correlated and related to the reactor volume. Only one of these variables
is chosen as training variable. The other would not contribute any additional
information.

Fig. 1 to 5 show the available data: influent flow, organic material expressed
as COD, ammonium, thiocyanate and phenol. All these variables might influence
the ammonium removal.
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Fig. 4. Thiocyanate concentration
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Fig. 5. Ammonium concentration

The organic material expressed as COD may influence since an increase of
its concentration would demand a biological activity increment to eliminate the
same rate of ammonium. For that reason, at first, this variable will be considered
in two data sets.

Phenol may have the same importance given to the COD and, moreover, due
to its factor of toxicity that would contribute to the treatment. However, it seems
to be deduced in Fig. 3 that its influence on ammonium is minimum due to its
complete removal in the first reactor whereas the ammonium is transformed into
nitrate in the second reactor. For that reason the phenol concentration has not
been considered to be integrated into the data set for training.
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Table 1. Training variables

Set number Process variables

Variable set No 1 Influent flow, influent ammonium concentration,
influent thiocyanate concentration and influent COD

Variable set No 2 Influent flow, influent ammonium concentration
and influent COD

Variable set No 3 Influent flow and influent ammonium concentration

Variable set No 4 Influent flow, influent ammonium concentration
and influent thiocyanate concentration

The same mentioned above is valid for the thiocyanate but its elimination
happens in both reactors and is not complete. Thus, it is considered to form
part of the training data set.

Finally, the influent ammonium concentration must be considered since it
obviously influences the effluent ammonium concentration.

Taking the above mentioned into account, four variable sets will be analyzed
as input variables which are described in table 1. Several models of neural net-
works will be trained using these four variable sets to select the best model that
minimizes the estimation error.

2.3 Data Preprocessing and Training

The data are normalized to a zero mean and a unitary variance. This allows all
the features to move in the same ranges and, hence, be treated by the neural
network in the same way.

The next step consists in establishing the architecture of the neural network
which is composed of a single hidden layer with hyperbolic tangent as activation
function and a single neuron with linear activation function as output layer, see
Fig. 6.

The activation function of the neurons of the hidden layer is a hyperbolic
tangent. In this way, this type of function allows the network to learn non linear

Fig. 6. Architecture of the neural network
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relationships. The activation function of the output layer is linear enabling the
network to take any value.

This network topology can be used as a general approximator for any function
that has a finite number of discontinuities whenever the hidden layer has a suffi-
cient number of neurons and non linear activation function, see [1], [2],[3] and [4].

The training of the neural network was carried out using the Levenberg-
Marquardt algorithm [5], [6] and [7].

After training, the network is pruned removing the weights that have the
lowest saliences [8]. At this stage a data set different from that used for training
is employed. This utilized data set is the testing data set.

3 Methodolgy of Model Validation

The prediction of the model must be as accurate as possible for all the pro-
cess working zones. The model validation to achieve this requirement attempts
to select the best model according to the mean square error (mse). The mse
for different assays (both training and pruning) were carried out. In this work,
60 assays were done for each variable data set and different number of hidden
neurons. The minimum value, the mean value and the standard deviation of
the mse of these 60 assays are registered. The mean square error is calculated
as (1)

et =
1
N

N∑
i=1

(ŷi − yi)2 (1)

where y is the real value, ŷ is the estimated value, e is the estimation error.
These three values are calculated for each sample i. N is the total number of
samples. The autocorrelation of the prediction error is useful as well [9].

The objectives of this validation process are:

1. Discover the minimum number of input variables that yield the best estima-
tion of the objective variable (effluent ammonium concentration).

2. The architecture of the neural network: Number of layers, number of neurons
in each layer and activation functions.

Discovering the input variables that optimize the approximation to the ob-
jective function is the first task based on the topology described above. The
mean square error and the autocorrelation between the output variable and
the error are useful to carry out this task. Once the best combination of in-
put variables has been selected, the number of hidden neurons must be de-
termined. A low number of neurons does not provide enough parameters to
train the neuronal network correctly. On the other hand, an excessive number
of neurons leads to overtraining problems and its computational cost is higher.
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Fig. 7. Methodology for training and validation

The training and pruning of the neuronal network has been carried out using
the toolbox named ”Neural Based Network Identification System” developed by
the Technical University Helsinki [10] and [11].

Fig. 7 represents the methodology. The number of neurons in the hidden layer
is increased gradually for each combination of input variables, making several
tests with each of them (60 assays were carried out in this work). After pruning,
the results are registered as the number of neurons in the hidden layer, the
testing and training errors, the average and variance of these errors and the final
number of utilized weights.

4 Results

Fig. 8 shows the minimum value, mean value and standard deviation of the
mean square error in function of the number of utilized weights calculated for
each combination of variables of table 1.

It can be seen that the higher the number of weights the lower the training
error whereas at the beginning the testing error decreases, although it rises later.
Therefore an optimum number of weights must be found.

Variable set No 4 or the influent flow, the influent ammonium concentration
and the influent thiocyanate concentration have been chosen as input variables
based on the minimum value, the mean value and the standard deviation of the
testing mean square error. The best results take place in a number of utilized
weights equal to 18 which correspond to an original model of 8 hidden neurons.
Problems of local minima have been detected in some models.

An iterative loop is established to search for the best model that minimizes
the testing mean square error after pruning and considering the selected input
variables and a number of hidden neurons equal to 8. Fig. 9 represents the best
model after pruning. Four of the eight neurons are not used as can be observed.
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Fig. 8. Minimum value, mean value and standard deviation of the mse in function of
the number of utilized weights for each variable set

However, it is necessary to start training with a high enough number of neurons
and then stop the procedure and remove the pruned weights.

Fig. 10 shows the real data, both training and testing data, corresponding
to effluent ammonium concentration and the values estimated by the neural
network. The autocorrelation of the estimation error is good tending quickly to
zero and the distribution is also good with most of the samples centered in the
origin according to Fig. 11.
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Fig. 10. Estimated and real effluent ammonium concentration

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lag

Auto correlation function of prediction error

-35 -30 -25 -20 -15 -10 -5 0 5 10 15
0

1

2

3

4

5

6

7
Histogram over prediction errors

Fig. 11. Autocorrelation of the estimated error
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5 Conclusions

A neural network model has been developed to estimate the ammonium concen-
tration in the effluent stream of a wastewater plant whose treatment is biological.
There are mathematical models well known for biological treatment such as the
Activated Sludge Model (ASM). These can be formulated using kinetic dynamics
(Haldane, Monod) and material balances to configure the particular structure of
the plant. However, in this case these models are not very useful because of the
existence of inhibition between substances. In this sense, the use of ANNs has
been recommended. Neural networks are widely used to estimate key parameters
of physical processes.

In this paper, a feed-forward neural network is outlined to obtain a satisfactory
approach to estimate the effluent ammonium concentration of the treatment
plant. The methodology consists in performing a group of different sizes of the
hidden layer and different subsets of input variables.

The developed model is useful to obtain simulations under varying condi-
tions of the influent stream. In this way, the effluent ammonium concentration
can be estimated. This neural network achieves better results than the classical
mathematical models for biological wastewater treatment due to the problematic
composition of the coke wastewater.
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Abstract. In our previous work we have shown that Mahalanobis ker-
nels are useful for support vector classifiers both from generalization
ability and model selection speed. In this paper we propose using Maha-
lanobis kernels for function approximation. We determine the covariance
matrix for the Mahalanobis kernel using all the training data. Model se-
lection is done by line search. Namely, first the margin parameter and the
error threshold are optimized and then the kernel parameter is optimized.
According to the computer experiments for four benchmark problems,
estimation performance of a Mahalanobis kernel with a diagonal covari-
ance matrix optimized by line search is comparable to or better than
that of an RBF kernel optimized by grid search.

1 Introduction

Support vector regressors (SVRs) have been used for various applications as
a powerful function approximation tool. One of the problems of SVRs is that
model selection, in which the values of the margin parameter, the error thresh-
old, and the kernel parameter are optimized, is time consuming. There are
several approaches to ease model selection but the most reliable method is
cross-validation [1].

In most cases radial basis function network (RBF) kernels are used for SVRs.
But Mahalanobis kernels [2,3], which are an extension of RBF kernels, and which
exploit the data distribution information more than RBF kernels do, are used
to ease model selection for pattern classification problems [4].

In this paper, based on [4] we propose model selection of SVRs using Maha-
lanobis kernels. Namely, using all the training data, we calculate the covariance
matrix for the Mahalanobis kernel. We then optimize the margin parameter, the
error threshold, and the kernel parameter that scales the Mahalanobis distance
by line search: after optimizing the margin parameter and the error threshold
by cross-validation, we optimize the kernel parameter by cross-validation. We
show the usefulness of Mahalanobis kernels over RBF kernels using benchmark
data sets.
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In Section 2, we summarizes the SVRs, and in Section 3, we discuss Maha-
lanobis kernels. Then, in Section 4 we discuss model selection using Mahalanobis
kernels. Finally in Section 5, we compare performance of Mahalanobis kernels
with RBF kernels using some benchmark data sets.

2 Support Vector Regressors

In this section we briefly summarize the architecture of support vector regressors.
Let the M input-output pairs be (xi, yi) (i = 1, . . . , M) and the mapping

function be g(x), in which the input vector x is mapped into the l-dimensional
feature space. Then the approximation function f(x) is given by

f(x) = wT g(x) + b, (1)

where w is the l-dimensional vector and b is the bias term.
For the loss function:

E(y, f(x)) =
{

0 for |y − f(x)| ≤ ε,
|y − f(x)| − ε otherwise, (2)

where ε is a user-defined error threshold, the dual problem of the SVR is given
by

maximize −1
2

M∑
i,j=1

(αi − α∗
i )(αj − α∗

j )H(xi ,xj)

−ε

M∑
i=1

(αi + α∗
i ) +

M∑
i=1

yi(αi − α∗
i ) (3)

subject to
M∑
i=1

(αi − α∗
i ) = 0, (4)

0 ≤ αi, α∗
i ≤ C, (5)

where H(xi ,xj) = gT (x)g(x) is a kernel, and αi and α∗
i are Lagrange multipliers

associated with xi.
The obtained approximation function is given by

f(x) =
M∑
i=1

(αi − α∗
i )H(xi ,x) + b. (6)

3 Mahalanobis Kernels

In function approximation we consider that all the training data belong to one
cluster. For the cluster we define the Mahalanobis distance between a datum x
and the center vector of the cluster:

d(x) =
√

(x − c)T Q−1 (x − c), (7)
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where the center vector and the covariance matrix of the data are given, respec-
tively, by

c =
1
M

M∑
i=1

xi, (8)

Q =
1
M

M∑
i=1

(xi − c) (xi − c)T . (9)

The Mahalanobis distance is linear translation invariant [5]. Thus we need not
worry about the scales of input variables.

Another interesting characteristic is that the average of the square of Maha-
lanobis distances is m [5]:

1
M

M∑
i=1

(xi − c)T Q−1 (xi − c) = m. (10)

Then, we define the Mahalanobis kernel by

H(x,x′) = exp
(
− δ

m
(x − x′)T Q−1 (x − x′)

)
, (11)

where δ (> 0) is the scaling factor to control the Mahalanobis distance. Here,
the Mahalanobis distance is calculated between x and x′, not between x and c.
The Mahalanobis kernel is an extension of the RBF kernel. Namely, by replacing
δQ−1/m by γ I, where γ(> 0) is a parameter for slope control and I is the m×m
unit matrix, we obtain the RBF kernel:

exp(−γ‖x − x′‖2). (12)

From (10), by dividing the square of the Mahalanobis distance by m, it is
normalized to 1 irrespective of the number of input variables. Although (11) is
an approximation of the Mahalanobis kernel, this may enable to limit the search
of the optimal δ value in a small range.

If we use the full covariance matrix, it will be time-consuming for a large
number of input variables. Thus we consider two cases: Mahalanobis kernels
with diagonal covariance matrices and Mahalanobis kernels with full covariance
matrices. Hereafter we call the former diagonal Mahalanobis kernels and the
latter non-diagonal Mahalanobis kernels.

4 Model Selection

Model selection is to optimize kernels and parameters to obtain the high gen-
eralization ability of SVRs. In this section, we discuss model selection for RBF
kernels and Mahalanobis kernels by cross-validation.
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4.1 RBF Kernels

For RBF kernels, we need to determine the values of ε, γ, and C by grid search.
To set the proper search range of γ, it is better to normalize the input ranges into
[0, 1]. Thus, because the maximum value of ‖x− x′‖2 is m, we use the following
RBF kernels instead of (12) [6]:

exp
(
− γ

m
‖x − x′‖2

)
. (13)

Because RBF kernels are not scale invariant, rescaling of the range into [0, 1] is
not always optimal.

4.2 Mahalanobis Kernels

For Mahalanobis kernels, we need to determine the values of ε, δ, and C. But
because Mahalanobis kernels given by (11) are determined according to the data
distribution and normalized by m, the initial value of δ = 1 is a good selection.
Thus, we can carry out model selection by line search not by grid search. Namely,
the model selection is done as follows:

1. Set δ = 1 and determine the values of C and ε by cross-validation for the
values of C and ε on grid points. We call this the first stage.

2. Setting the values of C and ε as those determined by the first stage, determine
the value of δ by cross-validation. We call this the second stage.

Because δ = 1 is a good initial value, we may search the optimal value
around 1. In addition, because Mahalanobis kernels are normalized by the co-
variance matrix, it is scale invariant. Therefore, unlike RBF kernels, the scale
transformation of input variables does not affect the approximation error of
SVRs.

5 Performance Evaluation

In this section, we evaluate the proposed model selection method. For this pur-
pose, we performed model selection using Mahalanobis kernels and RBF kernels
by grid search and line search and investigated whether the Mahalanobis kernel
by line search performs well both from the approximation ability and model
selection speed.

5.1 Evaluation Conditions

We used the benchmark data sets listed in Table 1. The water purification data
set [7,8] is to estimate coagulant to be added to purify water. The Mackey-Glass
data set [8,9] is a time series data set with chaotic behaviors. The Boston 5 and
14 data sets are from the Boston data set [10,11]. The Boston 5 data set predicts
the nitrous oxide level, which is the 5th variable in the Boston data and Boston
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Table 1. Parameter setting

Data Inputs Train. Test

Water Purification 10 241 237

Mackey-Glass 4 500 500

Boston 5 13 506 —

Boston 14 13 506 —

14 data set predicts the median value of a home price, which is the 14th variable
in the Boston data set. Since the Boston data set is not divided into training
and test data sets, we randomly divided the set into two with almost equal sizes.

We ran c programs on a Xeon 2.8G personal computer with Linux operating
systems. We trained the SVRs using the primal-dual interior-point method with-
out using the decomposition technique. We used 5-fold cross-validation both for
grid search and line search in determining the kernel parameter γ or δ, ε, and C.

5.2 Water Purification Data

We performed 5-fold cross-validation changing C = {1, 5, 10, 50, 100, 500, 1000,
3000, 5000, 10000, 50000, 100000} and ε = {0.001, 0.005, 0.01, 0.05, 0.1} for
both kernels, γ = {0.1, 0.5, 1.0, 5.0, 10, 15} for RBF kernels, and δ = {0.1,
0.2,. . . , 1.0,. . . , 1.9, 2.0} for Mahalanobis kernels.

Table 2 shows the results. “G” and “L” denote that the grid search and line
search are performed for model selection and “Diag” and “Non-Diag” denote
that the diagonal and non-diagonal covariance matrices are used for Mahalanobis
kernels, respectively. The “Optimal” columns list the parameter values selected
by model selection. The “Time” column lists the time for model selection by
cross-validation. Approximation errors were evaluated by the average error and
the maximum approximation error.

From the table, by grid search, the model selection time using Mahalanobis
kernels is about three times longer than that using RBF kernels. But by line
search they are almost comparable. The average estimation errors for the test
data using a kernel by line search are worse than those using the same kernel by
grid search but the maximum errors are smaller. Although the results are differ-
ent for different kernels and different model selection methods, the difference is
small.

5.3 Mackey-Glass Data

We performed 5-fold cross-validation changing C={1, 10, 100, 500, 1000, 3000,
5000, 8000, 10000, 50000, 100000} and ε = {10−7, 10−6, 10−5, 10−4, 0.001, 0.01}
for both kernels, γ = {0.1, 0.5, 1.0, 5.0, 10, 15} for RBF kernels, and δ = {0.1,
0.2,. . . , 1.0,. . . , 1.9, 2.0} for Mahalanobis kernels.
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Table 2. Performance comparison for water purification data

Optimal Time Train. Error Test Error

Kernel C ε γ/δ [s] Ave Max Ave Max

RBF (G) 5 0.05 10. 4384 0.779 16.1 0.892 6.22

RBF (L) 100 0.001 1.0 827 0.852 17.9 0.954 6.04

Diag (G) 5 0.05 0.4 13050 0.806 16.4 0.919 6.27

Diag (L) 1 0.05 1.1 808 0.844 15.4 0.936 5.88

Non-Diag (G) 5 0.1 0.4 12611 0.706 14.6 0.942 5.57

Non-Diag (L) 1 0.001 0.8 770 0.817 15.1 0.965 4.40

Table 3. Performance comparison for Mackey-Glass data

Optimal Time NRMSE

Kernel C ε γ/δ [s] Train. Test

RBF (G) 105 10−5 15.0 105173 0.00172 0.00215

RBF (L) 105 10−4 15.0 14796 0.00191 0.00213

Diag (G) 105 10−7 2.0 176293 0.00027 0.00272

Diag (L) 105 10−5 2.0 13166 0.00025 0.00280

Non-Diag (G) 500 10−4 1.2 169645 0.00284 0.00231

Non-Diag (L) 500 10−7 0.9 11367 0.00390 0.00313

We evaluated the estimation performance of the Mackey-Glass data set by
the Normalized Root Mean Square Error (NRMSE), i.e. the root-mean-square
error divided by the standard deviation of the time series data.

Table 3 shows the results for the Mackey-Glass data set. The optimal val-
ues of ε are very small because the data set does not include noise. Both for
RBF and diagonal Mahalanobis kernels, grid search and line search do not give
much difference in estimation error but the estimation errors for the diagonal
Mahalanobis kernels are a little worse. Non-diagonal Mahalanobis kernels by line
search show worst estimation error.

Model selection by grid search for Mahalanobis kernels is slower than that for
RBF kernels, but model selection time by line search is comparable for three
kernels.

5.4 Boston Data

Since the Boston data set is not divided into training and test data sets, we
randomly divided the set into 20 training and test data sets with almost equal
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sizes. And we determined the optimal parameter values by 5-fold cross-validation
using training data sets and evaluated the average errors and their standard
deviation for the training and test data sets. In cross-validation we changed C
= {1, 10, 100, 1000, 5000, 10000, 50000, 100000} and ε = {0.001, 0.01, 0.1} for
both kernels, and γ = {0.1, 0.5, 1.0, 5.0, 10, 15} for RBF kernels, and δ = {0.1,
0.2,. . . , 1.0,. . . , 1.9, 2.0} for Mahalanobis kernels.

Table 4 lists the results for the Boston 5 data set. The optimal values of the
parameters show the most frequently selected values among 20 trials. “Time”
column lists the average time for model selection for 20 trials. We evaluated
the estimation performance by average errors and their standard deviations.
The boldface numbers show the best performance group, in which there are no
statistical difference in both averages and variances among the members of the
group. And the italic numerals show the second performance group, in which
the averages are statistically different from the best group although there is no
statistical difference in the variances. This means that estimation performance
of RBF kernels by line search is inferior to that of RBF kernels by grid search.
But estimation performance of Mahalanobis kernels shows the best irrespective
of a diagonal or non-diagonal covariance matrix or line search or grid search.
In addition since model selection is speeded up by line search, the line search
strategy is suitable for Mahalanobis kernels for this data set.

Table 4. Performance comparison for Boston 5 data

Optimal Time Error & Stand. Dev.

Kernel C ε γ/δ [s] Train. Test

RBF (G) 105 0.001 5.0 3473 0.0273 ± 0.0060 0.0371 ± 0.0024

RBF (L) 105 0.001 1.0 609 0.0369 ± 0.0229 0.0469 ± 0.0219

Diag (G) 1 0.001 0.9 6330 0.0154 ± 0.0052 0.0287 ± 0.0022

Diag (L) 1 0.001 0.8 504 0.0130 ± 0.0036 0.0280 ± 0.0021

Non-Diag (G) 1 0.001 0.4 7035 0.0123 ± 0.0037 0.0287 ± 0.0021

Non-Diag (L) 1 0.001 0.5 586 0.0119 ± 0.0034 0.0286 ± 0.0020

Table 5 shows the results for the Boston 14 data set. Since the optimal val-
ues show the most frequently selected values, although they are the same for the
RBF kernels with grid search and line search, the average errors and the standard
deviations are different. The boldface numerals show the best estimation per-
formance group and the italic numerals show the second best group. Therefore,
for this data set, estimation performance of Mahalanobis kernels is statistically
better than that of RBF kernels. And the diagonal Mahalanobis kernel by line
search is a good choice from the standpoint of estimation performance and model
selection speed.
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Table 5. Performance comparison for Boston 14 data

Optimal Time Error & Stand. Dev.

Kernel C ε γ/δ [s] Train. Test

RBF (G) 105 0.1 15. 2870 2.20 ± 0.173 2.84 ± 0.206

RBF (L) 105 0.1 15. 639 2.19 ± 0.151 2.83 ± 0.196

Diag (G) 100 0.1 0.3 7020 1.46 ± 0.295 2.40 ± 0.153

Diag (L) 10 0.1 0.7 639 1.57 ± 0.362 2.48 ± 0.187

Non-Diag (G) 100 0.1 0.2 8061 1.20 ± 0.250 2.50 ± 0.151

Non-Diag (L) 10 0.1 0.6 842 1.48 ± 0.326 2 .63 ± 0 .187

5.5 Discussions

In cross-validation, we used 6 parameter values for RBF kernels and 20 for
Mahalanobis kernels, which is more than three times larger. But according to
the experiments, for the Mahalanobis kernels model selection by line search was
10 to 16 times faster. In addition, model selection for Mahalanobis kernels by line
search was three to five times faster than that for RBF kernels by grid search,
although model selection for Mahalanobis kernels by grid search was slower than
that for RBF kernels by grid search.

For the 4 benchmark data sets, diagonal Mahalanobis kernels by line search
showed stable estimation performance and especially for Boston data sets Ma-
halanobis kernels by line search belonged to the best estimation group in a
statistical sense. But RBF kernels and non-diagonal Mahalanobis kernels by line
search showed inferior estimation performance in some cases.

Therefore, from estimation performance and model selection speed, the Ma-
halanobis kernels by line search can be alternative kernels for RBF kernels. In
addition, the diagonal Mahalanobis kernels are enough for this purpose.

6 Conclusions

We discussed model selection using the Mahalanobis kernels for function ap-
proximation. We calculate the covariance matrix using the training data and
determine the optimum values of the margin parameter, the error threshold,
and the kernel parameter by line search. Namely, first we determine the margin
parameter and the error threshold by grid search fixing the value of the ker-
nel parameter, and then we determine the value of the kernel parameter. The
computer experiments showed that the performance of the Mahalanobis kernels
by line search was comparable to, or better than that of RBF kernels by grid
search.
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Abstract. We discuss incremental training of support vector machines
in which we approximate the regions, where support vector candidates
exist, by truncated hypercones. We generate the truncated surface with
the center being the center of unbounded support vectors and with the ra-
dius being the maximum distance from the center to support vectors. We
determine the hypercone surface so that it includes a datum, which is far
away from the separating hyperplane. Then to cope with non-separable
cases, we shift the truncated hypercone along the rotating axis in paral-
lel in the opposite direction of the separating hyperplane. We delete the
data that are in the truncated hypercone and keep the remaining data
as support vector candidates. In computer experiments, we show that we
can delete many data without deteriorating the generalization ability.

1 Introduction

The high generalization ability of support vector machines (SVMs) [1,2] lies in
mapping of the input space to a high dimensional feature space, maximizing mar-
gins of separating hyperplanes in the feature space, and use of proper kernels
to specific applications. Training by solving a quadratic programming problem
leads to the global optimum solution. But since we need to solve a problem with
the variables equal to the number of training data, training becomes slow for a
large sized problem. In addition, in an incremental training environment, where
training data are incrementally obtained, efficient incremental training methods
are required. In SVMs, only support vectors, which are near class boundaries
and which determine the decision functions, are required for training. Thus, if
we can detect support vectors or support vector candidates in future incremen-
tal training, we can alleviate slow training by deleting unnecessary data before
training.

In [3,4], training data other than support vectors are deleted at the incremen-
tal training step. However, this method may delete support vector candidates
and thus may lead to degradation of generalization ability. Therefore, to main-
tain the generalization ability comparable to that of batch training, we need
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to retain support vector candidates. Under the assumption that the separat-
ing hyperplane after incremental training does not change much, in [5] support
vector candidates are selected from the data that are near the separating hy-
perplane. But if the separating hyperplane rotates after retraining, this method
may fail in keeping support vector candidates. To cope with the rotation of
separating hyperplanes, in [6,7] class regions are approximated by hyperspheres
using one-class SVMs [8] and data near hyperspheres are kept as support vector
candidates.

In this paper, we propose an incremental training method that is robust for
rotation of separating hyperplanes, approximating the regions for support vector
candidates by truncated hypercones. Since support vectors are at the vertexes
of convex hulls, we can keep support vector candidates if we retain the vertexes
of the convex hulls for the classes. But since it is difficult to generate a convex
hull in the feature space, and the vertexes that are far away from the convex
hull are unlikely to be support vectors in the future, we approximate the region
of data that are near the separating hyperplane by truncated hypercones.

For each class, we generate a truncated surface with the center at the center
of unbounded support vectors and with the radius being the maximum distance
from the center to support vectors. The rotating axis goes through the center and
is perpendicular to the truncated surface. We generate the surface of a hypercone
so that it includes the datum that is far away from the separating hyperplane
and the distance from the rotating axis is maximum. The data that are inside of
the truncated hypercone are deleted and the remaining data are kept as support
vector candidates.

In Section 2, we summarize SVMs and in Section 3, we explain two conven-
tional methods. Then in Section 4, we propose an incremental training method
using truncated hypercones and in Section 5 we compare our proposed method
and the conventional methods from the standpoint of generalization ability and
the deletion ratio of training data.

2 Support Vector Machines

In SVMs, the input x is mapped into the high dimensional feature space using
the mapping function φ(x). For M input-output pairs (xi, y(xi)), i = 1, ...,M ,
let y(xi) = 1 if xi belongs to class 1, and y(xi) = −1 if xi belongs to class 2. We
consider the following decision function in the feature space:

f(φ(x)) = wT φ(x) + b, (1)

where w is a coefficient vector, b is a bias term, and if x is correctly classified,
y(xi)f(φ(xi)) > 0. If all the training data are correctly classified, f(φ(x)) = 0 is
called separating hyperplane and the minimum distance between the separating
hyperplane and the training data is called margin.

In SVMs, the separating hyperplane is determined so that the margin is max-
imized while minimizing the classification error of the training data:
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Minimize

Q(w, ξ) =
1
2
||w||2 + C

M∑
i=1

ξi (2)

subject to
y(xi)(wT φ(xi) + b) ≥ 1 − ξi for i = 1, ...,M, (3)

where C is a margin parameter to control the tradeoff between maximization
of margins and minimization of classification errors and ξi are slack variables
associated with xi.

Introducing the Lagrange multipliers, the following dual problem is obtained:

Maximize

Q(α) =
M∑
i=1

αi −
1
2

M∑
i,j=1

y(xi)y(xj)αiαjK(xi,xj) (4)

subject to
M∑
i=1

y(xi)αi = 0, 0 ≤ αi ≤ C. (5)

Here K(x,x′) is called kernel function:

K(x,x′) = φ(x)T φ(x′). (6)

In our study we use polynomial kernels with degree d:

K(x,x′) = (xT x′ + 1)d, (7)

and RBF (Radial Basis Function) kernels:

K(x,x′) = exp(−γ||x − x′||2), (8)

where γ > 0.
For the solution of (4) and (5), if αi > 0, xi are called support vectors. Espe-

cially if αi = C, bounded support vectors and if 0 < αi < C, unbounded support
vectors. The most important characteristic is that we can obtain the same solu-
tion using only support vectors.

Using support vectors, the decision function is expressed by

f(φ(x)) =
∑
i∈S

y(xi)αiK(xi,x) + b, (9)

where S is the support vector indices and w is given by

w =
∑
j∈S

y(xj)αjφ(xj). (10)

Margin δ is given by

δ =
1

||w|| =
1√∑

j,k∈S

y(xj)y(xk)αjαkK(xj ,xk)
. (11)
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3 Conventional Incremental Training Methods

In [5], support vector candidates are selected if

y(x)f(φ(x)) ≤ β + 1 (12)

is satisfied, where β(> 0) is a user defined parameter. If the separating hyper-
plane does not change much after retraining, future support vectors are kept by
(12). But if the separating hyperplane rotates after retraining, support vector
candidates tend to be deleted if the value of β is not properly selected.

In [6,7], concentric hyperspheres are used to approximate the regions for sup-
port vector candidates.

For class j (j = 1, 2), we generate the minimum-volume hypersphere with
radius Rj that includes all the training data in that class. Then we generate a
concentric hypersphere with radius ρRj , where ρ (0 < ρ < 1) is a user defined
parameter. Then we generate a hypercone with the vertex at the center of the
hypersphere, which opens on the opposite side of the separating hyperplane. The
openness of the hypercone is controlled by the angle, θ (−90 < θ < 90), between
the surface of the hypercone and the hyperplane that goes thorough the vertex
of the hypercone and that is parallel to the separating hyperplane. We delete
data that are inside of the hypersphere with radius ρRj or in the hypercone
unless they are not support vectors.

4 Proposed Method

4.1 Relations Between Support Vector Candidates and Vertexes of
Convex Hulls

We consider what data should we keep to cope with the rotation of the sepa-
rating hyperplane when data are added. To make matters simple we consider
the separable case shown in Fig. 1. In the figure, the regions of the two classes
are shown as convex hulls. The optimal separating hyperplane for this problem
is shown in the figure. Now suppose that data are added but that these data
are not in the regions of different classes. Then the separating hyperplane after
incremental training will exist in the shaded region. Thus the data, which are
the vertexes of the convex hulls and which are in the shaded region, are support
vector candidates. Therefore, if we keep all the data that are vertexes, we can
hold all the support vector candidates.

However, since usually we map the input space into the feature space and we
do not explicitly treat variables in the feature space, generation of convex hulls
is very difficult. In addition, by this method, redundant data on the vertexes
that are far away from the separating hyperplane will be retained, which is
inefficient. Thus, to solve this problem, we use truncated hypercones, which
include the vertexes of the convex hulls but delete data that are far away from
the separating hyperplane.
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Fig. 1. Possible locations of separating hyperplanes and vertexes of convex hulls

4.2 Data Deletion Using Truncated Hypercones

Consider the case where a classification problem is linearly separable in the
feature space as shown in Fig. 2. To keep the data whose images are near the
separating hyperplane, we generate the truncated hypercones as shown in the
figure and delete the data whose images are inside of the truncated hypercones.
Data in black disks are retained and data in white disks are deleted.

Now we explain how to generate truncated hypercones. First, we generate
truncated surface, whose center is the mean vector of mapped support vectors
and the radius ri (j = 1, 2) is the maximum distance among the distances
from the center to mapped support vectors. The rotating axis is the line that
goes through the center and that is perpendicular to the separating hyperplane.
If there is only one support vector like the right class in Fig. 2, a truncated
hypercone shrinks to a hypercone with the mapped support vector being the
center and with radius r2 = 0.

For each class, among the mapped data whose distances from the separating
hyperplane are longer than that of the class center of mapped training data,
calculate the maximum distance from the rotating axis, Ri (i = 1, 2). Use this
as the radius that determine the slope of the truncated hypercone and generate
the truncated hypercone. The reason why we exclude the mapped data that are
nearer to the separating hyperplane than the class center of mapped training
data is that these data are consider to be the candidate of support vectors.

R1

R1

R2

r1

r1

R2

Fig. 2. Deletion of data using truncated hypercones
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Generation of hypercones discussed so far is for separable problems such as
shown in Fig. 2. For non-separable problems, mapped data inside of the con-
vex hulls could be support vector candidates. To cope with this, we move the
truncated hypercone in parallel along the rotating axis as shown in Fig. 3.

r

R

r

R

f( (x))=0

f(G)

max f( (x)) 

(f(G) -1)

(max f   (G)-1)

f( (x))=1

Fig. 3. Parallel movement of a truncated hypercone

To control parallel shifts we introduce three parameters: f(Gfs), max f(φ(x)),
and f(φ(Gis)), where f(Gfs) is the output of the decision function for the center
vector of the mapped training data that are kept at an incremental training
step, max f(φ(x)) is the output of the decision function for x, whose associated
distance from φ(x) to the separating hyperplane is the maximum among the
data that are kept at an incremental training step, and f(φ(Gis)) is the output
of the decision function for the center vector of the training data added so far.
If we calculate f(Gfs) using the data that are added so far we need to keep all
the data. Thus, f(φ(Gis)) is to approximate f(Gfs) calculated using all the data
added so far.

Using these parameters we shift hyperplane by m1 δ (f(Gfs) − 1), m2 δ (max
f(φ(x)) − 1), or m3 δ (f(φ(Gis)) − 1), where m1,m2(0 ≤ m2 ≤ 1), and m3 are
user defined parameters.

The flow of incremental training using truncated hypercones is as follows:

1. Train an SVM using the initial training set Xa.
2. Add incremental data set Xb to Xa: Xa = Xa ∪ Xb.
3. Using the data in Xa that satisfy y(x)f(φ(x)) ≥ 1, generate the truncated

hypercones and shift them in parallel along rotating axes. If x does not satisfy
y(x)f(φ(x)) ≤ 1 and φ(x) is included in the shifted truncated hypercone,
delete x: Xa = Xa − {x}.

4. If there is x in Xa that satisfies y(x)f(φ(x)) ≤ 1, retrain the SVM.
5. Iterate Steps 2, 3, and 4 during incremental training.

In Step 3, we keep the data that satisfy y(x)f(φ(x)) ≤ 1 because they are
bounded support vectors and are support vector candidates after training. In
Step 4, if there are no data that satisfy y(x)f(φ(x)) ≤ 1, the separating hyper-
plane after retraining is the same. Thus, we do not retrain the SVM.
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4.3 Determination of Inside of Truncated Hypercones

We judge whether a mapped datum is inside or outside of a truncated hypercone
using ri and Ri.

The center of the truncated surface, ai, for class i is given by

ai =
1

|S′
i|
∑
j∈S

′
i

φ(xj), (13)

where S
′
i is the index set of unbounded support vectors for class i and |S′

i| is the
number of unbounded support vectors for class i. Using (13), ri is given by

ri = max
j∈S

′
i

||φ(xj) − ai||

= max
j∈S

′
i

√√√√K(xj ,xj) −
2

|S′
i|
∑
k∈S

′
i

K(xj ,xk) +
1

|S′
i|2
∑

k′∈S
′
i

∑
k∈S

′
i

K(xk′ ,xk).(14)

We use the following two center vectors to check if the distance from the
separating hyperplane to a mapped datum φ(x) is longer than that to the center
vector:

1. The use of f(Gfs) and max f(φ(x)) for the truncated hypercone shift
The center vector in the feature space at an incremental training step is
calculated using a set of class i data, Xi:

Gfs =
1

|Xi|
∑
j∈Xi

φ(xj). (15)

And the decision function f(Gfs) is given by

f(Gfs) = wT Gfs + b =
1

|Xi|
∑
j∈Xi

∑
k∈S

y(xk)αkK(xj ,xk) + b. (16)

For x that satisfies y(x)f(φ(x)) ≥ 1 and f(φ(x)) > f(Gfs), we calculate
the distance from the rotating axis to φ(x) for the possible candidate of the
radius of the truncated hypercone.

2. The use of f(φ(Gis)) for the parallel shift
For the set of data, Xold, that includes the deleted data for class i, let the
center vector be Gold. Assume that a set of data, Xadd, is added. Then the
center vector, Gis, after addition is given by

Gis =
1

|Xold| + |Xadd|
(|Xold|Gold +

∑
k∈Xadd

xk). (17)

In this way, we can update the center vector in the input space without stor-
ing deletable data. Although mapping of the center vector into the feature
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space does not coincide with the center vector in the feature space, it could
be an approximation. The decision function for Gis is given by

f(φ(Gis)) = wT φ(Gis) + b =
1
|S|
∑
k∈S

y(xk)αkK(Gis,xk) + b. (18)

For x that satisfies y(x)f(φ(x)) ≥ 1 and f(φ(x)) > f(φ(Gis)), we calculate
the distance between the rotating axis and φ(x) for the possible candidate
of the radius of the truncated hypercone.

