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Abstract. Ontology alignment (or matching) is the operation that takes
two ontologies and produces a set of semantic correspondences (usually
semantic similarities) between some elements of one of them and some el-
ements of the other. A rigorous, efficient and scalable similarity measure
is a pre-requisite of an ontology alignment process. This paper presents
a semantic similarity measure based on a matrix represention of nodes
from an RDF labelled directed graph. An entity is described with respect
to how it relates to other entities using N-dimensional vectors, being N
the number of selected external predicates. We adapt a known graph
matching algorithm when applying this idea to the alignment of two on-
tologies. We have successfully tested the model with the public testcases
of the Ontology Alignment Evaluation Initiative 2005.

1 Introduction

1.1 Motivation

For many knowledge domains (biology, music, web directories, digital rights man-
agement, etc.) several overlapping ontologies (middle ontologies) are being en-
gineered. Each one is a different abstraction and representation of the same or
similar concepts. There are proliferating also a myriad of problem-specific on-
tologies (lower ontologies) for many applications, metadata repositories, personal
information systems and peer-to-peer networks.

To enable collaborationwithin and across information domains, software agents
require the semantic alignment (mapping) of the different formalisms. The align-
ment process will identify the equivalences between some entities (e.g. classes and
properties) of the participating ontologies, and the different levels of confidence.
These mappings are required before the querying of semantic data from
autonomous sources can take place.

1.2 Ontology Alignment Formal Definition

Ontology alignment (or matching) is the operation that takes two ontologies
and produces a set of semantic correspondences (usually semantic similarities)
between some elements of one of them and some elements of the other. Several
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ontology alignment algorithms have been provided like GLUE [2], OLA [7] or
FOAM [4]. A more formal definition, borrowed from [3], can be given:

Definition 1. Given two ontologies O and O′, an alignment between O and O′

is a set of correspondences (i.e., 4-uples): < e, e′, r, n > with e ∈ O and e′ ∈ O′

being the two matched entities, r being a relationship holding between e and e′,
and n expressing the level of confidence [0..1] in this correspondence.

It is typically assumed that the two ontologies are described within the same
knowledge representation language (e.g. OWL [12]). Here we will focus on au-
tomatic and autonomous alignment, but other semi-automatic and interactive
approaches exist.

1.3 Semantic Similarity Measures

The ontology alignment problem has an important background work in discrete
mathematics for matching graphs [8][13], in databases for mapping schemas [14]
and in machine learning for clustering structured objects [1]. Most part of on-
tology alignment algorithms are just focused on finding close entities (the ”=”
relationship), and rely on some semantic similarity measure.

A semantic similarity measure tries to find clues to deduce that two different
data items correspond to the same information. Data items can be ontology
classes and properties, but also instances or any other information representation
entities. Semantic similarity between ontology entities (within the same ontology
or between two different ones) may be defined in many different ways. The
recently held Ontology Alignment Evaluation Initiative 2005 [11] has shown
that the best alignment algorithms combine different similarity measures. [7]
provides a classification (updating [14]) inherited from the study of similarity in
relational schemas. This classification can be simplified to four categories when
being applied to ontologies: Lexical, Topological, Extensional and Model-based.

1.4 Our Approach

The work presented in this paper takes a topological or structure-based seman-
tic similarity approach. As ontologies and knowledge-representation languages
evolve, more sophisticated structure-based similarity measures are required. In
RDF (Resource Description Framework [15]) graphs, relationships are labeled
with predicate names, and trivial distance-based strategies cannot be applied.
Some works like [6] explore similarity measures based on structure for RDF
equivalent bipartite graphs.

Our work focus also in RDF, but faces directly the natural RDF labelled
directed graphs. The approach can be outlined in the following two points:

1. To compute the semantic similarity of two entities we have taken the common
RDF and OWL predicates as a semantic reference. Objects are described and
compared depending on how they relate to other objects in terms of these
predicates. We have modeled this idea as a simple vector space.
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2. To efficiently apply our similarity measure to the ontology alignment problem
we have adapted it to the graph matching algorithm of [5].

