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Abstract. Desktop Search, the search across local storage such as a per-
sonal computer, is a common practice among computer users. There has
been much activity in Web-related Information Retrieval, but Desktop
Search has only recently increased in popularity. As the structure and
accessibility of data in a local environment is different to the Web, new
algorithmic possibilities arise for Desktop Search.

We apply a connectivity analysis approach to the local environment—
a filesystem. We describe how it can be used in parallel with existing
tools to provide “more useful” ranked results. Our evaluation reveals
that such an approach has promise, and we conclude that exploiting the
organization of a filesystem is beneficial for Desktop Search.

1 Introduction

Desktop Search (DS) refers to searching of local, contained data stores, as op-
posed to searching a foreign and overwhelming repository such as the Internet.
There are often many (and unfamiliar) documents that satisfy an Internet query,
but users generally seek specific (and familiar) files on a desktop.

DS tools place emphasis on using an inverted file to facilitate near-real-time
retrieval, by indexing the content and metadata of various known filetypes. One
of the first such tools, Lotus Magellan (late 1980s), created a master index of
different filetypes and allowed searching and viewing of files without the need
to launch the associated viewer application. Such functionality is emulated by
today’s DS tools.

The field received more research attention following the prototype work of [1].
AskJeeves, Google, Microsoft and Yahoo have all since released DS tools, and
there are currently more than twenty available1. By applying the inverted file
index to local data, DS tools produce sub-second searches.

Inverted files substantially improve conventional disk-scanning methods, but
only address the problem of speed. Discerning the relevance of results requires
analyzing their content. Fortunately, simple content analysis is inexpensive when
inverted files are involved, and the recent wave of DS tools has been welcomed by
many. The tools mainly differ in their presentation, index size overhead, extent
of filetype coverage, and brand power.
1 http://www.goebelgroup.com/desktopmatrix.htm, visited Dec 2005.
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“Topic distillation” refers to educing high-quality documents that are most-
representative of a given query topic[2]. Our motivation for this work lies in
distilling such high-quality files to improve ranked DS results. For this, we adopt
and adapt a connectivity analysis approach.

The remainder of this paper is organized as follows: §2 provides background
on DS and connectivity analysis. §3 explains our approach and methodology,
while §4 details our evaluation and observations. §5 highlights related work, and
we draw conclusions in §6.

2 Background

2.1 Ranking in Desktop Search

Today’s DS tools provide options to sort the results by metadata, such as lex-
ically, chronologically, by filesize, or clustered by format. One problem with
searching for local data is that the result set can still be large. Without knowing
the metadata, sorting by these attributes is unlikely to be useful; the user will
need to sequentially scan the result list (n

2 inspections on average).
We believe that a ranked list is useful to the user, as they may not always

remember metadata (or even know it in the first place, if looking through files
not authored by them). A choice to sort by relevance or by metadata will allow
the user to pick a strategy they think will result in the fewest inspections. Several
of today’s DS tools provide such a choice, which supports our view.

Our goal is to improve ranked lists, by placing files that are most-representative
of the query topic on top. On the assumption that the user’s query adequately
specifies their target, finding such representative files is coaxial to the problem of
topic distillation. Originating in bibliometrics, connectivity analysis approaches
have proven useful in solving this problem for Web IR[3,4].

2.2 Content and Connectivity Analyses

Content Analysis measures how well-representative a document is of a query.
Approaches such as the Vector Space Model are popular.

Connectivity Analysis measures how well-connected a node is in a graph. The
World Wide Web, a large directed graph, is regularly subjected to such analysis
to elicit the popular pages. Two celebrated algorithms in Web-IR are PageRank
and Hypertext-Induced Topic Selection (HITS).

PageRank[3] calculates the probability distribution of random walks, using
the random surfer model on a query-independent global graph. Using the in-
degree, PageRank deems a page as popular if it has many in-links (and even
more popular, if the links come from already-popular pages).

HITS[5] argues that every document serves two purposes: to be an authority
or to be a hub. An authority is a page with topic-relevant content, while a hub
simply links to authorities (its content may be irrelevant). Like PageRank, HITS
uses in-links for calculating authoritativeness. But it uses out-links for hubness.
Depending on the situation, hubs can be more-useful search results.
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Both of these algorithms are iterative, and “shake” the graph to distribute
weight along the hyperlink-edges until an equilibrium is reached.