Among x that satisfies f(φ(x)) > f(Gfs) or f(φ(x)) > f(φ(Gis)), the maxi-
mum distance among the distances between the rotating axis and φ(x) is selected
as the radius of the truncated hypercone. From Fig. 4, Ri is given by

ri

Ri

ri

Ri

ai

Gfs

f( (x))=0

f(G fs)
|| (xj) - ai ||

(xj)

f( (x))=1
(f( (xj)) - f(ai))

Fig. 4. Calculation of radius Ri

Ri = max
j∈Xi

√
||φ(xj) − ai||2 − {δ(f(φ(xj)) − f(ai))}2, (19)

where

||φ(xj) − ai|| = K(xj ,xj) −
2

|S′
i|
∑
k∈S

′
i

K(xj ,xk)

+
1

|S′
i|2
∑
k∈S

′
i

∑
k∈S

′
i

K(xk,xk), (20)

f(ai) = wT ai + b =
1

|S′
i|
∑
j∈S

′
i

∑
k∈S

y(xk)αkK(xj ,xk) + b. (21)

Similar to the calculation of Ri, for x the distance, d(x), between the rotating
axis and φ(x) is given by

d(x) =
√
||φ(x) − ai||2 − {δ(f(φ(x)) − f(ai))}2. (22)

The radius Li of the truncated hypercone, at which points the output of the
decision function is the same with f(φ(x)) is given as follows.
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1. The use of f(Gfs) for the truncated hypercone shift
For x that satisfies f(φ(x)) > 1 + m1(f(Gfs) − f(ai)), we calculate Li by

Li = ri + (Ri − ri) ×

(
f(φ(x)) − m1{f(Gfs) − f(ai)}

)
− f(ai)

f(Ri) − f(ai)
. (23)

2. The use of max f(φ(x)) for the truncated hypercone shift
For xj(j ∈ Xi) belonging to class i, we calculate maxj∈Xi

f(φ(xj)). Then for
x that satisfies f(φ(x)) > 1 + m2(maxj∈Xi

f(φ(xj)) − f(ai)), we calculate
Li by

Li = ri + (Ri − ri) ×

(
f(φ(x)) − m2{max

j∈Xi

f(φ(xj)) − f(ai)}
)
− f(ai)

f(Ri) − f(ai)
. (24)

3. The use of f(φ(Gis)) in the truncated hypercone shift
For x that satisfies f(φ(x)) > 1 + m3(f(φ(Gis)) − f(ai)), we calculate the
following Li:

Li = ri + (Ri − ri) ×

(
f(φ(x)) − m3{f(φ(Gis)) − f(ai)}

)
− f(ai)

f(Ri) − f(ai)
. (25)

If we set m1,m2,m3 to 0, we delete data without shifting truncated hypercones.
If d(x) < Li

is satisfied we delete x.

5 Performance Evaluation

We evaluated the effectiveness of the proposed method using the two-class bench-
mark problems listed in Table 1.1 Each problem consists of 100 or 20 training
and test data sets. Except for banana, ringnorm, and thyroid data sets, we nor-
malized the input range into [0, 1].

For each of 100 or 20 training data sets in a two-class problem, we generated
the incremental training data sets, dividing each training data set into subsets
with 5% of the training data. In each incremental training step, we added a
subset to the classifier.

Training of SVMs was done by the primal-dual interior-point method com-
bined with the decomposition techniques.

We compared the proposed and conventional methods for the optimal kernel
and margin parameter C. We determined the optimal kernel by 5-fold cross-
validation using the first five training data sets for the polynomial kernels with
d = [2, 3, 4] and RBF kernels with γ = [0.1, 1, 10], and the margin parameter C =

1 http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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Table 1. Specifications of two-class data sets

Trn Test Inputs Classes Sets

Banana 400 4900 2 2 100
B. cancer 200 77 9 2 100
Diabetes 468 300 8 2 100
German 700 300 20 2 100
Heart 170 100 13 2 100
Image 1300 1010 18 2 20
Ringnorm 400 7000 20 2 100
F. solar 666 400 9 2 100
Splice 1000 2175 60 2 20
Thyroid 140 75 5 2 100
Twonorm 400 7000 20 2 100
Waveform 400 4600 21 2 100

Table 2. Parameter setting

Data Kernel Batch Hplane Sphere Tcone-1 Tcone-2 Tcone-3
C β ρ θ m1 m2 m3

Banana γ1 10 2 0.5 0 0.5 0.08 0.5
B. cancer γ1 1 0.01 0.5 0 0.5 0.08 0.5
Diabetes d2 50 0.5 0.5 0 0.5 0.08 0.5
German γ1 10 0.1 0.5 0 0.5 0.08 0.5
Heart γ1 50 0.5 0.5 0 0.5 0.08 0.5
Image γ1 1000 2 0.5 0 0.5 0.08 0.5
Ringnorm γ0.1 1 0.1 0.5 0 0.5 0.08 0.5
F. solar d2 10 0.5 0.5 0 0.5 0.08 0.5
Splice γ10 1 0.1 0.5 0 0.5 0.08 0.5
Thyroid d2 1 1 0.5 0 0.5 0.08 0.5
Twonorm d4 50 2 0.5 0 0.5 0.08 0.5
Waveform γ1 1 0.1 0.5 0 0.5 0.08 0.5

[1, 10, 50, 100, 500, 1000, 2000, 3000, 5000, 8000, 10000, 50000, 100000]. (Please re-
fer to [7] for the detailed selection procedure.)

For the conventional method that uses the hyperplane (Hplane), we set β
so that the generalization ability is comparable with that of batch training.
This parameter setting is to compare the numbers of deletable data and is not
realizable. For the conventional method that uses hyperspheres (Sphere) we set
ρ = 0.5 and θ = 0 [7].

For the proposed method, since m1 and m3 are not upper bounded, we set
m1 and m3 = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 3, 5, 8, 10]. Since m2 sat-
isfies 0 ≤ m2 ≤ 1, we set m2 = [0.01, 0.03, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1]. As an initial test, using the diabetes data set, which has the
medium number of training data and the medium number of the input variables
(8 variables), the twonorm data set with 20 input variables, and waveform with
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Table 3. Performance comparison (%)

Data Term Batch Hplane Sphere Tcone-1 Tcone-2 Tcone-3
Banana Test 89.31±0.53 89.31±0.53 89.31±0.53 88.40±1.92 88.20±1.83 89.31± 0.53

Trn 91.95±1.30 91.93±1.30 91.93±1.30 91.14±2.45 91.03±2.24 91.94±1.30
Del 73.6±2.3 64.3±3.7 69.8±2.7 70.5±4.1 71.5±3.2 54.2±5.4

B. cancer Test 73.25±4.53 73.25±4.53 73.25±4.53 73.25±4.53 73.25±4.53 73.25±4.53
Trn 82.80±1.72 82.80±1.72 82.80±1.72 82.80±1.71 82.80±1.72 82.80±1.72
Del 34.6±2.7 0.1±0.3 0.1±0.2 0.0±0.1 0.0±0.2 0.0±0.0

Diabetes Test 76.46±1.85 76.46±1.85 76.46±1.85 76.44±1.88 76.44±1.88 76.39±1.90
Trn 78.48±1.22 78.48±1.22 78.48±1.22 78.52±1.18 78.48±1.23 78.43±1.27
Del 45.5±1.7 15.7±8.3 27.8±13.4 31.4±16.1 26.9±16.6 31.6±16.2

German Test 76.63±2.14 76.70±2.26 76.63±2.14 76.63±2.14 76.65±2.17 76.63±2.12
Trn 81.14±1.27 80.94±1.41 81.14±1.27 81.14±1.27 81.14±1.29 81.14±1.30
Del 43.8±1.5 33.8±5.7 35.5±3.7 30.8±6.8 33.4±4.7 21.4±6.7

Heart Test 83.68±3.39 83.68±3.39 83.68±3.39 82.84±4.58 82.83±5.57 83.34±3.43
Trn 85.95±1.92 85.95±1.92 85.95±1.92 85.29±3.90 85.32±4.00 85.74±2.18
Del 56.3±3.4 24.9±21.9 32.4±27.6 35.4±25.8 32.3±23.2 36.0±26.1

Image Test 97.14±0.48 97.12±0.47 97.13±0.48 96.30±0.71 96.48±0.50 96.03±1.11
Trn 98.60±0.18 98.60±0.17 98.60±0.18 97.82±0.44 98.08±0.31 97.41±0.80
Del 88.3±0.7 60.2±3.8 61.7±4.7 80.6±4.7 83.4±1.9 83.1±5.4

Ringnorm Test 98.41±0.10 98.41±0.10 98.41±0.10 98.41±0.10 98.41±0.10 98.41±0.10
Trn 99.91±0.15 99.91±0.15 99.91±0.15 99.91±0.15 99.91±0.15 99.91±0.15
Del 61.5±2.3 45.6±16.3 31.0±11.1 31.5±11.7 35.9±13.0 24.2±9.6

F. solar Test 68.29±1.85 68.29±1.85 68.29±1.85 67.44±2.34 68.30±1.85 67.47±2.56
Trn 68.19±1.26 68.19±1.26 68.19±1.26 67.82±1.84 68.19±1.26 67.81±1.85
Del 18.9±1.9 4.5±3.5 11.5±8.6 12.8±10.5 11.4±9.7 11.5±10.5

Splice Test 88.66±0.71 88.66±0.72 88.66±0.71 88.66±0.71 88.66±0.71 88.66±0.71
Trn 99.09±0.24 99.09±0.24 99.09±0.24 99.09±0.24 99.10±0.24 99.09±0.24
Del 26.5±1.3 11.9±10.7 13.2±12.0 13.5±12.2 13.6±12.3 8.4±7.7

Thyroid Test 96.31±1.90 96.31±1.90 96.31±1.90 95.43±2.63 95.84±2.29 95.33±4.34
Trn 99.34±0.49 99.34±0.49 99.34±0.49 98.50±2.03 98.82±1.02 97.84±4.70
Del 88.9±1.3 66.5±11.3 60.9±6.7 83.0±3.6 82.0±7.4 78.1±17.3

Twonorm Test 97.57±0.12 97.57±0.12 97.57±0.12 97.56±0.13 97.57±0.12 97.57±0.12
Trn 98.24±0.55 98.24±0.55 98.24±0.55 98.23±0.56 98.24±0.55 98.24±0.55
Del 79.1±1.6 57.5±6.4 51.2±6.8 47.6±5.8 71.3±7.5 47.4±5.6

Waveform Test 90.00±0.45 90.00±0.45 90.00±0.45 90.00±0.43 90.00±0.44 90.00±0.44
Trn 93.51±1.37 93.51±1.37 93.51±1.37 93.52±1.38 93.51±1.38 93.51±1.39
Del 61.6±2.2 36.8±28.0 38.2±25.7 37.3±25.2 39.8±26.8 34.1±23.0

21 input variables, we incrementally trained the SVM with the optimal kernel
and the optimal value of C for the above parameter setting of m1, m2, and m3

and selected m1 = 0.5, m2 = 0.08, and m3 = 0.5, by which setting sufficient
data deletion was done with the generalization performance comparable to that
of batch training.

Table 2 lists the parameter values used in the experiments. In the table, “Ker-
nel” denotes the kernel and the parameter value determined by cross-validation.
For instance, γ1 means RBF kernels with γ = 1 and d2 means polynomial ker-
nels with degree d = 2. The results are shown in “Batch,” “Hplane,” “Sphere,”
and “Tcone” columns. For the proposed method, “Tcone-i” (i = 1, 2, 3) denotes
that the parameter mi is used. From the table, the optimal value of β changes
as the classification problem changes.

Table 3 lists the results. “Test” and “Trn” rows show the average recognition
rates and their standard deviations of the test and training data when incre-
mental training is finished. The “Del” row shows the number of deleted training
data divided by the number of training data. For batch training, the number
of deleted training data is calculated by the number of training data minus the
number of support vectors. Thus, the “Del” value for batch training is the up-
per bound of that of incremental training if all the support vectors are kept by
incremental training.
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The recognition rates of the test data shown in italic are statistically different
from those of batch training with the significance level of 0.05. The deletion
ratios in boldface are the group that realizes the best deletion of data, in which
the deletion ratio of any member of the group is statistically the same.

From Table 3, Sphere and Tcone-2 show the best performance and Tcone-1,
Tcone-3, and Hplane show the second best. Although the recognition rates of
the test data for Sphere are comparable with those of batch training, those for
Tcone are in some cases lower. Thus, the parameter selection of Sphere is more
robust than that of Tcone.

6 Conclusions

In this paper, to reduce memory cost by deleting unnecessary data, we pro-
posed an incremental training method for SVMs, which is robust for rotation of
separating hyperplanes after incremental training.

Based on the fact that support vectors form vertexes of convex hulls for classes,
we use truncated hypercones to keep the data that are near the separating hy-
perplanes. We generate the truncated surface with the center being the center of
unbounded support vectors and the radius being the maximum distance between
the center and unbounded support vectors. The rotating axis goes through the
center and is perpendicular to the truncated surface. The rotating surface in-
cludes the datum, which is far away from the separating hyperplane and which
is farthest from the rotating axis. We delete data that are inside of the truncated
hypercone and keep the remaining data.

For two-class problems, we showed that, in most cases, we could delete many
training data while keeping the generalization ability comparable to that of batch
training.
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Abstract. Decomposition techniques are used to speed up training sup-
port vector machines but for linear programming support vector ma-
chines (LP-SVMs) direct implementation of decomposition techniques
leads to infinite loops. To solve this problem and to further speed up
training, in this paper, we propose an improved decomposition tech-
niques for training LP-SVMs. If an infinite loop is detected, we include
in the next working set all the data in the working sets that form the
infinite loop. To further accelerate training, we improve a working set se-
lection strategy: at each iteration step, we check the number of violations
of complementarity conditions and constraints. If the number of viola-
tions increases, we conclude that the important data are removed from
the working set and restore the data into the working set. The computer
experiments demonstrate that training by the proposed decomposition
technique with improved working set selection is drastically faster than
that without using the decomposition technique. Furthermore, it is al-
ways faster than that without improving the working set selection for all
the cases tested.

1 Introduction

Decomposition techniques [1] are widely used to speed up training of support
vector machines (SVMs) [2,3] for large size problems. Stable convergence to solu-
tions by decomposition techniques is verified both by computer experiments and
theoretical analysis [4,5]. In [5], the sequential minimum optimization technique,
which uses a decomposition technique with a working set size of two, is shown
to converge asymptotically if the most violating variables are selected.

But for a linear programming support vector machine (LP-SVM), in which
the quadratic objective function in an SVM is replaced with a linear function [6],
direct implementation of decomposition techniques sometimes leads to infinite
loops. But this phenomenon has not been discussed so far.

In this paper, we propose decomposition techniques for training an LP-SVM
that resolve infinite loops and speed up training by improved working set selec-
tion. In training an LP-SVM by decomposition techniques, first, we select the
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initial working set randomly, and optimize the subproblem. Using the primal
and dual solutions, we check if each of the training data satisfies the comple-
mentarity conditions and the constraints. And if all the training data satisfy the
complementarity conditions and the constraints, we finish training.

But if there exist training data that do not satisfy the complementarity condi-
tions or the constraints, we select the working set again. In selecting the working
set, we detect the variables, in the fixed set, that do not satisfy complementarity
conditions, and move them to the working set. And we detect the data, in the
working set, that is not support vectors of the subproblem, and move them to the
fixed set. Then, we optimize the new subproblem and iterate the algorithm until
all the training data satisfy the complementarity conditions and the constraints.

The above training method sometimes leads to infinite loops, in which the
same sequence of working sets repeatedly appears. To resolve infinite loops, if
an infinite loop is detected, we include in the new working set all the data that are
in the working sets that form the infinite loop. This working set strategy works
to resolve infinite loops but according to our experiments, many iteration steps
are spent before the solution goes into an infinite loop. Thus, to further speed
up training, we propose an improved working set selection strategy. Namely, at
each iteration step, we check the number of violations of the complementarity
conditions and constraints. If the number of violations increases at some step,
we conclude that important data were removed at the previous step of working
set selection and add those data to the next working set.

The structure of this paper is as follows. In Section 2, we summarize the
architecture of LP-SVMs, and in Section 3, we discuss the proposed method.
In Section 4, we show the simulation results using benchmark data sets and in
Section 5, we describe the conclusions.

2 Linear Programming Support Vector Machines

Let m-dimensional training inputs xi (i = 1, ...,M) belong to Class 1 or 2 and
the associated labels be yi = 1 for Class 1 and −1 for Class 2, where M is the
number of training inputs. In the normal SVMs [7], we determine the decision
function by

D(x) = wT g(x) + b, (1)

where w is an l-dimensional vector, b is a scalar, and g(x) is the mapping
function that maps m-dimensional vector x into the l-dimensional feature space.
The optimal separating hyperplane can be obtained by solving the following
quadratic programming problem:

Minimize Q(w, ξ) =
1
2
‖w‖2 + C

M∑
i=1

ξi (2)

subject to yi(wtg(xi) + b) ≥ 1 − ξi for i = 1, ...,M, (3)
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where C is the margin parameter that determines the tradeoff between the max-
imization of the margin and minimization of the classification error, and ξi is
the nonnegative slack variable for xi.

By replacing the L2-norm ‖w‖2
2 = w2

1 +w2
2 + · · ·+w2

l in the objective function
(2) with an L1-norm ‖w‖1 = |w1|+ |w2|+ · · ·+ |wl|, the SVM becomes as follows:

Minimize Q(w, ξ) =
l∑

i=1

|wi| + C
M∑
i=1

ξi (4)

subject to yi(wtg(xi) + b) ≥ 1 − ξi for i = 1, ...,M. (5)

By this formulation, for the linear kernel, i.e., g(x) = x, we can solve the problem
by linear programming. However, for the kernels other than linear kernels, we
need to treat the feature space explicitly.

To apply linear programming to the feature space, we define the decision
function in the dual form as follows [8]:

D(x) =
M∑
i=1

αiH(x,xi) + b, (6)

where αi and b take on real values. Thus, we need not use label numbers. And
H(x,x′) is a kernel function that is given by

H(x,x′) = g(x)T g(x′). (7)

The kernels that are used in our study are as follows:

– polynomial kernels: H(x,x′) = (xT x′ + 1)d, where d is a positive integer,
– RBF kernels: H(x,x′) = exp(−γ||x−x′||2), where γ is a positive parameter.

Then we consider solving the following linear programming problem:

Minimize Q(α, ξ) =
M∑
i=1

(|αi| + Cξi) (8)

subject to yj

(
M∑
i=1

αiH(xj ,xi) + b

)
≥ 1 − ξj for j = 1, . . . , M, (9)

where α = (α1, . . . , αM )T and ξ = (ξ1, . . . , ξM )T . Letting αi = α+
i − α−

i and
b = b+ − b−, where α+

i ≥ 0, α−
i ≥ 0, b+ ≥ 0, b− ≥ 0, we can solve (8) and

(9) for α, b, and ξ by linear programming. Furthermore, we introduce the slack
variables ui (i = 1, . . . , M) into (9). Then (8) and (9) become as follows:

Minimize Q(α+,α−, ξ) =
M∑
i=1

(α+
i + α−

i + Cξi) (10)

subject to

yj

(
M∑
i=1

(α+
i − α−

i )H(xj ,xi) + b+ − b−

)
+ ξj = 1 + uj for j = 1, . . . , M. (11)
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And the decision function (6) becomes

D(x) =
M∑
i=1

(α+
i − α−

i )H(x,xi) + b+ − b−. (12)

But we must notice that since w =
∑M

i=1 αi g(xi), minimization of the sum
of |αi| does not lead to maximization of the margin measured in the L1 norm.

Let (10) and (11) be a primal problem. Then the dual problem is given as
follows:

Maximize
M∑
i=1

zi, (13)

subject to
M∑
i=1

yiH(xi,xj)zi + v+
j = 1 for j = 1, . . . , M, (14)

M∑
i=1

yiH(xi,xj)zi = v−
j − 1 for j = 1, . . . , M, (15)

M∑
i=1

yizi = 0, (16)

zj +wj = C for j = 1, . . . , M, (17)

where zi ≥ 0 (i = 1, . . . , M) are dual variables, and v+
i ≥ 0, v−

i ≥ 0, wi ≥ 0 (i =
1, . . . , M) are slack variables.

By this formulation, in the primal problem, the number of variables is 4M +2
and the number of equality constrains is M . In the dual problem, the number of
variables is 4M and the number of equality constrains is 3M +1. Thus for a large
number of training data, training becomes slow even by linear programming.
Therefore, we need to use decomposition techniques.

We can solve above primal problem (10) and (11) or dual problem (13)–(17)
by linear programming. If we optimize a linear programming problem by the
simplex method, we need only to solve the primal or dual problem. If we solve
one, the other is also solved [10,11]. Therefore, in this paper, we solve only the
primal problem.

By solving (10) and (11), we obtain the primal and dual solutions. If these
solutions are optimal, they satisfy the following complementarity conditions:

α+
i v+

i = 0 for i = 1, . . . , M, (18)
α−

i v−
i = 0 for i = 1, . . . , M, (19)

ξiwi = 0 for i = 1, . . . , M, (20)
uizi = 0 for i = 1, . . . , M. (21)

The training data xi that satisfy

αi = α+
i − α−

i = 0, (22)
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ξi = 0, (23)
zi = 0, (24)

do not affect the solution even if they are removed. Namely, the training data
xi that do not satisfy (22)–(24) are support vectors.

3 Proposed Method

In this section, we discuss the decomposition technique for the LP-SVM. If we
directly implement the strategy for working set selection developed for normal
SVMs [1], the solution often goes into an infinite loop. Even if it does not, the
convergence is usually slow. To overcome these, in Subsection 3.1, we discuss a
strategy for working set selection to avoid infinite loops, and in Subsection 3.2,
we further refine the working set selection to speed up training.

3.1 Decomposition Techniques for LP-SVMs

In decomposition techniques for an LP-SVM, we iterate optimizing subproblems
that are smaller than the original optimization problem (10) and (11). Namely,
we decompose the index set T = {1, . . . , M} into two sets W and F , where W is
a working set and F is a fixed set. Here, W ∪ F = {1, . . . , M} and W ∩ F = φ.
Then we decompose α+ = {α+

i |i = 1, . . . , M} into α+
W = {α+

i |i ∈ W} and α+
F =

{α+
i |i ∈ F}. Likewise, we decompose the remaining variables, i.e., decompose α−

into α−
W and α−

F , ξ into ξW and ξF , u into uW and uF , v+ into v+
W and v+

F ,
v− into v−

W and v−
F , w into wW and wF , and z into zW and zF .

And we define the following subproblem. Fixing α+
F and α−

F ,

minimize Q(α+
W ,α−

W , ξW ) =
∑
i∈W

(α+
i + α−

i + Cξi) (25)

subject to

yj

(∑
i∈W

(α+
i − α−

i )H(xi,xj) + b+ − b− +
∑
i∈F

(α+
i − α−

i )H(xi,xj)

)
+ ξj

= 1 + uj for j ∈ W. (26)

Solving (25) and (26), we obtain α+
W , α−

W , ξW , uW , v+
W , v−

W , wW , and zW .
These vectors constitute the optimal solution for the subproblem associated with
the working set W . But the optimal solution for the subproblem may not be
optimal for the entire problem (10) and (11). To check if the obtained solution is
optimal for the entire problem, we need to determine the values for the variables
in the fixed set.

First, we obtain primal variables α+
F , α−

F , ξF , and uF . Fixing α+
F = 0 and

α+
F = 0, we obtain ξF and uF by the following constraints

yj

⎛
⎝ ∑

i∈W,F

(α+
i − α−

i )H(xi,xj) + b+ − b−

⎞
⎠+ ξj = 1 + uj for j ∈ F. (27)
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Here, (27) is a subset of (11). Using the decision function (12), the constraints
(27) become

yjD(xj) + ξj = 1 + uj for j ∈ F. (28)

Then we obtain ξF and uF as follows:

1. If yjD(xj) > 1, ξj = 0. Therefore, from (28), uj = yjD(xj) − 1.
2. If yjD(xj) ≤ 1, ξj = 1 − yjD(xj). Therefore from (28), uj = 0

Secondly, we obtain the dual variables v+
F , v−

F , wF , and zF . Fixing zF = 0, we
obtain v+

F , v−
F , and wF by the following constraints:

v+
j = 1 −

M∑
i=1

yiH(xi,xj)zi for j ∈ F, (29)

v−
j = 1 +

M∑
i=1

yiH(xi,xj)zi for j ∈ F, (30)

wj = C for j ∈ F . (31)

Here, (29)–(31) are obtained from (14), (15), and (17). We must notice that
when we obtain v+

j , v−
j (j ∈ F ) from (29) and (30), they may take negative

values.
In this way, we obtain α+

F , α−
F , ξF , uF , v+

F , v−
F , wF , and zF . Next, we check

if each of the variables satisfies the complementarity conditions (18)–(21) and
the constraints. But after solving the subproblem whose variables constitute
the working set, the variables satisfy both the complementarity conditions and
the constraints because they are the optimal solution of the subproblem. Thus
we need to check only the variables in the fixed set. As is apparent from the
foregoing discussions, the variables in the fixed set satisfy the constraints (27),
(29)–(31), but v+

j , v−
j (j ∈ F ) may take negative values. This is the violation

of the constraints v+
j ≥ 0 and v−

j ≥ 0. Furthermore, variables in the fixed set
may violate the complementarity conditions (18)–(21). Therefore, we detect the
variables that do not satisfy the complementarity conditions or the constraints
in the fixed set. If they exist, we add them to the working set. Meanwhile, in the
working set, we detect the data that are not support vectors of the subproblem,
i.e., the data that satisfy (22)–(24). And we move the data that are not support
vectors of the subproblem from the working set to the fixed set. And we iterate
training until all the training data satisfy the complementarity conditions and
the constraints.

We also finish training in the case where the value of the objective function
changes little from the previous iteration, i.e., |Qk − Qk−1| < ε, where Qk is
the value of the objective function at the kth iteration and ε is a small positive
parameter.

The above mentioned working set selection strategy, however, often leads to
an infinite loop. In the infinite loop, the same working set is selected repeatedly.
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The detail of the infinite loop is as follows. Let the working set sequence be

· · · , Wk, Wk+1, · · · , Wk+t, Wk+t+1, Wk+t+2, · · · ,Wk+2t+1, · · · ,

where Wk is the working set at the kth iteration. If

Wk = Wk+t+1, Wk+1 = Wk+t+2, · · · ,Wk+t = Wk+2t+1,

the same sequence of working sets is repeated infinitely. Namely, an infinite loop
occurs. Infinite loops occur because some data that are removed at some iteration
step violate the complementarity conditions or constraints in the subsequent step
and move back to the working set. Thus the simplest way to avoid an infinite
loop is as follows. If we find an infinite loop at the (k + 2t + 1)th iteration, we
set Wk+2t+2 = Wk ∪ Wk+1 ∪ · · · ∪ Wk+t.

According to the above discussion, a procedure for training an LP-SVM using
the decomposition techniques that avoids infinite loops is as follows.

Step 1
We initialize α+ = 0, α− = 0, z = 0, and k = 1, where k is the iteration
number.

Step 2
We set q points from the training data set to W1, where q is a positive integer
and W1 is an initial working set.

Step 3
We optimize the subproblem for the working set Wk.

Step 4
We obtain variables in the fixed set by (28)–(31).

Step 5
We check if each of the training data in the fixed set satisfies the comple-
mentarity conditions (18)–(21) and the constraints v+

i ≥ 0, v−
i ≥ 0 (i =

1, . . . , M). If there exist training data that violate the complementarity con-
ditions or the constraints, we go to Step 6. If all the training data satisfy
the complementarity conditions and the constraints or |Qk − Qk−1| < ε, we
finish training.

Step 6
We check if the infinite loop exists. If it exists, we add all the data in the
working sets that form the infinite loop to the next working set Wk+1. And
we add 1 to k and go to Step 3. Otherwise we go to Step 7.

Step 7
In the fixed set, we detect the variables that violate the complementarity
conditions or the constraints, and move at most q points to the working set
Wk+1. In the working set, we detect the data that are not support vectors
of the subproblem, and move them to the fixed set. And we add 1 to k and
go to Step 3.
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3.2 Improving Working Set Selection

The decomposition technique for an LP-SVM discussed in Subsection 3.1 can
resolve infinite loops. But according to our experiments, usually an infinite loop
appears after long iteration steps. Therefore, if an infinite loop appears, training
is usually very slow. In this subsection, we discuss how to accelerate training by
improving the working set selection strategy.

The data that are support vectors of the entire problem are very important
because if all of these data are in the working set, the optimal solution for the
subproblem is the optimal solution for all the training data. In selecting a working
set, it often occurs that these important data, i.e., support vectors of the entire
problem, go out of the working set. But in many cases, these important data
return back to the working set in the subsequent iteration step. In particular,
when an infinite loop occurs, these important data repeatedly go out of and
return back to the working set.

Let Vk be the number of data that violate the complementarity conditions
or the constraints at the kth iteration. In general, Vk is large in early stage
of training. And as training proceeds while selecting the working set, Vk gets
smaller and smaller until it reaches 0, at which step we finish training. But if we
observe the value of Vk during training, it sometimes increases. This is attributed
to the fact that important data for training go out of the working set.

Therefore, when Vk increases, i.e., Vk ≥ Vk−1, we can conclude that the data
that were in Wk−1 went out of Wk−1 at the (k − 1)th iteration and violate the
complementarity conditions or the constraints after training using Wk. That is,
these data try to go back to the working set soon after they go away since these
data are important for training. Therefore, our new strategy is to return back
these data to the working set Wk+1. Here, we must notice that for Vk ≥ Vk−1

we do not remove any data from Wk. We only return back data into the working
set. This is because if we remove the data from Wk, important data may be
removed.

By implementing this process, we can stop important data from going in and
out of the working set. Thus, it leads to accelerating training. A procedure for
training an LP-SVM using the improved decomposition technique is as follows.

Step 1
We initialize α+ = 0, α− = 0, z = 0, and k = 1, where k is the iteration
number.

Step 2
We set q points from the training data set to W1, where q is a positive integer
and W1 is an initial working set.

Step 3
We optimize the subproblem for the working set Wk.

Step 4
We obtain variables in the fixed set by (28)–(31).

Step 5
We check if each of the training data in the fixed set satisfies the comple-
mentarity conditions (18)–(21) and the constraints v+

i ≥ 0, v−
i ≥ 0 (i =
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1, . . . , M). If there exist training data that violate the complementarity con-
ditions or the constraints, we go to Step 6. If all the training data satisfy
the complementarity conditions and the constraints or |Qk − Qk−1| < ε, we
finish training.

Step 6
We check if we are in the infinite loop. If so, we add all the data in the
working sets that form the infinite loop to the next working set Wk+1. And
we add 1 to k and go to Step 3. Otherwise we go to Step 7.

Step 7
If Vk < Vk−1, we go to Step 8. Otherwise, we detect the data that were
in Wk−1 but went out of Wk−1 at the (k − 1)th iteration and violate the
complementarity conditions or the constraints at the kth iteration. If there
exist such data, we add these data to the working set Wk+1. And we add 1
to k and go to Step 3. But if no such data exist, we go to Step 8.

Step 8
In the fixed set, we detect the variables that violate the complementarity
conditions or the constraints, and move at most q points to the working set
Wk+1. From the working set, we detect the data that are not support vectors
of the subproblem and move them to the fixed set. And we add 1 to k and
go to Step 3.

4 Simulation Experiments

In this section, we show two experimental results. In the first experiment, we
show the effectiveness of the improved decomposition techniques discussed in
Subsection 3.2 over training without decomposition. In the second experiment,
we compare the improved decomposition technique with the original decompo-
sition technique discussed in Subsection 3.1.

Linear programming can be solved either by the simplex method or the primal-
dual interior-point method. But in our experiments, we use the “lp.c” [9], which
is a program for the simplex method.

The data sets used to evaluate the performance are multiclass data sets: the
numeral data for license plate recognition [12], the blood cell data [13], the
thyroid data [14], and hiragana data [15,16]. Table 1 shows the numbers of
inputs, classes, training data, and test data of the benchmark data sets. We use
one-against-all support vector machines [7]. Therefore, all the training data are
used for training.

Table 1. Benchmark data specification

Data Inputs Classes Trn. Test

Numeral 12 10 810 820
Blood cell 13 12 3097 3100
Thyroid 21 3 3772 3428
Hiragana-50 50 39 4610 4610
Hiragana-13 13 38 8375 8356
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4.1 Effect of the Decomposition Techniques

We evaluate the speedup by using the improved decomposition technique.
Figure 1 shows the training time for the change of q, namely the number of

data added to the working set, using the blood cell data. We use polynomial
kernels with d = 3 and fix the margin parameter C = 1000. From the figure, it
is seen that training is accelerated most when q is around 100.

Table 2 shows the optimum value of q and the speedup by the improved decom-
position techniques. “Dec.,” “No-Dec.,” and “Speedup” denote that the decom-
position technique is used, not used, and the speedup obtained by the improved
decomposition technique. From the table, it is seen that we can speed up training
drastically by the improved decomposition technique for all the data sets.
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Fig. 1. Training time for the change of q

Table 2. Optimum value of q and the
speedup by the improved decomposition
techniques

Data Term Dec. No-Dec.

Numeral Optimum q 30 –
Rate[%] 99.51 99.51
Time[s] 1.2 361
Speedup 301 1

Blood cell Optimum q 110 –
Rate[%] 92.58 92.58
Time[s] 536 45840
Speedup 86 1

Thyroid Optimum q 90 –
Rate[%] 97.17 97.17
Time[s] 840 58887
Speedup 70 1

4.2 Comparison Between Original and Improved Decomposition
Techniques

In Table 3, we list performance comparison of the original and improved decom-
position techniques. We use polynomial kernels with d = 3 and RBF kernels
with γ = 1. The value of C is 10 and 10000. We set q as 80 for all the cases.
From the table, it is seen that the improved decomposition techniques is faster
than the original decomposition techniques for all the cases.

Figures 2 and 3 show the numbers of violations of complementarity conditions
and constraints for the original and improved methods, respectively. The results
are obtained for Class 1 against others using the numeral data with polynomial
kernels with d = 3 and C = 1000. In Fig. 2, the numbers of violations fluctuate
very much and the convergence is very slow. As explained previously, this is
because the important data are removed from the working set. But in Fig. 3,
the fluctuation is quickly subdued because important data are restored when the
number of violations increases.
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Table 3. Comparison between original and improved decomposition techniques

Original Improved
Data Parameter Rate[%] Time[s] Rate[%] Time[s] Speedup

Numeral d3, C10 89.39(92.47) 15.5 99.51(100) 1.8 8.6
d3, C10000 99.51(100) 13.9 99.51(100) 1.8 7.6
γ1, C10 99.63(100) 6.2 99.63(100) 1.8 3.4
γ1, C10000 99.63(100) 2.1 99.63(100) 2.0 1.1

Blood cell d3, C10 91.77(95.12) 344 91.77(95.12) 268 1.3
d3, C10000 92.19(99.19) 6481 92.23(99.19) 1180 5.5
γ1, C10 91.00(93.00) 300 91.00(93.00) 219 1.4
γ1, C10000 91.90(99.13) 8760 91.87(99.16) 1136 7.7

Thyroid d3, C10 95.74(96.77) 5498 95.74(96.77) 4294 1.3
d3, C10000 97.20(99.47) 3204 97.20(99.47) 749 4.3
γ1, C10 95.01(95.55) 3202 95.01(95.55) 2365 1.4
γ1, C10000 97.43(99.50) 8891 97.43(99.50) 1323 6.7

Hiragana-50 d3, C10 98.61(100) 21031 98.59(100) 748 28.1
d3, C10000 92.75(94.36) 20467 98.59(100) 764 26.8
γ1, C10 98.24(100) 537 98.24(100) 261 2.1
γ1, C10000 98.24(100) 463 98.24(100) 249 1.9

Hiragana-13 d3, C10 99.10(99.87) 10612 99.88(99.15) 927 11.4
d3, C10000 95.75(96.73) 26179 98.96(100) 976 26.8
γ1, C10 98.86(99.16) 2713 98.84(99.15) 743 3.7
γ1, C10000 92.29(100) 22555 99.28(100) 917 24.6
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Fig. 2. The number of violations dur-
ing training for the original method
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ing training for the improved method

5 Conclusions

In this paper, we formulated the decomposition technique for the LP-SVM
and proposed resolving the infinite loop that occurs during training. Further-
more, we proposed an improved working set selection strategy to speed up
training.
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In the decomposition techniques for LP-SVMs, we select the working set using
the complementarity conditions, but unlike the original SVMs this often leads
to an infinite loop. When an infinite loop is detected, we resolve the infinite
loop by adding all the data in the infinite loop to the working set. And to speed
up training, we check if the number of the violating data is increased. If so, we
prohibit the important data from going out of the working set.