2 Representing RDF Labelled Directed Graphs with a
Vector Space Model (VSM)

In linear algebra a vector space is a set V of vectors together with the operations
of addition and scalar multiplication (and also with some natural constraints such
as closure, associativity, and so on). A vector space model (VSM) is an algebraic
model introduced a long time ago by Salton [16] in the information retrieval field.
In a more general sense, a VSM allows to describe and compare objects using
N-dimensional vectors. Each dimension corresponds to an orthogonal feature of
the object (e.g. weight of certain term in a document).

In an OWL ontology, we will compare entities taking into consideration their
relationships with all the other entities present in the ontology - First we will
focus on similarity within the same ontology, next we will study its application
to the alignment of two ontologies -. Because relationships can be of different
nature we will model them with a vector space. For this vector space, we will
take as dimensions any OWL, RDF Schema, or other external predicate (not
ontology specific) e.g. rdfs:subClassOf, rdfs:range or foaf:name. We can formally
define the relationship of two nodes in the model:

Definition 2. Given any pair of nodes n1 and n2 of a directed labelled RDF
graph GO representing the OWL ontology O, the relationship between them,
rel(n1, n2), is defined by the vector {arc(n1, n2, p1), ..., arc(n1, n2, pN )}, where
arc is a function that returns 1 if there is an arc labelled with the predicate pi

from n1 to n2 or 0 otherwise. pi is a predicate from the set of external predicates
P (e.g. {rdfs:subClassOf, foaf:name}).

rel(n1, n2) ={arc(n1, n2, p1), ..., arc(n1, n2, pN )} |
n1, n2 ∈ GO ∧ ∀i ∈ [0; N ] , pi ∈ P

arc(n1, n2, pi) =

{
1 if there is an arc labelled with pi from n1 to n2;
0 otherwise.

Example 1. Let us see a simple example. Take the following graph GA represent-
ing an ontology OA. Imagine a trivial two-dimensional vector space to model
the relationships between nodes. External predicates rdfs:domain and rdfs:range
have been chosen for dimensions 0 and 1 respectively.

The relationship between the property directs and the class director will be
described by {1, 0}. The relationship between the property actsIn and the class
movie will be described by {0, 1}, and so on.

Now, the full description of an entity can be achieved with a vector containing
the relationships between it and all the other entities in the ontology. Putting all
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Fig. 1. GA

the vectors together we obtain a three-dimensional matrix A representation of
the labelled directed graph GA (row order: director, actor, movie, directs, actsIn,
voiceIn):

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(1, 0) (0, 0) (0, 1) (0, 0) (0, 0) (0, 0)
(0, 0) (1, 0) (0, 1) (0, 0) (0, 0) (0, 0)
(0, 0) (1, 0) (0, 1) (0, 0) (0, 0) (0, 0)

⎞
⎟⎟⎟⎟⎟⎟⎠

3 Similarity of Entities Within the Same Ontology

In the general case, the correlation between two vectors x and y in an N-
dimensional vector space can be calculated using the scalar product. We can
normalize it by dividing this product by the product of the vector modules, ob-
taining the cosine distance, a traditional similarity measure. In our case, vectors
describing entities in terms of other entities are composed by relationship vec-
tors (so they are matrices). We can calculate the scalar product of two of such
vectors of vectors V and W using also the scalar product to compute ViWi:

V · W =
N∑

i=1

M∑
j=1

VijWij

Applying this equation to the above example we can see that the scalar
product of e.g. the vector describing directs and the vector describing actsIn is
directs·actsIn = 1. The scalar product of actsIn and voiceIn is actsIn·voiceIn =
2, and so on. Normalizing these values (to keep them between 0 and 1) would
allow to obtain a trivial similarity matrix of the ontology entities. However, we
aim to propagate the structural similarities iteratively, and also to apply this
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idea to the alignment of two different ontologies. In the following sections we
will describe how to do it by adapting the ideas described in [5].