We chose to adopt HITS due to its classification of nodes as authorities and/or
hubs, which maps intuitively to a filesystem (§3.1). PageRank lacks this classi-
fication, considering nodes as equals. Moreover, HITS uses a query-specific sub-
graph for its root set and subsequent calculations, allowing us to easily build on
top of the retrieved results of an existing DS tool (§4.2).

2.3 HITS

HITS[5] gathers documents from the Web and nominates the best hubs and au-
thorities among them. [6] notes that “a large amount of latent human judgment
is encoded within hyperlinks, with links to another page offering some measure
of conferred authority”. This conferral of authority is used to distill reputable
documents. Hubs and authorities exhibit a mutually-reinforcing, bipartite re-
lationship, whereby a good hub should link to good authorities, and a good
authority should be linked to by good hubs.

The algorithm begins by retrieving a small root set of pages via a search
engine, i.e. a query-specific subgraph. Nodes in this set may be highly discon-
nected, and a base set is formed by augmenting the immediate neighborhood of
documents that are 1 hop away. The augmented documents add structure to the
graph, and may also include relevant pages that did not match the keywords but
were frequently cited in the root set2.

The base set induces a directed graph G = (V, E), with vertices V and edges
E representing pages and hyperlinks, respectively. All v ∈ V are assigned both
a hub and authority score, and HITS updates the new scores from the old using
two alternating summations until the scores converge:

HITS. in: link-graph vertices V , directed edges E. out : hub/auth score vectors h/a.
1. ∀v ∈ V , initialize h0[v] and a0[v] to 1.
2. for iteration k until convergence:
3. ∀v ∈ V, hk[v] :=

∑
o:(v→o)∈E ak−1[o]

4. ∀v ∈ V, ak[v] :=
∑

i:(i→v)∈E hk−1[i]
5. normalize hk and ak.
6. return h and a

Algebraically, HITS computes the dominant eigenvectors of the MT M co-citation
and MMT coupling matrices, where M is the |V | × |V | non-negative adjacency
matrix of the focused subgraph. The algorithm, as well as positively-weighted ver-
sions of it, has been shown to converge[5,7] under Perron-Frobenius.

Because HITS considers only the structure (in- and out-links), it is occasionally
prone to undesirable behaviors, such as mutually reinforcing relationships between
hosts (alleviatedby reducing theweight of in-links from the samehost[7]), and topic
drift (alleviated by using content analysis to maintain focus on the query[7,8,5]).
2 A classic example is that search engines are linked to by pages talking about “search

engines”, but rarely include those two keywords on their page.



Topic Distillation in Desktop Search 481

3 Approach

While parts of HITS can be adopted to suit a filesystem, other parts need to be
adapted. The most important is the concept of connectivity.

3.1 Filesystem Connectivity

On the Web or in research literature, connections/links are created by human
judgment. It is evident that Web authors arrange information into directed
graphs that link related content together. Unfortunately, a filesystem lacks this
concept of conferral of authority. In a filesystem, the organization hierarchy in-
volves human judgment, but the implicit links between files/dirs are not created
on an individual basis. However, it has been noted[9] that users generally:

– organize files into subdirectories
– group related files together
– group related directories nearby

Therefore, while we lack the luxury of conferred links, we can exploit the orga-
nization of the filesystem hierarchy to determine “relevant neighborhoods” that
contain relevant directories. We will retrieve relevant files (in a content analysis
sense), but would prefer relevant files found in relevant directories. Since links are
largely artificial3, our notion of a relevant directory is not only one that contains
relevant files, but also one that resides in a relevant neighborhood. The remainder
of this section outlines the ways in which we construe HITS to suit this goal.

The concept of hubs and authorities conveniently map to directories and files,
and by applying the mutually-reinforcing, bipartite relationship that they exhibit
on the Web, we draw the analogy that a good directory should contain good files,
and a good file should be contained in a good directory. The hub and authority
scores tell us exactly this.

3.2 Root and Base Sets

The root set, the query-specific subgraph, can be built using the indexing and
searching functionality of a current DS tool. We retrieve the top 250 results
using Lucene[10]. To expand this set F of results into the base set, we use the
filesystem hierarchy to add the missing structure into our graph: we create a
directory set D that forms a spanning tree on F . No new files are added, but
the simple injection4 of directories—which dually serve as hubs—provide paths.
Our base set, D ∪F , induces a strongly-connected link graph, where every node
has a route to every other. We refer to the length of the (shortest) path between
two nodes as their degree-of-separation, or δ.