Using the benchmark data sets, we showed that we can speed up training by
the decomposition techniques and that the improved decomposition technique
can train an LP-SVM faster than the original decomposition technique.
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Barbara Spillmann, Michel Neuhaus, and Horst Bunke

Institute of Computer Science and Applied Mathematics, University of Bern,
Neubrückstrasse 10, CH-3012 Bern, Switzerland

Abstract. Multiple classifier systems are a well proven and tested in-
strument for enhancing the recognition accuracy in statistical pattern
recognition problems. However, there has been reported only little work
on combining classifiers in structural pattern recognition. In this paper
we describe a method for embedding strings into real vector spaces based
on prototype selection, in order to gain several vectorial descriptions of
the string data. We present methods for combining multiple classifiers
trained on various vectorial data representations. As base classifiers we
use nearest neighbor methods and support vector machine. In our exper-
iments we demonstrate that this approach can be used to significantly
improve the classification accuracy of string patterns.

1 Introduction

Building multiple classifier systems (MCSs) has been a topic of intensive research
for many years [1,2]. The goal is to outperform the classification accuracy of a set
of individual classifiers by combining them in an appropriate way. That is, one
aims at creating a set of classifiers with a large diversity such that the weakness
and errors of one classifier are compensated by other classifiers. A large number
of methods for producing multiple classifier systems have been proposed and the
success of these methods has been impressively demonstrated [3,4,5,6,7].

However, almost all papers in the field of multiple classifier systems have
concentrated on vectorial pattern representations. Almost no work using struc-
tural data, such as strings or graphs, has been reported in the literature [8,9,10].
Using a structural representation of patterns rather than feature vectors has
some advantages and has been proven to be a powerful means for many appli-
cations [11,12,13,14]. In the current paper we focus on pattern representations
in terms of strings, i.e. sequences of symbols. To perform recognition tasks, one
needs to define a distance measure, which is, in case of strings, usually the edit
distance [15]. String edit distance allows one to implement nearest neighbor clas-
sifiers. Consequently, building multiple classifier systems is normally restricted
to the creation of an ensemble of k-nearest-neighbor classifiers (kNN).

In this paper, we present a multiple classifier approach applicable to string
patterns. The key idea is to use the transformation method proposed in [16,17]
for embedding strings into dissimilarity spaces by means of prototype selection.
This method has also been used in [18]. It is a general approach that is suitable
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to make the whole spectrum of classifiers known from statistical pattern recogni-
tion available to string representations. It has been shown that the classification
accuracy of strings can be significantly increased by applying such an embed-
ding and by classifying the vectorial data gained from this procedure. In this
paper we go one step further. As each concrete transformation from the string
to the vectorial domain depends on various parameters, it is straightforward to
generate several such embeddings by varying these parameters. Then the vecto-
rial representations obtained from different embeddings are utilized to build a
classifier ensemble.

This paper is organized as follows. Section 2 gives an overview of the embed-
ding mechanism of strings into vector spaces. In Section 3, the architecture of
our multiple classifier systems is described, including the creation of the classifier
ensembles. Experimental results of the method, applied to handwritten digits,
are discussed in Section 4. Finally, in Section 5 some conclusions are drawn.

2 From the String Domain to the Vector Space

Let A be a finite alphabet of symbols and A∗ be the set of all strings over A.
Furthermore, let ε denote the empty symbol. A string can be modified by edit
operations: The replacement of a symbol a ∈ A by b ∈ A is called a substitution,
and if a = ε or b = ε we term it an insertion or deletion, respectively. In order to
measure the dissimilarity of strings, a cost c is assigned to each edit operation.
Given a sequence S = e1, . . . , en of edit operations, its cost is defined as c(S) =∑n

i=1 c(ei). Considering two strings x, y ∈ A∗ and all sequences of edit operations
that transform x into y, the edit distance, d(x, y), of x and y is the sequence with
minimum cost. The edit distance can be computed by dynamic programming in
O(nm) time and space, where n and m are the lengths of the two strings under
consideration [15].

With the notation introduced above, a transformation of a string pattern
into a vector representation can be defined. The transformation is based on a
set of selected strings, the prototypes. A string is transformed into a vector by
calculating its edit distances to all prototypes, where each resulting distance
represents one vector component. More formally, let X ⊂ A∗ denote a set of
string patterns over the alphabet A, and P = {p1, . . . pn} ⊂ X a set of selected
prototypes. For a given string x ∈ X a vectorial description of x is defined by
the transformation tPn :

tPn : X → R
n with tPn (x) = (d(x, p1), . . . , d(x, pn)) (1)

As a consequence, the number of prototypes, n, defines the dimensionality of the
vector space, R

n.
Obviously, the characteristics of the transformation depend on the size of P

as well as on the patterns selected as prototypes. An algorithm that selects the
prototypes pi (i = 1, . . . , n) out of X is called prototype selection strategy s.
With s(X ) = P we denote the procedure of building P out of X by applying s.
Examples of different selection strategies, such as the border prototype selector,



Multiple Classifier Systems for Embedded String Patterns 179

the center prototype selector, the spanning prototype selector and the k-medians
prototype selector, have been discussed in [16,18].

In order to make available classifiers from statistical pattern recognition to
string classification by means of the transformation procedure introduced above,
the transformation tPn is applied to each element of a given dataset. After the
transformation is accomplished and the whole dataset is embedded into a vector
space, one can train any classifier suitable for vector spaces. Experiments with
the kNN classifier and the support vector machine have been described in [18].

3 Multiple Embedding MCS

The idea underlying the construction of our multiple classifier system is to apply
different prototype selection strategies. Each individual selection strategy yields
a different embedding of the original string data, i.e. a different set of vectors.
For each such set of vectors, an individual classifier is constructed. Eventually
these individual classifiers are combined in a multiple classifier system.

3.1 Triple Embedding MCS

The prototype selection strategies used in this work are the following.

Spanning Prototype Selector (s-ps) [18]. This is a method that selects
prototypes, such that they are evenly distributed over the given set of strings.
The procedure is the following. The first prototype selected is the set median
string, an approximation of the generalized median string [19]. The next pro-
totypes are iteratively determined by selecting the string with largest sum
of the edit distances to the previously selected prototypes.

Random k-Medians Prototype Selector (rkm-ps). This strategy has
been applied in [18], where it is referred to as k-median prototype selector. It
performs a k-medians clustering and defines the resulting cluster centers to
be the prototypes. An important point is that the initial cluster centers are
chosen randomly. Thus, the algorithm is non-deterministic.

Spanning k-Medians Prototype Selector (skm-ps). This method is a de-
terministic variant of the rkm-ps. The initial cluster centers are not chosen
randomly, but as specified by the s-ps method. That is, the prototype selec-
tion according to the s-ps method is improved with respect of the k-medians
algorithm’s clustering properties.

One of the base classifiers applied in this work is the kNN classifier (with
Minkowski metric). By applying any of the three strategies s-ps, rkm-ps and
skm-ps we can transform a dataset of string patterns into a vector space. For-
mally, we denote a set of string patterns by X = {x1, . . . , xN} and sets of pro-
totypes by Ps-ps , Prkm-ps , Pskm-ps ∈ X , where the indices indicate the selection
strategy used for their construction. We use parameters nkNNs-ps , nkNNrkm-ps and
nkNNskm-ps to refer to the number of prototypes, and define the following three
transformation functions:
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Fig. 1. Example classification of a handwritten digit with the triple embedding MCS
and the kNN classifier as base classifier (TE-MCS, kNN )

tPs-ps
nkNNs-ps

: X → R
nkNNs-ps

t
Prkm-ps
nkNNrkm-ps

: X → R
nkNNrkm-ps

t
Pskm-ps
nkNNskm-ps

: X → R
nkNNskm-ps

(2)

By applying the transformations (2) to the whole dataset X we get three vecto-
rial representations of X , denoted by XkNNs-ps , XkNNrkm-ps and XkNNskm-ps , respec-
tively. For each of these three sets a specific classifier of the k-nearest-neighbor type,
denoted by CkNNs-ps , CkNNrkm-ps and CkNNskm-ps , is constructed. When classifying
a pattern xi ∈ X , each classifier produces a class prediction. Given an unknown
input pattern xi, the combination of the three classifiers’ outputs results in the fi-
nal prediction of the system, ckNN(xi).We call this setup triple embedding MCS for
the kNN classifier (TE-MCS, kNN). Fig. 1 gives an illustration of this setup with
an example of a handwritten digit “2” to be recognized.

We can now analogously build a triple embedding MCS using as base classifier a
support vector machine (SVM) with radial basis function as kernel function. The
SVM [20,21] is a classifier for statistical data that makes use of a kernel function
to transform vector data into higher-dimensional feature spaces. The key idea is to
find a separating hyperplane in the feature space with a maximal margin between
the classes. This is an optimization problem usually solved by quadratic program-
ming. For this classifier type we define the transformation functions:

tPs-ps
nSVM-Rs-ps

: X → R
nSVM-Rs-ps

t
Prkm-ps
nSVM-Rrkm-ps

: X → R
nSVM-Rrkm-ps

t
Pskm-ps
nSVM-Rrkm-ps

: X → R
nSVM-Rrkm-ps

(3)



Multiple Classifier Systems for Embedded String Patterns 181

We get another three embeddings into vector spaces XSVM-Rs-ps , XSVM-Rrkm-ps

and XSVM-Rskm-ps . Using these embeddings, an ensemble of three SVM classi-
fiers with radial basis function, CSVM-Rs-ps , CSVM-Rrkm-ps and CSVM-Rskm-ps , are
trained. This ensemble yields output cSVM-R(xi) for an input pattern xi ∈ X .
We call this setup triple embedding MCS for the SVM with radial basis function
(TE-MCS, SVM-R).

The third setup of that type is the support vector machine with linear kernel
function as base classifier. We define the transformations:

tPs-ps
nSVM-Ls-ps

: X → R
nSVM-Ls-ps

t
Prkm-ps
nSVM-Lrkm-ps

: X → R
nSVM-Lrkm-ps

t
Pskm-ps
nSVM-Lskm-ps

: X → R
nSVM-Lskm-ps

(4)

and denote the transformed datasets by XSVM-Ls-ps , XSVM-Lrkm-ps and
XSVM-Lskm-ps . The classifiers to be trained are called CSVM-Ls-ps , CSVM-Lrkm-ps

and CSVM-Lskm-ps , and the resulting class prediction for a string xi ∈ X is ab-
breviated with cSVM-L(xi). This MCS is referred to as triple embedding MCS for
the SVM with linear kernel function (TE-MCS, SVM-L).

3.2 Hierarchical Multiple Embedding MCS

In the previous section, three MCSs have been presented that use different string
embeddings to generate ensembles. However, the classifier ensembles are always
of the same type. Now, we want to make use of the possibility of applying dif-
ferent classifier types, i.e. we define an MCS that aggregates the kNN, the SVM
with radial basis function, and the SVM with linear kernel function. The idea is
to build a hierarchical system that consists of the three triple embedding MCS
described in Section 3.1. In order to do so we simply combine the class predic-
tions, ckNN(xi), cSVM-R(xi) and cSVM-L(xi), of the three TE-MCS. Obviously, this
MCS uses a total of nine different embeddings into vector spaces. Let’s call this
setup hierarchical multiple embedding MCS (HME-MCS). Fig. 2 illustrates the
recognition of a string pattern using an HME-MCS.

4 Experimental Results

In this section we provide experimental results for the triple embedding MCSs
and the hierarchical multiple embedding MCS introduced in Section 3. For our
experiments we use the Pendigits database described in [22] (original, unnormal-
ized version). The original version consists of 10,992 instances of handwritten
digits labeled with one of the ten class names “0” to “9”, where 7,494 digits are
used for training and 3,498 for testing (see Fig. 3). Each digit is originally given
as a sequence of two-dimensional points. Certainly, in case of handwritten digits
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Fig. 2. Example classification of a handwritten digit with the hierarchical multiple
embedding MCS (HME-MCS )

it might also be useful to directly extract features instead of extracting a suitable
string representation. However, as we want to demonstrate the feasibility and
the possible power of our multiple classifier approach, the Pendigits dataset can
be regarded as an exemplary representative for any set of string patterns.

To obtain a suitable string representation, each digit curve is approximated
by a sequence of vector segments of fixed length l, such that each start and end
point lies on the original curve. An optimal value of l is determined on a valida-
tion set (see below) by performing a k-nearest-neighbor classification with the
edit distance as a distance measure. Given the sequence of vector segments as
a string representation, the substitution costs are defined as the absolute value
of the vector difference to the power of qv, where qv is an arbitrary positive real
number. As deletion and insertion costs we take the arithmetic mean of the ex-
tremal values (0 and (2l)qv ) of the substitution costs, which is 2qv−1lqv . This cost
function is referred to as vector cost function. Another way of defining a string
representation is to consider the sequence of angles between pairs of successive
vector segments. The costs assigned to the edit operations are constantly set
to 0 ≤ qa ≤ π

2 in case of angle insertions and deletions, and for substitutions
the costs are given by the absolute difference between the angles. We call this
cost function angle cost function. Notice that also the values of the cost function
parameters qv and qa are optimized on the validation set.

Our experimental evaluation consist of six independent runs, where three of
them use a vector-based string representation, and the other three use an angle-
based one. We use three different splits into training, test and validation set.
The first split, referred to as pen1, follows the original division into training and
test set, where one fifth of the training set is used for validation. The second
and third split, pen2 and pen3, are further setups, where the size of each set is
approximately the same, but different partitions have been used. The validation
set is used for the purpose of optimizing the following parameters:
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Fig. 3. Example patterns of the Pendigits dataset with the class labels
“1”, “2” and “3”

– String representation parameters qv, qa, and l. To find appropriate
values of these parameters we perform a k-nearest-neighbor classification
in the string domain and use the edit distance with either the angle cost
function or the vector cost function. Once these parameters are optimized,
they are kept unchanged for the rest of the experiment.

– Dimensionality parameters ncs , where c ∈ {kNN, SVM-R, SVM-L} and
s ∈ {s-ps, rkm-ps, skm-ps}. They determine the dimensionality of the vector
spaces. Practically, we transform the validation set to various vector spaces
with the dimensions 50, 100, 150, 200, 300, 400, 500, 800, 1000. In case of
the angle cost function, also the values 1500 and 2000 are evaluated. The
optimized values are determined by the classifier in the vector space. Once
optimal values are found, the transformations tPs

ncs
are applied, i.e. the whole

dataset, including the elements of the training and test set, are embedded
into vector spaces.

– Classifier parameters for the kNN classifier and the support vector ma-
chines. For each vectorial representation Xcs a classifier Ccs is trained on the
validation set. For example, in case of the kNN this includes the number of
nearest neighbors k and a Minkowski metric parameter.

– Combination rule. Normally, in a multiple classifier system, each partici-
pating classifier casts one vote, that is, each one chooses the most plausible
class. Afterwards these votes have to be combined. There has been much of
research on combining decision results in past years [23]. In this work, the
classifiers’ results are combined by the following three methods.

The plurality voting method decides for the class which reaches the most
votes among the involved classifiers [24]. It is a simple voting mechanism that
only counts the occurrence of each class label output by a classifier. A similar
voting method is the runoff voting where the voting process is performed in
two steps [25]. First, each classifier votes for its most plausible class. The
two candidates with the highest number of votes get another chance, and
each classifier can vote for one of those two in a second round. The one with
the most votes among the two wins the voting. A method different from the



184 B. Spillmann, M. Neuhaus, and H. Bunke

Table 1. Recognition rates for the triple embedding MCSs and the hierarchical multiple
embedding MCS using the angle cost function, where sequences of angles are used for
the string representation. The labels pen1, pen2 and pen3 denote three different splits
of the data into training, test and validation set.

pen1 pen2 pen3
kNN string domain 88.56 92.48 92.71
TE-MCS with kNN 90.62 92.96 91.86
TE-MCS with SVM-R 94.77 96.24 95.59
TE-MCS with SVM-L 93.85 95.23 95.33
HME-MCS 94.68 96.48 95.86

Table 2. Recognition rates for the triple embedding MCSs and the hierarchical multiple
embedding MCS using the vector cost function, where sequences of vectors are used for
the string representation. The labels pen1, pen2 and pen3 refer to the same splits of
the data into training, test and validation set as in Tab. 1.

pen1 pen2 pen3
kNN string domain 97.48 99.33 99.33
TE-MCS with kNN 97.57 99.36 99.01
TE-MCS with SVM-R 98.20 99.55 99.55
TE-MCS with SVM-L 97.74 99.60 99.33
HME-MCS 98.31 99.68 99.57

two methods mentioned above is the Borda count [26,27]. It belongs to the
category of ranking methods, and is based on a complete preference ranking
from all classifiers over all classes. For each class the mean rank is computed.
Then the top ranked class is declared the winner of the voting.

The validation set is used to determine the best voting strategy among
these three methods. The method with highest performance on the validation
set is then selected to classify the test set.

The training set is used to select the set of prototypes P from, i.e. the set of
prototypes P is always a subset of the training set. And of course, it is also
used for the training of the classifiers. In case of the kNN classifier, the nearest
neighbors are selected from the whole training set, while for the SVM the support
vectors are chosen from the training set.

The final results are produced on the test set. In Tab. 1 the results on the
test set for the string representation with angle cost function are listed. Tab. 2
shows the results for the case of vector cost function. The first row shows the
recognition results achieved with a kNN classifier in the original string domain,
with optimized cost function parameters qv, qa and l. These three classification
results shown in the first row are used as reference values for the classification
in the vector domain and are meant to be outperformed by the multiple clas-
sifier systems presented in this paper. In rows 2 to 4, the results of the triple
embedding MCSs with the base classifiers kNN, SVM-R, and SVM-L are listed.
The results for the hierarchical multiple embedding MCS can be found in row 5.
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Recognition rates printed in bold face refer to a statistically significant improve-
ment compared to the string classification (row 1) at a significance level of 0.95.
Note that the evaluation of each single classifier used for our multiple classifier
systems has been presented in [18], where also the detailed classification results
can be found.

The first point to notice is that 15 out of 18 experiments for the triple embed-
ding MCS clearly outperform the classification in the string domain. There are
only two setups, all based on the pen3 split, where the the kNN classifier in the
string domain performs better.

All HME-MCS have statistically significant better recognition rates than the
string domain classification. And in 5 of 6 cases, they outperform all three TE-
MCS from which they are built. Only in the pen1 setup with angle cost functions,
the recognition rate of the HME-MCS is slightly below the TE-MCS with the
SVM-R base classifier. In all the other cases, the experiments with the HME-
MCS provide the best results. In contrast to the TE-MCSs the HME-MCS
consists of fundamentally different classifiers. Whereas the TE-MCS are based on
an ensemble of the same classifier type, the HME-MCS provides a combination of
kNN and support vector machine classification. We conclude that the embedding
of string patterns into vector spaces using prototype selection allows one to
build classifiers of essential diversity. By combining their results the traditional
nearest-neighbor string classification can be significantly improved.

In [28], several MCS approaches have been tested on the same data. The
methods bagging, boosting, random subspace, random tree B, random forest-lg,
random forest-1 and random forest-2 were investigated by applying a 10-fold
cross-validation. The ensembles were built using nine sets, the remaining set
was used for testing, and the Borda count method applied for combination. The
best result, 99.30, was achieved with the random subspace method. However,
due to differences in the test procedure one has to be careful comparing these
numbers to the results in Tab. 1 and 2. Yet we can state that two of three HME-
MCS tests and five of nine TE-MCS tests with vector cost function outnumber
the 99.30% correct recognition rate of the random subspaces method reported
in [28].

5 Conclusions

In the present paper we propose a method for creating multiple classifier systems
for string patterns. We apply a transformation procedure to embed strings into
real vector spaces based on prototype selection. By selecting and applying three
different selection strategies we gain vectorial representations for the string data.
Given various vector space embeddings, kNN classifiers with Minkowski metric
and SVM classifiers with radial basis function and linear kernel function are
trained and combined. In a number of experiments we show that especially the
combination of different classifier types leads to significantly better classifica-
tion results than a nearest neighbor classification in the original string domain.
This shows that our method can be an effective means to improve string clas-
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sification. In the future, we would like to investigate further combinations of
various selection strategies which might allow us to even improve the current
methodology.
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Abstract. We present in this paper a new facial feature localizer. It uses a kind of 
auto-associative neural network trained to localize specific facial features (like 
eyes and mouth corners) in orientation-free faces. One possible extension is pre-
sented where several specialized detectors are trained to deal with each face orien-
tation. To select the best localization hypothesis, we combine radiometric and 
probabilistic information. The method is quite fast and accurate. The mean local-
ization error (estimated on more than 700 test images) is lower than 9%. 

1   Introduction 

Automatic facial feature detection is becoming a very important task in applications 
such as model-based video coding, facial image animation, face recognition, facial 
emotion recognition, visual speech understanding, and intelligent human-computer 
interaction. Many face recognition systems are based on facial features, such as eyes, 
nose and mouth, and their spatial relationship, called the constituted approach [3]. 
Many feature detection methods have been developed in the last decade, but a wide 
majority concentrates on eye detection. The existing methods can be divided into 
several categories. A first classification is based on the acquisition device: active 
infrared-based approaches [13] and passive image-based approaches. Another one 
depends on the processed images: pre-focused images where rough feature regions 
have already been located or cluttered images where face detection is proceeded be-
fore feature detection. A third category is based on the detection algorithm: image-
based approach using one or several low-level detectors to find specific properties 
(such as edge, colour, symmetry…) [7, 10, 11], statistical appearance-based approach 
[12], active appearance models [4], deformable templates [15]… 

We present in this paper a neural-based facial feature localizer able to deal with 
orientation-free face images. As we already developed in our lab a face localizer [1], 
we assume that face has been already roughly localized in a cluttered image. The 
system uses a kind of auto-associative neural network trained to output a feature map, 
which maxima correspond to facial feature position. 

The communication is organized as follows. In section 2, we describe the database 
used in the experiments. Section 3 is devoted to the hybrid auto-associative network 
used to localize facial features. In section 4, we study experimentally this orientation-
free localizer and propose an alternate method where several networks are trained to 
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deal with specific face pose, in order to increase the system accuracy. Concluding 
remarks and future works are discussed in section 6. 

2   Database and Pre-processings 

We collected in our lab a face database. It contains images of 40 people with various 
ages, genders and ethnicities. For each person, we took 36 images (resolution 
100x100 pixels) with several facial orientations, expressions and “accessories” like 
beard or glasses (Fig. 9). In order to increase the number of data, we computed each 
mirroring image. This procedure results in a 2750 example dataset. 

We clicked manually four facial features, respectively left eye (1st feature), right 
eye (2nd feature), left mouth corner (3rd feature) and right mouth corner (4th feature) to 
create one feature map F for each face image. This feature map had the size of the 
face image and its pixels have the following value (where xiT and yiT denote the true 
feature coordinates): 
 

- At the feature location: F(xiT,yiT) = +1 
- Anywhere else: F(i,j) = -1  

 

To normalize input images (Fig. 1), we performed histogram equalization. To nor-
malize feature maps, we convolved these images with a 3x3 gaussian filter, which 
results in smoothing feature maps. Several sub-sampling were tested to reduce the 
data dimension and, thus the number of parameters to be trained. 
 

   
 

Fig. 1. Normalization process: original image (a), sub-sampled input image (b), sub-sampled 
and smoothed feature map (c) 

Facial feature are not randomly organized (except in Picasso’s paintings perhaps). 
So, we can get anthropomorphic information about their spatial organization by ana-
lyzing feature map. Assuming the feature coordinates joint density distribution is 
gaussian, we can evaluate its parameters (means and covariance matrix) by using 
Maximum a Posteriori estimator. Assuming this density is monovariate, this estima-
tion can be done on the whole dataset and leads to orientation-free parameters. To 
take into account the face orientation, we assume that feature density distribution is a 
mixture of gaussians, one for each face orientation. In this latter case, we estimate 
parameters on a given cluster. To perform self-supervised orientation clustering, we 
assumed there existed a unique relationship between 2D facial feature location and 
3D face pose. So, knowing the facial feature localization allowed predicting the face 

(a) (b)    (c)
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orientation. We used a simple K-means algorithm [2] with euclidean distance to get 
the best center of each subset. Then, we estimated parameters for each subset. We 
applied this procedure considering up to six face orientations. As can be seen (Fig. 2), 
the clustering had roughly separated the whole database in subsets, each one corre-
sponding to a certain orientation. 
 

 
 

Fig. 2. Facial feature position for five clusters: left-sided (a), frontal down (b), right-sided (c), 
frontal up (d), frontal (e) 

3   Hybrid Diabolos Networks 

The Diabolos network is an auto-associative neural network. It is a completely con-
nected two-layered perceptron. The input and output layers have the same side as the 
desired output is equal to the input. So, the network is trained to reconstruct an output 
identical to its input. It implements a specialized compression (quite similar to non-
linear principal component analysis) as its hidden layer has much less units than input 
or output does. This network was successfully used for compression [5], handwritten 
character recognition [14], and face detection [1, 8]. In this latter application, the 
network is used to modelize the “face-class” and trained to reconstruct face images. 
So a non-face image should be badly compressed and the reconstruction error would 
be higher than for a face image. Here, we do not want to reconstruct a specific pattern 
class (the “face-class” for example) but to localize specific features within these pat-
terns (eyes and/or mouth corners in the face case). In other words, we want to associ-
ate an image of face (input) with a facial feature map (output). So, we used as desired 
output, the normalized images containing the feature positions described in §2.  
 

                     
 

Fig. 3. Training process: input image (a) feeds the network. The mean squared error ε between 
network output(b) and feature map (c) is used as the cost function. 

(a) (b) (c)     (d)     (e)

(a) (b) (c) 

ε
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Fig. 4. Decision process: network produces the output image (a) where local maxima are de-
tected (b) and back-projected onto the original image(c) 

The network is trained using the back-propagation algorithm with adaptive mo-
mentum. The cost function is the mean squared error between network output and 
desired output (Fig. 3). Training parameters (number of epochs, hidden layer size) are 
tuned by exhaustive research. Once trained, the network is able to localize facial fea-
ture on unknown test images. The feature positions can directly be inferred by simply 
searching the maxima in the output image and back-projected onto the original image 
(Fig. 4). Let (xiD,yiD) be the coordinates of these detected features. 

4   Experimental Results 

To evaluate the localization accuracy, we compute for each image the normalized 
error i.e the mean euclidean distance d between the detected feature position and the 
true feature position normalized with respect to the inter-ocular distance. 

4.1   Orientation-Free Localizer 

First, we trained a single neural network to localize facial feature on the whole data-
base and perform orientation-free localization. We divided the whole dataset into two 
sets: training set (three fourth) and test (one fourth). Several experiments were made 
with different training and test sets. 

In the first experiment, we tested the localizer sensitivity to feature number and po-
sition. We dispatched the same people in both training and test sets with slightly dif-
ferent orientations. Then, we trained several localizers. The first one (SFL) consisted 
of four single feature localizers; each one specialized on one facial feature. The sec-
ond (DFL) used two double feature localizers and each localizer dealed with a couple 
of features. Finally, (QFL) was a quadruple feature localizer (Fig. 3 & 4). Table 1 
summarizes results in term of mean normalized error. These results are very interest-
ing: the mean normalized error decreases as the number of feature to localize in-
creases. This was quite predictable as the localizer associates a facial feature map 
with a face image. The more structured the feature map is, the more reliable the asso-
ciation will be. Note that when training an under-dimensioned QFL localizer (with a 
small number of hidden cells), this always outputs the same map that is the mean 
feature map whatever the input image is. Owing to these conclusions, we decided to 
make a thorough study on the QFL localizer. We can summarize its localization re-
sults on the test set (Fig 5.a) as follows: 35% of the images have a normalized error 

(a) (b) (c)
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lower than 0.05 (5%), 85% of the images have a normalized error lower than 0.1 
(10%) and the mean normalized error is 0.096. We can validate localization hypothe-
sis by computing the log-likelihood of the detected features coordinates (xiD,yiD). We 
tuned a threshold on the training set to reject up to 10% of the poorest localization. 
This decreases the mean normalized error to 0.065. 

Table 1. Mean normalized error of the single (SFL), double (DFL) and quadruple (QFL) fea-
ture localizers on the test set 

Localizer Mean normalized error 
SFL 0.163 
DFL 0.133 
QFL 0.096 

In the second experiment, we tested the QFL localizer sensitivity to identity. We 
dispatched different people in the training and test sets and trained a quadruple feature 
localizer. Compared to the first experiment, localization results (Fig. 5.b) are quite 
disappointing though predictable. Mean normalized errors on the training set are 
nearly the same for both experiments while they are very different on the test set 
showing that identity influences greatly the localizer accuracy. Only 15% of the im-
ages have a normalized error lower than 0.05 (5%), 60% of the images have a normal-
ized error lower than 0.1 (10%) and the mean normalized error is 0.138.  

Fig. 5. Ratio of face images versus normalized error on training (dotted) and test (solid) data-
bases. Sensitivity analysis: face orientation (a) and identity (b). 

4.2   Multiple Localizer 

Training. To improve the localizer accuracy, we decided to use several localizers; 
each one specialized on a given orientation. The clustering procedure described in §2 
could separate the initial dataset into several subsets corresponding to a given face 
pose. Given N the number of considered orientations, the corresponding multiple 
localizer consists in N networks. So, for an input image, we have now N output im-
ages and N localization hypothesis corresponding to the four local maxima of each 
output image (Fig. 6). To compare the accuracy of the multiple localizers, we 

(a) (b)
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compute the normalized error for each hypothesis and apply the WTA (Winner Takes 
All) criterion to select the best one. We have considered up to N=6 orientations. As 
can be seen (Fig. 7) the mean normalized error decreases continuously on both train-
ing and test sets when N increases. Such results are quite logical: as the number of 
specialized networks increases, the range of face orientations each network has to deal 
with decreases. The association process between face image and feature map becomes 
easier and the normalized error decreases. 
 

 
 

Fig. 6. Multiple localizers: Input image (a), target image (b), output image for the five networks 
and localization hypothesis (c to g) 

 

Fig. 7. Mean normalized error on the training (dotted) and test (solid) sets versus number of 
orientations considered 

Decision. Latter result gave us a lower bound for localization error as it was produced 
by using the true feature position. As this information is not available, we have to find 
other criteria to select the best hypothesis.  

Visual inspection of the networks output drives us to define a radiometric criterion 
(RC). As can be seen (Fig. 6), the best hypothesis corresponds to an output image O 
closed to the feature map, in terms of pixel intensities. This is an advantage of multi-
ple auto-associative networks. As they are trained to localize features for a specific 
face pose, they perform well on this given orientation and poorly on the others leading 
to “noisy” outputs. So we define an “ideal” output image I as follows: 
 

- At each maximum position: I(xiD,yiD) = O(xiD,yiD) 
- Anywhere else: I(i,j) = median(O) 

 

(a) (b) (c) (d) (e) (f) (g) 
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Then, we compute the distance between the ideal output I and the real output O. We 
get a set of N distances Dj for the N output maps and use the WTA criterion to select 
the best one. 

Another probabilistic criterion (PC) is obvious: the log-likelihood of each hypothe-
sis. Given the coordinates (xiD,yiD) of the detected features and the coordinate joint 
probability distribution for each face orientation, we can compute a set of N likeli-
hoods Lj for the N hypothesis and use the WTA criterion to select the best one. As for 
the orientation-free localizer, we can reject a poor hypothesis while considering its 
likelihood (PCR criterion). 

Finally, in order to get the best of these radiometric and probabilistic information, we 
can combine the two criteria. We normalized the distance vector D = { D1, …, DN} and 
the likelihood vector L = {L1, …, LN} on [0;1] and use the sum rule [9] to combine 
them. Note that we experimented several normalization processes and combination 
operators (weighted sum, neural combination …) leading to quite similar results. 

Table 2. Mean normalized error of the multiple localizer using radiometric (RC) criterion, 
probabilistic (PC) criterion and their combination on the test set 

 

Criterion  
Mean normalized error 

       N=3                 N=5    
RC 0.088 0.089 
PC 0.121 0.146 

PCR 0.055 0.058 
Combination  0.091 0.082 

 
 

 

Fig. 8. Normalized localization error on the test set: orientation-free localizer (dotted) and 
multiple localizer combining five specialized networks (solid) 

Table 2 summarizes the results for the two criteria and their combination, focusing 
on two multiple localizers respectively combining three and five specialized net-
works. The RC criterion outperforms slightly the orientation-free localizer (mean 
normalized error: 0.096). We can explain the poor results of the PC criterion by re-
minding the main drawback of auto-associative networks. As these latter are special-
ized on a specific face pose, they always produce an output that is close to the mean 
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Fig. 9. Localization results on some test images. The normalized error is indicated bellow. 
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feature map of this face pose. This leads to high likelihood value whatever be the face 
image. Meanwhile, the PCR criterion is quite accurate. The information combination 
outperforms the orientation-free localizer. The higher accuracy happens when using 
five specialized networks. We can summarize the multiple localizer results on the test 
set (Fig. 8) as follows: 50% of the images have a normalized error lower than 0.05 
(5%), 90% of the images have a normalized error lower than 0.1 (10%) and the mean 
normalized error is 0.082. Finally, we present some localization results on test images 
(Fig. 9): frontal faces (1st line), left-sided and right-sided faces (2nd line), up-sided and 
down-sided faces (3rd line) and tilted faces (4th line). Localizer sensitivities to glasses 
(5th line), scale (6th line) and partial occlusions (7th line) are shown. The association 
procedure makes the system less sensitive to partial occlusions and noise: e.g. if one 
feature is not visible, its position is inferred by the positions of other visible features. 
Two localization errors are presented (7th line). Note that, in both cases, an accurate 
localization hypothesis was found but the combination method failed to select it. 

5   Conclusions and Future Works 

We have presented a novel algorithm for the detection of facial features in a pre-
focused face image. It is based on a particular neural network trained to associate a 
feature map with a face image. We studied thoroughly the single, orientation-free 
localizer and show that its accuracy increases with the number of features to detect. 
We proposed an alternate method where several specialized networks were trained to 
deal with specific face pose. The best localization hypothesis is then selected by com-
bining radiometric and probabilistic information. This multiple localizer is more accu-
rate than the orientation-free localizer: the mean normalized error decreases from 
9.6% to 8.2%. Note that the whole system is quite fast: more than 14 images/second 
(on a Pentium IV 2.8 Ghz with MathLab). 

Training the system on a larger dataset will validate all these results and should in-
crease the localization accuracy in two ways. First, we hope it will reduce the sensi-
tivity to identity. Secondly, it will increase the generalization ability in the multiple 
networks case and, by the way, the whole accuracy. To deal with such generalization 
problems, classical methods like bootstrapping and shared weight networks [6] are 
under study.  

We have to evaluate the accuracy of the complete localizer, by cascading the face 
localizer [1], with the facial feature localizer. Finally, the cascade should be extended 
to perform coarse-to-fine localization and deal with finer facial feature (like eye cor-
ners or iris for example). 