4 Applying the Model to an Ontology Alignment Process

To calculate the alignment of two ontologies represented with our vector space
model we have adapted the graph matching algorithm of [5]. This adapted algo-
rithm calculates entity similarities in an RDF labelled directed graph by itera-
tively using the following updating equation 1 :

Definition 3. Sk+1 = BSkAT + BT SkA, k = 0, 1, ...
where Sk is the NB ∗ NA similarity matrix of entries sij at iteration k, and A
and B are the NB ∗ NB ∗ NP and NA ∗ NA ∗ NP three-dimensional matrices
representing GA and GB respectively. NA and NB are the number of rows of A
and B, and P is the number of predicates selected as dimensions of the VSM.

Note that, as it is done in [5], initially the similarity matrix S0 is set to 1
(assuming for the first iteration that all entities from GA are equal to all entities
in GB). If we start the process already knowing the similarity values of some pair
of entities, we can modify this matrix accordingly, and keep the known values
between iterations.

Example 2. Let’s see a simple example. Take the following graphs GA and GB.
Figure 2 shows their corresponding RDF labelled directed graphs.

Fig. 2. GA (left) and GB (right)

A =

⎛
⎝ (0, 0) (1, 0) (0, 1)

(0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0)

⎞
⎠B =

⎛
⎝ (0, 0) (1, 0) (0, 1)

(0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0)

⎞
⎠S0 =

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠

S1 = BS0A
T + BT S0A =

⎛
⎝2 0 0

0 1 0
0 0 1

⎞
⎠

1 The graph matching algorithm from [5] is exactly the same as the algorithm shown
here, but using simple matrices of 1’s and 0’s instead of matrices of vectors. We omit
more details to avoid redundancies and because the paper remains self-contained.
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To normalize the similarity matrix (to keep its values between 0 and 1) [5] di-
vides all its elements by the Frobenius norm of the matrix, defined as the square
root of the sum of the absolute squares of its elements.

S1 = S1/frobeniusNorm(S1) =

⎛
⎝0, 816 0 0

0 0, 408 0
0 0 0, 408

⎞
⎠

Iterating the algorithm 4 times it converges to the following result:

S4 =

⎛
⎝0, 577 0 0

0 0, 577 0
0 0 0, 577

⎞
⎠

So, as expected the entities a′, b′ and c′ (rows) are similar to a, b and c (columns)
respectively.

4.1 Computational Cost and Optimization

Because the number of selected external predicates pi ∈ P can be small and it
is independent of the size of the ontologies, operations involving relationships
vectors can be considered of constant cost, and the general algorithm of order
O(N2). Because the number of nodes can be considerably high, some optimiza-
tions are required to constraint the processing time. Inspired in [6], we have
classified nodes into five types: Properties (p), Classes (c), Instances (i), Ex-
ternal Classes (c′) and External Instances (i′). Because nodes from one type
cannot be similar to nodes of another type, the matrices can be rewritten (rows
and columns correspond to types previously mentioned and in the same order):

A =

⎛
⎜⎜⎜⎜⎝

Ap−p Ap−c Ap−i Ap−c′ Ap−i′

Ac−p Ac−c Ac−i Ac−c′ Ac−i′

Ai−p Ai−c Ai−i Ai−c′ Ai−i′

Ac′−p Ac′−c Ac′−i Ac′−c′ Ac′−i′

Ai′−p Ai′−c Ai′−i Ai′−c′ Ai′−i′

⎞
⎟⎟⎟⎟⎠

Sk =

⎛
⎜⎜⎜⎜⎝

Sp 0 0 0 0
0 Sc 0 0 0
0 0 Si 0 0
0 0 0 Sc′ 0
0 0 0 0 Si′

⎞
⎟⎟⎟⎟⎠

Definition 4. The Sk+1 equation can be decomposed into three formulas:

Spk+1 = Bp−pSpk
AT

p−p + Bp−cSck
AT

p−c + Bp−iSik
AT

p−i + Bp−c′Sc′
k
AT

p−c′ +
Bp−i′Si′

k
AT

p−i′ + BT
p−pSpk

Ap−p + BT
c−pSck

Ac−p + BT
i−pSik

Ai−p +
BT

c′−pSc′
k
Ac′−p + BT

i′−pSi′
k
Ai′−p
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Sck+1 = Bc−pSpk
AT

c−p + Bc−cSck
AT

c−c + Bc−iSik
AT

c−i + Bc−c′Sc′
k
AT

c−c′ +
Bc−i′Si′

k
AT

c−i′ + BT
p−cSpk

Ap−c + BT
c−cSck

Ac−c + BT
i−cSik

Ai−c +
BT

c′−cSc′
k
Ac′−c + BT

i′−cSi′
k
Ai′−c

Sik+1 = Bi−pSpk
AT

i−p + Bi−cSck
AT

i−c + Bi−iSik
AT

i−i + Bi−c′Sc′
k
AT

i−c′ +
Bi−i′Si′

k
AT

i−i′ + BT
p−iSpk

Ap−i + BT
c−iSck

Ac−i + BT
i−iSik

Ai−i +
BT

c′−iSc′
k
Ac′−i + BT

i′−iSi′
k
Ai′−i

Sc′
k+1

and Si′
k+1

are diagonal matrices passed as input parameters. They are kept
unchanged between iterations.

4.2 Comparison Against Algorithms Based on Bipartite Graphs

The use of an algorithm to measure similarity between directed graphs could
lead to think that it would be better to directly apply it over the ontologies
equivalent bipartite graphs (like it is done in [6]), instead of adapting it to RDF
labelled directed graphs. However, our approach has some advantages; on one
hand we reduce critically the number of nodes and the computational cost. On
the other hand, in bipartite graphs the core predicates of OWL are treated as
all the other nodes, while in our model they become the semantic reference to
describe and compare entities. Figure 3 shows the equivalent bipartite version
of the previous example with two graphs of three nodes.

Fig. 3. GA (left) and GB (right)

Appying the alignment algorithm for bipartite graphs described in [6] we obtain
the following similarity matrix between a′, b′, c′ and a, b, c:

X22 =

⎛
⎝0, 405 0 0

0 0, 153 0, 05
0 0, 05 0, 153

⎞
⎠

As can be seen, the inclusion of statement nodes adds some symmetries not
present in the original graphs, resulting in less precise results. Some similarities
between nodes b′ and c (and vice-versa) appear.
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5 Results

To test our approach we have used the Ontology Alignment Evaluation Initiative
2005 testsuite [11]. The evaluation organizers provide a systematic benchmark
test suite with pairs of ontologies to align as well as expected (human-based) re-
sults. The ontologies are described in OWL-DL and serialized in the RDF/XML
format. The expected alignments are provided in a standard format expressed in
RDF/XML and described in [11]. Because our model does not deal with lexical
similarity, we have integrated our algorithm inside another hybrid aligner, Fal-
con [6] (replacing its structure similarity module by ours). This constraints the
interest of the obtained results, but otherwise it hadn’t been possible a compar-
ative evaluation. Because most part of the tests include more lexical similarity
than structural similarity challenges, our aligner and Falcon2 obtain very simi-
lar results (the same for tests 101-104 and 301-304). The differences fall between
tests 201-266, that we show in table 1.