This δ is the equivalent of Marchiori’s “how many clicks”[11] an end-user
needs to perform to get from one page to another, by using only atomic actions.
3 Placing a new directory anywhere in the filesystem automatically causes unintentional

paths (of some length) to many other node in the hierarchy.
4 E.g. /home/me/a.txt will have a.txt in F , and /home/me, /home and the filesystem

root / in D.
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The δ for two directories α and β can be directly calculated from their paths, by
finding their lowest common ancestor-or-self directory λ: δ(α, β) = (|α| − |λ|) +
(|β| − |λ|), where |n| is depth of n. For files, the immediate parent directory is
used. Therefore, by construction, δ is 0 between a directory and itself, a file and
itself, or a file and its immediate parent directory.

Similar to [11,12], we use δ as a fading factor to decay the influence of nodes
upon each other as they get farther apart. We fade proportional to 1

δ2 , a non-
linear penalizing curve that is harsh on distance but lenient on proximity. Other
functions may be used5.

3.3 Algorithm

Our hitsFS algorithm adapts HITS to our filesystem reinterpretation of what
constitutes a link and a relevant hub.

hitsFS. in: dirs D, files F . out : hub scores h for D, authority scores a for F .
1. ∀d ∈ D and ∀f ∈ F , initialize h0[d] and a0[f ] to 1.
2. for iteration k from 1 to K:

3. ∀d ∈ D, hk[d] :=
∑

f∈F :δ(d,f)=0

ak−1[f ] +
∑

d′∈D

hk−1[d′]
(1 + δ(d, d′))2

4. ∀f ∈ F, ak[f ] := ca(f) ×
∑

d∈D

hk−1[d]
(1 + δ(d, f))2

5. normalize hk and ak.
6. return h and a.

Intermediate results for the output vectors h and a during the k-th iteration
are labeled as hk and ak. Line 3 updates the hub score for each d, by summing
the weights of base set files that are in d. We then augment the surrounding
neighborhood influence from other hubs (decayed by distance). Line 4 updates
the authority scores, whereby a file f is influenced by its content analysis score
(ca(f), in [0,1] as returned by Lucene). HITS models an authority’s score as the
sum of hubs that point to it, which we achieve by summing the influence of other
hubs on f (decayed by distance).

In our experiments, we set the number of iterations, K, to 20. We have noticed,
however, that about 10 iterations are enough to stabilize the top-most scores—an
observation supported by the literature.

4 Evaluation

4.1 Corpus

Unfortunately, existing work uses unsuitable corpora for our task. Link analysts
have often focused on the Web, downloading large portions of online domains.
5 Experimental results were remarkably similar with 2−δ ; however, we prefer the

inverse-square-law, as it has physical interpretations, describing many natural force-
distance relationships.
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Such corpora are non-static and difficult to procure. As we are only interested
in hierarchy and content (not hyperlinks), we used the JDK 1.5.0, a familiar
corpus6 that is widely variant in structure.

This corpus contains Java library code, which we tokenize7 to remove syntax
problems. In the modified corpus, there are 9267 files in 674 directories. There
is an average of 13.8 files per dir (max 321, median 5), and 927 tokens per file
(max 37812, median 463). The mean directory depth is 4.52 (max 9, median 4).

We index this modified corpus with several DS tools, described in the next
section. Although Java classes generally reference other Java classes, we do not
use these connections as “links” in any way.

4.2 Competition

We test our prototypes against three of the best[13] DS tools: Copernic Desktop
Search, Google Desktop Search v2, and Microsoft’s Windows Desktop Search8.
We refer to these as CDS, GDS, and MDS. Our prototype, DirH, retrieves the
top 250 results from Lucene v1.9 [10], and applies hitsFS.

We chose Lucene since it reports content analysis scores (VSM) that hitsFS
needs, although any listing of documents with their similarity score suffices.
As hitsFS seeks a single numerical representation for the top documents, the
underlying metric may be a black-box.