References 

[1] Belaroussi, R., Prevost, L., Milgram, M., Classifier combination for face localization in 
color images. International Conference on Image Analysis and Processing, Lecture Notes 
in Computer Sciences, Vol. 3617, (2005), 1043-1050 

[2] Bishop, C. M., Neural Networks for Pattern Recognition. Oxford University Press, (1995) 
[3] Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: a sur-

vey, Proceedings of IEEE, Vol. 83, no. 5, (1995), 705-740 



 Multiple Neural Networks for Facial Feature Localization 197 

[4] Cristinacce, D., Cootes., T.: A comparison of shape constrained facial feature detectors, 
International Conference on Automatic Face and Gesture Recognition, (2004), 375-380 

[5] DeMers, D., Cottrell, G.: Non-linear dimensionality reduction. Neural Information Proc-
essing Systems 5, (1993) 580–587hould  

[6] Duffner, S., Garcia, C., A Connexionist Approach for Robust and Precise Facial Feature 
Detection in Complex Scenes, IEEE International Symposium on Image and Signal Proc-
essing and Analysis, (2005), 316-321  

[7] Feng, G.C., Yuen P.C.: Multi-cues eye detection on gray intensity image, Pattern Recog-
nition Vol. 34, (2001), 1033-1046 

[8] Féraud, R., Bernier, O., Viallet, J., Collobert, M.: A fast and accurate face detector based 
on neural networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 
Vol. 23, no. 1, (2002) 42-53 

[9] Fumera, G.; Roli, F.;A theoretical and experimental analysis of linear combiners for mul-
tiple classifier systems, IEEE Transactions on Pattern Analysis and Machine Intelligence, 
Vol. 27, no. 6, (2005), 942-956 

[10] Ioannou, S., Wallace, M., Karpouzis, K., Raouzaiou, A., Kollias S.: Combination of Mul-
tiple Extraction Algorithms in the Detection of Facial Features, International Conference 
on Image Processing, (2005),  

[11] Milgram, M., Belaroussi, R., Prevost L.: Multi-stage combination of geometric and col-
orimetric detectors for eyes localization, International Conference on Image Analysis and 
Processing), Lecture Notes in Computer Sciences, Vol. 3617, (2005), 1010-1017 

[12] Moghaddam, B. Pentland, A.: Probabilistic visual learning for object representation, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, no. 7, (1997), 
696-710 

[13] Peng P., Chen, L., Ruan, S., Kukharev, G.: A Robust and Efficient Algorithm for Eye De-
tection on Gray Intensity Face. International Conference on Advances in Pattern Recogni-
tion, Lecture Notes in Computer Sciences, Vol. 3687, (2005), 302-308 

[14] Schwenk, H., Milgram, M.: Transformation invariant auto-association with application to 
handwritten character recognition. Neural Information Processing Systems 7, (1995) 
991-998 

[15] Yuille, A., Hallinan, P., Cohen, D.: Feature extraction from faces using deformable tem-
plates. International Journal of Computer Vision, Vol. 8, no. 2, (1992), 99-111 



Hierarchical Neural Networks Utilising
Dempster-Shafer Evidence Theory

Rebecca Fay, Friedhelm Schwenker, Christian Thiel, and Günther Palm

University of Ulm
Department of Neural Information Processing

D-89069 Ulm, Germany
{rebecca.fay, friedhelm.schwenker, christian.thiel@uni-ulm.de,

guenther.palm}@uni-ulm.de

Abstract. Hierarchical neural networks show many benefits when em-
ployed for classification problems even when only simple methods analo-
gous to decision trees are used to retrieve the classification result. More
complex ways of evaluating the hierarchy output that take into account
the complete information the hierarchy provides yield improved clas-
sification results. Due to the hierarchical output space decomposition
that is inherent to hierarchical neural networks the usage of Dempster-
Shafer evidence theory suggests itself as it allows for the representation
of evidence at different levels of abstraction. Moreover, it provides the
possibility to differentiate between uncertainty and ignorance. The pro-
posed approach has been evaluated using three different data sets and
showed consistently improved classification results compared to the sim-
ple decision-tree-like retrieval method.

1 Introduction

Hierarchical neural networks have proven suitable for pattern recognition and
show many benefits when applied to classification problems of various kind
[1][2][3][4][5]. Simple evaluation strategies like retrieving the accumulated clas-
sification result in a decision-tree-like manner yield good classification results.
Despite all the advantages this simple method features, such as rather short
classification time and availability of intermediate results, a major disadvantage
is the missing ability to correct misclassifications that occur at higher levels of
the hierarchy. Hence it would be beneficial not only to take a single path within
the hierarchy into account but to consider all classifiers of the hierarchy.

Due to the inherent characteristics of the hierarchy there are several con-
straints such a comprehensive evaluation approach should meet. The classifier
hierarchy naturally provides a hierarchical class grouping, i.e. the individual clas-
sifiers provide results for not necessarily single classes but sets of classes. Thus
the evaluation method should provide means of dealing with information pro-
vided at different levels of abstraction without enforcing to assign information at
a more detailed level than is justified. Moreover, attributed to the fact, that not
all classifiers within the hierarchy provide information about all classes, but only
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deal with a specific subset of classes, there must be a possibility to state that
a given sample belongs to an unknown class. Therefore it is necessary that the
eligible approach offers a possibility to represent lack of knowledge and doubt.

Taking this into consideration the Dempster-Shafer evidence theory seems to
be applicable as it fulfills the above mentioned constraints.

2 Method

In the following hierarchical neural networks are introduced. This includes the
generation of the classifier hierarchies as well as the training of the hierarchy. Fur-
thermore, two methods for hierarchy evaluation are presented: a simple decision-
tree-like method and a more complex method based on Dempster-Shafer evidence
theory. The proposed evidence theoretic approach only concerns the hierarchy
evaluation. The hierarchy generation and training is the same for both methods.

2.1 Dempster-Shafer Evidence Theory

Dempster-Shafer evidence theory [6][7] is a mathematical theory of evidence and
plausibility reasoning. It provides means of representing and combining measures
of evidence. Major advantages of this theory are the ability to discriminate be-
tween ignorance and uncertainty, the ability to easily represent evidence at differ-
ent levels of abstraction and the possibility to combine evidence from different
sources. In the following the basic concepts of the Dempster-Shafer evidence
theory are briefly explained.

Let Ω be a finite set of q mutually exclusive atomic hypotheses Ω = {θ1, ..., θq}
called the frame of discernment representing the universe of discourse and let
2Ω denote the power set of Ω.

A basic probability assignment or mass function m over a frame of discernment
Ω is a function m : 2Ω 
→ [0, 1] that satisfies the following two conditions:

m(∅) = 0 and
∑
A⊆Ω

m(A) = 1 (1)

The mass m(A) specifies the belief in hypothesis A which does not need to
be atomic, but can be a set of atomic hypothesis. In that case m(A) reflects
ignorance as it is not possible to further subdivide the belief in A among the
subsets of A. Thus the mass m(A) specifies the degree of belief that is assigned
to exactly the set A ⊆ Ω and not to any subset of A.

With m being a basic probability assignment the belief function Bel : 2Ω 
→
[0, 1] is defined as follows:

Bel(A) =
∑

B:B⊆A

m(B) (2)

If m is a basic probability assignment the plausibility function Pl : 2Ω 
→ [0, 1]
is defined as:

Pl(A) =
∑

B:A∩B �=∅
m(B) (3)
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Two basic probability assignments m1 and m2 from two independent sources
can be combined via Dempster’s combination rule, the so called orthogonal sum
m1,2 = m1 ⊕ m2 which is defined as:

m1,2(C) = K−1
∑

A,B:A∩B=C

m1(A) · m2(B), ∀C �= ∅ (4)

where K is a measure for the conflict between the two sources. The conflict K
is defined as:

K = 1 −
∑

A,B:A∩B=∅
m1(A) · m2(B) =

∑
A,B:A∩B �=∅

m1(A) · m2(B) (5)

The orthogonal sum m1 ⊕ m2 does only exists if K �= 0 and the result m1,2 is
then a basic probability assignment. Otherwise the two sources are said to be
totally contradictory.

Within the transferable belief model [8] positive masses can be assigned to
the empty set ∅ entailing unnormalised belief functions [9]:

m1,2(C) =
∑

A,B:A∩B=C

m1(A) · m2(B), ∀C ⊆ Ω (6)

A high value for the mass of the empty set ∅ indicates a high conflict between
the sources.

2.2 Hierarchical Neural Networks

Hierarchial neural networks consist of serval simple neural networks that are hi-
erarchically organised. Thus the nodes within the hierarchy represent individual
neural classifiers.

The basic idea of hierarchical neural networks is the hierarchical decompo-
sition of a complex classification problem into several less complex ones. This
yields hierarchical class groupings splitting the decision process into multiple
steps exploiting rough to fine classification. The hierarchy emerges from recur-
sive partitioning of the original set of classes C into several disjoint subsets Ci

until the subsets consisting of single classes result. Ci is the subset of classes to
be classified by node i, where i is a recursively composed index reflecting the
path from the root node to node i. The subset Ci of node i is decomposed into
si disjoint subsets Ci,j , where Ci,j ⊂ Ci, Ci = ∪si−1

j=0 Ci,j and Ci,j ∩ Ci,k = ∅,
j �= k. The total set of classes C0 = C is assigned to the root node. Conse-
quently nodes at higher levels of the hierarchy classify between larger subsets
of classes whereas nodes at the lowest level discriminate between single classes.
This divide-and-conquer strategy yields several simple classifiers, that are more
easily manageable, instead of one extensive classifier. These simple classifiers
can be amended much more easily to the decomposed simple classification tasks
than one classifier could be adapted to the original complex classification task.
Furthermore different feature types Xi are used within the hierarchy. For each
classification task the feature type that allows for the best discrimination is
chosen. An example of such a hierarchy is shown in figure 1.
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Hierarchy Generation. The hierarchy is generated by unsupervised k-means
clustering. In order to decompose the set of classes Ci assigned to one node i into
si disjoint subsets a k-means clustering is performed with all data points {xμ ∈
Xi|tμ ∈ Ci} belonging to these classes. Depending on the distribution of the
classes across the k-means clusters si disjoint subsets Ci,j are formed. One succes-
sor node j corresponds to each subset. For each successor node j again a k-means
clustering is performed to further decompose the corresponding subset Ci,j . The
k-means clustering is performed for each feature type. The different clusterings
are evaluated and the clusterings which group data according to their class labels
are preferred. Since the k-means algorithm depends on the initialisation of the
clusters, k-means clustering is performed several times per feature type. In this
study the number of k-means clustering runs per feature type was 10.

The number of clusters k must be at least the number of successor nodes
or the number of subsets s respectively but can also exceed this number. If
the number of clusters is higher than the number of successor nodes, several
clusters are grouped together so that the number of groups equals the number
of successor nodes. All possible groupings are evaluated. In the following all
equations only refer to clusterings for reasons of simplicity, i.e. the number of
clusters k equals the number of successor nodes s. A valuation function is used
to rate the clusterings or groupings respectively. The valuation function prefers
clusterings that group data according to their class labels. Clusterings where
data is uniformly distributed across clusters notwithstanding their class labels
receive low ratings. Furthermore clusterings are preferred which evenly divide
the classes. Thus the valuation function rewards unambiguity regarding the class
affiliation of the data assigned to a prototype as well as uniform distribution
regarding the number of data points assigned to each prototype.

The valuation function V (p) consists of two terms regulated by a scaling pa-
rameter λ > 0. The first term E(p) calculates the entropy of the distribution of
each class across the different clusters. This accounts for unambiguous distribu-
tion of the data considering the corresponding classes. The term E(p) becomes
minimal if it is ensured for all classes that all data belonging to one class is
indeed assigned to one cluster. It becomes maximal if all data belonging to one
class is uniformly distributed across all clusters. The second term D(p) computes
the deviation from the uniform distribution. This term becomes minimal if each
cluster is assigned the same number of data points. This allows for the even
division of the classes into subsets. During the hierarchy generation phase we
are looking for clusterings that minimise the valuation function V (p). The influ-
ence of the respective term is regulated by the scaling parameter λ. Both terms
are normalised so that they return values in the interval [0, 1]. The valuation
function V (p) is given by

V (p) =
1

l log2(k)
E(p) + λ

1
l(k − 1)

D(p) → min (7)

where E(p) = −
∑l

i=1

∑k
j=1 pj

i log2(p
j
i ) and D(p) =

∑k
j=1 |

∑l
i=1 pj

i − l
k | with

pj
i = |Xi∩Zj |

|Xi| denoting the rate of patterns from class i, that belong to cluster
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j. Here Xi = {xμ|μ = 1, ...,M ; tμ = i} ⊆ X is the set of data points that
belong to class i, Rj = {x ∈ IRd|j = argmini=1,...,k‖x − zi‖} denotes the
Voronoi cell defined by cluster j and Zj = Rj

⋂
X is the set of data points

that were assigned to cluster j. The center of cluster i is zi. The best clustering,
i.e. the one that minimises the valuation function V (p), is chosen and used for
determining the division of the set of classes into subsets. Moreover this also
determines which feature type will be used for the corresponding classifier. So
each classifier within the hierarchy can potentially use its own feature type.
To identify which classes will be added to which subset the distribution of the
data across the clusters is considered. The division in subsets Cj is carried out
by maximum detection. The set of classes belonging to subset Cj is defined as
Cj = {i ∈ C|j = argmax{qi,1, ..., qi,k}} where qi,j = |Xi∩Zj |

|Zj | denotes the rate
of class i in cluster j. For each class it is determined to which cluster j∗ the
majority of data points belonging to this class were associated. The class label
will then be added to the corresponding subset Cj∗ .

To generate the hierarchy at first the set of all classes is assigned to the root
node. Starting with a clustering on the complete data set the set of classes is
divided into subsets. Each subset is assigned to a successor node of the root node.
Now the decomposition of the subsets is continued until no further decomposition
is possible or until the decomposition does not lead to a new division. An example
of a classification hierarchy is shown in figure 1.

Fig. 1. Classifier hierarchy generated for the classification of 10 classes. Each node
within the hierarchy represents a neural network which is used as a classifier. The end
nodes represent classes. To each node a feature type and a set of classes are assigned.
The corresponding neural network uses the assigned feature type to discriminate be-
tween the assigned classes. The highlighted path (in grey) shows the nodes activated
during the classification of a sample that is classified as class 8.

Training and Classification. The hierarchy is trained by separately train-
ing the individual classifiers with the data {xμ ∈ Xi|tμ ∈ Ci} that belong to
the subsets of classes assigned to each classifier. For the training the respective
feature type Xi identified during the hierarchy generation phase is used. The
data will be relabelled so that all data points of the classes belonging to one
subset Ci,j have the same label j, i.e. t̃μ = j, xμ ∈ Xi, t

μ ∈ Ci,j . The number
of input neurons of the single classifiers is defined by the dimension di of the
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respective feature type Xi assigned to the corresponding node i. The number of
output nodes equals the number of successor nodes si. The classifiers are trained
using supervised learning algorithms. The classifiers within the hierarchy can be
trained independently, i.e. all classifiers can be trained in parallel.

Within the hierarchy different types of classifiers can be used. Examples of
classifiers would be radial basis function networks, linear vector quantisation
classifiers [5] or support vector machines [4]. We chose RBF networks as classi-
fiers. They were trained with a three phase learning algorithm [10].

One way to obtain the classification result is similar to the retrieval process
in a decision tree. Starting with the root node the respective feature vector
of the object to be classified is presented to the trained classifier. By means
of the classification output the next classifier to categorise the data point is
determined, i.e. the classifier j∗ corresponding to the highest output value o(j∗)
is chosen such that j∗ = argmaxj=1..si

(o(j)). Thus a path through the hierarchy
from the root node to an end node is obtained which not only represents the
class of the object but also the subsets of classes to which the object most likely
belongs. This means that the data point is not presented to all classifiers within
the hierarchy and the hierarchical decomposition of the classification problem
yields additional intermediate information.

If only intermediate results are of interest it is not necessary to evaluate the
complete path. In order to solve a task it might be sufficient to know whether
the object to be recognised belongs to a set of classes and the knowledge of
the specific category of the object might not add any value. If the task for
example is to grasp a cup, it is not necessary to distinguish between red and
green cups. Moreover, when looking for a specific object it might in some cases
not be necessary to retrieve the final classification result if a decision at a higher
level of the hierarchy already excludes this object.

2.3 Utilising Dempster-Shafer Evidence Theory for Hierarchy
Evaluation

In order to apply Dempster-Shafer theory for the evaluation of the classifier hi-
erarchy it is at first necessary to derive basic probability assignments mj from
the outputs of the individual classifiers within the hierarchy. Not all neural clas-
sifiers produce output that satisfies the conditions for probability assignments
(equation 1). In these cases a transformation of the outputs is necessary. The
output of fuzzy k-nearest neighbour classifiers Ξi(x) fulfils the conditions for
basic probability assignments as the class memberships satisfy the conditions
Ξi(x) ∈ [0, 1] and

∑l
i=1 Ξi(x) = 1 whereas the output of radial basis function

networks zi(x) does not necessarily do so. To enforce the fulfillment of the con-

dition zi(x) ∈ [0, 1] a ramp function Θ(zi(x)) =

⎧⎨
⎩

0, x < 0
x, 0 ≤ x ≥ 1
1, x > 1

is applied to the

classifier output setting all negative values to zero and all values greater than
one to one. This is justified insofar as only a negligible number of output values
violate this condition. In order to account for ignorance which is represents by



204 R. Fay et al.

low classifier outputs the difference of the sum of the output values to one is
assigned to Ω. If the sum of the classifier outputs is equal to or greater than one
nothing is assigned to Ω. In this case the output is then normalised to sum up to
one. Hence in either case the condition

∑l
i=1 mj(i) = 1 is satisfied. These trans-

formations are applied if necessary to the outputs of all classifiers and then the
resulting basic probability assignments mj of all classifiers are combined using
the orthogonal sum without normalisation (equation 6).

According to the hierarchy structure each classifier provides evidence for the
specific subsets of Ω between which the classifier discriminates and for Ω. In
case of ignorance strong evidence is assigned to Ω.

Furthermore, a discounting technique is used propagating the classifier re-
sponses at higher levels of the hierarchy down. Thus classifier responses along
pathes that at a higher level contain a classifier that assigned low responses are
weakened strongly whereas pathes below classifiers with strong output are hardly
weakened. The discounting is realised by successively multiplying the classifier
responses with the classifier output of the respective predecessor node. Hence the
root node is not discounted. The discounting accounts for the fact that within
the hierarchy there are a not negligible number of classifier that have to provide
results for samples belonging to classes they have not been trained with. Hence
low classifier responses, as would be desired, cannot be guaranteed in that cases.
The discounting thus weakens insular strong responses, which are likely to be
caused by a classifier that has been presented a sample of an unknown class.
Whereas if only one classifier within a specific path shows a low response but
all other classifiers responses are high this leads only to a moderate attenuation.
The discounting is applied directly after the transformation of the classifier out-
puts to basic probability assignments. As a multiplication with the discounting
factors di ∈ [0, 1] decreases the basic probability assignments if di < 1, their sum
is then smaller than one

∑si−1
j=0 dimi(Ci,j) < 1. The difference to one originating

from this is then assigned to Ω: mi(Ω) = 1 −
∑si−1

j=0 dimi(Ci,j).

3 Results

The proposed approach was evaluated by means of 10 runs of 10-fold cross-
validation experiments on three different data sets. The data sets used were the
Columbia Object Image Library (COIL20) [11] consisting of 20 objects and 72
images per object, the Letter Recognition Image Data [12] comprising 26 letters
and the handwritten STATLOG digits data set [13] containing 10 digits. From
the images of the COIL20 data set three different features were extracted: orien-
tation histograms utilising sobel edge detection, orientation histograms utilising
canny edge detection and wavelet coefficients.

On all three data sets the Dempster-Shafer evaluation method performed
better than the simple decision-tree-like evaluation method. The average classi-
fication rates of the evidence theoretic approach are always higher than the av-
erage classification rates of the decision tree approach. The precise classification
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Table 1. Classification rates for the different data sets on the test and training data for
the Dempster-Shafer method (DS) and the decision tree method (DT). The evidence
theoretic approach outperforms the decision tree approach in all experiments.

Data Set Test Data Training Data

DS DT DS DT

Letters 86.74 ± 0.79% 85.45 ± 0.78% 88.06 ± 0.36% 86.88 ± 0.40%
Digits 94.21 ± 0.74% 93.18 ± 0.79% 94.50 ± 0.14% 93.77 ± 0.19%
COIL20 96.88 ± 1.48% 94.56 ± 2.04% 98.88 ± 0.23% 97.74 ± 0.30%

Fig. 2. Classification rates for the three data sets (letters, digits, Coil20) on the test
data for the evidence based (DS) and the decision-tree-like (DT) approach. The box
plots as well as the error bars indicate that Dempster-Shafer methods performs better
than the decision tree method on all three data sets.

Table 2. Results of the corrected t-test for the different data sets on the test and
training data comparing the Dempster-Shafer method and the decision tree method.
The table gives the p-values as well as the t-value. The t-test indicates that the evidence
theoretic approach outperforms the decision tree approach significantly.

Data Set Test Data Training Data

t p t p

Letters 9.2753 3.5349e − 10 20.3088 1.0835e − 18
Digits 4.8025 9.7038e − 4 14.5896 1.4351e − 7
COIL20 4.7021 8.3433e − 6 15.2295 1.0837e − 27
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rates for the different data sets can be found in table 1. Figure 2 visualises these
results by means of box plots and error bars.

A pairwise t-test based on repeated k-fold cross validation with a variance cor-
rection [14] to compensate the highly violated independence assumption, called
corrected repeated k-fold cross validation test, implies that the classification re-
sults for the evidence theoretic approach are significantly better than the results
for the decision-tree-like approach. Table 2 contains the results of the t-test for
the different data sets.

4 Discussion

The evaluation of the classifier hierarchy by means of Dempster-Shafer evidence
theory yields improved classification results compared to the simple decision-
tree-like evaluation method. With respect to computation time the decision tree
approach outperforms the Dempster-Shafer alternative as for the former only
part of the classifiers are evaluated and for the latter all classifiers within the
hierarchy are used and additional calculations for transforming the classifier
outputs and combining the individual classification results are needed.

Thus in time critical realtime applications an efficient approach would be to
first use the simple and faster decision-tree-like method to classify the objects
in question. If this method does not yield unambiguous results, the more time
consuming Dempster-Shafer method should be used. If time is no critical factor,
the usage of the evidence based approach is justified and recommended.

When using the evidence theoretic approach instead of the decision tree ap-
proach the advantage of the availability of intermediate classification outputs
and the resulting savings of computation time do no longer apply as all classi-
fiers within the hierarchy need to be evaluated. However, the Dempster-Shafer
approach provides not only the resulting class but also a measure how likely the
presented samples belongs to the specific classes.

A major drawback of the decision-tree-like evaluation method is the fact that
there is no possibility to later on correct misclassifications that occur at higher
levels of the hierarchy. As the evidence based approach considers all classifiers
within the hierarchy a misclassification at higher levels of the hierarchy can be
compensated for if the decisions made by the classifiers at the lower levels are
correct. The evidence theoretic approach can only compensate misclassifications
at higher levels of the hierarchy. If the misclassification takes place at a leaf
node, this wrong decision cannot be corrected any more. The evidence theoretic
approach can also not compensate for misclassifications where the majority of
the classifiers supports the wrong decision.

5 Related Work

As the decomposition of problems into simpler sub-problems features advantages
such as effectiveness and efficiency in learning and interpretability modular learn-
ing has attracted much interest recently. There are various ways of dividing a
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problem into less complex sub-problems. One possible way is a partitioning of the
output space. In [2] a hierarchical decomposition of a multi-class problem into
several two-class problems is performed utilising Fisher discriminant analysis in
combination with a deterministic annealing process. The grouping of the classes
is based on the class distributions resulting in a binary tree architecture. Simple
Bayesian classifiers are used to solve the sub-problems. The approach is applied
to the problem of categorising landcover using hyperspectral data. Instead of
Bayesian classifiers support vector machines are used in [15]. The approach has
been evaluated on several pattern recognition problems. An alternative method
for the decomposition of the output space is applied in [1]. A max-cut algorithm
is successively applied in order to find those class partitions that have a maximal
distance. As classifiers support vector machines are used. Another approach for
building a hierarchical binary tree classifier architecture is proposed in [3] where
a self-organising map is trained in the kernel space where classification by the
deployed support vector machines takes place. On the basis of the trained self-
organising map the class grouping is determined by identifying the grouping that
maximises the inter-group distance while minimising the intra-group variance.
In this architecture no disjoint partitioning of the classes is forced, but overlaps
are allowed and are shown to improve the performance.

Dempster-Shafer evidence theory has been applied to classifier fusion in nu-
merous applications. In [16] Dempster-Shafer theory was used for multiple clas-
sifier fusion. This approach uses prototype-based classifiers and calculates belief
functions from distance measures of different classifiers which are then combined
utilising Dempster-Shafer evidence theory. As distance measures the inter-class-
distances and intra-class-distances were used. Classification rates, misclassifica-
tion rates and rejection rates were used to derive basic probability assignments
in [17]. Dempster’s combination rule is applied to combine the evidences. This
approach considers an extra class representing unknown classes or ignorance. In
[18] a technique closely related to decision templates [19] is used to calculate de-
grees of belief. The distances between the classifier outputs for the sample to be
classified and the mean classifier outputs calculated on the training samples are
transformed into basic probability assignments. The so calculated evidences are
then combined using the orthogonal sum. This approach has been varied in [20]
by using reference outputs adapted to the training data so that the overall mean
square error is minimised instead of simply using the mean classifier outputs. In
[21] Demspter-Shafer evidence theory is used to combine the normalised outputs
of multiple classifiers and to reject samples in case of highly conflicting informa-
tion. If at all these approaches only exploit the possibility to allocate evidence to
non-atomic hypotheses by assigning masses to atomic hypotheses θi and to their
not necessarily atomic complement θi or to the frame of discernment Ω. The
proposed approach utilises this possibility as the classifier hierarchy naturally
provides classification results for sets of hypotheses. Expert knowledge about
the domain of application is used in [22] to calculate basic probability assign-
ments not only for atomic hypotheses but also for composite hypotheses. Hence
this approach is rather specific and less general than the proposed approach.
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6 Conclusions

The proposed approach of utilising Dempster-Shafer evidence theory for the
evaluation of classifier hierarchies has proven functional and shows encouraging
results. It yields better classification results than the simple decision-tree-like
evaluation strategy, but is more time-consuming. The already good classifications
results that are achieved with a simple decision-tree-like evaluation method can
be further improved using a more complex evidence based evaluation strategy.
The hierarchical class grouping inherent to the classifier hierarchy seems suitable
for being utilised within the framework of the Dempster-Shafer evidence theory.
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Abstract. The two key factors to design an ensemble of neural networks are how
to train the individual networks and how to combine the different outputs to get
a single output. In this paper we focus on the combination module. We have pro-
posed two methods based on Stacked Generalization as the combination module
of an ensemble of neural networks. In this paper we have performed a comparison
among the two versions of Stacked Generalization and six statistical combination
methods in order to get the best combination method. We have used the mean
increase of performance and the mean percentage or error reduction for the com-
parison. The results show that the methods based on Stacked Generalization are
better than classical combiners.

1 Introduction

The most important property of a neural network is its generalization capability. The
ability to correctly respond to inputs which were not used in the training set.

It is clear from the bibliography that the use of an ensemble of neural networks
(figure 1) increases the generalization capability, [1,2], for the case of Multilayer Feed-
forward (MF) and other classifiers. The two key factors to design an ensemble are how
to train the individual networks and how to combine them.

Fig. 1. The basic diagram of an Ensemble of Neural Networks
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Among the methods of training the individual networks there are an important num-
ber of alternatives. Our research group has performed a comparison among methods of
building ensembles which shows that the Simple ensemble method provides a reason-
able performance with a lower computational cost [3,4].

Moreover, our research group has performed another comparison among combina-
tion methods of ensembles which shows that the Output Average is the simpler method
but it is one of the best combination methods [5,5].

In this paper, we present some results of two versions of Stacked Generalization and
we compare them with six classic combination methods. We have built ensembles of 3,
9, 20 and 40 networks with Simple Ensemble on six databases from the UCI repository
to test the performance of the combination methods.

The methods are described in 2. The results we have obtained on these six databases
are in subsection 3.2. We have also calculated general measurements of the combination
methods to compare them, these results appear in subsetion 3.3.

2 Theory

In this section, firstly we briefly review the methods of combination that we have used
in our experiments in subsections 2.1-2.6. Finally we describe two new methods based
on Stacked Generalization in subsections 2.7 and 2.8.

2.1 Output Average

This approach simply averages the individual classifier outputs across the different clas-
sifiers.

yclass(x) =
1
k
·

k∑
net=1

ynet
class(x) (1)

The output yielding the maximum of the averaged values is chosen as the correct
class.

haverage(x) = arg max
class=1,...,q

yclass(x) (2)

Where q is the number of classes, k is the number of networks in the ensemble.

2.2 Majority Vote

Each classifier provides a vote to a class, given by the highest output. The correct class
is the one most often voted by the classifiers.

votenet
class(x) =

1 if hnet(x) = d(x)
0 otherwhise

(3)

hvoting(x) = arg max
class=1,...,q

⎛
⎝ ∑

net=1,...,k

votenet
class(x)

⎞
⎠ (4)
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2.3 Winner Takes All

In this method, the class with overall maximum output across all classifier and outputs
is selected as the correct class.

yclass(x) = max
net=1,...,k

ynet
class(x) (5)

hwta(x) = arg max
class=1,...,q

yclass(x) (6)

2.4 Borda Count

For any class c, the Borda count is the sum of the number of classes ranked below c by
each classifier. The Borda count for class class is:

Bordaclass(x) =
k∑

net=1

Bordanet
class(x) (7)

Where Bordanet
class(x) is the number of classes ranked below the class class by the net-

th classifier. The final hipothesys is given by the class yielding the highest
Borda count.

hborda(x) = arg max
class=1,...,q

Bclass(x) (8)

2.5 Bayesian Combination

This combination method is based on the belief value, the class with maximum belief
value is selected as the correct class. According to [6] this value is the conditional
probability that the pattern x belongs to class i, it can be approximated by:

Beliefclass(x) =
∏k

net=1 p(x ∈ class|h(ynet) = j)∑q
i=1

∏k
net=1 p(x ∈ i|h(ynet) = j)

(9)

hbayesian(x) = arg max
class=1,...,q

Beliefclass(x) (10)

Where the conditional probability that sample x actually belongs to class i, given that
classifier k assign it to class j can be estimated from the values of the confusion
matrix [7].

p(x ∈ i|class(ynet) = j) =
cnet
i,j∑q

m=1 cnet
m,j

(11)

2.6 Dinamically Averaged Networks

It is proposed in reference [8]. It is a weighted output average which introduces weights
to the outputs of the different networks prior to averaging. The weights values are de-
rived from the network output of the pattern we are classifying.
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yclass(x) =
k∑

net=1

wnet
class · ynet

class(x) (12)

Where the weights are calculated by:

wnet
class(x) =

Cnet
class(x)∑k

i=1 Ck
class(x)

(13)

Cnet
class(x) =

{
ynet

class(x) if ynet
class(x) ≥ 0.5

1 − ynet
class(x) otherwise

(14)

hdan(x) = arg max
class=1,...,q

yclass(x) (15)

2.7 Stacked Generalization

Stacked Generalization was introduced by Wolpert [9]. The combination method we
propose in this paper is based on the idea of Stacked Generalization and it consist on
training a neural network to combine the output vectors provided by the networks of the
ensemble. The neural network used for combination is called Combination network, the
networks of the ensemble are also known as expert networks. In Figure 2 we can see a
diagram of the Stacked Generalization.

2.8 Stacked Generalization Plus

The use of the original pattern input vector is the difference between Stacked General-
ization and Stacked Generalization Plus. The outputs of the expert networks on patterns
from training set and the original pattern input vector are used to train the combination
network. In Figure 3 we can see a diagram of the Stacked Generalization Plus.

Fig. 2. Stacked Generalization diagram
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Fig. 3. Stacked Generalization Plus diagram

3 Experimental Testing

In this section we describe the experimental setup and the datasets we have used in
our experiments. Finally, we show and compare the results we have obtained with the
combination methods on the different datasets.

3.1 Datasets

We have used six different classification problems from the UCI repository of machine
learning databases [10] to test the performance of methods. The databases we have
used are:

Arrhythmia Database (aritm)
The aim is to distinguish between the presence and absence of cardiac arrhythmia and
to classify it in one of the 16 groups. This dataset contains 443 instances, 277 attributes
and 3 classes.

Glass Identification Database (glas)
The aim of the dataset is to determinate if the glass analysed was a type of ‘float’ glass
or not for Forensic Science. This dataset contains 2311 instances, 34 attributes and 2
classes.

Ionosphere Database (ionos)
Classification of radar returns from the ionosphere. This dataset contains 351 instances,
34 attributes and 2 classes.

The Monk’s Problems 1 (mok1)
Artificial problem with binary inputs. This datasets contain 432 instances, 6 attributes
and 2 classes.

The Monk’s Problems 2 (mok2)
Artificial problem with binary inputs. This datasets contain 432 instances, 6 attributes
and 2 classes.
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Vowel Database (vowel)
There is no description about it in the repository. This dataset contains 990 instances,
11 attributes and 11 classes.

Table 1 shows the training parameters (Step, Momentum, Number of Hidde Units
and Number of iterations) we have used to train the combination networks for Stacked
Generalization. Table 2 shows the training parameters for Stacked Generalization Plus.
Finally, Table 3 shows the training parameters and the performance of expert networks.

All these values has been determinated by trial and error.

3.2 Results

In this subsection we present the experimental results. Table 4 shows the results we
have obtained with ensembles of 3 networks. Tables 5, 6, 7 show the results we have
obtained for ensembles of 9, 20 and 40 networks respectively.

3.3 Interpretations of Results

Comparing tables 4-7 we can see that both methods based on Stacked Generalization
are more accurate than the classical methods.

Table 1. MF training parameters for Gating Network (Stacked)

Database Networks Hidden Step Momentum Iterations

aritm

3 0.01 0.05 3 10000
9 0.01 0.05 20 500
20 0.01 0.05 1 100
40 0.01 0.05 5 100

glas

3 0.01 0.05 3 10000
9 0.01 0.05 3 10000
20 0.01 0.05 5 10000
40 0.01 0.05 5 10000

ionos

3 0.01 0.05 7 10000
9 0.01 0.05 1 10000
20 0.01 0.05 5 10000
40 0.01 0.05 5 10000

mok1

3 0.01 0.05 1 10000
9 0.01 0.05 1 10000
20 0.01 0.05 1 10000
40 0.01 0.05 1 10000

mok2

3 0.01 0.05 15 100
9 0.01 0.05 5 100
20 0.01 0.05 5 250
40 0.01 0.05 25 250

vowel

3 0.01 0.05 19 10000
9 0.01 0.05 6 7500
20 0.01 0.05 20 500
40 0.01 0.05 10 5000
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We have calculated the increase of performance of Stacked Generalization and
Stacked Generalization Plus with respect to Output Average to see more clearly if
Stacked combination methods performs better. A positive value of the increase of per-
formance means that the performance is better. A negative value means that the perfor-
mance of the method on the dataset is worse. The results appear in tables 8 and 9.

Comparing the results showed in tables 8-9 we can see that the improvement in per-
formance using our method depends on the database and the number of networks used

Table 2. MF training parameters for Gating Network (Stacked Plus)

Database Networks Hidden Step Momentum Iterations

aritm

3 0.01 0.05 4 2500
9 0.01 0.05 6 1500
20 0.01 0.05 17 1500
40 0.01 0.05 5 1500

glas

3 0.01 0.05 5 10000
9 0.01 0.05 4 10000
20 0.01 0.05 15 10000
40 0.01 0.05 15 10000

ionos

3 0.01 0.05 1 10000
9 0.01 0.05 1 10000
20 0.01 0.05 4 10000
40 0.01 0.05 5 10000

mok1

3 0.01 0.05 5 10000
9 0.01 0.05 5 10000
20 0.01 0.05 5 10000
40 0.01 0.05 5 10000

mok2

3 0.01 0.05 4 2500
9 0.01 0.05 5 250
20 0.01 0.05 5 250
40 0.01 0.05 1 250

vowel

3 0.01 0.05 30 2500
9 0.01 0.05 13 5000
20 0.01 0.05 10 2500
40 0.01 0.05 7 5000

Table 3. MF training parameters for Expert Networks

Database Hidden Iterations Step Momentum Performance
aritm 9 2500 0.1 0.05 75.6 ± 0.7
glas 3 4000 0.1 0.05 78.5 ± 0.9

ionos 8 5000 0.1 0.05 87.9 ± 0.7
mok1 6 3000 0.1 0.05 74.3 ± 1.1
mok2 20 7000 0.1 0.05 65.9 ± 0.5
vowel 15 4000 0.2 0.2 83.4 ± 0.6
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in the ensemble. We can see that, in general the methods based on Stacked Generaliza-
tion are better than Output Average.

We have also calculated the percentage of error reduction (PER) of the ensembles
with respect to a single network to get a general value for the comparison among all the
methods we have studied. We have used equation 16 to calculate its value.