Table 1. OAEI 2005 tests where our approach (vsm) obtains a different result than [6]

vsm falcon foam ola
test prec. rec. prec. rec. prec. rec. prec. rec.
205 0.90 0.89 0.88 0.87 0.89 0.73 0.43 0.42
209 0.88 0.87 0.86 0.86 0.78 0.58 0.43 0.42
230 0.97 0.96 0.94 1.0 0.94 1.0 0.95 0.97
248 0.83 0.80 0.84 0.82 0.89 0.51 0.59 0.46
252 0.64 0.64 0.67 0.67 0.67 0.35 0.59 0.52
257 0.66 0.66 0.70 0.64 1.0 0.64 0.25 0.21
260 0.44 0.42 0.52 0.48 0.75 0.31 0.26 0.17
261 0.45 0.42 0.50 0.48 0.63 0.30 0.14 0.09
262 1.0 0.27 0.89 0.24 0.78 0.21 0.20 0.06
265 0.44 0.42 0.48 0.45 0.75 0.31 0.22 0.14
266 0.45 0.42 0.50 0.48 0.67 0.36 0.14 0.09

Rows correspond to test numbers, while columns correspond to the obtained
values of precision (the number of correct alignments found divided by the total
number of alignments found) and recall (the number of correct alignments found
divided by the total of expected alignments).

From 50 tests our results just differ in 11 with respect to the aligner in which
we have embedded our algorithm. We improve the results of Falcon in tests 205
and 206 (where labels have been replaced by synonyms), test 230 (where classes
have been flattened) and test 262 (where everything except classes have been
omitted). In test 257 (where names, comments and specialization hierarchy have
been omitted) we just improve the recall value. In the other five tests our results
are below the Falcon ones. We still cannot claim to outperform the original
2 A description of all the tests can be obtained from [11]. Our results for tests not

present in the table are the same as those of Falcon, and can be obtained in [6].
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structural similarity algorithm of [6], but we can show that similar results (pretty
good with respect to the other aligners) can be obtained by directly working over
the RDF labelled directed graph, instead of working over the equivalent bipartite
graph, that is bigger and can introduce symmetries not present in the original
structure.

6 Related Work

The initial work around structure-based semantic similarity just focused on is-a
constructs (taxonomies). Previous works like [10] measure the distance between
the different nodes. The shorter the path from one node to another, the more
similar they are. Given multiple paths, one takes the length of the shortest one.
[17] finds the path length to the root node from the least common subsumer
(LCS) of the two entities, which is the most specific entity they share as an
ancestor. This value is scaled by the sum of the path lengths from the individual
entities to the root. [9] finds the shortest path between two entities, and scales
that value by the maximum path length in the is–a hierarchy in which they
occur.

Recently, new works like [5] define more sophisticated topological similar-
ity measures, based on graph matching from discrete mathematics. These new
graph-based measures suit the particularities of the new ontologies, built with
more expressive languages like OWL [12]. Our work is based on the previous work
in [5], and also in its adaptation to OWL-DL ontologies alignment in [6]. This
last work describes a structural similarity strategy called GMO (Graph Matching
for Ontologies). Differently from our work, GMO operates over RDF bipartite
graphs. It allows a more direct application of graph matching algorithms, but
also increases the number of nodes and reduces scalability.

7 Conclusions

We have presented here an approach to structure-based semantic similarity mea-
surement that can be directly applied to OWL ontologies modelled as RDF la-
belled directed graphs. The work is based on the intuitive idea that similarity of
two entities can be defined in terms of how these two entities relate to the world
they share (e.g. two red objects are similar with respect to the colour dimen-
sion, but their similarity cannot be determined in a general way). We describe
and compare ontological objects in terms of how they relate to other objects. We
model these relationships with a vector space of N dimensions being N the num-
ber of selected external predicates (e.g. rdfs:subClassOf, rdfs:range or foaf:name).
We have adapted the graph matching algorithm of [5] to these idea to iteratively
compute the similarities between two OWL ontologies. We have presented also
an optimization of the algorithm to critically reduce its computational cost. The
good results obtained in the tests performed over the Ontology Alignment Eval-
uation Initiative 2005 testsuite has proven the value of the approach in situations
in which structural similarities exist.
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