We provide two versions of our prototype—DirH0 and DirH1—which have
Lucene and a modified-Lucene as backend. We include both Lucenes in our
evaluation (Luc, Lucmod). The modifications are:

– stemming is enabled.
– document length norm is changed to 1 (nwords−0.5 often penalizes longer

files on length more than shorter files are penalized for lower TF).
– keywords-matched ratio is squared. Disjunctive matching and stemming sig-

nificantly increase the number of matches, yet we still only use the top 250
as root set. We wish to doubly-penalize files that match only a few keywords,
to promote better hubs by having more files represent them in the top 250.

These tools are summarized in Table 1.

4.3 Queries

Our experiment focused on ranking highly-representative file(s) at the top, for
a given query topic. To promote objectivity in our results, the queries and their
6 http://java.sun.com; specifically, the j2se/src/share/classes tree, without compiling

natives.
7 We delete non-java files, and use javadoc to generate documentation. This step

removes the code/implementation, but semantic meaning is retained since com-
ments account for much of the generated documentation. We then remove javadoc-
introduced package/tree navigation pages. The extant files are API documentation
versions of the original classes, which we strip clean of markup (html2text), tokenize
and case-fold to plain-text.

8 http://www.copernic.com, http://desktop.google.com, http://desktop.msn.com
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target answers (Table 2) were taken from reputable Java FAQs[14,15]. However,
since users tend to search using 3 terms or less[16,17], we have condensed the
queries to at most 3 terms.

Table 1. Summary of DS tools trialled. Our prototypes are in bold.

DS Tool Ranking? Stemming? Grouping? Stopwords? Path match?

CDS No Weak AND Index Yes

GDS Yes No AND Index Yes

MDS Yes Weak AND Index Yes

Luc Yes No OR Ignore No

DirH0 Yes No OR Ignore No

Lucmod Yes Porter OR Ignore No

DirH1 Yes Porter OR Ignore No

Table 2. DS tools were subjected to the above queries

Id Query Targets
q1 connect remote server java.net.{Socket, URLConnection}
q2 select file javax.swing.JFileChooser

q3 call garbage collector java.lang.System

q4 execute external program java.lang.Runtime

q5 schedule thread java.util.{Timer, TimerTask}
q6 make beep sound java.awt.Toolkit

q7 linked list java.util.{LinkedList, Vector, ArrayList}
q8 convert strings numbers java.lang.{Integer, Double, Long, Short, Byte, Float}
q9 write object stream java.io.Serializable

q10 play sound java.applet.AudioClip

q11 list supported fonts java.awt.Toolkit

q12 read data file java.io.{FileInputStream, FileReader, BufferedReader,

DataInputStream}
q13 write data file java.io.{FileOutputStream, PrintWriter, PrintStream}
q14 append data file java.io.{FileOutputStream, RandomAccessFile,

DataOutputStream}
q15 format numbers java.text.{NumberFormat, DecimalFormat}
q16 convert ip address java.net.InetAddress

q17 generate random integer java.util.Random

q18 display image javax.swing.ImageIcon, java.awt.Image

4.4 Results

Each tool answered each query, but only the top 50 results were acknowledged.
We report two metrics (Table 3): MRR and a Mean normalized Reciprocal Rank.

Since very few results are accepted as correct, a hit-and-miss tool can still
be moderately competitive under MRR’s steep 1

r curve9. In Fig. 1, we provide

9 Softer curves (e.g. 1√
r
, 1

1+log r
or n+1−r

n
) place DirH1 in the lead for both metrics.
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Table 3. MRR and Mean normalized Reciprocal Rank results

Score CDS DirH0 DirH1 GDS Luc Lucmod MDS Avg.
MRR 0.089 0.440 0.416 0.224 0.358 0.305 0.314 0.307

MnormRR 0.087 0.323 0.425 0.224 0.272 0.292 0.254 0.268

Fig. 1. Mean normalized Reciprocal Rank observations for Table 2 queries. MnormRR
vector-normalizes the per-query RR scores to share the weight according to a tool’s
relative performance to the others. This graph shows that most tools are roughly equal
and close to the mean, but both of our prototypes performed better on average.

a normalized RR metric, which shares the scores relative to the performance of
the other tools. The interpretation of the graph is that our approach generally
ranks a target higher than its competitors, when using the top 50 results.