PER = 100 · Errorsinglenetwork − Errorensemble

Errorsinglenetwork
(16)

Table 4. Results for the ensemble of three networks

aritm glas ionos mok1 mok2 Vowel
Average 73.5 ± 1.1 94 ± 0.8 91.1 ± 1.1 98.3 ± 0.9 88 ± 2.5 88 ± 0.9

Vote 73.1 ± 1 93.6 ± 0.9 91.3 ± 1 98.3 ± 0.9 88 ± 2.2 86.9 ± 0.9
WTA 73.6 ± 1 94 ± 0.6 91.1 ± 1.1 98.1 ± 1 88 ± 2.4 86.7 ± 0.8
Borda 73.1 ± 1 94.4 ± 0.9 91.3 ± 1 98.3 ± 0.9 88 ± 2.2 85.9 ± 1

Bayesian 73.6 ± 0.9 94.2 ± 1 91.4 ± 1.1 98.4 ± 0.9 88.8 ± 2.4 86.4 ± 1
DAN 73.2 ± 1.1 92.8 ± 1.6 90 ± 1.2 97.1 ± 1 87 ± 2.2 84.6 ± 1.2

Stacked 75.4 ± 1.4 95.2 ± 0.9 92 ± 0.8 98.4 ± 0.9 88.8 ± 2.3 89.4 ± 0.8
Stacked + 74.4 ± 1.4 95.6 ± 0.9 92 ± 0.9 99.8 ± 0.3 88.5 ± 2.5 89.8 ± 0.8

Table 5. Results for the ensemble of nine networks

aritm glas ionos mok1 mok2 Vowel
Average 73.8 ± 1.1 94 ± 0.7 90.3 ± 1.1 98.8 ± 0.8 90.8 ± 1.8 88 ± 0.9

Vote 73.3 ± 0.9 93.2 ± 0.8 90.6 ± 1.2 98.3 ± 0.9 90.3 ± 1.8 88 ± 0.9
WTA 73.3 ± 1.1 93.8 ± 0.6 90.9 ± 1.3 99.5 ± 0.5 90 ± 1.2 88 ± 0.9
Borda 73.3 ± 0.9 94.2 ± 0.7 90.6 ± 1.2 98.3 ± 0.9 90.3 ± 1.8 88 ± 0.9

Bayesian 73.6 ± 0.9 92.2 ± 0.9 93.1 ± 1.4 99.8 ± 0.3 89.6 ± 1.7 88 ± 0.9
DAN 73.6 ± 1 92.8 ± 1.1 90 ± 1.1 98.8 ± 0.9 86.8 ± 2.8 88 ± 0.9

Stacked 75.1 ± 1.2 96 ± 0.7 92.9 ± 1 99.8 ± 0.3 92.1 ± 1.2 88 ± 0.9
Stacked + 73.6 ± 1.7 95.6 ± 0.8 92.7 ± 1 100 ± 0 91.9 ± 1.3 92.3 ± 0.6

Table 6. Results for the ensemble of twenty networks

aritm glas ionos mok1 mok2 Vowel
Average 73.8 ± 1 94 ± 0.7 90.4 ± 1 98.3 ± 0.9 91.1 ± 1.1 91.4 ± 0.8

Vote 73.3 ± 1 93.4 ± 0.9 90 ± 1.2 98.1 ± 1 90.4 ± 1.8 90.6 ± 0.6
WTA 73.1 ± 1.2 94.4 ± 0.7 91.3 ± 1.1 100 ± 0 90 ± 1.1 89.7 ± 0.7
Borda 73.3 ± 1 94.4 ± 0.8 90 ± 1.2 98.1 ± 1 90.4 ± 1.8 88 ± 0.9

Bayesian 73.8 ± 1 90.6 ± 0.9 93.1 ± 1.4 100 ± 0 89.9 ± 1.6 74.9 ± 1
DAN 72.8 ± 1.2 94.2 ± 1.2 89.6 ± 1.1 97.6 ± 1 86.6 ± 2.1 85.3 ± 1.1

Stacked 73.8 ± 1.3 96.6 ± 0.8 92.7 ± 1.1 100 ± 0 91.5 ± 1.1 93.3 ± 0.6
Stacked + 74.7 ± 1.1 96.6 ± 0.8 92.9 ± 1.2 100 ± 0 91.5 ± 1.1 93.3 ± 0.7
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Table 7. Results for the ensemble of forty networks

aritm glas ionos mok1 mok2 Vowel
Average 73.8 ± 1.1 94.2 ± 0.6 90.3 ± 1 98.3 ± 0.9 91.1 ± 1.2 92.2 ± 0.7

Vote 73.5 ± 1 94 ± 0.8 90.1 ± 1.2 98.3 ± 0.9 91 ± 1.6 90.5 ± 0.7
WTA 73.1 ± 1.2 93.8 ± 0.9 91.6 ± 1.1 99.6 ± 0.4 90 ± 1.6 89.5 ± 0.7
Borda 73.5 ± 1 94.4 ± 0.8 90.1 ± 1.2 98.3 ± 0.9 91 ± 1.6 88.7 ± 0.8

Bayesian 74.1 ± 1.1 90.2 ± 0.9 93.4 ± 1.4 100 ± 0 90.3 ± 1.5 67.7 ± 1.3
DAN 73.2 ± 1 93.2 ± 0.9 89 ± 1.2 98.8 ± 0.8 86.4 ± 2.8 84.3 ± 1.2

Stacked 73.9 ± 1.4 95.8 ± 0.6 92.4 ± 1 100 ± 0 92.4 ± 1.2 94.2 ± 0.8
Stacked + 74.5 ± 1.3 96.6 ± 0.8 92.4 ± 1.2 100 ± 0 91.4 ± 1.2 94.1 ± 0.7

Table 8. Stacked Generalization increase of performance with respect to Average

Database 3 Nets 9 Nets 20 Nets 40 Nets
aritm 1.95 1.27 0 0.11
glas 1.2 2 2.6 1.6

ionos 0.85 2.56 2.27 2.14
mok1 0.12 1 1.75 1.75
mok2 0.75 1.38 0.37 1.25
vowel 1.41 1.36 1.92 2.02

Table 9. Stacked Generalization Plus increase of performance with respect to Output Average

Database 3 Nets 9 Nets 20 Nets 40 Nets
aritm 0.92 −0.24 0.91 0.68
glas 1.6 1.6 2.6 2.4

ionos 0.85 2.41 2.42 2.14
mok1 1.5 1.25 1.75 1.75
mok2 0.5 1.13 0.37 0.25
vowel 1.81 1.36 1.92 1.92

The PER value ranges from 0%, where there is no improvement by the use of a
particular ensemble method with respect to a single network, to 100%. A negative value
means that the performance of the ensemble is worse.

Furthermore, we have calculated the increase of performance with respect to Single
Network (Table 10) and the mean PER (Table 11) across all databases for each method
to get a global measurement.

According to these global measurement Stacked Generalization methods are the best
performing methods. The highest difference between Stacked Generalizacion and Out-
put Average is in the 40-network ensemble where the mean PER increase is 9.54%.
Although, Stacked Generalization Plus is slitghly better than Stacked Generalization
there are some cases where the second method is better.
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Table 10. Mean increase of performance across all databases with respect to Single Network

Method 3 Nets 9 Nets 20 Nets 40 Nets
Average 11.2 12.15 12.23 12.38

Vote 10.91 11.6 11.7 11.95
WTA 10.98 12.03 12.14 11.99
Borda 10.88 11.42 11.44 11.72

Bayesian 11.18 10.85 9.45 8.35
DAN 9.85 10.34 10.07 9.88

Stacked 12.25 13.75 13.72 13.86
Stacked Plus 12.4 13.41 13.9 13.9Table 11. Mean performance of error reduction across all databases

Method 3 Nets 9 Nets 20 Nets 40 Nets
Average 49.17 49.66 50.16 50.94

Vote 46.94 47.18 47.55 48.57
WTA 48.41 49.43 50.05 49.52
Borda 45.68 45.87 45.73 47.05

Bayesian 38.19 43.61 35.21 28.52
DAN 39.35 41.05 39.65 38.09

Stacked 56.78 58.3 58.56 58.98
Stcaked+ 56.91 56.8 59.4 59.4

4 Conclusions

In the present paper we have analysed six classical combination methods and we have
proposed two methods based on Stacked Generalization. We have used ensembles of
3, 9, 20 and 40 networks previously trained with Simple Ensemble on six databases
from the UCI Repository to cover a wide spectrum of the number of networks in the
classification system.

The results showed that the improvement by the use of Stacked Generalization de-
pends on the database. Moreover, we have calculated the mean increase of performance
and the mean percentage of error reduction across all databases with respect to a Single
Network in order to get global measurements to compare the combination methods we
have studied. According to the results of these global measurements Stacked General-
ization methods perform better than the classical combination methods studied in this
paper. In general, Stacked Generalization is the best performing combination method
for ensembles of 9 networks and Stacked Generalization Plus is the best performing
combination method for ensembles of 3, 20 and 40 networks.

We can conclude that the use of a Combination Network in the module combination
of an ensemble increases the generalization capability of the ensemble.
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Abstract. A new convolutional neural network model termed sparse
convolutional neural network (SCNN) is presented and its usefulness for
real-time object detection in gray-valued, monocular video sequences is
demonstrated. SCNNs are trained on ”raw” gray values and are intended
to perform feature selection as a part of regular neural network training.
For this purpose, the learning rule is extended by an unsupervised com-
ponent which performs a local nonlinear principal components analysis:
in this way, meaningful and diverse properties can be computed from
local image patches. The SCNN model can be used to train classifiers
for different object classes which share a common first layer, i.e., a com-
mon preprocessing. This is of advantage since the information needs only
to be calculated once for all classifiers. It is further demonstrated how
SCNNs can be implemented by successive convolutions of the input im-
age: scanning an image for objects at all possible locations is shown to
be possible in real-time using this technique.

1 Introduction

In many real-world classification tasks there is a need for classifiers that can
learn from examples, such as neural networks (NNs) or support vector machines.
Typically, the performance of such classifiers depends strongly on a suitable
preprocessing of the input, but it is far from clear what characterizes an optimal
preprocessing or if there even exists an optimal solution. Sometimes it is required
that the dimensionality of the input should be reduced as far as possible, whereas
another objective is to make preprocessing invariant to certain transformations
of the input (typically translation, rotation and scaling are investigated in this
context). The process of choosing an appropriate preprocessing is referred to
as feature selection. In addition to constraints on error rates, processing time is
usually bounded from above, too, especially in computer vision. Therefore, not
only the accuracy of classifiers is important but also their execution speed.

Convolutional neural networks (CNNs) [7] were proposed to address all of
these issues. They are specialized instances of multilayer perceptrons (MLPs)
and thus essentially feed-forward NNs. Due to their connectivity, CNNs can be
implemented by successive convolutions of an input image, permitting very high

F. Schwenker and S. Marinai (Eds.): ANNPR 2006, LNAI 4087, pp. 221–232, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Sketch of the SCNN network model (cross-section, y-dimension not shown).
Receptive fields are drawn in by dotted ellipses, cells in the hidden layers are separated
by black lines. Input filters connecting neurons to their receptive fields are shown as
arrows in different shades of gray which match the shade of the destination neuron
they project to. Arrows of the same shade of gray represent equivalent input filters,
see text for details. In addition, the step sizes Δx

i are shown: they give the number of
neurons by which the SCNN (indicated by large black boxes) samples its layers, i.e.,
the input image for i = 0, when performing whole-image searches. The effect of spatial
sampling, i.e., shifting the classifier in layer 0, is shown on the right-hand side.

execution speed (see [1,11] for recent applications of CNNs). CNNs operating
on unprocessed image data essentially learn a preprocessing transform, thus
integrating feature selection into the training process.

In this article, a new convolutional neural network architecture termed sparse
convolutional neural network (SCNN) is presented and its possibilities for ob-
ject detection are explored. Since SCNNs can be implemented using consecu-
tive convolutions, whole-image search at multiple scales is possible in real-time
on standard present-day computer hardware. Furthermore, the SCNN model is
intended to perform feature selection from unprocessed image data: a hybrid
supervised-unsupervised learning algorithm is described which computes mean-
ingful and diverse features by the interplay of local nonlinear PCA and error
minimization. Lastly, an algorithm for learning a common image representation
that is shared by several SCNN object classifiers is described. The advantage
of different classifiers using the same preprocessing is that preprocessing needs
only to be performed once per image when performing whole-image searches.

2 Sparse Convolutional Neural Network Classifiers

Like the original proposal [7] they are derived from, SCNNs are feed-forward
neural networks with local receptive fields (see fig. 1). However, the connection
structure in SCNNs has been considerably modified as compared to [7]. The
proposed model is simpler and can —once trained— be tested using existing
software for simulating multilayer perceptrons. Furthermore, the issue of obtain-
ing meaningful and diverse features is addressed using a direct approach. The
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original CNN model attempts to achieve this by connecting hidden layers only
to certain (not all) succeeding layers, which has been experimentally shown to
lead to dissimilar feature maps. It is unknown, though, what effect the global
network structure has on this mechanism and how many experimental trials are
necessary for this mechanism to work. In the SCNN model (see fig. 1), feature
complexity and diversity are enforced by additional unsupervised terms in the
learning algorithm. They cause outputs of different feature maps at the same
image location to be (nonlinearly) decorrelated and to have extremal variance
in a way very similar to nonlinear principal components analysis [4]. Employed
principles are gradient-based variance maximization of neuron outputs, decor-
relation and weight vector normalization. The SCNN model has an input layer
of fixed dimension, one or more hidden layers, and an output layer containing
a single element. Each layer receives input from one other layer (the preceding
one) and projects to a single layer (the succeeding one, see also fig. 1).

2.1 Network Model

Since SCNNs are specialized instances of MLPs, the network structure is dis-
cussed without reference to the implementation as successive convolutions. Con-
straints arising from this implementation are discussed at the end of this
section.

Connectivity. A layer l = 0, . . . , lmax, having dimensions Lx
l ×Ly

l is composed
of identical cells of neurons of dimension Cx

l ×Cy
l . Thus, a neuron can be assigned

coordinates n = (l, c, i), where c denotes the two-dimensional index of the cell
within layer l, and i the neuron’s coordinate within its cell. Within one cell, each
neuron is connected to the same rectangular patch of neurons in layer l−1 which
is termed a neuron’s receptive field (RF). Receptive fields in layer l−1 can overlap
in x- and y-direction by Ox

l−1 ×Oy
l−1. The set of all weights connecting a neuron

to its RF is denoted input filter. Since it is in one-to-one correspondence to a
RF, it can naturally be arranged in a rectangular scheme with dimensionality
Ix
l−1×Iy

l−1 which is identical to that of the RF. Connection strengths are denoted
by wn′n where n specifies the coordinates of the destination neuron and n′ those
of the source neuron. Please refer to fig. 1 for a visualization. Each neuron (except
for those in the input layer) is connected by a trainable weight to a bias neuron
whose activation is constant (here: 1.0).

Constraints. The first set of constraints comes from the geometrical consis-
tency of the SCNN. Trivially, given a layer l, Lx

l , Ly
l must be integer multiples of

Cx
l , Cy

l . Furthermore, the number of input filters in layer l− 1 must be identical
to the number of cells in layer l. Thus, we get two conditions

Lx,y
l = kCx,y

l , k ∈ N
+ (1)

Lx,y
l

Cx,y
l

=
Lx,y

l−1 − Ix,y
l−1

Ix,y
l−1 − Ox,y

l−1

(2)
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As in the CNN model, a weight-sharing constraint enters via the requirement
that neurons within a layer l, having the same within-cell coordinates i but being
connected to different RFs, must have identical input filters. It is this constraint
which allows to implement a network run by a series of convolutions. In con-
trast, each neuron in one cell is allowed to be connected to the common RF by
different filters than the other neurons in that cell. Effectively, the size of one
cell, Cx

l ×Cy
l , specifies the number of convolution filters necessary for the simu-

lation of each layer, whereas the size of receptive fields (equal to input filter size
Ix
l−1 × Iy

l−1) determines the dimensions of the convolution filters. For each layer
l, sets of weights that are required to be identical by the weight-sharing property
are called equivalent. Obviously it is desirable to obtain a trained SCNN which
requires as few convolution filters as possible while maintaining high classifica-
tion accuracy.

A further constraint comes from the implementation that is used for whole-
image search (see section 3) although it is not necessary for the simulation of
the SCNN model per se: it requires that step sizes Δx

l , Δy
l in layer l (i.e., the

differences between the size of input filters projecting to layer l + 1 and their
overlap) must be integer multiples of that layer’s cell sizes. Thus it is ensured
that the classifier starts and ends at cell boundaries in all layers if it is shifted
in the input image by Δ

x/y
0 , see also fig. 1. In precise terms:

Δx,y
l ≡ Ix,y

l − Ox,y
l = kCx,y

l , k ∈ N. (3)

Activation Functions. The activity An of a neuron is calculated from the
activities of its RF and the weight values in its input filter as An = σ(

∑
n′∈RF

An′wnn′) using the sigmoidal activation function σ(x) = x
1+|x| .

2.2 Learning in SCNNs

Initially, all weights are initialized to small random values between -0.01 and
0.01 (see [8] for a motivation of this initialization). Then, a weight-sharing step
is performed: for each layer l, the average of each set of equivalent weights is
computed. Subsequently, all equivalent weights within layer l are set to their pre-
viously computed average value. In this way, all equivalent weights have identical
values at the start of training. During each learning step or epoch, all weights
of the SCNN are treated as if they were independent. An improved variant of
the well-known Rprop learning algorithm (IRprop+, see [5]) is applied to the
SCNN using dataset Dtrain for 80 epochs. After each epoch, the weight-sharing
condition is enforced as described before. Note that weight-sharing is enforced
separately for the bias weights of each layer.

The mean squared error (MSE) is calculated as EMSE(D) = 1
|D|
∑|D|

p=0(A
out
p −

cp)2 using a dataset D. It uses the class label cp of pattern p and the activation
Aout

p of the CNN’s output neuron in response to pattern p. The learning rule for
each weight is composed of the usual MSE-minimizing term plus an additional
unsupervised term. The additional term is a nonlinear version of Oja’s rule [4]:
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Fig. 2. Layer 0 input filters of an SCNN trained on cars (see section 5.1). Shown
are filters obtained by different learning rules: MSE gradient (upper row) and hybrid
learning rule described in the text (lower row). Many filters in the upper row are almost
identical whereas, in the lower row, such redundancy does not occur.

Δwn′n = γAn(An′σ(σ−1(An)) − Anwn′n −
∑

j∈cell(n),j<n

Ajwn′j (4)

where γ is a small positive constant and the sum on the right-hand side of the
equation runs over all neurons in the same cell as n whose within-cell coordinates
are component-wise smaller than those of n.

During training, model selection is performed using EMSE(Dval) alone. When
evaluating the performance of a trained network, the classification error
CE(Dtest) is used. It is defined as CE(D) = 1 − 1

|D|
∑|D|

p=0 θ(Aout
p − τ), where θ

denotes the step function and τ a threshold assigned to each NN (always taken
to be 0).

A few comments on the chosen learning algorithm are in order: local nonlin-
ear principal components analysis is performed within each receptive field, but
modified by the MSE gradient. The unsupervised part of the learning rule per-
forms decorrelation of all neurons within a cell and tends to input filters with
an euclidean norm of 1.0. It is an extension of the algorithm given in [2] where
only orthonormalization was performed (not by gradient descent but operating
directly on the weights). Due to unsupervised learning, neurons within a cell
capture a part of their input whose variance is maximally large. Furthermore,
the neurons’ input filters tend to orthogonality, i.e., diversity (see fig. 2).
For weights connecting to the output neuron, the unsupervised term is not con-
sidered because it interferes too much with minimizing the MSE.

3 A Convolutional Architecture for Whole-Image Search

The neural network architecture described in the previous sections is particularly
suited, due to the weight-sharing constraint, for fast implementation by means
of convolution filters (see, e.g., [6] for an introduction). However, it is possible
to achieve far greater speed gains when considering whole-image search, i.e.,
the application of a fixed-size classifier at every conceivable position within an
image, possibly at several scales. In this context, CNN architectures like the
SCNN model have the tremendous advantage that convolutions for overlapping
classifiers need only be computed once. This can be understood by considering
that input filters in the SCNN do not depend on their spatial position within a
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Fig. 3. Sketch of the SCNN architecture for whole-image searches. SCNN model. The
input layer consists of the whole image, and successive layers are correspondingly en-
larged. Input filters of the SCNN translate into convolution filters: convolution results
of a layer with its input filters are called feature maps. The recombination of feature
maps into the next layer is defined by the connectivity of the SCNN. Identical shades
of gray of hidden layer neurons and feature maps indicate this. Instead of converging
to a single output neuron, the SCNN now converges to a layer where each neuron
represents the output of one SCNN classifier. The number of input filters (i.e., feature
maps), hidden layer neurons and similar SCNN parameters are examples.

layer due to weight-sharing. By inference, the whole image needs to be convolved
only once with all input filters in order to produce a classification result at
each position within an image. Please see fig. 3 for details of the convolutional
architecture and fig. 1 for details on whole-image search. Furthermore, since the
input image is usually subsampled by the input filters of the first network layer
(always the case when Δx

0 ≥ 2, see fig. 1), only the convolutions with these
input filters contribute significantly to the total processing time. The whole-
image classification problem then reduces to filtering with a limited number of
(usually nonseparable) filters; if real-time performance is desired, the mask size
should be small (typically, sizes of 5, 7 or 9 are chosen).

The SCNN model presented here belongs to the class of convolutional neural
networks which were originally proposed in [7]. A crucial difference is that no
implicit subsampling of feature maps is performed, whereas in [7], feature maps
are successively filtered and subsampled until they converge onto one neuron, the
output of which is combined with similar neurons to form a classification output.
In the SCNN model, subsampling is performed if the step sizes in one layer are
chosen larger than 1, but the choice of subsampling filters is not defined a priori
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Fig. 4. Exemplary SCNN architecture for feature base learning. The horizontal line
indicates that the processing streams converging onto the two (or more) output neurons
do not have any connections in common.

(i.e., Gaussian smoothing) but learned by the network, too. It should be stressed
here that subsampling is possible in the SCNN model, but at this point it seems
more practical to let the SCNN learn the downsampling filters as well. A second
difference is that feature maps are recombined into layers in the SCNN model
after each convolution, whereas in [7], feature map outputs are recombined only
in the last layer of the network. Recombination after each convolution inflicts a
small computational cost, but it can be expected that it results in more reliable
detection of conjunction features similar to the object detection architectures of
[9,12]. Lastly, there exists a direct mechanism of enforcing diversity among the
learned features of the SCNN, which guarantees without the need for additional
experiments that informative and non-redundant features are learned which, in
addition, capture a significant part of the input’s local variance (by the local
PCA property).

4 Feature Base Learning

An interesting application is motivated by the observation made in the previous
section that the computational load is biggest during the simulation of the first
layer. If two networks had identical processing in that layer, they could be used
simultaneously for whole-image search while the convolutions of the input image
would only need to be computed once. Stated in different terms, it would be
interesting to find out if there is a common feature base for two or more object
classes, i.e., a preprocessing of the input which is suited for representing all of
the object classes under consideration. Therefore, it is investigated if and how a
common feature base for N object classes can be learned only from available ex-
amples. It is tested by experiment whether it is possible to achieve classification
rates comparable to separately trained classifiers. In the formalism of SCNNs,
there exists a straightforward approach: N networks are trained independently
from each other using methods given in section 2.2, but after each iteration of the
learning algorithm, a weight-sharing constraint is enforced between the filters in
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the input layers of all networks.1 An alternative interpretation is a single network
which converges onto N output neurons by non-interfering processing streams
from a common first hidden layer. Please see fig. 4 for a visualization. Model
selection is performed using the sum

∑N
i=0 Ei

MSE(Di
val) of the mean squared

errors of each individual classifier on its validation dataset Di
val.

5 Experiments

Two types of experiments are conducted: the speed of the system is (empiri-
cally, not theoretically) determined using selected SCNN topologies, and tests
of topology-dependent classification performance are conducted. The latter task
is performed off-line using data from real-world classification tasks. (see fig. 5).

5.1 Classification Tasks and Training Data Generation

Most experiments described here are based on the problem of car classification in
real-world video traffic scenes (see, e.g., [3]). For a few experiments, the problem
of traffic sign classification is considered in addition. However, this problem is not
a present focus of investigations, therefore training data are much less rigorously
selected and tested, and results may not be very generalizable.

Object classifiers are trained to distinguish objects from background. Train-
ing data are generated by marking rectangular regions of interest (ROIs) that
contain objects. Objects are enclosed as tightly as possible. Negative examples
are also created manually, although their choice is more ambiguous. Some rep-
resentative training examples for cars and traffic signs are shown in fig. 5.

Due to the fact that whole-image searches usually sample the image at step
sizes Δ

x/y
0 > 1, the classification must be invariant to certain transformations

(especially small translations and rescalings). This requirement is encoded into
the training examples. Let us define some notation: a training example consists
of a class label and a region of interest (ROI) within a specified image. The ROI
either does or does not enclose an object: to indicate this, the class label is set
to 1 for an object and to -1 otherwise. A training dataset D contains N exam-
ples. Before using a dataset for training, a defined number of transformations is
applied to the ROI of each example, creating the transform dataset Dtr.

First of all, the transformations to be applied must be specified as well as the
degree of invariance which the classification should have with respect to these
transformations. Let us assume that each transformation fα

t , t ∈ [0, . . . , T − 1] :
D 
→ Dtr can be continuously parametrized by a single parameter α, and that a
total of T different transformations exists. Let fα=0

t denote the identity trans-
form. Then a limit αmax

t > 0 must be specified, stating the range of parameters
It = [−αmax

t . . . αmax
t ] in which classification invariance should hold. Further

assuming that all transforms commute (fulfilled for translation, rotation and
scaling in two dimensions), we obtain a map
1 Note that the dimensions of the input layers need not be identical, only the dimen-

sions of the input filters in the input layer.
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Fig. 5. Positive and shared negative examples for the car/traffic sign object classes

τ : D 
→ Dtr; r 
→ (fα1
1 ◦ · · · ◦ fαT

T )(r), αk ∈ Ik, r ∈ D.

that is applied a defined number of times to each example in D. From the results,
the transform dataset is created: it is therefore larger than the original dataset of
examples. In the implementation presented here, a certain invariance to scaling
and translation is required. Translation is modelled by two transformations, one
for horizontal and one for vertical translations. The parameters αx and αy of
both transformations are interpreted as the percentage of an ROI’s width or
height by which it should be shifted. The single scaling transform enlarges or
reduces an ROI’s width and height by a factor of αsc while ensuring that the
center of the ROI stays constant. In addition, it is required for the map τ that
each transformation result must completely contain the original example.

Dtr is generated from labeled data by applying τ 9 times per example and
uniformly drawing from the parameter intervals Ix,y, Isc defined by αmax

sc =√
2,αmax

x,y = 10. From the transform dataset, three disjunct datasets Dtrain, Dval

and Dtest are created which contain 2000 examples each, half of them positive.
The image content within the ROIs is up- or downsampled to a fixed size of
25x25 pixels. Whenever necessary, appropriate smoothing and bicubic interpo-
lation are performed. For later experiments, three additional car datasets are
created from Dtr where each ROI is shifted by 50% of its width to the left. The
idea behind this classification task is to make detection more robust by check-
ing if the ”left-shifted” object classifier indeed finds half a car at the left of a
detected car.

5.2 Off-Line Classification Performance of Single SCNNs

Due to the weight-sharing constraint (see section 2.2), the number of free pa-
rameters in an SCNN is greatly reduced. The choice of an appropriate topology
is therefore crucial since the number of free parameters in the network depends
directly on it. Since the correct choice of NN topology for a given classification
task is still, in general, an unsolved problem, a number of experiments was con-
ducted to identify suitable topologies. The search space can be reduced by the
requirement that small input filters should be used in the input layer, as well as
by the architectural constraints (1), (2) and (3) which SCNNs must obey.

In each experiment, a certain SCNN topology is trained 6 times using a dif-
ferent random seed each time, and the best classification result CE(Dtest) is
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Table 1. Best classification errors of various SCNN topologies for cars (C), cars
shifted left (L) and traffic signs (TS) (errors are given in percent). Cells and layers are
quadratic so only one dimension of their sizes is given. In row 0, the result for two fully
connected reference networks of MLP type is given. SCNNs 1-5 demonstrate the effects
of varying input filter sizes and numbers. Notable is the improvement when allowing
4x4 input filters as in SCNN 5. Rows 6 and 7 give results for the feature base learning
(using topology 4, see text) of two and three object classes. For comparison, the last
row shows the results of the SNoW-architecture [10] using the Winnow update rule.

Nr. dimensions filter size nr.filters conn. free param. minexpCE(Dtest)

0 25-5-1 (25) - 15650 15650 5.5 (C), 5.4 (L), 6.7(TS)

1 25-9-1 21-9-x 3-1-x 36162 4050 6.8
2 25-18-1 9-18-x 2-1-x 26568 648 7.8
3 25-30-1 7-30-x 3-1-x 45000 1341 6.7
4 25-22-1 5-22-x 2-1-x 12584 584 6.8(C),5.8(L),11.4(TS)
5 25-44-1 5-44-x 4-1-x 50336 2336 6.3

6 feature base learning using SCNN 4 7.3(C),5.9 (L), 10.9 (TS)
7 feature base learning using SCNN 4 6.5(C),11.0 (TS)

8 SNoW, std. parameters, 50 cycles 13.6

taken to be a measure of that topology’s learning capacity. As a baseline, a fully
connected NN with one hidden layer is identically trained on the car and traffic
sign classification problems. Table 1 gives an overview over representative SCNN
topologies as well as the fully connected reference networks. When considering
SCNNs with one hidden layer, two ways to improve classification results were
identified: increasing the size, or alternatively the number of input filters in the
input layer. Obviously, both operations lead to a larger number of free parame-
ters. The best topology found in this way has filter sizes of 5x5 pixels in the input
layer, yet it is not quite compatible with real-time requirements since it requires
16 convolutions of the input image in the input layer alone. It uses 80000 con-
nections, although the actual number of free parameters is 23842. Classification
performance is only slightly worse than that of the reference network despite the
fact that the number of free parameters is much lower.3 If real-time capability is
desired, SCNN 4 is the topology to choose. Although using a much smaller num-
ber of connections and free parameters than topology 5, it achieves only slightly
worse classification performance. Please see section 5.4 for speed measurements.

For unknown reasons, the inclusion of more hidden layers did not improve
performance. Many-layered topologies were constructed by adding new layers
onto well-performing SCNNs with one hidden layer. Notable was much slower
overall learning convergence. It is therefore conceivable that training was not
conducted sufficiently long. More research will have to be applied in order to
shed light on this particular point.
2 Note that it is the number of free parameters which determines the speed of whole-

image classification.
3 It was also shown that SCNN performance is slightly superior to that of an MLP

with identical connectivity as well as an SCNN using supervised learning only.
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5.3 Feature Base Learning Results

SCNN topology 4 given in table 1 is used for learning a common feature base for
cars and traffic signs. It is not the best-performing topology that was found but
comes very close to it; what is more, it allows real-time operation. Training is
performed using the algorithm given in section 4. Results are given in table 1. It
is evident that classification results are comparable to those of classifiers trained
separately on their respective tasks. Observe that the feature base result for
traffic signs has to be compared to traffic sign results of topology 4 in table 1,
not to the reference network performance: the goal was to show that the perfor-
mance of the individual classifiers can be reproduced by feature base learning.
When choosing SCNN topologies with larger input filters, the performance of
the reference network can be approached for traffic signs, too.

5.4 Online Performance

All tests were conducted using a 1.86Mhz Centrino processor. Images had a
size of 360x288 pixels; convolutions were implemented in C++, and no use was
made of the capabilities of the graphics hardware. Classification was performed
at three spatial scales for each frame, where each scaled image was obtained by
smoothing with a size-5 binomial filter and downsampling by a factor of 2. The
best-performing SCNN topology 5 given in table 1 allows a frame rate of 7 frames
per second (fps), whereas SCNN 4 allows 22 fps at the price of slightly inferior
classification performance. When using three classifiers of topology 4 sharing a
common preprocessing, a speed of 19 fps is attainable.

6 Discussion

The SCNN model is interesting in several respects: on the one hand, it demon-
strates a successful combination of supervised and unsupervised learning rules;
on the other hand, it offers very interesting possibilities for practical applica-
tions. Due to its real-time capability and the ability to search images simulta-
neously for several object classes using using feature base learning, it is suited
for applications where scene analysis is performed, which usually consists of the
recognition of more than one type of object. The driving idea behind the SCNN
model was to reduce the need for ”manual” feature design. With SCNNs, some
prior knowledge must still be provided in the form of the network topology: if
it is known that, for example, that features of a certain size are characteristic
of an object class, the input filters should be chosen accordingly. In many cases,
input filter and step sizes are constrained by real-time requirements; once input
filter and step sizes are fixed, the SCNN topology constraints are sufficient for
removing most of the remaining ambiguities. As with all NNs, the correct choice
of topology is an unsolved problem, although in practice one can simply take
the SCNN with the largest number of parameters that is compatible with ap-
plication constraints. As has been demonstrated, increasing the number of free
parameters tends to improve classification performance.
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The issue of extending SCNN topology successfully to more than one hidden
layer is a current research topic: SCNNs with two or more hidden layers may be
much more powerful in capturing local combination features; furthermore, it is
intuitive that feature base learning can profit greatly from such topologies. The
SCNN model itself could also be extended; in particular, shortcut connections
which bypass one or more layers, and subsampling layers (as in LeCun’s orig-
inal proposal) suggest themselves. From a theoretical point of view, a detailed
examination of the interplay between the supervised and unsupervised terms in
the learning rule would be interesting; the relation of learned SCNN input filters
to independent components seems to be worth investigating. Last not least, it is
intended to use SCNN classifiers (possibly in conjunction with other modules) to
build robust and fast object detection systems that reliably work in practice4.
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5. C. Igel and M. Hüsken. Empirical evaluation of the improved Rprop learning
algorithm. Neurocomputing, 50(C):105–123, 2003.

6. B. Jähne. Digital image processing. Springer-Verlag, 1999.
7. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proc. IEEE, 86(11):2278–2324, 1998.
8. R. D. Reed and R. J. Marks II. Neural Smithing. MIT Press, 1999.
9. M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex.

Nature Neuroscience, 2(11):1019–1025, 1999.
10. D. Roth. The SNoW learning architecture. Technical Report UIUCDCS-R-99-2101,

UIUC Computer Science Department, May 1999.
11. M. Szarvas, A. Yoshizawa, M. Yamamoto, and J. Ogata. Pedestrian detection

using convolutional neural networks. In Proceedings of the IEEE Symposium on
Intelligent Vehicles, pages 224–229, 2005.

12. H. Wersing and E. Körner. Unsupervised learning of combination features for
hierarchical recognition models. In Proceedings of the ICANN, 2002.

4 Training data as well as the C++ source code for simulating and training SCNNs
are available under http://www.neuroinformatik.rub.de/thbio/group/vision.



Visual Classification of Images by Learning
Geometric Appearances Through Boosting

Martin Antenreiter, Christian Savu-Krohn, and Peter Auer

Chair of Information Technology (CiT)
University of Leoben, Austria

Abstract. We present a multiclass classification system for gray value
images through boosting. The feature selection is done using the LPBoost
algorithm which selects suitable features of adequate type. In our exper-
iments we use up to nine different kinds of feature types simultaneously.
Furthermore, a greedy search strategy within the weak learner is used to
find simple geometric relations between selected features from previous
boosting rounds. The final hypothesis can also consist of more than one
geometric model for an object class. Finally, we provide a weight opti-
mization method for combining the learned one-vs-one classifiers for the
multiclass classification. We tested our approach on a publicly available
data set and compared our results to other state-of-the-art approaches,
such as the ”bag of keypoints” method.

1 Introduction

Image recognition and categorization are interesting vision problems. There ex-
ist many approaches for solving specific problems (e.g. for face recognition). The
task becomes more difficult if the goal is to develop an algorithm which is inde-
pendent from the target object class. A state-of-the-art approach to overcome
this problem is to use the ”bag of keypoints” idea (see [5]). This method cal-
culates a feature histogram for every image in the data set. Its main advantage
is, that standard learning algorithms like SVMs [12,19], which need a fixed di-
mensional input vector, can be used to construct a classifier. On the other hand,
feature histograms cannot exploit geometric relationships between the features
contained in an image, although this might be discriminative information.

There exist various methods for incorporating such relationships between
parts using statistical models. Early work in this direction was done by Burl
et al. [2] for the recognition of planar object classes. There, important parts
are selected by previously learned detectors, and afterwards a shape model is
learned from the detector locations. This approach was later improved by using
a soft-detection strategy in [3]. The two problems; detecting features, and build-
ing a shape model from the detection, are solved simultaneously. Furthermore,
unsupervised scale-invariant learning of parts and shape models has been done
in [7], where an entropy-based feature detector from Kadir [13] has been used to
select the important parts from an image.
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c© Springer-Verlag Berlin Heidelberg 2006
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Recently, graph-based models called ”k-fans” were introduced [4]. The struc-
ture of the graph, and therefore the representational power of the shape model
is controlled by the parameter k. There exist well defined algorithms to solve
the learning and detection problems for models with k-fan graphs. In general,
methods like [2,3,4,7] force the user to predefine a fixed number of parts consid-
ered for learning. This quantity is usually determined in a second run by trial
and error. In contrast, we show how the correct number of parts as well as the
geometric complexity for the model can be estimated during learning with a
boosting algorithm.

Previous work from Opelt et al. [17,16] and Fussenegger et al. [9] have shown
that image categorization using AdaBoost [8] is a powerful method. Particularly,
they have used AdaBoost to select discriminative features to learn a classifier
against a background class. This work extends their methods in several direc-
tions. First, it is not always clear beforehand which feature types are advisable
for learning a certain class. Therefore, we use nine different feature types simulta-
neously, and leave it up to the learning algorithm to determine the useful types.
To reduce computational efforts we cluster each feature type using k-means.
Secondly, we use LPBoost [1,6] as the learning algorithm which is advantageous
compared to AdaBoost, since LPBoost can handle noisy data well. Our third con-
tribution is a procedure for incorporating geometric relations between features
into the weak learner of the boosting algorithm. Finally, we address the multi-
class classification problem and provide a weight optimization method for one-
vs-one classifiers using Support Vector Machines (SVMs) [12,19]. We conclude
with the evaluation and the results obtained on the Xerox image data set [5],
which is publicly available at ftp://ftp.xrce.xerox.com/pub/ftp-ipc/. There, we
also compare our results with those reported in the literature.

2 Classification of Images Through Boosting

In this Section we will present our method for learning a one-vs-one classifier. We
will describe our feature extraction method as well as our preprocessing steps.
Afterwards, we will give a short overview of the learning algorithm, and introduce
an extension of the weak learner in order to manage geometric relations.

2.1 Feature Extraction

We use the scale invariant Harris-Laplace detector [15] to obtain regions of inter-
est. From every region we extract four different feature types: scale invariant fea-
ture transforms (SIFTs) [14], sub-sampled grayvalues (see [17]), basic moments
and moment invariants [11]. In addition to these descriptors, we use the segmen-
tation method and the features of Fussenegger et al. [9]. For some feature types,
we also normalize illumination by homomorphic filtering (see e.g. [10], Chap.
4.4.3). Furthermore, all features are normalized by whitening. Additionally, we
obtain another feature type by reducing the SIFT-features to their 40 largest
components using PCA, which accounts for their sparseness. Altogether, we use
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Table 1. Feature types with preprocessing steps

φ feature type intensity normal. whitening mφ kφ

1 subsampled grayvalues x 854 376 1 848
2 x x 854 376 1 848
3 basic moments x 852 755 1 846
4 x x 854 376 1 848
5 moment invariants [11] x 854 360 1 848
6 x x 854 313 1 848
7 SIFTS [14] x 809 063 1 798
8 PCA 40 809 063 1 798
9 segments [9] x 690 070 1 661

nine different types of features φ. In a second preprocessing step, we cluster the
different features by k-means using kφ = �2√mφ� centers with a random initial-
ization from the data, where mφ denotes the number of features per type ex-
tracted from the database. Table 1 shows an overview of the calculated features.

2.2 LPBoost

We use a boosting approach since those algorithms are able to select important
features from a large feature set. Instead of the common AdaBoost, we use LP-
Boost as the learning algorithm. One reason is that LPBoost has a well defined
stopping criterion; learning is stopped if no further weak hypothesis will improve
the value of the objective function for the current combination of weak hypothe-
ses. Furthermore, AdaBoost is a hard margin classifier and therefore might overfit
noisy data, whereas LPBoost is a soft margin classifier and handles noisy data
well. The linear optimization problem in its primal formulation is:

maxρ,a,ξ ρ − D
∑m

n=1 ξi

s.t. yi

∑T
t=1 αtht(xn) + ξi ≥ ρ i = 1, . . . , m∑T

t=1 αt = 1 αt ≥ 0
ξi ≥ 0 i = 1, . . . , m

(1)

and its dual is given by:

minβ,w β
s.t.

∑m
i=1 yiwiht(xi) ≤ β t = 1, . . . , T∑m
i=1 wi = 1 0 ≤ wi ≤ D

(2)

Thus, the final decision function is simply:

f(xi) = sign

(
T∑

t=1

αtht(xi)

)
∈ {+1,−1} (3)

Note that the parameter D must be chosen carefully depending on the data set.
An interpretation of the parameter and additional information can be found in
Bennett et al. [1], Demiriz et al. [6] and Rätsch et al. [18].
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2.3 Weak Learner

The weak learner is called in every boosting round and selects a hypothesis h∗

from the hypothesis space H which fulfills equation

max
h∈H

(
m∑

i=1

h(xi)yiwi

)
=

m∑
i=1

h∗(xi)yiwi. (4)

We implemented three different weak learners. The first and simplest one selects
a reference feature of type φ with an optimal threshold according to the current
boosting weights wt. The second and third weak learners search for geometric
relations between distinctive features. Note computational complexity is twofold
when building geometric relations based on relative position of the features and
their number.

Since a full search over all possible geometric directions is a computationally
time consuming process, we use rather simple geometric relations. More pre-
cisely, our geometric primitives use four geometric directions (up, down, left,
right) relating up to three reference features. If an object category requires a
geometric relation consisting of more than three features, our search algorithms
build hierarchies of such geometric primitives modeled as trees. These relations
are denoted as ’relations A’ throughout this paper. Furthermore, we build more
complex geometric relations to distinguish between more directions, i.e. we divide
our primitives into eight sections and denote those as ’relations B’. Note that
our geometric relations are invariant to translation and scale but not to rotation.

To speed up computation, our weak learners use a greedy search strategy to
find geometric relations [Fig. 1]. In particular, we combine the previous hypothe-
ses only with the selected hypothesis h∗ that has just one reference feature (see
Fig. 1, Step 2a). This is reasonable due to (4). There might exist a better feature
for a combined hypothesis hand, but it would require a search through all features
for every previous hypothesis to determine it. Nevertheless, we tested this search

1. Select a hypothesis h∗ using equation (4) and current boosting weights wt.
2. For all previously generated hypotheses hp, p = 1, . . . , t − 1 do:

(a) Create a hypothesis with a logical AND using the current simple weak
hypothesis → hand = h∗ AND hp.

(b) The hypothesis hand is used for the geometric relations search. The two
sub hypotheses from hand are applied on every image yielding two point
sets. We seek a common geometric relation between these sets, yielding a
geometric hypothesis hgeom.

3. The weak hypothesis finder compares the performance of the simple weak
hypothesis h∗ and the geometric hypothesis hgeom and outputs the hypothesis
with the best performance.

Fig. 1. Greedy search strategy for the weak learner
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strategy on a subset of the data. We create an optimal hypothesis hand for every
previous hypothesis hp by selecting an additional hypothesis hopt with a refer-
ence feature, such that the hypothesis hand achieves the least possible weighted
error. Since this approach gives comparable results at higher computational cost,
we use the faster greedy strategy proposed [Fig. 1].

Within every boosting iteration, the weak learner either builds a simple or
geometric hypothesis. During the incremental construction of the geometric hy-
potheses, various geometric sub hypotheses are generated. If such a sub hypothe-
sis is useful with respect to the training set, LPBoost incorporates it into the final
decision function by assigning a positive weight αt to it; otherwise αt will be set
to zero. Hence, the final classifier can contain more than one geometric hypoth-
esis per object. In consequence we do not have to flip input images to guarantee
that the objects always face the same way (e.g. motorbikes, airplanes), but rather
to ensure that there are sufficient examples for all the important orientations in
the data set.

3 Multiclass Image Classification

Within our experiments for multiclass classification, we noticed low performance
using one-vs-all and hierarchic classifiers. Considering the object categories of
this database, it is likely that the extracted features are shared within differ-
ent classes. Actually, Csurka et al. [5] do achieve good results learning feature
histograms with a one-vs-all strategy. Nevertheless, feature histograms cannot
exploit geometric relationships between the features contained in an image, al-
though this might be discriminative information. Hence, we chose a one-vs-one
strategy and combine our individual classifiers by a voting scheme.

Simple voting methods like majority voting using hard labels, not only ignore
available information about the different degrees of confidence in the different
classifiers, but also the classifier’s confidence in its own prediction. Hence, a
weighted voting scheme incorporating such information seems more reasonable.

An appropriate way to measure a classifier’s confidence in its prediction is the
signed distance

δ(xi) =
T∑

t=1

αtht(xi), (5)

with δ(xi) ∈ [−1, 1], of a data point xi to the decision boundary. In this case,
a great magnitude of δ(xi) reflects high confidence in a prediction. Thus, for an
r-class problem upon m images xi (i = 1, ...,m), we denote the predictions of
the r · (r − 1) different classifiers by

ci = (δ1,2(xi), δ2,1(xi), ..., δr−1,r(xi), δr,r−1(xi))
T

∈ [−1, 1]r·(r−1) (6)

Addressing the overall confidence in each classifier w.r.t. a certain class l, we try
to find optimal weights wl ∈ IR1×r·(r−1) with l = 1, ..., r and some b ∈ IRr such
that the overall vote
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l = arg max
l′

wl′ · ci + bl′ (7)

corresponds to the true class.
Hence, we formulate the following quadratic problem which gives a linear

SVM:
min ‖ (w1, ...,wr) ‖2 + C ·

∑
i

ξi

s.t. wl · ci + bl ≥ 1 − ξi, l = class(xi)
−wl · ci − bl ≥ 1 − ξi, ∀l : l �= class(xi)

ξi ≥ 0 i = 1, . . . , m,
l = 1, . . . , r

(8)

where, similar to (1), the amount of slackness over all predictions ci is controlled
by the parameter C.

4 Evaluation and Results

For our experiments we used the Xerox database consisting of 1774 real-world
images from seven different categories. The categories are faces (790), build-
ings (150), trees (150), cars (201), phones (216), bikes (125) and books (142).
The numbers in brackets indicate the number of images per category.

Table 2. Accuracy upon 10-fold cross-validation

voting geometry parameter mean (std)

majority voting none – 64.25 (3.21)
majority voting relations A – 74.78 (2.92)
majority voting relations B – 75.08 (2.51)
[5] – – 85 n/a
SVM none C = 0.2583 90.60 (2.06)
SVM relations A C = 0.7622 90.90 (2.16)
SVM relations B C = 0.1666 91.28 (2.28)

Due to time restrictions we used a 50-50-split of the data in order to opti-
mize the parameters of the learning algorithms, i.e. D for LPBoost, and C for
the SVM. In every case, we apply a simple iterative search using nested inter-
vals to obtain reliable estimates. Thus we are able to select the value yielding
the lowest test error on the corresponding 50-50 split of the data. Finally, we
fix those parameters, and conduct a stratified 10-fold cross-validation on the
database [Tab. 2 - 3]. Note each one-vs-one classifier is learned over a reduced
training and test set, including only the instances of the class combination. Fix-
ing those hypotheses, we calculate their predictions over the instances from all
classes and perform the weighted voting scheme proposed. For the SVM, we use
SVMlight [12]1, where we also tried nonlinear kernels but omit their use on since
those kernels performed poorer than the linear one.
1 Available at http://svmlight.joachims.org/
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Table 3. (top) Confusion matrix upon 10-fold cross validation using SVM and the
more complex geometry ‘relations B’. The true classes are denoted in the top row.
(bottom) Histogram of the feature types φ selected by each one-vs-one classifier upon
the 50-50-split for the non-geometric case. Thus, a column denotes different background
classes. - lower-right: overall selection upon the 50-50-split for the non-geometric case.

→ faces buildings trees cars phones bikes books

faces 98.9873 0.6667 1.3333 8.4762 2.6455 0 0.7143
bldgs 0 70.6667 8.0000 0 0 2.8431 8.9286
trees 0 10.0000 87.3333 0 0 0.8333 1.4286
cars 0.5063 0 0.6667 84.0952 9.4180 0 0
phones 0.5063 0 0 7.4286 87.9365 0 0
bikes 0 2.6667 2.6667 0 0 94.6569 2.1429
books 0 16.0000 0 0 0 1.6667 86.7857
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Furthermore, we analyzed the actual feature selection by the total weight
assigned by LPBoost to the weak hypotheses of a certain feature type φ (3).
Using the optimal parameters for the 50-50-split, it turned out that most one-vs-
one classifiers select segments along with SIFTs (PCA40) for the non-geometric
(basic) case [Tab. 3]. As shown in Table 3, we observed a strong correlation
between the test error of a one-vs-one classifier and the number of different fea-
ture types within it’s final hypothesis. If two categories are hard to classify, the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m)

Fig. 2. Example images with voting location of selected weak hypotheses are taken
from various one-vs-one classifiers. [Fig. 2(a) - 2(f)] are used for learning buildings
against trees. Only the most important hypothesis and its matching feature locations
are drawn. [Fig. 2(a) - 2(c)] show correctly classified examples, [Fig. 2(d) - 2(f)] show
misclassified examples. [Fig. 2(g) - 2(i)] show three correct classified images using a
geometric hypothesis learned from buildings vs books. [Fig. 2(j) - 2(m)] show examples
for the geometric hypothesis for the class of faces and a simple hypothesis for phones.
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learning algorithm will use more different feature types. This demonstrates the
intrinsic flexibility of our method when dealing with difficult class combinations.

Figure 2 shows exemplary images along with weak hypotheses, used by the
corresponding one-vs-one classifiers. All of them were taken from a single fold
during cross-validation. In case of buildings vs. trees, our method selects only
one simple SIFT (PCA40) feature for classification. The weak hypothesis is trig-
gered particularly at window corners [Fig. 2(a) - 2(c)]. Figures 2(d) - 2(e) show
false detections of that classifier. Both images belong to the class of trees since
those are in the foreground. Although the buildings are in the background, our
classifier detects the window corners, visible through and around the tree, and is
still able to predict the building. On the other way around, Figure 2(f) gets mis-
classified as tree because there are no such corners visible. These examples show
the difficulties in building an unambiguous database, and confirm the quality of
our classifiers.

In that line of argument, one would expect that such a simple feature would
be insufficient to distinguish buildings from books, since window corners are
similar to those of books. Indeed, the weak hypothesis of highest weight is a
geometric relation between two features. One feature represents a window corner
and the other triggers on green fields. The second best weak hypothesis uses
three features, and votes in the case where there is a hedgerow in front of a
building [Fig. 2(g) - 2(i)]. This is reasonable considering that the class book only
contains books on bookshelves or desktops, but no plants. Figures 2(j) and 2(k)
belong to the class faces. The geometric hypothesis selected votes on triangle
configurations of an ear, the hair line and the collar. Figures 2(l) and 2(m) show
a weak hypothesis for the class of phones.

5 Conclusions and Outlook

In this paper we use a new method for learning geometric relations between
features for image categorization through boosting. Our algorithm selects the
important feature types, estimates the need of geometric models and learns such
models if necessary. A final hypothesis can consist of several geometric hypothe-
ses, that solves the multi-modal appearance problem of objects. We do not have
to flip images, such that the target object always faces the same direction. We
address the multiclass classification problem with a method for combining one-
vs-one classifiers.

We found that learning without geometry already gives good performance, and
that slight improvements are achieved by moving from simple to more complex
geometric relations. An evaluation of the geometric hypotheses reveals that it is
hard to find a relation with more than three features. Simple hypotheses using
a single feature and pairwise relations dominate the final solution, which might
be due to the rather small cardinality of some classes.

In the future, the framework may be extended with a detector stage. Also
other types of geometric primitives within the weak learner are possible and
should be tried out.
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Abstract. Automatic eye tracking is a challenging task, with numer-
ous applications in biometrics, security, intelligent human–computer in-
terfaces, and driver’s sleepiness detection systems. Eye localization and
extraction is, therefore, the first step to the solution of such problems.
In this paper, we present a new method, based on neural autoassoci-
ators, to solve the problem of detecting eyes from a facial image. A
subset of the AR Database, collecting individuals both with or without
glasses and with open or closed eyes, has been used for experiments and
benchmarking. Preliminary experimental results are very promising and
demonstrate the efficiency of the proposed eye localization system.

1 Introduction

Human face detection is often the first step in numerous applications, such
as video surveillance, human–computer interface [1], face recognition, and im-
age database management. Moreover, facial feature extraction, especially with
frontal images, has a wide range of usage in automated face modelling, facial ex-
pression recognition, face animation, feature–based face recognition, and driver’s
sleepiness detection [2]. The problem of detecting human eyes has attracted a
considerable interest in computer vision society. Many efforts have been ad-
dressed to capture the essential physical and emotional information from eyes.
In intelligent vehicle systems, eye gaze and the motion of eye pupil provide im-
portant information for fatigue analysis [3]. In face detection and recognition
systems, eyes can provide the richest identity information [4].

Many different approaches are reported in literature to address the problem
of eye detection, based on some observations that could be made on the pecu-
liarities of the “object” to be detected. For instance, since the pupils generally
appear darker w.r.t. the surrounding regions, some algorithms search for local
gray minima [5]. Techniques such as contrast enhancement and intensity thresh-
olding are involved, in order to extract the dark regions. In [6], the eye regions
are located based on an a priori knowledge on the facial feature arrangement
(the hair region has the largest area in the binary image, the eyes are situated
below the eyebrows, etc.). However, such algorithms are highly sensitive to the
thresholding method used, as well as to the lighting conditions, i.e. the gray
level information would be helpful in detecting several eye candidates, but it
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may not be sufficient to filter out different facial features, such as eyebrows,
which also appear as dark patches. Alternatively, an artificial template could
be built, according to the rough shape of the eye and the eyebrow, such that
the correlation coefficient between the template and the eye image can be calcu-
lated [7,8]. Hough transform was also employed [9], which implies a preliminary
robust edge detection procedure. Finally, more recently, attention has been payed
to Gabor wavelets techniques [10], where Gabor wavelet–based linear filters are
used for eye corner detection, and non–linear (Gaussian) filters are used for iris
detection. All the above mentioned methods belong to the class of feature–based
approaches, whereas image–based techniques, like Principal Component Analy-
sis (PCA), have also been applied [11]. Despite these efforts, robust, accurate,
and non–intrusive eye detection and tracking remains largely an unsolved issue.
The challenges result from eye closure, eye occlusion, variability in scale and face
orientation, and different lighting conditions.

In this manuscript, when we refer to the eyes, we are considering not only
the iris, but rather the collection of contours forming the pupil, iris, eyelids, eye-
lashes, eyebrows and the shading around the eye orbit. This general eye region is
a larger and more dominant structure as a whole than its individual subcompo-
nents. Therefore, it is more stable and easier to detect. Although the process of
including the surrounding region improves robustness, it reduces accuracy since
the contours of the eyebrows and eye orbit shading may have a center that does
not coincide with the pupil’s center.

The method proposed consists of three fundamental steps. First, a preprocess-
ing phase, based on the application of the Sobel filters, is carried out on color
images, in order to extract the principal contours [12]; then observing that the
eyes exhibit strong transitions, because of the iris and the white part of the eye,
the projections of horizontal and vertical transitions are evaluated [13]. Finally,
both the projections are used to train two specialized neural autoassociators.

The paper is organized as follows. In the following section, the feature extraction
method is described, whereas Section 3 briefly sketches some salient properties of
the neural autoassociators used for detecting the eyes. In Section 4, preliminary
but promising results are reported, whereas Section 5 collects some conclusions.

2 Feature Extraction

The proposed eye detection technique is based on neural autoassociators and
on gradient features extracted from the images. The eyes possess strong hori-
zontal and vertical edges [14], therefore the exploitation of gradient features is
particularly suited to represent the image content.

In order to determine the gradient transitions, both the Sobel operators [12]
are applied to the input image to determine vertical and horizontal edges. Then,
the horizontal and vertical projections are computed summing the rows and the
columns of the filtered image, respectively (see Fig. 1).

In [13], a thresholding technique is proposed to analyze the projections and to
localize the eyes. Unfortunately, this method can fail when the image presents
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Fig. 1. The image is processed using the Sobel operators, then the horizontal and
vertical projections are extracted

sharp gradient transitions, for instance, for open mouth faces or in presence of
glasses. To overcome such problems, the method proposed in this paper employs
two neural autoassociators (one for each projection). For the sake of simplicity,
the procedure will be described w.r.t. the horizontal projections, since, as a
matter of fact, the vertical projections are managed in the same way.

The horizontal projections are scanned from the top to the bottom of the
input image, using a moving window. Initially, the window position corresponds
to the top of the image and then it moves down pixel by pixel. For each win-
dow position, a vector of integer features, that collects both the window position
and the values of the projections that lie behind the window, is created. There-
fore, each input vector is an n + 2 array of integers, x = (a, b, x1, x2, . . . , xn),
where n is the window dimension in rows, a and b represent the indexes of the
rows that delimit the window, and each xi counts the number of white pixels
in the i–th row inside the window. In order to train the neural autoassociator,
a target, that assesses if the window position corresponds to the eye area or
to a part of it, is associated to each feature vector. A target equal to 1 corre-
sponds to a feature vector that represents a part of the eye area, while a value
equal to 0 is associated to the feature vectors that do not belong to the eye
area, i.e. if the window intersects the eye area but it is not completely included,
then the associated target is posed to 0. Obviously, the window width must be
smaller than the eye area, in order to have a set of vectors corresponding to
such area. Moreover, the target association is performed knowing the position
of the eyes in the training images (the associated ground–truth information is
needed).

In order to train the neural autoassociators, a set of training images must
be chosen. For each image, two sets of feature vectors, corresponding to hori-
zontal and vertical projections, are extracted and the relative targets are asso-
ciated. Thus, the autoassociator which deals with the horizontal projections is
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specialized to locate the vertical position of the eyes, while the other one per-
forms the horizontal localization.

An eye localization system can exploit the trained autoassociators as follows:

– The system is fed with an input image, on which the Sobel operators are
applied to compute the gradient transitions, and hence to determine the
horizontal and vertical projections;

– Using the moving window technique, two sets of feature vectors are extracted,
considering both the horizontal and the vertical projections;

– Each neural autoassociator processes its set of feature vectors and predicts,
for each vector, if the associated window position corresponds to a part of
the eye area;

– Finally, adjacent window positions predicted as eye locations are merged
together to determine the bounding boxes that correspond to the eyes.

The localization system is able to determine the correct position of the eyes if
the input and the training images meet the following constraints. First, we need
to process facial images, depicted in foreground. Then, persons must appear in
a frontal view and only a small inclination of each face is allowed. Finally, each
image must possess an uniform background. Nevertheless, the last constraint
can be overcome by integrating the system with a preprocessing module for face
localization. In fact, face localization allows to reduce the noise represented by
the background. Many methods proposed in the past exploit skin–color filters
to localize faces. As a matter of fact, the human skin colors range in a relative
small region, independently of the particular color space chosen to represent the
images [15]. Unfortunately, the performances of skin–color filters deeply depend
on the light conditions and on the ethnic group of the depicted persons. In
order to overcome such limitations, appearance–based methods, able to infer
face models using machine learning techniques, are preferable [16,17].

3 Eye Detection Using Autoassociators

Autoassociators are a special kind of neural networks which, by learning to repro-
duce a given set of patterns, grasp the underlying concept that is useful for pattern
classification. The number of inputs and outputs in autoassociators corresponds
to the dimension of the input space, whereas a smaller number of units forms
the hidden layer. Each autoassociator is trained to reconstruct an input x at the
output t, and its parameters are optimized to minimize the Euclidean distance
||x− t||2. To achieve an accurate reconstruction, the autoassociator is implicitly
forced to discover an appropriate nonlinear mapping of the original input space
into a smaller space that captures the properties of the underlying distribution.

Autoassociators are generally used as one–class learning machines. In other
words, each network corresponds to a particular category and, during training,
it receives only the samples within the category. An important consequence is
that the network will learn to accurately reproduce positive samples (those in the
corresponding class), producing a prototype for that class. Thus, autoassociators
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provide an alternative approach to concept learning. In particular, the higher
the reproduction quality for an input pattern, the more likely it belongs to the
category for which the autoassociator is constructed. Moreover, the specialization
of each autoassociator to a particular class may be reinforced by training each
network also on negative examples and forcing the prototype to be as far as
possible from patterns outside the proper class.

In this paper we use two autoassociators, one for each set of projections, with
sigmoid hidden neurons and linear output units. In [18], such architectures are
proved to realize a sort of clustering in the input space. Moreover, an end–of–
learning condition was stated, assessing that, at the end of the learning process,
an equality relation holds between the output correlation matrix X′

2X2 and the
input/output correlation matrix X′

2X0, with X0 and X2 collecting (by row)
all the training examples and the related outputs, respectively. From the geo-
metrical point of view, such an equality may be interpreted as a loss of energy
spent in the association process, which is higher when the autoassociator is not
able to perfectly reproduce the presented target at the output (i.e. the hidden
compressed representation is not sufficient to hold all the information needed to
reconstruct the pattern).

The standard Backpropagation algorithm, with adaptive learning rate, was
used for training, based on two different error functions related to patterns be-
longing or not to the class represented by the autoassociator. In fact, for positive
patterns the quadratic error is minimized, whereas the error function for negative
examples is based on the inverse distance:

Ep =
∑
t∈C

||X2(t) − X0(t)||2,

En =
∑
t/∈C

1
||X2(t)−X0(t)||2+ε ,

where ε, which can be chosen proportional to the machine precision, was in-
troduced for guaranteeing numerical stability. The connection weights are then

Fig. 2. Changes on the error surface due to training with positive or positive/negative
patterns
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updated based on the joint contributions of Ep and En. The effects of the intro-
duction of negative examples in the training set consist in focusing the autoas-
sociator on the class is devoted to represent, so that it creates a prototype for
that class which is as far as possible from examples belonging to other classes
(see Fig. 2). Finally, an ad hoc threshold must be chosen to establish whether
each pattern belongs or not to a particular class, i.e. is properly represented by
the prototype produced by the corresponding autoassociator. Such a threshold
could assume different values for different classes, due to the distribution of the
input patterns, and is generally computed via a trial–and–error procedure.

4 Experimental Results

In order to evaluate the effectiveness of the proposed technique, some experi-
ments were carried out using a subset of the AR Database [19]. This dataset
collects 4000 color images corresponding to 126 individuals (70 men and 56
women). The images represent frontal view faces with different facial expres-
sions, illumination conditions, and occlusions, obtained with sunglasses or scarfs
(see Figure 3).

Fig. 3. Samples of images from the AR database

Our subset collects 210 images randomly chosen from the original database
(faces occluded by sunglasses were excluded). The images were subsequently di-
vided into two sets that collect the same number of images: the training and the
test sets. Each image was represented as described in Section 2. The reported
results are referred to a window width equal to 10 rows/columns of pixels, for
horizontal and vertical projections. However, the performances of the system
are not particularly affected by this parameter when the window dimension is
smaller than the average eye width (height). For each image, 566 vectors repre-
sent the horizontal projections, and 758 vectors describe the vertical projections.
The percentage of negative examples (vectors extracted using a window position
that corresponds to the eye location) is equal, on average, to 2.47% and to
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Table 1. Equal error rates obtained by the localization system, varying the number of
hidden units. The classification thresholds are reported in brackets.

Architecture Horizontal projections Vertical projections

6 hidden 90.02% (0.135) 91.04 (0.68) %

7 hidden 90.85% (0.21) 91.84% (0.73)

8 hidden 90.05% (0.115) 88.23% (0.735)

Table 2. Effects of the classification threshold choice. The results were obtained using
a neural autoassociator with 7 hidden units.

Horizontal projections
Classification Non eye area Eye area Global

threshold Accuracy Accuracy Accuracy

0.2 90.54% 91.22% 90.55%

0.15 88.91% 94.62% 89.05%

0.1 86.42% 97.48% 86.7%

Vertical projections

Classification Non eye area Eye area Global
threshold Accuracy Accuracy Accuracy

0.65 90.32% 92.32% 90.55%

0.6 89.15% 93.84% 89.7%

0.55 87.93% 94.99% 88.75%

11.61% considering the horizontal and vertical projections, respectively. Several
training runs were performed to determine the best autoassociator architectures.
The obtained results are summarized in the following tables. Table 1 reports the
equal error rates of the neural autoassociators, varying the number of hidden
units. The equal error rate is defined as the accuracy of the system when the
number of errors in the two classes is equal. Practically, the sensitivity of the
system can be chosen varying the classification threshold. When decreasing the
classification thresholds, the neural autoassociators increase their ability to lo-
calize the eyes. In Table 2, the accuracy rates obtained varying the classification
thresholds are reported, showing that the decrease of such parameters does not
drastically deteriorate the performances of the whole system, whereas the per-
centage of negative examples correctly autoassociated (i.e. the percentage of eye
localizations) grows significantly. In fact, in eye detection systems, a high recall
is generally preferable w.r.t. a high precision and, thus, the choice of a threshold
smaller than that able to obtain the equal error rate should be advisable.

5 Conclusions

In this paper, an eye localization system is proposed, based on autoassociators,
which are trained on horizontal and vertical projections obtained by color images
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after the application of the Sobel operators. The preliminary experimentation,
carried out on a subset of the AR Database, shows very promising results, al-
lowing a best global accuracy of 91.84% for vertical projections, with a recall
on the negative examples (i.e. those identifying the eye area) of 95%, whereas
90.85% and 97.48% are the best accuracy and recall for horizontal localization,
respectively. It is a matter of future work varying the dimension of the window
used for scanning the images, both horizontally and vertically, and trying to
collect more informative features (like the area and/or an approximation of the
shape of the projections) into the vectors used to train the autoassociators.
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Abstract. In this paper we present a method to recognize human faces
based on histograms of local orientation. Orientation histograms were
used as input feature vectors for a k-nearest neigbour classifier. We
present a method to calculate orientation histograms of n×n subimages
partitioning the 2D-camera image with the segmented face. Numerical
experiments have been made utilizing the Olivetti Research Laboratory
(ORL) database containing 400 images of 40 subjects. Remarkable recog-
nition rates of 98% to 99% were achieved with this extremely simple
approach.

Keywords: Orientation histograms, Face recognition.

1 Introduction

Recognizing people in daily life is typically an effortless and unconscious task.
The ease with which humans process such visual data leads to an underestima-
tion of the complexity of this data processing. The identification of a human face
poses several tests for any visual classifier system, for instance the high degree
of similarity between faces from different persons, the influence to which lighting
conditions can alter the 2D camara image of the face, or the large number of
different views from which a face can be seen. In addition, there are many other
influences on the facial appearance which may change from day to day, such as
aging or makeup. For a robust real-life face recognition system all these prob-
lems have to be taken into account. In general a real world face recognition task
requires the combination of at least three different pattern recognition tasks:

1. Tracking individuals moving around in the room
2. Detection and localization their faces
3. Recognition of the segmented faces

We concentrate on the third problem—recognizing faces of individuals. Over
the last ten years, face recognition has become a special application area of
computer vision, see for instance [13] for a survey. Sophisticated commercial
systems perform face detection, image registration, and image recognition in
real time. Many methods have been proposed for face recognition [13]. Basically
they can be divided into template matching based systems and geometrical local
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feature based systems. Typically, these systems perform the recognition task in
two steps. First extracting characteristic features utilizing adaptive filters from
the segmented camera image, and second classifying the feature vectors through
a trainable classifier [6, 11].

In this paper we propose a method to recognize human faces based on his-
tograms of local orientation. These, so-called orientation histograms are then
used as input feature vectors for a nearest neigbour classifier. Orientation his-
tograms of images are very simple and fast to compute, so that real-time versions
of this technique may be implemented. We present a method to calculate orien-
tation histograms of n×n subimages of the camera image. Histogram techniques,
particularly orientation histogramms, have successfully been applied to different
visual 3D object recognition problems such as gesture recognition [12,10,7], and
optical character recognition [9, 2].

Numerical experiments are made with the Olivetti Research Laboratory
(ORL) database containing 400 images ofsubjects.

The paper is organized as follows: In Section 2 the ORL database is de-
scribed. The orientation histogram technique is introduced in Section 3, the
numerical experiments are presented in Section 4. Conclusions are given in
Section 5.

2 Dataset

For the numerical evaluation the ORL database from the Olivetti Research Labo-
ratory has been used. This database is available free of charge (see URL http://
www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html). Images
of 40 distinct subjects with 10 recordings per person were taken. For a sub-
sample of this database (one image per person) see Figure 1.

Fig. 1. A subsample of 40 images from the Olivetti Research Laboratory database. For
each subject a single image is shown. The whole database consists of 10 images for each
person. The images are gray scale images (8 bit) with a resolution of 92 × 112 pixels.
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Fig. 2. Ten camera images taken from the same person showing the image variation
within a class

The images show a variety of variations in facial expression (open/closed eyes)
and facial details (glasses/no glasses). All these images were taken in front of a
dark homogeneous background with the subjects in an up-right, frontal position.
Images are grayscale images (8-bit) with a resolution of 92 × 112 pixel (see, [8]
for further details on this database). To show the variation a subsample of 10
images taken from the same individual is given in Figure 2.

3 Calculation of Orientation Histograms

We now consider the problem of extracting orientation histogram features from
camera images. Orientation histograms were introduced by Roth and Freeman
to the literature of visual based pattern recognition by their use for hand gesture
recognition [12]. In this paper we propose to calculate orientation histograms on
subimages. In the first step of this approach the whole image is divided into n×n
sub-images, in Figure 3 the situation of a 2× 2 partioning with non-overlapping
sub-images is illustrated.

For each of these n2 sub-image the orientation histogram of m different di-
rections (range: 0− 2π, dark/light edges) is calculated [12] from the gray valued
image. The orientation histograms of all sub-images are concatenated into the

A B C

Fig. 3. Feature extraction process: The given camera image (A) is divided into over-
lapping or non-overlaping subimages (B). Then the orientation histograms within each
of the n2 subimages are calculated (C). The orientation of dark/light edges are quan-
tized into a predefined number of m bins. The feature extraction procedure leads to
feature vectors consisting of mn2 entries. These feature vectors serve as inputs into the
classifier.
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Fig. 4. Calculation of the orientation histogram (here with m = 10 bins) of a gray
scaled camera image. Local orientations are calculated and cummulated into the his-
togram. Entries in the histogram are determined through counting the number of angles
falling into the respective bin.

characterizing feature vector which is the input to a classifier, e.g. a k-nearest-
neighbour classifier, artificial neural network based classifier, or decision tree.

For the calculation of the orientation histogram the gradient of an image
f(x, y) at location (x, y) is given through the two dimensional vector

(
Gx

Gy

)
=

(
∂f
∂x
∂f
∂y

)
≈
(

f ∗ Sx

f ∗ Sy

)

(here ∗ denotes the convolution operation). Gradient directions (Sx, Sy) were
then calculated through 3 × 3 Sobel operators. The gradient directions are cal-
culated with respect to the x-axis:

α(x, y) = atan2 (f ∗ Sy, f ∗ Sx)

The atan2 function corresponds to the atan but additionally uses the sign of
the arguments to determine the quadrant of the result [4, 5]. The m bins of
the histogram all have equal size 2π/m. The histogram values are calculated by
counting the number of angles falling into the respective bin. Histograms are
normalized to the size of their sub-images. Figure 4 gives an overview.

4 Numerical Experiments

Our goal in this paper is not to develop elaborated machine learning techniques
but to evaluate a feature extraction method for face recognition. Therefore, the
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nearest neighbour classifier has been used in our numerical evaluation which is
the most elegant and most simple classifier [1].

Because we have to deal with a rather limited data set we utilized the cross-
validation method [3] to evaluate the proposed feature extraction methods. In
the k-fold cross-validation testing procedure the data set is divided into k dis-
joint subsets without considering image class. Then the 1-NN-classifier is deter-
mined k times, each time using a version of the data set omitting exactly one
of the k subsets. The omitted subset is then used to test the 1-NN-classifier.
Finally the achieved classification results are averaged over all r classifier tests
(generating the partitions randomly for each test). In Tables 1, 2, 3, and 4 the

Table 1. Recognition rates for the orientation histogram method calculated on the
whole camera image, i.e. n = 1. Results are shown for orientation quantization of
m = 4, 8, 16, 32, 64 bins per circle [0, 2π). Means and standard deviation are given for
20 runs of ten-fold cross-validation experiments for the ORL database.

m = 4 m = 8 m = 16 m = 32 m = 64

0.479 (0.012) 0.847 (0.010) 0.929 (0.005) 0.950 (0.005) 0.940 (0.006)

Table 2. Classification accuracies of the orientation histogram method calculated on
the ORL database. Means and standard deviation are given for 20 runs of ten-fold
crossvalidation experiments.

m = 8 m = 16 m = 32

2 × 2 0.979 (0.004) 0.985 (0.004) 0.982 (0.005)
3 × 3 0.976 (0.004) 0.984 (0.003) 0.983 (0.002)

Table 3. Recognition rates for the orientation histogram method with 2× 2 and 3× 3
subimages. The overlap between neighbouring subimages was o = 0.25. Means and
standard deviations calculated for 20 runs of a 10-fold crossvalidation experiment on
the ORL database.

m = 8 m = 16 m = 32

2 × 2 0.971 (0.005) 0.974 (0.006) 0.976 (0.006)
3 × 3 0.980 (0.005) 0.985 (0.003) 0.987 (0.002)

Table 4. Recognition rates for the orientation histogram method with 2× 2 and 3× 3
subimages. The overlap between neighbouring subimages was o = 0.5. Means and
standard deviations calculated for 20 runs of a 10-fold crossvalidation experiment on
the ORL database.

m = 8 m = 16 m = 32

2 × 2 0.964 (0.007) 0.968 (0.004) 0.974 (0.006)
3 × 3 0.979 (0.004) 0.990 (0.004) 0.983 (0.006)
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calculated means of the r = 20 ten-fold cross-validation testings on the ORL
database are given.