The behavior for some queries was not unexpected. Luc often penalized targets
on length, so Lucmod ranked them higher. DirH1 used Lucmod’s higher content
analysis placement to maintain a good ranking for the target.

Q6 was the only query which conjunctive tools failed on, since no file matched
all words. Luc matched one term, ranking the target at 183rd. Lucmod matched
a second term via stemming, and since it had no length penalty, placed the target
in 3rd. DirH1 pushed it down to 5th, since its hub was only ranked 8th.

Several queries had very common terms. DirH1 deemed java.lang the best hub
for q8, reporting all but one target (despite 92% of the corpus being matched).
DirH0 listed 4 (15% match due to no stemming). Other tools did not report a
target in their top 50. Stemming was unnecessary for q9, and all disjunctive tools
matched 93% of the corpus. The “noise” from the numerous content-relevant files
resulted in only GDS, DirH1 and MDS reporting the target.

DirH1 suffered from polysemy in some queries. It reported all targets for q7,
but its top 25 positions were dominated by the sun.tools.doclets.formats.html
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package (classes refer to link and list in an HTML context). With stemming off,
DirH0 avoided this problem.

For q7 and q10, the existence of better hubs caused our approach to lower the
rank of Luc/Lucmod’s content analysis suggested positions of the target. But for
the other queries where either tool reported a target in the top 50, our approach
placed a target in an equal or better rank.

In terms of performance, total processing time averaged to 2.01s on a 3.2MHz
P4 with standard load. Most of this time was used for disk IO in the building
of auxiliary data structures, which would normally be bootstrapped only once
by a background-process DS tool. Computation of 20 iterations under hitsFS
averaged to 0.064s, which does not grow with the size of the result set since we
use a maximum root set size of 250.

5 Related Work

PageRank and HITS (§2.2, [3,5]) are popular connectivity analysis algorithms,
and have had many suggested improvements (for a more-extensive survey, we re-
fer to [6]). Our work builds on HITS by adapting the concepts of what constitutes
a hub, an authority, a link, and relevance in a filesystem environment.

ARC[18] used a distance-2 HITS to compile authority lists comparable to
human-powered taxonomies. A key idea was inspecting the small text-window
surrounding anchors to judge the weight of a link, but this does not map to a
filesystem. However, we do consider paths longer than HITS’s distance-1.

[7,8] suggested pure connectivity analysis adjustments to improve HITS’ ac-
curacy by over 45%. However, ideas focused on treatment of nodes with skewed
in/out-degree ratios, which lack an intuitive interpretation in a filesystem. But
[8] defends our use of Lucene’s VSM, by empirically arguing that there is little
difference between VSM, CDR, TLS and Okapi.

[19] use HITS for companion and co-citation identification of related pages,
improving on Netscape’s “What’s related” service. A key idea was to exploit the
order of links on the page, but a filesystem’s listing order of paths is determined
by the operating system (e.g. ascii sort), and not human judgment.

[20] suggested using paths of arbitrary length to abate rare counter-intuitive
results of HITS in weakly-connected graphs. We also consider arbitrary path
lengths, but our strongly-connected graph has weighted path-lengths which we
construct without their expensive matrix exponentiation method.

Using feedback to bias weights [21,20] merits further investigation for a filesys-
tem, where more recently (or frequently) accessed (or modified) nodes could be
given artificial boosts, since they appear to interest the user.

The methodology of our work is similar to [22,12], both of which modify
PageRank and apply it to a new domain (labeled graph databases, and hyper-
linked XML; their semantic links came from schemas and idrefs/xlinks). Our
work differs in its applied environment, algorithm and interpretations.
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6 Conclusion

We have adopted and adapted a connectivity analysis approach to improve
ranked lists in local filesystem search. In a DS context, we hypothesized that
favoring relevant files in relevant directories could yield better results.

We provided anecdotal evidence that this may be the case, using a real-world
hierarchical corpus with real-world queries. Under MRR, we recognized Lucene
as having better ranked results than the other commercial tools. Yet, our two
prototypes—running on top of Lucene and a modified-Lucene—improved the
MRR of their respective backend by 23% and 36%. Under a per-query normal-
ized metric that shared scores according to relative performance, our prototypes
improved the Mean normalized RR of their backends by 19% and 46%.

We conclude that traditional content analysis combined with some connectiv-
ity analysis is useful for relevance-ranked results in Desktop Search.
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