In the first series of experiments the orientation hiostograms have been deter-
minted from the whole camera image for a quantization of m = 4, 8, 16, 32, 64
bins, see Figure 4. At the first sight, the recognition rate increases with increas-
ing number of orientation bins. We found a maximal recognition rate of 95% for
a resolution of m = 32 bins.

The second series of experiments is to investigate the influence of the sub-
image partitioning. Images were divided into n × n non-overlaping subimages,
again with different quantization levels for orientation. Results of our numerical
experiments for the sub-image approach dividing the image into n×n sub-images
with n = 2, 3 and with o resolution in the range for m = 8 to m = 32 histogram
bins are given in Table 2. The accuracy for each parameter combination is > 97 %
this significantly higher as for the basic approach. In the next step overlapping
sub-images were considered and results for two different degrees of overlap, o =
0.25 and o = 0.5, are presented in Table 3 and 4, o = α stands for the overlap of
neigbouring sub-images. We found approximately the same recognition rates as
for non-overlapping sub-images, but at least for some parameter combinations
the performance was slightly improved, and we achieved the best result (error
rate 1%) for 3× 3 sub-images with a resolution of m = 16 orientation histogram
bins and an overlap degree of o = 1/2.

5 Conclusion

In this paper we have applied the very simple method of orientation histograms
to the problem of face recognition. For camera images of human faces the his-
tograms of local orientations were calculated on n×n subimages. These extracted
feature vectors were then concatenated and used as the input vectors of nearest
neighbour classifiers. Remarkable recognition rates of 98% to 99% were achieved
with this extremely simple approach and compare very well to the 3.8% error
rate reported by Lawrence et.al. [8] on the same data. They used more complex
classifiers based on convolution neural networks with features derived from the
whole image rather then the sub-image approach we applied. This lets us con-
clude that image pre-processing and feature extraction are extremely important
in face recognition and that our method of orientation histograms of sub-images
seems feasible in this setting.
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Abstract. The differentiation between cancerous and benign processes
in the body often poses a difficult diagnostic problem in the clinical set-
ting while being of major importance for the treatment of patients. Mea-
suring the expression of a large number of genes with DNA microarrays
may serve this purpose. While the expression level of several thousands
of genes can be measured in a single experiment, only a few dozens of
experiments are normally carried out, leading to data sets of very high
dimensionality and low cardinality. In this situation, feature reduction
techniques capable of reducing the dimensionality of data are essential
for building predictive tools based on classification.

Methods and Data: We compare the popular feature selection and
classification method PAM (Tibshirani et al.) to several other methods.
Feature reduction and feature ranking methods, such as Random Projec-
tion, Random Feature Selection, Area under the ROC curve and PCA are
applied. We employ these together with the classification component of
PAM, Linear Discriminant Analysis (LDA), a Nearest Prototype (NP)
classifier and linear support vector machines (SVMs). We apply these
methods to three publicly available linearly separable gene expression
data sets of varying cardinality and dimensionality.

Results and Conclusions: In our experiments with the gene expression
data we could not discover a clearly superior algorithm, instead most
surprisingly we found that feature reduction using random projections
or selections performed often equally well.

1 Background

The differentiation between cancerous and benign (non-cancerous) processes in
the body often poses a difficult diagnostic problem in the clinical setting while be-
ing of major importance for the treatment of patients. Since cancer development
is thought to be caused by the accumulation of complex genetic alterations in
the affected cells and tissues, the differentiation of cancerous vs. non-cancerous
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clinical samples is an important application –together with feature reduction
methods– for the interpretation of DNA array data. Gene expression data have
two dimensions, genes on one side, and measurements on the other side. While
the expression level of several thousands of genes can be measured in a single
experiment, only a few dozens of experiments are normally carried out, leading
to data sets of very high dimensionality and low cardinality. In this situation,
feature reduction techniques capable of reducing the dimensionality of data are
essential for building predictive tools based on classification. It is thought that
only a small fraction of the features are needed for classification, while most of
the features are not only irrelevant, but may even disturb the classification. This
poses the problem of reducing the feature set. The feature reduction methods
can be divided into two classes: Transformation methods, which project the orig-
inal feature space into a lower-dimensional space, and feature selection methods,
which choose a subset of the original features. The former have the advantage
of not throwing away any features completely, whereas the latter provide results
that can be interpreted more easily. One popular feature selection method is
the use of shrunken centroids proposed by Tibshirani et al. [1, 2], which is also
known as Prediction Analysis for Microarrays (PAM).

We compare the popular feature selection and classification method PAM [1,2]
to several other methods. Feature reduction and feature ranking procedures, such
as Random Projection, Random Feature Selection, Area under the ROC curve
and PCA are applied [3, 4, 5]. We employ these together with the classification
component of PAM, Linear Discriminant Analysis (LDA), a Nearest Prototype
(NP) classifier and linear support vector machines (SVMs) [4, 6].

2 Methods

This section consists of a brief description of the used feature reduction and
classification methods (for details see the cited references and any standard text
such as Duda&Hart or Webb [4,5]), and the employed gene expression data sets
and testing procedures.

2.1 Feature Reduction Methods

Prediction Analysis for Microarrays (PAM) was described by Tibshirani
et al. in [1, 2]. The PAM algorithm performs both feature reduction and clas-
sification. PAM chooses class representatives (prototypes, centroids) for every
feature and moves (shrinks) them towards the overall centroid (not taking into
account any class information) of that particular feature using a fixed threshold
value. Whenever a class centroid has zero distance to the feature centroid, it
does not play a role in the classification any more and can be discarded. If all
class centroids in a feature have been discarded, the feature itself is removed.
PAM uses exactly one representative vector per class. The components of the
representatives are the centroids of the class samples in each feature.

With samples j = 1, . . . , n, classes 1, . . . , K and i = 1, . . . , p features/genes,
the initial ith component of the centroid of class k is xik =

∑
j∈Ck

xij

nk
, where
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Ck are the indices of the samples in class k. The ith component of the overall
centroid of feature i is xi =

∑n
j=1

xij

n .
The standardized distance between the class centroid and the overall centroid

in feature i is
dik =

xik − xi

mk · (si + s0)

where
s2

i =
1

n − K

∑
k

∑
j∈Ck

(xij − xik)2,

and s0 = median{si}.
In [1], mk was defined as mk =

√
1/nk + 1/n. However, the PAM implemen-

tation provided in the pamr package [7] defines it as mk =
√

1/nk − 1/n. The
second definition was used in the experiments.

The shrunken centroid is

x′
ik = x + mk(si + s0)d′ik

where
d′ik = sign(dik)(|dik | − Δ)+

(t+ = t if t > 0 and zero otherwise)
This means that all centroids whose distances to the overall centroid of the

feature are less than Δ will be the same as the overall centroid and can therefore
be eliminated. Tibshirani et al. [1, 2] propose using a sequence of numbers as
threshold values Δ and finding the best one by a 10-fold cross-validation on
the training data. We used this unmodified version of PAM in the nested cross-
validation tests, but employed a different method for the cross-validation runs
with fixed numbers of features:

In fact, choosing arbitrary sequential threshold values Δ is an inaccurate
method, as all possible thresholds can be calculated. The choice of the thresh-
old values should have an impact on the number of remaining centroids, and
consequently the set of reasonable thresholds consists of the diks. Instead of the
sequential threshold procedure, we used those pre-calculated threshold values.
In addition, it is necessary for our experiments to fix the number of remaining
features in order to be comparable to other feature reduction methods. There-
fore, we did not choose the best threshold using a cross-validation, but utilized
the threshold that leaves exactly p′ features:

1. Calculate maxk |dik| for each feature i
2. Sort these thresholds in descending order
3. Pick the (p′ + 1)th threshold

The PAM classification rule is described in Sect. 2.2.

Random Feature Selection (RF) simply chooses a specified number of fea-
tures at random. Let I be the set of feature indices {1, . . . , p}. Then I ′ ⊂ I is a
random sample of p′ indices drawn from I uniformly and without replacement,



An Empirical Comparison of Feature Reduction Methods 263

where p′ is the desired number of reduced features. If we let D be the p × s
matrix containing the data (with p being the original number of dimensions),
the feature reduction is performed by picking all rows of D with indices i ∈ I ′.
Random Feature Selection is very simple, but the usefulness of the selected fea-
tures is not evaluated and features are randomly discarded that may contain
important information. It serves as a baseline for comparing the algorithms.

A Random Projection (RP) is a transformation with a matrix R whose en-
tries r are chosen from a distribution that is symmetric about the origin. The
idea of Random Projections is based on a lemma due to Johnson and Linden-
strauss [8]. The lemma basically states that any set of n points in Rd can be
projected into Rk, k ≥ O(ε−2 log n) so that all distances are preserved up to a
factor of 1 ± ε. Vempala [3] further describes the distributions that can be used
for generating the matrix entries. For the experiment, p′ vectors Ri of length
p were chosen from the standard normal distribution N(0, 1), where p is the
original number of features and p′ is the desired number of reduced features. If
we let R be the p × p′ matrix whose columns are the vectors R1 . . . Rp′ and D
the p × s matrix containing the data (with s being the number of samples), the
projection is D′ = RT · D.

Principal Component Analysis (PCA) is a linear transformation that aligns
the first axis (the principal component) of the coordinate system along the great-
est variance. Formally, given a p × s data matrix D (where p is the number of
features and s is the number of samples), we use PCA for dimensionality reduc-
tion to p′ features, i.e. the eigenvectors of the covariance matrix are sorted in
decreasing order and we use the first p′ eigenvectors.

The Area Under the ROC Curve can be a measure of classification quality
of a feature in the two class scenario. A ROC curve has the 1-specificity on
the horizontal axis and the sensitivity on the vertical axis. It visualizes the
possibilities of separating the classes and allows to adjust the misclassification
rates for both classes separately. The area under the ROC curve (AUC) is a
measurement of discrimination. The closer it approaches 1, the better is the
feature suitable for classification. Feature reduction is done by using only first
p′ features after sorting them in decreasing order according to the AUC.

2.2 Classifiers

The PAM Classifier described in [1] has the following discriminant function:

δPAM
k (x∗) =

p∑
i=1

(x∗
i − x′

ik)2

(si + s0)2
− 2 · log πk,

where πk is the prior probability of class k.
The classification rule is

CPAM(x∗) = l where δPAM
l (x∗) = min

k
{δPAM

k (x∗)}
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However, the pamr package [7] uses a different classifier. The pamr discrimi-
nant function for a sample x∗ is

δPAMR
k (x∗) =

p∑
i=1

d′ik · mk · (x∗
i − xi

s0 + si
− 1

2
· d′ik · mk) + log πk

and the classification rule is

CPAMR(x∗) = l where δPAMR
l (x∗) = max

k
{δPAMR

k (x∗)}

To distinguish between the classifier described in the paper and the classifier
employed in pamr, we call the former the PAM classifier and the latter the
PAMR classifier.

The Nearest Prototype (NP) Classifier (also called nearest mean classifier
[9]) assigns a sample to the class whose prototype (one prototype per class) has
the smallest Euclidian distance to the sample. The discriminant function for a
sample x∗ is: δNP

k (x∗) = ‖x∗ − xk‖2, where xk is the prototype of class k.
The classification rule is then: CNP(x∗) = l where δNP

l (x∗) = mink{δNP
k (x∗)}.

Linear Discriminant Analysis (LDA) calculates a hyperplane in feature
space. A quadratic discriminant function for a sample x∗ is

δQDA
k (x∗) = (x∗ − xk)T · S−1 · (x∗ − xk) − 2 · log πk,

where xk is a vector of centroids of class k in the features, S is the pooled
estimate of the within-class covariance matrix and πk is the prior probability of
class k. This generally hyperquadratic decision surface is reduced to a hyperplane
through our additional assumption of equal covariance matrices.

Support Vector Machines (SVMs) are learning machines that can be ap-
plied to classification problems. By solving a constrained quadratic optimization
problem they can find a hyperplane that linearly separates a data set [10, 6].
Here, we use only the linear kernel.

2.3 Data Sets

The Golub Data Set contains leukemia microarray data with originally 6817
genes, 72 samples (47 ALL and 25 AML) and 2 classes. It was first analyzed by
Golub et al. [11]. The preprocessing described by Dudoit et al. [12] was applied,
reducing the number of features to 3051.

The Khan Data Set of small round blue cell tumors was analyzed by Khan
et al. [13] and also by Tibshirani et al. in [1]. It consists of 63 samples (SRBCT
classes: 23 EWS, 20 RMS, 12 NB, 8 NHL cases) with 2308 features in 4 classes.

The Diagnostic Chip Data Set of pancreatic tumors contains 62 samples
(37 PaCa and 25 Pitis/Norm) with originally 558 features that were reduced to
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169 genes and 2 classes [14]. The genes of this data set are known to be indicative
for cancer diseases.

2.4 Testing Methods

Two different kinds of experiments were performed.

Predefined Feature Number. For comparing the feature reduction methods
by the number of remaining features, the number of remaining features was
fixed to values p′ = 5, 10, . . . , 100. This requires a special treatment of the PAM
thresholds (see Sect. 2.1).

We tested each classifier separately on all feature reduction methods. SVMs
were only applied on PCA feature reduction. With SVMs and ROC curves being
suitable only for 2-class-problems (in the present configuration, i.e. we did not
extend these methods to problem with more than two classes), we did not apply
them to the Khan data set. In addition, the SVM and the NP classifiers were
tested on the original (unreduced) feature sets.

The following testing methods were applied:

– Reclassification, that is, classification of the training data
– Leave-one-out, i. e. training the classifiers with all but one samples and

classifying the remaining sample. This was repeated for all samples and the
errors were added.

– 10×5-fold cross-validation: The samples were divided into 5 random groups.
Each of the groups was left out once in training and used for classification.
The errors were added. The procedure was repeated 10 times and the average
error of the 10 runs was calculated.

– 10 × 10-fold cross-validation with 10 random groups.

Nested Cross-Vaildation for Feature Number Determination. For com-
paring the feature reduction methods by their optimal number of features, we
applied a nested 10-fold cross-validation. This means a 10 × 5-fold cross-
validation and a 10 × 10-fold cross-validation were performed, and the optimal
number of features was chosen in each fold of this outer cross-validation by a
nested 1× 10-fold cross-validation on the training data of the current fold. This
is the method proposed by Tibshirani et al. [1] for the PAM threshold selection.
As this method cannot be applied reasonably on random methods, it was only
performed on PAM, PCA and ROC feature reduction.

– For PAM, 30 sequential threshold values (the default thresholds chosen by
the pamr package) were cross-validated and the threshold value that lead to
the minimum number of errors at the first level and the minimum number
of remaining features at the second level was used.

– For the other feature reduction methods, reductions to p′ = 5, 10, . . . , 100
features were cross-validated and the transformation that yielded the mini-
mum number of errors at the minimum number of features was chosen.
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3 Results

3.1 Experiments with Fixed Numbers of Features

The testing methods vary in their estimation of generalization error. While re-
classification is usually an overly optimistic estimation of generalization error,
different types of cross-validation give different hints regarding the match of
classifier to data. We performed three types of cross-validation, namely leave-
one-out, 10-fold and 5-fold cross-validation. For lack of space we show only the
5-fold cross-validation results in this section, they exhibit the highest error rates.
Complete simulation results are given in the supplementary information avail-
able at http://www.informatik.uni-ulm.de/ni/mitarbeiter/HKestler/featred/.

Golub Data Set
On the Golub data set all classifiers perform reasonably good with average error
rates below 10/72 in a 5-fold cross-validation (see Figure 1). With the PAM and
PAMR classifiers, the ROC feature reduction and PAM bring the best results in
the cross-validations. In the 5-fold cross-validation, both PAM and PAMR start
with 5.3 errors for 5 features and finally produce 3.0 errors with 80 features.
None of the classifiers achieves an error of zero.

With the NP classifier, PCA is substantially better than other feature reduc-
tion methods for up to 55 features, yielding an average error of 1.8 cases or less
in the 5-fold cross-validation. PCA error rates rise when the number of features
increases. Starting with 70 features, Random Projection achieves comparable
results to PAM with NP, leading to error rates mostly below 4.0/72. RP+NP
even outperforms PAM+PAMR and PAM+PAM sometimes on feature numbers
above 70. This result is surprising, but shows that Random Projection preserves
distances quite well and works well with distance-based classifiers. With the LDA
classifier, PCA feature reduction also brings good results, with error rates below
2.5/72 in the 5-fold cross-validation, while all other feature reduction methods
produce even more errors with an increasing number of features. PCA and LDA
also return constant zero error rates in reclassification, with 15 features and
more. The SVM classifier yields the overall minimum error of 1.6/72 at 35 fea-
tures with the PCA feature reduction in the 5-fold cross-validation, but error
rates raise quickly with more features. Random Projection is always slightly
better than Random Feature Selection and approaches or sometimes even beats
PAM as the number of features rises.

Khan Data Set
Compared to the Golub data, the Khan data set is harder to classify and needs
more features for correct classification. With a low number of features, PCA
always performs best on Khan (see Figure 2). Here again, it shows that LDA
and PCA go together well, leading to an average of 1 error in the 5-fold cross-
validation with only 15 features. With more than 40 features, the PAM feature
reduction performs better than PCA, which gets worse. Yet, PAM achieves less
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Fig. 1. Golub data set: Error rates of the five-fold cross-validation. Random Projec-
tion performs surprisingly well with higher numbers of features. Shown are the error
rates for the combinations: ROC+PAM, RF+NP, RP+PAM, RP+NP, PAM+PAM,
PCA+SVM, PCA+LDA.
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Fig. 2. Khan data set: Error rates of the five-fold cross-validation. PCA and LDA
perform well with a small number of features, NP outperforms the PAM classifiers
with less than 30 features. Shown are the error rates for the combinations: RF+NP,
RP+NP, PAM+NP, PAM+PAM, PAM+PAMR, PCA+LDA.
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Fig. 3. Diagnostic Chip data: Error rates of the five-fold cross-validation. No feature
reduction and classifier combination produces acceptable results. Shown are the error
rates for the combinations: ROC+PAM, RF+NP, RP+PAM, RP+NP, PAM+PAM,
PCA+SVM, PCA+LDA.
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than 1 error at 65 features with the PAMR classifier and at 50 features with
the PAM classifier. The PAMR and PAM classifiers show similar behaviours,
with PAM being slightly better than PAMR in most cases. NP shows analogue
characteristics, but yields error rates below those of PAMR and PAM with less
than 30 features. With more than 30 features, PAMR and PAM perform slightly
better. As with the Golub data set, Random Projection always performs better
than Random Feature Selection. However, it does not reach the PAM classifier
with the Khan data set.

Diagnostic Chip Data Set
All classifiers achieve the highest error rates on the Diagnostic Chip data set.
None of the classifiers achieves an error below 10 (SVM: error rate 10.9/62 on
the complete data, no feature reduction, 10×5-fold cv). The best result with
feature reduction is achieved by PCA and LDA classification with a minimum
average error of 13.5 cases with 30 features (10×5-fold cv) and PCA and SVM
with a minimum average error of 14 cases with 30 features (10×5-fold cv), see
Figure 3. With the PAM and PAMR classifiers, PAM feature reduction leads to
bad results, sometimes even worse than Random Feature Selection. Both clas-
sifiers produce exactly the same error rates in the 5-fold cross-validation. PCA,
Random Projection and ROC are better. With increasing numbers of features,
PCA performs best with an error rate of 16.5 in the 5-fold cross-validation start-
ing with 50 features.

The Nearest Prototype classifier returns almost constant error rates of around
17 errors (min 15) for all numbers of features when being applied on feature sets
produced by PCA, Random Projection and PAM. The error rates of the other
feature reduction methods with the NP classifier are unstable. Without feature
reduction, the average error is 22.6 cases. In contrast to the other data sets,
the error rates of Random Projection in the different runs are quite stable, i.
e. have a low variance. Those facts indicate that it is hard to find a subset of
features that suits significantly better for distance-based classification than the
original feature set and that none of the feature reduction methods succeeds in
finding one. Consequently, the PAM and the PAMR classifiers, which include dis-
tance measurements as well, also mostly return error rates that do not change
very much with different numbers of features. Only the PAM feature reduc-
tion and ROC show slightly increasing error rates with an increasing number of
features.

3.2 Experiments with Nested Cross-Validations

Golub Data Set
PAM seems not to be able to find a stable number of features on Golub. In
the 5-fold cross-validation, it determines an average of 1243.9 features for the
minimum error of 3.1/72, with a very high standard deviation of 322.3 features.
10-fold cross-validation produces a similar deviation, but a mean value of 1601.0
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features and an error of 3.4/72. In fact, PAM achieved even better results at a
much lower number of features in the experiments with fixed numbers of features,
i. e., 3.0/72 errors at 85 features in the 5-fold cross-validation and 3.0/72 errors
at 90 features in the 10-fold cross-validation. This may be due to the fact that
the 30 pre-defined thresholds used by the original PAM cover the whole feature
set, while our 20 thresholds in the above experiments lead to 5-100 features
and thus have a smaller raster in this area. With PCA, the results are mostly
comparable to our previous experiments. LDA achieves a mean error of 3.1/72
at an average of 10.9 features in the 5-fold cross-validation. The best result is
achieved by the linear SVM at 16.2 features with an error of 2.7/72. ROC feature
reduction only produces average errors of 4.9/72 (linear SVM) and more in the
5-fold cross-validation.

Khan Data Set

On Khan, PAM produces more stable results, yielding a mean error of 1.4/63
at an average of 52.7 features in the 5-fold cross-validation. Anyway, in the
fixed-feature experiments, the error rate grew smaller continuously towards 100
features, so this is still not an optimal value. The standard deviation of the
number of features is 7.8, while the PCA standard deviation is less than 2.8,
depending on the classifier. PCA again performs well with LDA, producing an
error of 1.5/63 at only 14.8 features. The results of the fixed-feature experiments
were slightly better. The NP classifier achieves an error of 3.6 at 16.1 features in
the 5-fold cross-validation, which is also comparable to the previous experiments.

Diagnostic Chip Data Set

As already seen in the fixed-feature experiments, the error rates on this data
set are high. PAM achieves 17/62 errors at 5.7 features (5-fold cross-validation),
which is slightly worse than the previous results (16.4 errors at 5 features). The
number of features is comparatively stable with a deviation of 1.4. With PCA,
NP achieves similar results with 16.9/62 errors at an average of 5.4 features with
a very small standard deviation of 0.84. This time, LDA only yields 18.5/62 errors
at 22 features with a standard deviation of 5.1. The error rate is comparable
with the error rate of the fixed-feature experiments, but the number of features
chosen is not the one that produced a minimum error there. With ROC feature
reduction, LDA yields a similar error (18.8/62), but needs only 13 features with
a smaller deviation of 1.5. The SVM produces a minimum error of 16.4 with 26.1
features. NP performs worse with an error of 19.9/62 at 26 features with a high
standard deviation of 7.9 features.

4 Discussion

The experimental results show that especially when classifying with small num-
bers of features, PAM is not the best choice. In particular, PCA feature reduction
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in combination with the LDA and SVM classifiers performs excellently with very
low-dimensional target feature spaces.

In addition, the optimal number of features returned by PCA in the nested
cross-validations was quite stable, indicating that the feature selection remains
reliable when changing a few elements in the training set.

However, the factors returned by PCA cannot be interpreted easily in order to
determine which features in the original feature space are important for classifi-
cation. Obviously, both the LDA classifier and the SVM classifier (linear kernel)
lead to high classification errors when over-fitted, hence they seem not suitable
for a larger number of features. Also the different types of microarrays, e.g.
whole genome array vs selected genes, seem to play a major role in the classifier
performance (together with the type of tissue). For the Golub and Khan data
sets genes (n= 6817) were not specifically selected for discrimination, whereas
the genes (n= 558) for the pancreas vs pancreatitis diagnostic chip data were
selected according to their known or believed involvement in cancer.

Generally speaking, PAM does not stand out compared to other feature re-
duction methods. The only data set showing major distances between the error
rates of PAM and the baseline algorithms Random Feature Selection and Ran-
dom Projection is the Khan data set, where there are differences of 10 to 15 in the
cross-validations. In the other data sets, the random methods are mostly slightly
worse, but sometimes even outperform PAM. The nested cross-validation exper-
iments mostly did not find the number of features that lead to the minimum
error in the previous fixed-feature experiments which in itself is not surprising.
This may be due to the choice of the feasible threshold values in PAM leading
sometimes to zero remaining features or including all features in the decision
process which is not desirable (linear separability). In contrast, using all possi-
ble thresholds that lead to different feature numbers (in a certain range) might
avoid this.

Random Projection was observed to perform better than Random Feature Se-
lection. The good results of Random Projection in combination with the Nearest
Prototype classifier underline its capability to preserve distances and show that
Random Projection is used most effectively with distance-based classifiers. A
possible explanation for this phenomenon is the fact that Random Feature Selec-
tion completely discards features by random, while Random Projection projects
all features to the lower-dimensional space. Thus, Random Projection may not
lose as much information as Random Feature Selection. This may shed a new
light on an often used premise which is used in normalization procedures, that
only a small fraction of genes is regulated in a gene expression microarray ex-
periment.

Acknowledgments
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Abstract. A novel approach to feature selection from unlabeled vector
data is presented. It is based on the reconstruction of original data rela-
tionships in an auxiliary space with either weighted or omitted features.
Feature weighting, on one hand, is related to the return forces of fac-
tors in a parametric data similarity measure as response to disturbance
of their optimum values. Feature omission, on the other hand, induc-
ing measurable loss of reconstruction quality, is realized in an iterative
greedy way. The proposed framework allows to apply custom data simi-
larity measures. Here, adaptive Euclidean distance and adaptive Pearson
correlation are considered, the former serving as standard reference, the
latter being usefully for intensity data. Results of the different strategies
are given for chromatography and gene expression data.

Keywords: Feature selection, adaptive similarity measures.

1 Introduction

Recently developed metabolomic and genomic measuring technologies share the
common property to yield in parallel thousands of metabolites and gene expres-
sion values from single probes of a given tissue/plant sample. Tools used for these
purposes are mass spectrometry, chromatography, and micro- and macroarrays.
In high-throughput approaches the number of probe attributes (metabolites,
genes) is usually much higher than the number of probes, which is paradig-
matic of the curse of dimensionality. Thus, it is desirable for analysis to consider
as many experimental probes as data quality allows. Such desire for maximum
information preservation for only few unlabeled data samples excludes the uti-
lization of prototype-based data abstractions like supervised neural gas proposed
for labeled data [2]. Principal component analysis PCA, the classical approach to
factor analysis of unlabeled data, has got different limitations: the analytic focus
is shifted away from the data matrix towards the attribute covariance matrix of
which eigenvalues are computed to rate the importance of the axes of principal
data directions. These axes, however, are linear combinations of the original data
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attributes – this situation requires a complex interpretation of the eigenvector
entries (’loadings’) in order to rate the original data attributes. PCA finally re-
sults in the amount of feature contribution to the overall data variance. Both,
implicit rotation of the data coordinate system and the restriction to variance,
implying the Euclidean data metric for a reasonable interpretation, are circum-
vented in the following approach. In terms of feature subset selection (FSS) the
proposed method will be a filter rather than a wrapper [3]. Custom data simi-
larity measures can be integrated to the framework, and, furthermore, the new
reconstruction-based feature selection does not require class labels, which com-
plements other approaches such as proposed in [5]. For the lack of data samples,
distribution-based separability criteria and expectation maximization methods
for unlabeled data, like FSSEM-TR/ML [1], cannot be properly applied in the
present case. In the proposed solution, no external clustering is required for eval-
uating the changes before and after masking (veiling) subset of features; instead,
a built-in filter criterion is used which optimizes the reconstruction quality of
the veiled data according to the strategy discussed in the following.

2 Unsupervised Feature Selection Based on Maximum
Reconstruction Quality

Feature selection and weighting do both refer to the process of characterizing
the relevance of components in fixed-dimensional data vectors. Unfortunately,
many biological data sets do not possess an absolute reference coordinate system
upon which a proper attribute analysis can be grounded: the organic material
itself and many external influences affect the measurements, and the obtained
data are thus, in a certain degree, situated in empirical domains. For example,
in gene expression data, a theoretical lower bound of zero intensity exists, but
due to background noise this value is never observed in practice. Subsequent
standard operations like the logarithm might further amplify this uncertain do-
main, especially for near zero intensities. The ad hoc definition of absolute data
domains can be avoided by dealing with relationships expressed by the data
similarity matrix. This requires to choose an appropriate similarity measure. In
case of the Euclidean metric, the resulting distance matrix is invariant to data
(baseline) shifts and coordinate rotations. Invariance can be realized already at
data level by using Pearson correlation which is invariant to vector shifting and
scaling. This beneficial property is used as quality criterion for comparing data
similarity matrices. Using the above ingredients, feature ranking for data from
an observation-driven domain is realized by sensitivity analysis, i.e. by analyz-
ing the effect of measure-specific feature veiling on the quality of reconstruction
of the original data relationships. This general approach is sketched in Fig. 1.
It is required that the data similarity measure d is chosen in advance, such
as Euclidean distance or Pearson correlation in the following. If weighting is
considered instead of feature dropping, also a parametric counterpart dλ of d is
necessary.
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Fig. 1. Feature selection by reconstruction quality maximization. Due to symmetry, a
number of n · (n− 1)/2 relationships of data vectors in X is once computed with static
similarity measure d to yield triangular reference matrix D (upper path). Features
are dropped or weighted by the λ-parametrized measure dλ in a k-iterative manner
(lower path): for greedy selection, those features providing highest correlation between
feature-reduced similarity matrix D and reference matrix Dλ are further considered
important; for parallel selection, the average response to random feature perturbation
is calculated.

The parametric Euclidean distance dλ
ij = Edλ

ij ∈ [0;∞) is given by

Edλ
ij(x

i, xj) =

√√√√ q∑
l=1

λl · (xi
l − xj

l )2 . (1)

Canonic feature weighting is obtained by inserting weight factors to the squared
differences – setting λl = 1 for l = 1 . . . q yields the original Euclidean distance. If
just one parameter λl is zero, the others one, this expresses dropping of feature l.

The parametric Pearson correlation dλ
ij = rλij ∈ [−1; 1] is given by

rλij =
∑q

l=1 λ2
l · (xi

l − μxi) · (xj
l − μxj )√∑q

l=1 λ2
l · (xi

l − μxi)2 ·
√∑q

l=1 λ2
l · (x

j
l − μxj )2

. (2)

Each of the mean-subtracted vector components (xm
l − μxm) has got its proper

relevance factor λl – again, setting λl = 1 for l = 1 . . . q yields the original
Pearson correlation. Note that, in contrast to Euclidean distance, setting λl = 0,
λm = 1,m �= l,m = 1 . . . q is not equivalent to dropping feature l, because it still
contributes to the vector averages μxi and μxj . Instead, the feature’s induced
mean deviation from average is measured.

For feature selection, parameters λl are searched that provide maximum corre-
lation of parametrized data relationships and original data relationships. Trivial
solutions λl = C,C > 0, l = 1 . . . q are avoided by construction.

– For dropping, correlation values r(D,Dλ) are computed for all attributes sep-
arately masked. Those with maximum correlation degradation are considered
especially important. This attribute can be wiped out and the procedure can
be repeated iteratively.

– For weighting, Monte-Carlo sampling around an optimum λ-vector is per-
formed and the average restoring forces are calculated by a gradient ascent
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approach, by analyzing absolute values of gradients pointing into the param-
eter direction of high correlation values r(D,Dλ).

2.1 Feature Dropping

Feature relevance can be systematically probed by excluding single attributes
from data similarity calculation and testing the impact of that operation on
the correlation r(D,Dλ). By feature dropping, as a basic assumption, highly
important features will induce a larger loss of r than less important ones. Thus,
a first approach to relevance rating is the correlation loss resulting from feature
dropping. Such a top-level feature evaluation can be recursively formulated in
a greedy manner. This iterative feature dropping approach stores the index and
then really excludes the currently most relevant feature from further calculations.
It iteratively isolates those attributes that do maximum decorrelate the original
similarity matrix D and the feature-reduced distance matrix Dλ

S :

S(k) = arg min
i

r2(D,Dλ
S(k−1)∪i) , i ∈ (1 . . . T )\S(k − 1) , k = 1 . . . T − 1.

S(k) is the growing set of index pointers to features which have been isolated until
iteration number k; by definition S(0) := {}, and by construction |S(k)| = k.
Dλ

S(k−1)∪i is the similarity matrix that has been calculated by using the data
vectors, thereby skipping the features indexed by the set S(k − 1) ∪ i.

The straightforward greedy algorithm does not require further parameters,
however, two alternative design criteria need further attention. First, Dλ

S(k−1)∪i

is correlated with Dλ, not with Dλ
S(k−1). The reason is that a drift away from

the original data set towards the subsequently reduced data features might occur
otherwise, so Dλ constitutes a fixed reference. Second, features are iteratively
masked out from high relevances to low ones, not the other way round. This
way, much of the relation-explaining attributes are already cleared off in the first
steps, instead of realizing a culmination towards the crucial data attributes by
least-attributes-first exclusion. This is beneficial in large scale applications with
thousands of dimensions, because it allows early stopping when the remaining
absolute correlation r2 drops below a critical near-zero threshold, or in case of
reaching a plateau. These two options – there are certainly many more – and
the different results from the alternative greedy feature selection designs are
circumvented by parallel feature selection as discussed in the next paragraph.

2.2 Feature Weighting

In the following approach, gradients are calculated for rating the data features.
Decent perturbations are induced to the parameters λl of the adaptive similar-
ity measure dλ, close to the optimum values. The higher, on average, the return
forces (gradients) of the disturbed parameters, the more important are the corre-
sponding attributes for restoring maximum correlation r(D,Dλ). The proposed
method uses several paradigms from artificial neural networks: the perturba-
tion and pattern presentation processes are stochastic, a principle of correlation-
maximization is pursued, and parametric similarity measures are optimized – or
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are at least rated – using gradient dynamic. For the derivatives, an approach is
chosen which has been proposed earlier for efficient multi-dimensional scaling [4].
In order to prevent saturation at boundaries of the correlation domain [−1; 1],
the widely used Fisher z′-transform with its derivative is utilized:

z′(r) =
1
2
· log

(
a + r

a − r

)
⇒ ∂z′(r)

∂r
=

a

a2 − r2
.

In Fisher’s original formulation a is set to 1, but here it is kept variable a =
1 + ε in order to avoid infinitely large values in case of perfect correlation. For
example, a = (1 +

√
401)/20 ≈ 1.05 limits the transformed derivative domain to

[−10; 20/(1+
√

401)]. Desired gradients for λl with negative correlation transform
result from application of the chain rule to the nested stress function formulation:

s = −z′ ◦ r ◦ dλ ◦ λ ⇒ ∂s
∂λl

= −
n∑

i=1

j �=i∑
j=1...n

∂z′(r)
∂r

· ∂r

∂dλ
ij

·
∂dλ

ij

∂λl
. (3)

Using the abbreviations r(D,Dλ) = H /
√

W · U with

H =
∑n

l=1

∑n
m=1 (dlm − μD) · (dλ

lm − μDλ) ,
W =

∑n
l=1

∑n
m=1 (dlm − μD)2 ,

U =
∑n

l=1

∑n
m=1 (dλ

lm − μDλ)2 ,

the derivative of the z′-transformed Pearson correlation is calculated by

∂z′(r)
∂r

· ∂r

∂dλ
ij

=
a ·
(
(dλ

ij − μDλ) · H − (dij − μD) · U
)
·
√

W

(H − a ·
√

U · W )2 ·
√

U
. (4)

The term W needs to be calculated only once, even the mean of the static
similarity matrix can be initially removed dlm ← (dlm − μD) in order to save
computing operations. Eqn. 3 is evaluated for all features and the absolute values
are averaged over a sufficient number of small random perturbations. For better
comparison, these averaged gradient responses are rescaled to an upper limit of
one representing the most sensitive feature.

Eqn. 4 is generic enough to plug in any differentiable parametric similar-
ity measure. Two interesting choices are the parametric Euclidean distance for
data comparisons and an adaptive version of the Pearson correlation that plays
an important role in biopattern processing. These measures require derivatives
∂Edλ

ij/∂λl and ∂rλij/∂λl as rightmost factors in equation 3, respectively.

Parametric Euclidean. The derivative of the parametric Euclidean is easily
obtained as:

∂Edλ
ij

∂λl
=

∂

∂λl

√√√√ q∑
m=1

λm · (xi
m − xj

m)2 =
(xi

l − xj
l )

2√∑q
m=1 λm · (xi

m − xj
m)2

= (xi
l−xj

l )
2/Edλ

ij .
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Parametric Pearson Correlation. For deriving the λ-weighted correlation
rλij , a focus on component l will be a convenient abbreviation. Similar to the
previous matrix correlations, the notation rλij = Hl/

√
Wl · Ul of the correlation

term is considered using

Hl = λ2
l · (xi

l − μxi) · (xj
l − μxj ) +

∑q
u�=l

u=1
λ2

u · (xi
u − μxi) · (xj

u − μxj ) ,

Wl = λ2
l · (xi

l − μxi)2 +
∑q

u�=l

u=1
λ2

u · (xi
u − μxi)2 ,

Ul = λ2
l · (x

j
l − μxj )2 +

∑q
u�=l

u=1
λ2

u · (xj
u − μxj )2 .

With these isolated subterms, the derivative of interest is

∂rλ
ij

∂λl
=

λl ·
(
2(xi

l − μxi)(xj
l − μxj ) · WlUl − Hl ·

(
Ul · (xi

l − μxi)2 + Wl · (xj
l − μxj )2

))
(Wl · Ul)

3
2

.

Parameters of the feature weighting approach are the gradient delimiter which
has been set to a = 1.01, the perturbation interval, and the number of iterations
for calculating the average response gradients. The interval for random pertur-
bations has been determined by studies on several data sets, including the ones
presented in the application section. It has turned out that in case of both para-
metric Euclidean and Pearson similarity measures, parameters uniformly chosen
λl ∈ [0.75; 1.25] produce stable results. A number of k = 1000 iterations is cho-
sen. Stability has been additionally tested by letting the parameters iteratively
adapt according to stochastic descent on s using the calculated gradients: after
noise induction, the parameters quickly return to constant values λi ≈ λj ,∀i, j.

3 Applications

The presented methods are applied to three data sets of interest: to benchmark
data related to absorbance spectra from Infratec Tecator food analyzer, publicly
available from statlib data collection at http://lib.stat.cmu.edu/datasets/tecator,
(215 samples, 100 dimensions [frequency channels]); to chromatography data
from the in-house tomato germplasm database focusing on chemical compound
detection at a wavelength of 280nm (19 samples, 3000 dimensions [retention time
points]); and to gene expression data from macroarray hybridization experiments
of developing endosperm barley tissue at 0–26 days after flowering sampled in
steps of two days (two series, 14 samples each, 11786 dimensions [genes]).

Tecator Benchmark Spectral Data. The first data set has been included
for illustration and reference purposes. It contains 215 food samples analyzed
in a near infrared frequency range of 850–1050nm measured with the Tecator
Infratec Food and Feed Analyzer. The 100-dimensional spectra, originally used
for predicting high and low fat content, are smoothly shaped, as shown for 10
examples in the top left panel of Fig. 2. Looking at the other panels of Fig. 2,
several observations are made.
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Fig. 2. Feature selection for Tecator data set. Top row: left panel displays 10 samples
from 100-dimensional spectra; right panel channel variances for entire data set con-
taining 215 samples. Subsequent rows: top-level feature sensitivity measuring the loss
of squared correlation with original similarity matrix, r2(D,Dλ

l ), caused by dropping
feature l (low correlation indicates high feature sensitivity); loss of squared correlation
and corresponding feature rank caused by iterative dropping of the currently most
sensitive feature (multiple application of top-level analysis with recursively reduced
feature set); feature weighting based on gradients that point towards optimum state
after random parameter perturbations of the adaptive similarity measure (graphs of
ten independent runs are overlaid showing high reproducibility). Left column refers to
adaptive Pearson correlation, right column to parametric Euclidean distance for the
three investigated methods.

Most importantly, pairs of plots in the left column – corresponding to Pearson
correlation similarity – and in the right column – displaying results for Euclidean
distance – are rather different. Thus, as expected, the choice of data similarity
measure has crucial influence on the highly rated features.

Row two for top level loss contains plots of the loss of correlation r2(D,Dλ
l )

after deletion of attribute l. Both plots exhibit a common minimum around
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feature l = 41, pointing out these attributes as highly sensitive for both similarity
measures. However, for other attributes just ratings are computed. It is pointed
out that, due to data redundancy and the high number of 100 dimensions, the
maximum correlation loss for many dropped features is still very close to one.

Row three, showing plots of rank and loss for iterative feature dropping, gives
support to the top-ranked features around index 41 of high importance for cor-
relation reconstruction. The loss described by the dotted lines has much higher
variability in case of Pearson similarity than in case of Euclidean distance. Sub-
sequent feature ranking is obtained by assigning their ascending sorting indices.
These ranks have been divided by the number of dimensions in order to obtain a
mapping into the value range of squared correlation. As a consequence of greedy
feature selection, large-scale discontinuities appear in the resulting graphs.

Row four with response plots contains smooth non-ranked attribute weights
obtained by gradient calculations. Three important properties are observed.
First, indices around 41 for Pearson similarity are remarkably insensitive in
contrast to the results from the other two approaches. Second, the results of
ten independent runs of the gradient method display very high reproducibil-
ity. Third, the graphs for Euclidean distance in the bottom right panel are
strikingly similar to the simple variance plot in the top right panel – the av-
erage squared correlation between the ten response graphs with the variance
is r2(variance,Euclidean response) = 0.991. This is a key observation. On one
hand, this meets the expectation of the role of variance for Euclidean distance
as a natural measure of data variability – although the presented approach mea-
sures, inversely, the sensitivity of the parametric Euclidean distance. On the
other hand, this essential solution for the Euclidean distance induces high confi-
dence in analog results for non-Euclidean case, like those given for the adaptive
Pearson similarity. This approach can thus be regarded as generalization of the
concept of variance to other types of parametric data similarity measures.

To conclude, quite different feature evaluations are obtained for the different ap-
proaches. This points out that feature dropping is structurally different from para-
metric measure perturbation. The case of correlation measure shows insensitivity
to attribute scalingwhere entire feature dropping produces the highest loss, around
index 41. However, in case of masked or weighted Euclidean distance, the special
importance of that feature set around index 41 is common sense for all methods.

Tomato Peel Chromatograms for Chemical Compound Analysis. High
performance liquid chromatography (HPLC) allows recording of high resolution
spectra related to compound-specific absorbance rates. Especially the group of
health protective flavonoids is of great interest for the evaluation of food crops.
Here, a collection of tomato plants is studied at a wavelength of 280nm to capture
the chemical constituents within the fruit peel. A measuring duration of 50min
considered with a sampling of 1Hz, producing values for 3000 retention times per
fruit. Biological attention is put on 19 of these chromatograms to find intervals
of retention times with characteristic variability in absorption. The integrated
values in those intervals are proportional to the abundance of the corresponding
chemical compounds. For precise further calculations, the chromatogram have
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Fig. 3. Feature selection for tomato data set.Top left: one exemplary chromatogram from
the data set used for feature rating. Bottom left: iterative correlation loss for feature drop-
ping with Pearson similarity. Right: gradient responses for adaptive Euclidean distance
(top) and parametric Pearson correlation (bottom). For comparison, two important sub-
stances representative for all chromatograms are encircled: chlorogenic acid and rutin.

been baseline-corrected and their peaks have been aligned by the correlation
optimized warping method.

Fig. 3 contains results for different feature rating methods applied to the
tomato peel chromatograms. The original chromatograms look very peaky if
plotted with a condense time axis like in the top right panel; by zooming onto
the time axis, however, smoother details become visible. A reason for not using
adaptive Euclidean response is shown in the top right panel: two time intervals
can be identified, [10; 20] and [25; 35], which intermediately drift to higher rele-
vance values just because of a higher overall variability in these domains. A very
good correspondence of Euclidean response and variance is supported by a high
squared correlation value of r2(log variance, log Euclidean response) = 0.976.

The strongly oscillating plot for feature variance is complemented by the Pear-
son correlation response, as shown in the lower left panel. A straight baseline
is identified at a value of about -8, and the peaks provide much clear candi-
dates of interesting retention times. For the present high-dimensional data set
with few data points, iterative feature dropping for Pearson similarity yields
very similar results, as given in the bottom left panel of Fig. 3. As a matter
of fact, correlation-based chromatogram comparison usually has more biologi-
cal impact than in Euclidean manner. This is already supported at the level
of chromatogram peak alignment where correlation-optimized warping yields
most accepted curve alignments. The Pearson correlation response in the lower
left panel points out retention times that are in high agreement with biological
knowledge. Moreover, the clear baseline can be used to define a threshold above
which time intervals might be automatically integrated for further analysis.

Barley Endosperm Gene Expression Data. Discovery of sequential
processes involved in tissue differentiation are available from gene expression
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data. The search for key identity genes specific for observed tissue differentiation
is a valuable desire. Micro- and macroarray technology allows parallel recording
of the abundance of thousands of gene expression intensities. The identification of
key regulators from such a usually long list of expression values is a particularly
challenging task. Here, log-normalized expression values for 11786 genes from
in-house macroarray hybridization experiments are analyzed. Two independent
series of experiments are available concerning the development of endosperm
barley tissue at 0–26 days after flowering, sampled in steps of two days.

Analytic focus has been put on correlation-based feature identification. This
overcomes limitations of Euclidean distance approaches that emphasize genes
which are mainly related to high variance. Two lists of top-rated 25 genes out
of 11786 are computed, one by feature dropping and the other by response
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Fig. 4. Temporal gene regulation of top 25 genes in endosperm barley tissue. Upper
panel: results from feature dropping. Bottom panel: results from gradient response
analysis. Both panels are related to the Pearson similarity measure. Gene profiles have
been ordered by a combination of one-dimensional self-organizing map and functional
annotation. Shades of gray denote normalized gene expression intensities according to
the reference bar. Text columns contain Blast description, Blast score, and functional
category of genes.
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gradients. Thereby, the two independent series of gene expression experiments
are processed separately, their gene ranks are summed up, and the highest 25
sums of ranks are considered top candidate genes. Rank summation has been
regarded as a valid operation after confirming that the squared correlation of
the ranks of all genes is greater than 0.9. In order to compare results of feature
dropping and response gradients, the temporal gene regulation profiles associated
with the top-rated genes are plotted in Fig. 4.

In summary, feature evaluation based on Pearson correlation yields quite dif-
ferent results for feature dropping and gradient response analysis. The group of
genes obtained by feature dropping (upper panel) exhibits common patterns of
strong up-regulation. Among the top-rated 25 genes detected by feature drop-
ping, most of them are found to be endosperm-specific and exclusively detected
in triticeae species. In other words, the feature of up-regulation is considered im-
portant for characterizing the data set, which is a reasonable finding for the tem-
porally related experiments. Nonetheless, this very prominent regulation charac-
teristic could be captured by standard clustering techniques. Qualitatively new
patterns are revealed by gradient response analysis (lower panel). Intermediate
regulations are shown in addition to the group of moderately up-regulated genes
(Fig. 4, lower panel). Thus, again, variability alone does not take too much in-
fluence on gene selection. Interestingly, most detected genes that are expressed
during late endosperm development are connected to protein synthesis initiation
processes. These are considered to have an important functional role during the
peak of product accumulation.

4 Conclusions

A new approach to unsupervised feature selection has been proposed. Its ba-
sic principle is the detection of features that maximum decorrelate original and
feature-masked data relationships. These features are supposed to be most crit-
ical for faithful relationship reconstruction. The considered data relationships
are defined by appropriate data similarity measures, such as the presented Eu-
clidean distance and Pearson correlation. Sensitivity is obtained as response to
feature dropping or as gradient-based reaction to small perturbations in para-
metric formulations of the utilized similarity measure. Both ways measure cor-
relation loss, but, by construction, they are structurally different. As has been
demonstrated in the experiments, gradient-based response analysis can be re-
garded as for measure-specific counterpart of variance. This canonic interpreta-
tion, its computational advantage over greedy feature dropping, and the parallel
feature probing makes response analysis the preferred feature selection method.
Whichever technology is chosen, reasonable automatic feature rating essentially
helps to pre-structure the data, to get different views and to formulate hypothe-
ses about the data sets, like for the three examined high-dimensional data sets.
In unsupervised scenarios the data-driven, method-intrinsic dynamic fully de-
termines the outcome; therefore, since unsupervised methods optimize different
goals, objective quality criteria are missing in comparisons, and the results must
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be judged by a combination of subjectiveness and additional knowledge. In fu-
ture studies, further potential of the proposed methods will be assessed in close
cooperation with biological experts and their additional background knowledge.
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Abstract. Microarray technologies are increasingly being used in bi-
ological and medical sciences for high throughput analyses of genetic
information on the genome, transcriptome and proteome levels. The dif-
ferentiation between cancerous and benign processes in the body often
poses a difficult diagnostic problem in the clinical setting while being of
major importance for the treatment of patients. In this situation, fea-
ture reduction techniques capable of reducing the dimensionality of data
are essential for building predictive tools based on classification. We ex-
tend the set covering machine of Marchand and Shawe-Taylor to data
dependent rays in order to achieve a feature reduction and direct in-
terpretation of the found conjunctions of intervals on individual genes.
We give bounds for the generalization error as a function of the amount
of data compression and the number of training errors achieved during
training. In experiments with artificial data and a real world data set
of gene expression profiles from the pancreas we show the utility of the
approach and its applicability to microarray data classification.

1 Background

Microarray technologies are increasingly being used in biological and medical
sciences for high throughput analyses of genetic information on the genome,
transcriptome, and proteome levels. Gene-expression microarrays permit the es-
timation of mRNA concentrations for a large number of genes in parallel. These
types of analysis generate vast amounts of data, often in the form of large lists of
genes differentially expressed between different sample sets being insufficient for
class prediction purposes. One challenge involves finding biologically meaning-
ful subgroups of genes that are congruently expressed in multiple experiments
(e.g. cell lines under different conditions or tissues from different disease states).
Especially the differentiation between cancerous and benign processes in the
body often poses a difficult diagnostic problem in the clinical setting while being
of major importance for the treatment of patients. In this situation techniques
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for generating simple rules on the expression values are of major importance.
This usually implies a reduction of the dimensionality of the data either with
principal component approaches or with feature selection methods. The latter is
clearly more desirable, since these methods retain a direct interpretability if the
subsequent classification concept is not too complex.

One of the few learning algorithms which provably performs well in the pres-
ence of many irrelevant attributes is the algorithm for learning conjunctions of
few Boolean variables due to Haussler [1]. Given a sample of size m whose ex-
amples are labeled according to a conjunction with at most s out of n Boolean
variables, the algorithm finds a consistent conjunction with at most s log m vari-
ables in polynomial time in n and m. By a standard Occam’s Razor bound based
on the cardinality of the hypothesis class it follows that a sample size m which
is linear in s but only logarithmic in the dimension n suffices to guarantee a
small generalization error with high confidence. This means that the algorithm
performs well even when the dimension n is exponential in the sample size m,
provided that sample is labeled by a conjunction which depends only on very
few attributes.

The set covering machine (SCM) of Marchand and Shawe-Taylor [2] is a gener-
alization of the algorithm of Haussler where the Boolean variables are replaced by
a set of features, where each feature is a Boolean-valued function on the example
space. In general, the example space may be an arbitrary subset of Rn, each fea-
ture may depend on all of the n attributes, and the set of features used by the SCM
may depend on the given sample. The algorithm of Haussler is then used to find a
conjunction of few features which makes only few errors on the sample to allow a
trade-off between accuracy and complexity. Marchand and Shawe-Taylor further
consider the specific set of so-called data-dependent balls as features and bound
the generalization error of the corresponding SCM in terms of the amount of data
compression the SCM achieves during training. The bound is obtained by a tech-
nique first used by Littlestone and Warmuth [3]. Subsequently, Marchand et al. [4]
consider data-dependent half-spaces as an alternative to data-dependent balls.

In [5], Marchand and Shah consider rays as features and an algorithm similar
to the SCM to classify gene expression data. Rays are simple threshold functions
which depend on a single attribute. The algorithm is guided by a PAC-Bayesian
style analysis of the generalization error as initiated by McAllester [6]. This ap-
proach amounts to specify a prior distribution P on the set of conjunctions of
rays. Then the error bound applies to the Bayesian classifier which is the weighted
majority vote over all binary hypothesis and where the weight corresponds to the
posterior distribution Q induced by the prior distribution P and the given sample
S. The resulting algorithm attains good theoretical and experimental results on
high-dimensional gene expression data. However, the Bayesian classifier can no
longer be expressed as a simple conjunction of rays and this might significantly
aggravate the interpretation of the classifier in the clinical setting.

In this paper we use the SCM with data-dependent rays as features. The re-
sulting classifier is then a simple conjunction of a small number of rays. We
give bounds on the generalization error based on both an analysis of the VC
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dimension of the (data-independent) hypotheses space as well as on the amount
of data compression the SCM achieves during training. Finally we apply the pro-
posed algorithm to gene expression data with the task of distinguishing between
malignant and inflammatory tumors of the pancreas.

2 The Set Covering Machine with Rays as Features

In order to describe the SCM of Marchand and Shawe-Taylor [2] we will briefly
review the algorithm for learning conjunctions with few Boolean variables of
Haussler [1]. Suppose that we are given a sample S of examples from the Boolean
hypercube X = {0, 1}n where the examples are labeled according to some con-
junction with at most r variables. Let P and N denote the subsets of all positive
and negative examples from S, respectively. We say that a variable xj is consis-
tent with a labeled example (x, y) if the j-th coordinate of x coincides with its
label y. The aim is to find a conjunction which is consistent with S and posses
as few variables as possible.

The algorithm is based on the observation that a conjunction∧
xj∈R

xj

is consistent with the sample S if and only if the set of variables R possess the
following two properties.

1. Every variable xj ∈ R is consistent with each positive example x ∈ P .
2. For every negative example x ∈ N there is at least one variable xj ∈ R

which is consistent with x.

These two properties can be equivalently expressed in terms of the collections
of sets Rj and Qj , where Rj is the set of all positive examples x ∈ P such that
the variable xj is not consistent with x, and Qj is the set of all negative examples
x ∈ N such that the variable xj is consistent with x (R is a set of variables,
whereas Rj and Qj are sets of examples). Then the first property is equivalent
to the fact that Rj = ∅ for all xj ∈ R, and the second property is equivalent to
saying that the union of sets Qj for xj ∈ R covers the sets N in the sense that⋃

xj∈R Qj = N .
The algorithm of finding such a set of variables can be described by the

following two steps:

1. Find a set of variables that is consistent with all positive examples
2. Cover this set with as few subsets of variables, that are consistent with the

negative examples.

The task of finding the smallest such set R can be easily transformed into an
instance of the Minimal Set Cover Problem, a well-known NP-complete prob-
lem [7] and is thus intractable. There is, however, a simple greedy strategy to
efficiently find an approximate solution. Here we successively select the variables
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xk for which Rk = ∅ and |Qk| is maximal and thus Qk covers as many negative
examples as possible. After the selection of xk for inclusion in R we discard Qk

from all Qj and repeat this process with the remaining variables until there is
no negative example left to cover. It is not hard to see that after at most r log m
selected variables we have found a cover of N and thus the resulting conjunction
is consistent with S. Note that the size of the conjunction is only by the factor
log m larger than the optimal solution of size r. Furthermore, the running time
is polynomial in n and m. For a more detailed description of the algorithm we
refer to [8].

Now let us turn to the SCM algorithm. In contrast to the Boolean setting we
are now given a sample S of labeled examples from an example space X which
may be any subset of the n-dimensional real space Rn. The Boolean variables
are replaced by a set of features H, where each feature hj ∈ H is an arbitrary
Boolean-valued function on X. The set of features H is assumed to be finite but
may depend on the sample S. The collections Rj and Qj are defined analogously.
That is, Rj is the subset of positive examples from P that are misclassified by
hj , and Qj is the subset of negative examples from N that are correctly classified
by hj . The aim is now to find a small subset of features R ⊆ H such that the
conjunction

h(x) =
∧

hj∈R

hj(x)

is consistent with S. This will be done in a greedy manner similarly as above.
In order to allow a trade-off between accuracy and complexity we are given ad-

ditionally a early stopping value s and a penalty parameter p. Rather than solely
based on the the cardinality |Qj | under the constraint that Rj = ∅ as above,
now the greedy strategy selects the features hj according to their usefulness

Uj = |Qj | − p|Rj | .

Furthermore, the SCM algorithm stops as soon as the number of selected features
reaches the value of s. Thus, the parameter s bounds the number of selected
features, and the parameter p controls the fraction of errors on the positive
examples among all errors on S. Note that when p and s are both set to ∞, then
the SCM algorithm corresponds precisely to Haussler’s algorithm in the Boolean
setting where H is just the set of variables xj for j = 1, . . . , n. A more formal
description of the algorithm can be found in Figure 1.

2.1 VC Dimension

We first consider the SCM with data-independent rays as its set of features and
bound the generalization error of the corresponding SCM in terms of the VC
dimension of its hypotheses space (cf. [9]). A ray over the example space X = Rn

is a simple threshold function of the form

ht
j(x) =

{
1 if (x)j ≥ t

0 otherwise
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Algorithm SCM(S, H, s, p)

1. Initially set P ← {x | (x, 1) ∈ S}, N ← {x | (x, 0) ∈ S} and R ← ∅.
2. For each hj ∈ H let Qj = {x ∈ N | hj(x) = 0} and Rj = {x ∈ P | hj(x) = 0}.
3. Select the feature hk ∈ H with largest usefulness Uk = |Qk| − p|Rk|. If Qk = ∅

then goto step 7.
4. Set R ← R ∪ {hk}.
5. For each hj ∈ H set Qj ← Qj \ Qk and Rj ← Rj \ Rk.
6. If

⋃
hj∈R Qj = N or |R| = s then go to step 7. Else go to step 3.

7. Return h =
∧

hj∈R hj

Fig. 1. The SCM Algorithm

where (x)j denotes the j-th coordinate of the vector x ∈ X and t is a real-valued
threshold. The only constraint we impose on the set of rays when used as the set
of features of a SCM is that the thresholds are taken form a finite set of values
and consequently also the corresponding set of all rays over X = Rn is finite.

We now bound the VC dimension of the hypotheses space of all conjunctions
over a bounded number of rays (with no constraint on the number of admissible
thresholds) as follows.

Theorem 1. Let Hr
n denote the hypotheses space of all conjunctions of at most

r rays over the example space X = Rn. Then,

r log
(n

r

)
≤ VCdim(Hr

n) ≤ 2r log
(n

r

)
+ 6r .

It is well-known that the generalization error errD(h) of hypothesis h produced
by a learning algorithm can be bounded in terms of the VC dimension of its hy-
potheses space [10,9]. Recall that the generalization error errD(h) is the probabil-
ity that h(x) �= y for some labeled example (x, y) drawn according to D. We want
to bound the generalization error in terms of the number of features r and the
number of errors k of the hypothesis h produced by the SCM with rays as its set of
features. Note that both r and k are quantities which may depend on S. For this
reason we use the following bound of [11]. Let H1 ⊆ H2 ⊆ · · · ⊆ HM be a nested
sequence of hypotheses classes such that VCdim(Hi) = di for i = 1, . . . , M , let
D be any probability distribution on X×{0, 1}, and let S be a random sample of
m labeled examples drawn independently according to D. Then with probability
1− δ, if a learning algorithm finds a hypothesis h ∈ Hi which makes k errors on
the training set S, then the generalization error errD(h) is at most

2k

m
+

4
m

(
di log

(
2em

di

)
+ log

(
4M(m + 1

δ

))

provided that d ≤ m. Applying Theorem 1 we get the following bound for the
SCM with rays as its set of features.

Corollary 1. Let D be any probability distribution on X×{0, 1}, and and let S
be a random sample of m labeled examples drawn independently according to D.
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Suppose that the SCM algorithm with any finite set of rays as its set of features
on the sample S produces a hypothesis h =

∧
ht

j∈R ht
j with |R| = r and such

that h makes k errors on S. Then with probability 1− δ the generalization error
errD(h) is at most

2k

m
+

4
m

((
2r log

(n

r

)
+ 6r

)
log
(

2em

r log(n/r)

)
+ log

(
4n(m + 1)

δ

))

provided that r ≤ m
2 log n+6 .

2.2 Sample Compression

Bounds on the generalization error based on the VC dimension are generally
rather pessimistic. Better bounds can sometimes be achieved by considering the
amount of data compression a learning algorithm achieves during training. For
this purpose we consider data-dependent rays as features for the SCM algorithm.
That is, for a given sample

S = ((x1, y1), . . . , (xm, ym))

with examples from X = Rn, each feature hi
j ∈ H has the form

hi
j(x) =

{
1 if (x)j ≥ (xi)j

0 otherwise

for some position j ∈ {1, . . . , n} and some index i ∈ {1, . . . , m} of a positive
example xi ∈ P . Recall that (x)j denotes the j-th coordinate of any vector
x ∈ X. Thus, the final hypothesis has the form

h =
∧

hi
j∈R

hi
j .

Let us now see how the corresponding SCM algorithm can be regarded as a
compression scheme for the sample S. Let A denote the SCM algorithm with
data-dependent rays as its set of features and with parameters s and p. Then A
can be decomposed into a compression function f and a reconstruction function
g as follows. The function f maps the sample S to the compression set SI and an
additional set of positions J , where I = {i | hi

j ∈ R} and J = {j | hi
j ∈ R} and

SI denotes the subsequence of S which consists only of those positive examples
xi ∈ P with indices i ∈ I. The reconstruction function g takes SI and J as
inputs and returns the hypothesis

g(SI , J) =
∧
j∈J

h
tj

j

where the threshold tj of each ray h
tj

j is defined as tj = min{(x)j | x ∈ SI}.
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When A is run with penalty p = ∞, then each feature hi
j selected by A is

consistent with all positive examples x ∈ P . This means that for each hi
j ∈ R

we have xi ∈ SI and (x)j ≥ (xi)j for all x ∈ SI and, hence, (xi)j = min{(x)j |
x ∈ SI}. It follows that the reconstructed hypothesis g(SI , J) coincides with the
hypothesis h produced by A and thus A(S) = g(f(S)). Note that if h makes no
errors on S then the labels of all examples from S can be determined solely from
the compression set SI and from the additional information J . In this sense A
indeed can be regarded as a compression scheme for S.

When A is run with penalty p < ∞, then a selected feature hi
j might be

inconsistent with some positive examples x ∈ SI . For this reason we slightly
modify the SCM algorithm A by considering a feature hi

j for inclusion in the
current set R only if (xi)j ≤ (x)j for all examples x in the current compression
set SI . This modification implies that all features hi

j in the final set R satisfy
xi ∈ SI and (x)j ≥ (xi)j for all x ∈ SI as in the case of p = ∞ above. Thus for
the modified algorithm A we have A(S) = g(f(S)) also in the case p < ∞.

By using similar arguments as in [12,2] we can now bound the generalization
error in terms of the size of the compression set SI , the number of features used
in the hypothesis h, and the number of errors h makes on S as follows.

Theorem 2. Let D be a probability distribution on X × {0, 1}, and let S be
a random sample of m labeled examples drawn independently according to D.
Suppose the SCM algorithm with data-dependent rays as its set of features on
the sample S finds a hypothesis h =

∧
hi

j∈R hi
j which makes k errors on S, such

that |I| = d and |J | = r for the sets I = {i | hi
j ∈ R} and J = {j | hi

j ∈ R}.
Then with probability 1 − δ the error errD(h) is at most

ε(d, r, k) = 1 − exp
(
− 1

m − d − k
ln
(

B(d, r, k)
δ(d, r, k)

))

where

B(d, r, k) =
(

m

d

)(
n

r

)(
m − d

k

)
and

δ(d, r, k) = δ

(
π2

6

)−3

((d + 1)(r + 1)(k + 1))−2

Proof. Let S = ((x1, y1), . . . , (xm, ym)) and let f and g be the compression
scheme as described above. Recall that f(S) = (SI , J) and g(SI , J) = h. Further
let K = {i | h(xi) �= yi} be the set of k indices of examples xi which are
misclassified by h. Note that the compression set SI is always correctly classified
by h and hence we may assume that the sets I and K are disjoint. We want to
bound the probability

Pr
S∼Dm

(
errD(h) > ε(d, r, k)

)
=
∑

Pr
S∼Dm

(
errD(h) > ε(d0, r0, k0), I = I0, J = J0,K = K0

)
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where the sum is taken over all possible values 0 ≤ d0 ≤ m, 0 ≤ r0 ≤ n and
0 ≤ k0 ≤ m − d0, and all possible sets I0 ⊆ {1, . . . , m}, J0 ⊆ {1, . . . , n} and
K0 ⊆ {1, . . . , m} \ I0 with |I0| = d0, |J0| = r0 and |K0| = k0.

To bound the probability of errD(h) > ε(d0, r0, k0) with respect to fixed sets
I = I0, J = J0 and K = K0 of cardinalities d0, r0, k0, first observe that
h = g(SI0 , J0) and hence the hypothesis h is fixed as soon as the examples in the
subsequence SI0 are drawn. Since the examples in S are drawn independently
according to D, we may further assume that the d0 +k0 examples from the sub-
sequences SI0 and SK0 are drawn first. Next the remaining m−d0−k0 examples
of S are drawn. If errD(h) > ε then the probability that a single example drawn
according to D is consistent with h is less than 1 − ε. It follows that

Pr
S∼Dm

(
errD(h) > ε(d0, r0, k0), I = I0, J = J0,K = K0

)
< (1 − ε(d0, r0, k0))m−d0−k0 =

δ(d0, r0, k0)
B(d0, r0, k0)

Note that B(d0, r0, k0) is just the number of possible ways to choose the sets I0,
J0 and K0 of cardinalities d0, r0 and k0. Hence, by summing up over all possible
d0, r0, k0, I0, J0 and K0 we get

Pr
S∼Dm

(
errD(h) > ε(d, r, k)

)
<
∑ δ(d0, r0, k0)

B(d0, r0, k0)
< δ

where for the last inequality we additionally used the fact that
∑

i≥1 1/i2 = π2/6.
��

The bound of Theorem 2 is 0.27 for a data set with n = 20 dimensions m = 100
examples, 2 resulting features and 1 error on the training set (δ = 0.01). The
PAC bound from Corollary 1 is 7.23 in this case.

3 Experimental Results

The hypothesis space consisting of conjunctions of left-open intervals (the quad-
rant space) is often too restrictive - the concept could lie as well on the right side
of a threshold - the union of the left open and the right open quadrant concept
space is always used in the following.

3.1 Learning Algorithms

The following algorithms were applied to artificial and microarray data.

SCM.1 Choose p = ∞ so that only left- and right-open rays consistent with
the positive examples were used. The SCM was trained until no errors on
the training set remained (s = ∞). The possible ties in step 3. (Figure 1)
were recursively broken to generate equivalent solutions (at most 50 distinct
solutions were sought).
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SCM.2 As SCM.1 but this time the classifier with the lowest theoretical gen-
eralization bound according to Theorem 2 was taken. A run of SCM with
s = ∞ defines at step 3. (Figure 1) a sequence of features i1, i2 . . . is′ (in this
order), that are combined by conjunctions, such that the classifiers (Ck)s′

1 ,
Ck including the hypotheses hi1 . . . hik

, form a sequence of increasing com-
plexity C1 ⊂ C2 . . . ⊂ Cs′ . The Ck with the smallest generalization bound
was taken.

SCM.3 For this classifier p was varied over every fifth value of the set {i/j | i =
1 . . . mn, j = 1 . . . mp} sorted in ascending order and p = ∞. All possible ≤ m
rays were generated for each feature. The theoretical bound from Theorem
2 was used to select the optimal classifier(s).

SVM A support vector machine with linear kernel was used (the support vec-
tor implementation from the R [13] package e1071 [14] was called with ker-
nel=”linear”, scale=FALSE.

1-nn One-nearest-neighbor with Euclidean distances.
Cart Classification tree with pruning (R package rpart [15] with Gini impurity

measure).

3.2 Artificial Data

Artificial data was generated with a randomly chosen concept C from the union
of the left-open and right-open quadrant hypothesis space Qk ∪ Qc

k on the do-
main X = [0, 1]k for k < n relevant coordinates for k = 5. Once generated the
concept C was held constant and was used to generate mp = 50 positive samples
and mn = 50 negative samples with a uniform distribution of the coordinates in
C and in Cc. The remaining n−k coordinates were filled up with uniformly dis-
tributed random numbers on [0, 1]n−k in order to create n-dimensional random
vectors with k relevant and n− k irrelevant features. The number of dimensions
n were varied from {20, 100, 200, 3000}.

Data Set / n SCM.1 (p = ∞) SCM.2 (p = ∞) SCM.3
TR TE size num TR TE size num TR TE size num s p

rnd/20 0 31 2 1 0 31 2 1 0 31 2 1 2 3
rnd/100 0 55.75 3 8 1 43 2 1 1 43 2 1 2 4
rnd/200 0 78.42 4 38 2 59 2 1 2 49.78 2 9 2 4
rnd/3000 0 60.5 3 4 2 38 2 1 2 20.6 2 4 2 4

Data Set / n 1-nn SVM cart
TR TE TR TE TR TE

rnd/20 0 264 3 139 3 64
rnd/100 0 387 0 245 3 53
rnd/200 0 457 0 318 5 78
rnd/3000 0 491 0 448 6 43
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After training the classifiers the generalization error was estimated by apply-
ing the trained classifier to an independent test set with 500 positive and 500
negative samples which were chosen i.i.d. from C and Cc.

3.3 Application to Microarray Data

The described method was applied to a previously published gene expression
dataset (see Buchholz et al. [16]) with n = 169 features and 62 samples divided
into a training set of m = 42 (mp = 25 and mn = 17) and a test set of 12
positive and 8 negative samples. The best result on the test set was obtained
with the following classifier (Algorithm SCM.1):

s errTR errTE feature ray
1 4 4 Annexin A2 (ANXA2) [0.5505,∞)
2 1 4 serine/threonine-protein kinase PLK1 [0.1245,∞)
3 0 3 Asparagine synthetase (= ts11, a G1 prog protein) [0.982,∞)

For s > 1 every preceding feature s′ < s is included in the classifier (conjunction).
We have compared the ray learning algorithm with other standard methods

on the PaCa data. PaCa training and test set, and 10× 5-fold cross-validation
results are given in the table below. For the SCM simulations up to 50 solutions
were allowed. Results are given as cases (mean ± stdev):

PaCa TR TE features solutions CV
1-nn 0 2 14.1 ± 1.45
SVM 0 6 13.8 ± 2.82
CART 2 3 7.9 ± 1.60
SCM.1 0 5.46 ± 1.04 3 ± 0 37 19.62 ± 2.76
SCM.2 0 7± 0 3 ± 0 2 17.7 ± 2.46
SCM.3 1± 0 5.25 ± 0.96 3 ± 0 4 16.15 ± 2.13

4 Discussion and Conclusion

In contrast to the original SCM, which uses data dependent balls, the proposed
conjunction of rays allows a direct correspondence to the original feature space
leading to concise interpretable hypotheses, which in turn may trigger further
biological investigations. It is easy to show that for high-dimensional spaces with
a low sample size the probability to find a consistent hypothesis reaches one.

Malignant and inflammatory tumors of the pancreas could be separated with 3
genes (which would be improbable for random data) leading to a low error on the
test set. The results on the artificial data indicate a very good performance of the
SCM with data dependent rays when there are only a few informative features
within a large set of features containing noise. This construction was chosen
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to resemble the microarray data, as it is assumed that in standard microarray
studies the number of genes which are regulated across the different conditions
is low in comparison to the total number of genes investigated. The nearest
neighbor and the support vector machine attained almost an error rate of 50%
on the test sets. It seems that in these cases feature reduction is of greater
importance than the complexity of the classifier. Even for the highly selected
(for involvement in cancer) gene sets used in the PaCa data the performance is
still comparable to SVMs, only CART gave better results here.

Extensions of the scheme could include the optimization of the rays using
different utility functions and combination of sets of consistent hypotheses to
possibly increase robustness or to consider margins of the rays to break ties of
equivalent greedy solutions.

The main advantage of fusing decisions on singular features is the indepen-
dence of a precise knowledge of their scale. For instance it is still unclear on
what scale expression values in microarray experiments are. It is argued that
only comparisons of expression values within a gene are reasonable. With our
approach we only rely on an ordinal scale. Decision tree algorithms allowing
only axis parallel splits behave similar in this aspect, but have an infinite VC
dimension and thus possibly generate much more complex decision rules. In con-
trast our algorithm only generates rules of the form ”IF expression for gene A
is above 3.4 AND expression for gene B is below 2.5 AND ... THEN the risk of
the subject having disease C is increased”. These types of rules seem to be much
more appropriate for performing diagnosis or differential diagnosis in a clinical
setting.
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